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Abstract

The overall aim of this thesis consisted of expanding the current
understanding of the genetic basis and physiopathology of aggressive B-cell
leukemias, namely in chronic lymphocytic leukemia (CLL) subtypes and in B-cell
prolymphocytic leukemia (B-PLL).

CLL, the most common form of adult leukemia in the West, is characterized by
an accumulation of monoclonal B cells (CD20+, CD5+ and CD23+) in the peripheral
blood, bone marrow, and secondary lymphoid organs. CLL is a highly heterogeneous
disease, with a large panel of genetic alterations leading to variable clinical
outcomes.

Gain of the short arm of chromosome 2 (2p gain) is a frequent chromosomal
abnormality in CLL and in other malignancies. Our group has reported that 2p gain
was associated with drug refractoriness and poor prognosis factors such as
unmutated IGHV and 11q deletion. Using cytogenetic and molecular analyses, we
have notably identified a minimal region of gain which encompasses among others
XPO1 and REL. In my main thesis project, functional analysis of the role of REL,
using three complementary strategies of pharmacological inhibition, gene knockout
and transcriptional activation, led to its identification as a key player driving cell
survival in CLL. Moreover, | developed several CLL cellular models that allow the
overexpression of any gene, alone or in combination, in order to further investigate
the roles of REL and XPO1 in CLL and identify potential oncogenic cooperation
driving phenotypic features of 2p gain CLL. Finally, we have analyzed the hierarchy
and the clonal evolution of the chromosomal abnormalities in 2p gain CLL.

CLL with 17p deletion, del(17p), is associated with a lack of response to
standard treatment and thus the worst clinical outcome. Our findings showed that
del(17p) and 8g24 gain have a synergistic impact on outcome, therefore patients with
this “double-hit” CLL have a particularly poor prognosis.

B-PLL is an aggressive leukemia, usually resistant to standard chemo-immuno
therapy, defined by the presence of prolymphocytes in peripheral blood exceeding
55% of lymphoid cells. We described the cytogenetic and molecular features of a
large cohort of 34 B-PLL cases, as well as their in vitro response to novel targeted
drugs.

Altogether, this work enabled a better understanding of CLL and B-PLL, as
well as paving the way for the development of novel therapeutic strategies.

Key words: chronic lymphocytic leukemia, REL, NF-kB, XPO1, del(17p). 2p gain,
drug resistance, B-cell prolymphocytic leukemia.
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Résumeé

| 'objectif général de cette thése a été d’approfondir la compréhension actuelle
des bases génétiques et de la pathophysiologie de leucémies B agressives, a savoir
deux sous-types de leucémie I|ymphoide chronique (LLC) et la leucémie
prolymphocytaire B (LPLB).

La LLC, qui est la forme de leucémie adulte la plus fréquente en Occident, est
caractérisée par une accumulation de lymphocytes B monoclonaux (CD20+, CD5+
and CD23+) dans le sang périphérique, la moelle osseuse ainsi que les organes
lymphoides secondaires. La LLC est une maladie trés hétérogéne, ou un large panel
d’altérations génétiques ménent a des résultats cliniques variables.

Le gain du bras court du chromosome 2 (gain 2p) est une anomalie
chromosomique récurrente dans la LLC et d’'autres cancers. Notre groupe avait
décrit I'association du gain 2p avec la résistance aux traitements et des facteurs de
mauvais pronostic comme [I'/IGHV non-muté et la délétion 11q. Des analyses
cytogénétiques et moléculaires nous ont notamment permis d'identifier une région
minimale de gain incluant entre autres les génes XPO1 et REL. Dans la partie
principale de ma thése, 'analyse fonctionnelle du réle de REL, par trois stratégies
complémentaires d’inhibition pharmacologique, d'inactivation du géne et dactivation
transcriptionelle, a permis l'identification de REL comme un acteur central de la
survie cellulaire dans la LLC. De plus, jai développé plusieurs modeles cellulaires de
LLC permettant la surexpression de nimporte quel géne, seul ou en combinaison,
pour approfondir les études sur REL et XPO1, et identifier de potentielles
coopérations oncogéniques menant au phénotype des LLC avec gain 2p. Enfin, nous
avons analysé la hiérarchie et I'évolution clonale des anomalies chromosomiques
dans les LLC avec gain 2p.

La LLC avec délétion 1/p est associée avec une absence de réponse aux
traitements standards et donc avec la pire issue clinique possible. Nous avons
montré que la délétion 17p et le gain 8g24 ont un impact synergique sur le résultat
clinique, et que les patients ayant cette LLC « double-hit » ont un pronostic
particuliérement défavorable.

La LPLE est un lymphome agressif, habituellement résistant aux chimio-
immunothérapies standard, et défini par la présence de prolymphocytes dans le sang
périphérique excédant 55% des cellules lymphoides. Nous décrivons les aspecis
cytogénétiques et moléculaires d'une large cohorte de 34 cas de LPLB, ainsi que
leurs réponses aux nouveaux inhibiteurs spécifiques in vitro.

In fine, notre travail a permis une meilleure compréhension de la LLC et de la
LPLB, et d’ouvrir la voie au développement de nouvelles stratégies thérapeutiques.

Mots-clés : leucémie lymphoide chronique, REL, NF-kB, XPO1, del(17p). gain 2p,
résistance aux traitements, leucémie prolymphocytaire B.
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ADCC, antibody-dependent cellular cytotoxicity

AHSAZ, AHA1 activator of heat shock 90 kDa protein ATPase homolog 2

AlF, apoptosis-inducing factor

ALCL, anaplastic large-cell lymphoma

ALL, acute lymphoid leukemia

AML, acute myeloid leukemia

ANGPTLS, angiopoietin like 5

ANKHD1, ankyrin repeat and KH domain containing 1
APARF1, apoptotic protease activating factor-1
ARID1A, AT-rich interaction domain 1A

ASPP, apoptosis stimulating protein of p53

ASXL1, additional sex combs like 1

ATLL, adult T-cell leukemia/lymphoma

ATM, ataxia telangiectasia mutated

ATP, adenosine triphosphate

ATRX, alpha thalassemia/mental retardation syndrome X-linked

BAD, Bcl-2-associated agonist of cell death

BAFF, B cell-activating factor

BAK1, Bcl-2 homologous antagonist/killer 1 (encodes BAK).
BAX, Bcl-2-associated X protein

BAZ2A, bromodomain adjacent to zinc finger domain 2A
BCL2, B-cell ymphoma 2 (encodes Bcl-2)

BCL11A, B-cell lymphoma/leukemia 11A

BCRH, B cell receptor

BCOR, BCL6 co-repressor

EH, Bcl-2 homology

BID, BH3-interacting domain death agonist

EBIM, BH3-interacting mediator (Bcl-2-like 11)

BIRCS3, baculoviral IAP repeat containing 3

bp. base pair(s)

BERD4, bromodomain-containing 4

BTK, Bruton’s tyrosine kinase

C11orf70, chromosome 11 open reading frame 70
Cas(9), CRISPHR-associated protein (9)

CARD, caspase activation and recruitment domain
CCND2, cyclin D2

CDC, complement-dependent cytotoxicity

CDKN. cyclin-dependent kinase inhibitor

CDP, common dendritic progenitor

CGH, comparative genomic hybndization

CHDZ2, chromodomain helicase DNA binding protein 2
CLL, chronic lymphocytic leukemia

CLP, common lymphoid progenitor

CMP, common myeloid progenitor
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CNOT3, CCR4-NOT transcription complex subunit 3

CREBEFP, CREB-binding protein

CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
CRM1. chromosomal region maintenance 1 (XPO1)

DAMP, damage-associated molecular pattern

DcR3, decoy receptor 3

DD, death domains

DDX3X, DEAD box helicase 3, X-linked

DIABLO, Direct IAP-binding protein with low pl (SMAC)
DLBCL, diffuse large B-cell lymphoma

DNA, deoxyribonucleic acid

DNA-PK, DNA-dependent protein kinase

DSB, double strand break

EGR2, early growth response 2

ELP, early lymphoid progenitor

ER. endoplasmic reticulum

ERK, Extracellular signal-regulated kinase

FADD, FAS-associated protein with Death Domains

FEXW?7, F-box and WD repeat domain containing 7

FC(R), fludarabine cyclophosphamide (rituximab)

FISH, fluorescent in situ hybridization

FL, follicular lymphoma

FLICE, FAS-associated DD protein-like interleukin-1B-converting enzyme-like
protease

FLIP, FLICE-inhibitory protein

FR-CLL; fludarabine-resistant CLL

FUBP1, tar upstream element (FUSE) binding protein 1

GMP, granulocyte—macrophage progenitor
GVHD, graft-versus-host-disease

H(D)R, homology (-directed) repair
HIST1H1B, histone cluster 1, H1b
HL, Hodgkin lymphoma

HSC, hematopoietic stemn cell

IAP, inhibitor of apoptosis proteins

lg, immunoglobulin

IGHV (-M or -UM), immunoglobulin heavy chain vanable (-mutated or -unmutated)
IkB. inhibitor of NF-kappa B

IKK, IkB kinase

IKZF3, IKAROS family zinc finger 3

IRAK1, interleukin 1 receptor-associated kinase 1

IRF4, interferon regulatory factor 4

IT-, intermediate-term repopulating
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KLHLE, kelch like family member 6

LLC, leucémie lymphoide chronique

LN, lymph node

LMPP, lymphoid-primed MPP

LT-, long-term repopulating

LTB, lymphotoxin-p

LUCYLZ, LUCTY-like 2 pre-mBNA splicing factor

MAPK, mitogen-activated protein kinase

MBL, monoclonal B lymphocytosis

MCL1, myeloid cell leukemia sequence 1

mDC, myeloid dendritic cell

MDP, monocyte—dendritic cell progenitor

MDR(1), multi-drug resistance (protein-1)

MED, mediator complex subunit

MEP, megakaryocyte—erythrocyte progenitor

MGA, MAX dimerization protein

ML-IAP, melanoma IAP

MLL2, mixed-lineage leukemia 2

MMP, matrix metalloproteinase

MOI, multiplicity of infection

MOMP, mitochondrial outer membrane permeabilization
MPP, multipotent progenitor

MSH2, MutS protein homolog 2

MYDS88, myeloid differentiation primary response 88

NB., neuroblastoma

NF-kB, nuclear factor-kB

NFKBIE, NFk light polypeptide gene enhancer in B cells inhibitor-£
NGS, next-generation sequencing

NHL, non-Hodgkin lymphoma

MNIK, NF-kB-inducing kinase

NK, natural killer cell

NKAP, NF-kB activating protein

MLS, nuclear localization signal

NPM, nucleophosmin (nucleolar protein)
nt, nucleotide(s)

NXF1, nuclear RNA export factor 1

OS5, overall survival

PAPOLG, poly(A) polymerase gamma

PARP, poly(ADP-ribose) polymerase

PCLBCL, primary cutaneous large B-cell lymphoma
pDC, plasmacytoid dendritic cell

PEX13, peroxisomal biogenesis factor 13
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PFS, progression-free survival

Pl, propidium iodide

PI3K, phosphatidylinositol 3-kinase

PI-9/5PI-6, protease inhibitor 9/serine protease inhibitor 6
PME(C)L, pnmary mediastinal B cell lymphoma

POLRS3E, polymerase (RNA) [l (DNA directed) polypeptide B
POT1, protection of telomeres 1

PS, phosphatidylserine

PTPN11, protein tyrosine phosphatase, non-receptor type 11
PUS10, pseudoundylate synthase 10

HANK., receptor activator of NF-kB

HHD, Rel homology domain

RID, REL inhibitory domain

RIP3, receptor interacting protein kinase 3
RNA, ribonucleic acid

ROS, reactive oxygen species

RPS15, nbosomal protein S15

HS, Richter syndrome

SCC, squamous cell carcinoma

SDS-PAGE, sodium-dodecyl sulfate polyacrylamide gel electrophoresis
SETD, SET domain containing

SF3B1, splicing factor 3b subunit 1

(s)gRNA, (single) guide RNA

shBMNA, short-hairpin RNA

SINE, specific inhibitors of nuclear export

siHNA, small interfering RNA

SKIV2LZ, superkiller viralicidic activity 2-like 2

SLL, small lymphocytic lymphoma

SMAC, second mitochondria-derived activator of caspases (DIABLO)
SNP, single-nucleotide polymorphism

ST-HSC, short-term repopulating HSC

STAT, signal transducer and activator of transcription

SYNET1, spectrin repeat containing, nuclear envelope 1

TAD1/2, transactivation domain 1/2
TALE, transcription activator-like effector
TCRH, T-cell receptor

TIR, Toll/IL-1 receptor

TLR, Toll-like receptor

TLR2, Toll-like receptor 2

TMEM123, transmembrane protein 123
TNF(R), tumour necrosis factor (receptor)
TRAF3, TNF receptor-associated factor 3
TRAIL, tumor-necrosis factor-related apoptosis-inducing ligand
TSS, transcription start site

TTFT, time to first treatment
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UBA, ubiquitin-associated domain
USP34, ubiquitin specific peptidase 34

WM, Waldenstrém’s macroglobulinemia

XAF1, XIAP-associated factor 1
XIAP, X-linked inhibitor of apoptosis
XPO1, exportin 1

YAF1, yes-associated protein 1

ZAP-70, Zeta-associated protein of 70 kDa
ZF, zinc finger

ZMYMS3, zinc finger, MYM-type 3

ZNF292, zinc finger protein 292
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Chapter I: Hematopoiesis

1. Generating and regenerating the blood system

The blood system contains various blood cell types (or lineages) exerting
different functions (Rieger and Schroeder, 2012):

e Erythrocytes, commonly known as red blood cells, provide Oz and CO:2
transport.

= Megakaryocytes generate platelets for blood clotting and wound healing.

s | eukocytes, or white blood cells, embody several specialized cell types
involved in  innate and adaptive immunity: namely neutrophils,
monocytes/macrophages, B and T lymphocytes... (Figure 1)

Innato mmundty Adapiive immunity
{raper PRenOnas) - s RO

Figure 1: Types of leukocytes in innate and adaptive immunity (Dranoff, 2004).

Hematopoiesis designates the highly complex and dynamic process by which
all these blood cells are formed, which occurs during embryonic development and
throughout adulthood to generate and replace the blood cellular components
(Jagannathan-Bogdan and Zon, 2013). Indeed, every second during life, millions of
“old” blood cells are replaced with new ones. In response to stress situations such as
anemia or infections, blood cell counts rapidly increase, then decrease back to
normal following resolution (Rieger and Schroeder, 2012).

In adults, these components are formed from hematopoietic stem cells

(HSCs), through an exquisitely intricate series of proliferation and differentiation
events (Tavian et al., 2010).
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Figure 2: Hierarchical models of hematopoiesis. (A) Schematic of the human
hematopoietic hierarchy. Dashed lines indicate recently discovered differentiation
paths. mono, monocyte; gran, granulocyte; ery, erythroid; mega, megakaryocyte;
CD4, CD4+ T cell; CD8, CD8+ T cell; B, B cell. (B) Quantitative depiction of
hematopoietic hierarchy, in which erythroid commitment is the predominant and
default pathway of differentiation. (C) Visualization of hematopoietic hierarchy in
which lineage commitment occurs on a continuum rather than in punctuated stages,

a perspective motivated by recent single-cell transcriptomic studies (Bao et al,
2019).
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In fact, long-term (LT-) self-renewing HSCs are at the top of a cascade of
multiple progenitor cell stages, which sequentially lose multiineage potential and
commit to unilineage, ultimately yielding one of the mature blood cell types (Rieger
and Schroeder, 2012).

Modelization of the hematopoietic differentiation hierarchy is constantly subject
to evolution due to novel findings. Around the year 2000, HSCs were visualized as a
homogeneous population downstream of which the first lineage bifurcation divides
the myeloid and lymphoid branches via the CMP and CLP populations. During the
years 2005 to 2015 this visualization integrated new findings: the HSC pool was now
acknowledged to be more heterogeneous both in terms of self-renewal and
differentiation properties, the myeloid and lymphoid branches remain associated
further down in the hierarchy via the LMPP population, the GMP compartment is
shown to be rather heterogeneous. From 2016 onwards, results gathered from single
cell transcriptomics studies indicate a continuum of differentiation (Laurenti and
Gdéttgens, 2018) (Figure 2).

Indeed, recent experiments where HSCs were barcoded and traced in situ in
mice confirmed a treelike model of hematopoiesis with main myeloerythroid and
common lymphoid arms (Héfer and Rodewald, 2018).

HSCs are identified by expression of high amounts of the receptor for stem cell
factor, c-kit (CD117), and the absence of cell-surface proteins expressed on
differentiated myeloid, erythroid, and T lineage cells. This lineage-negative (Lin—),
CD117hi fraction of BM cells is highly enriched for long-term repopulating HSCs
(Hardy et al_, 2007; Spangrude et al., 1988).

2. An evolutionarily conserved process

This process is quite conserved among vertebrates, and the study of several
model systems has allowed its fundamental understanding (Héfer and Rodewald,
2018).

In vertebrates, hematopoiesis occurs in two waves: the primitive wave and the
definitive wave (Jagannathan-Bogdan and Zon, 2013).

The primitive wave, which occurs transiently during early embryonic
development, primarily aims at producing red blood cells that can enable tissue
oxygenation during rapid embryo growth (Galloway and Zon, 2003). Indeed, this
phase implicates non-renewable erythroid progenitors that produce erythrocytes (red
blood cells) and macrophages (Orkin and Zon, 2008).

The definitive wave occurs later in development, at different time points in
different species. In most organisms, definitive hematopoiesis first involves erythroid-
myeloid progenitors (EMPs) (Palis and Yoder, 2001), then hematopoietic stem cells
(HSCs), which are multipotent cells that can produce all blood lineages of the adult
organism. Definitive HSCs emerge in the aorta-gonad-mesonephros (AGM) region of
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the developing embryo (Bertrand et al., 2007; McGrath et al., 2011), then colonize
the fetal liver, the spleen and finally the bone marrow, which is the location for HSCs
in adults (lvanovs et al_, 2011).

Specifically, in humans, hematopoiesis is initiated in the yolk sac and migrates
into the liver momentarily, then definitively settles in the bone marrow and thymus
(Figure 3).

Human

AGM
— — I
First hepatic  Second hepatic Bone marrow
Yolk sac colonization colonization
|
_l—l—l—m I T I 1 I
Days 17 19 21 23 27 30 40 105 Weeks

Embryonic hematopoiesis takes place in the yolk sac then
proceeds transiently to the developing liver, after the onset
of blood circulation. Hematopoiesis then proceeds with a
second hepatic colonization event before finally concluding
with bone marrow colonization at ~10.5 weeks and finally
concluding with bone marrow and thymus colonization at
~9-10.5 weeks.

Figure 3: Hematopoiesis in humans (Jagannathan-Bogdan and Zon, 2013).

3. Regulation of hematopoiesis

The stem cell’s decision to either self-renew or undergo differentiation must be
tightly regulated to allow both the production of functioning mature cells and the
precise maintenance of the rnight HSC count. Owing to its highly complex nature, a
myriad of intrinsic and extrinsic factors have been reported to play important roles for
HSC self-renewal and differentiation (Jagannathan-Bogdan and Zon, 2013).

Importantly, the microenvironment or niche is known to play a crucial role in
the function of stem cells, by providing ligands that activate various signaling
pathways in HSCs. Although still debated, it is generally admitited that signaling
pathways such as the cytokine receptor c-Kit, Wnt, which is critical for embryonic
development and Notch, involved in cell fate specification and pattern regulation, play
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an important role in the regulation of HSC self-renewal (Rieger and Schroeder,
2012). For instance, activation of Notch pathway has been shown to stimulate
expansion and self-renewal of both munine and human HSCs in adult hematopoiesis
(Jagannathan-Bogdan and Zon, 2013). Examples of HSC intrinsic regulatory factors
include transcription factors, signaling modulators, epigenetic modifiers, cell cycle
regulators, microBNAs and RNA-binding proteins (Guruharsha et al_, 2012).

Induction and propagation of a stable lineage commitment is orchestrated in a
regulatory network of major transcription factors. Simplified examples are shown in
figure (Figure 4).

Extrinsic signal

A c :

— Notch
GATA2 [|— GATA1 : \/
;I)m _L; Erythroid genes _,:": TCF1 "—l Non-T-cell genes
B Bcl11b GATA3
PUA IKAROS| |IL-7Ra ¥ ¥ ¥
\ l / T T-cell genes
E2A < EBF1 D
! w PU.1 [ GATA1
B-cell | v ] .
genes <—{ PAX5 —{ Non-B-cell genes Myeloid genes  Erythroid genes

Figure 4: Networks motifs for induction and maintenance of lineage
commitment in erythroid (A), B-lymphoid (B), T-lymphoid (C), and myeloid (D)
cells. Direct or indirect activation (arrows) and repression (barred lines) of individual
factor expression are indicated. Transcription factors are depicted in white, surface
receptors in gray. Dashed lines represent indirect interactions (Rieger and
Schroeder, 2012).
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Chapter Il: B lymphocytes

1. Physiological functions of B cells

B lymphocytes are key components of the adaptive immune system. Mature B
cells, which are located in the spleen, lymph nodes and penpheral blood, are able to
recognize a single antigen with high specificity. Maive mature B cells, i.e. cells that
have not encountered their antigen yet, scan all passing cells and particles, and will
be activated upon antigen recognition. Activated cells subsequently undergo final
differentiation into antibody-producing plasma cells and memory B cells.

2. B-cell development and regulation

Upon unilineage commitment of the common lymphoid progenitor, pro-B cells
undergo a series of maturation stages to produce mature naive B cells (Figure 5).

Bone marrow Peripheral compartments
Maive
Immature activated
Pro-B cell Pre-B cell B cell Maive B cell B cell GC B cell
%) %) O O (0 7%
| | — | — | — | J:_h-, J—h_‘ |
A N oy o o 4
COg-CD2rlg CD19-CD20%g- CD19CD20xlg? CD19-CD20r CD19CD20r CD19CD20"
lgrC3a-- lgC 38 g COE8
I‘lamla cell Plasma blast Memory B cell Post-0C B cell
'/.-’:--:Q-.- i ~ ﬁx-‘} ./F_-\\ -/.-“-.\. ./-“h.\
© P—0—0—©
'-.I?‘- -‘}JI - _.-’; I"\__ __--"ll I'\__ 4 I"'\__ __/.
Stem cell CO1g--CD20rIg COHe-Chzolg! CO19Ch20%lg* CO19°ChI0
CD27+CD3&*~CD138 CD27-CD34~ CD271gM/gGligh:  Ig CD38"
CO3&

Figure 5: B-cell development. Stages of B cell maturation are indicated by their
anatomical site and the expression of cell-surface markers (Edwards and Cambridge,
2006).

Regulation of lineage commitment in B-cell development relies on key
transcription factors with feed-forward regulatory pathways. These complex and
strongly regulated networks involve several factors (detailed in Table 1), acting in
various contexts and combinations. Importantly, PU1 and E2A are crucial for
lymphoid cell-fate determination and induce specific B-lineage commitment factors
such as early B-cell factor 1 (EBF1) and Pax5. The B-cell fate is stabilized by a
feedback loop of Pax5 and IKAROS to maintain EBF1 expression (Decker et al,
2009; Nutt and Kee, 2007; Pndans et al, 2008; Rieger and Schroeder, 2012)
(Figures 4B and 6).
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Table 1: Structure and function of transcription factors implicated in the
networks controlling B cell development (adapted from (Nutt and Kee, 2007)).

Transcription | DNA-Binding Motif | Ectopic B Cell Phenotype of
Factor (Gene | (Consensus- Expression Mouse Germline (KO)
Symbol) Binding Sequence) | Phenotype and Conditional (cKO)
Deficiency
PU1 (&ipi1) Ets (A GGAAGT) In PU1 --1fetal- | KO: lack fetal B cells and
liver cells graded | CLPs; cKO: normal B2
amounts of PU.1|and expansion of B1
rescue B cell and | cells.
macrophage
development.
lkaros (lkzf1) | Zinc finger | N.D. KO: lack all stages of
(T GGGAA) B cell differentiation.
E2A (Tefe2a) | bHLH (CANNTG, | Induces cell-cycle | KO: block prior to pre-
prefers arrest and | pro-B cells; cKO:
ACACCTGC) apoptosis in T or | reduced survival in pre-B
B cell lines, inthe | cell lines. Ectopic E
70213 protein antagonist: pro-B
macrophage line | cell-growth arrest,
induces B cell- |decreased pro-B cell
lineage gene expression.
conversion.
Early B cell| Zinc knuckle | Induces B cell | KO: arrest at CLP to pre-
factor, EBF1 | (ATTCCCNNG differentiation in | pro-B cell transition, no
(Ebf1) GGAAT) multipotent cells with Igh gene
progenitors, rearrangement.
rescues
B lymphopoiesis
in PU1 -,
E2A +-or IL-
7R —- progenitors
Pax5 (Pax5) Paired domain | Impairs T cell | KO: Fetal liver lacks B
(A cNCNANT €/ cA | development and | lineage cells. Adult bone

T aGCG G/ 1A T/ 4
Af c)

promotes T cell-

lymphoma
formation.
Vanably affects
myeloid and
erythroid

differentiation.

marrow block at pro-B
cell stage but have D-
Jubut only a few
proximal -
DJ 1 rearrangements;
cKO: required for the
maintenance of B cell
fate and repression of
plasma-cell
differentiation_
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Table 1 (continued)

Transcription | DNA-Binding Motif | Ectopic B Cell Phenotype of
Factor (Gene | (Consensus- Expression Mouse Germline (KO)
Symbol) Binding Sequence) | Phenotype and Conditional (cKO)
Deficiency
Aiolos (lkzf3) | Zinc finger | N.D. KO: regulates B cell
(T GGGAA) activation and
differentiation to effector
stage. RHepresses A5 In
pre-B cells.
Sox4d (Sox4) HMG-box N.D. KO: lethal at e13.5, pro-B
(CCTTTGAA) cells fail to expand in IL-7
and few pro-B after fetal-
liver transfer into
irradiated adults.
Lymphoid HMG-box N.D. KO: decreased pro-B
enhancer (CCTTTGA/T AIT) cells in fetal liver and
factor, Lefl neonatal bone marrow,
(LefT) pro-B cells respond to IL-
7 but not Wnt3a.
Bcll1la (Evi9) | Zinc finger | N.D. KO: no B lineage cells.
(GGCCGQE)
GABP (gabpa) | Ets (A GGAAGT) N.D. Hypomorphic gene ftrap

allele lethal between
E12.5-145. Impaired B
cell development

and Pax5 expression
after fetal-liver transfer
into irradiated adults.

All these factors function in a collaborative way in pro-B cells to warrant the
repression of myeloid genes and hence warrant stability of B-cell commitment
(Edwards and Cambridge, 2006).
Cells committed to the B cell lineage can be identified by expression of CD19, a
target of the lineage-commitment factor Pax5 (Nutt and Kee, 2007).
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Multipotent Lymphoid restricted Specification Commitment Expansion

Flt3 Pre-BCR

LMPP ELP Pre-pro-B cell Pro-B cell Pre-B cell

Figure 6: Regulation of lineage commitment throughout B Cell Development.
Consecutive steps of differentiation from the LMPP (lymphoid-primed multipotent
progenitor), ELP (early lymphoid progenitor), pre-pro-B cell, and committed pro- and
pre-B cell are shown. Developmental capacities of the successive stages are
indicated. Main transcription factors, growth-factor receptors, and cell-surface
markers are shown, with important events started at a particular stage shown in blue.
An arrow pointing upward indicates positive interactions, and 1 indicates gene
repression. HAG1 expression is initiated in the ELP and is continued until throughout
the remaining stages depicted. IRFs: interferon regulatory factor-4 and -8 (Nutt and
Kee, 2007).

3. Structure and function of immunoglobulins

Mature naive B cells express immunoglobulins at their surface. Each
immunoglobulin (1g) is a heterodimeric protein consisting of two identical heavy (H)
chains and two identical light (L) chains, both of which harbor constant and variable
regions. The L chain can consist of either a kK or a A chain.

Functionally, variable domains on H and L chains specify the antigen binding
site, while constant domains define eftector functions such as complement activation
or binding to Fc receptors (Schroeder et al., 2010).

Massive pools of specific B cells with unique lgs are produced in the bone
marrow, collectively and virtually recognizing any given molecule. How is this
diversity generated?

3.1. VDJ recombination

lgs are encoded by the Ig gene locus, which is organized in gene segments:
the varable (V), diversity (D), joining (J) and constant (C) gene segments. V, D and J
segments constitute the vanable region. C gene segments encode the five main
classes of heavy C domains, defining five main Ig isotypes with distinct biological
properties: 1gG (Cyi-4), 1A (Cau-2), IgD (C35), IgM (Cp) or IgE (Ce) (Figure 7).
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Figure 7: Hepresentatlon of the chromosomal organlzatlun ofthelgH, K, and A
gene clusters. The typical numbers of functional gene segments are shown. The K
gene cluster includes a k deleting element that can rearrange to sequences
upstream of Ck in cells that express A chains, reducing the likelihood of dual K and A
light chain expression (Schroeder et al_, 2010).

VDJ recombination designates the process undergone by B (and T)
lymphocytes (Figure 8), where each lg is generated by random recombination of V,
+/-D and J sequences to form the variable region, and thus generate a unique
antigen receptor. Recombination is started by the lymphoid-specific RAG1 and RAG?2
proteins, which cooperate to create double-strand breaks at specific recognition
sequences (recombination signal sequences, ASSs). The adjacent coding DNA is
converted to a hairpin during breakage. Broken ends are then processed and joined
through the cooperation of numerous factors (DNA-dependent protein kinase (DNA-
PK) and the Ku, Artemis, DNA ligase IV, Xrccd proteins.. ). V(D)J recombination is
tightly regulated by limiting access to RSS sites within chromatin, so that particular
sites are available only in certain cell types and developmental stages (Gellert,
2002).

Generation of immunoglobulin diversity is hierarchical and occurs at specific
stages of B cell development (Figure 5). In pro-B cells, Dy—Jy joining is followed by
Vy—DdJy rearrangement. In-frame, functional VDJyrearrangement permits the
production of p H chains in pre-B cells, and V,—J joining takes place at the late pre-
B cell stage. Successiul production of a complete kK or A light chain allows expression
of conventional IgM B cell receptor on the cell surface (slgM), which is a hallmark of
immature B cells. Maturation involves the extension of transcription of the H chain
locus to include the Cd exons downstream of Cu. Alternative splicing authonizes co-
production of IgM and IgD. These newly mature IgM+lgD+ B lymphocytes enter the
blood and migrate to the spleen and the other secondary lymphoid organs where
they form the majonty of the B cell pool. The IgM and IgD on each of these cells
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harbor the same variable domains, i.e. the same antigen specificity (Schroeder et al_,
2010).
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Figure 8: V(D)J recombination of the heavy chain immunoglobulin (IgH) from
germ line gene segments (Backhaus, 2018). L = leader sequence.

3.2. Clonal selection and affinity maturation

Upon maturation, lymphocytes are subject to stringent Darwinian selection.
After leaving the bone marrow, mature unstimulated IgM+lgD+ B cells only live for a
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few days or a few weeks. Recognition of their specific antigen leads to activation,
which rescues them from programmed cell death. The activation method is critical:

e T cell independent stimulation of B cells prompts differentiation into short-lived
plasma cells with limited class switching.

« T cell dependent stimulation typically induces the germinal center (GC)
response, consisting of somatic hypermutation of the vanable domains, thus
enabling affinity maturation, class switching to the other isotypes, and
differentiation into long-lived plasma cells or into a broad diversity of mutated
memaory B cells (Schroeder et al_, 2010).

The GC reaction is a critical part of the antibody response (Figure 9): indeed,
it corresponds to a delayed but sustained phase responsible for generating high-
affinity antibodies of the lgG, IgA and/or IgE isotypes. Activated B cells in the GC
undergo re-iterative cycles of somatic hypermutation of lg gene variable regions,
rapid cellular proliferation (clonal expansion) and Darwinian selection for cells
expressing higher-affinity antibody wvarniants (DeFranco, 2016). Both somatic
hypermutation and class-switch recombination are initiated by activation-induced
cytidine deaminase (AID), an enzyme that converts cytidine in DNA to uridine and
that is strongly upregulated in GC B cells (Di Noia and Neuberger, 2007).
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Figure 9: B-cell differentiation in the GC reaction. Mature (naive, IgM+lgD+)
antigen-activated B cells that receive signals from helper T cells are driven into
primary B-cell follicles in secondary lymphoid organs such as lymph nodes, where
they establish GCs (lightest yellow region). GC B cells are proliferating and relocate
to the outside of the follicle, where they form a mantle zone around the GC. In the
GC, a dark zone (left) and a light zone (right) can be distinguished. The dark zone
primarily comprises proliferating GC B cells, whereas the GC B cells in the light zone
are resting. In proliferating GC B cells, the process of somatic hypermutation is
activated, which leads to the introduction of mutations at a high rate into the
rearranged Ilg vanable region genes of the B cells. Most mutations are
disadvantageous for the cells— such as those that lead to reduced affinity of the
BCRH for antigen and cause cells to undergo apoptosis. A few GC B cells will acquire
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mutations in the BCR that increase their affinity for antigen, and these cells will be
positively selected. The selection process presumably takes mainly place in the light
zone, where the GC B cells are in close contact with CD4+ T cells and follicular
dendntic cells (FDCs). A fraction of these GC B cells undergo class-switch
recombination. Finally, GC B cells differentiate into memory B cells or antibody-
producing plasma cells and leave the GC microenvironment (Kippers, 2005).

4. Deregulation of B cell pathways and cancer

Alterations in the regulatory pathways regulating B cell development and

function lead to diseases such as immune deficiency, autoimmunity, and cancer (Nutt
and Kee, 2007).
Importantly, subtle variations and deregulation of individual transcription factors will
have a direct impact on normal differentiation and can induce leukemia (Backhaus,
2018). B cell tumors can arise from cells at various developmental stages and will
maintain some characteristics of the normal B cell counterpart. Specifically, the
oncogenesis and pathophysiology of chronic lymphocytic leukemia, and to a lesser
extent, of prolymphocytic leukemia, will be discussed in Chapter Il
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Chapter lll: Chronic Lymphocytic Leukemia (CLL)

1. Hallmarks of CLL

Chronic Lymphocytic Leukemia (CLL) is the most common adulthood
leukemia in Westemn countries, accounting for approximately 40% of adult leukemias
and 25% of all leukemias. CLL is nearly twice as common in men as in women, and
its incidence increases with age, the median age at diagnosis being of approximately
70 years (Rosenbauer et al_, 2006).

CLL is a malignancy of mature-appearing, clonal B cells that accumulate in the
blood, bone marrow and secondary lymphoid tissues. This accumulation is thought to
be the result of both defective apoptosis (Fabbri and Dalla-Favera, 2016; Hernandez
et al., 1995; Hallek, 2019) as well as deregulated proliferation (Chiorazzi et al_, 2005).

Immunophenotypically, CLL cells co-express the surface T cell marker CD5S
together with the B cell antigens CD19, CD20 and CD23. Each clone of leukemia
cells is restricted to expression of either kappa or lambda immunoglobulin light
chains (Calissano et al_, 2009).

The clinical course of CLL is highly vanable, ranging from an indolent
condition, with an almost normal life expectancy, to rapidly progressing, aggressive
disease. The transformation of CLL to aggressive lymphoma is a rare but critical
complication termed Richter syndrome (RS) (Fama et al_, 2014; Landau et al_, 2017;
Woyach et al., 2014) (discussed in Section lIl. 6). This variability in outcome reflects
a highly heterogeneous landscape of genetic abnormalities, which will be the main
focus of this chapter (detailed in Section lll. 3).

The load of somatic hypermutation of the rearranged immunoglobulin heavy-
variable genes (IGHV) is one of the most important prognostic factors in CLL, as it
defines two biologically and clinically distinct subgroups. Indeed, ClLLs with
unmutated IGHV genes (IGHV-UM, 40%) are linked with disease progression,
whereas mutated IGHV genes (IGHV-M, 60% of CLL cases) tend to confer a
favorable prognosis (Damle et al., 1999; ten Hacken et al., 2019; Hamblin et al_,
1999).

These differences in clinical outcome between the two subtypes could reflect
disparities in underlying mutagenic mechanisms: it was recently shown that IGHV-
UM CLL is dominated by coding mutations in driver genes and an aging signature,
while IGHV-M CLL has a high occurrence of promoter and enhancer mutations due
to aberrant AID activity (Burns et al_, 2018).

Usually, VDJ rearrangement generates one productive IGHV, but some CLL
cells lack allelic exclusion and yield two productive rearrangements. Although there
were no significant differences in survival and disease progression between patients
with single or double (3-5% of samples) IGHV gene rearrangement, the presence of
at least one mutated IGHV gene conferred a better prognosis (Hamblin et al., 1999).
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MNoteworthily, a cut-off of 2% deviation or 98% sequence identity to germline
in IGHV sequence is currently used to classify CLL patients into mutated and
unmutated groups. However, recent data indicated that /IGHW%. was rather a
continuous variable significantly associated with survival. Indeed, higher IGHVSG
levels were incrementally associated with favorable PFS and OS in CLL patients
treated with FCR (Jain et al_, 2018).

Importantly, around 30-35% of CLL patients (with two thirds being UM-IGHV)
express a largely skewed lg repertoire, with quasi-identical BCHs, the so-called
“stereotyped” receptors. Stereotyped subsets are associated with clinical features
and outcome. BCR “stereotypy” denotes the existence of common antigenic
determinants, which may favor CLL disease initiation and progression (ten Hacken et
al, 2019).

Although the vast majority of CLLs occur sporadically, in 3-10% of cases, CLL
develops in individuals with a family history of CLL, with a 7,5-fold increased risk in
first degree relatives (Heyman et al., 2016; Rassenti and Kipps, 1997; Visco et al,
2013). Moreover, CLL predominantly affects individuals of European descent.
However, the basis for this inhented predisposition remains ill-defined, even though
several susceptibility loci were identified (Goldin et al., 2004); there are no major
differences in terms of phenotype and clinical outcome between sporadic and familial
CLL (Speedy et al_, 2014).

Despite efficient treatments (discussed in Section . 7), CLL remains
incurable, with inevitable relapses. Identifying deregulated genes is therefore crucial
for a better understanding of CLL pathogenesis and evolution, and hence for the
development of novel targeted therapies.

2. Diagnosis and clinical staging

The intemational workshop on CLL, which recently published updated
guidelines for the clinical management of CLL (Hallek et al., 2018, Hallek, 2019),
provides that diagnosis of CLL requires the presence of = 5x10° B lymphocytes/L in
the peripheral blood, sustained for at least 3 months.

Importantly, the presence of a clonal B lymphocyte population in the blood
below that threshold, i.e. < 5x10° B lymphocytes/L, in otherwise healthy individuals, is
termed monoclonal B cell lymphocytosis (MBL). MBL is viewed as a precursor state
of CLL: the majority of MBL cases have the immunophenotype of CLL, and each
year, 1-2% of MBLs progress to overt ClLLs, probably as a result of progressive
accumulation of genetic and epigenetic alterations as well as environmental factors
(Hallek et al_, 2018).

Circulating CLL cells display a charactenstic and typical morphology in the
majority of cases (Figure 10A): most cells are small with normal mature
morphological features (regular nucleus with clumped chromatin and no nucleoli,
minimal cytoplasm), sometimes associated with smudge or basket cells (also called
Gumprecht shadows), which correspond to remainders of fragile lymphocytes
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disrupted by the smearing of the blood sample on a glass slide. The proportion of
prolymphocytes defines distinct morphological classes of CLL and is associated with
clinical features (Matutes and Polliack, 2000). “Typical’ CLL morphology is defined by
< 10% prolymphocytes.

However, in 15% of cases, either at diagnosis or during disease progression,
CLL cells display atypical morphology reflected by either:
« an increased (> 10%) number of circulating prolymphocytes, designated
CLL/PL (Figure 10B)
« or an increased (> 15%) number of circulating lymphoplasmacytic and cleaved
cells, designated ‘atypical' CLL (Matutes and Polliack, 2000).
A cytological analysis showing a majority of prolymphocytes rules out CLL from the
diagnosis. Indeed, this would rather be indicative of B-cell prolymphocytic leukemia
(B-PLL), a distinct malignancy that is defined by = 55% of prolymphocytes. These
cells are large, have condensed non-clumped chromatin and a single vesicular
nucleolus (Figure 10D) (Oscier et al., 2016).
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Figure 10: Morphological appearances of CLL and CLL/PL (=10% circulating
prolymphocytes). (A) Typical CLL. (B) CLL/PL. There is a mixture of prolymphocytes
and typical CLL Iymphocytes. (C) CLL/ PL showing small Ilymphocytes,
prolymphocytes and an immunoblast. (D) Typical B-cell prolymphocytic leukemia (B-
PLL) (Oscier et al_, 2016).
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Moreover, a scoring system, termed the Matutes-Moreau score, was devised
to aid the differential diagnosis of CLL, ie. to distinguish CLL from other B-cell
lymphoproliferative disorders. Based on the analysis of five immunological markers
by flow cytometry (Table 2), this scoring system attributes for each of these five
markers a value of 1 or 0 according to whether it is typical or atypical for CLL: a score
of 4-5 corresponds to typical CLL, a score of 3 to atypical CLL while a score <3
excludes CLL from the diagnosis (Matutes et al_, 1994; Moreau et al_, 1997).

Table 2. The revised Matutes/Moreau scoring system (Matutes et al., 1994;
Moreau et al., 1997)

Immunological marker 1 point 0 point
CD5 + -

CD23 + -
FMC7 - +
Surface lgs expression weak (+/-) strong
CD79b (SN8) expression weak (+/-) strong

MNoteworthily, replacing weak surface lgs expression by CD200 positivity kept
high sensitivity but significantly increased specificity in differentiating CLL from non-
CLL cases (Kéhnke et al_, 2017).

Upon diagnosis, two staging systems help stratify patients according to the
disease nisk, Rai (Rai and Montserrat, 1987; Rai et al., 1975) (Table 3) and Binet
(Binet et al., 1981) (Table 4). Both classifications, based on physical examination
and standard laboratory tests, describe 3 major prognostic groups with distinct
clinical outcomes. Motably, the development of anemia and/or thrombocytopenia,
indicating progressive bone marrow failure, i1s associated with high-risk disease
(Binet et al_, 1981).

Table 3. The Rai staging system (Ral and Montserrat, 1987; Rai et al_, 1975)

Stage Disease Criteria Median

(original | risk survival

system) | (revised (years)

system)

0 low Lymphocytosis (blood £ marrow) =10

1,1l intermediate | Lymphocytosis + lymphadenopathy +| 79
splenomegaly = hepatomegaly

I, 1v high Lymphocytosis + lymphadenopathy + 155
splenomegaly + hepatomegaly + Anemia =+
thrombocytopenia

Lymphadenopathy refers to the enlargement of lymph nodes, anemia is defined by a
hemoglobin (Hb) level < 1g/dL, and thrombocytopenia by a platelet count of <

100x109/L.
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Table 4. The Binet staging system (Binet et al_, 1981)

Stage Criteria Median
survival
(years)

A Hb = 10g/dL + Platelets = 100x10%/L + < 2 areas involved > 10

B Hb = 10g/dL + Platelets = 100x10%/L + = 3 areas involved 7

C Hb < 10g/dL + Platelets < 100x10°%/L o)

Areas of involvement considered for Binet staging include enlarged lymph nodes
(head and neck, axillae or groins) or organomegaly (palpable liver or spleen).

Patients who present with lymphadenopathy, organomegaly, and presence of
infiltrating monoclonal B cells with the same immunophenotype as CLL cells, but
without peripheral blood lymphocytosis, are diagnosed with small lymphocytic
leukemia (SLL). CLL and SLL are presently considered as two faces of the same
disease (Tees and Flinn, 2017).

CLL cells expressed significantly higher levels of CXCR3/CXCR4 (leukocyte
trafficking/migration and homing receptors) and diminished CD49d levels (cell
adhesion integrin alpha4 chain) compared to SLL cells, explaining why the majority of
CLL malignant cells circulate in the blood, while SLL cells reside in tissues.
Moteworthily, SLL is typically considered as a more progressive disease with a more
complex genotype (Tooze et al_, 2017).

3. The genomic and epigenomic landscape of CLL

Recent advances in massively parallel sequencing technologies allowed the
identification of a vast number of genetic lesions in CLL (Puente et al_, 2011). These
studies have revealed a tremendous inter- and intra-patient heterogeneity, with a
small number of “mountains™ (i.e. frequently altered genes) and a relatively larger
number of “hills” (i.e. infrequently altered genes) (Fabbn et al_, 2011, 2013; Landau et
al., 2013; Puente et al_, 2011; Ramsay et al_, 2013; Vogelstein et al_, 2013) (Figure
11). However, importantly, no unifying genetic event accounting for all cases has
been identified so far.

3.1. Chromosomal abnormalities

Recurrent chromosomal alterations are detected in more than 80% of CLL
patients at diagnosis, and constitute important independent predictors of disease
progression and survival (Guieze and Wu, 2015). Cytogenetic (and mutational)
analyses are therefore crucial to refine prognosis and guide clinical practice (Figure
12). In addition to their prognostic relevance, the minimal deleted/gained region of
some of these abnormalities have been found to contain within them putative CLL
drivers.
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Figure 11: Recurrent cytogenetic abnormalities and genetic mutations in CLL,
grouped according to the core cellular pathway in which they are involved (Fabbn
and Dalla-Favera, 2016).
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Figure 12: Chromosomal abnormalities and genetic mutations refine prognosis
and risk classification (Fabbri and Dalla-Favera, 2016).

Deletion 13q14

Deletions involving chromosome band 13qi14, or del(13q), are the most
frequent genetic abnormality in CLL, occurring in 50-60% of patients (Ddhner et al_,
2000). Deletions are often monoallelic (80%) and heterogeneous in size, and the
minimal region of deletion harbors the DLEU2/IMIR15A/MIR16-1 cluster (Calin et al_,
2002). When functional, miR15A and miR16-1 are known to inhibit the expression of
several genes, including the anti-apoptotic gene BCLZ and genes controlling cell
cycle entry (Calin et al., 2002). Deletion of the MIR15A and MIR16-1 cluster alone is
sufficient to generate CLL in mice, however, concurrent deletion of the DLEUZ locus
or larger deletions encompassing additional genetic elements were shown to
increase the aggressiveness of the disease, suggesting that the loss of other tumor
suppressors located on the 13g may contribute to CLL pathogenesis (Klein et al_,
2010).

Del{(13q) occur more frequently in IGHV-M patients and is generally
associated with a favorable outcome. Specifically, in approximately 25% of CLL
patients, del{(13q) 1s the sole genetic lesion (i.e. occurring in the absence of any
concomitant driver genetic abnormality), which is associated with an excellent
prognosis, with a 10-year survival of 69,3% similar to a matched general population
(Klein et al_, 2010; Lia et al_, 2012).

Trisomy 12

An extra copy of chromosome 12, or tri12, is detected in approximately 15-
20% of CLL patients (Déhner et al_, 2000; Roos-Well et al_, 2018). Tri12 is generally
considered as an intermediate risk genetic lesion (Rossi et al., 2013). The co-
occurrence of NOTCH1 mutations confers an adverse prognosis and shifts the
disease to higher-nisk classes (Del Giudice et al_, 2012). It was reported that tri12 is
associated with a higher prevalence of thrombocytopenia, RS transformation and
secondary cancers (Strati et al., 2015). However, the mechanisms by which tri12
contributes to CLL pathogenesis remain elusive.
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Deletion 11q22-23

Deletion of 11g22-23, or del(11q), often encompasses ATM and BIRC3 genes
(Rossi et al., 2013). ATM is included in the minimally deleted region, and
BIRC3 deletion i1s always co-existing with ATM deletion. BIRC3 deletion and/or
mutation does not seem to have an impact on overall and progression-free survival
(Rose-Zerilli et al_, 2014).

ATM is a gene encoding a nuclear serine/threonine kinase which is induced by
chromosomal double strand breaks (DSBs) and either activates the DNA repair
pathways or induce apoptosis if the DNA damage cannot be repaired (Shiloh and Ziv,
2013).

In CLL, the ATM gene may be inactivated by deletion, mutation or both. ATM
abnormalities are detected at diagnosis in approximately 6% of stage A patients and
20% of stages B/C patients, but their incidence increases to nearly 35% at the time of
first line treatment (Rossi and Gaidano, 2016a; Skowronska et al., 2012).

Del(11q) is characterized by extensive lymph node involvement (Déhner et al_,
1997) and i1s generally considered as an unfavorable factor associated with disease
progression and poor response to chemotherapy (Rossi et al., 2013). In particular,
biallelic ATM alterations are associated with significantly reduced survival and
increased risk of death compared with patients with del(11q) alone or ATM mutation
alone, and independently of treatment or IGHV status (Lozano-Santos et al_, 2017;
Skowronska et al., 2012).

Deletion 17p13

Deletion of 17p13, or del(1/p), implicates TP53, a gene coding for a major
tumor suppressor. In normal cells, TP53 is a central regulator of the DNA damage
response pathway, rebranding it as the “guardian of the genome”. The latter pathway
induces apoptosis in response to chemotherapy.

In CLL, TP53 may be inactivated by deletion, mutation or both. Indeed, TP53
mutations are often accompanied by the loss of the second allele through del(17p)
(Rossi et al., 2009). TP53 abnormalities are detected in 4-8% of newly diagnosed
patients, mostly in IGHV-UM CLLs, but their occurrence increases with disease
progression, reaching 10-12% at the time of first line treatment, 40% in fludarabine-
refractory CLL and 50-60% in Richter syndrome (Ddéhner et al., 2000; Rossi and
Gaidano, 2016a).

Importantly, TP53 defects are associated with poor survival and resistance to
chemo +/- immunotherapy, hence representing an indication to targeted therapies
(Rossi et al_, 2013). As a consequence, current guidelines recommend to assess the
presence of del(17p) by FISH and TP53 mutations by gene sequencing in CLL
patients at each disease progression requiring treatment (Hallek et al., 2018).

2p gain
Gain of the short arm of chromosome 2, denoted as 2p gain or amp(2p), is a
recurrent chromosomal abnormality in CLL and will be the focus of Chapter IV.

Other chromosomal abnormalities

Several less frequent genomic aberrations have been reported, such as
trisomy 8g24, 18 and 19, as well as deletions of 621, 8p, 14q, 15q15.1, 2q37, 3p21
and 10g24 (Edelmann et al., 2012). In most cases, target genes and prognostic
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values of these abnormalities are not fully understood. However, our group has
recently demonstrated that gain of 824 (5% of patients), a region harboring the
MYC gene, was a significant predictor of poor survival. In particular, “double-hit™ CLL
combining 17p deletion and 8g24 gain, have a particularly poor clinical outcome
(Chapiro et al, 2018). Moreover, deletions of chromosome region 6qg21, or
del(6q21), detected in 5-7% of CLL cases, are associated with poor prognosis
(Jarosova et al_, 2017).

Recurrent balanced chromosomal translocations are rather rare in CLL, being
found in less than 5% of all cases at diagnosis. They are generally associated with
an unfavorable prognosis (DE Braekeleer et al., 2016), except for the t(14;18)
translocation involving the BCLZ gene, usually associated with lymphomas of a
follicular center cell origin, but which has been reported in approximately 2% of CLL
patients, all of them IGHV-M (Cavazzini et al_, 2008; Puente et al., 2015).

Complex karyotype, or CK, is defined by 3 or more chromosomal
abnormalities. Leukemia cells with highly complex karyotypes are linked with an
adverse prognostic significance (Baliakas et al., 2014; Cavallan et al., 2018; Herling
et al, 2016; JaroSova et al., 2019; Thompson et al., 2015). Specifically, it was
recently demonstrated that patients with =5 abnormalities, defined as high-CK,
exhibit the worst prognosis, independently of clinical stage, TP53 aberrations and
mutational status of IGHV genes. On the other hand, CK with 3 (low-CK) or 4
aberrations (intermediate-CK) were not independent predictors of unfavorable
outcome (Baliakas et al., 2019).

Mear tetraploidy (i.e., 4 copies of most chromosomes within a cell) is detected
in 3% of ClLLs, and was found to be associated with aggressive disease features
such as advanced stages, del(17p) and complex karyotype, and with Richter
transformation in ibrutinib-treated patients (Miller et al_, 2017).

Complex DNA rearrangements like chromotripsis and chromoplexis are also
extremely uncommon (Puente et al_, 2015).

3.2. Somatic mutations

Comparably to other hematological malignancies, CLL is characterized by an
overall low somatic mutation rate (0,6/Mb). For comparison, this rate is approximately
at 15/Mb for melanoma (Lawrence et al. 2014). The median number of
nonsynonymous mutations per tumor in CLL is 12 (Vogelstein et al_, 2013).

Mumerous recurrent somatic mutations have been described in CLL (Figure
11), generally disturbing the coding sequence of the targeted gene. Gene
deregulation can also arise from mutations within non-coding regions. For instance,
aberrant activation of NOTCHT1 can occur from either mutations within exon 34 or
non-coding mutations affecting the 3'UTRH region of the gene; while inactivating
mutations in the enhancer of PAX5 result in a decreased expression of the
corresponding transcription factor (Puente et al., 2015).

In addition to the aforementioned TP53 and ATM lesions, several genetic
lesions were shown to significantly impact prognosis (Figure 13). For instance,
mutations affecting NOTCH1 (found in 12-15% of patients), SF3B71 (9-10%) and
XPO1 (2.4-3.4%) are highly correlated to unmutated /IGHV genes (Jeromin et al,
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2014; Puente et al_, 2011; Quesada et al_, 2012). All XPO1 mutations were missense
mutations in exon 15 resulting in protein alteration in codon 571 : the most frequent
mutation was p.E5S71K, followed by p.ES71V, p.ES71G and p.E5/1Q (Jain et al,
2016).

Specifically, CLL patients with NOTCH1 and SF3B71 mutations have faster
disease progression and shorter overall survival, independently of other prognostic
factors (Jeromin et al, 2014; Quesada et al.. 2012). Furthermore, NOTCH1
mutations are linked with trisomy 12 and resistance to anti-CD20 monoclonal therapy
(Jeromin et al_, 2014; Puente et al_, 2015; Stilgenbauer et al., 2014).

Importantly, the prevalence of these mutations in newly diagnosed or
unselected CLL patients is increased in advanced disease stages. For example, the
frequency of XPO1 mutations nses from approximately 3% to 149% in
refractory/relapsed CLL (Guieze and Wu, 2015). In relapsed/refractory CLL,
concomitant mutations of the TP53, ATM and/or SF3B71 genes are frequent and
negatively impact clinical outcome (Guieéze and Wu, 2015). On the other hand,
MYDS88 mutations (1,5-2,9%), which are associated with mutated IGHV status, are
generally linked with a favorable outcome (Jeromin et al., 2014; Puente et al_, 2011).
Consistently, the frequency of MYD88 mutations is rarely affected at relapse (Guiéze
and Wu, 2015).
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Recurrent alterations consistently affect genes playing central roles in
essential cellular programs, suggesting that these are core CLL pathways. As
depicted in Figure 14, these pathways include DNA damage response, mBNA
processing, chromatin remodeling, NOTCH signaling and BCR signaling. Genetic
and functional studies have implicated the latter pathway as a pivotal player in CLL
pathophysiology. In particular, several genetic lesions lead to NF-kB activation, and

will be thoroughly reviewed in Chapter V: namely mutations in the NFKBIE, BIRCS3,
MYDS88 and NOTCH1 genes.
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Figure 14: Putative core CLL pathways (Guiéze and Wu, 2015).

Recently, mutations in LCP1 and WNK1 were proposed as novel CLL drivers
using integrated single-cell genetic and transcnptional analysis (Wang et al_, 2017b).

3.3. Epigenetic alterations

Epigenetic lesions also play a role in the deregulation of gene expression in
cancer (Baylin and Jones, 2011). Comprehensive methylation profiling studies have
provided an unbiased picture of the CLL epigenome, which displays a high degree of
heterogeneity across samples (Cahill et al., 2013; Kandur et al., 2010; Kulis et al_,
2012; Landau et al., 2014; Oakes et al., 2014). These studies have shown that the
CLL methylome is remarkably stable over time, with few changes between resting
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(GO or early G1 phase of the cell cycle) and proliferating compartments of CLL (Cabhill
et al_, 2013).

Moreover, the CLL epigenome is characternized by a global genome-wide
hypomethylation, combined with localized regions of hypermethylation (Kulis et al_,
2012). It has been reported that high levels of intra-tumoral methylation heterogeneity
were associated with high-risk genetic lesions, clonal evolution and poor prognosis,
advocating for the assessment of epigenetic changes in CLL (Landau et al., 2014;
Oakes et al_, 2014) (Figure 15).
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Figure 15: Methylation disorder and clonal selection in CLL (Guiéze and Wu,
2015).

4. CLL metabolism and microenvironment dependency

The aforementioned inherent factors (namely, chromosomal abnormalities,
somatic mutations and epigenetic alterations) are far from being the sole players
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accounting for CLL pathogenesis. Indeed, external signals from the leukemia
microenvironment play crucial roles in this process. Ultimately, CLL disease
progression is determined by cross-talkks between leukemia-intrinsic and
environmental factors (Burger, 2011).

While lymph nodes are the main site of active cell proliferation, from which
newly bom cells are released into other compartments (Herndon et al., 2017),
peripheral blood CLL cells are replicationally quiescent, i.e. in a resting state (Soma
et al_, 2006).

CLL cells have been reported to be more prone than normal B cells to
spontaneous apoptosis (Douglas et al., 1997), and those expressing IGHV-UM more
than those expressing IGHV-M genes (Coscia et al_, 2011).

CLL cells spontaneously and rapidly die by apoptosis in vitro, because they
lack essential signals provided by the natural microenvironment (Douglas et al.,
1997). Indeed, CLL cells are exquisitely sensitive to microenvironmental cues and
depend on them for their survival (Guiéze and Wu, 2015).

The sensitivity of freshly isolated CLL cells to spontaneous apoptosis is highly
variable across patients and is negatively correlated with constitutive activation of
STAT3 and NF-kB (see Section V. 1.2). CLL cells with higher susceptibility to in vitro
spontaneous apoptosis showed the greatest chemo-responsiveness. (Liu et al.,
2016a).

A plethora of cellular and molecular players in the CLL microenvironment
promote the survival and evolution of CLL cells. CLL cells interact with bone marrow
stromal cells, and with T cells, antigen-presenting cells and dendntic cells within the
lymph node proliferation centers (or pseudofollicles). Cytokines, chemokines,
integrins, and other ligands and receptors play key roles in proliferation and survival
within these cellular niches (Burger and Chiorazzi, 2013).

The lymph node (LN) microenvironment is indeed a central actor in CLL
pathogenesis, promoting activation of BCR and NF-kB signaling pathways and tumor
cell proliferation. In cancer cells, NF-kB encourages tumor growth both by
contributing to maintenance/expansion of tumor initiating cells and by modeling the
tumor microenvironment (Bradford and Baldwin, 2014). Specifically, gene expression
profiling of LN-denved tumor cells exhibited an increased phosphorylation of IkBa as
well as an upregulation of several NF-kB target genes, such as the CCNDZ and
BCL2A1 genes, involved in cell cycle regulation and inhibition of apoptosis
(Herishanu et al_, 2011).

In particular, BCR signaling is a central pathomechanism (ten Hacken and
Burger, 2014). For instance, modeling of microenvironment in vitro induces
resistance dependent on LYN and BTK (Nguyen et al., 2016; Purroy et al., 2014).
Furthermore, the proliferation of Mec1 and JVYM-3 cell lines was inhibited by Src and
Abl kinase inhibitor dasatinib (Veldurthy et al_, 2008).
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BCR-crosslinking with anti-lgM antibodies in vitro mimics antigen recognition
and is followed by calcium mobilization and phosphorylation of several tyrosine
kinases (including ZAP-70 when expressed), leading in fine to the activation of NF-
kB and PI3K/Akt kinase pathways. Immobilized anti-lgM ligation leads to cell
proliferation/survival whereas soluble anti-lgM cross-linking leads to cell apoptosis
(Perrot et al., 2011). IgM stimulation results in BCR pathway activation in IGHV-UM
CLLs, but not in IGHV-M CLL cells (Guarini et al., 2008).

Expression of ZAP-70 is associated with increased BCRH signaling (Chen et al_,
2002) and was shown to act as an amplifier of NF-kB signaling in CLL cells (Pede et
al., 2013), which may participate in the more aggressive clinical course associated
with CLL cells that express IGHV-UM genes.

Functional features of chronic active BCR signaling are displayed in other B
cell neoplasms such as DLBCL (Davis et al, 2010) and Waldenstrom's
macroglobulinemia (WM) (Argyropoulos et al., 2016).

A combination of cytokines (IL-2, 4, 6, 10, 12, 15, 21, BAFF and APRIL)
significantly improved CLL survival. Among these cytokines, IL-4 is sufficient to
rescue CLL cells from spontaneocus apoptosis in vifro (Ghamlouch et al., 2013).
Interleukin-4 (IL-4) is a cytokine secreted by activated T cells, NK-T cells, basophils,
eosinophils and mast cells. IL-4 induces signaling cascades leading to maturation of
B-cell precursors, proliferation of activated B cells, and induction of isotype switching
toward IgE (Thomson and Lotze, 2003). In B cells, IL-4 induces preferentially the
non-canonical NF-kB pathway (Thieu et al., 2007). IL-4 efficiently protects CLL cells
from spontaneous apoptosis or killing with agents such as fludarabine and
chlorambucil (Dancescu et al, 1992; Douglas et al, 1997; Steele et al,
2010). Consistently, inhibition of NF-kB counteracts cytoprotection by IL-4 (Ruiz-
Lafuente et al., 2014). In a nutshell, NF-kB activation is anti-apoptotic in CLL (Cuni et
al_, 2004; Furman et al_, 2000).

Moreover, PKCbeta-dependent activation of NF-KB in bone marrow stromal
cells is indispensable for the survival of CLL B cells in vivo (Lutzny et al., 2013).

Finally, oxidative phosphorylation (OxPhos) is a major pathway for energy
production in CLL cells and is further enhanced in the presence of the stromal
microenvironment. In short-term cultures, supporting stromal cells can confer a
survival advantage to CLL cells by increasing OxPhos and bioenergy, allowing them
to maintain transcription and translation, without however affecting proliferation
(Vangapandu et al_, 2017).

Accordingly, inhibition of reactive oxygen species limits expansion of CLL cells
(Yigit et al., 2017), although recent data suggest that CLL cells adapt and
compensate through glycolysis when OxPhos is inhibited (Vangapandu et al,
2018a).
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5. Cell of origin

Several findings have suggested that CLL may develop from pluripotent
hematopoietic stem cells (HSCs). Indeed, HSCs from CLL patients were able to
engraft efficiently in immunodeficient mice, giving rise to clonal CD5+ B cell
populations of B cells resembling MBL, the precursor state of CLL (Kikushige et al_,
2011). Moreover, ClL-associated somatic mutations, namely BRAF, NOTCHI1,
SF3B1, NFKBIE and EGRZ2, have been found in multipotent hematopoietic
progenitors from CLL patients (Damm et al_, 2014).
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Figure 16: Cellular origin of human B-cell lymphomas. Human B-cell lymphomas
are assigned to their proposed normal B-cell counterpart. Solid arrows denote B-cell
differentiation steps and broken arrows assign the various lymphomas to their
proposed normal counterpart. The origin of B-cell chronic lymphocytic leukemia
(CLL) cells has been debated. About half of the cases of CLL carry mutations in V-
region genes. Both subsets of CLL have been proposed to derive either from CD5+ B
cells, memory B cells or marginal-zone B cells (Klppers, 2005).

Although the precise cell of ongin of CLL is still debated, comparison of gene
expression and DNA methylation profiles between normal B cells and CLL cells,
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showed that all CLL cells resemble memory B cells (Klein et al_, 2001; Oakes et al_,
2016).

Specifically, results from gene expression profile studies suggested that IGHV-
M CLL may derive from post-germinal center (GC), T-cell dependent CD5+ CD27+
memory B cells, whereas IGHV-UM CLL seem to anse either from naive pre-GC
CD5+ CD27- B cells or from a minor fraction of CD5+ CD27+ GC-independent
memory B cells (Fabbri and Dalla-Favera, 2016; Klein et al., 2001; Milpied et al_,
2015; Rosenwald et al_, 2001; Seifert et al_, 2012) (Figure 16).

It has been reported that, in rare cases (1,3%), CLL anses from two distinct
populations. This biclonal CLL led to faster disease progression compared to
monoclonal CLL (Kern et al_, 2014).

6. Convergent evolution, clonal evolution and Richter syndrome

Progressive accumulation of additional genetic and epigenetic defects,
BCR stimulation and microenvironmental factors lead to clonal selection of the cell of
origin, giving nise fo MBL, and eventually to overt monoclonal CLL (Fabbri and Dalla-
Favera, 2016).

Despite the tremendous genetic heterogeneity, CLL cells display a relatively
homogeneous and specific gene expression profile, which clearly distinguish them
from B cells of other related pathologic entities and from normal B cells (Dirg et al.,
2003; Jelinek et al_, 2003; Klein et al_, 2001; Rosenwald et al_, 2001; Stratowa et al_,
2001; Wang et al., 2004; Zheng et al_, 2002). This signature is largely independent of
their IGHV genotype, even though a limited number of genes (30) have been
identified whose differential expression can distinguish IGHV-M from IGHV-UM cases
(Klein et al_, 2001).

Longitudinal deep sequencing studies identified convergent evolution as a
recurrent event in the CLL genome whereby independent genetic lesions in the same
gene were acquired in different subclones (Ojha et al., 2015). More broadly speaking,
convergent evolution engenders cells with distinct genetic backgrounds to display
similar phenotypes, thereby generating a consistent expression profile in each CLL
sample despite the genetic heterogeneity (Wang et al_, 2017b).

Despite highly effective treatments, CLL remains an incurable disease as it
invariably evolves and recurs (Fabbn et al., 2013; Landau and Wu, 2013; Landau et
al, 2014).

The evolutionary dynamics of CLL follows two general patterns: clonal
equilibrium, in which the relative sizes of each subclone remain stable, and clonal
evolution, in which some fitter subclones emerge as dominant (Landau et al_, 2013).
Presence of subclonal driver mutations negatively impact clinical outcome. The
diversity of subclones predicis disease progression and persistence in CLL (Leeksma
et al_, 2019).
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Importantly, chemotherapy and targeted agents (discussed in Section lll. 7)
have been identified as accelerator of clonal evolution (Landau et al., 2013) by
exerting strong selective pressures for the emergence of resistant subclones (Landau
et al_, 2017) (Figure 17).
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Figure 17: Clonal evolution is a major driving force in cancer progression and
drug resistance (Guiéze and Wu, 2015).

Indeed, longitudinal data analysis of chemo-immunotherapy-treated CLL
showed that treatment, in the majority of cases, leads to large clonal shifts between
pre-treatment and relapse samples, resulting in the expansion of previously minor
subclones (Landau et al., 2013, 2015). In particular, another longitudinal study in a
homogeneously treated cohort of 12 patients found clonal competition between 2 or
more genetic subclones in 70% of the patients with relapse, and stable clonal
dynamics in the remaining 30% (Ojha et al_, 2015).

Moreover, drug-induced selective pressure can also lead to the appearance of
ibrutinib resistant mutations. For instance, mutations affecting the BTK binding site of
ibrutinib and gain-of-function mutations in PLCGZ, undetectable before ibrutinib
treatment, were reported, further highlighting the dynamic nature of CLL genome
(Fama et al_, 2014; Landau et al_, 2017; Woyach et al_, 2014).
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In addition to genetic evolution arising from therapeutic pressure and
interactions between tumoral subclones, it i1s becoming clear that reciprocal
interactions between the tumor cell and cellular components of the microenvironment
further apply selective pressures on specific clones that can influence the equilibrium
between tumor immunity and immunologic evasion and escape (Purroy and Wu,
2017) (Figure 18)_
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Figure 18: Coevolution of cancer and host-immune cells in CLL. Cellular
components and mechanisms of tumor-growth promotion, and of immune
suppression and escape (magenta arrows, activating signals from CLL cells toward
immune cells; black arrows, activating signals from immune cells toward CLL cells;
dashed black arrows, mechanisms of immunosurveillance; blue arrows, activating
signals between immune cells; dashed blue arrows, mechanisms of immune
suppression and escape). NLC, Nurse-like cell; MSC, mesenchymal stromal cell;
PAMP, pathogen-associated molecular pattern; TLR, Toll-like receptor; BCR, B-cell
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receptor; FDC, follicular dendritic cell; DC, dendritic cell; Ten, follicular helper T cell
(Purroy and Wu, 2017).

Motably, a small fraction of CLL (5-10%) undergoes transformation into
aggressive forms of clonally related malignancies, a complication termed Richter
syndrome (RS). These malignancies are most commonly of the diffuse large B cell
lymphoma (DLBCL) type (~ 90% of cases) or Hodgkin variant RS (HVRS) (~ 5-10%)
(Allan and Furman, 2018; Rossi et al_, 2013; Solh et al_, 2013).

RS usually derives from the main CLL clone through a linear evolution pattern
implicating the acquisition of an average of 20 genetic lesions/case (Fabbn et al.,
2013). These lesions are heterogeneous among patients, although the most frequent
ones involve TP53 disruption (approximately 60% of RS cases), NOTCH1 mutations
(30%), MYC activation (30%) and CDKNZ2A/B loss (30%) genes (Allan and Furman,
2018; Fabbn et al., 2013). Furthermore, a recent next-generation sequencing study
performed in 11 RT patients identified for the first time TETZ and CREBBP as two of
the most commonly mutated genes in RT (Chitalia et al_, 2019).

The prognosis of RS is highly unfavorable, with a median survival of a few
months because of limited therapeutic options and responses (Allan and Furman,
2018; Rossi and Gaidano, 2009, 2016b; Tsimberidou and Keating, 2005).

Importantly, Rossi and colleagues showed, using longitudinal analysis, that
small TP53 mutated subclones identified before treatment became the predominant
population at the time of CLL relapse and anticipated the development of
chemorefractoriness. This study provides a proof-of-principle that very minor
leukemia subclones detected at diagnosis are an important driver of the subsequent
disease course (Rossi et al., 2014).

Indeed, such minor TP53 mutated subclones were shown to have the same
adverse prognostic impact as clonal TP53 abnormalities. Since conventional Sanger
sequencing can miss mutations of low clonal abundance (<10% of the alleles), this
advocates for the use of deep next-generation sequencing to assess genetic lesions
in a comprehensive manner prior to treatment, even though the current cost and time
of analysis seem difficult to render it systematic (Rossi et al_, 2014).

7. Clinical management of CLL

As outlined by the 2018 International Workshop on CLL guidelines (Hallek et
al_, 2018), the CLL treatment paradigm for managing asymptomatic patients consists
of a “watch and wait” strategy. When symptoms appear and/or disease progresses,
numerous effective therapeutic approaches are available, which can be used either
as single agents or in combinations to constitute individually tailored treatment plans
(Sharma and Rai, 2019).

7.1. Chemo-immunotherapy

Chemo-immunotherapy is an effective first-line treatment for CLL patients
without TP53 abnormalities and is especially beneficial for young (aged < 65 years)
and fit patients. A broad range of drugs have been approved:
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Bendamustine, chlorambucil and cyclophosphamide are alkylating agents,
which counteract cell division by cross-linking DNA strands.

Fludarabine and pentostatin are purine analogs that affects DNA synthesis by
inhibiting DNA polymerase.

Monoclonal antibodies (rituximab, obinutuzumab, ofatumumab) bind to the
CD20 antigen, expressed on the surface of pre-B-lymphocytes and mature
B-lymphocytes, and activate complement-dependent cytotoxicity (CDC) and
antibody-dependent cell-mediated toxicity (ADCC) towards these cells. Anti-CD20
antibodies can be used alone or in combination with chemotherapy as well as with
targeted drugs (discussed below).

Several combinations have proven their efficacy in a frontline setting (Ghia
and Hallek, 2014):

] chlorambucil with an anti-CD20 antibody,

ii) bendamustine-based regimens, or

i)  fludarabine and cyclophosphamide with rituximab (FCR).
FCR is considered the most effective option for front-line treatment in young, fit
patients who have IGHV mutation and without del(17p) (Sharma and Rai, 2019).

7.2. Targeted therapies

Therapies targeting the B-cell-receptor (BCR) signaling pathway, such as the
Bruton tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide 3-kinase &
(PI3KS) inhibitor idelalisib, have demonstrated high efficacy (Byrd et al., 2014).

Duvelisib (also known as IPI-145) is a dual inhibitor of PISK5 and PI3Ky approved
for use in all patients with relapsed/refractory CLL who have received at least 2
prior lines of therapy (Flinn et al_, 2018).

In vivo, ibrutinib inhibits BCR and NF-kB signaling and reduces tumor proliferation
in LN and BM resident CLL cells (Herman et al., 2014). Studies showed that these
patients rather significantly benefited from targeted therapies (Brown et al., 2016;
Wiestner, 2015). Indeed, these orally bioavailable inhibitors induced high rates of
durable responses (Wiestner, 2015) and have demonstrated impressive results, even
in relapsed or refractory CLL (Byrd et al., 2013; Farooqui et al_, 2015; Furman et al_,
2014), and are hence approved for clinical use.

Hecently, selective inhibition of BCL-2 through the BH3 mimetic venetoclax
demonstrated a high efficacy in relapsed or refractory patients, including those with
high-risk genetic lesions such as del(1/p), indicating a major role for BCL-2 in the
pathogenesis of CLL (Roberts et al., 2016). Venetoclax acts by selectively binding to
BCL-2, displaces proapoptotic proteins, which results in activation of caspases and
apoptosis (Konopleva et al_, 2016) (Figure 19) (see Section VI. 1).

Movel therapeutic regimes are constantly being developed.

Acalabrutinib is a BTK inhibitor phase Il tnial in CLL currently underway, approved
for mantle cell lymphoma (Niemann &t al_, 2017).

A first in human phase 1 study in relapsed or refractory CLL using the BTK
inhibitor GDC-0853, a selective reversible and non-covalent inhibitor of BTK that
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does not require interaction with the Cys481 residue for activity, showed a generally
well tolerated antitumor activity (Byrd et al_, 2018).

The CXCR4 inhibitor BL-8040 (synthetic peptide antagonist) induces the
apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via
altered miR-15a/16-1 expression (Abraham et al_, 2017), and might be useful in CLL.
Bispecific CAR (chimeric antigen receptor) T cells with binding domains for CD19
and CD20, efficiently killed patients CLL cells in vitro, and may avoid the risk of
relapse associated with single specificity CAR T cells, through leukemic cells which
lack the CAR targeted antigen (Martyniszyn et al_, 2017).

|] Venetoclax

Cytochrome ¢
Apoptosis

Figure 19: Mechanism of action of venetoclax. Venetoclax acts as a specific
inhibitor of BCL-2 and upon binding, releases proapoptotic proteins to induce
apoptosis (Konopleva et al_, 2016).

Various selective inhibitors have been tried in CLL cells, some of which will be
discussed in Chapter IV.

However, indefinite treatment seems required with single agent therapy and drug
resistance inevitably develops in a subset of patients (Burger et al_, 2016; Byrd et al_,
2015; Maddocks et al_, 2015; Woyach et al_, 2014).

7.3. Emergence of drug resistance

Although targeting the BCR pathway with single agent BTK or PI3KS inhibitors
has proven clinically effective in CLL, the majority of responses are partial and
indefinite treatment is currently required, while resistance to single agent therapy and
toxicity with chronic therapy is a concern.

Complete remissions, without minimal residual disease, are rare with single-

agent therapy, and occur only after prolonged treatment leading to an increased risk
of progression for high-nsk patients (Byrd et al., 2015; Farooqui et al_, 2015).
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This is further supported by data on subclonal development in CLL (Landau et al,
2015), the development of pathway specific mutations upon BTK inhibition (Ahn et
al., 2017; Komarova et al_, 2014; Woyach et al_, 2014).

In venetoclax-treated patients, the emergence of Gly101Val point mutation in
BCL2 reduces its affinity for venetoclax by ~180-fold, thereby conferring acquired
resistance in cell lines and pnmary patient cells (Blombery et al., 2019). Moreover,
whole-exome sequencing of venetoclax-treated patients found mutations in BTGT,
CDKNZA/B, BRAF as well as high-level focal amplification of CD274 (PD-L1) (Herling
et al_, 2018).

Interestingly, CLL cases refractory to fludarabine (FR-CLL) were significantly
enriched in FATT mutations. Indeed, the frequency of FAT71-mutated cases was
significantly higher in FR-CLL than in unselected CLLs at diagnosis (10.3% vs 1.1%),
suggesting a role in the development of a high-risk phenotype (Messina et al_, 2014).

7.4. Combination strategies

In order to circumvent the emergence of secondary resistance to drugs,
combination strategies involving two or more molecules have been developed.

Despite the limited efficacy of sequential BTK/PI3K targeting after clinical
progression on one agent in CLL patients (Mato et al., 2016), combined BTK and
PI3K inhibition exhibited synergistic effects on DLBCL lymphoma cell survival in vitro
(Mathews Griner et al., 2014). In vivo, combined inhibition of BTK and PI3K& with
acalabrutinib and ACP-319 significantly reduced tumor burden, improved survival by
nearly two-fold and reduced NF-kB signaling, compared with single agents, in the
CLL mouse model TCL1-192 (Niemann et al_, 2017).

Furthermore, combination of ibrutinibb and venetoclax was designed to
overcome resistance to ibrutinib. However, CLL samples displayed resistance to this
combination as well in ex vivo experiments. Microenvironmental agonists (IL-10,
CD40L, CpG-ODN) induced a robust activation of NF-kB signaling which enhanced
expression of MCL1, BCLXL and survivin, thus decreasing dependence on BCL2 and
causing drug resistance. Consistently, inhibitors of NF-kB signaling overcame this
resistance and showed a synergistic benefit with ibrutinib/venetoclax combination
(Jayappa et al., 2017).

Mevertheless, the best combinations of these agents, with or without
chemotherapy, remain to be established and tailored to each patient (Brander, 2017).
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Chapter IV: Gain of the short arm of chromosome 2 (2p gain)

Gains and amplifications of 2p have been described in various types of
hematological and non-hematological neoplasms. However, their impact on harbored
genes and their involvement in disease progression remain ill-defined. Here |
propose a comprehensive review of the literature regarding 2p gain or amplification,
with a focus on CLL and an in-depth study of putative oncogenic drivers and their
reported impact on pathogenesis and survival.

1. Prevalence of 2p gainfamplification in cancer

Moteworthily, even though a gain is normally defined by a median copy
number 3-6, and an amplification by a median copy number > 6, authors seem to use
gain and amplification in an interchangeable manner regarding 2p.

1.1. Non-hematological cancers

Copy number aberrations of 2p are recurrent in medulloblastoma, although 2p
gain/amplifications were not associated with shorter overall (OS) nor progression-free
survival (PFS) (De Bortoli et al., 2006).

Meuroblastomas (NBs) are pediatric solid tumors that develop from the neural
crest, with heterogeneous clinical courses. Amplifications of 2p are also frequent In
MBs (discussed in Section IV. 4).

1.2. Hematological cancers

Gains of 2p have been reported In 20% of extranodal B-cell non-Hodgkin
lymphomas (B-NHL), in follicular and mediastinal B-NHL {(or PMBCL), and in Hodgkin
lymphoma (HL) (Satterwhite et al_, 2001).

Specifically, 2p gain is recurrent in 54% of classical HL (Joos et al., 2002).
Analysis of four HL cell lines (KM-H2, HDLM-2, L428, L1236) identified frequent 2p
gain including REL in 3 of 4 cell lines (Joos et al., 2003).

Gain of 2p is reported in 17% of DLBCL samples, regardless of subgroup. This
frequency is increased in refractory DLBCL, where 2p gain is detected in 2 of 5
patients (Park et al., 2016). In particular, primary mediastinal B cell lymphoma
(PMBCL), a subtype of DLBCL, is characterized by frequent gains/amplifications of
2p14-p16 found in up to 47% of cases (Bea et al_, 2005).

2. Incidence and evolution of 2p gain in CLL

Longitudinal studies have outlined the paths of clonal evolution and their close
link to therapy-induced selective pressure. Gain of 2p was identified as
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predominantly subclonal, suggesting that it may mainly be a late driver event in CLL
evolution (Landau et al_, 2015) (Figure 20).
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Figure 20: Inferred evolutionary history of CLL (Landau et al_, 2015).
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In CLL, gain of 2p is found in different frequencies depending on the patient
cohorts as well as on the detection technique.

For instance, by SNP-array, gain of 2p16.1-2p15 is detected in 1,9% of newly
diagnosed cases (Gunnarsson et al., 2011). Similarly, in a senes of 176 newly
diagnosed CLL representative of all disease stages, gain of 2p was detected by FISH
in 2,3 to 3,4% of cases (Deambrogi et al_, 2010).

This prevalence is of 7% In a series of previously untreated patients, mostly
Binet stages B/C patients (Edelmann et al., 2012). The 2p gain was detected by
FISH and SNP-array in 7.3% early stage Binet A CLL patients and, interestingly, in
1.4% of clinical MBL cases (Fabns et al_, 2013).

Using array-based CGH, gain of 2p was detected in 8% of unsorted CLL
cases (Jarosova et al_, 2010). Using the same technique, our group has identified 2p
gain in 28% of untreated Binet stages B/C CLL patients (Chapiro et al., 2010).
Similarly, 2p gains constituted 30% of a cohort of mixed treated/untreated patients,
and ranged from a small 29-kb region to large segments involving the entire short
arm. Interestingly, gain of the telomeric region 2p25.3 harboring the acid
phosphatase 1 ACP1 gene is recurrent and found in 25% of patients (Ma et al., 2011)
(discussed in Section IV. 4).

3. Impact of 2p gain on CLL disease progression

Gain/amplification of 2p is associated with various outcomes In numerous
malignancies. In CLL, our group has shown that 2p gain is linked with refractoriness
to treatments (Cosson et al.,, 2017). Refractory disease is defined as failure to
respond to treatment or as progression within 6 months from the last dose of therapy
(Hallek et al_, 2018).

Gain of 2p is associated with unfavorable prognosis factors. Indeed, amp(2p)
was significantly enriched in IGHV-UM CLL vs IGHV-M CLL and in Binet B/C stages.
Mutated ATM, del(11qg) and del(17p), as well as CD38 and ZAP70 positive
expression, significantly co-occurred with 2p gain (Chapiro et al_, 2010; Cosson et al_,
2017; Edelmann et al., 2012; Fabris et al., 2013; Landau et al, 2015; Ma et al,
2011). Moreover, 2p gain cases had significantly higher utilization of stereotyped
BCH compared with CLL without 2p gain (Fabns et al_, 2013).

Gains of 2p also reportedly determined a higher risk of RS transformation
(Rinaldi et al., 2011), however, no enrichment of 2p amplification was observed in
HS. Indeed, gains of the 2p16.1-2p15 locus occurred at an analogous frequency in
HS and in unselected ClLLs (Fabbr et al_, 2013).

Importantly, while 2p gain is generally found with concurrent genetic lesions,
most notably del(11q) (Deambrogi et al., 2010; Jarosova et al., 2010; Ma et al_,
2011), 2p gain could be detected as the sole genetic abnormality in a few stage A
CLL cases (Fabris et al., 2013), which might suggest an additional role in early
disease progression. Interestingly, there was no significant difference in time to first
treatment (TTFT) between early 2p gain and 2p normal CLLs (Fabris et al., 2013).
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Furthermore, no 2p gain was reported in 39 fludarabine-resistant CLL (FR-
CLL) patients, indicating that 2p gain might not play a role in the development of this
particular phenotype (Messina et al_, 2014).

4. Putative oncogenic drivers in 2p gain CLL

Identifying drivers of treatment resistance is essential to precisely tailor
therapeutic intervention and circumvent its failure.

As previously discussed, the target genes of some recurrent chromosomal
abnormalities in CLL have already been identified, but genes involved in 2p gain
pathogenesis remain unknown (Fabbri et al., 2013).

Several putative oncogenes have been and might be considered for study in
order to gain insight into the genetic basis of drug resistance in 2p gain CLL. Owing
to the subclonal nature of 2p gain, identifying dnivers of treatment resistance is a
challenge.

Conversely to gain/amplification of the 2p, a 2p15-p16.1 microdeletion syndrome
was reported as a novel, rare disorder characterized by developmental delay, growth
retardation, facial abnormalities, and other medical problems. The microdeletion
involved BCL11A, PAPOLG, and REL, and one long non-coding BMNA gene
FLJ16341 (Hancarova et al_, 2013).

41. Candidate oncogenes

The rationale for selecting the candidate oncogenes discussed in this section
requires said genes to meet at least one of the following criteria:

I.  The candidate gene is contained in the minimal region of gain, which
corresponds to a 1.28 Mb region harboring nine genes (BCL11A,
PAPOLG, REL, PUS10, PEX13, KIAA1841, AHSA2, USP34 and
XPO1) (Cosson et al_, 2017)

ii. A documented impact of their gain and/or overexpression on clinical
features of other neoplasms, particularly on drug resistance.

ili. Increased expression of the corresponding mBNA or protein in 2p gain
CLL as compared with CLL without 2p gain.

A transcriptional profiing analysis in early stage CLL and MBL identified
several genes significantly upregulated in 2p gain CLLs: NCOA1 and ROCKZ on 2p
and CAV? at 7q31.1. Importantly, in this cohort, there were no differences in
BCL11A, REL, ALK nor MYCN expression levels between 2p gain and 2p normal
patients (Fabnis et al_, 2013).
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Figure 21: Gain of the short arm of chromosome 2p. Localization of the main
candidate 2p oncogenes is depicted.

Gene localization on the chromosome is indicated between brackets (position in
GRCh37/hg19) (Figure 21).

XPO1 (2p15)

The XPO1/CRAM1 gene encodes Exportin-1, which is the sole exporter of over
200 known cargos bearing leucine-rich nuclear export sequences (Fornerod et al_,
1997), including major tumor suppressor proteins such as p53, BRCA1/2 and IkBa
(Turner and Sullivan, 2008).

Increased Exportin-1 expression is observed in many hematological and solid
tumor malignancies and is generally correlated with poor prognosis. Overexpression
of Exportin-1 increases the export of tumor suppressor proteins to the cytoplasm,
preventing them from conducting their normal cell cycle checkpoint regulation in the
nucleus (Kashyap et al_, 2016).

The Exportin-1 protein is overexpressed in cervical cancer and was shown to
be cntical for cancer cell survival and proliferation: inhibition of Exportin-1 induced
cancer cell death (van der Watt et al., 2009). Exportin-1 is also expressed in a
subpopulation of ovanan carcinomas with aggressive behavior and is linked to poor
clinical outcome (Noske et al_, 2008).

High Exportin-1 expression was a significant prognostic indicator for PFS as
well as OS in pancreatic cancer (Huang et al., 2009) as well as in osteosarcoma
(Yao et al., 2009). Specifically, in pancreatic cancer, Exportin-1 expression was
reportedly associated with tumor size, lymphadenopathy and liver metastasis (Huang
et al_, 2009).

Mutations in XPO1 have been reported in several hematological malignancies:

in CLL (Section 1lIl.3.2), as well as in relapsed/refractory DLBCL, PMBL (Dubois et
al., 2016; Jardin et al., 2016) and HL (Camus et al., 2016). Although frequently
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associated with UM-IGHV, survival of CLL cases with XPO71 mutations were
reportedly similar to CLL without XPO71 (nor TP53) mutations, as well as linked with
favorable responses to ibrutinib (Jain et al_, 2016).

REL (2p16.1)

REL encodes for c-Rel (see Chapter V).

PAPOLG (2p16.1)

The PAPOLG gene is responsible for post-transcriptional 3" adenylation of mBNA
precursors and small RNAs (Kyriakopoulou et al., 2001).

BCL11A (2p16.1)

The B-cell lymphoma/leukemia 11A (BCL11A/EVI9/CTIP1) gene encodes a
zinc-finger Krappel-like transcription repressor protein, BCL-11A, implicated in early
B lymphopoiesis, essential for normal Ilymphoid development. Indeed, Bcellla
knockout mice die shortly after birth and embryos have no B cells and present
alterations in T cells (Liu et al_, 2003).

BCL-11A is normally expressed at high levels only in the fetal brain and in
germinal center B-cells (Satterwhite et al., 2001).

BCL-11A is a DNA-sequence-specific transcriptional repressor, which is a
critical component of a transcriptional network that regulates B cell fate: BCL-11A
functions upstream of Ebfl and Pax5 in the B cell pathway, and controls V(D)J
recombination (Lee et al_, 2017).

Alternative splicing of BCL11A pre-mBNA produces multiple isoforms sharing
a common N-terminus. The most abundant isoform in human lymphoid samples is
BCL11A-XL (Liu et al_, 2006) (Figure 22).

Gain or amplification of BCL11A was reported in hematological as well as non-
hematological neoplasms, but was linked with various clinical outcomes.

Overexpression of BCL711A, resulting from the 1(2;14)(p13;9.32.3)
translocation which consists of its fusion to the IGH locus, is a rare but recurrent
observation in human B cell malignancies (Dyer, 2003). Specifically, translocation of
the BCL11A gene into the IGH locus in a subset of CLL cases is associated with
aggressive disease (Satterwhite et al., 2001) and poor prognosis (Cavazzini et al_,
2008).

In a series of 20 cases of PMBL, 75% of cases showed an increased BCL11A
gene copy number as detected by FISH. Immunolabeling identified nuclear BCL11A-
XL protein in 87.5% of PMBLs. However, there was no overall correlation between
genomic, transcript and protein levels in PMBLs (Weniger et al., 2006).

Consistently, downregulation of BCL11A by siBNA induces apoptosis in B
lymphoma cell lines SUDHLE6 and EB1. Interestingly, the combination with BCL2
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siHNA produced a greater inhibitory effect on cell proliferation of these two cell lines,
compared to each siBNA given separately (Gao et al_, 2013).

High BCL-11A expression levels was correlated with lower complete response
rate and shorter overall survival worse clinical outcome in adult acute myeloid
leukemia (AML) patients (Dong et al_, 2017).
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Figure 22: Human BCL11A locus and predicted protein isoforms (Liu et al,
2006)

In non-small cell lung cancers, BCL-11A protein expression levels were
specifically upregulated in cancer tissues, compared to adjacent healthy lung tissues.
The survival analysis found that patients with increased BCL-11A expression had
better outcomes and BCL11A was proposed as an independent prognostic factor for
disease-free survival as well as overall survival (Jiang et al., 2013).

In mice, Bel11ais activated by retroviral insertions in some myeloid leukemias
(Dong et al_, 2017). Bel11a can transform mouse 3T3 cells (Nakamura et al., 2000)
but has not been shown to transform human lymphoid cells.

Belil1a is also required for normal T cell development and loss of Bellla

expression induces murnne T cell leukemia, implying a function of T cell tumor
suppressor gene for Bell11ain mice (Liu et al., 2003).
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MSH2 (2p21)

DNA mismatch repair (MMR) is a highly conserved biological pathway that
plays a crucial role in maintaining genomic stability. MMR enzymes ensure DNA
replication fidelity and maintain genomic integrity; they are highly expressed in
normal cells (Li, 2008).

Unsurprisingly, defects in this pathway predispose to several human cancers.
For instance, somatic deletions of genes regulating MSH2 protein stability cause
DNA mismatch repair deficiency and drug resistance in human leukemia cells (Diouf
et al, 2011). Indeed, MMR deficient cells display resistance to some
chemotherapeutic agents (Karran, 2001). Interestingly, NPM-ALK mediates
phosphorylation of MSH2 at tyrosine 238, which impairs MSH2 function and blocks
MMR (Bone et al_, 2015).

However, overexpression of MSHZ in cancer cells can promote rapid repair of
DNA damage, hence leading to disease progression and chemotherapy resistance
(Ding et al_, 2006; Marcelis et al., 2001). In ovanan carcinoma, MSHZ2 expression is
associated with drug resistance, and inhibition of MSH2 in vifro reestablishes drug
sensitivity (Zhang et al_, 2014).

ALK (2p23)

ALK encodes the ALK tyrosine kinase receptor for pleiotrophin (PTN), a
growth factor involved in embryonic brain development. The expression of ALK is
normally restricted to neural tissues (lwahara et al., 1997): it is highly expressed
during perninatal development of the nervous system and is then down-modulated in
adult tissues (lwahara et al., 1997; Stoica et al_, 2001).

The 6226 bp ALK cDNA encodes a 1620-amino acid (aa) protein of predicted
mass 177 kDa, that undergoes post-translational N-linked glycosylation to a fully
mature form of 220 kDa (Morns et al_, 1997).

Aberrant activation of ALK can stem from numerous genetic mechanisms
(including translocations or structural rearrangements, ALK gene amplification,
mutations, and overexpression) and is usually associated with unfavorable clinical
features.

In particular, ALK amplification is a common genetic event in several cancers
and generally associated with poor outcome and more aggressive behavior (Zito
Marino et al., 2016).

Anaplastic large-cell lymphomas (ALCL) constitute a distinct subset within the
spectrum of mature T-cell neoplasms/lymphomas (Swerdlow et al., 2016). Although
the majority of ALK+ (positive: presence of chromosomal rearrangements of ALK)
ALCL is generally associated with favorable response to treatment and overall
survival, some patients can have a highly aggressive disease. Furthermore, 20-30%
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of ALK+ ALCL patients relapse and eventually require high-dose chemotherapies
and bone marrow transplantation (Abate et al., 2015; Ferreri et al_, 2012; Savage et
al_, 2008; Schmitz et al_, 2010).

In a NB cohort with no ALK amplification and rare ALK mutation (4,1%), ALK
protein expression was frequent (found in 56% of patients) and was correlated with
advanced stage and high-risk NB. ALK mutations consisted of two somatically
acquired missense mutations (F1174L and R12750Q) (Lee et al_, 2018).

In NB, 2p gains including the ALK locus (91,8%) were associated with a
significantly increased ALK expression, which was correlated with poor survival.
Combined occurrence of MYCN amplification and ALK mutations was associated
with a particularly poor outcome (De Brouwer et al_, 2010) (see Section IV. 4.2).

Deregulation of ALK can also occur with genomically intact ALK locus.
Alternative transcrption initiation leads to expression of an aberrant ALK transcript,
that is expressed in 11% of melanomas and sporadically in other human cancer
types, but not in normal tissues. The novel ALK transcript, ALKAT, initiates from a de
novo initiation site in ALK intron 19, and encodes three proteins consisting primarily
of the intracellular tyrosine kinase domain. ALKATdrives cell proliferation in vitro and
promotes tumorigenesis in vivo in mouse models (Wiesner et al., 2015).

Another aberrant ALK transcript with retention of the entire intron 19 (~2 kb)
was detected in 4/4 NB cell lines and 38% of NB tumors at diagnosis. ALK-I19 was
more common in cases with gan of MYCN, and combination of ALK-
119 and MYCN amplification was linked with a poor outcome (see Section IV. 4.2).
ALK-119 significantly correlated with stage 4 disease and with the high-risk group
(Alshareet et al., 2018).

ALK signaling can be activated by the formation of oncogenic fusions of the
ALK gene at chromosomal band 2p23 with a variety of pariners through
chromosomal translocation events, generating oncogenic ALK fusion genes and their
encoded proteins (Nava et al_, 2008).

The t(2:5)(p23.q35) chromosomal translocation occurs in most (70-80%) ALK+
ALCL cases. Fusion of the nucleolar protein gene NPM on chr 5g35 to ALK on chr
2p23 generates a hybnd protein where the amino terminus of NPM is linked to the
catalytic domain of ALK (Morris et al.,, 1994). NPM is a ubiquitously expressed
nuclear protein responsible for protein shuttling between the cytoplasm and nucleus
(Borer et al., 1989). Since ALK is normally not expressed in lymphoid cells,
unscheduled expression of the truncated protein may contribute to malignant
transformation in these lymphomas (Morns et al., 1994).

Indeed, the chimeric oncoprotein NPM-ALK has transforming capacity through
its tyrosine kinase activity (Bai et al., 1998; Bischof et al_, 1997) : NPM-ALK was able
to transform fibroblasts (Wellmann et al., 1997), and to induce a T cell lymphoma and
plasma cell tumors in mice (Chiarle et al_, 2003).

NPM-ALK is typical of ALCL, but was not reported in classical HL, where
constitutive activation of NF-kB appears to be a basis for the charactenistic clinical
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features. Noteworthily, NPM-ALK transduction into HL cell lines abolished NF-kB
activation by blocking recruitment and aggregation of TRAF proteins, inducing an
ALCL-like morphology and phenotype (Horie et al_, 2004).

Interestingly, translocation causing the fusion of the TRAFT and ALK genes
was reported in one chemorefractory patient who presented with a leukemic ALK+
ALCL. TRAF1-ALK induced the constitutive activation of ALK and NF-kB pathways
(Abate et al_, 2015).

The TFG-ALK fusion, implicating TFG (TRHK-fused gene), also led to the
activation of NF-kB pathway (Hemandez et al., 1999).

ALK was recognized as a major familial NB predisposition gene. The presence
of aberrant ALK copy number status (gain or amplification) strongly correlated with
an aggressive clinical course, including metastasis at diagnosis, and death from
disease (Mossé et al_, 2008).

A distinct ALK oncogenic fusion protein involving ALK and echinoderm
microtubule-associated protein like 4 (EML4) has been reported in non-small cell
lung cancer (NSCLC) samples (3-7%), and in some cases of lung adenocarcinoma.
Similarly to the aforementioned ALK fusion oncoproteins, the amino-terminal region
of EML4 is fused to the kinase domain of ALK (Rikova et al_, 2007; Soda et al_, 2007;
Takeuchi et al., 2008).

NCOAT1 (2p23.3)

NCOA1 encodes the nuclear receptor coactivator 1, that directly binds nuclear
receptors and stimulates the transcriptional activities in a hormone-dependent way.

MNext-generation sequencing, performed in tumor tissue of one treatment-
responsive lung adenocarcinoma patient, allowed the identification of a novel fusion
form of an ALK rearrangement: NCOAT1-ALK (Cao et al_, 2019).

Several recent large-scale genome-wide association studies have identified
NCOAT as a genetic risk factor associated with NHL, and recently as a susceptibility
gene for multiple myeloma (Peng et al., 2017).

MYCN (2p24.3)

The MYCN gene encodes a 64-kDa nuclear phosphoprotein, N-Myc (Hansford
et al., 2004). MYCN is a member of the MYC family of proto oncogenes, encodes a
transcription factor involved in the control of fundamental processes during
embryonal development (Ruiz-Pérez et al., 2017). Accordingly, the expression of N-
Myc is normally high in embryonic tissues but low in adult tissues (Zimmerman et al_,
1986).

Gain of the MYCN gene and high N-Myc expression were reported in several
malignancies, mainly with a childhood onset such as NB, but were also linked, albeit
less frequently, to adult cancers such as prostate and lung cancer (Beltran, 2014;
Ruiz-Pérez et al_, 2017).

In NB, MYCN gene amplifications strongly correlate with poor prognosis and
treatment failure (Fix et al., 2008; Ruiz-Pérez et al., 2017; Seeger et al., 1983).
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Indeed, NB patients with 2p gain had a significantly worse survival rate than patients
with no such gain; all of the 2p gain samples were associated with segmental and/or
numerical alterations, which were identified as a strong predictor of relapse in NB
(Jeison et al., 2010). A genome-scale CRISPR-Cas9 screening of MYCN-amplified
neuroblastoma revealed that MYCN upregulates EZHZ, leading to inactivation of a
tumor suppressor program in NB (Chen et al_, 2018).

Movel protein-coding genes can be generated by rearrangement of non-genic
DNA. NCYM, a cis-antisense gene of MYCN, originally considered to be a large non-
coding BNA, encodes a de novo evolved protein that stabilizes N-Myc protein by
impairing the activity of GSK3B, a kinase that supports N-Myc degradation. In
primary human NBs, NCYM is 100% co-amplified and co-expressed with MYCN, and
NCYM mBNA expression is associated with poor clinical outcome. Interestingly,
tumors developed in Myen/Neym double transgenic mice exhibited drug resistance
(Suenaga et al_, 2014).

Furthermore, N-Myc expression was elevated in a majority of human primary
AML samples (Hirvonen et al., 1991). In mice, overexpression of N-Myc promptly
induced AML, although N-Myc—overexpressing AML cells were oligoclonal or
monoclonal, indicating that N-Myc overexpression alone is not sufficient to cause full
leukemic transformation and other genetic events are needed (Kawagoe et al,
2007).

Patients with erythroleukemia showed higher expression of N-Myc than normal
controls. Overexpression of N-Myc, acting through EZHZ2-mediated epigenetic
repression of p21, promoted cell proliferation and induced erythroid differentiation
block as well as, importantly, resistance to etoposide-induced apoptosis (Liu et al_,
2017).

MYCN was also reportedly involved in a chromosomal translocation
t(2;:14)(p24.g32) that features the IGH gene in nodal marginal zone B cell lymphoma
(Brown et al_, 2019).

In CLL, our group and others have proposed that poor prognosis associated
with 2p gain might be heralded by gain of MYCN. Indeed, CLL harboring MYCN gain
at diagnosis have a significantly lower survival probability compared with CLL without
MYCN gain (Deambrogi et al., 2010) and 2p gain correlated with increased MYCN
transcript levels (Chapiro et al_, 2010).

Although no enrichment of 2p amplification was observed in Richter syndrome
(Fabbn et al_, 2013), MYCN was reported to be recurrently gained in RS (Scandurra
et al_, 2010).

ROCK2 (2p25.1)

ROCKZ codes for the Rho-associated protein kinase 2, which is a major
regulator of actin cytoskeleton and cell polarity.

In mantle cell lymphoma, immunohistochemical studies displayed significant
increases in ROCKZ2 protein expressions in patients when compared with controls.
However they found no significant change in ROCKZ gene expression (Yanardag
Acik et al_, 2016).

In gastric cancer, high expression of ROCKZ predicted poor prognosis.
Upregulated ROCKZ promoted proliferation, metastasis and invasion of GC cells,
while ROCKZ2 knockdown led to the opposite results in vitro (Li et al_, 2017).
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ACP1 (2p25.3)

The ACPT1 gene encodes the low molecular weight phosphotyrosine protein
phosphatase, or LMW-PTPase.

As previously mentioned, the ACP17 gene is gained in about 25% of CLL cases
(Ma et al., 2011), with frequent co-amplifications of MYCN. ACP1 regulates TCR
signaling through activation of ZAP-70 (Ma et al_, 2011).

In a chemoresistant leukemia cell line (Lucena-1), the LMW-PTPase is about
20fold more active than In its susceptible counterpart (K562).
Hesistant leukemia cells present lower levels of oxidative metabolism and higher
expression levels of glucose transporter 1 and higher production of lactate. It was
shown, that LMW-PTPase superactivation is a pivotal mechanism of metabolic
reprogramming towards glucose addiction that confers survival advantages
to leukemia cells against death stimuli (Faria et al_, 2017).

CAV1 (7931.1)

The CAV1 gene encodes the Caveolin-1 protein, which is implicated in the
costimulatory signal necessary for TCR-mediated T-cell activation (Ohnuma et al,
2007). CAV1 is not located on the 2p, but its transcription was significantly
upregulated in 2p gain CLL patients (Fabns et al_, 2013).

CAV1 seems to play a critical role in CLL-tumor microenvironment interactions,
specifically in tumor-induced immunosuppression during CLL progression (Gilling et
al_, 2012). Caveolin-1 mBNA and protein levels were upregulated in CLL cells after
interaction with bone marrow stromal cell (Vangapandu et al., 2018b). Consistently,
knockdown of Caveolin-1 in pimary CLL cells displayed a significant reduction in cell
migration and immune synapse formation. In vivo, decreased Caveolin-1 in Ep-TCL1
mice significantly delayed the onset of CLL and reduced leukemic progression by
inhibiting MAPK-Erk signaling (Shukla et al_, 2016).

4.2. Strategies for targeting of 2p genes

XPO1

Selective inhibitors of nuclear export (SINE) compounds covalently bind to
cysteine 528 in the cargo-binding groove of Exportin-1 to inhibit nuclear export.

In CLL, Exportin-1 inhibition by the SINE compound KPT-185 impaired tumor
growth in vivo in the murine Emu-TCL1-SCID model: importantly, KPT-185 induced
apoptosis of tumor cells but not of normal B cells (Lapalombella et al., 2012).

The first-generation SINE KPT-185 analog, named selinexor (or KPT-330),
has demonstrated anti-leukemic activity in CLL patient cells in vitro (Cosson et al.,
2017; Lapalombella et al_, 2012).

Experiments using CRISPR-Cas9 genome editing allowed the validation of
Exportin-1 as the prime target of KPT-330: introduction of a homozygous (Neggers
et al., 2015) or even a heterozygous (Neggers et al_, 2016) mutation of cysteine 528
residue inside the XPO1 cargo-binding pocket conferred resistance to selinexor.
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A novel second-generation inhibitor of Exportin-1-mediated nuclear export,
KPT-8602, showed superior anti-leukemic efficacy and better tolerability than
selinexor in AML (Etchin et al_, 2017) and in CLL (Hing et al., 2016).

Combination treatment of selinexor with proteasome inhibitors decreased NF-kB
activity, sensitized SINE resistant cells and showed synergistic cytotoxicity in vitro
and in vivo (Kashyap et al_, 2016).

In CLL, the concomitant targeting of Exportin-1 by selinexor and BTK by ibrutinib
provoked a synergistic effect both in vitro in primary cells and in vivo in the Ep-TCL1
mouse model, and bypassed ibrutinib resistance due to the C4815 BTK mutation
(Hing et al_, 2015).

REL
Strategies to target REL are detailed in Chapter V.

BCL11A
miR-146a induces apoptosis in neuroblastoma cells by targeting BCL11A.

The miR-146a acis as a potential tumor suppressor gene in NB by targeting
the 3'UTRH of BCL11A and inhibiting its mRNA and protein expression. Upregulation
of BCL-11A by miR-146a inhibition can promote human NB cells growth and protect
them against apoptosis in vitro (Li et al., 2018).

MYCN

Robust correlation between MYCN amplification and sensitivity to
bromodomain inhibition was reported. In NB, bromodomain-mediated inhibition of
MYCN suppressed its gene ftranscription and downregulated the MYCN
transcriptional program, resulting in diminished growth and apoptosis (Puissant et al_,
2013).

Targeting BET proteins was previously shown to have specific antitumoral
efficacy against MYCN-amplified NB. The BET inhibitor, OTX015, displayed
therapeutic efficacy in preclinical in vitro and in vivo models of human and murine
MYCN-dniven NB. However, ectopic N-Myc expression, did not abolish effects of
OTX015, implying that N-Myc repression is not the only target of BET proteins in NB
(Henssen et al., 2016).

The c-Myc inhibitor 10058-F4 was demonstrated to also interfere with the
transcriptional function of N-Myc in vitro and to convey anti-tumorigenic effects in N-
Myc-overexpressing NB tumor models (Maller et al.,, 2014). This is not surprising,
given the homology between c-Myc and N-Myc. Indeed, MYCN was originally
identified as a gene amplified in human NB cells that showed high homology
with MYC, the gene encoding c-Myc (Kato et al., 1990). N-Myc can substitute for c-
Myc in murnine development, cellular growth and differentiation (Malynn et al., 2000).

Receptor tyrosine kinases (RTKs) are involved in N-Myc protein stabilization
and angiogenesis regulation. Sunitinib, an inhibitor of several RTKs, showed potent
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antitumor activity on NB cells, through induction of apoptosis and cell cycle arrest.
Treatment with sunitinib decreased N-Myc protein levels and significantly inhibited
both angiogenesis in vivo as well as the growth of MYCN-amplified NB xenografts in
nude mice (Calero et al_, 2014).

The microBMNA miR-204 was identified as a tumor suppressor that negatively
regulates N-Myc expression in NB tumorngenesis. miR-204 directly bound MYCN
mBMNA and inhibited N-Myc expression. Overexpression of miR-204 significantly
inhibited NB cell proliferation in vifro and tumorigenesis in vivo (Ooi et al., 2018).

A novel dual inhibitor allows the concomitant inhibition of ALK and BRD4
(Watts et al., 2019).

ROCK2

Inhibition of ROCK by small molecule ROCK1/2 inhibitors impaired growth and
induced apoptosis in T cell leukemia cells in vitro (Oku et al_, 2014).

4.3. Possible oncogenic cooperation within the 2p

REL-BCL11A

BCL11A is coamplified with REL in B-NHL cases and HL cell lines with gains and
amplifications of 2p13 (Satterwhite et al_, 2001).

Whole exome sequencing and transcriptome sequencing in DLBCL patients
revealed a REL-BCL11A fusion, found in two refractory patients, with one having
both fusion and copy gain (Park et al., 2016).

Transformation of FL to DLBCL is often accompanied by treatment resistance and
poor survival. A high level of 2p15-16.1 amplification was found in the FL stage prior
to transformation. Fusion or gain of REL and BCL11A was reported to be enriched in
transformed lymphoma compared to de novo DLBCL, and this may be a genomic
marker for disease progression to clinically more aggressive forms. Specifically, a
higher level of amplification of REL and other NF-kB related genes USP34 and
COMMD1 was reported, compared with BCL11A, suggesting a driver role for the NF-
kB pathway in this transformation (Kwiecinska et al., 2014; Martinez-Climent et al_,
2003).

ALK-MYCN

ALK is a direct transcriptional target of MYCN (Hasan et al_, 2013).

The kinase ERKD5, also known as big mitogen-activated protein kinase (MAPK)
1 (BMK1), i1s required for ALK-induced transcription of MYCN and stimulation of cell
proliferation in NB (Umapathy et al., 2014).

As previously mentioned, combined occurrence of MYCN amplification and
ALK mutations was associated with a particularly poor outcome in NB, suggesting
cooperative effect between the two alterations (De Brouwer et al_, 2010).
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For instance, the ALK(F1174L) mutation, one of the oncogenic ALK variants
identified in primary NBs, is associated with inherent and acquired resistance to
crizotinib and co-segregates with MYCN in NB. In mice co-overexpressing
Alk(F1174L) and Mycn in the neural crest, NBs developed with earlier onset, higher
penetrance, and enhanced lethality compared with expression of each oncogene
alone (Berry et al., 2012; Schulte et al., 2013). Interestingly, tumor cells remained
susceptible to the Myc-inhibitor, NBT-272, suggesting that cell growth depended on
functional N-Myc (Schulte et al., 2013).

2p oncogenes — TP53

High-risk NBs are often near-diftetraploid. MYCN-amplification synergizes with
loss of TP53 function in NB cells to induce overexpression of mitotic spindle
regulatory genes and support survival of tetraploid NBs cells (Gogolin et al_, 2013).

In NB, resistance to ionizing radiation-induced cell death has been linked to a
combination of p53 loss of function and enhanced N-Myc expression (Yogev et al,
2016).

Mutant p53 augmented tumor promaoting anti-apoptotic activities of the NF-kB
subunit p65 (Schneider et al., 2010).

2p oncogenes — BCL2

Small cell lung cancer (SCLC) is a clinically aggressive cancer with very poor
prognosis. Co-targeting of N-Myc and Bcl-2 by JQ1 and ABT-263 resulted in marked
synergistic antitumor effects in MYCN-amplified SCLC (Wang et al_, 2017a).
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Chapter V: REL/NF-kB

The nuclear factor “kappa-light-chain-enhancer” of activated B cells (NF-kB)
transcription factor plays a crucial role in a plethora of cellular processes, ranging
from cell growth to apoptosis and immunity, and even leamning and memory
(Kaltschmidt and Kaltschmidt, 2009; Perkins, 2007; Sen and Baltimore, 1986b,
1986a).

NF-kB is ubiquitously expressed and responds to diverse stimuli, particularly
including infectious agents, cytokines, or growth factors (Hayden and Ghosh, 2012;
Kaltschmidt and Kaltschmidt, 2015).

1. The NF-kB genes and pathways

The NF-kB family is composed of five subunits, namely p65 (encoded by
RELA), RelB (RELB), c-Rel (REL), p105/p50 (NFKET), and p100/p52 (NFKB2), all
comprising a conserved REL homology domain (RHD) near the N-terminus. This
domain is crucial for DNA-binding (N-terminal part of RHD), dimenzation of NF-kB
family members, as well as interaction with the inhibitors of kB (IkBs) (C-terminal part
of RHD). Via the RHD, NF-kB family members can form homo- or heterodimers, such
as po0/p65, RelB/p50, p52/c-Rel, or p65/p65. RelB has an amino-terminal leucine
zipper (LZ)-like motif. In addition, the subunits p65, RelB and c-Rel contain a C-
terminal transactivation domain (TAD) (Figure 23). The subunits p52 and p50 are
derived from proteolysis of their precursor proteins p100 and p105, respectively.
(Chen et al_, 1998; Kaltschmidt et al_, 2018; Oeckinghaus and Ghosh, 2009). A more
detailed view of c-Rel structure is shown in Figure 26 and discussed in Section V. 3.
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Figure 23: The five mammalian NF-kB subunits, adapted from (Perkins, 2012).
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The RHD harbors a nuclear localization signal (NL3). Without stimulation, the
NLS is masked by IkBs, which results in the retention of inactive NF-kB dimers within
the cytoplasm.

Two major pathways leading to NF-kB activation have been described, namely
the canonical and alternative pathways, which engage common and distinct
components (Hayden and Ghosh, 2004). Both pathways are usually considered to be
independent, however the non-canonical pathway may attenuate activities of the
canonical pathway (Jin et al_, 2014).

In mature B cells, BCR triggering resulis in canonical NF-kB activity, whereas
ligation of the BAFF-receptor activates both pathways. Notably, NF-kB mediates B
cell survival through upregulation of antiapoptotic proteins of the Bel-2 family (Lam et
al_, 1997; Ng et al_, 2005; Sasaki et al., 2006; Siebenlist et al., 2005).

1.1. Canonical/Classical pathway

During canonical NF-kB signaling, binding of ligands such as cytokine, growth
factors, or lipopolysaccharides to their respective receptors leads to the
phosphorylation of the IkB kinase (IKK) complex, consisting of IKK1/IKK2
(IKKa/IKKB) and the regulatory subunit NEMO (NF-kB essential modulator, or IKKy).
Phosphorylated |IKKs, in particular IKK2, in turn phosphorylates IkBa, which
subsequently undergoes polyubiquitylation and proteasome-mediated degradation.
Degradation of IkBa leads to demasking of the NLS of the NF-kB dimer, which leads
to its translocation into the nucleus. This results in the expression of NF-kB target
genes via binding to the respective target sites. This pathway activates
predominantly heterodimers consisting of p50, p65, and c-Rel (Kaltschmidt and
Kaltschmidt, 2009; Oeckinghaus and Ghosh, 2009) (Figure 24).

1.2. Non-canonical/Alternative pathway

On the contrary, non-canonical NF-kB signaling induced by distinct members
of the tumor necrosis factor (TNF) family like lymphotoxin-p relies on the
phosphorylation of IKK1 via NIK (NF-kB-inducing kinase), independently of NEMO.
IKK1 mediates the phosphorylation of p100, associated to RelB, inducing the
proteasomal processing of p100 to p52. The p52/RelB heterodimer is able to enter
the nucleus and activate specific target genes via binding to selective kB sites
(Figure 24). The alternative pathway induces mostly RelB-containing complexes
(Senftleben et al_, 2001).

2. NF-kB: a “double-edged sword’ in health and disease
NF-kB is usually under tight control, with a vanety of negative feedback loops
finely regulating the magnitude and duration of NF-kB responses. However in many

human diseases, NF-kB is aberrantly active and either causes or contributes to the
pathology of the disease (Perkins, 2012).
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Figure 24: Canonical and non-canonical NF-kB signaling pathways. Canonical
pathway is triggered by numerous signals, including those mediated by innate and
adaptive immune receptors. It involves activation of IKK complex by Tak1, IKK-
mediated IkBa phosphorylation, and subsequent degradation, resulting in rapid and
transient nuclear translocation of the prototypical NF-kB heterodimer RelA/p50. Non-
canonical NF-kB pathway relies on phosphorylation-induced p100 processing, which
Is triggered by signaling from a subset of TNFR members. This pathway is
dependent on NIK and IKKa, but not on the trimeric IKK complex, and mediates the
persistent activation of RelB/p52 complex (Sun, 2011).

2.1. REL/ NF-kB deregulation in cancer

In particular, consistent with its various cellular functions, deregulation of NF-
kB signaling is strongly associated with cancer formation and progression (Ben-
Meriah and Kann, 2011; Kann, 2006; Xia et al., 2014). Both the canonical and the
non-canonical pathway have been described to be closely linked to cancer formation
and progression (Hoesel and Schmid, 2013). In addition, atypical NF-kB pathways
as in the case of epidermal growth factor receptor (EGFR) tyrosine kinase-dependent
MNF-kB activation, were likewise described to promote cancer (Alberti et al_, 2012).

2.2. REL/NF-kB deregulation in CLL

Several ClLL-associated genetic lesions seem to converge on the activation of
the NF-kB signaling pathway, either through activation of positive regulators or by
disruption of negative ones (Figure 25).
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Figure 25: NF-kB pathway mutations in CLL (Fabbrn and Dalla-Favera, 2016).

For instance, disruptions of the Baculoviral IAP repeat containing 3 (BIRC3)
gene (9% of CLLs), a negative regulator of non-canonical NF-kB signaling, lead to
constitutive NF-kB activation. Disruption of BIRC3, which can occur either by
truncating mutations (2% of CLLs) and/or by monoallelic 11qg deletions (see Section
lll. 3), lead to the deletion of the C-terminal RING domain, which is required for
proteasomal degradation of a MAP3K14/NIK, a key activator of the non-canonical
MNF-kB pathway. Lesions in BIRC3 are associated with poor prognosis factors (IGHV-
UM, primary fludarabine-resistance) (Fabbri and Dalla-Favera, 2016; Rossi et al.,
2011, 2012, 2013).

Genetic lesions in the NF-kB inhibitor epsilon NFKBIE, found in approximately
5-7% of CLL cases, are generally associated with clonal evolution and rapid disease
progression. These lesions are monoallelic mutations resulting in truncation of the
ankyrin repeat domain, which leads to increased NF-kB nuclear translocation and
subsequent target transcription (Alves et al_, 2014; Mansoun et al_, 2015).

The myeloid differentiation primary response 88 (MYDS88) gene is a cytosolic

adaptor protein of the Toll-like receptor (TLR) pathway, which upon stimulation by
various ligands, lead to the activation of several signaling pathways in B cells,
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including NF-kB (Rawlings et al_, 2012). Mutations in MYDS&8, found in 2-5% of CLLs,
all of them carrying IGHV-M genes, are generally associated with a favorable clinical
outcome (Baliakas et al.. 2015; Martinez-Trillos et al., 2014; Puente et al., 2011,
2015). The predominant lesion affecting MYD88 in CLL is the L265P activating
mutation, which is also recurrent in other malignancies (Ngo et al., 2011) such as
DLBCL and WM (Treon et al., 2012). This mutation in the TIR domain leads to
increased binding of MYD88 to IRAK1, inducing enhanced downstream
phosphorylation and subsequent target activation, leading to enhanced NF-kB
activity and cytokine secretion (Puente et al_, 2011).

Furthermore, NOTCH1 mutations constitutively activate the NF-kB signaling
pathway: mutant cells displayed elevated RELA mRNA and increased apoptosis in
the presence of NF-kB inhibitor PDTC (Xu et al., 2015).

CLL cells exhibit high constitutive NF-kB activation compared to normal B
lymphocytes, with the p65 subunit being the most active and relevant for transcription
(Cuni et al_, 2004; Furman et al_, 2000; Hewamana et al., 2008, 2009), while c-Rel is
usually expressed and active at very low levels (Vaisitti et al., 2017). CD40 ligation
further augmented NF-kB activity and prolonged CLL cell survival in vitro. The
principle NF-kB proteins in CD40-stimulated CLL cells appear to be quite similar to
those in nonmalignant human B cells and include p50, p65, and c-Rel (Furman et al_,
2000).

Indeed, RELA DNA binding was strongly associated with in vitro survival,
resistance to fludarabine (Hewamana et al., 2008) and advanced Binet stage
(Hewamana et al, 2009), and was hence proposed as a predictive marker of
response to treatment and predictor of overall survival. Expression of p65 is
constitutively elevated in patients with more aggressive disease and is induced by
chemotherapy (Hewamana et al., 2009). Moreover, RelB, together with p65, was
shown to sustain cell survival and confer sensitivity to proteasome inhibitor in CLL
cells (Xu et al., 2014).

3. The c-Rel subunit

c-Rel 1s mainly expressed in hematopoietic cells, and at low levels in
endothelial and epithelial cells (Gilmore and Gerondakis, 2011).

In B cells, c-Rel is among the first transcription factors activated by BCR
signaling (Gilmore and Gerondakis, 2011). Expression of c-Rel occurs at every stage
of B cell development but is lowest in B cell precursors and highest in
immature/mature B cells: during the developmental transition from a pre-B cell to a
naive mature B lymphocyte, upregulation of c-Rel (and p50) expression causes
p50/c-Rel to be the predominant NF-kB dimers in mature B cells. In most cells, c-Rel
exists either as a homodimer or a heterodimer with p50, but c-Rel can also form
dimers with p65 and p52 (Grumont and Gerondakis, 1994; Liou et al., 1994).

As previously mentioned, the human REL gene encodes the 587-amino acid c-Rel
transcription factor. REL contains the highly conserved N-terminal RHD domain
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(Gilmore, 2006), a transactivation REL inhibitory domain (RID) (Leeman et al_, 2008)
and two C-terminal transactivation subdomains TAD1 and TAD2 (Martin and Fresno,
2000; Martin et al_, 2001; Starczynowski et al_, 2003) (Figure 26).

c-Hel can also subject to posttranscriptional modifications: phosphorylation,
acetylation and ubiquitination, although their precise functional relevance remain
unclear (Gilmore and Gerondakis, 2011).

Alternative splicing can remove part of the RID, which increases DNA binding and
transactivating activiies. This alternatively spliced form of REL mBNA s
overexpressed in B lymphoma cell lines (Leeman et al., 2008) (Figure 26A) (see
Section V. 3.3).
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Figure 26: Structure and genomic location of human c-Rel. A: Schematic
diagram showing the structure of c-Hel and amino-acid positions of different
regulatory motifs. A putative IKK phosphorylation site found mutated in some B-cell
lymphoma patient samples together with a splice variant that removes 23 amino
acids from the REL inhibitory domain (RID) also found in some B-cell lymphoma cell
lines and patient samples are shown. TA | (TAD1) and TA Il (TADZ2) are c-Rel
transcriptional activation domains. B: Diagram demonstrating the close proximity of
the REL gene to the BCL11A proto-oncogene and the pseudouridine
kinase PUS10 on human chromosome 2. Both genes therefore have the potential to
be co-amplified in human cancers. Figure compiled using the Integrated Genomics
Viewer and the hg19 build of the human genome (Hunter et al_, 2016).
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3.1. Direct targets of c-Rel

Context-specific gene regulation by NF-kB is determined by various factors,
namely the selective activation of different dimers, their different DNA binding and
transactivation properties, as well as post-translational modifications (Perkins, 2012).
Although its differential regulation relatively to other NF-kB subunits remain poorly
understood, c-Rel is certainly a unique NF-kB member, exhibiting both nonredundant
and overlapping functions (Li et al., 2015). Particularly, c-Rel seems to harbor a
unique oncogenic activity among the Rel/NF-kB family (Gilmore et al., 2004) (see
Section V. 3.3).

Indeed, despite the considerable overlap in the DNA sequences and genes bound by
the various NF-kB dimers, some genes appear to be preferred direct targets for c-
Hel, as reviewed in (Gilmore and Gerondakis, 2011). Specifically, c-Rel promotes cell
survival by transactivating genes involved in:

1. cell proliferation/growth, such as MYC (Grumont et al_, 2002), IRF4 (Grumont
and Gerondakis, 2000), E2F3 (Cheng et al_, 2003)

ii. apoptosis inhibition, namely BCLZ (Bureau et al., 2002; Grossmann et al,
2000), BCLX/BCL2L1, BCL2A1, XIAP, BIRCZ (Banerjee et al_, 2008; Bureau
et al., 2002; Chen et al., 2000; Gilmore and Gerondakis, 2011; Kaileh and
Sen, 2012)

ii. adhesion/cell structure: Selectin, MMP1 (De Siervi et al_, 2009)

iv. immune cell function: TNFA (Bunting et al., 2007), CD40L (Pham, 2005),
BAFF (Fu et al_, 2006), FOXP3 (Son et al_, 2011)

v. DNA repair/damage: ATM (De Siervi et al., 2009) (see Section lll. 3).

Importantly, c-Rel is able bind to the REL promoter and modulate its own expression
(Grumont et al_, 1993).

The polycomb group protein EZHZ is a histone methyltransferase that alters
chromatin structure to modify gene expression during embryonic development and
lymphocyte activation. Loss of EZHZ was shown to confer multidrug resistance in
multiple myeloma (Géllner et al., 2017). c-Rel, but not other NF-kB members, was
shown to be an activator of EZHZ transcription in human lymphoid cells (Neo et al_,
2014).

3.2. Knockout phenotype and physiological functions of c-Rel

c-Hel knockout mice are viable with an overall normal hematopoiesis, but have
deficiencies in specialized immune functions: for instance, although they display
normal numbers of mature B cells, these cells do not proliferate in response to
mitogenic stimulation (Gerondakis et al., 2006; Gilmore and Gerondakis, 2011;
Koéntgen et al., 1995). Studies using knockout mice have also shown that c-Rel is
required for both B cell activation during formation and maintenance of the GC
reaction (Heise et al, 2014) as well as for T-independent antibody production
(Milanovic et al_, 2017). Moreover, c-Rel promotes B cell differentiation and survival:
in BCR-activated cells, c-Rel promotes the progression from G1 to S phase (Grumont
et al_, 1998).
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Furthermore, c-Rel is crucial for T cell activation, proliferation and survival, and
specifically for the development of follicular helper T cells as well as for the
development and function of activated Tregs (Chen et al., 2010; Refaat et al., 2011).
c-Rel was also shown to be involved in liver regeneration (Gieling et al., 2010) and
memory (Ahn et al., 2008; Levenson et al., 2004).

Importantly, genome-wide analysis of gene expression in T-cells of c-Rel
knockout mice revealed that very few genes are significantly affected by c-Rel
deletion. The relatively subtle effects of c-Rel deletion could be explained by
redundancy with other NF-kB members, i.e. functional compensation (Bunting et al.,
2007),

Studies in double knockout mice lacking both c-Rel and p100/p50 proteins
have suggested that the overlapping roles for these subunits seem to be restricted to
the activation and function of mature cells (Pohl et al., 2002).

In addition to NF-kB/IKB proteins, c-Rel interacts with several partners, illustrating its
pleiotropy in health and disease. Namely, c-Rel can interact with proteins involved in
transcription (Foxp3, Cdk2/cyclinE), nuclear import/shuttling (importin alpha)
(Fagerlund et al., 2008), signaling (BAFF-R, CD40, Calmodulin), as reviewed in
(Gilmore and Gerondakis, 2011). Functional partners of c-Rel predicted or known
from curated databases and textmining, mostly involve NF-kB family proteins (Figure
27).

Figure 27: c-Rel interactome. Predicted and known functional partners of c-Rel are
depicted, results exported from the STRING database of protein-protein interaction

networks (string-db.org).

3.3. Functions of c-Rel in oncogenesis

Sustaining proliferative signaling and resisting cell death are the hallmarks of
cancer (Hanahan and Weinberg, 2011), and, given its aforementioned target genes,
the idea that deregulated c-Rel expression could contribute to oncogenesis seems
readily predictable.

Several alterations affecting the REL gene have been associated with
lymphoid and nonlymphoid human cancers: the REL gene was reported to be the
target of amplifications and point mutations in several neoplasms, which could result
in overexpression. Increased REL expression was often linked to adverse clinical
features.
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Interestingly, SNPs within or near the REL locus were reportedly associated
with an increased susceptibility to Hodgkin lymphoma (Enciso-Mora et al., 2010).

3.3.1. Transforming abilities

REL, but not other NF-kB members, has a unique ability to transform avian
lymphoid cells in vitro (Gilmore and Gerondakis, 2011) and was associated with
increased lymphoma risk in vivo (Burkitt et al., 2013).

Even though deletion of both TAD subdomains obliterates the ability of REL to
transform chicken spleen cells in vitro, deletion of either TAD subdomain alone,
which reduces the transactivating ability of REL, enhances its transforming activity
(Starczynowski et al., 2003). Indeed, overexpression of a human REL mutant
(RELATADT) missing one transactivation domain enhanced the oncogenic properties
of the human Burkitt lymphoma cell line BJAB by increasing the expression of target
genes such as BCLZ, IRF4 and MIR155 (Chin et al_, 2009).

Overexpression of mouse c-Rel in the mammary gland led to 31,6% of mice
developing one or more mammary tumors. Steady overexpression of c-Rel led to
increased cyclin D1 and p52 and p50 protein levels (Homieu-Mourez et al., 2003).

Studies on the roles of Xrel3, the c-Rel homologue of Xenopus laevis,
revealed that overexpression of Xrel3 results in formation of tumors in early embryos
(Yang et al_, 1998). In HeLa human cervical cancer cells, expression of Xrel3 slowed
cell growth and was proposed to play a dual role in apoptosis, displaying
anti-apoptotic effects with low cisplatin treatment dosage (1 pM), but apoptotic effects
with high dosage (5 pM) (Shehata et al., 2004).

3.3.2. REL gains/amplifications

REL gene amplifications occur mainly in tumors with a mature B cell
phenotype, which is consistent with the stage of development where c-Rel plays a
crucial role in normal B cell function: indeed, gain or amplification of REL was
detected in approximately 46% of HL, 63% of primary cutaneous large B-cell
lymphoma (PCLBCL), 15% of DLBCL and 5% of CLL cases, as reviewed in (Gilmore
and Gerondakis, 2011).

Importantly, since c-Hel complexes are normally found in the nucleus of
mature B cells, nuclear c-Rel staining by immunolocalization i1s not considered
sufficient to establish a dniver role for REL in oncogenesis (Gilmore and Gerondakis,
2011). Moreover, owing to its complex regulation, REL amplification or gain is not
always correlated to increased mBMNA or protein expression, with sometimes
conflicting results for a given malignancy.

Gain of 2p including the REL locus in classical HL correlated with nuclear c-

Hel staining, protein accumulation and constitutive NF-kB activity (Barth et al., 2003;
Enciso-Mora et al_, 2010; Joos et al, 2002; Martin-Subero et al., 2002). However,
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another study found no correlation between REL amplification and high-level REL
mBMNA expression in classical HL (Kluiver et al_, 2007).

In pnmary mediastinal B cell lymphoma (PMBL), amplification of the REL locus
correlates with increased REL mBNA, nuclear c-Rel and NF-kB activity (Weniger et
al_, 2007).

And conversely, in DLBCL, amplification of the REL locus was not associated
with nuclear accumulation of c-Rel nor with clinical parameters (Houldsworth, 2004).
In a study with both PMBL and DLBCL cells, NF-kB activation was not necessarily
associated with amplification of the REL locus, and increased abundance of c-RHel
per se did not translate into increased NF-kB activity (Feuerhake et al_, 2005).

In DLBCL, REL was found to be more frequently amplified than BCL11A and
even appeared to be the only gene in the minimally amplified region. Gain of REL
correlated with mRMA expression in one study (Fukuhara et al., 2006). REL mBNA is
highly expressed in de novo DLBCLs and this elevated expression resulted in
increased expression of many REL target genes (Rhodes et al., 2005). DLBCL cases
with nuclear REL expression had a worse overall survival (Curry et al_, 2009).

In a cohort of de novo DLBCL patients, nuclear c-Rel expression, used as
surrogate of c-Hel activation observed in 26,3% of patients did not show significantly
prognostic impact in the overall cohort, but was associated to significantly poorer O3S
in patients with mutant p53 or in activated B cell like DLBCL patients with low levels
of BCL-2. REL amplifications did not correlate with c-Hel nuclear expression and
patient survival, likely due to co-amplification of negative regulators of NF-kB (Li et
al, 2015).

In FL tumors, REL amplification was frequent but resulted in weak transcript
expression (Hu et al_, 2017).

Increased REL mRBMA expression has been correlated with a poorer prognosis
in splenic marginal B cell lymphoma (Ruiz-Ballesteros et al., 2005) as well as in
marginal zone B-cell lymphoma (Barth et al_, 2001).

3.3.3. REL mutations

In addition to amplifications, mutations in REL could activate is oncogenicity in
human lymphomas.
The point mutation S525P within the REL transactivation domain exhibited enhanced
in vitro transforming activity in chicken spleen cells, and was identified in two human
B cell lymphomas (FL and PMBL) (Starczynowski et al_, 2007).

Targeted deep sequencing of 18 NF-kB core complex genes revealed several
mutations in the REL gene in CLL (4/301 cases), associated with different
cytogenetic aberrations but all with IGHV-UM (Mansour et al_, 2015).
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3.3.4. Interactions with oncogenic REL

The p53 homologue DeltaNp63alpha is overexpressed and inhibits apoptosis
in a subset of human squamous cell carcinomas (SCC). Both in normal keratinocytes
overexpressing DeltaNp63alpha and in human SCC cells, DeltaNpG63alpha physically
associates with phosphorylated, transcriptionally active nuclear c-Rel, resulting in
increased c-Hel nuclear accumulation, thereby promoting uncontrolled proliferation
(King et al_, 2008).

In large B-cell lymphoma cell lines, nuclear CD40 interacts with c-Rel, but not
p65, to form complexes on the promoters of NF-kB target genes (CD154,
BLyS/BAFF, and Bfl-1/A1), and support proliferation and survival (Zhou et al_, 2007).

3.3.5. Reports of c-Rel implication in drug resistance

c-Rel is a cntical regulator of NF-kB dependent TRAIL resistance of pancreatic
cancer cells pancreatic ductal adenocarcinoma NF-kB signaling critical resistance
against chemotherapy and death receptor induced apoptosis. Transfection with
siHNA against c-Rel sensitized the TRAIL resistant cells, albeit in a similar manner to
siHNA-mediated p65 downregulation (Geismann et al_, 2014).

In adult T-cell leukemia/lymphoma (ATLL) the increased c-Rel expression was
associated with resistance to therapy (Ramos et al_, 2007).

Members of the Bcl-2 family are often deregulated in cancer (lchim and Tait,
2016), and expression of many of them has been shown to be of prognostic
significance for response to chemotherapy in various malignancies. This deregulated
expression can stem from deregulation of c-Rel. In particular, antiapoptotic Bel-2-
family proteins are able to suppress cell death induced by cytotoxic anticancer drugs,
thus constituting a form of intrinsic chemoresistance (Yip and Reed, 2008) (see
Section VI. 1). However, in Bcl-2- DLBCL, c-Rel positivity correlated with significantly
poorer survival (Li et al., 2015), supporting the idea that c-Rel exerted its oncogenic
function via Bel2-independent pathways (Heise et al_, 2014).

4. Targeting NF-kB

41. Pan- NF-kB inhibitors

MNF-kB has been implicated in almost all chronic diseases. Although more than
700 different inhibitors (aspirin to IkBa super repressor) of this transcription factor,
acting at different blocking distinct steps of NF-kB pathway, have been reported, no
MNF-kB blocker has been approved yet for human use (Gilmore and Herscoviich,
2006; Gupta et al_, 2010; Lim et al_, 2012).

Several pharmacological inhibitors of NF-kB activity have been experimented

in a variety of tumor types:
I.  IKK inhibitors: the IKKbeta inhibitor BMS-345541 has been shown to
selectively induce apoptosis in CLL cells (Lopez-Guerra et al., 2009), and so
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did the IMD-0354 compound (Kandun et al_, 2011). MLN120B blocks multiple
myeloma cell growth in vitro and in vivo (Hideshima et al., 2006). However,
none is currently tested in a clinical trial due to their toxicities (Mansouri et al_,
2016).

ii. Inhibition of MNF-kB activation by blocking the activity of proteasomes:
Bortezomib is a reversible 265 proteasome inhibitor, which showed no
objective response in a single agent phase |l study of 19 fludarabine-refractory
CLL patients (Faderl et al_, 2006).

li. Non-steroidal anti-inflammatory drugs: aspirin (Bellosillo et al., 1998), the
benzylamide analogue CP461 (Moon and Lemer, 2002) and curcumin (Everett
et al_, 2007) have all been found to induce apoptosis in CLL.

Indeed, targeting NF-kB leads to apoptosis of CLL cells, corroborating its role
in the survival and clonal expansion of tumoral cells. In particular, inhibition of NF-kB
can overcome the microenvironmental protection of CLL cells (Lopez-Guerra and
Colomer, 2010; Vaisitti et al_, 2017).

Interestingly, the D-tripeptide DTP3 targets the interaction between the NF-kB-
regulated antiapoptotic factor GADD45B and the JNK kinase MKK7 and kills multiple
myeloma cells effectively, and, selectively, since it did not affect normal cells. DTP3
has similar anticancer potency to bortezomib, but more than 100-fold higher cancer
cell specificity in vitro (Tornatore et al_, 2014).

PIKfyve inhibitors inhibit c-Rel DNA binding on IL-12p40 and IL-1p promoter,
and prevented aberrant B cell activation and production of inflammatory cytokines
(Terajima et al_, 2016).

The NF-kB inhibitor 6-Amino-4-(4-phenoxyphenethylamino)quinazoline, which
inverted the anti-apoptotic effect of IL-4 (see Section lIl. 4), preferentially blocked the
response of genes positively correlated with ZAP-70 (e.g. CCR2, SUSDZ2), but
enhanced the response of genes negatively correlated with ZAP-70 (e.g. AUH,
BCL6, LY75, NFIL3) (Ruiz-Lafuente et al_, 2014).

Since a healthy cellular steady state is not associated with NF-kB activity, a
truly NF-kB specific drug would therefore not be expected to disturb normal cell
functions (Shono et al., 2016). However, precisely, the molecules that block NF-kB
activation generally lack specificity and thus interfere with NF-kB’s physiclogical roles
in immunity, inflammation, and cellular homeostasis. In addition to off-target effects,
the concentrations of compounds used to inhibit NF-kB in vitro studies may be
substantially different (often much higher) than could ever be used in vivo (Gilmore
and Herscovitch, 2006; Gupta et al_, 2010).

4.2. Targeting c-Rel

Because the activity of c-Rel is restricted to a small number hematopoietic
lineages and linked to oncogenesis, a c-Rel specific inhibitor should likely have a
better safety profile than a pan-NF-kB inhibitor (Shono et al., 2014).
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Indeed. c-Rel has been proposed to be an appealing therapeutic target whose
down-regulation by siBNA or chemical inhibitors can impair tumor growth without
causing systemic tissue toxicity (Tian and Liou, 2009). Given the similarity within the
HHD between REL and other NF-kB family members it is unlikely that sequences
within the RHD could provide a specific therapeutic target, however the c-Rel
transactivation domain might provide a specific target for inhibition (Gilmore and
Gerondakis, 2011).

Importantly, HNAiI-mediated c-Rel silencing leads to apoptosis of tumor B cells
and suppresses antigenic immune response in vivo (Tian and Liou, 2009).

The siRNA-mediated knockdown of c-Rel in choriocarcinoma cells decreased
their proliferative abilities however c-Hel overexpression using a CRISPR activation
system did not affect cell proliferation c-Rel knockdown decreased proliferation and
induced apoptosis in Jar and Bewo cells, the expression levels of Bel-XL and Bcel-2
were not changed by c-Rel knockdown (Sekiya et al_, 2017).

In acute lymphoblastic leukemia (ALL), inhibition using siBNA in c-Rel
overexpressing pre-B blasts led to upregulation of Bel-2 and down-regulation of Bax,
which increased apoptosis and decreased proliferation (Mohammadi et al_, 2017).

Selective inhibitors of c-Rel act through various mechanisms: for instance,
STA-5326 suppresses c-Rel nuclear accumulation (Keino et al_, 2008), FK506 (Sen
et al., 1995) and Pin1 inhibitor (Fan et al., 2009) block c-Rel nuclear translocation,
while epoxyquinoids inhibit c-Rel DNA binding (Liang et al_, 2006).

Inhibition of c-Rel by PTXF reduced melanoma growth and potentiated anti-
PD1 therapy without compromising systemic tolerance or causing autoimmunity. The
specific implication of c-Hel was confirmed in vivo, as melanoma growth was
drastically reduced in mice lacking c-Rel, but not p65, in Tregs (Grninberg-Bleyer et
al_, 2017).

A study group showed that c-Rel inhibition using a small-molecule inhibitor,
named IT-603, was able to impair graft-versus-host-disease (GVHD) by reducing
alloactivation of T cells without compromising their antigen-specific cytotoxicity
(Shono et al., 2014). Moreover, IT-603 displayed anti-proliferative eftects in DLBCL
cell lines (Shono et al., 2014). In vitro treatment of T cells with thichydanthoin IT-603
induces c-Hel deficiency resulting in suppression of T cell alloactivation without
compromising antitumor activity of T cells/T cell activation triggered by recognition of
tumor associated or viral antigens (Shono et al., 2014).

The small molecule c-Rel inhibitor IT-901 suppressed GVHD while preserving
graft-versus-lymphoma activity during allogenic transplantation, and revealed
antitumor properties in DLBCL, both in vitro and in vivo. This anti-lymphoma effect
was attributed to induction of oxidative stress and was cancer selective, since IT-901
did not elicit increased levels of ROS in normal leucocytes. Both IT-603 and IT-901
act as direct NF-kB inhibitors by preventing DNA binding of c-Rel. IT-901, was found
to be a more potent c-Rel inhibitor than IT-603: the estimated half maximal inhibitory
concentration IC50 regarding global NF-kB activity was about 6 times lower for IT-
901 (3 uM) compared with IT-603 (18,8 uM). However, incubation of T cells for 24
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hours showed that IT-603/DMSO was much less toxic than IT-901/DMSO. Moreover,
IT-901 concentrations above 10 pM become increasingly toxic and could thus lead to
apoptosis of healthy cells. IT-901 displayed cross-reactivity regarding other NF-kB
members, which is not surprising given that they are structurally related (see Section
V. 1) (Shono et al_, 2016).

In CLL, treatment with IT-901 displayed dual effects that resulted in successful
disruption of NF-kB transcriptional activity: CLL cells exhibited elevated mitochondrial
HOS, which damaged mitochondria and activated intrinsic apoptosis, while
accessory cells such as stromal and myeloid cells failed to protect CLL cells from IT-
901 induced apoptosis. IT-901 rapidly induced apoptosis in primary CLL cells, but not
in normal B and T lymphocytes, independently of the mutational status of IGHV
genes and presence of genetic lesions in TP53. Interestingly, IT-901 was also
effective in RS primary cells. IT-901 showed synergistic activity with ibrutinib, arguing
in favor of combination strategies (see Section lll. 7). IT-901 potently inhibited DNA
binding of c-Rel, p65 and p50. Silencing of p65 by shRNA recapitulated 1T-901
functional effects (Vaisitti et al_, 2017) (see Section V. 2).

The efficacy of anti-cancer drugs is usually assessed by measuring the rate of
tumor cell death. In order to better understand the consequences of inhibiting
REL/NF-kB subuniis at the molecular and cellular levels, and more broadly to devise
the most precise therapeutic strategy, the next chapter will focus on programmed cell
death (Chapter VI).

While programmed cell death can be achieved by targeting proteins using
pharmacological inhibitors, off-target effects can occur and must be accounted for
and reduced to a minimum If possible. A much more specific targeting of a given
protein of interest can be obtained using CRISPR-Cas9 technologies, which will be
discussed in Chapter VII.
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Chapter VI: Programmed cell death

Cell death is a crucial process during development, homeostasis and immunity
of multicellular organisms, and its deregulation is associated with various diseases.

Different types of cell death can be defined by morphological and biochemical
hallmarks, the main types being apoptosis (type | cell death), autophagic cell death
(type Il) and necrosis (type Ill) (Duprez et al_, 2009; Green and Llambi, 2015).

1. Apoptosis

Apoptosis, also called programmed cell death, is a celHntrinsic suicide
program that, upon cell shrinkage, membrane blebbing and chromatin condensation,
leads to the controlled breakdown of the cell into apoptotic bodies (Duprez et al.,
2009).

Importantly, removal of apoptotic cells Is immunologically silent, which is
required for the restoration of normal tissue structure and function. Indeed, apoptotic
bodies are ultimately recognized and engulfed by surrounding phagocytes such as
macrophages and fibroblasts, which prevents apoptosis from provoking inflammation
(Krysko et al., 2008). Loss of phospholipid asymmetry and surface exposure of
phosphatidylserine (PS) is required for phagocyte enguliment of apoptotic cells
(Fadok et al_, 2001a).

Apoptosis plays a crucial role during development and is required for organ
and tissue remodeling, for instance in cardiac morphogenesis and removal of
interdigital webs (Penaloza et al., 2006). Maoreover, formation of both the nervous
and the immune systems are characterized by initial overproduction of cells followed
by elimination of extra cells by apoptosis (Elmore, 2007).

Apoptosis engages two major evolutionary conserved protein families, namely:
the Bcl-2 family of proteins, which regulate mitochondrial integrity (Youle and
Strasser, 2008) (see Section VI. 1.1),

Ii. and caspases, which orchestrate the effector phase of apoptosis (Fuentes-
Prior and Salvesen, 2004) (see Section VI. 1.2).

1.1. Bcl-2 family of proteins

BCL-2 family proteins, which exert either pro- or anti-apoptotic functions,
control the point of no retumn for apoptosis induction and thus affect tumorigenesis
and cellular responses to pathogens or anti-cancer therapy (Youle and Strasser,
2008).

There are three subfamilies of BCL-2 proteins (Figure 28):
1. Anti-apoptotic BCL-2 proteins: BCL-2, BCL-XL (BCL2L1), MCLA1
2. Pro-apoptotic BH3-only proteins: PUMA, BID, BIM (BCL2L11)
3. Pro-apoptotic multi-domain proteins: BAX, BAK.
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Figure 28: Comparisons of domain structures of Bcl-2-family proteins (Yip and
Heed, 2008). Bcl-2-family proteins have at least one of four Bcl-2 homology (BH)
domains (BH1, BH2, BH3 or BH4), and typically also possess a transmembrane
domain (TM). Antiapoptotic Bcl-2-family members contain all four BH domains.
Proapoptotic Bcl-2-family members can be separated into ‘multi-domain’ or ‘BH3-
only’ proteins. Some BH3-only proteins do not have a TM (dotted line). Note that
some BH3-only proteins have a limited set of BH domains (for example, Bel-G has
BH2 and BH3).

1.2. Caspases

Caspases (cysteine aspariic acid-specific proteases) are highly specific
proteases that cleave their substrates after specific tetrapeptide motifs (P4-P3-P2-
P1) where P1 is an Asp residue. Structurally, they are constituted of a pro-peptide
(containing a caspase recruitment domain (CARD) or the death effector domain
(DED)) followed by a large and a small subunit (Figure 29). CARD and DED
domains typically enable interaction with proteins that contain the same domains
(Green and Llambi, 2015; Taylor et al_, 2008).

All caspases are expressed as inactive proenzymes in most nucleated animal
cells. Apoptotic stimuli induce the activation of initiator caspases (caspases -2, -8, -9,
-10) by dimerization upon recruitment into activation platforms. Once activated, the
initiator caspases mediate the proteolytic cleavage of the effector caspases
(caspases -3, -6, -7), resulting in their enzymatic activation (Salvesen and Riedl,
2008). Activation of caspases occurs through proteolytic processing between the
large and small subunits to form a heterodimer, which rearranges the caspase active
site into the active conformation.

Caspases characteristically function as heterotetramers, which are formed
through dimenzation of two caspase heterodimers. Initiator caspases exist as
monomers in healthy cells, whereas effector caspases are present as pre-formed
dimers. Catalytically active effector caspases orchestrate the destruction of key
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cellular structures and organelles: for instance, ER and Golgi fragmentation,
translational shutdown (Green and Llambi, 2015; Taylor et al_, 2008) (Figure 29).

Initiator caspases Executioner caspases
(caspase-2, -8, and -9) (caspase-3, -6, and -7)
Prodomain Large subunit  Small subunit Large subunit  Small subunit
DED or CARD [ H . B J
Catalytic cysteine Catalytic cysteine
Activation by Activation
induced proximity by cleavage

a4vd 42 Q30
adyD /o a3a

SN

PAK2, ROCKI, gelsalin,
(cytoskeleton disruption)

(mitochondrial potential
iCAD inhibition)
,], (DNA fragmentation) ,I,

|

Apoptotic cell death

Figure 29: The caspase protein family (Green and Llambi, 2015).

Moteworthily, not all mammalian caspases participate in apoptosis. For
example, caspase-1, -4, -5 and -12 are involved in the regulation of inflammatory
cytokine processing (Taylor et al_, 2008).

In mammalian cells, caspases can be activated by the intrinsic or the exinnsic
apoptotic pathways (Figure 30).

1.3. Extrinsic apoptotic pathway

The extrinsic/death receptor apoptotic pathway is engaged upon stimulation of
death receptors belonging to the TNFR family, such as TNFR1, FAS and TRAIL-R1/2
(Duprez et al., 2009; Ichim and Tait, 2016). Upon binding to their cognate ligand,
death receptors can activate initiator caspases (8 and 10) through dimerization
mediated by adaptor proteins such as FAS-associated death domain protein (FADD).
Active caspase 8 and 10 then cleave and activate the effector caspases 3 and 7,
leading to cleavage of caspase substrates and rapid cell death (Ilchim and Tait, 2016;
Taylor et al., 2008) (Figure 30).
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Figure 30: Extrinsic and intrinsic apoptotic signaling pathways (lchim and Tait,
2016).

1.4. Intrinsic apoptotic pathway

The intnnsic (or mitochondnal) pathway of apoptosis is activated by a wide
array of stimuli that are sensed intracellularly, including cytokine deprivation, DNA
damage and ER stress (Czabotar et al_, 2014); and acts through mitochondria, which
are controlled by the Bcl-2 family of proteins (Duprez et al., 2009; Youle and
Strasser, 2008).

These varnious apoptotic stresses engage BH3-only protein activation, leading
to BAX and BAK activity, which converge to trigger one cntical event: mitochondnal
outer membrane permeabilization (MOMP).
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MOMP results in release of cytochrome ¢ and second mitochondria-denved
activator of caspases (SMAC) from the mitochondnal intermembrane space into the
cytosol. While SMAC blocks the caspase inhibitor XIAP, cytochrome ¢ interacts with
apoptotic protease activating factor 1 (APAF1), leading to the assembly of a
cytoplasmic complex termed the apoptosome, which activates caspase 9. Active
caspase 9 in turn activates caspases 3 and 7, leading to apoptosis (lchim and Tait,
2016; Tait and Green, 2010) (Figure 30).

Caspase-8 cleavage of BID allows crosstalk between extrinsic and intrinsic
apoptotic pathways by producing active truncated form of BID (iBID) that tniggers
MOMP (Li et al_, 1998; Luo et al_, 1998).

Because of this decisive role in cell death, MOMP is strongly regulated
through interactions between BCL-2 family members (Czabotar et al., 2014). For
instance, anti-apoptotic BCL-2 family proteins counteract BAX and BAK activity.

1.5. Tumour resistance to apoptosis

Resistance to apoptosis is a hallmark of cancer cells, which acquire it through
various mechanisms that impede at different steps of apoptotic signaling
(summarized in Table 5) (Igney and Krammer, 2002).

In addition to this intrinsic chemoresistance conveyed by Bcl-2, other
mechanisms of drug resistance can implicate drug efflux, drug metabolism, drug
inactivation (Yip and Reed, 2008).

2. Autophagic cell death

Autophagy is an evolutionary conserved catabolic pathway that allows
eukaryotes to degrade and recycle cellular components. It is usually a survival
process, engaged under metabolic stress. Proteins and organelles are sequestered
in double membrane vesicles called autophagosomes. This envelops intracellular
matenal and ultimately fuses with lysosomes allowing degradation of the enveloped
matenal (Duprez et al_, 2009; Green and Llambi, 2015).

The occurrence of autophagy during type Il cell death, also designated as
caspase-independent cell death accompanied by autophagy, typically charactenizes
a failed attempt to overcome lethal stress (Duprez et al., 2009; Green and Llambi,
2015).

3. Necrosis

Mecrosis i1s mostly seen as an accidental, uncontrolled cell death, usually
associated with severe physical or chemical tissue damage. Nevertheless, necrosis
can also be induced in tightly controlled physiological conditions, as a caspase-
independent pathway (sometimes called necroptosis) that can serve as a back-up
mechanism for apoptosis if caspase activation is impeded. DNA damage, ligands of
death receptors and Toll-like receptors (TLRs) 3 and 4, and detection of viral DNA in
the cytosol can induce signaling pathways that all converge on the activation of
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receptor interacting protein kinase 3 (RIP3). This leads to cytoplasmic and organelle
swelling, followed by the rapid loss of cell membrane integrity and release of the
cellular contents into the surrounding extracellular space (Duprez et al., 2009; Green
and Llambi, 2015).

Table 5: Mechanisms of tumour resistance to apoptosis, as reviewed in (lgney
and Krammer, 2002).

Expression of anti-apoptotic molecules

BCL2 family members: BCL2
BCL-X,
MCLA

FLIP

Soluble receptors for death ligands: Soluble CD95
DcR3

IAPSs: Survivin
clAP2
ML-1AP

PI-9/SPI-6

Downregulation and mutation of pro-apoptotic genes

BAX

APAF1

Caspase-8

Death receptors: CD95
TRAIL-R1
TRAIL-R2

XAF

Alterations of the p53 pathway

p53

INK4A/ARF

ASPP

Alterations of the PI3K/AKT pathway

PI3K

PTEN

AKT

Further mechanisms

Expression of transporters: MDR1/P-glycoprotein
MRP

Alterations of NF-xB activity
Extracellular matrix
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As a result, necrotic cells initiate a proinflammatory response by releasing
DAMPs (Fadok et al., 2001b) and inflammatory cytokines (Vanden Berghe et al.,
2006). Moreover, contrary to apoptosis, the uptake of disrupted necrotic cells by
micropinocytosis is slower and less efficient (Krysko et al_, 2003).

4. Pyroptosis

Pyroptosis designates a cellular suicide program that is uniquely dependent on
the activation of the inflammatory caspase-1. Initiation of proinflammatory response
leads to apoptosis, but accompanied by cell lysis and release of its cytoplasmic
content, which further amplifies the inflammation (D’Arcy, 2019; Duprez et al_, 2009).

Pyroptosis has been described in monocytes, macrophages and dendritic cells
infected with a range of microbial pathogens, such as Shigella or Salmonella, and is
hence considered to be a part of the host defense system (Bergsbaken et al_, 2009).

5. Oncosis

Cell suffers sudden shock
Mormal cell ° (e.g hypoxia, heat, chemical Insult)

Cell damage is sudden and
the cell is therefore unable to
initiate programmed cell death

Oncosis
The cell becomes leaky
Organelles and swells

MNecrosis The cell eventually ruptures,
spilling its contents into

! the surrounding environment

Figure 31: Progression of a normal cell, to an oncotic and necrotic cell
Following a sudden shock to the cell, and up-regulation of pro-inflammatory
cytokines, the cell loses permeability, swells (oncosis) and then ruptures (necrosis),
spilling its contents into the surrounding tissue (D’Arcy, 2019).
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Oncosis designates a prelethal pathway triggered by sudden shock to the cell,
such as ischemic injury, or some infections. It results in swelling of the cell as well as
an increase in membrane permeability, and ultimately leads to cell death. Similarly to
necrosis, oncosis is pro-inflammatory since it is associated with leakage of cellular
debris and consequently damage in surrounding tissues (D’Arcy, 2019; Levin, 1998)
(Figure 31).
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Chapter ViI: CRISPR-Cas gene editing

CRISPR-Cas systems were onginally discovered as an adaptive immune
system for bacteria and archaea. In the past few years, CRISPR-Cas technologies
have revolutionized biology and sparked novel hopes for medicine, highlighting, inter
alia, the tremendous importance of fundamental research.

1. CRISPR-Cas defense systems

Adaptive immunity had been long thought of as an exclusive feature of
animals. However, the discovery of a plethora of diverse CRISPR/Cas immune
systems, present in genomes of most archaea and almost half of the bacteria, proved
otherwise. These systems can be categorized in two classes that are each
subdivided into three types (Mohanraju et al_, 2016) (Figure 32).

CRISPRs, which stand for clustered regularly interspaced short palindromic
repeats, designate well-organized repeated motifs (Jansen et al., 2002; Mojica and
Garrett, 2013), that are interspaced with foreign short DNA sequences (< 50 bp)
(Mojica et al., 2005). Their presence conferred resistance to viral infections, which
revealed that CRISPR served in a form of adaptive immune system (Barrangou et al_,
2007).

CRISPR-associated genes (Cas) encode endonuclease enzymes that use the
information in CRISPR spacers as coordinates for silencing invading nucleic acids in
a sequence-specific manner. This cleavage always happened within the sequence
complementary to the spacer, at a specific distance from a recognized short (2-7 nt)
sequence named the protospacer adjacent motif (PAM). Specifically, in type I
CRISPR-Cas systems, two RNA fragments are needed for Cas9-mediated cleavage
of foreign DNA: the CRISPR spacer (crBMA) and the trans-activating crBNA
(tracrBNA), a trans-encoded small RNA with nucleotide complementarity to the
repeat regions of crBNA (Deltcheva et al_, 2011; Garneau et al_, 2010).

Briefly, CRISPR/Cas-mediated adaptive immunity follows three stages (Bhaya
et al, 2011; Brouns et al_, 2008; Carte et al_, 2008; Deltcheva et al_, 2011; Gesner et
al., 2011; Hatoum-Aslan et al., 2011; Haurwitz et al., 2010; Sashital et al., 2011;
Terns and Terns, 2011; Wang et al_, 2011; Wiedenhett et al., 2012):

I. in the adaptive phase, prokaryotes harboring one or more CRISPR loci
respond to viral or plasmid challenge by incorporating short fragments of the
invading sequence (termed protospacers) into the host chromosome at the
leader end of the CRISPR array.

ii. during the expression phase, the CRISPR locus is transcribed as a precursor
CRISPR BNA (pre-crBNA), which is processed to yield mature crBNA guides
that can base pair with protospacer foreign sequences.
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lii. in the interference phase, the Cas-crHBNA complex scans invading viral or
plasmid DNA for a complementary nucleic acid target, after which the target is
degraded by a Cas nuclease.
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Figure 32: Genomic loci architecture of the components of class 1 and class 2
CRISPR-Cas systems and schematic representation of target interference for
the different subtypes. The double-stranded DMA (target) is shown in black, the
target HNA in gray, the CRISPR BNA (crBNA) repeat in blue, the spacer region of
the crBNA in green, and the transactivating CRISPR RBNA (tracrBNA) in red
(Mohanraju et al., 2016).

Interestingly, not all sequenced bacteria possessed CRISPR/Cas systems,
despite their ability to be honizontally transferred. Indeed, acquisition of foreign DNA
can sometimes be beneficial, rendering CRISPR/Cas non adaptative in that case.
The balance between fitness advantages and detrimental effects depend on species
(Bondy-Denomy and Davidson, 2014).
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2. CRISPR/Cas9-mediated targeted genome editing

Since crBNA and tracrBNA are complimentary sequences, they can bind into
a double-strand that, in type |l CRISPR/Cas systems, directs the CRISPR-associated
protein Cas9 to generate double-stranded breaks (DSBs) in target DNA. Recognition
of cleavage site requires crBNA-DMNA base pairing and a three nucleotide PAM
sequence (NGG) juxtaposed to the DNA complementary region (Jinek et al_, 2012).

Importantly, since PAM sequences can be found anywhere in the human
genome, any DMNA sequence that contains the N20-NGG motif is a potential target
site. And any RNA chimera sequence mimicking the tracrBMNA-crBMNA complex,
henceforth referred to as single guide RNA (sgRMNA), could be synthetized to recruit
Cas9 to targeted genomic sites (Jinek et al_, 2012), which allowed the adaptation of
the type Il CRISPR/Cas9 system to achieve targeted genome editing in diverse cell
types and model organisms (Zheng et al., 2014).

Crystallography studies revealed that Cas9 contains two lobes: a target
recognition lobe responsible for binding sgRNA and target DNA by recognizing the
PAM sequence, and a nuclease lobe that performs cleavage of the target DNA
(Gasiunas et al_, 2012; Nishimasu et al_, 2014).

The Cas9 contains two different DNA cutting domains: at sites complementary
to the crBMNA-guide sequence, the Cas9 HNH nuclease domain cleaves the
complementary strand, whereas the Cas9 RuvC-like domain cleaves the
noncomplementary strand (Figure 33C). The Casf9 unwinds the DNA into two
strands and then creates a blunt ended double strand break (Jinek et al_, 2012).

DSBs pose threats to genome integrity, since they can result in mutations,
chromosomal rearrangements or cell death if not precisely repaired (Heyer et al,
2010). To cope with these hazards, cells evolved two major repair mechanisms for
DSBs: non-homologous end-joining (NHEJ) and homology-directed repair (HDR)
(Meers et al_, 2016).

CRISPR-mediated genome editing is initiated with the introduction of a DSB at
a targeted genomic locus (Zheng et al_, 2014) (Figure 33A):

I. in the presence of a homology repair (HR) donor, i.e. a donor template with
homology to the targeted locus, the HDR process can insert precise
modifications in the target sequence.

ii.  without HR donor, which is the default setting in most experiments discussed
in this section, DSBs are repaired through the error prone NHEJ process,
resulting in insertion or deletion (indel) mutations.

Indel mutations in the coding sequence may ultimately introduce premature stop
codons or frame-shift mutations, thereby knocking out the function of the gene due to
the production of truncated polypeptides and/or nonsense-mediated mRBNA decay
(Perez et al_, 2008; Ramlee et al_, 2015; Santiago et al_, 2008; Sung et al_, 2013).

Four potential outcomes can arise if we consider the targeting of a single diploid

cell: no mutation, a heterozygous mutation (only one allele is mutated), a biallelic
mutation (both alleles are mutated but the sequence of each allele is distinct) or a
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homozygous mutation (both alleles carry the same mutation), which can also occur if
one allele is used as a template to repair the break in the other allele. Expectedly,
experiments performed in polyploid cells and animals, in chimera organisms, or
screenings pools of samples generally yield more complex outcomes. Ofi-target
mutations can further complicate the analysis (see Section VII. 3).

Some sgRNAs can alter splicing and induce exon skipping or large genomic
deletions that encompass exons, adding to the unexpected outcomes that must be
accounted for and taken advantage of in CRISPR expenments (Mou et al., 2017).
For instance, CRISPR/Cas9 editing can result in chromosome elimination (Zuo et al_,
2017).

lllegitimate translation, i.e. translation that is initiated from an in-frame ATG
translation initiation codon other than the authentic ATG, can cause unexpected gene
expression from on-target out-of-frame alleles created by CRISPR-Cas9 (Makino et
al., 2016). Indeed, targeting CRISPR-Cas9 induced mutations to the 5'exons of
candidate genes often yields in-frame vananis that maintain functionality, whereas
targeting mutagenesis to exons encoding functional protein domains can produce a

higher proportion of null mutations (Shi et al., 2015).
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Figure 33: Genome editing technologies exploit endogenous DNA repair
machinery. A: DNA double-strand breaks (DSBs) are typically repaired by
nonhomologous end-joining (NHEJ) or homology-directed repair (HDR). In the error-
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prone NHEJ pathway, indels are introduced when the complementary strands
undergo end resection and misaligned repair due to micro-homology, eventually
leading to frameshift mutations and gene knockout. Alternatively, HDR directs
genomic recombination with homology arms on an exogenous repair template,
resulting in the introduction of precise gene modifications. B: Zinc finger (ZF) proteins
and transcription activator-like effectors (TALEs) are naturally occurring DNA-binding
domains that can be modularly assembled to target specific sequences. ZF and
TALE domains each recognize 3 and 1 bp of DNA, respectively. Such DNA-binding
proteins can be fused to the Fokl endonuclease to generate programmable site-
specific nucleases. C: The Cas9 nuclease from the microbial CRISPR adaptive
immune system is localized to specific DNA sequences via the guide sequence on its
guide RNA (red), directly base-pairing with the DNA target. Binding of a protospacer-
adjacent motif (PAM, blue) downstream of the target locus helps to direct Cas9-
mediated DSBs (Hsu et al_, 2014).

3. Designing CRISPR/Cas-based genome editing experiments with their
specific caveats in mind

3.1. Targeting specificity
Since sgHNAs can tolerate certain mismatches and have rather short
sequences (20 nt), CRISPR/Cas9 endonucleases can produce off-target cleavage
due to unspecific recognition of non-target sequences and the ofi-target effects have
hence been extensively examined (Pattanayak et al_, 2013; Yee, 2016).

Mathematical analysis predicted that for a given sgRNA sequence, potential
off-target homologies in the human genome are almost inevitable (Zhou et al_, 2017).
However, reported sequencing results were quite variable.

For instance, in human cells, the identified off-target sites harbored up to five
mismatches, and many of them were mutagenized with frequencies comparable to
(or higher than) those observed at the intended on-target site, suggesting that RNA-
guided nucleases can be highly active even with imperfectly matched RNA-DNA
interfaces in human cells (Fu et al., 2013).

Conversely, a whole genomic sequencing study revealed that CRISPR/Cas9
system was actually highly specific, with little to zero off-targets efiects (Garcia-
Tunén et al., 2017). In a research setting, the extensive identification of off-targets
mutations seems relatively superfluous (Fellmann et al_, 2017).

The 8-12 PAM proximal bases, termed the seed sequence, determine target
specificity (Nishimasu et al, 2014). The specificity of RNA-guided endonucleases is
rather complex and target-site dependent, with one or two mismatches often well
tolerated. Mismatches at the 5'end of gRMNAs better tolerated than those at the 3'end
(Fu et al_, 2013).

High-fidelity CRISPR-Cas9 wvariant nucleases, named SpCas9-HF1, was

designed to diminish non-specific DNA contacts, and displayed no detectable
genome-wide off-target cleavage activities (Kleinstiver et al_, 2016).
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A chemical modification (2 -O-methyl-3 -phosphonoacetate) incorporated at
select sites in the ribosephosphate backbone of gRMNAs can considerably decrease
off-target effects while retaining high on-target efficacy (Ryan et al_, 2017).

3.2. Cas9 integration and expression

Moreover, unwanted integration of DNA segments denved from plasmids
encoding Cas9 and guide RNA at both on-target and off-target sites in the genome,
potentially resulting in constant Cas9 production, represents a key limit, which could
be circumvented by the use of inducible or integrase-deficient lentivirus vectors, as
well as by direct delivery of Cas9 gRNA ribonucleoprotein (RNP) complexes.

For instance, delivery of purified recombinant Cas9 protein and guide RNA
into cultured human cells, including typically hard-to-transfect cells such as
fibroblasts and pluripotent stem cells, resulted in site-specific mutations at
frequencies of up to 79%. Cleavage of chromosomal DNA occurs almost immediately
after delivery and BNPs are promptly degraded in cells, reducing off-target
mutations. Additionally, BNP delivery is less stressful to human embryonic stem
cells, generating at least twofold more colonies than does plasmid transfection (Kim
et al, 2014).

Inducible CRISPR/Cas9 system considerably reduced ofi-target effects with a
pulse exposure of the genome to the Cas9/sgRNA complex (Cao et al., 2016).
Similarly, tunable CRISPR-Cas system (tCRISPRI) provided a tunable and reversible
control of gene expression (Li et al_, 2016).

Cas9 activity can also be potently switched off by naturally occurring inhibitors
of CRISPR-Cas9. For instance, three distinct families of small phage-encoded anti-
CRISPR proteins (Acrs) that specifically block the CRISPR-Cas9 activity of Neisseria
meningitidis were discovered and shown to block Cas9-mediated genome editing in
cultured human cells (Pawluk et al., 2016), acting through various mechanisms
(Harrington et al_, 2017) (Figure 34).

3.3. Genome editing efficacy

Cleavage efficiency critically depend on several factors, namely genomic
context of target DNA, GC percentage and secondary structure of sgRNA.
Mucleotides at both PAM distal and PAM proximal regions of the sgRNA are
significantly correlated with on-target efficacy (Liu et al_, 2016b).

The chimeric structure of gRNA with original full length of crBNA and tracrBNA
showed higher genome editing efficiency than the conventional sgRMNA chimeric
structure, probably owing of the formation of extra loop structure, which might
enhance the stability of the guide BNA structure and subsequently the genome
editing efficiency (Xu et al., 2017).

Efficacy of CRISPR-Cas9 genome editing expenments by HDR is improved
through inhibition of 53BP1, which is a key regulator of DSB repair pathway choices
in eukaryotic cells, and normally functions to favor NHEJ over HDR by suppressing
end resection (Canny et al_, 2018).
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and stopping cleavage of the target strand. AcrllC1 also conformationally restricts
HNH docking, stopping cleavage on the non-target strand. For AcrliC3 (blue), Cas9's
target DNA binding is inhibited and Cas9 is caused to dimernize (Harrington et al.,
2017).

3.4. Detection of on-target mutations

Upon DSB initiation, resulting mutations need to be confirmed and
charactenized. Several methods for the detection of targeted mutations can be used
(Table 6). with the selection of the ideal method in any situation depending among
other factors on the type of sample, the anticipated size and frequency of the
mutations, and the cost of the method. The mismatch cleavage assay is a simple and
cost-effective method for the detection of indels and is consequently the most
commonly used technique to detect mutations induced by genome editing. This kind
of assay uses enzymes, like the T7 endonuclease | for instance, that cleave
heteroduplex DNA at mismatches and extrahelical loops formed by multiple
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nucleotides, yielding two or more smaller fragments. A PCR product of ~300-1000
bp i1s generated with the predicted nuclease cleavage site off-center so that the
resulting fragments are different in size and can easily be resolved by conventional
gel electrophoresis (fischewski et al_, 2017).

In some cases, on-target efficacy can be assessed by disruption assays. For
the instance, the activity of Cas9 targeted to a single integrated human EGFP
reporter gene can also be quantified by assessing loss of fluorescence signal (Fu et
al, 2013).

Table 6: PCR-based methods for the detection of on-target mutations induced
by sequence specific nucleases (Zischewski et al_, 2017).

Methods Type of Reported  Determination Cost? Throughput Limitations
mutations sensitivity  of mutation
preferentially type?
detected
Mismatch cleavage Small indels 0.5-3% MNo 5 Moderate T7E1 can overlook single
assay nucleotide changes: Surveyor less
sensitive than T7E1
HEMA Small indels 2% If insertionor 5 {4 High Miszes large indels
deletion equipment)
Heteroduplax Small indels 0.5% No 5 Moderate Misses large indels
mobility assay
bw PAGE
CAPS All Mo 5 Moderate Availability of restriction site
Loss of primer Indels 1 Yes 5 High Misses substitutions
binding site
Sanger sequencing  All 1-2% Yes 51587 Low Costly, labor intensive
NGS All 0.01% If insertion or 5553 High Miszes large indels
deletion
AFLP Large indels, also If insertion or 5 Moderate Misses small indels
Mb deletion
Fluarescent Small indels 1% Number of bp 5% High Misses substitutions

PCR-capillary gel
electrophoresis

* Estimated cost per assay, §: <1 USE; $5: <5 USE, $55; = 100 USS; $3585; =500 USss,
" Sequencng ol bulk/cloned PCR products

In addition to CRISPR-induced alterations at the mRNA level should also be
checked CRISPR/Cas9-mediated alterations in the target exon may also result in
altered splicing of the corresponding pre-mRBNA, most likely due to mutations of
splice-regulatory sequences, which give rise to aberrant protein products. These may
potentially act as dominant-negative proteins and therefore interfere with the
interpretation of results. (Kapahnke et al_, 2016).

4. CRISPR/Cas9-mediated transcriptional regulation

Development of the catalytically dead Cas9 mutant (dCas9), which can be
directed by the sgRNA to a chosen genomic location, but is defective in DNA
cleavage, enabled its use for transcriptional regulation. Indeed, dCas9 fusions have
been used to synthetically repress (CRISPRI) or activate (CRISPRa) expression in
various ways (Figure 35) (Shalem et al_, 2015).
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Figure 35: dCas9-mediated transcriptional mndulatlnn A Transcnptlon
repression. B. Transcription activation. C. Multiplexed activation and repression was
implemented using an array of modified sgRNAs with different HRNA recognition
motifs (MS2, PP7 or com) and corresponding RNA-binding domains (MCP, PCP or
Com) fused to different transcriptional effector domains (KRAB or VP64) (Shalem et
al, 2015).

4.1. CRISPRiI: transcriptional repression

To achieve transcription inhibition (Figure 35A), dCas9 protein targeted to
specific DNA sequences by sgRNA can be used by itself (whereby it directly blocks
the BNA polymerase and thus represses transcription through steric hindrance)
(Figure 35Aa) or can be used as part of a dCas9—KRAB transcriptional repressor
fusion protein (Figure 35Ab) (Shalem et al_, 2015).

Repressive chromatin modifier domains like Kruppel-associated box (KRAB)
fused to the dCas9 protein improve transcriptional silencing compared to the dCas9
protein alone. Moreover, such silencing was shown to be highly specific, as seen with
HNA-seq analysis (Gilbert et al_, 2013).

The level of transcriptional repression varies depending on many factors such
as sgANA and target DNA sequence.

4.2. CRISPRa: transcriptional activation

For transcriptional activation, various approaches have been implemented that
involve the transcrptional activation domain VP64 (Figure 35B). Indeed, fusing the
dCas9 protein to known activation domain proteins targeted to the promoter region
results in increased gene expression levels at endogenous loci (Maeder et al., 2013;
Perez-Pinera et al_, 2013).

Several methods have been developed, namely:

I. dCas9-\VP64 fusion protein (Figure 35Ba).

ii. fusion protein based on the supernova tag (SunTag) system: dCas9 is fused
to a repeating array of peptide epitopes, which modularly recruit multiple
copies of single-chain wvariable fragment (ScFv) antibodies fused to
transcriptional activation VP64 domain (Figure 35Bb). This results in an
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amplification of transcriptional induction at the targeted gene (Gilbert et al,
2014; Tanenbaum et al_, 2014).

. dCas9-VP64 fusion protein combined with a modified sgRNA scaffold with an
MS2 BNA motif loop. This MS2 BRNA loop recruits MS32 coat protein (MCP)
fused to additional transcriptional activators such as NF-kB p65 and heat
shock factor 1 (HSF1) (Figure 35Bc), forming the synergistic activation
mediator (SAM). The modified sgRBMNA sequence contains two BNA hairpin
aptamers recognized by the bacteriophage coat protein MS2. The combination
of VP64, p65 and HSF1 activation domains synergistically increases gene
expression of the target sequence (Konermann et al_, 2015).

Both these systems can increase gene expression up to 40-fold above baseline
levels but the transcriptional activation will vary depending on the target sequence
(Gilbert et al_, 2014; Konermann et al., 2015).

5. Applications of CRISPR/Cas9 systems

The CRISPR/Cas9 system was modified and adapted in numerous ways to
establish causal linkages between genetic variations and biological phenotypes
(Figure 36).

For instance, CD34+ cells can be edited by CRISPR with multiple lesions with
= 70% efficiency and expand in vivo after transplantation into immunodeficient mice
to model clonal dynamics (Tothova et al., 2017).

Gene disruption can even be tailored to specifically target an allele by using a
SNP-derived PAM, paving the way for potential treatment of autosomal dominant
diseases (Christie et al_, 2017).

Coupling CRISPR pooled screens with single cell RNA sequencing, referred to
as CRISP-seq. enabled profiling perturbation and transcriptome in the same cell,
which could be useful to dissect immune circuits, notably (Jaitin et al_, 2016).

Oncogenic chromosomal rearrangements can be engineered in vivo with
CRISPR-Cas9: for instance, the EML4-ALK rearrangement (see Section V. 4) was
induced in murine cells (Maddalo et al., 2014).

CRISPR/Cas9 technology was also used to efficiently generate genetically
modified NSG mice to specifically interrogate the role of the niche-derived
matricellular protein SPARC (Secreted Protein Acidic Rich in Cysteine), in vivo, in
different human leukemic contexts (Tirado-Gonzalez et al_, 2017).
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Figure 36: the expanding CRISPR toolbox (Tycko et al_, 2017).
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Thesis objectives
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The overall aim of my thesis consisted of expanding the current understanding
of the genetic basis and physiopathology of aggressive B-cell leukemias. More
specifically, the aims were to:

| - Gain in the short arm of chromosome 2 (2p+) induces gene overexpression
and drug resistance in chronic lymphocytic leukemia: analysis of the central
role of XPO1

We report herein the identification of a minimal region of 2p gain, which
encompasses among others XPO1 and REL. Focusing on the XPOT1 gene, we report
the cytogenetic and molecular features of 21 2p gain CLL patients, as well as their in
vitro response to classical and novel inhibitors (XPO1 inhibitor and venetoclax). | am
the second co-author of this article, where | conceived and performed experimental
work, as well as analyzed the data.

Il — Functional analysis of the role of REL in chronic lymphocytic leukemia
(CLL) cell survival and in 2p gain-associated drug resistance

Amplification and/or activation of REL was proposed by many authors to be a
potential central player in CLL disease progression and resistance to treatments,
although the underlying mechanism remain elusive.

Microenvironnement
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Figure 37: REL could be a central piece of the CLL drug resistance puzzle. 2p
gain is a recurrent chromosomal abnormality in CLL, resulting in REL
overexpression. Moreover, the microenvironment triggers a constitutive NF-kB
signaling in CLL cells. Finally, numerous genetic mutations affecting NF-kB pathway
proteins have been reported, for instance MYD88 (MyD88), BIRC3 (clAP1/2) and
NFKBIE (IkBg).
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The present study, which was the main project of my thesis, aimed to shed
some light on the functions of REL in CLL drug refractoriness (Figure 37), by
deploying various strategies: CRISPR-Cas9-mediated genetic deletion in 2p gain+
CLL cells, CRISPRa-mediated transcriptional activation in 2p gain- CLL cells, as well
as pharmacological inhibition of c-Rel in primary patient cells. This project was
realized in collaboration with the team of O. Bermnard (IGR, Villejuif). | conceived and
performed all experiments, analyzed the data and wrote the manuscript presented in
this dissertation.

lll - The Gain of the Short Arm of Chromosome 2 (2p gain) Plays an Important
Role in CLL Drug Resistance, and Has to be Systematically Considered before
Deciding an Adapted Therapy

The aim of this project was to analyze the hierarchy and the clonal evolution of
the chromosomal abnormalities in 64 2p gain+ CLL patients. Conventional karyotype
and fluorescence in situ hybridization (FISH) analyses were performed on each
sample, and the samples are analyzed before and after treatment, and during the
relapse. | am the second author of this project, where | was tasked with conceiving
the method to analyze the data.

Review: Identifying the drivers of drug resistance in 2p gain CLL

Additionally, | wrote a comprehensive review on 2p gain and its impact on
pathogenesis and drug resistance: see Chapter IV + Future perspectives.

IV - "Double-hit" chronic lymphocytic leukemia: An aggressive subgroup with
17p deletion and 8g24 gain.

CLL with del(17p) i1s associated with a lack of response to standard treatment
and thus the worst clinical outcome. The objective of this study was to determine
whether the type of chromosomal abnormality leading to del(17p) and the additional
abnormalities influenced the prognosis in a series of 195 patients with del(17p) CLL. |
am the eighth author of this article, where | conceived and performed expenmental
work.

V — Genetic Characterization of B-Cell Prolymphocytic Leukemia (B-PLL): A
Hierarchical Prognostic Model Involving MYC and TP53 Abnormalities. on
Behalf of the Groupe Francophone De Cytogenetique Hematologique (GFCH)
and the French Innovative Leukemia Organization (FILO) Group

B-PLL is an aggressive leukemia, usually resistant to standard chemo-immuno
therapy, defined by the presence of prolymphocytes in pernipheral blood exceeding
55% of lymphoid cells. The definition of B-PLL as a distinct neoplasm and its
differentiation from classical CLL or other hemopathies was originally proposed by
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Galton and colleagues (Galton et al., 1974). Here we report the cytogenetic and
molecular features of a large cohort of 34 B-PLL cases, as well as theirin
vitro response to novel targeted drugs. This project was realized in collaboration with
the team of O. Bernard (IGR, Villejuif). | am the third author of this project, where |
conceived and performed expenmental work, as well as analyzed the data.
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Results and discussion
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| - Gain in the short arm of chromosome 2 (2p+) induces gene overexpression
and drug resistance in chronic lymphocytic leukemia: analysis of the central
role of XPO1

Owerall, our data suggest the existence in T-ALL of a disrupted
AMA decapping pathway, mediated by the DNA methylation-
associated boss of NUDT16, which contributes to the natural
history of the disease by stabilizing transforming factors, such as is
the case of the leukermogenic pratein C-MYC,
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Gain in the short arm of chromosome 2 (2p+) induces gene
overexpression and drug resistance in chronic lymphocytic
leukemia: analysis of the central role of XPOI

Lewkermia [2017) 31, 1625-162% doi:10.10380eu2017.100

Chranic lymphocytic leukemia (CLL), the most comman adulthood
leukemia, is charactarized by an accumulation of abnommal CDS' B

hymphocytes in the peripheral blood, bone marow and secondary
lymphoid organs, Acquired genetic mutations play an important
role in CLL pathogenesis, and massive parallel sequencing
identified new recurrently mutated gemes such as NOTCHT,
SIFEY, XPOH, MYDSS, FGR2 and NFKBIE'™ In addition, frequent

Accopted artiche previaw online 27 March 2017 advance online publication, 12 Apeil 2007

Leukemia {2017) 1622 - 1657

Molecular characterization and functional analysis of B-cell leukemias

1625

106



Letters to the Editer

chromosomal abnormalities, such as 11q, 13g and 17p deletions,
or tisomy 12 could explain both the chinical 7
of CLL and the drug resistance of this disease” Therefore,
identifying deregulated genes in CLL are impartant to improving
our understanding about the development and evalution of CLL,
and to propose new targeted strategles.

We and others have previously reported that the gain of the
short arm of chromosome 2 (2p+) is a frequent chromosomal
abnommality in CLL MVON, REL, BCLITA and MSHZ have besn
proposed as candidate disease genes assodated with a 2p gaim,
although the underying mechanisms have not been elucidated ™'
In this study, we identified cdhwomosome region maintenanoe’
exportin-] (CRAMIXPOT) as a critical gene in CLL patients by urveiling
a minimal Zp gained region, Thus we assessed the response of 2p
#OLL cells o commonty used ant-CLL drugs, incuding  the
tri-therapy  fludarabine, mide, rituximab  (FCR),
Ibrutinlb, rituximab-idelalish (R-delalisibl and the XPOT Inhibitor
selinexor.

In our study, we have initally identified 36 CLL patents with
2p+ by a cytogenetic approach. Thelr characteristics are reported
im Supplementary Table 51 and Supplementary Figure 51.
To investigate the prognostic value of the 2p+, we scrutinized
the clinical parameters of the 2p+/CLL patients (n=21) included in
a dlinical mal'* The 2p+ was cbserved in 16% {21/132) of the
patients included in this trial and was significantly associated with
twio of the most relevant factors of poor prognosis in CLL: del{11q)
and unmutated GHY status (Supplementary Table 52). These
findings point toward an oncogenic cooperation between a 11q
deletion and a 2p gain,

We next narrowed down the gained chromosome 2 regions
wing a NP array on the 2336 Zp+/CLL samples with the
available material (Figure 1a), Although most patients showed
large 2p gaing, we identified the following two rminimally gained
regions: & 674 kb region containing one single gene (TTC27)
and a 128 Mb region harboring nine genes (BCLTTA, PAPOLG,
REL, PUSIO, PEXT3, KIAATE41, AHSAZ, USFR and XPOD). Because
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Figurn 1. XPOT: SMP array and FISH analysis, and overasprassion in 2p-+/CLL cells, [a) Left: Schamatic representation of the minimal gained
region in the shart arm of the chromosome 2 [2p) identified in 23 2p+/CLL by SNP array. Full lines represent the gained regions in individual
Ipd parient, This approach yields the gain of nwo minimal reglons, One reglon of 678 kKB In Jpl2.3 Incleded TTC27. The second reglon of
128 Mb placed in p16.1-p15 encompassed the indicated nine genes. Right The percentage of cells carrying a XPOT gain was determined by
FISH in 24 2p+/CLL patients and plotted as a histogram. (b) Monitoring of yrmphocytosis and cytogenetic abnommalities in two 2p+/CLL
patients wpan treatrment, The vertical axis thows lymphocytoss and Tollow-ug is reparted on the horizontal axis. Color-coded circles show the
percentage of cells carrying the indicated cytogenetic abnormality. Ammows represent clinically relevant time points. Left (Fatient CLL_10):
before treatmaent, the major dones unveiled by FISH are del(17p) and tril2 (93% and 67% of cells; respectively]. At this stage, XPO! gain was
only present in a sub-clone reprasenting 5% of cells. At relapse, del{17p] and wi12 were stll present (B4% and 75%, respectively), and the XPO1
gain had ex to 65% of the malignant cells, Right [Patient CLL_31}: at diagnosis, ¥POT gain surrogate of 2p- is present in 44% of cells,
and del(13q) in B0% of cells. At relapse, both abnormalities were still present in the same percentages. (€] XPOT mANA levels were determined
by real-time RT-PCR in 015" cells parified from healthy donors (n=12), CLL patients without 2p gain (2p =] {n= 28], or with CLL individuals
with 2p gain [2p+] (n=16). The ABL] mRNA expression was used to normalize the data, The plot depicts the mean +5.e0m, The statistical
analysis was performed with the Mann-Whitney Utest FISH, fluorescence fn situ hybeidization; mANA, messenger ANA; N5, non significant,
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XPOT i recusrently mutated in CLL' and its overexpression is
associated with pour prognosis and resistance to therapy in
various cancers, we focused our analyses on this particular
gene. First, using a fluorescence dv situ hybridization approach,
wae fully canfirmed the gain of XPOY in all tested 2p+/CLL samples
[Supplernentary Table 51). Second, in comparing the gain of XP07
with other cytogenetic abnormalities presant in the same sample,
we found that the X¥POT gain was often a later event (13/32 cases),
Particularly when associated with the 11q deletion, the XPO1 gain
ocourred a5 a second event in &7 evaluable cases (Figure 1a;
Supplementary Table 51). These results are consistent with the
evolution of the events in the progression model of the CLL
proposed by Landau ef ol Third, longitudinal flugrescence in sity
hybridization analyses performed on elght 2p+/CLL-treated
patients showed a similar or increasing percentage of cells
carrying a XPOT gain at relapse compared with at the time of
diagnosis [Figure 1b; Supplementary Table 53). This result
indicates that the clone camying & XPOT gain does not disappear
after the teatments, underining the potental relevance of XFO1
in CLL drug resistance. Finally, we investigated whether the 2p+
induced XPOT oversxpression. A comparison between B lympho-
cytes from healthy donors with 2p - /CLL {without 2p gain) and
2p+ACLL Fully confirmed that the 2p gain s associated with
significant  XPOT  overexpression  (Figure 1¢ Supplementary
Figure 52). Of note, among the other genes including in the two
minimally gained regions, the 2p+ was  also  significantly
associated with TTC2R, BCLTIA, REL AHSAZ, USP34 overexpression
(Supplermentary Figure 521,

To investigate the potentlal role of ¥PO1 on drug resistance in
CLL patients with 2p+, we initially assessed the consequences of
XPO1 inhibition by selinexor, a selective inhibitor of nuclear export
compound currently in Phase VI clinical trials. This inhibltor has
been shown to exhibit antitumer activity in several hemopathies,
Incudiesy CLL' ™™ Ax deploted In Supglementary Fryure 53, our
findings confirm that selinexor induced programmed cell death
[PCDY in the B tummor cells from CLL patients, including B cells with
del(17p) or unmutated IGHY status. In contrast, selinexor had
no effect on the B cells from healthy donors or on the non-
leukemic cells of CLL patients. Altogether, these results corrobo-
rated that XPOT represents & polential therapeutic target in
CLL™™ From a mechanistic point of view, selinexor Induced PCD
in CLL throwgh a caspase-dependent mechanism,  Indeed,
selimexar-induced PCD in CLL was blocked by caspase inhibitors,
induced the ceavage and activation of the caspase-3, and
promoted & mitochondrial dysfunction  associated  with  the
upregulation/activation of the pro-apopototic BOL-2 member
BAX [Supplementary Figure 54),

Using dm witne assays, we nest tested the PCD response of the 2p+
CLL sampdes to commonly wsed anti-CLL drugs and  sefinexor,
hotably, to visualize the differences, we used a drug concentration
that induced ~40% of PCD in the CLL samples {Supplementary
Figure 55). Using this approach, we observed that the PCD induced
by FCR, ibrutindb, R-idelalisib or selinexor was significantly lower in the
ek TLL cells compared with the 2p=/CLL control cells (Figure Za),
independently of adverse prognostic factors In these patients.
This was illustrated in individual cases in which the percentage
of cells with 2p+ influenced the response against anti-CLL drugs
[Supplementary Figure 56). Therefore, the dmug resistance associated
with Ip+/CLL appeared directly linked 1o the gain in the shan amn of
chromaosome 2 and not to the other prognostic CLL markers, such as
11 o 175 deletions, of cvenespression of key antispoptonic BCL-Z
family members owverexpressed in OLL cells {for example, MCL-1 or
BCL-% Supplermentary Figure 53 and 57), Surprisingly, our findings
also Indicated that the XPOT overexpression assoclated with 2p+ was
sufficient to  significantly downmodulate selinexor-induced  PCD
im CLL.

To substantiate ouwr results in a complermentany cellular system,
we analyzed the relevance of 2p+ in two well-described B CLL-like

Letters to the Editer

cell lines: OSU-CLL (2p- CLL cells) and JWM-3 (B-prolymphocytic
leukemia cells with 2p+; Supplementary Table 54). As depicted
in the Figure 2b, the rate of PCD induced by FCOR, iboutinib,
R-idelalisit and selinexor was lower in JVM-3, the cell line pre-
santing a 2p+, Thus, the data obtained in primary CLL cells and in
established B-cell lines (Figures 2a and b) seem to confirrm that the
gain in the short arm of chromosome 2 influences the response to
anti-CLL drugs,

To substantiate the role of XFO1 in the resistance associated to
drugs implicating & muclear sccess to provoke PCD las such
described In Figure 2), we tested whether the effect of Venetoclax,
a Bel-2-specific inhibitor that induced PCD via a direct mitochon-
drial damage, was also modulsted by 2p+. As depicted in
Supplernentary Figure 58, contrary to that observed In Flgure 2,
there were no significant differences in the PCD induced by
Venetoclax in primary B cells from 2p - and 2p+ CLL patients and
in the cell limes O5U-CLL (2p-] and IVM-3 (2p4). it seems therefore
that both Ip+ and the overexpression of XPO1 specifically
modulate the PCD response to drugs requiring a nuclear/cytosolic
signaling transfer,

As XPOM is commonty mutated in CLL' we searched for a
potential relationship between 2p+ and the XPO! mutation (for
example, if the percentage of CLL with XPOT mutations was higher
In 2p+/CLL than in 2p - /CLL). Therefore, we sequenced the XPO7
gene in the following situations: (i) 308 previowsly untreated
patients (Binet stages B/C) included in two praspective trials:' '
(i} 97 untreated CLLs from the biobank of Pitié-Salpétriére
Hospital and (i) 31736 Iphills with available material,
Using this approach, we |dentified XPO7 mutations in 25/436
patients with CLL, including 2/31 CLL patients with 2Zp+
[Supplermentary Table 51, CLL1T and CLL_33). These findings
first Indicated that the frequency of XPO7 mutations was not
significantly  higher in  Zp+A0LL  cormpared  with  Zp=/CLL
[Supsplernentary  Table %2). Aermarkably, sl demfied 007
mutations targeted the aminc-acidic residue ES71, which was
localized in the binding domain of the protein {a highly
conserved region of the molecule), indicating that the mutation
affects XPO activity.' More precisely, we observed 14/25 EST1K
(including the two 2p+fCLL), 4 ES71G, 3 ES71V, 2 E571A and 2
ES710Q mastations, all of which changed a ghatamic acid to a basic
residue. '™

Tor evaluate the therapeutic potential of selinexcr in CLL mare
broadly, we compared its PCD effect in XPOT-wild type and XPOT-
mutated CLL cells. As represented in Figure 2o, selinexor was
significantly less efficient at inducing death in 5P T-mutated cells.
In contrast, the treatment of XPOT-wild type and XPO7-mutated
CLL with FCR or ibrutinib did not show any significant PCD
difference. Altogether, these data indicated that the mutations in
XPO! characterizing CLL modulated the cytotoxic effect of
selinexor; however, they did not affect the response of the
malignant B cells to FCR or ibrutinib treatments, Interestingly, in
an ilustrative case (CLL_17) with both 2p+ and XPOT ESTIK-
mutated form, we showed that the cells were sensitive to FCR and
ibrutinib, Concerning the response to selinexor, we observed
that the XPO7 mutation partially reversed PCD drug resistance.
Indeed, the 2p+ XPO! ES7IK Cll-mutated cells presented
exactly the PCD behavior of the 2p— XPOT ES7TK CLL-mutated
cells. Thus, the XPO1 mutation seemed sufficient enough to switch
off the drug resistance associated 1o 2p+, cormoborating the
specific and central role of XPOT in the 2p gain (Supplementany
Figure 8],

Altogether, our findings confirm the high frequency of the 2p
gain in CLL and its association with poar prognosis factors such as
del{11g) and unmutated }aHV. Additionally, for the first time, we
demonstrated that a 2p gain promotes FCR, ibrutinil, R-idelalisib
drsg resistance in CLL. Finally, owr results showed that selinexor
inefficiently induces PCD in CLL B cells with matations in XPO7.
Redevant genes ane localized on the shom arm of the chromosome 2,
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Figure 2. 2p confers resistance to FCR, ibrutinib, A-idelalisib and selinexor. The mutations in XPO) in CLL block the effect ol selinexaor. (a] Cell
death was measured by double Annexin-y and propidivm lodide (PI) staining in 2p - SMPOT-WT (n=20) and 2p+XP01-WT {n=8] CLL cells
untreated (Contral] ar traated for 24 h with FCR (35 pa: 5 rag 10 pafemill, ibaetinib (15 ), celineser (250 v o the negative centrel KPT-301
[250 nel. Alternatively, 2p— XPOT-WT [n=100 and 2p+XP0-WT (n=4) CLL cells were treated with R-idelalisib (10 pgiml; 50 pml. Drug
concentration and time treatment have been adapted to in wire assays in which the spontaneous apoptosis associated to primary CLL cell
culture is about 15%. Representative flow cytometry plots are shown The percentages refer 1o Annexin-V positive and Anmexin-yv/Fl
co-positive staining. In the right histogram, CLL cells were similarly treated, after accounting for spontaneous apoptosis, the percentages of
Annexin-V positive and Annexin-V/Pl co-positive cells were quarltil"led and p|n¢‘l:ud.1:rus:¢s and dots represent individual samples. Bars are the
mean + s.em. Green and red symbols represent samples with del{11q) and del{17g), respectively. (b) Apoptosls was measured as in a In two
Brcell lines OSU-CLL (2p— cell line) and JWM-3 (B-prolymphocytic leukemnia 2p+ cell line), The PCD induced by FCR, ibrutinib, R-idelalisib
and selinexor was lower in JIVM-3, the 2p+ cell line (n=2) l¢) Apoptosis was induced and measured as in a in 2p - APOT-WT (n=200 and
2o — FO7-mutated [n=6] CLL samples. Representative flow cytometry plots are shown The percentages refer to Annexin-y posithee and
Annexin-V/Pl co-positive staining, In the right histogram, after accounting for spontaneous apoptosis, the percentages of Annexin-V positive
and Annexin-v/Pl co-positive cells were quantified and plotted. Crosses and dots represent individual samples. Bars are the mean + 5.e.m.

Statistical analysas ware performed using Mann-Whitney [-test, WT, wild type.

including REL, BCLITA or XPOU, Even if further imvestigations are
needed to evaluate whether a cooperation exists betwaen XPO7
and other 2p genes, our results indicated that XPOT plays a central
rale in the CLL drug resistance associated 1o 2p-+, Additionally, we
revealed that a simple point mutation in the binding domain of
the protein switches off the PCD resistance associated to 2p+.
Owerall, our work advocates for assessing 2p+ and ¥POT mutations
before choosing & CLL therapy. Because 2p+ i observed in a wide
ramge of B-cell malignancies, it could be proposed to extend these
recommendations to all selinexor treatments,
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Supplementary Figure 51. Relationship of 2p+ with other cytogenetic and genetic
aberrations characterizing CLL. Columns represent patients and lines represent
genetic aberrations (grey: absence, black: presence of the abnormality, white: not
done)

2p gain
del(11q)
del(13q)
tri1l2
del(17p)
SF3B1 mut
NOTCHT mut
TP53 mut
XPOT mut
MYDEE mut
IGHV unmut

*Patignt with tha minimal 2p#2.3 gan (axcluding ¥P0T)

Supplementary Table S1. Clinical and biological characteristics of 36 2p+/CLL.
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Supplementary Table S2: Charactenistics of 2p+ CLL and 2p- CLL included in the
clinical trial by Sutton et al.

Molecular characterization and functional analysis of B-cell leukemias 112



2p- CLL 2p+ CLL prvalue
=11 =4
Gender Maig B 5% 1821 Bt s
Femae 2 % ¥H 14%
e &l Incusion years m 5 [51; 5 ] 58 |55:61] m
Bingt slage a i | B B % 1821 [ s
C Zu % ¥ 14%
Lymphocytasis at inclsion {1071 10 &6 (205 1.6 H B2.6 (562, 12.4] 1
Complex Karyolype 155 16% P 3% s
(Cytogpnetic stnomaities (FISH) | oeiig) Fo % 1218 B 1,000
1ri12 11104 1% [T [ 5
ol 13g) ] % 10718 i) i3
e 17} B0 [ Fa] 15% H
IGHY unmulaled TS A% i e oz
SF3E1 mutabed ] 15% Al P s
TFSF mutated L] i 2 1% =
NOTCHT muiated 11105 1% [oali] [ 0]
XPQT mutated Y15 Fi] 1l E% ]
AYDER mutated 110G 1% 18 i i
TFE 106 139121, 35,1] 20 7224 354 -3
[ 1449 [11Z2 MA| 1274 [B2,3; NA] e
Complex karvotype: 2 3 abnommalibes
05 Overall Sunvival
TF5: Tima from Diagrosis o Firsl Treatment
re: nol significant
M ol avaitabin

cualitative data ane presenbed wilh counl and percentage amang non missing vislues singe on compaed using Fisher exact lest
cuantitalive dala ane presened with rumber of non missing values, mekan and inlesquartile range on comysned uging Mann-Whilney Lest
08 i preserted with medan and s 56% conlidence interval an companed using log-rank best

Supplementary Table 52 : Characteristics of 2p+ CLL and 2p- CLL included in the clinical trial by Sutton et al.
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del13q - + [8%)]
delliq - -
dell7p - + [26%]
XPO1 gain - + [83%]
XPO1 status WT WT

Supplementary Table S4. OSU-CLL and JVYM-3 cell lines

*Hertlein et al. , PLoS One 2013
#Melo et al., Int Jour of Cancer 1986
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Supplementary Figure S4. Treatment with selinexor promotes cell death through a
caspase-dependent mechanism implicating the mitochondria and the proapoptotic protein Bax.
(A) CLL patients cells (n=3) were treated (+) or not (-) with selinexor or the negative control KPT-301
(250 nM; 24 h) in the presence or the absence of the pan-caspase inhibitor Q-VD-Oph (10 pM) and the
percentage of cell death was evaluated by Annexin-V staining. The data are graphed as the mean *
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Supplementary Figure S55. Cytlotoxicity of idelalisib and ibrutinib in CLL cells.
Cell death measured by a double Annexin-V and propidium iodide (Pl) staining in CLL cells untreated
or treated with (A) idelaksib at different doses (1 to 80 uM) plus rituximab (10 pg/mL), or (B} different
doses of ibrutinib (5 to 50 uM). CLL cells were treated as above and, after accounting for spontaneous
apoptosis, the percentage of Annexin-V positive and Annexin-V/P| co-positive cells was quantified and

plotted. Bars represent mean + SEM (n=4).
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Supplementary Figure S6. Relationship between CLL drug resistance and percentage
of B-cells with 2p+. Cell death was measured by double Annexin-¥ and propidium iodide
[P1] staining in B-cells from CLL patients presenting differents percentages of 2p+ cells:
CLL 27 (12%) and CLL_D2 (90%). CLL cells wers treated for 24 h with FCR (35 pl; 5 mM;
10 pg/mL), ibrutinib (15 pM ), the negative control KFT-301 (250 nM), or selinexor (250 niM).
After accounting for spontaneous apoptosis, the % of Annexin-V positive and Annexin-V/PI
co-positive cells were quantified and plotted. Bars represent mean = SEM (n=2).
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Supplementary Figure S7Y. MNormalized
expression of Bcl-2 family members. The
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guantitative RT-PCR and graphed. The data
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analyses were performed using the Mann-
Whitney test.
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Supplementary Figure 58. Venetoclax induces cell death in 2p- and 2p+ CLL cells. [A) Cell death

was measured by double Annexin-V and propidium iedide (Pl) staining in B-cells from 2p- or 2p+ CLL
patients treated during 24 h with Venstodax at different doses. After accounting for spontanecus apoptosis,
the percentages of Annexin-V positive and Annexin-\/Pl co-positive cells were quantfied and plotted The
panel of patients used here were also tested for drug resistance in Figure 24 Statistical significance was
calculated by Mann-Whitney test (ns = not significant). Bars represent mean + SEM. (B) OSU-CLL and JVM-3
cell lines were left unireated (Control), or were incubated during 24 h with Venetoclax at different dosas,
before assessment of cell death in a low cytorneter by a double Annexin-' and Pl staining. Representative
flow eytometry plots are shown. The percentages refer to the Annexin-V or the Annexin-\/Pl-positive staining.
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Supplementary Figure S9. XPO1 mutation is sufficient enough to switch off 2p+
drug resistance. Cell death was measured by double Annexin-V and propidium icdide
(P1) staining in B-cells from representative 2p- XPO1-WT, 2p+ XPO1-WT (CLL_22), or
2p+ XPO1 ES71K (CLL_17) CLL patients treated for 24 h with FCR (35 uM; 5 mM; 10
pg/mL), ibrutinib (15 M), the negative control KPT-301 (250 nM), or selinexor (250 nVl).
After accounting for spontaneous apoplosis, the percentages of Annexin-V positive and
Annexin-V/P| co-positive cells were quantified and plotted. Bars reprasent mean + SEM
(n=2).
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Il = Functional Analysis of the role of REL in Chronic Lymphocytic Leukemia
(CLL) cell survival and in 2p gain-associated drug resistance

Manuscript proposal

Abstract

Chronic lymphocytic leukemia (CLL), the most common form of adult leukemia in the
West, i1s a highly heterogeneous disease, with a large panel of genetic alterations
leading to variable clinical outcomes. Gain of the short arm of chromosome 2 (2p
gain) is a frequent chromosomal abnormality in CLL and in other malignancies. Our
group has reported that 2p gain was associated with drug refractoriness and poor
prognosis factors such as unmutated IGHV and 11q deletion. We previously
identified a minimally gained region that encompasses several genes, including REL,
a NF-kB family gene coding for a pro-survival transcription factor (c-Rel). RT-gPCR
analyses confirmed that REL was overexpressed in 2p gain CLL patients. The
objective of this study was to characterize the role of REL in CLL drug refractoriness
using three complementary strategies: 1) Pharmacological inhibition of c-Rel induced
CD specifically in 2p gain- primary CLL cells, while sparing the non-leukemic cells
from patients or B cells from healthy donors. IT-603 induced CLL CD through a
caspase-dependent apoptotic pathway, as evidenced by inhibition of CD by Q-VD-
Oph. Pnmary 2p gain+ CLL cells were resistant to IT-603- and IT-901-induced CD._ 2)
Inactivation of REL in JYM-3 cells by CRISPR-Cas9 induced a significant increase in
drug response as well as a decrease in proliferation both in a polyclonal as well as in
6 monoclonal cell lines, as compared to the controls. Targeting and inactivation of
REL was fully confirmed by Sanger sequencing, RT-gPCRH and Westem Blotting
analyses. 3) Transcriptional activation of REL by CRISPRa in OSU-CLL cells did not
significantly decrease spontaneous or drug-induced CD, and did not affect
proliferation, as compared to controls, in agreement with data from cells of 2p gain+
CLL patients. Altogether, our data provide substantial progress in the understanding
of the role of REL in CLL cell survival and 2p gain-associated drug resistance.
Indeed, results from knockout, transcriptional activation and pharmacological
inhibition experiments strongly suggest that REL is a major element in the cell
survival characterizing CLL, and probably acts in cooperation with other putative 2p
oncogenes, namely XPO1, BCL11A and/or MYCN, to drive drug resistance in 2p
gain CLL. To verity this hypothesis, | have developed various cellular models of
transcriptional activation (CRISPRa) and inactivation (CRISPR-Cas9) for each one of
these candidate genes.

Key words: chronic lymphocytic leukemia, REL, NF-kB, 2p gain, drug resistance.
Introduction

Chronic lymphocytic leukemia (CLL), the most common adult leukemia in
Western countries, is a human malignancy caused by an imbalance between
proliferation and programmed cell death (PCD). Despite remarkable progress in
treatments, CLL remains incurable.

Our group and others have recently reported that the gain of the short arm of
chromosome 2 (2p) is a frequent chromosomal abnormality in CLL: the 2p gain was
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identified in 16% (21/132) of patients in a CLL clinical tral (Sutton et al., 2011) and
was found to be significantly associated with poor prognosis factors, namely delllqg
(involving ATM) and unmutated IGHV (Chapiro et al., 2010; Cosson et al., 2017).
Gain of 2p was also described in other types of cancers, for instance in lymphomas
and solid tumors. The 2p contains several known oncogenes such as REL, ALK,
BCL11A, MYCN and XPO1, which could be of critical importance in CLL disease
development and evolution. By comparing 2p gain- (without 2p gain) CLL to 2p gain+
CLL B lymphocytes, we have recently shown that the 2p gain was significantly
associated with XPO1, TTC27, BCL11A, REL, AHSAZ and USP34 overexpression
(Cosson et al., 2017).

The Nuclear Factor (NF)-kB/Rel family of transcription factors is comprised of

five structurally related members: RELA (coding for p65 protein), RELB (RelB), REL
(c-Rel), NFKB1 (p105/p50) and NFKBZ (p100/p52). NF-kB subunits form either
homo- or heterodimers, and in most unstimulated cells, remain inactive in the cytosol
through their interaction with IkB proteins (such as IkBa or IkBeg). Upon stimulation
by vanous ligands, these IkB inhibitors are phosphorylated by the IkB kinase (IKK)
complex and degraded, which leads to nuclear translocation of NF-kB and target
genes transcription. Activation of NF-kB signaling pathways is known to be of
tremendous importance in a myriad of oncogenic and immunological processes, such
as lymphoid development. Although inducible in most cells, NF-kB can also be found
as a constitutively active, nuclear protein in some cell types, including mature B cells
and macrophages, as well as in a vanety of tumor cells (reviewed in (Oeckinghaus
and Ghosh, 2009). NF-kB ubiquity in physiological cellular responses renders
strategies to selectively inhibit protumoral activity arduous.
REL (c-Rel) is quite a peculiar NF-kB member, notably owing to its central and
specific role in B and T cell differentiation and function, as well as in human
pathology. The c-Rel subunit regulates lymphocyte survival and proliferation following
antigen receptor triggering. c-Hel i1s expressed in a restnicted number of
hematopoietic lineages (T and B Ilymphocytes, monocytes/macrophages and
dendritic cells) and p50/c-Rel dimers are the major component of the constitutively
active NF-kB detected in mature B cells (Grumont and Gerondakis, 1994; Miyamoto
et al., 1994). Importantly, the REL locus is frequently altered (amplified, mutated or
rearranged)., and expression of REL is increased in numerous B and T cell
malignancies. Indeed, REL gene amplifications have been found in Hodgkin
lymphoma (46%), diffuse large B-cell lymphomas (15%), Burkitt's lymphoma (79%),
follicular (17%) and mediastinal (21%) lymphomas, as well as several T cell
lymphomas (Gilmore and Gerondakis, 2011). Specifically inhibiting c-Rel could thus
have therapeutic benefits and represent a safer strategy than using a pan-NF-kB
inhibitor (Shono et al_, 2014).

Furthermore, CLL cells extracted from the tissue microenvironment, and
specifically from the lymph nodes, were shown to display up-regulation of gene
signatures related to B-cell receptor (BCR) signaling and NF-kB activation. The latter
pathways are thus thought to play a key role in disease progression (Herishanu et al_,
2011).

Finally, recurrent somatic mutations in MYD88, BIRC3 and NFKBIE genes
have been recently descrnibed in CLL (Rossi et al., 2013). Deregulated expression of
the corresponding proteins, which act upstream of c-Rel, could affect c-Rel activation
and the resulting target genes transcription.
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Studies evaluating the functional consequence and the clinical impact of REL

gain are lacking. In the present study, we sought to evaluate whether c-Rel activation
could contribute to CLL tumor cell growth and survival through the induction of target
genes including regulators of cell cycle, proliferation and survival.
Because our work also indicated that XPO1 plays an important role in CLL drug
resistance associated to 2p gain + (Cosson et al., 2017), and since other genes are
overexpressed in 2p gain + CLL, we hypothesized that they could play a role and
perhaps cooperate in drug resistance.

Results

1. Gain of 2p is linked with REL overexpression and conferred drug
resistance

To verify the relevance of 2p gain to drug refractoriness in a cellular system, we
initially analyzed the response to classical drugs in two well-described CLL-like cell
lines: OSU-CLL (2p gain- CLL cells) (Hertlein et al_, 2013) and JVM-3 (2p gain+ B
prolymphocytic leukemia cells) (Melo et al., 1988). As depicted in Figure 1C-D, the
rate of PCD induced by FC and ibrutinib was significantly lower in 2p gain+ JYM-3
cells, as compared to 2p gain- OSU-CLL cells. Using FISH analyses, we fully
confirmed the gain of REL in 2p gain+ JVM-3 cells (Table 1). As shown in Figure 1B,
these cells displayed a 1,4-fold overexpression of REL, as compared to OSU-CLL
cells.

Table 1: Cytogenetic analyses of OSU-CLL and JVM-3 cell lines

Cell line OSU-CLL JVYM-3
Caryotype 48 XY inv(2)(p12g1d)c.+12,+ | 96 XXYY der(2),+der(2),+3, ?del(
19[10] 7)qx2,+12 +add(12)(q?24)[cp4)/

94 sl -17.-21[cp7]

FISH: REL probe | 2 copies 5 copies

2. Pharmacological inhibition of c-Rel induced cell death in primary CLL
cells

In order to evaluate the role of REL in CLL drug resistance, our initial approach
featured a selective inhibitor of c-Rel, IT-603. IT-603 acts by blocking c-Rel DNA
binding and further transcriptional activity, and has been shown to display anti-
lymphoma activity (Shono et al., 2014). As shown in Figure 2, c-Rel inhibition
induced programmed cell death (PCD) in CLL cells. PCD was specifically observed
in the B leukemic cells from CLL patients, sparnng non-leukemic cells of CLL patients
as well as B lymphocytes from healthy donors. Cells from 2p gain+ CLL patients
were resistant to IT-603-induced cell death compared to cells from 2p gain- CLL
patients, which suggests that REL overexpression associated with 2p gain was
sufficient to significantly downmodulate IT-603-mediated CLL cytotoxicity. Caspase
inhibitors blocked IT-603-induced PCD, which indicates a caspase-dependent
mechanism.
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The anti-leukemic effects of c-Rel inhibition were then confirmed with a more
potent molecule, IT-901. Shono and colleagues described another potent c-Rel
inhibitor exhibiting in vitro and in vivo antitumor properties. IT-901 displayed selective
activity in human diffuse large B-cell lymphoma (DLBCL) cells, and its estimated half
maximal inhibitory concentration (ICso) regarding global NF-kB activity was about six
times lower (3 pmol/L) compared with IT-603 (18.8 pmol/L) (Shono et al., 2016).

Assessment of cell death induced by IT-603 and IT-901 in REL-deleted JYM-3
cell lines for 24h showed that these two molecules are not specific of c-Rel,
suggesting a perhaps wider inhibitory activity towards NF-kB subunits.

3. CRISPR-Cas9 mediated knockout of REL in 2p gain+ JVM-3 cells
increased spontaneous and drug-induced cell death, while decreasing
proliferation

To further substantiate the role of REL in CLL drug refractoriness, we wondered if
deleting REL gene in a 2p gain+ CLL-like model (JVM-3) would impact the response
to common anti-CLL drugs. Briefly, single guide RNAs (sgRMNAs) sequences were
designed and selected in silico according to their scores of predicted efficacy and
selectivity toward human REL exon 2. The selected sgRNAs were then inserted in
vectors containing the S. pyogenes Cas9 fused by a T2A peptide to the fluorescent
tracer Cherry (lentiCRISPRv2). In order to determine the most efficient sgRNA using
an in vitro assay, the CRISPR/Cas9 constructs were first electroporated in OCI-LY1
cells, a human B cell lymphoma cell line that allowed transfection with high efficiency
and viability. Genomic cleavage efficiency was estimated by a T/ endonuclease |
assay performed on the PCR-amplified DNA of Cherry+ cells (Figure 3).

We next sought to verify that the lentiviral CRISPR-Cas9-RELsg1 construct
effectively induces target gene deletion in the OCI-LY1 B cell line. As depicted in
Figure 4, transfection of OCI-LY1 cells with the CRISPR-Cas9-RElLsg1 vector and
FACS sorting of Cherry+ single cell into individual vials yielded 11 clones, which were
characterized for REL deletion by PCR and T7 endonuclease | assay, Western
blotting and Sanger sequencing. Functional analysis revealed that although REL
deletion did not affect cell viability or sensitivity to drugs, as compared to the parental
cell line (WT), proliferation was significantly decreased in REL-deleted cell clones, in
comparnson with WT cells.

After validation of the sgRMNA1 efficiency, we then proceeded to transduce the
2p gain+ CLL-like cellular model. As shown in Figure 5, transduction of JVM-3 cells
with the CRISPR-Cas9-RELsqg1 vector yielded a pool of edited cells (Bulk) and single
edited cells-derived clones (RELsg1 #N), which were similarly charactenzed for REL
deletion by PCR and T7 endonuclease | assay, Western blotting and Sanger
sequencing. Freshly transduced cells as well as cells from the cherry + Bulk cell line
were sorted by FACS into single cells, which were amplified, producing 17 single cell-
derived cell lines. Sanger sequencing showed that all of them had an edited REL
genetic sequence, probably owing to the genomic integration of the CRISPR-Cas9
construct in cells that were amplified and maintained in culture for several weeks.
Indeed, RT-qPCR analysis showed little to no REL mRBNA expression in the modified
cell lines, as compared to the control. Moreover, to confirm that the CRISPR/Cas9
system efficiently truncated the REL gene, the presence of the protein was tested by
Western blot analysis, and protein expression was undetectable in edited cells. Six of
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the REL-deleted JVM-3 cell lines were randomly selected for functional analysis,
which indicated that REL deletion significantly increased sensitivity to anti-CLL drugs,
as compared with empty-Cas9 control (Figure 5B). Proliferation was decreased in
the cherry+ bulk as well as in the clonal cell lines, in comparison with WT cells or the
empty-Cas9 control (Figure 5C).

In order to gain a mechanistic insight, expression of target genes (COXZ2 and
EZHZ for instance) as well as expression of other NF-kB genes (namely NFKET,
NFKBZ2, RELA, RELB, NFKBIA and NFKBIE) was determined by real-time RT-PCR
analyses but did not reveal clear compensatory effects of other NF-kB subunits
regarding drug response (data not shown).

4. Transcriptional activation of REL in 2p gain- OSU-CLL cells

In order to substantiate the relevance of REL in 2p gain-associated drug
resistance, we overexpressed this gene in the 2p gain- OSU-CLL cell line using a
dCas9-VP64 construct and sgRMNAs specifically designed to enhance gene
transcription of the endogenous REL sequence. To this end, OSU-CLL cells were
initially transduced with a lentivirus expressing a constitutive dCas9, thereby
establishing the OSU-dCas9-GFP cell line, which enables the generation of any CLL
overexpression model by selecting sgRMNAs targeted to the promoter regions of the
genes of interest. Three sgRNAs were selected in silico using programs (CRISPOR,
Zhang MIT, Broad Institute) that rank candidate sgRNAs targeting the REL promoter
according to predictive specificity and efficacy scores. Vectors containing each
sgRMNA were constructed and packaged in lentiviruses.

0OSU-dCas9 cells were then transduced with lentiviruses expressing sgRNAs
specific for the REL gene, in order to obtain 3 polyclonal cell lines, namely RELsgA1l,
2 and 3. As shown in Figure 6, successful transcriptional activation was achieved in
the RELsgAZ2 cell line. REL overexpression decreased both spontaneous and drug-
induced apoptosis in REL activated cell lines in comparison with the control, albeit
without reaching significance. Moreover, although protein expression was similar
between sgRNAs, mBNA expression levels were different between dCas9-RELsgA?
on one hand and -RELsgA1/-RELsgA3 cell lines on the other hand. Hence, REL
overexpression by CRISPRa did not lead to a significant decrease in spontaneous or
drug-induced apoptosis.

5. CRISPR-dCas9-mediated transcriptional activation of XPO1, BCL11A and
MYCN genes in OSU-CLL celis

Since most 2p gain+ CLL patients show large 2p gains, including important genes
for oncogenesis, we hypothesized that there could be oncogenic cooperation
between REL and other 2p genes such as XPO1, MYCN, ALK and BCL11A. To
answer to this question, we activated the transcription of these 2p genes using the
same CRISPRa approach as previously in JVM-3 cells, then examined their
phenotypic consequences. sgRNAs were designed and lentiviral CRISPR-dCas9
vectors were constructed. In vitro selection and validation of the most efficient guides
for each 2p gene was performed (Figure 7).

6. CRISPR-Cas9-mediated editing of XPO1, BCL11A, MYCN and ALK genes
in JVM-3 cells
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We then deleted 2p genes using the same CRISPR-Cas9 approach as previously
in JVM-3 cells, then examined the phenotypic consequences of these genetic
deletions. sgRMNAs were designed and lentiviral CRISPR-Cas9 vectors were
constructed. In vitro selection and validation of the most efficient guides for each 2p
gene was performed (Figure 8).
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Figure 1: Amplification of REL in 2p gain+ cell line JVM-3 is associated with
gene overexpression and drug refractoriness.

Top panel: Left: the rate of PCD induced by CLL drugs was significantly lower in 2p
gain+ patients, as compared to 2p gain- patients. Right: REL mBNA levels were
determined by RT-gPCR in CD19+ cells isolated from healthy donors and from 2p
gain- or 2p gain+ CLL patients (Cosson et al., 2017). A: FISH analyses were
performed and showed the gain of REL in 2p gain+ JVM-3 cells. B: REL mBNA
levels were determined by RT-gPCR in two B-cell lines: OSU-CLL (2p gain-) and
JVM-3 (2p gain+). JVYM-3 cells displayed a 1.4-fold overexpression of REL, as
compared to OSU-CLL cells. The ABLT mBMNA expression was used to normalize the
data. C and D: Apoptosis was measured in JVYM-3 and OSU-CLL cells after 24h with
or without treatment. PCD induced by FC and ibrutinib was significantly lower in 2p+
JVM-3 cells. C: the percentages of Annexin-V positive and Annexin-V/Pl co-positive
cells were quantified and plotted. Mean + SEM of n=3 independent experiments).
The statistical analysis was performed using two-way ANOVA test. Statistically
significant differences (p-value < 0.05) are indicated, ns: not significant. D:
Hepresentative flow cytometry plots are shown.
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Figure 2: Pharmacological inhibition of c-Rel/NF-kB induced cell death in CLL
cell lines and patient primary cells. A: OSU-CLL and JYM-3 cells were treated with
c-Rel inhibitors IT-603 (50 and 75 puM) and IT-901 (5 and 10 pM) for 24h, or left
untreated. DMSO represent the vehicle control (final concentration of 1% DMSO).
Cell death was assessed by Annexin V and Propidium lodide staining and analyzed
by flow cytometry: the percentages refer to Annexin-V+/Pl- and Annexin-V/Pl co-
positive staining. B: specificity of IT-603 and IT-901 for c-Rel was assessed by
treating REL-deleted JVM-3 cell lines for 24h and measunng cell death. C: Cells from
CLL patients (n=5) were magnetically sorted and were treated for 24h with c-Rel
inhibitor (IT-603). IT-603 induced cell death specifically in the CD19+/CD5+ fraction (=
tumoral cells), sparing the non-leukemic cells. D: CD19+ B lymphocytes from Healthy
Donors (n=3), as well as the other major blood cell types (CD3+ T lymphocytes,
CD56+ NK lymphocytes, CD14+ monocytes) are not sensitive to IT-603-induced cell
death. E: QVD, a pan-caspase inhibitor, blocks the induction of CLL cells death
mediated by IT-603 (n=1). Etop (etoposide): induces apoptosis of tumor cells
(positive control). F: Cells from 2p gain+ patients (n=5) are resistant to IT-603
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induced cell death compared to cells from 2p gain- CLL patients (n=10). Dots
represent individual samples. The statistical analysis was performed using Mann-
Whitney U-test. Asterisks represent statistically significant differences (p-value <
0.05), *** summarnzes p-values < 0.001).
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Figure 3: Overview of the single guide RNA design and selection. A: Three
sgRMNAs were selected in silico using programs (CRISPOR, Zhang MIT, Broad
Institute) that rank candidate sgRMNAs according to predictive specificity and efficacy
scores. B: The selected sgRMAs were inserted in lentiviral Cas9-cherry vectors.
Correct insertion was confirmed by Sanger sequencing. C: OCI-LY1 cells were
electroporated with the three sgRNA constructs, sorted by FACS and DNA was
extracted and amplified by PCR for the targeted REL region. A mismatch cleavage
assay using the T/ endonuclease | allowed the determination of the construct
containing the sgRMNA1 as the most efficient for genomic cleavage of REL in vitro.
Subsequently, cells were transfected with the selected RNA guide, sorted by FACS
and characterized prior to functional analysis.
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Figure 4: Characterization and functional analysis of REL-deleted OCI-LY1
clones. A: Characterization of OCI-LY1 cells electroporated with the lentiviral
CRISPR-Cas9-RELsg1 vector. Cells were sorted by FACS as single cells in 96-well
plates, and amplified for approximately 2 weeks. Viable clones were further amplified.
The Western Blot analysis shows 10 deleted clones and a “WT-like™ clone (24).
which harbored a heterozygous deletion as determined by Sanger sequencing. B:
Assessment of spontaneous cell death by AnnexinV/Pl co-staining after 24h of
incubation (n=2). C: First, wild-type (WT) cells were treated with IT-603 (75 pM) +
FCR (35pum; 5mm; 10pg/ml), ibrutinib (15 pM), idelalisib (50 pM) or KPT-330
(250nM). The only IT-603 + antiCLL drug combination that induced PCD in WT cells
was the combination of IT-603 and FCR (28% of PCD) (data not shown). Next, we
subjected three REL-deleted clones to FCR treatment and assessed PCD as
previously described. KPT-330 was used as a negative control. D: The number of
viable cells was determined at different culture time points and plotted for the
different REL-deleted cell clones (numbers) as compared with the wild-type OCI-LY1
cell line (WT) (mean + SEM of n=3 independent experiments). The statistical analysis
was performed using two-way ANOVA test. Asterisks represent statistically
significant differences (p-value <0.05), ™ p=<0.01, ™ p =0.001).
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Figure 5: CRISPR-Cas9 mediated knockout of REL increased spontaneous and
drug-induced cell death, while decreasing proliferation. Characterization and
functional analysis of REL-deleted JVM-3 cell lines. JVM-3 cells were transduced
with the lentiviral CRISPR-Cas9-RELsgl1 vector, sorted by FACS and amplified to
establish one polyclonal Cherry+ cell line (RELsg1 bulk) as well as 17 single-cell
derived cell lines (RELsgl1#N). Six cell lines were randomly selected for further
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analysis. A ,F: Efficient genetic editing of REL was confirmed in all cell lines by
Sanger sequencing. For instance, the RELsg1 cell line displayed a 7bp deletion in
REL as determined by alignment to a WT reference sequence using the DNAstar
Segman software. B,G: REL mRBNA levels were determined by RT-gPCR. Transcript
levels were strongly decreased in REL-edited cell lines, in comparison with the
controls (WT or EmptyCas9 cell lines). The ABLT mRNA expression was used to
normalize the data. C,H: The Western Blot analysis shows that the polyclonal and all
monoclonal RELsg1(#N) cell lines were deleted for REL. D,I: Assessment of CLL
drugs-induced cell death by AnnexinV/Pl double staining after 24h of incubation. E .J:
The number of viable cells was determined at different culture time points and plotted
for the different REL-deleted cell lines (numbers) as compared with the wild-type
JVM-3 cell line (WT) (n=1).
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Figure 6: CRISPRa-mediated transcriptional activation of REL decreases
spontaneous and drug-induced cell death, without affecting proliferation

A: Overview of the single guide RNA design and selection. Three sgRNAs were
selected in silico using programs (CRISPOR, Zhang MIT, Broad Institute) that rank
candidate sgRMNAs according to predictive specificity and efficacy scores.
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Establishment of the stable OSU-dCas9-GFP cell line enables a selective
transcriptional activation of any gene of interest in OSU-CLL cells. OSU-dCas9-GFP
cells were transduced with each selected lentiviral RELsgA#N vector, sorted by
FACS and amplified to generate stable OSU-dCas9-RELsgA#N cell lines.

B-C: Characterization of the O5SU-dCas9-RELsgA cell lines. B. REL mBNA levels
were determined by RT-gPCH. The ABLT mBMNA expression was used to normalize
the data. C. The Western Blot analysis showed a subtle overexpression in all three
HELsgA cell lines. B: Assessment of spontaneous and drug-induced cell death by
AnnexinV/Pl co-staining after 24h of incubation (mean + SEM of n=3 independent
experiments). C: The number of viable cells was determined at different culture time
points and plotted for the different dCas9-RELsgA cell lines as compared with the
control cell line (dCas9) (mean + SEM of n=3 independent experiments). The
statistical analysis was performed using two-way ANOVA test and showed there no
statistically significant differences.
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A Overview of the experimental design
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Figure 7: CRISPRa-mediated transcriptional activation of other putative 2p
oncogenes. A. For each gene, namely BCL11A, MYCN and XPO1, single guide
HNAs were designed and selected as previously described. Three sgRNAs were
selected in silico using programs (CRISPOR, Zhang MIT, Broad Institute) that rank
candidate sgRMNAs according to predictive specificity and efficacy scores. OSU-
dCas9-GFP cells were transduced with each selected lentiviral sgRNA vector, sorted
by FACS and amplified to generate stable OSU-dCas9-GENEsgA#N cell lines. B:
Charactenzation of the OSU-dCas9-GENEsgA#N cell lines. REL mANA levels were
determined by RT-qPCR. The ABL1 mRBNA expression was used to normalize the
data.
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Figure 8: CRISPR-Cas9-mediated deletion of other putative 2p oncogenes. For
each gene, namely BCL11A, MYCN and XPO1, single guide RNAs were designed
and selected as previously described. Three sgRNAs were selected in silico using
programs (CRISPOR, Zhang MIT, Broad Institute) that rank candidate sgRNAs
according to predictive specificity and efficacy scores. JVM-3 cells were transduced
with each selected lentiviral sgRNA vector, sorted by FACS and amplified to
generate stable edited cell lines. Top: mBNA levels of each studied gene were
determined by RT-gPCR. Transcript levels were strongly decreased in edited cell
lines, in comparison with the controls (WT or EmptyCas9 cell lines). The ABL1
mBMNA expression was used to normalize the data. Bottom: Assessment of CLL
drugs-induced cell death by AnnexinV/Pl double staining after 24h of incubation.
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Materials and methods

Cell lines

HEK 293T cells were used for lentivirus production. They were maintained in DMEM
supplemented with 10% FBS and 1% penicillin/streptomycin (p/s). OSU-CLL and
JVM-3 cells were maintained in RPMI supplemented with 10% FBS and 1% p/s. OCI-
LY1 cells were maintained in IMDM supplemented with 20% FBS and 1% p/s.

Patients and healthy donors
The clinicopathological features of the study cohort are shown in Table 1.
Data patients Piti&/CRC.

Isolation of PBMC/B lymphocytes
Blood samples were separation by Ficoll density gradient, distinct cell types were
iIsolated by magnetic bead separation (MACS, Miltenyi).

T7 endonuclease assay (mismatch cleavage)

After PCR amplification the PCR fragments were hybridized and digested with a T7
endonuclease (NEB, cat M0302) for 15 minutes at 37°C. Afterwards, the digested
product was analyzed on a 1.5% agarose gel alongside the undigested PCRH product
as control.

Lentiviral constructs sgRNA design and sgRNA cloning

The sgRNA sequences were designed by combining the best ranking sgRNAs in
three CRISPR software: CRISPOR (crispor.tefornet/), Broad Institute
(https://portals broadinstitute org/gpp/public/analysis-tools/sgrna-design) and the late
crispr.mit.edu. The two complementary oligos were denatured at 95°C for 5 min and
ramp cooled to 25 over a period of 2-3h to allow annealing, and finally ligated with
the lineanzed plasmid. Competent cells were transformed with the ligated plasmid
and single colonies were grown before proceeding to plasmid extraction using the
Qiagen maxiprep kit. The correct insertion of the sgRNA sequence in the plasmid
was confirmed using Sanger sequencing.

Lentiviral production and cell transduction

Bnefly, CRISPR constructs were co-transfected with Gag/Pol (viral packing plasmid)
and VSV-G (envelope plasmid) in HEK-293T cells using Jetprime reagent, lentiviral
particles were collected 48h after transfection and were concentrated by ultra-
centrifugation. Lentiviral pariicles were frozen at -80°C. OSU-CLL and JVM-3 cells
were infected in 24 well plates with 1x10¢8 cells/well cultured in enriched medium.

Establishment of stable CRISPR-modified cell lines

To obtain a stable OSU-CLL cell line expressing dCas9-GFP, lentiviral particles
containing the dCas9-empty plasmid were transduced into OSU-CLL cells. 72h after
infection, GFP positive cells were sorted using FACS Influx cytometer and amplified.
To establish (d)Cas9-edited cell lines, lentiviral particles containing the indicated
(d)Cas9-sgRNAs plasmids were transduced into JVM-3 or OSU-CLL cells. 72h after
infection, GFP or Cherry positive cells were sorted using FACS Influx cytometer and
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single cells were seeded in 96-well plates. Amplification of these single cells yielded
17 clonal cell lines with REL inactivation.

Sanger sequencing

Genomic DNA was extracted using the Norgen kit following the manufacturer's
instructions. To amplify the region of REL, PCR was performed. PCR products were
purified and were sequenced by Sanger method using forward PCR primer
(Eurofins).

Apoptosis assay

Cells were treated with c-Rel/NF-kB inhibitors, classical anti-CLL drugs, 1% DMSO
(vehicle control) or left untreated for 24h. Drugs were prepared extemporaneously by
diluting stock solutions, and added to cell culiures to reach final concentrations
indicated in Table 2.

Table 2: c-Rel inhibitors and classical anti-CLL drugs used in this study

Drug Mode of action Manufacturer Final concentration

fludarabine DNA synthesis | Selleckchem 35 uM
inhibitor

cyclophosphamide | Alkylating agent Sigma-Aldrich 5mM

(endoxan)

rituximab Anti-CD20 antibody | Roche 10 pg/mL

ibrutinib BTK inhibitor Selleckchem 15 uM

idelalisib PI13K inhibitor Selleckchem 20 pM

KPT-330 XPO1 inhibitor Karyopharm 250 nM

(selinexor) Therapeutics

IT-603 c-Rel/NF-kB Merck 50-100 pM
inhibitor

IT-901 c-Rel/NF-kB Bio-techne 2-10 uM
inhibitor

venetoclax BCL2 inhibitor Selleckchem 50-100 nM

After 24h, 1x10° cells/condition were collected and washed twice in PBS, then
labeled with an Annexin V(AnV)-APC and propidium iodide (Pl) co-staining, allowing
the discnimination of living intact cells (AnV-PI-), early apoptotic cells (AnV+PI-), late
apoptotic and necrotic cells (AnV+PIl+). Cells were analyzed on a FACS Canto 1l flow
cytometer using FACS-DIVA (BD Biosciences) and FlowJo (TreeStar) softwares.

Cell electroporation

Cells were electroporated using the Amaxa system (Lonza) and resuspended in
medium with 20% serum. Addition of serum to electroporated cells, to reach 20%
final serum concentration, was proven to improve survival and transfection efficiency,
by effectively sealing cells in less than 10 minutes after electroporation (Bahnson and
Boggs, 1990).
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RT-qPCR analyses

RNA was extracted using the Norgen kit following the manufacturer’s instructions).
The ABL1 mBNA expression was used to normalize the data.

Western blotting

Whole cell lysates were prepared in 1x final Laemmli buffer prior to sonication. The
lysate samples were denaturated at 95 for 5 minutes before loading onto a 10%
SDS-PAGE (Mini Protean TGX Precast protein gels, Biorad) 5 pL of prestained
protein standards or 20 pl of samples were loaded onto the gel. The gel was
electrophorized for 1h30 at 100 mV in 1x running buffer. Proteins were transferred
onto a nitrocellulose membrane at 100 V for 1h30 at 4°C in 1x transfer buffer, and
subsequently immunoblotted using the Indicated antibodies and horseradish
peroxidase-labeled secondary antibodies.

Prnmary antibodies were diluted in 5% skim milk in PBS/Tween and incubated
overnight at 4°C with shaking. Antibodies to c-Rel (Cell Signaling technology), actin
(Sigma) were used for immunoblotting. After incubation, membranes were washed
with PBS Tween 0.1% for three times 10 min. after washing membranes were
incubated with secondary antibody diluted in 5% skim milk in PBSfiween for 1h at RT
with shaking and then washed again as above. Membrane was visualized under
chemiluminescence with HRP substrate (Thermo Fischer Scientific) at various
exposure times, and image blots were recorded on a Imager and quantified using
ImageJ software.

Statistical analysis

To compare treatment effect across cells, an unpaired t-test was applied. Using
ImageJ software, western blot membranes were analyzed for the mean band
intensity for c-Rel el as well as for the loading control Actin. The relative abundance
of c-Rel was determined as a ratio of the loading control. These ratios were then
normalized to the negative control with no c-Rel. A two-way ANOVA test using
Tukeys was performed to compare between samples. All analyses were conducted
using GraphPad software Prism 7.
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Discussion

Despite major improvements in therapeutic strategies in patients with CLL,
eradication of the disease remains a challenge because of the emergence of drug
resistance. In particular, the 2p gain is frequent in CLL, and is associated with the
progression of the disease and the drug resistance. Potentially significant genes are
localized in 2p, including REL. Although the transcription factor NF-kB is known as a
key player in tumor formation, the relevance of its particular subunits is still
underestimated. Because of the peculiar roles of REL in health and disease
compared to other members of the NF-kB family, targeting c-Rel could impair tumor
growth while maintaining NF-kB physiological functions and thus prevent unwanted
side-effects. Hence, it has been suggested that REL could be one of the critical
target genes of 2p12-16 amplification in CLL, however little expenmental evidence to
date actually supports this notion. For the first time, the present study sought to
precisely assess the functional relevance of REL in 2p gain pathophysiology.

We used RMA-guided transcriptional activation of REL via CRISPR/dCas9 in

order to mimic an overexpression phenotype in CLL cells. To our knowledge, this is
the first report of a c-Rel overexpression experiment in CLL or 2p gain-harboring
lymphomas/leukemias.
Efficient yet subtle overexpression of REL was achieved in the CRISPRa-edited B
cellular models presented here. This is consistent with previous reports, where the
magnitude of transcriptional upregulation attained by individual sgRNAs is usually
low: CRISPRa, by activating transcription at the endogenous locus, generally induce
low to moderate expression levels as compared to classical cDNA overexpression
studies (Joung et al., 2017a; Konermann et al, 2013; Maeder et al_, 2013; Mali et al_,
2013; Perez-Pinera et al_, 2013). Tiling a promoter region with several sgRNAs can
generate a more robust transcriptional activation (Maeder et al., 2013; Mali et al_,
2013; Perez-Pinera et al., 2013). However, a subtle overexpression conveniently
results in a viable and more pathophysiclogical phenotype. Indeed, our group has
previously shown that gain of 2p was associated with a relatively modest (3.2-fold)
overexpression of REL in CLL patients (Cosson et al, 2017), and strong gene
upregulation can lead to aberrant cell functions. in some situations, high-level
expression of c-Rel can even induce cell-cycle arrest (Bash et al., 1997). For
instance, generation of transgenic mice with c-Rel under the control of a B-cell
specific promoter was reportedly impossible, suggesting that overexpression of c-Rel
may be toxic at some stages of B cell development (Gerondakis et al., 2006).

Moreover, edited cells were selected and amplified as mixed pools in order to
circumvent sgRMNA-related off-target effects, and to control for clonal effects such as
de novo mutations, epigenetic or metabolic vanation between monoclonal cell lines
populations, as well as biases due to lentivirus integration. Indeed, due to difficulty in
transiently transfecting hematopoietic cells, we have adopted a lentiviral system to
deliver the CRISPR/(d)Cas9 components into the poorly transfectable CLL cell lines,
but this can result in integration of lentivirus components in unwanted loci. This
method also avoids delays due to the slow proliferation rate and poor survival of
leukemic cells when cultured from single cells.
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Very tew relevant CLL models or human B cell lymphoma/leukemia cell lines
with a highly amplified REL locus/2p gain are available. Moreover, the ones that do
exist are usually obtained by EBVY immortalization, which is known to alter host
transcription programs and result in a proliferative advantage (Drexler and Matsuo,
2000; Wang et al_, 2019). For instance, OSU-CLL is a cell line established by EBV
transformation of a CD5+ CLL with trisomy 12 and 19 (Hertlein et al_, 2013). JVYM-3
was Induced by EBY and polyclonal B cell activator TPA is denved from
prolymphocytic leukemia carrying a trisomy 12 (Melo et al., 1988). When possible
and relevant, different cell lines should be subjected to the alteration of interest to
account for this potential bias.

Furthermore, additional control expenments using non-targeting sgRNAs
should be performed in parallel in order to confirm that transcription level changes
are due to dCas9-dependant gene activation (Miles et al_, 2016).

We have shown that transcriptional activation of REL by three different
sgRMNAs In dCas9-VP64 OSU-CLL cells did not affect proliferation nor significantly
diminish spontaneous or drug-induced cell death, suggesting that REL might not be
the driver gene accounting for the poor clinical features associated with 2p gain in
CLL. This notion is also supported by the observation that 2p gain+ CLL pnimary cells
were resistant to cell death induced by NF-kB-inhibitors, similarly to any other anti-
CLL drugs, as compared with 2p gain- CLL samples.

Pharmacological inhibitors IT-603 and IT-901 induced cell death specifically in
primary CLL tumoral cells but not in healthy donor lymphocytes, in line with the
consistently observed high levels of nuclear NF-kB-binding activity in unstimulated
CLL B cells relative to that detected in nonmalignant human B cells (Furman et al_,
2000). Cell lines were more sensitive to IT-603 and IT-901 than patient cells, in
keeping with a higher constitutive activation NF-kB, independently from
microenvironmental conditions.

Vaisitti and colleagues reported that addition of IT-901 to CLL cells in vitro
significantly decreased DMNA binding p50, p65 and c-RHel, with p65 being most
sensitive, suggesting that the main effects of the drug are through p65 (Vaisitti et al_,
2017). Consistently, assessment of cell death induced by IT-603 and IT-901 in REL-
deleted JVM-3 cell lines for 24h showed that both of these molecules are not specific
of c-Rel, suggesting a perhaps wider inhibitory activity towards NF-kB subunits.

Moreover, we have also found that IT-603 induced cell death through a
caspase-dependent mechanism. The latter observations should be completed by
assessing caspase-3 and PARP cleavage, as well as down-regulation of XIAP or
upregulation of BIM proteins. IT-901 was reported to act by activating intrinsic
apoptosis upon increase in mitochondrial reactive oxygen species, which damage
mitochondna, limit oxidative phosphorylation and ATP production (Vaisitti et al.,
2017).

The CRISPR/Cas9 genomic editing technology allows the ablation of gene
causing an absence of oncoprotein expression and blocking its effects in vitro. Here,
we report the successful establishment of a polyclonal cell line as well as 17 single
cell derived monoclonal cell lines, all carrying CRISPR/Cas9-mediated mutations in
the REL gene. Efficient gene editing and complete lack of c-Rel protein expression
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were confirmed in all cell lines. Importantly, our data regarding the in vitro ablation of
REL by CRISPR/Cas9 in 2p gain+ B cells showed a significantly increased drug-
induced and spontaneous apoptosis, as well as decreased cell proliferation. The
results obtained in the pool of edited cells (Bulk) were confirmed in six edited cell
lines each denved from a single cell, endorsing the notion that the loss of ability to
grow was solely due to the disruption of the REL gene.

Further, edited cells should be precisely characterized using indel tracking
algorithms such as Tide htips//ftide-calculator nkinl However, because of the
polyploid nature of JVM-3 cells, precise characterization of REL gene disruption was
difficult in most CRISPR-edited cell lines. Moreover, since most methods of detection
of on-target mutations are based on the PCR, they usually tend to underestimate the
frequency of on-target activity because large deletions that extend beyond the
boundaries of the PCRH amplicon are not detected, and large insertions are amplified
less efficiently than small mutations (if at all) and are therefore less likely to be
identified. This is however less critical when a single gRNA is used because small
indels are much more frequent than large deletions or insertions (Zischewski et al_,
2017).

In agreement with our results, CRISPR/Cas9-mediated knockout of e-RELIn
Hela Kyoto cells, a model system for cervical cancers, resulted in a significantly
decreased cell proliferation in comparison to wildtype (Slotta et al.. 2017). However,
surprisingly. the same study reported that e-REL knockout did not affect apoptosis,
and further led to significantly increased resistance against the chemotherapeutic
agents 5-Fluoro-2-deoxyuridine (5-FUDR) and cisplatin (Slotta et al., 2017). This
discrepancy might be due to the differences in cellular models and pathologies.
Mevertheless, further investigations are warranted to shed light on the intricate
consequences of c-Rel expression on survival and drug response.

Heproducibility of the results was confirmed by repeating the experiments, each
performed independently, in order to obtain at least three biological replicates,
allowing the determination of accurate p-values for individual sgRNAs as well as
individual genes.

Owr results suggest that the functional consequence of 2p amplification may
not be REL activation and that therefore other genes mapped within 2p might be the
target(s) of the amplification event. Indeed, most 2p gain+ CLL patients display large
2p gains, including important genes for oncogenesis, namely XPO1, MYCN, ALK and
BCL11A. We therefore postulated that there could be oncogenic cooperation
between REL and other 2p genes. To verify this hypothesis, using the stable OSU-
dCas9 cell line, we designed and constructed lentiviral sgRBNA wvectors and
transduced OSU-CLL cells in order to activate the transcription of these 2p genes
using the same CRISPRa approach as previously described. Successiul
transcriptional activation was attained in numerous transduced polyclonal cell lines.

Moreover, we then deleted 2p genes using the same CRISPR-Cas9 approach
as previously described, then examined the phenotypic consequences of these
genetic deletions. sgRNAs were designed and lentiviral CRISPR-Cas9 vectors were
constructed. In vitro selection and validation of the most efficient guides for each 2p
gene was performed. Successful decrease In gene expression was achieved in
numerous transduced polyclonal cell lines.
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Phenotypic consequences of CRISPRa- and CRISPR-Cas9-mediated
modifications need to be carefully examined, in terms of apoptosis, proliferation, cell
cycle, and NF-kB activation. Numerous readouts of NF-kB ought to be evaluated, by
assessing changes in activation or gene expression downstream of c-Rel/NF-kB
signaling, for instance in expression of antiapoptotic proteins as well as EZHZ2.

Conclusion

We have shown that transcriptional activation of REL by CRISPRa in OSU-
CLL cells decreases spontaneous and drug-induced cell death, without affecting
proliferation. Inactivation of REL by CRISPR/Cas?9 in 2p gain JVM-3 cells decreases
proliferation and enhances sensitivity to CLL drugs. Pharmacological inhibition of NF-
kB specifically induces cell death in leukemic cells of CLL patients. Altogether, these
findings indicate that REL could play a major role in CLL cell survival, but does not
seem to be the sole player accounting for 2p gain-associated drug resistance. Since
most 2p gain+ CLL patients display large 2p gains, including important genes for
oncogenesis, namely XPO1, MYCN, ALK and BCL11A, we developed several
cellular models of gene knockout and transcriptional activation for each one of these
genes in order to identify actors and potential oncogenic cooperation driving 2p gain
resistance in 2p gain CLL.
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Chronic lymphocytic leukemia (CLL) is charactenzed by a variety of genomic
aberrations including the chromosomal abnormalities dell1qg. del13qg and dell7p,
tri12, as well as the 2p gain. The 2p gain is frequent in symptomatic CLL (16%), and
Is associated with poor prognostic factors (del11q, unmutated /IGHV) and drug
resistance. At least two minimal regions of gain 2p15-16 and 2p24 have been
identified. The aim of the present study is to describe the relationship between 2p
gain and other key CLL chromosomal abnormalities and to investigate the evolution
of the 2p gain under therapeutic pressure.

We have collected data for 64 CLL patients (pts) with 2p gain detected by
karyotype (K) and/or extensive fluorescence in situ hybridization (FISH). In all pts K
and extensive FISH have been performed, including the 4 classical CLL probes and
probes encompassing MYCN (2p24), REL (2p16) XPO1 (2p15), and BIRC3 (11g22)
genes. The IGHV status was also determined. Longitudinal cytogenetic analyses
were available for 22/64 patients.

Eighty three percent (53/64) of patients with 2p gain were male, with a median
age at diagnosis of 60 years (range: 42-80). Out of 52 successful K, 21 (40.4%) were
complex (C) (=3 abnormalities) (9/52, 17.3%) or high C (=5 abnormalities) (12/52,
27 1%). The 2p gain was clearly identified in 13/52 (25%) K. and was due to a
duplication in the short arm of chromosome 2 in 5 cases, while in the remaining
cases it was fused to chromosomes 4, 8, 13, 20, 22 and most frequently to
chromosome 18 (5/15, 38.4%). In the majority of cases 2p gain was accompanied by
other aberrations, including 56 2% dell3q, 45.3% delll1q, 21.8% dell7/p and 1.5%
tri12. The IGHV status was unmutated in 51/56 (91%) patients.

Regarding the 22 patienis with longitudinal samples, the median number of
samples was 3 (range 2-5), and the median follow up (FU) was 8.6 years (range 4-
26). Among them, 20 patients required treatment, with a median time from diagnosis
to treatment of 26.3 months (1-72). Seven patients died, with a median OS of 9.3
years (range 4-26). Investigating the 2p gain in more detail, we found that the three
oncogenes XPO1, REL and MYCN were gained in the same proportion of cells in the
large majority (68.2%) of cases. However, in 7/22 (31.8%) CLL, we observed a
divergence in the gain of 2p15-16 (XPO1/REL) and 2p24 (MYCN) regions. In 6/7
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cases, the 2p15-16 region was gained in more tumor cells than 2p24, including 3
CLL without any detectable gain of MYCN, conversely in one patient, 2p24 was
gained in a higher percentage of cells than 2p15-16. Regarding the 11q deletion,
ATM and BIRC3 were both deleted in 10/12 (83%) cases. Only 2 cases had a
deletion involving ATM only; no case of simple BIRC3 deletion was observed.

During the evolution, the 2 untreated patients had a stable % of 2p gain, with a
FU of 6 and 24 months. A median of 3 lines of therapies was used in the 20 patients
requiring treatment. Thus, in our study, we have compared cytogenetic data for each
line before treatment and at relapse (Tab 1). Among the 20 patients: I. Seven were
treated with fludarabine/cyclophosphamide/rituximab in front line. Time to relapse
was within 3 years in 5 patients, and the 2p gain remained stable (3/7) or increased
(4/7) (Fig 1A); Il Mine pts were treated with
bendamustine/ofatumumab/methylprednisolone (BOMP), after 1 to 3 lines of
previous therapies; the 9 cases relapsed (including 1 death) within 3 years. At
relapse, the 2p gain decreased (4/9) or disappeared (1/9) (Fig 1B), remained stable
in 3 cases, and increased in one patient. Of note, 4/9 patients had a del17p, which
remained stable or increased; and iii. Three patients were treated with ibrutinib: the
2p gain decreased in one patient after 11 months, and remained stable in two
patients, despite a normal lymphocyte count at 13 and 17 months. Finally, only one
patient received Rfidelalisib after 2 previous lines, and died at 25 months, with a
stable 2p gain.

Conclusion: In the era of precision medicine, our results suggest that in addition of
the other classical prognostic factors, 2p gain has to be specifically evaluated in CLL
before deciding the treatment strategqy. As 2p gain could be overlooked by
conventional karyotype, we suggest searching systematically this abnormality by
FISH with at least two sets of probes (XPO1/REL and MYCN). The majority of the
drugs seem not to be effective on the elimination of the 2p gain clone, but the BOMP
regimen could be an option. No data are available regarding BCL-2 inhibitors in this
setting.
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Figure 1. A: CLL(L) patient: FISH: % of cells with 2pgain and del13q at diagnosis and at
relapse after FCR (32 months). Zpgain increased, whereas del13q disappeared.
B: CLL(LJ) patient: FISH: % of cells with 2pgain, del11q and del13q before treatment
(BOMP) and at relapse (17 months): 2pgain disappeared, whereas del13g and del11q
remained stable.
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Florerce Mpwyen-Ehac, Servics d'Hémabo- Abstract

loge Biclogious, Batiment Phamadie, 5¢ Chranic ymphocytic leukemia (CLL) with 17p deletion (17p-) is associated with a lack of response:

;':‘: ”:““;;";L“;‘:T’::‘:sz_“:gf;“ bes standard treatmertd and thus the weest pessble dinieal outeeme. Various chromesemal abrce-

. . malitins {inclisding unibalaneed translasations, deletians, ring hro and isoshror b

Emal: flarence nguver-khac@nslaphp.fr resiill i the loss of 17p and one copy of the TPS3 pene. The objective of the presenl study was 1o
determine whether the type of chromesomal abnormality leading to 17p- and the additional aber-

Furding information

Fondation ARC pour 13 Recharchs s 1 rations influenced the prognosss in a seres of 195 patients with 17p-CLL. Loss of 17p resubbed
Caneer, SFI20111203530 primarily fram an unbalanced translocation [F0%) with several chromesome partners (the most fre-
quent being chromosome 18a), followed by deletion 17p (Z3%), monosory 17 (B%)
isnchromosome 17q [i{174]] (5%) and a ring chromesome 17 (2% In a univariate analysis, moncs-
omy 17, a highly complex karyotype (=5 abnormalities), and 8024 gain were assocated with poor
treatment-free survival, and i(17q) [P =04}, unhalanced tramslocations (P = 00) and Bg2d gan
P = 00r]] were significantly associated with poor owerall survival. In a multhivariate analysis, 824
gain remained a significant predictor of poor overall survival, Wi conclede that 17p deletion and
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Ba24 gain have a synengistic Impact on outcome, and so patients with this “double-hit™ CLL have a
particularly pear pregnesis. Systematic, targeting scresning for Bg24 gain sheuld therelore be con-

sidered in cases of 17p- CLL.

1 | INTRODUCTION

Chranic lmphocytic keukemia [CLL), the most common leukemia in
adults, has a highly variable course, reflecting Its biological heterogene-
ity. Many patients do not require treatment for wears, whereas others
exhibit aggressive disease, do not respond to treatment, and thus haee
a poar prognoss. Chromoesomal abnormalites linduding deletions of
11 13g or 17p [17p-) and trisomy 12} are present In about S0%, of
casns of CLL, Flucrescence in situ hybeidization (FISH] Is used to rou-
tinely screen for these chromosomal abnormalities.) Patients with 17p-
CLL harve the worsl dinical outcomes, and the shorbest progression-
free and overall sundval (05] times.” The 17p deletion Is found in 10%
or kess of patients with CLL bt in up to 40% of relapsed or treatment-
refractory patients. Loss of the shorl arm of the dhromasome 17
results from various chromosomal sbnormalities, including unbalanced
translocations, defetions, ring chramesemes and isochromasames. Al
these absrations lead to the loss of one copy of the TPS3 gene, and
the remaining allele is mutated in meost nstances. Furthesmaone, 17p- &
often associated with genomic complaxity as detected with comaen-
tiaral karyotyping or genomic microamays, ™

The dismal prognesis for patients with 17p- CLL is mainly dwe to a
lachk of response to conventional trestments, In keeping with the raole
of TRE3 a5 a pivotal regulator of the DNA resporse patheay, loss of
this gere is assoclated with resistance to DNA-damaging agents (g,
fludarabine and cyclophosphamidel, Recently, new drugs targating the
B-cell receptor signaling patheay or the apoptosis machinery hawe
shawam efficacy in 17p- CLL, with a better treatment response and lon-
ger progression-free survival® ® Despite good initial resporses to these
nie Langeted therapies, relapse can still occur - particulady in patients
bearing & complex karvotype (KLY In contrast, some patients with de
nova 17p- CLL have stable disease and remain aspmptomatic for pro-
langed periads af time "' Al these abservations underine the clinical
heterogeneity of 17p- CLL It has been shown that a number of clinical
and biclogical markers [such as MGHY mutational status the sire of the
17p- chore, and genomic complexity) are significanthy linked to the clini-
sl autcome in the subgroup of patients with 17p- CLL12

The abjectives of the present study aof a series of 195 patients with
17p= CLL were to determire whether ) the type of chromasomal abnor
mality lkeading to 17p loss fie, translocations, deletions, rings and isnchro-
masornes, a5 identified by K analysis) was associsted with the prognesis,
and (i} additional aberraticns had an Impact on the dinical cutcoma,

2 | METHODS

2.1 | Patient selection

Databases from 20 French and Belgian irstibutions were retrospec-
tiwaly screened for cases with a momphological and immunclogical

diagnasis of CLL according to the iwCLL criteria,® in which informative
K analysis showed a loss of 17p and FISH confirned the loss of the
TP53 gene. A total of 195 patients were |dentified. The patients’ dinlcal
and bickagical characteristics were extracted retrospectively from medi-
cal records. The study was performed in accordance with the Declara-
tion of Helsinki, and was approved by the local investigational review
beard [CPP-lle-de-France W, Paris, France; dates 09715/ 2011)

2.2 | Karyotype and FISH analyses

Al the K results wers resiewesd by the members of the Groupe Franco-
phane de Crlegdndtique Hémmologique and then cassified according to
the International System for Human Cytogenetic Momenclature [ESCH
AL Campley Ko wers defined ac the pressacs of thees or mees
numerical or structural chromaesomal abnomalities (CK = 31 and highty
complox Ks ware defined a5 the presence of five or more abnomalities
[CK = 5). Manasomal Ks were defined as the presence af 2 autasamal
moncsomies o 1 moncsomy with at least 1 structural abnormality.
Data from routine FISH analyses were avaiable for some of patients
11522 (ATM) (= 158), 13g14 [ = 118), centromere of chromosenme
12 {n = 102}, and Bo24 IMYC] in = 12

2.3 | TP53 mutations and functional assays

TRE2 mutations were anahaed by (il Sanger sequencing of axons 2 to
11 [f = 170 exons 4 to 10 {n = 29) or exons 4 to F (1= 1), o (i) rext-
generation sequencing (MGS) on a Miseg® platform (llumina, San
Diego, CA) using the CLL MASTR PLUS kit (Multiplicom, Meel, Belgium)
=%} or on & lon Toment platform (Life Technologies, Carlsbad, CA)
using the lon AmpliSeq™ TPS3 Pane (Life Techralogies) (n=8) A
megative result with Sanger sequencing was nol considered (o be
infarmative because this technique does not cower all the soons and is
not sensitive [10%). A functional assay of pS3 was caried oul as
described proviowshy, ™

2.4 | Statistical analysis

Treatment-free survival [TFS) and Q5 were defined as the time interval
between dagnosis and first-lire restment or death, respactiely, or lin
tha absence of these events) last follow-up,

Categorical variables were compared using the ehi-squared test or
Fisher's meact test, while continuous variables ware compared using
the Mann-Whitrey test. Survival analyses were performed using the
Kaplan-Meier method The log-rank best was used for intergroup com-
parisons of 05 or TFS curvns. The varshles analyzed wene age (<65
va. &5, Binet stage (A vs. BAC), IGHV mutation stabus, the percentape
of cols bearing the TR5Z deletion (<206 ws, =20%, <35 s,
= 355, = BO% vi. B0, occurrernce of 17p- after traatment, the num-
ber af 17p abnommalities (1 vs =21 a 17p abnoemality slone (acooeding
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ta the K, an urbalanced translocation imvokving 17p [U-translocation-
17p), a deletion 17p, a moncsomy 17, an isachromasaome 17g [{174]],
a der/dicd17;18)q100g 100, a CK with =3 ar »5 abnarmalities, a mana-
somal K, U-tramslocations (all: 17p and naot i?p]. the presence of addi-
tional U-transbocations [U-trandocation-not 17p), Ba24 gain, Bp
deletion, tisomy 12, and 11g deletion. Multivariate ansbysis with Cox
proporional hazsrds regression modeds] was subsequently perfomed
to assess the independent prognostic value of covariates that ware sig-
nificant im the uniariate anakysis. There were too few data on IGHY
mutations for inclusion in the muitivariate anakysis. The guality of the
multivariate madels for TFS and 05 was confirmed in a log-likelihood-
ratio test (P« 0001}, The prognostic significance of each variable was
assessed with the Wald test

To compane survval in patients in whom 17p- ocourred befiore vs,
after treatment, the time interval between the first documentation of
17p- and dieath or Last follow-up was also evaluated

All tests were bwo-sided, and the thresheold for statistical signifi-
cance was set to p < 005, All statistical anabyses were performed using
MedCale software |version 17.648, MedCale Software bvba, Ostend,
Belgiurm; hittp: Sewmedeale.ong: 30107

3 | RESULTS

3.1 | Characteristics of the study population

The characteristics of the 195 Incduded patients (median [range] age at
diagnoss: &3 [33-88] vears; males: a6%) are summarized in Table 1.
The Binet stage ab diagnosis was A In 100 patients (5%%), B In 48
(29%), and € in 21 (12%). Data on AGHY mutational status was avalable
for 47 patients, of whom 38 (81%) dd not bear mutations, The median
[range| follow-up time from diagnosis was 70 months [0-401) Mast of
the patients with informative data had been treated (158 out of 162,
87%), and the median number of Bres of reatments was 25 [0-10]. In
71 patents, the time of ococumence of the 17p- could not be deter-
mimed because | cytogenatic analyses were not performed before
trestment (0= 58), or () data on trestment were missing {n = 13),
When considering the remaining 124 patients, 28 [23%} did nat pres-
ent with 17p- at diagnoss; hence, the deletion had occurred after
treastrnenit {a median of 775 months [22-21) alter dagnesis). In 96 of
the 124 patiemts [77%, including 24 patients mal heving been freated at
last followe-upl. the 17p- was present before treatment: the median
time interval betwesn diagnosis and fisst detection of 17p- was 1
vkl [D=FF1). The TRI3 geve wos mulated in 535 of e 60 (529%]
patients with informative data. The protein p53 was dysfunctional in all
A2 cases tested, induding 2 patients in whom a TPEZ mutation was nat
detected by NGS

3.2 | Karyotyping and FISH data

Karyotyping and FISH results are summarized in Table 2. According to
K, the median [rangs] number of chromesemal abnarmalities induding
17p-) was 4 [1-28); a CK >3 was found in 141 of the 195 (72%]
patients, including 8% {44%) with a highly CK>5. The K was

WILEY”

TABLE 1 Characteristics of the study population [n = 195)

Charactaristics Study Fopulation

S [PAST 1ZO/ET [EEH, 345

Age at dagnasis, median 63 v [33-88]
[range] [p = 1857

Binet stage at diagnosis
In= 1557

A 100 (5%

8 48 (29%)

(= 1 [12%)

HEHY unmautated [n= 47 & Bk

TRS2 mutated [ = &0°) 55 [F2%)

Treated patients {n = 1827 158 (87%)

TP53 deletion acquired after 28 [23%)
treatment (n = 1247

Musnber af trestment lines, 15 [0-10
median [rangs] (n = 1799

Treatment-free survival, 18 ma (11-29]
median (#5% CI) fn = 93*")

Deaths [n= 17979 &3 [A5%)

Crverall survival, median (95% 179 mo [135-242)
Clhin = 1857

Fallow-up from diagnosis, 0 mo [o-401)

median [rarge] in = 1837

"Aunilable data; y: years; mo: manths,
Chnabyzed on the P4 patients with 17p deletion before treatment.
IGHY unmutated: homology > 8%,

monesomal in 52 of the 195 patients [27%) A large majority of
pathents (181 out of 1%5, 3%) displayed one or more U-transhocation
[sl; same inwohved 17p, and cthers did not. The presence of U-
translocations was strongly associated with CK >3 (78% vs. 0% in
patients with and without U-translocations, respectively: @< 0001)
aral CK = 5 [4%% vs, O, respoctively; P = 0001} A total of 240 17p
abnormalities were found in the 195 patients: 142 [B3%] of these
patients had ore 17p abnormality, 25 {13%) had two independent 17p
abmommalities, and 8 (4%] had three or more 17p abnommalities. The
17p- was the soke abnomality detected by K in 28 of the 195 (145%)
cases, When ather abnormalities were also present, the 17p- was in
the primary chone in 43 of the 195 (24%) patients, in 8 sub-done in 42
[25%), n the same clone as the other aberrations In &4 (38%), or Inan
irdepandent clone in 18 [11%), In the majority of cases, loss of 17p
resulbed from a U-translocation involving 17p [-17p) and wardous chro-
mosome partners [Supporting nformation Figure 51, A total of 167 U-
transiocationsi-17p) were found in 158 of the 195 patients (81%) The
partnier was not identified in 35 cxes [addi17p)]. OF the 132 transloca-
tions with an identified partnesr, 88 were anm-to-arm tramslocations, 32
of the latter invalving the long arm of the chromosoms 18, In 7 of
these 32 cases, the dicentric nature of the defvative chromosome dic
[17:18lp11;p11) was prowen by FISH with centromere prabes. Accord-
irg o the 150N nomenciatune, the ather cases were den17; 185910
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TABLE2 Karyobyping and FISH data fn = 195)

Median
Paramarber [rangs] (%}
Humbesr of abnormalities, 4 [1-24]
17p included
Complex kargatype 141 (F2M)
(=3 abnormalities)
Highty complen: karpatyne BY [46%)
(=5 abnormalities|
Monascmal kargatype 52 (2T%)
Urbakarced translocations 151 (9351
fall: irwahving 17p or nat)
Humbesr of 17p abnormalities
1 162 (BFH]
2 25 (13%)
3 or more 8 %)
17p- alore by kargatype 28 [14%)
Clanal hierarchy for 17
abnarmalities whan not
alore, n = 147
Frimary 43 (26%)
Secondary 42 [25%)
Same clone &4 [38%)
Independant clone 18 (11%)
Types af 17
abmormalities"
Unbalanced tramslocation 158 (B1%]
Unhalarced transiocation 123 (53K
wilh idendiffed partner
drm-le-arm transkasation &2 (32%)
der/dicl17;18] 32 (16%)
Qther unbalanced &1 (31%)
tramslocation
Unbalirced franslocation, 35 [16%)
aoaf1 7ol
17p deletion 45 (23%)
Mancaomy 17 15 (5%
Isachromasame 17q #5%)
Ring 17 4{2%)
% of cels with TP53 deletion 70 [3-100]
FISHI
BTl ABAGTAATIE
Unbalanced trarslocations 121 (633
et 17
8p deletian, n = 18%° 40 (21%)
Bq24 gain, n = 117 14 (12.5%)
Trisomy 12, n=1%5 30 (15%)
1314 deletion, n = 118° 71 (505
11 debetion (ATM gene), 20 (12%)
n=1617

*Thi number of patlents with the comespanding abnormality [s gheen.
The frevjuencies ane related to the totsl cohart {n = 1950 The total &
higher than 100% because 33 patients have more than ane 17p
abnarmality.

"The presance of a 8p deletion could ot be determined in & patierts
with a complex karyotype Including a monascmy 8 and additian(s) of
chromasamal material af urdermined argin

“The presence of a Bq24 gain could not be determined in B3 patients
hidirg @ complax kanyetyps with edditiends) of chromasomal matsrial of
undermired arigin, without FISH aralysis with MYC probe.
dhetected by FISH.

qin). Owveral, der/dicl17;16) was the most frequent U-transhocation
[-17p] because It was present in 32 of the 195 patients (16%) The
other frequent anmeto-arm translocations invahesd chromosomaes 8o
[n= 11, resulting in Bp deletion), 14g in=4}, 4q (n=4}, 13g [n =41
ard 21q jn = 41 The remaining &4 U-translocations{-17p) (not am-to-
armil irvobied & wider varkety of partners - most frequenthy chromio-
same 8 n= 15k this led to delfp {n=6) gaindg In =&l or dellg
In = 3] {Supponing IMformation Figwe S16) The ather 1Tp abnormat-
ities were 17p deletion (n=45 oul of 195, 23¥) monosomy 17
[n=15 &%) ¥17q) (n=%, 5%) and ring chromosome 17 (0= 4, 2%)
[Table 2 and Supparting Information Figure 514), Lasthy, FISH showed
that the percentage of cells with a TP53 deletion ranged from 3% to
100% [median: F0%).

‘When considering the additionsl abnormalities assocdated with
17p-, U-translocations|-not 17p} were found in 121 of the 195 patients
[63%), The presence of L-transhocations|-not 17p) was assoclated with
CH =3 (95% v, 35% in patients with and without U-translocations
|-not 17pL respectively; P 0001) and CK > 5 [6B% vs X, respec-
tively; P 00011 Alter combination of the K and availalle FISH find-
Irgs, 13q14 delotion was detectod In 71 of the 118 documented cases
(&%), Bp deletion in 40 out of 18% cases [21%), trisomy 12 in 30 out
of 195 cases (15%], By24 gainin 14 aut of 112 cases (12.5%), and 11g
deletion (ATM gene] In 30 out of 161 cases (12%].

3.3 | Treatment-free and overall survival

Treatment-free survival was studied for the 96 patients in whom 17p
wis present before trestment. The median TFS time was 18 montha, In
a univarizte analysis, the parameters assocated with significarthy
shorter TFS were Binet stage B/C (hazard ratio (HR)=4.24, P 0001],
monesomy 17 (HR =207, P=04), a high CK {HR = 181 # = 00%)
ardl Bo24 gain (HR = é.446, P = 0001} In a multhariate analyss, stage
B/C and Bo24 gain remained significantly assodated with sharter TFS
[Tabse 3).

Far the study population as & whole. the median 05 time from
diagnosis was 179 months In a univariate arabysis, we found that age
=45, Binet stage BYC, and unmutated MGHY status wene assoclated
with a significanthy shorter median OF time [Table 3, Supporting Infor-
matian Figure 52). There were no significant statistical differences in
the impact an OF between the different abnomalities leading to loss
of 17p. ie, U-transbocatiors(-17p], der/dic(17;18}, monosomy 17 or
deletion 17p. Likewise, the number of 17p- abnormalities and the per-
ceritage of cells harboring the delTR53 (whether dichotomized or not)
ware nat significant factors, The presence of an i[170] was cormelated
with trisamy 12 (4% vs 14% in patients with or without §17gl
respectively; P = 030 a higher percentage of tumor cells with delTRS3
|2 median of BE% vs. 0% in patients with or withowt i{17g), respec-
tively; P = .003), and a shorter 05 (59 vs. 179 months in patients with
or without H17g) respectivedy; #=04] (Figure 10 Analysis of the
impact of the other cytogenetic aberrations revealed that the prosenc
wl W-tranalocation-rat 17 was asiociated with a abartar O5 lima
[153 ws. 223 months in patients with or without U-translocations|-not
17pl, respoctivaly; P= 030 When taking account of all the U-
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TABLE 3 Univariste and mullivariabe aralyses of varisbles with a signilficant imgact on TFS and 05

Univariate Hit Multhvariate

Varlabla n [95%L1) Paglug  HR($5%CI) Paalug
TFS
Binel stage BAC al diagrasis Yesirn 31480 624 |[259.13.47) < 0001 11975 [14.53-PB&45) <0001
Morasomy 17 Yes/nio B/BS 207 I076-561) s 283 DA3-12.71) Aar
Highty CK =5 abramakties esir 41752 181 (LA10-297) 00 14Z [0.77-3.38) Aw
B24 gain (rvolving MYT) Yesno 4047 646 [D5F-T123) <0001 576 [L18 - 28.05] o3
05
Age at diggnoss HSyS <Gy = 1485 [1.046-32.21) o1 245 (L12-627) 03
Bingt stage B/C at dagnasis Yesino 896 510 (1786400 <001 1001 (3,60-27.78) <0001
MEHY urenutated Yesino 224 2860104807 04
biochromosame 17 Yesing 8149 2770551400 .04 407 [0.5%-27.97] A5
Urialanced translocations Yesinn 14512 96 (2491429 it 480 [0L41-37.50] 13

[all: ircluding 17p o nat)
Unialarced translocations [mot 170 Yesing 10768 179 (LO9-2.96) a3 084 [0.3%-1.800 E.1]
Bo24 pain (irvolving MYC) e rd 13/8% 348 I093-13.07) ool 273 [1.32-10.54] m

HR: hazard ratio, Cl: confidence interval, There weere too few data on BGHY mutational status for inclusion in the multivariate anabysis,

trarslocations (ie, 17p and nat 17pl & sharter OF was also obsered
in the group with U-translocations (171 months vs. median nat
reached. P= 04) Lastly, the presemce of an Bo24 gain stronghy
Inpacted the OF [HE = 348, F = 001) (Figue 1) Ina multivaate anal-
wsis, age =85 (HR =065 P=003), Binet stage BAC (HR=1001,
P 0001) and Bg24 gain [HR = 3.73, P = J1] were independenthy and
significantly associated with poor OF (Table 31

When comparing the survival time after the first dooumentation of
17p-, the patients who acguired this abrarmality after treabtment had a
sharter OF Lime than thoese presenting with 17p- prior bo treabment
(HR = 2.0 P = 03 [Supporting Information Figune 53},

4 | DISCUS5I0N

To the best of our knowledge, the present study of 195 CLL patients
with 17p- is the langest cohort in which the dinical significance of chro-
mosame 17p abnormalities hes been assesoad in detail. In live with the
literature data, we found that loss of the short arm of chromosame 17
i5 mainty due to unbalarced translocations lin 70% of cases), ather
than 17p deletion, an sochromosome 17g or monosomy 1754 Mest
af the U-translocations-17p) (52%) were arm-to-am events In the
remalning Li-transhocatiors|-17p), the breakpoints were mainly located
in 17p11 or pi2, In general {and regardess of the type of 17p abnar-
malityl, all or almast all of the 17p arm was lost. This supports the
recent hypothesis whereby the effecdts of 17p dedetion on tumar pro-
gression and trestment reststance might volee severd genes and
might nat be salely due te TPS3 loss.

The mest frequent U-translocation]-17p} was dic/den{17;18), since
it accounted for 14% of the study population. Woyach et al. suggested
that dicl17;1B) may cormespond bo the most aggressive subset of 17p-

CLL cases.™ We could nat confirm this hypathesis when compared
with the other chromesomal abnormalities involving 17p in our large
sefied, dic{17;18) did not have a significant impact on outcoime.

In & univariate: analysis, we found that monosomy 17 was signifi-
cantly assodated with a sharter TFS (refative to the ather 17p abnor-
malities], and that isochromosome 179 was significantly associated
with a sharter 05, lsechromesome 179 hes been described a5 a fre-
quent sberration (up to 33%) in small series of CLL cases with a TRS3
dekation 1% & mach lower Incidence (9%) was abserved in the prosent
study. Moreaver, i{17g] was significantly associated with trisomy 12
[44%, P=.03) and a larger done 17p- size. In a recent study, CLL
pathents with i1 7] tended to have poorer Q5 than patierits with other
abmommalities affecting 17p13 - even though all the tested individuals
ware [GHV mutated™ In the present series, the IGHV gones were
segquenced in only 2 of the § patients with i[17g); neither carried IGHY
mutations. This finding shows that mutated MHY status is not a con-
stant feature in cases of §17al. The present results comoborated the
association between I170) status and & poor cutcome because this
dafect was significantly correlated with sharter OF [P = 041 Howewar,
Further studies are reeded to astablish whether £17g) is an independ-
enl prograstic marker in 17p- CLL.

In accordance with previous reports,™*'*% wa abserved 2 shorter
Of icalculated following the first documaentation of 17p7) in patients
having acquired the 17p- after treatment than in thase with 17p- pres-
enl before treatment. This findirg might simply reflect the fact that
patients with acouired 1%p- have a more advanced disease but may
also sugaest that trestment selected a more aggressive done with &
gromith advantage,

In contrast to other sevies, we did not observe a significant associ-
atipn between the percerdage of cells with TPSS deletion and the
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clinical autcomes, In the literature, it has been reparted that a low per-
centapge of 17p- cells s sssociated with a maore favorable outcome.
Howaver, the optimal cut-off varied markedly from one study to
ancther (fram 10% to 80252 _ndicating that this parameter is
cohort-dependent and should not be taken into sooount when evaluat:
ing the progross of patients with CLL. Furthesmore, several reports
have documented the impact of small dones with disupted TPS3
genes on disease progression 252

Although arly a small proportion of 17p- patients were analyzed,
wi found that all the tested individuals had a dysfunctional p53 protein
(nchuding 2 cases withaul a TPST mulation). These results highlght the
Impartance of continuing to scroen for 17p loss on & rowtins basks,
FISH is still the best technique for detecting TPS3 deletion: its sersitiv-
ity threshodd of about 5% is much kower than those obtained with inno-
wative tools such a5 single nucleotide polymarphism arrays, muliplex
ligation-dependent  probe  amplification  and  massively  parallel
SOQUENCINE.

We also kooked atl whether additionsl dhromasomal abnosmal-
Mties could Influence the outcome, Wi confirm that a complex K is
wery frequent in 17p- CLL since it was defected in 72% of our
patients *¥7 Kanwotype complesity = a recently dscovered factor
for a poor prognosts in CLL in general™™ and in the 17p- sub-
set % In the literature, the cut-off wsed to define a complex K
varies from 3 to 5 abnormaliies*™ In our seres, a highly CK (=5
shnarmalitios] was associated with worse TFS, whereas & CH (=3

abnommalities) had no clinical impact. This finding suggests that a
cut-off of 5 abnormalities is more suitable for dentifying 17p- CLL
patients with the most aggressive dsease. Previous studies of unse-
lected CLL patients hawe described the poor prognosis of unhal-
anced tramslocations. " ¥ 59 Oy present results showed that U-
translocations are also associabed with shorter O5 in the 17p- CLL
subset. Regarding the dassical abnormabties detected by FISH in
CLL [such as tril2, delldq and dellla), we were suprised to fnd
the same frequency of these abermations in the 17p- subset as in
the whole population of patients with CLLY This suggests that 17p-
appears Independently, and that none of the other abnormalities
pramades its occwrrence. Howewer, §170) - comelated with trisomy
12 - appears to be an exoeplion.

The 8g24 galn (encompassing the MYC gene) b detected with
microarrays in 3-4% of the owverall population of patients with CLL
ardl is independantly sssociated with sharter QS andfor sharter tims to
first treatment™ % In the liberature, the frequency of Bo24 gain is
higher in the 17p- CLL subset and ranges from 9% to 448225537 |
the present large series, we found an Bg24 gain in 12.5% of patients.
Furthermone, we demonstrated that Bo24 gain is & strong. predictive
marker of poor outcome within the 17p- CLL subgroup, and has inde-
pendert prognestic value far 05 This ebservation suggests that TPS3
deletion and MYC gain act in synergy; the outcome §s particularky dis-
mal when both ane present. Indeed, the occurrence of both aterations
may reprosent & “double-hit® CLL that s reminsscent of the ageressive,
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“double-hit,” high-grade B-cell ymphomas harbaring reamangements of
MYC and BCL2 ar BOLA™ |t is noteworthy that we did not ohseres arry
trarslocation imeoldng MYC in the present seres, Given the high fre-
quency of genomic complexity in these patients, 824 pain can be
missed by karyotyping n order to validste the dinical significance af
this aberration, 17p- CLL patients enralled In prospective clinkal trisls
should be systematically screened by FISH analysis using 8 MYC probe,

In conclision, our data show that patients with 17p- CLL often
present CK (>3 abnommalities) and highly CK (>3 abnormalities) unbal-
anced trandocations, Bg24 gain and unmutated IGHVY. The warious
abrormalities leading to loss of 17p do not have all the same clinical
sigrificance: i[17q) Is assodated with a shorter 05 than the ather 17p
aberrations. Furthermore, the presence of additional unbalanced trans-
Iocations aggravates the outcome. Our results highlight the value of
canwentional karyotyping for identifying alterations that modulate the
prognosis in this aggressive subset of patients. Lastly, Bo24 gain is a
strong, independent factor for poor survival, systematic, targeted
soreening for this abnormality should be corsidered with a view to bet-
ter defiring the prognosis of patients with 17p- CLL and identifying the
wery high-risk “doubse-hit® subgrous.
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Supplemental Figures
Legends to figures
Supplemental Figure 1. 17p- abnormalities

A_ Distribution of the different abnormalities leading to 17p loss (n=240)

B. Chromosomes involved in unbalanced translocations with an identified
partner, including 68 arm-to-arm translocations (dark blue histograms) and 64
other translocations (light blue histograms).

Supplemental Figure 2. Overall survival in the whole cohort, according to age (A).
Binet stage (B), and IGHV mutation status (C).

Supplemental Figure 3. Overall survival time after the first documentation of 17p-
according to occurrence before or after treatment (n=124). Hazard Ratio= 2.02
(Confidence Interval 95%: 0.92-4 42)
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Supplemental Figure 3.
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V — Genetic Characterization of B-Cell Prolymphocytic Leukemia (B-PLL): A
Hierarchical Prognostic Model Involving MYC and TP53 Abnormalities. on
Behalf of the Groupe Francophone De Cytogenetique Hematologique (GFCH)
and the French Innovative Leukemia Organization (FILO) Group

Abstract published in Blood 2018 132:943; doi: hitps://doi.org/10.1182/blood-2018-
99-115085
Article published in Blood 2019 hitps //www ncbi.nlm_nih.gov/pubmed/31527074

Elise Chapiro, Damien Roos-

Weil, Nadia Bougacha, Clementine Gabillaud, Clémentine Dillard, Elodie Pramil, Mel

anie Yon, Karim Maloum, Catherine Settegrana, Lucile Baseggio, Claude Lesty, Fred
eric Davi, Magali Le Garff-Tavernier, M'boyba Khadija Diop, Nathalie
M Droin, Philippe Dessen, Veronigue Leblond, Caroline Algrin, Simon Bouzy, Virginie
Eclache, Baptiste Gaillard, Evelyne Callet-

Bauchu, Marc Muller, Christine Lefebvre, Nathalie Nadal, Antoine lttel, Stéphanie Sir

uski, Marne-Agnes Collonge-Rame, Benoit Quilichini, Sandra Fert-

Ferrer, Nathalie Auger, Isabelle Radford-

Weiss, Lena Wagner, Sebastian Scheinost, Thorsten Zenz, Santos Susin, Olivier Ber
nard and Florence Nguyen-Khac

B-PLL i1s defined by the presence of prolymphocytes in peripheral blood
exceeding 55% of lymphoid cells. The diagnosis, mainly based on clinical and
morphological data, can be difficult because of overlap with other B-cell
malignancies. Because of the rarity of the disease, only case reports and small series
describe its cytogenetic features. Few prognostic markers have been identified in this
aggressive leukemia usually resistant to standard chemo-immuno therapy. We report
here the cytogenetic and molecular findings in a large senes of B-PLL. We also
studied the in vitro response to novel targeted drugs on primary B-PLL cells.

The study included 34 cases with a diagnosis of B-PLL validated by
morphological review performed by three independent expert cytologists. The
diagnosis of mantle cell lymphoma was excluded by karyotype (K) and FISH
using CCND1, CCNDZ2 andCCNDS probes. Median age at diagnosis was 72 years
[46-88]. K was complex (=3 abnormalities) in 73%. and highly complex (HCK=5) in
45%. Combining K and FISH data, the most frequent chromosomal aberrations were:
translocation targeting the MYCgene [HMYC)] (21/34, 62%), 17/p deletion
including TP53 gene (13/34, 38%), tnsomy 18/18q (10/33, 30%), 13g14 deletion
(10/34, 29%), trisomy 3 (8/33, 24%), trisomy 12 (8/34, 24%) and 8p deletion (7/31,
23%). Whole-Exome Sequencing analysis of paired tumor-control DMNA was
performed in 16 patients. The most frequently mutated genes were TP53 (6/16,
38%), associated with dell7p in
all, MYD88 (n=4), BCOR (n=4), MYC (n=3), SF3B1 (n=3), FAT1 (n=3), SETDZ (n=2),
CHDZ2 (n=2), CXCR4 (n=2), BCLAF1 (n=2) and NFASC (n=2). Distribution of the
chromosomal aberrations is shown in Fig 1. The main group of patients (21/34, 62%)
had a t{MYC) that was associated with a higher % of prolymphocytes (86 vs 76,
p=0.03), CD38 expression (90% vs 15%, p<0.001), and a lower K complexity
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(HCK=5: 20% vs 85%, p=0.0004). Mutations in MYC and in genes involved in RNA
metabolism and chromatin remodeling were almost exclusively observed with
t(MYC). Principal component analysis of gene expression data in 12 cases analyzed
by RNA-Seq showed that the 7 patients with t{MYC) clustered together. These
results suggest that t{MYC) form a homogeneous subgroup of B-PLL. A second
group with MYC gain (5/34, 15%), was associated with HCK=5 (100% vs 36%,
p=0,01) and tnisomy 3 (80% vs 14%, p=0,008). Altogether, 26/34 patients (7/6%) had
a MYC activation, translocation or gain, that were mutually exclusive.

The median overall survival (OS) for the entire cohort was 126 months with a

median follow-up time of 47 months [ 02-141]. We found MYC activation
(translocation or gan) to be associated with a shorter OS5 (p=0.03).
Hegarding MYC and dell17p, we identified 3 distinct cytogenetic prognostic groups,
with  significant differences in 0OS (p=00006) (Fig 2). The patients
without MYC activation had the lower risk (n=8, median not reached). Patients with
a MYC activation without del17p had an intermediate risk (n=18, 125 months). The
highest rnisk group corresponded to patients with both MYC and TP53 aberrations
(n=7, 11 months).
We performed drug response profiling on primary B-PLL cells using the ATP-based
CellTiter Glo kit (Promega) (n=5). We observed that after 48h of exposure to
increased doses, response was heterogeneous, with a majority of samples resistant
to fludarabine (n=3), ibrutinib (n=3), idelalisib (n=4), venetoclax (n=3) and OTX015
(n=4). Annexin/Pl assays using flow cytometry showed that the induced cell death
could be increased by combination of ibrutinib or venetoclax with OTX015 or JQO1,
two BET protein inhibitors that target MYC signaling (n=1/2).

In summary, B-PLL have complex and highly complex K, a high frequency
of MYC activation by translocation or gain, frequent 17p deletion, and frequent
mutations in MYC, TP53, BCOR, and MYD&8 genes. We Iidentified 3 prognostic
subgroups according to MYC and 17p status. Patients with MYC activation + 17p
deletion have the shorter O3S, and should be considered as a high-nsk "double-hit"
subgroup. Our results show that cytogenetic analysis is a useful diagnostic tool in B-
PLL that improves prognostic stratification. We recommend to perform K and FISH
(MYC and TP53) analyses systematically when a B-PLL is suspected. Ourin
vitro data suggest that drugs targeting the BCR and BCLZ2 in combination with MYC
inhibition may be a therapeutic option in some patients.
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Figure 1; Distribution of the chromosomal aberrations in 34 B-PLL
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Conclusions and future perspectives
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Altogether, our work has expanded the current knowledge regarding poor prognosis
CLL and B-PLL, and yielded several recommendations for clinical practice:

We have shown that 2p gain is associated with drug resistance and poor
prognostic features, and therefore recommend specific and systematic
assessment of 2p gain in CLL prior to treatment, preferably by FISH with at
least two sets of probes (XPO1/REL and MYCN).

ii.  Our findings showed that 17p deletion and 8g24 gain have a synergistic
impact on outcome, therefore patients with this “double-hit”™ CLL have a
particularly poor prognosis. Systematic, targeted screening for 8g24 gain
should thus be considered in cases of CLL with del(17p).

li.  We have characterized the molecular features of B-PLL: complex and highly
complex karyotype, a high frequency of MYC activation by translocation or
gain, frequent del(17p), and frequent mutations in MYC, TP53, BCOR,
and MYD88 genes. We identified a prognostic hierarchy according
to MYC and 17p status, where patients with MYC activation + 17p deletion
have the shorter OS. Systematic, targeted screening for MYC and TP53
abnormalities by FISH and karyotype should thus be performed when a B-PLL
Is suspected. Moreover, our in vitro results indicate that drugs targeting the
BCR and BCLZ2 in combination with MYC inhibition may be a therapeutic
option in some patients.

Gain of 2p gain was described in various lymphomas and leukemias where the
recurrence of highly amplified REL amplicon suggested its selection for functional
importance. In CLL, the minimal region of 2p gain included REL. However, its
particular role in pathogenesis was never investigated in functional analyses. Here,
we report, for the first time, precise molecular studies examining the role of REL and
the impact of its overexpression in CLL, camed out on patient-derived CLL cells as
well as specific cellular models.

We have shown that transcriptional activation of REL by CRISPRa in OSU-
CLL cells did not significantly decrease spontaneous and drug-induced cell death,
nor did it affect proliferation, in agreement with the observation that primary cells of
2p gain+ CLL patients were resistant to pharmacological inhibition of REL/NF-kB.
Inactivation of REL by CRISPR/Cas9 in 2p gain+ JVM-3 cells decreased proliferation
and enhanced sensitivity to anti-CLL drugs and targeted agents. Pharmacological
inhibition of NF-kB selectively induced cell death in leukemic cells of CLL patients.
Altogether, these findings indicate that REL could play a major role in CLL cell
survival, but does not seem to be the main or sole player accounting for 2p gain-
associated drug resistance. Further studies will be required to identify the genetic
drivers of drug resistance in 2p gain.

Characterizing 2p gain in the era of precision medicine

The fundamental ambition of precision medicine is to use population-based
molecular, clinical and other data to make individually tailored clinical decisions for
patients (Biankin, 2017). The comprehensive characterization of the set of genetic
lesions in cancer is critical for the development of personalized medicine, because
driver genes may inform prognosis and identify lesions that may be targeted
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therapeutically (Landau et al., 2015). Conversely, therapeutic strategies might also
apply selective pressure and thus shape the landscape of cancer lesions.

Extracting valuable information and recognizing patterns in a patient cohort
that includes samples collected at variable times, from subjects exposed to a variety
of therapies, iIs rather arduous. A systematic and more accurate assessment of 2p
gain, together with a careful analysis of clinical and biological features, would directly
and indirectly improve the clinical management of patients, by providing both a more
complete picture of the CLL phenotypes as well as statistical power by enabling
larger cohort sizes.

Elucidating the genetic basis of the aggressive phenotype associated with 2p
gain might also pave the way for novel treatment strategies in malignancies that are
equally plagued with this abnormality, notably NB and HL.

We have found most drugs to be rather ineffective to eliminate the 2p gain
clone, and although further studies are required, it seems that FCR was linked to 2p
gain increase and conversely, the BOMP regimen to 2p gain decrease, which could
make the latter an option. As previously mentioned we have therefore proposed the
systematic assessment of 2p gain in CLL patients before deciding a CLL therapy,
ideally by FISH with at least two sets of probes (XPO1/REL and MYCN).

The gold standard for detecting cytogenetic abnormalities in CLL is interphase
FISH performed on cell smears or tissue sections on glass slides. Fluorescently
labelled DNA probes bind to specific chromosomal regions and the signal detected
by fluorescent microscopy. Usually, only 200 cells are assessed and the limit of
sensitivity is 3% positive cells. The recent development of imaging flow cytometry, or
"immuno-flowFISH", to assess chromosomes by FISH in thousands of phenotyped
CLL cells in suspension using an automated, high throughput imaging flow
cytometer, could improve the detection of early or minor subclones (Hui et al., 2018).

Additionally, it would be valuable to confirm whether the % of 2p gain positive
cells is proportional to the seventy of the clinical phenotype (Cosson et al., 2017),
which could be readily modeled in vitro by designing overexpression systems with
two or three different transcrpt levels.

Here, 2p gain was exclusively present as a secondary anomaly. Importantly,
drug response should also be assessed In early stage and previously untreated 2p
gain CLL cases, in order to determine if the observed drug refractoriness is solely
inherent to 2p gain or acquired as a result of an interplay with concomitant lesions.

Furthermore, the impact of the epigenome on tumor progression should not be
ignored.

Multidrug resistance phenotype
ATP-binding cassette (ABC) proteins form a family of transmembrane
transporters, which control the passage of several substrates across cell

membranes, including drugs. Several members of this family significantly modulate
the absorption, metabolism, cellular effectivity and toxicity of pharmacological agents,
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and are thus involved in the occurrence of multidrug resistance (MDR) phenotype,
including the classical P-glycoprotein (PGP, MDR1, ABCB1), ABCC1 (MRP1) and
ABCG2 (BCRP) (Arnigoni et al_, 2016; Glavinas et al_, 2004).

The multidrug resistance gene ABCC1 mapping to cytoband 16p13.11 was
overexpressed and gained in the therapy-resistant HL cell line KMH2 (Steidl et al.,
2010). Interestingly, simultaneous targeting of MCL1 and ABCB1 was able to
overcome drug resistance in human acute leukemia. Specifically, RNAI-mediated
downregulation of MCL1 sensitized multidrug resistant leukemia cells towards
chemotherapy and induced cell death (Ji et al., 2009).

Investigating the MDR genes and corresponding proteins in 2p gain CLL might
shed some light on the observed drug refractoriness.

Developing relevant 2p gain CLL models

Very few human B cell lymphoma or leukemia cell lines with a highly amplified
REL locus or 2p gain are available. The cell systems that we describe here provide
elegant in vitro model systems to further unravel the complex roles and interactions
of c-Rel/lNF-kB pathways in blood malignancies. Indeed, the data obtained in our
CRHISPRa-established B cell lines, by activating transcription at the endogenous gene
locus, and in moderate levels, seem to accurately substantiate the relevance of REL
gain in CLL drug refractoriness.

Establishing one or several cell lines denved from 2p gain+ CLL patients (O.
Bernard, personal communication) could provide useful models for the functional
exploration of this abnormality. Cell lines with different concomitant genetic lesions,
with different percentages of 2p gain, or with distinct loci of high amplification could
further refine the analysis and provide novel insights in pathogenesis and oncogenic
cooperation.

Given the preponderance of the microenvironment on CLL cells, the in vitro
culture setting should be carefully devised using cells and molecules that mimic the
CLL environment with the highest possible fidelity. For instance, co-culture with
stromal and myeloid nurse-like cells at least partially recreate the pro-leukemic niche
(Vaisitti et al., 2017). Recently, it was demonstrated that some culture conditions
could make CLL cells proliferate ex vivo. namely, BCR engagement by anti-
lgM ligation, together with CD40 ligand, IL-4 and IL-21 stimulation. This proliferative
response was higher in ZAP70 positive CLL cells, and could be further augmented by
the use of a tri-dimensional matrix of methylcellulose and the addition of TLR9
agonists (Schleiss et al., 2019).

Genome-scale screens

Candidate gene approaches, which are rather costly and time-consuming, and
in silico interrogation of genes and pathways databases, like Panther, DAVID or
Msig, can be both easily riddled with confirmation bias. In my opinion, the most
comprehensive and unbiased methods to identify the drivers of 2p gain drug
resistance would therefore be:
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RNAseq studies performed in 2p gain+ compared to 2p gain- CLL patients, in
order to confirm and perhaps extend the data obtained by micro-array studies
(Fabris et al_, 2013).

ii. Proteomic analyses, featuring mass spectrometry, of 2p gain+ and 2p gain-
CLL samples

lii. A genome-scale CRISPRa transcriptional activation screening in several 2p
gain- mature B cell lines, followed by drug treatment and sequencing of the
newly resistant cells.

The latter method will be further discussed in this last section, and a general protocol
Is proposed in the Annex.

Pooled genetic screens, ie. the simultaneous testing of thousands of
individual perturbations in a single batch, can be executed with existing infrastructure
by most laboratories that are already performing cell culture (albeit at a larger scale
than typical expenments) and at a reasonable cost (Doench, 2017; Shalem et al,
2015).

Before the advent of CRISPR-based technologies, gain-of-functions screens
were mainly limited to cDNA overexpression libraries, which exhibited several
caveats, namely incomplete representation, overexpression beyond physiological
levels, endogenous regulation, lack of isoform diversity and high cost of construction.
CRISPRa overcomes these shortcomings because it produces gene transcription at
the endogenous locus and only requires the synthesis and cloning of RNA guides,
rendering it much more affordable (Joung et al_, 2017a).

MNon-coding loci exert diverse roles in gene regulation and cellular function.
Indeed, non-coding genetic sequences, such as enhancers, shape cell type specific
transcriptional programs and response to extracellular cues, therefore alterations in
these elements can contribute to disease (Ernst et al., 2011; Farh et al., 2015;
Maurano et al_, 2012). By enabling the targeting of virtually any region of interest, the
CRHISPRa method could identify non-coding loci that influence a phenotype of
interest. For instance, a genome scale activation screen identified a long non-coding
(IncBNA) locus regulating a gene neighborhood (Joung et al., 2017b).

Loss-of-functions screens present several advantages; however, they might
not be the ideal method for studying amplified regions.

Lentivirus-delivered sgRNA/Cas9 genome editing was also proven to be useful
to engineer a wide array of in vivo cancer models that better reflect the complexity of
human disease. Indeed, delivering combinations of sgRMAs and Cas9 with a
lentiviral vector led to modification of up to five genes in a single mouse HSC,
generating models of AML with cooperating mutations in genes encoding epigenetic
modifiers, transcription factors and mediators of cytokine signaling, recapitulating the
combinations of mutations observed in patients (Heckl et al_, 2014).

Interestingly, since many gene families in eukaryotic genomes exhibit partially
overlapping functions, the knockout of one gene might be compensated by the
function of the other. In order to knockout simultaneously multiple homologous
genes, CRISPys was recently developed: it stands for an algorithm devised for the
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optimal design of sgRMNAs that would simultaneously target multiple members of a
given gene family (Hyams et al_, 2018).

A systematic comparison between shBNA and CRISPR/Cas9 screens,
performed to identify essential genesin human leukemic cells, showed little
correlation in terms of results (Morgens et al., 2016). CRISPR screens identified
more lethal genes than RNAI, implying that the identification of many cellular
dependencies may require full gene inactivation, however they generated false-
positive hits in highly amplified genomic regions (Munoz et al, 2016). Indeed,
genome-scale loss of function screens showed a robust correlation between
increased gene copy number and decreased cell viability after genome editing, in
other words editing of amplified loci resulted in gene-independent antiproliferative cell
responses (Aguirre et al., 2016). Conversely, CRISPRI reportedly yielded no
detectable off target effects (Qi et al., 2013), and does not induce non-specific toxicity
at amplified genomic loci (Horlbeck et al., 2016), but should rationally display the
same caveats as RNA interference screens.
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Annex

Protocol for a genome-scale CRISPRa transcriptional activation screening to
identify drivers of drug refractoriness in 2p gain CLL

1. Introduction of a library of sgRMNAs into populations of 2p gain- CLL cells

Lentiviruses or other retroviruses are used for this step because they integrate into
the genome of the target cells, and thus a cell's genome is permanently marked by
the perturbation it received. Lentiviral transduction of sgBNA libraries is typically
performed at MOls between 0.4 and 0.6 transduction units/cell to ensure that each
cell contains a single sgRNA (Shalem et al_, 2014; Wang et al., 2014).

Conveniently, many libraries are commercially available as pooled plasmid libraries,
as reviewed in (Miles et al_, 2016). Alternatively, they can be synthetized. Either way,
they must contain an adequate proportion of scramble sgRNAs for control.

Performing the screen in multiple cell lines might avoid specific limitations such as
the genetic background of the cell line or transduction efficiency. Indeed, a cell line
with low transduction efficiency will result in increased struggles in generating a pool
of cells with acceptable representation of the sgRNA library (Miles et al_, 2016).

2. Treatment of all infected cells with anti-CLL drugs

This step will select and physically separate cells displaying a drug resistance
phenotype from those that do not. The precise protocol that includes dose and
duration of treatment should be carefully developed and adapted to the selected cell
lines beforehand.

3. Extraction of genomic DNA and PCR
4. Massively parallel sequencing to quantify the abundance of each sgRNA

The level of sequencing depth will vary depending on the type of screen and size of
library, for example, 10-20x10% reads allows to adequately sequence a complex
library of 1x10%elements (Joung et al., 2017a; Miles et al_, 2016).
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