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Random walks for estimating densities of states and the volume of convex
bodies in high dimensional spaces

This manuscript introduces new random walks for the computation of densities of states, a central problem
in statistical physics, and the computation of the volume of polytopes.

First, we focus on the Wang-Landau (WL) algorithm, a recently developed stochastic algorithm comput-
ing the density of states of a physical system. We propose an efficient random walk that uses geometrical
information to circumvent the following inherent difficulties: avoiding overstepping strata, toning down
concentration phenomena in high-dimensional spaces, and accommodating multidimensional distribution.
Experiments on various models stress the importance of these improvements to make WL effective in chal-
lenging cases. These improvements make it possible to compute density of states for regions of the phase
space of small biomolecules.

Second, we study Hamiltonian Monte Carlo (HMC) with reflections on the boundary of a domain, pro-
viding an enhanced alternative to Hit-and-run (HAR) to sample a target distribution in a bounded domain.
We provide a convergence bound, paving the way to more precise mixing time analysis, and a robust im-
plementation based on multi-precision arithmetic – a mandatory ingredient. We compare HMC with HAR
within the polytope volume algorithm by Cousins and Vempala. The tests, conducted up to dimension 50,
show that the HMC random walk outperforms HAR.

Finally, using Wang-Landau requires specifying the system handled, providing a suitable random walk
to explore the definition domain, and possibly accommodate different variants of Wang-Landau. We present
the first generic (C++) implementation providing all such ingredients.

Keywords: Monte-Carlo; statistical physics; importance sampling; MMC; Hamiltonian Monte Carlo;
convex volume



Marches aléatoires pour l’estimation de densités d’états et de volume de
convexes en grande dimension

Ce manuscrit présente de nouvelles marches aléatoires pour le calcul des densités d’états, un problème central
en physique statistique, et le calcul de volume de polytopes.

Tout d’abord, nous étudions Wang-Landau (WL), un algorithme stochastique récemment développé pour
calculer la densité d’états d’un système physique. Nous proposons une marche aléatoire efficace qui utilise
l’information géométrique pour contourner les difficultés suivantes: éviter de sauter des strates, atténuer les
phénomènes de concentration en grandes dimensions, et gérer les distribution multimodales. Les expériences
montrent que ces améliorations sont critiques dans les cas difficiles, et permettent de calculer la densité des
états pour des régions de l’espace des phases de petites biomolécules.

Puis nous étudions Hamiltonian Monte Carlo (HMC) avec réflexions sur les limites d’un domaine, offrant
une alternative à Hit-and-run (HAR) pour échantillonner une distribution dans un domaine borné. Nous
fournissons une borne de convergence, ouvrant la voie à une analyse plus précise du mixing time, et une
implémentation robuste basée sur l’arithmétique multiprécision – un ingrédient obligatoire. Nous comparons
HMC à Hit-and-run au sein de l’algorithme de volume polytope de Cousins et Vempala. Les essais, effectués
jusqu’à la dimension 50, montrent que HMC surpasse HAR.

Enfin, l’utilisation de WL nécessitant de spécifier le système étudié, de fournir une marche aléatoire, et
éventuellement d’incorporer des variantes de WL, nous présentons la première implémentation générique
(C++) fournissant tous ces ingrédients.

Mots-clés: Monte-Carlo; physique statistique; importance sampling; MMC; Hamiltonian Monte Carlo;
volume de convexe
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Preface

This PhD started with the observation that the computational aspects of free energy computations for
biomolecules and convex volume algorithms share many similarities. The overall goal was to bring improve-
ments to both of these fields using hindsights coming from both fields.

I spent considerable time learning bits of statistical mechanics, which would pay out later due to its
strong links with the Hamiltonian Monte Carlo (HMC) algorithm. In addition, we were confronted with
a large amount of different computational approaches developed during the last 30 years for statistical
physics: metadynamics, Wang-Landau, and others. In this context, we decided to focus on the Wang-
Landau algorithm for two reasons. First it is a widely used algorithm, with many successful applications.
Second, detailed mathematical analysis and explanations were available thanks to [LSR10]. In addition,
many different aspects of the algorithm received attention. The learning rule was extensively studied,
comparing the flat histogram criterion with deterministic rules and other proposed rules [SA11, WSTP15].
It was proposed to smooth or dynamically split the histogram [SNY11, BJMD13] or even replace it with
a continous representation [FLE19]. Others suggested merging the Wang-Landau algorithm with parallel
tempering [RKIdP03, JH06]. Finally, a wealth of physical systems were studied, from discrete models
[LC10, SA11] to complex molecules such as met-enkephalin [JH06, RKIdP03, OMG10, SNY11, PCA+06].

The physical systems studied triggered the development of various move sets. For example, in molecular
studies, various move sets were proposed, based on molecular dynamics [RKIdP03, SNY11], on internal
coordinates (dihedral angles) [OMG10, PCA+06], or variants [MGCM12, BJMD13].

For convex volume computation, the situation is simpler: the community iteratively improved both the
algorithm and the analysis of the theoretical complexity, starting with an O⋆(n23) complexity [DFK91] and
ending with an O⋆(n3) algorithm at the start of the PhD – see [CV18] and references therein.

We observed that while the random walks used for convex algorithm were general, every practitioner
seemed to be using a custom random walk for Wang-Landau. Furthermore, the random walk used for Wang-
Landau didn’t seem to seek efficiency with respect to the Wang-Landau algorithm, often simply sampling
the Boltzmann distribution. With that in mind, I proposed a new random walk specifically tailored for
Wang-Landau making use of the topography of the energy landscape by using the gradient of the energy
and alleviating some measure concentration phenomenons occuring in high dimensional spaces.

Naturally, we tried to bring these improvements to the computation of the volume of convex bodies, and
specifically, polytopes. However these efforts were fruitless. One of the main problems of the random walk
used for convex computation is that they tend to get stuck in corners. Using principles borrowed from the
random walks introduced for Wang-Landau, it was possible to create a random walk leaving corners easily.
On the other hand, it proved difficult to allow this random walk to reach corners easily. Hence, to preserve
detail balance moves, leaving corners will be overwhelmingly rejected, defeating the purpose of the random
walk!

The situation was unlocked by a paper on billiard walk [GP14], presenting a new random walk that does
not get stuck in corners sampling the uniform distribution of a bounded domain. The billiard walk can be
interpreted as an Hamiltonian Monte Carlo walk with reflections on the boundary and a constant potential
energy, therefore the extension to non constant densities could be made by changing the potential energy.
It turned out that this idea was already studied in a different context [AD15], but without a complete proof
of convergence and without the application to convex volume computation. This random walk was then
successfully used for convex volume computation, reducing the practical complexity of the algorithm. A
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proof of convergence with convergence speed in the case of convex is given, laying the groundwork for more
detailed complexity analysis.

These two random walks, for Wang-Landau and convex volume computation, required a lot of software
development. For HMC with boundaries, rounding problems caused the random walk to leave the convex
when using double precision floating point numbers, and we had to introduce the use of arbitrary precision
numbers using IRRAM with the help of Sylvain Pion from INRIA Bordeaux. For Wang-Landau, as we have
seen before a lot of different variants exist, and no general purpose Wang-Landau software was available.
Hence I had to develop a general purpose implementation flexible enough to accommodate many different
possible variations, while being robust and fast. Both of these projects required a significant amount of
coding time and C++ coding skills.

The manuscript is organised as follows: first a preliminary chapter that introduces the necessary concepts
of statistical physics, extracts the core ingredients of both Wang-Landau and the convex volume computation
algorithms, and finally reviews the sampling algorithms. Then we present the three main contributions: the
random walk for Wang-Landau, Hamiltonian Monte Carlo with boundaries for convex volume computation
(with the software aspects), and finally the software introduced for Wang-Landau.
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Chapter 1

Preliminaries

1.1 Statistical physics

This section aims to present a narrow part of statistical physics relevant to the computational problems at
hand. First Hamiltonian dynamics will be presented, as it is the fondation of statistical mechanics and at
the heart of the Hamiltonian Monte Carlo sampling algorithm that will be seen later on.

Then we present (with no direct use for this manuscript, but of great interest) the NVE ensemble and how
the Birkhoff theorem can (sometimes) be used to justify statistical mechanics and the canonical measure.

After that, we present the NVT ensemble, which will be the setting used for the rest of the manuscript
when dealing with statistical mechanics. In this setting, we define the partition function. Furthermore, we
present the different definitions of the Free energy, even though we will only use one of them. While it was
not strictly required for the scope of this manuscript to give these different definitions, I believe that for an
unaware reader reading the literature, considerable confusion stems from them.

1.1.1 General results on Hamiltonian dynamic

Hamiltonian dynamics properties play a central role in statistical physics. Furthermore, it is at the core
of the Hamiltonian Monte Carlo sampling strategy that will be discussed later. Therefore we give a short
introduction to Hamiltonian dynamics and present key results.

Definition of the Hamiltonian flow

We consider a physical system with n degrees of freedom and an Hamiltonian H on R
2n:

H(q, p) = U(q) +K(p)

where K(p) = 1
2‖p‖2 is the kinetic energy and the potential energy U : Rn → R is a smooth enough function

with bounded gradient.
Consider the system of differential equations















dqi
dt

=
∂H

∂pi
, ∀i = 1, . . . , n

dpi
dt

= −∂H
∂qi

, ∀i = 1, . . . , n

(1.1)

Cauchy-Lipischitz theorem implies that for each z = (q, p) ∈ R
2n there is a unique maximal solution

ϕz(t) such that ϕz(0) = z. Since the gradient of U is bounded ϕz(t) is defined for all t ∈ R. We set the flow

Φt(z) = ϕz(t).

3



Since the system 1.1 does not depend on the time t, the uniqueness of solutions implies that Φ is a flow
acting on R

2n which means that

Φ0 = Id and Φt ◦ Φs = Φs+t

for all t and s in R. Moreover, for each t, z → ϕz(t) is differentiable and therefore Φt is a diffeomorphism
(from the above equation, Φ−1

t = Φ−t).

Notation. For a vector X in R
2n, Xq denotes the projection of X defined by the first n components

and Xp the projection defined by the last n components. So that Φq
t is the projection of the Hamiltonian

flow in the position space and Φp
t its projection in the momentum space.

Properties of the Hamiltonian flow

The simple calculation
d

dt
H(ϕz(t)) =< ∇H(ϕz(t)), ϕ

′
z(t) >= 0

where <,> is the dot product, implies the important fact:

Theorem. 1.1. The flow Φt preserves the Hamiltonian H.

Schwarz’s theorem implies that the divergence of the vector field (∂H∂p ,−∂H
∂q ) vanishes. It implies that

the Hamiltonian flow preserves the Lebesgue measure of R2n.

Theorem. 1.2 (Liouville’s theorem). The lebesgue measure λ is invariant by the flow Φt, i.e. for all t and
all mesurable subset A,

λ(Φ−1
t (A)) = λ(A).

The following crucial theorem is deduced from Liouville’s theorem:

Theorem. 1.3. Every measure with a density µ that is a function of H, ie ∃f such that µ(x) = f(H(x)),
is invariant by Φt.

Proof. For every measurable subset A in R
2n,

µ(Φ−1
t (A)) =

∫

Φ−1
t (A)

f(H(x))dλ(x)

=

∫

1A ◦ Φt(x) f(H(x))dλ(x)

=

∫

1A ◦ Φt(x) f(H(Φt(x)))dλ(x)

=

∫

1A(x) f(H(x))dλ(x)

= µ(A).

Remark 1.1. This result can also be derived from the Liouville equation by noticing that the Poisson bracket
{H,µ} is 0 for any smooth density satisfying the hypothesis µ(x) = f(H(x)).

1.1.2 Statistical ensembles

We consider a system of N particles, an Hamiltonian H and a measure µ on the phase space Γ = R
3N .
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Observable

In the context of statistical ensembles, a macroscopic observable f̄ is the average over the phase space:

f̄ =

∫

Γ

f(q, p)dµ(q, p)

with µ a measure invariant by the Hamiltonian flow that depends on the statistical ensemble considered.

NVE - Microcannonical

For the microcannonical ensemble, we consider the energy (potential + kinetic) E fixed. Since the Hamilto-
nian H is Φt-invariant, the level set ΣE = H−1({E}) is stable, i.e. Φt(ΣE) ⊂ ΣE .

For a given energy E, we can build a measure µ on ΣE that is invariant by the flow of the Hamiltonian.
The measure µ has the following density REF:

µ(x) =
dσE

‖∇H(x)‖ (1.2)

where dσE is the surface element induced on the manifold ΣE by the Lebesgue measure of Γ.
In this specific case, it is possible to give some justifications to the definition of an observable. The

assumption is that at a macroscopic level, the observables are time averages: any measurement we make is
not instantaneous. As the movements at a molecular level are extremely fast, the average is taken for a long
time with respect to the system, even if it is a short time for us.

Using results from ergodic theory, it is possible to justify that –in some cases – the time average is equal
to the spacial average:

Theorem. 1.4 (Birkhoff). Let (X,A, µ) be a σ-finite measure space and τ : (x, t) ∈ X × R → τ(t, x) =
τt(x) ∈ X be a measurable flow that preserves µ. Then for all functions g ∈ L1(µ) and for all positive T ,
the integral

∫

[0,T ]
g(τt(x))dt is well defined for almost all x and

1

T

∫

[0,T ]

g(τt(x))dt −→
T→+∞

ḡ(x)

for almost all x where ḡ is an invariant measurable function ḡ, i.e., a measurable function such that for
all t, ḡ ◦ τt = ḡ almost everywhere. Moreover, if the flow is ergodic and if µ(X) is finite, then ḡ is almost
everywhere equal to the constant 1

µ(X)

∫

X
g(x)dx.

Definition. 1.1 (Ergodic flow). A subset A is said to be invariant by a flow φt if for every t, φ−1
t (A) = A.

A flow φt is said to be ergodic if every measurable invariant subsets by the flow is either of measure 0 or its
complement is of measure 0.

As the measure µ is invariant by the Hamiltonian flow, if the Hamiltonian flow is ergodic, we have for
any observable

1

T

∫

[0,T ]

f(Φt(x))dt −→
T→+∞

f̄ (1.3)

meaning that the observable is the average over almost all trajectories of the system. Of course the flow
is not always ergodic, and no general results can be stated. Even trivial examples yield non ergodic flows.
For example, a double well potential where the energy barrier between the two wells prevents any trajectory
with energy lower than the barrier from leaving its starting well [LSR10].

Remark 1.2. If the Hamiltonian flow is ergodic, simply following the Hamiltonian will provide some sort of
sampling (albeit not random) of the iso-energy surface ΣE sufficient to compute the integral of any function
in L1(µ).
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NVT - Cannonical

The NVT ensemble now considers our system in contact with a thermostat, that is another system so large
that the studied system’s influence on the thermostat is negligible. In particular the temperature T of the
thermostat is constant.

In this setting, the canonical distribution is the Boltzmann measure with density:

µ(q, p) = e
−H(q,p)

kBT (1.4)

where kB is the Boltzmann constant. As per Th. 1.3, this measure is invariant by the Hamiltonian flow. It
can be derived as the maximum of the entropy, however the derivation is outside the scope of this thesis.
Much more could be said about the NVT ensemble, but this manuscript focusing on computational aspects
only requires the definition of the Boltzmann distribution. For further reading, I heartily recommend [LSR10]
and [Ada06].

1.1.3 Partition function and Free energy

In the previous section, the measures µ (for NVT and NVE) were not renormalised. We call partition
function the renormalisation factor

Z =

∫

Γ

e
−H(q,p)

kBT dqdp. (1.5)

The absolute free energy is
F = −kBT ln(Z) (1.6)

For hamiltonians of the form H(q, p) = U(q)+K(p) (i.e. separable), the contributions of the momentums
can be analysed separately:

Z =

∫

Γ

e
−H(q,p)

kBT dqdp =

∫

Γq

e
− U(q)

kBT dq

∫

Γp

e
−K(p)

kBT dp (1.7)

where Γ = Γq × Γp. For classical systems, the kinetic energy K(p) can be written as K(p) = 1
2p

TMp where
M is the mass matrix

M =







m1I3 0
. . .

0 mNI3






.

In this setting, the momentum contribution to the partition function has the following analytical expression
[LSR10]

∫

Γp

e
−K(p)

kBT dp = (2πkBT )
3N
2

N
∏

i=1

m
3/2
i (1.8)

Therefore the important part of the partition function
∫

Γq
e
− U(q)

kBT dq depends only on the potential energy

U . We might abuse notations and write Z =
∫

Γq
e
− U(q)

kBT dq as the momentum contribution is simply a known

multiplicative constant.

Partial free energy. We consider a subset A of the phase space Γ. We define the partial free energy for
A as

ZA =

∫

A

e
−H(q,p)

kBT dqdp (1.9)

The quantity PA = ZA

Z represents the probability of being in subset A. That means that if one observes
the system for a very long time, the proportion of the total time spent in A is PA. Notice that considering
another subset B, the quantity PA

PB
can be computed without computing the full partition function Z since
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PA

PB
= ZA

Z
Z
ZB

= ZA

ZB
, which gives us the proportion of time spent in A with respect to time spent in B. Going

further, using results from transition state theory, it is possible to compute the instantaneous probability of
switching from A to B if they share a border by integrating over their boundaries. However, this is beyond
the scope of this manuscript.

Consider g the pushfoward measure of the Lebesgue measure on A by the Hamiltonian H i.e. for any
e0 < e1,

g([e0, e1]) =

∫

A

1[e0,e1](H(q, p))dqdp. (1.10)

Under reasonable regularity assumptions on H, g has a density g(x), and therefore the partition function at
temperature T can be written as

ZA =

∫

R

g(x)e
− x

kBT dx

Therefore, if one knows g, the partition function ZA can be computed at any temperature T . It allows to
deduce thermodynamical quantities that can be computed as derivatives of the partition function such as
the heat capacity [Cai11]. The quantity g is often denoted as the Density of State (DoS) in the literature.

Remark 1.3. Using the decomposition of the partition function of eq. 1.7, the density of state can be defined
relatively to the potential energy function U (on Γq) instead of the full Hamiltonian H (on Γ).

Remark 1.4. If the set A is not bounded, the density of states g can be infinite.

Reaction coordinate and free energy. Another definition of the free energy relying on reaction coor-
dinates is commonly used. An in depth discussion of the definition can be found in [LSR10], including the
computation presented here. We will not use it in our work although it is widely used by practitioners. This
definition justifies the use of often found term Free Energy Landscape.

A reaction coordinate is a function ξ : Γq → R
m with m < 3N . The marginal distribution µξ on R

m is
defined by

∫

A

dµξ(z) = µ(ξ−1(A)) (1.11)

for every measurable subset A in R
m, it is the pushforward of the Boltzmann distribution. When ξ is smooth

with gradient which doesn’t vanish, this measure has a density [LSR10]:

µξ(z) =
1

Z

∫

Σz×R3N

e
−H(q,p)

kBT
σΣz

(dq)

‖∇ξ(q)‖dp. (1.12)

where Σz = ξ−1(z) and σΣz
(dq) is the surface element induced on the manifold Σz by the Lebesgue measure

of Γq. The free energy with respect to the reaction coordinate ξ is then defined as the function

F (z) = −kBT ln
(

µξ(z)
)

. (1.13)

Note that in statistical physics text books the absolute free energy is a number while the free energy with
respect to a reaction coordinate is a function. This is why practitioners talk about the Free Energy Landscape
by analogy with the Potential Energy Landscape [?, Wal03, LSR10].

Remark 1.5. For ξ(x) = U(x), the measure µξ is the density of state with respect to the potential energy.

1.2 Randomized algorithms using sampling

In this section, q and p will denote probabilities and not the position and momentum.
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1.2.1 Monte Carlo

Let f be a function of Rn to R and p a probability density on R
n. We consider the problem of numerically

evaluating

Ep[f ] =

∫

Rn

f(x)p(x)dx. (1.14)

Using i.i.d. Xi ∼ p, Monte-Carlo integration gives the following estimation of Ep[f ]:

ZN =
1

N

N
∑

i=1

f(Xi). (1.15)

Let σ2 = Ep[f
2]− Ep[f ]

2. ZN is a random variable and one has:

{

E[ZN ] = Ep[f ]

Var [ZN ] = σ2/N
(1.16)

The quality of a Monte Carlo estimation is determined by its variance. Therefore, the number of required
samples N for a good estimation increases with σ2.

Deterministic integral evaluation methods are based on the properties of f and their costs are strongly
dependent on the dimension. However the Monte-Carlo integration can be reformulated in a dimension
independent way. Let π the pushforward measure on R of p by f . We recall the definition of the pushforward
measure, for any measurable subset A:

π(A) =

∫

Rn

1A(f(x))p(x)dx (1.17)

Let Yi = f(Xi). Then Yi ∼ π and are i.i.d. . Therefore we can rewrite the approximation as

ZN =
1

N

N
∑

i=1

Yi

which is the Monte-Carlo methods applied to
∫

R
π(x)dx with p = π, n = 1 and f : x→ x.

Hence Monte-Carlo integration convergence speed depends only on the pushfowrad measure π, making it
suited for high dimensional problems. This is well illustrated by the following example: let B be a measurable
subset of A = [0, 1]n with volume V , let f = 1B and let

I =

∫

[0,1]n
f(x)dx

Here, p = λ the Lebesgue measure on [0, 1]n, therefore the variables Xi are independent and uniformly
distributed in [0, 1]n. Therefore the variables Yi = f(Xi) are independent Bernoulli random variables of
parameter V . Thus the Monte Carlo method is exactly the same for any n and depends only on V .

1.2.2 Limitation of Monte-Carlo integration and measure concentration

We have previously seen that Monte-Carlo integrations seem to be independent from the dimension. However
that is not completely true: the measure π (keeping the same notations) usually depends on the dimension.
Consider the following example:

In =

∫

[0,1]n
1[0.1,0.9]n(x)1.25

ndx (1.18)
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It is straightforward to see that In = 1 for all n ≥ 1. Let us have a look at the variance of the Monte-Carlo
estimator:

σ2 =

∫

[0,1]n
1[0.1,0.9]n(x)1.25

2ndx−
(

∫

[0,1]n
1[0.1,0.9]n(x)1.25

ndx

)2

= 1.25n − 1

which explodes with the dimension. In practice, Monte-Carlo integration is affected by the phenomenon
known as concentration of measure in high dimension.

Concentration of measure – volume. Intuitively, concentration of measure in high dimension implies
that most of the volume of a given set is concentrated near its boundary. A striking example is the ball of
radius 1 and center 0 in R

n: Bn. Then consider the balls Bǫ
n of radius 1− ǫ. Then for all ǫ

V (Bǫ
n)

V (Bn)
= (1− ǫ)n −−−−→

n→∞
0

Meaning that all the volume gets concentrated on a very narrow band near the boundary of the ball when the
dimension increases, and it happens exponentially fast. This trivial result has direct implication for Monte-
Carlo integration: any function whose supporting domain (i.e the subset where it is non zero) is defined by
an equation of the type ‖x‖ ≤ r will see the volume of the supporting domain shrink to 0 exponentially fast
if the total integration domain is for example the unit ball and r < 1.

Statistical Physics. In statistical physics, the computation of the partition function ZA =
∫

A
e−U(q)/kBT dq

of a subset A is a prime example of this problem. Let’s study a central example: the harmonic potential
U(q) = ‖q‖2. Assume for the sake of simplicity that A is the unit ball (therefore, all energies are in the
range [0, 1]). For the contribution of each energy level to the integral, two phenomenons compete. As we
have seen before, for n large, most of the mass is concentrated near the unit sphere. However, the function
e−U(q)/kBT decreases exponentially with ‖q‖. This implies an equilibrium where most of the contributions
to the integral come from energies in an interval [u0, u1] with 0 < u0 < u1 < 1 (depending on the tem-
perature T ). Since most of the volume is concentrated near the unit sphere, the volume of U−1([u0, u1])
is extremely small compared to the volume of the unit sphere. Therefore, when performing a Monte-Carlo
integration (assuming one samples the Lebesgue measure of the unit ball), most of the points will fall out of
the contributing area, leading to high errors. In other words, the variance of the Monte-Carlo estimator of
the partition function ZA is very high, making Monte-Carlo estimation impractical.

1.2.3 Importance sampling

Importance sampling is a general technique which allows the variance of the Monte-Carlo estimator for an
integral to be reduced. The goal is still to compute Ep[f ]. Let q be another probability on R

n. We rewrite
Ep[f ] as

Ep[f ] =

∫

Rn

f(x)p(x)dx

=

∫

Rn

f(x)p(x)

q(x)
q(x)dx

= Eq[fp/q]

Using i.i.d. RV Yi ∼ q, we modify the estimator to

Z ′
N =

1

N

N
∑

i=1

f(Yi)
p(Yi)

q(Yi)
. (1.19)
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Denoting σ2
q = Ep[f

2p/q]− Ep[f ]
2, one has:

{

E[Z ′
N ] = Ep[f ]

V ar(Z ′
N ) = σ2

q/N
(1.20)

Remark 1.6. If q(x) = f(x)p(x)/Ep[f ] then σq = 0. In this case, the estimator has 0 variance and will
give the correct result for any N . Unfortunately, this requires knowing the result beforehand.

Choosing a probability q roughly proportional to fp reduces σ2
q and therefore the variance of the estimator

Z ′
N .

Renormalisation factor and computation of the partition function. We have seen before that
computing the partition function of a system is a hard problem. A natural idea is to use samples from
the Boltzmann distribution (which can be obtained by a molecular dynamic simulation) as an importance
sampling scheme. Indeed, with the Boltzmann distribution µ, the function to integrate would be constant.
However this fails because of the renormalisation factor of µ: for a given subset A, the density µ(q) is equal

to e−U(q)/kBT

ZA
and not e−U(q)/kBT . Hence:

ZA =

∫

A

e−U(q)/kBT dq =

∫

A

ZAµ(q)dq (1.21)

which requires knowing ZA. If one wants to use sampling according to the Boltzmann distribution, the only
way is to compute the inverse of ZA (assuming the volume of A is known):

V ol(A)

ZA
=

∫

A

eU(q)/kBTµ(q)dq (1.22)

which is once again a difficult integral to estimate.

1.2.4 Multiphase Monte Carlo

Multiphase Monte Carlo (MMC) is a loosely defined technique that consists in splitting a Monte Carlo
integration that is too complex on its own into multiple manageable steps called phases. As this term covers
many different situations, I will simply give an example here, with intuition on how it reduces the error
compared to standard Monte Carlo.

Let A be a compact subset of Rn, and f : A −→ R. The goal is to compute I =
∫

A
f(x)dx, and we

assume that the integral I is too hard to compute via traditional Monte-Carlo integration. In this case, a
Multiphase Monte Carlo technique could be to introducing a sequence of function f0, ..., fm = f such that
fi

fi−1
∈ [1/2, 3/2] and I0 =

∫

A
f0 is easy to compute. Then the integral is rewritten as

I = I0

m
∏

i=1

Ii
Ii−1

where Ii =
∫

A
fi(x)dx. Each ratio Ri =

Ii
Ii−1

can be computed using importance sampling:

Ri =
Ii
Ii−1

=

∫

A

fi(x)

fi−1(x)

fi−1(x)dx

Ii−1

by sampling from the probability fi−1(x)dx
Ii−1

(using any sampling technique described in section 1.3), and the

estimation of a single ratio is called a phase, for a total of m phases.
Since the ratio fi

fi−1
is in [1/2, 3/2], the variance of the Monte-Carlo estimator of each ratio can be

bounded by a constant divided by the number of samples.
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Denoting the ratio Ii
Ii−1

as Ri and its Monte Carlo estimator as R̂i, we deduce that there exists C > 0

(in this specific case, C = 4) such that

V ar(R̂i)

R2
i

≤ C

N
(1.23)

where N is the number of samples. Since the estimation of the successive ratios are independent, we deduce
the following variance for the product of the ratios:

V ar

(

m
∏

i=1

R̂i

)

=

m
∏

i=1

(V ar(R̂i) +R2
i )−

m
∏

i=1

R2
i

Hence

V ar(
∏m

i=1 R̂i)
∏m

i=1R
2
i

=

m
∏

i=1

(

V ar(R̂i)

R2
i

+ 1

)

− 1

≤
(

C

N
+ 1

)m

− 1

Using the fact that log(1 + x) ≤ x and that for 0 < x < 1, ex − 1 < 7
4x, we deduce that for N > Cm,

V ar(
∏m

i=1 R̂i)
∏m

i=1R
2
i

≤ m7C

4N
(1.24)

The variance of the product estimation grows linearly with the number of terms m. For a target relative
variance ǫ, choosing N as

N =
m7C

4ǫ
(1.25)

will ensure a total relative variance less than ǫ. Therefore, the number of samples per ratio is proportional
to m.

Starting from f0(x) = 1, it is possible to build a sequence of functions fi with bounded ratio and such
that V ar(fi) increases exponentially with i. Conversely, it shows that it is possible in some cases to compute
extremely difficult integrals with a number of phases m depending on the log of the variance of the standard
Monte-Carlo estimator! The final complexity is O(m2) since O(m) samples are requires per phase.

To sum up: problems with exponential complexity using standard Monte-Carlo can be solved in polyno-
mial time by a clever use of MMC.

Remark 1.7. Here we assumed that fi
fi−1
∈ [1/2, 3/4], however it is not required. First, observe that

V ar(R̂i)

R2
i

=
V ar( fi

fi−1
)

NR2
i

.

Now, assuming that
V ar(

fi
fi−1

)

R2
i

≤ C, the same reasoning can be followed up to Eq. 1.25. Second, observe

that with this new assumption, the ratio fi
fi−1

can be very large, as long as its relative variance is O(1). In

practice, this allows the number of phases m to be reduced and therefore the total complexity to be reduced.

Remark 1.8. It is sometimes more convenient to estimate R′
i = 1

Ri
=
∫

A
fi−1(x)
fi(x)

fi(x)dx
Ii

. In this setting,

the variance analysis cannot be done since R̂′
i = 0 can have a non zero probability and therefore 1/R̂′

i has
infinite variance. However, a similar analysis can be done in probability, removing the bad cases, and similar
complexities N = O(m) can be obtained in specific settings, see e.g. [KLS97].
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We can summarise the previous discussion with the following precise statement:

Theorem. 1.5. Let f : Rn −→ R and let f0, ..., fm = f be a sequence of functions from R
n to R. Let denote

I =

∫

f dx and Ii =

∫

fi dx

the integrals of the functions f and fi, and

σ2
i = V arpi−1

(

fi
fi−1

)

the variance with respect to the probability pi with density pi(x) =
fi(x)
Ii

.

Let denote R̂i the Monte-Carlo estimator of Ri =
Ii

Ii−1
using a sample of size N from the probability pi−1.

Assuming I0 is known, the estimator Î is defined as:

Î = I0

m
∏

i=1

R̂i.

Let C = maxi=1...m(
σ2
i

R2
i
). If N > Cm then

V ar(Î)

I2
≤ m7C

4N

Hence for a target relative variance ǫ < 1 of Î, the number of samples N can be chosen as

N =
m7C

4ǫ

1.2.5 Density estimation - relative error

Consider a probability density function g : [0, 1] −→ R
+ (such that

∫ 1

0
g(x)dx = 1). The problem at hand is

to estimate g from i.i.d. random variables Xi ∼ g.
The simplest method is to divide [0, 1] into small intervals 0 = a0 < a1 < ... < ak = 1, and build a

histogram estimator ĝ from this discretisation. Using N samples:

ĝ(x) =

k
∑

i=1

1[ai,ai+1](x)
1

(ai+1 − ai)N
N
∑

j=1

1[ai,ai+1](Xj)

Other estimators such as the kernel density estimators are available. However, all these common estimators
share one common trait: they provide good estimations in absolute error, but not in relative error. In other
words, if g is very close to 0 in some regions, ĝ will be very poorly estimated in a relative sense: the histogram
estimator will simply estimate the density to 0, while a kernel density estimator will have ”leftovers” from
the kernels.

We can define a relative error as follows, assuming that g(x) > 0 for x ∈ [0, 1]:

erelative =

∫ 1

0

|ĝ(x)− g(x)|
g(x)

dx

Importance sampling for density estimation. As importance sampling allows badly behaved integrals
to be computed, it makes density estimations with small relative error possible. Let q : [0, 1] −→ R

+ a
probability density on [0, 1]. Then let

h(x) = C
g(x)

q(x)
(1.26)
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with C a renormalisation constant such that h is a probability density. Let ĥ be an estimator of h. We build
a new estimator ĝis for g:

ĝis(x) = Cĥ(x)q(x) (1.27)

As with importance sampling for integral computation, if q = g, then the estimator has 0 variance. Moreover,

if q is close to g, for example if there exists α such that g(x)
q(x) ∈ [1−α, 1+α], then we can control the relative

error of the estimator gis. In the special case of a histogram estimator, the number of points in each bin
follows a multinomial distribution, and it is possible to give bounds for the variance of the estimation of each
bin.

Application to statistical physics. A natural course of action is to estimate the Density of State g
defined by Eq. (1.10). However, we face a problem: g is a priori not a probability measure, and worse, g
is not a finite measure. First, we need to restrict ourselves to a bounded domain A of Γq. Then we can

compute the renormalised Density of State g(x)∫
R
g(y)dy

.

Therefore, if the volume of A is known, we can compute the Density of State and the partition function
since

∫

R
g(y)dy = V ol(A). If the volume is not known, we can only compute the density of state and the

partition function up to a multiplicative function. However, the constant does not depend on the temperature,
hence we can get thermodynamic quantities such as the heat capacity up to a multiplicative constant, which
still allows to determine phase transitions for example. Another way of proceeding could be to compute the
volume of a subset of A of the form A ∩ {x|U(x) ∈ [u0, u1]} which also allows a correct renormalisation to
be computed.

Remark 1.9. It would also be possible to sample the Boltzmann distribution in Γq instead of the Lebesgue
measure and compute the (renormalised) pushforward measure of the Boltzmann distribution on Γq. This
would remove the need to take a subset of Γq as the Boltzmann distribution has finite measure under reasonable
assumptions on the potential energy U . However, it would be difficult to compute any renormalisation factor.
A discussion about the practical implications of a change of measure for a histogram estimation is discussed
in Section 4.2.3.

1.2.6 Wang-Landau

The Wang-Landau algorithm was first introduced in the context of statistical physics to compute the Density
of State, that is the pushforward measure g (to follow the notations from section 1.2.5) of the Lebesgue (or
any measure π) measure by the potential energy function, with a low relative error. Essentially, it estimates
θ∗, a discretised version of g (ie a histogram).

To fix notations, consider a probability distribution with density π(x) defined on a subset E ⊂ R
n. Let

U : E −→ R be a potential energy function, and Umin = U0 < U1 < ... < Ud = Umax be a discretisation of
the energy range. We consider a partition of E into so-called strata

{E1, . . . , Ed} with Ei = U−1([Ui−1, Ui]). (1.28)

Let J(x) be the index such that x ∈ EJ(x). The goal of WL is to estimate

θ∗i = π(Ei) =
∫

Ei

π(x)dx, ∀1 ≤ i ≤ d. (1.29)

To achieve this goal, the Wang-Landau algorithm relies on Multiphase Monte-Carlo and importance sampling
to build a sequence θ(t) of estimations of θ∗ that converges to θ∗. Following the idea of section 1.2.5, at step
t, a point is sampled according to an analogous of distribution p in Eq (1.26):

πθ(t)(x) =

(

d
∑

i=1

θ∗i
θi(t)

)−1

π(x)

θJ(x)(t)
(1.30)
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Figure 1.1 Wang-Landau: evolution of the log of the learning rate. The stairway curve corresponds
to the halving rule–which yields a saturation of the error. The smooth 1/t curve yields convergence. Prac-
tically, the two strategies are combined to improve the convergence speed: one starts with the halving rule,
switching to the 1/t rule when the two curves meet [BP07a]. Note the length of plateaus to move from t to
t+ 1 depends on the random walk–whence the depicted variability.

log(γ)

t

Points are sampled using an MCMC method (see section 1.3): xt+1 ∼ Pθ(xt, .) where Pθ is a Markov kernel
that leaves πθ invariant. The construction of Pθ will be discussed in greater details in chapter 2.

Now, if WL was strictly following section 1.2.5, we would sample N points with respect to πθ(t), compute
a histogram estimation of πθ(t), and finally deduce θ(t + 1) using an analogous to eq 1.27. However, WL
only samples one single point xt from πθ(t), and instead of building a histogram (which is impossible with a
single point), the density is updated with

θJ(xt)(t+ 1) = θJ(xt)(t)γ (1.31)

where γ > 1 is called the learning rate. To converge to θ∗, the convergence factor γ is made to converge to
1.

How to decrease the learning rate γ requires a small discussion. Historically [WL01], the rule used the
Flat Histogram criterion. Let νt(i) be the number of samples up to iteration t falling into bin Ei. The vector
{νt(i)} is said to verify the flat histogram (FH) criterion provided that, given a constant c:

max
i=1,...,d

| νt(i)
t
− 1

d
|< c. (1.32)

If the criterion is verified, γ is decreased using γ =
√
γ. The hope associated with this rule was an exponential

decay of the relative error. However, what is described in section 1.2.4 allows exponentially difficult problems
to be tackled, but the relative error only decreases in 1√

N
with N the number of steps in the end. In practice,

for the WL algorithm it means that the error first decreases exponentially fast in the sense that it goes from
an exponentially difficult problem to a manageable one. However, hoping for exponential convergence for
this manageable problem is unrealistic, and it turns out that this strategy leads to a saturation of the error
[BP07a, BP07b]. As a side note, the flat histogram variant seems to be sensitive to the particular analytical
form of the update rule [JR14]. To circumvent the error saturation, the rate γt = exp(1/t) rule was proposed
[BP07a]. Practically, one combines the two update strategies by starting with the flat histogram strategy
and switching to the latter strategy as soon as the proposed γ is smaller than exp(1/t) – [BP07a] and Fig.
1.1.
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Algorithm 1 Wang Landau

1: Set θ = (1/d, ..., 1/d)
2: Set exponential regime = True
3: Set γ = γ0 with γ0 > 1
4: while t < tmax do
5: Sample xt+1 ∼ Pθ(xt, .)
6: Set θJ(xt+1) = γ θJ(xt+1)

7: Renormalise θ
8: if Exponential regime then
9: if Flat histogram then

10: γ =
√
γ

11: if γ < exp( 1
t+1 ) then

12: Set exponential regime = False
13: Set γ = exp( 1

t+1 )
14: else
15: γ = exp( 1

t+1 )

Theoretical convergence

The theoretical convergence has been studied [FJK+15], using suitable assumptions on (i) the equilibrium
measure, (ii) the Metropolis-Hastings kernel (see section 1.3), and (iii) the sequence of learning rates. Under
these assumptions, the Wang-Landau algorithm has been proven to converge. The authors proved a central-
limit like theorem which give a theoretical convergence speed of O(1/

√
n) where n is the number of steps.

1.2.7 Convex Volume

A polytope K ⊂ R
n can be represented as the convex hull of its vertices (V-polytope) or as the intersection of

half-spaces (H-polytope). Volume computations are #-hard both for V-polytopes and H-polytopes [DF88].
Here the complexity is either the number of calls of an oracle stating whether a point is in the convex, or the
number of constructions of the intersection between a line and the boundary of the convex. Intuitively, the
convex hull of a polynomial number of random points in a convex has a volume that goes to zero exponentially
fast with the dimension. It can be shown that there is no fast i.e. polynomial time algorithm computing the
volume accurately [BF87, Lev97].

For these reasons, probabilistic methods have been developed. We say that a randomized algorithm
approximate the volume within a relative error of ε with a probability at least 1− δ if the approximation V
of Vol(K) satisfies

(1− ε)Vol(K) ≤ V ≤ (1 + ε)Vol(K). (1.33)

The first probabilistic algorithm [DFK91] has a complexity O⋆(n23) with the dimension (where the notation
O⋆(n23) ignores log factors), and is overall a polynomial in n, 1

ε and log
(

1
δ

)

. Most works have chosen to
focus on the complexity growth with the dimension, omitting the dependency in ε and δ. Following that,
the complexity was gradually improved. In the next two sections, we present two of the latest algorithms
proposed, with respective theoretical complexities O∗(n5) [KLS97] and O∗(n3) [CV18].

In the following, it is assumed without any loss of generality that the origin 0 is in the convex K. It is
also assumed that r > 0 and R > 0 such that B(0, r) ⊂ K ⊂ B(0, R) are known, and that the convex is
in isotropic position: R

r = O(n). To make these assumptions true, the convex should undergo a rounding
algorithm that we will not focus on here.

Concentric balls algorithm: another density estimation algorithm using MMC

The algorithm introduced in [KLS97] is in essence a Multiphase Monte Carlo algorithm. Let ri = 2i/nr be a
growing sequence of radius and consider the intersection Ki = B(0, ri)∩K. For m = n log(R/r), the radius
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is rm = R and thus Km = K. For i = 0, K0 = B(0, r0). Using the convexity of K, it is easy to prove the
following proposition:

Proposition. 1. For every i > 0:

Vol(Ki) ≤ Vol(Ki+1) ≤ 2Vol(Ki)

Following the idea of section 1.2.4, we rewrite the volume of K as

Vol(K) = Vol(K0)

m
∏

i=1

Vol(Ki)

Vol(Ki−1)
(1.34)

To estimate
∏m

i=1
Vol(Ki−1)
Vol(Ki)

, each ratio R′
i =

Vol(Ki−1)
Vol(Ki)

is estimated separately (see remark 1.8). Following the

notations of section 1.2.4, the functions fi are the indicator functions of Ki, and each R′
i is simply estimated

by sampling points uniformly in Ki and counting the proportion in Ki−1.
Therefore, we take N = O(m) for each ratio estimation, leading to a O(m2) total number of samples.

Since m = O(n log(n)), the algorithm requires O∗(n2) samples. The final complexity O∗(n5) comes from the
sampling part: we assumed that we could sample points uniformly in each Ki. It turns out that sampling a
point (almost) uniformly costs O(n3) calls to oracle, leading to a final complexity O(n2n3) = O(n5).

Remark 1.10. The previous algorithm is actually computing a histogram of the pushforward measure of the
Lebesgue measure on K by the function x −→ ‖x‖ with bins [ri, ri+1].

Gaussian cooling

This algorithm introduced in [CV18] is based on the same idea as the previous, but instead of using a sequence

of indicator functions, it uses a sequence of Gaussians fi(x) = e
− ‖x‖2

2σ2
i of variance σ2

i . The concentric ball
algorithm requires O∗(n) phases because the ratio between the volume of two consecutive balls is bounded
by 2. The Gaussian cooling bypasses this limitation by relying on remark 1.7, leading to a drastic reduction
of the number of phases required.

Without going into too much details, the algorithm is split in two parts. First the Gaussian volume of
the convex is computed (i.e. for σ = 1), then the volume is computed, each phase requiring O∗(n3) calls to
oracle.

The first part starts with σ2
0 ∼ 1

n and stops at σ2
m = 1 with

σ2
i = σ2

i−1

(

1 +
1√
n

)

.

This requires O(
√
n) phases, and thus the total number of samples is O∗(n). In addition, for σ = O(1), the

complexity for generating each sample is O⋆(()n2), leading to the complexity O∗(n3) for the computation of
the Gaussian volume.

The second part starts with σ2
0 = 1 and ends with σ2

m = O(n) which is large enough to be almost flat.
In this case, a better bound for the ratio of two consecutive Gaussian is available, leading to the following
cooling:

σ2
i = σ2

i−1

(

1 +
σi−1√
n

)

. (1.35)

Here, the number of calls to oracle required to generate a single sample for a Gaussian of variance σ is
O(σ2n2) which is bad because σm = O(n). However, for a given starting σk, the number of phases to double

σk using the previous cooling schedule is O(
√
n

σk
) and so is the number of samples per phase. Therefore, the

total complexity to double σk is O(n2σ2
k)O(

√
n

σk
)O(

√
n

σk
) = O(n3) which does not depend on σk. To go from

σ2
0 = 1 to σ2

m = O(n), O(log(n)) doubling of σ is required, hence the total complexity of O∗(n3).
All in all, this algorithm improves both the number of phases and the complexity of generating each

sample, leading to an overall complexity of O∗(n3) for the computation of the volume of a convex.
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1.3 Sampling strategies

The previous section mostly assumed that for any distribution π, a sampling algorithm existed. The purpose
of this section is to fill this hole and give a quick review of the different methods to sample random variables
from a density π.

1.3.1 Inverse of the Cumulative Density Function method

When n = 1, a straightforward way to sample point from π is to use the inverse of the cumulative density
function (CDF) F (x) =

∫

]−∞,x]
π(x)dx.

Asssuming one can sample Y ∼ unif([0, 1]), we define X = F−1(Y ), then π is the density of X.

The main drawback of this method is that it requires the computation of the inverse of the CDF, which
does not always have an analytic form (for example the gaussian inverse CDF).

1.3.2 Rejection sampling

This method works on R
n with any probabilty density π [RC13].

Let π and µ be two probabilitiy densities on R
n such that π ≤ Mµ for some constant M ≥ 1. If one

can sample a random variable Y with density µ then it is easy to sample a random variable X with density
π. Consider an auxiliary random variable U which is uniformly distributed in the interval [0, 1] and which
is independent from Y . Consider a sample (y1, . . . , ym) of Y and a sample (u1, . . . , um) of U . For each i,
if uiMµ(yi) ≤ π(yi), yi is accepted otherwise yi is rejected. It is easy to prove that the accepted yi form a
sample for the density π.

The main drawback of this method is that it can reject a large proportion of yi. It will be the case when
the ratio π/µ has large values.

1.3.3 Markov Chain Monte Carlo (MCMC)

MCMC allows arbitrary distributions on R
n to be sampled, and is at the core of many algorithms. Its

principle is straightforward: to sample a measure π, we build a Markov chain P such that π is the only
invariant measure.

Convergence theorems can be found in [RR04a].

Definition. 1.2 (stationary measure). A measure π is stationary with respect to a Markov chain P if for
all A measurable,

π(A) =

∫

A

π(dx) =

∫

P (x,A)π(dx)

Definition. 1.3 (detailed balance / reversible). A Markov chain P is said to satisfy detailed balance (or
reversible) with respect to the measure π if for every A and B measurable,

∫

B

P (x,A)π(dx) =

∫

A

P (x,B)π(dx)

It is easy to show that if π satisfies detailed balance, then π is a stationary distribution.

Remark 1.11. Satisfying detailed balance is not sufficient for convergence to a stationary measures. Ex-
amples of additional assumptions required can be found in [RR04a]. The proof of convergence of chapter 3
uses such assumptions.
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Metropolis-Hasting

We assume there is a Markov kernel whose probability transition has positive density q with respect to the
Lebesgue measure. Given a probability density π on E , Metropolis-Hasting builds a Markov kernel Pπ from
q. It satisfies detailed balance for π which implies that π is a stationary density for Pπ.

Starting from xt, the construction is as follow:

• sample y according to q(xt, .)

• compute α(xt, y) = min( π(y)q(xt,y)
π(xt)q(y,xt)

, 1)

• choose xt+1 =

{

y with probability α(xt, y)
xt with probability 1− α(xt, y)

Which gives the following transition kernel:

Pπ(x, dy) = α(x, y)q(x, dy) + δx(dy)

∫

(1− α(x, z))q(x, dz) (1.36)

where δx is the Dirac measure at x.
It is straightforward to check that detailed balance holds [Tie98].

Remark 1.12. The choice of q is crucial for the convergence speed to the the stationary distribution π.

1.3.4 Hamiltonian Monte Carlo (HMC)

In the following, we survey the principal ingredients of HMC, referring the reader for the surveys [Bet17,
BBKG18] for the details.

From statistical physics to sampling

HMC is an MCMC method that takes root in statistical physics. Recall the result from section 1.1.1: for
an Hamiltonian H, the flow of the Hamiltonian preserves any probability distribution that is a function of

H (Th. 1.3). In particular, the Boltzmann distribution µ(q, p) = e
−H(q,p)

kBT is preserved and is effectively
sampled by molecular dynamic simulations for systems in contact with a thermostat. The idea behind HMC
is to find a suitable Hamiltonian such that sampling the Boltzmann distribution will imply sampling from
the desired distribution π.

However finding H such that the Boltzmann distribution and π coincide is not practical in general as it
would require π to have a particular form. Hence we only work with the potential energy U . For separable

Hamiltonians, the Boltzmann distribution can be written as a product measure: µ(q, p) = e
−U(q)
kBT e

−K(p)
kBT .

Therefore taking U(q) = − log(π(q)) leads to the following Boltzmann distribution:

µ(q, p) = π(q)e
−K(p)
kBT

which is a product measure. Hence taking the marginal of the Boltzmann distributions on the positions
yields the desired distribution π. The final ingredient is to replace the thermostat by periodically resampling
the velocities, bringing an equivalent to collisions with particles from the thermostat.

Algorithm

Now, in what follows, we will omit the temperature T and the Boltzmann constant kB and work with a
dimension-less Hamiltonian H. Assuming that U(q) = − log(π(q)) and K(p) = 1

2‖p‖2, the HMC algorithm
in its simplest form reads as follow:

1. choose a travel time L > 0
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2. sample the momentum vector p′ ∼ N (0, 1)

3. (qt+1, pt+1) = ΦL(qt, p
′)

Remark 1.13 (Choice of kinetic energy). It is perfectly possible to change the kinetic energy K of the
hamiltonian, as long as one matches step 2 to reflect this change. However, the usual kinetic energy K(p) =
1
2‖p‖2 is the most widely used, and as such this work will not investigate the use of other kinetic energies.

For a given L, the algorithm defines a Markov kernel that we denote PHMC . We can further decompose
this kernel as the composition of the two kernels PΦt and PK where PΦt is the kernel corresponding to step
3 and PK to step 2. Then the following theorem holds:

Theorem. 1.6. µ is invariant by PΦt and PK .

Proof. µ invariant by PΦt
is a corollary of theorem 1.3. The invariance by PK is trivial.

Theorem. 1.7. µ is invariant by PHMC .

Proof. This is a trivial corrolary of the previous theorem.

Geometric intuition

What precedes explains why HMC samples the correct distributions, but says nothing about the quality of
the sampling or why one would choose HMC over for example Metropolis-Hasting. Indeed, the success of
HMC relates to its ability to cope with cases where the mass of the target distribution is concentrated in
a typical set of small volume. In such cases, classical random walks / move sets used by the Metropolis-
Hastings algorithm face difficulties to propose moves inside this set – since they explore the entire space. The
interest of HMC is precisely to target such typical set, by building a dynamical system which is diffusive in
the vicinity of this level set. This is achieved by defining a dynamic system in phase space, namely positions
and velocities. Recall that the Hamiltonian H(q, p) is defined as the sum of a potential energy U(q) and a
kinetic energy K(q, p).

Geometrically, the level sets of the Hamiltonian (defined by H = E(= cst)) define a foliation of the phase
space. With this in mind, HMC inherently combines two ingredients: random transitions between energy
level sets (achieved by momentum resampling), and an exploration of a given level set by deterministic
Hamiltonian trajectories. The orbit of a trajectory i.e. the locii of points visited in phase space may cover
the whole level set or a subset of it, and it is important to ensure ergodicity – the temporal expectation over
the trajectory should converge to the spatial average over the orbit.

Practical implementation - numerical integration

The main difficulty in using HMC is the generation of Hamiltonian trajectories. When such trajectories
can be computed analytically, then, a trivial sampling algorithm is readily available. If not, symplectic
numerical integrators, which aim at preserving phase space volume, are used. Numerical errors inherent to the
discretization are handled using a Metropolis-Hasting scheme on phase space. Since in this manuscript, exact
trajectories are known, we do not dwell into further details a refers the intersted reader to [Bet17, Rad12].

1.3.5 Uniform sampling in a bounded domain

It is a common case to require sampling from a bounded domain A ∈ R
n. For example, for the convex body

algorithm, uniform or Gaussian sampling in a convex is required.
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Ball walk

Let’s analyse what happens for a simple Ball walk: for a point xt, the random walk picks a point xt+1

uniformly in the ball B(xt, r), with r > 0. To respect the boundary without introducing bias in the sampled
measure, if a point is sampled outside of A when generating t+ 1, then we pick xt+1 = xt.

Not moving when the point sampled is outside of A (i.e. xt+1 = xt) is necessary to sample the correct
distribution. Consider the sequence x′t, constructed from the same sequence of random numbers, with the
only difference being that for a point x′t, we sample point in the ball centered on x′t until a point in A is
found, and defined x′t+1 as this point. Here, the sequence x′t is simply the sequence xt with the ”multiplicity”
removed. Then the sequence x′t does not satisfy detailed balance for the Lebesgue measure of A. Indeed,
consider a point x ∈ A such that B(x, r) ⊂ A, and a point y ∈ B(x, r) near the boundary of A such that
V ol(B(y, r) ∩A) < V ol(B(y, r)). The probability of going from x to y is

p′x,y =
1

V ol(B(x, r))

while the probability of going from y to x is

p′y,x =
1

V ol(B(x, r) ∩A

and therefore, p′x,y 6= p′y,x. Thus, detailed balance is not satisfied. Another intuitive explanation is that
points near the boundary are less accessible, and therefore counting them several times is required.

Should the set A be (locally) a cone, the Ball walk faces difficulties to leave the neighbourhood of the
apex of the cone, especially in high dimensions, since most of the volume of a ball with a center near the
apex will fall outside of the cone, leading to a high rejection rate. In particular, this phenomenon occurs
near the vertices of a polytope.

Hit and Run

Hit and Run is another type of random walk widely used for convex volume computation that automatically
generates points in the domain A. Starting from xt, it goes as follows to generate xt+1:

• sample a direction u ∈ Sn−1

• compute the intersections y1 and y2 of the line xt + Ru and the boundary of A.

• sample xt+1 uniformly in [y1, y2].

which trivially satisfies detailed balance for the Lebesgue measure. For other measures, it is sometimes
possible to modify the last step to satisfy detailed balance. This is the case for Gaussian distributions
restricted to a convex.

Performances are better than the Ball random walk, but it also faces difficulties near the apex of a cone,
as the distance ‖y1 − y2‖ will with a very high probability be very small if xt is close to the apex, implying
that the move will be small (which is still better than not moving at all).
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Chapter 2

Wang-Landau Algorithm: an adapted
random walk to boost convergence

2.1 Introduction

The Wang-Landau algorithm for density of states calculations. The derivation of observable prop-
erties of (bio-)molecular systems at thermodynamic equilibrium relies on statistical physics, with the for-
malism of stochastic ensembles playing a pivotal role[Wal03, LSR10, Jan12, LB14]. Amidst the various
algorithms available, the Wang-Landau (WL) algorithm [WL01, LTE04] is now well known and widely used
despite its recent inception, in particular due to its simplicity and genericity. The WL algorithm estimates
the density of states (DOS) of a system, which is especially useful to compute partition functions in statistical
physics, and more generally observables–e.g. the average energy or the heat capacity. Estimating the DOS
is especially challenging in presence of broken ergodicity; in that case, the presence of multiple energy wells
prevents the system to efficiently sample the PEL, as it remains confined in selected wells [Pal82, WS14].

To review previous work, it is important to recall that the WL algorithm falls in the realm of adaptive
MCMC sampling algorithms. In a nutshell, WL returns an estimation of the DOS in terms of histogram.
The bins of the histogram correspond to a partitioning of the energy range of the system. The algorithm
resorts to importance sampling, using a biasing function derived from the current estimation of the DOS.
Since the limit distribution sought is defined by the density of states, the random walk is build from the
Metropolis-Hastings algorithm (M-H), using the current DOS estimate in the rejection rate. (We note in
passing that since the DOS values used to define transition probability depend on the history, WL is not a
Markov process.) Additionally, a so-called flat histogram rule may be used to count the visits in each energy
stratum and update the learning rate when all strata have been evenly visited. These main ingredients
recalled, one may observe that numerous improvements were made to the original algorithm [WL01], both in
terms of design and analysis of performances. The first key improvement has been the 1/t algorithm which
solved the so-called error saturation problem [BP07a, BP07b], in which a constant error on DOS estimates
was incurred, due to a too fast reduction of the learning rate. Another key initiative has been to tune the
random walk and the energy discretization [BJMD13], as large bins may hinder convergence by keeping the
system trapped. To avoid this pitfall, a dynamic maintenance of bins has been proposed, in order to maintain
a proper balance of samples across a stratum. Concomitantly, a random walk defined from a mixture of
Gaussians has been introduced, in order to attempt moves of the proper size. In a different vein, it has
been proposed to speed up convergence resorting to parallelism via multiple walkers [LTE04]. However, this
approach should be taken with care, as problems arise when a large number of walkers are used [BP16].

On the mathematical side, for the WL algorithm variant using the flat histogram, the importance of the
analytical form of the DOS update rule was established [JR14]. For WL with a deterministic adaptation
of the learning rate, to which the 1/t variant belongs, the correctness of the DOS estimates was proved,
regardless of the particular analytical expression of the update rule [FJK+15].
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Applications. Application-wise, WL has been used on a variety of physical systems, and more recently
to biomolecules. Thermodynamics properties of RNA secondary structures were estimated using the WL
algorithm [LC10]. Properties of clusters and peptides (up to 8 a.a.) were studied in [PCA+06]. Likewise,
the thermodynamics properties of misfolded (containing a helix structure rather than a β-sheet) proteins,
such as those involved in mad cow and Creutzfeldt-Jakob diseases, were studied by feeding a coarse grain
protein to the 1/t WL algorithm variant [OMG10]. In a similar spirit, a modified flat rule histogram was
used in [SA11] to study properties of polymers on a lattice, in the HP model. However, processing continuous
models of protein of significant size has remained out of reach so far [JP16].

Contributions. The random walk and the energy discretization influence one another: the average step
size of the random walk should be dependent on the size energy bins. For large energy strata, the step
size should be large, and small for narrow energy bins. Thus the random walk and bin sizes should not be
independent, and the step size of the random walk should depend on local information. Such intricacies have
precluded the development of effective WL algorithms to to handle systems as complex as bio-molecules,
and the goal of this paper is precisely to improve the convergence speed of the algorithm, especially in high
dimensional settings. (NB: our focus is not on asymptotic convergence properties.)

To make a stride towards circumventing these observations, we make three contributions targeting im-
provements of the convergence speed (section 2.3.1). First, we design a random walk which takes the bin
size and local geometric information into account to avoid overstepping strata (section 2.3.2). Second, we
tackle the so-called measure concentration problem inherent to high dimensional spaces, which is especially
pregnant near local minima, and which decreases convergence speed exponentially fast with the dimension
(section 2.3.3). Finally, we introduce a darting move for multimodal distributions (section 2.3.4). In addi-
tion, we provide a generic WL implementation, which allows tuning all key building blocks. The source code
is being integrated to the SBL Structural Biology Library – see [CD17] and http://sbl.inria.fr.

2.2 The Markov kernel Pθ

We briefly recall the notations introduced for Wang-Landau in section 1.2.6. Let π(x) be a probability
density defined on a subset E ⊂ R

n. Let U : E −→ R a potential energy function, and a discretisation of the
energy range into Umin = U0 < U1 < ... < Ud = Umax. We consider a partition of E into strata

{E1, . . . , Ed} with Ei = U−1([Ui−1, Ui]). (2.1)

Let J(x) be the index such that x ∈ EJ(x). The goal of WL is to estimate

θ∗i = π(Ei) =
∫

Ei

π(x)dx, ∀1 ≤ i ≤ d. (2.2)

Let θ(t) be the approximation of θ∗ at time t. The detailed description of the Wang-Landau algorithm
found in section 1.2.6 assumes that for each θ (representing an histogram), there exists a Markov chain with
Markov kernel denoted Pθ such that the probability

πθ(x) =

(

d
∑

i=1

θ∗i
θi

)−1

π(x)

θJ(x)
(2.3)

is invariant by Pθ.

2.2.1 Construction of the Markov chain

The Markov chain with kernel Pθ is constructed using the Metropolis-Hastings algorithm found in section
1.3.3. We assumes there exists a random walk with transition probability q (common to all θ), and Metropolis-
Hastings yields the following transition kernel:

Pθ(x, dy) = q(x, y)α(x, y)dy + δx(dy)

∫

E
(1− α(x, z))q(x, dz), (2.4)
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with

α(x, y) = 1 ∧ πθ(y)q(y, x)
πθ(x)q(x, y)

= 1 ∧ π(y)θJ(x)q(y, x)
π(x)θJ(y)q(x, y)

(2.5)

which leaves πθ invariant. The corresponding Markov chain is constructed by drawing a point y ∼ q(xt, .)
starting from xt using the random walk q, then accepting y with probability α. If the point is accepted,
xt+1 = y, otherwise, xt+1 = xt.

2.2.2 Convergence rate: further insights

The convergence speed of the algorithm is tightly coupled to the mixing times of the Markov chains Pθ,
which is roughly the time t it take for P t

θ(x, .) to converge to πθ for any x, where P t
θ(x, .) is Pθ(x, .) iterated

t times. Hence, the choice of the underlying random walk q used to build Pθ is crucial.

In many cases, the bottleneck for the mixing time is the visit of all the energy levels. In [BJMD13], a
refinement rule for the discretisation is provided as well as a rule to find suitable parameters for a multi-
modal isotropic Gaussian random walk. The paper of Born et al. do not provide any explicit insights on the
link between the random walk and the discretisation. However, they use a symmetric random walk. Such
random walk will sample the space uniformly. Hence, to obtain a high transition probability between two
energy levels, the ratio of their respective volumes must be controlled: should the ratio be too small (or to
high), the probability of proposing a move going from the smallest energy level to the biggest is so small that
it never occurs. Observe that this restriction vanishes in using a non symmetric random walk, a strategy we
will be using.

For multi-modal distributions, the difficulty to switch from one mode to another can also be a bottleneck
for the mixing time. In [ASV01], a strategy called darting is proposed. It consists in attempting long range
jumps between regions associated to precomputed modes. The knowledge of the volume of the targeted re-
gions allows one to guarantee detailed balance [SW11] whence a procedure sampling the desired distribution.
Note that for molecular systems, where Boltzmann distribution yields one mode for each local minimum of
the potential energy, local minima can be obtained by gradient descents and associated search methods such
as basin hopping and variants [LS87, RDRC16].

2.2.3 MCMC and adaptivity

For general MCMC algorithm, it has been shown that an adaptive random walk can lead to erroneous
results [RR07]. Practically, for a given probability π, there might exist a sequence Pi of Markov kernels
with limiting distribution π for all i such that for a given X0, the sequence of random variables defined by
Xi ∼ Pi(Xi−1, .) does not converge to the limiting distribution π. This does not affect the Wang-Landau
algorithm itself. However, any adaptivity must be stopped before the end of the algorithm. The choice we
make is to stop any adaptivity on q once the flat histogram has been met a given number of times. This
number is denoted NFHE in the sequel.

2.3 Improving convergence speed

2.3.1 Rationale

The performances of WL result from a subtle interplay between various ingredients, notably the energy dis-
cretization, the topography of the landscape, and the random walk. The improvements presented thereafter
target the following difficulties:

• Difficulty 1 – section 2.3.2: topography adapted random walk to avoid overstepping strata. The random
walk should exploit the geometry of the landscape, to foster the diffusivity between strata.

• Difficulty 2 – section 2.3.3: curse of dimensionality and concentration phenomena. In high dimensions,
when the probability mass is concentrated in a small typical set, move sets exploring uniformly the
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Figure 2.1 Connectedness between strata is prime to fast convergence. Energy levels may be seen
as the nodes of a graph and may be connected in a variety of ways. In this work, we exploit a random walk
aiming at describing a ladder to connect these nodes.

En

E
n−1

E1

E0

E
n−2

entire space face difficulties to sample such sets. We introduce a biasing strategy (in terms of directions
for the move set), promoting diffusivity between strata.

• Difficulty 3 – section 2.3.4: multimodal distributions. To deal with the case of multimodal distributions,
we resort to darting, a strategy meant to connect parts of the energy landscape which are separated
by regions of low probability.

• Difficulty 4 – section 2.3.5: energy range discretization. Slow mixing of the random walk may be due
to an inappropriate energy discretization. We resort to a refinement strategy to fix such problems.

All in all, we aim for a ladder-like random walk as described in Fig. 2.1 which connects each energy level
with the one bellow and the one on top with an as high as possible probability.

2.3.2 Overstepping strata

Problem

Strata of small thickness tend to be stepped over. This typically happens when the landscape is steep‘ or the
discretization is fine. It is thus important to adapt the travel distance of the random walk in such regions.

A Gaussian mixture identical for all strata has been used [BJMD13]. However, the mixture is symmetric
(see section 2.2.2) and does not exploit the geometry of the landscape.

Solution

We estimate the local ”steepness ” of the energy function using a Taylor expansion of the energy. We use
an order two expansion since the gradient vanishes near local minima.

We first sample a direction ~u uniformly at random in the unit sphere Sn−1. We then compute the Taylor
expansion in the direction u with h ∈ R:

U(x+ h~u) = U(x) + h(∇U · ~u) + 1/2h2(~uTHess ~u). (2.6)

Assuming that x is in Ei, we compute using the Taylor expansion the interval [h0, h1] such that for
h ∈ [h0, h1] (Fig. 2.2)

x+ h~u ∈ Ei (2.7)

24



Figure 2.2 Exploiting the geometry of the landscape to avoid overstepping strata: move from
x0 ∈ Ei should either stay in Ei, move to Ei−1, or move to Ei+1. The intersection between a random
line through x0 with the level set surfaces of a quadratic approximation of the potential yields points {Xi}
from which the random walk is defined – see main text.

x0

~u H1 H2

Ei

Ei+1

Ei−1
Hi = x0 + hiu

Ei−2

H−1
H0

Doing the same for Ei−1 and Ei+1 yields [h−1, h0] and [h1, h2]. The last steps are to pick any of these 3
intervals with probability 1/3 and to sample h uniformly in the chosen interval.

Doing so effectively adapt the random walk to the local steepness of the energy landscape, allowing
multiple scales. Even better, it also changes and adapt to the chosen direction ~u.

If the direction u is sampled uniformly at random in the unit sphere S
n−1, the probability of going from

x to y for any x and y is:

qflat(x, y) =
Γ(n/2)

2πn/2‖y − x‖n−1

2
∑

i=0

1[hi−1,hi](< y − x, u >) 1

3|hi − hi−1|
. (2.8)

where the hi are defined as before, and therefore can be computed from the Taylor expansion at x in
direction y−x

‖y−x‖ . Note that the term before the sum is symmetric in x and y, hence it simplifies when

computing
qflat(y,x)

qflat(x,y)
.

Should the direction u be sampled with respect to a probability distribution with density Pdir on S
n−1,

the probability of going from x to y is:

qflat(x, y) = Pdir

(

y − x
‖y − x‖

)

1

‖y − x‖n−1

2
∑

i=0

1[hi−1,hi](< y − x, u >) 1

3|hi − hi−1|
(2.9)

Remark 2.1. Equation 2.6 explicitly uses the Hessian. In practice, the second order directional term is
estimated numerically using the gradient.

Remark 2.2. In the ideal case where the level sets are hyperplanes ( meaning that the gradient dominates),
the Metropolis-Hastings correction factor

qflat(y,x)

qflat(x,y)
introduced by the non symmetry of the random walk when

sampling a point in Ei starting from x0 in E1 is V (Ei)/V (E1), which cancels out the metropolis acceptance
ratio in Wang-Landau when θ is close to θ∗. It effectively bringing the asymptotic rejection rate of the
Wang-Landau random walk to 0.

2.3.3 High dimensionality and concentration

Problem

As noticed in section 2.3.1, we wish to design a random diffusive across strata, which requires moving down
from Ei to Ei−1 and moving up from Ei to Ei+1. Without loss of generality, we focus on the descent in the
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sequel.
Consider the problem of lowering the energy by moving from stratum Ei to Ei−1 (Fig. 2.3), starting at

point x0. To do so, a direction in a cone of angle α(x0, Ei−1) must be chosen because any direction outside of
this cone never intersects Ei−1. As the dimension increases, the probability of sampling a point in a cone of
fixed aperture decreases exponentially with the dimension (Fig. 2.4), preventing the random walk to reach
the stratum Ei−1.

Figure 2.3 Reaching region Ei−1 from Ei:
cone of suitable directions.

x0

Ei

Ei−1

α(x0, Ei−1)

Figure 2.4 Ratio between the area of the
spherical cap subtained by an angle θ
and that of the whole n-dimensional hemi-
sphere Sn−1/2. Ranges explored: dimension
n ∈ [3, 100], and angle θ ∈ [0, π/2].

Solution

The most straightforward way to overcome this problem is to decrease the bin size. Indeed doing so
makes α(x0, Ei−1) closer to π/2. In practice, the bin splitting strategy from [BJMD13] achieves this goal.
However, the number of required strata increases with dimension, making this strategy less effective. Let
Cdown(x0, Ei−1) ⊂ Sn−1 the subset of direction which allow moving downward from a point x0 ∈ Ei. Ideally,
we could avoid splitting bins if we could bias the choice of direction toward this subset. An approxima-
tion of Cdown(x0, Ei−1) could be found using a full second order Taylor expansion (thus requiring the full
Hessian matrix). However this would be computationally very costly and the sampling procedure on such
an approximation is unknown. Therefore, we limit ourselves to isotropic estimations of Cdown(x0, Ei−1),
ie Cdown(x0, Ei−1) is estimated by an isotropic cone of angle α(Ei, Ei−1). In addition, we introduce two
simplifying assumptions:

• the strata is not too wide,

• the curvature of the strata does not vary to much.

allowing us to approximate Cdown(x0, Ei−1) by a cone of direction ∇U and aperture Cdown(Ei, Ei−1). In other
words, we use the same aperture for every points in a energy level. The final ingredient is to estimate the
aperture α(Ei, Ei−1) during the runtime of the algorithm until the flat histogram has been reached NFHE

times – see section 2.2.3.

Estimating the angle. For a stratum Ei, we wish to select an angle amidst a predefined set {α(0)
i , ..., α

(k)
i }.

We apply the following procedure–which is independent from the generation of xt+1. For a given point xt ∈ Ei
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sampled by Wang-Landau, consider the cones of apex xt, axis ∇U(xt), and aperture angles α
(j)
i . We sample

M directions uniformly in each cone, and check for each such direction whether the stratum Ei−1 can be
reached. Once a prescribed number of points xt has been processed, we compute the probability of picking a
direction which reaches Ei−1 (or respectively Ei+1) for each cone. Then, we select the largest angle such that
this probability is larger than a user defined threshold. If no such angle exists, we use the fallback strategy
of section 2.3.5.

Remark 2.3. The previous strategy calls for the following comments:

• The aperture angle of the cone is actually critical. Consider the set of directions delimited on Sd−1

by a given cone. When the dimension increases, the mass of this set of directions concentrates on the
boundary of the cone. Therefore, if the cone aperture is overestimated, sampled directions will end up
with high probability in this region, and the corresponding random walk will miss the targeted stratum.

• Since the used cones are isotropic, the method is not suited to handle highly non isotropic cases.
However, moderately non isotropic cases are handled as well – see Experiments.

• Even if a suitable cone is found by the previous procedure, the Metropolis Hasting acceptance rate might
be low – for instance if strata are too wide or if the curvatures of level sets non constant.

Uniform direction in a cone. Sampling a uniform direction in a cone is non trivial. In the following, we
sketch the algorithm, and refer the reader to the supplemental for full details (Fig. 2.5 and SI section 2.6).

Figure 2.5 Uniform sampling within a conic region. The volume defined by the grey region is the
union of a cone and of a spherical cap.
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The algorithm proceeds in 3 steps:

• (i) Decide whether one samples from the cone or the spherical cap,

• (ii) Pick a slice in the cone or spherical cap,

• (iii) Sample the slice.

More formally:

• (i) Draw u ∈ [0, V Cone
n,α (1) + V Cap

n,α (1)]. If u < V Cone
n,α (1), we pick in the cone (ie l < L), else we pick in

the cap (ie l > L).
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Figure 2.6 Darting: reaching a prescribed energy level set via line search in direction u. The
line search starts from minimum mk with target energy Target.

u

xt+1 U = Target

mk

• (ii) Pick a slice of the cone or the cap at distance l from the center, using the density

fcone(l) = Cconer(l)
n−11l≤L = Ccone tan(α)

n−1ln−11l≤L (2.10)

or

fcap(l) = Ccapr(l)
n−11l>L = Ccap(1− l2)

n−1
2 1l>L (2.11)

with Ccone and Ccap normalization constants used to define probability densities.

• (iii) Draw uniformly at random in the corresponding n− 1 ball, using the density from Eq. (2.23).

2.3.4 Handling multimodal distributions via darting

Problem

For classical random walks, transitions between minima of multimodal distributions are rare events, inducing
long mixing times.

Solution

Assuming one has a a priori knowledge of the positionsm1, ..,mK of theses minima, it is natural to introduce
another type of move allowing jumps from one minima to another. To implement this, we use a darting
strategy – see [ASV01, SW11] and section 2.2.2.

Darting in its simplest form defines a radius ρ, then add transitions between the balls B(mi, ρ). In
practice, if xt ∈ B(mi, ρ), one picks a ball at random, call its index j, and proposes the following move:
xt+1 ∼ Unif(B(mj , ρ)). However the balls B(mi, ρ) do not match the level set surfaces of their respective
basins. Hence U(xt+1)−U(mj) might be much larger than U(xt)−U(mi), leading to poor acceptance rates
in the Wang-Landau algorithm.

Choice of the candidate point. Denoting mkt
the local minimum whose basin contains xt, define

∆Ut = U(xt)− U(mkt). Our rationale to optimize the acceptance ratio in Wang-Landau is to control both
∆Ut − ∆Ut+1 and the ratio q(y, x)/q(x, y). For the former, we proceed as follows in two steps. First, we
chose a target energy. For a given xt, let k be the index of the minimum chosen at random. For some β > 0,
we choose a target energy

TU ∼ Unif(U(mk) + ∆Ut − β, U(mk) + ∆Ut + β). (2.12)

Second, we propose a point xt+1 such that U(xt+1) = TU (Fig. 2.7). To this end, we sample a direction u
uniformly in the ellipsoid defined by vTH(k)v = 1 where H(k) is the Hessian of U at mk. Then we do a line
search to find the intersection between the target energy TU and the half line mk + R

+u (Fig. 2.6).
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Figure 2.7 Handling multimodal distributions via darting: jumping between 2 minima. While
darting, the difference of energy with the local minima is controlled to monitor the acceptance rate.
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When to jump. The previous strategy requires a line search which is expensive if the target point is far
from the local minimum. Furthermore, under some assumptions which are true if jumps are only allowed
close to the local minima, the expression of the transition kernel can be simplified. Hence we introduce M
a user defined parameter , and the darting move set is only used if ∆Ut ≤M .

Transition kernel. Computing the transition kernel of the darting move is non trivial, but can be done
using a suitable change of variable. The full computation is detailed in the appendix – section 2.7, however
for the sake of brevity, we only give here the final result. For any x and y in R

n, let k be the closest minima
to y, Ik = [U(mk) + ∆U − β, U(mk) + ∆U + β], λi and ei the eigenvalues and eigenvectors of the Hessian
of U at mk. Finally, let

l =

√

∑

i

λi < y −mk, ei >2. (2.13)

Using the latter, the transition probability is given by:

qdart(x, y) =
1

K

Γ
(

n
2

)

2β

2π
n
2

1Ik(U(y))
1

ln
∇U(y)T (y −mk)

∏

i≤n

√

λi. (2.14)

2.3.5 Splitting energy bins

As a general rule, more bins means aiming for a more precise description of the density of state. This implies
a slower convergence speed. Thus we only split bins when the cone strategy fails, as a fallback. We monitor
the failure of the cone strategy by computing the proportion of steps in which the random walk has the
possibility to go up or down in energy (see 2.3.2 ) and the success rate of the metropolis hasting criterion
when going up or down. If either of these statistics are too low for a given bin, the bin is halved.

2.3.6 The random walk

The final random walk combines the previous random walks. Let p(x) = (poverstep(x), pcone(x), pdarting(x))
such that pflat(x) + pcone(x) + pdarting(x) = 1 for all x ∈ R

n. The final random walk is:

• chose one of the random walk at random with probability vector p(xt)

• sample the point xt+1 according to the chosen random walk

Such random walk has the following transition probability:

q(x, y) = poverstep(x)qflat(x, y) + pcone(x)qcone(x, y) + pdarting(x)qdarting(x, y) (2.15)

Remark 2.4. Since the random walk q is used in the Metropolis-Hastings algorithm, it is crucial to be able
to compute q(x, y) for any x and y.
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2.4 Experiments

2.4.1 Setup

Statistics of interest

Our experiments target three points: correctness, mixing time, and ability to handle complex systems. For
the sake of conciseness, time t refers to t steps of Wang-Landau.

Correctness, stability, and convergence. When an analytical solution for θ∗ is known, we simply resort
to the relative error for estimates at time t, defined by:

error(t) =
∑

i

|θ∗i − θi(t)|
θ∗i

. (2.16)

We plot this function along time.
When no analytical solution is known–see the dialanine model below, we assess convergence in two ways,

based on several runs (N = 60). First, we plot an observable along time, akin to the partition function, at
a fixed temperature:

Z

λ(E) =
1

λ(E)

∫

E
exp (−U(x)/kT ) ≈

∑

Energy levels U

θ∗i exp (−U/kT ). (2.17)

Second, we provide box plots on a per bin basis. We also resort to violin plots when more details are
required–in terms of distribution modes.

Mixing time. A classical assessment of the mixing time is in terms of auto-correlation as a function of
the lag time [RR01]. In our setting, where diffusivity across energy strata is targeted, a simpler proxy for
the mixing time of Pθ is provided by the so-called climbing and descending times:

Definition. 2.1. A climb across d strata is defined by two times t0 and t1 such that

• xt0 ∈ E0 and xt0−1 /∈ E0.
• xt1 ∈ Ed−1 and ∀t ∈ [t0, t1[, xt /∈ Ed−1.

The climbing time is then t1 − t0.
Note that we do not normalize the climb times by the number of strata. Indeed, as seen in section 2.3.5,

increasing the number of strata can decrease the mixing time. Hence the number of strata is a parameter
tuned for convergence speed and therefore should not be taken into account when measuring mixing time.

In the context of multi-modal distributions, another proxy for the mixing is the time taken by the random
walk to go from one mode to the other. To that end, we monitor the time evolution of the proportion of
time spent in one of the modes.

Contenders

As a yardstick, we compare our random walk (section 2.3.6) against the isotropic Gaussian random walk.
However, while our random walk do not require parameter tuning, the Gaussian variance needs to be tuned
for a fair comparison [RR01]. Hence we compare with 3 Gaussian walks with high, adequate and low variances
with respect to the tuned variance.

Models

Analytical models. We study three analytical models. The first model is the isotropic harmonic potential.
The second is a non isotropic harmonic potential, to ensure that the algorithm behaves correctly in non trivial
settings (Remark 2.3). The last model is a potential with two local minimum designed to study darting.
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Molecular model. Finally, our last system is a classical toy molecular system, namely the blocked alanine
peptide Ace-Ala-Nme (Fig 2.8), referred to as dialanine for the sake of conciseness. This system underwent
extensive thermodynamic studies, using techniques as diverse as molecular dynamics [Smi99], Monte Carlo
and energy landscape based methods [SW13], or dimensionality reduction methods [SCK10].

We use the amber99-sb force field in vacuum and aim to compute the density of state between -21
kcal/mol and 4 kcal/mol associated to one local minima – by enforcing the simulation to remain inside the
basin of this local minimum (φ = 59.8862, ψ = −35.5193).

Figure 2.8 Dialanine (Ace-Ala-Nme) and the two dihedral angles Φ and Ψ

Ψ
Φ

Additional informations about my work on the implementation of force fields in the Structural Biology
Library is available in Appendix A.1

2.4.2 Results

Single well potential

We study here the simple harmonic model

U(x) =
∑

x2i

with state space the unit ball in dimension n = 30. Since the exact result is know, we plot the exact error.

Let us first focus on the error (Fig. 2.9(Top)). The cone strategy yields the best results; all remaining
strategies fail to converge in the imparted time (107 steps). This radical improvement owes to a climb time
orders of magnitude smaller for the cone strategy (Fig. 2.9(Bottom)).

The comparable performances of the isotropic Gaussian random walk with ours (with cone off) owes to
the fact that on this example, with the chosen discretization, strata overstepping is not critical.

Single well potential - no isotropic

To challenge all methods with a non-isotropic case (Remark 2.3), we use the following non isotropic potential
energy:

U(x) =

n
∑

i=1

ix2i

Also in dimension n = 30, the results are on par with the isotropic case (Fig. 2.10).
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Figure 2.9 Isotropic single well in dimension 30: comparison of the five random walks. The five
random walks used are the three Gaussian based RW, plus the improved random walk with and without the
cone improvement. (Top) Comparison of the evolution of relative error – Eq. (2.16) (Bottom)
Box plot of the climbing times.
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Figure 2.10 Non isotropic single well in dimension 30: comparison of the five random walks.
The five random walks used are the three Gaussian based RW, plus the improved random walk with and
without the cone improvement. (Top) Comparison of the evolution of relative error – Eq. (2.16)
(Bottom) Box plot of the climbing times.

103 104 105 106 107

step

10 1

100

101

102

re
la

tiv
e 

er
ro

r

relative error for non isotropic potential well in dimension 30

gaussian, sigma = 0.5
gaussian, sigma = 0.1
gaussian, sigma = 0.05
improved cone on
improved cone off

Gaussian 
 sigma =0.5

Gaussian 
 sigma =0.1

Gaussian 
 sigma =0.05

improved 
 cone on

improved 
 cone off

0

50000

100000

150000

200000

250000

300000

350000

400000

climb time statistics for non isotropic potential well in dimension 30

32



Figure 2.11 Dual well potential in dimension 30: analysis of darting. (Top) Evolution of relative
error of Eq. (2.16) when using darting. (Bottom) Comparison of time spent in the first well
with and without darting.
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Dual wells potential: darting

To challenge darting, we use the usual one-dimensional dual well potential energy function x4− x2, and add
a quadratic potential in other dimensions:

U(x) = x41 − x21 +
n
∑

i=2

x2i .

This potential energy has 2 local minimum at (− 1√
2
, 0, ..., 0) and ( 1√

2
, 0, ..., 0). The additional coordinates

makes it harder to travel from one minimum to the other by making it hard to choose suitable directions.
The sampled energy range is [−0.25, 1], allowing the random walk to pass from one minimum to the other.

We setup the darting move set with these two minima, and compare our random walk with and without
darting.

Both methods yield correct values (Fig. 2.11(Top)). (Data not shown for darting disabled: since the
potential energy function is symmetric for the first coordinate, the algorithm computes the correct value
even if it never crosses the energy barrier.)

It appears that the random walk allows crossing the energy barrier almost instantly, while with darting
disabled the first jump appears after 105 samples (Fig. 2.11(Bottom)). This induces a large difference in the
mixing time.

Dialanine

On this system, the results reported thereafter were obtained using the cone improvement, as convergence
could not be obtained without it.

To compute the value defined by Eq. (2.17) restricted to the basin of the local minimum with torsion
angles, we enforce the simulation to remain within this basin. Checking whether a point is in a given minima
basin of attraction requires a minimization of the potential energy. Since this is costly operation, we check
this condition every N (=100) steps. If the random walk has escaped, we roll back to the latest point in this
basin. (Note that this requires downgrading all statistics and random number generators [CC18a].)

Remark 2.5. The previous roll back strategy may introduce some bias, as an excursion outside the basin may
not be detected. The effectiveness of this strategy relies on a bounded proportion of roll backs, see [CC18a].
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Figure 2.12 Analysis of convergence for dialanine, using amber-69sb forcefield in vacuum.
Results averaged over 60 independant simulations. (Top) evolution of the partition function. (Middle)
Box plot of the estimation θi for each bin i. (Bottom) Violin plot of the partition function at
T = 300K, at three different time frames along the course of the simulation.
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We perform 60 runs, each with 107 steps.

To analyze convergence, we plot the time evolution of the observable defined from the partition function
at T = 300K (Eq. (2.17), Fig. 2.12(Top)). Since all simulations use the same number of bins, we also provide
a box plot for each bin Fig. 2.12(Middle)). Finally, to check whether the observable is unimodal or not, we
perform a violin plot at three different time frames along the course of the simulation (Fig. 2.12(Bottom)).

We note that the convergence was reached to a different extent as a function of the volume of strata:
the smaller the volume of a stratum, the higher the variance of estimates. This is expected as sampling rare
events is always more challenging. It appears, though, that the observable converges (Fig. 2.12(Bottom)),
since values concentrate along a single mode.

To get further insights, we study the contribution of individual strata reweighted by Boltzmann’s factor
(Fig. 2.13). We first note that the energy range used is sufficiently large since contributions of the last
stratum is one order of magnitude smaller than the highest one (Fig. 2.13(Top)). The more detailed violin
plots–not in log scale, also shows that distributions within strata are unimodal.
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Figure 2.13 Analysis of convergence for dialanine, using amber-69sb forcefield in vacuum.
Results averaged over 60 independant simulations. (Top) Box plot of the final bins volume with
respect to the Boltzman distribution at T = 300K (Bottom) Violin plot of the final bins volume
with respect to the Boltzman distribution at T = 300K
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2.5 Outlook

Given a physical system characterized by an energy, the Wang-Landau algorithm is a stochastic method
returning an estimation of the density of states in terms of histogram. A core component of the method
is the random walk used to navigate between the strata i.e. the preimages in configuration space of the
energy slices defining the histogram. In this work, we make an explicit link between the convergence of
the Wang-Landau algorithm and mixing properties of the underlying random walk. This analysis prompted
the development of a novel, parameter-free random walk. This random walk embarks three components
which respectively target the following three difficulties: avoiding overstepping strata, coping with the curse
of dimensionality, and accommodating multi-model distributions. The geometry awareness removes the
necessity of tuning the variance of the random walk while performing well with strata of varying width. The
cone improvement is crucial to deal with concentration phenomena in high dimensional problems. Darting is
necessary for multimodals distributions with low transition probabilities between modes. The performances
of our random walk are assessed by measuring so-called climbing times which quantify the diffusivity across
strata. All in all, the resulting Wang-Landau algorithm is effective is computing observables for small
biomolecules, within hours on a laptop computer.

Our work calls for developments on two types of questions. On the design side, while our random
work operates in Cartesian coordinates, switching to internal coordinates is an appealing strategy to handle
biomolecules whose conformational changes are best described by valence and torsion angles. On the analysis
side, our assessment is experimental and prompts challenging analysis issues. On the one hand, a rigorous
analysis of the mixing time of our random walk would provided insights on which geometric features of the
conformational space / landscape matter. On the other hand, bridging the gap between the mixing time of
the random walk and the convergence speed of WL would be of high interest.

2.6 Appendix: uniform sampling in a hypercone

We wish to sample uniformly at random in the intersection of a cone of aperture α intersected with a n-
dimensional ball Bn(R) as described in Fig.2.5. The algorithm and the calculations use the notations of Fig.
2.5.
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2.6.1 Pre-requisites

Special functions. We shall need the Beta and incomplete Beta functions, defined by

{

B(a, b) =
∫ 1

0
tx−1(1− t)y−1dt,

B(x; a, b) =
∫ x

0
tx−1(1− t)y−1dt( with 0 < x < 1).

(2.18)

Using both, one defines the regularized incomplete Beta factor

Ix(a, b) =
B(x; a, b)

B(a, b)
. (2.19)

Spheres and balls: surface and volume. The surface area of a sphere of a n − 1 sphere Sn−1(R) of
radius R in R

d

Arean−1(R) = Rn−1 2 πn/2

Γ (d/2)
≡ Rn−1An. (2.20)

The volume of the corresponding ball Bn(R) satisfies

Voln(R) = R
Arean(R)

n
= Rn 2

n

πn/2

Γ (n/2)
= Rn πn/2

Γ (n/2 + 1)
≡ RnVn. (2.21)

To generate a point X uniformly at random on the unit the unit sphere Sn, we generate a point X =
(x1, . . . , xn)

t whose coordinates are iid Gaussian with µ = 0 and σ = 1. The corresponding density is given
by

fG(X) =
1

(2π)n/2
e−

x2
1+x2

2+···+x2
n

2 . (2.22)

To obtain a unit vector, we normalize the latter as X
‖X‖ . (NB: due to normalization the coordinates of

this vector are not independent.)

Random generation within a ball. To generate a point uniformly at random inside Bn(R = 1), observe
that the volume of Bn(r) = rnVn. Differentiating yields

d

dr
(rnVn) = drn−1Vn. (2.23)

Therefore one generate a random value using the density drn−1 for r ∈ [0, 1].

Spherical caps of the n-dimensional ball. We consider a conic region inside the n-dimensional ball,
consisting of the union of a pyramid and that of a spherical cap defined by the cone of aperture α (Fig. 2.5).
Surface and volume of such a cap is easily computed [Li11].

To compute the volume of the cap, we integrate the volume of a n−1 dimensional sphere or radius r sinβ
whose height element is d(r cosβ) = r sinβ:

V Cap
n,α (r) =

∫ α

0

Voln−1(r sinβ)d(r cosβ) =
Voln(r)

2
Isin2 α(

n+ 1

2
,
1

2
). (2.24)

Note that the incomplete Beta factor as the probability for a point of the ball to also be inside the spherical
cap.

To compute the surface of the cap, we integrate the area of a n− 1 dimensional sphere or radius r sinβ
with arc element rdβ:

ACap
n,α (r) =

∫ α

0

Arean−1(r sinβ)rdβ =
Arean−1(r)

2
Isin2 α(

n− 1

2
,
1

2
). (2.25)
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2.6.2 Algorithm to uniformly sample a hypercone

Sampling from fcap

The previous algorithm requires sampling from fcap defined in eq.(2.11). The most straightforward way
to sample from a probability density is to compute the inverse of the cumulative distribution function
(F (x) =

∫ x

−∞ f(y)dy). This requires to compute a primitive of the density. However, see BEFORE, there is
no simple analytic expression for the primitive of fcap. Hence, we fall back to rejection sampling with a well
chosen base distribution such that the rejection rate do note depend on the dimension n.

Observe that while (1 − l2)n−1
2 do not have a simple primitive, the function l(1 − l2)n−1

2 do. Therefore
we define

gcap(l) =MCcapl(1− l2)
n−1
2 (2.26)

with M such that for all l, gcap(l) ≥ fcap(l) which is required for rejection sampling. The optimal choice for
M is:

M =
1

L
=

1

cosα

. L g̃cap the renormalized version of gcap. Assuming we can sample point from g̃cap, the acceptance rate for
each l in the rejection algorithm used with fcap and gcap is

fcap(l)

gcap(l)
=

1

lM
≤ 1

M

as l ≤ 1. Hence the acceptance rate do not depend on n and only on α the opening of the cone.

Sampling from g̃cap: To sample from g̃cap we compute the inverse of it’s cumulative distribution.
Let

B(x) =

∫ x

L

l(1− l2)n−1
2 dl

using the change of variable y = 1− l2, we deduce:

B(x) =

[

− (1− y2)(1+n)/2

1 + n

]x

L

=
(1− L2)(1+n)/2

1 + n
− (1− x2)(1+n)/2

1 + n

The cumulative distribution for g̃cap is

F (x) = 1x>L
B(x)

B(1)

= 1x>L

(

1− (1− x2)(1+n)/2

(1− L2)(1+n)/2

)

And it’s inverse:

F−1(x) =
√

1− (1− L2)(1− x)2/(n+1)

Hence we can sample from g̃cap.

Sampling from fcone

The inverse CDF for fcone is straightforward to compute:

F−1
cone(x) = Lx1/n

Therefore we can sample from fcone.
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2.6.3 Changing the cone axis

The previous section algorithm generates a point in a cone whose axis is fixed: e1 = (1, 0, ...0). In practice,
the axis of a cone is aligned with the gradient of the potential energy – Section 2.3.3.

To handle arbitrary cones, we apply a linear transformation. We describe here how to apply this trans-
formation with a contained complexity. Let d ∈ R

n \ {e1} be the desired axis of the cone.
Let H be the hyperplane orthogonal to e1. In the algorithm, we generates points in H. Suppose we generate
(x2, ..., xn) in H. For any orthonrmal basis ǫ2, ..., ǫn of H, the points x2ǫ2 + ... + xnǫn will have the same
distribution in H. Hence we try to find a basis ǫ2, ..., ǫn adapted to our problem.

We choose ǫ2 = d−<d,e1>e1
‖d−<d,e1>e1‖ .

We complete this base with ǫ3, ..., ǫn, and we will see that the choice of these ǫ3, ..., ǫn do not matter.
Let R the rotation such that R(e1) = d and R(ǫi) = ǫi for i > 2.

Let H0 = V ect(e1), H1 = V ect(e1, ǫ2) and H2 = V ect(ǫ3, ..., ǫn).
Let x ∈ R

n. Then there exists u1, u2 and v such that

x = u1e1 + u2ǫ2 + u3v

with v = x− < x, e1 > e1− < x, ǫ2 > ǫ2 ∈ H2. u1, u2 and v are straightforward to compute. We easily get:

R(x) = R(u1e1 + u2ǫ2) + u3v

Thus the transformation R can be reduced to a simple rotate in R
2. Let θ =< e1, d >. Then

R(u1e1 + u2ǫ2) = u1d+ u2 (cos(θ + π/2)e1 + sin(θ + π/2)ǫ2)

Thus we full transform is as follow:

• compute

ǫ2 =
d− < d, e1 > e1
‖d− < d, e1 > e1‖

• compute u1 =< x, e1 >, u2 =< x, ǫ2 > and v = x− u1e1 − u2ǫ2
• compute θ = (e1, x) and d̃ = (cos(θ + π/2)e1 + sin(θ + π/2)ǫ2)

• R(x) = u1d+ u2d̃+ v

2.7 Appendix: transition probability for darting

2.7.1 Notations

We give here a detailed computation of the transition probability for darting given by eq. 2.14. We use the
same notations than in section 2.3.4. Let us write Pdart the Markov kernel associated to the darting move.
Let x be a point of E . The transition kernel has a density, hence we write P (x, y) instead of P (x, dy). For a
minimum k, let H(k) the Hessian of U at mk. Let λ1, ..., λn it’s eigenvalues and e1, .., en it’s eigenvectors as
an orthonormal basis. Finally let Ak ⊂ E be the basin of attraction of minimum k and let kx the minimum
such that x ∈ Akx . We consider the following rescaling of state space:

hk(y) = mk +
∑

i

√

λi(y −mk|ei)ei. (2.27)

Let Ũk(z) = U(h−1
k (z)) the potential energy in the rescaled space. Let f̃k(u, TU ) the application which

associates the first intersection between mk + αu and Ũ = TU + U(mk) with α > 0. Formally, f̃k is an
application defined on Sn−1 × R

+.
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Let fk(u, TU ) = h−1(f̃(u, TU )). Also let fk∗(µk,x) be the pushforward measure of µk,x by fk.

Then, the Markov kernel seen as an operator on measures is given by:

Pdart(x, .) =
1

K

∑

k

fk∗(µk,x)
∫

µk,x
(2.28)

where µk,x is the product measure of the Lebesgue measure on Sn−1 and the Lebesgue measure of

Ik(x) = [U(x)− U(kx) + U(k)− β, U(x)− U(kx) + U(k) + β] (2.29)

2.7.2 Assumptions

The following assumption ensures that function fk defines a bijection between the set of directions and the
restriction of the target energy level set surface to the basin of a local minimum:

Assumption 1. For every local minimum k ≤ K, u ∈ Sn−1, TU ∈ [U(mk), U(mk) +M ], the intersection
{y|y = mk + αu, α > 0} ∩ {y|U(y) = TU} ∩Ak is a single point. See Fig. 2.14 and Fig. 2.15.

Doing a line search for every minimum is expensive. Using constant M defined in Section 2.3.4(see
paragraph When to jump), we introduce the following assumption to simplify Eq. (2.28):

Assumption 2. For every y such that U(y)− U(mky
) ≤M , then for every k ≤ K,

‖y −mky
‖ ≤ ‖y −mk‖

The simplified expression for Eq. (2.28) reads as

P (x, y) =
1

K

fky∗(µky,x)
∫

µky,x

where ky is the closest minimum to y. As a final observation, assumptions 1 and 2 are true if M is small
enough (using a second order Taylor expansion for the proof at the bottom of the local minima)

Figure 2.14 Not allowed by assumption 1 as there are multiple intersection point between a direction
and the restriction of an energy level set to a basin.

mk

U = TU
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Figure 2.15 Not allowed by assumption 1 as selected directions yield intersection points outside the
basin of m1.

m1 m2

U = TU

basins boundary

2.7.3 Derivation of the transition probability

Under assumption 1, fk is a bijection from Sn−1 × [U(mk), U(mk) + M ] to the connected component
containing mk of the set of point {y|U(y) ≤ U(mk) +M}. Hence it’s inverse is well defined. The density of
the pushfoward measure can be computed using the usual change of variable formula:

fk∗(µk,x)(y) = |J(f−1
k )(y)|1Ik(U(y))

For notation simplicity, we consider a fixed k and write f = fk and h = hk for the following computation.
The inverse of f has the following expression:

f̃−1(z) =

(

z −mk

‖z −mk‖
, Ũ(z)

)

Let z = h(y) and u = z−mk

‖z−mk‖ , and choose w1, ..., wn−1 in R
n such that w1, ..., wn−1, u is an orthonormal

basis of Rn. Let l = ‖z −mk‖. Then:

∂f̃−1

∂wi
(z) =

(

1

l
wi,

∂Ũ

∂wi
(y)

)

Observe that w1, ..., wn−1 is an orthonormal basis of the tangent space of Sn−1 at u. Then considering that
f̃−1 is an application from an open set of Rn to Sn−1 × R

+, the Jacobian of f−1 becomes:

J(f̃−1)(z) =















1
l 0 ... 0 0
0 1

l ... 0 0
...

...
. . .

...
...

0 0 ... 1
l 0

(∇Ũ(z)|w1) (∇Ũ(z)|w2) ... (∇Ũ(z)|wn−1) (∇Ũ(z)|u)















Hence

|J(f̃−1)(z)| = 1

ln−1
(∇Ũ(z)|u)

And using Ũ(z) = U(h−1(z)),

∂Ũ

∂u
(z) = ∇U(y)TJ(h−1)(z)u (2.30)

= ∇U(y)TJ(h−1)(z)
z −mk

l
(2.31)

= ∇U(y)TJ(h−1)(z)(h(y)−mk)
1

l
(2.32)

= ∇U(y)T (y −mk)
1

l
(2.33)
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Where the simplification in equation 2.33 is justified by the fact that h(y) − mk = J(h)(y − mk) =
J(h−1)−1(y −mk). Combining the two previous equations:

|J(f̃−1)(z)| = 1

ln
∇U(y)T (y −mk)

We deduce:

|J(f−1)(y)| = |J(h)| 1
ln
∇U(y)T (y −mk)

The Jacobian matrix of h is easy to compute:

|J(h)| =
∏

i≤n

√

λi

Hence we deduce:

fk∗(µk,x)(y) = 1Ik(U(y))
1

ln
∇U(y)T (y −mk)

∏

i≤n

√

λi (2.34)

The rescaling factor for measure µk,x is:

∫

µk,x =
2π

n
2

Γ
(

n
2

)

2β
(2.35)

Injecting equations 2.34 and 2.35 into equation 2.28 allows us to compute Pdart(x, y).
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Chapter 3

Hamiltonian Monte Carlo with
boundary reflections, and application
to polytope volume calculations

3.1 Introduction

3.1.1 Sampling in high dimensional space: a pervasive challenge

Sampling with MCMC algorithms. Broadly speaking, Monte Carlo algorithms provide means to obtain
numerical values from simulations resorting to randomness. Such algorithms have countless applications, as
illustrated by the following examples. In statistical physics, macroscopic properties also called observables
may be obtained from computer simulations generating ensembles of conformations over which averages are
computed [LB14]. In numerical mathematics, a frequent goal is to generate point following a given target
distribution [RC13]. In (Bayesian) statistics, a classical goal is the calculation of maximum a posteriori
(MAP). Two classes of sampling techniques deserve a mention in this work. The first one is importance
sampling [BGJM11], a generic strategy aiming at sampling rare events and reducing the variance of estimators
by biasing the target distribution. The second one is Markov Chains Monte Carlo, where an ergodic Markov
chain is used to target a given distribution [BGJM11]. A generic method in this realm, both conceptually
elegant and remarkably generic is the Metropolis-Hastings methods, where the Markov chain used consists in
iteratively generating samples, and accepting/discarding them. Interestingly, this simple description suffices
to capture the major difficulties of the method in high-dimensional spaces. When the target distribution
allocates its mass on a typical set of small dimension, the samples generated should clearly remain in close
vicinity of this set so as to avoid large rejection rates.

Hamiltonian Monte Carlo. An efficient solution to deal with such cases is Hamiltonian Monte Carlo
(HMC) [Bet17, Rad12]. HMC aims at sampling a distribution π in a high dimensional space, by defining
Markov chain in phase space R2n, with n coordinates for the position q, and n coordinates for the velocity p.
As the name suggests, HMC is governed by an ODE system defined by Hamilton’s equations. In a nutshell,
a HMC step involves three steps which are (i) picking a random velocity p, (ii) traveling deterministically
the level set surface of the Hamiltonian, and (iii) projecting down in configuration space.

As seen from Hamilton’s equation, the fact that the gradient of the target density is used to twist the
momentum p rather than the position q helps forcing the dynamical system to be diffusive near the typical set
[Bet17]. A key difficulty though is the calculation of exact orbits, which we shall fudge around analytically
in our case.
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Volume calculations and density of states. Computing the volume of a polytope – a bounded region
of Rn defined by the intersection of a fixed set of half spaces, is a classical problem in science and engineering.
Unfortunately, exact volume calculation algorithms take an exponential time in the worst case [BEF00]. A
related problem to polytope volume calculations is the calculation of density of states (DoS) in statistical
physics. To see why, recall that a partition function may be written as a sum or integral over energy levels of
the DoS achieving a particular energy [LB14]. Therefore, a classical strategy to compute a partition function
consists of estimating the volume in phase space of the pre-image of an energy level.

The case of polytopes is especially interesting since considerable efforts were devoted to complexity
bounds, and the hardness results obtained calibrate the intrinsic difficulty of such problems in high dimen-
sional spaces. Complexity-wise, it can be proved that the problem is #-P hard both for V-polytopes and
H-polytopes [DF88]. Intuitively, any deterministic algorithm using a polynomial number of points and com-
puting the corresponding convex hull omits an exponentially large fraction of the volume. This observation
naturally calls for approximation algorithms [BF87, Lev97].

A major breakthrough was the development of the polynomial-time randomized algorithm by Dyer et al.
[DFK91]. More recently, it has been shown that (ε, δ) approximations of the volume could be computed in
O⋆(n4) [LLV06]. The volume calculation boils down to estimating ratios in a telescoping product, each ratio
being the integral over the convex of exponential functions carefully chosen according to a cooling schedule.
The first function is sharply concentrated within the convex, while the last one is a flat distribution. A total
of O⋆(

√
n) such functions are used. Each ratio in the telescoping product is estimated (with guarantees)

using O⋆(
√
n) samples. The complexity of generating a given sample being O⋆(n3), the overall algorithm

has complexity O⋆(n4).
The complexity was recently improved to O⋆(n3) [CV15, CV18], using Gaussian rather than exponential

functions. The improvement come from an enhanced cooling schedule, and a decreasing mixing time –
O⋆(σ2n2) rather O⋆(n3) with σ2 the variance of the sampled isotropic Gaussian.

Interestingly, these randomized algorithms implement a multi-phase MC strategy, and the estimation of
individual terms in the telescoping product resort to importance sampling.

Random walks and mixing properties. The aforementioned randomized algorithms embark several
key ingredients, the most prominent one being the strategy to generate random samples. Except in simple
cases, the most generic approach is to use a random walk defining a Markov chain. Several such walks
have been used, including ball walk [LK99], hit-and-run (HAR) [Lov99, LV03, LV04, HCT+17], billiard walk
[GP14].

As discussed above for the case of MCMC algorithms, the goal of such a walk is to generate samples
according to a target distribution. Of particular interest is HAR, since the method is amenable to several
optimizations [aVF14, EF18], including the choice of the random line used, and the calculation of the facet of
the polytope intersected by a line. In any case, the convergence is assessed by mixing properties, e.g. based
on the total variation distance which measures how far the random walk is from its stationary distribution
[LP17]. For the particular case of polytope volume calculations, both HAR and ball walk were particularly
studied. HAR mixes in O⋆(n3) from any starting point, with constants depending on the geometry of the
polytope. Ball-walk mixes in O⋆(n3), and requires a warm-start – certain hypotheses on the starting point
are required. Finally, we also mention billiard walk, a random walk based on reflections on boundaries. While
we are unaware of mixing time analysis, convincing experiments have been reported for the generation of
uniform samples [PG14].

Robustness issues. The simplest computer model to use when designing numerical / geometric algorithms
is the real RAM model which assumes that exact operations on real numbers are available at constant time
per operation [PS85]. In practice, such assumptions are not valid, in particular due to rounding operations
inherent to representations of floating point numbers in computers, and arithmetic operations are specified
by the IEEE 754-2008 standard [MBdD+18].

The case geometric algorithms of particularly critical, since erroneous evaluation of expressions condi-
tioning the branching of the algorithm typically yield situations where the calculation is no more coherent
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(the algorithm loops or crashes), or possibly worse terminates with an erroneous answer.
Such situations occur near degenerate situations, and manifest systematically even on the simplest ex-

pressions in 2D space [?]. The design of robust geometric algorithms can be done in a general way using
the Exact Geometric Computation paradigm [YD95], as it is done for example in the CGAL [cga] software
library. In order to do so, the CGAL kernel distinguishes between predicates and constructions. A predicate
is a function whose output belongs to a finite set – e.g. boolean or checks whether an expression is positive
/ negative / null. A construction exhibits a new numeric or geometric object (e.g. distance, point, vector)
from pre-existing ones.

To ensure robustness, we develop our algorithms in this framework, using multi-precision number types
whose accuracy can be increased on demand to ensure the correctness of predicates.

3.1.2 Contributions

This paper makes contributions touching upon random walks for MCMC algorithms, polytope volume cal-
culations, and Hamiltonian Monte Carlo. More precisely:

1. In section 3.2, we analyse a novel random walk combining billiard walk and HMC. The random walk is
designed to sample a target distribution, and piecewise smooth analytical trajectories can be obtained.
For the particular case of a polytope K, intersection of the trajectory yields reflections inside K.
Convergence properties are established.

2. In section 3.3, we instantiate our random walk to sample distributions used for polytope volume
calculations. Analytical expressions for HMC trajectories are obtained. We also provide a robust
implementation of the random walk based on multi-precision interval arithmetic.

3. Finally, section 3.4 reports experiments comparing HAR and our random walk. The first test samples
a target distribution. The second one embeds our random walk into the practical polytope volume
calculation of Cousins and Vempala [CV16]. In both cases, we show superior performances over HAR,
for dimension up to n = 50.

3.2 Hamiltonian Monte Carlo method with boundary reflections

In this section we consider a bounded open set Q ⊂ R
n with piecewise smooth boundary and a probability

measure with density π : Rn → R≥0 such that π(x) = 0 for all x not in the closure Q of Q. We would like
an algorithm sampling points according to π. The traditional HMC algorithm does not handle boundaries,
hence we present a modification of HMC with reflections which is drawn from [AD15] and [GP14, PG14].

3.2.1 HMC with reflections

As with HMC, we define a potential energy U(q) = − log(π(q)) and the Hamiltonian H(q, p) = U(q)+ 1
2‖p‖2

but this time restricted to Γ = Q×R
n. We assume that π is the restriction to Q of positive smooth function

defined on R
n and we use Φt the Hamiltonian flow. However, the trajectories of this flow are not included

in Q even if the initial point (q, p) is in Q×R
n. For every q ∈ Q and every p ∈ R

n, we define T (q, p) as the
largest T such that for all 0 ≤ t < T , Φt(q, p) ∈ Q. We also define T (q, p) = 0 when q is in the boundary of
Q.

Following [AD15] and [GP14, PG14], we modify the flow by forcing reflections on the boundary of Q.
This flow, illustrated on Fig. 3.2, is denoted as follow:

{

Φ̃t : Q× R
n → Q× R

n

(q, p) 7→ Φ̃t(q, p) ≡ (Φ̃
(q)
t (q, p), Φ̃

(p)
t (q, p)).

(3.1)

Note that the latter equation defines position and velocity upon applying the flow. However, as noted in
[GP14, PG14], this new flow might exhibit problematic trajectories: some of them might not be defined
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for all t because of singularities on the boundary, others might have huge number of reflections or even an
infinite number of reflections in finite time. Hence, following ideas of [GP14, PG14], we cull problematic
trajectories by not moving in those cases.

Remark 3.1. For q ∈ Q and any p, T (q, p) > 0 and Φ̃T (q,p)(q, p) is in the boundary of Q.

Remark 3.2. When q is in the boundary of Q and t > 0, Φ̃t(q, p) is only defined for the momenta p such
that the open half-line with origin q and direction p, is included in Q in a neighborhood of q.

Algorithm Let M ∈ N
∗ be the maximum number of reflections. Given a point q(t) ∈ Q, the algorithm is

as follow (Fig. 3.1):

Figure 3.1 Hamiltonian Monte Carlo with reflections

1. Choose the traveling time L ∼ unif(0, 1)

2. Pick the momentum p ∼ N (0, In)

3. If the flow Φ̃L(q
(t), p) is defined and does not involve more than

M reflections between t = 0 and L, and if Φ̃L(q
(t), p) ∈ Q

• Take q(t+1) = Φ̃
(q)
L (q(t), p)

• Else, take q(t+1) = q(t)

Figure 3.2 Reflection of the HMC trajectory on the boundary of the polytope K: evolution
of a single HMC step, starting from q(0); the trajectory successively reflects on hyperplanes,
before stopping at q(nL).

−nHi

Φ̃
(q)
tci

(q(0), p)

p(t+ci)

p(t−ci)

K

Hi

Hj
Hk

Φ̃
(q)
tcj

(q(0), p)
Φ̃

(q)
tck

(q(0), p)

Φ̃
(q)
tci

(q(0), p) = q(1)

q(0)

For a fixed L > 0, steps from 2. to 4. define a Markov kernel Pπ,L. The full algorithm (steps from 1. to
4.) define a Markov kernel Pπ that can be expressed with Pπ,L.

46



For L > 0, let ΓL be the largest subset of Γ where Φ̃L is defined, admits no more than M reflections,
and the trajectory do not finish in a singularity at time L. ΓL is open and therefore measurable. Let

Φ̄(Φ)(q, p) =

{

Φ̃L(q, p) if (q, p) ∈ ΓL

(q, p) if (q, p) /∈ ΓL

the application from Γ to Γ which corresponds to steps 3 and 4.

Remark 3.3. For any point (q, p) ∈ Γ, if L is small enough, (q, p) ∈ ΓL. However, if L is too large, ΓL

could be empty.

3.2.2 Measure invariance via detailed balance

We recall the definition of detailed balance:

Definition. 3.1 (detailed balance / reversible). A Markov chain P is said to satisfy detailed balance (or
reversible) with respect to the measure π if for every A and B measurable,

∫

B

P (x,A)π(dx) =

∫

A

P (x,B)π(dx)

Theorem. 3.1. Let A ⊂ Γ be a measurable set and let t ≥ 0 such that Φ̃t(q, p) is defined for every (q, p) ∈ Γ.
Then

λ(Φ̃−1
t (A)) = λ(A).

with λ the Lebesgue measure restricted to Γ.

Let A and B be measurable subsets of Q. Then let

AB = {(q, p) ∈ ΓL|x ∈ A, Φ̄(q, p) ∈ B × R
n}

the subset of Γ of all positions in A with momenta that brings them in B after time L. Similarly, we define

Ψ(q, p) = (Φ̄(q)(q, p),−Φ̄(q)(q, p))

on Γ.

Lemma. 3.1. The maps Φ̄ and Ψ preserve the Lebesgue measure on ΓL. ie for every A ⊂ ΓL measurable,
λ(Φ̄−1(A)) = λ(A)

Proof. Clearly it is enough to prove that Φ̃t preserves the Lebesgue measure. In [AD15], it is proved that for
a fixed step size, the Euler method for numerical integration applied to the Hamiltonian flow with reflections,
gives rise to a flow that preserves the Lebesgue measure. Letting the step size going to zero, we see that Φ̃t

is the pointwise limit of transformations that preserves the Lebesgue measure which implies that Φ̃t preserve
the Lebesgue measure.

Lemma. 3.2. 1. Ψ ◦Ψ = I

2. Ψ(ΓL) ⊂ ΓL

3. For any measurable sets A and B of Rn,

BA = Ψ(AB)

4. H(Ψ(q, p)) = H(q, p) for all (q, p) ∈ Γ.
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Proof. 1. and 2. are simple consequences of the reversibility of the Hamiltonian flow.
4. is clear.
3. Let A and B be measurable sets of Rn.
Ψq(AB) ⊂ B and Ψ(Ψ(AB)) = AB thus Ψ(AB) ⊂ BA.
By symmetry, Ψ(BA) ⊂ AB . Hence by composing with Ψ: Ψ(Ψ(BA)) ⊂ Ψ(AB). Using 1., we deduce
BA ⊂ Ψ(AB).

Theorem. 3.2. PL and π satisfy detailed balance.

Proof. Let A and B be measurable sets of Rn. The left hand side of the detailed balance equation becomes
∫

A

PL(q,B)dπ(x) =

∫

A

PL(xqB) exp(−U(q))dq

=

∫

A

[

∫

{p|(q,p)∈ΓL,Φ̄(q)(q,p)∈B}
exp(−‖p‖2)dp

+

∫

{p|(q,p)/∈ΓL,Φ̄(q)(q,p)∈B}
exp(−‖p‖2)dp

]

exp(−U(q))dq

=

∫

AB

exp(−H(q, p))dqdp+

∫

A

∫

{p|(q,p)/∈ΓL}
1B(q) exp(−H(q, p))dqdp

=

∫

AB

exp(−H(q, p))dqdp+

∫

A∩B

∫

{p|(q,p)/∈ΓL}
exp(−H(q, p))dqdp.

By symmetry:
∫

B

PL(q, A)dπ(q) =

∫

BA

exp(−H(q, p))dqdp+

∫

A∩B

∫

{p|(q,p)/∈ΓL}
exp(−H(q, p))dqdp

Using lemma 3.2 and then lemma 3.1 we obtain,
∫

AB

exp(−H(q, p))dqdp =

∫

Ψ(BA)

exp(−H(q, p))dqdp

=

∫

BA

exp(−H(Ψ(q, p)))dqdp

=

∫

BA

exp(−H(q, p))dqdp

Which concludes the proof.

Theorem. 3.3. Pπ satisfies detailed balance with respect to π.

Proof. this is a direct consequence of theorem 3.2

3.2.3 Convergence result

Detailed balance ensures that π is invariant by Pπ, but it does not imply the convergence of the Pn to π
by itself. In this section, we prove additional results to get such a convergence result. This requires extra
assumptions on Q.

We recall the following definition and theorem from [RR04b]

Definition. 3.2. A subset C ⊂ X is small (or, (n0, ǫ, ν)-small) if there exists a positive integer n0, a real
ǫ > 0, and a probability measure ν(.) on X such that the following minorisation condition holds:

Pn0(x, .) ≥ ǫν(.) x ∈ C

i.e. Pn0(x,A) ≥ ǫν(A) for all x ∈ C and all measurable A ⊂ X
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Theorem. 3.4. Consider a Markov chain with invariant probability distribution π(.). Suppose that X is
small (i.e., the entire state space is small). Then the chain is uniformly ergodic, and in fact

‖Pn(x, .)− π(.)‖ ≤ (1− ǫ)⌊n/n0⌋

for all x ∈ X , where ⌊r⌋ is the greatest integer not exceeding r and the norm is the total variation.

Theorem. 3.5. If the gradient of the potential energy ∇U is bounded on Q and Q is convex then Q is small
for Pπ.

Proof. We assume without any loss of generality that 0 ∈ Q.
Let q(1), q(2) ∈ Q. One way to get a trajectory going from the point q(1) to a point very close to q(2), is

to select a very high momentum pα = 1
α (q

(2) − q(1)) and a short time tα = α with α > 0. When α→ 0, the
potential energy term U of the Hamiltonian becomes less and less relevant, thus the trajectory converges to
a straight line and limα→0 Φ

q
tα(q

(1), pα) = q(2).
This intuition is formalized using the scaled variables

{

q̃(t) = q(αt)

p̃(t) = αp(αt).
(3.2)

The equation of motion becomes:

dq̃

dt
(t) = p̃(t) (3.3)

dp̃

dt
(t) = α2∇qU(q̃(t)). (3.4)

which defines a flow φ(α, t, q, p). It should be noted that φ(−α, t, q, p) = φ(α, t, q, p) for every α, t, q, p and
that φ is correctly defined for α = 0. In this case, it is easy to see that:

φ(0, t, q, p) = q + pt. (3.5)

As π is the restriction of a positive smooth function, φ is defined for every (α, t, q, p) ∈ [−1, 1]×R+×Rn×Rn.
Furthermore, α2∇qU is smooth. Hence, using the differentiability of the solutions of differential equations

on parameters and initial conditions (see [Bur]), we see that φ is C2 on ]− 1, 1[×Q× R
+ × R

n.
Since Q is open, there exists ρ > 0 such that B(0, 2ρ) ⊂ Q. Let ν be the measure on Q which is the

Lebesgue measure on B(0, ρ/2) and zero outside the ball B(0, ρ/2).
Our aim is to show that there exists ǫ > 0 such that for every q ∈ Q, Pπ(q, .) ≥ ǫν(.).
The density of the probability measure associated with momenta is exp(−1/2‖p‖2), and taking into

account the rescaling of the momenta, we define the probability density

γ(p) = α exp(−1

2
‖ 1
α
p‖2). (3.6)

Q is bounded, hence there exists ǫ > 0 such that for every (q, p) ∈ {(q, p)|q ∈ Q, p ∈ B(−q, ρ)},

γ(p) > ǫ

Let

A = {(α, t, q, p) : |α| ≤ 1/2, t ∈ [1/2, 3/2], q ∈ Q̄, p ∈ B(−q, ρ)}.
A is compact, hence the first and second order derivatives of φ are bounded on A. Thus there exists Z > 0
such that for every (α, t, q, p) ∈ A,

‖φq(α, t, q, p)− φq(0, 1, q, p)‖ ≤ (α+ |t− 1|)Z (3.7)
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and

‖dpφq(α, t, q, p)− dvφq(0, 1, q, p)‖ ≤ (α+ |t− 1|)Z. (3.8)

Using equation 3.5, the two above inequalities are equivalent to

‖φq(α, t, q, p)− (q + p)‖ ≤ (α+ |t− 1|)Z (3.9)

and

‖dpφq(α, t, q, p)− IdRn‖ ≤ (α+ |t− 1|)Z (3.10)

The determinant is continuous, so there exists 0 < β < 1 such that ‖dpφq(α, t, q, p)− IdRn‖ < β implies

1/2 < |dpφ(α, t, q, p)| < 2. (3.11)

Finally, using Lemma 3.3 together with the fact that ∇U is bounded, we deduce that there exists α0 > 0
such that for every 0 < α ≤ α0 and every q ∈ Q and p ∈ B(−q, ρ), the trajectory φq(α, t, q, p) for t ≤ 1 stays
in Q. It follows that φ and Φ coincide, for there is no reflection.

Let α = min( ρ
4Z ,

1
2Z ,

β
2Z , α0) > 0. Let any t ∈ [1− β

2Z , 1] and q be in Q. By lemma 3.4 below, the map

f : p→ φq(α, t, q, p)

is a C1 diffeomorphism from B(−q, ρ) to V = φq(α, t, q, B(−q, ρ)) and by Lemma 3.5 (applied to f translated
by −q), B(0, ρ/2) ⊂ V . Furthermore, equation 3.11 implies that for every q′ ∈ V

|df−1(q′)| > 1/2. (3.12)

Hence, the push forward measure ξ of ν by f is non zero on B(0, ρ/2), and has a density

ξ(q′) = ν(f−1(q′))|df−1(q′)| ≥ ǫ/2 (3.13)

on B(0, ρ/2). Hence, under the condition that the travel time t is in [1− β
2Z , 1], we get the following transition

probability:

P (q, .|t ∈ [1− β

2Z
, 1]) ≥ ǫ

2
ν(.)

For the random walk, t is sampled uniformly in [0, 1], hence

P (q, .) ≥ ǫ

2

β

2Z
ν(.)

which concludes the proof.

Lemma. 3.3. Let Q be an open convex subset in R
n that contains the ball B(0, 2ρ), let x be a point in Q and

let v be in B(0, ρ)− x. Let f : Rn → R
n be a continuous and bounded map. Suppose that (x(t), v(t)) ∈ R

2n

is the solution of the Cauchy problem

x(0) = x

v(0) = v

x′(t) = v(t)

v′(t) = af(t)

where a is a real number. If |a| ≤ ρ
‖f‖∞

then for all t ∈ [0, 1], x(t) is in the convex hull of x and of the ball

B(0, 2ρ) and therefore in Q.
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Proof. Suppose |a| ≤ ρ
‖f‖∞

. By the mean value theorem, v(t) = v + w(t) where ‖w(t)‖ ≤ |a|‖f‖∞t ≤ ρt

for t ≥ 0. The derivative of function y(t) = x(t) − vt is w(t), therefore by the mean value theorem,
y(t) = y(0) + tz(t) where ‖z(t)‖ ≤ ρt/2. Therefore for all t ∈ [0, 1],

x(t) = y(t) + vt

= (1− t)x+ t((v + x) + z(t))

is in the convex hull of x and of the ball B(0, 2ρ).

Lemma. 3.4. Let B be an open ball in R
n and let ϕ : B → R

n be a differentiable map. If for each x in B,
‖dϕ(x)− Id‖ < 1, then ϕ is a diffeomorphism.

Proof. The only thing to prove is that ϕ is one to one. Let x 6= y be two points in B. Consider the map
f : t ∈ [0, ‖y−x‖]→ ϕ(x+ tu) ·u where u = y−x

‖y−x‖ . Using Schwarz inequality and the assumption we obtain

f ′(t) = dϕ(x+ tu)(u) · u
= Id(u) · u+ (dϕ(x+ tu)− Id)(u) · u
≥ 1− ‖dϕ(x+ tu)− Id‖‖u‖‖u‖
> 0.

It follows that f(‖y − x‖) > f(0). Now f(0) = ϕ(x) · u and f(‖y − x‖) = ϕ(y) · u, hence ϕ(x) 6= ϕ(y).

Lemma. 3.5. Let B = B(0, r) be a closed ball in R
n of center 0 and radius r > 0 and let ϕ : B → R

n be a
one to one continuous map. If for all x in B, d(x, ϕ(x)) ≤ r/4 then ϕ(B) contains the ball B(0, r/2).

Proof. By Jordan-Brouwer Theorem, the complement in R
n of the image Σ of the sphere S = ∂B has exactly

two connected components C1 and C2, one which is bounded, say C1, and one which is not. By assumption

the open ball
◦
B(O, r/2) doesn’t intersect Σ, hence is included in C1 or C2.

The image E = ϕ(
◦
B) of the interior of the ball B is included in Ci, one of the two connected components

of Rn \Σ. On the one hand, by Jordan-Brouwer invariance of the domain theorem, E is open. On the other
hand, E = ϕ(B)∩Ci and since ϕ(B) is compact, Ci \E is open. Now Ci is connected, hence E or Ci \E is
empty. Therefore E = Ci.

Since ϕ(B) is compact, E is bounded, and therefore E = Ci = C1. Moreover, by assumption, ϕ(0) ∈
Bo(0, r/2) ∩ E which implies that Bo(0, r/2) ⊂ E.

3.3 Application: computing the volume of a polytope

In this section, we specialize our generic algorithm (Algorithm 3.1) so as to use it as a building block of the
polytope volume calculation from [CV16]. The corresponding pseudo-code is provided in the supplemental
section 3.6.

3.3.1 Volume algorithm

The algorithm used in [CV16] compute the volume of a polytope with target relative error ε. The principle
is a multi-phase Monte Carlo computation, which splits the calculation into m steps. Let {f0, . . . , fm−1} be
m isotropic Gaussian distributions i.e. fi(x) = exp(−ai‖x‖2), such that the first one is highly concentrated
around a point deep inside the convex, and the last one is an almost flat distribution. The volume calculation
reduces to computing the telescoping product

Vol(K) =

∫

K

f0(x)dx

∫

K
f1(x)dx

∫

K
f0(x)dx

. . .

∫

K
dx

∫

K
fm−1(x)dx

≡
∫

K

f0(x)dx
∏

i=1,...,m

Ri (3.14)
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Each of these ratio are estimated using Monte-Carlo integration with respect to the density

πi(x) =
fi(x)

∫

K
fi(y)dy

1K(x) (3.15)

via importance sampling. The method then uses as core block an algorithm sampling the previous distribu-
tion, usually using HAR. In our case, HMC with reflections will be used instead. For X1, ..., Xk consecutive
points given by the random walk, the Monte-Carlo estimation Rk

i is given by:

R
(k)
i =

1

k

k
∑

j=1

fi(Xj)

fi−1(Xj)
. (3.16)

Instead of using a fixed number of points for the Monte-Carlo integration, a stopping criterion is introduced
by [CV16]. Let ε′ = ε/

√
m; this is the relative ratio error allocated for each ratio Ri estimation. Consider

a sliding window of size W (= 4n2 + 500) (n is the dimension). When W consecutive estimated ratios

R
(k−W+1)
i , ..., R

(k)
i are within ε′/2, the convergence for Ri is declared.

3.3.2 HMC algorithm

This specialization has two advantages: first, trajectories have analytic expressions – see also [PP14]; second,
the intersection between a trajectory and n hyperplanes also has a simple analytical expression.

Analytical trajectories. As recalled in section 3.3.1, importance sampling is used to estimate the ratios
Ri. Hence, we build an HMC method to sample from πi(x) from eq.3.15.

Let U(q) = log(exp(−ai||q||2)) = −ai||q||2 and H(q, p) = U(q) + 1/2‖p‖2. Note that the normalization
constant 1∫

K
fi(y)dy

was discarded because it does not change the trajectory (its gradient is 0). Rewriting the

dynamical system associated to this Hamiltonian yields the following differential equations:

d2qj
dt2

(t) = −2aiqj(t) for j ≤ n. (3.17)

Each coordinate is independent and has a solution of the form

qj(t) = Cj cos(wt+ φj) (3.18)

With Cj , w, φj ∈ R. The parameter Φj satisfies the following 2 equations:

{

cos(φj) =
qj(0)
Cj

sin(φj) =
−pj(0)
ωCj

(3.19)

Thus we deduce:















ω =
√
2ai

Cj =
√

qj(0)2 + pj(0)2/w2

φj = arctan
(

− pj(0)
qj(0)ω

)

+ 1{qj(0)<0}π

(3.20)

It should be noted that these equations are the same for any choice of coordinates as long as the basis is
orthonormal. This allows us to choose a basis suited to the computations we want to do.
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Collision with convex boundary. To restrict the sampling algorithm to the convex K, trajectories
should reflect on the boundary of K. The convex K is defined by a set of hyperplanes. Hence, we need to
compute the intersection time of a trajectory with each hyperplane and take the smallest time. Thankfully,
there is an analytical expression. The hyperplanes are defined by a matrix A and a vector b, and hyperplane
i is defined by the equation

(Ax)i = bi. (3.21)

To compute the collision time with an hyperplane H, we make the following remark: let nH be the normal of
the hyperplane. We can complete nH to an orthonormal basis. In this basis, the collision time depends only
on what happens for the coordinate on nH . Consider qnH

(t) =< q(t), nh > and pnH
(t) =< p(t), nH > the

coordinates along the normal of the hyperplane. Let ωnH
,CnH

and φnH
be the parameters of the trajectory

along direction nH . Then finding the intersection times is equivalent to solve the equation for t:

CnH
cos(ωnH

t+ φnH
) = bi (3.22)

We deduce that if |CnH
| < bi, there is no solution, and else, the following times are solution:

{

t1 = (arccos(bi/CnH
)− φnH

) /ωnH
.

t2 = (− arccos(bi/CnH
)− φnH

) /ωnH
.

(3.23)

On solution corresponds to the entry into K, while the other corresponds to the exit out of K. We select
the exit trajectory via a dot product between the velocity at t1 and t2 and the outward normal nH . In the
sequel, the corresponding value is denoted tc for time of collision.

3.3.3 HMC implementation based on interval arithmetic

Robustness issues

The algorithm as stated before is prone to numerical rounding errors. As a particular case, one may consider
the situation where rounding errors would be such that the point computed on the HMC trajectory would be
outside the convex. More generally, all geometric constructions and geometric predicates on them potentially
raise robustness issues – see list in section 3.3.3.

As discussed in Introduction, we guarantee robustness using the Exact Geometric Computation paradigm.
More specifically, recall that efficient arithmetic operations usually combine two ingredients: first, an interval
representation of the numbers, as non overlapping intervals yield exact predicates; second, an arbitrary
precision representation of the interval bounds, as precision can be increased so as to yield exact predicates
and constructions of controlled accuracy. In the sequel, we use the iRRAM library which provides these two
ingredients [Mül01].

For the sake of clarity, all functions for which iRRAM library plays a key role are highlighted in blue.

iRRAM and used features

We represent points as d-dimensional points whose coordinates are of the iRRAM number type. In iRRAM, a
real number is represented by two types of data: firstly a symbolic representation memorizing the way it
was defined (type of function and pointers to the operands), and secondly a numeric approximation using
an interval with rational endpoints guaranteed to enclose the exact real value. The accuracy of the latter
interval can be increased if needed, by recomputing it using recursively increased precision of the operands
intervals that defines it. Therefore, for a real number t, the iRRAM encoding qiRRAM(t) of the position q(t) of
the HMC trajectory is numerically represented by a d-dimensional box that contains the exact real position.

The iRRAM number type enjoys two specific operations which are key in our implementation:

• operator x < y: predicate answering the < comparison operator. If the interval representations of x
and y overlap, these intervals are automatically refined, a feature called precision refinement thereafter.

• Near inf double(iRRAM x) : returns the nearest double < the iRRAM number x.
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Robust operations

Our robust implementation calls for the following operations (i) Computing the trajectory parameters – Eq.
(3.20), (ii) Finding the exit intersection time – Eq. (3.23), (iii) Finding the smallest exit intersection time
amongst all hyperplanes, and (iv) Evolving the trajectory. In the sequel, we detail these operations, and
refer the reader to the SI section 3.6; in particular, Algorithm 3 refines Algorithm 3.1 based on these robust
primitives.

Trajectory parameters. Following Eq. (3.20), we construct the numbers Cj , w and φj as iRRAM number
types. See Algorithm 4.

Exit intersection time tc with one hyperplane. Intersecting the trajectory with a hyperplane yields
two solutions (Eq. 3.23) respectively exiting and entering the convex. The collision time tc corresponds to
the former. Assuming that the normal vector to the hyperplane is oriented outwards, the value tc is such
that < p(tc), nH >> 0. The evaluation of this predicate triggers a precision refinement if needed.

Smallest exit intersection time. Since the boundary of K involves several hyperplanes, the nearest one,
which corresponds to the smallest exit time, must be determined. To do so, we first construct the intersection
time tci with respect to each hyperplane. Then we compute tc = mini tci .

This calculation is tantamount to sorting the individual intersection times, which in turn requires the
comparison operator <. iRRAM provides such an operator, which triggers precision refinement if needed.

See Algorithm 5.

The Is strictly in convex(q) predicate. To constrain the trajectory within the convex, we resort to
a predicate telling whether a given position q belongs to the interior Ko of K. This predicate, denoted
Is strictly in convex(iRRAM point d p), checks < op, n > < bi holds for every hyperplane, and triggers the
iRRAM refinement if needed so.

Performing one HMC step. Equipped with the previous operations, our robust implementation – Al-
gorithm 3, hinges on two operations:

• Calling the predicate Is strictly in convex(q(t<c )). Recall that in iRRAM, a d-dimensional point is
represented as a box. This is in particular the case for the collision points with the hyperplanes, and
for the final point returned. To ensure that all such points are strictly within the convex, we call the
aforementioned Is strictly in convex() .

• Computing the nearest inferior double t<c = Near inf double(tc). The intersection point between
the trajectory and a hyperplane is defined analytically – Eq. (3.23). The iRRAM representation of the
collision time is an interval certified to contain the exact solution, and the corresponding d-dimensional
point qiRRAM(t<c ) is represented as a box. We note that the box qiRRAM(t<c ) intersects the interior Ko

of the convex K. Indeed:

– the exact collision point q(tc) lies on its defining hyperplane i.e. q(tc) ∈ Hi

– by definition of t<c , the exact embedding q(t<c ) satisfies q(t
<
c ) ∈ Ko

– the iRRAM box qiRRAM(t<c ) corresponding to t<c intersects Ko since

qiRRAM(t<c ) ∋ q(t<c ) ∈ Ko
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3.3.4 Cube: HMC mixing time is O(log n)

We make a small digression in the case of the cube. It turns out that in this special case, the mixing time of
the HMC random walk is O(log n) with n the dimension, and the average complexity per step (the average
number of calls to the oracle per step) is linear with the dimension. We assume without any loss of generality
that the cube is [0, 1]n. Rigorously:

Theorem. 3.6. Let P
(n)
k the distribution after k steps in dimension n and gn the isotropic Gaussian

restricted to [0, 1]n. Then there exists 0 < ρ < 1 such that for every ǫ > 0, every n > 1 and every x ∈ R
n,

we have for k = − log n log(ǫ)
log(ρ)

‖P (n)
k (x, .)− gn‖ ≤ ǫ

where the norm is the total variation. Furthermore, the average complexity (i.e the average number of
reflections per step) is O(n).

Proof. We consider the canonical basis of Rn. As shown before in eq.3.18, the trajectory coordinates associ-
ated to the Gaussian are all independent from each other. Furthermore, when a reflection with a boundary
occurs, it means that one of the coordinates reached 0 or 1. The reflection simply switches the sign of the
momentum for this coordinate, leaving other coordinates unchanged. Finally, the initial momentum vector
is sampled according to p(0) ∼ N (0, In), therefore each coordinate of p(0) is sampled from an independent
Gaussian N (0, 1) in R.
Hence we conclude that each coordinate has the behavior of a 1-dimensional HMC random walk sampling a
1-dimensional Gaussian, all independent from each other.

Let us consider the 1-dimensional random walk for a given Gaussian. We write Pk(x, .) the distribution
after k steps starting from x ∈ [0, 1], and g the probability density associated with the restriction of the
Gaussian to [0, 1]. Using theorem 3.4 combined with theorem 3.5 for the 1-D Gaussian restricted to [0, 1],
we deduce that there exists 0 < ρ < 1 such that for all x ∈ [0, 1],

‖Pk(x, .)− g‖ ≤ ρk.

Observe that writing P
(n)
k the distribution after k steps in dimension n and gn the Gaussian restricted to

[0, 1]n, we have P
(n)
k (x, y) = Pk(x1, y1)P

(n−1)
k ((x2, ..., xn), (y2, ..., yn)) and gn(x) = g(x1)gn−1((x2, ..., xn)).

The total variation distance can be written as

‖P (n)
k (x, .)− gn‖ =

1

2

∫

[0,1]n

∣

∣

∣P (n)(x, y)− gn(y)
∣

∣

∣ dy

=
1

2

∫

[0,1]×[0,1]n−1

∣

∣

∣
Pk(x, y1)P

(n−1)
k (x, y2)− g(y1)gn−1(y2)

∣

∣

∣
dy1dy2

=
1

2

∫

[0,1]×[0,1]n−1

∣

∣

∣
(Pk(x, y1)− g(y1) + g(y1))P

(n−1)
k (x, y2)− g(y1)gn−1(y2)

∣

∣

∣
dy1dy2

≤ 1

2

∫

[0,1]×[0,1]n−1

∣

∣

∣
(Pk(x, y1)− g(y1))P (n−1)

k (x, y2)
∣

∣

∣
dy1dy2

+
1

2

∫

[0,1]×[0,1]n−1

∣

∣

∣g(y1)P
(n−1)
k (x, y2)− g(y1)gn−1(y2)

∣

∣

∣ dy1dy2

≤ 1

2

∫

[0,1]

|Pk(x, y1)− g(y1)| dy1

+
1

2

∫

[0,1]n−1

∣

∣

∣P
(n−1)
k (x, y2)− gn−1(y2)

∣

∣

∣ dy2
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We deduce
‖P (n)

k (x, .)− gn‖ ≤ n‖Pk(x, .)− g‖ ≤ nρk (3.24)

Hence for a fixed ǫ, if k satisfies nρk ≤ ǫ, then for every x, ‖P (n)
k (x, .) − gn‖ ≤ ǫ. Thus we take k =

− log n log(ǫ)
log(ρ) , and the mixing time is O(log n).

In addition, as each coordinate is from each other, the total number of reflections is the sum of reflections
per coordinate. Hence, the number of reflections is proportional to the dimension.

3.4 Experiments

3.4.1 Setup

As described in section 3.3, we embed our random walk in the framework of [CV16]. We reuse the MATLAB
code provided by [CV16] and make little modifications to call our HMC random walk instead of the usual
HAR random walk.

3.4.2 Illustrations of the HMC random walk

It is well known that HAR struggles to get out of corners. Fig.3.3 shows that the HMC random walk do not
suffer from the same drawback: starting in the corner of a cube yields an almost uniform distribution after
10 steps even when the dimension increases, while HAR performances suffers greatly.

Figure 3.3 Projections of the first two coordinates for starting from a corner (q
(0)
i = 0.9), after

10 steps of HAR or HMC, repeated 500 times for a nearly flat isotropic Gaussian distribution
(σ2 = 500) restricted to the cube [−1, 1]n.

H
A
R

H
M
C

dim. = 5 dim. = 10 dim. = 50

3.4.3 Analysis

Volume computation

The goal of the experiment is twofold: first compute the complexity (ie the number of call to oracle) with
respect to the dimension. Then study the influence of the choice of the maximum travel time for HMC. The
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MATLAB implementation of the volume computation algorithm from [CV16] introduced the stop criterion
of Eq. (3.16). Intuitively, the sliding window size W should be at least as large as the mixing time of the
chosen random walk. In the case of HAR, the mixing time increases with the dimension, hence the value of
W chosen by [CV16] depends on the dimension: W = 500 + 4n2. However, in the HMC case, we hope for
a smaller mixing time and especially a smaller growth rate with respect to the dimension. Therefore, the
growth rate of W used in [CV16] might be too large and impede the convergence speed for HMC. For that
reason, we modified the MATLAB code to allow for different W .

Statistics. To that end we collect the following statistics:

• the relative error | V −Vol(K) | /Vol(K) with V the estimated volume as a function of the dimension.

• Number of sampled points for a single volume computation

• Complexity, i.e the number of calls to oracle. For HAR, this is equal to the number of sampled points.
For HMC, it takes the number of reflections into account.

• for HMC, the average number of calls to oracle per point sampled.

Parameters used.

• Window size. Our experiments cover the following cases:

– dimension independent W = 10, 30

– dimension dependent: W = 30 + 4
√
n, 30 + 4n, 30 + 4n1.5, 30 + 4n2

• Maximum travel time for HMC. Our experiments cover travel times between tmin the radius of the
inscribed ball of the convex and tmax the diameter of the convex.

Experiments. The overall goal of the experiments is to determine an empirical growth rate of the com-
plexity with respect to the dimension for the algorithm with HMC and compare with HAR. Ideally, one
would try every parameters for a set of dimensions, then study the optimum parameters for each dimension,
deduce the scaling of these parameters with the dimension. However this requires a very large number of
simulations which is not feasible. Hence we settle for two experiments with one parameter fixed for each of
them:

• (1) we fix the maximum travel time at a reasonable value (as we will see in (2) ). Then we plot
the error and complexity for dimensions 10...50 with different stopping criterion W . Then we select
suitable values for W and use them to estimate the complexity growth rate with the dimension.

• (2) we fix the stopping criterion (W ) and vary the maximum travel time for several dimensions.

Models

There are many available polytopes to study. We make the choice to select a few representatives ones in
terms of difficulties we want to handle and then do detailed analysis. First, we choose the cube, as it has
good theoretical properties while being a difficult case for the HAR. Then we choose the simplex, as it has
sharp angles and is a widely used convex. For the comparison with HAR, we take the isotropic simplex
since it is already rounded. However for the travel time experiment, we take the standard simplex for the
simplicity of it’s geometric features such as the diameters of the circumscribed and inscribed spheres.

Running times

Volume calculations presented thereafter were conduced on a laptop computer. In dimension 50, each
individual calculation computation time is of the order of 10 seconds, so that running times are not further
analyzed.
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3.4.4 Tests on volume calculations

Complexity analysis – stopping criterion

We ran the volume computation 50 times for each dimension using different values forW . From section.3.3.4,
we recall that the mixing time of the HMC random walk is known in the case of the cube and is O(log(n)).
Our intuition for the value of W defining the stop criterion is that it is linked to the mixing time of the
random walk. Hence we expect that using W = cst for HMC on the cube would lead to a very slow growth
of the error with the dimension. Since the maximum dimension if 50 and log(50) ≈ 1.7, we do not expect to
see the effect of the log with our dimension range. In addition, we expect super logarithmic values of W to
yield a relative error decrease when the dimension increases.

Since the algorithm is targeting a relative error ε, we wish to identify values of W yielding a constant
relative error whatever the dimension.

With that in mind, for HMC, we expect to eliminate values of W for which the error would decrease with
the dimension. On the contrary, for HAR, we expect to eliminate values of W for which the error increases
with the dimension, since W might not grow as fast as the mixing time. We test both the cube (Fig. 3.4) –
a model for which HMC is well understood, and the isotropic simplex (Fig.3.5).

As expected, the error explodes for HAR when W is too small, so that plausible values for W are
W = 30 + 4n1.5 and W = 30 + 4n2. Similarly, for HMC the error decreases when W grows too fast. We
select W = 10, W = 30 and W = 10 + 4n0.5 as plausible values. The error was expected to decrease for
w = 30 + 4n0.5; however in our dimension range, the 4n0.5 part does not dominate the constant, hence we
did not expect to see a clear decrease.

Overall, the experiments match our intuition for the cube, and do not significantly depart for the simplex.
The complexity growth rates are summarized in Fig.3.6. These growth rates were obtained by a linear
regression on the complexity curves (Figs. 3.4, 3.5, bottom plots). Remarkably, all correlation coefficients
obtained were superior to 0.997.
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Figure 3.4 Cube: relative errors (top) and complexities i.e. number of calls to the ora-
cle(bottom) for volume computation – HAR (left) vs HMC (right) with the maximum travel
time fixed at 1 for HMC. All quantities are averaged over 50 runs
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Figure 3.5 Iso simplex: relative errors (top) and complexities i.e. number of calls to the oracle
(bottom) for volume computation – HAR (left) vs HMC (right) with the maximum travel time
fixed at 1 for HMC.All quantities are averaged over 50 runs
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Figure 3.6 Scaling of the complexity with the dimension, computed using the same datas
than Fig.3.4 and Fig.3.5. Plausible complexities are highlighted in yellow. Exponents for the complexity
growth rates were obtained with a linear regression on the complexity curves of Figs. 3.4, 3.5 – see main
text.

Window size complexity
HMC HAR

Cube Iso Simplex Cube Iso Simplex
W = 10 O(n1.29) O(n1.36) O(n0.62) O(n0.62)
W = 30 O(n1.30) O(n1.37) O(n0.63) O(n0.64)

W = 30 + 4n0.5 O(n1.43) O(n1.54) O(n0.89) O(n0.89)
W = 30 + 4n1 O(n1.82) O(n1.96) O(n1.48) O(n1.51)
W = 30 + 4n1.5 O(n2.21) O(n2.37) O(n2.08) O(n2.12)
W = 30 + 4n2 O(n2.60) O(n2.73) O(n2.45) O(n2.49)
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Travel time dependency for HMC

Based on the previous analysis, we chooseW = 30+4
√
n to study the standard simplex. Both in dimension 5

and 20, the errors decrease sharply with the travel time, then stabilize (Fig.3.7 and Fig.3.8 Top left). This can
be seen in the number of points sampled by the algorithm which increases sharply before stabilizing(Fig.3.7
and Fig.3.8 Top right). Our interpretation is that when the travel time is too short, successive points are
highly correlated, resulting in a false detection of convergence by the sliding window. Hence we get an high
error and a low number of points. On the contrary, if the travel time is long enough, successive points
are essentially decorrelated. As such, there is an optimal travel time between 0.5 and 1 in dimension 5 and
between 1 and 1.5 for dimension 20. However, this optimum is neither the diameter, neither the radius of the
inscribed sphere. At maximum travel time 1, there is an average of around 1.2 calls to oracle in dimension
5 and 2 in dimension 20.

Figure 3.7 Standard simplex in dimension 5, HMC: relative errors with deciles up to 80
percents of all points(top left), number of points sampled per run with std deviation(top
right), number of calls to oracle per run with std deviation(bottom left), average number of
calls to oracle per step with std deviation, 500 runs
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Figure 3.8 Same as Fig.3.7 in dimension 20.

3.5 Conclusion

Sampling a target distribution is a central problem in science and engineering. A core difficulty is to deal with
high dimensional spaces, and strategies based on random walks proved instrumental both to gain theoretical
understanding and develop effective methods. In this context, this paper makes three contributions.

First, we develop novel insights regarding Hamiltonian Monte Carlo (HMC) based strategies with reflec-
tions on boundaries. These strategies leverage the properties of billiard trajectories which escape corners
easily contrarily to Hit and Run. Moreover, our intuition is that the effectiveness of the HMC strategies
lies in reflections, which are instrumental to decorrelate points and therefore decrease the mixing time. We
provide a detailed proof of detailed balance for HMC with reflections (which was not used before even for
HMC without reflections) and the well connectedness of the random walk, leading to a convergence bound.

Second, in the particular case of polyhedral domains we present a robust implementation based on multi-
precision arithmetic. This ingredient is mandatory to guarantee exact predicates and robust constructions,
following the traditional terminology in robust geometric computations.

Third, we use our HMC random walk for polytope volume calculations, using it as an alternative to the
celebrated Hit-and-run (HAR) random walk used in the practical volume algorithm by Cousins and Vempala.
The tests, conducted up to dimension 50, show that the HMC random walk outperforms the HAR random
walk.

Our work clearly leaves stimulating questions open, two of which are of prominent importance.
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The first one is the analysis of the optimal travel time required by HMC to sample a target distribution,
which should yield an automated choice for the travel time. The second one is the analysis of the incidence of
reflections on the mixing time, so as to quantify the speed at which reflections decorrelate successive points.

3.6 Supporting information: pseudo-code

In the following, we provide the pseudo-code for the high level description of the HMC algorithm (Fig. 3.1).

Algorithm 2 Hamiltonian Monte Carlo step with real RAM arithmetic model

1: HMC step(q)
2: Choose a travel time L ∼ Unif(0, Lmax).
3: choose p ∼ N (0, In)
4: Set dist = L
5: while dist > 0 do
6: (intersection, tc)← Intersect hyper planes(q, p) // find intersection with hyperplanes
7: if intersection = False OR dist < tc then
8: (q, p) = Update positions momenta(q, p, dist) // update traj. with distance dist
9: Set dist = 0

10: else
11: (q, p) = Update positions momenta(q, p, tc)
12: Reflext normal(p(tc),nc)
13: Set dist = dist− tc

Algorithm 3 Hamiltonian Monte Carlo step with iRRAM number type

1: HMC step(q)
2: Choose a travel time L ∼ Unif(0, Lmax).
3: choose p ∼ N (0, In) iRRAM REAL
4: Set dist = L
5: while dist > 0 do
6: (intersection, tc)← Intersect hyper planes(q, p) with tc an iRRAM REAL.
7: t<c = Near inf double(tc)
8: if intersection = False OR dist < t<c then
9: (q, p) = Update positions momenta(q, p, dist) // update trajectory with distance dist

10: else
11: (q, p) = Update positions momenta(q, p, t<c )
12: Reflext normal(p(t<c ),nc)
13: Set dist = dist− t<c
14: Is strictly in convex(q)
15: Return q

3.7 Supporting information: results

To complement the analysis of section 3.4.4, we provide in the following plots with the variance of the
statistics of interest (Figs. 3.9, 3.10, 3.11).
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Algorithm 4 Find trajectory parameters for a given direction.

1: Compute traj params(qdir, pdir)
2: Set ω =

√
2a

3: Compute C =
√

q2dir + p2dir/w
2

4: Compute φ = arctan(− pdir

qdirω
)

5: if pdir < 0 and φ < 0 then
6: φ = φ+ π
7: if pdir > 0 and φ > 0 then
8: φ = φ− π
9: Return [ω,C, φ]

Algorithm 5 Intersecting the trajectory with hyperplanes bounding the polytope

1: Intersect hyper planes(q, p)

2: Set intersection = False

3: for each hyperplane H of equation (Ax)i = bi do

4: Compute the outward pointing normal nH to the hplane

5: Compute the dot products qnH
=< q, nH > and pnH

=< p, nH >
6: [ω,C,Φ] = Compute traj params(qnH

, pnH
)

7: if C > bi then

8: t1 = (arccos(bi/C)− φ) /ω
9: if t1 < 0 then

10: t1 = t1 + 2π/ω
11: t2 = (− arccos(b/C)− φ) /ω
12: if t2 < 0 then

13: t2 = t2 + 2π/ω
14: t = min(t1, t2)
15: if intersection = False then

16: Set tc = t
17: Set tc = nH
18: Set intersection = True

19: else

20: if t < tc then

21: Set tc = t
22: Set nc = nH

23: Return (intersection, tc)

Algorithm 6 Reflecting the normal

1: Reflext normal(p, n)
2: n′ = n/ ‖n‖ // unit normal
3: Return p− 2 < p, n′ > n′

Algorithm 7 Update trajectory with distance t

1: Update positions momenta(q, p, t)
2: for i from 1 to n do
3: [ω,C,Φ] = Compute traj params (qi,pi)
4: Set qi = C cos(ωt+ φ)
5: Set pi = −ωC sin(ωt+ φ)
6: Return (q, p)
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Figure 3.9 Error analysis: variance a function of the dimension. Model: isotropic simplex.
(Left) HAR (Right) HMC For the same window size, the variance of the error is lower for HMC.

Figure 3.10 Number of generated points: variance. Model: isotropic simplex. (Left) HAR
(Right) HMC The log scale hints at a polynomial number of points as a function of the dimension.

Figure 3.11 (Left) Number of oracle calls for HMC (Right) Ratio between the number of oracle
calls and the number of points generated Plots for the isotropic simplex.
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Chapter 4

A generic software framework for
Wang-Landau type algorithms

4.1 Introduction

4.1.1 Sampling with the Wang-Landau algorithm

The Wang-Landau (WL) algorithm is a recently developed stochastic algorithm computing densities of states
of a physical system. From a physics standpoint, WL computes the density of states associated to an energy.
From a mathematical standpoint, WL estimates the push forward measure by an energy function of a density
in state space, with a control on the relative error. For typical systems, the DoS spans several orders of
magnitude and may be close to zero, whence the shear difficulty. WL is a stochastic approximation method
falling in the class of adaptive Monte Carlo as it uses an evolving Markov kernel. At each step, WL estimates s
the density of states of the system, which requires two main ingredients: the construction of a biased Markov
kernel biased using the current estimation of the DoS – this requires a so-called move set; the update of the
DoS – referred to as the learning rule.

This state of affairs prompted a variety of developments: since its inception, the Wang-Landau algorithm
has spurred the development of many different variants, and numerous studies have been published about
their efficiencies.

The learning rule was extensively studied, comparing the flat histogram criterion with deterministic rules
and other proposed rules [SA11, WSTP15]. It was proposed to smooth or dynamically split the histogram
[SNY11, BJMD13] or even replace it with a continuous representation [FLE19]. Other suggested merging
the Wang-Landau algorithm with parallel tempering [RKIdP03, JH06]. Finally, a wealth of models were
studied, from discrete models [LC10, SA11] to complex molecules such as met-enkephalin [JH06, RKIdP03,
OMG10, SNY11, PCA+06].

The physical systems studied triggered the development of various move sets. For example, in molecular
studies, various move sets were proposed, based on molecular dynamics [RKIdP03, SNY11], on internal
coordinates (dihedral angles) [OMG10, PCA+06], or variants [MGCM12, BJMD13]. In a related vein, WL
was also used to perform numerical integration. Multidimensional integral may be approximated by a discrete
sum of function values multiplies by the measure of points achieving a given value [BMP08]. (Note that
the function value plays the role of the density of states of a physical system.) Such calculations are of
special interest to study convergence properties, since exact values (for the whole integral or the density of
states) make it possible to scrutinize the convergence properties [AM17]. In this context, it was observed
that bin width introduce another kind of saturation error, which call for a refined treatment of function
values [AM17].

In most if not all the aforementioned studies, the reproducibility of results is jeopardized by the absence
of software and/or the lack of implementation details.
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4.1.2 Contributions

The previous review of previous work calls for a customizable implementation of WL, capable of accom-
modating a variety of systems, the variants of the algorithm, and the move sets. All this in a manner not
sacrificing performances.

Systems. We isolate the pre-requisite namely the configuration space, the density, and the energy function
within the so-called physical system. This accommodates discrete and continuous physical systems, as well
as systems derived from numerical integration.

WL and variants. The Wang-Landau algorithm has many variants. The flat histogram rule originally
proposed has been enhanced by the 1/t rule. However it has been suggested that the flat histogram criterion
is not relevant, and other proposal have been suggested. In addition, several updates rule have been proposed
as it was noted in [JR14]. We present here a generic framework which allows to implement all these different
variants and combine them.

Move sets. As outline in [CC18b], the choice of the underlying random walk q and the associated mixing
time for Wang-Landau is a core ingredients for fast convergence. Furthermore, in specific situation, like a
discrete state space (e.g. the Ising model) or a state space which is a manifold, the creation of a custom
move set which respect the constrains of these state space is mandatory. In this paper we present a generic
move set framework allowing to easily create and combine customs adaptive move sets, with the ability to
exploit and/or learn features from the configuration space, reducing the mixing time. In addition, we provide
several generic move sets on R

n that uses geometric information to enhance mixing time (see chapter 2) .
Those move sets are readily available for users and extensive experimental results are provided in chapter 2
, including for a small bio-molecule.

This work presents the first generic (C++) implementation providing these features. The versatility of
the framework is illustrated with a variety of problems including the computation of density of states of
physical systems and biomolecules, and the computation of high dimensional integrals.

The source code will be integrated to the SBL Structural Biology Library [CD17] and http://sbl.

inria.fr.

4.2 Mathematiccal pre-requisites

4.2.1 Density of states and calculation by WL

First, it should be noted the measure on state space only requires to be defined up to a constant (in
other words, it’s a finite measure and not a probability measure). Therefore in this chapter, we consider
a distribution with density π(x) defined on a subset E ⊂ R

D. Also consider a partition of E into so-called
strata {E1, . . . , Ed}. Denoting λ the Lebesgue measure, our problem is to estimate

θ∗i
Def
=

π(Ei)
π(E) =

1

π(E)

∫

Ei

π(x)λ(dx). (4.1)

This problem arises in many areas of science and engineering, two of them being of particular interest in the
sequel.

At time t, the WL algorithm computes a sequence of estimates θi(t). Points sampled in a given stratum
Ei by WL at time t follows the probability density

π(x)

π(Ei)
. (4.2)

which do not depend on t.
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4.2.2 Numerical integration

The Wang-Landau algorithm has been used for numerical integration [BMP08, LWLL07, AM16]. In the
early works, the bin sizes leaded to a saturation of the error. To prevent the error saturation, estimations
of the average energy were added in [AM16]. In practice, the method proposed by [AM16] to compute an
integral I =

∫

E U(x)π(x)dx relies on the following observation:

I =
∑

i

∫

Ei

U(x)π(x)dx (4.3)

= π(E)
∑

i

π(Ei)
π(E)

∫

Ei

U(x)
π(x)dx

π(Ei)
(4.4)

= π(E)
∑

i

θ∗i

∫

Ei

U(x)
π(x)dx

π(Ei)
. (4.5)

Following the points distribution in each stratum given by Eq. (4.2), the average value in a bin is defined
by the integral

∫

Ei

U(x)
π(x)dx

π(Ei)
. (4.6)

This integral can be computed during WL runtime by computing the average energy value in a given bin.
Therefore if the total volume π(E) is known, the integral I can be computed with WL.

It should be noted that our formulation slightly differs from [AM16] because we consider the general case
of a finite measure π on E while they only consider the Lebesgue measure.

4.2.3 Incidence of the choice of the measure

For two measure π and µ, we define:

θπ∗i =

∫

Ei
π(x)dx

∫

E π(x)dx
=
π(Ei)
π(E)

θµ∗i =

∫

Ei
µ(x)dx

∫

E µ(x)dx
=
µ(Ei)
µ(E)

The choice between π and µ has two direct implications. First, θπ∗ is different than θµ∗. Second, as seen
from Eq. (4.2), the density sampled by WL in a given stratum are different.

In certain cases changing the measure on the state can improve the convergence speed. Consider the
potential energy U(x) = ‖x‖2. In high dimension, because of the concentration of measure, most of the
points of each stratum will be on the outer boundary with the Lebesgue measure, making it difficult to go
from one stratum to a lower one. If the measure π is changed to counteract this effect and bias toward the
interior boundary, it might improve the mixing time of the random walk. On the other hand we will see that
for discrete systems, or when the bin size goes to 0, the choice of measure do not matter.

Density of state: change of measure Therefore we describe here a method to deduce the density of
state for a measure µ while the Wang-Landau algorithm was used with a measure π on state space. To get
from one measure to another, we will need the numerical integration capabilities of the software.

For each Ei, WL for the measure π samples points with respect to the density of Eq. (4.2) in Ei. Therefore
we can compute the following integral for each stratum during the run-time of the Wang-Landau algorithm:

IEi
=

∫

Ei

µ(x)

π(x)

π(x)
∫

Ei
π(y)dy

dx =
µ(Ei)
π(Ei)

(4.7)
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We rewrite θ∗π(i):

θ∗π(i) =
µ(Ei)
IEi

1

π(E)

=
µ(Ei)
IEi

1
∑

j π(Ej)

=
µ(Ei)
IEi

1
∑

j
µ(Ej)
IEj

Hence:

θπ∗i
∑

j

µ(Ej)
IEj

=
µ(Ei)
IEi

∀i (4.8)

and diving by µ(E),

θπ∗i
∑

j

θµ∗j
IEj

=
θµ∗i
IEi

∀i (4.9)

Finally, using that θ∗µ(i) = 1−∑j 6=i θ
µ∗
j we deduce:

θπ∗i
θµ∗i
IEi

+
∑

j 6=i

θ∗µ(j)

(

θπ∗i
IEj

+
1

IEi

)

=
1

IEi

∀i. (4.10)

Since θπ∗i and IEi are estimated during runtime, the system of equation given in eq 4.10 yields a linear system
for the unknowns θµ∗i , which can therefore be estimated.

Remark 4.1. the custom Move sets will not take the geometry of π into account.

Discrete energy space. We assume a discrete energy space {U1, ..., Ud}. The state space E is not neces-
sarily discrete, but we assume that a stratum covers exactly one energy level. We analyse the special case
where π and µ can be written as π(x) = fπ(U(x)) and µ(x) = fµ(U(x)). This specific setting includes the
Boltzmann distribution which is of crucial importance for statistical physics.

Theorem. 4.1. For any θµi (t0), if θ
π
i (t0) verifies

θπi (t0) =
fπ(Ui)

fµ(Ui)
θµi (t0) (4.11)

then the Wang-Landau algorithm will generate exactly the same points with densities µ and π on state space
and for all t ≥ t0,

θπi (t) =
fπ(Ui)

fµ(Ui)
θµi (t) (4.12)

Proof. We have:

θπ∗i =

∫

Ei
π(x)dx

∫

E π(x)dx
=

fπ(Ui)V ol(Ei)
∑

j fπ(Ui)V ol(Ej)

θµ∗i =

∫

Ei
µ(x)dx

∫

E µ(x)dx
=

fµ(Ui)V ol(Ei)
∑

j fµ(Ui)V ol(Ej)
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Let πθπ(t0) the biased density sampled by WL at time t0 when using π as the measure on state space.

πθπ(t0)(x) =

(

d
∑

i=1

θπ∗i
θπi (t0)

)−1

π(x)

θπJ(x)(t0)

=

(

d
∑

i=1

θπ∗i
θπi (t0)

)−1
fπ(UJ(x))

fπ(UJ(x))

fµ(UJ(x))
θµJ(x)(t0)

=

(

d
∑

i=1

θπ∗i
θπi (t0)

)−1
fµ(UJ(x))

θµJ(x)(t0)

=

(

d
∑

i=1

θµ∗i
θµi (t0)

)−1
fµ(UJ(x))

θµJ(x)(t0)

Where the last line is trivial when considering
(

∑d
i=1

θµ∗
i

θµ
i (t0)

)−1

as the renormalisation factor. Finally we

deduce

πθπ(t0)(x) =

(

d
∑

i=1

θµ∗i
θµi (t0)

)−1

µ(x)

θµJ(x)(t0)
(4.13)

Which is the biased density that would be used by WL at time t0 when using µ as the measure on state
space. Let xt0 be the sampled point. Then the updated estimations using γ as the correction factor are:

θπJ(xt0
)(t0 + 1) = θπJ(xt0

)(t0) ∗ γ
θµJ(xt0 )

(t0 + 1) = θµJ(xt0 )
(t0) ∗ γ

θπi (t0 + 1) = θπi (t0) ∀i 6= J(xt0)

θµi (t0 + 1) = θµi (t0) ∀i 6= J(xt0)

which still respects eq.4.12. The final result is obtained by recurrence.

We conclude that in this setting, the choice of measure on the state space do not matter.

4.2.4 Boundary condition

In order to restrict the state space to a subset A, two ways are possible. The first is to design a custom
move set q such that for every x in A, the probability q(x,Ac) of going out of A is 0. The second is to
reject samples by evaluating the characteristic function 1A of A. For complex boundary conditions, the first
method is usually impossible, and the second can be computationally expensive. However in some cases it
is possible to write 1A = 1B1C with 1B being cheap to evaluate and 1C expensive, see Example 1. Assume
most of the boundary is determined by B, in the sense that the probability that Pθ leaves C without leaving
B is small compared to the probability of leaving A. A simple strategy is to only evaluate 1B at every step
and evaluate 1C every k steps, with k of the order of magnitude of the complexity of 1C . Then if xk(t+1) is
not in C, the algorithms rolls back to xkt, and rerun the random walk while checking 1C for each point to
find the exit point.

This method main flow is that it introduces a bias in the solution: the random walk is allowed to leave
C for k − 1 point as long as it comes back to A for the k-th point. However, under the previously stated
assumption, this bias is small.

Example 1. A common use case is a filter ensuring that a given conformation remains in a prescribed basin
below a potential energy threshold C. Checking the former condition requires quenching i.e. minimizing U

71



– a costly operation. We therefore use the indicator functions 1A(x) = 1B(x)1C(x), with 1B(x) = 1 iff
U(x) < C, and 1C(x) = 1 iff x is in the prescribed basin.

Remark 4.2. This method requires to go back in time and reproduce the same steps of the random to find
the exit point. Hence it requires to save the pseudo-random number generators states in addition of the full
state of the algorithm every k steps.

4.3 Code design

4.3.1 Overview

The programm is divided into 4 major components (Fig. 4.1):

• (Must be provided) The physical system provided by the user which describes the state space and the
energy function. And possibly the energy gradient.

• (Can be provided) The move set defines the random walk and the associated move probability.

• (Can be provided) The WL data structure storing bin ranges. Various pieces of information on a per
bin basis:

– The estimation θ, and can be extended to store any statistics.

– Custom information including acceptance rate, etc.

To perform specific processing, like numerical integration, the user must defined a custom WL DS, by
inheritance from the default (provided) one.

• (Provided by the library) The Wang Landau class itself which is responsible for gluing the two other
components together, run the algorithm and feeding the move set every information it needs. In our
case, the bin range of the current and neighbouring energy bin, but it can be anything the user needs
it to be.

Figure 4.1 Using the WL framework: the different software components. Blue: library pro-
vided; Green: default provided, can be replaced; Yellow: defined by user.

Wang-Landau algorithm Physical System

class Conformation

class Move Set

class Controller

Class Wang-Landau

Energy function

Controller data

Move set

class Wang-Landau

data structure

WL data structures
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Figure 4.2 Move set and calling algorithm: software design. Color codes as in Fig. 4.1, that is:
Blue: library provided; Green: default provided, can be replaced; Yellow: defined by user.

Class

Controller Data ∆

interface

Class Move params Θ

Class Move stats Ξ

Wang-Landau algorithm

WL data structures

Class Move setController

4.3.2 Physical system

The physical system role is to defining the state space and energy function.

Conformation

By conformation, we refer to the C++ class storing the point in state space and the corresponding energy
U(x). For move sets requiring the gradient, the conformation also stores ∇U(x).

In practice, for continuous systems, conformations are stored as a vector of doubles. For systems whose
state space is discrete, conformations are typically stored as an integer.

Physical System

A physical system is a C++ class which defines the conformation type, an energy function, the boundary
condition and if required, the density π on state space (if not specified, π(x) = 1) –see section 4.2.3.

4.3.3 Move sets in the context of a calling algorithm

Move set

Move sets play a pivotal role in various stochastic algorithms, including (energy) landscape exploration
algorithms in the lineage of basin hopping, and density of state calculations in the lineage of Wang-Landau.
We therefore outline a general move set design not restricted to the Wang-Landau algorithm, while still
indicating specificities for WL.

Strictly speaking, a Move Set (MS) provides 2 operations:

• generates a conformation y given a conformation x and parameters Θ (such as the variance for a
Gaussian move set) that we call Move Parameter

• also provides the probability p(x, y,Θ) to move from x to y, used by algorithm to satisfy details balance
if required. While detailed balance is not required for every single algorithm, it is so for Wang-Landau
in order to guarantee correctness of the sampling.

Furthermore, after a conformation generation, the move set return informations Ξ that we call Move Stats
that can be used later for adaptivity.
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Provided move sets

When the conformational space is Rn, the following move sets are provided:

• Isotropic Gaussian move set.

• The cone-based move set defined in [CC18b],

• The darting move set also defined in [CC18b].

Combined move set

Classical move sets includes the ball walk, Gaussian moves, etc. A mixture a move sets can also be used to
accommodate different features of –see chapter 2.

A combined move sets is composed of a collection of k > 0 move sets {MS1, ...,MSk}, and a function

w : E −→ R
k

x −→ (w1(x), ..., wk(x))

such that for all x ∈ E , ∑l wl(x) = 1. For a given x ∈ E , wl(x) represents the probability of choosing move
set MSl to generate the next point. The parameter for such a move set is a vector Θ with each coordinates
Θl being the parameter for move set MSl. A combined move set transition kernel is given by

p(x, y,Θ) =
k
∑

l=1

wl(x)pl(x, y,Θl) (4.14)

with pl the transition kernel of move set MSl.
Such move sets, called combined move sets, are implemented as a generic C++ class.

Remark 4.3. Practically, a combined move set is represented as a tree. Internal nodes are the combined
move sets, and samples are generated by move sets found within leaves.

Adaptivity via controller

The choice of parameter Θ is central for rapid convergence of stochastic algorithms. This choice depends on
the geometric features of the landscape, but also the goal of the calling stochastic algorithm.

In the following, we introduce a software component called Controller, which adapts the move set to
the landscape as a function of the objectives of the calling algorithm (Fig. 4.2 ) by generating the parameter
Θ for the move set.

The Controller is typically embedded a in an algorithm specific context, hence generating an optimal
Θ imposes interactions with other data structures. Moreover, the Controller may learn features of the land-
scape. Such controllers interact with the underlying algorithm to store relevant data (Move Set Controller Data,
noted ∆). To that end, the underlying algorithms provides the controller a Data Interface (algorithm de-
pendent). This overall design is summed up inFig 4.2.

Remark 4.4. In the case of Wang-Landau, the class Move Set Controller Data is instantiated once per
bin, therefore, the controller can store data ∆i on a per bin basis. The move parameters Θ generation by the
controller defines a mapping from the vector ∆ to Θ, see Eq. (4.14).

Adaptivity for combined move sets. For the combined move set, the controller will be automatically
generated. The data stored (Move Set Controller Data) is the reunion of the data used by each controller,
and the controllers of the move sets composing the combined move set are automatically called when relevant.
In the WL case, it means that each Move Set Controller Data is instantiated once per bin for all the
move set composing the combined move set.
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4.3.4 WL data structure

The Wang-Landau data structure responsibilities are to handle the bin data structure including the estima-
tion of the density θ, update the densities when a new point is sampled, record useful statistics for move
stats, and in general store any runtime statistics that the user needs to record. We will not describe the
Wang-Landau Data Structure in it’s entirety, but only it’s main functions and customization points. The
implementation is on the class T WL Data Structure MS, which should be inherited from for customiza-
tion.

Bins data structure

Default. The WL data structure handle bin creation and splitting. The user can specify the behaviour of
the data structure when a new bin is required by giving a default bin size and whether the energy levels are
continuous or not (e.g., the Ising model has discrete energies). We leave out the implementation details of
this behaviour. A type Bin properties MS defines the default properties to store for each bin: θ(i), ν(i)
and an instance of Move Set Controller Data ∆i.

Customization. To store additional statistics, one must define a class Custom Bin Properties that de-
rives fromBin properties MS and pass this type as a template parameter toT WL Data Structure MS.

Update after point generation

Default. The WL data structure updates relevant information stored in the data structure each time a
point is generated by the algorithm. To that end, the WL data structure performs the following operations:

• check the energy of a generated conformation can be accommodated, and creates a new bin if not.

• update the estimated density i.e. θ

• check the flat histogram criterion and update the learning rate γ

• reset the learning rate γ upon addition of a new bin

Customization. This default behaviour can be customize to perform the following:

• use a different learning strategy, possibly introducing variants of the flat histogram rule

• record additional statistic. For example, the average energy value per bin (Eq. 4.6) can be recorded
to perform numerical integration, see section 4.2.2.

Practically, a new class inheriting from T WL Data Structure MS must be provided.

4.3.5 Main algorithm

The main class implements the WL algorithm using the previous ingredients. The corresponding C++
template class, T Wang Landau, requires the physical system, the move set (and its controller), the WL
DS as template parameters. The execution flow is represented on Fig. 4.3.
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Figure 4.3 Flow of the algorithm as it is controlled by the T Wang Landau class. Color codes
as in Fig. 4.1.
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Move set

Physical System

WL data structures

WL data structures

Wang-Landau algorithm

4.3.6 Output

Overview. In the output, we distinguish two types of data:

• Exploitation data: data providing the result of the calculation.

• Monitoring data: pieces of information providing information on the decisions made by the algorithm.

These data are reported as serialized files.
We also introduce two reporting modes:

• constant lag mode: data are dumped every T steps, with T a user defined parameter.

• log lag mode: the lag time between two dumps increases exponentially. (Useful to perform log plots.)

Exploitation data. One output file containing, for each recorded step, the histogram θ.

Monitoring data.

• One output file containing for each recorded step the value of νi per bin. Note that the length of this
vector is exactly the number of bins, which may vary along the simulation.

• One output file containing for each recorded step the information ∆i per bin. Following Rmk. 4.3, ∆i

has a tree structure; this tree is dumped at every recorded step.

4.4 Experiments

4.4.1 Setup

Software setup. The software design presented was developed within the Structural Bioinformatics Li-
brary (http://sbl.inria.fr), and will be made available upon publication.

All experiments were conducted as follows. The energy range is discovered at run time, with new bins
created when required. The 1/tWL algorithm is used. Move sets parameters are discussed on a per example
basis.
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Tests. We report three types of experiments. To show the ability of our setup to handle both discrete
and continuous physical systems, we report results for the Ising model and a small biomolecules (alanine
dipeptide). To show the versatility and the efficiency of the implementation, we present numerical integration
results, solving one case left open in [AM17]. Finally, we provide insights on an issue typically overlooked,
namely the choice of the measure used in the calculation/integral. We show that improved convergence
speed can be obtained upon integrating against a suitable measure (Boltzmann versus Lebesgue).

4.4.2 Handling discrete and continuous systems

In the following, we illustrate the ability of our framework to handle discrete and continuous systems, on
two classical examples.

Ising model

Ising models are simple yet challenging systems since the number of states is exponential in the size. Such
models were first used to illustrate the strength of the WL algorithm [WL01]. In the sequel, we consider
the 16 × 16 Ising model, each vertex on the grid having the +1 or −1 label. The total number of states is
216×16 = 0.11579208921078. The energy of a given conformation is given by the sum over each vertex of the
product of the labels with the neighbors. The move set flips 1 spin at random in the grid. An analytical
formula of the number of configuration for each energy is available [], which we use to compute the relative
error.

The relative error of the estimation computed by the WL algorithm first decreases exponentially, then
with the 1√

t
rate(Fig. 4.4).

Figure 4.4 Relative error for 16x16 Ising model. Median taken over 40 runs.
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Alanine dipeptide

Dialanine is a small (bio)-system with 22 atoms that is commonly used for benchmarking algorithms. The
amber99-sb force field in vacuum is used to compute the density of state between -21 kcal/mol and 4 kcal/-
mol, associated to a single local minima of the potential energy function (torsion angles: (φ = 59.8862, ψ =
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−35.5193)). As described in section 4.2.4, the boundary condition for a local minim requires energy min-
imisation, which is too expensive to execute every step. Therefore, we use the method described in section
4.2.4 and minimize the energy only every 100 steps. We recall the observable akin to the partition function
(Eq. 2.17 that we study to show convergence:

Z

λ(E) =
1

λ(E)

∫

E
exp (−U(x)/kT ) ≈

∑

Energy levels U

θ∗i exp (−U/kT ). (4.15)

We performed 60 runs, each with 107 steps, and plotted the median of the estimates, as well as the 2nd
and 8th deciles (Fig. 4.5).

Figure 4.5 median and 1rst to 9nth decile of observable akin to the partition function (Eq.
4.15) for Dialanine, data obtained for 60 runs.
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4.4.3 Numerical integration

In cases where direct Monte-Carlo integration is impractical, in particular due to concentration of the
measure, numerical integration schemes based on Wang-Landau have been proposed [LWLL07, AM17].

In the sequel, we study a simple 2D example–as a sanity check, and proceed with one one ill-behaved
Gaussian integral.

2D integral

We start with the following test integral from [BMP08, LWLL07, AM16]:

I2D =

∫ 1

−1

∫ 1

−1

(x61 − x1x32 + x21x2 + 2x1) sin(4x1 + 1) cos(4x2)dx1dx2 (4.16)

As expected, the decay rate is 1/
√
t (Fig. 4.6).

78



Figure 4.6 median relative error for I2D (Eq. 4.16), data obtained for 40 runs.
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Integration of Gaussian density

More interesting is the following integral, studied up to dimension 6 in [AM17]:

In =

∫

fn(x)dx with fn(x) =
1

(2πσ2)n/2
e−

‖x‖2

2σ2 . (4.17)

In the sequel, we use σ2 = 0.4. In [AM17], they make the choice of restricting the integration domain to
[−10, 10]n to get most of the mass. However this choice adds artificial difficulties for random walks, as they
tend to get stuck in corners of the cube. Hence we change the integration domain to the ball B(0, 10) of
center 0 and radius 10. In this setting, In is very close to 1 for the dimension range we are interested in.

While this integral is studied up to dimension 6 in [AM17]. For dimensions 5 and 6 though, the algorithm
does not converge, leading the authors to introduce the so-called two state strategy which amounts to splitting
the integration domain by the median of function values.

In the sequel, we present an effective strategy up to dimension 15 (Fig. 4.7). When the dimension
increases, the volume of the outermost strata increases exponentially; also, since the gradient of the function
gets small, so are the components of the gradient, preventing the cone-based move set to act as an effective
guide to diffuse across WL bins. Overall, the random walk has difficulties to escape the stratum, jeopardizing
convergence.

To enhance the ability to deal with high dimensions, we introduce a general strategy by taking as energy
the logarithm of our integration function:

En(x) = log(fn(x)). (4.18)

This boosts the diffusive behaviour of the random walk. To get the correct value for the integral, instead of
taking the average in each strata, we take the average of the exponential:

In(x) =
∑

i

V (Ei)
∫

Ei

eEn(x)

V (Ei)
dx. (4.19)
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Figure 4.7 Value (Top row) and relative error (Bottom row ) for the Gaussian integral (Eq.
4.17) in dimensions 2, 5 and 15, respectively. A total of 40 runs were performed. The black plot
display the median; the purple plot display the 1st and 9th decile.
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4.4.4 Change of measure

In section 4.2.3, we have shown how to obtain results for a measure µ on state space while sampling from
the base measure π. Practically, this raises the question of choosing the measure to integrate against. we
illustrate this by comparing integration results obtained respectively using Lebesgue measure and Boltzmann
measure. In both cases, the random walk used relies on Gaussian moves. We make this choice since cone
based random walks (see section 4.3.3) attenuate concentration effects, making the experiment irrelevant.

Consider the following potential U(x) = ‖x‖2, and an energy discretisation of [0, 1]. The aim is to
compute the volume of each stratum with respect to the Lebesgue measure (we make this choice because
the exact volume is trivial to compute in the case of the Lebesgue measure). When the dimension increases,
inside each stratum the volume is concentrated near the outer ring. Hence points sampled by the Wang-
Landau algorithm with respect to the Lebesgue measure would be concentrated near the outer ring of the
strata. This behaviour hinders the convergence speed of Wang-Landau, and a solution consists in splitting
the bins if the volume near the outer ring is too imbalanced compared to the interior ring [BJMD13].

We consider a different approach and introduce a Boltzmann-like density

πT (x) = e−U(x)/T .

Using the Wang-Landau with this density means that points sampled in a stratum are distributed according
to πT , which is larger near the interior sphere than the exterior one. In other words, a suitable temperature
T is expected to balance out the measure concentration effects. In the sequel, we compare T = 0.1 versus
T = 105, this latter value defining an almost flat distribution close to the Lebesgue measure.

Of course to go back to the Lebesgue measure we need a good estimations of the integrals of Eq. (4.7),
which might degrade the overall accuracy. However, we show that in dimension 15, for the Gaussian random
walk, we get a noticeable improvement in convergence speed and relative error (Fig.4.8(Left)) using the
Boltzmann distribution with low temperature than using it with a temperature so high that it is essentially
the same than the Lebesgue measure. For another take on this, recall that the climbing time is the number
of steps required to go from the bottommost stratum to the topmost stratum. Formally, the climb across d
strata is defined by two times t0 and t1 such that
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• xt0 ∈ E0 and xt0−1 /∈ E0.

• xt1 ∈ Ed−1 and ∀t ∈ [t0, t1[, xt /∈ Ed−1.

The climbing time is then t1 − t0. (see section 2.4.1) The shorter climb time for T = 0.1 illustrate the
improved mixing (Fig. 4.8(Right)).

Figure 4.8 Relative errors with respect to Lebesgue measure (Left) and climb times (Right)
using sampling done at different temperature (with Boltzmann measure) for the single well
potential. A Gaussian random walk of variance 0.02 was used; a total of 40 runs were performed. The
temperature T = 105 is essentially the Lebesgue measure.

104 105 106 107

number of steps

100

101

m
ed

ia
n 

re
la

tiv
e 

er
ro

r

errors for potential well, dimension 15
T = 0.1
T = 100000.0

T = 0.1 T = 100000

0

100000

200000

300000

400000

nu
m

be
r o

f s
te

ps

climb times for potential well, dimension 15

4.5 Conclusion

The Wang-Landau (WL) algorithm is a recently developed stochastic algorithm initially designed to compute
densities of states for physical systems, and also amenable to numerical integration.

To the best of our knowledge, this work presents the first versatile implementation of WL. Our architec-
ture, based on template C++ classes, makes it possible to target two user profiles.

End-users can easily perform calculations of discrete and continuous systems, which merely requires
plugging the specification of the system into our design.

For developers, our setup allows testing various building blocks and combinations thereof, and select those
best suited for a system. The most crucial aspects are the energy discretisation strategy and the random
walk, which, if poorly chosen, prevent convergence. We note in passing that the default implementations
provided for move sets are state-of-the-art and should prove useful for future benchmarking.

Overall, our framework allows great versatility, while retaining reasonable default implementations. We
anticipate that it will enjoy applications in physics (partition function), numerical integration, as well as
machine learning (computation of maxima a posteriori), on systems involving from tens to hundreds of
degrees of freedom.
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Chapter 5

Outlook

This work lies at the crossroads of computational physics and randomized algorithms design.
More specifically, the thesis makes three contributions. First we introduce an efficient random walk for

the Wang-Landau algorithm. Second, we modify Hamiltonian Monte Carlo to sample a bounded domain,
providing theoretical results for the modified HMC and an analysis of the quality of the random walk for the
computation of the volume of convex bodies. Finally, a robust implementation of the HMC random walk
and a generic software design for Wang-Landau are provided.

Our work calls for further investigations, both for convex volume computation and density of state
estimation.

For Wang-Landau and density of states computation in general, several areas call for further work. A first
step could be to study Wang-Landau in a context similar to the computation of convex volumes. I believe
such a setting would allow for a detailed proof of convergence and a much sharper theoretical convergence
speed. To that end, proofs techniques developed to analyse the complexity of convex volume computation
algorithms might prove useful. This might allow to isolate crucial features for fast convergence and increase
both our theoretical and practical understanding of these algorithms.

Second, it seems clear to me after the work on HMC for convex volumes that the histogram approximation,
while convenient, really hampers the ability to design efficient random walks. Indeed, the regularity of the
sampled biased depends on the regularity of the approximation used for the Density of State. Using a
histogram to estimate the DoS leads to a discontinuous biased density. However, efficient sampling strategies
such as HMC or Langevin dynamics rely on the derivatives of the density of the sampled measure, and
therefore cannot be used in Wang-Landau. Hence, while theoretical developments could use the simplicity
of the histogram estimation, practical development should focus on continuous approximation of the density
whenever possible (for example, discrete states cannot have a continuous representation).

Finally, I believe the learning rate needs to be better understood. The learning rate γ requires additional
parameters (using the Flat Histogram criterion or not, but also the initial value for γ) with considerable
impact on convergence speed, but with no sound theoretical basis to choose them. Besides, the question
of the optimality of the current rules is not answered. This problem is not limited to Wang-Landau but
seems common to this class of methods, including Umbrella sampling and Adaptive potential methods. For
this analysis, I believe Wang-Landau is a good starting point since it uses a simple histogram approximation
instead of a more complex kernel density estimation (or any complex method). To that end, I have developed
some preliminaries ideas with encouraging results which might help bridge the gap between the exponential
convergence sought after by the original authors of Wang-Landau and the practical 1/t rule.

For convex volumes computation, the proof and speed of convergence for HMC with reflections in convex
do not yet take into account reflections, however they are necessary to escape corners and drastically reduces
mixing time. More theoretical work is required in this area to find sharp mixing time bounds and their
scaling with the dimension, as well as to understand the potential limitations and problematic cases for such
a random walk. This in turn would allow theoretical proof of complexity for the complete convex volume

83



algorithm using HMC with reflections.

Last but not least, I believe it is worth investigating applying density of state estimation algorithm to
convex volume estimation. Indeed, as stated in remark 1.10, the concentric ball algorithm for convex volume
computation is estimating a density. Conversely, one might use the Wang-Landau algorithm with a suitable
energy function (x 7→ ||x||), in which case each bin stores the push forward measure i.e. the volume of the
region sandwiched between two concentric spheres. Preliminary tests were performed during the PhD, with
complexity seemingly of the same order of magnitude than the popular convex volume algorithms. However,
the lack of target precision for Wang-Landau makes the comparison difficult and the potential gains of HMC
seemed greater, hence this research direction was not fully explored. Besides, I hope that replacing the
Wang-Landau histogram by a continuous approximation of the density of state will yield a good complexity.
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A.1 Appendix: force field and Hessian of force field

The SBL incorporates force field computations for molecules in vacuum. During my PhD, I worked on two
parts:

• optimizing the force field computation code,

• and enhancing the symbolic differentiation procedure to factorize common terms in the computation
of the Hessian matrix of a force field.

Practically, I contributed to the following packages molecular potential energy (https://sbl.inria.fr/
doc/group__Molecular__potential__energy-package.html), and covalent structure (https://sbl.inria.
fr/doc/group__Molecular__covalent__structure-package.ht).ml

Optimizing force field computation: data locality. Potential energy computation for bio-molecules
using common force fields such as AMBER or CHARMM requires traversing the covalent structure to
iterate over all bounds, bounds angles and torsion angles. The SBL is using a graph structure to store and
manipulate the covalent structure. However, this structure, while very convenient for manipulating/editing
the covalent structure, has poor performances when it comes to iterating over bounds, bounds angles and
torsion angles. The reason is that it is not what is called cache friendly.

To understand what this means and how to improve performances, a brief summary of modern comput-
ers architectures is needed. In modern CPUs, fetching data from the memory is a very costly operation.
Typically, it takes around 100ns to fetch a variable stored in the RAM, which results in hundreds of unused
CPU cycles. For comparison, multiplying two doubles takes 1 or 2 cycles (or slightly more) depending on
the CPU architecture, and maybe even less with advanced vector instructions. Therefore, memory access is
a major bottleneck of modern architectures. To mitigate this issue, CPUs have a very fast on-chip memory
called cache. This memory, sometimes divided into multiple levels, is much smaller than the RAM, with a
few MB. When the CPU operates, it moves working variables from the RAM to the cache, to benefit from
the very fast access time to the cache. When the CPU requires a variable that is not stored in the cache,
but in the main memory, a high cost must be paid, and the CPU will sit idle while waiting for the variable.
This event is called a cache miss.

To minimize cache misses, the CPU tries to guess which variables will be used in advance to store them
in the cache before they are needed. The main mechanism for that is to rely on data locality. Data locality
is an assumption made by the CPU that data used together are stored contiguously in memory. Consider
for instance, an array A of 50 double stored contiguously in memory. If one wishes to iterate over the array
when the first value A[0] is requested , the CPU will fetch not only A[0], but also all values up to A[16] (the
number of values depends on the architecture of your CPU). Then the next values already sits in the cache
when requested, and thus do not generate cache misses. A cache friendly program is a program that strives
to reduce the number of cache misses, by using data structures providing good data locality.

Therefore, we spent considerable efforts to provide a new data structure for covalent structure in the SBL
tailored to minimize cache misses for potential energy computation. At the same time, we changed data
structure storing force fields parameters to more efficient data structure, be it for their locality but also for
their access time (vectors vs maps). These efforts were required to run any Wang-Landau simulation using
force fields, and brought a x100 to x1000 speed-up over the existing force field implementation of the SBL.

Hessian of Force Field: simplifying symbolic differentiation results Symbolic differentiation was
used in the SBL to generate the gradient of the potential energy function for force fields. We used a similar
strategy to compute second derivative of the potential energy function in order to compute the Hessian
without using finite differences–an extremely costly strategy in high dimension. However, straightforward
symbolic differentiation yields a very unoptimized program, especially for complex terms such as those
associated with torsion angles. Each coefficient of the Hessian is evaluated independently from the others.
And therefore, each common factors is recomputed several times.
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Thus, we have written a python script that looks for common factors in the Hessian coefficients. We
recall that a mathematical expression can be expressed as a tree. The label of each node is the operations
(for example, ’+’), the children represent the operands, and the leaf can be numerical values or symbolic
variables. For example, a+ b and (a+ b) ∗ c reads as

+

ba

*

c+

ba

Therefore, finding common factors is equivalent to finding common subtrees in different graphs. For cost
and simplicity reasons, we do not consider operation reordering (i.e. two different trees representing the
same expression). The algorithm is as follow:

1. set h the maximum height of all trees in the union of trees given by each coefficient of the Hessian
matrix

2. find all common sub-trees of size h in the union of trees given by each coefficient of the Hessian matrix

3. set h = h− 1

4. if h > 2, go back to step 2

The python script uses the package sympy for all symbolic computation: the actual differentiation and
the expression tree manipulation. The end result is a vastly shorter output C++ file (the script generates
C++) since common factors are factored out, especially for torsion angles, since they involve 4 atoms, hence
12 coordinates, hence 144 terms in the Hessian matrix. This brings down compilation time, but the main
advantage of thee factorization is the run time speed up.
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