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Abstract

T he massive growth of the Internet of Things (IoT) highly impacts current wireless networks due to its heterogeneous quality of service (QoS) requirements. This study deals with the problem of guaranteeing QoS for IoT devices that require urgent and reliable communications. To achieve this objective in next generation IoT networks, various solutions are proposed in this thesis towards improving spectrum management and energy efficiency using emerging paradigms such as network slicing and software defined networking (SDN). First, network slicing is implemented over LoRa Wide Area Networks (LoRaWAN) and its assets are evaluated using various static and dynamic slicing strategies. Simulations performed over NS3 simulator have shown the efficiency of guaranteeing QoS for urgent communications which will always find isolated End-to-End (E2E) physical resources for its slice and cannot be impacted by the interference with less critical communications. Motivated by these results, a slice-based optimization is proposed next to improve the dynamic slicing strategy by investigating more LoRa parameters at the physical layer. The proposed method finds for each device the best parameters configuration that potentially improves the performance of its slice in terms of QoS and energy efficiency. Moreover, we also looked towards meeting upcoming challenges in future IoT networks that comes from the increasing number of IoT devices.

Even with network slicing, LoRa scalability remained as a big challenge that should be carefully considered specially due to the lack of flexibility in managing current wireless networks. Therefore, to meet the global objective in guaranteeing QoS in large scale IoT deployments, SDN and network slicing are adopted as backbones for a novel distributed L'objectif du chapitre I est de présenter les technologies LPWAN existant actuellement sur le marché. Une partie de ces technologies fonctionne dans un spectre de fréquences sous licence (LTE-M et NB-IoT) tandis que l'autre communique via un spectre de fréquences libre (LoRa et Sigfox). Nous avons commencé par évaluer la performance du protocole LTE-M à travers plusieurs simulations sur NS3 [START_REF] Dawaliby | In depth performance evaluation of lte-m for m2m communications[END_REF]. En se basant sur cette étude, nous avons également proposé par la suite une optimisation pour allouer les ressources dans un réseau LTE-M qui considère les contraintes d'énergie et de qualité de service pour chaque dispositif IoT [START_REF] Dawaliby | Scheduling optimization for M2M communications in LTE-M[END_REF] [START_REF] Dawaliby | Joint energy and qos-aware memetic-based scheduling for m2m communications in lte-m[END_REF]. La méthode proposée a beaucoup amélioré la durée de vie des noeuds et le pourcentage des noeuds qui ont respecté leurs contraintes en QdS mais nous avons était limité par le nombre de noeuds servis par une station de base LTE qui n'a pas pu dépassé 250 dispositifs servis du à la limitations des ressources radios LTE [START_REF] Masek | Influence of m2m communication on lte networks[END_REF]. C'est pourquoi après avoir étudié et comparé les caractéristiques de chaque technologie, nous avons choisi de travailler sur LoRaWAN qui fonctionne sous un spectre de fréquences libre et supporte un réseau IoT plus condensé (des milliers de dispositifs IoT peuvent être simulés dans une seule cellule au lieu d'une centaines dans vii un réseau LTE-M). LoRa commence à être de plus en plus répandu vu son accessibilité basée sur un code source ouvert contrairement à Sigfox qui est plutôt une technologie propriétaire. Ensuite, nous mettons l'accent sur les derniers travaux de recherche visant à optimiser les communications IoT et la gestion des ressources à l'aide des nouvelles technologies qui assurent la virtualisation et la programmabilité des réseaux IoT.

Cependant, en partant de l'état de l'art, il y a eu peu de travaux de recherche qui se sont focalisés sur la QdS des communications IoT en termes de respect des délais critiques, de • Comment réserver les ressources physiques LoRa pour chaque slice et à l'intérieur de chaque slice, comment assurer une allocation optimisée des canaux ?

• Quels sont les paramètres qui impactent la qualité de service de chaque dispositif LoRa et comment optimiser la configuration sans augmenter la complexité du réseau et sans impacter sa performance ?

• L'architecture actuelle de LoRaWAN sera-elle capable de supporter l'utilisation à grande échelle des communications, et comment pourra t-elle suivre les avancées à venir ?

Dans le chapitre II, nous répondons aux deux premières questions en proposant tout d'abord des nouvelles méthodes d'affectation des noeuds aux trois slices définis à la fin du chapitre I. La première étape consiste à associer et détacher un noeud IoT d'une tranche de réseau durant chaque intervalle du temps. Ce mécanisme est réalisé dynamiquement avec une méthode basée sur l'algorithme BIRCH qui regroupe les noeuds selon leur condition QdS, notamment en se basant sur le taux d'urgence défini par le rapport entre le délai instantané et le seuil maximal de délai à ne pas dépasser. Le résultat de cette viii première partie est un groupe des noeuds associés aux tranches de réseaux dont chacun doit répondre au maximum au besoin des noeuds en délai, en débit et en bonne réception des paquets envoyés. Ensuite, dans la deuxième étape, nous supposons que le serveur LoRa a une vue globale sur le réseau et le besoin de chaque noeud en termes de débit.

En se basant sur cette information, le serveur appliquera une estimation sur ces noeuds et réserve les ressources à travers deux stratégies dynamiques:

• La première est nommée "Dynamic Slicing" qui estime le besoin de tous les noeuds du réseau appartenant à chaque slice en commençant par le slice le plus urgent et définit le pourcentage des canaux qui vont réserver pour chaque slice. Ce résultat sera appliqué sur toutes les passerelles LoRa de la même manière mais change dynamiquement à chaque intervalle du temps. x 
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I.2 Licensed Spectrum Technologies

In order to meet IoT requirements over cellular networks, various efforts were conducted by standardization organizations and working groups to expand current humanto-human (H2H) communications over LTE for machines (LTE-M), introduced by many cellular operators and companies such as Nokia [START_REF]Lte-m, optimizing lte for the internet of things[END_REF], Ericsson [START_REF] Ericsson | Cellular iot alphabet soup[END_REF] and Qualcomm [START_REF]Leading the lte iot evolution to connect the massive internet of things[END_REF].

However, EXALTED [START_REF] Chu | Exalted: Expanding lte for devices[END_REF] • Guard-band: NB-IoT operates within the guard band of an existing LTE carrier and uses one physical resource block (PRB) of LTE (200 kHz).

• Inband: NB-IoT operates withing the bandwidth of a wideband LTE carrier and uses one PRB of LTE (200 kHz).

Multiple works evaluated the performance of NB-IoT in real case IoT scenarios. In [START_REF] Yihenew Dagne Beyene | On the performance of narrow-band internet of things (nb-iot)[END_REF],

authors developed a testbed that allows NB-IoT devices to repeat signal transmissions operating at very low power to boost the received signal quality. The coverage gain that results from this method was analyzed using real life measurements and was shown to be limited by the channel estimation quality and coherence time. However, transmission signal repetitions increase the energy consumption and the latency in the whole NB-IoT system. Therefore, authors in [START_REF] Azari | Latencyenergy tradeoff based on channel scheduling and repetitions in nb-iot systems[END_REF] searched for an energy-latency tradeoff based on channel scheduling through derivation of the expected latency and battery lifetime for each coverage class in NB-IoT systems. In [START_REF] Lauridsen | Coverage and capacity analysis of lte-m and nb-iot in a rural area[END_REF], authors analyze the performance of CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND NB-IoT and the improvement that it provides in terms of coverage and capacity for IoT communications in rural area. For deep indoor communications, authors find NB-IoT more suitable than LTE-M because it provides coverage for more than 95% of the devices due to its Maximum Coupling Loss being 164 dB as compared to LTE-M's 156 dB. However, NB-IoT causes some coverage issues upon NB-IoT deployment due to both large path loss and interference [START_REF] Mangalvedhe | Nb-iot deployment study for low power wide area cellular iot[END_REF]. The performance of NB-IoT is compared to LTE-M for smart city applications, authors find that a battery life time of 8 years can be achieved using both technologies. However, authors show that more devices can be served in an LTE-M network than NB-IoT, while providing a 10 times lower latency [START_REF] Soussi | Evaluating the performance of emtc and nb-iot for smart city applications[END_REF].

For this reason, we pursued our research studies in this thesis using LTE-M because we didn't want to be limited to indoor IoT applications, we wanted to focus more on a large scale IoT network scenario that includes a massive number of IoT devices.

I.2.2 LTE-M

LTE-M operates on a very small bandwidth and only monitors 6 resource blocks (RBs) per subframe with a coverage enhancement of 15 dB with respect to LTE Release 12.

LTE-M is also characterized with an extended Discontinuous Reception (DRX) cycle for both idle and connected mode in order to enable further power savings from the radio perspective. Hence, by increasing DRX cycle from 2.56 seconds to a maximum value of 43.69 minutes, M2M communications with low duty cycle will be efficiently supported [START_REF] Rico-Alvarino | An overview of 3gpp enhancements on machine to machine communications[END_REF]. The network architecture of LTE-M is illustrated in The advantages that LTE-M brings for IoT communications are exploited in various use cases including delay-sensitive applications (ex: instance presence sensors and actuators for emergency alerting) and delay-tolerant applications (ex: temperature monitoring). We first evaluated in depth the performance of LTE-M [START_REF] Dawaliby | In depth performance evaluation of lte-m for m2m communications[END_REF] in terms of coverage and QoS and highlighted its advantages for M2M communications. In [START_REF] Zhao | Lte-m system performance of integrated services based on field test results[END_REF], LTE-M system performance is evaluated based on field test results in Beijing ring rail lines. Results

show the potential that LTE-M provides in terms of reliability and QoS for specific IoT services. Moreover, due to the large variety of M2M applications and its heterogeneous interconnection in the network, a suitable resource access scheme for M2M communications is needed. Authors in [START_REF] Zhao | A random-access algorithm based on statistics waiting in lte-m system[END_REF], proposed a new random access procedure based on the time slot-ALOHA mode of operation to reduce the power consumption of UEs.

Nonetheless, research work mainly focused on improving M2M/H2H coexistence to reduce the impact of M2M nodes on H2H communications using the power control scheme proposed in [START_REF] Hamdoun | A flexible m2m radio resource sharing scheme in lte networks within an h2h/m2m coexistence scenario[END_REF]. Moreover, M2M/H2H coexistence can be also improved using resource control in [START_REF] Vm | Multiservice queueing system with map arrivals for modelling lte cell with h2h and m2m communications and m2m aggregation[END_REF] where a Markov model of dynamic resource scheduling is proposed in an LTE cell where M2M transmissions arrive according to a general Markovian arrival CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND process. Furthermore, authors in [START_REF] Amarasekara | Dynamic scheduling algorithm for lte uplink with smart-metering traffic[END_REF] came up with two schedulers that consider H2H traffic with a periodic M2M traffic produced by smart metering devices only. In [START_REF] Hani | Lte-m adaptive enodeb for emergency scenarios[END_REF],

authors propose an adaptive scheme that manages LTE-M network resources and avoids fast resource depletion for M2M communications in emergency scenarios.

Nonetheless, various scheduling techniques tackled the QoS of mobile applications such as voice and video call, but did not also consider the QoS and energy consumption of M2M devices. The latter was tackled from different perspectives because M2M devices are battery-driven and should be able to work for long periods of time. In [START_REF] Azari | Network lifetime maximization for cellular-based m2m networks[END_REF], a battery lifetime-aware resource allocation framework is proposed that provides battery lifetime-fairness while reducing maintenance costs of M2M over LTE networks. Additionally, other scheduling methods were also adopted to save energy whether by reducing the number of assigned RBs per device as proposed in [START_REF] Jeong | Frequency-domain packet scheduling for low papr in 3gpp lte uplink[END_REF], by reducing the transmission rate [START_REF] Salodkar | A stable online algorithm for energy-efficient multiuser scheduling[END_REF] or by reducing transmit power for reliable data transmission [START_REF] Zhou | Energy-efficient game-theoretical random access for m2m communications in overlapped cellular networks[END_REF].

In LTE-M, it is possible that an IoT device reaches its delay limit with a required throughput higher than the one that can be provided through a single RB. Hence, it could be useful to allocate additional RBs for this device for proper scheduling optimization. This use case was not previously considered in LTE-M literature. Therefore, we proposed in this thesis a novel optimization algorithm that jointly provides QoS and energy optimization to IoT devices [START_REF] Dawaliby | Joint energy and qos-aware memetic-based scheduling for m2m communications in lte-m[END_REF]. The proposed strategy has two-fold objectives:

• ing (FDPS). In TDPS, active M2M devices having data packets in their buffer ready for transmission are firstly detected. The algorithm selects afterwards the ones with the best energy and channel conditions in order to reduce the search area and define the best group of devices. We distinguish two scheduling behaviors for FDPS: on one hand, when the number of active devices (N A ) is higher than the number of RBs available in each TTI (RB av ), a selection process is needed to define the number of candidate nodes selected for the memetic optimization block which cannot exceed the population size defined in input. Otherwise, all active devices will be selected for FDPS and a sub-optimal algorithm will be launched that leaves a maximum number of contiguous empty RBs for urgent devices with respect to contiguity constraints and gives extra RBs for LTE-M devices, if needed, following to their throughput requirements.

The proposed memetic algorithm is implemented into Network Simulator (NS3) platform and evaluated its performance in a realistic IoT scenario which took into account M2M traffic specifications in terms of infrequent and small packet data transmissions.

After analyzing deeply the achieved results of each algorithm, we showed that the proposed scheduling scheme reduced the overall energy consumption in the system and achieved the highest percentage of satisfied devices following to their QoS requirements [START_REF] Dawaliby | Joint energy and qos-aware memetic-based scheduling for m2m communications in lte-m[END_REF]. However, due to capacity limitations of LTE-M that cannot allow to serve more than 250 devices simultaneously transmitting uplink traffic to a single eNB [START_REF] Masek | Influence of m2m communication on lte networks[END_REF], we de-
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cided to move our focus towards emerging unlicensed spectrum technologies, i.e SigFox and LoRaWAN, to be able to reach thousands of IoT devices served in a single cell.

I.3 Unlicensed Spectrum Technologies

Using its low-cost access to the airwaves, tech innovators took advantage of the unlicensed spectrum to propose promising technologies to support IoT communications. In this section, the focus will be on SigFox and LoRaWAN technical overview and their performance in real IoT scenarios.

I.3.1 Sigfox

Sigfox [107] is an ultra narrow-band (UNB) Differential Binary Phase Shift Keying (DBPSK) modulation technology operating on a very small channel bandwidth i.e, 100

Hz in Europe (on a band between 868 and 868.2 MHz) and 600 Hz in USA (on a band between 902 and 928 MHz). Sigfox uses 192KHz of the publicly available band by sending 3 messages using a random frequency to exchange messages over the air. For every transmission, a Sigfox device randomly uses one of the multiple channels available in a bandwidth with a packet duration that goes up to 2 ms [START_REF] Mroue | Mac layer-based evaluation of iot technologies: Lora, sigfox and 113 nb-iot[END_REF]. This small bandwidth usage in Sigfox provides the opportunity to concentrate the energy in a very small channel making it very robust against interference. IoT devices transmit short messages in uplink as well as downlink with a throughput that varies between 100 to 600 bits per second depending on the region. pushes the messages to many customer servers and IT platforms. The time on air of a packet is 6 seconds [START_REF] Vejlgaard | Coverage and capacity analysis of sigfox, lora, gprs, and nb-iot[END_REF] where 6 messages can be transmitted per hour with a payload of 4, 8, or 12 bytes. However, in this thesis we are looking towards simulating a larger variety of applications with higher throughput requirements than the one provided by Sigfox. In addition, Sigfox protocol is proprietary which prevented scientists from working on this technology in their research studies. Therefore, we preferred to look towards the possibility of working in LoRa wide area networks (LoRaWAN) for this thesis contributions.

I.3.2 LoRaWAN

LoRa is a shortcut name for Long Range and a proprietary spread spectrum physical layer that derives from Chirp Spread Spectrum (CSS) modulation as described in the IEEE standard 802.15.4 [START_REF]Ieee standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (lr-wpans)[END_REF]. IoT communications are bidirectional where each LoRa device k ∈ K is characterized with specific parameters that needs to be optimized to meet the requirements of each application in terms of coverage, achieved throughput and energy consumption. In the following we expound LoRa settings and their impact on network performance:

• Spreading Factor (SF): SF parameter is by definition the logarithm, in base 2, of the number of chips per symbol and impacts the duration of a Lora chip.

Each device k adopts specific SF configuration for information transmission. LoRa spreads each symbol in a rate of 2 SF chips per symbol with SF = {7, ..., 12} resulting a data rate computed as written in Eq. I.1 below:

r k,c = SF. R chip 2 SF bits/s (I.1)
where R chip denotes the chip rate and r k,c the data rate achieved by a device k on channel c of LoRa GW m. Depending on the transceiver model, SF configuration varies from 7 to 12 in a way that higher SF values correspond to more robust communications but lower data rates whereas lower SF values increase the rate CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND and reduce the a active time on air. Some research works ( [START_REF] Martin C Bor | Do lora lowpower wide-area networks scale[END_REF] and [START_REF] Bor | Lora for the internet of things[END_REF]) claim that SFs are orthogonal to each other, whereas others [START_REF] Croce | Impact of lora imperfect orthogonality: Analysis of link-level performance[END_REF] show that unperfect orthogonality happens between SFs leading to interference between packets. In this thesis, interference in LoRaWAN is considered and will be described in more details later in the interference section below.

• ropean frequency regulations imposes that the bandwidth adopted for each channel is 125 kHz. Increasing this bandwidth improves the data rate of LoRa device on the expanse of sensitivity. Moreover, increasing the SF value configured on IoT device also reduces the transmitted data rate, increases the strength of the signal and offers a better sensitivity at the GW receiver as shown in Table I.2.

• co-SF and inter-SF Interference: LoRa GWs are unable to decode two packets if both are received on the same channel with the same SF configuration. This mechanism leads to packet loss of both packets due to co-SF interference. On the other hand, inter-SF collisions happen between two packets if they were simultaneously received on the same channel with different SFs and are shown to cause packet loss [START_REF] Croce | Impact of lora imperfect orthogonality: Analysis of link-level performance[END_REF]. Signal to Interference Noise Ratio (SINR) varies based on SF configuration on each device. The assumptions in [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF] are followed where a packet should survive interference that comes from other LoRa transmissions. Each device configured with SF = i experiences a SINR value computed based on Eq. I.3:

SIN R i,j = P rx i σ 2 + n∈∂ j P rx n (I.3)
where P rx i is the power of the packet i under consideration sent by device with SF = i, σ 2 the lognormal shadowing component and P rx n the power of one interfering packet n ∈ ∂ j configured with SF = j. Each element in the Table I.3 [START_REF] Goursaud | Dedicated networks for iot: Phy/mac state of the art and challenges[END_REF] denotes the minimum signal power margin threshold V i,j , with i, j ∈ {7, ..., 12}, that a packet sent with SF = i must have in order to be decoded successfully over every interfering packet with SF = j. Hence, packet survives interference with all interfering packets if, considering all combinations of SF, a higher power margin value (dB) is satisfied than the corresponding co-channel rejection value. One thing to note is that values in below matrix are not symmetric because the power needed to decode a packet is higher when a packet intercepts another one configured with smaller SF. This is because the smaller SF configuration, the stronger the signal power. Taking for example SF8 and SF10, a higher power is needed to decode packets if a packet configured with SF8 intercepts another configured with SF10 • Propagation Loss model: The log-distance propagation loss model is adopted to evaluate the performance of LoRa devices in a dense environment and is expressed following to the Eq. I.4 below:

L = L 0 + 10 • Γ • log 10 d d 0 (I.4)
where L denotes the path Loss (dB), d the length of the path in meters (m), Γ represents the path loss distance exponent, d 0 the reference distance in meters (m) and L 0 the path loss at reference distance (dB).

• Coding Rate (CR): CR is computed based on Eq. I.5 in which the redundancy of the error correction (EC) code is determined and varies between 1 and 4.

CR = 4 4 + EC with EC = 1, 2, 3, 4 (I.5)
• Adaptive Data Rate (ADR): ADR is a mechanism for optimizing throughput, energy consumption and time on air (TOA) in LoRaWAN and is generally more efficient for static devices having stable radio frequency (RF) conditions. Depending on the conditions of the environment between the IoT device and the GW, network sever will determine SF and TP values to work on between one of the combinations shown in Table I Multiple research works in the literature evaluated LoRa networks performance [START_REF] Andrew J Wixted | Evaluation of lora and lorawan for wireless sensor networks[END_REF] [64] [START_REF] Vatcharatiansakul | Experimental performance evaluation of lorawan: A case study in bangkok[END_REF]. Other research studies focused on evaluating LoRa scalability [START_REF] Mikhaylov | On lorawan scalability: Empirical evaluation of susceptibility to inter-network interference[END_REF] while considering co-SF interference that comes from collisions when using the same SF configuration on the same channel [START_REF] Georgiou | Low power wide area network analysis: Can lora scale[END_REF] whereas others assumed that SFs on a channel are perfectly orthogonal [13] [12]. SF represents the ratio between the chirp rate and the data symbol rate and affects directly the data rate and the range that a LoRa device can reach away from a LoRaWAN GW. Moreover, co-SF interference directly impacts communication reliability, reduces the packet delivery ratio (PDR) successfully decoded at the GW [START_REF] Croce | Impact of spreading factor imperfect orthogonality in lora communications[END_REF] and limits the scalability of a LoRa network when increasing the number of devices [START_REF] Waret | Lora throughput analysis with imperfect spreading factor orthogonality[END_REF]. Therefore, scalability should be considered in any upcoming study related to SF configuration strategies and network deployments. Some study examples focused on finding the optimal transmitter parameter settings that satisfy performance requirements using a developed link probing regime [START_REF] Bor | Lora transmission parameter selection[END_REF]. In [START_REF] Lim | Spreading factor allocation for massive connectivity in lora systems[END_REF], the authors analyze several SF configuration strategies where a group of LoRa devices can be configured with similar or heterogeneous SFs based on their position from the GW. The goal is to find the scheme that gives the best PDR. However, the impact of SF and TP configuration on network slicing has not been previously tested by the research community.
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I.4 Towards enabling programmability in IoT networks

In traditional IoT networks, each equipment requires to be configured separately. This makes maintaining, configuring and adapting network devices to the changes that happen in the device, an expensive and time consuming task [START_REF] Benson | Unraveling the complexity of network management[END_REF]. To tackle this problem, Software Defined Networking (SDN) emerged as a promising solution towards enabling programmability, flexibility and virtualization. Nowadays, including various IoT use cases in a single network is not straightforward due to their heterogeneous QoS requirements. Hence, it is hard for operators to guarantee QoS requirements of each service.

Network slicing (NS) provides for each use case isolated network resources based on its specific needs. This section defines both SDN and NS paradigms and explores research works that integrates virtualization in IoT networks.

I.4.1 Software Defined Networking

SDN is an approach for network management that enables programmability and decouples the data plane from the control plane without one restricting the growth of other.

In a network that requires fast adaptation due to the increasing number of connected devices, managing these elements becomes complex especially in IoT where each device may install various IoT applications and settings. To counter this problem, SDN emerged as new paradigm [START_REF] Fernando Mv Ramos | Software-defined networks: On the road to the softwarization of networking[END_REF] that brings the ability to dynamically control the network programmatically through software applications [START_REF] Haleplidis | Software-defined networking (sdn): Layers and architecture terminology[END_REF].

The network architecture illustrated in through the southbound API. Hence, the data plane of the network will be only responsible for monitoring local information, gathering statistic and forwarding the traffic according to rules received from the centralized controllers.

I.4.2 Network Slicing

Softwarized and virtualized networks enabled the ability to support heterogeneous services running on top of the same physical infrastructure with each having isolated slice created and managed in an "on demand" manner. Network slicing is an E2E concept covering all network layers and segments. This means that slicing, performed on access, core and transport networks, will provide specific hardware requirements (bandwidth, radio resources, processing power, storage, etc.) across multiple operators [START_REF]Network Slicing use cases requirements[END_REF].

By isolating virtual resources with network slicing, various use cases illustrated in 

I.4.3 Network Slicing and SDN integration in IoT

In large scale IoT networks, the cloud-based server should be able to acknowledge more messages as the number of IoT devices in the network increases. Hence, network flexibility is required and potentially reached using network slicing and SDN to provide heterogeneous QoS requirements through isolated E2E virtual networks controlled with SDN to facilitate the task for operators to manage IoT networks. The latter is composed of multi-networks supporting applications with various QoS requirements in terms of reliable delivery and minimum delay [START_REF] Zaidi | Will sdn be part of 5g[END_REF]. Therefore, authors proposed in [START_REF] Omnes | A programmable and virtualized network & it infrastructure for the internet of things: How can nfv & sdn help for facing the upcoming challenges[END_REF] [START_REF] Farris | A survey on emerging sdn and nfv security mechanisms for iot systems[END_REF], improving transmission quality [START_REF] Tang | An intelligent traffic load prediction based adaptive channel assignment algorithm in sdn-iot: A deep learning approach[END_REF] and scalability through cloud-based solutions [START_REF] Uddin | Sdn-based multi-protocol edge switching for iot service automation[END_REF]. In [START_REF] Wang | Poster: A sdn/nfv-based iot network slicing creation system[END_REF], authors proposed a novel IoT network slicing creation system based on SDN and NFV emerging technologies which provides management flexibility in a centralized fashion. However, all previous solutions are not effective enough to be deployed in upcoming IoT challenges. Therefore, new slicing strategies should be adopted to cope with the fast changes in a more congested IoT environment and to create network slices and allocate physical resources accordingly.

I.4.4 Defining IoT Virtual Slices

In all contributions of this thesis, the first challenge was to propose a classification of IoT devices based on which each service will have isolated and virtualized network resources. Based on the IoT QoS requirements [START_REF] Basim | Iot traffic management and integration in the qos supported network[END_REF] [39], one can note that IoT devices can be classified into three categories proposed in Table I • Finding the best way to assign IoT devices to the appropriate virtual slice that meets their specific QoS requirements.

• Due to capacity constraints and the limited number of channels on LoRa GWs, it is not straightforward to decide on how the amount of resources should be reserved while avoiding resource starvation for any of LoRa virtual slices.

• Inside each slice, one should define a strategy on how to classify IoT devices and allocate intra-slice channels accordingly.

These three problems are directly related in a way that inter-slice resource reservation and intra-slice resource allocation impact not only reliability and QoS, but also the energy consumption of IoT devices. Few research works recently tackled network slicing in IoT and focused on machine critical communications over various wireless networks.

The work in [START_REF] Nakao | End-to-end network slicing for 5g mobile networks[END_REF] introduced a slicing infrastructure for 5G mobile networking and summarized research efforts to enable E2E NS between 5G use cases. Furthermore, authors in [START_REF] Gadallah | Dynamic lte resource reservation for critical m2m deployments[END_REF] and [START_REF] Pedro | An adaptive network slicing for lte radio access networks[END_REF] adopted NS in LTE mobile wireless networks. The former proposed a dynamic resource reservation for M2M communications whereas the latter presents a slice optimizer component with a common objective in both papers to improve QoS in terms of delay and link reliability. In a 5G wearable network, the authors took advantage of slicing technology to enhance the network resource sharing and energy-efficient utilization [START_REF] Hao | Network slicing technology in a 5g wearable network[END_REF]. Moreover in [START_REF] Delgado | Joint application admission control and network slicing in virtual sensor networks[END_REF], the authors perform slicing in virtual wireless sensor networks to improve lease management of physical resources with multiple concurrent application providers. In [START_REF] Ellersgaard Kalør | Network slicing for ultra-reliable low latency communication in industry 4.0 scenarios[END_REF], authors proposed several slicing methods for URLLC scenarios which require strong latency and reliability guarantees. Nowadays, guaranteeing
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service requirements in LoRaWAN with traffic slicing remains as open research issues [START_REF] Adelantado | Understanding the limits of lorawan[END_REF]. Our main contributions with respect to the surveyed literature are stated as follows:

1. Network slicing is implemented in LoRaWAN where virtual slices are created and devices are assigned to one slice using a balanced iterative reducing and clustering method using hierarchies (BIRCH) method. The performance of LoRa virtual slices is investigated over different SF configurations in order to evaluate system performance and find the one that serves best LoRa devices in each slice.

2. A dynamic inter-slicing algorithm is proposed where the bandwidth will be similarly reserved on all LoRa gateways based on a maximum likelihood estimation (MLE) and then the latter is improved and extended with an adaptive dynamic method that considers each LoRa gateway separately and reserves its bandwidth after applying MLE on the devices in its range. Both dynamic slicing propositions will be compared to a straightforward fixed slicing strategy in which the GW's bandwidth is equally reserved between slices.

3. An energy model for LoRaWAN is integrated in NS3 based on LoRa energy specifications to analyze the energy consumed in each slice and an intra-slicing algorithm is proposed that meets the QoS requirements of each slice in an isolated manner.

The remainder of this chapter is organized as follows. Section II.2 and II.3 respectively present the LoRa system model and the network slicing problem established in this paper. In Section II.4, the slicing algorithm is proposed and implemented over the LoRa module of NS3 simulator [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF]. The performance evaluation of the algorithm and simulation results are analyzed and carried out through various scenarios in Section II.5.

Finally, Section II.6 concludes this chapter. First, L slices are defined based on the delay urgency factor and reliability requirements of each device. Each device is assigned next to the slice that meets best its service latency requirement. It is noteworthy that in IoT, the delay urgency and reliability represents the major key factors to define the priority of a device over another without neglecting the service type and the congestion that results from the large amount of IoT devices.

II.2 Modeling Network Slicing in LoRaWAN

Based on throughput requirements of each slice, slicing rate is estimated to define capacity c l that needs to be reserved for each slice l. Each GW m reserves for each slice, some of its physical receiving channels. Finally, intra-slice resource allocation is optimized in the third step by assigning each device in slice l to the most efficient virtual flow with the highest utility metric. Let α k,l ∈ {0, 1} be a binary variable that indicates whether a device k is associated with a flow f k,l,m ∈ F . The goal is to maximize the number of LoRa devices assigned to virtual flows in a way that maximizes the utility function adopted by each slice members. Therefore, the slicing and resource allocation problem for IoT can be formulated as:
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subject to

C1 : l∈L α k,l = 1, ∀k ∈ K (II.2a) C2 : k K β k,m p k,l,m ≤ P max m , ∀m ∈ M, ∀l ∈ L (II.2b) C3 : k K α k,l β k,m r k,l,m ≤ R max l,m , ∀l ∈ L, ∀m ∈ M (II.2c) C4 : β k,m =     
1 if device k is assigned to gateway m. 0 Otherwise.

(II.2d)

Knowing that multiple virtual network slices are isolated and built on top of a common physical gateway, (II.2a) ensures that each device should always choose exactly one and only network slice even if the latter was implemented on different physical gateways.

Hence in a multi-gateway scenario, the device assigned to a slice will only have the option to choose between the flows that lead to the channels reserved for that slice. The total transmission power of each GW m is limited in constraint (II.2b). Moreover, constraint (II.2c) guarantees the sum of uplink traffic sent by slice members do not exceed the maximum data rate capacity of the slice that can be sent through each gateway.

Constraint (II.2d) ensures binary-association values β k,m between a physical IoT device k and a physical LoRa gateway m.

II.4 Proposed Method

In LoRa networks, the general control plane and resource management module are centralized and moved to a management and control entity (MCE) in the cloud to ensure an efficient coordination of resources. Hence, LoRa servers will be the final decision maker in assigning the devices to the appropriate slice and defining the gateway that will transmit the packet following to a three-steps optimization algorithm. In the first step, each device will be assigned to the slice that meets its QoS requirements based on BIRCH method. Next, after assigning each device to its corresponding slice, GW resources will
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be dynamically reserved for each slice based on MLE before finally forwarding the packet to LoRa servers through the GW that provides the maximum utility value.

II.4.1 BIRCH-based Slicing Admission

Due to the large number of connected devices in IoT, BIRCH algorithm is adopted [START_REF] Zhang | Birch: an efficient data clustering method for very large databases[END_REF] which belongs to the agglomerative hierarchical clustering family and was proven as the best available clustering method for handling large datasets [START_REF] Zhang | Birch: A new data clustering algorithm and its applications[END_REF]. The main goal behind this method is to assign IoT devices to LoRa slices by checking their QoS requirements and moving from a large set of devices to a group of subsets with similar QoS requirements. The most urgent devices are the ones that have the closest instant delay d k to their packet delay budget (PDB) and are assigned the highest priority. u k denotes the urgency factor of device k with u k = d k /P DB k . Given K l devices in a cluster l, the latter will be considered as a utility point u k of each device in a cluster with ∈ K l . Each node in the CF-tree is a cluster of subclusters defined by a clustering feature (CF) as follows:

CF = (K l , LS, SS) = (K l , K l k=1 u k , K l k=1 u 2 k ) (II.3)
where K l denotes the number of devices in the cluster, LS the linear sum of the K l utility points and SS the square sum of K l utility points. BIRCH dynamically builds a CF-tree at each time a new device is inserted based on two parameters: a branching factor B and a threshold T . Each parent node contains a maximum number of B childs and a single child contains at most T entries. In this problem, B represents the number of L slices created with K l the group of devices admitted to slice l. Hence, l nodes derive from the root representing the slices created with each slice is made up of a group of subclusters. Therefore, entries in CF-tree are not considered as devices but as a set of subclusters C that belongs to slice l and groups devices with nearly similar utility points. In Pseudo-code 1, the algorithm scans the clusters from the root (line 3) and recursively traverses down the CF-tree and chooses the closest node at each level with the smallest average inter-cluster distance D as follows: 

CHAPTER
minD = K l k=1 K l +K l k =K l +1 (u k -u k ) K l K l 1/2 , ∀k ∈ K l , ∀k ∈ K l (II.4)
After defining the candidate child, a test is performed to find the closest CF-entry and defines if the device can be added to the child without violating the threshold condition.

If so, the algorithm groups the node with the chosen entry and updates the CF-entry of the candidate subcluster (line 4). If not, a new entry is created for the node inside the candidate child node without breaking the branching factor condition (line 5-6).

Otherwise, the child node is splitted and the utility points are redistributed based on 

L(λ|T 1 , T 2 , ..., T K l ) = f (T 1 |λ)f (T 2 |λ)....f (T K l |λ) L(λ|T 1 , T 2 , ..., T K l ) = K l i=1 e -λ λ T i T i ! logL(λ|T 1 , T 2 , ..., T K l ) = log K l i=1 e -λ λ T i T i ! logL(λ|T 1 , T 2 , ..., T K l ) = K l i=1 log e -λ λ T i T i ! logL(λ|T 1 , T 2 , ..., T K l ) = K l i=1 log(e -λ ) + log(λ T i ) -log(T i !) logL(λ|T 1 , T 2 , ..., T K l ) = K l i=1 -λ + T i logλ -log(T i !)
To find the maximum likelihood parameter, we apply the first derivative and solve it to
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To prove that the λ is the maximum value, we apply a second derivative as follows:

∂ 2 logL(λ|T 1 , T 2 , ..., T K l ) ∂ 2 λ = - K l i=1 T i λ 2 , ∀l ∈ L
The optained result is always a negative number which indicates that λ is maximum and the optimal parameter to consider. Hence, the best slicing decision is to consider the mean throughput λ l of slice l members ∀l ∈ L. However, slices are not equal in terms of priority. Therefore, GW resources will be dynamically allocated to the most urgent slice 

II.4.3 Intra-Slicing Resource Allocation Algorithm

After reserving the radio resources for each slice, the goal next is to maximize the utility function of slice members. In the previous subsection I. [START_REF] Amichi | Spreading factor allocation strategy for lora networks under imperfect orthogonality[END_REF].4, utility function for each slice is computed based on multiple criteria weights for reliability and load and are respectively manipulated using the analytical and hierarchy process approach. The latter is proved as a very decent method for multi-criteria decisions and was adopted in many IoT applications [START_REF] Omkarprasad | Analytic hierarchy process: An overview of applications[END_REF]. The algorithm searches in each slice for the gateway that offers the most robust and reliable link with lowest delay [START_REF] Rogier | Network performance : Links between latency throughput and packet loss[END_REF], finds the highest U U RA metric and allocates resources accordingly. Increasing the number of devices will decrease the reliability of links due to congestion. It happens sometimes for devices that
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are more tolerant to delay, the most reliable link may be overloaded due to the increasing number of devices and should not be taken into consideration. Instead, another channel should be available that gives the best trade-off solution when computing U RA metric and offers the highest reliability with the lowest possible load. In BE slice, IoT devices runs delay-tolerant applications with higher packet delay budget. Therefore, only the load is considered in this slice utility U BE without taking reliability into consideration. 

II.5 Simulation Results

In uplink, centralized servers enable the opportunity to make efficient slicing configurations based on data traffic in the buffer of each LoRa device. In this work, LoRa model is adopted [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF] to simulate the network in the open source NS3 simulator [START_REF] Nsnam | [END_REF]. For additional implementation details, one can refer to the work done in [START_REF] Magrin | LoRaWAN Module Documentation[END_REF] by Magrin et al. in which a complete description of the model is included and integrated in NS3 platform. Each simulation is replicated 50 times and results are plotted with 95% confidence intervals with respect to the parameters shown in the first section of Table II.1.

The experiment is realized in a realistic LoRa scenario where devices are choosing a random time for transmission but periodically uploading to LoRa servers small packet payloads that varies from 10 to 20 Bytes. Simulations start with 100 devices to emulate a load of one due to the legal duty-cycle limitations of 1% in the European region [START_REF] Augustin | A study of lora: Long range & low power networks for the internet of things[END_REF]. The maximum number connected to a single gateway is limited to 1000 devices following to the scalability study in [START_REF] Haxhibeqiri | Lora scalability: A simulation model based on interference measurements[END_REF]. LoRa servers allow 8 MAC retransmissions for IoT devices
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before defining a packet delivery failure. Moreover, LoRa devices and gateways are both placed over a cell of 10 KM radius following to a uniform random distribution. Each device is configured with spreading factors that varies from 7 to 12 when uploading traffic to LoRa GWs. Each GW is characterized by 8 receiving channels in the 867-868

MHz european sub-band. Based on the Eq. II.6 below, energy consumption is evaluated when the number of LoRa devices increases in each slice.

E k = p tx i + p rx i V + epa .d tx/rx (II.6)
where E k is the energy consumed by an IoT device, V the LoRa supply voltage, EPA the amplifier's added efficiency, d tx the duration of transmission, p rx i the power of reception and p tx i the power of transmission that varies between 2 and 14 dBm based on the SF i with i ∈ {7, .., 12} adopted. Based on LoRa ADR, for each SF a static power value (dBm) is configured for transmission (Tx) and reception (Rx). An energy module for LoRa module is integrated in NS3, inspired by the one that already exists for Wifi, and is characterized with specific energy parameters and power model for LoRa [START_REF] Blenn | Lorawan in the wild: Measurements from the things network[END_REF] as listed in the second section of Table II.1 below.

II.5.1 Proof of Isolation

The very first step before investigating slicing strategies is to prove the isolation concept.

Assuming that all devices are uploading packets to a single LoRa GW. The number of LoRa devices is fixed to 20 in U RA slice and the rest of devices in the network are assigned to RA and BE slices. 

II.5.2 SF Configuration Variation

In this section, the performance of LoRa slices is evaluated with different SF configurations for a fixed number of 300 devices. 

II.5.2.1 Fixed Packets Transmission Period

In this subsection, a decent comparison is performed between SF configuration methods for a fixed packet transmission interval. Each device randomly selects a time for transmission and then it periodically uploads a packet each 50s. Static -SF 12 scored the highest PLR percentage. By adopting this configuration, packets transmitted occupy the spectrum for the longest time on air. Therefore, the highest impact on PLR% was reached due to congestion. Packets arrive at constant intervals and cannot be decoded due to gateway saturation. It is noteworthy to mention that no packets were lost due to lack of sensitivity because increasing the spreading factor increases at its turn the range and the probability for successfully decoding a packet. Unlike static -SF 12, devices with static -SF 7 configuration lost more than half of the packets. However this time, the main loss was due to lack of sensitivity for packets that are mainly transmitted by edge nodes and cannot reach the gateway because SF7 offers the shortest range capability between SF configurations. Following these assumptions, one can now understand why static -SF 9 could be placed as a trade-off between range and spectrum occupation with the best overall PLR% between the measured static configurations. As previously mentioned, increasing SF configuration also increases the spectrum time occupation of packets sent, which also increases the interference PLR% because the probability of receiving packets with the same SF configuration at the same time will also increase. 

II.5.2.2 Variant Packets Transmission Interval

In In Table II.3, results show that reducing congestion has the same impact on network performance of each slice. For each transmission interval, it is shown how the percentage of PLR is distributed on each slice. Regardless of packets transmission intensity, the PLR percentage decreased in all configurations in U RA slice and had the smallest impact on its communications reliability. Therefore, based on all performance results, DA configuration is adopted for the following simulations in which we compare the performance of fixed and dynamic slicing strategies in LoRaWAN. 

II.5.3 Fixed vs Dynamic vs Adaptive-Dynamic Slicing Strategies

Following to previous simulations, dynamic-adaptive SF configuration is adopted which has proved its worthiness for this study. The goal in this section is to evaluate the performance of the f ixed (FS), dynamic (DS) and the adaptive-dynamic slicing (ADS)

strategies. With F S, the number of receiving paths is reserved in an equal manner and is compared to DS and ADS strategies where slicing decisions are performed using MLE throughput estimation for each slice starting with the one with the highest priority.

Moreover, the impact of adding load metric to utility calculations is studied for each slicing strategy when the number of LoRa devices assigned to each slice increases. Each slice in a LoRa gateway suffers from congestion, decreasing with it the probability of successfully decoding the packet. bandwidth required for transmission when a small capacity is fixed for this slice. The performance of each slice is evaluated next using ADS with a load strategy in terms of energy consumption and the percentage of devices that respected their delay deadlines.

Simulation results in

II.5.3.1 Percentage of unserved nodes in delay

The efficiency of ADS is mainly shown in 

II.5.3.3 Energy Consumption

When increasing the number of nodes, the total energy consumed increases for all the simulated slices, as plotted in Figure II.9 below. However, U RA slice always consumed less energy even when the number of its LoRa members increased. This returns to relation between SF and TP configuration shown in the second section of Table II.1.

Increasing SF will increase the transmission power and the energy consumption of a slice member. Therefore, the consideration of reliability in utility calculations forces delaysensitive devices to take the most reliable path with the lowest spreading factor values and transmission power compared to RA and BE slices. 

II.6 Conclusion

In this chapter, network slicing is implemented and investigated in centralized standard LoRa architecture in which inter-slice resource reservation and intra-slice resource allocation methods are both proposed and optimized with respect to the QoS requirements of each slice members. Various slicing strategies are compared after proving the isolation concept between each of LoRa virtual slices. Based on the results obtained, the adaptive dynamic network slicing appears to be the best slicing method between the ones
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III.1 Introduction

T

he solution that we proposed in Chapter II using network slicing, has shown its worthiness in providing urgency and reliability in LoRa networks. In this context, an urgent packet will always have a part of LoRa resources reserved to guarantee its arrival to the gateway. However, after analyzing in depth reliability results, we have noticed that there is still room for improvement to reduce the percentage of packets lost in the network. Hence, we decided to investigate more in depth on how LoRa parameters impact QoS of an IoT device and how to configure the latter properly in a network slicing scenario.

Reliability in LoRa does not depend only on just successfully delivering a packet to a channel above sensitivity, it also depends on the configuration of other packets received at the same time on a LoRa channel which may cause significant packet losses due to co-SF and intra-SF interference. The former happens when two packets configured with same SF are simultaneously received at the same channel whereas the latter happens when the interfere packet is decoded with different SF configuration. Many research studies focused on proposing various SF configurations and distribution strategies over multiple network deployments [START_REF] Ochoa | Evaluating lora energy efficiency for adaptive networks: From star to mesh topologies[END_REF] with the goal to overcome capacity limits [START_REF] Varsier | Capacity limits of lorawan technology for smart metering applications[END_REF] and to provide a trade-off solution that minimizes energy consumption while maximizing reliability [START_REF] Le | Energy/reliability trade-off of lora communications over fading channels[END_REF]. However, SF is not the only parameter that should be taken into consideration when optimizing LoRa configuration.

Increasing TP of a device is also important to increase SNR and the chance of decoding one of the packets upon interference. However, one should also not forget on battery constraints that should be respected to avoid depleting the battery lifetime of IoT devices. In some works, authors showed the importance of configuring IoT devices with a proper combination between SF and TP parameters to improve scalability of LoRaWAN [START_REF] Petäjäjärvi | Performance of a low-power wide-area network based on lora technology: Doppler robustness, scalability, and coverage[END_REF] and to avoid performance degradation and unfairness that happens in LoRa network if IoT devices configure SF and TP locally [START_REF] Reynders | Range and coexistence analysis of long range unlicensed communication[END_REF]. LoRa originally includes
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a link-based adaptation of SF and TP configurations using the ADR mechanism. Many works tried to propose modified and improved ADR algorithms with the goal to increase reliability and energy-efficiency without taking into consideration the possibility of intra-SF and inter-SF collisions [START_REF] Kim | Adaptive data rate control in low power wide area networks for long range iot services[END_REF] [108] [START_REF] Reynders | Power and spreading factor control in low power wide area networks[END_REF]. The latter can be decreased with the knowledge of the entire network or by finding the optimum configuration after testing all combinations of LoRa parameters that respects specific thresholds [START_REF] Bor | Lora transmission parameter selection[END_REF]. However, this method is considered as time consuming because sometimes, achieving multi-objectives in terms of reliability and energy-efficiency do not always require tuning parameters, especially on IoT devices placed at the edge of their communication range [START_REF] Cattani | An experimental evaluation of the reliability of lora long-range low-power wireless communication[END_REF]. In [START_REF] Li | How agile is the adaptive data rate mechanism of lorawan?[END_REF], the performance of the official ADR mechanism proposed by LoRa is evaluated and shows the impact of different configurable parameters in terms of slow convergence rate which introduces higher energy consumption and packet losses.

All works previously mentioned from the literature improved LoRaWAN performance using various optimization strategies. However, the random-based access nature in IoT network gives the motivation to optimize network slicing with a slice-based parameters configuration that treats each virtual slice differently without considering all IoT devices as devices belonging to the same LoRa network. The goal behind this proposition is to improve QoS of IoT devices and limit interference and collisions in each LoRa virtual network. This chapter contributions extend the previous one by considering smart city applications belonging to different QoS classes and are stated as follows:

1. We include QoS in LoRa, which was previously considered as a best effort technology, with the goal to test the flexibility that network slicing provides in terms of traffic management and QoS integration.

2. We apply ADS, found to be the best slicing strategy in Chapter II, where the bandwidth is efficiently reserved on each LoRa GW separately based on MLE estimation. The goal of this scheme is to avoid channels starvation while considering the exact need of each slice starting by the one with the highest slicing priority.

3. We propose TOPG as a novel slicing optimization method that is based on Tech-IN LORA NETWORK SLICING nique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Geometric Mean Method (GMM). The proposed method efficiently configures LoRa SF and TP parameters and improves the performance of each slice in terms of QoS, reliability and energy consumption.

The remainder of this chapter is organized as follows. We devote Section III. presents the proposed slicing and optimization algorithm implemented over the LoRa module of NS3 simulator [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF]. The performance evaluation of the algorithm and simulation results are analyzed and carried out through various scenarios in Section III.5.

Finally, Section III.6 concludes the chapter.

III.2 Modeling Network Slicing in LoRa-based Smart City Network

In a smart city network deployed with LoRa, various use cases are enabled for citizens in terms of mobility, smart home, health and many other fields. However, due to the heterogeneity of these applications, a single smart city network is unable to support all of these traffic types within a network without compromising QoS for any of them. In case of an accident, a connected vehicle should immediately communicate the information to the people involved and responsible for emergency situations. However, this information could be lost or arrived without respecting the required delay in urban cities. Hence, the focus here is on applying traffic slicing in smart city scenarios, virtually isolated, and with specific QoS thresholds. In Table I Each slice is defined based on delay, throughput and reliability requirements of IoT applications [START_REF] Basim | Iot traffic management and integration in the qos supported network[END_REF]. It is noteworthy that to improve communications in an IoT environment, multiple objectives should be reached. More precisely, we jointly consider in this chapter QoS, energy, and reliability requirements as major key factors and objectives to optimize parameters configuration of an IoT device belonging to a slice with a specific slicing priority sp l . On each LoRa gateway, a slicing rate is estimated based on the throughput required by the devices active in each slice l in order to define capacity c l that needs to be reserved. Each gateway has a fixed number of C channels with C l,m the set of channels reserved for slice l on GW m. We search to jointly optimize QoS and network slicing energy efficiency by assigning slice members with the proper SF and TP configurations.
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However, solving this multi-objective problem is challenging. Therefore, the goal in this chapter is to optimize parameters selection after evaluating the cost and benefits in each slice. We added σ 1 , σ 2 and σ 3 as constant variables to equally distribute the weight between objective functions and we introduced α k,l ∈ {0, 1} and β C l ,m ∈ {0, 1} as two binary decision variables that respectively indicates the admission of device k to slice l and the reservation of a channel C l on GW m.

III.3 Multi-Objective Problem Formulation

Network slicing optimization in IoT is a twofold problem and involves:

1. Finding the best inter-slicing resources reservation strategy

Configuring each slice member with the optimum SF and TP parameters

The goal in this chapter is to optimize the global performance of each slice in terms of QoS, energy, and reliability. This turns the second problem of finding the best SF and TP configuration for an IoT device into a multi-objective problem formulated as follows:

III.3.1 QoS in a LoRa slice

Each device k adopts a specific SF configuration for information transmission. The configuration of SF is very crucial because the latter is directly related to throughput r k,c and transmission delay d k,c previously defined in Section I.3.2. Based on these values, we model in Eq. III.1 the QoS cost as:

QoS k,c = r k,c + (1 -d k,c ) M aximize k∈K α k,l QoS k,c , ∀l ∈ L, (III.1)
where QoS k,c denotes the benefits that should be maximized in each slice and respectively includes d k,c and r k,c normalized by dividing r k,c and d k,c values by the highest throughput and delay that can be achieved over a wireless LoRa link.

III.3.2 Interference in a LoRa slice

In LoRaWAN, the reason for loosing a packet uploaded by an IoT device is three-fold:
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1. when a packet is received under-sensitivity if the device was out of range or configured with bad SF and TP values. This is indicated by P LR k,c denoted as binary variable as follows:

P LR k,c =      0 if device k successfully reaches c ∈ C l,m 1 Otherwise
The output of this variable mainly depends on the sensitivity of the gateway that increases alongside an increase in SF configuration [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF].

2. when packets are lost due to co-SF interference that happens between two devices simultaneously transmitting with the same SF. Based on random access formula [START_REF] Andrew S Tanenbaum | a d. wetherall[END_REF], the probability of the latter G SF depends on the number of packets generated during the transmission of one packet with the same SF and is written in Eq. III.2 below:

P LR k,c = 1 -e -2G SF (III.2)
3. when a collision happens between two packets transmitted with different spreading factors leading to a potential loss due to inter-SF interference. In this case, the packet survives interference if its signal power was higher than the power margin value (dB) needed to decode a packet from its interferer. Based on the power margin matrix, previously explained in Table I.3, P LR k,c is modified to indicate if a packet survives inter-SF interference on a channel or not.

P LR k,c =      0 if device k survives interference 1 Otherwise
The goal here is to find the configuration that maximizes the chances of decoding a packet upon its reception at the GW level. After combining all these objectives, the reliability cost is finally modeled in Eq. III.3 with the objective to find the configuration that can minimize the probability of loosing a packet due to co-SF interference, inter-SF
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interference or low channel sensitivity:

P LR k,c = P LR k,c + P LR k,c + P LR k,c M inimize k∈K α k,l P LR k,c , ∀c ∈ C l,m , ∀l ∈ L (III.3)

III.3.3 Energy Consumption in a LoRa slice

Increasing the SF reduces the transmitted data rate and decreases the transmission delay and signal strength whereas higher TP increases SNR and the energy consumption of an IoT device. The latter is defined in Eq. II.6 and is affected by both SF and TP values. Accordingly, we compute the energy of a LoRa device during a slicing interval time following to Eq. III.4 with the objective of minimizing energy consumption in a LoRa slice without degrading QoS performance:

M inimize k∈K α k,l E k,c , ∀c ∈ C l,m , ∀l ∈ L (III.4)
Due to the multi-objectivity of the problem, we search to find the optimum slicing strategy with the proper SF and TP configurations that simultaneously maximize QoS benefits of each slice and minimize energy and reliability costs without under optimizing a function over another. This multi-objective problem is formulated subject to the constraints below:

C1 : l∈L α k,l = 1, ∀k ∈ K (III.5a) C2 : b l,m ∩ b l ,m = ∅, ∀l, l ∈ L, ∀m ∈ M (III.5b) C3 : 0 ≤ P k,C l ≤ P max k , ∀m ∈ M, ∀l ∈ L (III.5c) C4 : k K α k,l β C l ,m R k,c ≤ R max l,m , ∀l ∈ L, ∀m ∈ M (III.5d) IN LORA NETWORK SLICING C5 : α k,l ∈ {0, 1}, ∀k ∈ K, ∀l ∈ L (III.5e) C6 : β C l ,m =     
1 if channel belongs to slice l on GW m. 0 Otherwise.

(III.5f)

The first constraint (III.5a) ensures that each device should always choose exactly one and only network slice even if the latter was implemented on different physical gateways. Moreover, a perfect isolation is guaranteed in (III.5b) between two bandwidth parts assigned for two different slices regardless if the latter was reserved on the same or on two different gateways. The transmission power of each device is limited in constraint (III.5c). Furthermore, constraint (III.5d) guarantees the sum of uplink traffic sent by slice members which do not exceed the maximum data rate capacity of the slice that can be sent through each gateway. Constraint (III.5e) ensures binary association values of device k to slice l and constraint (III.5f) ensures binary reservation values of a channel that belongs to slice l on a LoRa GW m.

III.4 Proposed Method

In this section, we expound the proposed slicing and configuration mechanism, illustrated in The first problem appears in finding a decent slicing strategy to split the physical network in a way that avoids resource starvation. To this manner, we consider the adaptive dynamic slicing strategy that we previously proposed in Section II.4.2. The centralized controller estimates the need in throughput using MLE for each virtual slice to define the rate of channels that should be reserved for the devices starting with the slice with the highest slicing priority sp l . In each slice, we propose a novel slice-based TOPG method that combines GMM [START_REF] Yadav | Using geometric mean method of analytical hierarchy process for decision making in functional layout[END_REF] and TOPSIS [START_REF] Hsu-Shih | An extension of topsis for group decision making[END_REF] optimization algorithms.

GMM is adopted to define the weight values based on the objectives importance in each slice. These values are next imported to a TOPSIS-based optimization method that searches for the best SF and TP configuration which meets utility requirements of each slice members.

III.4.1 The Proposed TOPG Optimization Algorithm

After defining slicing objectives, we next need to adapt the weight of every objective before optimizing SF and TP parameters configurations in a way that meets best the requirements of the corresponding slice. To do this, we propose an optimization algorithm based on GMM and TOPSIS methods.

Let A l =(a ij,l ) n×n be a judgment matrix where a ij,l > 0 and a ij,l × a ji,l = 1. Each value a ij,l measures the importance of an objective i over another objective j for each slice l. Based on the importance values in each slice, a priority vector is derived and denoted as ψ l = (ψ 1,l , ψ 2,l , ..., ψ (n-1),l , ψ n,l ), where ψ l ≥ 0 and n i=1 ψ i = 1, from the decision matrix A l . With GMM, weight configuration for each objective is defined as an objective function of the following optimization problem: 

       M inimize n i=1 j>i [ln(a ij,l ) -(ln(w i,l ) -ln(w j,l ))] 2 s.t. w i,l ≥ 0,
w i,l = n n j=1 a ij n i=1 ( n n j=1 a ij ) (III.6)
After finding the objective weights for each slice, we import the weight vector of each slice into a decision matrix D l , which consists of a set of possible alternatives A x as shown in the below matrix:

D l = Alternatives w 1,l .. w n-1,l w n,l                           A 1 a 1,1 .. a 1,n-1 a 1,n .. .. .. .. .. .. .. .. .. .. A m-1 a m-1,1 .. a m-1,n-1 a m-1,n A m a m,1 .. a m,n-1 a m,n
where each value a x,y represents a parameter configuration of a device with y ∈ {1, 2, ..., n} defines the objective and x ∈ {1, 2, ..., m} denotes a combination of SF i ∈ I = {7, ..., 12} and TP discrete values j ∈ J = {2, ..., 14} in dBm among which LoRa servers need to assign the device with the best configuration based on W l , the set of objectives weight values of the corresponding slice. TOPSIS method requires normalized values a x,y in D l with the goal is to find the alternative with the shortest distance from positive ideal solution and the one with the largest distance from the negative ideal solution.

a x,y = a x,y m x=1 a 2
x,y

, with x ∈ {1, ..., m}, y ∈ {1, ..., n} (III.7a)

In other terms, the goal is to find the best configuration that maximizes QoS benefits and minimizes the costs in terms of PLR and energy consumption. For each positive ideal solution A + and negative ideal solution A -, normalized weight rating v x,y can be determined using the following equations: IN LORA NETWORK SLICING v x,y = w x,l a x,y , with x ∈ {1, ..., m}, y ∈ {1, ..., n} (III.7b)

A + = (v + 1 , v + 2 , ..., v + n ) (III.7c) A -= (v - 1 , v - 2 , ..., v - n ) (III.7d)
where V y value results using equations

V + y = max x v x,y , y ∈ Y 1 ; min x v x,y , y ∈ Y 2 (III.7e) V - y = min x v x,y , y ∈ Y 1 ; max x v x,y , y ∈ Y 2 (III.7f)
where Y 1 and Y 2 respectively respect benefit and cost criterias. We calculate next the euclidean distance from the positive ideal solution and negative ideal solution of each alternative; respectively as follows:

d + i = n j=1 (d + i,j ) 2 (III.7g) d - i = n j=1 (d - i,j ) 2 (III.7h) where d - x,y = V + y -v x,y , with x = 1, ..., m and d - x,y = V - y -v x,y , with x = 1, ..., m. ζ x = d - x d + x + d - x (III.7i)
We finally rank the configurations according to the relative closeness previously calculated and we assign each device with the configuration that provides the highest value ζ x due to its closest position to the positive ideal solution.
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MHz european sub-band.

The second section of Table II.1 summarizes LoRa energy model parameters. Based on the Eq. III.8 below [START_REF] Nsnam | [END_REF], we seek to evaluate the energy consumed when we increase the number of LoRa devices in each slice.

E k,l,m = p tx i + p rx i V + epa .d tx/rx (III.8)
where E k,l,m is the energy consumed by an IoT device, V the LoRa supply voltage, epa the amplifier's added efficiency, d tx the duration of transmission, p rx i the power of reception and p tx i the power of transmission that varies between 2 and 14 dBm depending on the configuration strategy adopted. We integrate an energy module for the LoRa module in NS3 similar to the one that already exists for Wifi and we applied energy parameters and the power model specified for LoRa in [START_REF] Blenn | Lorawan in the wild: Measurements from the things network[END_REF] and [START_REF] Bouguera | Energy consumption modeling for communicating sensors using lora technology[END_REF]. In the following, we start by a proof of isolation and we highlight the importance of finding proper SF-TP combination with a parameters study in which we focus on showing the impact of SF and TP on energy consumption, mean PLR and the percentage of devices that respected GBR and PDB.

III.5.1 Parameters Study

In this section, we investigate the performance of each slice when we put in place different SF-TP configuration strategies for a fixed number of 300 devices. We first study static configurations in which all devices in the cell are configured with one of the following SF-TP combinations (i.e., SF7-TP2, SF8-TP5, SF9-TP8, SF10-TP11, SF11-TP14 and SF12-TP14). Then, we study the impact of TP variation for static configuration compared to three types of dynamic configuration strategies namely, DR where each device randomly picks a SF and TP values, DA where each LoRa device dynamically adapts device parameters to one of the SF-TP configurations depending on the highest receiving power measured from the gateway and we compare them with T OP G where dynamic slicing is supported with the proposed GMM and TOPSIS optimization. 

CHAPTER

III.5.1.1 Proof of Isolation

The very first step before investigating the strategies that can be used to configure SF and TP parameters is to prove the isolation concept between virtual slices in LoRa.

Assuming that all devices are transmitting with the same DA configuration, we consider a single LoRa GW scenario in which we fix 20 LoRa devices for U RA slice and we increase the number of devices. Therefore, all the devices that are left are assigned now to RA and BE slices. III.2 below and evaluated in terms of QoS for a fixed packet transmission interval. When static configurations are adopted, all devices in the cell are configured with one of the following SF-TP combinations (i.e., SF7-TP2, SF8-TP5, SF9-TP8, SF10-TP11, SF11-TP14 and SF12-TP14). Results show that increasing the SF improves QoS metrics in terms of throughput and delay except for SF11 and SF12 where performance degrades tremendously. With high SF configurations, sensitivity is improved but the energy increases as well because with this configuration IoT devices occupy the spectrum for the longest time on air. This explains the increase in PLR and the probability that packets with same SF interfere upon transmission. However, with small SF configurations, energy is reduced with an improved QoS performance compared to high SF configurations. However, more than 50 % are lost due to lack of sensitivity, which means that a large number of packets are lost because they were not successfully received and decoded by the gateway.

Regarding QoS, increasing the SF reduces the throughput and increases the transmission delay. This explains why the percentage of devices that respect PDB decreases
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due to the increase in transmission delay. However, knowing that throughput decreases when SF increases, it is noteworthy to mention that the percentage of devices that respect GBR is not affected and improves with SF. This is because a higher SF with higher TP helps more devices to deliver the required throughput while improving at the same time packets sensitivity. This clearly explains the low values in PLR and highlights the trade-off that some configurations deliver in terms of QoS, reliability and energy. Therefore, we pursue this study with (SF 9 -T P 8) configuration due to its trade-off performance that this configuration provides between QoS, energy consumption and having the best overall PLR% between the ones simulated with static strategies.

Slice Name Static SF7-TP2 SF8-TP5 SF9-TP8 SF10-TP11 SF11-TP14 SF12-TP14 unefficient SF-TP distribution where it could be useful to improve QoS by keeping the same SF with higher TP value instead of increasing both SF and TP as it's done in DA method. Moreover, when devices are close to the gateway, it could be also interesting to reduce the TP to save energy without degrading QoS performance of IoT devices.

T OP G results in Table III. [START_REF] Amarasekara | Dynamic scheduling algorithm for lte uplink with smart-metering traffic[END_REF] clearly show the potential that this method brings and requires further evaluation in complete simulations due to the trade-off results that were achieved in terms of QoS, reliability and energy consumption.

III.5.2 Performance Evaluation of SF-TP Configurations

Following to previous simulation results, we focus in this section on evaluating the proposed T OP G configuration method that proved its worthiness for this study. We run now simulations starting by 100 devices over a network of four gateways managed by a centralized LoRa server and we increase the number of devices until the maximum number connected to a single gateway is reached and limited to 1000 devices, as shown in the scalability study in [START_REF] Haxhibeqiri | Lora scalability: A simulation model based on interference measurements[END_REF]. A load of one is emulated due to the legal duty-cycle limitations of 1% in the European region [START_REF] Augustin | A study of lora: Long range & low power networks for the internet of things[END_REF]. The optimal configuration had the lowest PLR percentage between the simulated strategies but with higher complexity compared to the proposed T OP G configuration. This puts the latter as a trade-off solution between performance and computation time. members requiring urgent and reliable communications are more prioritized in terms of resource reservation than the best effort slice resulting lower PLR regardless of the method adopted for SF-TP configuration. This returns to the efficiency of the estimation method that avoids resource starvation and dynamically reserves physical channels on LoRa gateways following to the throughput requirements of each slice members. Additionally, the efficiency of the proposed configuration method can also be concluded which gave the lowest PLR with T OP G with a rate that did not bypass 20% in URA and RA slices and 30% in the BE slice. the second best configuration method behind the optimal algorithm. The former scores nearly similar results with less computation time. With both T OP G and optimal algorithms, the rate of devices that did not guarantee their throughput did not exceed 30% even in a very congested scenario. This mainly highlights the efficiency of using TOPSIS instead of testing all SF and TP combinations. Moreover, static and DR configurations had the worst results with a rate that exceeded 50% of the devices that violated the GBR defined in each slice. With DA, smaller SF values provide an achievable throughput that can be sometimes very high compared to the one that needs to be guaranteed. This is also true with smaller SF parameters where in both cases, an IoT device with DA configuration is assigned a specific TP for each SF parameter. However with the proposed algorithm, T OP G provides the guaranteed throughput with an efficient SF or TP variation. With T OP G optimization, a proper SF and TP combination is found that guarantees throughput while saving lots of energy for each slice members. 

III.6 Conclusion

This chapter highlights the utility of supporting the adaptive dynamic slicing strategy with a slice-based parameters optimization that searches for the best SF and TP configuration for each device depending on the slice that it belongs to. Results show major improvement in terms of QoS, reliability and energy consumption when each device is configured with the proper SF and TP combination. More specifically, the rate of packets lost decreases from 50% to less than 30 % for the same number of IoT devices. However, it is expected that the number of devices will increase and bypass 1000 devices, found to be the maximum capacity in the scalability study realized by authors in [START_REF] Haxhibeqiri | Lora scalability: A simulation model based on interference measurements[END_REF]. LoRaWAN will suffer from congestion when the number of devices increase in the network. Hence, we believe that centralized servers will practically face major difficulties in managing and properly isolating Lora slices as well as configuring each IoT devices with the proper parameters configuration. Hence, the goal in the next chapter is to propose a distributed strategy supported by SDN which should meet scalability and capacity requirements of LoRaWAN in large scale IoT deployments.

IV.1 Introduction

A

fter evaluating in Chapter II the assets and the usability of network slicing in guaranteeing QoS for LoRa devices in terms of urgency and reliability, we have shown next, in Chapter III, that further improvement can be reached if an optimized SF and TP distribution is taken into consideration. However, due to the vast popularity that IoT is gaining, estimations forecast that 20 to 30 billion IoT devices will be connected by 2022 [START_REF] Ericsson | Internet of Things Forecast[END_REF]. There is some doubts about how to deal with the rapid development of LoRaWAN knowing that the current LoRa architecture won't be capable of supporting upcoming scalability challenges in large scale LoRa deployments despite the advantages brought to LoRaWAN with our previous contributions.

In [START_REF] Mikhaylov | Analysis of capacity and scalability of the lora low power wide area network technology[END_REF], Mikhaylov et al. present an analytical scalability analysis that measures the maximum throughput that can be transmitted by a single LoRa device. The capacity of the latter is analyzed by Augustin et al. in [START_REF] Augustin | A study of lora: Long range & low power networks for the internet of things[END_REF] as the superposition of independent ALOHA-based networks. Moreover, Bora et al. in [START_REF] Martin C Bor | Do lora lowpower wide-area networks scale[END_REF] performed practical experi- Knowing that SDN in itself is not the solution for the slicing problem, it provides the potential of enabling simplified resource management, distributed control and communications between LoRa GWs. The crucial role that SDN plays in improving IoT network is highlighted in the literature in terms of security [START_REF] Farris | A survey on emerging sdn and nfv security mechanisms for iot systems[END_REF], improving transmission quality [START_REF] Tang | An intelligent traffic load prediction based adaptive channel assignment algorithm in sdn-iot: A deep learning approach[END_REF] and scalability through cloud-based solutions [START_REF] Uddin | Sdn-based multi-protocol edge switching for iot service automation[END_REF]. However, even with SDN, it is impractical to assume that the centralized network server is capable of acknowledging messages received from billions of devices given their limited physical bandwidth and computational capacity [START_REF] Gupta | The capacity of wireless networks[END_REF]. In large scale IoT, devices cannot be controlled by a single network entity. Hence, due to the lack of information for a GW regarding IoT devices managed by the other GWs, game theory can be used, as a popular framework [START_REF] Han | Game theory in wireless and communication networks: theory, models, and applications[END_REF], to effectively analyze the interactive decision making of GWs with conflicting interests [START_REF] Semasinghe | Game theoretic mechanisms for resource management in massive wireless iot systems[END_REF]. Each GW tries to find the best resource reservation strategy for its virtual slices and the best parameters configuration for devices in its range. Multiple works proposed game-theoretic models SCALE LORAWAN 

IV.2 Distributed SDN-based architecture for IoT

In this section, we first present the distributed SDN-based architecture compared to the centralized non-SDN LoRa existing actually in the IoT market. Similar to previous chapters, virtual slices are next defined and integrated in densified LoRa networks before finally presenting the slicing system model.

IV.2.1 LoRa SDN-Based Architecture

In 

IV.3 Problem Formulation

Optimizing LoRa parameters configuration and resource reservation impacts QoS, energy consumption and reliability performance for IoT devices belonging to a coalition with specific slicing priority sp l . However, solving this multi-objective problem is proven to be NP-Hard in similar problems by Amichi et al. [START_REF] Amichi | Spreading factor allocation strategy for lora networks under imperfect orthogonality[END_REF] for LoRa parameters configuration and by Liu et al. [START_REF] Liu | Resource allocation in wireless powered iot networks[END_REF] for channel resources and power allocation. This problem is also more challenging due to the maximum number of physical channels q m that can be used for transmission on each GW m. The goal is to first control IoT devices admission where some of these devices are positioned in the range of multiple GWs. The latter cooperate to assign these devices to the most appropriate virtual slice before optimizing the reservation and allocation of channel resources. We consider α k,c ∈ {0, 1} and 

d k = L r k,c with k ∈ K l,m and c ∈ C l,m (IV.2)
Hence, the first objective is presented in Eq. IV.3 which consists on improving QoS of a slice when QoS of all its members are also improved based on slice specific thresholds.

M aximize u

K l,m QoS with u K l,m QoS = k∈K l,m α k,c (r k,c + (1 -d k,c )), ∀c ∈ C l,m , ∀l ∈ L, ∀m ∈ M (IV.3) where u K l,m
QoS denotes the QoS metric that measures satisfaction rate of slice l members over a LoRa GW m in terms of throughput and delay normalized into r k,c and d k,c

respectively. Configuring the device with lowest SF and TP configurations may lead to
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packet reception errors due to inter and intra-SF interference. The former denoted as P LR k,c , depends on collisions that happen on a GW channel between two devices configured with the same SF based on random access formula [START_REF] Andrew S Tanenbaum | a d. wetherall[END_REF]. The latter, denoted as a binary variable P LR k,c , depends on low Signal-to-interference-plus-noise ratio (SINR) [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF] and indicates if the transmitting packet survives interference table [START_REF] Goursaud | Dedicated networks for iot: Phy/mac state of the art and challenges[END_REF] that comes from other LoRa transmissions with each having different SF and TP configurations.

The packet survives interference with all interfering packets if, considering all combinations of SF, a higher power margin value (dB) is satisfied than the corresponding co-channel rejection value. Moreover, P LR k,c denotes a binary variable that indicates if a packet arrives to the GW above or below sensitivity thresholds [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF]. The latter is an additional factor that leads to a loss of a packet due to the lack of sensitivity. Thus, finding the proper configurations of a device is crucial because increasing SF will also increase receiver's sensitivity allowing a packet to be transmitted at a wider range.

Based on what was previously mentioned, we define P SR The second objective is defined in Eq. IV.5 below as maximizing the reliability of a transmission by optimizing parameters configuration if the latter improves P SR k,c of a transmission.

M aximize u

K l,m Rel with u K l,m Rel = k∈K l,m α k,c P SR k,c , ∀c ∈ C l,m , ∀l ∈ L, ∀m ∈ M (IV.5)
where u

K l,m
Rel denotes the reliability metric that slice l members achieve over a LoRa GW m including sensitivity, inter-SF and intra-SF interference estimations. It is noteworthy to mention that overestimating SF, TP and CR configurations leads to an increase
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in energy consumption due to the longer activity time for an IoT device when uploading a packet with high SF configuration. Therefore, we also consider energy in utility calculations based on the power model adopted in [START_REF] Bouguera | Energy consumption modeling for communicating sensors using lora technology[END_REF]. Two energy states for LoRa IoT device are assumed in which the energy of a transmission is formulated in Eq. IV.6

below and computed based on P tx k,c and P sleep k,c power values respectively denoting the power consumed in active or in sleep mode.

E k,c = P tx k,c T active + P sleep k,c T sleep (IV.6)
The problem of minimizing energy consumption is transformed into a maximization problem following to Eq. IV.7 below:

M aximize u K l,m Energy with u K l,m Energy = k∈K l,m α k,c (1 -E k,c ) ∀c ∈ C l,m , ∀l ∈ L, ∀m ∈ M (IV.7)
where u

K l,m
Energy denotes the energy consumed by a slice l over a LoRa GW m including E k,c , the normalized energy value of a packet that varies depending on SF and TP parameters configuration.

According to the multi-objective problem, QoS, reliability and energy objectives are turned into a single objective function with the goal to maximize the global utility value of each GW m. The latter is shown in Eq. IV.8 below and formulated in subject to the constraints below: 

M aximize U m with U m = l∈L β l,m (u K l,m QoS + u K l,m P SR + u K l,m Energy ), ∀m ∈ M (IV.8) C1 : c∈C l,m α k,c = 1, ∀k ∈ K (IV.9a) SCALE LORAWAN C2 : K l,m ∩ K l ,m = ∅, ∀l, l ∈ L, ∀m ∈ M (IV.9b) C3 : K l,m ∩ K l,m = ∅, ∀l ∈ L, ∀m, m ∈ M (IV.9c) C4 : C l,m ∩ C l ,m = ∅, ∀l, l ∈ L, ∀m ∈ M (IV.9d) C5 : 0 ≤ P k,c ≤ P max k , ∀k ∈ K, ∀c ∈ C l,m (IV.9e) C6 : k K α k,c β l,m r k,c ≤ R max c , ∀l ∈ L, ∀m ∈ M, ∀c ∈ C l,m (IV.
k m k ⇐⇒ U m (k) ≥ U m (k ) (IV.10)
where U m (.) is given by the utility computed for a device k which is affected by the other devices that exists in K l,m (line 3). Moreover, the preference relation set GW LIST l,m which ranks LoRa GWs based on the utility that depends on the configuration adopted by each device (line 3) and evaluates its utility metric in terms of QoS, reliability and energy consumption. The primary stable matching solution S primary is found with the deferred acceptance method of Gale and Shapely [START_REF] Gale | College admissions and the stability of marriage[END_REF] (line 4-7). However, due to the dependency between the preferences of the students, the possibility to find an acceptable and a stable solution for the one-to-many matching game becomes more complex [START_REF] Roth | a study in game-theoretic modeling and analysis[END_REF]. Hence, transferring a device from a coalition to another while keeping the device assigned to the same virtual slice is proposed to overcome this challenge. The transfer of devices between virtual slices is defined based on the framework of the coalitional game theory [START_REF] Han | Game theory in wireless and communication networks: theory, models, and applications[END_REF]. The latter is a pair (N, V ) where:

• N is the finite set of players, i.e. IoT devices.

• V is the mapping that assigns devices for every coalition K l,m that groups devices belonging to slice l on GW m with U l,m denotes the utility value of each coalition.

The objective of this game is to enable the opportunity for LoRa GWs to cooperate and to make a decision on accepting or refusing to transfer the device from K l,m to K l,m if
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the latter improves the utility of both coalitions (line 8-17). The process is proven to convert to a final solution S f inal [START_REF] Saad | A college admissions game for uplink user association in wireless small cell networks[END_REF] and is repeated until convergence. S f inal includes the final coalitions K l,m of IoT devices assigned to each virtual slice l ∈ L on LoRa GW m ∈ M (line 18).

IV.4.2 Bankruptcy Resource Reservation game

After defining coalitions of devices that belongs to each slice, each LoRa GW will reserve a number of channels for each coalition of devices belonging to the same virtual slice based on throughput requirements of the latter. In other terms, each slice experiencing higher traffic load requires a higher number of channels compared to the less loaded slice.

However, the number of channels required by the sum of virtual slices is higher than the number of physical channels that actually exists for each LoRa GW. Therefore, the resource reservation problem is modeled as bankruptcy situation which tries to predefine following to the work done in [START_REF] Blenn | Lorawan in the wild: Measurements from the things network[END_REF]. LoRa parameter settings are respected with SF configurations that vary between 7 and 12 and 2 to 14 dBm for TP configurations.

Based on each configuration, the lifetime of a device varies and is evaluated in each slice using Eq. IV.17 below [START_REF] Omni | Battery life calculator[END_REF]. to the device based on its position which highly improved reliability but do not consider QoS thresholds defined for each LoRa slice. This highlights the advantages of considering an optimized configuration where, unlike ADR, T OP G assigns IoT device configuration in a way that respects QoS thresholds defined for each slice. Therefore, T OP G is adopted for the following slicing performance study because it highly improves the performance of each slice members compared to static, RAN D and ADR configurations.

IV.5.2 Centralized vs Distributed Slicing

Based on the scalability study performed in [START_REF] Haxhibeqiri | Lora scalability: A simulation model based on interference measurements[END_REF], LoRa scalability varies for different IoT applications. In some applications, high spreading factors cannot be used due to violation of radio duty cycle by the message transaction period. Hence, knowing the variety of IoT use cases and when end devices density increases as well in the network, it looks impractical to manage IoT communications in a centralized manner specially if the SDN controller configures edge devices with high spreading factors which at its turn increases packet error rate and collisions [START_REF] Varsier | Capacity limits of lorawan technology for smart metering applications[END_REF]. Moreover, in large scale networks, the SDN controller should be able to acknowledge more messages as the number of IoT devices in the network increase. This increases signaling cost and slicing decision time and hence affects delay performance. Instead, performing resource reservation in a distributed manner while being closer to end devices could save lots of time and energy.

For this reason, delay performance is evaluated for U RA slice members as it requires the respect of the lowest PDB. The goal here is to show the efficiency of considering
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scored the least reliable results overall because the slicing is static and does not adapt to slicing admission. The latter depends on the running application on each device where some transmissions could be urgent or just requiring a best effort behavior. Moreover, 

General Conclusion and Perspectives

To support efficient IoT communications with guaranteed QoS requirements, new contributions are needed to provide flexible resource management in the network and optimize its configuration dynamically. In this thesis, we proposed new ideas that improve spectrum management, QoS consideration and energy efficiency in IoT networks using net- GWs will be able to apply the needed optimization faster instead of just sending all information to the server.

For future works, the focus should go towards investigating the findings of this thesis and implementing network slicing in real test-bed implementations. We will work on practically proving the slicing concept in all LoRa architecture layers. Moreover, some further improvements could be also realized by integrating artificial intelligence with machine learning tools to enable rapid analysis, prediction, and decision making. 

  figurer les paramètres LoRa de la couche physique. La méthode proposée trouve pour chaque appareil la meilleure configuration susceptible d'améliorer les performances de ses slices en matière de QdS et d'efficacité énergétique. En outre, nous avons également envisagé de relever les futurs défis liés à la croissance du nombre des dispositifs IoT connectés. Même avec le découpage de réseau, le passage à l'échelle avec Lora demeurait un défi à prendre en compte en raison du manque de flexibilité dans la gestion des réseaux sans fil actuel. Par conséquent, pour atteindre l'objectif global consistant à garantir la QdS dans un réseau IoT à grande échelle, le découpage du réseau en slices virtuels et SDN sont adoptés comme éléments principaux afin d'arriver à implémenter une stratégie de découpage et une optimisation distribuée. Cette dernière proposition est basée sur la théorie des jeux et s'adapte plus rapidement aux changements d'un environnement IoT massif en appliquant l'approche de découpage à la périphérie du réseau.

  garantie d'un certain débit, et d'un taux de réception des paquets élevé. Ces différents réseaux logiques sont appelés des slices du réseau dont chaque slice correspond à un réseau virtuel de bout en bout entre un noeud IoT et un service réseau en s'appuyant sur la même infrastructure réseau physique. Étant donné que le nombre de périphériques IoT connectés augmente rapidement avec le temps, une solution efficace pour garantir la qualité de service consiste à apporter de la flexibilité et une virtualisation des réseaux IoT à l'aide de SDN et du découpage en slices. Cette QdS sera garantie en favorisant les communications urgentes, et une gestion flexible du réseau divisé en plusieurs réseaux virtuels configurés et gérés séparément. Pour chaque slice, une partie des ressources physiques est réservée de bout en bout sur toutes les couches (accès réseau, coeur et cloud) pour répondre aux besoins QdS des applications urgentes et fiables. Dans cette thèse, afin de pouvoir garantir cette QdS pour les communications IoT, il va falloir tout d'abord répondre aux questions suivantes: • Comment affecter les noeuds IoT aux slices et comment classifier ces slices dans LoRaWAN ?
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 80 Figure. I.1: Operation modes in NB-IoT[START_REF] Larmo | Narrowband IoT in the cloud[END_REF] 

Figure I. 2 ,

 2 Figure. I.2: LTE-M network architecture[START_REF] Liang | Energy-efficient scheduling scheme with spatial and temporal aggregation for small and massive transmissions in lte-m networks[END_REF] 

  Figure. I.3: Global scheme of LTE-M scheduling algorithm[START_REF] Dawaliby | Joint energy and qos-aware memetic-based scheduling for m2m communications in lte-m[END_REF] 
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 44 Figure. I.4: SigFox architecture [25]

  CSS modulation transmits symbols by encoding them into multiple signals of increasing or decreasing radio frequencies making signals more robust to multi-path interference, Doppler shifts and fading [10]. Moreover, Forward Error Correction (FEC) and Cyclic Redundancy Check (CRC) techniques are also implemented in LoRa to improve receiver's sensitivity and the robustness of communications. Knowing that LoRa is proprietary and capable of communicating with any other Mediaum Access Control (MAC) layer, LoRa Alliance defines LoRaWAN MAC as an open source protocol built on top of LoRa physical layer. The former defines the communication protocol and system architecture for the network, whereas the latter enables the long-range communication link. LoRaWAN supports low-power and long-range communications where a set of K = {1, 2, ..., k} IoT devices transmit directly to M = {1, 2, ..., m} LoRa GWs in a star of stars topology before forwarding data to a backbone infrastructure. LoRa architecture is shown in Figure I.5 where low throughput traffic is uploaded by each IoT CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND device (thing) to the cloud application servers via IP networks. Within the backbone network, operators servers perform authentication, validation, and forward the packets to the application servers. The latter connects to the backbone network to receive the data and send back the packets in downlink via LoRa GWs.

Figure. I. 5 :

 5 Figure. I.5: LoRaWAN architecture [10]

  Transmission Delay: Transmission delay parameter d k,c denotes the transmission delay of a packet with a length of L bits uploaded by device k to one of the channels c that belongs to GW m. d k,c = L r k,c seconds (I.2) • Transmission Power (TP): Transmission power parameter defines the energy consumed by an IoT device and can be set between -4 and 20 dBm with a step of 1 dB, however in LoRa configuration, TP values vary between 2 and 14 dBm. • Carrier Frequency (CaF): Three different radio bands are available for Lo-RaWAN (137-175 MHz, 410-525 MHz and 820-1020 MHz). In this thesis, we work on European frequency bands where operators work in in the 863-870 MHz frequency band. Here, specific duty cycles are imposed on IoT devices by the European frequency regulations where each device transmits on a certain frequency in a way respected by both GWs and devices. LoRaWAN channels have a duty-cycle as low as 1% which means that during the last 3600 seconds, a device must never have transmitted more than 36 seconds in total.

Figure I. 6

 6 Figure. I.6: SDN architecture [16]

Figure I. 7 ,

 7 Figure I.7, can be served with specific QoS requirements in terms of urgency, throughput and reliability, in a way that removes the impact that may come from a slice over another. However, managing each slice and finding the appropriate amount of resources

  Figure. II.1: Channels slicing example over a LoRa GW

II. 4 . 2 Lemma 1 .

 421 the closest distance criteria to obtain a set of new subclusters that do not break the branching factor constraint (line 7-8). In case the number of childs already reached the maximum, the parent nodes are splitted and the childs are redistributed to the closestCHAPTER II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA NETWORKSparents (line 9-10). After inserting the CF-entry, all CF informations of the path are updated from the inserted information to the root (line 13). Dynamic MLE-based Inter-Slicing Algorithm Knowing the physical capacity C limitation in terms of radio channel resources of a GW m, The goal of this scheme is to estimate and reserve the appropriate resources by finding the maximum likelihood buffer demands for each slice l starting by the one with the highest slicing priority. In this work, the traffic that needs to be uploaded follows a Poisson distribution and LoRa servers are aware of the amount of data stored in the buffer B i of each slice member. Let T i be the throughput needed by each device i, ∀i ∈ K l captured at each slicing interval time and identified by a corresponding probability distribution. For a fixed physical capacity, the optimum slicing strategy is to virtually reserve resources for each slice based on the mean throughput of its members. Proof : We consider T i follows a Poisson distribution P(λ) where λ denotes the throughput needed by device i assigned to slice l, ∀i ∈ K l . Let f (T i |λ) be a probability density function similar to L(λ|T i ) that represents the likelihood of λ given the observed throughput.

Pseudo-code 2 begin 2 if method=DS then 3 for each GW m do 4 for each slice l ∈ L do 5 Apply 6 end 7 end 8 else if method=ADS then 9 for each GW m do 10 for

 22345678910 starting by the channel with the highest reliability. Let Θ l = λ l / L l=1 λ l be the slicing rate based on which the algorithm reserves for each slice a capacity c l,m = c m .Θ l , ∀l ∈ L.Pseudo-code 2 summarizes the inter-slicing algorithm and starts with the most critical slice (line 2). Depending on the slicing strategy, the algorithm equally reserves the bandwidth between slices based on a straightforward "Fixed Slicing" (line[START_REF] Martin C Bor | Do lora lowpower wide-area networks scale[END_REF][START_REF] Bouguera | Energy consumption modeling for communicating sensors using lora technology[END_REF][START_REF] Braun | Software-defined networking using openflow: Protocols, applications and architectural design choices[END_REF] or estimates the needed throughput λ i of all slice l members in the case of "Dynamic Slicing" strategy, defines Θ l for channels reservation and reserve a part of the bandwidth on all LoRa GWs in a similar manner (line 3-7). If the "Adaptive Dynamic Slicing" was adopted, slicing rate of each slice Θ l varies from a GW to another because in this case, MLE estimates throughput of each slice members deployed in the range of the corresponding GW m (line 8-14). The algorithm moves next to the following slice, repeats the process and stops when no resources are left for reservation. CHAPTER II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA NETWORKS Dynamic and Adaptive Dynamic Inter-Slicing Strategies Input : Capacities c m , c n ; Number of slices L; Set of Throughput Requirements T l 1 Put slices in decreasing order based on priority sp l MLE Estimation based on the throughput required by all slice l members Define Slicing Rate Θ l and Reserve capacity c l,m each slice l ∈ L do 11 Apply MLE Estimation based on the throughput required by slice l members in the range of GW m Define Slicing Rate Θ l and Reserve capacity c l,m Set of resources reserved for each slice l

Figure. II. 3 :Pseudo-code 3 c 1 begin 2 3 Put devices in decreasing order based on u k for each device k ∈ K l do 4

 33234 Figure. II.3: Flow modeling for IoT network slicing

Figure II. 4

 4 proves the isolation concept because when the number of devices increases in RA and BE slices, U RA members are not affected and the PLR percentage remained constant and nearly null whereas PLR increased in RA and U RA virtual slices in a more congested scenario.

Figure II. 5 ,

 5 In this section, simulation is repeated with different transmission time interval. static -SF 9 is considered as the best static configuration and is compared to DR and DA dynamic configurations when the packets transmission period increases. It is noteworthy that regardless of the adopted configuration, increasing packets transmission interval decreases PLR due to traffic intensity decrease. This can be shown with the decreasing behavior of all configurations for a common set of devices simulated. For all SF configurations and transmission intervals, DA always had the best SF distribution specially for high transmission intervals. This proves the utility of the former in realistic CHAPTER II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA NETWORKS scenarios where congestion is normally higher due to the massive number of IoT devices.

  Figure. II.5: Performance study with/without considering load in metric calculations
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 6 Figure. II.6: PLR in each slice with various slicing strategies

Figure II. 7

 7 below. With ADS, LoRa devices had the highest percentage of devices that respected their delay deadlines compared to DS and F S strategies with an unserved rate that never exceeded 10% of the total number of packets transmitted. This highlights the importance of including urgency priority in slicing strategies and considering reliability in intra-slice resource allocation algorithm due to its direct impact on the spreading factor configuration and the spectrum occupation time.
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 727 Figure. II.7: Percentage of unserved nodes
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 9 Figure. II.9: Mean energy consumption variation

  2 and III.3 to respectively describe the network slicing system model in a smart city scenario and the multi-objective optimization problem established in this chapter. Section III.4

. 5 , 1 .

 51 the key QoS requirements of URA, RA and BE slices were previously defined in Chapter I with each having running various IoT applications illustrated in Figure III.One of the listed use cases is smart mobility,where, an increase in communication delay between two vehicles or between a vehicle and its base station may result a dangerous accident and should be provided with the highest levels of urgency and reliability. On the other hand, some smart city applications only require best effort behavior like metering and actuating to measure the consumption IN LORA NETWORK SLICING data of different resources like electricity, water, gas and heating power.

Figure. III. 1 :

 1 Figure. III.1: Smart city applications in LoRa-based network

Figure. III. 2 :

 2 Figure. III.2: (a) Standard LoRa and (b) LoRa network slicing with parameters optimization

Fig. III. 3 ,

 3 that will optimize LoRa network slicing by catching up to the multiobjective optimization problem in finding the appropriate resource reservation and the best configuration to adopt for IoT devices.

Figure. III. 3 :

 3 Figure. III.3: The proposed slicing and TOPG optimization algorithm

n i=1 w i,l = 1 ,

 1 ∀l ∈ L which have a unique solution and can be simply solved by the geometric means of the rows of each slice's decision matrix A l : CHAPTER III. JOINT QOS AND ENERGY AWARE OPTIMIZATION IN LORA NETWORK SLICING

Fig. III. 4

 4 Figure. III.4: Proof of isolation

  figure the parameters accordingly. The advantages that dynamic configurations brings to LoRa are two-fold: first, depending on how far the device is from the gateway, a smaller distance requires a smaller SF configuration which also mean smaller TP and energy consumption. Secondly, the fact of adopting different SFs configuration reduces the probability of collisions and the percentage of packets lost due to interference. However, similar to static configurations, DA is weak in terms of QoS. This is also due to

Figure. III. 5 :

 5 Figure. III.5: Total energy consumption variation
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 6522 Figure. III.6: Mean energy consumption in each slice with different SF-TP configurations
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 7 Figure. III.7: PLR variation
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 8524 Figure. III.8: Mean PLR in each slice with different SF-TP configurations

Figure. III. 10 :

 10 Figure. III.10: Percentage of unserved nodes in throughput

  ments to study the limit on the number of transmitters supported in LoRa based on an empirical model and built LoRaSim simulator with the goal of studying LoRaWAN scalability. Unlike[START_REF] Martin C Bor | Do lora lowpower wide-area networks scale[END_REF], Van den Abeele et al. in[START_REF] Van Den Abeele | Scalability analysis of large-scale lorawan networks in ns-3[END_REF] adopted the LoRaWAN MAC protocol in NS3 module to analyze its scalability with thousands of end devices and showed the impact of downstream traffic on packet delivery ratio (PDR) of confirmed upstream traffic. In[START_REF] Petäjäjärvi | Performance of a low-power wide-area network based on lora technology: Doppler robustness, scalability, and coverage[END_REF], Petajajarvi et al. showed that LoRa scalability can be improved using an optimized configuration of LoRa parameters (spreading factor (SF), transmission power (TP) and coding rate (CR)). Any misconfiguration of one of these parameters will lead to degradation in PDR and unfairness in LoRaWAN[START_REF] Reynders | Range and coexistence analysis of long range unlicensed communication[END_REF] network performance. The current cloud-based server cannot meet scalability challenges in properly allocating network resources and configuring IoT devices as their number in the network increases. Hence, flexibility in managing network resources is required using emerging technologies in IoT, namely network slicing and software defined networking (SDN), to provide heterogeneous QoS requirements through isolated End-to-End (E2E) CHAPTER IV. DISTRIBUTED NETWORK SLICING IN LARGE SCALE LORAWAN network slices and an optimized resource allocation and network configuration strategies.

Figure. IV. 1 :

 1 Figure. IV.1: The proposed distributed multi-game for slicing admission, resources reservation and resources allocation

Table I. 5 .

 5 Fig. IV.2a, the standard LoRa architecture is illustrated and is originally designed as centralized and non-SDN architecture in which End-to-End (E2E) network slicing can be implemented and managed by the centralized network server with a global overview of the network. The latter is responsible for estimating and reserving physical resources on LoRa GWs for each slice based on QoS requirements of IoT devices. However, in large scale dense deployments, network complexity significantly increases which degrades network performance specially when more edge devices are positioned in the range of multiple GWs simultaneously. Hence, communication reliability decreases leading to an increase in packets loss due to interference and misconfiguration of LoRa SF and TP parameters. This motivates the idea of integrating SDN in a distributed network slicing and enabling cooperation between LoRa GWs via SDN switches. With the distributed SDN-based architecture, illustrated in Fig. IV.2b, LoRa application servers are replaced by application program interfaces (APIs) to provide efficient communication regarding which IoT services and applications LoRaWAN should be providing. SDN simplifies network management and enables distributed solutionsfor resource and network configurations. In this context, slicing admission control and resource reservation decisions are delegated to the GWs which cooperate between each others using game theory framework. Each IoT device randomly runs an application belonging to one of URA, RA or BE slices previously defined in chapter I and listed in The GW forms coalitions with devices having similar QoS requirements and assign each device to one of the channels reserved for his virtual slice.

Figure. IV. 2 :

 2 Figure. IV.2: Centralized non-SDN vs Distributed SDN-based network slicing architecture in LoRaWAN

  β l,m ∈ {0, 1} as two binary decision variables that respectively indicates the admission of device k to a channel c ∈ C l,m and the association of a slice l to GW m. Based on SF and TP configuration, each device k ∈ K l,m achieves specific throughput and delay formulated in Eq. IV.1 and Eq. IV.2 below: r k = SF. R c 2 SF .CR with k ∈ K l,m (IV.1)

  k,c formulated in Eq. IV.4 below, with the objective of maximizing the packet success rate P SR k,c of a packet transmitted by an IoT device k ∈ K over a channel c ∈ C l,m . P SR k,c = (1 -P LR k,c ) + P LR k,c + P LR k,c with k ∈ K and c ∈ C l,m (IV.4)

  9f)Knowing that multiple virtual network slices are built on top of a common physical gateway, (IV.9a) ensures that each device should always choose exactly one and only channel reserved for a virtual slice l ∈ L on GW m. (IV.9b) and (IV.9c) controls the formation of coalitions upon IoT devices admission into virtual slices. The former guarantees that two coalitions of devices belonging to slice l and l do not have common IoT devices in the range of GW m whereas the latter guarantees that IoT devices belonging to the same slice l cannot be shared between two LoRa GWs m, m ∈ M . Moreover, perfect isolation is guaranteed in (IV.9d) between two set of physical channels belonging to different slices l, l ∈ L over a GW m. The transmission power of each device is limited in constraint (IV.9e). And finally, constraint (IV.9f) guarantees that the sum of uplink traffic sent by slice members do not exceed the maximum data rate capacity of the slice that can be sent through each gateway. All the constraints previously mentioned should be respected by each GW in the following multi-game proposition. Due to lack of information between GWs in large scale LoRaWAN, a cooperative multi-game is next proposed to maximize the utility function of each GW when optimizing slicing admission, inter-slice resource reservation and intra-slice resource allocation.CHAPTER IV. DISTRIBUTED NETWORK SLICING IN LARGE SCALE LORAWANrespects QoS thresholds of the corresponding slice. Each GW m ∈ M has an objective to reduce congestion and to form coalitions for each slice members in a way that maximizes its utility U m . To resolve this slicing admission game, a preference relation is first defined as a binary relation over the coalitions of devices belonging to a slice l ∈ L on GW m ∈ M . Based on these preferences, IoT devices and GWs can rank one another.Each GW m ∈ M defines a preference relation set KLIST k,l,m over the set of devices which are members of coalitions K l,m , such that, for two devices k, k ∈ K l,m and k = k , the following Eq. IV.10 is approved:

  repeated until there is no pair of devices k, k ∈ K assigned to slice l on GWs m ∈ M and m ∈ M respectively, although k prefers m to m, i.e. m k m and k prefers m to m , i.e. m k m

k

  in a fairly manner how to ration the amount of channels among the group of IoT devices belonging to the same slice with each having different demands in throughput. The key denotations and description of the bankruptcy game are defined in TableIV.1. Total number of players Total numbers of IoT devices in a range of GW K l,m Set of players Set of coalitions including IoT Devices belonging to slice l on GW m S Coalition in the game Set of coalitions including IoT slice members X Total money the company owes Total number of channels on GW m Y Total amount of money claimed by companies Total number of claimed channels by each slice x i Minimum money needed by each player The number of channels needed by each slice y i Claimed money of each player Claimed extra channels of each slice C -i∈N b i Money(estate) Total number of additional claimed channels ψ i (v) Solution of money distributed to each player Additional channels reserved for each slice Table IV.1: Bankruptcy Game description Based on the bankruptcy problem, modeled as a triple (N, C, g), where N = {1, ..., n} is the set of players, i.e. coalition of slice members, C represents the benefit, i.e. the total set of physical channels that are available on LoRa GW m ∈ M , and g = {g 1 , ..., g n } is the vector of claims of each coalition of IoT devices. Based on O'Neill approach [87], a bankruptcy game (N ,v) can be defined for every bankruptcy problem (N, C, g) where v is a characteristic function with 2 n possible coalitions with players in a game. Moreover, CHAPTER IV. DISTRIBUTED NETWORK SLICING IN LARGE SCALE LORAWAN in improving energy efficiency and QoS effectiveness in wireless IoT networks. Next, bankruptcy is applied to reserve channel resources for each virtual slice based on data transmitted by its members. In this context, GWs cooperate to assign edge devices, then reserve the bandwidth and apply proper network configuration in a distributed manner.The latter should improve network performance because GWs will have the ability to be closer to IoT devices in terms of network slicing management and to adapt faster to their QoS requirements. Hence, in large scale networks, making slicing decisions at the GW level reduces complexity due to the cooperation that happens between GWs instead of transmitting all information to the centralized SDN controller. In this work, simulations are replicated 20 times with 95% confidence interval in realistic LoRa scenarios. All application and simulation parameters are summarized in Table III.1. However, this time we will evaluate the new distributed proposition in large scale where we increase the number of IoT devices into 5000 devices in the network. At each replication, devices are distributed based on the uniform random distribution over a cell of 10 km whereas GWs positions are fixed and spaced 2.5 km apart. Each GW is characterized by 8 receiving channels with each having a bandwidth of 125 kHz in the 867-868 MHz European sub-band. Regarding application settings, packets are transmitted at a random time but in a periodic manner with fixed payloads of 18 Bytes

L

  Figure. IV.3: Performance evaluation of 2500 devices simulated with various SF-TP configuration strategies

Fig. IV.IV. 5 . 3 . 2

 532 Fig. IV.5a and Fig. IV.5b show that although P ROB slightly improved reliability performance for U RA and RA slices, P ROB had the worst performance in BE slice due to the over estimation of the amount of channels that should be reserved for urgent and reliable slices. CEN T and DIST proved their efficiency reducing PLR compared to F IXED and P ROB strategies. However, when congestion increases in LoRa, the efficiency of DIST method is clearly highlighted in Fig. IV.5c and proved to be the best slicing strategy between the ones simulated. This specially appeared in the BE slice where with CEN T more than 50% of packets uploaded by BE members are lost with high congestion scenarios whereas with DIST strategy PLR is limited to 10% of the total number of packets uploaded. This result returns to the fast adaptation and the fair resources reservation that the distributed method provides.

( a )

 a Figure. IV.7: Percentage of unserved nodes in delay

IV. 6 Conclusion

 6 Figure. IV.8: Percentage of served nodes in throughput

  work slicing and software defined networking. The proposed solutions are implemented over LoRaWAN due its low power, wide area, open alliance and its potential to support large scale IoT deployments.After dividing IoT services into three class of services based on urgency and reliability, network slicing is first implemented in the centralized LoRa architecture where each class of services belongs to a network slice. The latter are proved to be completely isolated to protect urgent and critical IoT communications from being impacted by less prioritized IoT devices. Next, various static and dynamic slicing strategies are compared with different spreading factor distributions. Results show that the adaptive dynamic slicing and configuration method was the best in terms of QoS, reliability and energy consumption. With this strategy, the centralized server defines, for each GW, how channels are reserved for the virtual slices configured on that GW based on an MLE estimation of devices throughput requirements in its range.To improve these results, we extended the previous method with a slice-based optimization that improves spreading factor and transmission power parameters configura-tion at the physical layer. While respecting QoS thresholds of each slice, IoT devices are configured with T OP G, based on TOPSIS and GMM optimization methods. The proposed T OP G method finds the configuration that responds best to multiple objectives in terms of improving QoS, avoiding interference and reducing the energy consumption of each slice members.Despite improving network performance with the previous contributions, LoRaWAN will still come up short in meeting scalability challenges in next generation large scale IoT networks. Therefore, we finally proposed an SDN-based distributed LoRaWAN architecture and slicing strategy improved reliability performance for 5000 devices deployed in the network. When slicing and configuration decisions are leveraged to the edge, LoRa

  Finally, we also intend to work on other big challenges in IoT such as improving security measures and ensuring interoperability in next generation IoT networks. 104
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	or the last couple of years, operators needed to address various challenges and
	complexities in deploying IoT communications within legacy networks. In-
	evitably, the expected increase in the number of IoT devices causes saturation problems
	and will have a large impact on current wireless communication systems. IoT devices
	mainly require long battery life, extended coverage, larger capacity to support billions of
	devices with low device and deployment cost. Driven from these requirements, various
	technologies appeared as potential solutions for IoT network deployment. The purpose
	of this chapter is to introduce the most emerging technologies nowadays for low power
	wide area networks (LPWAN). We especially focus on the latest research efforts that
	optimized IoT communications and resource management using emerging technologies
	that provides virtualization and network softwarization.
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	to send and do not need high speed or large bandwidth. Therefore, in its Release 13,
	3GPP introduced LTE-M and Narrow-band IoT (NB-IoT) as the two newest technolo-
	gies to support low-throughput M2M communications. LTE-M provides 1 Mbit/s as
	downlink and uplink throughput whereas NB-IoT provides few kbit/s throughput due
	its smaller bandwidth (200 kHz) compared to the one reserved for LTE-M (1.4 MHz).
	Both technologies operate in much lower signal-to-noise ratio (SNR) than conventional
	LTE. In Release 14, CaT-M2 is proposed as a new enhancement that supporting 5 MHz
	bandwidth and higher peak data rates for LTE-M devices. Afterwards, Release 15 came
	up to enhance coverage for higher devices velocity (200 km/h), to specify new power
	class (14 dBm) and propose new techniques, such as wake-up signal and relaxed mon-
	itoring for cell reselection, to reduce latency and improve spectral efficiency [92]. In
	Table I.1, the licensed technologies for IoT, as well as their respective research works
	and optimizations, are summarized and described in details in the below subsections.
		Rel. 8	Rel. 12 Rel. 13	Rel. 13	Rel. 14
		Cat-4	Cat-0	LTE-M	NB-IoT	CAT-M2
	Bandwidth	20MHz	20MHz 1.4MHz	200kHz	5MHz
	DL Rate	150Mbit/s 1Mbit/s 1Mbit/s 25.5kbit/s 4Mbit/s
	UL Rate	50Mbit/s 1Mbit/s 1Mbit/s 62,5kbit/s 6Mbit/s
	Duplex	Full Duplex	Full Duplex	Half Duplex	Half Duplex	Half Duplex
	Number of Antennas Tx Power	2 23dBm was the first project of the European Union's Seventh Frame-1 1 1 1 23dBm 20dBm 23dBm 23dBm
	work Program (FP7) to present LTE-M as a new system that extends LTE specifications Table I.1: LTE Category-M technologies [37] [92]
	and supports future wireless systems with M2M and H2H communications coexistence.
	The 3rd Generation Partnership Project (3GPP) has also worked on a group of en-I.2.1 NB-IoT
	hancements in M2M communications over LTE and LTE-A networks [98]. In its Release NB-IoT [21] [121] is proposed as a new technology that offers ultra-low cost, low energy
	12 and 13, 3GPP introduced many categories adapted for M2M communications (Cat-M) consumption, low delay sensitivity, low response time and enhanced network architecture
	that operate in half and full duplex modes. In that sense, Cat-0 was proposed as the first
	technology in Cat-M which supports lower features in terms of cost, throughput, number
	of antennas and includes power saving mode enhancements for user equipments (UEs).
	IoT devices such as sensors and smart meters tend to have much smaller data messages

Table I .

 I 

2: List of parameters • Radio Bandwidth (BW): Based on the transceiver model, operators may choose one of the 10 available bandwidth values that varies from 7.8 kHz to 500 kHz. Eu-CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND

  SF 8 SF 9 SF 10 SF 11 SF 12

	Desired Packet Interferer Packet SF 7 SF 7 -6	16	18	19	19	20
	SF 8	24	-6	20	22	22	22
	SF 9	27	27	-6	23	25	25
	SF 10	30	30	30	-6	26	28
	SF 11	33	33	33	33	-6	29
	SF 12	36	36	36	36	36	-6
	Table I.3: Cochannel rejection (dB) for all combinations of spreading factor for the
	desired and interferer packets						
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(30 dB)

. However, if the opposite case happened, a smaller power margin value (22 dB) will be needed to decode the SF8 packet intercepted by SF10 packet.

  What are the parameters that impact QoS of each LoRa device and how to optimize this configuration in a way that doesn't increase network complexity and without

	CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND CHAPTER II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA
	NETWORKS					
	using LoRa resources and prioritizing urgent communications over delay tolerant IoT
	applications.					
	impacting network performance ? II.1 Introduction			
	Best Effort (BE) slice: requires the lowest priority due to their non-guaranteed data • Is LoRaWAN architecture capable of supporting IoT communications in large scale IoT deployments and how to efficiently meet the upcoming challenges ? Chapter II n Chapter I, the problem of providing QoS and flexible resource management for I IoT communications is clearly stated. More specifically, three main issues should
	Features rate and delay-tolerant QoS requirements, i.e: smart metering applications. LTE Cat-1 LTE-M NB-IOT SIGFOX be tackled towards achieving this goal in LoRa networks:	LORAWAN
		Data Rate Spectrum Modulation Rx Bandwidth Adaptive Dynamic Network Slicing in 10Mbps 200Kbps-1Mbps 20Kbps 100bps 290bps-50Kbps U BE = σ ld w ld (I.8) Licensed Licensed Licensed Unlicensed Unlicensed OFDMA OFDMA OFDMA UNB/GFSK/BPSK CSS 20 MHz 1.4 MHz 200 KHz 100 Hz 125-500 KHz
	Max nb of Msgs/day	Unlimited	Unlimited	Unlimited	140 msgs/day	Unlimited
	Max Output Power Link Budget Power Efficiency	23-46 dBm 130 dB Low LoRa Networks 20 dBm 20 dBm 146 dB 150 dB Medium Medium High	20 dBm 151 dB Very High	20 dBm 154 dB Very High
	Interference Immunity	Medium	Medium		Low		Low	Very High
		Coexistence	Yes	Yes		No		No	Yes
		Security	Yes	Yes		Yes		No	Yes
	Mobility/localization	Mobility	Mobility		Limited Mobility, No localization	Limited Mobility, No localization	Yes
	QCI Slice Name Resource Type Priority	Packet Delay Budget (ms)	PER %	Example Services
	71	URA	GBR	1		100	10 -3	Real time, alarm monitoring
	72	RA	GBR	2		200	10 -3	Real time, live monitoring
	73	BE	nGBR	3		300	10 -6	Delay tolerant, metering
	slices that we have previously defined for IoT communications. Next, we implement
	network slicing where virtual networks share the same physical LoRaWAN infrastruc-
	ture and we evaluate their performance over different SF configurations. We show the
	impact of traditional IoT networks on energy consumption and how in this chapter, the
	proposed new dynamic slicing and resource allocation strategy contributes in efficiently

.5 below:

Table I.5: IoT QCIs table

Urgency and Reliability-Aware (URA) slice: requires the highest slicing priority due to urgency and reliability requirements of its members. Some examples of these applications are: surveillance and alarm monitoring. Based on Eq. I.6, U U RA is computed to define the utility for critical communications with w ld and w r the weights of load and reliability, σ r = SIN R k,l,m /SIN R max the rate of reliability of SINR that a device k achieves on a flow f k,l,m over the highest flow reliability that can be achieved through slice l and δ r , a binary variable that guarantees a minimum threshold when searching for the highest reliability links.

U U RA = δ r (σ r w r + σ ld w ld ) with δ r ∈ {0, 1} (I.6)

Reliability-Aware (RA) slice: requires lower priority consideration and are less critical CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND in terms of delay. This slice presents a trade-off between reliability and load, i.e: health sensors and home security systems.

U RA = σ r w r + σ ld w ld (I.7)

I.5 Problem statement and contributions

After presenting LPWAN technologies summarized in Table

I

.6, we have chosen to work in this thesis on LoRaWAN because its a more scalable technology operating in unlicensed spectrum. Unlike cellular IoT where only hundreds of IoT devices can be simulated in a single cell, Lora is able to serve thousands of IoT devices while also being an alliance with an open approach (instead of the proprietary one SigFox). However, in the state of the art, there's an obvious lack in providing QoS in IoT communications, which till now is limited to just reliability, meaning it's limited to just guaranteeing the delivery of a packet to the base station without considering throughput and delay constraints of the running application. Since the number of connected IoT devices is rapidly growing, an efficient solution to guarantee QoS is by bringing virtualization to IoT networks using SDN and network slicing. The motivation behind it is to improve server level from end to end across multiple network layers. This guarantees QoS requirements for IoT devices running urgent and reliable applications. We mainly answer the following questions: • How to assign IoT devices to virtual slices and how to classify these slices in LoRaWAN ? • How to reserve LoRa physical resources for each slice and inside each slice, how to efficiently allocate each device to the appropriate channel ? CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND • Table I.6: LPWAN technologies comparison for IoT communications

I.6 Conclusion LPWAN technologies are being more deployed nowadays in IoT networks due to their efficiency in meeting QoS and energy constraints. However, this proliferation of IoT technologies poses co-existence challenges as they differ in their settings where ones operate in licensed frequency spectrum and others have the ability to communicate via free frequencies spectrum. In this chapter, we presented LPWAN technologies specifications and we listed the latest research work that evaluates their performance and optimization efforts in improving IoT communications. In the next chapter, we answer the first two questions by first proposing a new methods for assigning IoT devices to the three virtual Summary II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II.2 Modeling Network Slicing in LoRaWAN . . . . . . . . . . . . II.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . II.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . II.4.1 BIRCH-based Slicing Admission . . . . . . . . . . . . . . . . . II.4.2 Dynamic MLE-based Inter-Slicing Algorithm . . . . . . . . . . II.4.3 Intra-Slicing Resource Allocation Algorithm . . . . . . . . . . . II.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . II.5.1 Proof of Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . II.5.2 SF Configuration Variation . . . . . . . . . . . . . . . . . . . . II.5.3 Fixed vs Dynamic vs Adaptive-Dynamic Slicing Strategies . . . II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA NETWORKS Pseudo-code 1

  BIRCH-based Slicing Admission algorithmInput : Set of devices K, diameter D, branching factor L, threshold T

	1 begin
	2	Initialize as many clusters as devices
		for each k ∈ K do
	3	Start from root
		Search for closest child node according to D
		Search for closest subcluster according to D
		if number of entries < T then
	4	Add k to subcluster C l,l
		Update CF of C l,l
	5	else if number of childs < B then

6 Create a new subcluster C l,l Add k to C l,l Update CF of the parent node S l 7 else if number of parents < B then 8 Split child nodes and redistribute CF entries according to closest D 9 else 10 Split parent nodes

11 end 12 end 13

  

Update CF entries in CF-tree

14 end

Output: Set of groups G l (l=1,2,...,L)
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	Simulation Parameters
	Simulation Time	300 seconds
	Slicing Interval Time	50 seconds
	Cell Radius	10 KM
	Number of replications	50
	MAC retransmissions	8
	LoRa devices and GWs distribution Random Uniform
	Propagation loss model	Log-distance
	Bandwidth	125 kHz
	Spreading Factor	{7,8,9,10,11,12}
	Confidence intervals	95%
	European ISM sub-band	863-870 MHz
	Power Consumption Parameters [10]
	Battery Maximum Capacity	950 mAh
	LoRa Supply Voltage	3.3V
	Amplifier Power's added Efficiency	10%
	Connected (Tx/Rx-SF7)	2 dBm
	Connected (Tx/Rx-SF8)	5 dBm
	Connected (Tx/Rx-SF9)	8 dBm
	Connected (Tx/Rx-SF10)	10 dBm
	Connected (Tx/Rx-SF11-12)	14 dBm
	Standby	0.09 mW
	Sleep	0 mW

Three major configuration strategies are CHAPTER II.

Table II

 II 

.1: Chapter II simulation parameters Figure. II.4: Proof of isolation considered, namely static configuration where all devices in the cell are configured with the same SF, dynamic -random (DR) where each device randomly picks a SF value and finally the dynamic -adaptive (DA) where each LoRa device estimates the best SF configuration depending on the receiving power measured from the gateway. In static CHAPTER II.

ADAPTIVE DYNAMIC NETWORK SLICING IN LORA NETWORKS configurations

  , the test is repeated for each SF value. However, regarding dynamic configurations, a device with a powerful receiving signal picks a small SF value whereas edge nodes are generally configured with larger SF values. TableII.2 and Table II.3 include

	the mean PLR% for each SF configuration with a fixed and variant packet transmission
	intervals respectively. Packets may be lost when the gateway is saturated due to the load
	in the network (Congestion PLR%), due to co-channel rejection (Interference PLR%) or
	due to lack of sensitivity when the packet is out of range, or also if it doesn't reach the
	gateway due to an appropriate SF configuration (Sensitivity PLR%).

Table II

 II 

.2 illustrates PLR percentage for each category in each slice. Results show that DA configuration was the most reliable technique because SFs are dynamically CHAPTER II.
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		Slice	Static						Dynamic
		Name	SF7	SF8	SF9	SF10 SF11 SF12 Random Adaptive
	Mean PLR % Overall 54.14 39.24 39.03 43.93 78.19 94.15 43.02	30.07
		Overall 76.14 61.75 28.84 2.06	0	0	19.63	0
	Sensitivity	URA	17.99 17.90 17.99 19.74 0	0	18.73	0
	PLR %	RA	26.98 26.91 25.97 24.21 0	0	27.75	0
		BE	55.03 55.20 56.04 56.05 0	0	53.52	0
		Overall 22.16 32.35 53.78 63.61 61.9	69.53 69.51	86.43
	Congestion	URA	0.12	0.62	2.91	6.91	11.08 15.9	8.99	8.48
	PLR %	RA	0.41	1.75	9.42	30.65 46.75 49.76 36.28	34.76
		BE	99.47 97.63 87.66 62.44 42.17 34.34 54.73	56.76
		Overall 0.89	4.87	16.15 33.32 37.30 30.47 9.84	12.39
	Interference	URA	7.45	11.85 13.35 15.33 16.44 20.05 16.16	15.43
	PLR %	RA	42.40 42.21 40.01 35.88 30.08 28.01 35.12	36.29
		BE	50.15 45.83 46.64 48.78 53.48 51.95 48.72	48.28

Table

II

.2: Packet Loss Rate variation with various SF configurations configured on LoRa devices by measuring the receiving power that a GW gets from the device depending on its position. The advantages that the latter configuration presents are two-fold: first, depending on how far the device is from the gateway, a smaller distance requires a smaller SF configuration and secondly, the fact of adopting different SFs configuration reduces interference PLR and the probability of collisions. Regardless of the adopted SF configuration method, the urgency character of U RA slice members explains the low percentage in terms of PLR compared to RA and BE slices. Urgent packets are not sent as often as other slices which reduces the probability of packets collision.
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	PLR %	PTP (s)	Static-SF9 URA RA	BE	Dynamic-random URA RA BE	Dynamic-adaptive URA RA BE
		20	24.68 22.98 52.34 18.86 26.12 55.02 0	0	0
	Sensitivity	40	20.35 25.81 53.84 18.69 27.43 53.88 0	0	0
	PLR %	60	19.97 24.15 55.88 18.25 27.36 54.39 0	0	0
		80	18.23 24.22 58.46 18.52 26.82 54.66 0	0	0
		100	17.32 23.92 57.85 18.80 26.96 54.24 0	0	0
		20	11.57 45.75 42.68 10.46 39.39 50.15 10.93 39.30 49.77
	Congestion	40	8.00	37.26 54.74 8.78	36.33 54.89 8.88	36.73 54.39
	PLR %	60	5.77	24.71 69.52 8.01	31.49 60.50 7.92	32.38 59.70
		80	3.95	13.74 82.31 6.45	29.25 64.30 6.30	29.40 64.30
		100	3.13	8.33	88.55 5.29	23.84 70.87 5.11	24.16 70.73
		20	15.92 32.20 51.88 16.32 35.63 48.05 16.12 36.77 47.11
	Interference	40	15.82 35.53 48.65 15.66 34.95 49.40 15.43 36.98 47.59
	PLR %	60	15.56 37.12 47.32 14.92 36.28 48.80 15.14 35.81 49.05
		80	14.50 38.37 47.13 15.62 36.58 47.81 15.63 36.20 48.17
		100	14.42 38.14 47.44 15.91 36.16 47.93 13.93 36.53 49.55
		Table II.3: PLR variation with various SF configurations
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	Simulation Parameters
	Simulation Time	600 seconds
	Slicing Interval Time	50 seconds
	Cell Radius	7.5 KM
	Number of replications	50
	LoRa devices and GWs distribution Random Uniform
	Propagation loss model	Log-distance
	Bandwidth	125 kHz
	Spreading Factor	{7,8,9,10,11,12}
	Confidence intervals	95%
	European ISM sub-band	863-870 MHz
	Power Consumption Parameters [10] [15]
	Battery Maximum Capacity	950 mAh
	LoRa Supply Voltage	3.3V
	Amplifier Power's added Efficiency	10%
	Connected (Tx/Rx-SF7 to SF12)	1.58 to 25.11 mW
	Standby	0.09 mW
	Sleep	0 mW
	Table III.1: Chapter III simulation parameters

.1.3 Parameters study with Dynamic SF-TP Configuration After

  defining (SF 9 -T P 8) as the best static configuration, we compare the latter to dynamic configurations. First, we highlight in this study the impact of increasing TP for static configurations before comparing its performance to DA, DR and the proposed T OP G method. Based on the results shown in TableIII.3 below, one can conclude the importance of efficiently identifying TP parameter due to its direct impact on QoS performance metrics. The results of each slice show the efficiency of U RA compared to RA and BE slices in terms of reliability and energy consumption due to slicing priority consideration in MLE resource reservation mechanism.

	Devices that respect GBR (%) Devices that respect PDB (%) Mean Packet Loss Rate (%) Mean Energy Consumption (mJ) Table III.2: Parameters study with static SF-TP configurations strategies Overall 2.9 6.21 14.65 23.08 0 0 Overall 41.15 30.7 13.85 12.3 0 0 Overall 78.37 58.68 20.46 23.73 47.73 70.89 URA Slice 6.94 6.80 10.23 3.33 5.33 5.94 RA Slice 10.34 10.89 16.91 10.50 10.61 18.22 BE Slice 82.71 82.31 72.87 86.16 84.07 75.84 Total 0.06 0.2 0.73 1.47 3.99 4.41 URA Slice 0.01 0.04 0.16 0.28 0.67 0.74 RA Slice 0.02 0.06 0.23 0.55 1.07 1.47 BE Slice 0.03 0.1 0.35 0.64 2.26 2.21 IN LORA NETWORK SLICING Slice Name Static-SF9 Dynamic TP2 TP5 TP8 TP11 TP14 DR DA TOPG Devices that respect GBR (%) Overall 6 9.35 14.65 23.04 37.67 7.65 16.75 60.99 Devices that respect PDB (%) Overall 0.45 1.7 13.85 19.32 29.86 76.3 85.73 94.8 Mean Packet Loss Rate (%) Overall 61.77 45.96 20.46 12.3 9.59 20.86 12.26 4.37 URA Slice 6.85 8.75 10.23 9.45 3.27 12.32 0.67 6.18 RA Slice 15.54 16.00 16.91 15.24 5.84 23.69 0.97 11.13 BE Slice 77.61 75.24 72.87 75.31 90.89 64 98.37 82.69 Mean Energy Consumption (mJ) Total 0.18 0.37 0.73 1.46 2.91 3.53 1.04 1.8 URA Slice 0.04 0.08 0.16 0.31 0.62 0.64 0.22 0.25 RA Slice 0.06 0.12 0.23 0.46 0.92 1.1 0.33 0.49 BE Slice 0.09 0.17 0.35 0.69 1.38 1.80 0.49 1.06 Table III.3: Complete Parameters Study with static and dynamic SF-TP configuration strategies Increasing TP for SF9 configuration will increase packets arriving above sensitivity and improves the rate of devices that guaranteed delay and throughput on the expanse III.5CHAPTER III. JOINT QOS AND ENERGY AWARE OPTIMIZATION of energy consumption. This highlights the motivation for optimizing SF and TP param-

  Luo et al. in [START_REF] Luo | A sdn-based testbed for underwater sensor networks[END_REF], proposed an SDN-based testbed with semi-centralized and distributed SDN control for underwater wireless sensor networks. Moreover, Reynders et al.[START_REF] Reynders | Improving reliability and scalability of lorawans through lightweight scheduling[END_REF] proposed a distributed scheduling solution to improve LoRaWAN reliability and scalability. Hence, decentralized optimizations could be the solution for this slicing problem. There has been previous attempts to evaluate decentralized architecture in LoRaWAN.Lin et al. proposed in[START_REF] Lin | Using blockchain to build trusted lorawan sharing server[END_REF] a conceptual architecture design of a blockchain built-in solution for LoRaWAN servers to improve

	network coverage and build the trust of private network operators. Moreover, Durand
	et al. improved in [32] LoRaWAN security and its resilience against threats by practi-
	cally implementing decentralized LoRa architecture using a blockchain-connected packet
	forwarding application. In [88], Pankratev et al. compared IoT technologies for data
	exchange in decentralized systems and highlight the advantages of using distributed ar-
	chitecture using Bluetooth, ZigBee and WiFi technologies but scheduled decentralized
	LoRaWAN for their future research work.

(a) Centralized non-SDN architecture (b) Distributed SDN-based architecture
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compared in this chapter. However, it is shown in Figure II.6 that more than 50% of the packets were lost in BE slice. We believe that these results can still be improved if LoRa parameters of IoT devices were efficiently optimized to improve network performance in each slice. In the following chapter, instead of considering the adaptive data rate mechanism which jointly increases or decreases both spreading factor and transmission power of an IoT device, we propose a slice-based optimization method that finds the best combination between LoRa SF and TP parameters in a way that maximizes network performance of each slice in a LoRaWAN smart city scenario. 

Chapter III

III.4.2 Complexity Analysis

We evaluate the complexity of the proposed algorithm briefly listed in Pseudo-code 4 compared to other configuration methods implemented in this study. one supported by an optimal method (optimal). The latter includes a complete TOPSIS algorithm where all alternatives are tested with each including a different combination of SF and TP parameters. The complexity of the optimal algorithm is calculated as follows: an attribute normalization and weighting which result is O(n 2 ), the algorithm complexity ranking which result is O(1), the complexity of a positive-negative ideal solution and the distance to alternative solutions is O(n). Hence, the overall complexity of the optimal and the proposed T OP G configuration is O(n 2 ) [START_REF] Hamdani | The complexity calculation for group decision making using topsis algorithm[END_REF]. However, instead of testing all possibilities of SF and TP configurations with the optimal algorithm, complexity is reduced in T OP G because the server reduces the search space to SF values that respect the guaranteed bit rate threshold. This reduces computation time without highly affecting QoS performance as will be shown in the following section.

Pseudo

III.5 Simulation Results

In uplink, centralized LoRa servers enable the opportunity to make efficient slicing decisions and optimum parameters configuration based on the knowledge of the data in the buffer of each LoRa device. We implemented our methods in the open source NS3

simulator [START_REF] Nsnam | [END_REF] using LoRa model that was firstly developed by authors in [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF]. The first section of Table III.1 gives a brief of LoRa parameters implemented in this work. Simulations are replicated 50 times with 95% confidence interval and are realized in realistic LoRa scenarios. We assume that devices are defining a random time for transmission but periodically uploading small packet payloads of 18 Bytes following to the work done in [START_REF] Blenn | Lorawan in the wild: Measurements from the things network[END_REF]. LoRa devices and gateways are both placed over a cell of 7. 1. We propose a coalitional game (GAME 1) where LoRa GWs coordinate to improve network reliability. GWs assign devices to the requested slice and compete when assigning cell edge devices to the most efficient virtual slice. This game provides a better flexibility in managing traffic coming from heterogeneous IoT applications and guarantees their required QoS with complete isolation between each virtual slice.

2. We formulate the slicing problem as a Bankruptcy game (GAME 2) and propose an inter-slice resource reservation that builds on previous matching game results.

Here, on each GW, coalitions including slice members compete for gaining access to LoRa physical channels. The goal of this scheme is to avoid channels starvation by providing fair resource reservation for each slice.

3. We propose an intra-slice resource allocation based on one-to-one matching theory (GAME 3) with optimized configuration. In each slice, the proposed method efficiently configures SF and TP parameters for a device before being assigned to a LoRa channel.

The remainder of this chapter is organized as follows. We devote Section IV. to define how IoT edge devices are assigned to virtual slices and GWs. The result of the game is used as an input for Bankruptcy game to reserve physical channels on GWs based on throughput requirements of each slice members. Each GW virtually splits its bandwidth between various networks that are isolated with each having heterogeneous degree of importance in terms of QoS, energy and reliability. After reserving channels for each slice, an inter slice resource allocation based on one-to-one matching game is formulated between the set of channels reserved for a slice and its IoT devices members.

IV.4.1 Cooperative Slicing Admission via Matching Theory

A key problem in dense IoT deployments is mainly found in the edge of each cell where

IoT devices are located in the range of multiple GWs simultaneously. However, the received power could not be considered as the only metric for devices slicing admission specially in large scale deployments where congestion increases and more packets are lost due to interference. Hence, finding the proper device configuration has a major impact on communications reliability and the probability of loosing a packet due to inter or intra-SF interference [START_REF] Reynders | Power and spreading factor control in low power wide area networks[END_REF]. Therefore, based on the configuration of each device, cooperation between GWs becomes mandatory to control slicing admission where it may be useful to transfer a device initially from GW m to GW m while keeping it assigned to the same virtual slice l ∈ L if this move improves the probability of successfully decoding its packet. The slicing admission control problem is formulated to a college admission problem, introduced in [START_REF] Gale | College admissions and the stability of marriage[END_REF], and resolved based on one-to-many matching theory. In this framework, three components are needed: 1) the set K of IoT devices acting as students;

2) the set M of LoRa GWs acting as colleges, and 3) the preference relations for IoT devices and GWs which are built based on the preferences over one another. IoT devices can be initially in the range of multiple GWs with the latter having a fixed quota q l,m
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on the number of channels that can be reserved for each slice. However, upon stability, each device has the possibility of being assigned to one virtual slice l on GW m. LoRa GWs forms initially L coalitions including IoT devices with the highest metric in each slice l ∈ L. while also respecting Eq. IV.12 below:

Pseudo

The characteristic function of this bankruptcy game can be particularly introduced for all possible coalitions in Eq. IV.13 below [START_REF] Pulido | Game theory techniques for university management: an extended bankruptcy model[END_REF]:

where based on Eq. IV.14, no channels are reserved for a virtual slice l on GW m if it doesn't have any IoT devices active in the range of the corresponding GW.

and in Eq. IV.15 below:
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which indicates that if all devices are member of one coalition, the latter will have the total number of the extra channels available for reservation.

After computing the characteristic function of all possible coalitions, the stable number of channels that should be reserved for each virtual slice l on GW m is computed based on the Shapley value [START_REF] Lloyd | A value for n-person games[END_REF]. The latter is a game theory concept which was proposed by Shapley with the goal of finding the fairest allocation of collectively gained profits between several collaborative players based on the relative importance of every player regarding the cooperative activities. In this framework, the number of channels that each slice will get represents the average payoff of the coalition. Hence, the number of channels reserved of each coalition of devices i with i ∈ N that belongs to slice l ∈ L is given using function ϕ i (v) in Eq. IV.16 below:

where |S| indicates the number coalitions in the set and

IV.4.3 Inter-slice Resource allocation via Matching Theory

After reserving the set of channels for each virtual slice, the output of the bankruptcy game is brought up to the inter-slice resource allocation phase. Here, each GW is now aware of the set of channels C l,m reserved for the coalition of devices that belongs to slice l ∈ L on GW m ∈ M . To solve this channel allocation problem, a modified deferred acceptance algorithm is proposed due to the merits that the one-to-one matching approach brings in providing distributed solution with tractable computation complexity.

The latter is originally defined as a mathematical framework to analyze and optimize the allocation problem among players and resources. A one-to-one matching game is a twosided assignment problem between two disjoint sets of players, in which each individual of a set has preferences over the individuals of the opposite set where the output of this
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game is an IoT device assigned to one of the channels that were virtually reserved for his slice. With this strategy, complete isolation is provided between channel resources of each slice on LoRa GWs. The proposed algorithm for this framework is described in the Pseudo-code 6.

Pseudo-code 6 Resource Allocation algorithm based on one-toone matching theory Input : Set of gateways M and slices L;

Put CHLIST l,m in decreasing order. Device k makes an offer to first channel in CHLIST l,m . if quota q l,m is respected then After the end of the bankruptcy game, the algorithm receives the set of channels C l,m for each virtual slice l on GW m as well as the quotas q l,m that denotes the number of channels reserved for each slice. The inter-slice resource allocation algorithm
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is launched between the set of IoT devices and the physical channels that were previously reserved with respect to the maximum quota of the gateway. The latter executes the initialization of algorithm and starts by building with preference relations of devices and physical channels (line 2). The former list is denoted as KLIST k,l,m whereas the latter is denoted CHLIST l,m . For each slice, all devices that did not match a channel are stored in a new list denoted as N M LIST (line 2). While devices exist in N M LIST , the algorithm propose the most preferred channel to the device with the highest utility in the slice (line 4-7). This way, the most urgent device is given the highest priority upon channel allocation. However, in LoRa allocating an IoT device is not enough to improve QoS of the device because the latter is related to its configuration in terms of spreading factor and transmission power. This is why configuration of each device matched to a channel will be optimized with T OP G that was previously proposed in [START_REF] Dawaliby | Network slicing optimization in large scale lora wide area networks[END_REF] to optimize SF and TP configuration with respect to the QoS thresholds of the slice that is assigned to (line 6). Next, the allocated device is removed from N M LIST and the available quota q l,m for the corresponding slice is reduced by one channel (line 7).

The matching process is repeated for each slice members and ends when N M LIST is empty (line 11) or when physical channels are completely assigned by IoT devices to reach a weak Pareto optimal stable matching (line 15) [START_REF] Leanh | Matching theory for distributed user association and resource allocation in cognitive femtocell networks[END_REF].

IV.5 Simulation Results

As most of traffic in IoT comes from uplink communications, we focus more on the uplink traffic that comes from IoT sensors assigned to one of the virtual slices that were previously defined in Table I.5. Simulations, replicated 20 times with 95% confidence interval in realistic LoRa scenarios, are implemented over the open source NS3 simulator [START_REF] Nsnam | [END_REF]. To implement SDN in our simulations, OpenFlow protocol version 1.3 [START_REF] Chaves | Ofswitch13: Enhancing ns-3 with openflow 1.3 support[END_REF] is adopted alongside the LoRa model proposed by Magrin et al. in [START_REF] Magrin | Performance evaluation of lora networks in a smart city scenario[END_REF] using the following SDN [START_REF] Chaves | Ofswitch13 -openflow 1.3 module for ns-3[END_REF] and LoRaWAN [START_REF] Magrin | LoRaWAN Module Documentation[END_REF] source codes on Github. We assume that each GW has a complete knowledge on the buffer of the IoT devices existing in its range. This assumption has been previously considered by Liu et al. in [START_REF] Liu | Buffer-aware resource allocation scheme with energy efficiency and qos effectiveness in wireless body area networks[END_REF] and showed its worthiness
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d tx the duration of transmission, p rx i and p tx i that finally denote the power of reception and transmission respectively and vary between 2 and 14 dBm depending on the configuration strategy adopted. Using Eq. IV.17 and the energy module that already exists in NS3 for Wifi, we integrate an energy model for LoRa using the energy parameters and the power model specified in [START_REF] Blenn | Lorawan in the wild: Measurements from the things network[END_REF] and [START_REF] Bouguera | Energy consumption modeling for communicating sensors using lora technology[END_REF] respectively.

In the following, the proposed distributed slicing strategy is evaluated over various parameters configuration methods. The best configuration found will be adopted in a second performance study that compares static, probabilistic, centralized and distributed slicing strategies and evaluates their impact on the battery lifetime, communications reliability and the percentage of devices that respect throughput and delay thresholds.

IV.5.1 Performance Study with various configurations strategies

In 

IV.5.3 Performance Study with various network slicing strategies

In this section, the performance in LoRa slices is evaluated for various slicing strategies.

The first denoted as F IXED is a strategy where the centralized SDN controller reserves the channels equally between LoRa slices. Hence, for each GW, the total number of channels is divided by the number of slices and reserved accordingly. The second strategy is derived from the literature [START_REF] Gadallah | Dynamic lte resource reservation for critical m2m deployments[END_REF] and denoted as P ROB because the number of channels reserved for each slice is defined based on the probability that the traffic generated at a time instant is less than the maximum throughput that can be uploaded through the reserved channels. The third strategy is using centralized network slicing denoted as CEN T where slicing decisions are performed on all GWs using maximum likelihood throughput estimation while having a global overview of IoT devices positions and their QoS requirements [START_REF] Dawaliby | Adaptive dynamic network slicing in lora networks[END_REF]. With CEN T , slicing decisions are taken by the centralized controller and transmitted to the GW which reserves the channels for each slice starting by the one with the highest slicing priority. We compare these strategies to the proposed distributed slicing algorithm, denoted as DIST , where unlike CEN T , slicing and resources allocation decisions are taken by each GW in a distributed manner.
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Simulation is performed with respect to the parameters summarized in Table II.1 when the number of devices increases till it reaches 5000 devices deployed in LoRa network.

The goal is to evaluate how slicing performance varies for each strategy in large scale LoRaWAN in terms of reliability, battery lifetime and respecting QoS thresholds.