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In this thesis, we address the problem of pattern discovery in vertex-attributed graphs. This kind of structure consists of a graph augmented with attributes associated to vertices. Vertex-attributed graphs provide a powerful abstraction that can be used to represent many datasets in an intuitive manner. Mining these graphs can be very useful for many applications, such as analyzing social networks, biological networks, the World Wide Web, etc. Several methods have been proposed to identify patterns in these structures. Generally, these methods define a pattern as a subgraph whose vertices satisfy some structural constraints (e.g., density, connectivity) and have a subset of attributes with homogeneous values.

When mining vertex-attributed graphs, the principled integration of both graph and attribute data poses two important challenges. First, we need to define a pattern syntax (the abstract form of patterns) that is intuitive and lends itself to efficient search. A pattern being intuitive means that it can be easily interpreted and assimilated by the user. Considering that a pattern is generally defined over a subgraph, a pattern can be often huge in terms of vertices, which makes it difficult to grasp. Thus, the assimilation cost of a pattern is an important question that needs to be addressed. The second challenge is the formalization of the pattern interestingness. A pattern is generally relevant if it depicts some local properties that are somehow exceptional, otherwise, it will be already expected from the overall properties of the graph.

Furthermore, the interestingness of patterns is subjective in practice, i.e., it significantly depends on the final user, her background knowledge and her preferences. A user would consider that a pattern is useful if it brings some new knowledge to her, especially if this pattern informs about some features or topics that usually interest this user. Another common problem related to the interestingness of patterns is the redundancy issue in the result set. In other terms, a data mining approach may return a set of patterns that give redundant information, because these patterns cover very overlapping parts of vertices and attributes. Information redundancy can be also due to some semantic relation between different attributes, such as attribute hierarchies. For example, knowing that a community of a social network is characterized by a high interest in "rock music" makes it less informative that it also has a high interest in "music", because "rock music" is a subtype "music". Consequently, the quality of patterns depends on many different factors.

We address these challenges for the problem of mining attributed graphs. More precisely, we first introduce the task of discovering exceptional attributed subgraphs, which is rooted in the Subgroup Discovery framework. The goal is to identify connected subgraphs whose vertices share characteristics that distinguish them from the rest of the graph. Then, we propose methods that aim to take into account the user and the domain knowledge when assessing the interestingness of patterns. We design

Introduction 1.1 Context

Data mining is an interdisciplinary subfield of computer science and statistics, whose goal is to extract relevant information from datasets. It is concerned with discovering patterns that elicit some new knowledge which is nontrivial, implicit, potentially useful and actionable. For instance, such a knowledge can be used afterhand to enhance the decision support in different application domains. Data mining has been highly motivated by the current exponential growth of data in the world, such as the one generated by social networks, genomics and proteomics datasets, GPS track records, etc. Analyzing these data can significantly help to solve many problems. For example, mining social networks makes it possible to identify controversial topics and understand how they evolve. In biology and bioinformatics, data mining can be exploited to explain the role of different genes and relations between them. The research results presented in this manuscript are mostly related to the extraction of patterns that describe some areas of a city and the events that take place there. This was motivated by the collaboration with the Thales DSC Theresis Innovation Laboratory.

Pattern mining framework

Research in pattern mining can be easily summarized from an inductive database perspective [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF] as the computation of the theory T h defined as: . In the context of analyzing sale transactions, this task identifies set of products that are bought frequently together and has application in crossmarketing.

O i 1 i 2 i 3 i 4 i 5 o 1 1 0 1 0 0 o 2 1 1 1 0 0 o 3 0 0 1 1 0 o 4 1 0 1 0 0 o 5 1 0 1 1 1 o 6 0 0 0 1 0 Table 1.1:
Example of dataset of objects O = {o 1 , ..., o 6 } described by items I = {i 1 , ..., i 5 }. A value 1 (resp. 0) at the intersection of a row and a column means that the object corresponding to this row contains (resp. does not contain) the item corresponding to this column.

This founded framework has been instantiated in numerous data mining tasks by specifying a particular pattern language, an interestingness measure that expresses the user's need, and an algorithm that makes possible the computation of such theories in real-world datasets. Let us look in more details at the important aspects of this framework. Interested readers can also refer to Soulet [START_REF] Soulet | Two decades of pattern mining: Principles and methods[END_REF] who presents an overview of the topics and problems investigated by the data mining community during the last two decades.

Language. The pattern language is the domain of definition of patterns that specifies what the user is looking for. For example, in the frequent itemset mining problem, the pattern language is L = 2 I , the language of itemsets. Many different pattern languages have been defined for more complex structures of data, and a myriad of methods have been proposed to extract patterns from these structures, such as numerical data (e.g., interval patterns [START_REF] Kaytoue | Revisiting numerical pattern mining with formal concept analysis[END_REF], gradual patterns [START_REF] Dinh | PGLCM: efficient parallel mining of closed frequent gradual itemsets[END_REF]), graphs (e.g., frequent subgraphs [START_REF] Bringmann | What is frequent in a single graph?[END_REF][START_REF] Kuramochi | Frequent subgraph discovery[END_REF][START_REF] Nijssen | Frequent graph mining and its application to molecular databases[END_REF][START_REF] Yan | gspan: Graph-based substructure pattern mining[END_REF], cliques [START_REF] Akkoyunlu | The enumeration of maximal cliques of large graphs[END_REF][START_REF] Bron | Finding all cliques of an undirected graph (algorithm 457)[END_REF][START_REF] Gély | Enumeration aspects of maximal cliques and bicliques[END_REF][START_REF] Makino | New algorithms for enumerating all maximal cliques[END_REF], quasi-cliques [START_REF] Liu | Effective pruning techniques for mining quasi-cliques[END_REF][START_REF] Pei | On mining cross-graph quasi-cliques[END_REF][START_REF] Zeng | Coherent closed quasi-clique discovery from large dense graph databases[END_REF]), sequential data (e.g., sequence of itemsets [START_REF] Agrawal | Mining sequential patterns[END_REF][START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF], strings [START_REF] Fischer | Optimal string mining under frequency constraints[END_REF][START_REF] Sau | An efficient algorithm for mining string databases under constraints[END_REF][START_REF] De Raedt | A theory of inductive query answering[END_REF], episodes [START_REF] Mannila | Discovering generalized episodes using minimal occurrences[END_REF][START_REF] Méger | Constraint-based mining of episode rules and optimal window sizes[END_REF]), trees (e.g., subtrees [START_REF] Chi | Indexing and mining free trees[END_REF][START_REF] Chi | Frequent subtree mining -an overview[END_REF][START_REF] Nijssen | Tree mining[END_REF][START_REF] Termier | DRYADE: A new approach for discovering closed frequent trees in heterogeneous tree databases[END_REF][202][START_REF] Termier | Dryadeparent, an efficient and robust closed attribute tree mining algorithm[END_REF][START_REF] Javeed | Efficiently mining frequent trees in a forest[END_REF]) , spatio-temporal data (e.g., trajectories [START_REF] Giannotti | Trajectory pattern mining[END_REF], spatio-temporal sequential patterns [START_REF] Cao | Mining frequent spatio-temporal sequential patterns[END_REF]). Defining expressive pattern languages remains a challenging problem, especially for complex data types such as graphs and spatio-temporal data.

Interestingness.

Defining what makes a pattern useful or interesting for a user is also a challenging task. Originally, as expressed in equation 1.1, the interestingness of a pattern was assumed to be expressed by a set of constraints involving some measures (i.e., threshold based constraints). For example, the frequent itemset mining problem uses the pattern frequency freq(P ) as interestingness measure: if freq(P ) fulfills a minimum threshold, P is then reported to the user. While this measure is simple and easy to interpret, it has several limitations. For example, if two items i 1 and i 3 are frequent, it is statistically expected that the pattern {i 1 , i 3 } is also frequent. Informing the user that {i 1 , i 3 } is frequent does not bring a new knowledge for her in this case. Hence, only considering the frequency does not make it possible to provide insightful results. Based on this observation, a large variety of constraints and quality measures have been designed to assess the interestingness of patterns. A first line of research consisted of evaluating the quality of a pattern with respect to a class variable. The patterns that well describe a class of such a variable are preferred by defining specific constraints (e.g., threshold, top k) on measures evaluating how discriminant is a pattern such as the growth rate [START_REF] Dong | Efficient mining of emerging patterns: Discovering trends and differences[END_REF], or the Weighted Relative Accuracy measure (WRAcc) [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF]. In another line of research, several interestingness measures have been proposed to assess the statistical significance of patterns, using some specific techniques such as swap randomization [START_REF] Gionis | Assessing data mining results via swap randomization[END_REF] and permutation testing [START_REF] Llinares-López | Fast and memory-efficient significant pattern mining via permutation testing[END_REF]. Finally, more recent work aims to integrate user's preferences into the mining process [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF][START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF][START_REF] Xin | Discovering interesting patterns through user's interactive feedback[END_REF], or to take into account the user background knowledge in the pattern selection process. These measures favor patterns that are surprising when contrasted to the user prior knowledge [START_REF] De | An information theoretic framework for data mining[END_REF][START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF]. In doing so, these recent measures require extending the framework formalized by equation 1.1, in order to integrate the user and make the process interactive.

In general terms, the pattern interestingness depends on several factors such as the goal of the mining task, the application domain, the user prior knowledge, etc. This makes the definition of pattern interestingness a challenging topic. For this reason, huge effort has been given by the data mining community to address this question.

Mining algorithm.

Once the language and the pattern interestingness defined, it remains to design an algorithm that computes the theory T h(D, L, C). Designing such an exhaustive method requires to study the pattern language properties and define specialization relation which makes it possible to perform a complete and hopefully non redundant enumeration of the search space. These methods usually exploit optimization techniques to prune unpromising parts of the search space. User-defined constraints play an important role when designing pruning techniques, as they can be exploited to achieve computational feasability. Many types of constraints have been studied, e.g., (anti-)monotone [START_REF] Rakesh Agrawal | Mining association rules between sets of items in large databases[END_REF],

convertible constraints [START_REF] Pei | Pushing convertible constraints in frequent itemset mining[END_REF], loose anti-monotone [START_REF] Bonchi | Extending the state-of-the-art of constraint-based pattern discovery[END_REF][START_REF] Uno | An efficient algorithm for solving pseudo clique enumeration problem[END_REF], optimistic estimates [START_REF] Webb | OPUS: an efficient admissible algorithm for unordered search[END_REF]. Each of them is associated with specific optimization techniques. Several efficient parallel approaches have been also proposed to improve the time performance of the pattern discovery task by exploiting multicore architectures [START_REF] Dinh | PGLCM: efficient parallel mining of closed frequent gradual itemsets[END_REF][START_REF] Kirchgessner | Toppi: An efficient algorithm for item-centric mining[END_REF][START_REF] Négrevergne | Para miner: a generic pattern mining algorithm for multi-core architectures[END_REF][START_REF] Termier | Distributed computing for enumeration[END_REF]. Moreover, instead of returning all the patterns satisfying the userspecified constraints, some exhaustive methods propose to only extract the top-k patterns with respect to the interestingness measure, with k ∈ N a user-specified parameter. Furthermore, to reduce the size of the search space and the redundancy among the result set, algorithms have been designed to return only condensed representations of patterns, such as closed patterns [START_REF] Uno | LCM: an efficient algorithm for enumerating frequent closed item sets[END_REF][START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF], maximal patterns [START_REF] Gouda | Efficiently mining maximal frequent itemsets[END_REF][START_REF] Huan | SPIN: mining maximal frequent subgraphs from graph databases[END_REF],

generators (free-sets) [START_REF] Boulicaut | Free-sets: A condensed representation of boolean data for the approximation of frequency queries[END_REF]. While exhaustive approaches have the guarantee of completeness, their scalability is limited as the size of the search space is generally exponential with respect to the size of the dataset.

Thus, heuristic algorithms have been proposed to deal with the most difficult mining tasks. They focus on the approximate search of interesting patterns. Several optimization strategies have been used

for exploring the pattern language, such as hill climbing [START_REF] Matthijs Van Leeuwen | Subjective interestingness of subgraph patterns[END_REF], beam search [START_REF] Gamberger | Expert-guided subgroup discovery: Methodology and application[END_REF][START_REF] Lavrac | Decision support through subgroup discovery: Three case studies and the lessons learned[END_REF], evolutionary algorithms [START_REF] Del Jesús | Evolutionary fuzzy rule induction process for subgroup discovery: A case study in marketing[END_REF][START_REF] Pachón | Multiobjective evolutionary approach for subgroup discovery[END_REF][START_REF] Rodríguez | Searching for rules to detect defective modules: A subgroup discovery approach[END_REF], output space sampling [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF][START_REF] Boley | Linear space direct pattern sampling using coupling from the past[END_REF][START_REF] Mael Gueguen | Accelerating itemset sampling using satisfiability constraints on FPGA[END_REF][START_REF] Moens | Instant exceptional model mining using weighted controlled pattern sampling[END_REF][START_REF] Moens | Randomly sampling maximal itemsets[END_REF]. These algorithms scale better than exhaustive methods but they do not find the exact result set, and most of them do not provide guarantees about the result quality.

Finally, anytime algorithms have been recently proposed for mining patterns [START_REF] Belfodil | Anytime subgroup discovery in numerical domains with guarantees[END_REF][START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF][START_REF] Zhu | Matrix profile XI: SCRIMP++: time series motif discovery at interactive speeds[END_REF]. These algorithms yield progressively patterns whose quality improves over times, they can be interrupted anytime, and they often have the guarantee to return the exact result set if enough time is provided.

Particularly for interval patterns, Belfodil et al. [START_REF] Belfodil | Anytime subgroup discovery in numerical domains with guarantees[END_REF] provide a guarantee bounding the error on the top pattern quality when the algorithm is interrupted before the end of its execution.

Describing cities and their events

This thesis is part of a collaboration between the AS& BSim team (Adaptive System & Biomimetic Simulation) of Thales DSC Theresis Innovation Laboratory and the LIRIS. AS& BSim is developing an infrastructure simulation application, named SE-Star (Synthetic Environment Components Suite), which aims to realistically reproduce the behavior of users of some infrastructures through a biomimetic multi-agents model. Setting some new simulation is a heavy task. The goal of this collaboration is to define methods to help setting and monitoring simulations. One of the case studies we looked at is a simulation that works well in one city and we want to set up a similar simulation in another city. It is then necessary to automatically characterize the areas of the new city, as well as the dynamics of the events that occur there, and to find the similarities with the city that we are able to well simulate. From this information, a transfer of knowledge can be done in the setting of the simulations. Such information can be obtained by mining several heterogeneous sources of data (e.g., social networks, demographic data, open data). It is then necessary to be able to mine heterogeneous data using a pattern domain that handles this heterogeneity. This led us to develop several pattern domains on attributed graphs.

Mining a rich data type

As previously stated, many methods have been designed to mine patterns in complex data structures such as graphs and sequences. Among them, vertex-attributed graphs have attracted a lot of attention in the data mining community. In fact, they offer a powerful mathematical abstraction that is able to represent many datasets in an intuitive manner, particularly when we have objects that are simultanuously interacting and described by some attributes. Formally, a vertex-attributed graph G = (V, E, A) is defined by a set of vertices V , a set of edges between vertices E ⊆ V × V , and a set of attributes A that describe vertices. Fig 1 .1 shows an example where this structure is used to represent a set of social network users with their relationships and their membership in groups by topic. For example, the vertex v 1 represents a user who is a member of 2 musical groups, 5 political groups, and he interacts with users v 2 , v 3 and v 4 . Edges can be used to represent interactions such as friendship relations. In this example, attributes are numerical and they represent counts. In general, several types of attributes can be used, for example Boolean, categorical, or numerical.

Mining this kind of graphs can be very useful for many applications. In a graph representing a social network in the same way as in Fig 1 .1, mining this structure allows one to identify and describe communities of individuals sharing the same topics of interests. When a company targets a specific set of clients, understanding characteristics of their communities would allow to propose better marketing plans for their products and services. In the context of mining urban data, a city can be modelled as a graph whose vertices represent city areas described by attributes that indicate the prevalence of different kinds of facilities (outdoor facilities such as parks, food places such as restaurants, colleges, etc.), and edges represent the geographic closeness of areas. Mining this graph makes it possible to identify city blocks that are geographically close and consistent in terms of service offerings. These findings can then be used to recommend areas to people that move into a new city [START_REF] Le Falher | Where is the soho of rome? measures and algorithms for finding similar neighborhoods in cities[END_REF] while wishing to keep the characteristics of their previous neighborhood.

Several methods have been designed to extract patterns from vertex-attributed graphs [START_REF] Fukuzaki | Finding itemset-sharing patterns in a large itemset-associated graph[END_REF][START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF][START_REF] Khan | Towards proximity pattern mining in large graphs[END_REF][START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF][START_REF] Silva | Structural correlation pattern mining for large graphs[END_REF]. For example, the pioneering work of Moser et al. [START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF] presents a method to mine dense homogeneous subgraphs, i.e., subgraphs whose vertices are highly connected and share a large set of attributes. From a general perspective, a pattern usually corresponds to a subset of vertices U ⊆ V satisfying some structural constraints (e.g., connectivity [START_REF] Fukuzaki | Finding itemset-sharing patterns in a large itemset-associated graph[END_REF], density [START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF]), and having a subset of attributes with homogeneous values. While many methods have been proposed to address the problem of pattern discovery in this kind of structures, there is still a lot of challenges to solve. These challenges are related to the three aforementioned key components of pattern discovery (language, interestingness, and mining algorithm). In this thesis, we are interested in the problem of mining useful patterns in vertex-attributed graphs. Particularly, we study graphs where attributes are numerical and represent counts, as in Fig 1 .1. We aim to address some specific challenges that are mainly -but not only -related to the definition of the pattern interestingness.

To provide an efficient and useful data mining approach, it is important to design a pattern language that is intuitive (easy to interpret), flexible, able to capture the properties of interest, and lends itself to efficient search. Satisfying simultanuously all these criteria can be challenging especially for complex structures such as attributed graphs. For example, methods designed on this kind of structure generally output patterns that are defined as set of vertices U ⊆ V satisfying specific constraints. However, the size of U is sometimes huge, and the final user will not be able to read each of vertices in U when this pattern is presented to her. How to find a language that makes it easy for the user to assimilate patterns?

Another bottleneck when mining vertex-attributed graphs is to come up with meaningful and interesting constraints on vertex-attributes. In other terms, what are the attribute-characteristics that the user would like to know about? 

Integrating user priors and preferences

Pattern discovery usually requires some interestingness to evaluate the relevance of patterns. A pattern is likely to be relevant when it depicts some local properties that significantly deviate from the structure of the whole dataset, otherwise this pattern would be already expected. In Fig 1 .1, it is relevant to describe the community {v 1 , v 2 , v 3 , v 4 } by a high prevalence of "politics" groups and a low presence of "sport" groups, because these features are characteristic of this specific community. However, most of vertexattributed graph mining approaches focus on identifying subgraphs having homogeneous attribute values, i.e., they seek for regularities while underestimating discriminativity. The task of discovering patterns that discriminate a subset of data from the overall dataset has been efficiently formalized with Subgroup Discovery (SD) [START_REF] Klösgen | Explora: A multipattern and multistrategy discovery assistant[END_REF][START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF] and Exceptional Model Mining (EMM) [START_REF] Wouter Duivesteijn | Exceptional model mining -supervised descriptive local pattern mining with complex target concepts[END_REF]. Many discriminatory measures have been proposed for SD and EMM to identify exceptional patterns. One of the most commonly used measures is the Weighted Relative Accuracy (WRAcc) [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF]. Extending these methods and measures to identify exceptional patterns in vertex-attributed graphs is challenging, as it requires a principled integration of both graph structure and attribute data.

Furthermore, the interestingness of a pattern is subjective in practice, i.e., it significantly depends on the user. For the same data mining task, two users may have different judgments about the discovered patterns. This is highly related to their background knowledge, their preferences, and their target objective.

For example, a pattern P can be deemed interesting by a user u 1 but not by u 2 , because u 2 already has some prior knowledge that makes her expect this pattern, or because this pattern does not depict features that interest u 2 . Many methods have been proposed to incorporate the user in the interestingness model. Some of these methods incorporate the background knowledge of the user to identify patterns that are surprising when contrasted to this background [START_REF] De | An information theoretic framework for data mining[END_REF][START_REF] Silberschatz | On subjective measures of interestingness in knowledge discovery[END_REF], other methods require user interaction to learn her preferences and identify patterns that are interesting for her [START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF][START_REF] Dzyuba | Interactive learning of pattern rankings[END_REF][START_REF] Xin | Discovering interesting patterns through user's interactive feedback[END_REF]. However, none of these works have proposed such an interestingness model for mining vertex-attributed graphs. Achieving this goal needs to find an answer for several questions: What kind of information can be considered as background knowledge about vertex-attributes and graph structures? How to integrate both subjective constraints about attributes and edges into the same interestingness measure? To learn user preferences, how to interact with her? How to derive preferences from these interactions?

Another important challenge related to the interestingness measure is the redundancy issue. Patterns returned by mining methods can be very similar in the sense that they cover highly overlapping parts of the data, which gives redundant information. For example, algorithms for mining frequent itemsets can output a large number of patterns that cover almost the same subset of items. Analyzing such results is hard and overwhelming. One needs to design a data mining approach which is able to extract a diversified set of patterns that: (1) depicts as much information as possible about the dataset, (2) requires as few analyzing efforts as possible from the user. Moreover, it is very common that object attributes are related with a semantic hierarchy. For example, in the sale transactions dataset illustrated in Tab 1.1, an item i 1 ="skimmed milk" can be a a sub-type of another item i 3 ="milk". Informing the user that "skimmed milk" is highly frequent in the dataset would increase her expectation about the frequency of "milk".

Then, informing her about the high frequency of "milk" becomes less interesting. How to consider this kind of dependency between attributes into the interestingness measure?

Contributions

This thesis addresses the problem of mining patterns in vertex-attributed graphs. We introduce new pattern languages, primitives and associated pattern discovery algorithms. The purpose is to improve the quality of patterns returned to the user, which requires the consideration of domain knowledge, user's prior knowledge, and user feedback. The proposed approaches can be structured into three main contributions:

Definition of Exceptional Attributed Subgraph Mining. This problem consists in identifying connected subgraph whose vertices share some characteristics that distinguish them from the rest of the graph.

These characteristics are related to significantly high (or small) numerical values of some attributes in vertices of the exceptional subgraph. We define a data mining approach rooted in the Subgroup Discovery and Exceptional Model Mining frameworks. This contribution has been published in the IEEE ICDM 2016 conference proceedings [START_REF] Anes | Unsupervised exceptional attributed sub-graph mining in urban data[END_REF], and then invited for an extended version in the journal of Knowledge and Information Systems [START_REF] Anes | Mining exceptional closed patterns in attributed graphs[END_REF].

Taking into account the user in the mining of vertex-attributed graphs. We design novel methods that account for the user in the interestingness model employed for evaluating patterns in vertex-attributed graphs. Two methods have been proposed:

• We design an approach that is built upon the Subjective Interestingness framework proposed by

De Bie [START_REF] De | An information theoretic framework for data mining[END_REF]. This method aims at incorporating user background knowledge, and accounts for the assimilation cost of a pattern, to identify patterns that are both informative (unexpected) and easy to assimilate by the user. Also, we show how to update the interestingness model when a pattern is presented to the user, to continuously identify patterns that provide new information comparing to the already acquired knowledge from the previously presented patterns. This model updating technique is a principled strategy that aims to solve the redundancy issue in the results set. This work has been published in the workshop of Mining and Learning with Graphs 2018 [START_REF] Bendimerad | Mining subjectively interesting attributed subgraphs[END_REF], and an extended version has been accepted for publication in the Data Mining and Knowledge Discovery journal .

• We propose an approach that integrates user-preferences when mining attributed graphs. This method exploits an interactive process with the user to bias the pattern interestingness. It has been defined for the task of event detection in social media. In fact, event detection is a concrete case study where the incorporation of user preferences makes sense and can be evaluated with real users, as a large number of persons are able to interpret results of this task. This work has been accepted

for publication in the IEEE Transactions on Knowledge and Data Engineering journal [START_REF] Bendimerad | User-driven geolocated event detection in social media[END_REF].

Integration of attributes dependencies into the interestingness model. In several datasets, a hierarchical relationship stands between attributes that describe objects (or vertices for graphs). In this case, information provided by different attributes is dependent and overlapping. We propose the first subjective interestingness model that takes advantage from a predefined attribute hierarchy to incorporate the information dependency between attributes. This work has been accepted for publication in the ACM SIGKDD 2019 conference proceedings [START_REF] Bendimerad | Contrastive antichains in hierarchies[END_REF].

Structure of the thesis

This thesis is organized as follows. Chapter 2 presents the state of the art of the related topics: [START_REF] Abdelhaq | Eventweet: Online localized event detection from twitter[END_REF] mining graphs and vertex-attributed graphs, (2) Subgroup Discovery and Exceptional Model Mining, (

Incorporation of the user in the pattern discovery task. This chapter also discusses the limitations that we propose to address in this thesis. Chapter 3 presents our first contribution, which is the introduction of the problem of Exceptional Attributed Subgraph Mining. Chapter 4 presents a work related to the second contribution. We define a subjective interestingness model that integrates user's background knowledge when evaluating interestingness of attributed subgraphs. Chapter 5 introduces an attributed subgraph mining method that incorporates user's preferences through an interactive process. We show how this method has been used for the task of event detection in Twitter. In Chapter 6, we present a subjective interestingness that incorporates the attribute hierarchy into the background model. This model has been exploited to mine a particular subset of hierarchical attributes called antichains. Chapter 7 gives the conclusions and the perspectives of this thesis. Graphs are a powerful mathematical abstraction that can be used to represent a large variety of real world datasets where there are interactions between entities. Analyzing this kind of structure to extract useful knowledge is an important challenge for many scientific communities. Some of the applications that have been addressed using graphs are the analysis of communication networks [START_REF] Perkins | Ad hoc networking[END_REF], disease spreading [START_REF] Wang | Epidemic spread in adaptive networks with multitype agents[END_REF], biological networks [START_REF] Gary | An automated method for finding molecular complexes in large protein interaction networks[END_REF][START_REF] Grigoriev | A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage t7 and the yeast saccharomyces cerevisiae[END_REF][START_REF] Hanisch | Co-clustering of biological networks and gene expression data[END_REF][START_REF] Hu | Mining coherent dense subgraphs across massive biological networks for functional discovery[END_REF], social networks [START_REF] Akoglu | PICS: parameter-free identification of cohesive subgroups in large attributed graphs[END_REF][START_REF] Girvan | Community structure in social and biological networks[END_REF][START_REF] Mislove | Measurement and analysis of online social networks[END_REF][START_REF] Yang | Community detection in networks with node attributes[END_REF], World Wide Web [START_REF] William Flake | Efficient identification of web communities[END_REF][START_REF] Gibson | Discovering large dense subgraphs in massive graphs[END_REF]. The simplest structure of graphs is G = (V, E) (plain graphs), defined with a set of vertices V connected with a set of undirected edges E ⊆ V × V . example, a social network can be modelled with a graph whose vertices V represent users of the social network, and edges represent friendship relations between them (i.e., if the users corresponding to v 1 and v 2 are friends, then (v 1 , v 2 ) ∈ E). Many data mining tasks have been defined on plain graphs, such as graph matching [START_REF] Sanfeliu | A distance measure between attributed relational graphs for pattern recognition[END_REF][START_REF] Ullmann | An algorithm for subgraph isomorphism[END_REF], mining frequent subgraphs [START_REF] Jiang | A survey of frequent subgraph mining algorithms[END_REF][START_REF] Kuramochi | Frequent subgraph discovery[END_REF][START_REF] Yan | gspan: Graph-based substructure pattern mining[END_REF], mining cliques [START_REF] Akkoyunlu | The enumeration of maximal cliques of large graphs[END_REF][START_REF] Bron | Finding all cliques of an undirected graph (algorithm 457)[END_REF][START_REF] Gély | Enumeration aspects of maximal cliques and bicliques[END_REF][START_REF] Makino | New algorithms for enumerating all maximal cliques[END_REF],

quasi-cliques [START_REF] Liu | Effective pruning techniques for mining quasi-cliques[END_REF][START_REF] Pei | On mining cross-graph quasi-cliques[END_REF][START_REF] Zeng | Coherent closed quasi-clique discovery from large dense graph databases[END_REF], and pseudo-cliques [START_REF] Uno | An efficient algorithm for solving pseudo clique enumeration problem[END_REF], community detection [START_REF] Akoglu | PICS: parameter-free identification of cohesive subgroups in large attributed graphs[END_REF][START_REF] Bothorel | Clustering attributed graphs: Models, measures and methods[END_REF][START_REF] Fortunato | Community detection in graphs[END_REF][START_REF] Yang | Community detection in networks with node attributes[END_REF].

More complex forms of graphs have been defined and explored in the literature. In general terms, vertices and/or edges can be augmented with different kinds of attributes, and the graph structure can be made dynamic by introducing the temporal dimension. For example, in addition to vertices V and edges E, a vertex-attributed graph contains attributes that give information about the vertices. For a graph representing a social network with vertices corresponding to users, vertex attributes can provide information related to the users (e.g., age, topic of interest, profession, gender, etc.). In our thesis, we are interested in the problem of mining local patterns in vertex-attributed graphs. While many methods have been proposed to discover different kinds of patterns in these graphs [START_REF] Fukuzaki | Finding itemset-sharing patterns in a large itemset-associated graph[END_REF][START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF][START_REF] Khan | Towards proximity pattern mining in large graphs[END_REF][START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF][START_REF] Silva | Structural correlation pattern mining for large graphs[END_REF], there is still a lot of challenges in this field. For instance, it is not easy to define a pattern syntax that allows to capture structures that are at the same time cohesive, interesting and easy to interpret. A pattern can be a subgraph, a subset of attributes, a property that describes all the graph or only a part of it.

After coming up with a suitable pattern syntax, a difficulty is to define how to rank these patterns to determine the ones that are interesting. When talking about local patterns (e.g., subgraphs), these patterns are likely to be interesting when they are characterized by some properties that distinguish them from the overall graph, otherwise, these local patterns would be already expected. The task of discovering patterns that discriminate a subset of data from the overall dataset has been efficiently formalized with Subgroup Discovery [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF] and Exceptional Model Mining [START_REF] Wouter Duivesteijn | Exceptional model mining -supervised descriptive local pattern mining with complex target concepts[END_REF]. Although these tasks have been initially defined for simple datasets without graph structures, few recent works extend these concepts to mine graphs [START_REF] Atzmueller | Description-oriented community detection using exhaustive subgroup discovery[END_REF][START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF]. In addition to the notion of pattern exceptionality regarding the whole graph, the pattern interestingness also depends on the final user, respectively, in her background knowledge and preferences.

Several studies have been done to involve the user when assessing the quality of patterns. Some of these methods propose to consider the user background knowledge to find the patterns that are surprising when contrasted to these priors [START_REF] De | An information theoretic framework for data mining[END_REF][START_REF] Silberschatz | On subjective measures of interestingness in knowledge discovery[END_REF], other methods require user interactions to learn her preferences and identify patterns that are interesting for her [START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF][START_REF] Dzyuba | Interactive learning of pattern rankings[END_REF][START_REF] Xin | Discovering interesting patterns through user's interactive feedback[END_REF].

In this state of the art, we present previous works related to the aforementioned topics, that are:

mining graphs, mining exceptional patterns, and taking into account the user in the mining process.

In Section 2.1, we present data mining methods defined for different classes of graphs, then we detail particularly the works specific to vertex-attributed graphs in Section 2.2. In Section 2.3, we give a review about Subgroup Discovery and Exceptional Model Mining and their extension to graphs. In Section 2.4, we present methods that aim to involve the user when assessing the interestingness of data mining results.

Mining graphs

Several problems have been defined to extract knowledge from graphs, and many classes of graphs have been explored in the literature. In this section, we start by presenting works related to plain graphs G = (V, E) with unweighted and undirected edges E, we then focus on more complex forms of graphs.

First, let us define some notations that will be used next in this section. The neighborhood

N (v) of a vertex v ∈ V is the set of vertices connected to v, N (v) = {u | (u, v) ∈ E}. The degree deg(v) is the number of neighbors of v, deg(v) = |N (v)|. The subgraph G[U ] induced by a set of vertices U ⊆ V
is defined as G restricted to the vertices of U and containing only edges between vertices in U . The

function density(G[U ]) of the subgraph G[U ] = (U, E U ) is the number of edges in G[U ] divided by the maximum number of edges in a graph of size |U |, that is density(G[U ]) = |E U | |U |•(|U |-1)/2 .

Plain graphs G = (V, E)

We now consider approaches defined for a plain graph G = (V, E) as the one shown in Fig. 2.1.

Several methods of this category aim to understand the global structure of the graph by computing macroscopic properties. Some of these properties are the degree distribution, the diameter, and the clustering coefficient. The degree distribution [START_REF] Albert | Statistical mechanics of complex networks[END_REF] is the probability distribution Pr deg of the vertex degree over the whole graph. Formally, Pr deg (k) is the probability of observing a vertex v with a degree deg(v) = k in the studied graph. It has been shown that the degree distribution of many real world graphs follows a power law [START_REF] Barabási | Scale-free networks[END_REF], i.e., Pr deg (k) k -γ (γ is a constant). Examples of these graphs are the world wide web and some social networks. Such graphs are called scale-free networks.

Another commonly used property to study graphs is the clustering coefficient [START_REF] Duncan | Collective dynamics of 'small-world' networks[END_REF]. This is a measure that quantifies to which extent vertices of the graph tend to cluster together. This coefficient is based Another global property that has been largely studied for synthetic and real graphs is the diameter.

Given that d(u, v) is the distance (the shortest path) between the vertices u and v, the diameter diam(G)

of a graph G is the longest distance between two vertices of the graph:

diam(G) = max u,v∈V d(u, v).
In Fig. 2.1, the diameter is 3 and it corresponds to the distance between v 1 and v 7 . This measure can

give an idea about whether or not vertices of the graph are close to each other. However, this measure is too sensitive to outliers. A more robust notion is the effective diameter, defined as the minimum distance for which a large fraction, typically 90%, of all connected pairs of vertices can reach each other.

Although these macroscopic properties can describe the general structure of the graph, they are not able to discover local patterns that can be related to only a part of the overall graph. Several problems have been defined to identify interesting local structures in plain graphs. To give a clear idea, we will explain some of the most familiar problems of this category: mining maximal cliques [START_REF] Bron | Finding all cliques of an undirected graph (algorithm 457)[END_REF][START_REF] Eppstein | Listing all maximal cliques in sparse graphs in near-optimal time[END_REF][START_REF] Gély | Enumeration aspects of maximal cliques and bicliques[END_REF][START_REF] Tomita | The worst-case time complexity for generating all maximal cliques and computational experiments[END_REF] and maximal quasi-cliques [START_REF] Liu | Effective pruning techniques for mining quasi-cliques[END_REF][START_REF] Pei | On mining cross-graph quasi-cliques[END_REF][START_REF] Zeng | Coherent closed quasi-clique discovery from large dense graph databases[END_REF].

Mining maximal cliques.

A clique U ⊆ V is a subset of vertices that are completely connected to each other, i.e., ∀u, v ∈ U : (u, v) ∈ E. A maximal clique U is a clique that is not a subset of another clique. In Fig. 2.1, U 1 = {v 5 , v 6 , v 7 } is a maximal clique, and

U 2 = {v 5 , v 6 } is a clique that is not maximal because U 2 ⊆ U 1 .
Mining maximal cliques can be used to identify communities from a graph, for example in a social network, a set of users that are all connected to each other. A clique is considered a local pattern, because its definition is related to only a subset of vertices U ⊆ V . The property of U ⊆ V being a clique depends only on the connectivity of vertices of U , and it is completely independent of the rest of the graph. The problem of determining whether a graph contains a clique of at least a given size k is a NP-complete problem [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. Many algorithms have been proposed to enumerate maximal cliques [START_REF] Eppstein | Listing all maximal cliques in sparse graphs in near-optimal time[END_REF][START_REF] Gély | Enumeration aspects of maximal cliques and bicliques[END_REF][START_REF] Tomita | The worst-case time complexity for generating all maximal cliques and computational experiments[END_REF]. One of the most successful in practice is the Bron-Kerbosch algorithm [START_REF] Bron | Finding all cliques of an undirected graph (algorithm 457)[END_REF], which uses a backtracking strategy that recursively solves subproblems derived from the main problem.

Mining maximal quasi-cliques. The enumeration of cliques imposes the hard constraint of full connectiveness. However in many cases, a lot of highly connected subgraphs are not cliques because only some edges are missing. Finding these structures can be also interesting and more practical for mining real world graphs. To this end, The notion of quasi-clique has been defined. Given a threshold δ ∈ (0, 1],

a δ-quasi-clique U ⊆ V is a subset of vertices such that:

∀v ∈ U : |N (v) ∩ U | |U | -1 ≥ δ.
This definition allows a bounded number of missing edges for each vertex. In Fig. 2.1, maximal if it is not included in another δ-quasi-clique. Many algorithms have been proposed to mine maximal quasi-cliques. Some of these methods exhaustively enumerate the complete set of quasi-cliques by using some pruning techniques to optimize the search space exploration [START_REF] Liu | Effective pruning techniques for mining quasi-cliques[END_REF][START_REF] Pei | On mining cross-graph quasi-cliques[END_REF][START_REF] Zeng | Coherent closed quasi-clique discovery from large dense graph databases[END_REF]. Other methods use heuristic or randomized methods [3,[START_REF] Bu | Topological structure analysis of the protein-protein interaction network in budding yeast[END_REF][START_REF] Hideo Matsuda | Classifying molecular sequences using a linkage graph with their pairwise similarities[END_REF], although they do not provide the complete results set, they can be more efficient than exhaustive approaches. In the literature, we also find the notion of pseudo-clique which is defined based on a minimal density threshold applied on a subgraph as a whole [START_REF] Uno | An efficient algorithm for solving pseudo clique enumeration problem[END_REF]. Formally,

U = {v 1 , v 2 , v 3 , v 4 } is a 2 3 -quasi-clique, because each v ∈ U is connected to at least 2 out of 3 vertices. A δ-quasi-clique is
U ⊆ V is a δ-pseudo clique if density(U ) ≥ δ.
Whilst the formal problem definitions of mining quasi-cliques and pseudo-cliques are different, they both aim to identify local subgraphs that are highly connected.

Augmented graphs

In many datasets, the simple form of graphs G = (V, E) can be enriched by additional information about vertices, edges, the graph structure, etc. This leads to the definition of more complex classes of graphs, whose mining allows to provide more insights about the studied dataset, but poses additional challenges.

In what follows, we present each of vertex-attributed graphs, edge-attributed graphs, and dynamic graphs, and we give examples of problems and applications that have been done based on these structures.

Vertex-attributed graphs. In various case studies, some additional descriptions are available about the entities corresponding to vertices. A toy vertex-attributed graph is shown in Fig. 2.2 (the DBLP co-authorship network). Each author is represented by a vertex. Each of them is described by 3 attributes, which are the number of publications in the following conferences: ICML, NeurIPS, KDD. An edge links two researchers who co-authored a paper. There has been a significant interest on studying graphs where vertices are described by attributes [START_REF] Bothorel | Clustering attributed graphs: Models, measures and methods[END_REF][START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF][START_REF] Müller | Ranking outlier nodes in subspaces of attributed graphs[END_REF]. These attributes can be ordinal or not (e.g., numerical, categorical, Boolean). Many problems have been defined to find global or local patterns present in these structures, such as finding dense subgraphs with similar attributes, finding outlier vertices, etc. A more detailed review of these problems is given in Section 2.2. Edge-attributed graphs. In several datasets, we have additional information about edges. For instance, consider a graph representing bike trips in a city: vertices are bike stations and each edge corresponds to a bike trip from a station to another. Each edge can be described by information about the person using the bike such as age and profession. This can be well represented by edge-attributed graphs, i.e., graphs with attributes on edges. We show in Fig. 2.3 a toy edge-attributed graph representing bike trips between three stations {v 1 , v 2 , v 3 }. Some approaches use edge information to define a similarity measure on edges in order to define dense subgraphs or communities [START_REF] Berlingerio | Mining graph evolution rules[END_REF][START_REF] Bonchi | Chromatic correlation clustering[END_REF][START_REF] Qi | Exploring context and content links in social media: A latent space method[END_REF]. In [START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF], we use edge-attributes to determine contexts for which there is connected subgraphs having exceptionally prevalent number of edges. For example, this approach can be used to discover a subgraph of bike stations having a high number of trips done by student whose age is between 15 and 20. Some methods have been defined to mine multilayer networks, i.e., graphs in which there is different categories of edges [START_REF] Boden | Mining coherent subgraphs in multi-layer graphs with edge labels[END_REF], this can be seen as an edge-attributed graph with one categorical attribute.

Dynamic graphs.

A graph is dynamic if its structure evolves over time. Formally, it can be defined

as a sequence G = {G 1 , G 2 , ..., G n } over timestamps T = {t 1 , ..., t n } of graphs G t = (V, E t ) with a
constant set of vertices V and a set of edges E t ⊆ V × V depending on time. In Fig. 2.4, a dynamic graph defined on three timestamps is shown. A dynamic graph can also be augmented by attributes in vertices or edges, and attribute-values can also be dynamic. Numerous approaches propose to mine dynamic graphs. Borgwardt et al. [START_REF] Borgwardt | Pattern mining in frequent dynamic subgraphs[END_REF] introduce the problem of mining frequent subgraphs in dynamic graphs, i.e. identical graphs that appear in consecutive timestamps. Robardet [START_REF] Robardet | Constraint-based pattern mining in dynamic graphs[END_REF] proposes an algorithm to mine pseudo-cliques which appear in consecutive timestamps with slight evolutions. Ahmed and Karypis [START_REF] Ahmed | Algorithms for mining the evolution of conserved relational states in dynamic networks[END_REF] mine the evolution of conserved relational states, i.e. sequences of time-conserved patterns on consecutive time. Desmier et al. [START_REF] Desmier | Trend mining in dynamic attributed graphs[END_REF] define a new pattern domain that relies on the graph structure and the temporal evolution of the attribute values. It allows one to discover subgraphs of small diameter whose vertex attributes follow the same trends.

Mining vertex-attributed graphs

In this section, we review more extensively the literature of vertex-attributed graphs, as the methods proposed in this thesis are mainly based on this particular structure. Let us first give a formal definition In the following, we start by presenting community detection methods in vertex-attributed graphs.

The goal of these methods is to group vertices into subgraphs that are dense and share similar attribute values. These are usually considered as global approaches, since they aim to find a partition of the data that optimizes a goodness function which is defined on the whole graph. Then, we present methods that identify local patterns in vertex-attributed graphs. While community detection methods optimize a global measure, local pattern mining methods identify patterns that can be present in only a part of the graph. We then present the outlier detection in vertex-attributed graphs. This problem aims to identify vertices that are somehow anomalous regarding their connectivity or their attribute values. Finally, we describe the community search problem, where the purpose is to identify a community that contains a user-specified set of vertices.

Community detection and clustering in vertex-attributed graphs

Clustering and Community detection algorithms partition a dataset into groups of similar and/or interacting objects. Traditional community detection algorithms perform on simple graphs without attributes, and they aim to find communities by focusing only on the network structure. For some methods, these graphs can be weighted, i.e., graphs G = (V, E, w) with a weight function w : E -→ [0, 1] that assigns a value to each edge. The weight w(u, v) of an edge (u, v) ∈ E represents how much the connection between u and v is strong. For this kind of graphs, standard community detection methods partition the vertices into dense subgraphs where edges have high values of weight. Several recent papers proposed new community detection methods that consider both network connections and vertex attributes. Some methods proposed to first transform the attributed graph to a single weighted graph, where weights represent attribute similarity [START_REF] Neville | Clustering relational data using attribute and link information[END_REF][START_REF] Zhang | Community detection in networks with node features[END_REF]. Then, any clustering algorithm for weighted graphs can be used. Numerous existing methods combine network and vertex attribute information into the same model [START_REF] Smith | Partitioning networks with node attributes by compressing information flow[END_REF][START_REF] Xu | GBAGC: A general bayesian framework for attributed graph clustering[END_REF]. In Fig. 2.5, we take from Bojchevski and Günnemann [START_REF] Bojchevski | Bayesian robust attributed graph clustering: Joint learning of partial anomalies and group structure[END_REF] an example of attributed graph with three Boolean attributes. This graph can be partitionned into the three communities shown with different colors. The vertices of each of community are highly connected with each other and weakly connected with vertices outside their community, and they also have similar Boolean attribute values.

Formally, a clustering can be seen as a function Subspace clustering. The goal of this problem is to identify dense subgraphs whose vertices have similar values of some attributes. A difference with standard community detection is that, in subspace clustering, the attributes-similarity between vertices of the same cluster is assessed regarding only a subspace of attributes. Indeed, some dimensions are ofen noisy and not relevant for all clusters. Also, subspace clustering has been proposed as a way to deal with the curse of dimensionality [START_REF] Beyer | When is "nearest neighbor" meaningful?[END_REF] when the number of attributes is huge. There is several formal definitions of this task, as an example, let us detail the one proposed in [START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF] for graphs with numerical vertex-attributes.

C : V -→ {1, ..., f } that assigns each vertex v ∈ V to a cluster (a community) i ∈ {1, ..., f }, the total number of communities is f ∈ 1, |V | .

Local pattern discovery in vertex-attributed graphs

Definition 2.2 (Subspace clustering in attributed graphs).

Given a graph G = (V, E, Â) with numerical attributes, a threshold s min (resp. u min ) on the minimum number of attributes (resp. vertices), a threshold w on similarity between attributes, and a threshold δ ∈ 0, 1 on the minimum density, a subspace cluster (U, S) is defined with a set of vertices U ⊆ V and a set of attributes S ⊆ A such that:

• |U | ≥ u min and |S| ≥ s min ,
• the density of G[U ], the subgraph induced by U , is higher than δ,

• ∀a ∈ S, ∀u, v ∈ U : |â(u) -â(v)| ≤ w, • ∀a ∈ A \ S, ∃u, v ∈ U : |â(u) -â(v)| > w.
Many other papers have addressed this problem and have proposed different solutions. In [START_REF] Günnemann | DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors[END_REF][START_REF] Günnemann | Finding density-based subspace clusters in graphs with feature vectors[END_REF],

a method is designed to identify subspace clusters with arbitrary shape and size, using a density-based cluster definition. Another similar method based on spectral analysis is defined in [START_REF] Günnemann | Spectral subspace clustering for graphs with feature vectors[END_REF].

Cohesive patterns. Moser et al. [START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF] propose one of the first approaches that consider simultanuously graph structure and vertex-attributes in the dense subgraph mining problem. This method is defined particularly for graphs with categorical attributes. They define the cohesive pattern as a subgraph that is (1) induced by a connected δ-pseudo-clique, and (2) homogenous regarding a subspace of attributes. We recall that a subset of vertices

U ⊆ V is a δ-pseudo-clique if density(G[U ]) ≥ δ.
In order to evaluate the homogeneity of U ⊆ V in a subspace of attributes B ⊆ A, a Boolean subspace cohesion function s(U, B, θ s ) is defined and used. This function returns True if the homogeneity of U in B is higher than a threshold θ s . The framework proposed in [START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF] is somehow flexible, as the function computing the homogeneity value is not imposed but it only needs to be anti-monotonic w.r.t U and B, i.e., if

U ⊆ U ⊆ V and B ⊆ B ⊆ A, then s(U , B , θ s ) =⇒ s(U, B, θ s ).
Moser et al. [START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF] propose an algorithm to extract cohesive patterns that are maximal (i.e., not included in larger cohesive patterns).

Proximity patterns. Khan et al. [122] define the problem of mining proximity patterns in graphs where vertices are described by Boolean attributes (called items). A proximity pattern is a set of attributes that repeatedly appear in multiple tightly connected subgraphs. This problem is related to the frequent itemset mining task. However, the itemset does not necessarily need to appear in each vertex to be accounted, but on neighbor vertices. This makes the pattern definition more flexible and able to capture better the information that is present in the studied graph. We take from [START_REF] Khan | Towards proximity pattern mining in large graphs[END_REF] an example shown in Fig. 2 Itemset-sharing subgraph set. This problem has been proposed in [START_REF] Fukuzaki | Finding itemset-sharing patterns in a large itemset-associated graph[END_REF][START_REF] Sese | Mining networks with shared items[END_REF] for graphs with Boolean vertex-attributes. An itemset-sharing subgraph set is defined as a collection of connected components in the subgraph induced by a non-empty set of attributes, with a minimum bound on the number of vertices in the connected components. The subgraph induced by an itemset S ⊆ A is constituted of vertices that contain each of the items in S. This problem does not required the itemset-sharing subgraph to be dense, they are only required to be connected.

Structural correlation patterns.

This problem has been proposed in [START_REF] Silva | Structural correlation pattern mining for large graphs[END_REF][START_REF] Silva | Mining attribute-structure correlated patterns in large attributed graphs[END_REF] where the authors study the correlation between Boolean vertex-attributes and dense subgraphs. A set of attributes S ⊆ A is structurally correlated if, in the subgraph induced by S, a large percentage of vertices are in quasi-cliques.

In other terms, the structural correlation measure of a set of attributes S is the ratio between the number of vertices belonging to quasi-cliques in the subgraph induced by S and the number of total vertices in this induced subgraph. Then, a structural correlated pattern (U, S) is defined by a structurally correlated set of attributes S ⊆ A, and a quasi-cliques U ⊆ V that belongs to the induced subgraph by S. The solution proposed in [START_REF] Silva | Structural correlation pattern mining for large graphs[END_REF][START_REF] Silva | Mining attribute-structure correlated patterns in large attributed graphs[END_REF] also allows to specify thresholds on the size of the attributes set S, and the size of the quasi-clique U . An algorithm is then proposed to enumerate these patterns using a depth-first search manner that employs pruning techniques to avoid exploring some of the non promising parts of the search space.

K-clique percolated components. This class of pattern has been defined in [START_REF] Mougel | Finding collections of k-clique percolated components in attributed graphs[END_REF]. The authors consider a graph where Boolean attributes are associated to vertices, and the goal is to identify components made of overlapping homogeneous cliques. The homogeneity means sharing a common set of attributes having the same value. Given that

F (v) = {a ∈ A | â(v) = true}, a collection of set of vertices M = {U 1 , U 2 , ...} is a k-clique percolated component if: (1)
The number of attributes shared by all sets of vertices is greater than a threshold α, i.e., AT B(M Several other tasks have also been defined for mining local patterns. Mougel et al. [START_REF] Mougel | Finding maximal homogeneous clique sets[END_REF] identifies large cliques where all vertices share enough Boolean attributes. Zhang et al. [START_REF] Zhang | When engagement meets similarity: Efficient (k, r)-core computation on social networks[END_REF] aim to find (k, r)cores in attributed graphs. A (k, r)-cores is a connected subgraph where each vertex is connected to at least k vertices and the similarity between attributes values is higher than a minimum threshold r. Silva et al. [START_REF] Silva | Hierarchical in-network attribute compression via importance sampling[END_REF] propose an approach to compress attributes values in a graph where each vertex is described by a single numerical attribute. This consists in partitioning the graph into smooth areas where attribute values are similar, and store only the average values of each area.

) = U ∈M v∈U F (v) > α, ( 2 

Outlier detection in vertex-attributed graphs

Outlier detection is an important problem that has proven its high utility through a tremendous number of applications. It aims to detect objects and structures that are unexpected, anomalous, rare and suspicious in a dataset. One of its research subfields is outlier detection in attributed graphs where the goal is generally to detect anomalous vertices [START_REF] Bojchevski | Bayesian robust attributed graph clustering: Joint learning of partial anomalies and group structure[END_REF][START_REF] Li | Radar: Residual analysis for anomaly detection in attributed networks[END_REF][START_REF] Li | A probabilistic approach to uncovering attributed graph anomalies[END_REF][START_REF] Müller | Ranking outlier nodes in subspaces of attributed graphs[END_REF][START_REF] Peng | ANOMALOUS: A joint modeling approach for anomaly detection on attributed networks[END_REF][START_REF] Perozzi | Scalable anomaly ranking of attributed neighborhoods[END_REF][START_REF] Iglesias Sánchez | Local context selection for outlier ranking in graphs with multiple numeric node attributes[END_REF]. The anomaly of a vertex in an attributed graph can be related to its connectivity (graph structure), or to its attribute values, or to both of them. For example, a mixture model is introduced in [START_REF] Li | A probabilistic approach to uncovering attributed graph anomalies[END_REF] to identify and describe anomalous vertices in attributed graphs by integrating both structural and attribute information into the probabilistic model. Some of anomaly detection methods are binary, i.e., each v vertex is either an outlier or not.

Other methods assign an "outlier score" that tells to which extent a vertex v is an outlier, and vertices can then be ranked based on this score.

Measuring the deviation of vertices may be ambiguous and noisy when considering simultanuously graph structure and all attributes. In fact, some attributes may be irrelevant, but also, the notion of anomaly of a vertex can be relative to its local community. To solve this issue, several approaches assess the anomaly score of each vertex regarding to a subspace cluster to which it belongs (a subset of dense vertices that are similar w.r.t. a subset of attributes) [START_REF] Müller | Ranking outlier nodes in subspaces of attributed graphs[END_REF][START_REF] Peng | ANOMALOUS: A joint modeling approach for anomaly detection on attributed networks[END_REF][START_REF] Iglesias Sánchez | Local context selection for outlier ranking in graphs with multiple numeric node attributes[END_REF]. In some papers [START_REF] Bojchevski | Bayesian robust attributed graph clustering: Joint learning of partial anomalies and group structure[END_REF][START_REF] Li | Radar: Residual analysis for anomaly detection in attributed networks[END_REF], outlier vertices are categorized into several types defined based on whether the anomaly is caused by attribute or structure deviation or both of them. Defining anomaly types can make it easier to identify them. In [START_REF] Bojchevski | Bayesian robust attributed graph clustering: Joint learning of partial anomalies and group structure[END_REF],

the authors derive three types of anomalies shown in Fig. 2 

Community search in vertex-attributed graphs

While the goal of community detection methods is to partition the graph into groups of strongly interacting vertices, the community search problem aims at identifying the community to which a specified set of vertices Q ⊆ V belongs. The community search problem can be tricky to handle with only using community detection methods. As motivated in [START_REF] Sozio | The community-search problem and how to plan a successful cocktail party[END_REF] and illustrated in Fig. 2.7, if Bob and Alice take the same tango class, and Charles is Bob's boss, the community formed by Bob and Alice is very different than the community formed by Bob and Charles. Sozio and Gionis [START_REF] Sozio | The community-search problem and how to plan a successful cocktail party[END_REF] define the community search problem for plain graphs as follows.

Definition 2.3. Given a graph G = (V, E), a set of query vertices Q ⊆ V , and a community goodness function f , the goal is to find an induced subgraph

H = (V H , E H ) of G such that: (1) Q ⊆ V H , (2) H
is connected, and (3) f (H) is maximized among all feasible choices for H.

Numerous works extended this problem to attributed graphs [78-82, 113, 114, 188], where the identified community containing the query vertices also needs to satisfy attributes cohesiveness. Fang et al. [START_REF] Fang | Effective community search over large spatial graphs[END_REF] integrate the spatial information for the vertices in the community search problem in attributed graphs, this allows to search communities situated in a close spatial area. Huang and Lakshmanan [START_REF] Huang | Attribute-driven community search[END_REF] introduces the problem of attribute-driven community search, where the user can also specify a set of query attributes that need to be similar in the identified community. Fang et al. [START_REF] Fang | Exploring communities in large profiled graphs[END_REF] extends the problem of community search to graphs whose vertex-attributes are arranged in a hierarchical manner, and designed a method that is able to choose the appropriate level of hierarchy for similar attributes of the community. 

Supervised descriptive rule discovery

Data mining and machine learning community has shown a great interest in the task of discovering patterns that discriminate a subset of data from the overall dataset. Such task can be efficiently formalized in Subgroup Discovery (SD) [START_REF] Klösgen | Explora: A multipattern and multistrategy discovery assistant[END_REF][START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF][START_REF] Novak | Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining[END_REF][START_REF] Wrobel | An algorithm for multi-relational discovery of subgroups[END_REF] and Exceptional Model Mining (EMM) [START_REF] Wouter Duivesteijn | Exceptional model mining -supervised descriptive local pattern mining with complex target concepts[END_REF][START_REF] Leman | Exceptional model mining[END_REF].

Subgroup Discovery (SD)

This task aims to find descriptions of sub-populations for which the distribution of a predefined target value is significantly different from the distribution in the whole data. In Fig. [START_REF] Lavrac | Rule evaluation measures: A unifying view[END_REF], a large variety of measures exists in the literature: the F-Score, the Jaccard coefficients, the Weighted Kullback Leibler divergence (W KL), the Subjective Interestingness (SI), etc. In addition to SD, two other close notions have been independently formalized and then unified by Novak [START_REF] Novak | Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining[END_REF]: Contrast Set Mining [START_REF] Bay | Detecting group differences: Mining contrast sets[END_REF] and emerging pattern mining [START_REF] Dong | Efficient mining of emerging patterns: Discovering trends and differences[END_REF]. Many other similar data mining tasks have been defined, for instance, significant rules [START_REF] Terada | Statistical significance of combinatorial regulations[END_REF], classification association rule [START_REF] Liu | Integrating classification and association rule mining[END_REF]. However, SD can be considered as the most generic task since it has been defined as a framework that is agnostic of the data and the pattern domain.

The main challenges that have been studied for Subgroup Discovery are: (1) The pattern language:

what are the constraints/restrictions of attributes that can be used to select a subgroup from the dataset? (2)

The quality measure: how to assess the interestingness of a subgroup? (3) Algorithms: how to explore the search space to identify subgroups of interest? Numerous exhaustive and heuristic algorithms have been proposed in the literature. The first exploration methods that have been proposed for SD implemented an exhaustive search, i.e., the search space is completely explored ensuring that the best subgroups are found.

Some of the exhaustive approaches that use efficient pruning strategies to explore the search space are SD- MAP [START_REF] Atzmüller | Sd-map -A fast algorithm for exhaustive subgroup discovery[END_REF] and BSD [START_REF] Lemmerich | Fast discovery of relevant subgroup patterns[END_REF]. Because exhaustive approaches have scalability issues, heuristic algorithms have been also proposed. The commonly used heuristic strategy is the beam search [START_REF] Gamberger | Expert-guided subgroup discovery: Methodology and application[END_REF][START_REF] Lavrac | Decision support through subgroup discovery: Three case studies and the lessons learned[END_REF]. Some other heuristic schemes have also been used such as evolutionary algorithms [START_REF] Del Jesús | Evolutionary fuzzy rule induction process for subgroup discovery: A case study in marketing[END_REF][START_REF] Pachón | Multiobjective evolutionary approach for subgroup discovery[END_REF][START_REF] Rodríguez | Searching for rules to detect defective modules: A subgroup discovery approach[END_REF] and output sampling approaches [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF][START_REF] Boley | Linear space direct pattern sampling using coupling from the past[END_REF][START_REF] Moens | Instant exceptional model mining using weighted controlled pattern sampling[END_REF]. Interestingly, some recent papers propose anytime algorithm [START_REF] Belfodil | Anytime subgroup discovery in numerical domains with guarantees[END_REF][START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF],

i.e., (1) they yeld progressively subgroups whose quality and diversity improves over time, (2) they can be interrupted anytime and they have the guarantee to return the best subgroups if enough time is provided. Particularly, Belfodil et al. [START_REF] Belfodil | Anytime subgroup discovery in numerical domains with guarantees[END_REF] provide a guarantee bounding the error on the top subgroup quality when the algorithm is interrupted before finding the best subgroup.

Exceptional Model Mining (EMM)

Usually considered as a generalization of SD, Exceptional Model Mining [START_REF] Wouter Duivesteijn | Exceptional model mining -supervised descriptive local pattern mining with complex target concepts[END_REF][START_REF] Leman | Exceptional model mining[END_REF] allows one to handle more complex target concepts, and use more sophisticated model to assess the deviation of subgroups.

The main measures and algorithms of standard SD are generally defined for datasets where there is only one target variable. In EMM, there is no longer only one target variables but several, and a model over these targets is chosen to be the target concept. EMM aims to find subgroups of objects for which the model induced over the target variables significantly deviates from the model induced by all the dataset. We show in Fig. 2.9 an illustration of this framework proposed in [START_REF] Bosc | Anytime discovery of a diverse set of patterns with Monte Carlo tree search[END_REF]. Numerous EMM models defined on a set of target variables have been proposed: regression model [START_REF] Wouter Duivesteijn | Different slopes for different folks: mining for exceptional regression models with cook's distance[END_REF] and correlation model [START_REF] Wouter Duivesteijn | Exceptional model mining -supervised descriptive local pattern mining with complex target concepts[END_REF] between two target variables, classification model as a target [START_REF] Duivesteijn | Understanding where your classifier does (not) work -the scape model class for EMM[END_REF], preferences among a set of targets [START_REF] Rebelo De Sá | Discovering a taste for the unusual: exceptional models for preference mining[END_REF],

Bayesian networks [START_REF] Wouter Duivesteijn | Subgroup discovery meets bayesian networks -an exceptional model mining approach[END_REF], etc. While the models used in EMM are more complex, the same algorithmic strategies as SD are used to identify exceptional subgroups, in fact, the search space of subgroups in EMM remain similar the ones of SD.

Example for EMM regression model. A concrete example of EMM is given in [START_REF] Wouter Duivesteijn | Different slopes for different folks: mining for exceptional regression models with cook's distance[END_REF] where the goal is to study the relation between price and demand in economy. The economic law of demand states Figure 2.9: A typical EMM instance [START_REF] Bosc | Anytime discovery of a diverse set of patterns with Monte Carlo tree search[END_REF].

that (all else equal) if the price of a product increases, the demand for the product will decrease. In a regression model this would result in a negative slope when we regress demand on price. However, under specific conditions, people tend to buy more of a product when the price increases [START_REF] Robert | Giffen behavior and subsistence consumption[END_REF]. Hence, for those exceptional cases, we would get a positive slope of the regression line. Those exceptional cases can be investigated using EMM applied to a dataset of objects corresponding to products. Each product has descriptive attributes (e.g., category, age, brand), and two target variables: price and demand. A regression model between price and demand is used in [START_REF] Wouter Duivesteijn | Different slopes for different folks: mining for exceptional regression models with cook's distance[END_REF]. Applying EMM allows one to find restrictions of attributes that identify subgroups having a regression model of target variables significantly different from the global regression model of targets over all the dataset. We illustrate this example in Fig. 2.10. 

Exploiting SD/EMM for mining graphs

Although SD and EMM are initially defined for simple datasets of objects, recent works show interests in extending these concepts for attributed graphs. Atzmueller et al. [START_REF] Atzmueller | Description-oriented community detection using exhaustive subgroup discovery[END_REF] propose to mine descriptions of communities from vertex attributes, with an SD approach. In this supervised setting, each community is treated as a target that can be assessed by well-established measures, like the WRAcc measure. In [START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF],

we proposed a method for edge-attributed graphs to discover contextualized subgraphs that are exceptional with respect to a model of the dataset. Restrictions on the attributes, that are associated to edges, are used to generate subgraphs. Such patterns are of interest if they pass a statistical test and have high value on an adapted WRAcc measure. Similarly, Lemmerich et al. [START_REF] Lemmerich | Mining subgroups with exceptional transition behavior[END_REF] propose to discover subgroups with exceptional transition behavior as assessed by a first-order Markov chain model. Some other works from Signal processing community also aim to discover subgraphs having some exceptionalities. For instance, Miller et al. [START_REF] Miller | A spectral framework for anomalous subgraph detection[END_REF] studied the problem of subgraph detection (SPG) in simple graphs with weighted edges, and formalised it as a problem of detecting signal in noise. It aims to find subgraph having an exceptional connectivity regarding to the one expected using a background model.

Taking into accout the user in the mining process

The goal of data mining is the discovery of interpretable patterns that ideally are interesting for the user.

In practice, the notion of pattern interestingness strongly depends on the user, respectively, on her prior knowledge or her preferences. For instance, a pattern P may be interesting for a user u 1 but not for another user u 2 , because u 2 already expected the presence of P in the data, or because P is related to a topic that does not interest u 2 . For this reason, several works proposed interestingness models that consider not only the data but also the user to assess the quality of a pattern, which makes this quality a subjective measure. The problem of taking subjective interestingness into account in pattern mining was already identified in Silberschatz and Tuzhilin [START_REF] Silberschatz | On subjective measures of interestingness in knowledge discovery[END_REF] and has seen a renewed interest in the last decade. Subjective models can be divided into two categories: (1) models that incorporate the user prior knowledge, and (2) models that integrate the user preferences.

Incorporation of user background knowledge

These methods aim to integrate the background knowledge of the user into the interestingness model in order to discover patterns that are surprising regarding these prior beliefs. Among them, the prominent work of De Bie [START_REF] De | An information theoretic framework for data mining[END_REF] defines a general and statistically-founded framework that uses concepts from Information Theory. The user's state of mind is modeled as constraints on a probability distribution, called the background distribution, which represents the uncertainty the user has about the data. More specifically, the prior information is represented by the maximum entropy (MaxEnt) distribution subject to these constraints. This model is then used to capture patterns that are surprising regarding user beliefs.

But also, this framework proposes to favor patterns that are easy to assimilate by the user. The assimilation cost of a pattern by the user is measured using a description length measure, which gives the number of bits required to encode the pattern in some specific encoding scheme. The subjective interestingness SI(P ) of a pattern P is the ratio between IC(P ) the information content and DL(P ) the description length of the pattern, thus representing the information density within the pattern. Also, when a pattern is displayed to the user, the background model is updated to integrate this pattern as already known by the user. This allows the approach to continuously return patterns that contain new piece of information comparing to the already extracted ones. An illustration of this framework is given in Fig. 2.11. This framework has been successfully exploited in several data mining tasks. For example, De Bie [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF] defined a subjective interestingness to assess the quality of tiles in a binary dataset where row sums and column sums are assumed to be priors. Lijffijt et al. [START_REF] Lijffijt | P-n-rminer: a generic framework for mining interesting structured relational patterns[END_REF] also used this framework for the problem of pattern mining in multi-relational databases. The user is considered to have prior beliefs on the degree of each entity in the different relationship types. In [START_REF] Matthijs Van Leeuwen | Subjective interestingness of subgraph patterns[END_REF], the authors showed how this subjective interestingness can be exploited to capture surprisingly dense subgraphs in plain graphs. In this work, they consider two cases of background knowledge: (1) when the user only has beliefs about the overal density of the graph, and (2) when the user has prior beliefs about the degree of vertices. Kang et al. [START_REF] Kang | SICA: subjectively interesting component analysis[END_REF] applied this framework for the dimensionality reduction problem to seek for the most informative low dimensional representation. Several types of priors have been studied in this work, e.g., scale of the data (average variances), magnitude of spread, pairwise data similarities of some data points. Similarly, Adriaens et al. [4] designed a method to mine subjectively interesting trees connecting a set of query vertices in a graph. They showed how to derive the interestingness model for two types of priors: (1) representation of some partial or total order of vertices as priors (e.g., when vertices corresponding to events in time),

(2) modeling knowledge about degree assortativity, i.e., when vertices have the tendency to connect to vertices of similar degree. Subjective interestingness for mining tiles in binary databases. In order to give a clearer idea about the subjective interestingness proposed by De Bie [START_REF] De | An information theoretic framework for data mining[END_REF], we explain in more details the model that has been used to assess the interestingness of tiles in binary databases [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF]. A matrix D is used to denote a database with m rows and n columns. D(i, j) ∈ {0, 1} is a Boolean cell located in the i-th row and j-th column of D. Patterns of interest are tiles in this study. A tile τ = (I, J) is defined as an ordered pair of a set of rows I ⊆ {1, ..., m} and a set of columns J = {1, ..., n}. We say that a tile τ = (I, J) is present in the database D, denoted τ ∈ D, iff D(i, j) = 1 for all i ∈ I and j ∈ J. The goal of this problem is to identify tiles that are subjectively interesting when contrasted to a background model. More precisely, the purpose is to identify tiles τ with the highest values of SI(τ ) = IC(τ ) DL(τ ) which is the ratio between the informativeness IC(τ ) and the assimilation cost DL(τ ). The information that are considered as background knowledge in this model are the sum of each row and the sum of each column. Any pattern that can be explained by referring to row or column sums in a binary database is then deemed uninformative. This hypothesis has been considered before, using computation intensive approaches based on swap randomization [START_REF] Gionis | Assessing data mining results via swap randomization[END_REF]. The MaxEnt model employed in [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF] can be computed and used more efficiently in this situation for the same purpose as swap randomizations. While the user is considered to expect the right values for the row and column sums, she does not know the exact values of cells in D. The uncertainty of the user about D is represented by the random matrix D that takes its values in {0, 1} m×n . We need to infer a model that allows to compute the probability Pr(τ ∈ D) conditionned to the background knowledge, which allows to evaluate how much a tile τ is surprising. The prior knowledge about the row and column sums are modeled as constraints on the probability distribution Pr(τ ∈ D):

1. The row sums are priors: For each i ∈ {1, ..., m}, the users's expectation about the sum of the i-th row is equal to its empirical sum in D:

D∈{0,1} m×n ⎛ ⎝ Pr(D) • n j∈1 D(i, j) ⎞ ⎠ = n j∈1 D(i, j)
2. The column sums are priors: For each j ∈ {1, ..., n}, the users's expectation about the sum of the j-th column is equal to its empirical sum in D:

D∈{0,1} m×n Pr(D) • m i∈1 D(i, j) = m i∈1 D(i, j)
These constraints will not be sufficient to uniquely determine a probability distribution. The solution proposed in [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF] is to search for the MaxEnt distribution, i.e., the probability distribution that has the largest entropy subject to these constraints, thus, the one maximizing -D (Pr(D) • log Pr(D)). The argument for this choice is that any distribution other than the MaxEnt distribution effectively makes additional assumptions about the data that reduce the entropy. Accordingly, the MaxEnt distribution is the safest bet. Finding the MaxEnt distribution is a convex problem that can be solved efficiently using standard convex optimization techniques [START_REF] Boyd | Convex optimization[END_REF]. After deriving this distribution, one will be able to compute efficiently Pr(τ ∈ D) for any tile τ , and the information content of τ can then be computed as IC(τ ) =log (Pr(τ ∈ D)). Also, the method proposed in [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF] seeks for tiles that are easy to assimilate by the user. The assimilation cost of τ is quantified using DL(τ ) the description length of τ under a Shanon-optimal code. Finally, the subjective interestingness of a pattern is defined as SI(τ ) = IC(τ ) DL(τ ) . Then, one can use some enumeration algorithm in order to identify tiles having the highest score of subjective interestingness.

Incorporation of user preferences

Other methods propose to take into account the user from a different perspective: "the preferences". The simplest case is when the user explicitly expresses her preferences through a set of objective measures f 1 , ..., f n defined on patterns, such as frequency, density, size, etc. When there is only one measure to optimize, the solution can be to extract the top-k patterns w.r.t this measure, given a user specified parameter k ∈ N. Many methods have been defined to mine top-k patterns regarding the frequency [START_REF] Han | Mining top-k frequent closed patterns without minimum support[END_REF], the statistical significance [START_REF] Pellegrina | Efficient mining of the most significant patterns with permutation testing[END_REF], the utility [START_REF] Ryang | Top-k high utility pattern mining with effective threshold raising strategies[END_REF], etc. When several objective measures need to be optimized, algorithms have been proposed to identify the so-called skypatterns [START_REF] Cho | Preference-based frequent pattern mining[END_REF][START_REF] Soulet | Mining dominant patterns in the sky[END_REF]. A pattern P is a skypattern if it is not dominated by any other pattern regarding all the considered measures to optimize.

More formally, P is a skypattern if there is no other pattern P such that ∀f i : f i (P ) ≥ f i (P ) and ∃f i :

f i (P ) > f i (P ).
In practice, the user may not be able to explicitly define her preferences based on objective measures. However, if a pattern is presented to her, she would definitely know whether this pattern is interesting or not. For this reason, several papers have designed interactive methods that require user feedbacks during the search to learn her preferences. Dzyuba and van Leeuwen [START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF] use the feedback to guide a diverse beam search in Subgroup Discovery. The beam selection strategy is influenced by the likes and dislikes that the user provides about some previously returned patterns. Bhuiyan and Al Hasan [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF] exploit the user's interactions to bias the probability distribution used to sample frequent patterns with Markov Chain Monte Carlo search. Dzyuba et al. [START_REF] Dzyuba | Interactive learning of pattern rankings[END_REF] propose to frame this problem as an interactive learning and mining loop that consists of four steps shown in Fig. 2.12:

• Mining patterns: A set of patterns will be selected using a mining algorithm, and then presented to the user. This algorithm selects these patterns based on some subjective input that represents user-preferences. Generally, this input is initially empty and the mining is objective. Then, in the next iterations, a model of user interests is made progressively more precise and accurate, which allows to discover patterns that are more relevant for this specific user.

• Interacting with the user: The patterns are displayed to the user. She can explore them and express her feedback about them. This feedback can be expressed in different manners. For instance, the user can be asked to like and dislike a subset of these patterns [START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF], some other methods require to rank these patterns from the best to the worst [START_REF] Rüping | Ranking interesting subgroups[END_REF][START_REF] Xin | Discovering interesting patterns through user's interactive feedback[END_REF]. Expressing the feedback should be simple in order to make the interactive process realistic and not exhausting, but at the same time should allow to derive user's interests.

• Learning user-specific pattern interestingness: Use the feedback to build and improve the model of the user interests, i.e., to identify what makes patterns interesting to the user. This model will be used in the next iteration when mining the next set of patterns, to find better patterns regarding the user interests.

• Repeat: Mine and interact again relying on the updated score. In other terms, the four steps of the mining process is repeated again using the new interestingness model that includes the new feedbacks.

Figure 2.12: Interactive pattern-based data exploration to incorporate user preferences [START_REF] Dzyuba | Interactive learning of pattern rankings[END_REF].

Similarly, several other methods also require feedbacks from the user to derive her preferences.

In [START_REF] Xin | Discovering interesting patterns through user's interactive feedback[END_REF], the user is asked to rank a small set of patterns according to her interest, and a predictive model (e.g., SVM) is trained based on this feedback and then used to rank the remaining patterns. The authors proposed models designed for itemsets, sequential and structural patterns. For example, to find interesting frequent itemsets, the interestingness of an itemset P is evaluated by a subjective measure R that is based on the difference between the observed frequency f o (P ) and the expected frequency f e (P ).

This measure is defined as: R(f o (P ), f e (P )) = log(f o (P ))log(f e (P )). While f o (P ) is constant and depends only in the input dataset, f e (P ) is a function having some unkonwn parameters that need to be trained using the elicited feedbacks. From the ranking of patterns, this method considers that P i > f P j if the user judges P i more interesting. This will be expressed as the following inequality constraint R(f o (P i ), f e (P i )) > R(f o (P j ), f e (P j )). Thus, the goal will be to infer the values of parameters of f e so that the number of violated inequality constraints is minimized. The authors used a ranking SVM formulation to solve this problem. A similar approach is proposed in [START_REF] Rüping | Ranking interesting subgroups[END_REF] for the task of Subgroup Discovery, where a model is trained based on the subgroups that the user marked as interesting.

Discussion

From a general perspective, a common point of vertex-attributed graph mining methods presented in Section 2.2, except outlier detection, is that they aim to find regularities instead of peculiarities. For example, community detection approaches find groups of highly connected vertices having similar attribute values. Most of local pattern mining methods for this kind of graphs aim to find dense subgraphs that have a subspace of attributes with similar values. These works focus their attention on the similarity inside the subgraphs, while underestimating exceptionality of the subgraph characteristics with respect to the whole graph. Interestingnly, Atzmueller et al. [START_REF] Atzmueller | Description-oriented community detection using exhaustive subgroup discovery[END_REF] propose to mine descriptions of communities from vertex attributes with a Subgroup Discovery approach. However, the setting of this approach is supervised since each community is treated as a target attribute. In Chapter 3, we propose a method with a similar purpose for mining exceptional attributed subgraphs, but in an unsupervised setting. The notion of target is more dynamic and it corresponds to some subset of vertex-attributes enumerated by the mining algorithm.

There is a myriad of methods that involve the user into the mining process, however, none of them proposes a model for mining local patterns in vertex-attributed graphs. While De Bie [START_REF] De | An information theoretic framework for data mining[END_REF] defines a general subjective interestingness framework, adapting this framework for the complex structure of vertex-attributed graphs is not straightforward. In Chapter 4, we propose the first approach that exploits this framework to integrate both the graph structure and vertex attributes, in order to mine attributed subgraphs that are subjectively interesting. Furthermore, following the same steps of preference-based interactive mining defined in [START_REF] Dzyuba | Interactive learning of pattern rankings[END_REF], we propose in Chapter 5 an approach that iteratively integrates user preferences to determine subgraphs of interest in vertex-attributed graphs. This approach is defined for the task of geolocated event detection in social media. In fact, this task can target a large number of people who are able to undestand its result and interact with it. This makes it possible to perform experiments with many real users to evaluate this approach.

In several vertex-attributed graphs, a hierarchical relationship stands between attributes. In practice, attributes of different level of the hierarchy are related and they share overlapping information. In other terms, if an attribute a i is a parent of another attribute a j , telling the user that some subgraph is characterized by a j would let her infer some information about a i in this subgraph. Integrating the dependency between attributes into the subjective interestingness has not been studied yet in the literature.

In Chapter 6, we address this problem and we propose a model that considers the inferences that the user would make when attributes are hierarchical. To simplify, we study this problem independently from any graph structure. However, one of potential future works is to apply it for assessing interestingness of subgraphs where vertices are described by hierarchical attributes.

Introduction

As shown in the previous chapter, a large number of methods have been proposed to extract local patterns from vertex-attributed graphs. The majority of these approaches aim to identify dense subgraphs with homogeneous attributes. In order to ensure that the found subgraphs are dense, structural constraints are required on them, for example, subgraphs are required to be quasi-cliques [START_REF] Silva | Structural correlation pattern mining for large graphs[END_REF][START_REF] Silva | Mining attribute-structure correlated patterns in large attributed graphs[END_REF] or pseudocliques [START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF][START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF]. Some methods do not impose the subgraph to be dense, but only to be connected [START_REF] Fukuzaki | Finding itemset-sharing patterns in a large itemset-associated graph[END_REF][START_REF] Sese | Mining networks with shared items[END_REF]. The homogeneity of attributes is ensured by similarity measures defined on subspaces of attributes, or by hard constraints on attribute values.

However, most of these works focus their attention on the similarity inside the subgraphs, while underestimating exceptionality of the subgraph characteristics with respect to the whole graph. In fact, a subgraph is likely to be interesting if it is characterized by some properties that distinguish it from the whole graph, otherwise, this subgraph would be already expected from the overall graph properties. To overcome this limitation, we introduce the task of mining exceptional attributed subgraphs. We address the problem of mining connected subgraphs whose vertices share characteristics that are different from those of the remaining vertices. This problem is central in this thesis, and it will be considered again in Chapters 4 and 5, with the purpose of improving patterns quality by incorporating the user's background knowledge (Chapter 4) or preferences (Chapter 5) into the interestingness model. The approach we propose in this chapter is rooted in Subgroup Discovery (SD) [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF] and Exceptional Model Mining (EMM) [START_REF] Wouter Duivesteijn | Exceptional model mining -supervised descriptive local pattern mining with complex target concepts[END_REF]. In both these frameworks, the target concept (e.g., attributes) used to evaluate subgroup's exceptionality is generally fixed throughout all the mining task. In our work, the target is dynamic and it corresponds to some subset of attributes enumerated by the mining algorithm. We aim to identify the exceptional subgraphs with respect to each enumerated subset of target attributes.

Throughout different parts of this chapter, we use an example of application related to mining urban data in order to illustrate the concepts that we will define. More specifically, this example consists in mining data provided by social networks (such as Foursquare and Google Place) to identify geographic areas with homogeneous and exceptional characteristics. The identified areas are described by their associated characteristics that distinguish them from the rest of the city. The vertex-attributed graph model is illustrated in Fig. 3.1. While we apply the proposed approach to only urban data in this chapter, this approach remains generic and it can be used in numerous other applications. For example, Moranges et al. [START_REF] Moranges | Exceptional attributed subgraph mining to understand the olfactory percept[END_REF] used this method to study relationships between odor perception and brain areas based on fMRI data.

Exceptional attributed subgraph mining is a novel graph mining task that exploits both the contrast of vertices attributes and the graph structure through a connectivity constraint. We propose two algorithms to discover exceptional subgraphs. The first one is an exhaustive algorithm that is based on a constraintbased enumeration strategy. It uses original and efficient upper bounds and some other techniques to reduce the search space. It takes benefit from a closure operator to reduce redundancy and efficiently prune the search space. The second algorithm mines closed exceptional subgraphs by directly sampling the space of closed patterns in a similar way as [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF][START_REF] Hasan | Output space sampling for graph patterns[END_REF][START_REF] Kumar | Fs 3 : A sampling based method for top-k frequent subgraph mining[END_REF]. 

Exceptional attributed subgraph mining problem

In this section, we provide the necessary definitions and terminology. We assume given a vertex-attributed graph G = (V, E, Â). V is the set of vertices, E ⊆ V ×V is the set of edges, and  is the set of numerical attributes on vertices (formally, functions mapping a vertex onto an attribute value), with â(v) ∈ Dom a denoting the value of attribute â ∈  on v ∈ V . We use hats in â and  to signify the empirical values of the attributes observed on the graph G. The notations a and A represent the set of attributes in a more generic way, they are used to denote (possibly random) variables over the same domains, and to denote the pattern syntax. The values of  can be aggregated over a subset of vertices U ⊆ V and a subset of attributes A ⊆ A: sum(U, A ) = v∈U a∈A â(v). To simplify the notation, we use sum(U ) to denote sum(U, A).

As an example, Fig. 3.1 and Fig. 3.2 present a graph derived from the division of a city into 6 areas (from v 1 to v 6 ). Nearby venues are grouped into small areas (geographers generally use tiles of 200 meters) over which venue characteristics are aggregated into count data. These areas are hereafter considered as the vertices V of a graph G = (V, E, Â) whose edges E connect adjacent areas (that share a part of their borders), â(v) is the number of venues of an attribute â in the area associated to a vertex v. The area represented by v 1 is adjacent to the ones represented by v 2 and v 4 , and consequently an edge connects v 1 to v 2 and another one v 1 to v 4 . The numbers of venues of each attribute in a given area makes the vector associated to the corresponding vertex. The distribution of venue categories A = {Health, T ourism, Store, F ood} is detailed in Fig. 3.2. sum({v 1 }, health) = 1 as there is one venue with the category health in the area associated to v 1 . We can also observe that sum({v 1 }, {Health, T ourism, Store, F ood}) = 22, and for the set U = {v 2 , v 5 }, sum(U ) = 49. Our goal is to discover connected subgraphs associated to exceptional attributes. An attribute is exceptional for a subgraph if it is more frequent in its vertices than in the remaining of the graph. The scarcity of an attribute can also be a relevant element to describe a subgraph. For example, in Fig. 3.2, vertices v 2 and v 5 have a surplus on the attribute Health compared to the rest of the graph, while having a loss on the attribute Tourism. We formalize the excess and deficit in the amount of some attributes by means of characteristics defined as follows.

Definition 3.1 (Characteristic).

A characteristic is a pair S = (S + , S -) with S + and S -two disjoint subsets of A. Also, given two characteristics S 1 = (S + 1 , S - 1 ) and S 2 = (S + 2 , S - 2 ), we have:

• S 1 ∩ S 2 = (S + 1 ∩ S + 2 , S - 1 ∩ S - 2 ), • S 1 ∪ S 2 = (S + 1 ∪ S + 2 , S - 1 ∪ S - 2 ), • S 1 ⊆ S 2 ⇔ S + 1 ⊆ S + 2 ∧ S - 1 ⊆ S - 2 , • |S| = |S + ∪ S -| = |S + | + |S -|, (since S + ∩ S -= ∅).
In order to assess the relevancy of the characteristic S with respect to the subgraph induced by U ⊆ V , noted G[U ], we define the measure W RAcc(U, S), an adaptation of the weighted relative accuracy measure widely used in Subgroup Discovery [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF]. W RAcc(U, S) measures to which degree the prevalence of attributes of S + (resp. S -) are higher (resp. lower) than expected in vertices of U .

A set of attributes

A ⊆ A is discriminant to the induced subgraph G[U ] if it is more or, on the contrary, less frequent in G[U ] than in G.
This is evaluated by the gain function:

gain(U, A ) = sum(U, A ) sum(U ) - sum(V, A ) sum(V ) .
The validity of a characteristic S = (S + , S -) with respect to G[U ] is assessed by the predicate valid(U, S). This predicates is true if each vertex v ∈ U has a positive gain for each attribute a ∈ S + , and a negative gain for each category a ∈ S -. It is formally defined as:

valid(U, S) ≡ v∈U a∈S + δ gain(a,v)>0 a∈S - δ gain(a,v)<0 .
The quality of a characteristic S can be globally measured by gain(S + , U)gain(S -, U). However, a major drawback of the gain is that it is easy to obtain high value with highly specific characteristics [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF], more precisely characteristics associated to a small set of vertices. Weighted relative accuracy makes a trade-off between generality and gain by considering the relative size of the subgraph.

W RAcc(U, S) = ⎧ ⎨ ⎩ (gain(S + , U) -gain(S -, U)) × sum(U ) sum(V ) , if valid(U, S) 0,
otherwise.

The main differences with the W RAcc used in Subgroup Discovery [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF] are (1) this adapted W RAcc considers both the positive and the negative contrasts in an unsupervised setting (i.e., there is no class attribute in our setting, the "target" is settled by each pattern), ( 2) it takes into account the homogeneity of the characteristic S on vertices of U , using the predicate valid(U, S).

We now define the pattern domain we consider: Given an exceptional subgraph (U, S), a large number of included exceptional subgraphs can be derived, i.e. patterns (U , S ) such that U ⊆ U and S ⊆ S. As these patterns (U , S ) are already described and covered by (U, S), they unnecessarily increase the size of the solution set. This redundancy can be avoided thanks to a closure operator [START_REF] Kuznetsov | Learning of simple conceptual graphs from positive and negative examples[END_REF] defined below.

Definition 3.3 (Formal concept).

Let max S and max V be two operators forming a Galois connection:

• max S : 2 V → 2 A × 2 A , that provides the most specific characteristic associated to the subgraph induced by U ⊆ V : max S (U ) = {a ∈ A | v∈U δ gain(a,v)>0 }, {a ∈ A | v∈U δ gain(a,v)<0 } . • max V : 2 A × 2 A → 2 V ,
that returns the set of vertices supporting the characteristic S:

max V (S) = {v ∈ V | valid(S, {v})}.
Notice that max S • max V and max V • max S give two closure functions, i.e., they are extensive, monotonic, and idempotent. A pair (U, S), where S is a characteristic and U ⊆ V , is a formal concept iff S = max S (max V (S)) and U = max V (S), or equivalently, S = max S (U ) and U = max V (max S (U )).

It may happen that a formal concept as defined above does not correspond to a connected subgraph.

For example, in Fig. 3

.3, (U, S) is a formal concept, with U = {v 1 , v 3 , v 4 , v 6 } and S = ({c 1 } + , {c 2 } -).
However, (U, S) is not an exceptional subgraph because G[U ] is not connected. Maximal patterns address this limitation:

Figure 3.3: Example of a formal concept (U, S), with S = ({c 1 } + , {c 2 } -), U = {v 1 , v 3 , v 4 , v 6 } such that G[U ] is not connected.

Definition 3.4 (Maximal pattern).

A set of maximal patterns is derived from a formal concept (U, S) as:

{(CC, max S (CC)) | CC is a connected component of G[U ]}
In other terms, a maximal pattern (CC, max S (CC)) is made of the most specific characteristic for CC, but also, the connected subgraph G[CC] cannot be extended to another connected subgraph while keeping the current characteristic max S (CC).

Following the example from Fig. 3.3, the formal concept (U, S) contains two connected components

CC 1 = {v 1 , v 4 } and CC 2 = {v 3 , v 6 }, with max S (CC 1 ) = ({c 1 , c 3 } + , {c 2 } -) and max S (CC 2 ) = ({c 1 , c 4 } + , {c 2 } -). From these two connected components, two maximal patterns (max S (CC 1 ), CC 1 ) and (max S (CC 2 ), CC 2 ) are derived.
Finally, all these definitions are used to establish the notion of closed exceptional subgraph:

Definition 3.5 (Closed exceptional subgraph). Let S be a characteristic and U ⊆ V a subset of vertices, (U, S) is a closed exceptional subgraph iff (1) (U, S) is a maximal pattern (2) (U, S) is an exceptional subgraph.
The rest of the chapter is devoted to the computation and evaluation of the complete set of closed exceptional subgraphs. This requires searching for two combinatorial search spaces, with constraints that cannot be used according to the usual techniques of search space pruning. Thus, a naive approach cannot achieve this task for large graphs or a large number of categories. In the following, we propose an efficient approach that takes benefit from closed pattern properties.

Computing exceptional subgraphs

This section introduces two distinct approaches to extract closed exceptional subgraphs. First, we present an exact algorithm that aims at discovering the complete set of closed exceptional subgraphs. Second, we devise a heuristic algorithm that samples the space of closed exceptional subgraphs within a user-defined time-budget. This approach makes possible to obtain instant results and to successfully scale up on datasets with a large number of attributes.

Exhaustive search

In order to enumerate the set of all closed exceptional subgraphs, the algorithm CEnergetics (see Algorithm 1) explores the space of characteristics S = (S + , S -), and for each characteristic, it enumerates the maximal patterns that can be generated from S using the closure operators. We start from an empty characteristic (S + , S -) = (∅, ∅) and consider the candidate categories that can be used to expand S: X = (X + , X -): X + contains the categories that can be added to S + , and X -the ones that can be added to S -. Y ⊆ V represents a set of vertices that verifies valid(Y, S). Initially, Y contains all the vertices V , and (X + , X -) = (C, C). In each recursive call of CEnergetics, S is extended with an element x of X + or of X -. Y is then reduced to the vertices v that satisfy valid({v}, S ∪ {x}).

The predicate valid is anti-monotone with respect to the inclusion of characteristics: Considering two characteristics S 1 , S 2 such that S 1 ⊆ S 2 and U ⊆ V , we have valid(U, S 2 ) ⇒ valid(U, S 1 ). By the contraposition, the invalid vertices for S 1 are also invalid for S 2 , and therefore, the valid set of vertices associated to S ∪ {x} is a subset of Y (a property used in Line 5 of Algorithm 1). We also take benefit from this anti-monotony using the fail first principle: To extend the current characteristic S, we choose the characteristic x for which the set {v ∈ Y | valid({v}, S ∪ {x})} is the smallest. After updating Y , we explore each connected component CC of G[Y ] independently and form (CC, max S (CC)) that is, by definition, a maximal pattern. If max S (CC) ⊆ S ∪ X, then the maximal pattern (CC, max S (CC))

has not yet been explored and CEnergetics is recursively called with S = max S (CC) and Y = CC (Line 9). This allows to explore only characteristics S and vertices subsets Y that form maximal patterns (Y, S), and without redundancy.

Another pruning mechanism is used on Line 2 where the function UB is used to upper bound the W RAcc measure. This function relies on the aggregation property of the W RAcc measure as defined below.

Property 3.1. Let S = (S + , S -) be a characteristic, and U ⊆ V a set of vertices satisfying valid(U, S), we have:

W RAcc(U, S) = v∈U ⎛ ⎝ x∈S + W RAcc v, (x + , ∅) + x∈S - W RAcc v, (∅, x -) ⎞ ⎠ . Algorithm 1: CEnergetics(S, X, Y , R, δ, σ) Input: S = (S + , S -) the current explored characteristic, X = (X + , X -) the candidate sets, Y a connected component s.t (Y, S
) is a maximal pattern Output: R the result set under construction

1 if X = (∅, ∅) then 2 if |Y | ≥ σ and UB(Y, S ∪ X) ≥ δ then 3
// Extending S using the fail first principle:

4 x ← argmin x∈X |{v ∈ Y | valid({v}, S ∪ {x})}| 5 Y ← {v ∈ Y | valid({v}, S ∪ {x})} 6 for each connected component CC ⊆ G[Y ] do 7 if max S (CC) ⊆ S ∪ X then 8 // (CC, max S (CC)) has not been explored yet 9 CEnergetics(max S (CC), X \ max S (CC), CC, R, δ, σ) 10 CEnergetics(S, X \ {x}, Y , R, δ, σ) 11 else 12 if |Y | ≥ σ and W RAcc(Y, S) ≥ δ then 13 R ← R ∪ {(Y, S)} Proof. Since valid(U, S) is true: W RAcc(U, S) = (gain(S + , U) -gain(S -, U)) × sum(U ) sum(V ) , = sum(U, S + ) sum(U ) - sum(V, S + ) sum(V ) - sum(U, S -) sum(U ) + sum(V, S -) sum(V ) × sum(U ) sum(V ) , = sum(U, S + ) sum(V ) - sum(V, S + ) • sum(U ) sum(V ) 2 + sum(V, S -) • sum(U ) sum(V ) 2 - sum(U, S -) sum(V ) , = v∈U sum(v, S + ) sum(V ) - sum(V, S + ) • sum(v) sum(V ) 2 + sum(V, S -) • sum(v) sum(V ) 2 - sum(v, S -) sum(V ) , = v∈U x∈S + sum(v, x + ) sum(V ) - sum(V, x + ) • sum(v) sum(V ) 2 + x∈S - sum(V, x -) • sum(v) sum(V ) 2 - sum(v, x -) sum(V ) , = v∈U x∈S + W RAcc v, (x + , ∅) + x∈S - W RAcc v, (∅, x -) .
From this property, we can derive the following function UB and demonstrate that it can be used to upper bounds the W RAcc value.

Definition 3.6 (UB).

Let S = (S + , S -) be a characteristic, and U ⊆ V . UB(U, S) is defined as:

UB(U, S) = v∈U ⎛ ⎝ x∈S + W RAcc v, (x + , ∅) + x∈S - W RAcc v, (∅, x -) ⎞ ⎠ .
Property 3.2. For each pattern (U 2 , S 2 ) such that U 2 ⊆ U and S 2 ⊆ S , we have

UB(U, S) ≥ W RAcc(U 2 , S 2 ).
Proof.

(1) If valid(U 2 , S 2 ) = false, the property is verified because UB(U, S) ≥ 0. In fact, UB is a sum of W RAcc values that are always positive or null.

( CEnergetics enumerates maximal patterns in a depth-first manner. The search space can be represented as a tree where each enumerated maximal pattern (Y, S) corresponds to a single leaf. The depth of this tree is bounded by 2 × |A|, since in each recursive call at least one element x ∈ X is added to S.

) If valid(U 2 , S 2 ) = true: UB(U, S) = v∈U 2 ⎛ ⎝ x∈S + 2 W RAcc v, (x + , ∅) + x∈S - 2 W RAcc v, (∅, x -) ⎞ ⎠ , + v∈U \U 2 ⎛ ⎝ x∈S + 2 W RAcc v, (x + , ∅) + x∈S - 2 W RAcc v, (∅, x -) ⎞ ⎠ , + v∈U ⎛ ⎝ x∈∈S + \S + 2 W RAcc v, (x + , ∅) + x∈∈S -\S - 2 W RAcc v, (∅, x -) ⎞ ⎠ , = W RAcc(U 2 , S 2 ) + v∈U \U 2 ⎛ ⎝ x∈S + 2 W RAcc v, (x + , ∅) + x∈S - 2 W RAcc v, (∅, x -) ⎞ ⎠ , + v∈U ⎛ ⎝ x∈∈S + \S + 2 W RAcc v, (x + , ∅) + x∈∈S -\S - 2 W RAcc v, (∅, x -) ⎞ ⎠ , ≥ W RAcc(U 2 , S 2 ). 2 
Thus, the number of recursive calls between two leaves is bounded by 4 × |A| (we backtrack at most 2 × |A| times and then we go in depth at most 2 × |A| times). Thus, we can conclude that the time delay between the enumeration of two leaves of this tree (two different maximal patterns) is polynomial in

O(|A| × max{|A| × |V |, |V | + |E|}).

Exceptional subgraph space sampling

In practice, end-users want to obtain high-quality patterns in a short amount of time, especially in interactive data mining processes. However, we show in experiments that the runtime of CEnergetics increases when the graph size or the number of attributes increase, and it may require a considerable time to mine very large graphs. To overcome this issue, we propose an approach that computes a sampling of the closed exceptional subgraphs within a user-given time-budget.

We adapt the randomized pattern mining technique of [START_REF] Boley | Direct local pattern sampling by efficient two-step random procedures[END_REF] to exceptional subgraphs discovery. This so-called Controlled Direct Pattern Sampling enables the user to specify a time budget and computes a set of high-quality patterns whose size directly depends on the specified amount of time.

The idea consists of sampling the patterns based on a probability distribution that depends on the quality patterns. In a first attempt, we proposed to first sample the characteristics and then derive the associated subgraphs. But this strategy failed in computing patterns with high WRAcc values because the graph structure was neglected. Thus, we adopted the reverse approach that consists in randomly generating maximal patterns (U, S).

We perform a random walk on a graph whose vertices are the maximal patterns and the edges connect couple of patterns (U 1 , S 1 ) and (U 2 , S 2 ) such that U 1 ⊆ U 2 and there does not exist a maximal pattern

(U, S) such that U 1 ⊂ K ⊂ U 2 (strict inclusion).
To define how is constructed the graph on which the random walk is performed, we need to introduce

a new closure function clo : 2 V → 2 V : Given a connected subgraph induced by U , clo(U ) returns the part of max V (max S (U ))
that is connected and contains U :

clo(U ) = {v ∈ max V (max S (U )) | ∃U ⊆ max V (max S (U )) : U ∪ {v} ⊆ U ∧ G[U ] is connected} clo(U )
can be computed by extending U recursively with all neighbors v that maintain max S (U ∪{v}) = max S (U ). During the random walk, edges (transitions) are chosen following a probability measure that favors high-quality patterns:

1. The random walk starts by drawing a first vertex using the probability distribution defined as

P({v}) = W RAcc(clo({v}),max S ({v}))
u∈V W RAcc(clo({u}),max S ({u})) in order to form the first explored maximal pattern (clo({v}), max S ({v})).

A new maximal pattern is generated from the pattern (U, S) by considering all maximal patterns

that are direct super-sets of U . Such patterns are generated by alternatively adding a neighbor

element v ∈ N (U ) \ U to U and considering the closure clo(K ∪ {v}). N (U ) is the set of neighbors of U : N (U ) = {v ∈ V | ∃u ∈ U : (u, v) ∈ E}. (U, S)
is also considered among the patterns that can be generated in the next step. The set N ext(U ) of all possible next subgraphs is then:

N ext(U ) = {U } ∪ {clo(U ∪ {v}) | v ∈ N (U ) \ U }.
Thus, from N ext(U ), all the direct successors to (U, S) can be enumerated by:

{(U , S ) | U ∈ N ext(U ) and S = max S (U )}.
The next random step is drawn based on the probability P(U | U ), that is the probability to reach U ∈ N ext(U ) from U :

P(U | U ) = W RAcc(U , max S (U )) U 2 ∈Next(U ) W RAcc(U 2 , max S (U 2 ))
.

This distribution of probabilities rewards transitions toward maximal patterns with large values of W RAcc(U , max S (U )). The algorithm EXCESS 1 (see Algorithm 2) samples patterns until the specified execution time is consumed. Since U is extended at each iteration by at least one vertex v, and U is bounded by V , the extension loop (Line 8) stops after at most |V | iterations.

In the following, we prove that all maximal patterns with nonzero W RAcc value have a non zero probability to be generated. To this end, we first prove the following necessary property. 

• If n = 1: U \ U = {v}, then clo(U ∪ {v}) = clo(U ) = U . Thus P = P ,
U ← U 11 // Compute the set N ext(U ) 12 N ext(U ) ← {U } 13 for v ∈ N (U ) \ U do 14 N ext(U ) ← N ext(U ) ∪ {clo(U ∪ {v})} 15 for U ∈ N ext(U ) do 16 if W RAcc(U , max S (U )) ≥ δ and |U | ≥ σ then 17 R ← R ∪ (U , max S (U )) 18 draw U ∼ W RAcc(U ,max S (U )) U 2 ∈Next(U ) W RAcc(U2,max S (U2)) 19 until U = U ;
• Let us suppose that the proposition is true for n. Let P = (U, S) be a maximal pattern for which there exists a maximal pattern

P = (U , S ) s.t U ⊂ U and |U | -|U | ≤ n + 1. If |U | -|U | ≤ n,
then the proposition is verified according the the induction hypothesis. Otherwise

|U | -|U | = n + 1, let v ∈ U ∩ N (U ) \ U , since U ∪ {v} ⊂ U then clo(U ∪ {v}) ⊆ U : -If clo(U ∪ {v}) = U , then P = P , -If clo(U ∪ {v}) = U . We have clo(U ∪ {v}) ⊂ U , and (max S (U ∪ {v}), clo(U ∪ {v}))
is a maximal pattern, and |U | -|clo(U ∪ {v})| ≤ n. Then, according to the induction hypothesis, the proposition is verified. Property 3.4. For each maximal pattern P = (U, S) with W RAcc(U, S) > 0, the probability P(P ) that the random walk reaches the pattern P is not null: P(P ) > 0.

Proof. Let us prove by induction on n ∈ N , that for all maximal pattern P = (U, S) s.t W RAcc(U, S) > 0 with |U | ≤ n: P(P ) > 0.

• For n = 1: U = {v}, and U = clo({v}), P can be sampled directly in Step 1:

P(P ) ≥ W RAcc(U, S) u∈V W RAcc(clo({u}), max S ({u})) > 0,
• Let us suppose that the proposition is true for n. Let P = (U, S) be a maximal pattern s.t W RAcc(U, S) > 0 and |U | = n + 1. According to Property 3.3, there exists a maximal pattern

P = (U , S ) s.t: U ⊂ U and ∃v ∈ N (U ) \ U with U = clo(U ∪ {v }). If U = ∅, then U = clo({v })
, this means that P can be sampled on Step 1:

P(P ) ≥ W RAcc(U, S) u∈V W RAcc(clo({u}), max S ({u})) > 0, If U = ∅, since W RAcc(U, S) > 0, then S = (∅, ∅
), and we know that S ⊆ S , thus S = (∅, ∅).

This means that W RAcc(U , S ) > 0. In the other hand, U ≤ n, then P(P ) > 0. Also, U ∈ N ext(U ). So, P can be reached after sampling P :

P(P ) ≥ P(P ) × W RAcc(U, max S (U )) U 2 ∈N ext(U ) W RAcc(U 2 , max S (U 2 )) > 0.
Since each maximal pattern P = (U, S) with W RAcc(U, S) > 0 can be reached by the random walk, we can conclude that if W RAcc(U, S) ≥ δ and |U | ≥ σ, then the pattern P has a non zero probability to be returned by EXCESS. Furthermore, the used probability distribution rewards high-quality patterns by giving them more chance to be sampled.

Experiments

In this section, we report on experimental results to illustrate the interest of the proposed approach. We start by describing the different real-world datasets we use, as well as the questions we aim to answer.

Then, we provide a performance study and give some qualitative results. The implementation of the method is in Java and the experiments run on machines equipped with i7-2600 CPUs @ 3.40GHz, and 16GB main memory, running Ubuntu 12.04, and Java Version 1.6. The code and the data are available2 .

Datasets and aims

We considered 10 real-world datasets whose characteristics are given in • What is the efficiency of CEnergetics with regard to the graph characteristics that may affect its execution time?

• How effective are CEnergetics' pruning properties?

• Does CEnergetics scale?

• Does EXCESS provide a good sample of Exceptional subgraphs?

• What about the relevancy of Exceptional subgraphs?

No related work, among those presented in Chapter 2, can be used as a competitor of CEnergetics.

Indeed, algorithms of pattern extraction in vertex attributed graphs [START_REF] Boulicaut | Local pattern detection in attributed graphs[END_REF][START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF][START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF][START_REF] Mougel | Finding maximal homogeneous clique sets[END_REF][START_REF] Prado | Mining graph topological patterns: Finding covariations among vertex descriptors[END_REF][START_REF] Silva | Mining attribute-structure correlated patterns in large attributed graphs[END_REF] compute dense subgraphs whose vertices have homogeneous attribute values, while CEnergetics focuses on subgraphs whose vertex attributes are different from those of the rest of the graph. Other related works, that look for exceptional subgraphs [START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF][START_REF] Lemmerich | Mining subgroups with exceptional transition behavior[END_REF], are designed for graphs with attributes on the edges.

Thus, in this section, we compare our two novel algorithms only to the ones of our first attempt [START_REF] Anes | Unsupervised exceptional attributed sub-graph mining in urban data[END_REF]: We demonstrate that CEnergetics is more efficient than Energetics (a complete algorithm that extracts non closed exceptional subgraphs) and is able to tackle graphs with more than 150 attributes while Energetics fails with 50 attributes. Furthermore, our new pattern sampler algorithm EXCESS provides better results than EXPreSS. Finally, we report some examples of exceptional subgraphs on real-world data and discuss the insights they convey.

Quantitative study

We compare the efficiency and the effectiveness CEnergetics and Energetics according to the number of attributes and the number of vertices. To this end, we consider the New York graph described in Table 6.1. We vary the number of vertices and attributes by removing or duplicating vertices and attributes. We now focus on the study of CEnergetics with respect to the parameters of the algorithm (i.e., σ, the minimum number of vertices involved in a pattern, and δ the minimum WRAcc threshold). By default, these values are set to δ = 0.01 and σ = 1 in order to not being stringent. We also study the behaviour of our algorithm with regard to the replication factor. For a replication factor equal to n, the attributed graphs are duplicated n times such that the initial vertices are repeated n times with the same attributes values and the same connections with the corresponding duplicated vertices. Therefore, a n-duplicated attributed graphs correspond to n identical attributed graphs that are not connected together and thus contains n times the number of exceptional subgraphs of the original graph. For each replicate attributed graph, we compute the ratio of the execution time of CEnergetics on the duplicated graph to the execution time of CEnergetics on the original graph. Figure 3.6 reports this ratio for the 10 replicated graphs. For most of the datasets, the algorithm behaves almost linearly with respect to the replication factor. However, this is not the case for S.F. C&V and S.F. Crimes that are the datasets with the highest number of attributes. For these two datasets, the performance degrades when the replication factor increases. The runtime ratio increases superlinearly with the replication factor. In order to demonstrate the effectiveness of the pruning techniques used (the upper bound UB, and the Fail First Principle FFP), we compare the performance of CEnergetics in four different configurations:

1. no opt: in this configuration, none of the pruning techniques is used.

FFP: we only use the Fail First Principle (FFP).

3. UB: we only use the upper bound UB.

UB+FFP: we use both UB and FFP.

We performed these four configurations on an attributed graph involving 10000 vertices and 30 attributes built by duplicating the NYC Foursquare graph. It is important to note that no opt configuration considers closed exceptional subgraphs which makes the extraction feasible. We study the runtime and the number of explored sub-graphs when varying the value of δ. Results are given in Fig. 3.7. UB+FFP outperforms all the other configurations with at least one order of magnitude, especially when the value of δ is increased. Indeed, the use of UB takes benefit from the minimum threshold δ in order to reduce the runtime and the number of explored patterns. These results confirm that even if UB is the most effective technique, the simultaneous consideration of UB and F F P makes the algorithm much more efficient.

These first experiments demonstrate that CEnergetics is only efficient for graphs whose number of attributes is rather small (at most 150). Indeed, CEnergetics is not able to manage attributed graphs with large number of attributes (e.g., hundreds). EXCESS has been designed especially to perform on graphs with hundreds of attributes, using a time budget to control the execution time and the number of computed patterns.

To evaluate the ability of EXCESS to compute exceptional subgraphs of high W RAcc values, we report in Fig. 3.8 the distributions of the WRAcc measure of both the complete set of exceptional subgraphs returned by CEnergetics and the sample provided by EXCESS. Several time budgets are used and they are all lower than the execution time required by CEnergetics. We can observe that the two distributions are similar and the sampling approach succeeds in fostering patterns with high WRAcc measure. Also, the higher the time budget, the better the distribution. Fig. 3.9 reports similar distributions for the real-world datasets with hundreds of attributes for which an exhaustive search is not possible. The distributions are similar. Thus, EXCESS makes it possible to discover high quality patterns within a time-budget.

We also compare EXCESS with EXPreSS [START_REF] Anes | Unsupervised exceptional attributed sub-graph mining in urban data[END_REF] which does not take into account closed patterns.

Distributions of patterns sampled by each of these approaches are reported in Figure 3.10 using a logarithmic scale. These results reveal that EXCESS returns a larger sampling than EXPreSS for the same time budget. Interestingly, EXCESS provides much more patterns with higher W RAcc values than patterns sampled by EXPreSS. This confirms that EXCESS is able to extract more patterns of better quality (i.e., with high W RAcc values) than EXPreSS. We also report 9 discovered patterns on New York venues dataset. They are presented in Fig. 3.12.

Four of them (on the left-hand side map) are discovered on the dataset with 10 attributes, whereas the 

Conclusion

In this chapter, we introduced the exceptional subgraph mining problem in vertex-attributed graph, to discover homogeneous subgraphs that differ from the rest of the graph. While most of local pattern mining methods on vertex-attributed graphs focus their attention on the similarity inside subgraph patterns, the problem defined in this chapter aims to also explicitly consider the exceptionality of the pattern.

We defined an efficient algorithm that computes the complete set of exceptional subgraphs by taking advantage of a closure operator, a tight upper bound and other pruning properties. Focusing on closed patterns reduces redundancy among exceptional subgraphs. We also designed an algorithm to sample the output space of closed patterns to enable time-budget analysis. We reported an extensive empirical study over 10 real-world datasets that demonstrates the relevancy of our proposal.

Yet, the proposed approach has several limitations that can be illustrated using patterns shown in qualitative experiments. First, the model used to assess the relevance of patterns does not take into account the user. Even if a pattern depicts some discriminative features, it may be deemed uninteresting if it is expected by her. In Fig. 3.12, a New Yorker may already expect that around Central Parc there is a lot of professional venues, which makes P 1 uninformative in this case. Second, some patterns may be more difficult to assimilate than other ones. One would prefer patterns that don't require a huge effort to be interpreted. In Fig. 3.12, P 1 may be much simpler to grasp than P 4 . In fact, P 1 can be simply described as"around Central Parc", as P 1 corresponds to a cohesive set of vertices around this location. However, P 4 is geographically scaterred. The proposed approach ignores the assimilation cost of exceptional patterns.

Third, when ranking the results, the approach presented in this chapter does not consider the exceptional subgraphs already communicated to the user. Thus, the top patterns returned may be highly overlapping and give redundant information. In order to fix these issues, the problem of mining exceptional attributed subgraphs is reconsidered in Chapter 4 using the subjective interestingness framework defined by De Bie [START_REF] De | An information theoretic framework for data mining[END_REF]. As we will see, this framework proposes principled strategies to address the limitations that we have pointed out for the approach designed in this chapter.

Characteristics ID Exceptionally prevalent

Exceptionally non-prevalent P 1 nightlife, professional P 2 nightlife, food college P 3 food P 4 food college P 14 professional college, event Green blocks are vertices in the cover, blue blocks are core vertices that are in the cover, red blocks are exceptions (in the neighborhoods but not in the cover). The covers of the top 4 patterns are defined in terms of a single neighborhood with a maximal geodesic radius between two and three, while the cover of the pattern P 14 is defined as the intersection of two such neighborhoods.

Introduction

In this chapter, we consider again the problem of mining exceptional attributed subgraphs with, as objective, to address the limitations of the previously proposed solutions. To this end, we introduce a new method, called SIAS-Miner, which exploits an improved pattern syntax and a new interestingness model to measure the quality of patterns. This model is rooted on the subjective interestingness framework proposed in [START_REF] De | An information theoretic framework for data mining[END_REF] and built upon concepts from Information Theory [START_REF] Thomas | Entropy, relative entropy and mutual information[END_REF]. SIAS-Miner overcomes the limitations of CEnergetics by: (1) taking into account the background knowledge of the user to provide patterns that are surprising to her (informative), (2) integrating the complexity of patterns to foster the ones that are easy to assimilate (cohesive), (3) updating the interestingness model each time a pattern is displayed in order to continuously return patterns that provide new information. SIAS-Miner allows one to find so-called Cohesive Subgraphs with Exceptional Attributes (CSEA patterns), which are easy-tounderstand subgraphs across which a specified subset of the attributes consistently have exceptionally CSEA patterns in this London dataset specify some types of venues as particularly prevalent or nonprevalent within all districts in an area. We refer to the subgraph of a CSEA pattern as its cover. In a CSEA pattern, the cover is described as the intersection of a set of neighborhoods of one or more core vertices (shown in blue in Fig. 4.1), with potentially some exceptions (vertices within that intersection that are not part of the cover, shown in red in Fig. 4.1). The sizes (geodesic radii) of these neighborhoods can vary and are part of the pattern specification. We refer to the set of exceptional attributes in a CSEA pattern, and their ranges within the cover, as the characteristic of the CSEA pattern.

SIAS-Miner is innovative in using a new flexible interestingness measure for exceptional subgraph patterns based on information theory, using a quantification of informativeness and interpretability.

The informativeness of a pattern is a function of the number of vertices in the cover (the more the better), the number of attributes in the characteristic (more is better) and the exceptionality of the values for those attributes (also more is better). The exceptionality is quantified with respect to specified background knowledge available about the graph, making the informativeness a subjective measure. The interpretability is quantified in terms of the complexity of communicating a pattern, more specifically its description length. The proposed interestingness measure is the ratio of the informativeness and description length, thus representing the information density within the pattern. and ranks the patterns based on their interestingness SI which is the ratio between the information content IC and the assimilation cost DL (description length). The information content of a pattern is evaluated thanks to the background model. A pattern with a high information gain may involve many vertices. Providing the complete cover to the user would lead to a high assimilation cost and thus a high description length. This is why we aim to provide alternative description of a set of vertices which is easier to assimilate -in the sense that it involves less vertices. This alternative description uses core vertices and radius to depict a set of vertices as those that are at the intersection of the neighborhoodaccording to the radius -of the core vertices.

(3) The best pattern P is displayed to the user and (4) the background model is updated in order to consider P as known by the user. Then, these four steps can be repeated as many times as wanted to get in each iteration the best pattern considering the updated background model.

This chapter is organized as follows. We present the CSEA pattern syntax in Section 4.2. We formalize their subjective interestingness in Section 4.3. We explain how to iteratively update the background knowledge during the extraction process in Section 4.4. We study how to mine such subgraphs efficiently in Section 4.5. In Section 4.6, we provide a thorough empirical study on four types of data to evaluate [START_REF] Abdelhaq | Eventweet: Online localized event detection from twitter[END_REF] the relevance of the subjective interestingness measure compared to state-of-the-art methods, and (2) the efficiency of the algorithms. We present our conclusions in Section 4.7.

Cohesive subgraphs with exceptional attributes

In this section we introduce the pattern syntax (the abstract form of the patterns) and argue why patterns of this form are both informative and easy to understand. First, we establish the required notation.

Notation. We assume given a set of vertices V , a set of edges E ⊆ V × V , and a set of numerical attributes on vertices  (formally, functions mapping a vertex onto an attribute value), with â(v) ∈ Dom a denoting the value of attribute â ∈  on v ∈ V . We denote an attributed graph as G = (V, E, Â).

We use hats in â and  to signify the empirical values of the attributes, whereas a and A denote (possibly random) variables over the same domains. In other terms, for a ∈ A and v ∈ V , a(v) is a random variable having the empirical value â(v) that effectively happens in G. The user is assumed to know the set of vertices and the connection structure, so V and E always correspond to the actual graph structure.

With N d (v) we denote the neighborhood of range d of a vertex v, i.e., the set of vertices whose graph geodesic distance (the number of edges in a shortest path connecting them) to v is at most d:

N d (v) = {u ∈ V | dist(v, u) ≤ d}.
Pattern definition. As described in the introduction, we are interested in patterns that inform the user that a set of attributes has exceptional values within a cohesive set of vertices in the graph. To this end, we propose the following syntax.

Definition 4.1.

A cohesive subgraph with exceptional attributes (CSEA) pattern consists of a tuple (U, S), where U ⊆ V is a set of vertices in the graph that we refer to as the cover, and S is a characteristic of these vertices, that is to say S is made of restrictions on the value domains of some attributes of A.

More specifically, S ⊆ {(a, [k a , a ]) | a ∈ A}. Furthermore, to be a CSEA pattern, (U, S) has to be contained in G, i.e.

∀(a, [k a , a ]) ∈ S and ∀u ∈ U, k a ≤ â(u) ≤ a .
Putting this in words, for every vertex in the cover u ∈ U , the empirical value â(u) for attribute a falls within the interval [k a , a ] specified as a part of the characteristic for the CSEA pattern (U, S).

Notice that U is not restricted to have any particular structure. Rather, cohesiveness will be promoted through the definition of a description length quantifying the complexity to communicate a particular set of vertices to the user. This is explained below in Section 4.3.3.

Intuition behind quantifying the interestingness of CSEA patterns. Informally speaking, a CSEA pattern is more informative if the ranges in S are smaller, as then it conveys more information to the data analyst. This can be formalized as a partial order relation over the characteristics.

Definition 4.2. The partial order relation between two characteristics S and S is:

S S ⇔ ∀(a, [k a , l a ]) ∈ S : ∃(a, [k a , l a ]) ∈ S with [k a , l a ] ⊆ [k a , l a ].
A 'smaller' characteristic in this partial order is more specific and thus more informative. We will make this more formal in Section 4.3.1, and later use this to efficiently mine informative patterns. A pattern (U, S) that can be interesting is: (U = {v 3 , v 7 }, S = {(f ood, [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF][START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF]), (college, [0, 1])}).

Indeed, vertices in U contain a higher (resp. lower) number of food (resp. college) venues comparing with the rest of the graph, and their numbers fall within the intervals specified in S.

At the same time, a CSEA pattern (U, S) is more interesting if we can describe the cover U more concisely in some intuitive description. Thus, along with the pattern syntax, we must also specify how a pattern from this language will be described. To this end, we propose to describe the cover U as a neighborhood of a specified range from a given specified vertex, or more generally as the intersection of a set of such neighborhoods. For enhanced expressive power, we additionally allow for the description to specify exceptions on the above: vertices that do fall within this (intersection of) neighborhood(s), but which are to be excluded from the cover U , because they do not exhibit the same characteristic.

Exceptions increase the complexity to interpret such patterns (as will be quantified in the description length), but greatly increase the expressive power of the CSEA pattern syntax.

A premise of this work is that this way of describing the set U is intuitive for human analysts, such that the length of the description of a pattern, as discussed in detail in Section 4.3.3, is a good measure of the complexity to assimilate or understand it. The qualitative experiments reported in Section 4.6 appear to confirm that this is the case. 

Subjective interestingness of CSEA patterns

The previous sections already hinted at the fact that we will formalize the interestingness of a CSEA pattern (U, S) by trading off the amount of information contained in the pattern against the complexity of interpreting the pattern. We will use information theory to quantify both the informativeness and the complexity using the strategy outlined in [START_REF] De | An information theoretic framework for data mining[END_REF] 1 .

Precise definitions will be given below, but first we introduce the statistic ultimately used to rank patterns. The Information Content (IC) of a CSEA pattern, which quantifies the amount of information contained in a pattern, depends on both the cover U and the characteristic S. Intuitively, it should be larger when more vertices are involved, when the intervals are narrower, and when they are more extreme.

We denote the information content as IC(U, S).

The Description Length (DL), which quantifies the interpretation complexity, also depends on U and S and will be denoted as DL(U, S). Likewise, communicating larger characteristics is strictly more time consuming, but we will not describe U directly, so the DL for a set U is more intricate as discussed in Section 4.3.3. We will rank patterns by the quantity that we call the Subjective Interestingness (SI) of a CSEA pattern (U, S) defined as follows. 

The information content of a CSEA pattern

The information carried by a pattern is quantified by the information content [START_REF] De | An information theoretic framework for data mining[END_REF], a quantity also known as the self-information or surprisal [START_REF] Thomas | Entropy, relative entropy and mutual information[END_REF].

Definition 4.4. The information content of a pattern (U, S) equals the reduction in uncertainty about the data when we learn about the pattern, and is defined as

IC(U, S) = -log(Pr(U, S)).
Here Pr(U, S) is the probability that the CSEA (U, S) is present in the data. This explicates that we have to define such a distribution over the space of all patterns. We can achieve this as follows.

The data ω can be seen as a sample from the space of all possible vertex-attributed graphs Ω, where G = (V, E, Â) = ω ∈ Ω and all elements in Ω have the same set of vertices and edges, since we assume these are known, while the attribute values are unknown to the user. Then let Pr denote a probability distribution over the set Ω of possible vertex-attributed graphs with vertices V and edges E (i.e., the possible value combinations of A). We refer to Pr as the background distribution and will introduce a convenient and tractable choice in the following section.

Generically, given a distribution over all possible datasets, we can obtain a distribution over patterns, by observing that a pattern is a set Ω ⊆ Ω that specifies ω falls within Ω and not outside of Ω [START_REF] De | An information theoretic framework for data mining[END_REF][START_REF] Lijffijt | A statistical significance testing approach to mining the most informative set of patterns[END_REF]. I.e., it may reduce the value combinations deemed possible and hence provide information.

The probability of a pattern Ω can then be computed through integration, i.e., Pr(Ω ) = ω∈Ω Pr(ω)dω.

In this context, Ω = (U, S), which limits the possible attribute values of the vertices in the cover U .

How to compute the probability of a CSEA pattern (U, S) is considered in more detail in the following sections.

The power of this approach is that we quantify the IC of a pattern against a prior belief state about the data. It rigorously models the fact that the more plausible the pattern is according to a model, the less information a pattern provides, and thus the smaller the information content ought to be. It is possible to specify the model accounting for (user specific) background knowledge and hence affect the ranking of patterns in a subjective manner.

In Section 4.3.2, we first discuss which prior beliefs could be appropriate for CSEA patterns, and how to infer the corresponding background distribution. Then, in Section 4.3.3, we discuss how the description length DL(U, S) can be defined appropriately.

Information content and prior beliefs for count attributes

Positive integers as attributes. For concreteness, let us consider the situation where the attributes are positive integers (a : V → N, ∀a ∈ A), as will be our main focus throughout this work 2 . For example, if the vertices are geographical regions (with edges connecting vertices of neighboring regions), then the attributes could be counts of particular types of places in the region (e.g. one attribute could be the number of shops). It is clear that it is less informative to know that an attribute value is large in a large region than it would be in a small region. Similarly, a large value for an attribute that is generally large is less informative than if it were generally small. The above is only true, however, if the user knows (or believes) a priori at least approximately what these averages are for each attribute, and what the 'size' is of each region. Such prior beliefs can be formalized as equality constraints on the values of the attributes A on all vertices, or mathematically:

A Pr(A) a∈A a(v) = â∈ Â â(v), ∀v ∈ V, (4.1) A Pr(A) v∈V a(v) = v∈V â(v), ∀a ∈ A. (4.2)
The first constraint means that the user already knows the size (the total count) of each vertex, while the second constraint means that the user knows the total count of each attribute in the overal graph. Even if the user does not have these priors, they also can be easily communicated to her before the mining process through simple statistical tools as shown in Fig. 4.4 for the toy graph. These constraints will not be sufficient to uniquely determine the distribution Pr(A). A common strategy to overcome this problem is to search for the distribution that has the largest entropy subject to these constraints, to which we will refer as the MaxEnt distribution. The argument of this choice is that any distribution other than the MaxEnt distribution effectively makes additional assumptions about the data that reduce the entropy. As making additional assumptions biases the distribution, the MaxEnt distribution is the most rigorous choice.

The MaxEnt background distribution can then be found as the probability distribution Pr maximizing the entropy -A Pr(A) log Pr(A), subject to these constraints (in Equations 4.1 and 4.2) and the normalization A Pr(A) = 1. As shown in [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF], the optimal solution of this optimization problem is a product of independent Geometric distributions, one for each vertex attribute-value a(v). Each of these Geometric distributions is of the form Pr(a(v) = z) = p av • (1p av ) z , z ∈ N, where p av is the success probability and it is given by: p av = 1exp(λ r a + λ c v ), with λ r a and λ c v the Lagrange multipliers corresponding to the two constraint types. The optimal values of these multipliers can be found by solving the convex Lagrange dual optimization problem.

Given these Geometric distributions for the attribute values under the background distribution, we can now compute the probability of a pattern (U, S) as follows:

Pr(U, S) = v∈U (a,[ka, a])∈S Pr(a(v) ∈ [k a , a ]), = v∈U (a,[ka, a])∈S (1 -p av ) ka -(1 -p av ) a +1 .
This can be used directly to compute the information content of a pattern on given data, as the negative log of this probability. However, the pattern syntax is not directly suited to be applied to count data, when different vertices have strongly differing total counts. The reason is that the interval of each attribute is the same across vertices, which is desirable to keep the syntax understandable. Yet, if neighboring regions have very different total counts, the same interval could be very informative to some vertices while being uninformative to others, which makes it hard to find CSEA patterns with a characteristic that is informative for all vertices in its cover.

Let us illustrate this issue with an example from Fig. 4.3. The graph contains the pattern (U = {v 3 , v 7 }, S = {(f ood, [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF][START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF]), (college, [0, 1])}). This can be interpreted as a relatively high presence of food venues and low presence of college. Likewise in v 11 , there is no college and the number of food venues is significantly high. Even if f ood(v 11 ) is only 22, this still makes sens because the size of v 11 is only 24, while the size of v 3 and v 7 is more than 40. We would like to inform the user that these same prevalences about food and college are present in all of {v 3 , v 7 , v 11 }. However, v 11 does not contain S = {(f ood, [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF][START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF]), (college, [0, 1])}. In order to contain all {v 3 , v 7 , v 11 }, we need to use the restriction (f ood, [START_REF] Belfodil | Anytime subgroup discovery in numerical domains with guarantees[END_REF][START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF]) instead. This restriction is larger and much less informative than (f ood, [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF][START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF]), especially for v 3 and v 7 which are vertices with great sizes. We need a different way that allows to take into account the size of each vertex when establishing the characteristic.

p-values as attributes.

To address this problem, we propose to search for the patterns not on the counts themselves, but rather on their significance (i.e., p-value or tail probability), computed with the background distribution as null hypothesis in a one-sided test. More specifically, we define the quantities ĉa (v) as and use this instead of the original attributes â(v). This transformation of â(v) to ĉa (v) can be regarded as a principled normalization of the attribute values to make them comparable across vertices.

ĉa (v) Pr(a(v) ≥ â(v)), = (1 -p av ) â(v) ,
In other words, ĉa (v) is the probability that the expected value of a(v) by the user is higher than the observed value â(v). Low values of ĉa (v) correspond to over-expressed attributes, because it means that the user does not expect a value of a(v) as large as the observed one â(v), while high values of ĉa (v) correspond to under-expressed attributes.

For example, after applying this transformation to the toy graph of Fig. 4.3, this gives the p-values presented in Fig. 4.5. Let us take the vertex v 3 and the attribute f ood, the transformation gives ĉfood (v 3 )

Pr(f ood(v 3 ) ≥ 30) = 0.2. An example of pattern (U, S) is such that U = {v 3 , v 7 , v 11 } and S = {(f ood, [0, 0.2]
), (college, [0.9, 1])} (an over-expression of food and an under expression of college).

Notice that even if the size of v 11 (and consequently the number of its food venues) is lower than the sizes of v 3 and v 7 , the p-value normalization made it possible to capture the common characteristic S that covers all the set U = {v 3 , v 7 , v 11 }.

To compute the IC of a pattern with the transformed attributes ĉa , we must be able to evaluate the probability that c a (v) falls within a specified interval [k ca , ca ] under the background distribution for a(v). In other terms, what is the probability that the significance of â(v) falls within [k ca , ca ]? How much surprising is it? This is given by:

Pr(c a (v) ∈ [k ca , ca ]) = Pr Pr(a(v) ≥ â(v)) ∈ [k ca , ca ] , = Pr (1 -p av ) a(v) ∈ [k ca , ca ] , = Pr a(v) ≤ log(k ca ) log(1 -p av ) ∧ a(v) ≥ log( ca ) log(1 -p av ) , = Pr a(v) ≤ log 1-pav (k ca ) ∧ a(v) ≥ log 1-pav ( ca ) , = Pr a(v) ≥ log 1-pav ( ca ) -Pr a(v) ≥ log 1-pav (k ca ) + 1 , = (1 -p av ) log 1-pav ( ca ) -(1 -p av ) log 1-pav (kc a ) +1 .
The last line of the equation only depends on three given values: p av , k ca , ca . In order to simplify the notations, let us define a function ρ

: (0, 1] 3 -→ (0, 1], ρ(x, y, z) = (1 -x) log 1-x (z) -(1 - x) log 1-x (y) +1
. In what follows, we will use ρ to express the latter probability as:

Pr(c a (v) ∈ [k ca , ca ]) = ρ(p av , k ca , ca ).
Thus, the IC of a pattern on the transformed attributes ĉ can be calculated as:

IC(U, S) = -log(Pr(U, S)), = - (a,[kc a , ca ])∈S v∈U log(ρ(p av , k ca , ca )). (4.3)
In this work, we focus on intervals [k ca , ca ] where either k ca = 0 (the minimal value) and ca < 0.5, or ca = 1 (the maximal value) and k ca > 0.5. Such intervals state that the values of an attribute are all significantly large3 or significantly small respectively, for all vertices in U . We argue such intervals are easiest to interpret.

Description length

Definition 4.5. The description length measures the complexity of communicating a pattern (U, S) to the user. It can be defined as the complexity of communicating U and S:

DL(U, S) = DL A (S) + DL V (U ),
where DL A (S) (resp. DL V (U )) is the description length of S (resp. U ).

Description length of attributes DL A (S):

The higher the number of attributes in S, the harder its communication to the user could be. This can be suitably represented by: Clearly, there is generally no unique way to describe the set U . The best one is thus the one that minimizes desc. But also, in several applications, we need to limit the number of core vertices used to describe U . This means limiting |X| to some parameter α whose default value is α = |V |. This finally leads us to the definition of the description length of U as:

DL A (S) = (|S| + 1) • log(|A|) + (a,[kc a , ca ])∈S (1 + log(M a )), with M a = |{â(v) | v ∈ V }|,
N = {N d (v) | v ∈ V ∧ d ∈ N ∧ d ≤ D N } (with D N the maximum range d considered), and let N (U ) = {N d (v) ∈ N | U ⊆ N d (v)}
DL V (U ) = min X⊆N (U ) |X|≤α desc(X, U ).
In Fig. 4.5, the set of vertices U = {v 3 , v 7 , v 11 } can be described by X 1 = {N 1 (v 8 )} with three exceptions exc(X 1 , U) = {v 8 , v 4 , v 12 }, and with a length desc(X 1 , U) = 21.5. Another possible

description of U is X 2 = {N 1 (v 6 ), N 1 (v 8 )} with no exception (since N 1 (v 6 ) ∩ N 1 (v 8 ) = U
) and with a length desc(X 2 , U) = 18.3. Based on the values of the function desc, the description X 2 is better than X 1 . Among all the possible descriptions of U , it turns out that X 2 is the one that minimizes desc(X, U ), consequently, DL V (U ) = desc(X 2 , U).

Iterative mining of CSEA patterns

When a pattern P 0 = (U 0 , S 0 ) is observed by a rational user, her background knowledge will change to take into account this newly learned piece of information. It results that the pattern P 0 becomes expected by her. We need as well to update our interestingness model such that the probability that the data contains the pattern P 0 becomes equal to 1. Also, this model updating will decrease the IC of other patterns if a part of their information overlaps with the one of P 0 . Patterns that have a large overlap with P 0 will then no longer be deemed interesting since their information content will substantially decrease. This approach of modifying the interestingness model to account for previously seen patterns is a natural way to avoid presenting multiple redundant patterns to the user. Pr(P | P 0 ) is the probability that P = (S, U ) is present in the data given that P 0 = (U 0 , S 0 ) is present:

Pr(P | P 0 ) = v∈U (a,[kc a , ca ])∈S Pr(c a (v) ∈ [k a , a ] | P 0 ).
The value of Pr(c a (v) ∈ [k a , a ] | P 0 ) for each pair of attribute a ∈ A and vertex v ∈ V can be computed using the law of conditional probability:

Pr(c a (v) ∈ [k a , a ] | P 0 ) = Pr(c a (v) ∈ [k a , a ] ∧ P 0 )
Pr(P 0 ) .

We consider two cases:

1. If P 0 does not give any information about c a (v) (the vertex v is not in U 0 , or there is no restriction of a in S 0 ), then the observation of P 0 has no impact on the probability Pr(c

a (v) ∈ [k ca , ca ] | P 0 ): Pr(c a (v) ∈ [k ca , ca ] | P 0 ) = Pr(c a (v) ∈ [k ca , ca ]), = ρ(p av , k ca , ca ).
2. Otherwise, v ∈ U 0 and S 0 contains a restriction of a, let it be (a, [k 0 , 0 ]), then:

Pr(c a (v) ∈ [k ca , ca ] | P 0 ) = Pr(c a (v) ∈ [k ca , ca ] | c a (v) ∈ [k 0 , 0 ]), = Pr(c a (v) ∈ [k ca , ca ] ∩ [k 0 , 0 ]) Pr(c a (v) ∈ [k 0 , 0 ]) , = Pr(c a (v) ∈ [max(k 0 , k ca ), min( 0 , ca )]) Pr(c a (v) ∈ [k 0 , 0 ]) , = ρ (p av , max(k 0 , k ca ), min( 0 , ca )) ρ(p av , k 0 , 0 ) .
Notice that in this second case, [k 0 , 0 ] and [k ca , ca ] necessarily overlap. Otherwise, the empirical value ĉa (v) needs to belong to two completely disjoint intervals to make P and P 0 hold in G, which is absurd.

As explained in Section 4.5.4, the set of CSEA patterns can be ordered using the IC measure evaluated conditional on the knowledge of the patterns ranked before.

SIAS-Miner algorithm

SIAS-Miner (Algorithm 3) mines interesting patterns using an enumerate-and-rank approach. First, it enumerates all CSEA patterns (U, S) that are closed simultaneously with respect to U , S, and the neighborhood description. Second, it ranks patterns according to their SI values. The calculation of IC(U, S) and DL A (S) is simple and direct. However, computing DL V (U ) is not trivial, since there are several ways to describe U and we are looking for the one minimizing desc(X, U ). To achieve this goal, we propose an efficient algorithm DL V -Optimise that calculates the minimal description of U and stores the result in the mapping structure minDesc. This algorithm is presented in Section 4.5.2.

Pattern enumeration

The exploration of the search space is based on subgraph enumeration. We only enumerate sets of vertices U ⊆ V that are covered by a non empty characteristic S = ∅ and that can be described with neighbors N (U ) = ∅. Yet, a subgraph G[U ] can be covered by a large number of characteristics S that leads to as many redundant patterns. This can be avoided by only considering the most specific characteristic that covers U , as the other patterns do not bring any additional information.

Definition 4.6. Given a set of vertices U ⊆ V , the function max S (U ) returns the most specific characteristic, also made of significant intervals, associated to U :

max S (U ) = {(a, [k ca , ca ]) | a ∈ A ∧ ((k ca = 0 ∧ ca = max v∈U ĉa (v) ∧ ca < 0.5) ∨ ( ca = 1 ∧ k ca = min v∈U ĉa (v) ∧ k ca > 0.5))}.
For example in Fig. 4.3, the set of vertices U = {v 3 , v 7 } is covered by a large number of characteristics, but there is only one characteristic that is the most specific: max S (U ) = {(f ood, [0, 0.2]), (college, [0.9, 1])}. We remind that in this Figure, the attributes are normalized counts (p-values of original counts).

Moreover, it may happen that two sets of vertices U and U , such that U ⊆ U , are covered by the same characteristic (max S (U ) = max S (U )) and are described by the same neighborhoods (N (U ) = N (U )). In that case, U brings more information than U and its vertex description length DL V (U ) is lower or equal than DL V (U ), as all the descriptions X ⊆ N (U ) also cover U with a lower or equal Algorithm 3: SIAS-Miner (U , C, Result, minDesc) Input: U : the current set of enumerated vertices, C: the set of candidates vertices. Output: Result: the set of CSEAs, minDesc: a mapping structure that stores the minimum description of U for each pattern (U, S).

1 if C = ∅ then 2
// choose a candidate vertex with the fail first principle

3 v ← argmin v∈C |max S (U ∪ {v})| 4 U ← clo(U ∪ {v}) 5 if U ⊆ U ∪ C then 6
// We prune candidates that cannot be used anymore

7 C ← {v ∈ C|max S (U ∪ {v}) = ∅ ∧ N (U ∪ {v}) = ∅} 8 SIAS-Miner(U , C \ U , Result, minDesc) 9 SIAS-Miner(U , C \ {v}, Result, minDesc) 10 else 11 Result ← Result ∪ {(U, max S (U ))} 12 bestDesc ← ∅ 13 DL V -Optimise(U , ∅, N (U ), bestDesc) 14 minDesc[(U, max S (U )] ← bestDesc
number of exceptions. Hence, the pattern (U , max S (U )) is not useful. This motivates the idea of only exploring patterns (U, S) that are closed with respect to both S and N (U ). Closing a set of vertices U w.r.t. S and N (U ) maximizes IC(U ), and minimizes DL V (U ). Although this could increase the value of DL A (S), we believe that this choice is very suitable as it allows to drastically improve the performance of the algorithm and reduce the size of the output, without altering the result quality. We define the closure function clo : 2 V -→ 2 V which is fundamental for our method. 

clo(U ) = {v ∈ V | max S (v) max S (U ) ∧ N (U ) ⊆ N ({v})}. clo(U ) is indeed a closure function since it is extensive (U ⊆ clo(U )), idempotent (clo(U ) = clo(clo(U ))
), and monotonic (if X ⊆ Y , then clo(X) ⊆ clo(Y )). In Fig. 4.3, let us consider U = {v 3 , v 7 } and U = {v 3 , v 7 , v 11 }, we can notice that max S (U ) = max S (U ) and N (U ) = N (U ). This means that all the descriptions X ⊆ N (U ) also cover U . In this example we have clo(U ) = U .

We aim to only enumerate closed patterns (clo(U ), max S (U )), to this end, SIAS-Miner uses the divide and conquer algorithm designed to efficiently compute closed structures described in [START_REF] Boley | Listing closed sets of strongly accessible set systems with applications to data mining[END_REF]. Initially, SIAS-Miner is called with U = ∅ and C = V . In each recursive call, SIAS-Miner chooses a candidate v ∈ C considering two optimizations to obtain a more balanced enumeration tree. If U = ∅, a vertex v is selected according to its degeneracy order [START_REF] Eppstein | Listing all maximal cliques in large sparse real-world graphs[END_REF] to prioritize first the vertices that should lead to small graphs. If U = ∅, a vertex v is selected following the fail first principle, i.e. the vertex that leads to the smallest characteristic so that to backtrack as soon as possible. Then, the closure of clo(U ∪ {v}) is computed and stored in U . If U is included in U ∪ C, we have the guarantee that U has not been enumerated yet and the enumeration process continues. The candidates that cannot be added anymore to U are pruned and SIAS-Miner is recursively called on U (Line 8). Another recursive call is also made to enumerate subgraphs that do not contain {v} (Line 9). When C is empty, the closed pattern (U, max S (U )) is stored in Result, and DL V -Optimise is called to compute DL V (U ) that is finally stored in minDesc.

In Fig. 4.6, we show the first enumeration steps of SIAS-Miner when applied to the toy graph of Step 3), the pattern (U, max S (U )) is added to the result set, and SIAS-Miner comebacks to the previous recursive call to continue the rest of the enumeration.

Computing DL V (U )

Computing DL V (U ) is NP-Hard. In fact, if we replace (log(| ∩ x∈X x|) in desc(X, U ) with a constant value, this problem becomes equivalent to the weighted set cover: it consists in finding the optimal cover of the set U based on unions of complements N i (v) and exceptions {v} such that v ∈ U . Nevertheless, we propose a branch-and-bound approach that takes benefit from several optimisation techniques to solve Algorithm 4: DL V -Optimise(U , X, Cand, bestDesc) Input: U the set to describe, X, Cand ⊆ N (U ) the current description and the candidates, bestDesc the current best description found. Output: bestDesc the best description of the current search sub-space.

1 if LB(X, U, Cand) < f(bestDesc, U) then 2 if |X| < α and Cand = ∅ then 3 pruneUseless(U , X, Cand) 4 e ← argmin e ∈Cand f (X ∪ {e }, U) 5 DL V -Optimise(U , X ∪ {e}, Cand \ {e}, bestDesc) 6 DL V -Optimise(U , X, Cand \ {e}, bestDesc) 7 else if f (X, U ) < f(bestDesc, U) then 8 bestDesc ← X Algorithm 5: pruneUseless(U , X, Cand) 1 Cand ← {e ∈ Cand | gain({e}, X, U) > 0}
this problem on instances of interest.

In order to find the optimal description of a set of vertices U , we explore the search space 2 N (U ) with a branch-and-bound approach described in Algorithm 4. Let X and Cand be subsets of N (U ) that are respectively the current enumerated description and the potential candidates that can be used to describe U . Initially, DL V -Optimise is called with X = ∅ and Cand = N (U ). In each call, a neighborhood e ∈ Cand is chosen and used to recursively explore two branches: one made of the descriptions that contain e (by adding e to X), and the other one made of descriptions that do not contain e (by removing e from Cand). Several pruning techniques are used in order to reduce the search space and are detailed below.

Function LB (line 1) lower bounds the lengths of the descriptions that can be generated in the subsequent recursive calls of DL V -Optimise. If LB is higher or equal than the length of the current best description of U desc(bestDesc, U), there is no need to carry on the exploration of the search subspace as no further description can improve DL V (U ). The principle of LB is to evaluate the maximum reduction in exceptions that can be obtained when description X is extended with neighborhoods of Y :

gain Y (X, U ) = |exc(X, U )| -|exc(X ∪ Y, U )|, with Y ⊆ Cand.
This function can be rewritten using

neighborhood complements as gain Y (X, U ) = | ∪ y∈Y (y ∩ exc(X, U )) | 4 .
We obtain then a simple upper bound of the gain function using the ordered set {g 1 , ..., 

g |Cand| } of {gain {e} (X, U ) | e ∈ Cand} such that g i ≥ g j if i ≤ j: Property 4.1. gain Y (X, U ) ≤ |Y | i=1 g i , for Y ⊆ Cand. 4 = |exc(X, U )| -|exc(X ∪ Y, U )| = |(∩x∈X x) \ U | -|(∩e∈X∪Y e) \ U |, = |(∩x∈X x) ∩ U | -|((∩x∈X x) ∩ U ) ∩ (∩y∈Y y)|, = |(∩x∈X x) ∩ U ) \ (∩y∈Y y)| = |(∩x∈X x) \ U ) ∩ (∩y∈Y y)|, = |exc(X, U ) ∩ (∪y∈Y y)| = | ∪y∈Y (y ∩ exc(X, U ))|.
U = {v 1 , v 3 , v 5 , v 7 } and N (U ) = {N 1 (v 2 ), N 1 (v 3 ), N 1 (v 7 )}, for D N = 1.
Proof. Since the size of the union of sets is lower than the sum of the set sizes, we have gain Y (X, U )

≤ y∈Y |y ∩ exc(X, U )| ≤ y∈Y gain {y} (X, U ) ≤ |Y | i=1 g i .
For instance, in Fig 4 .7, we need to describe U = {v 1 , v 3 , v 5 , v 7 } by an intersection of elements from

N (U ) = {N 1 (v 2 ), N 1 (v 3 ), N 1 (v 7 )}, given that the maximum range of distance for descriptors is D = 1.
Let us consider that at some moment of the exploration we have the description X = {N 1 (v 3 )}, and the remaining candidates Cand = {N 1 (v 2 ), N 1 (v 7 )}. At this moment, the exceptions are: exc(X, U ) {v 2 , v 4 , v 6 }. In order to compute the upper bound of gain Y (X, U ) for Y ⊆ Cand, we need to compute the ordered set of gain {e} (X, U ) for e ∈ Cand. We have gain {N 1 (v 2 )} (X, U ) = 2 because adding N 1 (v 2 ) allows to remove the exceptions {v 4 , v 6 }, and gain {N 1 (v 7 )} (X, U ) = 1 because adding N 1 (v 7 ) removes only one exception v 4 . Thus, the ordered list of gains is {2, 1}. This means that, for Y ⊆ Cand, 

if |Y | = 1 then gain Y (X, U ) ≤ 2,
{(|X| + i + 1) × log(|N |) + ⎛ ⎝ 1 + max ⎛ ⎝ |exc(N (U ), U)|, |exc(X, U )| - i j=1 g j ⎞ ⎠ ⎞ ⎠ × log ⎛ ⎝ |U | + max ⎛ ⎝ |exc(N (U ), U)|, |exc(X, U )| - i j=1 g j ⎞ ⎠ ⎞ ⎠ }. Property 4.2. desc(X ∪ Y, U ) ≥ LB(X, U, Cand), ∀Y ⊆ Cand. Proof. Considering that |exc(X ∪ Y, U )| = |exc(X, U )| -gain Y (X,
U ), and using Property 4.1:

we have |exc(X ∪ Y, U )| ≥ |exc(X, U )| - |Y |
j=1 g j . Also, since the number of exceptions is reduced when X is extended, the minimum number of exceptions that we can reach in all the search space is |exc(N (U ), U)|. Thus, we have the following lower bound for |exc(X ∪ Y, U )|: 

(4.4) |exc(X ∪ Y, U )| ≥ max(|exc(N (U ), U)|, |exc(X, U )| - |Y | j=1 g j ) desc(X ∪ Y,
desc(X ∪ Y, U ) ≥ (|X| + |Y | + 1) × log(|N |)+ ⎛ ⎝ 1 + max{|exc(N (U ), U)|, |exc(X, U )| - |Y | j=1 g j } ⎞ ⎠ • log(|U | + max{|exc(N (U ), U)|, |exc(X, U )| - |Y | j=1 g j }),
But also, by definition: LB(X, U, Cand)

≤ (|X| + |Y | + 1) × log(|N |) + (1 + max{0, |exc(X, U )| - |Y | j=1 g i })•log(|U |+max{|exc(N (U ), U)|, |exc(X, U )|- |Y | j=1 g i })
. So, by transitivity LB(X, U, Cand) ≤ f (X ∪ Y, U ), and this concludes the proof.

In other terms, in the recursive calls, a description length will never be lower than LB(X, U, Cand). Thus, if its value is higher than the current best description, it is certain that no better description can be found.

Function pruneUseless (line 3) removes candidate elements that can not improve the description length, that is candidates e ∈ Cand for which gain({e}, X, U) = 0. Such element does not have the ability to reduce the number of exceptions in X. This also implies that e will not reduce the number of exceptions for descriptions X ∪ Y , with Y ⊆ Cand. Thus, such elements will not decrease the description length of X ∪ Y .

In Fig. 4.7, for X = {N 1 (v 7 )} and Cand = {N 1 (v 2 ), N 1 (v 3 )}, the exceptions are: exc(X, U ) = {v 2 , v 6 }. All these exceptions also belong to N 1 (v 3 ) which is a candidate. For this part of the search space, N 1 (v 3 ) is not able to reduce the number of exceptions, so it is not able to improve (reduce) the value of desc. pruneUseless allows to prune this sort of candidates.

The last optimisation consists in choosing e ∈ Cand that minimises desc(X ∪ {e}, U) (line 5 of Algorithm 4). This makes it possible to quickly reach descriptions with low DL V , and subsequently provide effective pruning when used in combination with LB.

Time complexity of SIAS-Miner

Theoretically, the number of closed CSEA patterns can be exponential in the size of the input dataset.

Since SIAS-Miner computes all the closed patterns, the number of enumeration steps can be exponential too. Still, we can study the delay complexity (worst case complexity between two enumeration steps). It remains to compute C DL V the complexity of DL V -Optimise. In the general case, DL V -Optimise can make at worst 2 |V | recursive calls to compute DL V (U ). However, in concrete applications, the parameter α, that controls the size of the description, is set to a small value (e.g., generally α = 2). Indeed, in our experiments, the majority of top patterns are described with at most two neighborhood intersections. For α = 2, there is at most |V |(|V |+1) 2 possible descriptions, and the cost of each recusrive

By denoting by C DL

call of DL V -Optimise is O(|V | 2 ). Then, it gives a total complexity of O(|V | 4 ) to compute DL V (U ) if α = 2.
In a more general manner, the complexity of computing DL

V (U ) is at most O(|V | 2+α ).
Thus, for a specific value of α, SIAS-Miner has a polynomial time delay, and the worst case complexity of this delay is at most

O(max{|V | 2 • (|V | + |A|), |V | 2+α }).
We show in Section 4.6 that SIAS-Miner is able to run on real world datasets with tens of thousands vertices, even if α is set to its maximum value |V |.

Using SIAS-Miner to iteratively mine CSEA patterns

The output of SIAS-Miner consists of the list of all the patterns sorted by their initial SI measure. In order to iteratively mine CSEA patterns with the application of the model updating proposed in Section 4.4, we can run SIAS-Miner once and apply a lazy sorter on its output. At the beginning of each iteration, this sorter picks the pattern with the highest SI, and proceeds to the update of SI of the other patterns in the previously sorted list L = {P 0 , ..., P q }. However, we do not need to update the SI of all the patterns in L: we stop as soon as we find a pattern P i whose updated SI is the highest among the already updated patterns {P 0 , ..., P i-1 }, but also higher than the SI of the patterns that are not updated yet: {P i+1 , ..., P q }. In fact, the SI of all these remaining patterns will either decrease or remains unchanged, so P i will necessarily be the best pattern of the next iteration. This procedure can be then repeated iteratively to get more patterns.

Experiments

In this section, we report our experimental results. We start by describing the real-world datasets we used, as well as the questions we aim to answer. Then, we provide a thorough comparison with state-ofthe-art algorithms: CEnergetics [START_REF] Anes | Mining exceptional closed patterns in attributed graphs[END_REF] (presented in Chapter 3), P-N-RMiner [START_REF] Lijffijt | P-n-rminer: a generic framework for mining interesting structured relational patterns[END_REF], and GAMER [START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF].

Eventually, we provide a qualitative analysis that demonstrates the ability of our approach to achieve the desired goal. For reproducibility purposes, the source code and the data are made available 5 .

Experimental setting. Experiments are performed on four datasets:

-The London graph (|V | = 289, |E| = 544, | Â| = 10) is based on the social network Foursquare 6 .

Each vertex depicts a district in London and edges link adjacent districts. Each attribute stands for the number of places of a given type (e.g. outdoors, colleges, restaurants, etc.) in each district. The total number of represented venues in this graph is 25029.

-The Ingredients graph (|V | = 2400, |E| = 7932, | Â| = 20) is built from the data provided by Kaggle 7 and features given by Yummly 8 . Each vertex is a recipe ingredient. The attributes correspond to the number of recipes grouped by nationality (greek, italian, mexican, thai, etc.) that include this ingredient. An edge exists between two ingredients if the Jaccard similarity between their recipes is higher than 0.03. The total number of used recipes is 39774. Considering all the numerical values of attributes is computationally expensive, we pre-process each graph so that for each attribute, the values c a (v) are binned into five quantiles. This means that each attribute c a (v) is numerical and takes only 5 different values.

There is no approach that supports the discovery of subjectively interesting attributed subgraphs in the literature. Nevertheless, we identify some approaches whose goal share some similarities with ours.

We consider them in our study: -P-N-RMiner [START_REF] Lijffijt | P-n-rminer: a generic framework for mining interesting structured relational patterns[END_REF] is an algorithm that mines multi-relational datasets to enumerate a specific structure of patterns called Maximal Complete Connected Subsets (MCCS). Any vertex-attributed graph can be mapped to an entity-relational model where the pattern syntax of P-N-RMiner is equivalent to ours (each MCCS corresponds to a closed pattern (clo(U ), max S (U )) in our context). This means that P-N-RMiner is very suitable to evaluate the performance of our algorithm. Although the pattern syntax in this design is equivalent to our approach, our interestingness quantification is very different, because the information contained in the patterns shown to the user does not align with the ranking of P-N-RMiner. Hence, we use P-N-RMiner only to compare the runtime performance of our approach.

-CEnergetics [START_REF] Anes | Mining exceptional closed patterns in attributed graphs[END_REF] (presented in Chapter 3) aims at discovering connected subgraphs involving overrepresented and/or underrepresented attributes. It assesses exceptionality with the weighted relative accuracy (WRAcc) measure that accounts for margins but cannot account for other background knowledge.

-GAMER [START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF]: Given an attributed graph, this method finds dense subgraphs (quasi-cliques) where vertices show a high similarity in subsets of attributes. In these subgraphs, these attribute values fall into narrow intervals whose width does not exceed a specified threshold W . The main difference with our approach is that GAMER looks only for similarity and cohesiveness, but not exceptionality and surprisingness.

In this experimental study, our aim is to answer the following questions: What is the efficiency of SIAS-Miner regarding to graph dimensions? Is SIAS-Miner able to deal with real world datasets? What are the differences between the results of our approach and those of the considered baselines? What about the relevance of the CSEA patterns? Quantitative experiments. Fig. 4.8 reports the runtime of SIAS-Miner and P-N-RMiner according to the number of vertices, the number of attributes and the minimum number of vertices of searched patterns, for each of the datasets. The points that are not displayed in the curves of P-N-RMiner are the ones that exceeded a time limit of 10 4 seconds. For example, when we variated the attributes in the ingredients dataset, P-N-RMiner was not able to finish any configuration in less than 10 4 seconds. These tests reveal that SIAS-Miner outperforms P-N-RMiner in all the datasets in almost all the configurations, and the difference is generally between 2 and 4 orders of magnitude. Although P-N-RMiner is a principled algorithm that uses several advanced optimization techniques, SIAS-Miner is faster since it is particularly defined to deal with attributed graphs, and it takes benefits from several specificities of these structures to optimize the search space exploration.

Qualitative experiments. The goal is to compare the properties of the patterns found by SIAS-Miner with those of CEnergetics and GAMER. We do not consider P-N-RMiner for two reasons: (1) Even if the pattern syntax can be made equivalent between SIAS-Miner and P-N-RMiner, the model used in P-N-RMiner to assess the quality of patterns is not adapted to the goal of mining attributed graphs, (2) P-N-RMiner was not able to finish it execution in any of the studied datasets when the whole set of vertices are considered. We first extract the top 200 diversified patterns of each approach. Also, DBLP results for GAMER are not studied because this approach was not able to perform on this dataset. We compute a summary of patterns obtained by CEnergetics based on Jaccard similarity in order to have diversified patterns to study. This set only contains patterns whose pairwise Jaccard similarity is lower than 0.6. This step is not applied on GAMER and SIAS-Miner results since GAMER output is internally summarized with a similar approach, and SIAS-Miner patterns are already diversified thanks to the iterative mining with model updating. In the following, we compare the properties depicted in patterns are made of quasi-cliques, which makes them denser. In Flights and Ingredients datasets, the density and the degree for SIAS-Miner are higher than those of CEnergetics, while they are lower for the London graph. In fact, for SIAS-Miner, D N was set to 3 for London, and to 1 for Flights and

Ingredients. The higher the value of D N , the sparser the results can be. In general, CEnergetics patterns have a low density and relative degree, because this approach requires only the connectivity of vertices in the patterns, some of these patterns can be very sparse subgraphs.

-Diameter: the diameter of a subgraph U is the maximum pairwise distance between vertices of U .

GAMER patterns have the smallest average diameter, while CEnergetics patterns have the highest ones.

The diameter of SIAS-Miner is comparable to the one of CEnergetics in London (D N = 3) and DBLP

(D N = 1
), but it is smaller for Flights and Ingredients (D N = 1).

-Size and number of covered attributes: The size of a pattern (U, S) corresponds to |U | and the number of covered attributes is |S|. GAMER has patterns with the smallest average size, this is reasonable because it requires a harder constraints on the structure of patterns, which is the quasi-cliqueness. This small size of U allows GAMER patterns to be covered with a larger number of attributes comparing with the other approaches.

-Contrast of attributes: given the identified patterns (U, S) we want to measure how much the characteristics S are over (or under) expressed in U . First, we define the constrast of a given attribute a in a given set of vertices U as the absolute difference between its average ratio in U and its overal average

ratio: contrast(a, U ) = | 1 |U | × v∈U â(v) Â(v) -1 |V | × v∈V â(v) Â(v) |, with Â(v) = a∈A â(v).
The contrast of a pattern (U, S) is the average contrast contrast(a, U ) among the attributes a that appear in S. As expected, GAMER has the minimum values of contrasts for all the datasets, indeed, GAMER is only interested by the similarity of attributes in the pattern but not by their exceptionality. The contrasts for SIAS-Miner and CEnergetics are higher, and they are comparable in London Flights and DBLP datasets, while it is higher for SIAS-Miner in Ingredients dataset.

To conclude, there is a clear structural difference between patterns of the three approaches. GAMER finds denser subgraphs, and CEnergetics patterns are generally the sparsest ones. GAMER does not look to the exceptionality of attributes in the patterns, but only for their similarities. Another major difference is the possibility of integrating different prior beliefs in the MaxEnt model of SIAS-Miner, and the update of the background model after the observation of each pattern by the user, which is not possible in the other attributed graph mining approaches. Illustrative results. In Fig. 4.1, we show some patterns that SIAS-Miner discovered in the London graph. We chose the top 4 patterns, and P 14 which is the best pattern with more than one core vertex.

Green cells represents vertices covered by a CSEA pattern while blue cells are the core vertices that are also in the cover, and the red cells are normal exceptions. For example, P 1 covers the distance three neighbors of the blue vertex, with an exceptional prevalence of nightlife and professional venues. Indeed, P 1 includes the City of London which contains the primary central business district (CBD) of London, and it is known by its prevalent number of nightlife venues (pubs, bars,etc.) in some areas like the Soho and the South Bank neighborhood.

We report in Fig. 4.10 the top 4 patterns discovered by SIAS-Miner in Ingredients graph. P 1 corresponds to a set of ingredients that appear a lot in Mexican recipes. They are described as neighbors of enchilada sauce which is an ingredient originally from Mexico, notice that this patterns does not contain any exception. In Figure 4.12, we also present some other specific patterns, P 15 is the best pattern with more than one attribute in the characteristic (an exceptional prevalence in Chinese, Thai and Japanese food), and P 71 the best pattern with more than one core vertex (the cores are garlic cloves and chili powder). This last pattern has also an over expression in several types of cuisine, but the prevalence is much more significant in Mexican food (with C mexican (v) ≤ 8.6 • 10 -4 ). For more details, we display in the companion page the complete set of top 100 patterns of each of London and Ingredients datasets.

We show in 

Conclusion

This chapter has introduced a novel approach for the problem of mining exceptional attributed subgraphs.

We have proposed an improved pattern syntax called cohesive subgraphs with exceptional attributes (CSEA), and a new pattern interestingness model. These patterns provide a set of attributes that have exceptional values throughout a cohesive subset of vertices. In contrast to the approach proposed in Chapter 3, the interestingness model defined for CSEA patterns accounts for the background knowledge available about the data, and considers the assimilation cost of patterns. This allows to identify CSEA patterns that are simultaneously informative and easy to assimilate. The interestingness is defined based on information theory, as the ratio of the information content (IC) over the description length (DL).

We have also shown how to update the background model when the current knowledge of the user changes by observing new patterns. This makes it possible to iteratively identify patterns that give new information out of the one already aquired by the previously observed patterns, and thus avoid the problem of redundancy in the results set.

In many applications, vertex-attributes are organised as a hierarchy. In the experimental study of this chapter, we have used Foursquare graphs whose vertices are described by types of venues. Foursquare defines a hierarchy among these attributes. For example, the attribute "Restaurant" is a child (a sub-type) of the attribute "Food". Attributes of different levels of the hierarchy share overlapping information.

Telling the user that a subgraph has many "Food" venues would let her increase her expectations about the number of "Restaurant" venues in this subgraph. This kind of dependencies has never been considered when defining a subjective interestingness model. Likewise, the interestingness model of this chapter also ignores these dependencies. In Chapter 6, we address this problem and we extend the subjective interestingness framework to integrate the dependency between hierarchical attributes.

As mentionned in Chapter 2, the notion of incorporating the user in the interestingness model can be interpreted in two different ways: (1) accounting for the background knowledge or (2) integrating the user preferences. The method proposed in the current chapter involves the user from a "background knowledge" point of view. In Chapter 5, the purpose will be to integrate the user-preferences when mining attributed subgraphs, by following the interactive strategy proposed in [START_REF] Dzyuba | Interactive learning of pattern rankings[END_REF]. The incorporation of the user will be limited to her preferences though, i.e., the background knowledge will be ignored, as it is already a challenging problem to integrate the preferences into the task of mining attributed graphs.

Introduction

In Chapter 4, we proposed an attributed subgraph mining approach that takes into account prior knowledge of the user in the mining process. In this chapter, we aim to study the possibility of considering her preferences when quantifying the quality of patterns. Indeed, a user may be particularly interested in patterns related to some specific topics. We want to propose a user-driven approach where we iteratively update the model so that it better matches with user interests. Several data mining tasks can be addressed with attributed subgraph mining approaches. We focus on the task of user-driven event detection in social media, as we believe that it is a good and concrete case study where the incorporation of user preferences makes sense. Furthermore, this task can target a large number of people who are able to undestand its result and interact with it. This makes it possible to perform experiments with many real users to evaluate to which extent the used model is able to incorporate their preferences when ranking the patterns.

Event detection is one of the most important research topics in social media analysis. Despite this interest, few researchers have addressed the problem of identifying geolocated events in an unsupervised way, and none includes user interests during the process. Section 5.2 provides a detailed review of related works. We tackle the problem of local event detection from social media data. We present a method to automatically identify events by evaluating the burstiness of hashtags in a geographical area and a time interval, and at the same time integrating user feedback. The particularities of this subgraph mining approach comparing with the ones presented in the previous chapters are: [START_REF] Abdelhaq | Eventweet: Online localized event detection from twitter[END_REF] Proposition of a new interestigness model specific for the task of event detection, (2) integration of time dimension, i.e., vertexattributes are functions that are defined for each pair of vertex and timestamp, and, (3) incorporation of user preferences in the interestingness model. This is the first attempt to the discovery of user-driven events. In our approach, posts (e.g., tweets) are modeled as an attributed graph whose vertices encode geographical areas and edges depict neighborhood relationships. Time series of term occurrences are associated to vertices, i.e., each term can be seen as an attribute that depicts each vertex. In this unsupervised framework, a geolocated event is considered as a set of terms whose number of occurrences is large enough in a connected subgraph and a time interval.

Events are then extracted in a time window and the user has the possibility to tag those he/she likes. This interactive process allows to extract events of interest to users. User preferences are then integrated in the quality measure used to define and rank events. This measure conveys user interest and promotes events that involve topics or geographical areas the user is interested in. Fig. 5.1 describes our approach. From a social network, we extract time-stamped geolocated posts published during a given period. This set of posts, B (e.g., tweets), is used to generate a graph G H of term co-occurrences. A second graph G V depicts adjacency relations between geographic areas from which posts were emitted. Those graphs are used to guide the event discovery process making it possible to solve term synonymy problems as well as the spatial variability (size and location). Moreover, these graphs are the support of an interactive process with the user and are used to rank the identified events according to her preferences. By liking or not events, the user selects some events that are then used by the algorithm to derive locations and topics of preference. These preferences are then used to give a greater importance to events related to preferred geographical areas or terms of interest. If there is no interaction with the user, only data-driven events are detected.

The rest of the chapter is organized as follows. Section 5.2 reviews the works related to the task of event detection. Section 5.3 presents a unified framework for data-driven and user-driven geolocated event detection, based on attributed subgraph mining approach. Section 5.4 introduces the user-driven approach. Section 5.5 presents our event detection algorithms: SIGLER-Cov, an efficient event detection algorithm with coverage guarantee, and SIGLER-Samp that directly computes a sampling of the output space of user-diven geolocated events. In Section 5.6, we report a thorough empirical study that provides both quantitative and qualitative performances of our approach. First, we establish that data driven geolocated events cannot be discovered by non location-aware approaches. Second, we compare our method with MED [START_REF] Dong | Multiscale event detection in social media[END_REF] and GeoBurst [START_REF] Zhang | Geoburst: Real-time local event detection in geo-tagged tweet streams[END_REF], the state-of-the-art data driven geolocated event mining algorithms. We demonstrate that SIGLER-Cov ( 1) is several orders of magnitude faster than MED and three times faster than GeoBurst, and ( 2) is more robust to noise compared to both methods. Finally, the ability of our method to extract interesting user-driven events is experimentally validated. To that end, we ran experiments using a crowdsourcing platform on several cities (e.g., New York, Los Angeles, London) with different settings (e.g., unpaired and paired samples). Section 5.7 concludes and provides future directions.

Related work on event detection

We focus on space-time event detection from social media with user interaction during the detection process. Detecting events in social media has raised great interest in the last decade. Several papers propose to identify targeted events using supervised [START_REF] Akbari | From tweets to wellness: Wellness event detection from twitter streams[END_REF][START_REF] Becker | Beyond trending topics: Real-world event identification on twitter[END_REF][START_REF] Li | Tedas: A twitter-based event detection and analysis system[END_REF][START_REF] Sakaki | Earthquake shakes twitter users: real-time event detection by social sensors[END_REF][START_REF] Wei | Overlapping target event and story line detection of online newspaper articles[END_REF] or semi-supervised approaches [START_REF] Hua | STED: semisupervised targeted-interest event detectionin in twitter[END_REF][START_REF] Hua | Automatic targeteddomain spatiotemporal event detection in twitter[END_REF]. Such methods require a certain amount of labeled data to detect domain specific events, as opposed to the unsupervised problem considered in this chapter.

In the seminal unsupervised approach [START_REF] He | Analyzing feature trajectories for event detection[END_REF], events are detected using signal processing methods on word occurrence time series. As several bursty terms can be associated to one real event (synonyms or correlated words), clustering-based approaches [START_REF] Luca | Sensing trending topics in twitter[END_REF][START_REF] Ifrim | Event detection in twitter using aggressive filtering and hierarchical tweet clustering[END_REF][START_REF] Weng | Event detection in twitter[END_REF] are used to group terms with similar temporal patterns. In our experimental study, we show that these approaches fail to detect geo-spatial events. Other methods [5,[START_REF] Chen | Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs[END_REF] model the data as a heterogeneous interaction graph with content-related features associated to the nodes. Non-parametric statistics or clustering techniques are then applied on it to extract subgraphs. However, the subgraphs of strong interaction describe hardly local events that are generally not related to direct interactions within the graph. In fact, an event can be characterized with a sparse interaction network corresponding to tweets posted by people who mainly do not know each other.

It is important to note that as non location-aware event detection methods fail to detect geolocated events, post-processing such events in order to promote events according to the user interest is not a solution.

Few approaches integrate spatial information during the event detection process. Among them, Triovecevent [START_REF] Zhang | Triovecevent: Embedding-based online local event detection in geo-tagged tweet streams[END_REF] discovers local events based on multimodal embedding. However, this method is supervised and requires a trained classifier to judge whether a detected cluster of tweets is related to an event or not. Several demo papers [START_REF] Garcia-Gasulla | Social network data analysis for event detection[END_REF][START_REF] Houdyer | Gazouille: Detecting and illustrating local events from geolocalized social media streams[END_REF][START_REF] Walther | Geo-spatial event detection in the twitter stream[END_REF][START_REF] Watanabe | Jasmine: A real-time local-event detection system based on geolocation information propagated to microblogs[END_REF] present simple systems designed to identify groups of messages that have been posted close in time and space, and assimilate them to events based on the co-occurrence of their terms. A more sophisticated Multiscale Event Detection (MED) method [START_REF] Dong | Multiscale event detection in social media[END_REF] computes the similarity between tweets based on the time series of the occurrences of their common terms considered at different temporal and spatial scales. The most appropriate scale is used to derive a similarity graph on top of which events are detected by a graph-based clustering process. Another state-of-the-art approach is GeoBurst [START_REF] Zhang | Geoburst: Real-time local event detection in geo-tagged tweet streams[END_REF]. It is based on an authority measure that captures the geo-topic correlations among tweets. These correlations make it possible to group the tweets using some elaborate clustering techniques. In [START_REF] Zhang | Geoburst: Real-time local event detection in geo-tagged tweet streams[END_REF] the authors show that GeoBurst provides better results than two other local event detection approaches: EVENTWEET [2] and WAVELET [START_REF] Chen | Event detection from flickr data through wavelet-based spatial analysis[END_REF]. EVENTWEET is based on a clustering of spatially and temporally bursting terms. WAVELET uses wavelet analysis to extract events from geo-tagged Flickr photos. Thus, MED and GeoBurst are the main competitive approaches we consider in Section 5.6. We show the superiority of our approach towards these two competitors in terms of computation time and noise robustness.

A unified framework for data-driven and user-driven geolocated events

In this section, we introduce the problem of data and user driven geolocated event discovery in a unified (3) V = {v 1 , ..., v n }, the districts obtained after discretizing the geographical space in n areas.

For example, the geographical area defined by the square [min b∈B b.loc.x, max b∈B b.loc.x] × [min b∈B b.loc.y, max b∈B b.loc.y] can be divided along a grid and each square is associated to an element of V . Let area : R 2 → V be the function that maps GPS coordinates (x, y) to V . V is hereafter considered as the vertices of a graph G V = (V, E) whose edges E connect vertices corresponding to adjacent areas.

Our approach is based on the detection of strong variations in term occurrences for a vertex and a timestamp. To this end, we consider the number of occurrences of a term a ∈ A, for a vertex v ∈ V and a time t ∈ T as function occ:

occ(a, v, t) = |{b ∈ B | (a ∈ b.terms) and (area(b.loc) = v)
and (b.time = t)}|.

As generally admitted [START_REF] Abdelhaq | Eventweet: Online localized event detection from twitter[END_REF][START_REF] Zhang | Geoburst: Real-time local event detection in geo-tagged tweet streams[END_REF], a geolocated event reflects that a large number of messages deal with the same subject during the same time and place. Each topic is associated with the set of its representative terms. For instance, in Fig. 5.13, the first detected event in New York is the New York Comic Con, associated with the terms (#nycc, #nycc2016, etc.). These terms burst in a period of three days, and around the location of Jacob K. Javits Convention Center where the convention took place at that time.

Thus, a term is likely to correspond to an event in a space-time zone if its number of occurrences is significantly greater than what is observed in the other times for the same space zone. To that end, we compute the mean μ(a, v) and standard deviation σ(a, v) of occ over all the timestamps t 1 , t m . If the difference between occ(a, v, t) and its average value is greater than θ times the standard deviation, then the number of occurrences of a is said to be significant for v and t. θ ≥ 0 is a parameter that controls the sensibility of the method, and whose default value is set to 1. Then, to reduce the impact of very frequent terms, the significance of each term is weighted by the normalized inverse document frequency factor [START_REF] He | Analyzing feature trajectories for event detection[END_REF]:

idf(a) = 1 - log occ(a, V, T ) log occ(A, V, T ) .
Hence, the score function is:

score(a, v, t) = occ(a, v, t) -μ(a, v) + θσ(a, v) × idf(a), with σ(a, v) = 1 m-1 t∈T (occ(a, v, t) -μ(a, v)) 2 and μ(a, v) = t∈T occ(a,v,t) m
. A term a is bursting for (v, t) if its score value is positive. The set of bursting terms for a space-time zone (v, t) is thus defined by:

A(v, t) = {a ∈ A | score(a, v, t) > 0}.
For the sake of simplicity, given U ∈ V and I T , we generalize A(U, I) = v∈U t∈I A(v, t).

We consider a geolocated pattern P as a tuple (U, I, K) where U ⊆ V , I T , and K ⊆ H. We aim to identify patterns P = (U, I, K) corresponding to events described by a location U , a time interval I and a set of terms K. The ability for P to represent an event is evaluated by the measure M(P ):

M(P ) = v∈U t∈I a∈K score(a, v, t).
The larger M(P ), the higher than expected the frequency of the terms in (U, I). This means that when M(P ) is large, the pattern P = (U, I, K) is likely to be an event. In our problem formulation, we are only interested in patterns P = (U, I, A(U, I)) where A(U, I) are terms that burst in all the space-time (U, I). This makes it possible to filter out a large part of noisy terms. In fact, it is not likely that a noisy term bursts simultaneously in all the space-times of (U, I). Consequently, in what follows, we are only considering patterns P = (U, I, A(U, I)) and denote them P = (U, I) (since K is uniquely determined by U and I).

In practice, the interest of an event strongly depends on the end-user. Indeed, a user may be much more interested in events related to some subjects (e.g., sport, music) or may prefer events happening in some specific locations (e.g., near her residence). To take user interests into account, we propose to integrate the proper interests of the user through an interactive process. To this end, we define the quality measure M ud (P ) that includes the user's preferences as:

M ud (P ) = v∈U t∈I a∈A(U,I) score(a, v, t) × Q ud (a, v),
where Q ud increases with the interest of u on a and v. Thus, if P contains some terms a or vertices v that are of interest according to user's feedback, then M ud (P ) increases. When no user feedback is available for a pair (a, v), Q ud (a, v) is equal to 1. We thoroughly discuss in Section 5.4 how the function Q ud is defined.

A user-driven geolocated event must be both spatially compact and have a significant value on its quality measure: If the user does not provide any feedback, the measure M ud is equal to M. In such particular case, we speak of data-driven geolocated events.

Different geolocated events may overlap in terms, geographical area, and timestamps they share, depicting the same real-life event. This has two main disadvantages: (1) the size of the result set may be uselessly very large and redundant, and (2) the method performance may degrade due to the size of the output. Therefore, instead of finding the complete set of events, our goal is to return a concise summary that covers sufficiently all the events. To this end, we use the coverage measure cov. This function, defined for two sets or intervals X and Y , measures how much the set Y covers the set X: cov(X, Y ) = |X∩Y | |X| . This coverage measure has been used in several problems in order to avoid the redundancy in the results [START_REF] Anes | Unsupervised exceptional attributed sub-graph mining in urban data[END_REF][START_REF] Wang | Redundancy-aware maximal cliques[END_REF]. To measure how much a pattern P 2 = (U 2 , I 2 ) covers a pattern P 1 = (U 1 , I 1 ), we impose that P 2 sufficiently covers P 1 in all the dimensions. The function cover is thus: To get a set of patterns that cover all user-driven geolocated events while eliminating some redundancy, we propose to only retrieve a coverage guaranteed event summary. Definition 5.2 (Coverage guaranteed event summary). Given a threshold minCov ∈ [0, 1], a coverage guaranteed event summary R 1 of the set of all geolocated events R fulfills the following property: ∀P ∈ R, ∃P ∈ R 1 , such that cover(P, P ) ≥ minCov.

cover(P 1 , P 2 ) = min{cov(U 1 , U 2 ), cov(I 1 , I 2 ), cov(A(U 1 , I 1 ), A(U 2 , I 2 ))}.
The last drawback that may appear is that two concomitant events in time and space are merged by our approach. To ensure that an event-pattern is semantically coherent -that is its related terms correspond to the same real life event -a post-processing of the event patterns is performed. In Section 5.5.3, we explain how we apply a Louvain clustering [START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF] on terms to achieve this goal. The similarity between terms is computed based on their co-occurrences, since event-related terms tend to co-occur in the posts.

We propose two approaches to detect geolocated events: SIGLER-Cov that computes a coverage guaranteed event summary R 1 , and SIGLER-Samp that samples the pattern space according to the value of M ud . These approaches are formally defined in Section 5.5. The following section details the computation of the user-driver weight used in the quality measure M ud (P ).

Integration of user feedback into quality measure

Let us now consider how to incorporate user interest into the geolocated event discovery process.

Once a set of events has been identified, a user u appraises the detected events and indicates if she likes it. In doing so, she constructs a partial order on the patterns that is used to favor the discovery of the forthcoming geolocated events toward those of interest for u. User interest is expressed by

Q ud (a, v) = Q A ud (G A ,a)+Q V ud (G V ,v) 2
, the average of two interest measures on terms and vertices:

1. Q A ud : (G A , a) takes as parameters a weighted graph G A on terms and a term a. It assigns a value in [START_REF] Abdelhaq | Eventweet: Online localized event detection from twitter[END_REF]maxPref], with maxPref > 1 a user-defined parameter, based on (1) the neighborhood of a in G H and (2) a partial order on terms of A derived from the user event ranking. The closer a is to other liked terms in G A , or the more recently it has been liked, the more

Q A ud (G A , a) is close to maxPref. Otherwise, it tends to 1. 2. Q V ud : (G V , v
) takes as parameters the graph G V and a vertex v ∈ V . It takes its value in [START_REF] Abdelhaq | Eventweet: Online localized event detection from twitter[END_REF]maxPref] and the closer v is to other liked vertices in G V , or the more recently it has been liked, the more

Q V ud (G V , v) is close to maxPref.
maxPref > 1 represents the maximum value that Q ud can reach. The choice of maxPref depends on how much we want to take into account the user preferences into the process. In the following, we use the value maxPref = 3, empirically chosen as the one that maximizes the number of liked events on NYC dataset (see the description of the experiment in section 5.6.3). Both functions

Q A ud (G A , h) and Q V ud (G V , v) are constructed above a weighted graph G X = (X, Y, W )
with X a set of vertices, Y a set of edges and W the function that associates a weight to the edges (W : Y → N).

• Q A ud is evaluated on G A , the term co-occurrence graph, such that X = A, Y = A × A and ∀a i , a j ∈ A, W (a i , a j ) equals the number of posts in which a i and a j appear simultaneously:

W (a i , a j ) = |{b ∈ B | a i ∈ b.terms and a j ∈ b.terms}|.
Related terms may co-occur in several posts and thus will tend to be connected by a shorter path whose sum of weights is high in

G A . • Q V ud is evaluated on the graph G V , with X = V , Y = E and W : E → 1.
In a similar way to PageRank score [START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF], we valuate the vertices of the graph such that (1) a high score associated to a vertex is transferred to its neighbors, with whom it is connected with a high weight, and (2) this effect decreases all the more as the neighboring vertex is far from the source vertex in the graph. However, unlike PageRank score, which is based on a random walk, we use a concentric model from the vertex to be valued. The vertex score is only influenced by the weights of its neighbors and not by their degrees:

Q X (G X , x) = α (x,x )∈Y W (x,x ) deg(x) × Q X (G X , x ) + (1 -α) 1 |X| , with deg(x) = (x,x )∈Y W (x, x ). The first term, (x,x )∈Y W (x,x ) deg(x) × Q(G X , x ), is simply the weighted average of qualities Q X (G X , x )
of the neighbor vertices. The second term, 1 |X| , is a constant corresponding to the probability to directly reach a vertex. α ∈]0, 1[, whose default value is 0.7, is a balancing parameter between the two terms.

We propose to integrate the user preferences in the second term by replacing the constant value with the function B ud (x), a weight that amplifies the importance of the vertices involved in recently liked events:

Q X ud (G X , x) = α (x,x )∈Y W (x, x ) deg(x) Q X ud (G X , x ) + (1 -α)B ud (x).
B ud (x) depends on the direct relation between x and the liked events. Let rank(x) be the number of events that have been liked since the last event that (1) contained x and (2) was liked by the user. Fig. 5.

2
shows the values of rank for terms that appear in an ordered set of liked events {P 0 , ..., P z }. P 0 is the latest liked event, thus rank(h 1 ) = 0. The user liked P z , but she liked z events after that, so rank(h 5 ) = z.

Particularly, if a term or a vertex x does not belong to any liked event, then rank(x) = +∞. We define B ud (x) as B ud (x) = 1 + maxPref-1 1+log 2 (1+rank(x)) . We can observe that B ud (x) ∈ [1, maxPref], and if rank(x) = +∞, then B ud (x) = 1. It increases if x is related to a recently liked event (if rank(x) = 0, B ud (x) = maxPref). The log 2 function is used to smooth the effect of past liked events. Q X ud (G X , x) can be rewritten as the matrix equation A.Q X ud = B with (1) a ij = 1 if i = j, and

a ij = -α W (x i ,x j ) deg(x i ) otherwise; (2) b i = (1 -α)B ud (x i )
. This equation can be solved thanks to the Jacobi method, as the convergence condition below is satisfied.

Proposition 5.1. The matrix A is strictly diagonally dominant.

Proof. As i =j |a ij | = α i =j W (x i ,x j ) deg(x i ) = α < 1 and |a ii | = 1, we have |a ii | > i =j |a ij |.

Computing geolocated events

We first present SIGLER-Cov, an algorithm that computes a set of patterns R 1 whose quality M ud exceeds the threshold δ. In addition, R 1 is a coverage guaranteed event summary (see Definitions 5.1 and 5.2). Then, we present SIGLER-Samp, a sampling event detection approach. Finally, we explain the post-processing step as introduced before.

Event Detection with Coverage Guarantee

We propose to extract user-driven geolocated events using a generate and test approach. It first enumerates a time interval I, and then explores the connected subgraphs S corresponding to areas where posts were sent during I. The quality measure M ud (U, I) evaluates whether the terms of the posts sent from G V [U ] during I are characteristic of this time frame. As the number of such generated events is very large, especially the number of possible subgraphs, we propose several pruning techniques that makes the extraction feasible on real-life generated sets of posts. SIGLER-Cov (Algorithm 6) enumerates all the intervals [t i , t j ] included in T = t 1 , t m thanks to the two loops in lines 2 and 4. For each interval I, it explores the connected subgraphs of G V [C] -the graph induced by the vertices for which there exists at least a term that bursts during the interval I -calling the function SGEnumerate presented in Algorithm 7. This backtracking algorithm uses two sets of vertices: U ⊆ V , the current enumerated subgraph induced by U , and C ⊆ V \ U the vertices that are still to be explored. Initially, U = ∅ and C contains all the vertices for which there exists a bursting term in I. Algorithm 7 enumerates vertices from C ∩ N (U ), with N (U ) the neighbors of vertices of U :

N (U ) = {v ∈ V | ∃u ∈ U : (u, v) ∈ E}.
Once the candidate set C is empty, P is tested to only be retained if it satisfies definitions 5.1 and 5.2 (lines 11 to 15). Fig. 5.3 (a) shows an example of sets U , N (U ) and C. In the next step of this example, SGEnumerate will choose v 7 or v 8 (in the intersection of C and N (U )) and add it to U . We can notice that some vertices do not belong to C (e.g., v 4 ) because they have already been enumerated and removed from C. Algorithm 6: SIGLER-Cov(δ, minCov, R 1 )

Input: δ the quality threshold, minCov the coverage threshold Output: R 1 a set of coverage guaranteed geolocated events

1 R 1 ← ∅ 2 for i ← 1 to m do 3 C ← V 4 for j ← i to m do 5 I ← [t i , t j ] 6 C ← {v ∈ C | A({v}, I) = ∅} 7 SGEnumerate(I, ∅, C,R 1 , δ, minCov)
We use three pruning mechanisms without which the algorithm does not scale. The first one -the anti-monotonicity of A(P ) -is used line 6 of Algorithm 6 to prune vertices given a time interval. This property is defined up to the intuitive partial order ⊆:

P 1 ⊆ P 2 if and only if U 1 ⊆ U 2 and I 1 ⊆ I 2 .
Proposition 5.2 (anti-monotony of H(P )). Considering two patterns P 1 = (U 1 , I 1 ) and

P 2 = (U 2 , I 2 ), if P 1 ⊆ P 2 then A(P 2 ) ⊆ A(P 1 ). Proof. If a ∈ A(P 2 ), then ∀v ∈ U 2 , ∀t ∈ I 2 , score(a, v, t) > 0. As U 1 ⊆ U 2 and I 1 ⊆ I 2 , thus, ∀v ∈ U 1 , ∀t ∈ I 1
, score(a, v, t) > 0, and thus a ∈ A(P 1 ).

In Fig. 5.3 (b), the bursting terms of U = {v 1 } are: A(U , t) = {a 1 , a 2 , a 4 }. If U is expanded with a vertex x, the new set A(U ∪ {x}, t) is necessarily included in the previous one. For example, 

R 1 ← R 1 ∪ {P } A({v 1 , v 2 }, t) = {a 1 , a 2 }.
The second pruning mechanism is based on the computation of an upper-bound of M ud (P ) (used line 3 in Algorithm 7). Proof. Since U ⊆ U ∪ C and A(P ) ⊆ A(P ), we have

UB(U ∪ C, I, A(P )) = v∈U t∈I a∈A(P ) max score(a, v, t) × Q ud (a, v), 0 + v∈U ∪C t∈I a∈A(P )\A(P ) max score(a, v, t) × Q ud (a, v), 0 + v∈U ∪C\S t∈I a∈A(P ) max score(a, v, t) × Q ud (a, v), 0 , ≥ v∈U t∈I a∈A(P ) max score(a, v, t) × Q ud (a, v), 0 , ≥ v∈U t∈I a∈A(P ) score(a, v, t) × Q ud (a, v) = M ud (P ).
The last pruning technique is built on the coverage measure. As stated in Definition 5.2, there may exist several coverage guarantee summaries of geolocated events. Whereas it might be interesting to have a summary of smallest cardinality, the problem of finding the set of minimal size is NP hard.

A practical approach consists in constructing the summary during the enumeration. We also use the coverage measure to prune large parts of the subgraph search space thanks to a lower bound LB (lines 4 to 6 in Algorithm 7) that will be defined next. The intuition behind is to prune a search space Γ(I, U, C) if it is covered by an already found pattern P r .

Proposition 5.4. Given a geolocated event pattern P r = (U r , I r ) and a pattern P = (U , I) in

Γ(I, U, C), we have cov(U , U r ) ≥ cov(U ∪ (C \ U r ), U r ). Proof. As U = U ∪ C s.t C ⊆ C, we have: cov(U , U r ) = |U ∩ U r | |U | = |U ∩ U r | + |C ∩ U r | |U | + |C \ U r | + |C ∩ U r | ≥ |U ∩ U r | + |C ∩ U r | |U | + |C \ U r | + |C ∩ U r | , We define g(x) = |U ∩Ur|+x |U |+|C\Ur|+x , with x = |C ∩U r |. Knowing that the derivative g (x) = |U |+|C\Ur|-|U ∩Ur| (|U |+|C\Ur|+x) 2 ≥ 0, g(x)
takes its lower value when x is minimal, that is when x = 0. Thus:

g(x) ≥ |U ∩ U r | |U | + |C \ U r | = cov(U ∪ (C \ U r ), U r ), We conclude that cov(U , U r ) ≥ cov(U ∪ (C \ U r ), U r ).
For instance, in Fig. 5.3, U r covers U and a part of C. cov(U ∪ {v 9 , v 10 }, S r ) = 3 5 is a lower bound of cov(U , U r ) for all (U , I) ∈ Γ(I, U, C). In fact, U ∪ {v 9 , v 10 } contains only the vertices of C that are not in U r , which minimizes the coverage of U r . Definition 5.4. Let A(P ) ∩ A(P r) = {a 1 , . . . , a q } -the set of terms of P covered by those of P rbe ordered by a i ≤ UB a j iff UB(U ∪ C, I, {a i }) ≥ UB(U ∪ C, I, {a j }). We consider the minimal set {a 1 , . . . , a q } of terms that can be added to A(P ) \ A(P r ) while still satisfying the upper-bound:

q = argmin r∈{1...q} UB(U ∪ C, I, A(P ) \ A(P r ) ∪ {a 1 , • • • , a r }) ≥ δ and define A as A(P ) \ A(P r ) ∪ {a 1 , • • • a q }.
In other words, A ⊆ A(P ) is the set of terms that overlaps the least with A(P r ) while verifying the condition UB(U ∪ C, I, A ) ≥ δ Proposition 5.5. For each pattern P = (U , I) ∈ Γ(I, U, C) such that M ud (P ) ≥ δ, we have cov(A(P ), A(P r )) ≥ cov(A , A(P r )).

Proof. We know that |A(P ) ∩A(P r )| ≥ q , otherwise UB(U , I, A(P )) < δ and M ud (P ) < δ. We can rewrite cov(A(P ), A(P r )) = |A(P )∩A(Pr)| |A(P )\A(Pr)|+|A(P )∩A(Pr)| = q +x |A(P )\A(Pr)|+q +x with x ≥ 0. Let's denote g(x) = q +x |A(P )\A(Pr)|+q +x . We have cov(A(P ), A(P r )) ≥ g(x) as A(P ) ⊆ A(P ). Knowing that the derivative g (x) = |A(P )\A(Pr)| (|A(P )\A(Pr)|+q +x) 2 ≥ 0, then g(x) takes its lower value when x = 0. Thus, g(x) ≥ q |A(P )\A(Pr)|+q = cov(A , A(P r )) and we conclude the proof. Definition 5.5. We define the function LB as

LB(P, C, P r ) = min{cov(U ∪ (C \ U r ), U r ), cov(I, I r ), cov(A , A(P r ))}
Proposition 5.6. For each pattern P = (U , I) ∈ Γ(I, U, C) such that M ud (P ) ≥ δ, we have cover(P , P r ) ≥ LB(P, C, P r ).

Proof. It is sufficient to prove that : cov(U , U r ) ≥ cov(U ∪ (C \ U r ), U r ) and cov(A(P ), A(P r )) ≥ cov(A , A(P r )) and cov(I, I r ) ≥ cov(I, I r ) The first two equations are respectively guaranteed with Propositions 5.4 and 5.5, and the third one is trivial.

The exploration of the search space Γ(I, U, C) is stopped if there exists P r ∈ R 1 such that LB(P, C, P r ) ≥ minCov, because all the subsequent patterns are covered by it.

Pattern Sampling Based Event Detection

In this section, we explore another approach to discover geolocated events: Pattern sampling [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF]. Given a time budget, the proposed algorithm SIGLER-Samp mines events using a random exploration of the search space that favors events with high M ud values. Such an approach enables instant mining which is required in interactive pattern mining.

The pattern sampling process we consider is based on a random walk on a graph whose vertices are patterns P = (U, I) and edges (transitions) are chosen following a probability measure that overweights high quality patterns. The random walk starts from a singleton pattern P = (U, I) where S = {v} and I = [t, t]. Next, P is expanded by adding randomly drawn vertices from N (U ) \ U , the neighborhood of U , or by adding a timestamp to I. The random walk is basically composed of two main steps described in Algorithm 8:

1. M ud (P ) is computed for each pattern P = (U, I), where U = {v}, v ∈ V and I = [t, t], t ∈ T .
The probability of drawing a singleton pattern P is defined as

P(P ) = M ud (P ) v ∈V,t ∈T M ud ({v },[t ,t ])
2. From a current pattern P = (U, I) with I = [t i , t j ], the next step consists to draw a pattern P from the set:

Next(P ) = {(U, I)} ∪ {(U, [t i-1 , t j ])} ∪ {(U, [t i , t j+1 ])} ∪ {(U , I) | U = U ∪ {v}, v ∈ N (U ) \ U }
This is done based on P(P |P ), the probability to reach the pattern P ∈ Next(P ) from P :

P(P |P ) = M ud (P ) P 2 ∈Next(P ) M ud (P 2 ) .
This distribution of probabilities rewards transitions toward patterns P with large M ud (P ) values.

After drawing P , if P = P , we continue the expansion by repeating Step 2 using the new pattern P . If P = P , the pattern P is returned to the user and the sampling is repeated from Step 1 until the whole consumption of the time budget. • For n = 2, P is such that |U | = 1 and |I| = 1 (in other cases, M ud (P ) = 0). P can be drawn in the first step, and if it is chosen from Next(P ) in step 2, it is added to R 2 . Thus,

P(P ∈ R 2 ) ≥ M ud (P ) v ∈V,t ∈T M ud ({v },[t ,t ]) × M ud (P ) P 2 ∈Next(P ) M ud (P 2 ) > 0.
• Let us suppose that the proposition is true for n. Let P = (U, I) be a pattern such that |U | + |I| = n + 1 and M ud (P ) > 0. Let P = (U , I ) ⊆ P be a pattern containing one less vertex or one less timestamp than P . This means that |U | + |I | = n, by the recursion hypothesis we have P(P ∈ R 2 ) > 0. Thus, the probability P(P ) to reach P is not null. Since P can be reached from P during the random walk, then: P(P ∈ R 2 ) ≥ P(P ) × M ud (P )

P 2 ∈Next(P )
M ud (P 2 ) × M ud (P )

P 2 ∈Next(P )
M ud (P 2 ) 

P(P ∈ R 2 ) > 0

Discussion

We discuss here some potential issues that may appear, and the related post-processing to fix them. By applying one of the aforementioned algorithms, we find the set of patterns R 1 or R 2 , let's denote it R * .

In some particular cases, two real life events happen at the same time and the same location. However, these two events will be merged in the same pattern P ∈ R * . It is important to separate them before displaying the result to the end user. Therefore, for each pattern P = (U, I, A(U, I)) ∈ R * , we apply a

Algorithm 8: SIGLER-Samp

Input: time budget Output: R 2 a set of sampled patterns 

1 for v ∈ V, t ∈ T do 2 compute M ud ({v}
Next(P ) ← {P } 12 for v ∈ N (U ) \ U do 13 Next(P ) ← Next(P ) ∪ {(U ∪ {v}, [t i , t j ])} 14 if i > 1 then 15 Next(P ) ← Next(P ) ∪ {(U, [t i-1 , t j ])} 16 if j < m then 17 Next(P ) ← Next(P ) ∪ {(U, [t i , t j+1 ])}
K i ⊆ A(U, I) (2) ∪ i K i = A(U, I) (3) each K i corresponds
to a single real life event. We use Louvain community detection algorithm [START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF], and we express its result by the function Louvain 1 (P ) = {K 1 , ..., K d }. The similarity measure sim 1 used in this clustering is defined for two terms a 1 , a 2 ∈ A(U, I) w.r.t the pattern P :

sim 1 (a 1 , a 2 , P ) = ⎧ ⎪ ⎨ ⎪ ⎩ 1, if |{b ∈ B | ({a 1 , a 2 } ⊆ b.terms) and (area(b.loc) ∈ U ) and (b.time ∈ I)}| ≥ 1 0, otherwise
In other words, sim 1 (a 1 , a 2 , P ) = 1 if a 1 and a 2 co-occur at least once in the space S and the time interval I. Thus, each cluster K i ∈ Louvain 1 (P ) would be a set of terms that co-occur in this space-time.

Each cluster K i gives a pattern (U, I, K i ) with the same space-time than the current P . After applying this clustering to each P ∈ R * , we have the post-processed result

R = ∪ (U,I,A(U,I))∈R * {(U, I, K) | K ∈ Louvain 1 (U, I, A(U, I))}
In order to deal with the redundancy issue, we have defined SIGLER-Cov that computes a summary R 1 . However, it is not necessarily the optimal summary, that is to say the summary of minimal size whose events partially cover each geolocated events that does not belong to the summary. Indeed, the computation of an optimal summary is NP hard. Thus, some redundancy can still remain in the result, we post-process the set R to fix this issue. We apply Louvain algorithm on patterns P ∈ R to merge the ones with similar location, time interval, and terms. We define a similarity measure sim 2 for two patterns P = (U, I, K) and P = (U , I , K ): sim 2 (P,

P ) = |U ∩U | |U ∪U | × |I∩I | |I∪I | × |K∩K | |K∪K |
. The result will be the communities: C 1 , ..., C l where each community C i ⊆ R is a set of similar patterns. From each community C i we reconstitute a pattern P C i = ∪ (U,I,K)∈C i (U, I, K). The final result set of pattern is: R = {P C 1 , ..., P C l }.

Experiments

In this section, we report our experimental results. We start by describing the real-world datasets we use, as well as the questions we aim to answer. Then, we provide a thorough comparison with the state-of-the-art algorithms and we report a performance study. Eventually, we evaluate the ability of our approach to take user interests into account through different testbeds 3 . SIGLER-Cov is implemented in C++ and the experiments were executed on a machine equipped with i7 CPU @ 2.5GHz, and 16GB main memory, running macOS Sierra version 10.12.2. For reproducibility purposes, the source code and the data are available4 .

Experimental Setting

Experiments are performed on 3 real-world datasets that contain the tweets obtained by querying three different cities on Twitter: New York (NYC), Los Angeles (LA) and London. For each city, we collected geolocated public tweets and removed those produced by bots (i.e, accounts that produce more than 100 tweets in a period of 10 days). We only retained tweets containing hashtags or user mentions. The main characteristics of these datasets are given in Table 5 This empirical study aims to answer the following questions: Are SIGLER-Cov and SIGLER-Samp more effective and efficient than their competitors? Do they scale well according to the size of the dataset and the different parameters? Does SIGLER-Samp capture all the events? Is the approach able to make use of user feedback to discover user-relevant events?

In the first bunch of experiments, we compare our approach with two local event detection approaches:

(1) Multiscale Event Detection algorithm (MED) [START_REF] Dong | Multiscale event detection in social media[END_REF], a state-of-the-art algorithm which aims to identify geolocated events based on a wavelet analysis of time series of terms, (2) GeoBurst [START_REF] Zhang | Geoburst: Real-time local event detection in geo-tagged tweet streams[END_REF], an online local event detection method, that first detects geo-topic clusters using a random walk on a keyword co-occurrence graph, and then ranks all the clusters with a weighted combination of spatial and temporal burstiness. We also considered Insight [START_REF] Ifrim | Event detection in twitter using aggressive filtering and hierarchical tweet clustering[END_REF] and EDCoW [START_REF] Weng | Event detection in twitter[END_REF], two non location-aware event detection methods. Insight is one of the best methods to detect events in tweets, as it won a recent challenge [START_REF] Papadopoulos | SNOW Data Challenge[END_REF].

These experiments show that (1) non location-aware approaches are not appropriate to detect geolocated events, and (2) MED and GeoBurst algorithms are less robust to noise than our approaches, and encounter scalability issue. Finally, we demonstrate the ability of our methods to extract interesting user-driven events via experiments performed on a crowdsourcing platform.

Effectiveness

Evaluation on synthetic data. We first study the ability of our approach to detect user-driven geolocated events. Using the method described in [START_REF] Dong | Multiscale event detection in social media[END_REF], we generate artificial datasets for which the ground-truth geolocated events are known. Twenty events, denoted hereafter R 0 , are artificially created. Each of them lasts between 2 and 8 timestamps, involves from 2 to 16 vertices and is defined by 10 unique terms. The datasets contain 1024 vertices, 32 timestamps and 1200 unique terms. Posts are artificially produced and sent at different timestamps and spatial locations. Each post contains between 9 to 13 terms. These posts are either related to embedded events, or are randomly drawn: (1) Event-related posts are uniformly distributed over the vertices and times stamps of its associated event and contain 5 of the 10 event-related terms as well as between 4 to 8 other terms; (2) Non-event related posts are uniformly distributed over the other timestamps and vertices. The terms they contain are drawn using a Zipf law probability distribution [START_REF] José | Zipf's and benford's laws in twitter hashtags[END_REF] among the 1000 non-event related terms. 10 to 50 event-related posts are randomly drawn and the number of non-event related posts is controlled by the noise rate parameter.

Let R = {e 1 , . . . , e k } be the set of discovered events. The quality of R is assessed based on the following adapted F score measure: From this figure we can draw the following conclusions:

F score(R, R 0 ) = 2 × P recision(R, R 0 ) × Recall(R, R 0 ) P recision(R, R 0 ) + Recall(R, R 0 ) , with P recision(R, R 0 ) = e∈R max e ∈R 0 cov
1. Non location-aware event detection approaches cannot detect geolocated events, as Insight and EDCoW F score is always lower than 0.2.

2. SIGLER-Cov, MED and GeoBurst perform well with low noise rate. However, both SIGLER-Cov and SIGLER-Samp are more robust to noise than MED and GeoBurst . The F score of our approaches remains high even when the noise rate increases, whereas MED and GeoBurst F score decreases almost linearly. More precisely, MED and GeoBurst keep a good recall but the precision decreases when the noise rate increases.

3. Furthermore, the F score of SIGLER-Samp is obviously bounded by the F score obtained by SIGLER-Cov which adopts a more exhaustive exploration of the search space. Nevertheless, the bigger the time budget, the better the F score.

We also study the impact of parameters of our approach on the value of F score. To this aim, we variate minCov and δ and we show the value of F score in Fig 5 .6. The highest F Score is achieved with values of δ between 1 and 2, this leads to the best trade-off between precision and recall. Increasing δ allows to increase the precision, but decreases the recall. Although the value of F score slightly increases when minCov is higher, this parameter does not significantly impact the quality of the result.

Evaluation on real data. Based on synthetic data, we have previously studied the ability of our approach to detect local events, and we compared it with other state-of-the-art methods. Ideally, one would prefer to use real world datasets to perform such evaluation. However, we do not have the ground truth of the studied real world data. This makes it very hard to achieve an objective comparison on them. Nevertheless, we show in Table 5.2 the top 10 events returned by SIGLER-Cov, MED, and GeoBurst, on the first 10k tweets of NYC dataset, and we make a discussion about them. The number of tweets is limited to only 10k, in order to be able to compare with MED which has scalability issues. (5 in SIGLER-Cov and 10 in MED) . Both SIGLER-Cov and GeoBurst identified the FOLD Festival of Nile Rodgers 8 (9 in SIGLER-Cov and 1 in GeoBurst). However, the rest of top results of GeoBurst are different from the ones of other approaches. GeoBurst seems to give more importance to small events. In fact, each of the top 10 events of GeoBurst contain at most 10 tweets, while the number of tweets in top results of SIGLER-Cov (resp. MED) varies between 43 and 3k (resp. between 42 and 1280). We believe that the results 1, 2, 7, and 9 of MED, and the result 4 of GeoBurst are not relevant. Indeed, they are defined with terms that do not correspond to any real life event (e.g., nyc, job, hiring, foodporn, etc.). Concretely, The terms "nyc, newyork, love, manhattan, job, hiring, newyorkcity, photo, repost" are very frequent in New York dataset. Each of them appear at least 30 times in 90% of the days.

The term "saturday" is frequently used in Saturday (more than 30 times in 80% of cases). The terms "food, foodie, yummy, eeeeeats" also appear in a large number of posts where people want to share their feeling about some food experience. Each of them is used at least 7 times in 50% of the days. The term "ridetheferry" is used by people who pass by the NY Waterway Ferry. It occurs between 1 and 6 times in 22 different days.

Efficiency

To evaluate the scalability of the algorithms, we consider New York tweets, our largest dataset. Fig. 5.7 reports the runtime and the number of events obtained by SIGLER-Cov 9 , MED, and GeoBurst when dataset parameters are varying. However, MED is only reported for at most 10,000 tweets because of its scalability issues (in the figures at left). MED, GeoBurst, and SIGLER-Cov discover a comparable number of events but MED performances raise scalability issues. Indeed, SIGLER-Cov outperforms MED with several orders of magnitude for all the configurations, especially when the number of tweets increases. Even if MED uses some indexing techniques, its computational complexity is quadratic in the number of tweets, and MED fails to handle large datasets. Although MED is able to process one day of tweets in our experiments, it is without considering the fact that the Twitter API gives access to less than 1% of the posted tweets. MED scale limitation is therefore a real issue on these data.

In Fig. 5.7 -right, we report the runtime and the number of discovered events with higher numbers of tweets (we consider the whole dataset). We observe that the execution time of SIGLER-Cov increases with the number of tweets, but there is no order of magnitude change (non-logarithmic scale). Although GeoBurst runtime also increases linearly, it is considerably higher than the one of SIGLER-Cov.

We also study the impact of number of vertices and time granularity on our methods. We show their behavior in Fig. 5.8 when these two dimensions are varying. The execution time of SIGLER-Cov increases when the number of vertices and time granularity increase. The execution time of SIGLER-Samp is controlled by a parameter and we can observe that its number of results tends to the one of SIGLER-Cov when the time budget increases.

To go further on evaluating the discovered events, Fig. 5.9 investigates the ability of SIGLER-Samp to capture similar events as SIGLER-Cov, that is to say it verifies that the computed event sample well covers all the events obtained with the exhaustive approach. To this end, we compare the events provided by SIGLER-Samp (denoted R 1 ) with the events discovered by SIGLER-Cov (denoted R 2 ) as follows.

Using the Jaccard similarity measure of two patterns P 1 = (U 1 , I 1 ) and P 2 = (U 2 , I 2 ):

J(P 1 , P 2 ) = 1 3 × |U 1 ∩ U 2 | |U 1 ∪ U 2 | + |I 1 ∩ I 2 | |I 1 ∪ I 2 | + |H P 1 ∩ H P 2 | |H P 1 ∪ H P 2 | ,
the similarity of R 1 and R 2 is defined as:

Sim(R 1 , R 2 ) = P 1 ∈R 1 max P 2 ∈R 2 J(P 1 , P 2 ) |R 1 | + |R 2 | + P 2 ∈R 2 max P 1 ∈R 1 J(P 1 , P 2 ) |R 1 | + |R 2 | .
We executed SIGLER-Samp with different time budgets and post-processed the result R 2 by removing redundant patterns (using minCov = 0.8) and low quality ones (using δ = 40). has also a major impact on the execution time. Indeed, this parameter is involved in the computation of the upper-bounds and when large, it drastically reduces the execution time. In our experiments, we set this parameter to 0.8 to remove highly redundant events while allowing some intersections.

The quality of an event is evaluated by the measure M, also used to rank the patterns when presented to the user (see next subsections). The function of the parameter δ is to cut the tail of the pattern distribution in order to only keep those of high quality. So the larger δ, the smaller the number of patterns and the faster the execution.

For the following experiments, we fixed the value of δ according to the number of events that we wanted to present to the user. Thus, we fixed δ value so as to have around 800 events for NYC, which contains 3 months of tweets, and around 400 events for LA and London that contain 70 days of tweets. This led us to set δ = 40 for NYC, and δ = 15 for London and LA dataset.

User-driven discovery of geo-located events

Evaluation with real users. To evaluate the ability of SIGLER-Cov to take benefit of user feedback, we performed interactive event detection process with real users on real datasets. We used a crowdsourcing platform -Figure Eight 10 -to hire people living in the country where the data is located. Indeed, our user feedback requires some expertise about the city and its events. To this end, we developed a graphical application 11 and deployed it on Figure Eight. For each user, the process consists in several iterations.

At each of them, a batch containing the tweets emitted for 6 consecutive days is given as input to the algorithms (with a recovery of 3 days between 2 batches). Geolocated events are computed using either M (data-driven detection), or M ud (user-driven detection). Then, the user is asked to mark the events that she likes. Finally, the batch index is incremented and the process iterates. Since evaluating with the overall datasets can be very long and exhausting for real users, we limited the number of batches to 10, that is approximately 33 days of data.

We used two different settings to compare the data-driven and the user-driven approaches. In the paired sample (also referred to as comparative evaluation), each of the 40 participants evaluated both approaches in a blind way, i.e. the two lists of events were randomly displayed to the user 12 . In the unpaired sample (also known as independent evaluation), 60 participants evaluated either the data or the user-driven approach while not being aware of the type of method used 13 . Fig. 5.11 reports the results of this crowdsourcing-based evaluation. For the paired sample, the number of likes is greater or equal in the user-driven setting than in the data-driven one, while results are less obvious for the unpaired sample. The purpose of paired samples is to get better statistics by controlling for the effects of other "unwanted" variables. And so, as our sample sizes are quite small, results obtained on paired samples are probably the most reliable. In addition, the test of Wilcoxon [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF] is applicable on the paired sample, while it is not on the unpaired ones. However, even for paired samples, the Wilcoxon test does not allow to reject the null hypothesis "the number of likes are similar", and the difference is not considered as significant. Considering the average ranks of liked events, we can observe that they are always better in the user-driven configuration than in the data-driven one. The difference in the values is considered as significant by both Wilcoxon and Nemenyi tests [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF]. The Nemenyi test value is shown in Fig. 5.11: when the rank difference on the graduated line is greater than the CD value, the rank difference is considered not due to chance.

Thus, this experience with real users leads to nuance the claim that the user-driven approach makes it possible to identify more interesting events than the data-driven one. However, it confirms that the identified events are of much better quality for the user-driven setting than for the data-driven one. Similar experiments with simulated users are reported in supplemental material. Evaluation with synthetic users. we provide supplementary experiments of the user-driven approach.

We simulated virtual users who, depending on their "own interest", tend to prefer events of a given type. We evaluate their "satisfaction" according to the number of events that the system presents to them that they are inclined to like. Thus, virtual users having topics and/or location preferences are simulated and the experiment consists in studying the number of liked events when considering or not user feedback during the event discovery process.

To that end, we first extracted events in the three real datasets 14 and retain those spanning at least over 14 To obtain around 800 events on NYC, we used δ = 40, and to obtain around 400 events on LA and London, we used 2 timestamps (the set E). Then, we manually annotated the events. The tags used for the annotation are Topics = {Business/Economics, Politics, Science/Technology, Art/Culture, Celebration, Music, Sport, Accident/Disaster}. Each event P can be annotated with several topics and the function Tag(P, τ ) → [0, 1] expresses the importance of the topic for the event (with τ ∈Topics Tag(P, τ ) = 1). Some detected events did not match to any category and the obtained distributions are presented in Table 5 A virtual user u prefers a specific topic, or location, or both of them. The function P u (P ) captures the preferences of the user u for the event P . It is defined according to 3 cases:

• If τ is the preferred topic of u, P u (P ) = Tag(P, τ )

• If is the preferred location of u, we consider that u is interested in events at a distance from at most equal to L and P u (P ) = max( L-dist( ,P ) L , 0). Based on the surface area of the cities, we choose L = 5km for New York, and L = 10km for Los Angeles and London.

• If u has both topic and location interests, P u (P ) = Tag(P,τ)+max( L-dist( ,P ) L ,0) 2 Topics with fewer than 20 events were discarded. For the preferred locations, we consider several well-known places for each city 15 . Finally, to be able to automatically annotating computed events on these datasets, we used the Tag function to annotate hashtags and locations (for x = h, v, Tag (x, τ ) = P ∈E s. t. x∈P Tag(P, τ )) and then use them to automatically annotate events (Tag (P, τ ) = x∈P Tag (x, τ )).

To evaluate how SIGLER-Cov and SIGLER-Samp effectively discover user-driven events, we simulate the same interactive process that we did with the real users, but with virtual users this time. Fig. 5.12 presents results of these experiments when simulating between 19 and 29 virtual users depending on the number of considered locations and topics on each dataset. For each dataset, we show boxplots of the average number of likes using SIGLER-Cov and SIGLER-Samp in the data and user-driven settings. We can observe that (1) the average number of likes in the user-driven setting is always greater than the one in data-driven configuration. This difference is considered as significant by the Wilcoxon and the Nemeny post-hoc [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF] tests (the later is shown on Fig. 5.12. (2) results obtained by SIGLER-Samp are below those obtained by SIGLER-Cov, and the difference is significant according to the Wilcoxon test, except for the NYC dataset, where the number of likes is considered to be similar. δ = 15. On all datasets we set minCov = 0.8. Indeed, SIGLER-Cov is more exhaustive and finds more events than SIGLER-Samp, which explains this point.

Notice that in this simulation between 300 and 800 events are presented to the virtual-users who, on the contrary to human users, have the ability to evaluate all of them. As already mentioned above, the order in which the events are presented to the users is essential. In order to evaluate this point, Fig. 5.12 presents the average ranks of events liked by both data and user-driven settings. Clearly the setting for which the liked events are ranked first is advantageous in real situations. We can observe that the average rank is always lower in the user-driven setting than in the data-driven one. This difference is considered significant by the Wilcoxon test on all datasets. This is also confirmed, in a more visual way, by the Nemenyi tests [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF] displayed on the figure. When comparing the average ranks obtained by SIGLER-Cov and SIGLER-Samp, it appears that the later obtains significantly better ranks (smaller) for liked events that the former. Thus SIGLER-Samp identifies fewer events, but that are of high quality for users. This simulation with virtual users allows us to conclude that the user-driven setting makes it possible to identify more relevant events than the data-driven one, whether in terms of quantity and quality.

Besides, SIGLER-Samp identifies fewer geolocated events than SIGLER-Cov, but they are of better quality.

New York

London Los Angeles Figure 5.13: Top 3 events detected in New York (left), London (center), and Los Angeles (right).

Illustrative results

Finally, we show some examples of events detected by our approach. Fig. 5.13 reports the top 3 events detected in New York, London, and Los Angeles datasets. Each event is described by the locations, time interval and top 8 most frequent terms of its related tweets. The first event in New York is the Comic Con 16 , which is an annual convention mainly dedicated to comics. It was organized in Jacob K. Javits Convention Center, the location associated to the related tweets. The two other events correspond to USA presidential elections, and the celebration of Halloween. In London, the first event is a Pride Parade organized in July 8th, 2017. The remaining are two geolocated events corresponding to a soccer event 16 https://goo.gl/BR7kgp

and a concert of U2. In Los Angeles, the top 3 events are respectively: the Official Disney Fan Club, E3 17 (a video game related event), and the FYF Fest 18 (a music festival).

Conclusion

In this chapter, we have introduced a new model for mining local patterns in vertex-attributed graphs, that is able to incorporate user preferences through an interactive process. This model is exploited to define the novel problem of user-driven geolocated event discovery in social media. We have designed two different algorithms to efficiently and effectively discover local patterns (i.e., events) based on the input data and user feedback. In the experiments, we have compared our approach against the state of the art event detection methods in a data-driven setting, i.e., without integrating user feedbacks. These experiments have demonstrated that the runtime of our approach outperforms state of the art methods by a factor of two to several orders of magnitude. Furthermore, the proposed approach is more robust to noise. We have also shown the ability of our method to discover local patterns that are of interest for the user based on her feedback with crowdsourcing-based experiments.

While user-preferences have been integrated in the interestingness model of this approach, her background knowledge has been ignored. In contrast, Chapter 4 proposed a method that incorporates user's background knowledge while ignoring her preferences. Considering both these factors in the same interestingness model is a more challenging problem which would allow to enhance the task of attributed subgraph mining. It requires to derive a model that is able to identify surprising (informative) patterns that belong to the topic of user's interest. Another interesting direction is to learn an explicit model of user interests and provide active learning based heuristics to foster the interactive process. The approach proposed in this chapter is a first attempt to learn user preferences in the attributed subgraph mining and event detection tasks. More sophisticated models can be studied. 

Introduction

In many datasets, attributes that are used to describe objects (or vertices) are organized by a hierarchical relationship. In Chapters 3 and 4, we have performed experiments on data collected from Foursquare and modelled as attributed graph. Foursquare provides a hierarchy1 of venue types that we have used as attributes for the vertices. A subset of this hierarchy is shown in Fig. 6.1. This hierarchy gives a great opportunity to improve the quality of patterns returned to the user. For example, once a user knows that a city has many food venues, she will increase her expectations about the number of Portuguese restaurants, and vice versa. Also, this hierarchy means that there cannot be more Portuguese restaurants than food venues. In other terms, information about one attribute can affect one's expectation about another. Incorporating the hierarchy into the background model may avoid presenting redundant patterns.

We address this challenge and we propose a subjective interestingness model that integrates dependencies implied by a hierarchical relation between attributes. To simplify the problem, we limit ourselves to the hierarchy structure of attributes that describe a dataset as a whole, and we study it independently from any graph structure.

Hierarchies have been extensively investigated in the literature for decades. In [START_REF] Aronis | Exploiting background knowledge in automated discovery[END_REF], the authors explained the high and promissing utility of ontologies in different steps of the KDD process, and proposed an association mining tool that benefits from ontologies in different stages of the mining process (data understanding, task design, etc.). The generic problem of Semantic Data Mining has been defined in [START_REF] Liu | Towards semantic data mining[END_REF][START_REF] Vavpetic | Semantic subgroup discovery systems and workflows in the sdm-toolkit[END_REF]: given a set of objects annotated with ontology terms, the goal is to find hypothesis, expressed by domain ontology terms, explaining the given empirical data. Specifically in [START_REF] Lavrac | Using ontologies in semantic data mining with SEGS and g-segs[END_REF][START_REF] Vavpetic | Semantic subgroup discovery systems and workflows in the sdm-toolkit[END_REF][START_REF] Vavpetic | Semantic data mining of financial news articles[END_REF],

the Semantic Subgroup Discovery problem is studied: given a dataset where each object is annotated with ontology terms and belongs to a specific class, the goal is to find a conjunction of ontology terms (a conjunctive rule) that corresponds to a set of object discriminating a specific class. A similar method has been proposed in [START_REF] Aronis | Exploiting background knowledge in automated discovery[END_REF] to take benefit from ontology structures in order to optimize and reduce the redundancy in the search of conjunctive rules that satisfy some user specified constraints. In [START_REF] De Beéck | Mining hierarchical pathology data using inductive logic programming[END_REF], this problem of rule learning is tackled based on ILP (Inductive Logic Programming), and ontology structures are integrated by providing additional clauses to the ILP solver. Most of these approaches have only considered hierarchies to restrain the pattern syntax or to take advantage of their subsumption power in order to optimize the exploration of the search space. Surprisingly, there has been little discussion about the use of the hierarchical relationships for reasoning in the knowledge discovery task. In our work, we explicitly incorporate the hierarchy into the background model used to quantify pattern interestingness.

We aim to account for the inference that the user would make about values of these hierarchical attributes when information is provided to her about some specific subset of them.

In this chapter, we use the term "concept" to refer to the studied dataset (e.g., a city). A concept consists of a set of positive integer-valued attributes that are organized in a hierarchy. In Fig. 6.1, the concept is a city, and "Food" is an attribute whose value is 800. We attempt to characterize such concepts in terms of so-called contrastive antichains: particular kinds of subsets of incomparable attributes and their values. We address the question of when a contrastive antichain is interesting, in the sense that it concisely describes the unique aspects of the concept, and this while duly taking into account the known attribute dependencies implied by the hierarchy. Attributes belonging to the contrastive antichain need to have distinctive values. Hereby, distinctiveness is assessed with respect to some reference, e.g. the total sum of all concepts, or one concept in particular. The identified contrastive antichains pinpoint non-redundant concepts of the hierarchy that are at the same time compact and unexpected. In Fig. 6.1, the set {F ood, Bar} is an antichain, because none of these two attributes is a predecessor of the other one (they are not comparable). This antichain informs the user about the number of Food and Bar venues in the studied dataset. This antichain is informative if the number of Food and Bar venues are different from the expected values by the user.

This chapter is organized as follows. Section 6.2 introduces and formalizes the problem of mining contrastive antichains in hierarchically organized sets of attributes. Section 6.3 formalizes the interestingness of a contrastive antichain with respect to prior beliefs about the values of these attributes. These prior beliefs can be derived from a concept with which the concept under investigation needs to be contrasted, or from an aggregate count over all concepts. Section 6.3.3 in particular shows how the measure of interestingness can take into account the knowledge of previously found contrastive antichains, such that iteratively mined contrastive antichains can be made non-redundant. Section 6.4 presents an algorithm to efficiently mine the most contrastive antichains. Section 6.5 empirically evaluates the potential usefulness of contrastive antichains as a tool to gain insight into such data, and evaluate the effectiveness and scalability of the algorithm for mining them.

Contrastive antichains

Here we define the problem setting, along the way introducing the necessary concepts and notation. First we define the kind of data considered, and then the kinds of pattern we are interested in finding in such data.

The data: concepts described as sets of hierarchically related attributes

As discussed in the introduction, we consider the relatively common situation where concepts of interest are defined in terms of a set of positive integer-valued attributes, whereby these attributes are organized in a hierarchy. Indeed, these attributes values often represent a count of something in relation to that concept, e.g. the number of food venues (the attribute), in a particular city (the concept of interest). A particular concern in this work is the fact that these attributes are often related in a hierarchy, defined as follows.

Definition 6.1 (Hierarchy).

A hierarchy (or a tree) H is defined as a tuple H = (A, ≤, a 1 ) where:

• A = {a 1 , ..., a n } is a set of attributes,
• ≤ is a partial order relation defined over this set,

• ∀a ∈ A : a 1 ≤ a (the attribute a 1 is called the root of H), and

• there is only one path from a 1 to any other attribute:

∀a i , a j , a k ∈ A : a i ≤ a k ∧ a j ≤ a k =⇒ a i ≤ a j ∨ a j ≤ a i .
In Fig. 6.1, the following relations hold: a 1 ≤ a 2 , a 1 ≤ a 3 , and a 2 ≤ a 3 . If a i ≤ a j , then a i is a predecessor of a j , but a i is not necessarily the direct parent of a i . Note that a hierarchy is a special case of a partially ordered set. We assume such a hierarchy imposes certain constraints on the values these attributes may have. Specifically, we assume that the value of an attribute is never strictly larger than the value of a hierarchically smaller attribute in the partial order.

For convenience, we introduce the following operations over a hierarchy.

Definition 6.2 (Basic operations). Given S ⊆ A:

• Precedessors operator ⇑, and successors operator ⇓ as:

⇑ S = {a ∈ A | ∃a ∈ S : a ≤ a }, ⇓ S = {a ∈ A | ∃a ∈ S : a ≤ a}, • Strict predecessor relation: a i < a j ⇔ a i ≤ a j ∧ a i = a j ,
• The direct successor relation ≺ as: a i ≺ a j ⇐⇒⇓ a i ∩ ⇑ a j = {a i , a j }. Also, if a i ≺ a j , we use the notation π i = j to refer to the index of the direct parent of a i (a j = a π i ),

• Direct predecessor operator ↑, and direct successors operator ↓ as:

↑ S = {a ∈ A | ∃a ∈ S : a ≺ a }, ↓ S = {a ∈ A | ∃a ∈ S : a ≺ a}, • the leaves L(H) = {a ∈ A | ∃a : a ≺ a },
• The mimimum of S: min(S) = {a ∈ S | ∃a ∈ S : (a < a)}.

The value of each attribute a i ∈ A is denoted using the variable x i , and when a particular empirical value is meant it will be denoted as xi . Note that this means that ∀i ∈ 2, n : x i ≤ x π i as well as xi ≤ xπ i .

Contrastive antichains as patterns

We aim to inform the analyst about the values of a subset of the attributes of a concept. As formalized in Section 6.3, it is our goal to ensure that the patterns of this type are as informative to the data analyst as possible, taking into account the fact that the data analyst has certain prior beliefs about values of these attributes, e.g. based on one or a set of other well-understood concepts with the same sets of attributes.

As information on an attribute directly affects one's expectations about comparable (i.e. hierarchically related) attributes (see Section 6.3 where we make this rigorous), we made the choice of including into the same pattern only non-comparable attributes-i.e. no attribute is a predecessor or successor of another, and the set of attributes forms an antichain of the hierarchy. This ensures in a constructive manner that the information provided by the different attributes in the pattern is not too redundant, and ensures that the patterns provide information about a larger part of the hierarchy.

For each attribute a i ∈ P , a contrastive antichain pattern informs the data analyst about the value xi .

The question arises whether it is of interest to inform the analyst about its precise value. We argue that in many practical cases the precise value gives no more insight than an order of magnitude indication (although probably more detailed than orders of 10). Thus, instead of informing the analyst about the precise value, in this work we consider the case where the pattern describes just the scale of the count: log(x i ) .

A contrastive antichain pattern can thus be formally defined as: Definition 6.3 (Contrastive antichains). Given a concept and the value xi for each of a set of attributes a i ∈ A which are organized in a hierarchy H = (A, ≤, a 1 ). A contrastive antichain pattern P is specified by a subset of the attributes (P ⊆ A) which forms an antichain w.r.t. ≤, i.e., ∀a i , a j ∈ P : a i ≤ a j =⇒ a i = a j , along with the integers log(x i ) describing the scale of the values of these attributes.

The interestingness of a contrastive antichain

For a hierarchy H = (A, ≤, a 1 ), we aim to represent the prior beliefs of the user about the attributes a i ∈ A. This will be represented by a probability distribution Pr for the set of random variables X i . We call this distribution the background distribution. In practice, the prior beliefs are derived from one or a number of example concepts and the values of their attributes, as explained next.

The background distribution

In this study, we consider that the analyst has some reference that will determine her prior expectations about the attributes for the concept under investigation. For instance, if we consider cities as concepts, a Londoner who would like to gain an understanding of the city of Amsterdam in terms of its attributes values, will typically have prior beliefs determined by the values of those attributes in London. More specifically, we assume that the analyst has an expectation of the value x i of each attribute a i ∈ A that is equal to xi , determined by the values of the respective attribute in the reference concept. In addition, we assume that the analyst has specific expectations about the value of each attribute (except for a 1 ) relative to its parent attribute's value. This can be formalized using the following two types of constraints:

• Expectations: the expectation of each random variable X i is xi : ∀i ∈ 1, n :

x i Pr(x i ) • x i = xi , (6.1)
• Conditional expectations: The expectation of the ratio of an attribute's value over the parent's attribute's value, conditional on that parent attribute's value, is equal to the observed ratio of these values: ∀i ∈ 2, n :

x i Pr(x i |x π i ) • x i x π i = xi xπ i . (6.2)
For i > 1, the second type of constraint is arguably a more accurate encoding of the analyst's prior expectations, as it explicitly encodes dependencies of attributes conditioned on parent attributes. For instance, for cities as concepts and the venues hierarchy, the analyst may expect that 75% of nightlife spots are bars, and knowing the number of nightlife spots will arguably affect the expectation of the number of bars. Moreover, the following property shows that the second constraint essentially subsumes the former, i.e. it is strictly stronger than the former. Property 6.1. If the two following sets of conditions hold:

1. Expectations for only the root:

x 1 Pr(x 1 ) • x 1 = x1 ,

Conditional expectations for other nodes

: ∀i ∈ 2, n : x i Pr(x i |x π i ) • x i xπ i = xi xπ i , Then it follows that ∀i > 1, x i Pr(x i ) • x i = xi .
Proof. We consider that xπ i Pr(x π i )•x π i = xπ i and we prove that x i Pr(x i )•x i = xi . The complete proof can be recursively established by starting from the root (x π i = x 1 ) for which we already know that

x 1 Pr(x 1 ) • x 1 = x1 . x i Pr(x i ) • x i = x i ⎛ ⎝ xπ i Pr(x π i ) • Pr(x i |x π i ) ⎞ ⎠ • x i , = x i xπ i (Pr(x π i ) • Pr(x i |x π i ) • x i ) , = xπ i x i (Pr(x π i ) • Pr(x i |x π i ) • x i ) , = xπ i Pr(x π i ) • x i (Pr(x i |x π i ) • x i ) , = xπ i Pr(x π i ) • xi xπ i • x π i , = xi xπ i • xπ i Pr(x π i ) • x π i , = xi xπ i • xπ i , = xi .
This means that it suffices to consider the expectation constraint for only the root, in addition to conditional expectation constraints for the other nodes.

Thus we assume that the joint distribution can be written as:

Pr(x 1 , x 2 , . . . , x n ) = Pr(x 1 ) i∈ 2,n Pr(x i , x π i ). (6.3)
The constraints on the probability for x 1 and the conditional probabilities of x i conditioned on x π i do not uniquely define the joint probability distribution of all attribute values. As proposed in [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF], we use distributions that maximize the entropy, as any other distribution effectively makes additional assumptions that reduce the entropy. This means that these marginal distributions are found as the solutions of the following optimization problem:

• For i = 1 (x i is the root): max Pr(x i ) - x i Pr(x i ) log Pr(x i ), s.t. x i Pr(x i )x i = xi , x i Pr(x i ) = 1.
• For i > 1, the distribution Pr(x i |x π i ) needs to maximize the entropy conditional on x π i . Here, we must however recognize that the value x i is derived from its parent attribute x π i by determining which of the elements counted as part of x π i also contribute to x i . I.e., the prior expectation is about the tendency of any element contributing to x π i to also contribute to x i . In terms of such decisions for individual elements, there are many ways to arrive at the same count, namely Q(x i , x π i ) = xπ i x i ways. Thus, we should use Q(x i , x π i ), the number of ways to realize this attribute value, as a base measure, or equivalently, maximize the Kullback-Leibler divergence between the conditional probability Pr(

x i |x π i ) and Q(x i , x π i ): max Pr(x i |xπ i ) - x i Pr(x i |x π i ) log Pr(x i |x π i ) Q(x i , x π i ) , s.t. x i Pr(x i |x π i )x i = xi xπ i • x π i , x i Pr(x i |x π i ) = 1.
The solution to the first problem is a geometric distribution [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF] having an expectation equal to x1 :

Pr(x 1 ) = 1 - 1 1 + x1 x 1 • 1 1 + x1 = (1 -p 1 ) x 1 • p 1 ,
with p 1 = 1 1+x 1 . The solution to the second problem for the other random variables x i (i > 1), is a binomial distribution

with an average xi xπ i • x π i [105]: Pr(x i |x π i ) = x π i x i • xi xπ i x i • 1 - xi xπ i xπ i -x i = x π i x i • b x i i • (1 -b i ) xπ i -x i , where b i = xi xπ i
is the binomial parameter.

Property 6.2. The marginal distribution for each random variable x i is geometric, and it is:

Pr(x i ) = 1 - 1 1 + xi x i • 1 1 + xi .
Proof. For the root x 1 , this is already the case. We then prove this property by recursion, we consider that x π i follows a geometric distribution with parameter p π i = 1 1+xπ i and we prove that x i also follows a geometric distribution with a parameter p i = 1 1+x i :

Pr(x i ) = +∞ xπ i =x i Pr(x π i ) • Pr(x i |x π i ), (6.4) = +∞ xπ i =x i (1 -p π i ) xπ i • p π i • x π i x i • b x i i • (1 -b i ) xπ i -x i , (6.5) = p π i • b x i i (1 -b i ) x i • +∞ xπ i =x i x π i x i ((1 -p π i )(1 -b i )) xπ i , (6.6) = p π i • b x i i (1 -b i ) x i • +∞ k=0 k + x i x i ((1 -p π i )(1 -b i )) k+x i , (6.7) = p π i • b x i i (1 -b i ) x i • ((1 -p π i )(1 -b i )) x i • +∞ k=0 k + x i x i ((1 -p π i )(1 -b i )) k , (6.8) = p π i • b x i i • (1 -p π i ) x i • +∞ k=0 k + x i k ((1 -p π i )(1 -b i )) k , (6.9)
The negative binomial infinite series can be simplified:

+∞ k=0 k + x i k ((1 -p π i )(1 -b i )) k = (1 -(1 -p π i )(1 -b i )) -1-x i , = (b i + p π i -b i • p π i ) -1-x i , then: Pr(x i ) = p π i • b x i i • (1 -p π i ) x i • (b i + p π i -b i • p π i ) -1-x i , (6.10) = p π i b i + p π i -b i • p π i • (1 - p π i b i + p π i -b i • p π i ) x i . (6.11) After substituting p π i = 1 1+xπ i and b i = xi xπ i , we find that pπ i b i +pπ i -b i •pπ i = 1
1+x i . This means that:

Pr(x i ) = (1 - 1 1 + xi ) x i • 1 1 + xi .
This concludes the proof.

The interestingness of an antichain

We use the framework of subjective interestingness SI proposed in [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF], that defines SI(P ) as the ratio between the informativeness of a pattern and its description length (cost of communication to the user): SI(P ) = IC(P ) DL(P ) . Information content IC: The information carried by a pattern is quantified by the information content [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF], a quantity also known as the self-information or surprisal [START_REF] Thomas | Entropy, relative entropy and mutual information[END_REF]. In particular, it is equal to the reduction of uncertainty about the data caused by the knowledge of the pattern, and is defined as follows:

IC(P ) = -log(Pr(P )).
As previously discussed, the information content of a pattern is shared with the user by transmitting the scales of the counts appearing in the pattern, instead of the exact values, which can be overwhelming and difficult to remember. Let us define the random variable Y i = log(X i ) , whose true value is ŷi = log(x i ) . The probability associated to a pattern P is thus:

Pr(P ) = e i ∈P Pr(ŷ i ) = e i ∈P Pr(2 ŷi ≤ x i < 2 ŷi +1 ), = e i ∈P (1 -p i ) 2 ŷi -(1 -p i ) 2 ŷi +1 .

Description length DL:

The description length measures the complexity of communicating a pattern P to the user. In general, the closer an attribute a ∈ A is to the root, the more likely the user is to know it. For example in Foursquare hierarchy, it is simpler to communicate the node "Asian Restaurant" (2 nd level) than "Acehnese Restaurant" (4 th level) which is a successor of "Indonesian Restaurant". The idea behind the formulation of DL(P ) is to measure the length of the encodings of paths from the root to attributes a ∈ P such that (1) these paths cover as few as possible attributes that are not in P , and (2) the paths are as short as possible. To construct the set of paths, we start from the root node a 1 and recursively move to the node children until reaching each attribute of P . Let S be the set of nodes of the paths. The cost associated to an attribute a i ∈ S is computed as follows:

1. If a i is an internal node of the hierarchy and the end-point of a path, its encoding cost is log(α 1 ), with α 1 is the probability that the path "stops" on that node. We encode with the value log(1α 1 )

the fact that a i is an internal node of a path.

2. Let α 2 be the probability that a i ∈ P and 1α 2 the probability that a i is not in P . In the case where a i ∈ P we must also encode the value ŷi . This requires log(D x ) bits, where D x ≥ ŷ1 is an upper bound on values ŷi .

By multiplying these quantities with the respective cardinalities (| ⇑ P \ P | for the number of internal nodes of paths and | ↓ (↑ P )| for the end-points of the paths), the total encoding cost of P is: In what follows, we detail, as an example, the computation of DL({a 4 , a 5 , a 6 }) given in Fig. 6.2:

DL(P ) = -| ⇑ P \ P | • log(1 -α 1 ) -| ↓ (↑ P ) \ L(H)| • log(α 1 ) -| ↓ (↑ P ) \ P | • log(1 -α 2 ) -|P | • (log(α 2 ) + log(D x )) .
• Starting from the root a 1 , we explore its children {a 2 , a 6 , a 9 }. Then, we consider the node a 2 and explore its children. This requires a cost of -2 × log(1α 1 ) since there are two internal nodes on these paths.

• At that time, the description covers the attributes {a 3 , a 4 , a 5 , a 6 , a 9 } and thus contains P . Since a 6 and a 9 are not leaves, we need to specify that we stop on them. This takes a cost of -2 × log(α 1 ).

• We also specify that a 3 , a 9 do not belong to P (with a cost of -2 × log(1α 2 )) and that a 4 , a 5 , a 6

belong to P (with a cost of -3 × log(α 2 )). Finally, we add the cost to communicate the ŷi values for each attribute of P (with a cost of 3 × log(D x )).

The overal description length of P is then:

DL(P ) = -2 × log(1 -α 1 ) -2 × log(α 1 ) -2 × log(1 - α 2 ) -3 × (log(α 2 ) + log(D x )).

Updating the background knowledge

When a rational user observes some patterns, her background knowledge may change to take into account The conditional probabilities Pr( ŷi | a j ∈O ŷj ) can be computed using the conditional constraints between each x i and its direct ancestor x π i , as expressed by Equation 6.2. These dependencies between variables Y i constitute a Bayesian tree (i.e., a graphical model representation [START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF]) which states that the joint probability between two values of the tree is independent conditionally to the value of their direct ancestor. The probability of a given state (y 1 , ..., y n ) is thus:

Pr(y 1 , ..., y n ) = i∈ 1,n
Pr(y i |y π i ).

The sum-product inference algorithm [START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF] can be used to update the background model. In order to use this algorithm, we first need to derive the corresponding factor graph. This can be constructed by making a factor function f 1 defined on Y 1 , and a factor function f i,π i for each pair (y i ,y π i ). The values of these functions are: f 1 (y 1 ) = Pr(y 1 ), and f i,π i (y i , y π i ) = Pr(y i |y π i ) for each (y i , y π i ). Then, the probability of a given state (y 1 , ..., y n ) of this graph is: The sum-product algorithm works only when the random variables have a finite number of states, while in our case y i take their values in N. To make the use of sum-product possible, we can limit the values of x i to an upper bound D x > max(x 1 , x1 ). If we set D x = 2 20 , x i can variate from 0 to 2 20 , and y i from 0 to 20. For example, if values of xi and xi are all lower than 2 15 , it can be sufficient to set D x = 2 20 , since P r(y i > 20) will be extremely small and negligible. Before running sumproduct, we prepare the values of f 1 for each y 1 ∈ 0, log(D x ) , and the value of each f i,π i for each (y i , y π i ) ∈ 0, log(D x ) 2 :

Pr(y 1 , ..., y n ) = f 1 (y 1 ) • i∈ 2,n f i,π i (y i , y π i ).
• For the factor f 1 , the computation can be done in constant time using the CDF of the geometric distribution:

f 1 (y 1 ) = Pr(2 y 1 ≤ x 1 < 2 y 1 +1 ) = (1 -p 1 ) 2 y 1 -(1 -p 1 ) 2 y 1 +1 .
• For the other factor functions, we have:

f i,π i (y i , y π i ) =Pr(y i |y π i ) = Pr(y i ∧ y π i ) Pr(y π i ) , = 2 yπ i +1 -1 xπ i =2 yπ i Pr(x π i ) • Pr(2 y i ≤ x i < 2 y i +1 |x π i ) Pr(2 yπ i ≤ x π i < 2 yπ i +1
) .

And:

Pr(2 yπ i ≤ x π i < 2 yπ i +1 ) = (1 -p i ) 2 y i -(1 -p i ) 2 y i +1 , Pr(2 y i ≤ x i < 2 y i +1 |x π i ) = I 1-b i (x π i -2 y i +1 -1, 2 y i +1 ) -I 1-b i (x π i -2 y i -1, 2 y i ), with I α (m -k, k + 1)
is the regularized incomplete beta function which can be efficiently approximated [START_REF] Smith | Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions[END_REF]. ). The computation of factor functions can be done once for the studied hierarchy, in order to be used repeatedly by sum-product each time we need to update the model. Sumproduct can be applied as explained in [START_REF] Bishop | Graphical models. Pattern recognition and machine learning[END_REF]. The time complexity of this algorithm is

O(|A| • log(D x ) 2 ),
we recall that |A| is the number of random variables Y i , and log(D x ) 2 is the number of possible values of each pair (y i , y π i ).

Finding the most interesting contrastive antichains

Finding contrastive antichains is computationally hard: the number of antichains in a rooted tree of order n is at most 2 n-1 + 1, as shown by Klazar in [START_REF] Klazar | Twelve countings with rooted plane trees[END_REF]. Also, the interestingness of a contrastive antichain is a ratio of two measures, IC and DL, that vary unpredictably from one pattern to another and for which it is not straightforward to derive non-trivial bounds on their values to prune some uninteresting antichains. Nonetheless, we derive MICA-Miner (Algorithm 9), a heuristic algorithm based on a greedy strategy, which has a polynomial worst case complexity (i.e., O |A| 
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Experiments

In this section, we report our experimental results. These experiments aim to evaluate the performance and the quality of results provided by MICA-Miner in real world datasets. The method was implemented in Java and the experiments were performed on a machine equipped with Intel(R) Xeon(R) CPU @ 4.00GHz, and 128GB main memory, running Debian GNU/Linux 9.6. The code and the data are available 2 . Datasets and aims. We conduct experiments in three real world datasets whose main characteristics are given in Table 6.1:

-FV: Foursquare venues [START_REF] Le Falher | Where is the soho of rome? measures and algorithms for finding similar neighborhoods in cities[END_REF], the nodes a i in this hierarchical dataset are categories of venues3 (food, restaurant, event, etc.). We aim to study the distribution of venue categories in Amsterdam and London, and discover which kind of categories are surprisingly frequent/rare in each of these cities. We then consider two case studies: (1) FV-Ams for Amsterdam: the observed values xi are the values of categories in Amsterdam, (2) FV-Lon for London: the observed values xi are the values of categories in London.

For both cases, the priors xi are the aggregation of categories values throughout 20 well known cities from Europe and USA (London, Barcelona, New York, etc.).

-OFF: Open Food Facts4 is a free food product database that gathers information and data on food products around the world. Each product is described by its food category (Plant-based food, ...) and its country. The categories represent the nodes a i of the hierarchy. We want to compare the distribution -EP Abst: European Parliament5 is a dataset that depicts ballots of the European Parliament between 2014 and 2019. Each ballot is described by the corresponding topics and the votes (for, against, abstain) of each deputy, whose political groups are given. Topics are organized following a hierarchy (e.g., the topic "5.10 Economic Union" is the strict predecessor of "5.10.02 Price policy, price stabilisation"). We build a hierarchical dataset for each political group where the values xi correspond to the number of abstentions: the number of times a deputy from this group abstains in the topic a i . The priors xi are constructed from the total number of ballots by topic.

In this experimental study, we aim to answer the following questions: How much time and memory does MICA-Miner consume in practice? How does the size of the hierarchy |A| impact the performance of MICA-Miner? What is the impact of model updating on the found antichains? Are the antichains found by MICA-Miner relevant and informative? Quantitative evaluation. We study the runtime and memory consumption for (1) the computation of factor functions (see Section 6.3.3), and (2) MICA-Miner.

We vary the number of attributes in the real world datasets as follows: in order to decrease the number of attributes, we iteratively remove leaves that are the furthest from the root, and in order to increase the number of attributes, we duplicate the tree as many times as we need and then we add a new root that links all the duplications. Results are given in Fig. Comparative evaluation. There is no approach in the literature that supports the discovery of subjectively interesting antichains in hierarchies. Nevertheless, we identify some baselines that we consider in our study to highlight the characteristics of the patterns found with MICA-Miner: (1) SI without update which returns the best results according to the SI measure without updating the background knowledge model; (2)WRAcc that uses the W RAcc measure [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF]. This measure has been largely used in Subgroup Discovery in order to evaluate the prevalence of a given class of objects in a specific subset of data (a subgroup). We adapted it to our problem in order to evaluate the prevalence/absence of nodes a ∈ P in the studied dataset. We consider that a subgroup is defined with the antichain P , the size of positive class is xi , and the size of negative class is xi .

We compare the following properties computed in the top k patterns returned in each configuration:

-Average normalized values of attributes: we show the average values of xi x1 corresponding to nodes in the top patterns.

-Average contrast: we want to evaluate how much the values of xi are contrastive comparing with their corresponding xi . We propose to use the following contrast measure defined for an antichain P ⊆ E: contrast(P ) = a i ∈P max(x i ,x i )-min(x i ,x i ) max(x i ,x i )

.

-Redundancy: An important goal of the iterative updating of the model is to avoid communicating to the user similar information several times. For example, after informing the user that a i ="Restaurant" is prevalent, it is less informative to tell her that a π i ="Food" is also prevalent. We aim to measure this kind of redundancy between patterns returned by each approach based on the following measure defined attributes with the highest observed values in the dataset. However, its average contrast is remarkably low. Fig. 6.6 shows the first pattern found by W RAcc in FV-Ams. Most of its nodes are not significantly contrastive, i.e., there is not a high difference between the observed value and the expected value. We can also notice that the values of redund are the lowest for the results of SI, and those of the W RAcc have the highest redund. The value of redund for SI is clearly lower than its value for "SI without update" in FV-Ams and EP-Abst. The difference is not remarkable for the OFF dataset, indeed, since it is a larger dataset, there is less chance to have redundancies in the results. To sum up, our method allows to discover more contrastive antichains than methods that do not take into account the prior beliefs.

Furthermore, updating the background knowledge at each iteration makes it possible to provide less redundant results. Illustrative results. We report in Figures 6.8 with a high number of Fish & Chip Shops, Portuguese Restaurants, and Pubs, and an under-expression of Residences and Airports. We point out that Airport venues can correspond to any place related to Airport (Airport Food Court, Airport Gate, Airport Tram, etc.). After assimilating this first antichain, the user will change her expectations about the rest of the data. For example, she may assume that in general there is a high presence of Food venues and Bars in London, which is also incorporated in our model using the conditional expectation. Due to this hypothesis, the second antichain will notify the user that despite of the high observed values in the first antichain, there is some specific types of Food venues and Bars that are under expressed (American Restaurant, Donut Shop, etc.). For OFF dataset, the Red color quantifies the observed counts of products from France, and blue color corresponds to the expected values derived from products distributions from USA. The first antichain can be interpreted as:

From an American point of view, the French food is characterized with a high number of fresh meals, refrigerated meals, fresh foods, and a low presence of groceries and popcorn products.

Conclusion

We have extended the subjective interestingness framework proposed in [START_REF] De | An information theoretic framework for data mining[END_REF] to consider the case where attributes are hierarchically organized. In practice, beliefs of a user about attributes of a hierarchy influence each other. In other terms, informing the user about the value of an attribute a i will bias her expectations about values of other attributes, especially the parent and children of a i . In order to take into account this dependency, the model that we propose in this chapter exploits the hierarchical relation to both propagate the beliefs and to update the background knowledge. We have used this model to define the novel problem of mining contrastive antichains in hierarchically organized sets of attributes. We have proposed a greedy algorithm that efficiently and iteratively mine contrastive antichains. Extensive empirical results on several real-world datasets demonstrate the performance and the effectiveness of this approach.

In this work, we have studied the hierarchy structure of attributes independently from any graph structure. In fact, the problem of incorporating the dependencies induced by the hierarchy in the interestingness model is already complex on its own. A promising avenue of this work is to integrate this model into SIAS-Miner (see Chapter 4), to mine vertex-attributed graphs where a hierarchical relationship stands between attributes. Or more generally, this model can be used to assess the interestingness of patterns in the Subgroup Discovery task.

Conclusion and Future Directions

Conclusion

We have tackled the problem of mining useful patterns in vertex-attributed graphs, i.e., graphs augmented with attributes describing vertices. We have proposed new pattern languages, interestingness measures, and associated mining algorithms for this problem. Specifically, the main questions that we have considered are: (1) how to identify patterns with discriminative features in vertex-attributed graphs? (2) how to assess the quality of the patterns ?, especially how to take into account the users in such assessment ? (3) when computing the interestigness, how to take benefit from domain knowledge such as hierarchies of attributes?

Chapter 3 aims to answer question [START_REF] Abdelhaq | Eventweet: Online localized event detection from twitter[END_REF]. To this end, we have introduced the new problem of Exceptional Attributed Subgraph Mining. This task is concerned with identifying connected subgraphs having some attribute values that are exceptionally high or low. This problem is rooted on Subgroup Discovery [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF] and Exceptional Model Mining [START_REF] Wouter Duivesteijn | Exceptional model mining -supervised descriptive local pattern mining with complex target concepts[END_REF] frameworks. Indeed, we assess the quality of patterns by contrasting their local subgraph model with the global model of the whole graph. Both local and global models are computed on a same subset of attributes that is enumerated by the mining algorithm. We have defined two algorithms to mine such patterns. First, we have designed an exhaustive method that extracts the complete set of closed exceptional subgraphs. Second, we have proposed a heuristic algorithm to sample the output space of closed patterns to enable time-budget analysis. Experiments have demonstrated the performance of the proposed approach and its ability to identify relevant exceptional subgraphs. However, this approach does not make it possible to answer questions (2) and (3). In fact, the user, her preferences, and her priors are not taken into account. Furthermore, the assimilation cost of the patterns by the user is not considered. Consequently, the proposed patterns may be uninformative (for the user) or too difficult to interpret. Chapters 4 and 5 build on these limitations by proposing methods that aims to take into account the user in the mining process.

Chapter 4 presents a vertex-attributed graph mining approach rooted on the Subjective Interestingness framework defined by De Bie [START_REF] De | An information theoretic framework for data mining[END_REF]. This method incorporates user's background knowledge about the data, and accounts for the assimilation cost of patterns. The interestingness is defined based on information theory, as the ratio of the information content (IC) over the description length (DL). The IC is the amount of information provided by showing the user a pattern. The quantification is based on the gain from a Maximum Entropy background model that delineates the current knowledge of a user. The DL assesses the complexity of reading a pattern, the user being interested in concise and intuitive descriptions.

Thus, we have proposed to redescribe a set of vertices as an intersection of neighborhoods of certain distance from certain vertices, the distance and vertices making up the description of the subgraph. Based on this model, we have designed an algorithm that extracts the set of exceptional attributed subgraphs that are both informative and easy to assimilate. We have also shown how this interestingness model can be updated each time a pattern is presented to the user. This updating technique allows to continuously capture patterns that are not redundant, and that provide new information comparing with the already acquired one from previous patterns.

In Chapter 5, we have proposed another user-driven interestingness for vertex-attributed graphs.

This interestingness aims at integrating user's preferences when assessing the quality of patterns. These preferences are infered from an interactive process where the user is asked to select patterns that she likes.

Based on this measure, we have defined an exceptional attributed subgraph mining method for the task of event detection in social media such as Twitter. This choice is mainly motivated by the assessment of the method. In fact, a large number of people can understand and interpret results of event detection in social media, which makes it more realistic to test and evaluate this approach. In the empirical evaluation, we have first compared this approach with state of the art event detection methods in a data-driven setting, i.e., without integrating user feedbacks. These experiments have demonstrated that the runtime of our approach outperforms state of the art methods by a factor of two to several orders of magnitude, and that the proposed approach is more robust to noise. Second, we have demonstrated the ability of this method to integrate user's preferences, through experiments with real users hired from a Crowdsourcing platform.

Attributes that describe vertices are often organized as a hierarchy. For example, throughout experiments of Chapters 4 and 5, we have employed a graph that depicts areas of a city with the prevalence of different kinds of facilities (food places such as restaurants, colleges, etc.). A hierarchy relation is available about types of facilities, e.g., the attribute "restaurant" is a subtype of the "food", and the attribute "French restaurant" is a subtype of "restaurant". This hierarchy imposes particular constraints on the values of related attributes-e.g. there cannot be more French restaurants than food venues.

Moreover, knowing that a city has many food venues makes it less surprising that it also has many French restaurants, and vice versa. In Chapter 6, we have proposed an approach that explicitly integrates this domain knowledge in the subjective interestingness [START_REF] De | An information theoretic framework for data mining[END_REF] used to evaluate patterns defined on hierarchical attributes. This model accounts for the inferences that the user would make when attributes are hierarchical, which allows to avoid redundancy of information related to these dependencies. We have shown in Chapter 6 how it can be exploited to mine the so-called contrastive antichains, i.e., particular kinds of subsets of their attributes and their values. We have addressed the problem of assessing the interestingness of a contrastive antichain, in the sense that it concisely describes the unique aspects of a dataset, and this while duly taking into account the known attribute dependencies implied by the hierarchy. This approach is capable of accounting for previously identified contrastive antichains, making iterative mining possible.

Future directions

We have addressed different questions related to the problem of mining vertex-attributed graphs. Several interesting results have been achieved, but many problems remain, and new questions come to mind after exploring this subject. In what follows, we will discuss these problems and the different future directions that they can imply.

Alternative feedback formats. The interactive approach proposed in Chapter 5 integrates the user feedback by asking her to select patterns that she likes. The feedback formats can be extended to let the user express her point of view about the results in more diverse ways. For example, we can include the possibility of disliking patterns, or assigning a numerical score (rating them) [START_REF] Mansurul | PRIIME: A generic framework for interactive personalized interesting pattern discovery[END_REF]. However, when more feedback choices are offered to the user, the interactive process becomes more complex. A challenge is to find the good balance between the capacity of the feedback to represent user's preferences and the complexity of interaction.

Alternative priors types. The Subjective Interestingness framework of De Bie [START_REF] De | An information theoretic framework for data mining[END_REF] requires to express the background knowledge as constraints for the Maximum Entropy optimization problem. In Chapter 4, we have considered the attributes and vertices margins (sums) as priors. In Chapter 6, we have shown how to incorporate the attribute hierarchy in the model. For both of these works, we have also presented how to update the model when a given pattern is already a part of the user's knowledge. However, several other types of priors exist. For instance, attributes can be organized as directed acyclic graphs instead of simple hierarchies. Another example of priors is when the user expects that two attributes are highly correlated. How to include such priors into the model? After coming up with solutions for the types of priors that occur the most in real life, an interesting avenue is to design a tool that: (1) allows the user to easily express her priors, (2) encode them as constraints into the model, and (3) derive the corresponding model efficiently.

Integrating both prior knowledge and preferences. We have studied separately the incorporation of user's background knowledge and preferences in the vertex-attributed graph mining problem. In fact, each of this subjects is challenging on it own and requires significant effort of investigation. A natural question that emerges is: how to consider both of them into the same model? such a model would allow to identify patterns that provide to the user new information that falls within her topics of interest.

Consequently, this would improve the quality of vertex-attributed graph mining results. This avenue is challenging as each of the two purposes can alter the other one. In fact, integrating user's background knowledge leads to discovering something new and different, while integrating her preferences produces patterns containing features that are similar to those of the already found ones. How to discover patterns that contain features of interest for the user, but that are new and unexpected?

Presenting patterns to the user. When it comes to complex pattern languages such as attributed subgraphs, an important question needs to be addressed: how to communicate the pattern to the user?

Often, the size of the set of vertices U ⊆ V associated to a subgraph pattern is huge. When this pattern is presented, specifying each vertex of U to the user is overwhelming. In Chapter 4, we have proposed a way to redescribe a set U by the intersection of neighborhoods of a much smaller set of vertices. For example in Twitter, this techniques is able to redescribe a community U as "the common followers of two famous persons X and Y ". Several alternative redescriptions can still be investigated according to the applications, such as spanning trees (network) and paths (biological networks). The use of these redescriptions can be combined with sophisticated visualization techniques in order to provide a pattern rendering that eases the task of data analysis.

Algorithmic aspects. We have proposed algorithms to mine different kinds of patterns defined in this thesis. Some of these algorithms are exhaustive and extract the exact set of results. Although these methods are optimized using closed structures enumeration techniques and efficient upper bounds, their scalability remains limited as the search space size is exponential in the size of the dataset. We have also proposed some heuristic algorithms based on strategies such as output space sampling and gready search.

While these methods scale better in practice, they don't provide any theorethical guarantee about the quality of results. An interesting future direction is to investigate new vertex-graph mining algorithms that are anytime, or that are heuristic with theorethical guarantees. Particularly, anytime algorithms have proven their efficiency in several data mining problems such as Time Series Motif Discovery [START_REF] Zhu | Matrix profile XI: SCRIMP++: time series motif discovery at interactive speeds[END_REF] and Subgroup Discovery [START_REF] Belfodil | Anytime subgroup discovery in numerical domains with guarantees[END_REF][START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF].

More generic attributed graph structures

In this thesis, we have focused on graphs where vertexattributes are counts (non-negative integers). More complex models include attributes with diverse types (Boolean, categorical, real numbers, etc.). Proposing pattern mining approaches to mine these structures makes it possible to handle a much larger number of real world datasets. For instance, De Bie [START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF] shows how to incorporate each of Boolean, real and natural attributes in the subjective interestingness model for mining tiles in binary databases. These results can be extended to propose generic models for mining vertex-attributed graphs.

Mining uncertain (probabilistic) graphs. A special type of graphs is when uncertainty is introduced in the definition of their vertices, edges, or attributes. For example, an uncertain plain graphs G = (V, E, p) can be such that ∀e ∈ E, p(e) is the probability that e exists. These graphs occur in many application domains where data management systems are required to deal with uncertainty in interrelated data, such as computational biology, social network analysis, network reliability. Also, mining this kind of graphs has been highly motivated by the challenge of privacy preserving, particularly after the adoption of the General Data Protection Regulation (GDPR) law by the European Parliament in May 2018. For instance, instead of sharing a graph that depics the exact friendship relations in a social network, the existence of friendships can be communicated as probabilities. While this graph makes it possible to preserve individual information, it still enables mining patterns defined on communities, e.g., mining the densest subgraph [START_REF] Zou | Polynomial-time algorithm for finding densest subgraphs in uncertain graphs[END_REF] and frequent subgraphs [START_REF] Zou | Frequent subgraph pattern mining on uncertain graph data[END_REF][START_REF] Zou | Mining frequent subgraph patterns from uncertain graph data[END_REF], clustering [START_REF] Ceccarello | Clustering uncertain graphs[END_REF][START_REF] Han | Efficient and effective algorithms for clustering uncertain graphs[END_REF], etc.

Mining this kind of graphs is a challenging topic. In fact, many problems that are relatively easy to solve in exact graphs become very difficult (or even intractable) in uncertain graphs. Although the mining of probabilistic graphs has received a great attention when it comes to plain graphs without attributes [START_REF] Ceccarello | Clustering uncertain graphs[END_REF][START_REF] Han | Efficient and effective algorithms for clustering uncertain graphs[END_REF][START_REF] Zou | Polynomial-time algorithm for finding densest subgraphs in uncertain graphs[END_REF][START_REF] Zou | Frequent subgraph pattern mining on uncertain graph data[END_REF][START_REF] Zou | Mining frequent subgraph patterns from uncertain graph data[END_REF], mining uncertain attributed graphs (e.g., vertex-attributed graphs) has not been sufficiently studied. This category of graphs enables a more realistic representation of attributed graphs when data are uncertain. Interestingly, some recent works have been proposed to mine global models (e.g., clustering) in vertex-attributed graphs [START_REF] Li | Clustering uncertain graphs with node attributes[END_REF]. A promissing future direction is to address the problem of mining local patterns in uncertain attributed graphs.

Pattern mining to interpret black box models. The last decade has witnessed the rise of ubiquitous opaque decision systems (black box models), e.g., Deep Neural Networks (DNNs). While many of these systems are able to achieve high prediction accuracy, their internal decision process is often inexplicable.

In other terms, when these models predict a specific output, we are not able to understand what makes them give such a result. This lack of explanation constitutes both a practical and an ethical issue. Indeed, understanding automatic prediction results is crutial in many applications , e.g., safety-critical industries such as self-driving cars, robotic assistants, and personalized medicine. For this reason, many scientific communities strive to provide interpretable machine learning decision models [START_REF] Guidotti | A survey of methods for explaining black box models[END_REF], sometimes at the cost of scarifying accuracy. An interesting avenue in this matter is to investigate the usability of pattern mining techniques to explain black box models, i.e., finding patterns that occur in these models in different contexts to understand their behavior. For example, when it comes to models that can be represented as graphs (e.g., DNNs), interpretable machine learning would take advantage from the advances achieved in the topic of pattern mining in graphs and attributed graphs.
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 1 T h(D, L, C) = {P ∈ L | C(P, D) is true}. It consists in the enumeration of all patterns from a language L that fulfill a user-defined constraint C in a given database D. Let us illustrate this framework on the popular problem of frequent itemset mining introduced by Agrawal et al. [7]. A dataset D = (I, O) is defined by a set of objects O = {o 1 , ..., o m }, 1 where each object corresponds to a subset of items from I = {i 1 , ..., i n }, i.e., for all o ∈ O we have o ⊆ I. An example of such a dataset is given in Tab 1.1. It represents sale transactions in a marketplace: transactions are modeled as objects in O and market products are represented by items in I. The frequent itemset mining problem is concerned with finding itemsets P ∈ 2 I that frequently appear in D. The frequency freq(P, D) of a pattern P is the percentage of objects that contain the itemset P , that is freq(P, D) = |{o∈O|P ⊆o}| |O|
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 11 Figure 1.1: Toy vertex-attributed graph G = (V, E, A) with the set of vertices V = {v 1 , v 2 , ..., v 6 }, and numerical attributes A = {music, politics, sport}. Attributes depict the number of membership groups per topic for each vertex (individual).
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 21 Figure 2.1: Example of a plain graph G = (V, E) with the set of vertices V = {v 1 , v 2 , ..., v 7 }.

Fig 2 . 1

 21 shows a toy graph G = (V, E) with the set of vertices V = {v 1 , v 2 , v 3 , ..., v 7 } and the set of edges E = {(v 1 , v 2 ), (v 1 , v 4 ), ...(v 6 , v 7 )}. As an

  on triplets of vertices. A triplet is three vertices that are connected by either two edges (open triplet) or three edges (closed triplet). A triangle graph therefore includes three closed triplets, one centered on each of the vertices. The clustering coefficient C is defined as: C = number of closed triplets number of all triplets (open and closed).
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 22 Figure 2.2: Toy example of vertex-attributed graph: DBLP co-authorship network.
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 23 Figure 2.3: Toy example of edge-attributed graph: bike trips between three bike stations {v 1 , v 2 , v 3 }. Each edge (trip) is described by the age and the profession of the bike user.

Figure 2 . 4 :

 24 Figure 2.4: Toy example of dynamic graph defined for three timestamps T = {t 1 , t 2 , t 3 }.

  There is a large number of possible partitionnings of the data, let us denote them by C, and C ∈ C is one possible clustering. The quality of a clustering C of a graph G is generally measured by some objective function F (G, C). The clustering task of G can be defined as finding the partitionning C ∈ C that optimizes the following criteria: C = argmax C ∈C F (G, C ). This definition allows one to assign each vertex to only a single cluster. While many of community detection methods in attributed graphs use single-assignment clustering for each vertex[START_REF] Akoglu | PICS: parameter-free identification of cohesive subgroups in large attributed graphs[END_REF][START_REF] Ester | Joint cluster analysis of attribute data and relationship data: the connected k-center problem[END_REF][START_REF] Ruan | Efficient community detection in large networks using content and links[END_REF][START_REF] Zhou | Graph clustering based on structural/attribute similarities[END_REF], Yang et al.[START_REF] Yang | Community detection in networks with node attributes[END_REF] developed an algorithm that identifies overlapping communities using a statistical model of interaction between network structure and vertex attributes. Different models have been used to assess the quality of a partitionning, and several algorithms have been defined to optimize these models. An extensive survey of these works is presented in[START_REF] Bothorel | Clustering attributed graphs: Models, measures and methods[END_REF].
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 25 Figure 2.5: Example of clustering and outlier detection in an attributed graph, taken from [35]. Three detected communities (with different colors), and three detected outliers.

. 6 .

 6 Itillustrates a proximity pattern {a, b, c} in a graph whose vertices are described by the Boolean attributes A = {a, b, c, d, e, f }. The items {a, b, c} often occur together, but it is neither a frequent subgraph, nor a frequent itemset if we require each vertex to have all of the three items {a, b, c}. The specificity of proximity patterns is their flexibility. In order to mine these patterns, Khan et al.[START_REF] Khan | Towards proximity pattern mining in large graphs[END_REF] propose two models: the neighbor association model and the information propagation model. The first one implies an exhaustive strategy that requires to generate all the subgraphs that embed a pattern, i.e., all subsets of vertices that contain the pattern. The authors experimentally show that this model is not tractable in practice. The second model is based on the idea that considers the graph as a representation of reality at a given timestamp. The information (attributes) is propagated through the graph until the graph reaches a stable state G. Then, the proximity patterns are mined as frequent itemsets in G.
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 26 Figure 2.6: Proximity pattern {a, b, c}, an example taken from [122].

  ) M contains at least δ cliques of size k, and these cliques are connected by overlaps of k -1 vertices, (3) M contains all the k-cliques that share the attributes AT B(M ). Mougel et al.[START_REF] Mougel | Finding collections of k-clique percolated components in attributed graphs[END_REF] also propose a complete algorithm to mine k-clique percolated components using a subgraph enumeration strategy.Topological patterns.Prado et al. [175] propose to mine the topology of attributed graphs by finding regularities among ordinal vertex descriptors. Two types of descriptors are considered: (1) the vertexattributes that are initially given with the input graph, (2) some topological properties used to describe the connectivity of the vertices such as the degree, the clustering coefficient, the betweenness centrality, etc. A topological pattern is defined as a set of descriptors associated to a trend. For example, given that {a, b, c} are vertex descriptors, a topological pattern {a + , b + , c -} can be read: the more a, the more b, and the less c in vertices of G. If we consider the DBLP co-authorship graph where vertices represent authors and are described by their h-index, and the number of hours spent on instructional duties, a pattern could represent a set of authors that have a high h-index, spend low time in instructional duties and have a high betweenness centrality (they publish with co-authors that are central in the graph). Prado et al.[START_REF] Prado | Mining graph topological patterns: Finding covariations among vertex descriptors[END_REF] define several interestingness measures for topological patterns, and propose an algorithm to extract such patterns.
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 27 Figure 2.7: Example for the community search problem. Results for this task would be the community 1 if the query vertices are {Bob, Alice}, and the community 2 if the query vertices are {Bob, Charles}.
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 28 Figure 2.8: Example for Subgroup Discovery. A toy dataset of objects having two descriptive attributes and a target attribute.
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 210 Figure 2.10: Example of EMM with a regression model on two target attributes.
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 211 Figure 2.11: Overview of the subjective interestingness framework proposed in [59].
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 31 Figure 3.1: Example of a graph modeling a city.
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 32 Figure 3.2: Example of the distribution of venues in areas.
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 32 Exceptional subgraph). Given a graph G = (V, E, Â) and two thresholds σ and δ, an exceptional subgraph (U, S) is such that (1) |U | ≥ σ, (2) G[U ] is connected, and (3) W RAcc(U, S) ≥ δ.

  Since all the enumerated patterns P = (U 2 , S 2 ) by CEnergetics satisfy U 2 ⊆ S ∪ X and U 2 ⊆ Y , we have always UB(Y, S ∪ X) ≥ W RAcc(U 2 , S 2 ). Thus, if UB(Y, S ∪ X) < δ, we discard the current search space. The number of closed exceptional subgraphs can be exponential in the size of the input dataset. As CEnergetics enumerates the complete set of closed exceptional subgraph, the number of enumeration steps can be exponential too. However, each recursive call has a worst case time complexity in O(max{|A| × |V |, |V | + |E|}): • Computing UB on Line 2 or W RAcc on Line 12 take O(|S ∪ X| × |Y |) i.e. O(|A| × |V |) in the worst case • The computation of the next candidate x ∈ X with the fail first principle (Line 4) requires in the worst case O(|A| × |V |) • Line 5 takes O(|Y |), that is to say O(|V |) at most • Line 6, computing the connected components, takes O(|V | + |E|) • Line 7, max S (CC) is obtained in O(|A| × |CC|). For all the connected components of G[Y ], this requires in overall O(|A| × |Y |), which corresponds to O(|A| × |V |) in the worst case.

3 .

 3 The current random walk stops when U = U and a new one is started from step (1). Otherwise, the random walk continues by repeating Step (2) on the set of vertices U . At each step of the random walk, if W RAcc(U, max S (U )) ≥ δ and |U | ≥ σ, the pattern is added to the output result set.
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 33 For each maximal pattern P = (U, S) with |U | ≥ 1, there exists a maximal pattern P = (U , S ) s.t: U ⊂ U (a strict inclusion) and ∃v ∈ N (U ) \ U with U = clo(U ∪ {v }). Proof. Since we know that for each maximal pattern P = (U, S) with |U | ≥ 1 there exists a maximal pattern P = (U , S ) s.t U ⊂ U (at least the empty pattern P = (∅, (C + , C -))), we prove the property by induction: ∀n ∈ N , for each maximal pattern P = (U, S) such that there exists a maximal pattern P = (U , S ) with U ⊂ U and |U | -|U | ≤ n, there also exists a maximal pattern P = (U , S ) with U ⊂ U and ∃v ∈ N (U ) \ U with U = clo(U ∪ {v }).
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 3 Fig. 3.4 reports the runtime, the number of explored patterns and the number of returned patterns of
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 34 Figure 3.4: Comparison (i.e., runtime, number of explored patterns and number of returned patterns) between CEnergetics and Energetics according to the number of vertices and attributes (default values: number of vertices = 1000, number of attributes = 30).

  Fig. 3.5 reports the behavior (i.e., runtime, number of explored sub-graphs and number of patterns) of CEnergetics on the 10 real-world datasets when varying the input parameters δ and σ. The obtained results confirm the previous findings. The execution time and the numbers of explored and returned patterns increase when the thresholds become less stringent. Interestingly, S.F. C&V is the dataset whose execution times are the most important. This confirms the previous finding that the number of attributes is the most influential data parameter in the discovery of exceptional subgraphs.

Figure 3 . 5 :

 35 Figure 3.5: Impact of parameters δ (1st column) and σ (2nd column) on CEnergetics (runtime in 1st raw, #explored patterns in 2nd raw, #patterns in 3rd raw). Default values are δ = 0.01, σ = 1.
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 36 Figure 3.6: Runtime ratio with respect to the replication factor for real world datasets (δ = 0.01 except SF Crimes and SF C&V (0.03 and 0.05), σ = 1).
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 37 Figure 3.7: Impact of pruning techniques on runtime (1st column), and the number of explored patterns (2nd column). The number of discovered patterns decreases from 10 6 to 140 (not reported on the figures).

Figure 3 . 8 :

 38 Figure 3.8: Distributions of the patterns from CEnergetics and EXCESS with different time budgets (δ = 0). The number of attributes is 10.
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 39 Figure 3.9: Distribution of the output space sampling with different time budgets for datasets with larger number of attributes.
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 3 Figure 3.10: Comparison of distributions of patterns sampled with EXCESS and EXPreSS
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 41 Figure 4.1: Top patterns discovered in the London graph by SIAS-Miner.Green blocks are vertices in the cover, blue blocks are core vertices that are in the cover, red blocks are exceptions (in the neighborhoods but not in the cover). The covers of the top 4 patterns are defined in terms of a single neighborhood with a maximal geodesic radius between two and three, while the cover of the pattern P 14 is defined as the intersection of two such neighborhoods.

Figure 4 . 2 :

 42 Figure 4.2: Overview of SIAS-Miner.

Fig. 4 .

 4 Fig. 4.1 shows some example CSEA patterns returned by SIAS-Miner, applied to a geographic network of London's districts, where attributes indicate the prevalence of different kinds of venues.

Fig. 4 .

 4 Fig. 4.2 illustrates the main steps of the proposed method. (1) SIAS-Miner derives the background model that represents the user beliefs about the input graph as probability distributions. (2) It mines

Fig. 4 .

 4 Fig. 4.3 shows a toy graph where vertices correspond to geographical areas described by number of different venues. An edge links vertices that correspond to adjacent areas (that share a part of their borders).
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 43 Figure 4.3: A toy graph: vertices are geographical regions and they are described by number of different types of venues. Edges connect the vertices that correspond to neighbouring regions.
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 43 The Subjective Interestingness of a CSEA pattern (U, S) is the ratio between the information content IC(U, S) and the description length DL(U, S): SI(U, S) = IC(U, S) DL(U, S) .
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 44 Figure 4.4: Statistics corresponding to the formalized constraints for the case of the toy graph of Fig. 4.3. Left: The distribution of vertices sizes (the first constraint). Right: The total number of each venue type (the second constraint).
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 45 Figure 4.5: The toy graph of Fig. 4.3 with normalized attribute values (p-values indicating how overrepresented the value is as compared to a MaxEnt model with category and vertex size constraints, see Section 4.3.2).

  the number of distinct values of â on the graph. More precisely, the first term accounts for the encoding of the attributes that are restricted. Encoding an attribute over |A| possibilities costs log(|A|) bits. We do this encoding (|S| + 1) times, one for each attribute in S plus one for the length of S. The second term is the length of the encoding of restriction (a, [k ca , ca ]) ∈ S.One bit is used to specify the type of interval ([0, x] or [x, 1]) and the encoding of the other bound of the interval is in logarithm of the number of distinct values of a on the graph.Description length of vertices DL V (U ):As mentioned above, we describe the vertex set U in the pattern as (the intersection of) a set of neighborhoods N d (v), v ∈ V , with a set of exceptions: vertices that are in the intersection but not part of the cover U . The length of such a description is the sum of the description lengths of the neighborhoods and the exceptions. More formally, let us define the set of all neighborhoods

  be the subset of neighborhoods that contain U . The length of a description of the set U as the intersection of all neighborhoods in a subset X ⊆ N (U ), along with the set of exceptions exc(X, U )∩ N d (v)∈X N d (v) \ U , isthen quantified by the function desc : 2 N (U ) × U -→ R defined as: desc(X, U ) = (|X| + 1) • log(|N |) + (|exc(X, U )| + 1) • log(| ∩ x∈X x|). Indeed, the first term accounts for the description of the number of neighborhoods (log(|N |), and for the description of which neighborhoods are involved (|X| log(|N |)). The second term accounts for the description of the number of exceptions (log(| ∩ x∈X x|)), and for the description of the exceptions themselves (|exc(X, U )| log(| ∩ x∈X x|)).

  Let us define SI(P | P 0 ) the subjective interestingness of a pattern P = (U, S) conditioned on the presence of the already observed pattern P 0 : SI(P | P 0 ) = IC(P | P 0 ) DL(P ) = log(Pr(P | P 0 )) DL(P ) .
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 47 For a given set U ⊆ V , clo(U ) extends U by adding vertices that keep max S (U )and N (U ) unchanged:

Figure 4 . 6 :

 46 Figure 4.6: Application of SIAS-Miner to the toy example given in Fig. 4.5 with D N = 1. The first enumeration steps.

Fig. 4 .

 4 Fig. 4.5 with D = 1. SIAS-Miner starts from the root (U = ∅ and C = V ), then goes to Step 2, then Step 3... Let us explain how SIAS-Miner generates Step 2 from Step 1. SIAS-Miner chooses v 1 as the next candidate. This initially givesU = {v 1 }, N (U ) = {N 1 (v 1 ), N 1 (v 2 ), N 1 (v 5 )},and max S (U ) = {(college, [0, 0.3]), (prof essional, [0, 0.3])}. Afterthat, U is extended using the closure operator clo to add candidates that consevre the current max S (U ) and N (U ). It results that U = {v 1 , v 2 , v 5 }. Also, the set of remaining candidates becomes C = {v 6 , v 9 }, because the other candidates do not share a neighborhood and a characteristic with U . Then, SIAS-Miner continues to Step 3. When C = ∅ (like in
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 47 Figure 4.7: A toy example,U = {v 1 , v 3 , v 5 , v 7 } and N (U ) = {N 1 (v 2 ), N 1 (v 3 ), N 1 (v 7 )}, for D N = 1.

Definition 4 . 8 .

 48 and if |Y | = 2, then gain Y (X, U ) ≤ 3. This is the foundation of the function LB defined in what follows. Given the current enumerated description X ⊆ N (U ), the set of vertices U to describe, and the set of potential candidates Cand ⊆ N (U ) \ X, the lower bound function LB is defined as: LB(X, U, Cand) = min i∈ 0,|Cand|

  V the complexity of DL V -Optimise, the delay of SIAS-Miner is in O(max{|V | 2 • (|V | + |A|), C DL V }). In fact, the complexity of making one recursive call of SIAS-Miner when C = ∅ is O(|V | • (|V | + |A)|), which corresponds to the cost of Line 6 (the other lines have lower complexities). SIAS-Miner enumerates the closed patterns in a depth-first manner. The depth of the search space is bounded by |V |, as in each recursive call at least one element v ∈ V is removed from C. Thus, the number of recursive calls between two leaves is bounded by 2 • |V |. Between two enumerated patterns, DL V -Optimise is called once. Therefore, the time delay of SIAS-Miner is O(max{|V | 2 • (|V | + |A|), C DL V }).

-

  The US Flights graph (|V | = 322, |E| = 2039, | Â| = 14) is a dataset provided by Kaggle 9 which contains information about flights between U.S.A airports in 2015. The vertices represent U.S.A airports and the attributes depict the number of flights per airline company in the corresponding airports. Edges connect two airports if there are at least 100 flights between them. -The DBLP graph (|V | = 38, 895, |E| = 112, 404, | Â| = 10) is a co-authorship graph built from the DBLP digital library. Each vertex represents an author who has published at least one paper in 10 major conferences and journals of in the Data Mining and Databases communities 10 , between January 1990 and March 2019. Each edge links two authors who co-authored at least one paper in these conferences and journals. The attributes depict for each author the number of publications in the 10 aforementioned conferences and journals.

Fig 4. 9 :

 9 -Density and relative degree: The density of a pattern (U, S) is 2×|E(U )| |U |×(|U |-1) where |E(U )| is the number of edges in the induced subgraph G[U ], and the relative degree of a vertex v in a set of vertices Uis |N 1 (v)∩U | |U |-1 .These properties are the highest for GAMER, this can be explained by the fact that its

Figure 4 . 8 :

 48 Figure 4.8: SIAS-Miner vs P-N-RMiner: runtime when varying |V | (1st column), |A| (2nd column) and a threshold on the minimum number of vertices in searched patterns (3rd column) for London graph (D N = 3, 1st row), flights graph (D N = 1, 2nd row), ingredients graph (D N = 1, 3rd row), and DBLP dataset (D N = 1,4th row).

Figure 4 . 9 :

 49 Figure 4.9: Comparisons of properties of identified patterns by SIAS-Miner, CEnergetics, and GAMER in London, Ingredients, and Flights graphs.

Figure 4 .

 4 11 the top 3 patterns discovered by SIAS-Miner in DBLP graph. P 1 consists in researchers who are co-authors of Milind Tambe in some of the 10 studied conferences and journals. They have published a significant number of papers in IJCAI conference, and they have never published in VLDB and VLDB Journal. All the co-authors of Yoshio Bengio are included in P 2 , except 5 of them.They publish a lot in ICML and none of them have published in VLDB Journal or DMKD. We Also show in Figure4.13 the best DBLP pattern with more than one core vertex. It corresponds to the common co-authors of Hui Xiong and Enhong Chen, for whom there is a large number of publications in ICDM, a low number of ICML papers, and no publication in VLDB.

P 1 :

 1 {Mexican:[0, 10 -18 ]} + , SI(P 1 ) = 40.34, |U | = 25, exceptions number: P 2 : {Indian:[0, 10 -18 ]} + , SI(P 2 ) = 27.03, |U | = 27, exceptions number: P 3 : {Italian:[0, 10 -18 ]} + , SI(P 3 ) = 24.23, |U | = 18, exceptions number: , P 4 : {Mexican:[0, 10 -18 ]} + , SI(P 4 ) = 17.46, |U | = 15, exceptions number:

Figure 4 . 10 :

 410 Figure 4.10: Top 4 patterns discovered in Ingredients (minV ertices = 5, D N = 1).

P 1 :P 2 : 5 P 3 :Figure 4 . 11 :

 1253411 Figure 4.11: Top 3 discovered in the DBLP graph. P 15 (minV ertices = 5, D N = 1).

Figure 4 . 12 :

 412 Figure 4.12: Patterns discovered in the Ingredients graph. P 15 : the best pattern with more than one attribute in the characteristic, P 71 : the best pattern with more than one core vertex in the description. (minV ertices = 5, D N = 1).

P 1 : 4 Figure 4 . 13 :

 14413 Figure 4.13: DBLP graph: Best pattern with more than one core vertex (minV ertices = 5, D N = 1).

Figure 5 . 1 :

 51 Figure 5.1: Overview of the user-driven event detection system.

  view. From microblogging social media, we consider a set of posts B, a batch1 , where each element b is described by: (1) the set of terms that appear in b (b.terms), (2) the time at which b was sent (b.time), (3) the GPS coordinates of the post of b (b.loc). From such a batch, we collect the following data: (1) A, the set of terms A = b∈B b.terms; (2) T = t 1 , t m , the time interval made of m timestamps 2 , and

Definition 5 . 1 (

 51 User-driven geolocated event). Given a set of posts B, a set of timestamps T , a graph G V = (V, E), and a threshold δ > 0, a pattern P = (U, I), with S ⊆ V and I T (an interval of T ), is a user-driven geolocated event iff (1) G V [U ] is connected and (2) M ud (P ) ≥ δ.

  Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

Figure 5 . 2 :

 52 Figure 5.2: Examples of liked events {P 1 , P 2 , ..., P z }, and the values of rank for terms associated to these events.

Figure 5 . 3 :

 53 Figure 5.3: A toy example that illustrates (a) the subgraph enumeration, and (b) the scores of terms in some vertices.

Algorithm 7 : 4 for P r ∈ R 1 do 5 if 6 return 7

 74567 SGEnumerate(I, U , C, R 1 , δ,minCov) Input: I a time interval, U the current explored subgraph, C the candidate sets, δ the quality threshold, minCov the coverage threshold Output: R 1 the set of events1 P ← (U, I) 2 if C ∩ N (U ) = ∅ then 3 if UB(S ∪ C, I, A(P )) ≥ δ then LB(P, C, P r ) ≥ minCov then Choose a vertex v ∈ C ∩ N (U )8 SGEnumerate(I, U ∪ {v}, C \ {v}, δ, minCov) 9 SGEnumerate(I, U , C \ {v}, δ, minCov) 10 else 11 if M ud (P ) ≥ δ then 12 for P r ∈ R 1 do 13 if cover(P, P r ) ≥ minCov then 14 return 15

Definition 5 . 3 (

 53 Upper-bound on M ud ). Let U ⊆ V , I T , and J ⊆ A. UB is defined as: UB(U, I, J) = v∈U t∈I a∈J max score(a, v, t) × Q ud (a, v), 0 . We denote by Γ(I, U, C) the set of all patterns that can be reached when expanding U by adding vertices from C: Γ(I, U, C) = {(U , I) | U ⊆ U ∪ C and U ⊆ U }, that is to say, the patterns that are generated from SGEnumerate(I, U, C, R 1 , δ, minCov). The following property states that UB(U ∪ C, I, A(U, I)) upper bounds M ud for all subsequent patterns: Proposition 5.3. Let U ⊆ V , I T , and C ⊆ V \ S. For all patterns P = (S , I) ∈ Γ(I, U, C), UB(U ∪ C, I, A(U, I)) ≥ M ud (U , I).

  The two main steps are repeated (lines 8 to 21) until P = P . At each iteration, the pattern P = (U, I) is extended by adding a vertex to U or a timestamp to I. Since U and I are respectively bounded by V and T , this loop necessarily stops after at most |V | + |I| iterations. All patterns with nonzero M ud value have a non zero probability to be generated. Proposition 5.7. For each pattern P = (U, I), if M ud (P ) > 0 then P(P ∈ R 2 ) > 0 Proof. Let us prove it by induction on n = |U | + |I|.

Fig. 5 .

 5 Fig. 5.4 gives an example of an iteration in SIGLER-Samp. The current generated pattern is P = ({v 4 }, [t 3 , t 4 ]). In the next iteration, one of the neighbors of P , or P , is randomly chosen. The neighbors are generated by either adding {v 2 } or {v 6 }, vertices connected to v 4 in the graph of Fig. 5.3, or increasing the time interval.

22 R 2 ←

 222 R 2 ∪ P community detection algorithm on the terms A(U, I) in order to partition them into groups K 1 , ..., K d where (1) ∀i ∈ 1, d :

Figure 5 . 4 :

 54 Figure 5.4: Examples of the pattern sampling approach: P are all the patterns that can be generated from the current pattern P when considering the graph of Fig. 5.3.

Fig. 5 .

 5 Fig. 5.5 presents the F score values achieved by the different approaches when noise rate is varying.

Figure 5 . 5 :

 55 Figure 5.5: Average and error bars of F score values obtained over 10 generated datasets for a given noise rate value (δ = 5 and minCov = 0.8). Non location-aware event detection approaches are not able to detect geolocated events. MED fails in presence of noise. Runtime of SIGLER-Cov increases from 10ms to 2.5s when the noise rate increases.

Figure 5 . 6 :

 56 Figure 5.6: Average and error bars of F score obtained according to δ and minCov. Default values are: noiseRate = 0.8, minCov = 0.8, δ = 5.

Fig. 5 .Figure 5 . 7 :

 557 Figure 5.7: Runtime and number of events of SIGLER-Cov, SIGLER-Samp, MED and GeoBurst when varying the number of tweets (default values of SIGLERs: 2000 vertices, Δt = 3h, δ = 10 and minCov = 0.8).

Figure 5 . 8 :

 58 Figure 5.8: Number of events by SIGLER-Cov and SIGLER-Samp and runtime of SIGLER-Cov according to the number of vertices, and the time granularity when considering the whole dataset (default values: 652k tweets, 2000 vertices, Δt = 3h, δ = 10 and minCov = 0.8).

Figure 5 . 9 :

 59 Figure 5.9: Similarity of the results of SIGLER-Cov with the ones of SIGLER-Samp with respect to SIGLER-Samp time budget.

Figure 5 . 10 :

 510 Figure 5.10: Runtime and number of discovered events by SIGLER-Cov according to minCov and δ (default value minCov=0.8, δ = 40).

Figure 5 . 11 :

 511 Figure 5.11: Ability to take user feedback into account with real users: number of likes (left), average ranks of liked events (center), Nemenyi tests on average ranks (right) for paired samples.

Figure 5 . 12 :

 512 Figure 5.12: Virtual user-driven geo-spatial event detection with SIGLER-Cov and SIGLER-Samp. Number of likes (1st column) and average ranks of events liked by both data and user-driven settings (2nd column), Nemenyi tests on number of likes and average ranks (3rd and 4th columns).

Figure 6 . 1 :

 61 Figure 6.1: Example of hierarchy with counts (counts of venues in a city).

Figure 6 . 2 :

 62 Figure 6.2: Example of an antichain pattern P = {a 4 , a 5 , a 6 }

α 1 and α 2

 2 are user specified parameters. If the user prefers to have patterns P with deeper nodes from the hierarchy (nodes which are closer to the leaves), she can decrease the value of α 1 . On the other hand, if she likes to have patterns P with larger number of attributes, she can increase α 2 .

  these new pieces of information. It results that the observed patterns become expected by her and the background knowledge has to be updated as well. Let us denote by O ⊆ A the set of already observed nodes. The quality of a pattern P can thus be assessed using SI(P |O), the subjective interestingness of P conditioned to the already observed values from O: SI(P |O) = IC(P |O) DL(P ) = log(Pr(P |O)) DL(P ) . Pr(P |O) is the probability that P is present in the data given that the scales of attributes a i ∈ O are equal to their observed values ŷi : Pr(P |O) = a i ∈P Pr(ŷ i | a j ∈O ŷj ).

Figure 6 . 3 :

 63 Figure 6.3: Factor graph of the tree in Fig. 6.1.

Fig. 6 .

 6 Fig. 6.3 displays the factor graph of the hierarchy from Fig. 6.1.

  The complexity for computing all the factor function values is in O(|A| • D x • log(D x )), and the memory complexity is O(|A| • log(D x ) 2

Table 6 . 1 :

 61 Description of the real-world datasets.

Figure 6 . 4 :

 64 Figure 6.4: Time (line) and memory consumption (bars) of the factor functions computation (line 1), and MICA-Miner (line 2) in the studied datasets w.r.t. |A|.

6 . 4 ,

 64 line 1 for the factor functions, and line 2 for MICA-Miner. As it was theoretically expected, the computation of factors requires a time and memory that linearly increase with the number of attributes. Moreover, the time increases for MICA-Miner in a quadratic manner (a fitted model a • |A| 2 + b approximates the time with an average square error below 7(s 2 )), its memory consumption also follows the same quadratic trend.

Figure 6 . 5 :

 65 Figure 6.5: Time (line) and memory consumption (bars) of the factor functions computation (row 1), and MICA-Miner (row 2) in the studied datasets w.r.t. D x .

Figure 6 . 6 :

 66 Figure 6.6: The first pattern based on the W RAcc measure in the FV-Ams dataset.

Figure 6 . 7 :

 67 Figure 6.7: Comparison of (1) normalized supports, (2) contrast, (3) redundancy between the top antichains of the three measures: SI, W RAcc, and SI without model updating.

.Fig. 6 .Figure 6 . 8 :

 668 Fig. 6.7 reports the values of these properties in each of the three configurations (1) SI (our approach), (2) W RAcc measure, and (3) SI without update. These properties are computed based on the top 5 patterns in FV-Ams and EP-Abst, and on top 20 in OFF (since it is a much larger hierarchy). The average values of attributes in W RAcc results are significantly large, its top patterns generally contains

1 # 2 # 3 Figure 6 . 9 :

 12369 Figure 6.9: Top 3 antichains in Open Food Fact dataset (comparison of French products and USA products).

  

  

Table 6 .

 6 1. Eight of them come from[START_REF] Le Falher | Where is the soho of rome? measures and algorithms for finding similar neighborhoods in cities[END_REF] and depict Foursquare venues over 4 US and 4 EU important cities. The venues are described by a hierarchy3 . We consider the first level (10 attributes) in the first series of experiments and the second level (around 300 attributes) for the second ones. SF. Crimes data 4 are provided by a Kaggle challenge and describe the criminal activity in San Francisco. Finally, San Francisco C&V is the combinationafter normalization -of SF. Crimes and Foursquare data over San Francisco. Each city is divided into rectangular zones in such a way that each rectangle contains a minimal number of venues.

	In this experimental study, we aim to examine the behaviors of CEnergetics and EXCESS regarding
	the following questions:

Table 3 .

 3 1: Description of the real-world datasets.

3.4.3 Qualitative study

  We use CEnergetics on San Francisco crimes and venues dataset to automatically identify typical areas of this city. Fig. 3.11 displays 5 discovered patterns. Pattern P 1 depicts neighbourhoods with a high concentration of venues of type professional & other places, and crimes of type embezzlement.This can be explained by its proximity to the Financial District. P 2 is an area located in the West and South-West of San Francisco. It contains a positive contrast of residences and crimes of type vandalism, vehicle theft, burglary. These crimes are known as the most common types of crimes in residential areas. P 3 and P 5 are overlapping patterns located in the North of the city. They characterize areas with a high

	Id	S +		S -		W RAcc size
	P 1	Professional & other places	Residence	0.039	50
	P 2	Outdoors & recreation	Shop & services, Food	0.023	35
	P 3	Nightlife spot	College & university, Travel	0.02	27
				& transport, Professional &	
				other places	
	P 4	Travel & transport	Art & entertainment	0.016	32
	P 5	Office, Building, Medical cen-			0.01	16
		Id ter	S + Venues		S + Crimes		W RAcc Size
	P 6	P 1 Residential building (apart-Professional & other places	Embezzlement	0.008	0.007 30	11
		P 2 ment / condo), Home (private) Residence		Vandalism, Vehicle theft, Bur-	0.006	19
	P 7	Office			glary	0.008	17
	P 8	P 3 Home (private), Food & drink Shop & services		Burglary	0.007	0.06 30	21
		P 4 shop	Shop & services, Nightlife	Drunkenness		0.003	5
	P 9	spot, Art & Entertainment, Taxi, Parking, Donut shop,		0.006	4
		Food Airport, General travel			
		P 5	Outdoors & recreation		Burglary		0.002	20
		Figure 3.11: Patterns discovered in San Francisco crimes and venues dataset (49 attributes)

concentration of venues of type shop & services, outdoors & recreation, and crimes of type burglary. Pattern P 4 describes an area with a positive contrast of crimes related to drunkenness, which can be explained by the high concentration of nightlife spots in this area.

Figure 3.12: Patterns discovered in New York datasets with 10 attributes (patterns P 1 to P 4 plotted on the left-hand side map) 356 attributes (patterns P 5 to P 9 plotted on the right-hand side map).

  5 remaining ones (on the right-hand side map) are discovered on the dataset with 356 attributes. P 1 is located in the South of Central Park. This area is known to be a business and professional area with a low concentration of residences. A sub-area of P 1 is depicted by P 5 with a high concentration of offices, buildings, medical centers. P 2 describes areas with a high proportion of venues of type outdoors More precisely, P 9 contains districts arround John F. Kennedy Airport, and it depicts them with venues of types: Taxi, parkings, donut shops, airport, and general travels. Both P 6 and P 8 represents areas with high proportion of residences. P 8 is also characterized with an important concentration of food & drink shops. P 7 is another pattern that describes a part of South Manhattan with a high concentration of offices.Besides, we mined exceptional subgraphs on the different cities. In most of them (e.g., Barcelona, Paris, Rome, Los Angeles, London), the nightlife spots are mainly located in the city center. The higher concentration of outdoor & recreation places is surrounding for London. For seaside towns, they are concentrated on the coasts.

& recreation. It contains Central Park and some areas located near East River and Hudson River. P 3 covers a part of the South of Manhattan and the North of Brooklyn, with a high concentration of nightlife spots. P 4 covers John F. Kennedy and LaGuardia Airports and their surroundings. This explains the high presence of travel & transport venues.

  Compute the set Next(P ) for P = (U, [t i , t j ])

		, [t, t])	
	3 while current time < time budget do
	4	// Step 1: draw a singleton pattern P
	5	draw P = ({v}, [t, t]) ∼	M ud (P ) v ∈V,t ∈T M ud ({v },[t ,t ])
	6	// Step 2: expansion of P	
	7	P ← P	
	8	repeat	
	9	P ← P	
	11		

10

//

Table 5 .

 5 .1.

	dataset	starting date ending date # tweets # distinct terms
	New York	2016/10/08	2017/01/07	652,244	332,618
	Los Angeles	2017/05/17	2017/07/27	353,541	224,769
	London	2017/05/17	J 2017/07/27 270,648	177,166

1: Description of the real-world datasets.

Table 5 .

 5 2: Top 10 events returned by SIGLER-Cov, MED, and GeoBurst, in NYC dataset, for the first 10k tweets (the day of 8 Oct. 2016). True positive events are market in bold while false negative events are not.

Table 5 .

 5 .3. 3: Distribution of events according to the topics.

	dataset	#	Art/Culture Music Celebration Sport Politics Business
	NYC	800	97	89	212	87	88	1
	LA	489	157	70	18	30	0	7
	London 353	120	32	8	53	3	36

  Barclays Center, Javits Center, Madison Square Garden and Metlife Stadium; LA: City Hall, DisneyLand, Museum of Art and Rose Bowl Stadium; London: City of London, Royal Albert Hall, Soho Theatre and Wembley Stadium.
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  2 • max(log(D x )2 , |L(H)|) , see Section 6.4.1) and whose effectiveness is demonstrated experimentally. Before running this algorithm, we consider that the factor functions f 1 and f i,π i (for each i ∈ 2, n ) are already computed based on the approach explained in Section 6.3.3. GreedySearchInput: H: the hierarchical dataset, values of conditional probabilities Pr(ŷ i |O) for each y i

		Output: P : A greedily constructed antichain
	1 P ← ∅, C ← A, Q ← ∅
	2 while C = ∅ do	
	3	a ← argmax a∈C	IC(P ∪{a}|O) DL(P ∪{a},Q∪{a})
	4	f ← argmax a∈min(C)	IC(P |O) DL(P,Q∪{a})
	5	if	IC(P ∪{a }|O) DL(P ∪{a },Q∪{a }) ≥	IC(P |O) DL(P,Q∪{f }) then
	6			

MICA-Miner is an iterative algorithm that, at each iteration, updates the model using the sum-product algorithm for integrating the previously observed nodes O. It then produces an antichain P based on Algorithm 10:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

https://github.com/AnesBendimerad/ClosedExceptionalSubgraphMining

https://developer.foursquare.com/categorytree

https://www.kaggle.com/c/sf-crime Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés
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The results presented can be extended relatively directly for boolean and real-valued attributes.[START_REF] De | Maximum entropy models and subjective interestingness: an application to tiles in binary databases[END_REF] shows how to derive the background distribution Pr(A) corresponding to these types of attributes.Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

Note empty regions have tail probabilities ĉa(v) = 1 for any attribute and thus fall within any upper interval, but also IC = 0 for any attribute of that region as both lc a = 1 and pav = 1.Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés
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The posts emitted consecutively in a given period of time.

In our experiments, a timestamp corresponds to an interval of
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The runtime for SIGLER-Cov corresponds to the complete process including the post-processing step described in Section 5.5.3. This explains the slight variation of the runtime of SIGLER-Samp for different configurations.Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

https://www.figure-eight.com

134.214.104.134:6001 and 134.214.104.134:6002.

The paired sampled evaluation framework is available at:

134.214.104.134:6002 Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

The unpaired evaluation framework is available at: 134.214.104.134:6001. Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

https://developer.foursquare.com/docs/resources/categories Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

http://goo.gl/6Vx5dz

https://developer.foursquare.com/docs/resources/categories

https://world.openfoodfacts.org/ Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

http://parltrack.euwiki.org/ Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI058/these.pdf © [A.A. Bendimerad], [2019], INSA Lyon, tous droits réservés

Acknowledgements

Algorithm 9: MICA-Miner

Input: H: the hierarchical dataset, pre-computed values of factor functions f 1 and f i,π i for each i ∈ 2, n . Output: R: the antichains sorted based on iteratively updated SI. In order to greedily build an antichain, GreedySearch (Algorithm 10) starts from an empty pattern P = ∅ and a set of candidates C = A. It also uses a set Q that contains the current paths endpoints, i.e., Q contains the already known part of ↓ (↑ P ), and Q will be equal to ↓ (↑ P ) at the end of GreedySearch. In each step, GreedySearch chooses an attribute that will be added to Q and possibly to P , and removed from C (as well as its predecessors and successors). In order to decide which attribute to pick in each step, GreedySearch uses a heuristic IC DL where DL is defined for an antichain P and a set Q s.t. P ⊆ Q ⊆↓ (↑ P ). DL is similar to DL, the difference is that DL does not account for the cost of all the paths endpoints ↓ (↑ P ), but only for Q, the already known part of the final ↓ (↑ P ):

At each iteration, GreedySearch selects two attributes: a ∈ C and f ∈ min(C) such that regarding to IC DL : (1) a is the best attribute to add to P , (2) f is the best attribute to add to Q \ P (i.e., f is the best candidate to remove from C without add it to P ). From a and f , GreedySearch chooses the one that has the highest IC DL . If a is chosen, P is extended by this attribute. Otherwise, f and all its successors are removed from the set of candidates. When C becomes empty, the antichain P is returned.

Theoretical complexity of MICA-Miner

We derive the worst case complexity of MICA-Miner, which depends on the complexity of sum-product and GreedySearch. As stated in Section 6.