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Abstract

Scour at the foot of the seawalls (toe-scour) is one of the major causes of structural
damage to sea-walls, involved in 12% of directly-observed damages. For engineering
purposes, simple empirical approaches are often used to predict toe-scour but these
are often limited. And whilst data from field observations and experimental studies
are both very valuable, they both suffer from practical limitations. Experimental
work for example is limited by similarity constraints and full scale experiments are
expensive, without allowing detailed control of individual parameters. Numerical
simulations therefore offer an interesting alternative but they are not without chal-
lenges. The first problem is the correct modelling of free surface dynamics including
wave breaking processes. The second is modelling the scour development process
and its feedback on the flow pattern. Finally, to be practically useful, the method
should be robust and use reasonably affordable computational resources for full-scale
simulation.

This thesis describes the development of an integrated numerical model based
on OpenFOAM – an open source CFD platform, which includes free surface dynam-
ics, sediment transport and bed deformation processes. The free surface dynamics
are modeled using the Volume of Fluid (VOF) method with wave generation and
absorption capabilities, based on the use of relaxation zones. The sediment trans-
port process is calculated based on the bed load and suspended load approach and
solved for the bed boundary using the Finite Area Method. The bed deformation is
calculated using the sediment continuity equation, and the mesh is updated to take
account of the bed change.

Several calibration tests have been performed to determine the model capabil-
ities. Firstly, a sensitivity analysis was performed to characterize the influence of
mesh size and numerical schemes on wave propagation. Secondly, several methods
were compared for eliminating unwanted wave reflection. The model was then used
to compute the wave-induced mass transport velocity in a closed flume, and the
results compared with the theoretical solution and experimental data. It is shown
that the failure to model correctly the pressure condition at the free surface leads
to an overestimate of the drift close to the surface, which has to be compensated
by an excessive negative drift in the body of the fluid. Fourth, the bed shear stress
calculation is tested by studying the case of an oscillatory flow boundary layer. Two
methods for computing the bed shear stress have been devised and tested with differ-
ent mesh sizes. Finally, a simulation is carried out using all of these developments, to
simulate the problem of erosion induced by the unsteady flow resulting from a dam-
break, and the results are compared with an experimental test case. The sediment
transport occurs mainly in the form of sheet flow, and a new method of simulating
sheet flow has been devised, based on an analogy with dispersion in a fluidized bed.
This approach has the advantage over previous models that it does not require any
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ad-hoc modification of existing sediment transport models. Finally, the complete
model is applied to the case of waves impacting on a sea wall, first for flat bed case
and second for the case of a sloped beach. The hydrodynamic properties of the
flow are analyzed for both cases without using the bed deformation module. In flat
bed, partial standing wave occurs and the model captured streaming pattern well in
boundary layer region. The scour pattern also found agreed well with experimental
measurement. However, instability occurs as ripple formed at the bed. The sloped
beach case show the model captured the incident wave interaction with reflected
wave well. On the other hand, the scour pattern is different with the experiment
despite follow the bed shear stress pattern produced by the model.

Keywords: seawalls, waves, scour, free-surface flow, sediment transport
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Abstract in French

L’affouillement au pied des digues est l’un des principaux facteurs de l’endommagement
structurel des digues, impliqué dans 12% des cas documentés. Pour les applications
pratiques, l’affouillement au pied des digues est souvent modélisé avec une approche
empirique simple qui a ses limites. Bien que des observations sur le terrain et des
travaux expérimentaux soient utiles, il existe des limites dans l’approche. La perti-
nence des expériences en laboratoire est limitée par des problèmes de similitude et
les expériences en vraie grandeur coûtent cher, et ne permettent pas une mâıtrise
des conditions expérimentales. Les simulations numériques nous offrent une alter-
native intéressante mais posent aussi quelques défis. La première difficulté est la
modélisation correcte de la dynamique de la surface libre, y compris le processus de
déferlement de la vague. Le deuxième problème est la modélisation de l’érosion des
sédiments du lit, et l’influence de l’évolution du profil du lit sur l’écoulement. Enfin,
pour être utile, la méthode doit être robuste, ne nécessitant que des ressources de
calcul raisonnables de calcul pour effectuer la simulation d’un domaine d’une taille
pertinente.

Cette thèse décrit le développement d’un modèle numérique intégré basé sur
OpenFOAM – une plate-forme CFD open source – qui comprend la dynamique de
surface libre, le transport des sédiments et le processus de déformation du lit. La
dynamique de surface libre est modélisée à l’aide de la méthode Volume of Fluid
(VOF) avec des zones de relaxation pour la génération et l’absorption de la houle. Le
processus de transport des sédiments est modélisé avec un transport par charriage
et un transport des sédiments en suspension et l’échange avec le lit est calculé avec
la méthode des Surfaces Finies. La déformation du lit est calculée avec l’équation de
continuité des sédiments, et le maillage est déformé pour tenir compte du change-
ment de lit.

Plusieurs essais d’étalonnage ont été effectués pour caractériser les capacités
du modèle. Premièrement, l’influence de la résolution spatiale et des schémas
numériques sur la propagation de la houle ont été étudiés. Puis, plusieurs méthodes
pour éliminer la réflexion de la houle ont été implémentées et comparées. La dérive
de Stokes dans un canal fermé a été calculée et comparée avec les résultats théoriques
et expérimentaux. Il est montré que le modèle surestime la dérive de Stokes près de
la surface, parce que la pression à la surface libre n’est pas calculée correctement,
et ceci induit une vitesse négative trop importante à l’intérieure du fluide. Qua-
trièmement, le calcul de la contrainte de cisaillement du lit a été testé avec le cas
d’une couche limite oscillatoire. Deux méthodes pour le calcul de la contrainte de
cisaillement au lit ont été testées avec différentes résolutions spatiales. Enfin, tous
ces éléments ont été testés ensemble, dans la simulation d’une rupture de barrage
sur fond mobile, avec comparaison des résultats avec une expérience en laboratoire.
Le transport solide est créé principalement par un écoulement de type ‘sheet flow’,
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et un nouveau modèle est proposé pour la prise en compte de ce phénomène, basé
sur la modélisation des lits fluidisés. Cette approche est une adaptation du modèle
standard pour le transport des sédiments en suspension, avec l’avantage de ne pas
nécessiter un modèle propre au phénomène. Enfin, le modèle est utilisé pour simuler
l’impact de la houle sur une digue, avec un lit horizontal et une plage inclinée, sans
déformation du lit. Puis l’affouillement et la déformation du lit sont inclus pour les
deux cas.

Mots-clés: digues, vagues, affouillement, écoulement à surface libre, transport de
sédiments
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Chapter 1

Introduction

1.1 Motivation

Seawalls are one of the earliest types of coastal protection. These marine structures
are built to protect inland areas from erosion, flood or combination of both while
facilitating disembarkation of goods from ships. The earliest known seawalls can be
traced back to the first century BC, built by the Romans in Sebastos Harbor, Israel.
Although relatively little information about the subsequent development of seawall
structures is available, the concept of shoreline protection is already established. As
a small example, dikes were already used by the Xth century in Netherlands and us-
age of stone and masonry also already started early in the XIXth in Belgium (Walker,
2012). The type of structure for seawall has not changed very much, most of them
found today use a protective armor made of wood, stone or concrete. According to
Allsop (2014), the seawall infrastructures inherited from the past are often too far
seaward, exposing them to unnecessarily high hydrodynamic forces, and thus likely
to be aggravated in coming years with the projected rise in sea levels resulting from
climate change. For those reason it might be necessary to consider relocating sea
walls further inland, but in industrial areas, the relocation costs would be huge. For
example, 80m long seawalls in Dawlish-England, failed during a storm in February
and November 2014 (Figures 1.1 and Figure 1.2). The seawalls had been built to
act both as foundations and as protection for railways and their failure caused the
service to stop for two months.

But there are other threats than storms that can jeopardize the stability of sea-
walls. Toe-scour under wave action is the main one. It was involved in 12% of direct
observed damage (an additional 5% indirectly) in seawall structures (Powell, 1987).
Toe-scour is a local phenomenon which is part of the natural processes involved in
coastal dynamics. Indeed, natural sandy beaches are known to have periodic cyclic
behavior under wave action. In the high wave season, the coastline retreats and
replenishes during the low wave season. Seawalls which are located in this dynamic
area interfere with this hydrodynamic process mainly inducing higher wave reflec-
tions and higher wave breaking patterns creating erosion of the sea bed at the toe of
seawalls. The creation of a scour hole results in the degradation of the safety factor
of the seawall foundation stability (Figure 1.3) and eventually may lead to seawall
failure.

There exist some design codes for predicting scour in front of seawalls, based on
a very simple approach or empirical formulations derived from experimental works.
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Figure 1.1: A storm hit the Dawlish seawall, (Dawlishnewspapers, 2014)

The Shore Protection Manual (SPM) (1984) from the United States Army Corps
of Engineers (USACE) gives a prediction of scour depth as equal as the unbroken
wave heights corresponding to the possible water depth at the toe of the seawall.
Dean (1987) also gives a simple approach to determine the scour profile based on
an equilibrium coastal profile. Powell (1987) evaluated several empirical formulae,
including: the SPM rule of thumb, Dean’s approach, Herbich’s equation, Song and
Schiller’s equation. However, their ability to predict wave-induced scour is both
limited in scope and compounded by serious errors in their derivation. Hence, using
these approaches will imply the use of a higher safety factor that leads to an ex-
tra cost for construction. A recent manual from the United Kingdom Environment
Agency (Bradbury et al., 2012) gives a new empirical approach based on extensive
databases involving both published laboratory data and collected field data. This
manual provides conservative formulae to predict the scour depth and can be used
as a preliminary approach.

Whilst both data from field observations and experimental works are valuable,
there exist limitations in the approach. Indeed, field observations are generally
complex to carry out and only a limited number of parameters can be measured.
Experimental works offer a more controlled environment and with the advance in
measurement techniques, they can provide a new insights into the physical pro-
cesses at stake during the scouring process. However, experimental works can also
be limited by scaling factors; moreover, full scale experiments which gives most valu-
able information are quite costly to carry out. However, recent efforts have been
made to build large facilities for example at Deltares, Delft, Netherlands (https:
//www.deltares.nl/en/facilities/delta-flume), where a giant wave flume
300m long, 9.5m deep and 5m wide makes it possible to generate waves up to 4.5m
high, overcoming some limitation related to scaling factors.

Numerical simulations may offer an interesting alternative but the simulation of
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Figure 1.2: Segmental seawall failure at Dawlish, (BBC, 2014)

the wave-induced scouring process is still challenging. Indeed, it requires correct
modeling of the free surface dynamics, which in this case involves a complex break-
ing wave process. The model must also address a possible size evolution of the scour
hole which will eventually induce changes in the flow pattern. Last, it must be based
on a robust algorithms and require reasonably affordable computational resources
for performing full-scale simulations.

This PhD thesis aims to develop a complete numerical solver which can ad-
dress the free surface dynamics, scour calculation and that will be able to couple
both processes. The model is developed in OpenFOAM (Open Field Operation
And Manipulation) software which is an open source Computational Fluid Dynam-
ics (CFD) platform. This work is an extension of a previous model developed by
Jacobsen (2011) and more recently Zhou (2016).

1.2 Outline of the Thesis

The manuscript thesis is composed of six chapters.

Chapter 2 gives some theoretical background about the coastal processes, wave
hydrodynamics and free surface modeling. It provides a brief explanation of the
physical processes in the near shore area, theoretical wave formulae for both regular
and irregular waves, wave breaking, wave reflection and mass transport. A review
of existing numerical methods to simulate free surface dynamics is described. In a
second part, the Volume of Fluid (VOF) method which is used for wave modeling
in OpenFOAM®code is presented. This section discusses different limits including
the sharp interface two-phase method available in OpenFOAM®, the previous in-
terFoam solver which is based on the weighted density averaging and the gfmFoam
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Figure 1.3: Forces acting on a seawall

which uses a sharp pressure jump condition based on the ghost fluid method. Then,
a method for generating and absorbing the waves is explained. Finally, a section is
dedicated to the turbulence model specifically modified for the two-phase flow solver.

Chapter 3 describes some scour implications for marine structure. Basic concepts
of the sediment transport are also explained along with previous works devoted to
scour at toe seawalls. The sediment transport model is based on bed-load and
suspended-load calculation. The bed deformation is calculated based on the sedi-
ment continuity equation. The dynamic mesh in OpenFOAM®is used to update
the mesh based on bed deformation calculation.

Chapter 4 is dedicated to the calibration of a numerical model that will be used to
study scour at the toe of a seawall. Firstly, a sensitivity analysis is performed to an-
alyze the influence of mesh size and numerical schemes. Secondly, different method
for modeling wave reflection and absorption are compared. Then, mass transport
velocities are compared to verify the mean drift in a closed domain. Fourth, the bed
shear stress calculation is tested by studying the case of an oscillatory flow bound-
ary layer. Two methods for the bed shear stress calculation is tested with different
mesh sizes. Finally, a simulation is carried out where all of the aforementioned com-
ponents are involved, including the free surface dynamics, the sediment transport
calculation and the bed deformation module. This numerical simulation is based on
the test case of the mobile bed dam break.

Chapter 5 applies the method to a wave impacting on a seawall with both flat
and sloped bed. A fixed bed simulation is performed at the beginning without the
bed deformation model. The hydrodynamic properties of the flow are analyzed in
this test. Later the scour simulation is performed for both of the cases.
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Chapter 6 provides some general conclusions and a discussion of perspectives for
future work.
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Chapter 2

Wave Modeling

Wave action is known as the main cause of damage to seawalls and it is important
for the numerical model to reproduce the wave hydrodynamics correctly. This chap-
ter defines the phenomena involved in coastal areas including physical properties of
waves and how to model the free surface dynamics in a numerical framework. At
the end of the chapter, the Volume of Fluid (VOF) model for resolving free surface
dynamics is briefly described.

2.1 Coastal Process

A coast is a transitional area between land and sea. Coastal areas are known histor-
ically as one of the main development center of civilizations. As a transitional area,
coasts are influenced by many hydrodynamic processes which make the coastal zone
a complex system. Waves are a major force in coastal process, and are generated
out at sea from either wind, tidal, tectonic or volcanic activities. Wind-generated
waves are the most common type of wave. They are generated by wind stress in
high seas and propagate towards the shore of islands or continents (Figure2.1).

Length of fetch

Generation
Zone

Fully
Developed

Wave
Swell

Wind Wave Direction

Figure 2.1: Wind-generated waves

The wind-wave characteristics depend on the wind speed, the fetch length and
the wind duration. Based on these conditions, there are three type of wind-generated
waves: the fetch limited, duration limited and fully developed sea wave. The fully
developed sea wave is the kind where waves generated by the wind are independent
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of the fetch length and of the wind duration.

Near the shore, waves interact with local bathymetry conditions. Sorensen (2005)
defines, the near-shore as the area extending from deep water to mean sea water
level. Then, the fore-shore is the area which is affected by wave run-up. It corre-
sponds to the surf-zone where the complex hydrodynamical process occur and where
wave breaking takes place. The main process involved in wave propagation are re-
fraction, diffraction, shoaling and breaking.

Winter
Berm Summer

Berm

Scarp

Storm wave profile

Calm wave profile

Breaker
Mean Sea Level

Longshore bar

Coast Backshore Foreshore Nearshore

Surf zone

Figure 2.2: Coastal terminology (Sorensen, 2005)

Wave shoaling and refraction

Wave shoaling is the process of decreasing wave velocity and length as the depth
becomes shallower. Shoaling is not associated with a change in the wave period but
there is an increase in the wave height to maintain constant wave energy flux. Wave
refraction induces a change in the wave direction because of the change of depth.
Assuming a propagating wave, the wave celerity changes according to the water
depth, being slower in shallower water. Because of refraction, the wave direction
tends to approach the near shore perpendicularly. Figure 2.3 shows an idealized sea
bottom contour where refraction changes the wave direction.

Wave diffraction

Waves that approach an obstacle will bend on the leeward side of the breakwater, for
example when there is an island or breakwater installed. This is called the diffrac-
tion process. The diffracted wave crests behind the obstacle approximately form
concentric circular arcs with a wave height decreasing exponentially with respect
to the obstacle distance (Sorensen, 2005). Penney and Price (1952) modelled the
diffraction of sea waves round the end of a long straight breakwater by analogy with
the diffraction of light. The diffraction process is characterized by the coefficient Kd

which is the ratio between the diffracted wave height and the incident wave height.
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Figure 2.3: Scheme of wave refraction approaching the shore (Sorensen, 2005)

2.1.1 Coastal morphodynamics mechanism

Coastline morphodynamics is an integrated complex process involving all the hydro-
dynamic forces. Since the coast acts as a transitional area between land and ocean,
the contributing forces may vary according to the coast morphology. For example,
a coast near a river estuary has a different behaviour than a coast with plain sandy
beaches. Accordingly, this feature holds true for coast with a muddy bed or which
has mangrove plant along its shore. Although, all of this processes based on sedi-
ment transport occurs at the coast. The main coastal process induced by waves is
generally divided into the cross-shore transport and the longshore transport (littoral
drift).

Cross-shore transport

Cross-shore transport is defined as the transport of sediment with a direction normal
to the coast line. It results from a complex process that occurs in the surf zone and
is the main phenomenon that explains changes in the beach profile. In shallow water
at the surf zone, the shoaling wave increases in height with a typical wave profile
consisting of a sharp crest and a flat trough. It induces a non-linearity for the wave
velocity where a higher velocity occurs under the crest and a lower one under the
trough. As the wave increases its height, it eventually breaks. The breaking wave
generates a bore that rushes up the coastal slope in the onshore direction, followed
by a strong return offshore current called an undertow. These processes generate
high levels of turbulence which maintain relatively large quantities of sediment in
suspension. The cross-shore transport results from the combination of these pro-
cesses.

Seasonal patterns can be observed in this process. In high wave seasons, the
undertow current dominates as the result of high wave breaking. The undertow
current directed offshore meets the onshore current from the non-breaking wave. A
breaker bar is formed as a result of these two forces negating each other. Conversely,
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in the calm wave season, the undertow is low and the onshore current moves the
breaker bar to replenish the coast. These processes are described in Figure 2.4.

Point of wave breaking

Predicted bed profile

qsx

qsx
qsx

qsx

qsx

Figure 2.4: Cross-shore sediment transport pattern and breaker bar development
(Fredsøe and Deigaard, 1992)

Long-shore transport (littoral drift)

Long-shore transport is the transport of sediment parallel to the coastline. It occurs
when the wave approaches the beach at an angle. Although an oblique incoming
wave from deep water will tend to bend normal to the coastline because of refraction,
the wave usually breaks before it bends completely. This oblique wave induces a
long-shore transport or littoral drift. The long-shore transport consists of two main
motions; the saw tooth motion which is similar to the cross-shore transport, and
the steady current which is parallel to the coastline, especially in the vicinity of the
wave breaking, which increases sediments in suspension (Figure 2.1).
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Figure 2.5: Wave induced long-shore current mechanism (Sorensen, 2005)
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The long-shore transport is an important parameter that influences coastal ero-
sion or port basin sedimentation. A well known relationship that estimates the
long-shore current is given by Longuet-Higgins (1970). This equation which is in-
cluded in the Shore Protection Manual (USACE, 1984) reads:

Uls = 20.7β(gHB)1/2 sin(2αB) (2.1)

where Uls is the averaged long-shore current velocity, β is the coastal slope, g is
gravity magnitude, HB is the wave breaking height and αB is the wave breaking
direction. Then, the long-shore transport rate (Qls) can be estimated from the
CERC (Coastal Engineering Research Center) formulae given also by US Army
Coastal Engineering Research Center (USACE, 1984):

Qls = K

√
g

γ

H
5/2
B sin 2αB

16(s− 1)n
(2.2)

where γ is the ratio of wave height to the water depth at breaking, n is the ratio of
solid volume to total volume for the sediment, and s is the sediment specific gravity.
K is a coefficient commonly taken as 0.32 for typical beach sands. The long-shore
sediment transport greatly depends on the wave approach angle αB, for different
beach orientations the long-shore sediment transport rate can vary greatly.

Effect of man-made structures

As mentioned before, a coastline including beaches changes seasonally. However,
human activities sometimes require to prevent the coastline receding, for exam-
ple due to the presence of buildings or roads near the coast. Man-made protection
against coastline retreat is usually composed of seawalls or revetment if not by dikes.

These structures change the pattern of the incoming waves and of the sediment
transport. For example, in the presence of a seawall in the high wave season, the
beach cannot deform or retreat because the seawall cuts off the sediment supply
behind it. And since the wave energy is hardly dissipated, this tends to exacerbate
the erosion at the toe of the seawall. The aggravation of erosion due to man-made
structures is still controversial and is addressed in more detail in section 3.1.

Direct interception of the long-shore transport occurs when man-made structures
are built perpendicular to the coastline. A common example is the port breakwater
which stops the supply of sediments and induces erosion on the other side of the
structure. However, man-made structures have also been used as protection. On
an eroding beach, groyne can be built to limit the sediment movement and to pre-
vent the coastline from erosion. However, by intercepting the long-shore sediment
supply, the groyne exacerbates erosion and coastline retreat on the leeward side,
so it is necessary to construct a series of groynes (figure 2.6). Other methods can
also be applied including the installation of offshore (detached) breakwaters which
are supposed to reduce the long-shore transport and to produce a deposit of sed-
iments. These include more complicated process involving diffraction and refraction.
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Figure 2.6: Beach protection using groynes, showing the resulting long-shore trans-
port modification at Nusa Dua, Bali (Google Earth)

2.2 Wave hydrodynamics

In the ocean, the creation of waves and their characteristics constitute a random
process. As a first approximation giving birth to the regular wave theory, the wave
shape can be stated to hold a sinusoidal form. In general, two dimensionless param-
eters are used in the description of the wave theories, namely:

• the wave number, k = 2π/λ

• the wave angular frequency, ω = 2π/T

where λ is the wave length and T is the wave period. In this section, several wave
theories will be described.

2.2.1 Linear wave theory

The linear wave theory is derived from the potential flow theory, assuming a con-
stant 2-D wave with amplitude that is small compared with the water depth and
the wave length, propagating over a horizontal bed, as shown in Figure 2.7.

Following the assumption of the potential flow theory, the fluid is incompressible
and irrotational:

∂u

∂x
+
∂w

∂z
= 0 (2.3)

∂u

∂z
− ∂w

∂x
= 0 (2.4)

where u and w are respectively the velocity components in the x and z direction.
Based on Equation (2.3) and Equation (2.4), the velocities satisfy Laplace’s equation:
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Figure 2.7: Coordinate system for propagating waves adapted from Sorensen (2005)

∂2φ

∂x2
− ∂2φ

∂z2
= 0 (2.5)

Where φ is velocity potential. At the bed, with the assumption of impermeable
bottom, the fluid has no vertical velocity (w = 0). At the free surface, the free
surface velocity equal the water particle velocity at the free surface, which called the
kinematic boundary condition. Evaluating the boundary condition for the unknown
elevation using the linear term of Taylor series gives:

∂η

∂t
= u

∂η

∂x
− w (2.6)

The Bernoulli equation for unsteady flow is given as:

1

2
(u2 + w2) +

p

ρ
+ gz +

∂φ

∂t
= 0 (2.7)

where p is the pressure, ρ the fluid density and g the acceleration due to gravity. At
the free surface, the pressure is zero, then Equation (2.7) becomes:

1

2
(u2 + w2) + gz +

∂φ

∂t
= 0 (2.8)

The boundary condition at the free surface is linearized according to the assump-
tion of H � λ. Hλ2/d3 is called the Ursell parameter. Equation (2.6) and Equation
(2.8) can be rewritten:

∂η

∂t
+ w = 0 (2.9)
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gη +
∂φ

∂t
= 0 (2.10)

Solving the Laplace equation with the boundary condition gives the velocity
potential for the small-amplitude wave theory, or Airy waves, or Stokes first order
waves, which is:

φ =
gH

2ω

cosh(k(d+ z))

cosh kd
sin(kx− ωt) (2.11)

Inserting the velocity potential into Equation (2.10), the water surface profile is
consequently defines by:

η =
H

2
cos(kx− ωt) (2.12)

Eliminating the water surface elevation from Equation (2.9) and Equation (2.7),
the dispersion relationship reads:

ω2 = gk tanh kd (2.13)

The velocities within the flow are given by:

u =
πH

T

[
cosh k(d+ z)

sinh kd

]
cos(kx− ωt) (2.14)

and

w =
πH

T

[
sinh k(d+ z)

sinh kd

]
sin(kx− ωt) (2.15)

2.2.2 Non-linear wave theories

Due to its assumptions, linear wave theory is restricted to cases where the wave
height is small compared with the water depth. In the near shore area, as the water
depth decreases, the small parameter assumption for the water surface elevation
is not valid anymore. Hence, a higher order solution is required to model wave
properties. Other wave theories have been developed including the Stokes second
order wave and the stream function theory. In fact the first order solution is just
the leading term in the Stokes perturbation expansion. Higher order wave theories
involve retaining higher order terms in the perturbation expansion.

Stokes second order wave

Stokes applied a perturbation approach to solve the Laplace’s equation for wave
propagation. Using the similar assumption as for the linear wave theory, Stokes
expanded the nonlinear free surface boundary condition up to the second order
using Taylor series. In fact, the Stokes method is valid for arbitrary order; it just
gets very complicated to develop it at higher orders. By this approach, if the higher
term is neglected, the solution will be identical to the linear wave equation given in
section 2.2.1. The velocity potential is given by:

φ = −Hg
2ω

cosh k(h+ z)

cosh kh
sin (kx− ωt)− 3

32
H2ω

cosh 2k(h+ z)

sin4 kh
sin 2(kx− ωt) (2.16)
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The water surface elevation (η) is given by:

η =
H

2
cos(kx− ωt) +

H2k

16

cosh kh

sinh3 kh
(2 + cosh 2kh) cos 2(kx− ωt) (2.17)

The dispersion relationship is still the same as for linear wave theory (Equa-
tion 2.13). The kinematic properties for Stokes second order wave for u and w
are:

u =
H

2

gk

ω

cosh k(h+ z)

cosh kh
cos(kx− ωt) +

3

16

H2ωk cosh 2k(h+ z)

sinh4 kh
cos 2(kx− ωt)

(2.18)

w =
H

2

gk

ω

sinh k(h+ z)

cosh kh
sin(kx−ωt)+

3

16

H2ωk sinh 2k(h+ z)

sinh4 kh
sin 2(kx− ωt) (2.19)

The validity of Stokes second order wave can be described using the Ursell pa-
rameter, which is given for deep water waves by:

λ2H

h3
� 64π2

3
(2.20)

The Ursell parameter for shallow water waves must satisfy Equation (2.20), be-
cause in shallow water a high second order term creates a bump at the wave trough.
Hence, the Ursell parameter used to ensure that the generated wave has only one
crest must satisfy:

λ2H

h3
<

8π2

3
(2.21)

Figure 2.8 shows how the Stokes second order wave results from a combination
of the first order component and the second order component.

Stream function wave

Stokes perturbation method can be extended to higher orders (for example 3rd and
5th order waves are used in some application), but the effort required to derive the
higher order solution increases rapidly. Also, at higher order it is necessary to make
assumption about the definition of parameters such as the mean water level. The
stream function wave theory was developed to overcome this problem by providing
a general algorithm for the N th-order wave. The stream function, ψ, is defined by:

u = −∂ψ
∂z
, w =

∂ψ

∂x
(2.22)

By substituting Equation 2.22 into the irrotational flow equation (Equation 2.4),
we obtain:

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0 (2.23)

Equation (2.23) is the Laplace equation for the stream function. The stream func-
tion for progressive waves with a coordinate system moving with the wave celerity
C reads:
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Figure 2.8: Stokes second-order waves as a combination of first and second order
components from equation 2.17

ψ(x, z) = Cz − Hg

2ω

sinh k(h+ z)

cosh kh)
cos kx (2.24)

The boundary value problem for a dynamic free surface in the stream function form
must satisfy:

1

2

[(
∂ψ

∂z

)2

+

(
∂ψ

∂x

)2
]

+ gη = Q (2.25)

And the kinematic free surface boundary value is written:

∂ψ

∂x
= −∂ψ

∂z

∂η

∂x
(2.26)

The free surface is assumed to be a streamline and this is also the boundary condition
at at the bed:

∂ψ

∂x
= 0 (2.27)

The lateral boundary condition is written:

ψ(x, z) = ψ(x+ L, z) (2.28)

TheN th-order stream function is approximated by:

ψ(x, z) = Cz +
N∑
n=1

X(n) sinhnk(h+ z) cosnkx (2.29)
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This equation can be solved numerically to satisfy the dynamic free surface
condition. The procedure is usually solved in a discrete domain, composed of i
points. The dynamic free surface boundary condition is then evaluated at every
point, giving the flux Qi which must keep constant. However, Qi is dependent on
X(n), since Qi requires the computation of ∂ψ/∂z, ∂ψ/∂x and of η. Hence, an
iterative procedure is used to satisfy:

Qi =

(
∂ψ
∂z

)2

i
+
(
∂ψ
∂x

)2

i

2
+ gηi = Q (2.30)

Once the condition is satisfied, the values of u, w, and η can be obtained.

Validity of the wave theories

The assumptions required for the development of the wave theories show that they
are not valid in all cases. As the water depth reduces, many of the assumptions are
violated. The Cnoidal wave theory (Korteweg and De Vries, 1895) was developed in
terms of the Jacobian elliptic integral and is more suitable for shallow water waves.
Figure 2.9 shows typical shapes for several wave theories, where it can be seen
that Cnoidal wave shows a flat trough. This is physically relevant since, as the wave
approaches the shore, the shoaling effect causes the particle orbital motion is become
rather elliptic, resulting in a flat trough. Cnoidal waves are also not irrotational. Le
Méhauté (1976) provided a graphical chart to delimit the validity of the different
wave theories based on the height H and the depth h (Figure 2.10). This indicates
that as the wave enters the shallow water region, it tends to become steeper and
at some point it will break because of the wave instability, and no wave theory will
be valid to explain this process. The process of wave breaking will be explained in
the next section. Investigations by Dean (1970) showed that the fifth order Stokes
waves gives a better representation for deep water waves, while Cnoidal wave theory
works better for shallow water waves. Linear wave theory works surprisingly well
for the intermediate waves. The stream function wave theory is found to work well
in all conditions, even in shallow water. However, one may need to use a higher
order of solution to derive the stream function wave for shallow water.

2.2.3 Solitary waves

Solitary waves are infinitely long waves which have no trough. Solitary waves can be
generated in wave flume by moving the wave maker forward without return. With
such a technique the transported mass of water is equal to the water volume dis-
placed by the paddle.

The first model of this type of waves were provided by Boussinesq (1871) and
Rayleigh (1876). The water elevation, η is given by:

η = a sech2

√
3

4

a

h3
x (2.31)

The wave celerity is given by:

c =

√
gh

1− A
(2.32)
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Linear wave

Stokes wave

Cnoidal wave

Figure 2.9: Typical profiles for several wave theories

with A = a/h which is a dimensionless amplitude. The water volume transported
for an infinitely long solitary wave is given by:

V∞ = 4d

√
ah

3
(2.33)

For engineering application, the statement of an infinite length for the solitary
wave is reduced to a length equal to 95% of the wave crest volume and is used as
an equivalent wave length λ. Then, λ reads:

λ =
2.12h√
a/h

(2.34)

The Boussinesq solitary wave is considered as a lower order solution, which is
valid for small A. A higher order approximation is described by Chappelear (1962)
and Grimshaw (1971). Grimshaw expanded the solution up to third order, which
was also proposed by Wu (2014):

η = h

(
AS2 − 3

4
A2S2T 2 + A3

(
5

8
S2T 2 − 101

80
S4T 4

))
(2.35)

with S = cosh−1Kx and T = tanh−1Kx. K is the boundary outskirt decay
coefficient equal to:

K =

√
3H

4h3

(
1− 5

8
A+

71

128
A2

)
(2.36)

The wave celerity is then given by:

c =
√
gh

(
1 +

1

2
A− 3

20
A2 +

3

56
A3

)
(2.37)

2.2.4 Irregular waves

All the previous wave theories consider the motion of regular periodic waves. How-
ever, in practice, regular waves occur relatively infrequently. Indeed regular waves
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Figure 2.10: Wave theory regimes (Méhauté, 1976)
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often only occur in coastal regions because of filtering by refraction of irregular
deep ocean waves. The idea for the irregular wave theory is to represent the real
condition as a combination of regular waves. The simplest combination could be
seen in bichromatic waves where two waves with different parameters combine to
form a single entity. Real waves are composed of waves of many frequencies and a
decomposition is required to obtain a representative wave condition.
To model the wave components in real field, a statistical approach is often used.
The wave is assumed to be composed of a set of periodic waves, each with a differ-
ent frequency and amplitude. A spectral representation of the wave is then made
possible. The probability density function for the wave heights agrees well with a
Rayleigh distribution (Longuett-Higgins, 1952):

pr(H) =
2H

H2
rms

exp−(H/Hrms)2 (2.38)

where Hrms is the root mean square wave height written:

Hrms =

√√√√ N∑
i=1

H2
i

N
(2.39)

where N is the number of waves occuring in a single event. Another common
approach is to construct a wave spectral density model based on many wave com-
ponents. The wave energy density depends on the wave height:

S =
1

8
ρgH2 (2.40)

The general form of the spectral model equation is:

S(f) =
α

f 5
exp−β/f

4

(2.41)

where α and β are the shape and the scale coefficients and f = 1/T is the wave
frequency.

Pierson-Moskowitz spectrum

The Pierson-Moskowitz spectrum was created from recorded data collected in the
north Atlantic ocean. The power spectral density is given by:

S(f) =
αg2

(2π)4f 5
exp−0.74(g/2πWf)4 (2.42)

where W is the wind speed measured at an elevation of 19.5 m and α is a shape
coefficient equal to 8.1× 10−3. The Pierson-Moskowitz spectrum assumes that the
sea condition corresponds to a fully-developed sea.

JONSWAP Spectrum

The Jonswap spectrum (Hasselmann et al., 1973) was derived to model wave climate
in the North Sea with fetch and duration limited seas; this correspond to the majority
of conditions world wide. It is derived from the Pierson-Moskowitz spectrum:
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S(f) =
αg2

(2π)4f 5
exp−1.25(fp/f)4 γa (2.43)

with

a = exp−[(f−fp)2/2ω2f2p ]

ω = 0.07 for f < fp

ω = 0.09 for f ≥ fp

The recommended value for coefficient γ in the JONSWAP spectrum is equal to 3.3.
The coefficient α and the peak frequency fp are given by:

α = 0.076
gF

W 2

−0.22

(2.44)

fp =
3.5g

W

gF

W 2

−0.33

(2.45)

Figure 2.11 shows a comparison between the Pierson-Moskowitz and the JON-
SWAP spectrum. The JONSWAP spectrum peak is higher than the peak in the
Pierson-Moskowitz spectrum.

S
/ρ
g
H

2

f/fp

JONSWAP spectrum

Pierson-Moskowitz spectrum

Figure 2.11: Comparison between the Pierson-Moskowitz and the JONSWAP spec-
trum
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2.2.5 Wave reflection and standing wave

When a wave hits an obstacle, the wave reflection occurs because of the need to
satisfy the impermeability condition on the obstacle boundary. The two waves
propagating in opposite directions will superimpose. If the wave crest from the
incident wave meets a trough of the reflected wave, the contributions from the two
component cancel each other, and as a consequence the water surface elevation
will be equal to the still water level. The location where this occurs is called the
node. Conversely, if two wave crests or two troughs coincide, the water surface
displacement will be doubled. This location is denoted anti-node. The velocity
potential for a standing wave is given by:

φ =
gH

ω

[
cosh k(h+ z)

cosh kh

]
cos kx sinωt (2.46)

Solving equation 2.46 the same way as for the progressive wave shows that the
water surface elevation η is equal to:

η = H cos kx sinωt (2.47)

with x the distance from the reflecting obstacle. The water particle in a standing
wave moves constantly with the same manner (c = 0), which is why the term stand-
ing wave is used, to distinguish from progressive waves. As shown in figure 2.12, a
water particle at the anti-node moves vertically while the particle at the node moves
horizontally.

The reflection rate of the wave is described by the reflection coefficient Cr = Hr

Hi
,

where Hr is the reflected wave height. A partially reflected wave creates a partial
standing wave and this occurs quite often for waves reflected from a seawall. In the
partial standing wave, the node is not at the still water level. The incident and
reflected wave heights, Hi and Hr, can be determined from the surface elevation of
the standing wave:

Hi = ηenv,max + ηenv,min (2.48)

Hr = ηenv,max − ηenv,min (2.49)

where the env indicates the envelope of water surface elevation. Hence, the reflection
coefficient, Cr, can be defined by:

Cr =
ηenv,max + ηenv,min
ηenv,max − ηenv,min

(2.50)

In the experiments, the envelope is found by using a wave gauge which moves slowly
along the tank in front of the reflecting obstacle.

2.2.6 Breaking waves

A wave approaching shallow water shows a decrease in its celerity and a reduction in
its wave length. The wave height then increases to compensate for the wave deceler-
ation to maintain the energy flux. As the water becomes shallower, the wave height
continues to increase until the wave becomes unstable, leading to wave breaking.
Wave breaking can be predicted from the ratio between the wave height and its
depth, denoted as the breaking parameter, γB. The value of γB is between 0.78 to
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Figure 2.12: Standing wave description with particle trajectories (a): full standing
wave ; (b): partial standing wave
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0.8, and is the limiting value for using wave theories in figure 2.10. Observations on
site shows that there exist three typical wave breaking regimes:

• Spilling breakers
Spilling breakers are characterized by the forward slope of the wave top that
becomes unstable. A plume of water and air bubbles slide down the slope from
the crest. Spilling breakers occur on very mild slope.

• Plunging breakers
Plunging breakers occur when the crest of the wave moves forward and falls
down into the trough in front, as a single structured mass of water or a jet. The
impact of the jet generates a splash-up of water which continues the breaking
process and creates large coherent vortices. The jet can reach the sea bed and
stir up considerable amounts of sediment.

• Surging breakers
In surging breakers, the foot of the steep front is unstable and rushes forward
the shore, making the wave crest disappear. This occurs on a steep beach
slope.

Air entrainment

Air pocket

Air entrainment

(a)

(b)

(c)

Very flat beach slope

Steep beach slope

Very
ste

ep
beach

slo
pe

Figure 2.13: Wave breaker types; (a) spilling breaker, (b) plunging breaker, (c)
surging breaker

Galvin (1968) described a fourth type of breaker called a collapsing breaker,
which is a combination of plunging and surging breakers. Physically, wave breaking
is a complex process and really hard to understand. The identification of the wave
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breaker type however can be determined using the wave geometry as described
by Galvin (1968). Using the work of Galvin, Battjes (1974) introduced the surf
similarity parameter ξ, which is the ratio between the beach slope and the square
root of the wave steepness. The wave steepness can be calculated for the deep water
wave H0 or for the breaking wave HB knowing the wave length λ0:

ξ0 =
tan β√

H0

λ0

, ξB =
tan β√

HB

λ0

(2.51)

where tan β is the beach slope. Based on Galvin’s experimental data, Battjes gave
some properties for each wave breaker type:

Spilling breakers : ξ0 < 0.5 or ξb < 0.4

Plunging breakers : 0.5 < ξ0 < 3.3 or 0.4 < ξb < 2.0

Surging breakers : 3.3 < ξ0 or 2.0 < ξb

(2.52)

2.2.7 Mass transport in water waves

Particle trajectories under progressive waves are not closed as can be seen in Fig-
ure 2.14. This results from the difference between particle velocities at the wave
crest and the wave trough. The forward displacement of particles under the west
crest exceeds the reverse displacement of particles under the wave trough, causing a
net drift of water which is known as the Stokes Drift or mass transport phenomenon.
This could be explained from the formulation of small amplitude waves, where in the
interface of the wave crest and of the wave trough, the horizontal velocity is obtained
using a Taylor series decomposition. By neglecting the second order contribution,
the surface velocities can be approximated by

u(x, η) = u(x, 0) + η
∂u

∂z
|z=h

=
gak

ω

cosh k(z)

cosh kh
|z=h cos(ωt− kx) +

ga2k2

ω
tanh kh cos2(ωt− kx)

=
gak

ω
cos(ωt− kx) + a2kω cos2(ωt− kx)

(2.53)

Figure 2.14: Particles trajectory under progressive wave (Van Dyke, 1982)

The Stokes drift formulation does not consider the shear stress at the sea bed
since in this formulation, the sea depth is supposed to be high and the shear stress
at seabed very small. In shallower water, the bed shear stress increases and its effect
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become more apparent. Furthermore, in a closed system (for example for a propa-
gating wave in a tank), the transported mass of water must be compensated by a
return flow. In the work by Russell (1957), Longuet-Higgins described a formulation
of mass-transport velocity in a closed channel that considers the effect of viscous
force in the bottom boundary layer.

Um =
a2ωk

4 sin2 kh

[
2 cosh (2kh(µ− 1)) + 3 + kh sinh 2kh(3µ2 − 4µ+ 1)

+3

(
sinh 2kh

2kh
+

3

2

)(
µ2 − 1

)]
. (2.54)

where µ is the relative depth described as (z/h− 1). Thanks to experiments, Rus-
sel (Russell and Osorio, 1957) showed that the theoretical solution is in a good
agreement with the experiment data. Carter (Mei and Liu, 1972) also performed
experiments in a closed channel. Figure 2.15 shows the results compared with the
Longuet-Higgins solution. All of these experiments (Russell and Osorio, 1957;Mei
and Liu, 1972;Dyke and Barstow, 1981;) show a good agreement at the bottom of
channel with the experiments, while some differences were observed at the surface
(Sleath, 1984).

Figure 2.15: Mass Transport Velocity with kh = 0.79 and a2ωk = 0.378 (H = 2.0,
T = 1.01) (Mei and Liu, 1972)
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2.2.8 Wave Boundary Layer

The information about wave boundary layer is important in order to determine the
bed shear stress in wave induced flow. It has distinct differences if compared with
the boundary layer in a steady flow. In steady flow conditions, the boundary layer
growth depends greatly on downstream distance in the flow, such that, sufficiently
far down stream from the the origin of the boundary layer, the flow becomes fully-
developed. The wave boundary layer, however, is periodical, which mean the velocity
direction changes over time. Hence, the boundary layer thickness depends on the
wave period. A common approach for understanding the wave boundary layer is to
assume an oscillatory flow, driven by a pure oscillatory velocity stream. This can be
produced, for example, by oscillating flow in a U-shaped tube. Assuming the free
stream velocity U∞ varies with angular frequency σ as:

u0 = U∞ sinσt (2.55)

the solution for the horizontal component of the laminar wave boundary layer ve-
locity for u = 0 at z = 0 and u→ u0 at z →∞ can be written:

u(z) = U∞ sin(ωt)− U∞ exp− z

δ∞
sin

(
ωt− z

δ∞

)
(2.56)

where δ∞ is the laminar boundary layer thickness known as Stokes length, defined
as:

δ∞ =

√
2ν

ω
(2.57)

The bed shear stress for a laminar oscillatory flow is calculated as:

τb = ρ
νU∞
δ∞

[sin(ωt) + cos(ωt)] (2.58)

The analytical solution shows a phase shift of 45°of the boundary layer velocity
ahead of the free stream velocity. This analytical solution showed a good agree-
ment with the measurements performed by Sleath (1968) and 1976 in experiments.
However, in turbulent flow condition, the phase shift is smaller than 45°(figure 2.16).

In turbulent flow, no analytical solution is available and the bed shear stress
calculation is usually based on the wave friction factor,fw, which is defined as:

fw =
2τb
ρU2
∞

(2.59)

A range of experimental results are available for estimating fw – see, for example,
Kamphuis (1975).

2.3 Wave numerical modelling

2.3.1 Free surface modelling

The free surface dynamics is one of the main important processes in modelling waves.
The most used formulation today to address this boundary value problem is based
on the depth integrated version of the Navier-Stokes equation, which is known as
Saint Venant equation for the 1D problems and extended to 2D problems by means
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Figure 2.16: Time variation of the bed shear stress for turbulent flow over relatively
small roughness element (Jonsson and Carlsen, 1976)

of the Shallow Water Equation (SWE). The free surface is calculated as the total
water column height and the pressure distribution as a hydrostatic stress. How-
ever, because the fluid velocity vector is averaged over the depth, this method is not
capable of solving the complex free surface dynamics. BOUSS-2D model (Nwogu
and Demirbilek, 2001) is another approach for depth integrated waves modelling
application. It is based on the Boussinesq equation (Boussinesq, 1871) to model the
nonlinear-dispersive waves. While the SWE approach does not involve a frequency
dispersion, the Boussinesq equation allows it, even though it still uses the depth
integrated approach. It is capable of modelling wave transformation processes such
as: shoaling, refraction, diffraction and full or partial reflection. The model also
incorporates a wave breaking model, however it does not resolve the dynamic free
surface due to depth averaging statements.

The use of the full Navier-Stokes equations to solve the free surface dynamic
problem is possible, for example by using linear wave theory or by solving the po-
tential flow model. In the case of problems involving ocean waves, the capability
of these approaches to address wave breaking phenomena is limited. Numerical
approaches for solving complex free surface dynamics have undergone much devel-
opment over the last few years. In general, there are two types of model for free
surface dynamics that will be investigated: the Eulerian method and the Lagrangian
method.

The Eulerian methods are based on a fixed observation of the fluid movement
passing through the computational grid. In these methods, the free surface is usu-
ally assumed as a scalar quantity, and is not straightforwardly defined. One of the
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pioneering method related to this case is the marker and cell (MAC) approach by
Harlow and Welch (1965). This method assigns a marker in the grid (cell) which is
filled by the fluid. The free surface motion is then computed by moving the marker
based on the fluid velocity. The MAC approach has inspired other methods, which
use a scalar properties to define the free surface. However, this method needs high
computational resources and does not perform well if there exists a stagnation point
in the flow. The extension of the MAC method is the volume of fluid method (VOF)
by Hirt and Nichols (1981). Instead of using a marker, the fluid is marked as its
fractional volume in the computational cell, with 1 corresponding to a cell full of
water and 0 to an empty cell. This eliminates the problem of the high number of
markers used in the MAC method, and also conserves the fluid mass because the
volume fraction is only advected based on fluid velocity. The level set method (LS)
is the other common method for addressing free surface dynamic problems. It uses
a signed distance function to determine the free surface, where the free surface cor-
responds to a signed function equal to zero. The signed function is not bounded
unlike the VOF which need to be between 0 to 1. This is the advantage of the
level set method which does not need an additional numerical scheme to bound the
solution. However, the mass conservation may not be satisfied, hence some addi-
tional terms are added in the equations to improve the conservation of the fluid mass.

The Lagrangian method is based on a moving observation of the fluid, which
means that the observer accompanies the fluid movement. Here, the solution of
the free surface dynamics, if processed through a mesh based calculation, needs a
re-meshing to follow the free surface position. The task may become quite diffi-
cult if the free surface dynamics are very complex since the mesh can be distorted
and as a result the calculations may not converge. This explains why the meshless
method is very popular to solve this problem. The smoothed particle hydrodynam-
ics method (SPH) (Gingold and Monaghan, 1977) which was initially developed to
solve astrophysical problems in a three-dimensional open space was later adapted
for fluid dynamics simulations. The moving particle semi-implicit method (MPS)
by Koshizuka and Oka (1996) which solves the governing equations using the semi-
implicit prediction correction rather than the fully explicit solution in the SPH
method was derived from the SPH method. The advantage of meshless or parti-
cle based methods is that the definition of the free surface is straightforward since
directly represented by the position of the fluid particles. Moreover, it can handle
large and complex deformations of the free surface.

Both of these methods were successfully used to simulate free surface dynamics
problems. The VOF method is used in many free surface flow applications, espe-
cially wave breaking simulations (Lin and Liu, 1998; Guignard et al., 2001; Hieu et
al., 2004) which have also been modelled using the SPH method (Monaghan, 1994;
Rogers and Dalrymple, 2005). While both approaches give reasonable results, SPH
needs higher computational resources if a high resolution is required. The detailed
formulation used in free surface simulations is described in section 2.4.

2.4 Volume of Fluid Method

The hydrodynamic model used in this thesis is based on the VOF method, which
is an Eulerian-mesh based approach for solving the flow of a two-phase immiscible
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fluid. The model is developed based on the interFoam solver in OpenFOAM®. It
uses the conditionally averaged momentum formulation, which is known to induce
an additional acceleration of the lighter fluid phase (Vukčević et al., 2017). Another
approach proposed by Vukčević et al. (2017) based on the ghost fluid method is also
described.

2.4.1 Conditionally averaged volume of fluid method

The existing two-phase immiscible fluid flow solver in OpenFOAM®solves the in-
compressible continuity and Reynold-averaged Navier Stokes equations as one mix-
ture of fluid:

∇ ·U = 0 (2.60)

∂(ρU)

∂t
+∇ · (ρUU) = −∇p− ρg +∇ · τ + fσ (2.61)

where ρ is the fluid mixture density, U is the velocity vector, p is the total pressure,
g is the gravity vector, τ is the stress tensor and fσ is the effect of surface tension.
The pressure is defined as the modified pressure, pd, which is obtained by removing
the hydrostatic pressure:

pd = p− ρg · x (2.62)

where x is the position vector. This modified pressure is then introduced into
equation 2.61 for the pressure gradient term:

∇pd =∇p−∇(ρg · x)

=∇p− ρg − g · x∇ρ (2.63)

The stress tensor τ then reformulated for efficient numerical evaluation following
Rusche (2003):

∇ · τ =∇ ·
(
µe
(
∇U + (∇U)T

))
=∇ · (µe∇U) +∇ ·

(
µe(∇U)T

)
=∇ · (µe∇U) + (∇U) · ∇µe + µe∇(∇ ·U)

=∇ · (µe∇U) + (∇U) · ∇µe (2.64)

where µe is the effective viscosity with µe = ρ(ν + νT ). Combining equation 2.63
and equation 2.64 into equation 2.61 gives:

∂(ρU)

∂t
+∇ · (ρUU) = −∇pd − g · x∇ρ+∇ · (µ∇U) + (∇U) · ∇µ+ fσ (2.65)

The volume fraction α is defined as the fraction of the cell volume which is filled
with water, hence it is defined as:

α =


1, if the cell is filled with water

0 < α < 1, in the interface region

0, if the cell is filled with air

(2.66)
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Herein, any physical property Φ is given by:

Φ = αΦ1 + (1− α)Φ0 (2.67)

the subscripts 1 and 0 are related to the physical properties of water and air re-
spectively. The transport of the volume fraction is defined as a passive advection
induced by the fluid velocity, U:

∂α

∂t
+ α∇ ·U = 0 (2.68)

The compression of the interface is given by adding an artificial compression
term in equation 2.68 as described by Rusche (2003):

∂α

∂t
+ α∇ ·U +∇ · (Urα(1− α)) = 0 (2.69)

Ur is the compressive velocity which is only active at the interface. Indeed, the
multiplier α(1 − α) is equal to zero in the non-interface region. The solution of
the continuity and momentum equations are obtained using the velocity-pressure
coupling (Issa, 1986), as specifically described for OpenFOAM®by Jasak (1996).
Vukčević (2016) found that this method induces an additional acceleration in the
lighter fluid also known as a spurious velocity, which is particularly significant when
there is a high density ratio as in the water-air case. It comes from the imbalance
between the modified pressure gradient, ∇pd, and the density gradient,∇ρ.

2.4.2 Ghost fluid method

Vukčević et al. (2017) assumed the governing equations as those for a single phase
fluid which gives:

∇ ·Ui = 0 (2.70)

∂Ui

∂t
+∇ · (UiUi)−∇ · (νe,i∇Ui) = − 1

ρi
∇pi + g (2.71)

The subscript i denotes the fluid index, νe,i is the kinematic viscosity, pi is the
pressure and g is the gravity. ρi is assumed constant for incompressible flow. For
convenience, βi is introduced as the inverse of density, 1

ρi
and a modified pressure

pd,i is introduced:

− βi∇pi + g = −βi∇pi +∇(g · x) = −βi∇
(
pi −

g · x
βi

)
= −βi∇pd,i (2.72)

Substituting equation 2.72 into equation 2.71, the momentum equation for in-
compressible single phase flow becomes:

∂Ui

∂t
+∇ · (UiUi)−∇ · (νe,i∇Ui) = −βi∇pd,i (2.73)

Assuming that equation 2.73 works for the whole system, for the two-phase flow
the index i is removed, which gives the equation following Vukčević et al. (2017):

∂U

∂t
+∇ · (UU)−∇ · (νe∇U) = −β∇pd (2.74)
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Equation 2.74 is valid for both of the phases, however it does not hold for the
free surface.

Free surface jump condition

The existence of different phases at the free surface is addressed by introducing
a jump condition. The approximation of the jump condition is summarized in
Vukčević et al. (2017):

• The velocity field is continuous even between different phases;

• The surface tension is neglected considering the scale of the problem;

• The tangential stress balance assumes a continuous effective viscosity;

• There is a pressure jump in the free surface because of a jump in density.

The jump condition is introduce into the equations through the use of brackets
[...]. The sign convention following the ghost fluid method is: − is for small distances
from the lighter phase, + is for small distances for the heavier phase, Γ is at the free
surface. The kinematic jump condition at the free surface is given by:

[U] = U− −U+ = 0, U ∈ Γ (2.75)

Equation 2.75 states that the velocity field across the interface is continuous.
The dynamic pressure jump condition and the pressure gradient jump condition is
given by:

[pd] = − 1

β
g · x (2.76)

[β∇pd] = 0 (2.77)

This jump condition is then applied in a finite volume discretization near the
free surface for the dynamic pressure and density. This discretization method will
be explained briefly in Appendix B, and for further details the reader can refer to
Vukčević (2016) and Vukčević et al. (2017).

2.4.3 Wave generation and absorption

One main important force in coastal and ocean problems usually comes from waves.
When generating waves in a confined environment, such as in a physical laboratory
or in a numerical model, it is necessary to take into account waves absorption to
reduce the reflections at the boundaries of the domain, boundaries which may not
exist on site. In numerical approaches, there are different methods for addressing
the absorption of waves. Three methods are considered here: body force method,
relaxation zone and dynamic absorption. The wave generation, however is only avail-
able and described in the relaxation zone method and in the active wave absorption
method.
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Body force dissipation based on velocity field

The idea of this method is to introduce a damping body force with a magnitude
which depends on the velocity field and the location of the grid cell within the
studied domain. The damping body force, fd is in fact a linear wave damping or a
quadratic wave damping. The linear wave damping is described by:

fd,l = ρCd,lU (2.78)

and for quadratic wave damping:

fd,q = ρCd,q|U|U (2.79)

Cdamp is the damping coefficient which varies in space. A smooth blending func-
tion is used to avoid a sudden increase of the damping force to avoid reflection at
the entrance to the damping zone. Choi and Yoon (2009) give a combination of
both approaches using a blending function defined by the damping coefficient:

fd,m = ρ (Cd,l + Cd,q|Uz|) fb(x)Uz (2.80)

where Uz is the vertical component of the velocity and fb(x) is the spatial blending
coefficient with fb(x = 0) = 0 and fb(x = λd) = 1. λd is the damping zone length.
Perić and Abdel-Maksoud (2016) give a practical approach to determine the damp-
ing coefficient.

For the linear wave damping, Cd,l is given as:

Cd,l = Ψlσ (2.81)

where Ψl = π, σ is the wave frequency and λd = 2λ.

For the quadratic wave damping, Cd,q is given as:

Cd,q = Ψqλ
−1 (2.82)

where Ψq = 2π · 102 and λd = 2λ.

Relaxation zone

The relaxation zone uses a blending function to impose the wave field in the com-
putational domain. Jacobsen et al. (2012) implemented the relaxation zone method
in a toolbox called waves2foam, which is available as an open source extension in
OpenFOAM®. The relaxation zone acts as a sponge layer, which uses a source term
to dissipate the wave, modifying the wave field into the desired target function. It
is similar to the approach of Mayer et al. (1998). This application can also be used
at the wave generation boundary, because the target function can be associated to
the propagating wave field.

The blending function involves the weighting coefficient, βR, and appears explic-
itly in U and α:

U = (1− βR)Utarget + βRUmodel (2.83)

α = (1− βR)αtarget + βRαmodel (2.84)
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The weighting coefficient of the blending function is given by:

βR = 1− exp(χ3.5
R )− 1

exp(1)− 1
(2.85)

where χR is the relative distance, defined as (x−xstart)/(xend−xstart). The value of
βR ranges between 0 at the outer boundary of the relaxation zone and 1 at the inner
boundary in contact with the studied system. Figure 2.17 shows the implementation
of the relaxation zone in a wave tank.

βR βR

χR χR

1 1

1 1

Wave inlet Wave outlet

Figure 2.17: Relaxation zone weight across the wave tank

Active wave absorption

The body force method and the relaxation zone method both need an extra domain
to dissipate the wave energy, which increases the required computational resources.
The active wave absorption method uses a similar approach which can also be used
in a physical model test. In a physical model, the wave maker movement takes into
account the measured feedback to avoid the re-reflection of incoming wave. The
wave absorption method is based on the work of Schäffer and Klopman (2000) and
was developed for three types of problems: 2D, quasi-3D and 3D. In OpenFOAM®,
it was implemented by Higuera et al. (2013) in the IHFoam package.

The 2D active wave absorption is based on the shallow water theory, where the
velocity along a water column is constant. The velocity field relationship can be
derived:

Uh = cη (2.86)

Assuming a shallow water regime, the wave celerity c is given by c =
√
gh. The

condition at the boundary is modified in order to cancel the incoming wave field
with an opposite correcting velocity, Uc:

Uc = −
√
g

h
ηR (2.87)

with ηR the free surface corresponding to reflected wave. The 2D active wave absorp-
tion works for waves perpendicular to the boundary, hence it allows the tangential
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component of the wave to propagate. The quasi-3D approach is developed to absorb
the oblique wave. The method involves a modification of equation (2.87) by pro-
jecting the calculated correcting velocity onto the wave direction. The 3D method
calculates the mean horizontal velocity with its mean direction. This velocity is then
decomposed according to the normal and tangential direction of the boundary. The
total expected modulus, Ucalc of the velocity is calculated from equation 2.87:

|Ucalc| =
√
g

f
ηR (2.88)

The decomposition of Ucalc gives:

U2
calc = U2

c + U2
tg (2.89)

Hence, the correction velocity is described as:

Uc =
√
U2
calc − U2

tg (2.90)

The implementation of the active wave generation is similar to the relaxation
zone method, by setting the velocity, U, and the volume fraction, α, at the model
boundary. The value of the velocity and of the volume fraction is taken from the
wave theory. The wave generation boundary can include an active absorption con-
dition by correcting the inlet velocity.

2.4.4 Turbulence modelling and bed shear stress calculation

The wave breaking usually generates high levels of turbulence and this aspect must
be taken into account in the model. Resolving the turbulence in a direct numeri-
cal simulation and large eddy simulation requires a huge amount of computational
resources, hence the Reynold-averaged (RANS) approach is generally used. The
incompressible two-equation k − ωSST is used based on Menter (1994):

∂k

∂t
+∇Uk = Pk − β∗ωk +∇ · [(ν + σkνt)∇k] (2.91)

∂ω

∂t
+∇Uω =

γ

νt
G−βω2 +∇·

[(
ν + σω

k

ω

)
∇ω
]

+2(1−F1)
σω,2
ω
∇k · (∇ω)T (2.92)

Pk = min(G, 10β∗kω)

G = νt∇U
(
∇U +∇UT

)
νt =

a1k

max(a1ω, SF2)
(2.93)

here k is the turbulence kinetic energy, Pk is the production term of k, ν is the kine-
matic viscosity, νt is the turbulence kinematic viscosity, ω is the specific dissipation
rate, S is the mean rate of strain tensor, β∗ and a1 are coefficients which are equal
respectively to 0.09 and 0.31. The k − ωSST uses a blending function, F1 and F2.
The blending function is involved in σk, σω, β and γ, for arbitrary variable φ such
as:
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Table 2.1: Default value for k − ω SST model coefficient

φ σk σω β γ
φ1 0.850 0.500 0.075 0.553
φ2 1.000 0.856 0.083 0.440

φ = F1φ1 + (1− F1)φ2 (2.94)

The default value for each variable is given in table 2.1 as found in Devolder et al.
(2017). The existing turbulence model implementation in OpenFOAM®is generic,
hence no two-phase systems can be addressed. It generates high levels of turbulence
at the free surface, because the phase difference leads to a high velocity gradient and
the model assumes that a high shear is induced at the free surface region. The high
turbulence intensity generates a high turbulence viscosity which is able to dissipate
the wave. However, this does not agree with experimental observations because for
a free surface flow between water and air, shear only occurs in a small layer of flow
and can hardly generate a high turbulence. This problem was reported by several
authors such as Mayer and Madsen (2001),Liu and Garcia (2008) and Jacobsen and
Fredsøe (2011).

A different approach is used in this work. A buoyancy based correction in the
free surface region is introduced as proposed by Devolder et al. (2017). The density,
ρ, is included in the equation and a buoyancy term, Gb, is added into the turbulence
kinetic energy equation. The resulting equation reads:

∂ρk

∂t
+∇ρUk = ρPk +Gb − ρβ∗ωk +∇ · [ρ (ν + σkνt)∇k] (2.95)

∂ρω

∂t
+∇ρUω =

γ

νt
ρG− ρβω2 +∇ ·

[
ρ

(
ν + σω

k

ω

)
∇ω
]

+ 2(1− F1)ρ
σω,2
ω
∇k · (∇ω)T (2.96)

Gb = −νt
σt
∇ρ · g (2.97)

σt = 0.85 is a scalar to weight the buoyancy influence on the equation. The buoy-
ancy term is only active near the free surface region, where the gradient of density
is not zero. Near the wall the boundary condition as described by Jacobsen and
Fredsøe (2011) is used:

ωnw =
uf√
β∗κ∆y

(2.98)

and for k:

knw =
u2
f√
β∗

(2.99)
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2.4.5 Bed shear stress calculation

Several methods are available to calculate the bed shear stress. The bed shear stress
for a turbulent flow can be described as:

τb = −ρ(νt + ν)∇U (2.100)

This method is applicable for small cell sizes, where the velocity gradient can be
evaluated correctly. Another method consists in using the wall function to obtain
the friction velocity. Based on the wall function, the boundary layer flow is divided
into a viscous sub-layer and a logarithmic layer (figure 2.18). The wall function
formulation uses several dimensionless parameters:

y+ =
yuf
ν

(2.101)

u+ =
utg
uf

(2.102)

10-4 10-210-3 10-1 100

0

5

10

15

20

25

10-1 100 101 102 103

U
+

y+

ξ

inner layer outer layer
log-law regionbuffer layerviscous sublayer

log law

U+=y+

Figure 2.18: Velocity profile according the wall function

y+ is the dimensionless wall distance, u+ is the dimensionless velocity, y is the
distance from the wall, and utg is the tangential velocity. In the viscous sub layer,
the viscous force dominates the flow and a linear relationship of u+ and y+ is defined
such as:
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Table 2.2: ks estimation based on sediment grain diameter (Sleath, 1984)

Acker-White (1973) ks = 1.25d35

Einstein (1950) ks = d65

Engelund-Hansen (1967) ks = 2d65

Hey (1979) ks = 3.5d84

Kamphuis (1975) ks = 2d90

Mahmood (1971) ks = 5.1d84

u+ = y+

uf =

√
utgν

y
(2.103)

This approximately valid for y+ < 5. The logarithmic layer starts at y+ > 30
and the friction velocity for a smooth wall is defined as in a logarithmic form:

u+ =
1

κ
ln y+ + 5.5

utg
uf

=
1

κ
ln
yuf
ν

+ 5.5 (2.104)

Equation 2.104 is non-linear, hence an iterative method is required to calculate
the friction velocity. Between 5 < y+ < 30, there is no established relationship for
the friction velocity. However, the two formulations intersect at y+ = 11. In this
model, y+ = 11 is used as the boundary for the formulation used between y+ = 5 and
y+ = 30. If y+ is less than 11 equation 2.103 is used and for y+ > 11 equation 2.104
is used. For rough walls, the u+ value is calculated based on the roughness height:

u+ =
1

κ
ln
y

z0

(2.105)

Here z0 is the roughness length defined as ks/30 with ks the Nikuradse rough-
ness coefficient. ks is estimated based on the sediment grain diameter. Several
relationships are available for estimating ks, as explained in table 2.2. ks = 2.5d50

is frequently used (Raudkivi, 1998).
As described in section 2.2.8, the calculation of the bed shear stress in an os-

cillatory flow is based on the wave friction factor, fw. While there exist graphical
results based on experiments by Kamphuis (1975), in numerical models this method
is not practical. Hence, an generalized expression is used (Rijn, 2007):

fw = e−6+5.2(a/ks)−0.19

(2.106)

with a:

a =
ubT

2π
(2.107)

where in this case, ub is the maximum free stream velocity near the bed.
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2.5 Conclusion

In this chapter, a brief explanation of the hydrodynamic processes in coastal ar-
eas were described. Several methods to model the free surface dynamics were also
mentioned. In particular, two well known methods to model systems were waves
occur were reported: the smoothed particle hydrodynamic (SPH) method using the
mesh-less lagrangian framework and the volume of fluid (VOF) method using a fluid
volume approach in an eulerian framework. They are both capable of modelling the
complex free surface dynamics and are already used in many coastal engineering
applications.

In this work, the VOF model from foam-extend OpenFOAM®4.0 is used because
of its robustness and suitability for large scale simulations. In particular, two types
of VOF solvers are studied: the interFoam solver based on the conditionally aver-
aged method and gfmFoam (Vukčević et al., 2017) based on the ghost fluid method.
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Chapter 3

Sediment Transport Modeling

This chapter describes the modeling of sediment transport. First, the general pro-
cess of sediment transport and its effects on marine structures and the environment
are introduced. Then, the numerical solution of such a problem is developed to-
gether with its limits.

3.1 Effects of scour on marine structures

Marine structures are often exposed to extreme weather conditions which are ex-
pected to become worse due to the climate change. Scour is a major concern when
designing such structures since it affects the foundations of the structures and as a
consequence their stability. The scouring process in the marine environment is influ-
enced by many factors especially the driving forces arising from waves and currents.

Scour is generally a result from a non-balanced sediment transport process. It
occurs when the supply of sediments is smaller than the transport rate of sediments
away from the observation area. Sediment transport is commonly characterized by
three different processes:

• A bed load transport which consists in a transport of material that stays in
contact with the bed during the transport process ;

• A suspended load which consists in a transport of material that moves with
the flow without continuous contact with the bed, as a result of agitation by
the fluid turbulence

• A wash load which consists in a transport of very fine material which is nor-
mally not represented in the bed

In calculations of sediment transport, the wash load is often neglected.

3.1.1 Sediment transport process

The lift and movement of grains on the bed is determined by a threshold value de-
scribed by Shields (Shields, 1936) as the Shields parameter. This movement depends
on the shear stress at the sea bed and is due to friction forces between the fluid and
the grain of the seabed.

θc =
force

resistance
=

τcd
2

(ρs − ρw)gd3
=

τc
(ρs − ρw)gd

(3.1)
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θc is known as the critical Shields parameter, τc is the critical shear stress, ρs
and ρw are respectively the density of the grain and of the water, and d is the
grain diameter. The critical Shields number can also be described using the critical
friction velocity uf,c, given τc = ρu2

f,c:

θc =
u2
f,c

(s− 1)gd
= f(Re∗) = f

(
uf,cd

ν

)
(3.2)

where Re∗ is the particle Reynolds number and s is the grain specific gravity (relative
to water density). Re∗ indicates whether the grain protrudes into the turbulent
boundary layer or stays within the viscous sub-layer. It differs from the normal
Reynolds-number and gives no indication about the flow characteristics of the flow
as a whole (which is usually turbulent). Van Rijn (1984) replaced the Re∗ parameter
by introducing a dimensionless particle diameter d∗ given as:

d∗ = d
[
(s− 1)

g

ν2

]1/3

(3.3)

with ν the kinematic viscosity of water. Soulsby (1997) introduced an equation for
calculating the critical Shields number based on the dimensionless particle diameter:

θc =
0.3

1 + 1.2d∗
+ 0.055(1− exp−0.02d∗) (3.4)

Figure 3.1: Critical shear stress according to Shields (top), van Rijn and Soulsby
equation (Soulsby, 1997) (bottom) (Schiereck, 2003)

Figure 3.1 shows the critical Shields number given by Shields (1936) in terms of
Re∗, and the models of van Rijn (1984) and Soulsby (1997). On the other hand, Ein-
stein (1950) developed a theoretical approach for predicting the sediment transport
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rate, using probability theory to account for the statistical variation of the agitation
forces on the bed particles caused by turbulence. There are also numerous empirical
formulae for calculating the sediment transport rate such as the the ones proposed
by Meyer-Peter-Müller (1948), Engelund and Fredsøe (1976), Van Rijn (1984), and
Wu (2000). More details, will be given in section 3.3.

3.1.2 Scour problems on seawalls

As described in section 2.1.1, waves generate cross-shore and long-shore transport
of sediments. Introducing a structure in this environment disturbs the natural pro-
cess of sediment transport. In this case, two main concerns arise: the impact of
structures on the environment and the safety of the structure itself. Seawalls are
often constructed as a land protection from the storm or the receding coast line.
Even if the influence of seawalls on the sediment transport pattern is still debatable,
seawalls placed near the surf zone influence the coastal hydrodynamics. Pilkey and
Wright (1988) concluded that there are three ways in which a seawall can degrade
the coastline:

1. by passive erosion due to conditions which existed before the wall was in place,
2. by active erosion due to the modification of the sediment budget due to the

seawall (but subject to debate),
3. construction of the wall in the inter-tidal zone.

Kraus and McDougal (1996, 1988) investigated the effect of seawalls on the beach
and found that the contribution of wave reflection to the beach profile change might
be not as great as believed. Accordingly, several studies (Barnett and Wang, 1988,
Griggs et al., 1991, McDougal et al., 1994, Moody, 1996) showed that the wave
reflection is probably not a significant contributor to the beach profile change or
scour in front of seawalls, at least during a storm. Moody (1996) also found that the
erosion rate of a beach in front of a seawall was almost identical to the one without
the seawalls.

To better understand how the presence of seawall affects the long-shore trans-
port, Kamphuis (1992) conducted a set of three-dimensional tests on an infinite
beach backed by a seawalls. He found that the long-shore sediment transport rate
in front of seawalls decreased as the beach in front of the seawalls eroded. In their
experiments, Dean and Yoo (1994) also found that the presence of seawall affects
the long-shore sediment transport behaviour. The sediment material was found to
move rapidly in a coherent body instead of in a diffuse way. Kraus (1996) pointed
out that this might be the result of scale effects (small scale experiments) since they
did not find such effects in numerical simulations (Hanson and Kraus,1985; 1986).

From experiments, Sumer and Fredsøe (2000) found that scour in front of a
rubble mound breakwater is smaller than in front of a vertical wall. The results
also showed that the location of the scour is shifted (Figure 3.2) compared with
scour in front of a vertical wall. The difference observed between these two types
of structures is related to the reflected waves which are less intense for a rubble
mound breakwater which generates partial standing waves instead. It highlights
the importance of wave reflections in the scour process. Moreover, the influence of
external sources of additional turbulence could enhance the bed shear stress and the
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associated bed load transport rate (Sumer et al., 2001).

Figure 3.2: Maximum scour depth at the breakwater for regular waves in live bed.
(a) Vertical-wall breakwater (b) Rubble-mound breakwater Sumer and Fredsøe, 2000

The field study by Miles et. al (2001) showed some agreement with Sumer and
Fredsøe’s experiments. By measuring the wave reflection in front of sea walls and
comparing it to that for a natural beach, they found a higher reflection coefficient
in front of sea walls (three times more than for a natural beach) which resulted
in a higher sediment transport rate both in the cross-shore and along shore direc-
tion. Moreover, they found that the suspended material tends to increase in the
presence of seawalls. Indeed, the cross-shore current at the measurement rig was
found to be off-shore, while the value near the seawalls is found to be on-shore. The
wave reflection tended to reduce the net on-shore transport slowing down the pro-
cess of beach recovery. However, the observed value measured at the rig lay inside
the error bar of the measurements so it was not possible to draw definite conclusions.

The along-shore sediment transport is found to increase due to the washing of
suspended materials by the along-shore current or as the effect of inevitable reflec-
tion of waves on the walls. However, according to Kamphuis et al. (1992), as the
beach at the front of seawalls erodes, the breaking wave decreases and less suspended
material is found in the along-shore current. Then, the role of the seawalls in deter-
mining the along-shore sediment transport is still not clear.

Sutherland et al. (2006) showed that there is no obvious direct connection be-
tween the wall slope and the scour depth. Indeed, some experiments showed that
a 1:2 sloped wall gave a result similar to that for a vertical wall. Sutherland et al.
(2006) suggested that scour is more sensitive to water depth at the structure toe ( h

L
)

and to the Irribaren number (surf similarity parameter, Equation 2.51). This result
shows that scour depends on the wave breaking regime in the front of the structure.

Another influence comes from the ocean current, usually generated by the tide.
Sutherland’s experiments (Sutherland et al., 1999) for a detached breakwater showed
the ability of the current to shift the scour location along the toe of breakwater.
Recent experiments conducted by Cartensen and Sumer (2015) showed differences
between the pattern obtained from the scour caused by the waves alone and that
caused by a combination of waves and current. However, the experiments were
carried out at a small scale and it is difficult to generalize the conclusions to full
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scale systems. A direct comparison of the bed profile subjected to waves with and
without current is therefore not meaningful according to these authors. However, a
sediment regime change from a suspension regime to a no-suspension regime when
the current was added was observed which is worth mentioning.

Sumer and Fredsøe (2001) carried out an extensive review of the effect of pore
pressure in the seabed on scour. It is known that the pore pressure can induce a
liquefaction of the sandy bed. However, it is still unclear whether wave-induced pore
pressure gradients close to the critical values have an effect or not on scour and sand
transport. In steady flow conditions where an upward flow can cause fluidisation
of the bed, bedload transport rates may significantly increase near the threshold
condition. Scour and coastal responses in the presence of seawalls proved to be a
combination of complex hydrodynamic processes and definite conclusions about the
relative influence of each process on scour are still uncertain.

3.1.3 Protection measure against scour

As mentioned in section 1.1, scour is a major factor contributing to seawall failure.
To limit this risk, the possibility of scour occurring can be taken into account in
the seawall foundation design or by protecting the seawall toe from scour. Including
the scour depth in the structure design requires a correct prediction of the process
since an overestimate of the erosion will increase the cost of the structure. It is also
possible to limit scour by increasing the grain diameter in the potentially scoured
area, because this will decrease the Shields parameter in the zone of possible erosion
thereby limiting the transport of sediment. Figure 3.3 illustrates some protection
measures that are commonly employed to protect seawalls against scour.

Any intervention in front of the seawall may just shift the problem without totally
solving it (Figure 3.4). Nevertheless, some experiments showed that a protection
layer in front of the toe wall tends to decrease the scour depth even if a new scour
hole is generated in front of the protection layer (Xie, 1981). The reduced scour
pattern at the toe of the wall then depends on the length of the protection layer.
Finally, no essential scour was found over a distance of half a wavelength when the
protection layer length is more than 3λ

8
. Sumer and Fredsøe (2000) also investigated

the protection layer influence on toe scour in their experiments. The protection layer
length should be at least equal to the length of the scour hole without protection
layer as shown in Figure 3.5. Another test carried out with several layers of stone
protection showed that the scour depth tends to be constant if the protection layer
reaches a certain value, in this case after 4-5 layers (Figure 3.6). However, no study
has examined the combined influence of the number of layers and the length of
the protection layer, which makes the study of the influence of both factors incom-
plete. Furthermore, the authors used coarse sand for the sea bed, so poor sediment
suspension was expected in this case which limits the generalizeability of the results.

3.2 Numerical modelling of sediment transport

The scour calculation is generally based on the sediment transport formulation.
Then, scour is defined as the imbalance of sediment transport rate in a given control
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Toe Protection

Maximum ScourOriginal Ground Original Ground

Pile Foundation

Figure 3.3: Typical toe protection for sea walls

Figure 3.4: Detailed bottom profile of scour with toe protection for protection length
of λ

4
and λ

8
(Xie, 1981). L is the protection length and λ is the wave length.

Figure 3.5: Scour depth as a function of the width of the toe protection apron. l is
the toe protection length (Sumer and Fredsøe, 2000)
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Figure 3.6: Influence of the number of layers of stone on the performance of the toe
protection apron. N is the toe protection layer (Sumer and Fredsøe, 2000)

volume. To understand the scour development in front of a marine structure, one
could start from the natural process of coastal dynamics. But since coastal erosion
is usually addressed using a simple approach, the physical processes involved are not
properly modeled in detail. Early attempts to estimate coastal erosion were based
on the equilibrium profile approach developed by Bruun (1962) which is known as
the Bruun rule. Bruun assumed that the sand volume in an equilibrium profile is
constant, hence in response to the sea level rise, the loss of sand from coastline
retreat will be deposited in the off-shore region. Kriebel and Dean (1985) developed
a schematic model to estimate the coastline change in response to storms without
modeling the physical processes of the erosion. Larson et al. (2004) also developed a
model for dune erosion calculation based on an analytical formulation. This model
combined a transport relationship for the dune based on the wave impact theory
with the sediment volume conservation equation. The analytical solution was used
for solving the governing equation and the model was validated using available ex-
perimental data. The model itself was defined as an approximate estimate of the
erosion process in the initial project stages. Despite assumptions based on physical
processes, the analytical approaches rely on many simplifications that may be vio-
lated in complex cases.

The development of computational resources makes the process based numerical
model a feasible approach. In this case, it is possible to include the complete formu-
lation of hydrodynamic effects into the model for more detailed results. There are
mainly three types of models based on the sediment transport and scour calcula-
tion which are: dynamic mesh method, phase-resolving method and particle based
method.
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Dynamic mesh method

The dynamic mesh method is a fluid solver with mesh deformation capabilities to
accommodate bed change. The fluid solver is used to calculate the flow field and the
sediment transport rate. The bed deformation is calculated from a flux balance for
the sediment transport and the computational mesh is then deformed to fit the new
bed profile. Roulund et al. (2005) successfully applied the method to calculate the
scour around a circular pile. The model is based on the 3D incompressible Navier-
Stokes (N-S) equation with the bed load sediment transport formulation based on
Engelund and Fredsøe (1976). Liang et al. (2005) used a similar approach to calcu-
late the scour below a pipeline where the bed load equation is based on Van Rijn
(1984a). However, both simulations did not resolve the free surface dynamics. Gis-
lason et al. (2009) used a similar approach to study the scour and deposition caused
by a standing wave in the front of a reflecting breakwater. Similarly to Roulund’s
calculation, the simulation did not resolve the free surface dynamics, instead a kine-
matic boundary condition was used. Hence they were not able to take account of
wave breaking. Liu and Garcia (2008) introduced the N-S based model, icluding
free surface dynamics by means of the VOF method. The model is based on the two
phase immiscible flow solver in OpenFOAM®. The equation is solved on an un-
structured mesh using finite volume discretisation and the suspended load is taken
into consideration. Jacobsen et al. (2011; 2014a; 2014b) used a similar approach to
simulate the development of a breaker bar offshore of a planar coastline. This sim-
ulation solves the bed load equation in the bottom patch of the finite volume mesh
based on the Finite Area Method (FAM) developed by Tuković (2005). This work
included the development of wave generation and absorption based on relaxation
zones (Jacobsen et al., 2012). A similar approach was also used by Zhou (2016)
to perform a scour simulation using the test case of Roulund et al. (2005). More
recently, Sattar et al. (2017) studied the morphological development of a bend in
a channel, using bed load, suspended load and mesh deformation with a modified
VOF method. The free surface dynamics used the ghost fluid method to resolve the
pressure discontinuity between the water and the air interface. However, this type
of model becomes unstable when high deformation of the interface occurs because
the mesh quality cannot be conserved.

Concerning the bed deformation, a structured grid can be used where the grid is
not deformable but the properties associated to the sediment can evolve (immersed
boundary method). This holds some advantages, where the grid must not necessar-
ily follow the frontiers of the modeled objects. Various studies have been performed,
based on this approach, amongst them Wei et al. (2014) and Ahmad et al. (2015).
Recently, Peng et al. (2018) developed the novel partial cell technique and applied
it successfully to model scour at the front of seawalls.

Phase resolving method

The bed load and suspended load approach which is used in the dynamic mesh
method depends on empirical formulations based on experimental data. It also can-
not resolve the bed dynamics, which also depend on the mechanical characteristics
of the bed materials. The phase resolving method is based on a two-phase model
where one of the phases models the bed materials. It is possible for this type of ap-
proach to incorporate the real interaction between the fluid and the sediment. The
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main component of this method is the modelling of the different physical processes
involved in sediment transport, includings: fluid-particle interaction, turbulence ef-
fects and particle-particle interaction. Asano (1991) developed a two-phase model
to investigate oscillatory sheet-flow, based on a continuum assumption for the fluid
and cohesionless sediment mixture. The turbulence model uses the mixing length
formulation whilst the intergranular stress is based on a relationship by Savage
and Mckeown (1983). The model is capable of predicting the fluid and sediment
transport velocity obtained in experiments, however some discrepancy is found for
fine-grained sediments. Bakhtyar et al. (2010) used a similar approach for the sed-
iment transport in the inner-surf and swash zone. The VOF method was used to
solve the free surface dynamics. The turbulence closure was modeled using the two
equation k− ε model. The inner particle closure was modeled as in Bagnold (1954).
The governing equation was discretized based on the finite-difference method. The
model provided qualitative agreement with existing experimental data. However,
by solving two momentum equations, the model consumes more computational re-
sources. More recently, Chauchat et al. (2017) introduced a two-phase model for
fluid and sediment interaction based on the OpenFOAM®framework. It offered two
types of sediment closure, one based on Mohr-Coloumb friction and the other on
µ-I rheology. The model was shown to be able to compute sediment transport, and
represent scour processes, and is available as open-source code. However, it did not
resolve the free surface dynamics. Most of the models described above also assume
that the bed remains permanently saturated, so sediment parameters do not change
(as they might if the bed is exposed to air), and there are no groundwater effects.

Particle based method

The particle based method uses a particle based solver to model the sediment com-
ponent. Hajivalie et al. (2012) combined the free surface dynamic solver based on
the VOF method with a discrete granular model by Yeganeh-Bakhtiary et al. (2009).
The model uses a one-way coupling approach, in which the fluid affects the particle
movement but there is no influence of the particles on the flow. The model is used
to simulate the scour process in front of a vertical breakwater with a horizontal bed.
The model was shown to be capable of predicting the steady streaming and the scour
pattern when compared with the experimental results. Li et al. (2014) also devel-
oped a model based on VOF, taking into account particles using the cell method, to
investigate scour under a subsea pipe. The particle distribution is calculated using
the Liouville equation based on Snider et al. (1997). The inter-particle stress is mod-
eled as a continuum medium based on the model by Snider (2001). Other methods
use particle based modeling for both the fluid and solid phase. Shakibaeinia and
Jin (2011) developed a weakly compressible moving particle semi-implicit method
for mobile-bed simulations of the dam break problem. Vetsch (2012) on the other
hand combined the SPH method with the Discrete Element Method for the same
application. Particle-based models for the solid phase give greater freedom for mod-
elling the physical processes that occur in the sediment bed, and, in particular, the
changes that occur between dry and submerged conditions (Jafari-Nodoushan et al.
(2017)). However, the particle based method is known to be computationally more
demanding than mesh-based methods. The solution of a large scale problem with a
long simulation time requires huge computational resources, especially if one wants
to use a fine particle resolution.
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Conclusion

The existing methods for solving free surface dynamics and sediment transport pro-
cesses to investigate the scour process, have been presented, including those that will
be used in this study. These methods have shown their capacity to give reasonable
results for scour related problems, for example scour under a pipeline (figure 3.7),
scour due to a jet flow (figure 3.8) or wave induced scour Liu and Garcia (2008)
and Jacobsen and Fredsøe (2011). The volume of fluid method with dynamic mesh
deformation has been chosen for this study because it has been found to be accurate
and to require less computational resources.

(a)

(b)

Figure 3.7: Application of numerical model for investigation of scour under pipe
line based on: a. dynamic mesh method (Liang et al., 2005) and b. particle based
method (Li et al., 2014)

3.3 Sediment Transport Formulation

The sediment transport is computed on the basis of information related to the bed
load, the suspended load and using the sediment continuity equation from the ero-
sion and deposition rate. The model solves the equation in three steps, also denoted
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(a)

(b)

Figure 3.8: Application of numerical model for investigation of scour under jet
flow on: a. dynamic mesh method (Zhou, 2016) and b. phase resolving method
(Chauchat et al., 2017)

hereafter as modules: the hydrodynamic, sediment transport and morphodynamic
modules. First, the hydrodynamic problem with a free surface is solved. The bed
shear stress is then calculated in the hydrodynamic module. The bed load and the
suspended load are calculated separately based on the bed shear stress. Then, the
sediment continuity equation is solved to obtain the bed deformation in the sediment
transport module. Finally, in the morphodynamic module, the bed deformation is
used to modify the mesh configuration. There are two kinds of mesh used in the
model, first the finite volume mesh which is used for the fluid hydrodynamics and
suspended load transport calculation, and secondly the finite element mesh which
is used for the bed load calculation and which must satisfy the sediment continuity
equation. The brief explanation of the finite element discretization is explained in
Appendix A.3. The scheme for the sediment transport module is shown in Figure 3.9.

3.3.1 Bed load transport

The bed load transport as already explained in section 3.1,is described as the trans-
port of sediment which remains in contact with the bed. In this model, the bed load
transport Φb is formulated using a dimensionless bed load transport rate qb:

Φb =
qb√

(s− 1)gd3
50

(3.5)

where s is the sediment grain specific gravity, g is the gravity and d50 is the median
sediment grain size. The dimensionless bed load transport rate is then calculated
from an empirical or an analytical formula based on a relation between the Shields
number and the critical Shields number. The formula developed by Engelund and
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for Dynamic of Free Surface
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Exner Equation
for Sediment Continuity

Finite Volume Mesh
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Figure 3.9: Sediment transport model scheme

Fredsøe (1976) will be used in this work. It is based on a balance between stabilizing
and destabilizing forces as proposed by Bagnold (1954). The dimensionless bed load
transport formula is given by:

Φb = 5pb

(√
θ − 0.7

√
θc

)
(3.6)

where pb is the probability that a sediment grain near the surface of the bed will
move. It is derived from experimental data from Fernandez Luque and Van Beek
(1976) and Guy et al. (1966). By limiting the maximum value of pb = 1, pb reads
(Engelund and Fredsøe, 1976):

pb =

[
1 +

(
πµd

6(θ − θc)

)4
]−1/4

(3.7)

where µd is the dynamic friction coefficient of the grains which is equal to tanφd.
φd is the dynamic friction angle of the sediment grains.

The results presented in this report were obtained using the formulation of En-
gelund and Fredsøe (1976).

The dimensional form for bed load transport can be obtained from equation 3.5.
However, it only gives the magnitude of the bed load transport, qb. The bed load
transport vector is assumed collinear to the bed shear stress and following Liu and
Garcia (2008) is equal to:

qb = qb
τb
|τb|

(3.8)

The critical shields number calculated from Equation 3.4 was derived for a hor-
izontal bed. For a non-horizontal bed, the critical Shields number is corrected as
follows (Liu and Garcia, 2008):
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θc = θc0

cos β

√
1− sin2 ψ tan2 β

µ2
s

− cosψ sin β

µs

 (3.9)

where µs is the static friction coefficient, β is the angle of the bed slope and ψ is
the angle between the bed shear stress vector and the bed slope vector.

3.3.2 Suspended load transport

The volumetric concentration of the suspended load transport is governed by an
advection-diffusion equation for Cs:

∂Cs
∂t

+∇ · [(U + Vs)Cs] = ∇ · [(νe + εp)∇Cs] + Cs,f∇α (3.10)

Vs is the sediment fall velocity. εp = νt/σc is the suspended load diffusivity, where
σc is the Schmidt number defined as the ratio of the momentum diffusivity to the
mass diffusivity. The last term on the r.h.s is included in order to satisfy a zero-flux
boundary condition at the free surface to prevent a sediment flux into the air phase.
The sediment fall velocity, Vs is calculated from:

Vs =
(s− 1)d2

50g

18ν + [0.75(s− 1)d3
50g]0.5

(3.11)

Soulsby (1997) gives an alternative relationship to calculate Vs:

Vs =
ν

d50

[√
10.362 + 1.049d3

∗ − 10.36
] g

g
(3.12)

where d∗ is the dimensionless sediment grain size described as:

d∗ =

[
(s− 1)g

ν2

]1/3

d50 (3.13)

Near the bed, the sediment concentration depends on the exchange between
the settling and the entrained sediment caused by the flow field. The entrainment
rate, E, is obtained from Ce which stands for the equilibrium concentration of the
suspended load at a reference level near the bed:

E = Ce|Vs| (3.14)

where Ce is calculated by means of empirical formulations such as the one proposed
by Smith and McLean (1977):

Ce =
0.65γ0T

1 + γ0T
(3.15)

where T = 1 − θc/θ is the dimensionless transport stage parameter and γ0 is a
constant which is found to be 2.4 · 10−3. The reference level, ∆b, is given as:

∆b = 26.3Td50 + ks (3.16)

Another proposal for Ce from Van Rijn (1984b) reads:

Ce = 0.015
d50T

3/2

∆bd0.3
∗

(3.17)
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The reference level is taken equal to ks which must correspond to the first cell
height near the bed. Equation 3.17 can evolve to infinite values as the concentration
grows in proportion to T 3/2 and is unbounded. However, this is not physical as
the concentration in the water column cannot exceed the packing ratio. Hence, a
limiter is applied to reduce the entrainment rate (see in more detail Appendix C).
The deposition rate, D, is obtained from the sediment concentration near the bed
from previous time step, Cd:

D = Cd|Vs| (3.18)

The exchange between entrained and deposited sediment is used as a boundary
condition at the bed, so the change in the concentration of the suspended load is
given by the flux into or out of the suspended load, which depends on the difference
between the entrainment and deposition fluxes;:

∆C =
(D − E)

εp
(3.19)

3.3.3 Bed deformation

The bed deformation is calculated by solving the sediment continuity equation, also
known as Exner equation (Fredsøe and Deigaard, 1992):

∂zb
∂t

= − 1

1− n
(∇ · qb − E +D) (3.20)

where n is the porosity of the sediment in the bed assumed as packing ratio of sedi-
ments. Equation 3.20 is basically a 2D equation, with the bed load (qb) flux working
in bed boundary, with zb as the unknown

Dynamic mesh deformation

The bed deformation from equation 3.20 only gives the value of the bed elevation
for the finite element mesh which is coupled with the bed boundary of finite volume
mesh. OpenFOAM®computes the mesh deformation by solving a Laplace equation
for the mesh point velocity field, υ:

∇ · (γ∇υ) (3.21)

The solution is controlled by the diffusion coefficient γ, which depends on dy-
namic conditions in the simulation. The diffusion coefficient is important to dis-
tribute the displacement for each point, to avoid mesh distortion. Further details
can be found in Jasak and Tukovic (2006).

Sand-sliding mechanism

The bed deformation in this work is calculated based on the sediment continuity
equation. In several cases when the sediment imbalance is important, the calculated
bed deformation may become unrealistic. In reality, when the local bed slope be-
comes sufficiently steep, a sediment avalanche occurs. In the simulation, this implies
that a sliding mechanism for the sand must be included such that, after the mecha-
nism has been triggered, the local slope nowhere exceeds the angle of repose for the
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sediment. Figure 3.10 illustrates the basic principle of the sand sliding mechanism.
In this work, the sand sliding mechanism is based on the method by Marieu et al.
(2008) and Jacobsen and Fredsøe (2011). Further details of the sand sliding algo-
rithm used in this study can be found in Zhou (2016).

Repose angle Face center

Xi

Xi+1

Xi+2 Xi+3

(a)

Repose angle Face center

Xi

Xi+1

Xi+2 Xi+3

(b)

Figure 3.10: Bed slope correction using the sand slide mechanism: (a) bed slope
before correction, (b) bed slope after correction

3.4 Conclusion

This section has provided a general description of the sediment transport process,
together with previous results related to scour at seawall and several protection
measures. Three types of numerical models for the sediment transport calculation
have been described: the dynamic mesh method, the phase resolving method and
the particle based method.

The dynamic mesh method coupled with the VOF method (Presented in chap-
ter 2) will be used in this work following the work from Zhou (2016). The sediment
transport is divided into the bed load and the suspended load transport. The bed
deformation is calculated based on the sediment continuity equation. The mesh is
then adapted using the dynamic mesh library in OpenFOAM®.
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Chapter 4

Calibration of the Numerical
Model in OpenFOAM®

This chapter describes several test cases for the calibration of a model in OpenFOAM®

in order to address the problem of scour at toe seawall. The test cases involve free
surface dynamics for modelling the flow and the scour model applied to an unsteady
flow. The following cases have been studied:
Sensitivity analysis
First, a study is carried out to establish influence of the mesh size on the results
and to define optimal resolution, which is necessarily a compromise between the ac-
curacy of the results and the computational time required. Then, several numerical
schemes are tested to chose the most efficient one for simulating free surface waves
correctly. Two of the VOF approaches described in chapter 2 are used.

Wave reflection and absorption
This case examines three different approaches for including wave absorption: body
force damping, a relaxation zone and active wave absorption.

Mass transport simulation
This case tests the model capability to compute correctly the mass transport in a
closed wave tank.

Oscillatory flow boundary layer
This case focuses on the modeling of the bottom boundary layer in an oscillatory
flow to test the way in which the bed shear is calculated. The test case is carried
on the basis of existing experiments using 2-D flow in a U-tube. The flow regimes
are laminar and transitional.

Mobile bed dam break flow
The last case addresses the capability of the model to represent the scouring process
in a dam break flow. All available modules are involved in the calculation: hydro-
dynamics, sediment transport and the bed deformation modules.

4.1 Sensitivity analysis

A mesh sensitivity analysis is first performed to understand the influence of the mesh
size and the numerical scheme on the results of the simulation. The goal is to obtain

57



reasonably accurate results at a reasonable computation time cost. Two different
configurations are investigated, first to establish the optimal mesh resolution and
second to determine the best in relation with the numerical scheme. The tests
are performed by simulating 2D wave propagation in a straight wave flume with a
horizontal bed. The numerical domain configuration is described in figure 4.1, with
the following boundary conditions:

• Inlet boundary, the inlet boundary is set with a wave condition using the
relaxation zone method. The wave is generated using the Stokes 2nd order
theory with H = 0.02 m, T = 1.00 s. The relaxation zone length is equal to
2λ.

• Outlet boundary, the outlet boundary is set as a wave absorption region using
the relaxation zone method with a length of 3λ.

• Bottom boundary, the bottom boundary condition is a no slip condition im-
posing a zero normal and tangential velocities.

• Top boundary, the top boundary is set at atmospheric pressure which means
that a free flow of air is possible.

2λ 5λ 3λ

4.5λ

−0.13 m

0.00 m

+0.12 m
z

wall boundary

wall boundary
wave boundary

atmospheric pressure

velocity probe

generation zone

absorption zone

Figure 4.1: Numerical domain configuration for the sensitivity analysis.

The water surface elevation is measured along the channel using the surfaceEle-
vation utility provided by waves2foam. A velocity probe is placed at 4.5λ from the
inlet, or in the median section of the numerical domain. The velocity parameter
is made dimensionless using a2ωk where a is the wave amplitude equal to 0.5H, ω
is the wave angular frequency equal to 2π/T and k is the wave number equal to 2π/λ.

Mesh sensitivity

The analysis of the mesh size influence on the numerical results is carried out by
studying five different mesh configurations as described in table 4.1. Case 1.6 uses
a non-uniform refinement for the free surface area and the value in the table refers
to the minimum cell size. For each case, two different solvers are used: interFoam
which uses the conditionally averaged approach and gfmFoam which uses the ghost
fluid method approach. The simulation is run for 30s which is equal to 30T . The
simulation is carried out with a constant Courant number of 0.5 with a dynamic
time step to satisfy the same stability criterion for all the studied cases. The maxi-
mum allowed time step is set to a large value in order to allow the time step to be
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Table 4.1: Mesh sensitivity configuration
Case No ∆x (mm) ∆z (mm) H/∆z λ/∆x ∆x/∆z
Case 1.1 4 4 5 257 1
Case 1.2 2 2 10 515 1
Case 1.3 1 1 20 1030 1
Case 1.4 2 1 20 515 2
Case 1.5 1 2 10 1030 0.5
Case 1.6* 1 5 10 206 5
* Case 6 use non-uniform refined mesh

limited by the Courant number.

Figures 4.2 and 4.3 give the water surface elevation results for each case. The
interFoam solver induces a wave dissipation while the wave is propagating which in-
creases for a coarser mesh (case 1.1 to 1.3). However, the wave dissipation decreases
when the mesh is refined in the horizontal direction, indeed case 1.2 dissipates more
wave than case 1.5. Increasing the resolution in the horizontal direction will greatly
increase the computational resources and is not feasible. On the other hand, gfm-
Foam seems unstable for a coarse mesh.

The horizontal velocity field is given in figure 4.4 and figure 4.5 for the interFoam
and gfmFoam solvers respectively. The wave dissipation induces a decrease of the
horizontal velocity, as would be expected. The results obtained using the interFoam
solver are consistent since there is a correlation between the wave dissipation and
the decrease in velocities. Interestingly, the results obtained by gfmFoam indicate
that the instability in the free surface region does not influence the velocity field in
the water column except for case 1.1.

It is known that a higher mesh resolution gives more accurate results but at the
expense of computation time. The unstructured mesh configuration of OpenFOAM®

allows to use a different resolution for specific regions as shown in case 1.6, however
the results are still not satisfactory. All these simulations were run with a first order
time derivative scheme and according to Toro (2013) this may lead to high numerical
diffusion which induces wave dissipation. Hence, in the next section, the case 1.6
configuration is tested using different numerical schemes.

Numerical scheme sensitivity

OpenFOAM®allows the use of different discretization scheme options with different
orders of accuracy and stability. Without being exhaustive, several schemes have
been tested to understand their influence on the accuracy of the simulations. The
different schemes that have been studied are:

• Time derivative scheme: Euler scheme which is a first-order accurate scheme
and a backward scheme which is a second-order accurate scheme;

• Gradient scheme: Gauss gradient scheme which is a second-order accurate
scheme and a least squares scheme which is also second order accurate. Based
on the report by DHI (Petersen and Heilskov, 2015), the velocity field could be-
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Figure 4.2: Water surface elevation for the mesh sensitivity study with interFoam
solver for t = 30T

Figure 4.3: Water surface elevation for the mesh sensitivity study with gfmFoam
solver
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(a)

(b)

(c)

Figure 4.4: Instantaneous horizontal velocity profile in the midsection of the com-
putational domain for interFoam solver depending on the mesh size: (a) t = 10T ;
(b)t = 30T ; (c) Instantaneous horizontal velocity minus the mass transport velocity
averaged over T at t = 30T ; left side is at wave trough and right side is at wave
crest
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(a)

(b)

(c)

Figure 4.5: Instantaneous horizontal velocity profile in the middle of computational
domain for gfmFoam solver depending on the mesh size: (a) t = 10T ; (b)t = 30T ;
(c) Instantaneous horizontal velocity minus the mass transport velocity averaged
over T at t = 30T ; left side are at wave trough and right side are at wave crest
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came unstable if no gradient limiter is applied, especially for a long simulation
time. Hence, limited gradient schemes are also tested;

• Divergent scheme: Gauss linear which is an unbounded second order accurate
scheme and a Gauss linear blended with upwind where the upwind scheme is
a first order accurate bounded.

A brief explanation of the OpenFOAM®discretization schemes is described in
Appendix A.2. Based on the schemes that will be tested, ten cases were prepared for
both the interFoam and gfmFoam solver as described in table 4.2. The mesh con-
figuration used in this simulation is optimized where H/∆z = 20 in the free surface
region and λ/∆x = 206. The mesh configuration details are depicted in figure 4.6.
All the boundary specifications are those previously described in figure 4.1.

∆x = 0.005λ

∆z = 0.05H

Figure 4.6: Mesh configuration for the numerical scheme sensitivity study

Numerical scheme comparison

The influence of the numerical schemes is tested in case 1.7 to case 1.12 (table 4.2).

The water surface elevation plotted in figure 4.7 and 4.8 shows that the wave
dissipation is sensitive to the time derivative scheme. For both solvers, the first
order time derivative gives a higher wave dissipation, which suggests that it would
be better to use a second order scheme for wave simulation. The backward scheme
gives a higher dissipation for the interFoam solver. Conversely, the Euler scheme
gives less dissipation with the interFoam solver. This implies that the gfmFoam
solver is more sensitive to the type of time derivative scheme but it also gives the
least dissipation if the second order scheme is used. A phase shift is also observed
irrespective of the time derivative scheme, but the phase shift is greatest with the
interFoam solver. We can conclude, therefor, that the solver introduces a time shift,
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Figure 4.7: Water surface elevation for numerical scheme sensitivity study with
interFoam solver for t = 60T for test cases 1.7-1.12

Figure 4.8: Water surface elevation for numerical scheme sensitivity study with
gfmFoam solver for t = 60T for test cases 1.7-1.12

65



which depends on the numerical scheme.

The gfmFoam solver seems more accurate than interFoam solver for the near
surface velocity as shown in figure 4.9 and 4.10. This is expected since the gfmFoam
solver resolves the pressure discontinuity at the free surface rather than using an
averaged diffusion parameter as for the interFoam solver. It is also important to
note that for a long simulation, the effect of the mass transport velocity in the wave
tank is also important. For the velocity field at t = 60T , discrepancies arise from
the theoretical Stokes second order solution. If the mass transport velocity is sub-
tracted from the instantaneous horizontal velocity, the velocity profile agrees well
with the theoretical result. However, the subtracted velocity profile does not agree
with the theory close to the free surface. This problem will be addressed specifically
in section 4.3.

Gradient limiter sensitivity

As stated before, according to Petersen and Heilskov (2015), the velocity field can
become unstable if no limiter is applied in the gradient scheme. In the free surface
simulation, a high velocity gradient occurs at the interface, and applying a limiter is
important in order to bound the gradient calculation. Hence, the different gradient
limiters available in OpenFOAM®are tested in cases 1.11 - 1.15. The details of each
scheme are described in Appendix A.2. From the test cases, one can note that the
multi directional face limiter dissipates more than any other limiter (figures 4.11
and 4.12). Moreover, the gfmFoam solver seems to be more sensitive to the schemes
as the dissipation is quite high compared with the other limiter. However, interest-
ing results are found for the velocity profile with the use of interFoam solver, while
the multi directional face limiter gives a higher dissipation (figure 4.13 and 4.14).
Indeed, the free surface velocity especially in the waves trough is less affected by the
spurious air velocity. Hence, for the interFoam solver, a multi directional face lim-
iter will be used in further simulations while for the gfmFoam solver the non-multi
dimensional limiter will be used.

Time derivative scheme sensitivity for dynamic mesh simulation

Previous results have shown that, it is necessary to use the second order time deriva-
tive to minimize dissipation. However, the simulations revealed that the dynamic
mesh solver is not compatible with the backward time derivative scheme. Another
alternative lies in the use of the Crank Nicholson scheme which is also second order
accurate. In this case, a blending is used together with the implicit Euler scheme
to improve the stability where a value of 0.5 is used for the off-centering coeffi-
cient. In this context, test case 1.16 is compared to test case 1.10. The results
of the simulations show that the Crank Nicholson scheme is able to minimize the
dissipation compared with the backward scheme for the interFoam solver as shown
in figure 4.15. The gfmFoam solver is more sensitive to the numerical scheme; as
can be seen in figure 4.16, the implicit Euler scheme gives the highest dissipation,
followed by the Crank-Nicholson scheme, and finally the backward scheme, which
gives the least dissipation. The velocity field in the mid-section gives similar results
where a higher dissipation leads to a smaller velocity amplitude.

66



(a)

(b)

(c)

Figure 4.9: Instantaneous horizontal velocity profile in the mid section of the compu-
tational domain for the numerical scheme sensitivity study with interFoam solver:
(a) t = 10T ; (b)t = 60T ; (c) Instantaneous horizontal velocity minus the mass
transport velocity averaged over T at t = 60T
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(a)

(b)

(c)

Figure 4.10: Instantaneous horizontal velocity profile in the mid section of the com-
putational domain for the numerical scheme sensitivity study with gfmFoam: (a)
t = 10T ; (b)t = 60T ; (c) Instantaneous horizontal velocity minus the mass transport
velocity averaged over T at t = 60T
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Figure 4.11: Water surface elevation for the gradient limiter study with interFoam
solver for t = 60T for test cases 1.11,1.13,1.14,1.15

Figure 4.12: Water surface elevation for the gradient limiter study with gfmFoam
solver for t = 60T for test cases 1.11,1.13,1.14,1.15
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(a)

(b)

(c)

Figure 4.13: Instantaneous horizontal velocity profile in the mid section of the com-
putational domain for the gradient limiter sensitivity study with interFoam solver:
(a) t = 10T ; (b)t = 30T ; (c) Instantaneous horizontal velocity minus the mass
transport velocity averaged over T at t = 30T
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(a)

(b)

(c)

Figure 4.14: Instantaneous horizontal velocity profile in the mid section of the com-
putational domain for the gradient limiter sensitivity study with gfmFoam: (a)
t = 10T ; (b)t = 30T ; (c) Instantaneous horizontal velocity minus the mass trans-
port velocity averaged over T at t = 30T
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Figure 4.15: Water surface elevation for time derivative scheme test with interFoam
solver for t = 60T for test case 1.9,1.10,1.16

Figure 4.16: Water surface elevation for time derivative scheme test with gfmFoam
solver for t = 60T for test case 1.9,1.10,1.16
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(a)

(b)

(c)

Figure 4.17: Instantaneous horizontal velocity profile in the mid section of the com-
putational domain for the time derivative scheme study with interFoam solver: (a)
t = 10T ; (b)t = 30T ; (c) Instantaneous horizontal velocity minus the mass transport
velocity averaged over T at t = 30T
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(a)

(b)

(c)

Figure 4.18: Instantaneous horizontal velocity profile in the mid section of the com-
putational domain for the time derivative scheme study with gfmFoam: (a) t = 10T ;
(b)t = 30T ; (c) Instantaneous horizontal velocity minus the mass transport velocity
averaged over T at t = 30T
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Conclusion

In this section, two sensitivity tests were carried out, to investigate the influence of
the mesh resolution and the numerical scheme. The mesh sensitivity test showed
that the coarser mesh results in higher dissipation, and instability for the gfmFoam
solver. Dissipation is reduced by reducing the mesh size in the horizontal direction.
However, this is not a practical solution because the domain is usually quite long
in the horizontal direction. Hence, a non-uniform refined mesh is used ignoring the
fact that dissipation may still be high. This problem is partly mitigated by using a
second order time derivative scheme. The study related to the numerical schemes
shows that:

• Time derivative schemes are second order accurate. For the static mesh prob-
lem, a backward scheme can be used. In the case of a dynamic mesh, to main-
tain the second order accuracy, the Crank Nicholson scheme must be used. The
backward scheme was found to be incompatible with dynamic mesh algorithm.

• The gradient scheme must be used with a limiter. For the interFoam solver,
the multi-directional face limiter can be used because the spurious air velocity
at the free surface is found to be minimal. For the gfmFoam solver, the non-
multi directional limiter should be used to minimize the wave dissipation.

4.2 Wave reflection absorption

In this study we examine the performance of different wave absorption methods.
Three different methods are compared: the body force absorption with a quadratic
coefficient, the relaxation zone and the active wave absorption. The body force ab-
sorption and the relaxation zone tests use a similar mesh resolution. The practical
approach from Perić and Abdel-Maksoud (2016) is used, where the damping coeffi-
cient Cd,q varied as 50k, 100k, 200k, 400k (see Chapter 2). The recommended value
is Cd,q = 100k (Perić and Abdel-Maksoud (2016) ). The active absorption test can
use a finer meshing, since the generation and absorption zones are not required in
this case, which is definitely an advantage.

The wave reflection coefficient Cr is calculated based on equation 2.48 and the re-
sults are given in table 4.3. The simulations show that the relaxation zone method
gives the least reflection. The body force absorption method also gives reason-
able results with an optimum value of Cd,q = 100k as recommended by Perić and
Abdel-Maksoud (2016). The active absorption method gives the highest reflection
coefficient.

4.3 Mass transport simulation

The sensitivity study for the numerical scheme showed that in a simulation involving
a closed domain, the mass transport velocity has a significant effect on the velocity
field, because the return flow affects the velocity profile inside the domain. Hence, it
is important to understand how the OpenFOAM® two-phase solver generates this
mass transport velocity. To investigate this, we have simulated the experiments of

75



Figure 4.19: Water surface elevation for the study of wave reflexion absorption with
interFoam solver
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Table 4.3: Reflection coefficient for different absorption methods
Case Absorption Type ηmax/H ηmin/H Cr

Case 2.1 body force, Cd,q = 50k 0.5551 0.5182 3.44%
Case 2.2 body force, Cd,q = 100k 0.5439 0.5277 1.51%
Case 2.3 body force, Cd,q = 200k 0.5476 0.5260 2.01%
Case 2.4 body force, Cd,q = 400k 0.5561 0.5178 3.57%
Case 2.5 relaxation zone 0.5256 0.5215 0.39%
Case 2.6 active absorption 0.5793 0.5109 6.27%

Carter (1972).

The experiments of Carter (1972), were performed in a wave flume 12m long,
76cm wide and 20cm deep, with the water depth set to 13cm. The computations
have been performed with two different solvers: interFoam and gfmFoam. In each
case, two different simulations were performed, the first using a uses the physical
beach to dissipate the wave similar to the experiment (Figure 4.20) and the second
using the relaxation zone method (Figure 4.21). These two approaches are used to
understand how the mass transport velocity is influenced by the way the relaxation
zone is modeled. The relaxation method uses a damping function which progres-
sively reduces the amplitude of the surface elevation fluctuations; unfortunately, as
can be shown, this does not conserve the mass flux passing through the relaxation
zone.

The wave parameters are described in Appendix II of Carter (1972), with a wave
height of 2cm and a period of 1.01s; this corresponds to a 2nd order Stokes wave.
Based on the previous results, the interFoam solver is employed with the face multi-
directional limiter since this is supposed to give a better velocity profile.

1.5 m 8.5 m 5.0 m 1.5 m

6.75 m

33

1

−0.13 m

0.00 m

+0.12 m

+0.02 m

z

wall boundary

wall boundary
wave boundary

atmospheric pressure

velocity probe

generation zone

Figure 4.20: Numerical domain for the mass transport analysis with the physical
beach as a wave absorber

The system involving the physical beach absorber is described in figure 4.20.
The mesh is generated using the blockmesh utility and consists of hexahedral cells.
Because of the existence of the physical beach, it is hard to only refine the free
surface area because this would induce a distortion of the mesh and the free surface
refinement would not be valid anymore. Hence, a uniform size for the mesh from the
bed to an elevation of z = 0.02 m above the free surface is used with ∆x = 10 mm
and ∆z = 1.25 mm. The horizontal and vertical distances above the physical beach
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Figure 4.21: Numerical domain for the mass transport analysis with relaxation zone

reduce gradually to ∆x = 5 mm and ∆z = 0.5 mm as described in figure 4.22. For
the simulation, the interFoam solver is used, because gfmFoam solver is unstable
in the presence of wave breaking because, when the wave breaks, the air pocket is
compressed by the water, and this phenomenon is not taken into account in the
gfmFoam solver which consequently generates a high pressure spike. The mesh con-
figuration and refinement for the relaxation zone absorber are identical to the ones
used for the numerical sensitivity tests as described in figure 4.6.

1.0 cm

1.25 mm

Figure 4.22: Mesh for the simulation of the mass transport with a physical beach
absorber

The mass transport velocity is then calculated by integrating the velocity over
NT wave periods as follows:

Um,x(z) =
1

NT

∫ tNT

t0

ux(z)dt (4.1)
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where Um,x is the horizontal mass transport velocity at z, N is the number of periods
used for the integration (in this case equal to 10), T is the wave period and ux is
the instantaneous horizontal velocity measured by the velocity probe. In the closed
channelthe conservation of mass dictates that the mass transport induced flux in the
direction of wave propagation must be balanced by an equal return flow; thus, in
steady state conditions the net mass transport velocity over the water depth must
be equal to zero:

Unet,x =

∫ z=h

z=0

Um,x(z)dz = 0 (4.2)

The simulation shows that physical beach produces more wave dissipation than
does the relaxation zone. The gfmFoam solver also gives less dissipation which is con-
sistent with the preceding study of the sensitivity to numerical schemes. The water
surface elevation over the simulation domain is described in Figure 4.23. The hor-
izontal mass transport velocity for both absorber methods is shown in Figure 4.24.
There are several conclusions to be drawn from these results. Firstly, as can be seen
from Figure 4.25, in steady state conditions, the physical beach configuration satis-
fies the zero net flux conditions, as required by mass conservation. This is not true,
however, for the cases with a relaxation zone, where the net mass flux is positive –
in other words, not all of the mass transport induced flux is being returned, which
means that mass is effectively being destroyed in the relaxation zone. (The reason
that the water level in the simulation does not gradually drop over time is that the
water level is maintained at a certain height in the relaxation zone.) Given this
conclusion, it might be expected that the physical beach would produce the best
agreement between the simulations and the experiments (and theory of Longuet
Higgins) for the vertical profile of the mass transport velocity (Figure 4.24) but this
is not the case. The numerical solutions overestimate the fluid velocities close to the
free surface, because of a failure to model correctly the jump condition at the free
surface – the water velocities in the cells containing the interface are much too high,
and as a result the mass transport velocity in the direction of wave propagation
is greatly overestimated, as can be seen from Figure 4.24. Consequently, the case
with the physical beach must overestimate the return velocity, in order to conserve
mass, and this effect is visible in the high values of negative velocity close to the
bed. Paradoxically, the case with the relaxation zone, because it does not conserve
the mass flux, produces a lower over estimate for the negative mass transport ve-
locity. So an initial error in the estimation of the near surface velocities is partially
corrected by an error in the conservatin of mass flux. It follows from this that if the
incorrect representation of the jump condition at the free surface is corrected, the
relaxation zone will perform less well in representing the mass transport velocity.

Conclusion

Computations o f the mass transport velocity show that the model over-estimates
the velocities close to the surface and this leads to an over-estimate of the positive
mass transport velocity close to the surface, and a corresponding over-estimate of the
negative mass transport velocity close to the bed. The relaxation method partially
corrects for the effects of the over-estimate of the mass transport velocity at the
surface through its failure to conserve the mass flux. These problems need to be
considered together, because of their influence on the onshore-offshore transport of
sediment, but it will be necessary to correct both problems.
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Figure 4.23: Water surface elevation in the study related to the mass transport for
t = 600T

Figure 4.24: Mass transport velocity comparison for different wave absorber types
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Figure 4.25: Mass transport velocity integrated over the depth for different wave
absorber types

4.4 Oscillatory flow boundary layer

The sediment transport calculation depends on the accuracy of the bed shear stress
estimate. From section 2.2.8, it is known that the wave boundary layer plays an im-
portant role. In the wave related problem, the boundary layer development depends
on the wave period– the boundary layer grows as the flow accelerates, and reaches
a maximum thickness under the wave crest and the wave trough. The viscous effect
at the bottom creates a lag between the maximum velocity near the bed and the
free stream velocity with the result that at certain phases and certain elevations,
the shear stress is acting in the direction of the flow, rather than against it, causing
overshoot in the velocity profile. The idealized case for this problem is known as the
oscillatory flow boundary layer or the Stokes boundary layer problem.

The oscillatory flow boundary simulation is based on the experiment run by
Mujal-Colilles et al. (2014). A U-shaped tunnel (Figure 4.26) is used to generate an
oscillatory flow with a smooth or a rough wall. The section of the central part of the
system is 25cm high and 20cm wide. The total flume length is equal to 3.70m with a
laser sheet measurement section of length 1.50m. The flow field is measured using a
particle-image velocimetry (PIV) technique. In the proposed simulation, the studied
domain is restricted to half of the tunnel height with a length of 3.70m. Based on
the experiments, two Reynolds numbers of Re 3800 and 12700 are considered. The
data related to the test case are given in table 4.4.

The simulation boundary condition are compatible with a flow between two flat
plates with an oscillation of the free stream velocity, where U∞ is described as:

u0 = U∞ sinωt (4.3)

The Reynolds number is defined as (Jensen et al., 1989):
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Figure 4.26: U-shaped tunnel set up in experiment by Mujal-Colilles et al. (2014),
the simulation domain is marked in red dash line

Table 4.4: Test case parameters for the oscillatory boundary layer
Case no. T (s) A(mm) U∞(mm s−1) Re δ(mm) A/2D50 ∆zb(mm) δ/∆zb

Smooth wall
4.1 3.3 45.5 86 3800 2.2 - 0.5 4.400
4.2 3.3 45.5 86 3800 2.2 - 5 0.440

Rough wall
4.3 5 100 125 12700 3.0 33 0.5 6.000
4.4 5 100 125 12700 3.0 33 1.5 2.000
4.5 5 100 125 12700 3.0 33 5 0.600

Friction factor by Rijn (2007)
4.6 5 100 125 12700 3.0 33 1.5 2.000
4.7 5 100 125 12700 3.0 33 5 0.600
4.8 5 100 125 12700 3.0 33 10 0.300
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Re =
aU∞
ν

(4.4)

where A is the amplitude of the free stream motion and is defined as U∞/ω. Two
methods for the bed shear stress calculation are used: the logarithmic law and the
friction factor formulation from van Rijn (2007).

Smooth wall test

The smooth wall test is carried out for Re = 3800 in the laminar flow regime.
Two mesh configurations have been tested, with near bed cell heights ∆zb of 5mm,
considered as a coarse mesh and ∆zb of 0.50mm, considered as a fine mesh. The
grid cells in the coarse mesh are too large to resolve the boundary layer, because
the mesh height is greater than δ. However, for the fine mesh, the boundary layer is
resolved with four cells (δ/∆zb = 4.4). The simulation results will be compared with
experimental data and with the analytical solution for a laminar oscillatory flow.
The analytical solution is given on section 2.2.8 equation (2.56) and equation (2.58).

The instantaneous velocity profiles have been plotted in Figure 4.27 for 6 different
phase angles, for the two simulations, the experimental data and the analytical
solution for laminar flow. In general the experimental results agree well with the
analytical solution, although the differences in the free stream velocities (z/δL &
5) suggest that the driving force in the experiment might have had some higher
frequency components (the U-tube will have its own natural frequency, and although
the authors don’t state the water level in the legs of the U-tube, it is likely that the
natural period of the system was of the order of 0 7s-1s). The numerical simulations
with the fine resolution agree excellently with the analytical profiles, at all phase
values, and at all vertical positions. The simulations with the coarse resolution
also agree reasonably well with the analytical solution, although they do not quite
capture the velocity overshoot, so the difference is greatest at the extreme values of
the phase. So if the only variable of interest were the velocity, the coarse resolution
could be considered acceptable. Unfortunately, the parameter that is of greatest
interest is the bed shear stress, which depends on the gradient of the velocity profile,
at the bed. As Figure 4.27 illustrates, a linear interpolation of the velocities close to
the bed will result in a large underestimate of the bed shear stress for the simulation
with a coarse resolution, because of the failure to resolve the velocity profile in the
regions 0 < z/δL < 2. This point is illustrated in detail in Figure 4.28, where the bed
shear stress has been plotted as a function of phase, for the two numerical simulations
and the analytical solution. The results from the fine resolution simulation agree
very closely with the analytical solution, with just a very slight phase shift – the
amplitude of the variation in shear stress is captured perfectly. On the other hand, as
already predicted, the coarse resolution underestimates the amplitude of fluctuation
of the bed shear stress, and introduces a significant phase shift. (The experimental
measurements of bed shear stress have not been plotted because they were found
not to agree with the analytical solution. Mujal-Colilles et al. (2014) attempted
to calculate the bed shear stress from their measured velocity profiles using two
methods – the sum of the viscous and Reynolds stress terms, and the momentum
integral approach. They found that the momentum integral approach produced bed
shear stresses twice those obtained from the sum of viscous and turbulent stresses,
and that both methods significantly over-estimated the values compared with the
analytical solution.)
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Figure 4.27: Velocity profile for an oscillatory flow with Re = 3800 with a smooth
wall

Figure 4.28: Bed shear stress for an oscillatory flow with Re = 3800 with a smooth
wall
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Rough wall test

A second set of simulations has been performed, for a rough wall boundary at a
Reynolds number Re=12700, which corresponds to one of the experimental tests of
Mujal-Colilles et al. (2014), which they considered as a transition to the rough tur-
bulent regime. Three mesh resolutions were tested – ∆zb = 5mm, 1 5mmand0 5mm,
with the k-ω SST turbulence model. The bed shear stress in the simulations was
computed using two different approaches – the rough wall law (equation 2.105) and
the friction factor prediction (equation 2.106) with fw = 0.047 with the time-varying
bed shear stress is calculated using equation( 2.59).

The instantaneous velocity profiles are plotted in Figure 4.29, for 6 different
phase angles. For certain phase angles the analytical and experimental profiles co-
incide almost exactly, despite the fact that the analytical profiles are for laminar
flow over a smooth bed. At the extreme values of phase angle the experimental
profiles show much higher velocities close to the bed (and hence imply very high
values of the shear stress) but this is probably partly due to the difficulty of obtain-
ing reliable PIV data close to the boundary. However the amplitude of oscillation
measured in the experiments agrees reasonably closely with that predicted by the
analytical solution. It is therefore reasonable to continue to compare the numerical
solutions with the analytical solution. The results for the three different resolutions
show that only the finest resolution (∆zb = 0 5mm) is capable of capturing all the
details of the velocity profile; the coarsest resolution, in particular, introduces both
a phase shift and a large reduction in the velocity amplitude close to the bed.

The time varying bed shear stress has been plotted in figure 4.30, for the two
calculation methods and the three different grid resolutions. For both methods, the
grid resolution has a significant effect on the calculated results. For the method
based on eq. 2.105 the two coarser resolutions give similar results, with just a shift
in the phase of the maximum value, but the finest resolution shows an increase in
the amplitude of the bed shear stress, and a phase shift – the maximum shear stress
leads the maximum velocity by about 7.2°. The shear stress computed from fw is
much more sensitive to grid resolution, but the effect is the opposite to that for the
first method – increasing the resolution (I;e. decreasing the grid spacing) reduces
the amplitude of oscillation of the shear stress, and the result for the finest grid
resolution (∆zb = 1 5mm) is much smaller than the amplitude calculated with any
of the grid resolutions for the first method. If we assume, based on the preceding
results for the laminar boundary layer, that the first method, with ∆zb = 0 5mm
provides the best estimate for the bed shear stress, then it follows that the best
estimate for the bed shear stress using the method with fw is provided with a res-
olution ∆zb = 10mm, and the only significant difference between the two methods
then comes from the phase of the shear stress, since the fw method computes a
phase lag of 14.4°, whereas the earlier method produced a phase lead of 7.2°. All
the profiles exhibit two ‘shoulders’ where the shear stress flattens out around zero;
this is because, if the turbulent eddy viscosity depends on time (as it should) then
the product of the eddy viscosity and the vertical gradient of the velocity – νtdu/dz
– must contain a term in the square of the velocity, and hence produce a plateau
around zero.

The effective bed friction factor fw can be back-calculated from the shear stress
calculations, for both methods, and all three resolutions, and this has been plotted
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in figure 4.31, together with the estimates of Kamphuis (1975), Rijn (2007) and
Pedocchi and Garcia (2009). This confirms that the grid resolution has a strong
influence on the shear stress estimate, and that the log profile method (eq. 2.105)
should be used when the grid resolution is much smaller than the thickness of the
boundary layer (δ/∆zb > 5), but that the friction factor approach should be used
when the grid resolution is larger than the boundary layer thickness (δ/∆zb < 0.5).
The results also show that the estimate from Pedocchi and Garcia (2009) is probably
too low, and that the estimates from Rijn (2007) and Kamphuis (1975) might be a
little high.

Figure 4.29: Velocity profile for an oscillatory flow with Re = 12700 for d50 =
1.50 mm

Conclusion

In this chapter, the oscillatory boundary layer is investigated based on the experi-
ments by Mujal-Colilles et al. (2014). The simulation results for the laminar case
showed a good agreement with the analytical solution. The rough wall case showed
that the bed shear stress calculation is dependent on the near wall mesh size. The
logarithmic law method needs to resolve the boundary layer and the near wall mesh
height should be less than the boundary layer thickness δ. The friction factor method
on the contrary must be used with the coarse near wall mesh, where the near wall
velocity is not affected by the boundary layer.
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Figure 4.30: Bed shear stress for an oscillatory flow with Re = 12700 for d50 =
1.50 mm

Figure 4.31: Bed shear stress for an oscillatory flow with Re = 12700 for d50 =
1.50 mm
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Figure 4.32: Numerical domain configuration for the simulation of a mobile dam
break flow

4.5 Mobile dam break case

The sediment transport and bed deformation module is used to calculate scour un-
derneath a dam break flow. The dam break flow case is suitable for testing the model
performance because it requires the simulation of an unsteady flow with complex
free surface dynamics. The model itself was already tested for steady flow conditions
in Zhou (2016) and performed well. The test case here is based on the experiment
of Spinewine et al. (2005). Spinewine’s experiment, which was performed in a flume
6m long, 0 4m wide and 0 5m high. A vertical gate was installed half-way along the
flume, impounding water on one side to a depth of 0 35m; this gate could be lifted
rapidly, releasing the water, to simulate a dam-break flow. The mobile bed was com-
posed of a 10cm thick layer of sand, with a d50 = 1 82mm]) , density 2683kg.m−3

and porosity 0.53. Although Spinewine et al. (2005) describe the sediment trans-
port mechanism in the experiment as being essentially sheet flow, several researchers
have attempted to simulate this using bed load and suspended load models (Wu and
Wang, 2007; Marsooli and Wu, 2014)

The simulation is carried out in 2D with a mesh resolution of 5mm for both x
and z directions. A wall boundary is applied for the surrounding flume, and at-
mospheric pressure is imposed at the top boundary. The suspended load model
boundary condition is set using the equilibrium concentration and described in de-
tail in the next section. The k-ω SST turbulence model with a buoyancy correction
is used in the simulation. The mobile bed roughness is set equal to 2.5d50. The
sediment transport simulation is performed for the case of bed and suspended load.
The bed load transport is calculated using the formula of Engelund and Fredsøe
(1976) whilst the suspended load entrainment rate is calculated based on van Rijn
(1984). The suspended load entrainment model is found to give an unreasonably
high value for high bed shear stress. A limiter is used as explained in Appendix C.
The morphological time step for this simulation is the same as the hydrodynamical
time step because a rapid deformation is expected at the beginning of simulation.
A full description of the simulation domain is given in figure 4.32. The simulation
is performed for 1.25s.
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Suspended load model boundary condition

The boundary condition for the suspended load model at the mobile bed is based
on the equilibrium concentration of sediment entrainment and deposition. The con-
centration flux qc,b near the bed is given as:

qc,b =
1

kq

∂Cs
∂z

=
1

kq
[E −D] (4.5)

where kq is a coefficient related to the sediment diffusivity ν + νt/σc. However, a
preliminary study where the flux at the bed boundary was imposed showed some
numerical instabilities. So another approach has been adopted, based on assuming
that the sediment entrainment provides a source term in the advection-diffusion
equation for the sediment concentration. Hence equation 3.10 reads:

∂Cs
∂t

+∇ · [(U + Vs)Cs] = ∇ · [(νe + εp)∇Cs] + Cs,f∇α + S(E) (4.6)

where S(E) is calculated from:

S(E) =
E

∆zb
(4.7)

The boundary condition at the bed for the sediment concentration is set as a
zero gradient. The flux at the bed is set equal to the deposition flux because of the
influence of fall velocity near the bed. The bed deposition is calculated after the
advection-diffusion equation has been solved with D = CsVs.

Simulation results

Figure 4.33 shows the snapshots of the experiment performed by Spinewine et al.
(2005) for t = 0.25 s, 0.50 s and 0.75 s. Experimental measurements were made
using image processing techniques to separate the flow into clear water, sheet flow
and immobile grain regions. To verify the implementation of the suspended load
boundary condition at the bed, the sediment mass conservation was calculated as
follows:

(1− n)Vb,net + VC = 0 (4.8)

where Vb,net is the net volume of the bed deformation from the total load transport
and VC is the total suspended load volume in the water column. The simulation
shows that the difference between the net volume of the bed and the total suspended
load volume is about 1.6 - 2.2% (table 4.5), with the bed net deformation volume
slightly larger than the suspended load concentration. This difference may arise
from interpolation errors in the bed deformation algorithm as mentioned in Jacob-
sen (2015).

The suspended load concentration has been plotted in figure 4.34 for 4 different
axial locations (x/L = 0, 0.167, 0.333&0.500) and three different instants in time
(t = 0 25s, 0 50s&0 75s), where x/L = 0 corresponds to the location of the gate,
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Table 4.5: Sediment mass conservation using source term bed boundary for sus-
pended load

t(s) (1− n)Vb,net(m
3) VC(m3) | (1−n)Vb,net+VC

(1−n)Vb,net
|

0.25 −5.197× 10−5 5.112× 10−5 1.64%
0.50 −1.296× 10−4 1.274× 10−4 1.69%
0.75 −1.610× 10−4 1.574× 10−4 2.19%

and t = 0 to the instant at which the gate is removed. These concentration profiles
show that most of the erosion takes place downstream of the gate (the suspended
concentration at the gate location remains small throughout, and does not pene-
trate much into the fluid), with the maximum concentration reaching a value of 0.22
(percent of volume of sediment with volume of water), at the nose of the current. By
comparing the profile at x/L = 0.500, t = 0 75s with that at x/L = 0.333, t = 0 50s,
it can be seen that as the current advances over the sediment bed it is continuing to
pick up sediment from the bed – the suspended concentration at the bed increases
– although the sediment is not mixed any higher in the water column. Behind the
nose of the current the concentration decreases over time (x/L = 0.333, t = 0 50s
compared with x/L = 0.333, t = 0 75s) indicating that after the erosive power of
the flow is decreasing. Since the bed concentration at x/L = 0.333, t = 0 75s is less
than that at x/L = 0.167, t = 0 50s, it is possible to conclude that some deposition
is taking place from the flow behind the nose.

A more complete picture is provided by the results in figure 4.35 which compare
the results from the simulation with the results obtained from image processing
analysis of the film of the experiment. Three variables are plotted – the height of
the water surface (in blue), the upper boundary of the suspended load region (in
green) and the boundary of the immobile bed (in red). (The upper boundary of
the suspended load, in the simulation, has been defined as the height at which the
concentration of suspended sediment drops to 0.01.) These profiles show that the
numerical simulation reproduces closely the evolution of the free surface, even in the
detailed pictures of the movement of the front of the gravity current. The upper limit
of the suspended load region is also reproduced acceptably: the figures show that
suspension occurs following the passage of the front of the gravity current, although
the model overestimates, perhaps a little bit, the height of this region. In fact,
it is difficult to estimate exactly where to place this boundary, when comparing
with the experiments, since the experimental result depends on the detection of
suspended grains, and it is not evident that the optical configuration permitted the
detection of the very low concentration chosen as the threshold in the analysis of
the computational results. The problem of the definition of the frontier between two
regimes is more critical for the definition of the bed elevation, since the experiment
assumes that transport takes place as sheet flow above an immobile bed, whereas
the simulation assumes that there is also some transport in the form of bed load.
So whereas the experimental analysis define the bed as the region in which there
is no discernible movement of the grains, the bed load formulae do not, in general,
give an estimate for the thickness of the bed load layer. Consequently the estimate
of the bed elevation in the simulation would be expected to be higher than that in
the experiments, and this is confirmed in Figure 4.35. It can be observed that the
general tendency observed in the experiments is reproduced in the simulations, in
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particular with the development of an initial scour hole between x/L0 = −0.1 and
x/L0 = 0.1. The most significant discrepancy occurs in the region 0.1 < x/L0 < 0.3,
where the simulation fails completely to reproduce the erosion that is observed in the
experiments. Again, this could be explained by the assumption of the existence of
a layer of bed load transport without a defined thickness, so to test this hypothesis,
we have estimated the thickness of the bed load layer as:
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Figure 4.33: Experiment snapshot from Spinewine et al. (2005) for t = 0.25 s, 0.50 s,
t = 0.75 s; x position is measured from the gate

To take account the thickness of the bed load layer, the thickness of particles
moving above the bed Hq,b is calculated as:

Hq,b =
qb
ub

(4.9)

where ub can be calculated using the modified Van Rijn formula (Wu and Wang,
2007):

ub = 1.64T 0.5

√(
γs
γw
− 1

)
gd50 (4.10)

γs and γw are the specific weights of the sediment and the water respectively. How-
ever even if we subtract the estimated thickness of this layer from the bed elevation
computed in the simulations, as shown in figure 4.35, the computed height of the
region of immobile grains does not agree with that observed in the experiments.
For this reason we have developed an alternative approach, based on the explicit
modelling of a region of sheet flow.

Alternative sheet flow model using modified suspended load approach

In this section we propose a new model for representing sheet flow, as an adaptation
of existing models for the suspended load. The reason for proposing this type of ap-
proach is that, in principle, sediment flow in sheet flow is no different from sediment

91



Figure 4.34: Suspended load concentration at 4 different axial locations (x/L =
0, 0.167, 0.333&0.5) and three different instants in time (t = 0 25s, 0 50s&0 75s).
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Figure 4.35: Simulation results for a mobile dam break simulation for t = 0.25 s,
0.50 s, 0.75 s; More detailed view near the gate opening (3 last figures)
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flow in the suspended load, except that the dispersive process is provided as much
(or even more so) by particle-particle collisions as by the fluid turbulence, and that,
in principle, it ought to be possible to have a flow with a transition from sheet flow
at the bed to suspended flow further from the bed, without requiring two explicitly
different models to represent the two regimes. To model sediment transport in the
sheet flow we therefore assume that the particle dispersion is provided by particle-
particle collisions, and can be modelled by the kinetic theory of granular flow, based
on the work of Ding and Gidaspow (1990) where the bulk viscosity, εp, is given as:

εp =
4

3
Csρsd50g0(1 + e)

√
T

π
(4.11)

where Cs is the solid fraction, ρs is the solid density, d50 is the sediment median
diameter, e is the restitution coefficient for particle-particle collisions and T is a
measure of the energy fluctuation. g0 is a radial function, defined as:

g0 =

[
1−

(
Cs
Cmax

)1/3
]−1

(4.12)

in this work, the energy fluctuation is represent as the vertical gradient of horizontal
velocity, assuming that the particles only diffuse in the vertical direction. The
particle diffusion then described as:

εp =
4

3
πr3rg0

∂U

∂z
C

2/3
N (4.13)

Here CN is the number of particles per cubic meter and r is the sediment particle
radius taken as 0.5d50. The suspended load transport equation is written in terms
of a sediment concentration Cs which is related to CN by:

Cs =
4

3
πr3CN (4.14)

where Vp is the sediment particle volume. Hence equation 4.13 becomes:

εp = kp
4

3
πr2g0

∂U

∂z
C2/3
s (4.15)

and kp is a calibration coefficient. The suspension initiation is still based on the
empirical formulation given by van Rijn(1984).

Simulation results

The configuration is similar to that for the dam break case without the bed load
transport module. A second configuration was prepared using a finer mesh with
∆z of 2 mm to investigate the influence of grid resolution, and, as can be seen in
figure 4.36 the grid resolution plays an important role in determining the thickness
of the suspended sediment layer. The results from that simulation show that it is
necessary to use a fine resolution close to the bed, so the rest of the analysis will
be performed on the results from that simulation. As can be seen from the plots
at t = 0 5s and t = 0 75s the use of a sheet flow model reduces the height of the
suspended layer significantly, bringing it much closer to the values measured in the
experiments, and it also provides an elevation profile for the boundary with the
immobile grains in the bed which is close to that measured in the experiments. The
new model also avoids the deposition that was observed in the previous simulations,
in the region 0.1 < x/L0 < 0.2, but which was not observed in the experiments.
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Figure 4.36: Simulation results of sheet flow model for t = 0.25, 0.50 and 0.75 s
using different mesh configuration
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Calibration of kp

The model for the particle diffusivity (eq. 4.15) also contains an empirical coefficient
kp whose value has to be obtained by comparison with experimental results, but
whose value is expected to be of order 1. To determine this value, 5 simulations
were run with the fine mesh, and values of kp = 1, 2, 5, 10 and 100. The results from
these simulations are plotted in figure 4.37, and these suggest that the best value for
kp lies between 5 and 10; the predicted scour depth for kp = 1 agrees best with the
data, whereas kp = 10 gives the best estimation of the position of the scour hole, but
the scour depth is over-estimated. A value of kp = 10 provides the best agreement
with the position of the upper boundary of the suspended load, and kp = 1 gives a
significant under-estimate of that thickness.

Conclusion

In this section, the complete model is used to simulate the case of a dam break flow
with a mobile bed. The simulation reproduced the spatial and temporal variation in
the free surface elevation very satisfactorily, and the combination of suspended and
bed load modules gave a reasonable estimate of the sediment transport. However the
calculation of the boundary between the undisturbed bed and the sediment in motion
was less satisfactory, perhaps because the primary mechanism for sediment transport
in the experiment was sheet flow, whereas the model assumes a combination of
suspended load and bed load. To correct this we have developed a model for sheet
flow, suing the same formulation as that for suspended flow, but with a particle
diffusivity based on the kinetic theory of granular flow, following Ding and Gidaspow
(1990). With this model it is therefore possible to handle the transition from sheet
flow to suspended load, without the need to specify the regime or the boundaries
between the two. This model gave an improved agreement with all aspects of the
experimental data, and a calibration procedure suggests that the best value for the
empirical coefficient kp lies somewhere between 5 and 10.
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Figure 4.37: Simulation results of sheet flow model for t = 0.25, 0.50 and 0.75 s
using different value of kp; kp values from thinnest to thickest line: 1, 2, 5, 10, 100

97



98



Chapter 5

Scour At Seawall

This section describes the application of the numerical model to predict the scour
pattern in front of seawalls. Two kinds of simulation were carried out: one with
a fixed bed and another with a mobile bed. The simulation involving a fixed bed
condition focuses on the wave hydrodynamics and their influence on the sediment
transport process in front of the wall. The mobile bed case is eventually performed
in order to calculate scour at seawall toe. The modeled system involves either a flat
bed or a sloping beach. The results provided by the simulation are then compared
with available experimental measurements from the literature.

5.1 Seawall On Flat Bed

The flat bed test case is based on an experiment by Gislason et al. (2009) where a
fully reflecting vertical wall was installed at the end of the wave flume and impacted
by a progressive wave. The fully reflecting wall generated a standing wave. The wave
flume was 28 m long, 0.8 m deep and 0.6 m wide. The regular wave was generated
by a piston wave maker which was capable of absorbing the waves reflected from the
wall. The mobile bed material used in the experiments consisted of acrylic grains
with a d50 = 0.44 mm and a specific density ρs of 1130 kg m−3. The bed thickness
was 2 cm extending 2.4 m in from the wall the offshore direction.

In the simulation, the wave height is set to H = 2 cm with a period of T = 2 s.
The water depth h is equal to 29 cm with the corresponding wave length λ = 3.3 m.

The 2D simulation is carried out for a domain 9.9 m long and 0.4 m high as
illustrated in figure 5.1. The mesh is refined close to the free surface and close to
the bed to improve the resolution of the bottom boundary layer. The boundary
conditions are defined as follows:

• The inlet boundary is defined based on Stokes 2nd order wave for the velocity
and the fluid volume fraction. A 2λ wide relaxation zone is defined at the
inlet;

• The bed boundary is defined as a no-slip condition. However, the bed boundary
is divided into a fixed bed and a mobile bed. The bed roughness is set to 2.5d50

(=1.1 mm);

• The end wall boundary is defined as a no-slip condition with a smooth surface;
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• The top boundary is defined as an atmospheric boundary condition.

2λ 5λ 3λ

−0.29 m

0.00 m

+0.11 m
z

−xwall boundary

wall boundary

wave boundary

atmospheric pressure

velocity probe

generation zone

velocity probe

Figure 5.1: Numerical domain including a vertical seawall on a flat bed

5.1.1 Fixed bed case

The fixed bed case is studied without employing the bed deformation module. For
the standing wave case, two modes for scour are observed as explained by Xie (1981)
according to the sediment grain type: the coarse bed mode and the fine bed mode.
In the coarse bed mode case, scour occurs between the node and the anti-node.
Conversely, in the fine bed mode case, scour occurs at the node. Xie (1981) and
Gislason et al. (2009) attributed this difference to the steady streaming motion which
occurs near the bed in the standing wave case.

This is illustrated schematically in figure 5.2; two recirculating cells are created
between each node and antinode, with flow at the bed and the surface towards the
nodes, and flow at the horizontal interface between the two cells away from the
node, towards the anti-node. The cells are not the same size – the lower cell is much
smaller (‘squashed’) than the upper cell, and this size difference has an influence on
the way the sediments are moved. Xie (1981) and Gislason etal (2009) argue that
if the bed is composed of coarse grains, sediment movement will be restricted to a
fairly thin layer close to the bed, and as a result sediment transport should follow
the flow pattern in the lower cell, with transport towards the nodes, and hence an
accumulation of sediment at those points. Conversely, fine sediments will be sus-
pended more easily, and might be expected to move with the flow in the upper cell,
with scour occurring at the nodes, driven by the downward flow in the upper cells.

The analysis of Xie(1981) and Gislason etal (2009) suggests that these flow struc-
tures will be important in determining scour, deposition and sediment transport in
front of a sea wall, and it is likely that the ability of the simulation to reproduce
them correctly will depend, at least partially, on the spatial resolution of the com-
putational grid, particularly in the near-bed region. To test this, therefore, four
simulations were conducted with different spatial resolution close to the bed, but
the same resolution at the free surface. The parameters for these four simulations
are given in table 5.1. Velocities were measured using velocity probes located at
distances of 0.125λ, 0.250λ, 0.375λ and 0.500λ from the wall. The simulation was
performed for 20 wave periods.

The envelope of the water surface elevation is plotted in figure 5.3 for the four
different cases, together with the analytical solution for the partial standing wave
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0.25λ 0.25λ 0.25λ

Node Antinode Node Antinode

Envelope of

the surface elevation

Figure 5.2: Vertical velocity profile at anti node for standing wave case

Table 5.1: Mesh configuration for standing wave over flat bed case

Case No
Near Bed Mesh Size Free Surface Mesh Size
∆x (mm) ∆z (mm) ∆x (mm) ∆z (mm)

Case 5.1 10 0.5 10 2
Case 5.2 10 2 10 2
Case 5.3 10 4 10 2
Case 5.4 10 10 10 2

created by reflection of second order Stokes wave, with a reflection coefficient CR =
86.85%; this value was obtained from an analysis of the envelope of the partial
standing wave, as described in eq. 2.50. There are three conclusions to be drawn
from these results. The first is that even for the idealised case of a plane vertical wall,
the reflection coefficient is not equal to 1, and this is probably because the reflection
at the wall dissipates some additional wave energy. The second is that envelope of the
partial standing wave is not sensitive to the grid resolution in the near-bed region.
(the resolution at the free surface was kept the same in all the tests). And finally,
the maximum amplitude of oscillation for the analytical solution is consistently
greater than computed in the simulations, although the computed troughs match
the analytical solution exactly. The second order wave is not symmetric about the
still water line – the crests are more peaked than in the first order solution, and the
troughs are flatter, so this reduction in the peak values (which can be observed even
at the antinode at the wall) might be due to additional dissipation.

The amplitude of the velocity oscillations has been plotted as a function of depth
for the node (the horizontal velocity – figure 5.4a) and the antinode (the vertical
velocity – figure 5.5). The figures also show the expected amplitude, from the an-
alytical solution, computed using a reflection coefficient CR = 86.85%). As might
be expected from the previous results, the velocity amplitudes do not show any de-
pendence on the grid resolution close to the bed. The measured velocity amplitudes
are noticeably less than the analytical values, for both the positive and the negative
values, although the difference is slightly greater for the positive velocities than for
the negative velocities. This reduction in velocity amplitude is partially consistent
with the observed wave envelope, which showed a reduction in the height of the
crests of the partial standing wave, compared with the theoretical solution. But
those results also showed that the troughs were very close to the analytical solution,
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whereas the velocity amplitude in the trough is much less than the analytical value.
The amplitude of the velocity oscillations very close to the bed has been plotted in
figure 5.4b, with greater resolution, and this shows that only the finest of the four
test resolutions is capable of reproducing the characteristic velocity overshoot in the
near-bed region.

Streaming velocity is obtained by integrating the velocity over ten wave periods.
Only two cases is considered in this test, the fine mesh case for Case 5.1 and the
coarse mesh case for Case 5.4. In figure 5.6, the double cell circulation stream-
ing near bed is well captured by the fine mesh, while the coarse mesh could only
retrieved a single circulation pattern. Figure 5.7 and figure 5.8 also provide the
streaming velocity plot close to the bed for both the coarse and the fine mesh. The
bed streaming magnitude for the coarse mesh case is found to be less than for the
fine mesh case. However, the bed streaming for both cases are in the same direction.
If one assumes the streaming velocity affects the sediment transport, both cases will
give a same pattern even though the simulation involving the coarse mesh was not
able to model the second circulation cell.

The bed shear stress is calculated using the logarithmic rough wall law for the
fine mesh case and the wave friction factor fw for the coarse mesh case. Using equa-
tion 2.106, fw is found equal to 0.0278.

Figure 5.9(a,b) gives the value of the bed shear stress and Figure 5.9(c,d) the
transport stage number ψ multiplied with bed shear stress direction. The coarse
mesh configuration gives a higher bed shear stress magnitude. The fine mesh con-
figuration gives lower fw of 0.0168 than 0.0278 compared to what calculated by
equation 2.106. Next, a net bed shear stress is calculated by integrating the bed
shear stress over 5 wave periods. The fine mesh case induces a higher net bed shear
stress an what is more with a completely opposite direction than the one obtained
with the coarse mesh. This is because the bed shear stress is not symmetrical for
the direction away to the wall and the direction into the wall. The transport stage
number shows a similar trend. The mesh size is then a concern since the modeled
scour pattern will be different.

5.1.2 Mobile bed case

In this part, the scour process is modeled using the sediment transport and bed
deformation module from chapter 3. The suspended load transport is not included
in the calculation since no suspended sediment was found in the experiment Gislason
et al. (2009). Two mesh configurations are used, based on Case 5.1 for the fine mesh
and case 5.4 for the coarse mesh. To evaluate the best time step for the morphological
model, a set of preliminary simulations were performed for a duration of 200s, using
three different timesteps: ∆tm = 0.125T , 0.25T and 0.5T . The bed shear stress for
the coarse mesh calculations was computed using the fw = 0.168, obtained from
calculations with the fine mesh.

The bed deformation pattern is shown Figure 5.10 for the simulation with the
coarse resolution and in Figure 5.11 for the simulation with the fine resolution.
In both cases the results have been plotted for different morphological time steps,
∆tm = 0.125T , 0.25T and 0.5T . The simulations were run for a duration of 200s,
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(a)

(b)

Figure 5.4: (a) Horizontal velocity profile at node for the standing wave case;(b)
Near bed maximum horizontal velocity normalize with boundary layer thickness, δ1
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Figure 5.5: Vertical velocity profile at anti node for the standing wave case

Figure 5.6: Horizontal streaming velocity profile at x = 0.125λ and x = 0.375λ
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Figure 5.7: Horizontal streaming velocity for coarse mesh configuration

Figure 5.8: Horizontal streaming velocity for fine mesh configuration
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(a)

(b)

(c)

(d)

Figure 5.9: Bed shear stress (a,b) and transport stage number (c,d) for the standing
wave case; solid line is for the fine mesh; dot is for the coarse mesh; thin red line is
the envelope over 20 periods; thick blue line is the value integrated over 5 period
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which was a limit imposed by the development of an instability in the morphological
model (this is discussed in detail later). The paper by Gislason et al (2009) does not
give the duration of the experiment, but it was substantially longer than 200s since
the accompanying numerical simulations required of the order of 3 weeks compu-
tational time for each case. Their numerical results, however, show that the scour
profile develops in a way that is related to the duration of the simulation (Figure 5
of Gislason et al (2009)) so we have scaled the experimental measurements of Gis-
lason etal (2009), which are only provided for the equilibrium bed profile, so as to
compare with the numerical simulations, which only correspond to the early stages
of bed deformation. The scaling factor has been chosen to match, approximately,
the extremes (erosion and deposition) of the computed bed deformation. The first
point to note, as shown in Figure 5.10a, and as indicated by Gislason et al (2009),
is that although the general elevation in the numerical simulation agrees well with
the experiment, for both erosion and deposition, there is a spatial phase shift in
the zones of erosion and deposition, so that the compute profile appears shifted
towards the breakwater, by a distance (in units of x/λ) of between 0.05 and 0.1.
One consequence of this shift is that the numerical simulation appears to predict
the development of a large scour hole at the foot of the sea wall, where the experi-
ments suggest an absence of erosion or deposition. This is obviously an important
question for the future evaluation of the stability of a sea wall. The results for
the coarse resolution are plotted in Figures 5.10b and 5.10c, with the experimental
results scaled by 1% for the intermediate results at 50T and by 5% for the results
at 100T . There are two main conclusions to be drawn from these results. Firstly,
the changes in bed level are very dependent on the time step used in the morpho-
logical model, since the results for ∆tm = 0.5T are quite different from those for
∆tm = 0.25T – the two calculations predict similar extreme values for the bed ele-
vation, but the location of the erosion and deposition are quite different. Secondly,
the magnitude of the erosion and deposition is very small, even compared with the
reduced scale of the experimental values. This is consistent with the low values of
the shear stress obtained in the numerical simulations (Figures 5.9b and d). The
results for the simulations with the fine scale numerical simulations are plotted in
Figure 5.11 for the two intermediate times t = 50T and t = 100T . The first thing to
note is that there is almost no influence of the time step for the morphological model
– the results are almost identical for the three time steps tested. The second point
is that the simulated results agree very well with the scaled experimental results,
with only a slight over-prediction of the deposition. Most importantly, there is no
evidence of the spatial phase shift which was present in the results of the numeri-
cal simulations of Gislason etal (2009), at all intermediate time intervals. The lack
of scour at the toe of the seawall was also observed by Xie (1981). These results
show another interesting feature, which has lead, ultimately, to the breakdown of
the simulation at longer times. The experimental profiles show the development of
ripple-like structures on the bed, with relatively short wavelengths, essentially in the
regions in which the sediment is mobile. Gislason et al (2009) commented that their
numerical simulation could not resolve these structures. In the simulations with the
fine resolution, these ripple-like structures have been resolved, and the wavelength is
similar to that of the measured structures. However the amplitude of the structures
is greatly exaggerated, and these relatively steep bed structures cause problems for
the remeshing of the grid, so as to follow the bed. A rough calculation shows that
the slope of these features is of the order of 0.1, so the slope is still very much less
than the repose angle of the sediments, but the slope is sufficient to require large
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vertical adjustments of the grid, leading to instabilities. One solution would be to
reduce the remeshing timestep, so as to limit the vertical adjustments that need
to be made, but the comparisons with the experimental data suggest that there is
another instability mechanism which is causing the ripples to grow too quickly.

Figure 5.10: Bed deformation for standing wave case with coarse mesh configuration
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Figure 5.11: Bed deformation for standing wave case with fine mesh configuration
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5.1.3 Conclusion

In this section, the scour process under a standing wave has been simulated for the
case of a vertical wall on a flat bed. The simulation showed that the wave is not
fully reflected with a CR about 87%. Two mesh sizes were tested to investigate the
ability of the numerical model to capture the streaming induced by the standing
wave. If the spatial resolution of the computational mesh in the near bed region
is refined sufficiently then it is possible to capture the streaming motion in the
recirculating cells, and this motion is shown to be important in determining the
pattern of sediment erosion and deposition. The amplitude of the time-varying bed
shear stress is greater for the coarse resolution simulation, but the time-integrated
value is higher for the fine resolution simulation, and the spatial variation of positive
and negative bed shear stress also depends strongly on the mesh resolution in the
near-bed region. With the fine resolution simulation the results were independent of
the time step for the morphological model, suggesting that a morphological time step
equal to half the wave period might be sufficient. The scour patterns corresponded
well with the measured steady state scour pattern in the experiments, although
it was not possible to reach steady state conditions in the numerical model, so
it has only been possible to make a qualitative comparison of the pattern. The
morphological model showed some evidence of ripple development on the bed, and
this feature grows rapidly enough to render the remeshing process unstable.

5.2 Seawall On Sloped Beach

The sloped beach case is based on the experiment of Sutherland et al. (2006) also
described in Sutherland et al. (2004). It was carried out in a wave flume 45 m long,
1.2 m wide and 1.7 m high, equipped with a sloping beach (slope 1:30) with its toe
21 m from the wavemaker. The beach therefore rises 0.8 m over its total length.
The water depth is set to 1 m in the main channel, giving a water depth of 0.2 m
near the toe of the seawall. A test section 5.14 m long, and located immediately in
front of the toe, was filled with sand of d50 = 0.111 mm (figure 5.12).

The numerical simulation domain corresponds to a flume 35 m long and 1.6 m
high (figure 5.13). The 2D simulation is performed with a mesh size ∆x = 2 cm and
∆z = 1.5 cm for the first 11 m of the domain. The mesh size gradually decreases
for the sloped beach with a final size of ∆x = 1.5 cm and ∆z = 0.75 cm. The bed
is divided into patches, with a fixed bed for the horizontal beach and a mobile bed
for the sloped beach. The bed roughness is set to 2.5d50 = 0.28 mm. The wave
is generated using a relaxation zone 5.00 m long. Two cases have been studied –
the first with regular waves and the second with irregular waves. Even though the
experiment was carried out using the irregular wave condition, the regular wave case
is investigated first for a better understanding of the system behaviour. The regular
wave case uses a Stokes second order wave with a wave height H of 0.20 m and a
period T of 1.87 s.

For the computation involving the irregular wave condition, we used the JON-
SWAP spectrum with a significant wave height Hs of 0.2 m and a peak period Tp of
1.87 s. Waves with a period of 1 87s, on water of depth 1m will have a wavelength
of about 4 74m. The water surface elevation is monitored at two locations, the first
at a distance of 0 5m from the relaxation zone used to generate the waves, and the
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second at a distance of 0 5m from the sea wall.

Vertical wall

Sand bed

Piston wave maker

Water level

1.70 m

0.46 m0.30 m

5.14 m

24 m21 m

Concrete slope 1:30

Figure 5.12: Experimental setup for seawall on sloped beach case (Sutherland et al.,
2006)

Fix wall boundary

Mobile bed boundary

Relaxation zone

Water level

Atmospheric pressure boundary
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Figure 5.13: Numerical domain of a seawall on a sloped beach

Fixed bed simulation results

To begin with, both cases were simulated using a fixed bed for the bottom boundary,
and in both cases for a duration of 100T . For the regular wave the measured
surface elevation has been compared with the surface elevation for a second order
Stokes wave, and for the irregular waves the spectrum of surface elevations has been
compared with that for the JONSWAP spectrum. The time variation of the surface
elevation, measured 0 5m after the wave generation zone, is plotted in Figure 5.14,
together with the theoretical profile for a Stokes 2nd order wave. Generally, the two
agree well; there is just a small difference at the crests and the troughs, where the
numerical simulation produces slightly higher crests and deeper troughs than for
the Stokes theory. The Power Spectral Density for the irregular wave case has been
plotted in Figure 5.15; as for the regular waves, the surface elevation was measured
0 5m downwave of the wave generation zone. The numerical results agree well with
the theoretical profile of the spectrum, except at very low frequencies, where there
is some energy in the simulations which is not found in the JONSWAP spectrum.

A visualization of the water surface elevation and the velocity field under regular
waves, at 10 successive instants, is shown in Figure 5.16. In the first image in the
sequence, a wave crest is incident on the sea wall, and is rising up the face of the wall,
with some wave breaking evident. This wave is then reflected from the wall (images
b, c and d), before interacting with the incoming wave crest causing it to break some
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distance in front of the wall. It is interesting to note that when the wave breaking
occurs the high forward fluid velocities are concentrated in the breaking crest of the
wave, and the fluid velocities close to the bed are greatly reduced compared with
the case of the propagating wave. It is only as the breaking wave slumps back down
(images g-i) that the fluid velocities at the bed increase once more. The equivalent
sequence for the irregular wave simulation is shown in Figure 5.17. In the first image,
the pronounced crest is created by the interaction of an incoming and a reflected
wave, since, in the subsequent images, the crest separates into two waves which
propagate in opposite directions. In this case the interaction does not lead to any
significant breaking, probably because the two interacting waves do not have the
same properties – the reflected wave is much less steep than the incoming wave, as
can be seen in images c and d. The incoming wave rises up the face of the sea wall
(images f and g) in a way similar to that for the regular wave, but the reflected wave
(images h-j) is much less steep than the incoming wave.

Figure 5.14: Time variation of the surface elevation, for the regular wave case at
0.5 m after relaxation zone

The envelope of surface elevations for the regular waves, computed from a se-
quence of 10 waves, is plotted in Figure 5.18a, and the corresponding envelope of bed
shear stress is shown in Figure 5.18b. The surface elevation shows the characteristic
pattern of partial standing waves, with a maximum amplitude of oscillation at the
antinodes and minimum amplitude of oscillation at the nodes, but the envelope is
far from symmetrical about the undisturbed water level. In fact the elevation of
the troughs changes very little with position in front of the wall, and the pattern is
quite different from that for reflection from a vertical wall on a flat bed (e.g. Fig-
ure 5.3).The only difference between these two cases is the presence of the sloping
bed in front of the wall, so this effect must be due to the influence of the sloping bed.
The envelope of the bed shear stress shows that maximum amplitude of oscillation
occurs at the nodes, and the minimum at the antinodes. It should also be noted
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Figure 5.15: Computed Power Spectral Density for the irregular wave case measured
0 5m downwave of the relaxation zone

that the wavelength of the envelope of the wave motion on the sloping bed is about
1 7m (antinode to antinode) which is rather shorter than the value of λ/2 (∼ 2 37m)
which would be expected for reflection on a flat bed; this is almost certainly due
to the shoaling of the wave and the shortening of the wavelength, as the wave ad-
vances over the sloping beach. The variation of wavelength for both the envelope of
the surface elevation and the envelope of the bed shear stress has been plotted in
Figure 5.21a together with the variation in the wavelength of the surface wave as it
undergoes shoaling. This shows that the wavelengths of the two envelopes reduce
as the surface wave shoals. To check the relationship between these, Figure 5.21b
shows the wavelengths of the envelopes normalised by the local wavelength of the
surface wave (λ/λs), and in all cases, the envelope wavelength is approximately half
the wavelength of the surface wave.

The asymmetry in the oscillation of the surface generates much greater bed shear
stress in the direction of wave propagation than in the opposite direction, so we it is
more likely that sediment will be moved in the direction of wave propagation than
against it (because there is a greater probability of exceeding the threshold shear
stress) but when the shear stress is averaged over time, the average bed shear stress
is almost zero everywhere.

The corresponding results for the irregular waves are shown in Figure 5.19 and
5.20. Although the surface elevation no longer shows the same regular pattern of
nodes and antinodes – because the waves are no longer monochromatic – it is still
possible to observe the same difference between the crests and the troughs – there
is very little spatial variation in the height of the wave trough, and much greater
variation in the height of the wave crests. This is particularly noticeable around
x = −1 5m.

Although the envelope of surface elevations shows some similarities with that for
regular waves, in particular through the asymmetry between crests and troughs, this
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is not reflected in the envelope of bed shear stress fluctuations, which is essentially
symmetrical about zero, unlike in the case of the regular waves. The integrated
shear stress is almost zero everywhere, and it is just as likely that the threshold
shear stress will be exceeded in the direction of wave propagation as in the opposite
direction. The peak positive and negative values of the shear stress are similar
in both cases, suggesting that simulations with regular waves can provide useful
information about the scour generated by a sequence of irregular waves.
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Figure 5.16: Wave breaking snapshot and horizontal velocity pattern for regular
wave

Mobile bed simulation results

The numerical model has been used to simulate Case 2 of the experimental measure-
ments of Sutherland et al. (2006). In the experiments, the bed profile in front of the
sea wall was measured at 300T , 1000T , 2000T and 3000T ; because of the computa-
tional time required for the simulation, it has only been possible to compare with
the results at 300T . The first problem encountered in comparing the results is that
the initial condition for the experiment did not correspond to the theoretical condi-
tion, which was defined as as a smooth sand bed with a slope of 1:30, and a vertical
elevation of 0.8 m at the toe of the sea wall. As can be seen in Figure 5.23, the initial
bed profile deviates quite strongly from theoretical value, and the deviation is of the
same order as the scour deposition measured at t = 300T . There also seems to be
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Figure 5.17: Wave breaking snapshot and horizontal velocity pattern for irregular
wave

116



Figure 5.18: Water surface elevation and bed shear stress for regular wave condition;
gray dot is the instantaneous value for 10T

some correlation between the initial bed profile and the profile measured after 300
wave periods, so it is possible that the scour pattern measured in the experiments
has been influenced by the initial conditions. In order to obtain general result, and
to avoid any possible influence of initial condition, it was therefore decided to initiate
the simulation with the theoretical initial profile, and then to compare the change
in bed level over 300 wave periods.

The pattern of scour and deposition after 270 wave periods is shown in Fig-
ure 5.24 together with the experimental profile measured after 300 wave periods.
This shows that is very difficult to compare the actual profiles in the two cases,
since the initial differences are greater than the changes in bed profile. So the
change in the bed profile, for the experiment and the simulation, has been plotted
in Figure 5.25. This shows that the amount of erosion and deposition measured in
the experiments is considerably more than obtained in the simulations, but there
are nevertheless some features common to both sets of results. Firstly, both show an
alternating pattern of erosion and deposition, with apparently similar wavelengths.
To test this we have computed the Power Spectral Density of the change in bed
level, and this is plotted in Figures 5.26 and 5.27. Only the lowest frequencies have
been plotted, since there is little power in spectrum at frequencies above 5 m−1 for
the experimental measurements, and none at al for the simulation results. In order
to compare the peak frequencies better, the spectra have also been plotted in nor-
malized form, in Figure 5.27, where the normalization factor is the maximum power
amplitude in the spectrum.

These spectra show that there is more energy in the higher frequency fluctua-
tion for the experiments than for the simulations, but this could already have been
inferred just by comparing the two curves. The lack of energy in the higher fre-
quencies in the simulation is probably due to the fact that the grid resolution was
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Figure 5.19: Wavelength of the surface wave, the envelope of the partial standing
wave and the envelope of the bed shear stress, as functions of the distance from the
wall.
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Figure 5.20: Wavelengths of the envelopes normalised by the surface wavelength, as
functions of the distance from the wall.
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Figure 5.21: Water surface elevation and bed shear stress for irregular wave condi-
tion; gray dot is the instantaneous value for 10T

Figure 5.22: Integrated bed shear stress over 5T for regular and irregular wave
conditions
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Figure 5.23: Bed profile at t = 0 and t = 300T for the experimental study of
Sutherland et al. (2006) compared with the theoretical bed profile.
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Figure 5.24: Scouring pattern for simulated irregular and regular waves and exper-
iment measurements after 300 wave cycles

still relatively coarse - 2 cm, corresponding to a spatial frequency of 50 m−1 - and
that the remeshing of the grid also contributes to smoothing the bed. In order to
better compare the characteristic frequencies of the spectra, they have nee replotted
in Figure 5.27 in normalized form (i.e. the value of PSD have been divided by the
maximum value so that both spectra are rescaled between 0 and 1). This show that
the major variation in the bed level fluctuations occurs at a spatial frequency of
0.6 m−1, which corresponds to a spatial wavelength of 1.17 m. This is quite close
to the separation distance of the antinodes (∼ 1.17 m) and possibly indicates that
the pattern is caused by the recirculating cells that form under the partial standing
wave. But the coincidence in the wavelength of the peak variation may also be due
partly to the rather coarse resolution of the spatial frequency at low frequencies.
The peak in the experimental spectrum is also rather broader than the peak for the
numerical results.

The PSD does not contain any information about the phase of the signals, and
visual comparison of the two bed change profiles in Figure 5.25 suggests that they
are out of phase - erosion in the experiments occurs at locations of deposition in
the model. This is difficult to examine from the PSD for the profiles because, in
addition, the signal is clearly transient rather than periodic - the amplitude of the
oscillations decays with distance from the wall. One way of accounting for this is to
represent the bed profile as decaying sine wave:

H = A exp{−βx} sin{κx+ φ} (5.1)

Where the coefficient A, β, κ and φ have to be obtained by a least squares fit
between the model function and the data. This has been done and the results are
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Figure 5.25: Erosion (negative) and deposition (positive) after 300 wave periods,
as a function of distance from the sea wall, for the experiments of Sutherland etal
(2006) and the simulation with OpenFOAM®
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Figure 5.26: Power Spectral Density of bed level change, as a function of spatial
frequency

124



Figure 5.27: Normalised Power Spectral Density of bed level change, as a function
of spatial frequency.
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shown in Figure 5.28 and 5.29. The values for these coefficients, and derived values,
are given in Table 5.2.

Table 5.2: Coefficient for the model function, for the experimental and numerical
data

A [m] β [1/m] κ [1/m] φ λ [m]

Experiment 0.0375 1.166 4.944 -2.836 1.270
Simulation 0.0139 0.557 3.607 -3.619 1.740

Figure 5.28: The experimental change in bed elevation and the model function

The wavelength of the bed oscillations is computed from λ = 2π/κ, and the cor-
responding spatial frequencies are 0.79 m−1 and 0.57 m−1; since the frequency reso-
lution of the PSD results is 0.2 m−1, this would give peaks at 0.8 m−1 and 0.6 m−1

respectively. This suggest that the coincidence in the peaks of the two PSD mea-
surements is partly related to the low frequency resolution, and partly to the fact
that the signal is transient rather than properly periodic. The wavelength of erosion
pattern in the numerical model (λ = 1.74 m) is very close to the value observed from
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Figure 5.29: Normalised Power Spectral Density of bed level change, as a function
of spatial frequency.
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the envelope of the reflected waves, suggesting that the erosion and deposition is
being driven by the recirculating cells that form under partial standing wave.

The difference in phase between the two model functions gives the relative phase
shift:

∆φ = 3.619− 2.836 = 0.783 ∼ π/4 (5.2)

This shows that the two signals are not in antiphase (for which the phase shift
would have been π); since each of recirculating cells under partial standing wave have
a length of λ/4 (see Figure 5.2), this phase shift of π/4 corresponds to changing the
sign of the transport at the bed, and could explain why the zones of erosion and
deposition do not occur in the same places in the experiment and the simulation.

5.2.1 Conclusion

A 2D simulation of waves impacting a seawall on a sloped beach was carried out for
comparison with experimental results of Sutherland et al. (2006). The simulation
was able to correctly capture the wave breaking caused by wave reflection. The
simulation captured the same pattern of erosion and deposition as observed in the
experiments, although with a phase shift of λ/4. Analysis of the envelope of the
partial standing wave suggests that the form of this pattern is closely related to the
formation of recirculating cells under the wave, and the phase shift in the simulated
pattern may be due to insufficient resolution of these cells close to the bed. The
volume of material displaced in the experiment is significantly greater than that
displaced in the simulations, and it is possible that conditions at the very toe of the
sea wall might be an important factor in determining the total volume of displaced
material.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this work, a numerical simulation of scour at foot of seawalls was proposed. The
model was developed in the code OpenFOAM®, based on a previous work of Zhou
(2016) that involves three modules including a hydrodynamic, a sediment transport
and morphological module. The hydrodynamic module uses the Reynold Averaged
Navier-Stokes equation combined with the Volume of Fluid (VOF) method to solve
the free surface dynamics. Two types of VOF model are tested: a first model is
based on the conditionally averaged method of interFoam solver and the second
one is based on the ghost fluid method of gfmFoam by vukcevic (Vukčević, 2016;
Vukčević et al., 2017). The turbulent contribution to the flow is solved using the
two equations k−ω SST model. In a multiphase flow simulation, the original k−ω
SST model was found to generate a high turbulence in the free surface area which
is not realistic. Hence, a correction involving a buoyancy term was used (Devolder
et al., 2017).

The wave was generated on the basis of the relaxation zone method (Jacobsen
and Fredsøe, 2011; Jacobsen et al., 2012). Another method based on the body force
(Perić and Abdel-Maksoud, 2016) and the dynamic absorption (Higuera et al., 2013)
was also tested.

The sediment transport module is based on the bed load and suspended load
transport. The bed load transport was calculated based on the formula from En-
gelund and Fredsøe, 1976 while the suspended load transport was based on the
sediment concentration advection-diffusion equation with the entrainment of sedi-
ment calculated using the empirical formulation from Van Rijn (1984b). The bed
deformation was calculated using the sediment continuity equation. The calculated
bed deformation was used to update the mesh using the dynamic mesh library avail-
able in OpenFOAM®.

Based on the wave propagation simulation, it was found that the interFoam
solver dissipate the waves more than the gfmFoam. It was also necessary to use
a second order time derivative scheme to reduce the dissipation and a limiter for
the gradient scheme in order to stabilize the simulation. However, gfmFoam was
not found stable in presence of wave breaking. The wave induced mass transport
velocity was overestimated in the free surface area, which induced a high return flow.
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Moreover, we found that the relaxation zone was not able to satisfy the conserva-
tion of the mass, and no equal mass transport return flow was observed. However,
the relaxation zone was found to give the least reflection compared to the other
tested methods.

The bed shear stress calculation method was tested using the oscillatory bound-
ary layer case based on the experiment of Mujal-Colilles et al. (2014). The bed shear
stress calculation was found to be dependent on the mesh resolution. The logarith-
mic law method for the bed shear stress calculation required the use of a sufficient
fine mesh size in order not to underestimate the phenomena. An approach using the
friction factor from Rijn (2007) was also tested. It was found more adapted to the
case of a coarse mesh.

The whole model modules were implemented for the simulation of a mobile dam
break based on the experiment of Spinewine et al. (2005). The bottom boundary
for the suspended load was modified by introducing a source term related to the
sediment entrainment which allowed a reasonable sediment mass conservation to be
achieved. However, the simulation gave a different bed deformation pattern com-
pared to the experiment. The difference may arise from that, in the experiment, the
bed location was defined on the basis of the position of the immobile grains while
in the model it was derived from the sediment continuity equation which implic-
itly impose that the bed grain cannot be static. Then, a modified suspended load
transport model where the particle diffusion is computed on the based of the kinetic
theory of granular flow (Ding and Gidaspow, 1990) was used. It gave a promising
result since the suspended load interface was found close to to results found in the
experiment.

Finally, the simulation of the scouring process on a toe seawall due to the wave
was carried out. A first simulation involved a wave approaching the vertical wall on
a horizontal bed based on the experiment of Gislason et al. (2009). The use of a fine
mesh allowed us to observe the typical second circulation streaming which cannot
be found using a coarse mesh.

The integrated transport stage number over the wave period was found to be
in the opposite direction for coarse mesh compared with the fine mesh. The bed
deformation obtained with a coarse mesh was found too irregular to derive any con-
clusion in relation with scour. The simulation result using fine mesh gives sediment
deposition at the anti-node which predicted from steady streaming direction. How-
ever, no scour was observed at the node because the Shields number was less than
the critical Shields number.

The second simulated case was based on the experiment of Sutherland et al.
(2006) for seawalls on sloped beach. The model was able to capture the wave break-
ing influenced by the wave reflecting from the wall. However, the toe scour was
greatly underestimated and a small bed shear stress was found as the toe also,
acting as a node. Then, another approach for the bed shear stress calculation is
required.

130



6.2 Perspectives

Based on the results found in this work, OpenFOAM®seems on the overall a suit-
able tool to carry out water wave simulations.

Firstly, the Volume of Fluid model implementation in OpenFOAM®is found to
give a dissipation to the waves. It may come from the diffusion term in the free
surface area. Even though the gfmFoam already solved the pressure jump condition
which improved the model performance greatly, it still not resolve the tangential
stress on the free surface (Vukčević, 2016). It is also found not stable under wave
breaking, especially when the air compressibility is significant. In the future, it will
be necessary to involve a term related to the air compressibility.

Secondly, there is still a need of extensive research on the sediment transport
model in waves flow problems. All of the sediment transport empirical formula used
in this work are based on a steady flow condition. The sediment transport calcu-
lation for waves type problem was also found to be greatly dependent on the mesh
size. Further research is required in order to give a practical guidance to build a
model suitable to scour prediction project. More sophisticated formulations must
be studied in order to evaluate their impact on the quality of the results.

Finally, the dynamic mesh in OpenFOAM®library is found to be robust and
stable. However, several limitations were found in this work. In an extreme and
sudden deformation case, the dynamic mesh tends to be unstable. A high mesh
distortion will also affect the hydrodynamic simulation. An approach based on the
immersed boundary method will be interesting to test. With the immersed bound-
ary method, the mesh quality will be conserved. Recent work by Peng et al. (2018)
using a partial cell technique in finite difference frame work seems to be promising
in this respect.
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Appendix A

OpenFOAM®An Open Source
CFD Toolbox

A.1 Introduction

OpenFOAM®is an open source computational fluid dynamics (CFD) toolbox based
on the finite volume method for solving the Navier-Stokes equation. It stands for
Open Source Field Operation and Manipulation, and is not specifically used only
for solving fluid dynamics problems. OpenFOAM®is developed as C++ library to
solve the differential equations using the finite volume method with a user friendly
syntax. One of the main advantages of using OpenFOAM®is that since it is open
source, solver development is relatively simple by using the available finite volume
library. This work uses a particular branch of OpenFOAM®– foam-extend version
4.0.

A.2 Finite volume discretization

This chapter will describe the numerical schemes and discretization that are used in
OpenFOAM®. Not all the available methods will be described in this chapter, which
is limited to the methods mentioned in chapter 4. Most of the explanation for the
numerical scheme and discretization can be found in the OpenFOAM®programmer
guide (OpenCFD, 2011) and are described in Jasak (1996).

The finite volume method (FVM) in OpenFOAM®solves equation 2.65 using
the Gauss divergence theorem. The computational domain is divided into discrete
control volumes (CV). Each CV is non-overlapping and the set of CVs fills the
computational domain entirely. There is no limitation on the number of faces, so it is
possible to use a polyhedral shape, and generate an unstructured mesh (figure A.1).
If we denote any property evaluated at the centre of the Control Volume by the
subscript P , then the centre of the Control Volume xp is defined by:∫

VP

(x− xP ) dV = 0 (A.1)

where V is the volume. Then if we define Sf as the total face area of the control
volume, and S is the face area vector with the normal direction pointing outwards
from the face. In what follows, we will use f to denote the faces of the Control
Volume and also to denote the centre point of a face. From the Gauss divergence
theorem, for a control volume P the volume integral for the divergence term for an
arbitrary variable a is denoted in surface integral form as:
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Figure A.1: Arbitrary polyhedral control volume in OpenFOAM®(Jasak, 1996)

∫
VP

∇ · a dV =

∮
∂VP

dS · a

=
∑
Nf

(∫
f

dS · a
)

(A.2)

Variables are assumed to vary linearly in space over the Control Volume, so for
an arbitrary variable φ:

φ(x) = φ(xP ) + (x− xP ) · (∇φ)P (A.3)

which is second-order accurate (Jasak, 1996). φ(xP ) is the value at the center point,
described as φP . Equation A.2 can then be rewritten as, for left hand side of the
equation:

∫
VP

∇ · a(x)dV =

∫
VP

[∇ · aP + (x− xP ) · (∇(∇ · a))P ] dV

= ∇ · aP
∫
VP

dV +

[∫
VP

(x− xP )dV

]
· (∇(∇ · a))P

= ∇ · aPVP (A.4)

similarly the right hand side of equation A.2 give:∑
f

(∫
f

dS · af
)

=
∑
f

S · af (A.5)

Combining equations A.2, A.4 and A.5, the discretized form of divergence term
for one control volume is obtained:
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∇ · a =

∑
f S · af
VP

(A.6)

A.2.1 Time derivative dicretization

The time derivative integration over a control volume for variable φ is described as:

∂

∂t

∫
V

φdV (A.7)

To simplify the discussion of the different time discretization schemes, the following
notation is introduced, to signify the value of a variable (φ) at different time steps:

• φn ≡ φ(t + ∆t) where n indicates the value of the variable φ to be computed
at the time step currently being solved

• φ0 ≡ φ(t) where 0 indicates the (known) value of the variable φ from the
previous timestep

• φ00 ≡ φ(t − ∆t) where 00 indicates the (known) value of the variable φ from
the penultimate timestep

OpenFOAM®automatically stores the values of all variables from the preceding
two time steps. Several numerical integration schemes are available, and will be
described in the following section.

Euler scheme

For the solution of transient problems, the time integration includes the integration
of the spatial derivatives. Following the OpenFOAM programming guide (OpenCFD,
2011) we denote the spatial operator on any variable φ as Aφ, so that the general
time integral form of the equation to be integrated can be written as:∫ t+∆t

t

[
∂

∂t

∫
V

φ dV +

∫
V

Aφ dV
]
dt = 0 (A.8)

The first term of left hand side of equation(A.8) can be discretized using the Euler
implicit method as:

∂

∂t

∫
V

φ dV =
(φPV )n − (φPV )o

∆t
(A.9)

The second term of left hand side of equation (A.8) can be written as:∫ t+∆t

t

[∫
V

Aφ dV
]
dt =

∫ t+∆t

t

A∗φ dt (A.10)

where A∗ represents the spatial integration of A. The time integration for spatial
term could be described using either an explicit or an implicit expression. The
explicit formulation uses the preceding value of φo as follows:∫ ∆t

t

A∗φ dt ≈ A∗φo∆t (A.11)

whereas the implicit formulation uses the current value of φn in the discretization:
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∫ ∆t

t

A∗φ dt =≈ A∗φn∆t (A.12)

Both of these expression are first order accurate in time. The implicit discretization
guarantees boundedness in the solution and is unconditionally stable. The explicit
discretization on the other hand is limited by the Courant number (Co) and is
unstable if Co is greater than 1. The Courant number is defined as:

Co =
Uf · d
|d|2∆t

(A.13)

where Uf is the velocity vector and d is the distance vector from point P to its
neighbours N (see Figure A.1).

Backward scheme

The backward scheme uses the two previous time step values and is second order
accurate in time. It is defined as follows:

∂

∂t

∫
V

φ dV ≈ 3 (φPV )n − 4 (φPV )o + (φPV )oo

2∆t
(A.14)

The solution from this scheme is not guaranteed to be bounded.

Crank Nicholson scheme

The Crank-Nicholson scheme uses the mean value of the variable φ over the time
interval ∆t, so that the second term on the left hand side of equation (A.8) can be
written: ∫ t+∆t

t

A∗φ dt ≈ A∗
(
φn + φo

2

)
∆t (A.15)

This is second order accurate in time, and is unconditionally stable. However, the
Crank Nicholson scheme is not bounded, and usually a blending with the Euler
implicit method is used to improve the boundedness. The blending is done by
introducing the off-centering coefficient, ψ, where:

ψ =

{
1 pure Crank-Nicholson method

0 pure Euler method
(A.16)

ψ = 0.9 is usually recommended to retain accuracy and improve stability.

A.2.2 Gradient discretization

Gauss scheme

The Gauss integration scheme for the gradient terms use Gauss’s theorem to convert
a volume integral of the derivative of a function into a surface integral of the function.
For an arbitrary variable φ, the Gauss integration scheme is defined as:∫

V

∇φ dV =

∫
S

dSφ =
∑
f

Sfφf (A.17)
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Least squares scheme

The least squares method evaluates the gradient at a point using the sum of the
weighted errors with respect to the gradient, at all the neighbouring points P . The
tensor G is calculated at every point P :

G =
∑
N

w2
Ndd (A.18)

where wN is the weighting factor which is taken as 1/|d|. The gradient of φ is then
calculated as:

(∇φ)P =
∑
N

w2
N · d(φN − φP ) (A.19)

Gradient limiter

The gradient limiter is used to ensure the boundedness of the solution by its neigh-
bouring cell values. There are two type of scheme: cell limited and face limited. The
cell limited gradient scheme evaluates the limit based on the values in the neigh-
bouring cells. Figure A.1 show a typical hexahedral control volume configuration
where φP is the owner cell value and φN are the values at the neighbouring cells.

The gradient is evaluated on the face f . The maximum and minimum values for
every owner and neighbour cells are evaluated:

φP,max = max (φP , φN)

φP,min = min (φP , φN)

φN,max = max (φP , φN)

φN,min = min (φP , φN) (A.20)

The limiting values, denoted as ∆φmax and ∆φmin are evaluated in every owner and
neighbour cells, so the subscripts P and N vanish. For every cell:

∆φmax = φmax − φ+

(
1

k
− 1

)
(φmax − φmin)

∆φin = φmin − φ−
(

1

k
− 1

)
(φmax − φmin) (A.21)

where k is a limiter coefficient where for k = 1 for fully limited scheme. As k → 0,
1/k → ∞ and the limit will be so large that, effectively, no limit will be applied.
The limiting values are then calculated for the faces of every control volume, and
they are used whenever the extrapolated value exceeds these limiting values. The
extrapolated value φext is calculated from the original gradient as:

φext = r · ∇φ (A.22)

And the limiter is calculated as:

ψ =
∆φmax
r · ∇φ

, for φext > φmax

ψ =
∆φmin
r · ∇φ

, for φext < φmin (A.23)
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where ψ is the limiter coefficient for the gradient. The new gradient value is then
calculated as:

∇φlim = ψ∇φ (A.24)

In the face-limited gradient scheme, the maximum values of φmax and φmin are
evaluated on the face f , not in the owner and neighbour cells, hence φf,max and
φf,min are calculated as:

φf,max = max (φP , φN)

φf,min = min (φP , φN) (A.25)

A multi-directional version is available for both limiters. In the multi-directional
version, the evaluation of extrapolated values is done for each face (hence multi-
directional– the opposite of using one value of ψ as limiter). The new gradient value
for the multi-directional version is calculated as follows:

∇φlim =
∆φmax

r
, for ∇φ > ∆φmax/r

∇φlim =
∆φmin

r
, for ∇φ < ∆φmin/r (A.26)

A.3 Finite area method

The Finite Area Method (FAM) is similarto the Finite Volume Method (FVM) but
applied to a two dimensional curved surface in three dimension. As in the FVM, the
computational domain is discretized into control areas with straight edge boundaries
(in the FVM the computational domain is discretized into control volumes bounded
by plane surface). The details of the Finite Area Method in OpenFOAM®are pro-
vided by Tukovic and Jasak (2008). This section will briefly describe the method
sing notation similar to that of Tukovic and Jasak (2008). Figure A.2 shows a control
area with centroid P and a neighbouring control area with centroid N ; they share
an edge e with length Le. The distance vector between the two centroids is de. nP ,
nN , and ne are the normal vectors for the control areas and the edge respectively.
me is the vector perpendicular to e and ne. As with the Finite Volume Method, the
surface integration is discretized as an edge-based flux using the divergence theorem.
In order to take account of the curvature effect, the edge value is calculated using a
linear transformation and an edge-based local coordinate is used. Figure A.2 shows
the edged-based local coordinate system where te is the unit vector tangential to the
geodetic line PeN at point e. Take ut,e as edge-center tangential velocity at e, ut,e
is calculated as:

ut,e = TT
e · [exTP · ut,P + (1− ex)TN · ut,N ] (A.27)

where TP,N,e is the transformation tensor from global Cartesian coordinates to the
edged-based local coordinate system and ex is the interpolation factor which is cal-
culated as the ratio of geodetic distance eN and PeN :

ex =
eN

Pe+ eN
(A.28)
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Figure A.2: Control area in finite area mesh (Tukovic and Jasak, 2008)

A.4 Pressure-velocity coupled equation

The discretized governing equation is solved based on the PISO algorithm (Issa,
1986). The iterative method is used because of the non-linearity of the momen-
tum equation and the pressure-velocity coupling. The semi-discretized form of the
momentum equation is used to derive the pressure equation:

aPUP = (H)(U)−∇p (A.29)

The final form of the discretized incompressible Navier-Stokes system is given
by Jasak (1996) as:

aPUP = (H)(U)−
∑
f

S(p)f (A.30)

∑
f

S ·

[(
1

aP

)
f

(∇p)f

]
=
∑
f

S ·
(

(H)(U)

aP

)
f

(A.31)

The solution procedure based on the PISO algorithm is described as:

• The momentum equation is solved using the initial or the previous time step
pressure field. This predicted velocity is called the momentum predictor
velocity.

• The predicted velocity is then used to solve the pressure equation. This is
called the predictor step.

• The face flux is then computed using the new pressure field and the veloc-
ity field is corrected. In the PISO algorithm the velocity field is corrected
explicitly. This is called the corrector step.

• The predictor and the corrector steps are repeated until the error tolerance is
reached.

The PISO algorithm is limited by the Courant number Co < 1.0 to ensure
stability. For the steady-state problem, the SIMPLE algorithm by Patankar (1980)
uses an under-relaxation factor of α. The new solution using the relaxation factor
is obtained as:
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φ∗n+1 = φn + α (φn+1 − φn) (A.32)

where φ∗n+1 is the new value to be used in the next iteration and a combination of
the value from the previous iteration φn and the current iteration φn+1. Using the
relaxation factor, it is possible to obtain stability using Co > 1.0. The PIMPLE
algorithm uses a combination of both PISO and SIMPLE schemes. The system uses
the SIMPLE algorithm for n iterations and then uses the PISO algorithm for the
last iteration. The number of iteration is set using the nOuterCorrector, which
for nOuterCorrector of 1 means the pure PISO algorithm will be used.

A.5 Boundary conditions

Several boundary condition is available in OpenFOAM®. In this section, several
types of boundary condition that can be used in the simulation will be described.

Fixed value boundary condition

The fixed value boundary condition is a Dirichlet type boundary condition which
prescribes the value of dependent variables at the boundary face. For a value at the
boundary φbc, the evaluation of value at boundary face can be accomplished simply
by substituting the value at the boundary face φf as φbc. The face gradient (∇φ)f
is evaluated as:

Sf · (∇φ)f = |Sf |
φbc − φP
|d|

(A.33)

Zero-gradient boundary condition

Zero gradient boundary condition is a Neumann type boundary condition where the
prescribed surface normal gradient of gbc is used:

gbc =

(
S

|S|
· ∇φ

)
f

(A.34)

For the zero gradient boundary condition, gbc is set as zero. The value on the
boundary face is interpolated from the cell center value:

φf = φP + d · (∇φ)f

= φP + |d|gbc
φf = φP (A.35)

The face gradient set directly as zero:

Sf · (∇φ)f = 0 (A.36)

Inlet-outlet boundary condition

The inlet-outlet boundary condition is a combination of a fixed value bc. and a zero-
gradient bc. It works by switching the boundary condition so that it is a fixed-value
bc if the flow direction directed to the interior of the domain, and a zero-gradient
bc if the flow direction is directed towards the exterior of the domain (Figure A.3).
The flow direction is evaluated the flux at each of the boundary faces.
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Figure A.3: Implementation of inlet-outlet boundary condition at OpenFOAM®

Total pressure boundary condition

The total pressure boundary condition is based on the fixed-value bc. where the
pressure definition is based on the total pressure, p0. For an incompressible flow,
the pressure value at the patch pp is calculated by subtracting the dynamic pressure
component:

pp = p0 − 0.5|U|2 (A.37)
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Appendix B

Ghost Fluid Method
Discretization

In section 2.4.2 we described how the conditional averaging used in the Volume Of
Fluid method overestimates the accelerations in the cells that are not completely
full, because the average fluid density is less than the density of the heavier phase.
Vukčević (2016) proposed a correction by introducing a pressure discontinuity at
the free surface, and he called this the Ghost Fluid Method (GFM). This section
will give a brief introduction to the discretization procedure for implementing GFM
in OpenFOAM®based on the work by Vukčević (2016).

In the VOF method, the free surface is not explicitly defined. It is described
as the transition between the water and air phase. In this work, the free surface is
assumed to be located where the phase fraction α = 0.5. In order to locate the free
surface, wet and dry cells are defined as follows (Vukčević et al., 2017):

• Wet cells are defined as cells where the phase fraction of αP > 0.5 and dry
cells are defined as cells for which αP < 0.5.

• The cell faces that constitute the interface are those for which (αP −0.5)(αN−
0.5) < 0 as shown in figure B.1. The other faces are treated normally.

• A specific treatment is applied to the interface faces to account for the pressure
jump condition.

Figure B.2 shows an example of the computational domain for an interface face.
The free surface location vector xΓ is calculated as follows:

xΓ = xP + λdf (B.1)

where xP is the location vector for the owner cell P and df is the distance vector
from P to the neighbour cell N . λ is the dimensionless distance from P to the free
surface, calculated based on the phase fraction:

λ =
αP − 0.5

αP − αN
(B.2)

The pressure jump condition is discretized as follows:

[pd] = (ρ+ − ρ−)g · xΓ = H (B.3)

The modified pressure pd extrapolated using jump conditions is calculated as:
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dry cells
α < 0.50

wet cells
α > 0.50

α = 0.50

Figure B.1: Wet and dry cells in discretization domain for ghost fluid method
(Vukčević et al., 2017)

dry cell, αN < 0.5

wet cell, αP > 0.5

β−

β+

α = 0.5

P

N

df

xΓ

Figure B.2: Free surface distance xΓ for one interface face (Vukčević et al., 2017)
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• For wet cell P and dry cell N

p+
dNΓ =

β−

βw
+

(
1− β−

βw

)
pdP −

β−

βw
H (B.4)

p−dPΓ =
β+

βw
+

(
1− β+

βw

)
pdN −

β+

βw
H (B.5)

• For dry cell P and wet cell N

p−dNΓ =
β+

βd
+

(
1− β+

βd

)
pdP −

β+

βd
H (B.6)

p+
dPΓ =

β−

βd
+

(
1− β−

βd

)
pdN −

β−

βd
H (B.7)

where βw and βd are the weighted inverse densities evaluated from the wet and dry
cells respectively. These values depend on the distance to the free surface λ, hence:

βw = λβ− + (1− λ)β+ (B.8)

and

βd = λβ+ + (1− λ)β− (B.9)

It can be shown that βw 6= βd.

B.1 Pressure jump implementation in discretized

governing equation

B.1.1 Pressure jump implementation in pressure gradient
term

The interface-corrected gradient scheme is introduced by Vukčević et al. (2017) in
order to take account of the pressure jump condition. The Gauss interface-corrected
pressure for cell P is wet is given by:

βP∇pdP =
βP
VP

∑
f,AΓ

Sf (fxpdP +(1−fx)pdN)+
βP
VP

∑
f,Γ

Sf (fxpdP +(1−fx)p+
dNΓ) (B.10)

where
∑

f,AΓ
is the sum for regular faces and

∑
f,Γ is the sum for the interface faces.

The interface face interpolation uses p+
dNΓ, where the index + indicates extrapolation

from the wet side. Substituting equation (B.4)into the interface face interpolation
on (equation B.10) give:

βP
VP

∑
f,Γ

Sf (fxpdP + (1− fx)p+
dNΓ) =

1

VP

∑
f,Γ

Sfβ
+pdP +

1

VP

∑
f,Γ

Sf
β+β−

βw
(1− fx)(pdN − pdP −H) (B.11)
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A similar expression can be derived for the dry P cell using p−dNΓ. Using a similar
approach, the least squares gradient scheme can be written as a split sum:

βP∇pdP =
βP
VP

∑
f,AΓ

If (pdN − pdP ) +
βP
VP

∑
f,Γ

If (p
+
dNΓ − pdP ) (B.12)

where If is the least squares vector.

B.1.2 Pressure jump implementation in pressure Laplacian
term

The implicit part of the pressure equation is written as the split sum of regular faces
and interface faces:

∑
f

(
1

aP

)
f

(β)fΓ|Sf |
(pdN − pdP )Γ

|df |
=
∑
f,AΓ

(
1

aP

)
f

(β)f |Sf |
pdN − pdP
|df |

+
∑
f,Γ

(
1

aP

)
f

(β)fΓ|Sf |
pdNΓ − pdP
|df |

(B.13)

For a single wet cell P , the interface face contribution can be written as:

(
1

aP

)
f

(β)fΓ|Sf |
p+
dNΓ − pdP
|df |

=

(
1

aP

)
f

|Sf |
|df |

β+β−

βw
(pdN − pdP −H)

=

(
1

aP

)
f

|Sf |
|df |

β+β−

βw
(pdN − pdP )

−
(

1

aP

)
f

|Sf |
|df |

β+β−

βw
H (B.14)

where βfΓ = β+ and p+
dNΓ is given by equation (B.4) for wet cell P . The last term

of equation (B.14) is the additional source term due to the introduction of the jump
condition, and it reads:

SP =

(
1

aP

)
f

|Sf |
|df |

β+β−

βw
H (B.15)

The adjacent neighbour cells N for a wet cell P are considered as dry cells.
Hence, the jump contribution for a dry cell N is given as:

(
1

aP

)
f

(β)fΓ|Sf |
p−dPΓ − pdP
|df |

=

(
1

aP

)
f

|Sf |
|df |

β+β−

βw
(pdP − pdN +H) (B.16)

where βfΓ = β− and p−dPΓ is given by equation (B.5) for dry cell N . The additional
source term contribution from the jump condition for the dry cell N then reads:

SN = −
(

1

aP

)
f

|Sf |
|df |

β+β−

βw
H (B.17)

Vukčević et al. (2017) found that the additional source terms from the pressure
jump condition are anti-symmetric. Hence they are added as an additional flux
through the interface faces.
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Appendix C

Suspended Load Entrainment
Limiter

The suspended model in chapter 3, needs an empirical equation to define the sed-
iment entrainment. In this work a model from Van Rijn (1984b) is used. Equa-
tion 3.17 is rewritten in simpler form as:

Cs = Aψ1.5 (C.1)

where A is the constant part of equation:

A =
0.015d50

∆d0.3
∗

(C.2)

However, equation C.1 is unbounded and increases exponentially at high values
of the stage discharge number, resulting in physically impossible values of the con-
centration. Hence, in this work a limiter is applied so that the maximum possible
concentration is that given by a close-packing arrangement of the sediment grains:

Cmax =
(1− n)

(1 +Kb)
(C.3)

where n is the sediment porosity and Kb is the bulk coefficient; this equation implies
that the concentration of the suspended sediment cannot exceed that of the sediment
that has settled on the bed. One possible approach would be simply to limit the
concentration to the value Cmax, but in reality the concentration is likely to approach
this maximum value rather slowly, so instead we have used an interpolation function
to provide a smooth transition. The general approximation for the relationship
between concentration and stage discharge number is to divide the stage discharge
number into three parts, as shown in figure C.1.

The three regions are described as follows:

ψ ≤ ψ1 :Cs = Aψ1.5

ψ1 <ψ < ψ2 :Cs = f(ψ)

ψ2 ≤ψ :Cs = Cmax

(C.4)

where a Bézier curve is used to interpolate in the middle region. Bézier curves are
curves in parametric form – they are written in terms of an auxiliary parameter,
s, which varies between 0 and 1 as the curve moves between the support points.
Thus to compute Cs for any given value of ψ, for example, the auxiliary parameter
s that corresponds to the value of ψ needs to be computed first. For this reason,
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ψ0 ψ1 ψ2 ψ

P0

P1 P2

Cs

Cmax

C0

Figure C.1: Concentration as a function of stage discharge number

this application is limited to quadratic Bézier curves – the use of a cubic Bézier
curve would require the solution of a cubic polynomial for s. The basic form of the
quadratic Bézier curve is shown in Figure C.2, where the point P1 is the intersection
of the tangents to the curve at P0 and P2. Then the equation of the curve between
P0 and P2 is:

P0

P1

P2

Figure C.2: Quadratic Bézier curve

P (s) = (1− s)2P0 + 2s(1− s)P1 + s2P2, 0 < s < 1 (C.5)

For this problem, three values need to be decided:

• ψ0: the value of ψ at which the interpolated function will diverge from the
theoretical function

• Cmax: the value of the maximum concentration from equation C.3

• ψ2: the value of ψ at which C reaches the maximum value.

Using the three points (ψ0, C0), (ψ1, C1) and (ψ2, C2) as defined in Figure C.1,
we obtain:
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C0 = Aψ1.5
0

ψ1 = ψ0 +
Cmax − C0

1.5Aψ0.5
0

C1 = Cmax

C2 = Cmax

(C.6)

In order to calculate the value of Cs for any value of ψ in the region ψ0 < ψ < ψ2,
it is necessary to solve the following quadratic equation in s:

ψ = (1− s)2ψ0 + 2s(1− s)ψ1 + s2ψ2 (C.7)

The concentration then calculated as:

Cs = (1− s)2C0 + s(2− s)Cmax (C.8)
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Méhauté, Bernard (1976). “An introduction to hydrodynamics and water waves”.

156



Mei, Chiang C and Philip LF Liu (1972). Mass Transport in Water Waves. Part I.
Theory. Part II. Experiments. Tech. rep. DTIC Document.

Menter, Florian R (1994). “Two-equation eddy-viscosity turbulence models for en-
gineering applications”. AIAA journal 32.8, pp. 1598–1605.

Meyer-Peter, Eugen and R Müller (1948). “Formulas for bed-load transport”. IAHR.
Miles, Jonathon R, Paul E Russell, and David A Huntley (2001). “Field measure-

ments of sediment dynamics in front of a seawall”. Journal of Coastal Research,
pp. 195–206.

Monaghan, Joe J (1994). “Simulating free surface flows with SPH”. Journal of com-
putational physics 110.2, pp. 399–406.

Moody, PM (1996). “Laboratory Study of the Effect of Seawalls onBeach Erosion”.
PhD thesis. MS Thesis, Department of Civil and Environ-mental Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts.

Mujal-Colilles, Anna et al. (2014). “PIV experiments in rough-wall, laminar-to-
turbulent, oscillatory boundary-layer flows”. Experiments in fluids 55.1, p. 1633.

Nwogu, Okey G and Zeki Demirbilek (2001). BOUSS-2D: A Boussinesq wave model
for coastal regions and harbors. Tech. rep. ENGINEER RESEARCH, DEVEL-
OPMENT CENTER VICKSBURG MS COASTAL, and HYDRAULICSLAB.

OpenCFD (2011). “Openfoam programmer’s guide”. OpenFOAM Foundation 2.0.
Patankar, Suhas V (1980). “Numerical heat transfer and fluid flow, Hemisphere

Publ”. Corp., New York 58.
Pedocchi, Francisco and Marcelo H Garcia (2009). “Friction coefficient for oscillatory

flow: the rough–smooth turbulent transition”. Journal of Hydraulic Research
47.4, pp. 438–444.

Peng, Zhong, Qing-Ping Zou, and Pengzhi Lin (2018). “A partial cell technique for
modeling the morphological change and scour”. Coastal Engineering 131, pp. 88–
105.

Penney, WG and A To Price (1952). “Part I. The diffraction theory of sea waves
and the shelter afforded by breakwaters”. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 244.882,
pp. 236–253.
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