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ABSTRACT

Today, the aging behavior of dense suspensions or pastes
is nearly systematically attributed to structural evolu-
tion. Here, we bring experimental evidence that, in con-
trast, dense aqueous silica and polymer latex suspensions
age even after their microstructure is frozen by the for-
mation of attractive, thermally irreversible, interparti-
cle contacts. By performing three point flexural tests
with laser tweezers on particle rods, we access the bend-
ing rigidity of contacts and show that it grows essentially
logarithmically in time. We thus show that the shear mod-
ulus and yield stress of these dense suspensions age solely
due to the progressive stiffening of contacts. Contact-
controlled mechanical aging appears to be a generic aging
mechanism, that should be at work in a wide class of ma-
terials, such as cements, soils, or 3D inks.

RESUMÉ

La majorité des études sur le vieillissement des suspensions
colloïdales denses attribue celui-ci à une évolution struc-
turelle. Dans ce travail, nous apportons des preuves ex-
périmentales de l’invalidité de cette hypothèse dans le cas
de suspensions aqueuses de particules de silice et PMMA:
celles-ci vieillissent bien que leur microstructure soit fi-
gée par la formation de contacts adhésifs entre les partic-
ules, irréversibles par agitation thermique. En effectuant
des tests de flexion à trois points avec des pinces optiques
sur des chaines de particules, nous mesurons la rigidité en
flexion des contacts et nous montrons qu’elle augmente
quasi-logarithmiquement au cours du temps. Nous mon-
trons ainsi que le module de cisaillement et la contrainte-
seuil de ces suspensions denses vieillissent uniquement en
raison du renforcement des contacts. Le vieillissement mé-
canique contrôlé par les contacts semble être un mécan-
isme de vieillissement généralisé, qui devrait se manifester
dans une large gamme de matériaux tels que les ciments,
les sols ou les encres 3D.
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10 CHAPTER 1. INTRODUCTION

1.1 General context and motivations

Dense colloidal suspensions (or pastes) constitute a broad class of materials found
in areas ranging from environmental systems (e.g. silts, clays), to industry (ceram-
ics, drilling muds, slurries), construction (plaster, cements), foodstuff, cosmetics,
pharmaceuticals (toothpaste, medical ceramics). Their most remarkable feature is
thixotropy: a slow evolution of their mechanical properties when switching from rest
to flow (at fixed density, in the absence of drainage). Thus, their viscosity under
flow, or their shear modulus and yield stress at rest, depend both on time and strain
history [45, 40, 144, 143, 87, 73]. Thixotropy enables these systems to switch re-
versibly between solid- and liquid-like states with sharply contrasted properties. At
rest, it is usually accompanied with aging —slow, non-exponential dynamics at long
times.

Understanding thixotropy and aging is of tremendous importance in many prac-
tical applications, because these phenomena are often at play in situations when
materials have to be processed. To appreciate this fact, consider for example fresh
cement pastes (i.e. in the dormant period of the hydration reaction). They are
suspensions of irregularly shaped particles with a typical size ranging from 100 nm
to about 100 µm and they can, thus, exhibit properties inherent to dense colloidal
suspensions. The placing of a concrete and/or its spreading on solid surfaces, is an
important operation which largely determines the quality of the final product [139].
Rheology is a key parameter of concrete workability . For example, a time- and/or
shear-dependent viscosity may affect the time and pumping pressure required to fill
a formwork or empty a truck. The magnitude of the yield stress, i.e. the stress that
should be overcome to initiate flow from quiescent conditions, determines whether
sedimentation of the coarsest elements may occur [168]. In shotcrete, the ability of
the material to recover solid-like properties after flow arrest is crucial in determining
whether the material remains on the wall or flow down after spraying [168]. Aging
also leads to a phenomenon often described in concrete industry as workability loss,
since the yield stress steadily increases with resting time.

In recent decades, tremendous progress has been made towards understanding
the dynamics of so-called “stabilized” suspension, in which the formation of inter-
particle adhesive contacts is fully avoided by tuning inter-particle interactions (via
double-layer polarization, or polymer depletion effects) [53, 54, 50, 159, 121, 208].
Confocal microscopy was instrumental to such progresses, yet may only be applied to
transparent, i.e. nearly index matched, systems, hence is limited to systems in which
van der Waals forces are absent. Meanwhile, studies of “non-stabilized” suspensions
have tended to focus on very dilute systems (i.e. packing fractions at most a few
percent) where a structural evolution (the formation of flocs) could be imaged and
thus analyzed, e.g., using light scattering techniques [35, 16, 37].

The tremendous success of these studies has created an observational bias as,
today, classical works on suspensions only mention structural dynamics as the root
cause of thixotopy [9, 130]. But the pastes of civil and environmental engineer-
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ing, are dense and generally contain significant concentrations of ions; these screen
Coulombic repulsion and allow attractive van der Waals forces to bring particles into
solid-solid contacts, which are likely to impact macroscopic properties and their evo-
lution by a number of mechanisms. Indeed, it is well-known that, the macroscopic
response of non-colloidal granular materials [89], is affected by contact friction, which
is time-dependent [51, 152, 11]. In cements, the formation of hydrate gels between
grains, which determines the late-time strength and mechanical properties of solid
concrete [201, 97], was proposed to play a role in thixotropy [169]. Contact ag-
ing [123] was also proposed to play a role in highly dilute (0.02%) gels of nanometric
particles in microgravity—a situation rather far from real pastes. But in the general
context of attractive suspensions, this idea seems reserved to reactive systems (ce-
ments) where the suspending fluid evolves, or refers to frictional forces, and a direct
relation between contact and macroscopic aging has never been established.

In fact, it remains unclear how solid-solid contacts may affect just the rheology
of colloidal systems. By designing an optical-trap three-point bending test, Pantina
and Furst [146, 147] showed that beams of PMMA and polystyrene particles present
a finite flexural rigidity, which entails that the contacts formed between particles
resist rotation. The flexural rigidity of polystyrene particle rods was later shown to
evolve [129]. Besides, a recent work on model pastes of strongly attractive spherical
and crushed silica particles provided evidence that mechanical aging was not accom-
panied by an evolution of the microstructure [73]. All these elements lead us to ask
whether time-dependent physical bonding in dense, ionic pastes could be responsible
for their mechanical aging, without invoking structural changes in the particle net-
work.

This work aims to investigate the potential existence of a link between contact
and macroscopic aging. To achieve it, we study the aging behavior of model dense
colloidal suspensions, composed of silica (SiO2) and PMMA particles in divalent
electrolyte aqueous solutions, and combine measurements performed at the particle
level, through optical-trap three-point bending tests and confocal microscopy, and at
the macroscopic scale, through rheometry. The use of model ionic systems enables
us to carefully control a number of parameters expected to affect the rheology of
real suspensions in the dense regime, such as the volume fraction, the size and the
shape of the particles and the magnitude of the interactions.

1.2 Outline of the thesis
In Chapter 2, after briefly introducing the reader to colloidal phenomena, we

focus on the forces acting between charged colloids in water, and rapidly discuss
the limitations of the existing theories (i.e. DLVO). Then, we review the general
literature on colloidal phase transitions, thixotropy, aging and structural evolution
in arrested states (glasses and gels). In Chapter 3, we describe the materials and
experimental methods used to assess mechanical aging. We present the procedure
of synthesis of silica particles, the characterization of their properties in water and
electrolyte solutions, and investigate their time-dependent rheology in dense suspen-
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sions. Part I ends with the characterization of the microstructure of the suspensions
under a confocal microscope.

In Part II we study aging at the particle scale. Chapter 4 is first devoted to the
description of the tweezers experiments. We outline the basic concepts of optical
trapping techniques, the tweezers setup used in this work and its calibration. We
then focus on the experimental procedure used to carry out three-point bending tests
on particle rods, the main features of acquisition and processing of the data, and
illustrate how the existence of contact aging at the nanoscale is revealed. We also
review models for resistance to rolling motion in adhesive contacts, apply them to
our micro-sized particles, and briefly discuss the literature on contact aging, with
particular regard on silica. A short chapter, Section 5.1, will then show in detail how
the raw data and the subsequent data analysis are used to interpret and “correct for
misalignment” the tweezers tests, in order to accurately study the micro-mechanics
of the rods under bending. Thereafter, we review the main results of our work
and illustrate how we are able to establish a quantitative link between macroscopic
and contact aging, Chapter 6. The implications of our findings in terms of bulk
rheology, such as the effects of the particle size, ionic strength and packing fraction,
are analyzed. Chapter 7 comprises some concluding remarks and perspectives on
future works.
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2.1 Colloidal suspensions
The term colloidal suspension refers to a class of heterogeneous mixtures in

which the dispersed phase —the colloid —has a specific size range with respect
to the size of the typical constituents comprising the continuum phase. Unlike a
solution where solute and solvent constitute only one phase, on the one hand, in
a colloidal dispersion the two phases remain separated; the suspended particles are
insoluble and macroscopic, in the sense that their size is significantly larger than the
size of the solvent molecules. This ensures that, from the “particle point of view”,
the suspending medium behaves as a continuum (i.e., characterized by continuum
properties such as viscosity, refractive index, dielectric constant, etc.). Unlike a
granular system, on the other hand, the size of a colloid must be small enough
that thermal energy kBT is the fundamental energy scale, so that thermal forces
(Brownian motion) allow the particles to rapidly sample the accessible configuration
space [130].

Gravitational Peclet Number The border between a colloidal system and a
non-colloidal one can be located through the gravitational Peclet number, which
compares the effects of thermal motion and gravitational forces, and is calculated as
the ratio between the characteristic sedimentation and diffusion times of the colloids.
The characteristic time taken for a particle of radius a and density ρp to sediment
its own size, in a solvent of density ρs and viscosity η0, is

tsed = 2a
vsed

= 9η0

2(ρp − ρs)ga
(2.1)

where g is the gravitational acceleration. The characteristic diffusion time of the
same particle can be expressed as a function of the diffusion coefficient D:

tdiff = 6πη0a
3

kBT
(2.2)

The gravitational Peclet number Pe is then

Pe = tsed
tdiff

= 3kBT
4π (ρp − ρs)ga4 (2.3)

When the Peclet number is � 1, thermal agitation dominates over sedimentation
and the system has a strictly colloidal behavior. Conversely, colloidal effects are
negligible when Pe� 1. The transition occurs around Pe ' 1. For a silica particle
(ρp ∼2 g/cm3) in pure water and ambient temperature, we obtain:

atran =
(

3kBT
4π (ρp − ρs)g

) 1
4

≈ 0.55 µm (2.4)

Colloids, thus, must have a size range midway between the nanometer and microm-
eter scales, a ∈ [0.01, 10]µm. Due to their small size, colloidal particles possess a
high surface-to-volume ratio and are thus sensitive to surface-mediated interactions.
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Another intrinsic parameter in colloidal suspensions is the particle concentration, or
packing fraction φ, defined as the ratio between the volume occupied by the particle
Ωp and the total volume Ωtot of the suspension.

φ = Ωp

Ωtot
= Ωp

Ωp + Ωsolv
(2.5)

where Ωsolv is the solvent volume.

Colloidal suspensions have many features in common with atomic systems, and,
for this reason, they are usually considered as models to elucidate some fundamental
phenomena in the atomic counterparts. The striking advantage of using colloids is
twofold: on the one hand, their interactions can be finely tuned, by functionalizing
their surface or changing the solution composition by addition of polymers and/or
salts, and they can be controlled and manipulated rather easily by external fields, such
as electric and magnetic fields or optical traps [122]. On the other hand, because
of their size close to (or larger than) the wavelength of visible light, colloids can be
studied by many optical techniques such as confocal microscopy [79, 53, 54, 159,
121], total-internal-reflection microscopy [205] and light scattering [35, 16], which (i)
allows for direct comparisons with analytical and numerical results and (ii) leads to a
close and fruitful interplay between theory, computer simulation, and experiments.

2.2 Colloidal interactions

Numerous phenomena in colloidal suspensions are determined by the strength
and range of the interactions between the particles. Two or more particles can in-
teract via different forces, that can be classified into 4 main groups, according to
their nature: hydrodynamic, dispersion, surface, and depletion forces [130]. A car-
toon of the various forces at play in colloidal dispersions is reported in Figure 2.1.
Hydrodynamic interactions originate from long-range flow perturbations induced by
the motion of the particles in the fluid, and will be ignored when studying aging
and thixotropy in quiescent conditions. Dispersion forces are ubiquitous in colloidal
systems, since they are quantum mechanical in nature; they arise from the existence
of permanent and/or fluctuating electric dipole in the atoms of the particles. Surface
forces include electrostatic and steric forces, which arise respectively from the pres-
ence of charges and adsorbed polymers at the particle surface. These repulsive forces
usually tend to stabilize the suspension preventing flocculation. Colloidal particles
can also experience attractive forces associated with the presence of depletants, viz.
non-adsorbing polymers or nanoparticles. The attraction arises from the increase in
the osmotic pressure occurring when the particles get so close that the depletants
are unable to access the space between them.

For the scope of our study, here we focus on the specific situation of similar,
electrically charged particles in aqueous solvents, in the absence of added polymers.
In these conditions, the interactions are usually described by the classical theory
of Derjaguin, Landau, Verwey, and Overbeek (DLVO) [47, 203], for which the net
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Figure 2.1 – A diagram of typical colloidal interactions.

pair interaction is modeled as a combination of two main contributions: a purely
electrostatic repulsive part due to residual surface charges, and an attraction term
due to van der Waals forces. DLVO theory has been instrumental in characterizing
the stability of colloidal dispersions, but in recent years, the presence of additional
non-DLVO contributions has emerged among the scientific community to explain
specific experimental and theoretical issues.

2.2.1 van der Waals (vdW) forces
van der Waals forces between molecules The van der Waals forces between
atoms and/or molecules are caused by the interaction between electrical dipoles, due
to the presence of fluctuating and/or permanent asymmetries in the electron density
of the interacting media. The electron density shift can be permanent; this is the case
of polar molecules (e.g. water), where the dipole arises from the difference in elec-
tronegativity between the atoms. Nonpolar molecules can possess a transient dipole
due to spontaneous and/or induced electron density fluctuations; these molecules
behave as fluctuating/induced dipoles. These forces can be expressed, in the most
general form, as a contribution of three different types of dipole-dipole interactions:
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1. Keesom or permanent dipole - permanent dipole interactions. They originate
from the alignment of the rotating dipoles and involve polar molecules.

2. Debye or permanent dipole - induced dipole interactions. They depend on the
angular orientations of the molecules, like for the Keesom interactions, and are
caused by the interaction between a polar and a nonpolar molecule.

3. London or induced dipole - induced dipole interactions. Also known as dis-
persion forces, they represent perhaps the most important contribution to the
total van der Waals force between atoms and molecules, because they are al-
ways present.

For short separations, each of these contributions has an interaction free energy
which varies with the inverse sixth power of the distance between the interacting
atoms/molecules r, so that the (attractive) interaction potential can be written as:

VvdW = −CvdW
r6 (2.6)

where CvdW is a constant dependent on the electric properties of the given system
and is expressed in Jm6.

van der Waals forces between macroscopic bodies To calculate the inter-
action energy between two macroscopic bodies, Hamaker [90] proposed to perform
a pair-wise summation over all the atoms in the bodies. The “two-body” potential is
obtained by summing (i.e integrating) the energy of all atoms in one body with the
energy of all atoms in the other. With this assumption, the vdW interaction energy
per unit area of two semi-infinite parallel plates at separation h reads:

WvdW = − AH
12πh2 (2.7)

where AH is called the Hamaker constant and accounts for all the properties of the
two materials and the interacting medium, but is independent from the geometrical
properties embodied in the calculation. The Hamaker approximation is very useful
in colloidal systems; an explicit calculation of the vdW forces between two colloidal
particles of equal radii a at center-to-center separation r = 2a+ h, leads to [171]:

VvdW = −AH6 ·
(

2a2

r2 − 4a2 + 2a2

r2 + log
(
r2 − 4a2

r2

))
(2.8)

When the surface-to-surface separation is small with respect to the radius of the
particles (h� 0.01a), we can approximate the above expression with

VvdW = −AHa12h (2.9)

Even though the Hamaker pair-wise additivity represents a good approximation,
it ignores the influence of neighboring atoms on the interaction between any pair
of atoms. Lifshitz [116] presented an alternative, more rigorous, approach, where
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each body is treated as a continuum —thus neglecting its atomic structure —and
the forces are derived in terms of dielectric bulk properties of the media. In the
Lifshitz computation, the vdW forces arise from fluctuations in the electromagnetic
field and can be estimated by treating the interaction as standing waves which only
occur at certain frequencies. The expression for the potential in the Lifshitz theory
remains the same as in the Hamaker theory, but the many-body effects are automat-
ically incorporated in the Hamaker constant, which now can be calculated from the
knowledge of the frequency-dependent permittivities and refractive indexes of the
interacting media.

When the surface-to-surface distance between the two bodies increases, the time
taken for the electromagnetic waves emitted from the oscillating dipoles to interact
can become comparable with the period of fluctuation of the dipole itself, and the van
der Waals attraction is reduced [100]. This phenomenon, called retardation effect,
is usually taken into account by modifying the expression of AH at large separations
(h� 5 nm). Since we are mainly interested in interactions at contact, i.e. at short
distances, we will neglect retardation effects in the remainder of this work.

2.2.2 Electrostatic interactions
In many real systems, coalescence of the suspended particles induced by van der

Waals interactions is hindered by long-range repulsive forces, which prevent parti-
cles from coming into direct contact. In aqueous solutions and in absence of added
polymers, these forces originate from the presence of electric charges at the par-
ticle surface. In mineral colloids such as silica, for instance, the charge density is
provided by the ionization or dissociation of the surface functional groups SiOH →
SiO– + H+. The region in proximity of a charged surface is generally described by
the diffusive double-layer model [82, 27, 185]. According to the model, the ionic
concentration profile around a charged surface, with charge density σ < 0, can be es-
sentially split into two main regions, as shown in Figure 2.2(a). In the vicinity of the
(negative) charged plane, the (positive) counterions are bound, usually transiently,
to the surface, and form the so-called Stern-Helmholtz layer. Far away from it, in-
stead, the unbound cations can undergo Brownian motion, and thus form a broaden
region called diffusive layer. Perhaps surprisingly, this charge distribution arises from
an osmotic effect acting between the counterions, to the detriment of the Coulombic
forces that tend to minimize the charge asymmetry. What maintains the diffusive
layer is thus an entropic effect; the mutual repulsion between the counterions forces
them to diffuse in solution and increase their configurational entropy. Note also
that the osmotic pressure brings about the repulsive forces between two macroscopic
charged surfaces, as we will seen shortly. The reason is that, on bringing two such
surfaces together, one is forcing the counterions back onto the surfaces against their
osmotic repulsion.

No added electrolytes Here we consider the case where the counterions in so-
lution are provided only by the dissociation of the surface. We consider two negative
charged planes of equal surface charge density —σ < 0 —separated a distance h
in water, as shown in Figure 2.2(b). The electrostatic potential Φ and equilibrium
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(a) (b)

Figure 2.2 – (a) The double layer around an isolated charged plane. The Stern layer
is located in a region 0 < x < b, where b also defines the outer Helmholtz plane OHP
(see later text). (b) The ionic distribution in the vicinity of two charged planes at a
distance h. Solid black curve is the cation density profile ρ (ions/m3) in the gap, with

ρs and ρ0 the contact and the mid-plane values, respectively.

ion concentration ρ in the gap can be calculated via the Poisson-Boltzmann (PB)
equation:

d2Φ
dx2 = −zeρ0

ε0ε
· exp

(
−zeΦ(x)
kbT

)
(2.10)

The PB equation originates from the well-known Poisson equation and the equilib-
rium requirement of constant chemical potential everywhere in the gap, which gives
a Boltzmann distribution of counterions at any point x:

ρ(x) = ρ0 · exp
(
−zeΦ(x)
kbT

)
(2.11)

In Equations (2.10) and (2.11), e is the elementary charge, z the ion valency, ε0ε is
the permittivity of the solution, kbT the thermal energy and ρ0 the ion concentration
at the mid-plane. Let us note that:

(i) by symmetry, the electric field must vanish at the mid-plane E0 = −(dΦ/dx)x=0 =
0.

(ii) the system is electrically neutral (total charge of the counterions in the gap
equal to the total charge on the surfaces).

From these two conditions, it can be shown that the surface values of the electric
field and counterions concentration are related to σ through:

Es = −σ/ε0ε (2.12)
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ρs = ρ0 + σ2

2ε0εkbT
(2.13)

Since in this case there are no electrolyte ions in the bulk solution ρ0(h =∞) = 0,
the equilibrium osmotic pressure in the gap depends only on the contact values of
the counterions concentration. This holds as long as there is no interaction between
the counterions and the surfaces (no adsorption) so that σ is constant regardless
the gap separation (we will see that this is not generally true). The pressure buildup
on bringing two plane surfaces together from infinity (x = ∞ where P = 0 ) to a
separation x = h at constant temperature can be calculated as:

P (h) = kbTρ0(h) = kbT [ρs(h)− ρs(∞)] (2.14)

As anticipated before, the repulsive pressure between two approaching charged planes
is proportional to the increase of counterion concentration with respect to its infinite-
separation value (ρs(h) > ρs(∞)).

Added electrolytes We now consider an isolated surface in an electrolyte solu-
tion (Figure 2.2(a)), i.e, a solution which already contains different types of ions i
(of valency zi). We note that all the fundamental equations derived in the previous
sections are still applicable, providing that one takes into account the correct charge
density ∑i zieρi(x) and the number density ∑i ρi(x). We rewrite the Boltzmann
distribution of the ions i at x:

ρi(x) = ρ∞i · exp
(
−zieΦ(x)
kbT

)
(2.15)

where ρ∞i = ρi(x = ∞) is the ionic concentration of ions i in the bulk where
Φ(x =∞) = 0. The Poisson-Boltzmann equations now reads:

d2Φ
dx2 = −

∑
i zieρ∞i
ε0ε

· exp
(
−∑i zieΦ(x)

kbT

)
(2.16)

In analogy with Equation (2.13), if the surface brings a constant charge density σ,
we also have: ∑

i

ρsi =
∑
i

ρ∞i + σ2

2ε0εkbT
(2.17)

where, now, ρsi = ρi(x = 0) is the surface ionic concentration of species i. Sub-
stitution of Equation (2.15) into Equation (2.17) leads to the Grahame equation,
which expresses the relationship between surface charge density and surface potential
Φs = Φ(x = 0) :

σ =
(

2ε0εkbT
∑
i

ρ∞i
(
e−zieΦs/kbT − 1

))1/2

. (2.18)

Debye-Huckel approximation Far from the solid-liquid interface, the ion con-
centration and the electrostatic potential are given by the solution of the PB equa-
tion. Equation (2.16) is a non-linear differential equation and can be solved analyti-
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cally only in the case of symmetric electrolytes z : z. However, when the electrostatic
energy is small everywhere in the gap compared to the thermal energy (approximately
when Φs �25 mV), we can expand the exponential term e−x = 1−x (Debye-Huckel
approximation). The Grahame equation simplifies to:

σ = ε0εκΦs (2.19)

where

κ =
(∑

i ρ∞ie
2z2
i

ε0εkbT

)1/2

(2.20)

Note that Equation (2.19) is akin to the equation of a parallel plate capacitor relating
the charge density on the plates to the voltage across a gap of length κ−1. This length
is called the Debye length and can be thought of as a measure of the “thickness of
the double layer” [94]. The Debye length is one of the most important parameter
for characterizing the electrostatic interactions between colloids. Indeed, it sets the
spatial extent of the electrostatic forces. This is more evident if one solves the PB
equation in the Debye-Huckel approximation, because in this case the potential takes
a very simple form:

Φ(x) ∼ e−κx (2.21)
Therefore, away from the surface, Φ decreases exponentially with a characteristic
decay length equal to κ−1. For a given electrolyte, the Debye length, and hence
the decay length of the electrostatic potential, depends only on the amount of ions
in solution, and not on any property of the surface such as its charge or potential
(see Equation (2.20)). More precisely, the range of the repulsive forces shrinks when
adding salt to the solvent, since it is inversely proportional to ρ.

Electrostatic potential energy In analogy with Equation (2.14), the osmotic
pressure between two surfaces at distance h in an electrolyte solution can be calcu-
lated from the total ionic concentration at the mid-plane (ρ0):

P (h) = kbT

[∑
i

ρ0i(h)−
∑
i

ρ0i(∞)
]

(2.22)

The last equation can be solved analytically only for a symmetric electrolyte. The
result is:

P (h) = 64kbTρ∞γ2e−κh (2.23)
where γ = tanh(zeΦs/4kbT ). The energy per unit area is obtained by a simple
integration with respect to h:

W (h) = 64kbTρ∞γ2

κ
e−κh (2.24)

The interaction potential for two spheres of radius a can be calculated by applying
the Derjaguin approximation [46]:

V (h) = 64πkbTaρ∞γ2

κ2 e−κh (2.25)
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In the case of an asymmetric electrolyte, analytic approximated solution are available
only in the Debye-Huckel approximation; the interaction potential per unit area of
two planar surfaces reads [99]:

W (h) = 2ε0εκΦ2
se
−κh (2.26)

and for two equal spheres:

V (h) = 2πaε0εΦ2
se
−κh (2.27)

In the above expressions, Φs and σ are related by Equation (2.19).

Finite Size effects Let us note that in the derivation of the potential energy
between charged surfaces, two strong assumptions are made:

(i) the electrolyte ions are treated as point-like charges,
(ii) at small distances, the solvent permittivity does not change.

Figure 2.3 – Double layer and electrostatic potential in the proximity of an isolated
charged particle. The electrostatic potential decays linearly within the Stern layer
and exponentially in the diffusive region. Its value at the shear plane is called zeta

potential ζ.

Clearly, in a region of few Å from the surface plane, these two assumptions are
likely to break down. First, we note that the counterions in the neighborhood of
the plane of charge can be bound and/or physisorbed to the surface; moreover, they
can be in the dehydrated, partially hydrated, or fully hydrated state. In all cases,
their finite size certainly limits their distance of closest approach to the surface,
and hence their maximum concentration. Finite size effects are usually described by
virtually separating the Stern layer into two additional regions: the Inner Helmholtz
Plane (IHP), which passes through the centers of the bound cations, i.e those ions
which have lost their solvation shell, and the Outer Helmholtz Plane (OHP), which
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passes through the centers of the physisorbed (hydrated) cations, at the distance
of their closest approach to the plane (x = b in Figure 2.2(a)) [185]. The OHP
plane, thus, defines the region past which the ionic atmosphere begins to obey the
Poisson-Boltzmann equation. A more detailed representation of the double layer,
comprising the Stern and diffusive regions along with the corresponding electrostatic
potential drop, is illustrated in Figure 2.3. The shear layer, defined as the plane
integral with the surface during a relative motion between the surface and the liquid,
is also reported. The potential surface at the shear plane is called zeta potential
ζ. Note that, in general, ζ does not coincide with the surface potential Φs, defined
at the OHP. Since within the Stern layer (i) the potential does not obey the PB
equation and (ii) the high electric fields must produce some ordering of solvent
dipoles, leading to a change in the local dielectric permittivity, Equations (2.24)
to (2.27) are accurate only for surface separations beyond the Stern layer.

Charge regulation We recall that Equations (2.13) and (2.17) have been ob-
tained assuming a constant surface charge density, regardless the gap between the
surfaces. Yet, in real situations, when two planes are forced into molecular contact,
the surface charge density may decrease and the repulsion fall below that calcu-
lated on the assumption of constant σ, Equation (2.22). This phenomenon, known
as charge regulation, affects the shape of the potential for very short separations.
In general, neither σ nor Φs remain constant and hence the “true” potential lies
between the curves calculated using a constant surface potential (charge) and a
variable charge (surface potential). The charge regulation effect can be incorporated
in the double layer theory by considering explicitly both the surface association and
dissociation constants of the adsorbing ions [99], or by constant regulation approxi-
mations [13]. A more detailed description of charge regulation models can be found
in [26, 13, 199].

2.2.3 DLVO theory

In the DLVO theory (Derjaguin, Landau [47] and Verwey, Overbeek [203]) the net
interaction between two isolated particles is described by the sum of the attractive
vdW and repulsive electrostatic double layer forces:

VDLV O(h) = VvdW (h) + Vel(h) (2.28)

Let us consider the situation of two microspheres of radius a interacting between
an electrolyte solution containing a divalent salt. In these conditions, the potential
energy of the pair, as a function of their surface-to-surface separation h, can be
written thanks to Equations (2.8) and (2.27):

VDLV O(h) = −AH6

[
2a2

h(h+ 4a) + 2a2

(h+ 2a)2 + ln
(
h(h+ 4a)
(h+ 2a)2

)]
+ 2πaε0εΦ2

s e
−κh

(2.29)
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Figure 2.4 – The DLVO interaction energy (per unit area) of two charged planes in
electrolyte solutions, versus reduced distance κh. Figure taken from [99].

or through the simplified expression, Equation (2.9):

VDLV O(h) = −AHa12h + 2πaε0εΦ2
se
−κh (2.30)

Note that the vdW interactions are almost insensitive to the pH and salt con-
centration of the solution, while, as we have seen, the latter strongly influences the
electrostatic term. As a consequence, the net DLVO interaction is essentially de-
termined by variations in the double-layer forces, as shown in Figure 2.4. At small
surface-to-surface separations, h → 0, the vdW forces must dominate due to the
1/h divergence, whereas the electrostatic term remains finite. Hence, particles are
expected to establish direct contact once h is sufficiently small. The potential energy
minimum at contact is known as the primary minimum. However, when the surface
charge density σ is high —in absence of added electrolyte or far from the iso-electric
point IEP (where the surface charge is zero) —the DLVO theory predicts that the
electrostatic contribution dominates at large distances, resulting in the emergence of
an energy barrier for h just beyond the primary minimum, as shown in Figure 2.4.
The amplitude of the barrier can be several times the thermal energy of the parti-
cles: in this case the latter are thus unable to establish contact by thermal activation.
Variations in electrolyte concentration and pH reduce the amplitude (through Φs)
and extent (through κ) of the double-layer forces, leading to a progressive decrease
of the energy barrier. In moderate electrolyte concentrations, the DLVO potential
may present a shallow secondary minimum at intermediate distances (few nm); in
this case the particles are weakly bound and may escape from the well by ther-
mal agitation. If the energy barrier is still high, the particles remain dispersed in
the solution for periods exceeding any reasonable measuring time; the suspension



2.2. COLLOIDAL INTERACTIONS 27

is said to be stable. At high salt concentrations, the energy barrier can be further
lowered, and two situations may arise: if the barrier is of few or fraction of kbT ,
the particles weakly bound in the secondary minimum can flocculate (fall into the
deep energy minimum) by thermal activation in a measurable time period. Above
a critical electrolyte concentration, the barrier disappears, and particles immediately
establish contact upon collision; in these conditions the suspension is unstable, and
flocculation is irreversible.

2.2.4 non-DLVO interactions
Recently, DLVO theory has been found unable to fully predict the behavior of

colloids in aqueous suspensions [147, 149, 204, 128, 26, 199, 13]. One critical feature
of the model is that it treats the suspending phase only as a transmitting medium,
neglecting its structure. It is reasonable to believe that, especially at low h, the water
structure participates in a more significant way. Indeed, diverse phenomena such as
polarization effects induced by the high electric fields at the interface, existence of
adsorbed layers of hydrated cations, image-charge effects caused by the difference in
dielectric constants, formation and breakage of hydrogen bonds between water and
surface functional groups, and geometric constraining effects, lead in general to the
formation of ordered liquid layers [98, 83]. The overlap of these structured layers
gives rise to additional repulsive non-DLVO forces, known as solvation (hydration)
forces, which typically decay exponentially with distance [98].

In inorganic colloids such as silica, hydration forces are usually associated to
strong hydrogen bonding networks, since these materials typically possess hydroxy-
and oxy-surface groups. The magnitude and range of the repulsion typically vary
with the concentration and type of electrolyte, and the solution pH. Quite gener-
ally, solvation forces are important at low salt contents, whereas they disappear on
increasing the salinity [128, 26]. By surface force apparatus (SFA) experiments on
silica sheets, Chapel [26] found a positive correlation between the reduction in the
repulsive forces and the increase in the hydrated radius of the cations. The author
explained the observed behavior by assuming that each adsorbed cation breaks the
network of hydrogen bonds, and thus reduces the strength and range of the repul-
sion. Note that this “structure-breaker” capability is stronger for cations with larger
hydrated size, because they bring along more water molecules. This behavior is in
contrast to that found by Pashley and Israelachvili [149] for mica surfaces. They
observed that an increase of the numbers of water molecules in the first shell around
the cations, induces a larger repulsion between the surfaces. Here, the cation plays
the role of a “structure-maker”. More recently, Borgovec et al. [199, 13] found that
the interactions between spherical silica surfaces were well described by DLVO the-
ory, but only down to few nm. Deviations were observed at smaller separations for
different monovalent and multivalent metal ions; the forces usually became strongly
repulsive, whereas vdW attraction was expected. Interestingly, an additional non-
DLVO attraction at moderate multivalent cation concentrations was observed.

The physical origin of the short-ranged repulsion in silica, however, remains an
open question. Indeed, these forces have been also attributed to steric interactions
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between gel (hairy) layers of polysilicilic acid ( – (OH)2 –O–Si(OH)2 –OH) —see
Vigil et al. [204]. Similarly, Bitter and co-worekers [17] developed a model based on
DLVO theory plus a steric repulsion attributed to silica gel layers that can eventually
shrink at high electrolyte concentrations. Yaminsky et al. [211] affirmed that the
complex behavior of colloidal silica can be totally ascribed to these polysilicilic acids,
which can undergo many transformations, such as swelling, gelation and condensa-
tion when exposed to different physio-chemical conditions.

Sometimes, the measured force profiles show an additional short-ranged non-
DLVO attraction, usually attributed to charge fluctuations, ion-correlation and/or
image charge effects. Ion correlation is described as a vdW-type force caused by the
polarization of the ions in the gap between the two interacting surfaces [67]. The
effect may be significant only at separation well beyond few nm and its amplitude
may increase with the surface charge density and the valency of the cations. Inter-
estingly, many works report the existence of cation-dependent non-DLVO attractive
interactions [199, 55, 198], especially when divalent and multivalent metal cations
are used to screen the double layer forces. Formation of ion bridges may explain such
forces [147].

2.2.5 Time-dependent interactions
Interestingly, it is relatively well known that the interaction strength between

colloidal particles may increase with the time of stationary contact [98]. However,
the study of time-dependent interactions remains scarce. Time-dependent forces
have been ascribed to different phenomena. Vigil et co workers [204] attributed
them to an interfacial consolidation of the overlapping polysilicilic gel layers, when
the surfaces are forced into contact. Other authors claimed that they are caused by
the formation of an hydrogen bonds network between the surfaces [127]. Vakarelski
et al. [198] observed time dependent adhesion and related it to a protracted breaking
of interfacial structured water layers, whose kinetics is controlled by the hydration
enthalpy of the adsorbed cations. Time-dependent interactions and contact aging
will be treated in more detail later in the manuscript.

2.3 Phase diagrams of model systems
Like atomic systems, colloidal suspensions exhibit phase transitions [93]. More

generally, one could find colloids in liquid, gel, pasty, crystalline and even glassy
states. This complex phase behavior stems from the combined effects of thermal
motion, particle interactions and packing fraction. All of these parameters also
determine the mechanical (rheological) response of the suspension under external
stresses.

2.3.1 The hard sphere system (HSS)
The colloidal system with the simplest phase diagram is the hard sphere suspen-

sion (HSS), in which particles interact only through an infinite repulsion on contact.



2.3. PHASE DIAGRAMS OF MODEL SYSTEMS 29

Figure 2.5 – Phase diagram of monodisperse hard spheres as a function of volume frac-
tion. Equilibrium states are indicated with solid green arrows, while non-equilibrium

ones with dashed arrows. Figure taken from [93].

This is equivalent to say that particles are infinitely stiff; the interaction energy V
as a function of r, the center-to-center distance between the colloids, can thus be
expressed as

V (r) =
∞, if r ≤ d

0, otherwise
(2.31)

where d is the particle diameter. Since only excluded volume effects are present, the
free energy of the system is determined only by entropy, and the HS phase diagram
depends only on the packing fraction φ [93]. As illustrated in Figure 2.5, despite
the absence of any attractive part in the potential, several equilibrium and out-of
equilibrium states may be present. The two thermodynamic equilibrium phases are
the liquid one, which is found for φ < 0.494 and the crystalline one, which is found
for φ > 0.545. Note that in between these two limits, the two phases may coex-
ist. Interestingly, the HS crystallization arises from an entropic effect; when spheres
arrange into a crystalline lattice, indeed, the configurational entropy reduction is
balanced by an increase in vibrational entropy, since the volume in which particles
can rattle without leaving the configuration is higher in the crystalline state than in
the liquid one.

In practice, crystallization is often not observed and the suspension remains a
fluid for 0.545 < φ < 0.58. This is usually caused by the presence of a small poli-
dispersity in the particle size distribution, which hampers nucleation of crystalline
regions [217]. In such situations, the liquid is termed supercooled. On increasing φ
above 58%, the dynamics slows down enough that the suspension can be considered
essentially frozen for times of the order of typical observation times, and the system
usually exhibits a dramatic increase in viscosity. The resulting kinetically arrested
phase is called a colloidal (repulsive) glass [164]. The upper bound of the glassy
region is located at the maximum concentration at which spheres can be randomly
packed, φrcp ∼ 0.64.
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The glass transition has been widely studied in last decades by theory [200, 215,
174], numeric simulations [217] and experiments [164, 200, 85]. Nearly ideal HS
colloids have been made experimentally using poly-(methyl methacrylate) (PMMA)
particles, sterically stabilized with a layer of poly-(12-hydroxystearic acid) to mini-
mize aggregation due to van der Waals forces, and suspended in a refractive index
and density matched mixture of cis-decalin and cycloheptyl bromide (CHB) [163].

Particle motion in a supercooled liquids is found to be in accordance with the
mode-coupling theory (MCT) [81], which predicts a two step decay of the density
correlation function: a fast relaxation (β-relaxation) due to the rattling of the par-
ticles inside the cage formed by their neighbors, and a slow decay (α-relaxation)
due to thermally activated cage break-up processes [36]. On approaching the glass
transition line, MCT predicts a power-law divergence of the α-relaxation time, viz. a
complete dynamical arrest. Several studies have shown that MCT is able to predict
the phase behavior of hard spheres systems with an accuracy of 20% [174].

2.3.2 The square-well system (SWS)

(a) (b)

Figure 2.6 – (a) Square-well potential. A repulsive hard core at contact is comple-
mented by an attractive well with finite depth u0 and small width ∆. (b) The
ideal MCT phase diagram of square-well glasses, in the high-φ branch. Glass lines
with different colors represent various attraction widths, parametrized by the ratio
R = ∆/(d + ∆), ranging from 3 to 9%. Reducing R leads to a more pronounced

re-entrant shape (see text for details). Figure taken from [36].

Arrested states can also form if one introduces an attractive part in the interaction
potential, while keeping constant the volume fraction. The simplest model that has
became a paradigm for the study of colloidal suspensions with short range attractions
is the square-well system (SWS), for which the interaction potential consists of a
hard-core repulsion for r < d and a constant attraction well −u0 for d < r < d+ ∆,
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as shown in Figure 2.6(a).

V (r) =


∞, if r ≤ d

−u0, if d < r < d+ ∆
0, otherwise

(2.32)

The phase diagram is now parameterized by three quantities, namely φ, kBT/u0
and δ = ∆/d, the latter being the range of the attractive potential in units of
particle radius. MCT theory has been used to characterize the phase diagram of
SW colloidal suspensions in the high concentration regime φ� 0.40 [42], where the
cage effect remains substantial for the dynamics [174]. At high φ and for short-range
attraction widths (few per cents of d), the theory predicts two main phenomena: (i)
at intermediate attraction strengths, the formation of bonds locally reduces the inter-
particle distances and leads to a more inhomogeneous distribution of voids than in
the repulsion-driven glass, thus it shrinks the local cage size and allows to the melting
of the glass; (ii) if the strength of the attraction is increased further, however, a new
arrested phase, called attractive glass, is formed, since now the bonds are so long lived
to prevent structural rearrangements [14, 42]. Thus, in the dense regime, the phase
diagram displays a re-entrant shape, as illustrated in Figure 2.6(b). At constant
φ, the SWS can be in the repulsive, attractive or ergodic fluid phase, depending
on the strength of the attraction. These expectations have been demonstrated
recently through numerical simulations [214] and experiments on model square-well
suspensions [154, 59]; the latter consist of hard spheres (e.g. sterically stabilized
PMMA particles in cis-decalin) to which nonadsorbing polymers (e.g. polystyrene)
acting as depletant agents, are added. In these conditions the strength of attraction is
determined by the amount of polymer in solution, whereas the range is of the order
of the polymer radius of gyration, as predicted by the Asakura–Oosawa potential
V AO(r) [4].

2.3.3 Arrested states at low volume fractions (gels)

We have seen that much effort has been devoted to provide a framework for
dynamical arrest at large packing fractions (the liquid-glass transition). It is known,
however, that colloidal dispersions may form disordered arrested states —the gels
—at lower φ (down to a few percent). Gel formation is associated to the emergence
of a rigid percolating network of bonds, that gives to the gel solid-like properties
(elastic modulus, yield stress) and allows it to support its own weight under gravity.

The gelation mechanism is still a matter of debate. Numerous descriptions have
been proposed to explain gel formation in the limit of small ∆, such as models based
on percolation theory [74], diffusion limited aggregation with finite bond breakage
probability [43], mode-coupling theory extended to lower volume fractions or applied
to clusters of particles [109], and thermodynamic approaches based on liquid–gas
phase separation [213, 194, 121]. Quite generally, gelation should be controlled by
the lifetime of the bonds [213]. In chemical gels like epoxy resin and rubber, on the
one hand, the network is made of chemical (covalent) bonds that have an infinite
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lifetime. In these systems, hence, gelation is well described in terms of percolation
theory [64], since the gel point exactly coincides with the emergence of an infinite
network spanning over the sample. In colloidal gels with interparticle interaction
energy of the order of kBT , on the other hand, the bonds are characterized by a
finite lifetime; since the space-spanning structure can be lost by rupture of a single
bond belonging to the percolated network, percolation is usually transient and does
not coincide with gelation, although it is a necessary condition to form a gel.

(a) (b)

Figure 2.7 – (a) Representation of the phase diagram of SWS with a short-range
well depth potential, including the percolation (blue), spinodal (red) and glass lines
(magenta), as calculated from numerical studies. Arrested spinodal decomposition
occurs when the dense phase meets the glass line in the high φ branch. This happens
when the quench into the two-phase region is performed at a temperature below the
intersection Tg between the spinodal and the extrapolated glass line. (b) The gel line

as the extension to low φ of the attractive-glass line. Figures taken from [213]

Increasing the interaction strength and hence the bond lifetime, however, may
lead to phase separation [173, 213]. This is the case of spherically symmetric at-
tractive potentials such as the square-well model. When the range of the attractive
potential is small (few per cent of the particle diameter), the phase diagram of dif-
ferent systems does not depend on the shape of the potential, as predicted by the
Noro Frenkel extended law of corresponding states [141]. This is true down to the
Baxter’s limit —the adhesive hard sphere (AHS) system —which is the limit of the
SW potential for ∆→ 0, u0 →∞ such as the second virial coefficient remains finite.
Thus, the SW phase diagram can be represented by the Baxter’s model, which has
been carefully evaluated via grand-canonical Monte Carlo techniques by Miller and
Frenkel [132, 133]. The calculations do predict a metastable (with respect to the
gas–crystal transition) liquid–gas coexistence (spinodal) region, as depicted with a
red line in Figure 2.7(a). In such conditions, many works suggest that gel forma-
tion is a non-equilibrium process, and can be described in terms of arrested phase
separation, or spinodal decomposition [43, 65, 173]. The mechanism underlying this
gelation route can be understood as follows. Under a quench at low φ (black arrow
in Figure 2.7(a)), the system crosses the spinodal phase separation boundary, and
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Figure 2.8 – Spinodal decomposition of an oil-in water nanoemulsion after the system
is quenched into the gel state. Figure taken from [78].

colloid-rich and colloid-poor domains start to form. During this coarsening process,
the volume fraction of the colloid-rich domains steadily increases, and phase separa-
tion arrests when an attractive glass transition occurs within this denser phase. For
short-ranged, low-energy attractive potential, various experimental works [78, 121]
have indeed confirmed this scenario. Typical optical microscopy images during spino-
dal decomposition are reported in Figure 2.8 for an oil-in water nanoemulsion at
φ = 33%, in which the interactions between droplets can be approximated with a
square well potential, with fixed width and temperature-dependent depth [78]. The
structural changes of the microstructure are reflected in the time evolution of the
structure factor S(q): during coarsening, first a peak in S(q) appears at low q, indi-
cating the presence of dense regions with a characteristic size 1/q; then a drift with
time of the peak towards lower and lower q-values is observed. At some point, the
coarsening process arrests and S(q) does not evolve any further [121].

An alternative interpretation, based on the ideal mode-coupling theory for short-
ranged attractive potentials applied to low φ [15, 14], suggests that the phase separa-
tion line is preempted by the attractive glass line; dynamical arrest can be approached
form the fluid phase before the coexistence curve is reached, hence the gel-line is
nothing but the extension to low φ of the attractive-glass line, as shown schemati-
cally in Figure 2.7(b). Numeric simulations [65] however, are at variance with this
picture, inasmuch the glass line is predicted to always ends on the right side of the
spinodal, even for very low kBT/u0 down to the Baxter’s limit.

2.3.4 Phase separation inhibition
We now discuss a situation that may be relevant for colloidal suspensions in

aqueous solvents, i.e. when the short range vdW attraction is complemented by a
weak long-range repulsion due to residual charges onto colloidal particles (see later in
the text). In this case, due to these competing forces, particles may prefer to aggre-
gate in clusters with a finite size, usually with low coordination number [173, 213].
On increasing the attraction strength, a stable cluster phase can be generated, and
gelation may be mediated by (i) the percolation of the clusters, instead of the parti-
cles themselves, and (ii) the residual “effective” cluster–cluster interaction. In these
conditions, the phase separation line is pushed towards higher attraction strength
and/or is replaced by an equilibrium cluster phase (microphase separation), while
the gel and glass lines may merge into a single curve, as shown in Figure 2.9(a).
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(a) (b)

Figure 2.9 – Phase diagram for SWS when an additional long-range repulsion (a)
or directional interactions (b) are considered. Phase separation is hindered, and at
high attraction strengths and intermediate φ, gelation is caused by percolation of the

equilibrium clusters with limited coordination. Figures taken from [213].

Note that the microphase separation usually results in the appearance of a pre-gel
low q peak in the static structure factor [176], which does not evolve with time upon
gelation. This scenario has been partially confirmed by Sedgwick et al. [175], as
shown in Figure 2.10, for density-matched charged PMMA particles with depletion
interactions.

Figure 2.10 – Equilibrium cluster phase (fluid) at low attraction energy (left panel)
and arrested phase (gel), due to cluster percolation, for increasing attraction strength

(right panel). Figure taken from [175].

A similar modification of the phase diagram is found for systems in which particles
interact through directional forces, e.g. for patchy-like particles. It can be shown
that, in this case, not only the phase separation boundary is pushed towards increasing
attraction strengths, but it is also shifted towards lower volume fractions [213], as
shown in Figure 2.9(b). The existence of an energetically preferred cluster size, and
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its effects on the corresponding phase diagram, have been addressed numerically [173]
in the framework of the square well system, using a toy model in which a (ad hoc)
constraint on the maximum particle number per clusterNmax is introduced (maximum
valency models). It has been confirmed that, for low Nmax, there exists a window of
intermediate packing fractions for which it is possible to cool down the fluid without
encountering phase separation (Figure 2.9(b)). In this case, since phase separation
is not intervening, the route to the gelled state may proceed through a series of
equilibrium states. At infinite attraction strength, the bonds are so long-lived that
there are no time scales whereby the system can relax due to bond rearrangements.
So, the dynamical arrest state is not strictly connected to the observation time
window, and the gel is termed ideal. For a recent review of this and related topics,
see [213] and references therein.

2.3.5 Fractal gels
In the presence of sufficiently strong attractive forces, colloidal dispersions may

form gels also at extremely low volume fractions (< 1%). In this case, the suspension
consists of clusters (flocs) with average size ξ, that pack to form a sample-spanning
microstructure. The microstructure of such diluted gels can be described by fractal
theory, according to which the radius of gyration ξ of a floc made of N particles with
radii a scales as ξ = aN1/df , where df is the fractal dimension. The fractal dimension
depends on the kinetics of aggregation [112]. When aggregation is not hindered by
energy barriers, one expects particles to stick immediately upon contact, so that floc-
culation is essentially determined by diffusion (diffusion-limited cluster aggregation
or DLCA). In this case, one usually obtains df ∼ 1.8. More compact clusters (higher
df ∼ 2.1) are found in the reaction-limited cluster aggregation (RLCA), for which
several collision events have to occur before stable bonds are formed. The presence
of a characteristic length scale ξ results in the emergence of a pronounced peak at
very low q in the static structure factor, whose magnitude steadily increases over
time, reflecting the growth of the clusters. The suspension is usually said to have
gelled when the peak ceases to evolve in time [35].

2.4 Aging and thixotropy

2.4.1 Colloidal glasses and gels
In the last section we have seen that colloidal suspensions can undergo a transi-

tion from a liquid to a solid state as a function of the particle volume fraction and
the strength and nature of the colloidal interactions. We found that two types of
solid (or jammed) state exist in colloidal suspensions: glasses and gels. We also
note that a qualitative distinction between the two is based on the mechanism of
dynamical arrest [189, 216]. In the former the constituent particles are trapped
“topologically” by the cages formed by the nearest-neighbors, while in the latter the
arrested state is due to interparticle bonds. Glasses and gels, hence, may exhibit sub-
stantial differences. For instance, the mechanical strength of the gels is determined
by the percolated infinite network of particles, while in a glass it stems from caging
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effects. A gel is usually inhomogeneous due to the formation of large aggregates
made of many particles, while a glass is relatively homogeneous over length scales
of few times the particle size. However, since both gelation and glass transitions
are thought to have a kinetic, rather than thermodynamic, origin [213], some have
argued that gels and glasses should display similar features [189]. On approaching
the fluid-to-solid transition in both systems, for example, it has been shown [176]
that density correlations typically relax in a two-step fashion, with the final relaxation
time diverging when the critical volume fraction φc is reached.

These observations led to the suggestion that a wide variety of systems, including
colloidal suspensions, and granular and molecular systems, could be described in an
unifying framework in terms of a jamming phase diagram [118], whereby the phase
behavior is set by the density ρ (or particle volume fraction φ), the temperature T
(or reduced temperature kBT/u0, where u0 is the attraction energy), and the ap-
plied external stress σ [193]. According to the jamming phase diagram, there would
be three ways to transform a liquid-like colloidal suspensions into a jammed solid-
like one; increasing φ, increasing u0 or decreasing σ. While we have investigated
in some detail the effect of packing fraction and attraction strength, this approach
suggests that also a mechanical stress should play an important role in determining
the fluid-to-solid transition. Since, in general, a sufficiently large stress causes a solid
sample to yield, it is the yield stress σy —the minimum stress needed to induce flow
from quiescent conditions —that defines the phase boundary [193]. Although the
jamming scenario provides an unifying description of the fluid-solid transition for a
wide variety of materials, time-dependent effects are not considered explicitly in this
approach. Indeed, it is known that many jammed systems, such as colloidal glasses
and gels, exhibit aging phenomena, i.e. a continuous evolution of their mechanical
properties with time, usually associated to the material relaxation towards equilib-
rium [36]. Moreover, during flow, a thixotropic response is commonly found; shearing
the sample causes a gradual decrease in viscosity with time, with the characteristic
time to reach a steady state flow that depends on the previous flow history. It is well
established that changes in the material properties as a function of shear history are
intimately linked to structural changes [9, 130]. In recent years, hence, a consider-
able effort has been devoted to studying the relationship between the structure of
the suspension under stationary flow and its time-dependent mechanical properties.

2.4.2 Thixotropy
An archetype of our current interpretation of thixotropy is perhaps provided by

the illustration given by Barnes in his seminal paper [9], that we report in Figure 2.11.
When left at rest, the structure of the material under investigation evolves over time
due to thermal fluctuations, which allow the particles to continually explore different
configurations and to reorganize in more energetically favorable states. As a conse-
quence, the material is expected to strengthen over time. This structural evolution,
however, can be erased by vigorously shearing the system, so that the material can be
brought back to a reference, unstructured state. Often, the term “structuration” is
used to refer to the fact that the “structural state” of the material varies with the flow
history. Phenomenological approaches aiming to include time-dependent rheological
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Figure 2.11 – Structural evolution of a thixotropic material under flow (up arrow) and
quiescent (down arrow) conditions. Figure taken from [9].

effects, indeed, commonly use empirical kinetic models based on this idea [130];
“structuration” is mathematically described by a single dimensionless parameter λ:
λ = 0 for “minimum” structure and λ = 1 for “maximum” structure. This is exactly
the scenario expressed visually by the arrows in Figure 2.11. Observe also that the
latter suggest a reversible process; the structure can be indefinitely brought back
and forth between the “completely structured” and “completely unstructured” state.
Since thixotropy appears macroscopically reversible, it comes as no surprise that re-
versible, microscopic phenomena, such as particle flocculation and deflocculation, are
typically invoked. The concept of maximum and minimum microstructure is however
rather vague, and does not correspond to any physical quantity [169].

2.4.3 Aging
We have seen that when a thixotropic material is left at rest, one usually observes

an increase of its mechanical strength, associated with a structural evolution. The
time-dependence of mechanical properties are also indicative of systems that age;
for these materials, for instance, the yield stress and the elastic modulus are typically
found to grow with resting time [45, 143]. It is conceivable, thus, to think that aging
phenomena are related to an evolution of the structure.

Quite generally, the aging time is counted starting when the sample is first
quenched from the fluid-like to the solid-like state. From a macroscopic perspective,
it is defined by the onset of an elastic mechanical response. Since colloidal suspen-
sions can solidify under a wide variety of conditions, however, the choice of the zero
aging time depends on the specific system under consideration. In dilute systems with
large attraction strengths, the zero of the aging time is taken as the percolation time,
i.e. when the low-q peak in the static structure factor ceases evolving in time [35].
For weakly attractive gels at intermediate φ, on the contrary, there is a delicate in-
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terplay between aggregation, dynamical arrest and phase separation [25], and it may
not be straightforward to distinguish between aging and gelation [144]. In colloidal
glasses, the quench usually coincides with the cessation of a mechanical shear, the
latter being used to randomize the structure. The same procedure is used in con-
centrated, pasty suspensions, since aggregation rapidly results in gelation [169, 73].
In thermoreversible dense systems aggregation is induced “in situ”, by rapidly de-
creasing the temperature. In these conditions, a clear latency period is observed, in
which the viscous part of the complex modulus is higher than the elastic one, and the
aging time can be inferred by pinpointing the moment in which the moduli cross [87].

We now review how aging phenomena are interpreted in terms of structural
evolution for these different systems: dilute non-stabilized gels, stabilized depletion
gels at intermediate packing fractions, repulsive and weakly attractive glasses and
pasty systems.

Aging in dilute, non-stabilized gels

Figure 2.12 – Microstructure recovery after flow arrest for a bi-dimensional colloidal
suspensions. Figure taken from [124].

At low volume fractions and for kBT/u0 � 1, irreversible aggregation leads to
the formation of fractal clusters, which jam to form an elastic solid with a hierarchic
structure. In these systems, the gel point can be related to the formation of such
a space-filling network of flocs. One of the most striking example of the gelation
“kinetics” in dilute conditions has been provided by the group of Vermant and co-
workers [124], who studied structure breakage and recovery for a colloidal suspension
of polystyrene particles confined in two-dimensions (Figure 2.12).

Dynamic light scattering has been used to study aging long after the gel point
was reached, in a wide variety of materials at low φ, including diluted (φ ≈ 10−4)
fractal colloidal gels [16, 32, 37, 58] and semi-concentrated suspensions of clay
particles [7, 32]. Usually, a non-exponential decay of the intermediate scattering
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function (density correlations) at very large timescales is observed:

f(q, t) ∼ exp [−(t/τr(q, tw))p] (2.33)

where τr(q, tw) is the relaxation time and p ∼ 1.5 the relaxation shape factor.
In addition, these systems usually exhibit a τr(q) ∼ q−1 scaling, indicating that the
dynamics is “ballistic” rather than diffusive, since the average particle displacement
grows linearly with time. According to Cipelletti et al. [35] and Bouchaud [20], such
a behavior may be caused by the presence of randomly distributed internal stress
sources within the sample, whose response is that of an elastic solid. This physical
interpretation can be understood as follows. When a particle suddenly changes its
position (micro-collapse), it creates a long-range dipole force. Since the material re-
acts elastically, each rearrangement induces a tensile strain field in its vicinity, which
further causes the motions of other particles belonging to the network. In this con-
text, aging arises from an increase of the energy barrier for further collapses, due to
previous rearrangements.

Internal stresses may arise during the quench into the solid state, as the par-
ticles are rapidly kinetically trapped into an out-of-equilibrium configuration; the
micro-collapses, thus, correspond to the yielding of regions where higher than av-
erage tensile stresses have been frozen-in during the solidification. One cannot ex-
clude, however, that internal stresses may develop after the fluid-solid transition. For
laponite suspensions, Bandyopadhyay and co-workers [7] imputed the emergence of
internal stresses to a steadily increase of the interparticle repulsion with time, as
suggested by variations in the conductivity of the suspensions, probably due to the
dissociation of ions at the surface of the particle. Similarly, for diluted colloidal gels
made of strongly attractive particles, Cipelletti et al. [35] and Manley et al. [123]
have suggested that tensile stresses may build up as a result of the decrease of the
average interparticle distance, due to syneresis. These works nicely indicate that
material aging is intimately related to the microscopic origin of elasticity and nature
of particle-particle interactions.

Stress redistribution after particle rearrangements Recently, the inter-
play between thermal energy, interactions strength and material relaxation has been
also addressed in numerical works. In [21], for example, Bouzid et al. studied the dy-
namic structure factor of a dilute gel, where micro-collapses are introduced manually
to speed up the computation. Depending on the ratio between thermal energy kbT
and interactions strength u0, they observed significant variations in the gel dynamics,
which they imputed to changes in the mechanism of stress redistribution within the
material after particle rearrangements. Remarkably, close to the athermal regime
kbT/u0 = 0, the intermediate scattering function f(q) decreases as a compressed
exponential with p = 1.5, in excellent agreement with the internal stress relaxation
model of Cipelletti [35] and Bouchaud [20], and experiments on non-stabilized di-
lute colloidal gels [35, 37, 58]. On increasing the ratio kbT/u0, the authors found
a gradual transition of f(q) from a compressed (p > 1) to a stretched (p < 1)
exponential decay, and a concomitant change of the dynamics from super-diffusive,
with τr(q) ∼ q−1, to sub-diffusive, with τr(q) ∼ q−2. These observations suggest
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a transition towards a more glass-like dynamics when the attraction energy between
the particles is reduced.

Gelation and aging in stabilized, depletion gels

Figure 2.13 – Structural evolution during aging of a tenuous depletion gel. Figure
taken from [126].

Structural evolution has been also proposed to be at the origin of gelation
and aging observed in weakly attractive depletion gels [144]. In these index- and
density-matched systems, the structure and dynamics have been “easily” investigated
through confocal microscopy. For gels with φ > 0.25, Varadan and Solomon [202]
observed a short-range structure similar to that found in dense liquids. However,
for large length scales, they found significant heterogeneities due to the formation
of large voids and dense clusters. Structural heterogeneity as a function of polymer
concentration cp (i.e. attraction strength) has been investigated also in [50]. On
increasing cp, a transition from an immobile clusters liquid structure to a gelled state
was found, accompanied by a non-monotonic evolution of the contact number dis-
tribution, and by an increasingly heterogeneous dynamics and a stronger localization
of single particle motion.

Non density-matched depletion gels usually exhibit a delayed collapse induced
by gravity [162, 24]. A recent investigation of the phenomenon has been carried
out by Kilfoil and co-workers [126] using a combination of time-dependent measure-
ments of vertical concentration profiles, and standard confocal microscopy imaging.
The direct observation of microstructure coarsening during the delayed sedimenta-
tion phenomenon, as shown in Figure 2.13, was interpreted as a clear manifestation
of aging; the coarsening leads to structural instabilities under gravity, until the gel
sudden collapses under its own weight.

Slow dynamics in aging colloidal glasses

One of the most comprehensive study of aging in colloidal glasses was carried out
by the research group of Weeks and co-workers [93, 39, 33, 34]. With a fast scanning
confocal microscope, they were able to track in three-dimensions the trajectories of
several thousand individual particles, and compute their mean square displacement
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Figure 2.14 – Mean square displacement at different resting times, in a repulsive (hard
sphere) colloidal glass. Figure adapted from [93].

(MSD). Figure 2.14 displays the MSDs of a repulsion-driven glass as a function of
lag time ∆t, for different times of rest. As the system ages, the plateau observed
at intermediate ∆t, a landmark signature of the cage effect, extends to increasingly
longer times, indicating a slowing down of particle motion. Conversely, no depen-
dence of the mean square displacement with age was detected for a supercooled
liquid, despite a minute difference in φ. Interestingly, local cage rearrangements lead
to an upturn in ∆x2 at the end of the plateau, in contrast with the expected di-
vergence of the α-relaxation time predicted by mode-coupling theory. This suggests
that ergodicity may be restored, probably by thermally activated processes (hopping)
involving groups of cooperative particles [36]. Another intriguing fact emerging from
these experiments is that no correlations between the age and the structure of the
glass is clearly observable [33, 34]. Although the dynamics is spatially and temporally
heterogeneous, the experiments do not show neither a coarsening of the less mobile
domains nor significant variations in the structure factor as the glass ages.

Aging in attractive glasses has been less investigated in experiments [106]. Nev-
ertheless, various numerical works [161, 66] suggest that the overall dynamics should
be qualitatively similar to that seen in repulsion-driven glasses. Some differences
should occur, however. In particular, one expects a stronger localized motion of
the particles than in repulsive systems, due to bond formation. A more detailed
investigation of aging in glasses is given in [36].

Aging in pasty systems

Dense suspensions or pastes, especially in the presence of strong van der Waals
and double-layer forces, have received little attention because they pose tremen-
dous problems for imaging and thus analysis. For this reason, their aging behavior
has been preferentially studied via rheometry. Aging has been characterized for
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pastes made of polymer coated particles, in which direct contact is thus avoided.
Derec and co-workers [45] studied dense (φ ≈ 40%) suspensions of polyethylene
oxide–protected silica particles (sterically stabilized). Using small shear oscillations
in the linear regime, they found a logarithmic growth of G′. At the same time, by
performing start-up flow experiments at fixed γ̇ and various resting times, they found
that the stress at the overshoot —a measure of the stress stored in the material be-
fore the onset of flow (σy) —was larger in the older samples.

In the last few years, octadecyl-coated silica nanoparticles dispersed in tetra-
decane (or decalin) have received great attention due to their peculiar ability to
switch from hard- to sticky-sphere behavior in response to a small change in tem-
perature. Guo et al. [87] combined rheometry and XPCS experiments to compare
the temporal evolution of the macroscopic elasticity and of the microstructure. They
found a good agreement between the aging of G′, as measured by rheometry, and
(i) the increasingly restricted short-range motion of the colloids and (ii) the steady
rise in the fraction of localized particles over time, as extrapolated from the analysis
of the dynamic structure factors. Interestingly, as pointed out by the authors, these
two phenomena are compatible with an increase in the attraction strength between
the silica colloids over time. A different interpretation is given in [80], where the
authors used time-resolved rheo-SANS to study the aging of similar thermoreversible
silica gels. They proposed an empirical relationship between an order parameter
extracted from scattering measurements (in analogy with thixotropy kinetic models
discussed above), and the shear modulus growth during aging. According to the
authors, the correlation between increasing elasticity and evolution of the structural
parameter support the interpretation of aging as a monotonically evolution of the
microstructure, due to particle rearrangements.

Pastes of civil and environmental engineering have been less investigated. Ovarlez
and Coussot [144] studied the time evolution of the elastic moduli of Na-bentonite
suspensions in the semi-dense regime. Mechanical aging was assessed through a
thorough study of the time evolution of G′ in various packing fractions and temper-
ature conditions. After a careful rescaling of the data, they concluded that aging
may result from structural rearrangements driven by thermally activated processes,
despite they did not gather direct proofs for that. A similar interpretation for the
strengthening of the elastic modulus, observed in three different suspensions, namely
a bentonite suspension, a mustard and a hair gel, was proposed in [40]. Recently,
Fusier et al. [73] studied aging in strongly attractive dense suspensions of spherical
and crushed silica particles, by investigating the linear elastic (G′) and non-linear
(σy) response versus time. They found that the overall rheological properties of
the material increased strongly with time, despite confocal microscopy observation
provided evidence that their time-evolution cannot be ascribed to changes in the
particle network.

The soft glassy rheology (SGR) model In the early 2000, Sollich and co-
workers [184] proposed a general, phenomenological model to interpret the rheo-
logy and aging of soft systems. According to the model, the systems is divided
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Figure 2.15 – Sketch of the aging (hopping) dynamics in the soft glassy rheology (SGR)
model of Sollich and co-workers. Figure taken from [184].

into mesoscopic elements which, at rest, have an average zero local strain l = 0.
Under an external macroscopic strain γ, each element can strain relative to its local
equilibrium state and eventually yield above a critical yield strain ly, thus relaxing
stress (Figure 2.15). The model assumes that the deformation is locally affine,
that is, it follows the macroscopically imposed strain, l = γ. Associated to the local
critical deformation, one can define a yield energy Ey = k/2 · l2y, where k is an elastic
constant of the isolated elements. Next, the energy landscape of a material at any
time t is assumed to consist of a spatially uncorrelated, time-invariant distribution of
traps ρ(Ey, t). The use of a distribution of well depths, instead of a single value, is
assumed to mimic the inherent disorder of the microstructure. Finally, the evolution
of the probability, P (Ey, t), for a given element to be in a trap of depth Ey at time t
is governed by thermally activated hopping. This means that, when activated, each
element can “hop” to another trap, as shown in Figure 2.15. The hopping mechanism
deserves special attention. Under an external strain γ, the hopping frequency

τ = τ0e
Ey−k/2·l2

x (2.34)

is controlled by Ey−k/2 · l2, the local activation energy barrier, and by (indirect)
interactions between different elements, modeled by an effective temperature x.
Aging effects are found when the distribution of traps, ρ(Ey, t), have an exponential
tails, analogous to Bouchaud’s model for aging dynamics in glassy systems. Observe
that in the SGR model, the uncorrelated distribution of well depths implies that
there is no direct interactions (i.e. mediated by an interaction potential) between
the particles/aggregates. Note also that the term “thermally activated hopping”
is somewhat misleading. Thermal energy can be small compared to typical trap
depths Ey —in this case, the dynamics is triggered by elastic interactions within
the sample, and not by pure thermal motion: a rearrangement (bond breakage)
somewhere propagates and causes rearrangements elsewhere. Hence, also when
thermal fluctuations are weak, stress heterogeneities frozen-in upon quench can still
partially relax through elastically driven rebounds.
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2.4.4 General remarks

We have reviewed the general literature on gelation, thixotropy and aging, and
we have seen that structural evolution (i) is a quite general phenomenon to explain
the time-dependence of the mechanical properties of colloidal suspensions, and (ii)
has been an active and important field of research in the last decades. The classical
literature on thixotropy and aging, perhaps surprisingly, rarely mentions the possible
time-evolution of thermally irreversible interparticle contacts, despite the fact that
systems with strong interactions are ubiquitous in industrial processes (concrete cast-
ing, drilling muds etc.) and natural phenomena (debris flows etc.). Although the
idea that other physical phenomena which do not occur at the particle scale, such
as frictional aging, may also produce mechanical aging [123], this possibility has not
been yet explored deeply.
The currently prevailing viewpoint, we think, follows from the considerable pro-
gresses made in recent decades in studies that access structural evolution in dense
suspensions where the attraction energy between the particles is absent, or of the
order of kBT . Initially, this progress has been possible thanks to the interplay be-
tween the advancement in imaging techniques, e.g. confocal microscopy, and in the
design of well characterized index-matched model systems. Among them, the hard
sphere system of Pusey and van Megen [163] (sterically stabilized PMMA particles in
index- and density-matched organic solvent) and, subsequently, the colloid-polymer
attractive system, have been instrumental in shaping our current view on glasses,
because they have facilitated the direct comparison between experiments, theory and
simulations. Analogously, our comprehension on dynamical arrest at lower packing
fractions (φ ∼ 10 − 40%) has benefited from the works on these index-matched
depletion gels [50, 159, 162], where vdW forces and contact formation are fully sup-
pressed. For these weakly attractive systems, particle bonds can reversibly break and
form many times during the course of an experiment, and time-dependent mechani-
cal responses and aging can be easily associated to structural evolution.
Turbid suspensions, where strong van der Waals forces are at play, are not suited to
be imaged with a confocal microscope. For such systems, hence, other techniques
are called for. Despite recent improvements on light scattering techniques, such as
dynamic light scattering (DLS) [35, 1, 58], multi-sparkle diffusing wave spectroscopy
(MSDWS) [16], and x-ray photon correlation spectroscopy (XPCS) [32], have allowed
the study of aging in concentrated suspensions to some extent, their application for
packing fraction around φ = 30% remains scarce and limited to sterically stabilized
suspensions [87, 80]. Experiments on very dilute systems have demonstrated that
the dynamics keeps evolving in time also long after solidification [35, 16, 37, 58],
but these range of particle concentrations is quite far from the packing fractions we
are interested in (φ > 30%), for which no exhaustive characterization of aging and
structural evolution exists.
Hence, at intermediate φ, roughly between 20% and 50%, the conditions under
which gels form, and how the dynamical transition and the solid-like rheology are
connected, remain to be elucidated. For glassy suspensions, this relationship is usu-
ally well described by mode-coupling theory [174]. In dilute gels, it can be interpreted
in terms of fractal models [158] and by analyzing the thermal fluctuation of the nor-
mal modes of the aggregates [107]. However, the extension of both approaches for
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dense suspensions is questionable. Additionally, aging phenomena are non explicitly
considered, and the existence of an analogy between the dynamics of moderately
concentrated suspensions and glassy systems is not fully clarified [87].
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3.1 Suspension preparation and characteriza-
tion

3.1.1 Stöber syntesis
In 1968, Stöber and co-workers showed that, by means of hydrolysis of alkyl sili-

cates and subsequent condensation of silicic acid in alcoholic solutions, monodisperse
silica particles in the colloidal size range can be easily produced [186]. The method
consists in the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) with
water/ethanol solutions in the presence of ammonia as a catalyst. During the reac-
tion, small seed nanoparticles form and gradually aggregate to form larger, macro-
scopic, usually porous particles. In the original synthesis protocol [186], a single
growth step is performed by a one-step addition of TEOS into a solution of ethanol,
ammonium hydroxide and deionized water. The vessel is placed in a constant tem-
perature bath and fitted with a magnetic stirrer. This yields particles with maximum
size in the submicrometric range (few hundred of nm) and usually with a broad size
distribution [56]. As large monodisperse particles (typically above 1 µm) are difficult
to synthesize by this procedure, alternative methods have been proposed in the last
50th years. Bogush et al. [18] used a seeded growth technique for preparing larger
particles and increasing solids mass fraction. The technique lies in the consecutive
addition of TEOS to a suspensions already containing silica nanoparticles (seeds),
prepared as described above. Particle size up to 900 nm, with a narrow size distribu-
tion, can be easily achieved, but the extension of the method to higher sizes is limited
by the presence of secondary nucleation, which leads to bidisperse samples. To avoid
the formation of a second population, it is necessary to add TEOS by small fractions
over a long period of time, which further complicates and lengthens the experiments.
To overcome these difficulties, a so-called semibatch process (continuous addition),
in which the system reactants feed into a reactor at a constant flow rate, is also ap-
plied [18, 117, 104, 56, 142]. This technique drastically reduces the synthesis time.
Moreover, because of the slow rate of reaction of hydrolysis, the continuous addition
is claimed to give greater control over the resulting particle size, shape, and size dis-
tribution [56, 142]. Precipitation parameters, such as reaction temperature [18, 117],
TEOS/EtOH/H2O concentration ratios used in the recipe [76], reaction time [56]
and rate of addition [142] affect the resulting particle size, size distribution and mor-
phology. In practice, hence, the Stöber synthesis may be affected by a great number
of experimental conditions. In order to reduce the number of free parameters and to
produce particle above 1 µm, a semibatch process, wherein one controls only the rate
of addition of TEOS, seems to be the far most simple and straightforward technique.

Experimental protocol

Here, we use a fast semibatch synthesis proposed in [104]. This procedure per-
mits a reduction of the time of physical contact between reactants and the plastic of
the vessel, and guarantees the production of important amount of silica solid mass
fraction.
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Figure 3.1 – (a) Schematic representation of the device used to synthesize silica par-
ticles. (b) Particle size versus electrolyte concentration, for two different cations and
same rate of addition 1.1 mL/min. The other experimental conditions are held fixed

(Table 3.1).

Table 3.1 – Experimental conditions according to [104].

Product solution I ( mL) solution II (mL)
TEOS 80 0
EtOH 230 800
NH4OH 0 170

TEOS (Si(OC2H5)4, 99%, Aldrich Chemical Co.), ethanol (EtOH, Analar NORMA-
PUR, 99.9% v/v), and ammonia hydroxide (NH4OH, 28%, Analar NORMAPUR) are
used as reactant materials without any further purification. Two solutions, I (TEOS
in ethanol) and II (ammonia in ethanol), are prepared separately. By means of a
syringe pumps (Harvard Apparatus), the solution I is added at a constant flow rate
into a plastic vessel that contains solution II, under stirring. A diagram of the appa-
ratus is shown in Figure 3.1(a). After the end of the withdrawal, the solution is left
under stirring 2 hours until total consumption of the reactants. All the experiments
are performed at ambient temperature, yet the reaction temperature is not precisely
controlled due to experimental difficulties. The product concentrations in the recipe
are reported in Table 3.1.

According to Nowaza and co-workers [142], the final particle size is primarily
controlled by the rate of addition of TEOS, all other parameters being constant:

d ' A · v−0.32 (3.1)

where d is the particle diameter in µm, v the velocity of addition in mL/min and A
a temperature dependent constant. Since the flow rate can be carefully controlled
by the syringe pump, we tentatively follow Equation (3.1) to produce particles in the
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desired range. Surprisingly, although monodisperse particles are always produced, we
are not able to control the final size by changing the flow rate of the reactants, while
fixing the other experimental conditions. Furthermore, for any given addition rate,
the results are hardly reproducible and appear to do not correlate with variations in
room temperature. As a consequence, we decide to keep v constant at 1.1 mL/min,
as originally proposed in [104]. In these conditions, each synthesis yields a mono-
disperse particle batch, with a size ranging between 0.8 and 1.2 µm. At the end of
the synthesis, particles are washed by centrifugation (5000 rpm during 5 min) several
times with ethanol 96% (GPR Rectapur VWR) and with de-ionized water (Aquadem
18M) to eliminate impurities and solvents. They are finally dried at 60 ◦C for 12h
and sorted according to their measured size.

In order to systematically produce particles above 1.2 µm, we employ a recent
semibatch technique which consists in adding of small amounts of salt into solution
II [137]. The salt promotes particle coagulation in early reaction stage by reducing
their surface potential due to cation adsorption. We add small amount of KCl and
NaCl to our solutions, in the range 1-4 mM, whilst fixing the other parameters. The
results of the synthesis, versus electrolyte concentration, are shown in Figure 3.1(b).
As illustrated, the particle diameter (measured by DLS), increases with the amount
of salt introduced in solution II, for both cations. As a drawback, adding more and
more salt leads to an increase in particle polydispersity, as already noted in [137].
However, we anticipate that the error bars in Figure 3.1(b) are significantly overes-
timated. This is caused by spurious effects (sedimentation, presence of aggregates)
that lead to erroneous estimates of the size distribution in the dynamic light scatter-
ing measurements (see section Section 3.1.3). The final diameters are little affected
by the salt type, suggesting that cation hydrated radius does not play a major role
in the kinetic of particle growth, in contrast with the expectations of Nakabayashi
and co-workers [137].

3.1.2 PMMA particles
PMMA particles are purchased from MicroBeads (Spheromers CA3). Particle

sizes are distributed around 3 µm with a 15% polydispersity. The particles are
washed several times with ethanol and deionized water before use.

3.1.3 Particle size analysis

Dynamic light scattering (DLS)

Dynamic light scattering (DLS) is a non-invasive technique for measuring the
size of sub-micron particles and macro-molecules. DLS is based on the dynamic
analysis of coherent light scattered by particles in dilute suspensions. For a particle
undergoing Brownian motion, the intensity of the scattered light fluctuates at a
rate that depends upon its size. By measuring the decay of the intensity auto-
correlation function of the fluctuating light, the diffusion coefficient of the particles
can be extracted, and the average (hydrodynamic) radius a measured through the



3.1. SUSPENSION PREPARATION AND CHARACTERIZATION 51

Stokes-Einstein equation:
D = kbT

6πηa (3.2)

where kbT is the thermal energy and η the solvent viscosity (refer to Appendix A for
more details).

We use a standard DLS instrument ZetaSizer Nano, supplied by Malvern. Silica
particles are diluted in deionized water at a low volume fraction φ < 0.01% to avoid
multiple scattering. The suspensions are placed in standard disposable size cuvettes
and illuminated by the laser.
As discussed in Appendix A, DLS results can be affected by various effects like sed-
imentation and presence of aggregates. Sedimentation, in particular, is expected to
be important in our measurements, especially for particles above 1 µm, due to the
strong density mismatch between silica and water. To limit sedimentation effects,
we performed several measurement runs, each of them comprising at least 5 short
data acquisitions of typical duration of 60 s. For each batch of particles, the data
obtained from different runs are then averaged. To limit the effects of particle aggre-
gation, we analyze the data in terms of number density distribution (see Appendix A).

Particle sizes in the range 0.5-1.9 µm are produced and then analyzed through
DLS. Quite generally, the technique returns an average polydispersity ranging from
∼ 10% to ∼ 20% as the size of the particles increases. However, we do not attribute
this trend only to an intrinsic result of the Stöber synthesis, but rather to an increas-
ingly effect of sedimentation, which introduces a drift velocity to the motion of the
particles. In addition, the technique itself has an inherent 10-15% band spreading,
which leads to an overestimation of the polydispersity [96].

Scanning Electron Microscope (SEM)

We also use scanning electron microscopy (SEM) to estimate the size of our
silica particles. Due to the high resolution of the instrument (up to few nm), the
size distribution can be characterized with high accuracy.

The particles are firstly diluted in water at low volume fraction. They are then
deposited by drop-casting technique onto a conductive substrate, which is placed
inside the SEM chamber after complete evaporation of the solvent. SEM analysis is
performed by field-emission gun SEM (Zeiss Neon 40 EsB FIB-SEM), equipped with
an Everhart-Thornley detector for collection of secondary electrons (SEs). To pre-
vent charge accumulation at the surface, dielectric samples are usually sputter-coated
with a conductive layer prior to be loaded in the SEM chamber. Here we adopted a
different strategy, consisting in an electron bombardment carried out at low primary
electron energies. In these conditions, it can be shown that charge accumulation is
drastically reduced [19]. As explained in Appendix B, we use a beam energy close
to the first crossover energy E1 —around 1 keV for Stöber silica —which is more
efficient than E2 in preventing charging under a constant electron beam.
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Figure 3.2 – (a) SEM micrograph of 1.9 µm silica particles. (b) Size distribution
measured by analysis of SEM images.

To measure the size of the particles, several SEM snapshots are acquired and
then analyzed by means of a standard Matlab algorithm (function imfindcircles,
https://fr.mathworks.com/help/images/ref/imfindcircles.html). The script directly
returns the center and the radius of each particle within the field of view. We report
in Figure 3.2(a) a typical SEM micrograph of the largest particles used in this work.
As illustrated in Figure 3.2(b), by analysis of this and additional images, we find a
mean particle diameter of d = (1860 ± 90)nm, corresponding to a polydispersity
of ∼ 5%. We then compare the corresponding size distribution with the dynamic
light scattering estimate, d = (1950 ± 350)nm, corresponding to a polydispersity
of ∼ 18%. Although the mean value is approximately the same, the results clearly
show that DLS overestimates the polydispersity, especially for particles above 1 µm.

3.1.4 Zeta potential
We now investigate the surface properties of isolated silica particles in saline so-

lutions containing CaCl2. In Section 2.2.2, we explained that there exist an electric
double layer around a charged particle in solution. Consider now the liquid adjacent
to that particle under the influence of an external electric field. The electric field
will generate a motion of the ions in opposite directions; if the particle is negatively
charged, the positive counterions will move towards the anode, while the negative
co-ions towards the cathode. This causes the particle to move, and this motion
virtually defines a plane of shear, at a distance δs from the surface , which separates
the stationary layer of fluid attached to the dispersed particle and the rest of the so-
lution. The zeta potential ζ is defined as the electric potential at the location of this
shear plane, relative to the bulk solution. It quantifies only the charge inside δs and
not its absolute surface charge, and therefore it does not coincide neither with the
Stern potential —at the outer Helmholtz plane (OHP) —nor with the double layer
potential (at the boundary between the double layer and the bulk). Nevertheless,

https://fr.mathworks.com/help/images/ref/imfindcircles.html
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there is a considerable body of evidence that the shear plane lies very close to the
OHP [94], so that ζ is good estimate for the surface potential Φs. This approxima-
tion will be used to calculate the interaction energy between our particles.

The zeta potential is a key indicator of the stability of a colloidal suspensions be-
cause it indicates the degree of electrostatic repulsion between the charged particles.
It depends strongly on the ionic strength and pH of the solution, since both a change
in the ion concentration and in the degree of surface dissociation affect the charge
density at the particle surface. It is usually measured by means of electrophoresis
experiments, viz. by recording the (electrophoretic) mobility µm of the particles un-
der a known external electric field. Assuming equilibrium between electrostatic and
viscous forces, and a Boltzmann distribution for the ions around the particles, it can
be shown that [183]:

µm = −ε0εζ
η

(3.3)

where η is the viscosity of the solvent.

We measure ζ with a Zetasizer nano ZS supplied by Malvern. The instrument
uses electrophortic light scattering to assess the mobility of the particles, through
Laser Doppler Velocimetry (LDV) technique. Silica particles are diluted in deionized
water at various salt concentrations and very low volume fractions φ < 0.01% to
avoid multiple scattering. The suspensions are injected into disposable cuvettes
equipped with two electrodes at either end, allowing for the application of an external
electric field. The rate of intensity fluctuations of the scattered light is measured
and afterwards related to the particle velocity, in analogy with DLS. In Figure 3.3
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Figure 3.3 – Zeta potential for 1 µm silica particles versus ionic strength, in CaCl2
solutions. The solid line is a fit of the linearized Stern equation to the data.

we report the zeta potential versus CaCl2 concentration. The latter is expressed in
terms of ionic strength I, defined as

I = 1
2
∑
i

ci · z2
i (3.4)

where ci and zi are the molar concentration and valence of ion i, respectively. As
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illustrated, ζ is strongly affected by even a small amount of salt. Above I = 0.05 M,
the potential saturates to small values around -10mV. At this and higher electrolyte
content, the conductivity of the solution increases and the applied voltage is auto-
matically lowered by the instrument to values < 10 V , to prevent damages of the
electrodes. In addition, according to Equation (3.3), the mobility of the particles
is strongly reduced as the surface potential decreases. In these conditions, both
electroosmosis flow and sedimentation dominate the motion of the particles and
hence perturb the results. We are thus forced to limit the measurement to I below
0.1 M.

The trend in Figure 3.3 can be approximately explained by considering the ad-
sorption of Ca++ cations to the silica surface. To proceed, we use a linearized Stern
equation, as in [147]. First, we recall that the surface charge density is related to the
potential by the Grahame equation (Equation (2.18)). Since in our range of ionic
strengths |ζ| < 25 mV almost everywhere, the Debye-Huckel approximation holds,
and predicts:

σ =
(
eζ

kbT

)√
2000Naε0εkbT · I (3.5)

where Na is the Avogadro number (σ now denotes the charge density within the shear
plane, where we define the zeta potential). Next, we assume a Langmuir adsorption
isotherm where each Ca++ is adsorbed to the deprotonated silanols according to [95]:

SiO− + Ca++ → SiOCa+ (3.6)

As a result, the particle surface can be considered as a two dimensional array of
discrete positive SiOCa+, neutral SiOH, and negative SiO– sites. The Langmuir ad-
sorption can be written in term of the concentration of cations [Ca++] at the particle
surface, the surface density of unoccupied sites {S−} and the intrinsic association
constant K:

{C++S−} = K[Ca++] {S−} (3.7)
where { C++S–} is the surface density of associated states bringing a positive charge
+1. The total number of negative adsorption sites is the sum of occupied and
unoccupied sites:

{S}tot = {C++S−}+ {S−} (3.8)
and the total charge at the surface is

σ = e({C++S−} − {S−}) (3.9)

Like in the charge regularization scheme, we further assume a Boltzmann distribution
for the cations

[Ca++] = [Ca++]∞e−2eζ/kbT (3.10)
where [Ca++]∞ is the bulk cation concentration. Using again the Debye-Huckel
approximation and combining Equations (3.7) and (3.8) we obtain:

σ = e{S}tot (K · I(1− 2eζ/kbT )− 3)
3 +K · I(1− 2eζ/kbT ) (3.11)
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Equations (3.5) and (3.11) are used together to extract ζ as a function of the
ionic strength. The experimental data are then fitted with {S}tot and K as fitting
parameters, and the result is reported in Figure 3.3 (solid black line). The model
captures quite well the zeta potential versus I behavior; the fit returns {S}tot =
(0.04± 0.02)nm−2. This value can be compared to the maximum silanol density of
fully hydrated silica ≈ 4 nm−2 [95]. The fraction of dissociates sites is thus small,
around α = 1%. Using the mass action equation [99] for the dissociation constant
of silanol in water at pH ≈ 7

Kd = α

1− α · 10−pH · e−eζ0/kbT , (3.12)

and the measured ζ0 value at vanishing divalent salt concentration, it follows that
Kd = 10−7.5M (pK = 7.5), a reasonable value [157]. The calculation suggests that
only a small fraction of silanols dissociates at normal pH conditions, the rest of which
probably forms a strong network of hydrogen bonds with water molecules [26, 222].

3.1.5 Particle interactions

The first part of this section is devoted to the estimate of the forces between our
silica particles when dispersed in electrolyte solutions.

DLVO potential in CaCl2 solutions
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Figure 3.4 – DLVO potentials for our silica particles with (a) 2a = 1.9 µm and (b)
2a = 0.5 µm for different I values (colors). The curves are computed with either offset

hoff = 0 (solid) and hoff = 5Å (dashed).

We have seen that, in the absence of contact, i.e. beyond distances of order a
nanometer, the pair interaction between two colloidal particles of equal radius a in
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asymmetric electrolytes is known to be captured by the DLVO expression [98]:

VDLV O(h) = −AH6

[
2a2

h(h+ 4a) + 2a2

(h+ 2a)2 + ln
(
h(h+ 4a)
(h+ 2a)2

)]
+ 2πaε0εΦ2

s e
−κh

(3.13)
where AH = 8.3 · 10−21J [86, 128] is the non-retarted Hamaker constant, h the
gap between particle surfaces, Φs the surface potential, approximated with the zeta
potential ζ [94], and κ−1 = 0.304/

√
I the Debye length in nm. This expression is

valid in the Debye-Huckel approximation, which requires the electrostatic energy to
be small compared to the thermal energy, i.e. |Φs| � 25 mV.
The particle charges have been measured by zetametry using electrophoretic light
scattering and the results are reported in Section 3.1.4 for ionic strengths up to
I = 0.1 M. Such figure shows that |Φs| rapidly decreases with increasing I and
that |Φs| ' 25mV when I = 0.015 M, so that the Debye-Huckel approximation is
reasonable for this and higher ionic strengths. Equation (3.13) is thus reported in
Figure 3.4 for the largest and smallest silica particles used in this work. In the left
figure we plot the DLVO calculation for 2a = 1.9 µm particles using I = 0.015,
0.024 and 0.1 M and approximating the surface potentials with the measured zeta
potential values (solid colored lines). At small I this interaction displays a peak that
limits contact formation; at the largest ionic strength, however, the peak disappears
and the interaction is attractive at all distances. In Figure 3.4(b) we report similar
interaction potential computations for the smaller particles, 2a = 0.5 µm. The plots
clearly show that energy barriers are absent for I > 0.1 M.

Many studies pointed out the possible existence of non-DLVO short-range re-
pulsive contributions to the interaction potential [204, 26, 149, 199, 13]. These
additional forces are ascribed either to solvation or steric hindrance due to protrud-
ing hydrated silica hairs at the particle surface. They are usually accounted for
by considering that the outer Helmholtz plane (OHP), i.e. the plane of origin of
the electrostatic interactions, is located a few Å outward from the contact plane,
h = 0 [204]. To test for this effect, we also report in Figure 3.4 the DLVO interaction
as computed using an offset hoff = 5 Å (dashed curves in corresponding colors), a
reasonable upper value. We see that the uncertainty about the offset values does not
change the fact that the barrier that limits contact formation is absent for I = 0.1 M,
and hence for all higher I values.

DLVO potential in glycerol/water mixtures

Suspensions of silica particles in water are opaque due to the strong refractive
index mismatch between silica (n = 1.458) and pure water (n = 1.333). Part of
the aging characterization of the suspensions will be performed via imaging of their
structure under a confocal microscope. For such experiments the index mismatch will
preclude imaging beyond a few particle layers inside the material. In order to increase
the suspension transparency, the interstitial fluid index will be modified by addition
of glycerol (n=1.475). We thus investigate, here, the forces acting between our silica
particles in water/glycerol mixtures. To proceed, we need to know how the Hamaker
constant AH of silica across the mixtures is modified by the presence of glycerol, as
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Table 3.2 – Some properties of water, glycerol, silica and PMMA at ambient temper-
ature. From left to right: density, refractive index, relative permittivity and viscosity.

System ρ (g/mL) n εr η (Pas)
Water 0.998 1.333 78.4 0.98 · 10−3

Glycerol 1.261 1.475 47 1.17
Silica 1.94 ± 0.05 1.458 3.9 /
PMMA 1.18 1.490 3.6 /

Table 3.3 – The Hamaker constant of silica particles interacting across a glycerol-water
mixture as a function of glycerol mass concentration.

Cm (%) 0 30 40 50
AH (J) 9.1 · 10−21 5.9 · 10−21 4.9 · 10−21 4.0 · 10−21

a function of its mass concentration Cm. We first estimate the refractive index and
relative permittivity of the interstitial fluid using the Lorentz-Lorenz equations:

n2
m − 1
n2
m + 2 = (1− φg) ·

n2
w − 1
n2
w + 2 + φg ·

n2
g − 1
n2
g + 2 (3.14)

where φg is the glycerol volume fraction, nm, nw and ng are the refractive indexes
of the mixture, water and glycerol, respectively. Equation (3.14) is evaluated using
common values for nw and ng, taken form standard databases. These values, and
other constants used in this work, are reported in Table 3.2. Note that the density
of silica has been measured through pycnometer method. To calculate the Hamaker
constant AH , we then use an approximate expression based on the Lifshitz theory
(see [98]):

AH = 3
4kbT

(
εs − εm
εs + εm

)2
+ 3hνe

16
√

2
(n2

s − n2
m)2

(n2
s + n2

m)3/2 (3.15)

where hνe = 3 · 10−18J, νe being a typical atomic vibration frequency, εs and ns
are the relative permittivity and index of refraction of silica, respectively. Equa-
tion (3.15) is evaluated at various Cm, and the results reported in Table 3.3. As
expected, AH decreases as the glycerol mass content increases. The lowering of the
Hamaker constant implies a reduced amplitude in the vdW attraction. We also note
that AH calculated at vanishing glycerol content is close to the value used previously
in pure water, 8.3 · 10−21J [86, 128].

We plot in Figure 3.5(a) the DLVO potential energy for I = 0.1 M, calculated
according to the Hamaker constants in Table 3.3 and assuming that the electro-
static interactions are not substantially affected by the presence of glycerol [3]. We
compare the results with the potential energy obtained in the pure water case (solid
line). Clearly, for this specific I, the reduced strength of vdW attraction only slightly
changes the potential energy profile, which remains attractive for all separations (no
energy barriers). This remains true even if an offset of 0.5 Å is added in the electro-
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Figure 3.5 – DLVO potentials for silica particles in pure water (magenta solid line) and
with increasing glycerol concentrations (dashed lines), for I = 0.1 M and ζ = −8 mV.
(a) Without and (b) with a 0.5Å shift of the origin plane of the electrostatic double

layer interactions.

static part of the potential, as discussed in Section 3.1.5 and shown in Figure 3.5(b).
When the glycerol content varies in the range [30, 50]%, hence, flocculation is not
hindered by energy barriers for I > 0.1M.

3.1.6 Suspension preparation
Silica suspensions

The studied suspensions are thixotropic, their mechanical properties depend on
the shear history and the time elapsed since their preparation in a given reference
state. To aid experimental reproducibility, hence, they must be prepared following a
rigorous protocol. This is achieved by applying the following procedure [73]:

I) A small amount of dry silica powder (of known weight) is dispersed and left
under stirring for several hours in large amount of deionized water (typically
200 g of water for 15 g of silica) to ensure full hydration of the particle surface.

II) The dilute dispersion is then centrifugated at 5000rpm for 5min to eliminate
the gross part of water.

III) The necessary amount of water is added to the sediment according to the
target packing fraction φ; the suspension is then vigorously mixed by vortexer.

IV) By means of a micro-pipette, a small amount of a batch salt solution ([C] =
1 M) is added to reach the target ionic strength I. The suspension is again
homogenized by stirring.

V) To remove bubbles, the suspension is left in ultrasound bath for 3min.

The exact volume fraction is measured by weighting dry extract of small amount
of each sample dried at 60 ◦C in an oven. A similar procedure is used for the
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formulation of the suspensions in water-glycerol mixtures.

PMMA suspensions

A slightly different procedure is required for PMMA suspensions, as the hydro-
phobicity of the PMMA surface [111] complicates the dispersion process:

I) The particles are dispersed in a great quantity of deionized water, left under
stirring for 2 days to ensure a complete hydration of the surface and then
allowed to sediment over night.

II) The majority of the excess water along with some hydrophobic particles ad-
sorbed at the air-liquid interface are removed with a syringe.

III) The final volume fraction is reached by centrifugation of the sediment at 5500
rpm for 20 minutes, whereupon the proper amount of salt is added as described
above.

IV) Finally, after homogenization of the suspensions, 2 minutes of sonification are
used to remove bubbles.

The removal of particles at the air-liquid interface (point II) usually leads to little
control over the final volume fraction, which however only slightly departs from the
desired one. For this reason, it was difficult to compare suspensions with different I
and same φ.

Glycerol-water suspensions
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Figure 3.6 – Variation of viscosity (a) and refractive index (b) of water/glycerol mix-
tures as a function of glycerol mass concentration at ambient temperature.

In this part, we analyze the change in viscosity of water/glycerol suspensions as
a function of the glycerol mass content. For the calculation, we use an empirical
formula provided by Cheng [31], which compares well with experimental values [177].
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According to the author, the viscosity ηm of the mixture is related to those of the
two components by a power law:

ηm = ηαwη
1−α
g (3.16)

where α depends simultaneously on the glycerol mass concentration Cm and the
temperature T:

α = 1− Cm + abCm(1− Cm)
aCm + b(1− Cm) (3.17)

The parameters a and b vary with T according to

a = 0.705− 0.0017 · T (3.18a)
b = (4.9 + 0.036 · T )a2.5, (3.18b)

while the variations of the viscosity with temperature are approximated respectively
as:

ηw(T ) = 1.790e−(1230+T )T/(36100+360T ) (3.19a)
ηg(T ) = 12100e−(1233−T )T/(9900+70T ) (3.19b)

The results are shown in Figure 3.6(a). The viscosity does not increase dramat-
ically for glycerol mass concentrations up to 50%; for instance, for a 60/40 wt%
water/glycerol suspension we have ηm = 3.7 mPas, that is ≈ 4 times the viscosity
of pure water, while for Cm = 70% we obtain ηm ≈ 23ηw. According to Equa-
tion (3.14), the glycerol mass fraction for which the refractive indexes are matched
lies around Cm = 91%, as shown in Figure 3.6(b). Note that in these conditions,
however, ηm is about 265 times the viscosity of water. To avoid a strong change of
the solvent viscosity, confocal microscopy investigation will be carried out only for
Cm ∈ [30, 50]%. More importantly, this permits to study suspensions for which van
der Waals forces are still substantial.
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3.2 Macroscopic characterization: Rheometry
In this section, we use rheometry (see frame below) to investigate macroscopic

mechanical aging of our suspensions. We first delineate the experimental setup and
measurement protocols, and then illustrate the main results of mechanical aging.
An important part of the data we report here have been obtained by Jennifer Fusier
during her PhD thesis [72]. Using the same experimental protocol, additional data
have been acquired during this work, and a similar aging characterization has been
carried out with suspensions composed of PMMA particles. We thus only report the
main aspects and implications of the macroscopic aging measurements and results,
inviting the reader to refer to [72] for a more detailed presentation.

Rheology

Figure 3.7 – Simple shear flow geometry. An ideal elastic body (left panel) and a
simple Newtonian fluid (right panel) are placed between the plates. Figure taken

from [93].

In this frame, we wish to introduce the basic concepts of rheology. Rheology
is the science of deformation and flow of matter under controlled testing con-
ditions. During a rheological experiment, one usually applies an external stress
(deformation) and records the deformation (stress) response of the material. An
elementary instrument (i.e. rheometer) which allows to quantify the mechanical
behavior of a material is shown in Figure 3.7. In this device, a body is confined
between two parallel plates a distance h apart. The upper plate is mobile and
can be displaced in the x direction, while the bottom plate is held fixed in time.
To generate a displacement of ∆x, one needs to apply a stress σxy on the top
plate, where the subscript x denotes the direction of the force and y the plane to
which the force is applied, in terms of the normal to the plane. Let us suppose
that the body is an ideal Hookean elastic solid (left panel). In this case, the
force per unit surface can be expressed as

σxy = G
∆x
h

= Gγ (3.20)

For a Hookean elastic solid, hence, the stress is proportional to the strain
γ = ∆x/h, and the proportionality constant —G (or G′) —is called the shear
elastic modulus.
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We now replace the perfect elastic material with a simple (Newtonian) fluid, like
water, as shown in the right panel of Figure 3.7. Suppose now that the upper
plate is displaced at a constant velocity V . In absence of turbulent motion and
slip at the wall, the boundary conditions require that the local velocity Vx along
x varies linearly across the gap, as indicated by the arrows. In this case, the
shear stress needed to maintain the constant velocity of the top plate is given
by

σ = η
∂Vx
∂y

= η
Vx
h

= ηγ̇. (3.21)

with γ̇ the shear rate, the derivative over time of the (small) strain. For
Newtonian fluids, hence, the stress is proportional to the shear rate; the
proportionality constant —the viscosity coefficient η —expresses the resistance
to flow in Newtonian fluids. A real material may exhibit both a viscous and an
elastic behavior in response to external perturbations; in these conditions, it is
termed viscoelastic.

3.2.1 Rheometry in Couette geometry
In the Couette geometry, the suspension is placed in the gap between two co-axial

cylinders, as shown in Figure 3.8. In a stress controlled rheometer, a known torque
Mi is applied to the inner cylinder of radius ri, while the outer cylinder of radius re
remains fixed, and the rotation angle and/or velocity is recorded.
When inertia and edge effects are negligible, the shear stress at a distance r from

Figure 3.8 – A cartoon of the Couette geometry used in this work.

the axis of symmetry is
σ(r) = Mi

2πLr2 (3.22)
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where Mi is the prescribed torque to the inner tool and L is the height of the gap.
In the gap, the velocity field is

vθ(r) = ω(r) · r (3.23)

with vθ(r) the radial velocity. In the limit of small deformation the strain γ can be
written as

γ(r) = −rdδ
dr

(3.24)

where, δ is the local angle of rotation, such as ω = δ̇ = vθ/r. Note that both the
shear stress σ and the shear strain γ of a particular cylindrical layer of material depend
on its distance r to the vertical axis; the shear stress decreases as one goes from the
inner cylinder at ri to the outer cylinder at re. This induces a strain heterogeneity
in the gap.

The shear rate is
γ̇(r) = −rdω

dr
(3.25)

where ω is the local angular velocity. The expression for γ̇(r) depends on the position
of the material point within the gap. When ri/re > 0.99, however, the shear rate
can be assumed constant within the gap and a simple integration of Equation (3.25)
gives

γ̇ = Ωri
re − ri

(3.26)

where Ω is the angular velocity of the inner tool. Then, the strain, uniform over the
gap, can be expressed as

γ = δiri
re − ri

(3.27)

in which δi is the angle of rotation of the inner cylinder. In general, the condition of
small gap is not meet and stress heterogeneities cannot be neglected. The expres-
sion for the shear rate cannot be known unless one makes some hypothesis on the
constitutive equation of the material.

3.2.2 Oscillatory rheology

The viscoelastic properties of the material under study are usually probed via
oscillatory tests, in which one applies small amplitude strain oscillations

γ(t) = γ0 sin (ωt) (3.28)

and simultaneously records the stress response. In the case of an ideal elastic body,
the stress follows the strain

σ(t) = Gγ0 sin (ωt), (3.29)
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that is, the response is in phase with the perturbation. For a viscous fluid, σ depends
on the instantaneous shear rate γ̇(t) = γ0ω cos (ωt) and one obtains:

σ(t) = ηγ0ω sin (ωt+ π/2) (3.30)

The shear stress response is now shifted by 90◦ with respect to the strain. In general,
viscoelastic materials exhibit a phase shift between the two limit cases, i.e. 0◦ and
90◦. Defining the stress response as

σ(t) = σ0 sin (ωt+ φ) (3.31)

where φ is the phase shift, and using classical complex notation for oscillatory sys-
tems, the response can be expressed as

σ?(t) = G? · γ? (3.32)

where
G? = G′ + iG′′ (3.33)

is the so-called complex shear modulus, with:

G′ = σ0

γ0
cos (φ) (3.34a)

G′′ = σ0

γ0
sin (φ) (3.34b)

The in-phase or real part G′ describes the elastic behavior of the material and is
called the storage modulus. The out-of-phase or imaginary part G′′ (shifted by 90◦),
the loss modulus, represents the viscous behavior. For a pure elastic material one
recovers G′ = G and G′′ = 0, while for a pure viscous liquid one obtains G′ = 0 and
G′′ = ηω. It should be pointed out that viscoelastic materials show time-dependency.
As a consequence, both G′ and G′′ might depend on the applied shear frequency ω.

3.2.3 Experimental procedure
Rheometry is performed using a stress-controlled (Malvern Kinexus Ultra +)

rheometer, in a thin gap Couette geometry (inner radius ri = 12.5 mm, outer
cylinder radius re = 13.75 mm, height L = 37.5 mm) between rough cylinders
to avoid slippage. The choice of a Couette geometry results from a compromise
between different constraints: despite the need to use a larger experimental volume
in comparison with other geometries (cone-plate, plate-plate or cone-plate), the
Couette setup permits to reduce sedimentation and migration effects. Whereas
in the cone-plate, plate-plate or cone-plate arrangements the load is applied from
the top of the sample, i.e. the region the most affected by sedimentation, in the
Couette geometry the torque is applied along the entire height of the cylinder. In
these conditions, if the gravitational concentration gradient is small, the impact of
sedimentation is limited. Measurements of sedimentation profile by MRI (Magnetic
Resonance Imaging) of our suspensions can be found in ref. [72]. Thanks to the
fact that yield stress stabilizes the suspensions against sedimentation, it was shown
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that after a period of about 5h the volume fraction had only slightly increased at
the bottom of the sample, while a thin layer of water appeared at the top. In the
middle of the sample, however, the concentration was weakly modified. Bearing in
mind that the duration of the measurements does not exceed 1h and 30 min, it is
concluded that sedimentation does not significantly perturb the results [73].

In this thesis, we focus on two mechanical quantities of practical interest for
applications: the elastic shear modulus G′, and the yield stress σy. Quite generally,
both quantities may depend on a huge number of parameters, such as interaction
strength, size, shape and polydispersity of the particles and viscosity of the solvent,
to name a few. We use monodisperse spherical particles of radius a in pH neutral
water (∼ 7), control the interactions by changing the amount of salt in solution I,
and study the mechanical properties of the suspensions as a function of resting (or
aging) time t. Therefore, in our conditions, both G′ and σy are a function of 4 main
“parameters”:

G′ = G′(t, I, φ, a) (3.35a)
σy = σy(t, I, φ, a) (3.35b)

with φ the solid volume fraction.

The rheometry protocol is designed to account for the time-dependent behavior
of the suspensions. First, each sample is poured in the Couette geometry and pre-
sheared at 200 s−1 during 5 min, to “erase” the preparation and setting history. In
between different G′ measurements, the samples are then rejuvenated by shearing,
using the same γ̇ for a duration of 3 min. This procedure permits to obtain a
reproducible evolution of the shear modulus. Aging time t is counted after cessation
of shearing, i.e., starting when the external torque applied on the Couette cell is set
to zero. This slightly overestimates aging time, however, since a modest rotation
of the inner cylinder remains measurable for about few (< 5) seconds. Anyway, the
evolution of the shear modulus is not effected by this residual flow as long as t� 5s.
Besides, the shear modulus G′ is hardly measurable until about t ' 10s. In order
to minimize drying effects, the geometry is surrounded by a wet sheet, as shown in
Figure 3.9. All tests are conducted at ambient temperature.

Figure 3.9 – Drying is limited by application of a wet sweet on the top of the Couette
geometry.
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3.2.4 Shear modulus

Figure 3.10 – The procedure we use to measure evolution of the elastic modulus as a
function of time. F denotes the oscillatory shear stress frequency and n is the number

of 10s-cycles in each sequence. Figure taken from [72].

To measure the shear elastic modulus of each suspension, the range of defor-
mations for which strain depends linearly on stress must be known in advance. In
addition, since the suspension ages, the extent of the linear domain may evolve during
the experiment. The linear elastic domain and its eventual time evolution are identi-
fied by applying strain oscillations with increasing amplitude, for three different aging
times covering the entire time window of the subsequent aging measurements. After
various tests, a strain with amplitude γ0 = 10−4 = 0.01% has been chosen, since this
value lies in the linear domain for all resting times and studied formulations [72, 73].
All measurements are conducted at F = 1 Hz.

As we work with a stress controlled rheometer, applying strain-controlled os-
cillations with amplitude γ0 = 10−4 is problematic, and we usually observe strong
retro-action noise. We thus decide to use an oscillatory shear stress. A constant
stress amplitude, however, implies that the corresponding strain varies during the ex-
periments, as our material ages. In these conditions, the suspension may be probed
outside its linear regime. In order to remain at that constant amplitude γ0 during
the entire duration of the test, a feedback loop sequence is used [73]. Briefly, the
measurement is divided into loops of 10s; at the end of each loop, the applied stress
is updated based on the elastic modulus measured in the previous cycle, so that the
target strain amplitude remains close to 10−4. The loop sequence is depicted in
Figure 3.10.

3.2.5 Yield stress
To quantify the increase in yield stress during material aging, we carry out stan-

dard stress sweep tests after different resting times (5-300-600-1200s). We do not
use the classical method consisting in recording the stress response while applying a
small and constant shear rate, because we observed that the control system of the
rheometer was not accurate enough to impose a precise rotation of the inner tool.
For each measurement, a stress ramp (from 0 to 200 Pa during 2min) is applied
and automatically stopped once a shear rate of 200 s−1 is reached, to avoid stronger
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Figure 3.11 – Yield stress aging in dense silica suspensions. Stress ramps for (a) a
suspension with φ ≈ 0.38, I = 0.15 M and 2a = 0.7 µm, and (b) a suspension with

φ ≈ 0.35, I = 0.10 M and 2a = 1.6 µm.

shearing than during rejuvenation. In Figure 3.11 we report typical σ data versus
deformation during the sweep tests. The yield stress is identified by the rapid in-
crease in shear strain associated with the onset of the stress plateau region (arrows
in corresponding brighter colors).

3.2.6 Rheometry cycle

Figure 3.12 – Loading history applied to the sample during rheometric measurements.
The numbers denote the chronological order of the rheometry cycle.

For each suspension under study, elastic modulus and yield stress measurements
are performed in a unique rheometry cycle, shown in Figure 3.12. The cycle consists
in 3 independent measurements of G′ with different duration (5-10-20min), com-
plemented by sweep tests at the end of the oscillations. Since the superposition of
the G′ data indicates that the suspensions are in a reproducible reference state at
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the end of the pre-shearing, and since the material is probed in its linear domain,
we consider the small-strain oscillations as an effective resting time. We verified this
assumption by comparing the yield stress obtained after 5min of oscillatory tests with
that obtained after an equivalent interval where the applied stress was set to 0 [72].

3.2.7 Main results: silica suspensions
Shear modulus
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Figure 3.13 – Effect of packing fraction on the time-dependent shear modulus and
Q-factor. All data are obtained using I = 0.15 M suspensions of silica particles of
diameters 2a = 0.7 µm (a) and 2a = 1.6 µm (b), and for different packing fractions.
Top: shear modulus G′ vs time t since cessation of pre-shearing; bottom (refer to top

frames for legends): the quality factor Q = G′′/G′ vs t.

Macroscopic rheometry data for silica suspensions in water are presented in
Figure 3.13. The left and right columns correspond to different particle sizes,
2a = 0.7 µm and 2a = 1.6 µm (resp.). For each a (i.e. each column), we plot
on the top frame the time-resolved G′ data for different packing fractions φ. The
shear modulus increases monotonically over the accessible time range, and seems to
reach asymptotically a quasi-logarithmic growth regime. On the bottom frames, we
plot all the corresponding quality factors, Q = G′′/G′ for the same set of φ values.
In all cases, Q is of order 0.1 about 10s after cessation of pre-shearing when we
start to obtain reliable G′ and G′′ data. At later times, G′′ (not shown) is essen-
tially constant, and therefore Q decays as the inverse of G′. The late times values
of Q, which fluctuate around 5×10−2, are usually associated with solid-like behavior.

Our G′(t) data cover a much broader set of conditions, with different particle
sizes (from 0.5 to 1.9 µm) and packing fractions φ (29 to 40%). Such experiments,
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replicated at different ionic strengths between 0.10 M and 0.20 M, yield the following
observations:

(i) G′ is essentially I-independent in this range.
(ii) G′ strongly increases with φ, but its magnitude decreases with increasing par-

ticle radius a.

The observation of point (i) corroborates with the zeta potential measurements of
similar particles in equivalent salt concentrations, in which a substantial saturation
of the surface charge is seen for I > 0.05 M (see Figure 3.3 in Section 3.1.4). The
behavior in point (ii) is evident if one looks to Figure 3.14(a), where we plot the
elastic modulus versus volume fraction for the 2a = 0.7 µm and 2a = 1.6 µm data
sets at longest aging time (1200s).

Yield stress

The mechanical strengthening of the suspensions is also reflected in the yield
stress time evolution, as illustrated in Figure 3.11. Clearly, σy is an increasing func-
tion of aging time; it usually increases by a factor > 5 in only about 20 minutes after
cessation of the pre-shear. Analysis of σy data for a wide range of experimental con-
ditions, including different particle sizes a (from 0.5 to 1.9 µm), packing fractions φ
(29−40%) and ionic strengths I (0.10 to 0.20 M) leads us to two major observations:

(i) σy strongly increases with φ and its magnitude decreases with the particle size
a.

(ii) σy always increases with t, and is almost I-independent in the studied range.

These observations are summarized in Figure 3.14(b), where we report σy vs φ for
two particle sizes, 2a = 0.7 and 1.6 µm, and t = 1200 s. Observe that σy increases
with φ more slowly than the shear modulus, while, for similar packing fractions, its
reduction with a appears more pronounced than that of G′.

From our data set, we can estimate a critical yield strain for the onset of flow
as γc = σy/G

′; the results are plotted in Figure 3.14(c). The magnitude of γc does
not exceed few tenths of % and decreases with φ. In addition, γc seems to slightly
decrease with aging time, as suggested by the dashed black arrows in Figure 3.11.

Water/glycerol mixtures

Finally, in Figure 3.15 we report with open orange circles the time-resolved shear
modulus (a) and yield stress (b) of suspensions in a 60/40 wt% water/glycerol
mixtures. They clearly age, albeit at a smaller overall amplitude than in the respective
pure water systems. This is expected to be caused by the smaller index contrast and
hence the reduced scale of van der Waals forces in the glycerol mixture (refer to
Section 3.1.5 for more details). Indeed, they are just a factor c ' 3.1 smaller than
the G′(t) and σy values measured in the suspensions of identical particles in water at
the same corresponding φ and I (open blue squares). Additional data confirm that
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Figure 3.14 – Effect of volume fraction and particle size on the time-dependent shear
modulus (a) and yield stress (b). The data are obtained for different ionic strengths in
the range 0.1-0.2 M at aging time t = 1200 s. (c) Macroscopic critical strain γc = σy/G

′

versus φ.

the aging dynamics is not affected by the presence of glycerol at concentrations up
to ∼ 50% [72].

3.2.8 Main results: PMMA suspensions

Shear modulus

We report the time-resolved shear elastic modulus of dense PMMA suspensions
in CaCl2 solutions. Due to the limited amount of particles in our possession, we focus
on a single volume fraction ≈ 0.35 and study the elastic response for various ionic
strengths between 0.20 M and 0.80 M. The results, reported in Figure 3.16(a), show
that G′(t) slightly increases with time for all the studied formulations; its magnitude
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Figure 3.15 – Comparing the shear modulus (a) and yield stress (b) of particle sus-
pensions in water vs in 60/40 wt% water/glycerol mixtures. Shear modulus and yield
stress evolution are reported for both water/glycerol mixture (open orange circles)
and water (open blue squares), in 2a = 1.6 µm particle suspensions at ionic strength
I = 0.1 M and volume fraction φ = 0.34. When rescaled by a factor c ≈ 3.1, the water

data falls right on top of the water/glycerol curve (filled blue squares).
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Figure 3.16 – (a) Elastic modulus of 3 µm PMMA suspensions at various I. (b) Yield
stress of the suspension with I = 0.20 M.

roughly doubles in about 40 minutes after the cessation of pre-shearing. For clarity,
we apply a −3 kPa offset to the I = 0.20 M data. From the legend, observe that φ
is not perfectly equal to 35%, the desired packing fraction, but fluctuates around it.
This is due to experimental difficulties we encountered when dispersing the particles
in water (Section 3.1.6).
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Yield Stress

Using the same rheometry sequence in Section 3.2.3, we also attempt to char-
acterize the yield stress response versus resting time. We show in Figure 3.16(b)
the data obtained from a sweep test for a I = 0.20 M suspension; we find a slight
increase of σy with aging time, as expected, and similar trends are observed for the
other suspensions. Sometimes, however, σy slightly decreases over time, or has a
non-monotonic behavior. At this stage, we are not able to determine the causes of
this different behavior, and further experiments are much needed to elucidate it. It is
worth noting, however, that in contrast with silica suspensions, here the yield stress
exhibits variations of few Pa, which are within the limits of instrumental sensitivity
(see Figure 3.16(b), for instance). Since it is more difficult for the rheometer to
measure small changes in σy than an increase of several kPa in G′, the aging char-
acterization of PMMA suspensions will be assessed only through the shear modulus
measurements.

3.2.9 Elastic modulus vs yield stress
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Figure 3.17 – (a) Elastic modulus versus yield stress for a single particle size. (b)
For all the studied formulations, the G′ data, scaled by the particle size to the power
nG = 1 as a function of σy, scaled by the particle size to the power nσ = 2, showing

the emergence of a muster curve.

Both elastic modulus and yield stress present similar trends for different sus-
pension formulations. Changing the volume fraction, resting time and particle size
has the same effects on their mechanical properties; for example, both G′ and σy
increase with increasing φ and resting time, they are almost I-independent in the
range 0.10-0.20 M, but decrease with the size of the particles a.
Moreover, if one plots G′ versus σy for a given particle size, all the data collapse onto
a single curve, as illustrated in Figure 3.17(a), indicating that different formulations
(φ,I) and loading history (t) lead to similar responses. This fact also suggests that
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both G′ and σy, although they describe different material properties, are determined
by a “similar” structure when we use different parameters. Additionally, all master
curves, each obtained with a different particle size, can be rescaled into a single
master curve when we consider the following a-scaling

G′ = AnG · a−nG (3.36a)
σy = Anσ · a−nσ (3.36b)

where the exponents nG and nσ are simple numbers (assumed to be the same
for all the silica suspensions) and where the coefficients AnG and Anσ depend on
the formulation. The existence of a master curve reveals that both quantities are
linked by the same relationship whatever the solid volume fraction, the particle size,
the ionic strength, or the aging time. As shown in Figure 3.17(b), our data set
demonstrates that G′ should scale approximately with the inverse of the particle size
(nG ∼ 1), whereas the yield stress with the inverse of the particle size squared (
nσ ∼ 2), although slight departures from these values cannot be excluded, due to
the limited range of explored a and uncertainties in the measurements (indeed, the
authors in [73] obtained a good data collapse using nG = 1.22 and nσ = 1.94).

Focusing on the exponents in Equation (3.36), our results are in agreement with
various experimental works on flocculated colloidal suspensions. Zhou et. al [221]
investigated the yield stress of flocculated Al2O3 particles for different φ and a but
under constant surface chemistry conditions. They gathered clear evidences that σy
is inversely proportional to the square of the particle size, independently from the
volume fraction of the suspensions. Similarly, Buscall and co-workers [23] found the
same scaling behavior for polystyrene particles ranging from 0.5 to 3.5 µm. Other
works [113, 131, 68] reached similar conclusions. The size dependence of the elastic
modulus, instead, has been less investigated, although some authors [30] found re-
sults in agreement with our a−1 scaling.

Until now, there is no consensus about the origin of these experimental results.
Most models we found in the literature are based on three major assumptions:

(i) particles interact solely via centro-symmetric interaction potentials,
(ii) DLVO theory applies in all conditions, even when particles are in primary mi-

nima,
(iii) the effects of inter-particle forces and volume fraction are decoupled.

As long as the particle content is not too high (< 40%), point (iii) is not prob-
lematic. On the other hand, there are more and more evidences that point (i) and
(ii) fail in specific conditions (Sections 2.2.3 and 2.2.4), e.g. for small inter-particle
separations where the details of the particle surface matter. The prediction of some
classical models for both yield stress and elastic modulus are reported in Table 3.4
and Table 3.5, respectively. Without entering in details, none of them is able to
predict the observed size dependencies. Scales et al., for instance, predict for the
yield stress an a−1 scaling. The same is obtained when the DLVO potential is put
into the model of Russel and co-workers. With regard to the elastic modulus, using
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Table 3.4 – Models from literature expressing yield stress as function of interaction
potential.

References Models Fitting parameters
Scales et al. [172] σy = φ

12π
CN (φ)
a

(
AH
h2 − 24πεε0κζ2

(1+exp(κh)

)
h = h0e

−4.5φ h0

Flatt and Bowen [63] σy = 1.8√
3π3

(
AH

24h2a

)
φ φ2(φ−φ0)
φm(φm−φ) φm, φ0 , h

Russel et al. [165] σy ≈ φ2

4a2

(
∂Vint
∂h

)
max

Table 3.5 – Models from literature expressing elastic modulus as function of interaction
potential.

References Models Fitting parameters
Buscall et al. [23] G′ = α

h
∂2Vint
∂h2 α

Russel et al. [165] G′ ≈ φ2[−(Vint)min]
3
2

4kBTa2 ·
[(

∂2Vint
∂h2

)
min

] 1
2

the simplified DLVO potential into the predictions of Table 3.5 yields expressions
that do not depend on the particle size. Besides, time-dependent effects are not
taken into account.
An attempt to explain the yield stress a-scaling has been provided by Flatt and
Bowen [63]. The authors suggest that the magnitude of the interparticle (DLVO)
forces is not proportional to the radius of the particle, as one would expect from
Equation (2.30) (Section 2.2.3), but is best represented by a characteristic radius of
curvature ã at interparticle contact. Assuming that ã does not vary with particle size,
the a−2 prediction is recovered. The model has been developed for particles with
arbitrary shape, i.e. powders, in which the difference between radius of curvature
at contact and average particle radius arises from surface morphology. For spherical
particles with a narrow size distribution, the authors postulate that ã may be related
to a typical radius of curvature characterizing the surface roughness, though they do
not provide experimental evidences for that.

Recently, Pantina and Furst [146, 147] showed the presence of tangential forces
between bonded colloidal particles. With the aid of JKR adhesion theory and fractal
models applied to dilute gels [178, 196, 210], they proposed a unified interpretation
of the scaling behavior of both G′ and σy

G′ ∼ φ
3+db
3−df

a
× k0 (3.37a)

σy ∼
φ

3
3−df

a3 ×Mc (3.37b)

where k0 ∼ a−1/3 and Mc ∼ a4/3 are respectively the rigidity and the critical
moment of the bonded particles submitted to torques, and are calculated assuming
a circular contact area between the adhesive particles. In Equation (3.37), df is
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the fractal dimension of the blobs and db is the so-called bond dimension, i.e. the
fractal dimension of the load-bearing structure through which the load is transmit-
ted [105]. While fractal concepts certainly apply in dilute systems, the extension to
dense suspensions is problematic and remains to be demonstrated. Later, Zaccone
and co-workers [218, 219] have incorporated central and bond-bending interactions in
a model for the elastic shear modulus of denser (glassy) systems comprising adhesive
bonds. According to the authors

G′ =
(
G′(CF ) +G′(BB)

)
=
( 4

5πz
(CF )k|| +

124
270πz

(BB)k⊥

)
· φ
a

(3.38)

where k|| and k⊥ are the microscopic bond rigidities for central forces (CF) and
bond bending (BB), respectively. The difference in the mean coordination numbers,
z(CF ) and z(BB), accounts for the fact that the average number of bonds per particle
displaying BB resistance may differ from that of purely CF bonds. This is a conse-
quence of the fact that the BB resistance used in the model is based on three-body
angular interactions, hence via a quite different mechanism than that proposed by
Pantina and Furst [146, 147]. Consequently, the applicability of these concepts in
dense suspensions remains to be elucidated, and we emphasize that a multiscale
theory of colloidal suspensions able to account for both DLVO and tangential forces,
along with time-dependent effects, remains to be completed.
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3.3 Structural characterization: Confocal Mi-
croscopy

In this part we investigate how the microstructure of the suspension evolves over
time, aiming to gain insight into the origin of the observed mechanical aging. Can we
understand the macroscopic behavior from the direct visualization of the suspension
microstructure? Is aging driven by structural evolution? We attempt to answer these
questions.

3.3.1 Working principle
Conventional widefield optical microscopy serves to observe objects of ∼ 1 µm

size, but, in practice, it cannot yield good quality images of thick samples. The
reason is twofold: firstly, multiple scattering from objects that are away from the
illuminated region prevents imaging deep within the sample; secondly, in widefield
illumination, resolution and image contrast are deteriorated by light originating from
areas above and below the focal plane. Confocal microscopy circumvents this problem
using two strategies: (i) point illumination of the sample and (ii) rejection of out-
of-focus light. The benefit of point illumination lies in the fact that the resolution
of an imaging system can be improved at the expense of its field of view (which
is nevertheless recovered by scanning), since in point scanning microscopy both the
objective and collector lenses contribute to the resolving power [38, 101]. Rejection
of out-of-focus light consists in eliminating light originating from regions outside the
plane of interest, and it is achieved by inserting a pinhole aperture within the light
path. Confocal laser scanning microscopy (CLSM) permits to acquire high-quality
images at various depths, and hence offers the possibility to reconstruct 3D volumes
of optically dense samples. This represents the most important advantage of CLSM
for colloidal studies.

Setup
Figure 3.18 shows the diagram of a typical confocal microscope. To permit

the required rather high illumination intensity, the light source is typically a laser,
operating at a specific wavelength (usually in the visible spectrum). The use of a
monochromatic light is required, since CLSM relies on fluorescence as an imaging
mode. First, the excitation light (blue line) impinges on a dichroic mirror. This is
constructed to have a critical wavelength above which all incident light is transmitted,
and below which it is reflected. The dichroic mirror directs the excitation light
towards a steering devices (e.g. a pair of galvo mirrors) to scan the light in x and y.
Then, the beam passes through the microscope and is focused by an high numerical
aperture (NA) objective toward the fluorescent sample. The fluoresced light (light
green) emitted from the illuminated point passes back through the objective and is
de-scanned by the same mirrors used to direct the incident beam. As the emitted
light has a higher wavelength than the excitation one, it is totally transmitted by the
dichroic. A pinhole placed in the conjugate focal plane (hence the term confocal)
and positioned just in front of a detector, rejects most of out-of-focus light arriving



3.3. STRUCTURAL CHARACTERIZATION: CLSM 77

Figure 3.18 – Diagram of a confocal microscope. Figure taken from [159].

from the sample. Finally, the emerging photons are collected by a detector (e.g. a
photo-multiplier detector PMT or a CCD camera), digitized by a computer and then
displayed on a screen. 3D images are obtained by combining a series of such slices
at different depths.

Resolution

(a) (b)

Figure 3.19 – (a) Oil immersion microscope objective. A oil droplet is placed between
the objective and the coverslip. (b) Airy disk diffraction pattern and its intensity
profile, showing first and higher order maxima, and a schematic representation of a

three-dimensional point spread function. Figure taken from [38].

The resolution of a confocal microscope is limited primarily by light diffraction.
Like in a conventional optical microscope, even in a perfectly aberration-free one,
the image of a point object is not a point image, but consists in a diffraction pattern.
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This intensity pattern is known as the Airy disc, and its size %, defined by the position
of the first minimum in the intensity distribution, can be expressed as [38]:

% = 0.6λ
NA

(3.39)

where λ is the laser wavelength and NA is the objective numerical aperture. The
latter is proportional to the index of refraction of the medium in which the lens is
working, and the angle α of the cone of light that can enter or exit the lens (see
Figure 3.19(a))

NA = n sin(α) (3.40)
Two illuminated points can be resolved if they are separated by at least the Airy
radius. In this condition, indeed, the maximum intensity of one Airy disc coincides
with the first minimum intensity of the other, and the points are just resolvable (see
Figure 3.19(b)). This is known as the Rayleigh criterion. In 3D, the generalization
of the Airy disc is called the Point Spread Function (PSF). The maximum resolution
of a confocal microscope is mainly limited by the PSF of the objective lens and the
optical setup, albeit other effects such as pixelation and degree of coherence of the
illuminating light are important. In most general conditions, due to limitations in the
optics, the z resolution of a confocal microscope, typically at best 500 nm, is poorer
than the resolution in x and y, which is about 200 nm [159].

Instrument
We use a Zeiss LSM 700 confocal microscope equipped with a 100×NA 1.4

oil immersion objective (Zeiss Plan-APOCHROMAT). The laser is a Pigtail-coupled
solid-state laser, operating at two wavelengths, λ = 488 nm and 512 nm. Image are
acquired using a CCD camera (AxioCam MRc5). A limitation of our microscope is
its low acquisition rate due to the galvo system used to scan the imaging plane. The
acquisition speed is limited to 2fps for an image of 512 × 512 pixels.

Sample cell

Figure 3.20 – A typical sample cell used for imaging. The suspension is inserted into
a sealed plastic vial laying on a microscope coverslip.

A typical sample cell is shown in Figure 3.20. It consists of a plastic vial, equipped
with a cap, and glued with adhesive (Araldite) to a standard microscope coverslip
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at the bottom. The advantage of the cell is that it can be easily filled even with
the most viscous suspension and its contents can be reused or adjusted. A small
magnetic stirrer bar is inserted inside the vial and allows a controlled suspension
shearing before imaging.

Suspension formulation
For good imaging, suspensions are formulated with the addition of glycerol in the

range Cm ∈ [30, 50]% (see Section 3.1.5). A small amount of fluorescein (0.1 g/L)
is added to the suspending phase. This is expected not to affect significantly the
surface charge of the particles [73].

3.3.2 Experimental limitations
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Figure 3.21 – Variation of image contrast as a function of (a) depth and (b) laser
exposure time, for a suspension with φ ≈ 0.35, 2a = 1.2 µm and I = 0.15 M. In (a)
we also report with different colors the gray level histograms of two CLSM images

acquired at different depths, as marked in the z-stack to the left.

Contrast variation with depth Our suspensions in water/glycerol mixtures
still present a significant index mismatch. Slices taken at increasingly large depths
are more and more subjected to multiple scattering. As a consequence, good image
contrast is achieved only for a limited range of laser penetrations. Figure 3.21(a) is
a typical xOz image of a dense suspension, displaying the complete loss of contrast
for only few microns into the sample. The rapid degradation of the signal-to-noise
ratio with depth (i) has a profound effect on the estimation of the particle locations,
as we will explain in Appendix C, (ii) affects the PSF of the images and consequently
(iii) precludes a reliable characterization of the sample in three dimensions.

Photobleaching Another important issue of our confocal experiments is related
to the well known photobleaching effect, which refers to the decrease in emitted light
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intensity of the dye with exposure time. Quite generally, light emitted by all fluores-
cent dyes fades during observation. This process is related to chemical or biochemical
reactions occurring in the dye and which leads to their rapid degradation and loss of
emission ability [49]. The photo-bleaching effect primarily depends on two factors:
the exposure time, i.e. the total time during which the laser illuminates the fluoro-
phore, and the light power (for a more detailed presentation of the argument one
could refer to [49]). We expect photo-bleaching to be severe in our experiments since
the laser beam must be intense enough to obtain a good signal-to-noise ratio (SNR)
in our index-mismatched suspensions. The annihilation of the fluorescence ability
impacts on the image formation process and leads to a loss of image contrast and
hence quality during the measurement, as shown in Figure 3.21(b). Photobleaching
impedes a fast and prolonged image acquisition and hence limits the characterization
of the dynamics of our suspensions.

Focus drifts Perhaps surprisingly, time-lapse imaging of the suspensions is also
hampered by focus drifts. The term describes the inability of a microscope to main-
tain the selected focal plane over an extended period of time. Note that this phe-
nomenon is common in confocal microscopy and may lead to artifacts and misinter-
pretations of the dynamics of the sample under study. Axial fluctuations are caused
by a number of factors and are generally more pronounced in high-magnification
oil-immersion objectives (i.e. with a very shallow depth of focus) [180]. A list of
contributing factors includes:

(1) Temperature variations in the surrounding environment or related to intense
illumination sources on the microscope.

(2) Mechanical instability of the coverslip (gravity might induce a flexion of the
coverslip that results in defocusing).

(3) External vibrations or mechanical vibrations of the microscope and accessories,
filter wheels, shutters, automatic stages, filter turrets etc.

(4) Lateral movements due to the x-y translation of the mechanical stage.
(5) Immersion media fluctuations, spreading or evaporation, and movements of

the sample cell.

We attempted to limit all these factors but, unfortunately, we were not able to defini-
tively fix all problems. Usually, we detect large axial movements ranging between
∼ 1 to 3 µm in about 1h.

3.3.3 Results
Due to the experimental limitations discussed above, the suspensions are studied

in a single focal plane at depths ranging from ≈ 15 to 20 µm. These working
distances ensure the absence of wall effects, since they are systematically greater
than ∼ 10 particle diameters. Sample reconstruction is performed using a standard
centroid-based algorithm [41]; the details of the method are reported in Appendix C.
The centroid method locates the positions of the particles within a tenth of a pixel,
which corresponds to around 12 nm in our images. Since we work far from ideal
conditions, however, the position accuracy should be reduced.
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Static properties

Figure 3.22 – CLSM images of 2a = 1.2 µm silica particles in 50/50 wt% water/glycerol
mixtures, at different packing fractions. We use a single I = 0.2 M.

We study the static properties of our suspensions, for several volume fractions,
ionic strengths and particle sizes. Figure 3.22 shows 2D images of suspensions in
50/50 wt% water/glycerol mixtures at different packing fractions, I = 0.2 M and a
single particle size (2a = 1.2 µm).

Radial Distribution Function (RDF)

The first structural descriptor we investigate is the radial distribution function
g(r), also known as the pair-correlation function. It describes the probability of
finding particles at a given center-to-center distance (r) away from a randomly-
chosen particle. Once one obtains the locations of all N particles in the field of
view, the 2D-g(r) can be computed via

g(r) = 1
2πr∆r

1
Nρ

N∑
i=1

N∑
j 6=i

< δ(r − rij) > (3.41)

where ρ = N/L2 is the number density (L being the linear size of the image), ∆r
is the thickness of the shell used to count the particles and δ the Dirac function.
Equation (3.41) is thus equivalent to counting the number of particles in a shell
of size 2πrdr located at distance r from a test particle, normalized by the same
quantity in the ideal gas with same density.
We emphasize that the particle centers in a typical confocal slice are distributed in
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Figure 3.23 – Pair correlation functions measured from the 2D particle positions. (a)
g(r) of a suspension in I = 0.2 M CaCl2 (magenta filled stars) and of a stable suspen-
sion (blue filled squares). The latter is compared to the radial distribution function of
hard spheres [182] (solid black line) at a higher packing fraction (see text). (b) RDF
for I = 0.2 M suspensions at various volume fractions; (inset) corresponding coordina-
tion number versus φ, calculated from Equation (3.43) and using a cutoff separation
r+ = d+ 0.03. To increase the statistic, all curves result from an average over at least

25 frames taken at the same aging time.

a vertical region of thickness ∆z due to the finite depth of focus of the objective.
Using all particle located in a x-y image of size L, we calculate ∆z ∼ 1.5 µm, in
agreement with known CLSM slice thicknesses [120]. This is done by matching the
suspension volume fraction with that determined from the detected particle number
N and using φ = πρd3/6, with ρ = N/Ω, Ω = L2∆z and d = 2a the particle
diameter.

Since not all particles are located in the same optical plane, the two-dimensional
g(r) suffers from a projection error at distances comparable to the thickness of the
slice, and that is the reason why it might deviate from an “ideal” 3D-g(r) [136].
This problem can be circumvented by discriminating particles far from the focal
plane, based on their intensity [136]. In our case, however, overlaps of intensity
of contacting particles, low signal-to-noise ratio and variable image contrast affect
the intensity distribution related to individual particles, and induce difficulties in the
post-treatment of the images. As a consequence, we underline that the following
results are not corrected for projection errors. This fact, combined with the effect of
particle polydispersity, leads to a broadening and shift of the peaks in our measured
2D-g(r); this is evident, in particular, from the existence of non-zero contributions
to g(r) at distances lower than the particle diameter, as shown in Figure 3.23.

First, we display in Figure 3.23(a) the g(r) computed for a stable suspension
(i.e. without salt) with 2a = 1.2 µm and φ ≈ 39%, and compare the results with
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a suspension having same a and φ, in a I = 0.2 M calcium chloride solution. Let
us mention the main conclusions we can draw from this plot. In the stable sample,
particles constantly undergo Brownian motion, and the suspension is expected to
behave as a viscous liquid. The corresponding pair-correlation function, shown in
Figure 3.23(a) with blue filled squares, features characteristics of an homogeneous
structure, as we can clearly distinct several peaks associated to the first and higher
order coordination shells. For comparison, we also plot the hard spheres (HS) pair-
correlation function obtained using the Percus–Yevick closure [182] (solid black line).
Apart from a large underestimation of g(r) at contact r ∼ d, expected from the
arguments exposed above, the experimental pair-correlation function appears to be
well described by the PY approximation for hard-spheres, but only when we use a
packing fraction of 45%, larger than the nominal one. The fact that we need to use a
larger φ could be explained by considering that the charge-stabilized suspension does
not present a yield stress able to hamper sedimentation, which therefore tends to
compact particles at the bottom of the vial where images are acquired. Indeed, the
volume fraction extrapolated from the CLSM images is greater than the nominal one,
confirming this hypothesis. The similarity in the pair-correlation function between
the stable sample and the PY calculation suggests that the systems is essentially
homogeneous. Note also that the position of the first peak is not located at r = d,
as expected for perfectly hard sphere particles, but slightly above, at r = (1.108 ±
0.02) · d. The peak shift can be ascribed to the presence of charges at the particle
surface [93], and can be roughly estimated via a simple relationship [209]:

r =
(
φrcp
φ

)1/3

· d ≈ 1.12 · d (3.42)

where we use φrcp ∼ 0.64, the volume fraction for a random close-packed system,
and φ = 0.45.
The effect of ionic strength on the structure of the fluid is seen in the radial distribu-
tion function of the corresponding unstable suspension (magenta stars), where now
particle aggregation leads to locally denser areas and voids in the microstructure. In
particular, the formation of densely packed regions is expected to affect the RDF
in the region 1 < r/d < 2 [134], since, for each cluster geometry, specific center-
to-center separations contribute a peak to g(r). Some of these contributions are
shown in Figure 3.23(a) with magenta stems. As illustrated, the characteristic peaks
correspond to different cluster morphologies and are located at specific interparticle
separations (

√
2, 5/3, etc...). Quite generally, however, the pair correlation functions

of the ionic suspensions show little structure; this may be caused by the formation of
bonds that disrupt the local cage order [174]. This is reflected in the shift towards
lower r of the first coordination shell. Bond formation also increases tracking errors,
as explained in Appendix C, and leads to a reduction of the first peak height and its
broadening in the r < d region.

Coordination Number (CN)

Figure 3.23(b) shows the pair correlation functions of all suspensions in Fig-
ure 3.22. Note the change in the first peak height with increasing volume fractions,
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indicating increasingly higher average number of bonds per particle (coordination
number). The latter can be roughly estimated from the radial distribution function
through

Z(φ) = 4πρ
∫ r+

0
r2g(r, φ)dr (3.43)

Where r+ is a cutoff distance below which particle are assumed to be in contact [159,
50]. The choice of r+ is controversial, and different strategies can be found in the
literature. Here we estimate Z(φ) using r+ = (1 + l+)d with l+ = 0.03 [219],
constant for all the studied volume fractions. This value is known to yield Z ∼ 6 for
repulsive hard sphere at random close packing (Maxwell isostaticity criteria) [155].
We compute Equation (3.43) using the experimental g(r) of Figure 3.23(b); the
results are shown in the inset of the same figure. As expected, the mean contact
number increases with the packing of the particles; we obtain Z ≈ 2.4 (≈ 3.3)
for φ ≈ 0.31 (≈ 0.41), respectively. This rough estimate indicates that particles
preferentially form string-like structures with low connectivity.

Number Density Fluctuations (NDF)

While the radial distribution function gives useful information on the short-range
structure, it is almost insensitive to the long-range degree of heterogeneity of the
suspension. We quantify it by measuring the second order fluctuations in particle
number N about its average value (< δN2 >) / < N >. This quantity, when
determined in the thermodynamic limit, is proportional to the isothermal compres-
sibility κ∞T ,

χ∞T = κ∞T
κ0
T

= < N2 > − < N >2

< N >
(3.44)

where κ0
T = 1/ρkBT is the isothermal compressibility of the ideal gas of same

density ρ = N/Ω, and < ... > denotes a grand canonical ensemble average. Note
that Equation (3.44) corresponds to the integral over all space of

χ∞T = 1 + 4πρ
∫ ∞

0
r2[g(r)− 1]dr (3.45)

and can be further related to the static structure factor S(q) in the low angle limit

χ∞T = S(q = 0) = kBT

[
∂ρ

∂Π

]
T

. (3.46)

where Π is the osmotic pressure. In the theory of liquids Equation (3.45) is known
as the compressibility equation.

From the experimental viewpoint, χT can be only measured in subsystems with fi-
nite size, so that one obtains a so-called finite-size isothermal compressibility. In prac-
tice, it is usually computed through the spatial block analysis (SBA) method [170],
which consists in subdividing a system of size Ω = L3 into several squared blocks of
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increasing size D3, and calculating the average number density fluctuations (NDF):

χ
(D)
T = κ

(D)
T

κ0
T

= < N2 >D − < N >2
D

< N >D

, (3.47)

where the label (D) emphasizes that χT depends on block size D, and < ... >D

denotes an average over all the blocks with same D. Our system consists of two-
dimensional images of length L, and the NDF are evaluated by dividing each image
into small squares of linear dimension D = L/MB, where MB is an integer.
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Figure 3.24 – Reduced isothermal compressibility, χ(D)
T , versus size of the block, nor-

malized by the particle diameter. (a) Stable suspension with d = 1.6 µm (open blue
squares) and the analytic computation based on Equation (3.48) (solid black line);
(inset) ρ in Equation (3.48) is evaluated by matching the experimental and analytic
g(r). Open brown circles are obtained for a similar suspension in a I = 0.2 M CaCl2

solution. (b) χ(D)
T for attractive suspensions in I = 0.2 M CaCl2 solutions.

In Figure 3.24(a) we report with blue open squares χ(D)
T versus D/d for a liquid

suspensions with d = 1.6 µm. The data are compared with the analytic calculation
based on the compressibility equation for a spherical volume of diameter D [28]:

χ
(D)
T = 1 + 4πρ

∫ D

0
r2[g(r)− 1]

(
1− 3r

2D + r3

2D3

)
dr (3.48)

In Equation (3.48), we use the analytic Percus–Yevick pair-correlation function of
hard spheres gPY (r) [182] and the number density ρ is chosen so that gPY (r) matches
the experimental g(r), as shown in the inset of Figure 3.24(a). We emphasize that
the function gPY (r) used here is truncated to unity past D/d = 5, so that the
calculation is limited to this range. As shown in the main figure, the trend of the
experimental fluctuations is qualitatively consistent with that expected for the hard
sphere liquid (black solid line), suggesting again that the structure is homogeneous.
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Attractive interactions lead to more disordered structures, as we can deduce from the
reduction in the short-ranged oscillations in the density fluctuations of a suspension
with similar φ and I = 0.2 M.
We focus on the long-range behavior of χ(D)

T , as well. In Figure 3.24(b) we report
Equation (3.47) for the ionic suspensions with I = 0.2 M. The data show that,
quite generally, the long-range fluctuations decrease as the packing fraction of the
suspension is increased. This behavior is consistent with Figure 3.22, since the CLSM
images clearly display an increasingly homogeneous structure as φ grows. In addi-
tion, we do not observe any maximum in χ(D)

T at intermediate-to-large distances,
indicating the absence of particle clusters with a characteristic size D less than ∼ 20
colloid diameters [50].

Equations (3.44) to (3.46) hold in the macroscopic limit, i.e. when N,Ω→∞,
such that ρ = N/Ω remains finite. In principle, the finite-size isothermal compres-
sibility can be extrapolated to the isothermal compressibility in the thermodynamic
limit, χ∞T , taking the limits of D,L → ∞ in χ(D)

T , but in practice, the measured
values are affected by finite-size effects [170, 166, 91]. In [170], the author proposed
that the difference between χ(D)

T and χ∞T is related to a first-order correction due to
the boundaries of the blocks, which can be expressed as:

χ
(D)
T = χ∞T + c

D
+O

( 1
D2

)
(3.49)

By neglecting the O (1/D2) terms, Equation (3.49) is rearranged by multiplying both
members by λ = D/L = 1/MB

λχT (λ) = χ∞T λ+ c

L
(3.50)

where now the dependence of the finite-size isothermal compressibility on λ is
made explicit. Equation (3.50) is directly tested on our I = 0.2 M suspensions of
Figure 3.22, by plotting the number density fluctuations, multiplied by λ = 1/MB, as
a function of λ. The results, extensively averaged over several images taken at same
aging times, are reported in Figure 3.25(a) with colored filled symbols. Superimposed
to the curves, we also show the fits to a linear function, with χ∞T and c as fitting
parameters. We have seen that, for very small λ, χT may present an oscillating
behavior (see Figure 3.24(a), for instance) due to density correlations that reflect
the short range structure of the fluid [91], and hence the fit to Equation (3.50) is only
valid for ξ < D < L, with ξ the correlation length. In our attractive suspensions,
short range correlations rapidly decay, as illustrated in the inset of Figure 3.25(a),
so that we exclude from the fit only the data for λ < 0.05. The corresponding
estimates of the isothermal compressibilities in the macroscopic limit are then used
to calculate the osmotic equation of state:

1
χ∞T

= 1
kBT

[
∂Π
∂ρ

]
T

(3.51)

The results, for suspensions with various particle sizes (symbols) and ionic strengths
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Figure 3.25 – Finite-size effects on the density fluctuations. (a) Finite-size compres-
sibilities times λ versus λ for the data in Figure 3.24(b) (colored filled symbols), fitted
according to Equation (3.50) using χ∞T and c as fitting parameters. (b) Inverse of
the fitted isothermal compressibilities versus φ. Dark blue dotted line is the analytic
results for hard spheres using the Percus–Yevick closure [182]. Black dashed line is the
analytic results for adhesive hard spheres, Equations (3.54) and (3.55), with stickyness

parameter τ ∼ 0.32.

(colors) are reported in Figure 3.25(b), as a function of φ. For comparison, we also
plot the Percus-Yevick expression for the hard sphere system [182]:

1
kBT

[
∂Π
∂ρ

](HS)

T

= (1 + 2φ)2

(1− φ)4 (3.52)

The data clearly show the strong departure from ideal HS behavior of our attractive
suspensions. Indeed, in our I-conditions, the electrostatic interactions are highly
screened, and van der Waals interactions, which become significant at particle
surface-to-surface separations of the order of ∼ 0.1d [167], can be considered as
short ranged compared to the particle size. To check for this hypothesis, we tenta-
tively model the particle interactions using the Baxter adhesive hard-sphere (AHS)
potential —the simplest potential with an attractive part —which is the limit for
vanishing attraction width ∆ of

V (r) =


∞, if r ≤ d

ln [12τ∆/(d+ ∆)] , if d < r < d+ ∆
0, otherwise

(3.53)

where τ is called the Baxter temperature and can be regarded as a measure of the
interaction strength (τ ↘ for increasing attractions). The osmotic compressibility
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for AHS has been analytically evaluated in the Percus-Yevick approximation [8, 156]:

1
kBT

[
∂Π
∂ρ

](AHS)

T

= (1 + 2φ− γφ)2

(1− φ)4 (3.54)

where

γ = 6(1− τ + τ/φ) ·
1−

√√√√1− 1 + 2/φ
6(1− τ + τ/φ)2

 (3.55)

Note that the osmotic pressure for hard spheres, Equation (3.52), is recovered by
taking the limit of τ →∞ in Equations (3.54) and (3.55). Equation (3.54) is tested
on our data set, using the stickyness parameter τ as the only free parameter. The
data can be well described by the model if one takes τ ∼ 0.32, as shown by the
dashed black line in Figure 3.25(b). The good agreement of our data with the Baxter
model suggests that our interactions can be considered as short-ranged, and confirms
that the electrostatic interactions are strongly screened. Additionally, we think that
a lower value of τ should be more representative of our suspensions. The reason is
that we did not discriminate out-of-focus particles in the computation of the 2D-χT ,
so that we likely underestimate the density fluctuations, and hence overestimate the
osmotic pressure.

In order to extrapolate the Baxter temperature to an effective interaction strength
u0, a common way is to match the second virial coefficient B2 to that of the square-
well potential [141], which can be analytically estimated. For short attraction widths
one obtains [141, 156]

u0

kBT
≈ ln

(
1 + d/∆

12τ

)
(3.56)

This mapping procedure can been used to evaluate interaction strengths in depletion
gels [50], where ∆ is known and set by the polymer radius of gyration, but it is
difficult to quantify for colloids interacting through DLVO potential. Moreover, this
approach is expected to break down in our suspensions since it is essentially based
on the hypothesis that particles interact via centro-symmetric potentials, and thus
cannot resist rotations. For this reason, a more accurate investigation is required.

3.3.4 Aging
To test whether aging can be attributed to an evolution of the microstructure,

we acquire several images of the suspensions at different aging times and check, at
the end of the experiment, that focus drift was negligible. In Figure 3.26(a), we
show a typical microscopy image at depth ≈ 15 µm for a water/glycerol system,
with particle size 2a = 1.6 µm, ionic strength I = 0.15 M and φ = 0.39. In
Figure 3.26(b), we draw the particle positions reconstructed from this and later
images, which correspond to three different times in the macroscopic aging regime
(t =1, 5 and 10 min). Some particles seem to disappear with time, but this is just
an effect of the progressive bleaching of the fluorescein—particles that are slightly
away from the focal plane become more difficult to distinguish. Quite strikingly, all
the particles that can be imaged at the three considered times remain essentially
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Figure 3.26 – Absence of structural aging in silica concentrated suspensions. (a) Typ-
ical CLSM image of a suspension of 2a = 1.6 µm silica particles in a 60/40 wt%
water/glycerol mixture, with φ = 39%, I = 0.15 M, in a plane parallel to the bottom
cover slip, at depth ≈ 15 µm; (b) Reconstructed particle positions at t = 1 (red), 5

(green), and 10mn (purple).

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 r/d 

 g
(r

) 

 

 

t = 60 s
t = 210 s
t = 360 s
t = 720 s
t = 1320 s

(a)

10
0

10
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D/d

χ T(D
)

 

 
t = 60 s
t = 210 s
t = 360 s
t = 720 s
t= 1320 s

(b)

Figure 3.27 – The structure is invariant during mechanical aging. Radial distribution
functions (a) and finite-size isothermal compressibilities (b) versus aging time t, for
a suspension with I = 0.1 M and d = 1.3 µm, in a 50/50 wt% water/glycerol mixture.
Each curve is obtained by averaging several images taken in ∼ 2min time intervals.

fixed at the same positions. To further check whether aging changes the short and
long range structure of the suspensions, we also investigate the radial distribution
functions and density fluctuations at various aging times. In Figure 3.27, we plot
g(r) (a) and χT (b) for a suspension that should exhibit the weakest attractive
interactions in our explored conditions, i.e. with the lowest ionic strength, I = 0.1 M,
and the highest glycerol content, 50 wt%. The data show that there is no evident
correlation between the age of the suspension and its static structure, as evaluated
by these quantities. All of these observations establish that the network morphology
is constant during mechanical aging and no large structural changes occur. On this
basis, we conclude that, in our silica suspensions in glycerol-water mixtures, shear
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modulus aging proceeds in the complete absence of structural evolution. This can
only happen if solid-solid contacts are formed and evolve over time. In all likelihood,
the same happens in silica suspensions in pure water, since they display much larger
van der Waals forces, and hence are even more likely to form stable solid-solid
contacts.
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4.1 Laser Tweezers (LTs)
Through confocal microscopy, we have observed the rapid near-complete struc-

tural arrest of our silica suspensions, which can be explained by the formation of
strongly adhesive contacts between the particles. This observation leads us to con-
clude that, within the conditions explored (medium to high particle concentrations,
high salt content), structural evolution of silica suspensions cannot explain their me-
chanical aging, and therefore it points to the role of contacts. Here we seek to study
aging at the level of the contacts, to investigate if their progressive stiffening can
drive macroscopic aging in our suspensions. To address this question, we carry out
experiments on model particle aggregates using the laser tweezers (LTS) apparatus
of Pantina and Furst [145]. We first introduce the standard concepts of optical
trapping, and explain how small forces on colloidal particles can be applied and then
measured through this technique.

4.1.1 Optical traps
In 1986, Arthur Ashkin and co-workers [6] demonstrated that one could use fo-

cused laser beams to trap micrometer-sized dielectric particles. Over the years, the
increasing ability in manipulating multiple particles at the same time, the devel-
opment of stable laser beams with increasing power, three-dimensional piezoelectric
stages with unprecedented control over the position of a trapped object, and position
detection sensors with nanometer resolution have made optical trapping a standard
tool in numerous research areas, ranging from biophysics to microrheology. The
most important feature of optical tweezers is perhaps their capability of allowing
non-contact force measurements in the order of piconewtons; optical trapping has
been successfully used in the characterization of mechanical properties of cells and
DNA [206, 110, 140], kinetics properties of viruses, bacteria and molecular motors
at the single-molecule level [5, 2], viscoelastic properties of liquids [153, 160, 70] and
colloidal interparticle forces [84, 88, 148, 207].

Ray Optics Approximation Laser tweezers take advantage of optical forces
acting between a dielectric particle and the laser light. These forces result from the
transfer of momentum from the light beam to the particle, when the latter moves
away from the center of the focus. To explain qualitatively the operating principle
of an optical trap, let us first consider the case when there is no light reflection and
absorption from the particle. Let us further assume that the light wavelength λ is
much smaller than the particle diameter (λ � a), so that the optical force on the
microsphere can be calculated by ray optics. We can imagine a dielectric bead as a
positive converging lens, as depicted in Figure 4.1. If the lens center coincides with
the focus of the beam (case a), the rays are undeviated and the optical force is zero.
If the lens is before the focus (case b), it increases the convergence of the beam
and thus decreases the momentum flux of the light in the direction of propagation.
The momentum lost by the beam is gained by the particle, which is pushed back to
the focus. On the contrary, if the lens is beyond the focus (case c), it decreases the
divergence of the beam and therefore increases the momentum of photons, resulting
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Figure 4.1 – Basic principles of optical trapping. A dielectric sphere acts as a converging
lens. The changes in momentum flux result in restoring forces towards the laser focus.

in a restoring force toward the center. When the lens moves sideways —let’s say to
the right, for instance —the laser beam is deflected and the counter force from the
deflected photons will push it back to the left (case d).

Scattering and gradient forces in the Rayleigh limit In real situations,
however, the light flux upstream and downstream the particle is not the same due
to light reflection and adsorption. Both effects introduce a transfer of moment that
pushes the trapped object in the forward direction, away from the focus. The re-
sulting net force is called scattering force, and, in most conventional situations, is
larger than the restoring (gradient) force due to refraction —the object cannot be
trapped. To efficiently trap a dielectric microsphere, one needs to create a steep
intensity gradient near the focus, to increase the convergence of the beam and thus
the gradient force; this condition is achieved by sharply focusing the trapping laser
beam to a diffraction-limited spot using an objective of high numerical aperture (NA).

In developing a theoretical treatment of optical trapping, it is useful to consider
the case where the size of the bead is much smaller than the wavelength of the laser
(λ � a). In these conditions, the sphere can be approximated as a dipole and the
forces calculated analytically in the Rayleigh limit. According to [140], for a bead of
radius a and index of refraction np immersed in a solvent of refractive index nmd,
the scattering force is:

~Fscat(~r) = 128π5a6

3cλ4 ·
(
m2 − 1
m2 + 2

)2

· n5
mdI(~r)ẑ (4.1)

where c is the speed of light in vacuum and m = np/nmd. The scattering force ~Fscat
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is proportional to the intensity of the laser and tends to push the trapped object out
of the trap. The gradient force, on the other hand, can be calculated as:

~Fgrad(~r) = 2πnmda3

c
·
(
m2 − 1
m2 + 2

)
· ∇I(~r) (4.2)

It is proportional to the gradient of the laser intensity and tends to attract the bead
back to the focus. It forms a trapping potential:

V (~r) = −2πnmda3

c

(
m2 − 1
m2 + 2

)
I(~r) (4.3)

Because the scattering force is proportional to a6, whereas the gradient force is
proportional to a3, it follows from Equations (4.1) and (4.2) that Fscat decreases
much faster than Fgrad when the size of the particle decreases. Therefore, one may
conclude that any sufficiently small (non-adsorbing) particle could be trapped. In
practice, however, due to Brownian motion it is difficult to durably trap a nanosphere
if its size is too small. Although the average kinetic energy kBT is independent of
a, its instantaneous value follows the Maxwell–Boltzmann distribution, and therefore
there is a non-vanishing probability that it exceeds by a large factor the mean value.
Since the potential well decreases as a3 (Equation (4.3)), a small particle may be
able to escape from the trap by thermal fluctuations.

In practice, especially in micro-rheology experiments, the wavelength of the trap-
ping laser is usually comparable to the diameter of the particle and one cannot use
neither ray optics nor Rayleigh’s approximation to model the optical forces —a com-
plete electromagnetic theory of light is called for. In recent years, there have been
considerable improvements in the calculation, based on Lorenz-Mie theory [140], of
optical forces in the most general situations. The mathematical calculations involved
are quite complex and out of scope of this manuscript. Nevertheless, Equations (4.1)
and (4.2) provide a simple yet good approximation for the forces at play in optical
tweezers, also when the particle sizes is comparable to the laser wavelength.

4.1.2 Setup
The optical tweezers used in this work are a custom-built home made system

depicted in Figure 4.2. The instrument has been provided by the research group of
Prof. E.M. Furst, from the Department of Chemical & Biomolecular Engineering of
the University of Delaware.

The traps are generated by focusing a 4 W CWNd:YAG laser (λ = 1064 nm,
Coherent Compass 1064-400M) to a diffraction limited spot within an inverted mi-
croscope (Zeiss Axiovert 200), to allow for simultaneous trapping and imaging with
video microscopy. In order to increase the trapping efficiency and stability, the laser
is expanded and collimated at the entrance of an high NA water immersion objective.
To collimate the beam, the laser is firstly passed through two lenses (L2 and L3)
of focal length f = 100 mm. A pair of orthogonal acousto-optic deflectors AODs
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Figure 4.2 – Laser tweezers setup used in this thesis.

(Optoelectronics, AA.DTX.XU-400) are placed in the beam path to control the trap
position within the trapping plane of the sample, by directing the angle of the beam
at the back aperture of the objective. Briefly, an AOD consists of a transparent
crystal (generally TeO2) acting as an optical diffraction grating. The laser impinging
the AOD is deviated due to density changes associated with the acoustic traveling
wave inside the material. The angle of deflection depends on the frequency of the
acoustic wave through:

∆θ = λf/v (4.4)
where λ is the optical wavelength, and v and f are the velocity and frequency of
the acoustic wave. The fast response times of the AODs enable us to reposition the
beam in the focal plane with a minimum delay of 10 µs, corresponding to a maximum
scanning frequency of 100 kHz. This high-frequency and high-precision steering of a
single beam allows us to simultaneously hold multiple particles by time-sharing the
location of the trap. The laser is repeatedly scanned in a desired pattern of discrete
locations with a return frequency faster then the characteristic Brownian diffusion
time, resulting in a stable trapping of the particles [135].
After the AODs, another pair of lenses (L5 with f = 150 mm and L6 with f =
75 mm) are arranged as a keplerian telescope. These lenses collimate and raise
the level of the beam to reach the microscope and are arranged in such a way
that the beam slightly overfills the back aperture of the objective to maximize the
trapping efficiency [138]. The objective is a 63 x NA 1.2 water immersion microscope
objective (Zeiss Objective CApochromat 63x/1.2 W Cor 441777-9970). The use of
a high numerical aperture water immersion objective presents a series of benefits;
it maximizes the gradient force produced by the laser while reducing the effect of
spherical aberrations in aqueous samples and increasing the working distance up to
200 µm from the cover-slip. The laser beam is a linearly polarized Gaussian beam



98 CHAPTER 4. THREE-POINT BENDING TESTS WITH LTS

(TEM00), with the polarization perpendicular to the propagation direction, and a
beam waist that spreads next to the trapping plane as

ω(z) = ω0

[
1 +

(
z

zR

)2
] 1

2

(4.5)

where ω0 is the waist radius at the focus and zR = (πω2
0)/λmd the Rayleigh range,

defined as the distance over which the beam radius spreads by a factor of
√

2, λmd
being the laser wavelength in the medium (see Figure 4.3). Note that the beam
waist ω0 is inversely proportional to the objective numerical aperture:

ω0 = λmd
πNA (4.6)

Figure 4.3 – Beam waist in the vicinity of the laser focus.

A long working distance objective (Zeiss Objective LD Plan-Neouar 40x/0.6 Corr
M27 421360-9970) is positioned after the sample to act as a condenser to collect
and recollimate the laser light after it passes through the sample. A dichroic mirror
reflects the light collected from the back focal plane of the condenser onto a relay lens
which projects the beam onto a quadrant photodiode (QPD; First Sensor, QP45-Q-
HVSD) for particle position detection using back focal plane interferometry (BFPI).
Sample positioning is achieved using a motorized microscope stage (Applied Scientific
Instrumentation MS-2000-XY). A light emitting diode (LED) is used to illuminate
the sample for imaging of the trapping plane. Images are acquired by a coupled
device (CCD) camera (Hitachi, KP-M1AN) , stored with an S-VHS video recorder
(JVC HR-S9800U) at a rate of 30 frames/s, digitalized and then transferred to a
computer using an image acquisition board (National Instruments NI-IMAQ 2.5.1).
The same data acquisition card (DAQ; National Instrument, NI PCI-6221), controlled
through custom software written in LABVIEW, is used to simultaneously control the
input voltage across the AODs and the data acquisition from the QPD, resulting in
a nearly perfect synchronization of the two tasks.
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4.1.3 AOD calibration
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Figure 4.4 – Calibration of the AOD along the x (a) and y (b) directions. The
retrieved sensitivities are respectively 88.96 pixel/V (10.40 µm/V) and −80.94 pixel/V

(−9.47 µm/V).

A pair of AODs are placed orthogonally in the beam train to manipulate the
position of the trap in both x and y directions. The AODs must be calibrated in
order to know the relationship between the input voltage sent to the device and the
displacement of the trap within the sample. To do that, we start by holding a particle
in a stationary trap. Then, the voltage input to the AOD controlling the y-position is
kept constant, while that provided to the AOD controlling the x-position is gradually
changed in the desired range. For each voltage, we record ∼ 100 images, enough
to average out the effect of Brownian motion. The position of the trap versus input
voltage is then estimated by the average position of the particle. The same procedure
is repeated in the orthogonal direction, by changing the signal associated to the y
axis and keeping a constant voltage for the x-controlling AOD. Calibration curves
are shown in Figure 4.4; the slopes of the linear fit indicate the AOD sensitivities
in the x (a) and y (b) directions. Note that the displacement of the trap in pixel
units can be converted to a real displacement by knowing the pixel resolution of the
camera, which is 0.117 µm/pixel for the used 63 x water immersion objective.

4.1.4 Force calibration
To measure the optical forces on the trapped bead, one needs to determine

separately the trap stiffness kt and the displacement ∆r of the particle from the
equilibrium trap position. Under the assumption of a parabolic potential well, which
hold for relative small displacements (∆r . 0.5 µm) [138], the force can be calcu-
lated through Hooke’s law: F = −kt∆r.

A large number of methods can be used to measure kt; we can classify them
in two categories: active and passive ones. Active calibration techniques involve
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Figure 4.5 – (a) Power spectrum of a 3.27 µm PS bead recorded with a QPD in the
back focal plane (black circles) and a fit to a Lorentzian (red line). The input laser
power was set at 0.2 W and the measured trap stiffness is 8.53 pN/µm. (b) Radial
stiffness of polystyrene (red circles) and silica (green circles) particles as a function of

input laser power.

the application of known external forces on the trapped object until it experiences
an identical and opposite restoring force. The most popular and direct method is
the drag force technique, which consists in measuring the particle displacement in
response to known viscous forces, viz. generated by moving the stage at known
velocity. The sample holder can be displaced statically, i.e. with a constant speed,
or dynamically, by applying a sinusoidal/square wave [138, 192]. A variant of this
method consists in applying small step displacements of the laser (instead of the
stage) and simultaneously recording the damped trajectory of the bead relaxing to-
wards the new equilibrium position [179, 75].
Passive calibration techniques take advantage of the thermal energy supplied by the
medium surrounding the particle. One approach involves measuring the power spec-
trum of the thermal-induced displacements, which is well described by a Lorentzian
function for particles lying in an harmonic potential:

SS(f) = kBT

π2β(f 2
0 + f 2) (4.7)

where the roll-off frequency f0 is related to the stiffness by f0 = kt/2πβ, β = 6πηa
being the hydrodynamic drag coefficient. An example of a typical power spectrum,
acquired by means of the QPD for a polystyrene particle of 3.27 µm in diameter,
is reported in Figure 4.5(a). Note that one does not need to calibrate the QPD
signal in order to measure the trap stiffness. Observe also that the power spectrum
is sensitive to various noise sources. At high frequencies, analog signal processing
circuits, power electronics, and AOD controller give rise to characteristic spikes,
while in the low-frequency regime the noise contribution comes from laser wobble,
drift, and statistical artifacts. This limits the frequency range of the fit to a small
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interval, usually [f0/7, f0/4] [179], and causes difficulties in the measure of the roll-
off frequency when the trap stiffness is too small.
Thermal fluctuations of a trapped object can also be used to obtain kt through the
equipartition theorem:

1
2kBT = 1

2kt < x2 > (4.8)

where < x2 > is the positional variance of the trapped object. In addition to the
easiness of implementation, the main advantage of the equipartition method is that
one does not need to know in advance the viscosity η of the solvent. However, the
variance alone does not provide any information about the shape of the potential
and eventual misalignment of the system.

In this work, the radial trap stiffness is measured by the power spectrum and
equipartition methods. In each technique, we use a different strategy to find the
positions of the trapped particle; in the former, they are estimated by the intensity
fluctuations of the QPD signal, in the latter, they are inferred by measuring the
centroid of the particle intensity distribution [41] in the CCD images. We usually
find a good agreement between the values deduced from the two techniques.

Equation (4.3) indicates that kt depend on three main parameters: the laser
power, the bead diameter and the refractive index mismatch between the particle
and the surrounding medium np/nmd [140]. To find the optimal working conditions
for our silica particles, we measure the trapping stiffness as a function of the laser
power supplied by the dedicated module and report the results in Figure 4.5(b).
Note that the effective power arriving at the back aperture of the objective is typi-
cally reduced by ∼ 30%, due to losses in the beam path, especially within the AODs
[140]. In addition, we compare the trapping efficiency versus refractive index using
polystyrene beads with 2a = 3.27 µm (np = 1.57). As expected, the trap stiffness
kt is proportional to the supplied laser power for both particles, and is lower for the
1.9 µm silica bead (np = 1.45).

The maximum trapping force of n time shared traps depends linearly on the
fraction of time per scanning cycle that the laser spends at the individual trap loca-
tion [145]. This means that it decreases when one manipulates multiple particles at
the same time. Since in the following bending experiments we shall use a three-point
geometry, kt is measured using three time-shared traps. For 1.9 µm silica beads, we
achieve a maximum trapping stiffness of (6.50±0.15)µm, while for PMMA particles
(2a = 3.0 µm) we obtain (3.50 ± 0.30)µm. Later, we will use these values in the
calculation of the forces acting on our particles.
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4.2 Experimental procedure
In [145] Pantina and Furst used Laser Tweezers to directly assembly colloidal

aggregates and study their mechanical response under tensile stresses. Interestingly,
they found that the strength of the bonds between poly(methyl methacrylate) PMMA
particles in divalent salts solutions was ≈ 10 times greater than that predicted by the
Derjaguin-Landau-Verwey-Overbeek theory. Later [146, 147, 71], by measuring the
elasticity of particle rods in response to a bending moment, they also provided the
first experimental evidence that colloidal particles in contact are capable of trans-
mitting torques. The above observations were in sharp contrast with DLVO theory,
for which free rotation of the particles was expected, since only central forces can
be transmitted through contact. Inspired by these pioneering studies, in this work
we replicate similar three-point bending tests on silica and PMMA particle rods to
evidence the formation of solid-solid contacts and their aging dynamics.

4.2.1 Materials
For the silica system, we focus on beams formed using a single particle size

2a? = 1.9 µm. The choice of this value results from a compromise between different
constraints: on the one hand, the higher a, the broader the range of accessible forces
(given the silica/water optical index contrast [140]) and the better the evaluation
of particle positions at sub-pixel accuracy; on the other, it is difficult to synthesize
large monodisperse particles. The chosen a value limits polydispersity to 5%, while
allowing us to access the desired rod properties.
The particles are dispersed in MilliQ water and diluted to a volume fraction of
φ ≈ 10−4, low enough to easily manipulate multiple traps without interference of
stray particles. Before each micro-mechanical experiment, the particle solution is
vigorously stirred and left in ultrasonic bath for 2 minutes. The double-layer repul-
sion is screened through the addition of calcium chloride (CaCl2, Sigma-Aldrich) at
various ionic strengths, I = 0.05, 0.10, 0.15 and 0.20 M. The same procedure is
applied to test the response of silica particle rods in monovalent salt solutions (KCl)
at a single I, namely I = 0.20 M.

We also form and follow in time PMMA particle beams using the same protocol.
Particle sizes are distributed around 3 µm with a 15% polydispersity. We use various
CaCl2 ionic strengths, I = 0.05, 0.20, 0.40, 0.60 and 0.80 M and NaCl concentrations
(I = 0.20, 0.30, 0.50 M).

4.2.2 Sample cell
The sample cells are made using a double-sided adhesive spacer to create a

gap between a microscope slide (Fisher, size 25 × 75 × 1mm3) and a coverslip
(Fisher, size 22 × 30 × 0.17mm3). A difficulty we encountered is that, at the
targeted salt concentrations, both SiO2 and PMMA particles, which sediment due
to density contrast, stick so strongly to the coverslip that they cannot be detached
with the tweezers. To be able to manipulate these particles, we need to postpone
the time when particles enter in the saline solution. We achieve this by dividing
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Figure 4.6 – Photograph of the sample cell. The black arrows indicate the different
regions of the cell while the white arrow displays the path of the traps before beam

assembly. For more details, see the text.

the cell into two compartments carved in the adhesive spacer: a small (∼ 7 µL)
one, where the diluted suspension of particles in pure water is introduced; a large
one (∼ 50 µL), where the electrolyte solution is introduced. To prevent drying,
the whole cell is sealed using a fast UV-curing epoxy (Norland Products, NOA 81)
immediately after the introduction of the ionic solution and suspended particles. The
two compartments are in open contact with each other through a small aperture,
which sufficiently slows down salt diffusion that particles, although they sediment, do
not stick to the coverslip, and can be handled, for nearly 2 hours. The size difference
between the two compartments guarantees that even after the complete diffusive
dispersion of salt the relative error in the ionic strength remains smaller than ≈ 5%.
A photograph of the sample cell is shown in Figure 4.6.

4.2.3 Assembly of particle rods
We form beams of 11 or 13 particles using a method similar to that described in

[146]. First, an array of n traps, where n is the number of particles in the rod, is cre-
ated by time-sharing a single laser beam. The traps are separated by a distance much
larger than the particle diameter, to avoid interactions (Figure 4.7(a)). Thereafter,
they are filled by actively seeking particles in the small compartment by translating
the microscope stage. Once the array completed, it is moved at approximately half
of the depth of the sample cell (≈ 100 µm), and then towards the ionic solution
(large compartment) by means of the motorized microscope stage (white arrow in
Figure 4.6). This requires a very small amount of time, but care must be employed
to avoid loosing particles due to drag forces; positioning the traps in the center of
the electrolyte compartment is achieved in less than 2 minutes. Thanks to the cell
design, the experiments are carried out in a region where stray particles entering the
trapping plane during the measurements are absent.

Differently from [146], where the rods are formed by reducing the distance be-
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Figure 4.7 – Typical rod assembly. Images of the particles (left panel) and their position
in the XOZ plane (right panel) during the formation of the beams. In the real images,

the traps are drawn with red crosses.

tween the traps until vdW forces induce aggregation, the assembly of silica rods
adopted here consists in simultaneously trapping two particles in a single trap. It
presents various benefits: on the one hand, it permits to better control the assembly
time, thus reducing scatter between different rods. On the other hand, it reduces the
rod tortuosity that inevitably arises in the assembly process, as the pairs are more
stable than isolated particles against fluctuations caused by Brownian motion. The
proposed method can be understood looking at Figure 4.7. In the first column we
report the photographs taken with the CCD camera in the XOY trapping plane,
while in the second column we plot a schematic representation of the traps and par-
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ticles in the XOZ plane, parallel to the laser propagation direction. Each line [(a)
to (f)], instead, describes a step of the process. The traps (particles) are ordered
according to the X axes as shown on the top of the figure.
Starting from well separated n = 11 traps (particles), stage (a), we rapidly remove
the traps in the i =even (i = 1, . . . , n) positions and simultaneously apply a drag
force to the left, by moving the motorized microscope stage, as shown by arrows
in (b). This forces the i =even particles to move (instantaneously) toward the re-
spective neighboring traps to the left. We thus end-up in (c) with 5 pairs (bonds)
filling the leftmost odd traps and an isolated particle within the rightmost trap. This
moment defines the time origin for the assembly process. Note that the pairs are
oriented along the vertical axis and that their centers of mass lie slightly below the
focus of the laser due to gravity. Then, we slightly reduce the distance between the
traps, yet by an amount which still guarantees that their separation remains much
larger than the particle diameter, and the n = 11 traps are restored, stage (d).
Stage (e) consists in applying a drag force to all the particles in the right direction,
which, together with the scattering force of the laser of the empty traps, imparts a
torque to the pairs that are able to realign with the trapping plane. Once all the
pair are re-positioned in the XOY plane, stage (f), the distance between the traps
is reduced until all the remaining bonds form due to vdW forces. The formation of
the last contact is taken as the origin of (aging) time for the beam evolution. The
full aggregation of a beam takes a time of order a minute after the formation of the
first bonds, i.e. between stages (c) and (f). Finally, the beam is held only by three
traps: two at its extremities, one at its center (Figure 4.7(g)).
For the PMMA particles, we are not able to simultaneously hold two particles in the
same trap, probably due to their larger size and refractive index. To form the rods,
therefore, we simply apply the standard procedure described in [146].

In Figure 4.8(a) we report the particle center-to-center distance (∆ix = xi+1−xi)
during the stage (f) of the silica beam assembly, viz., when we reduce the separation
between the traps. We recall that 5 bonded pairs (i = 1, 3, 5, 7, 9) are already formed
during this stage, and hence we expect their center-to-center distance to remain
constant. This is indeed the case, as shown in the left panel of Figure 4.8(a), where
we add a 1 µm offset to each curve to avoid superposition of the data. Conversely,
the curves corresponding to the ∆ix with i =even, display a very different behavior,
since now large discontinuities, associated with the formation of the bonds, are
clearly visible (black arrows in right hand panel of the same figure). We replot in
Figure 4.8(b) the same data without offset to highlight the bond formation; due
to large vdW attractive forces, the particles suddenly jump into contact, so rapidly
that their motion cannot be resolved by our high acquisition rate camera (30fps).
The mean jump is of the order of 80 nm, around 2-3 times the resolution of the
centroid tracking algorithm in the confocal experiments. This large value supports
that one can exclude the formation of new contacts during time in the macroscopic
suspensions, as these jumps should be resolved by confocal image analysis.

Once formed, a rod remains stable for hours when held by just three traps acting
on the particles (Figure 4.7(g)): this establishes that particles form cohesive con-
tacts that do not break by thermal activation over the considered timescales. All
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Figure 4.8 – Formation of the bonds between pairs during stage (f) of rod assembly. (a)
We report the particle center-to-center distance as a function of time, during which the
traps separation is reduced. Curves are offset by 1 µm. The ∆ix of particles already at
contact during this stage are denoted with odd i. The contacts, (even i, right panel)
are formed when vdW forces overcome the trapping restoring forces, and are indicated
by black arrows. Upper panel shows a photograph of the particle disposition at t = 0
(particles already in contact are joined with a dash). (b) Same data as in the right

panel of (a), without offset.

these observations bring decisive support to the idea that suspension microstructure
stabilizes shortly after cessation of pre-shearing.

4.2.4 Three-point bending experiments
Bending is enforced by translating the center trap perpendicularly to the chain,

at a velocity slow enough for the hydrodynamic drag to remain negligible, while the
two other traps are held fixed. The center trap is moved either with a sinusoidal
or a triangular wave, with a maximum amplitude of ≈ 3.8 µm and velocity ranging
between 10 and 40 nm/s. We do not find significant changes in the results for these
different loading conditions.
We collect a series of images at a rate of 30fps during each loading ramp and, using
a centroid algorithm [41], compute the particle positions at sub-pixel precision, at
least of ≈ 35 nm. In Figure 4.9(a), we show typical microscopy images of a rod of
SiO2 particles at different bending levels. As illustrated, X is the axis passing appar-
ently (on the image) through the centers of end particles and Y the perpendicular
direction. Both axes lie by definition in the focal plane of the microscope. Since we
know the trap stiffness, the bending force F = ktrap ·∆Y is essentially obtained by
monitoring the Y -displacements of the end particles from their initial positions, i.e.,



4.2. EXPERIMENTAL PROCEDURE 107

from the positions of the associated (fixed) traps; the deflection Ξ may be accessed
from the differences in Y of the end and central particles.
For the SiO2 particles rods, however, the raw data thus inferred from Y displace-

X

Y

L
o

a
d

5 µm

(a) (b)

Figure 4.9 – Microscope images (a) and a sketch (b) of the three-point bending ex-
periment. The bending moment is applied by translating the central trap along the Y
direction. Two stationary traps are positioned on the two end particles and used as

force sensors.

ments alone have to be corrected to take into account mainly two problems:

(I) rods are not strictly linear,
(II) the optical traps and microscope focal planes are not perfectly aligned.

In Section 5.1 we will explain in detail how we can correct the data and access
more accurate values of the force (f) and deflection (δ). For the moment, let us
start by assuming that the trap plane is perfectly aligned with the focal plane of
the microscope. A sketch of the three-point bending geometry is reported in Fig-
ure 4.9(b). As illustrated, we denote Fc, F1 and F2 the forces exerted, along axis Y ,
by optical traps, on the center and end particles (resp.). In mechanical equilibrium,
Fc = −F1 − F2 and F1 ' F2 (slight departures from this equality may arise from
misalignment). The center particle, hence, sustains a force |Fc| ' 2|F1| ' 2|F2|,
which is twice larger than the end ones. For all the studied beams, since the forces
F1 and F2 are twice smaller than Fc, the displacements of the end particles remain
within the range where the trapping potential is harmonic [181]. This allows us to
estimate the bending force F = |Fc| = |F1| + |F2| as F = 2ktrap ∆Yend with ktrap
the trap stiffness, and ∆Yend = (∆Y1 + ∆Y2)/2 the average displacement of the
end particles from the corresponding trap centers. The latter are identified by image
analysis as the positions at rest of end particles. Note that the Y-displacements in
Figure 4.9(b) are exacerbated for visual inspection.
Typical bending force data as a function of Ξ = Yc − (Y1 + Y2)/2, the apparent

rod deflection, are shown in Figure 4.10(a), in blue. Clearly the rod does develop a
force but only when Ξ increases beyond some threshold Ξ0, which we found to vary
significantly between 0 and 2 µm depending on the rod. We understand this feature
as arising from the fact that rods are not perfectly straight, but present in general
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Figure 4.10 – (a) Raw (blue) and alignment-corrected (black) force vs relative dis-
placement data. (b) 3D particle beam rotation in the force plateau region of (a).

a curvature at rest. Since the relative weight of a rod is about 0.04 pN, the torque
induced by gravity and the lack of linearity, remains below experimental resolution,
so that the rod rotates as a rigid body without showing a measurable force before it
lies in the plane of the three traps, which happens when Ξ = Ξ0, as schematically
shown in Figure 4.10(b).
Direct evidences for this are reported in Section 5.1. Moreover, we will explain how
the brightness of each particles can be used to reconstruct the full 3D trajectory of
the rod. This enable us also to correct for misalignment between the optical traps
and microscope focal plane. We label x, y, z the new axes after this correction: x is
now aligned with the centers of the end particles, and y the perpendicular axis in the
plane of the traps. We also label with f and ξ the recalculated bending force and
deflection. The corrected f versus ξ curve is reported in Figure 4.10(a), in black.
Unlike the SiO2 particle beams, PMMA rods did not show substantial rotation during
loading, probably due to the their lower density.

Next, in order to associate the measured force with the bending of the rod, we
need to subtract the initial curvature from the particle positions in the load state,
and show that the subsequent deformation is consistent with a bending response.
To proceed, we take as reference the particle coordinates y0

i (i = 1, . . . , n) when
ξ = ξ0 (i.e at the onset of the load), and calculate the values of the displacements
δyi = yi − y0

i at different higher loading levels. Hence, we define the true rod
deflection as:

δ = ξ − ξ0 (4.9)
Let us note that we cannot exclude the existence of an initial pair of opposite (tensile
or compressive) forces acting on the end particles and aligned along the x axis. We
have checked that these forces remain negligible, however. Indeed, during the whole
test, the leftmost trap is left at a fixed position. We checked the absence of significant
drift by observing that the associated particle fluctuates around the corresponding
stationary trap position before it becomes engaged in the rod. After the rod is
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fully formed, this particle has sustained along the x axis a certain displacement, of
order ±60 nm at most. The associated initial residual force (tensile or compressive)
is thus of amplitude at most '0.4 pN, which is within the error bar of our force
measurement. Note also that the bending test is not strictly performed in pure
flexion because the end traps are held at fixed positions and thus exert a force along
x on the associated particles. These forces, however, remain negligibly small: their
maximum amplitude, reached only at the highest bending level, is of order 0.3 pN.
This guarantees the validity of our flexural measurement.

4.2.5 Loading cycle
To investigate the relevance of contact aging, three-point bending experiments

are replicated with the same rod, at different aging time after its assembly (between
∼ 20 to ∼ 1900s). After each loading ramp, the center trap is gently repositioned
collinear with the other ones, according to the imposed waveform. The images are
analyzed at the end of the full loading cycle. In some tests, the f vs ξ curve shows
drops associated with non elastic rearrangements. To make sure that we access the
elastic regime of rods in which the interparticle contacts have similar aging time, i.e.
that have not rearranged during the several loading ramps of each experiment, the
bending data are sorted by applying the following criteria:

(1) rods with large initial defects (curvature) and strong deviation in shape from
the Euler-Bernoulli theory are ignored.

(2) the data of the first ramp R1 are always kept. Possible rearrangements are
counted and stored.

(3) the second ramp R2 is kept only if no rearrangement is present in the previous
(first) ramp R1. In this case, the data are considered and eventual rearrange-
ments are counted and stored.

(4) the subsequent ramps Ri are kept only in the absence of rearrangements in all
the previous ramps Rj<i, like in (2). However, the data can be retained, even in
the presence of rearrangements, if another condition is met. This corresponds
to cases where the time difference between the considered ramp Ri and the last
ramp in which we detected some rearrangements, Rk, exceeds about 20× tk,
where tk is the aging time of Rk. For our data set, this happens only when
ti > 20min, so that tk do not exceed 1−2 minutes, a time comparable to that
elapsed during the beam assembly. Due to uncertainties in defining a time
origin for the beam evolution (recall that not all the bonds are formed exactly
at the same instant), the aging time of ramp Ri is little affected by rearrange-
ments in Rk; hence we decided to preserve the same time origin for both ramps.
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4.3 Elasticity of particle rods

4.3.1 SiO2 particle rods
Divalent salt (CaCl2)

Previously, we showed (Figure 4.10(a)) that the rods develop a force only beyond
a critical deflection value ξ0, past which f increase with deformation δ = ξ − ξ0. A
typical force-deflection curve, after subtraction of the initial curvature, is reported in
Figure 4.11(a). At the beginning of the load, f increases linearly with δ. Eventually,
when the force reaches a critical value fc, the stress in the aggregate is relaxed via
small-scale movement of adjacent particles and f abruptly drops to lower values,
while the deflection continues to increase. For the moment, we focus on the linear
domain below fc.
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Figure 4.11 – (a) A typical f versus δ curve, after corrections for misalignment between
the optical traps and microscope focal plane. (b) Elastic response of the rods. Load
(black points) and unload (blue points) data, for a n = 13 particle beam with I =

0.20 M and t ≈ 1870s.

The first question we want to address is if the observed behavior is related to
an elastic response of the rods. We investigate the beam response during a loading-
unloading ramp. As shown in Figure 4.11(b), we obtain a nearly perfect superposition
of the load (black points) and unload (blue points) data. This confirms that the rods
respond elastically as the process is reversible. Secondly, we want to demonstrate
that the measured force can be related to a bending resistance. We thus examine
the shape of the rods under increasing bending loads. Remarkably, as shown in
Figure 4.12, the δyi vs xi curves systematically fit very well the Euler-Bernoulli
expression (dashed lines):

y(x) = −f
2EÎ

(
Lx2

4 − |x|
3

6

)
(4.10)
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where E is Young’s modulus, Î is the area moment of inertia, and L = 2a(n− 1) is
the length of the aggregate, i.e. the distance between the centers of the end particles
(a is the particle radius). The curvature of the rods does demonstrate the existence
of tangential restoring forces that prevent particles from undergoing free rotation in
response to a bending moment. Otherwise, we should have obtained a triangular
structure with a pivot point at the center particle. Note that Equation (4.10) holds
for a continuum beam, wherein the deformations are uniformly distributed. In our
aggregates, we expect the deformations to be primarily localized at the contacts,
whereas the bulk of the particles remains substantially inactive. We could model
our system with a discrete chain of rigid segments, connected by torsion springs of
stiffness kr. In Appendix E we demonstrate that such a discrete chain assumes a
shape that is fully in accordance with Equation (4.10), providing that the number of
segments is not too small.
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Figure 4.12 – Reconstructed rod deflection in the trapping plane at various increasing
(green-purple-orange) loading levels for (a) an 11 particles beam, I = 0.15 M and (b)
a 13 particles beam and I = 0.10 M. Dashed lines are the best fits of the data with

the Euler-Bernoulli equation.

We collected a large number of data by performing such three-point bending tests
on different particle rods and ionic strengths between 0.05 M and 0.20 M. The data
are then sorted using the criteria described in the previous section. Such experiments
yield the first substantial observation:

(I) rods bend according to the Euler-Bernoulli equation in the linear elas-
tic regime.

The chain elasticity can be described by the bending rigidity kb:

kb = f

δ
= f

y(L/2) = 48EÎ
L3 , (4.11)
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which is inferred from the force-deflection data, by performing a linear regression
with both errors in x and y, following the method in York et al. [212]. Due to
the large number of experimental points, the confidence intervals of the fits usually
correspond to very small error bars; the main source of uncertainties, however, is
related to the choice of the set of data points to include in the fit, as sometimes the
transition between the force plateau and the linear domain is not well defined. We
disregarded all the data where this transition was not clearly identifiable. Point (I)
suggests that the single bond bending stiffness is independent of the rod length.
Hence, we can define an effective single-bond rigidity through [105, 107]

k0 = kb ×
(
L

a

)3
(4.12)

Using Equation (4.11) for kb, one obtains

k0 = 48EÎ
a3 (4.13)

which is indeed independent from L. Note also that k0 has the same dimension of
kb (N/m). In the following analysis we will use this elastic constant, instead of a
torsion rigidity kr (in N ·m). This choice will not influence the subsequent results,
since the two elastic constants are proportional (see Appendix D):

k0 ∼
96kr
a2 (4.14)
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Figure 4.13 – Force f vs beam deflection δ after three aging times for (a) n = 11
particle beams with I = 0.15 M and (b) a n = 13 particle beams with I = 0.10 M

In Figure 4.13 we plot typical force-deflection curves at various aging times, for
two different ionic strengths. Strikingly, the bending modulus increases over time,
suggesting that the rods strengthen when held at rest in the optical traps. By ana-
lyzing our full data set, we conclude that:
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(II) kb grows over time.

Since kb(t) ∝ k0(t), we conclude that the strengthening of the rods results from the
stiffening of the bonds between particles. We collect in Figure 4.14(a) both 11 and
13 particles rod data to assess that indeed the bond-stiffness k0 is independent of
L. This plot furthermore demonstrates that:

(III) flexural rigidity reaches a roughly logarithmic growth regime at late
times.
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Figure 4.14 – (a) Bond stiffness k0 as a function of time t for different ionic strengths,
as measured from three-points bending tests with different rod lengths L, with error
bars showing the confidence interval of the linear fit of f vs δ data. (b) Log-lin plot of
[k0]3/4 vs t supporting that asymptotic growth is rather ' [log(t/τ)]4/3 as suggested

by our arguments (see later in the text for details).

Observe, however, that k0(t) shows a upward curvature, so that a logarithm can only
be fitted over less than a decade. Curiously, we find that the logarithmic growth can
be extended to all studied decades by plotting [k0]3/4 vs t —see Figure 4.14(b).
Arguments supporting this scaling will be presented later in the text. Note also that
our data set covers different I values and supports that k0 is I-independent over
the considered range, although a slight increase with salt concentration cannot be
excluded. This observation can be ascribed to the fact that, above I ≈ 0.05 M, the
zeta potential of our particles saturates (to ' −10 mV), i.e. that the surface charge
is essentially I-independent (see Section 3.1.4) .

Let us emphasize two key conclusions we may already draw from our above ob-
servations. First of all, point (I) demonstrates the formation of solid-solid contacts
between particles as non-adhesive bonds cannot show elastic restoring forces in re-
sponse to rotational motion. Indeed, the fact that these contacts are able to support
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torques can be attributed only to the pinning of the solid-solid contact line. Sec-
ondly, the evolution of the effective flexural rigidity of bonds, point (II), can only be
ascribed to an evolution occurring inside these adhesive contacts. Such a contact
aging between colloidal silica particles in CaCl2 solutions has never been directly
observed before. We also stress that these observations are not consistent with the
DLVO framework, for which the forces are centro-symmetric and time-invariant.
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Figure 4.15 – (a) Shape progression at increasing bending loads for a rod in KCl
solution. (b) Log-log plot of the bond stiffness vs time for CaCl2 (black symbols) and

KCl (blues symbols) at the same ionic strength.

We perform also bending tests on SiO2 rods in KCl electrolyte solutions at a
single I = 0.20 M. Interestingly, for lower salt concentrations we are unable to form
stable rods. At I = 0.20 M or higher, instead, we do not find beam ruptures for time
interval of about 1h, indicating the formation of strong thermally irreversible bonds.
Moreover, in these conditions the rods follow the Euler-Bernoulli bending theory in
analogy with the divalent salt (Figure 4.15(a)). The above observations suggest the
existence of a critical ionic concentration below which electrostatic repulsion prevents
the beads to form contacts.
In Figure 4.15(b) we report the k0 vs t data for the considered I and compare them
with the values in the divalent salt solution. With KCl the bond rigidity is about
an order of magnitude lower than that found with CaCl2. Note also that the KCl
salt concentration at this ionic strength corresponds to 3 times the divalent salt
concentration. This highlights the dramatic effects of divalent electrolytes on the
potential and counter-ion distribution at the surface of the particles. These data
also indicate that the valency of the salt may have a substantial effect on the aging
dynamics of the contacts, as k0 appears to increase more slowly in the presence of
K+ cations. These findings underline the potential relevance of ion species in the
formation and subsequent aging dynamics of the contacts between silica particles.
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4.3.2 PMMA particle rods
Divalent salt (CaCl2)
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Figure 4.16 – (a) Typical microscope images of a PMMA rod under increasing bending
levels. (b) Bending stiffness kb for three aging times and I = 0.40 M.

We have also studied (poly(methyl methacrylate)) PMMA particle rods in CaCl2
salt solutions for a single particle size 2a = 3 µm and several I values between 0.05
and 0.8 M. In all cases, we are able to form rods that are stable when held by their
extremities. Moreover, the beams show the existence of a flexural modulus between
the particles, as they bent according to the Euler-Bernoulli equation. In Figure 4.16
we report typical microscope images of a 11-particle rod under bending (left panel)
and force-deflection curves at three different aging times (right panel). We clearly
observe the formation of solid-solid contacts that age, with kb approximately an order
of magnitude lower than for silica particle despite the higher electrolyte concentra-
tions used.
As shown in Figure 4.17(a), in all studied cases except when I = 0.05 M (in which
case the flexural modulus is small —' 0.0015 N/m —and does not appear to evolve
in time), k0 does age quasi-logarithmically. Yet, in contrast with the case of silica,
the PMMA bending stiffness depends significantly and non-monotonically (see the
legend of Figure 4.17(a)) on ionic strength. In particular, k0 monotonically increases
until 0.60 M and then shows a downturn at higher salt concentrations. This fea-
ture is in agreement with similar results obtained by Pantina and Furst [147], who
attributed it to a charge reversal of the particles caused by the adsorption of Ca++

cations on the PMMA surface.

Monovalent salt (NaCl)

Remarkably, changing the salt valency leads to a very different response also
for the PMMA system. Here we used potassium chloride (NaCl) as a monovalent
salt, at three ionic strengths. The results for the bond stiffness are reported in
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Figure 4.17 – Bond rigidity k0 versus aging time for calcium chloride (a) and sodium
chloride (b) solutions.

Figure 4.17(b). Surprisingly, k0 does not appear to age in the considered range of
salt concentrations, in sharp contrast with the divalent electrolyte. Furthermore, the
magnitude of k0 is of the same order of that found in CaCl2 solutions, and slightly
decrease with the addition of salt as the maximum is now found at I = 0.20 M (blue
points).
All these observations indicate a non-trivial dependence of contact formation and
aging on the salt used to screen the electrostatic energy barrier. For silica particles,
divalent salts seem to be more efficient in promoting contacts and they also accel-
erate their aging dynamic compared to a monovalent salt as KCl. In the PMMA
system, both CaCl2 and NaCl promote the formation of contacts to the same ex-
tent, yet with a different dependence with ionic strength. In addition, monovalent
(sodium) cations appear to reduce, indeed interrupt contact aging.

We will not use the results for the monovalent electrolytes in the rest of the
manuscript. The main reason is that a more thorough experimental characterization
must be conducted in order to assess their effects on contact aging. Note that the
k0 data of Figure 4.14 are a result of experiments and subsequent analysis of more
than 50 different particle rods, because a huge number of them cannot be exploited
due to their shape strongly deviating from the Euler-Bernoulli prediction (either by
defects arising from the beam assembly, or from particle rearrangements). Due to
experimental difficulties and the limited time for the tweezers experiments, we will
focus on the divalent salt, for which a larger number of rheology, as well as bending,
data, have been acquired.
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4.4 Yielding of particle rods

4.4.1 SiO2 particle rods

Divalent salt (CaCl2)

Although in our experiments the contacts are able to support significant torques,
small-scale rearrangements within the silica rods can occur. Conversely, with PMMA
rods we do not observe rearrangements before the center particle is released from
its trap, which implies that critical thresholds lie beyond the force we can exert.
Therefore, here we examine the non-linear mechanical response of our 2a? = 1.9 µm
silica particles in CaCl2 solutions.
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Figure 4.18 – (a) Same force f vs deflection δ curves in Figure 4.13(b). Here we
report also the non linear response. (b) Particle positions immediately prior to the
rearrangement (blue circles) and at a time after Mc had been exceeded (green circles)

for two beams with I = 0.10 M and I = 0.20 M .

In the three-point bending geometry, the aggregates experience an uniformly
distributed shear force of amplitude |f/2|, and a bending moment M , which instead
varies with the position, assuming its maximum value at the center x = 0, while
symmetrically decreasing towards 0 at the end of the rod (x = ±L/2):

M(x) = f

2

[
L

2 − |x|
]
, (4.15)

Note that for a chain composed of n particles, the torques are transmitted almost
entirely by the contacts, hence the maximum bending moment Ma = f(n − 2)a/2
is reached at |x| = a. If rearrangements are induced by rolling motion, the rupture
occurs when the maximum value of the bending moment in the aggregate reaches a
critical value Mc, which is related to the maximum tangential force fc supported by
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the contacts and the position of the bond x? that undergoes the rearrangement by:

Mc = fc
2

[
L

2 − |x
?|
]
, (4.16)

The critical force can be directly measured from the f versus δ curves. As an
example, we plot in Figure 4.18(a) the same force-deflection data in Figure 4.13(b),
but we also include the remaining part of the curves after Mc has been exceeded; fc
corresponds to the maximum force marking the limit of linear elastic response (dashed
lines). The location of the rupture is identified by the particle positions immediately
prior and after the rearrangement. As illustrated in Figure 4.18(b), below Mc the
rods present an upward curvature that signals the presence of tangential restoring
forces; when M > Mc, the stress relaxes and the aggregate assumes a triangular
shape with a pivot point at x?.
We focus on the longer aggregates, i.e. those composed of 13 particles, for which we
collected a thorough set ofMc data as a function of ionic strength (between 0.05 and
0.20 M) and aging time. We make the following observations: first, approximately
90% of the rearrangements takes place at x? smaller than 2 particle diameters from
the center of the aggregate, and 70% at distances smaller than a particle diameter, as
shown in Figure 4.19(a). In the histogram, we plot the number of yielding events as
a function of the bond number, which is counted starting from the leftmost particle
(see upper panel). Clearly, the events are grouped around the 6th and 7th bond and
correspond to rearrangements occurring near the center particle. This fact supports
that rolling motion is the main mechanism of particle rearrangements, since the rod
yields near the center where the moment is the greatest. Otherwise, if the bond
failure was caused by the shear force exceeding the critical force of static friction,
we should have observed an equally-distributed rupture probability.

In Figure 4.19(b) we report the time evolution of Mc for the rods in which
rearrangements occurred within 2a from the rod center. This ensure that the data
are self-consistent with Equation (4.16). First, we observe that Mc is essentially I-
independent in the studied range, like the bending stiffness k0. Secondly, it strongly
increases with aging time, reaching a nearly logarithmic regime at later times. The
data bring a decisive support to our idea that stiffening is occurring within the particle
solid-solid contacts.
At the same time, Figure 4.18(a) shows that the rupture occurs sharply, so that we
can identify a specific yield deflection δc. This fact suggests a ‘brittle-like” behavior
of the rods, inasmuch the breakage initiates without significant plastic deformation.
Since δc is related to the maximum radius of curvature of the aggregate, which in
turn is related to the maximum rolling angle supported by the contacts, and since
we observe a linear elastic response everywhere for δ < δc, we can define a critical
rolling angle through the following equation:

Mc(t, a?) = kr(t, a?) · ϑc(t, a?) = k0(t, a?) · a?2
96 · ϑc(t, a?) (4.17)

where we use Equation (4.14) to relate the torsion stiffness kr to the bond stiffness
k0. Our data set permits to characterize the behavior of ϑc versus aging time. To
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Figure 4.19 – (a) Histogram of the yielding events as a function of the bond number
in the 13 particles rods. (b) Log-lin plot of the critical bending moment Mc versus
aging time, for different ionic strengths and as measured from three-points bending
tests with n = 13 particles. Error bars are deduced from uncertainties in fc and x?.
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Figure 4.20 – (a) Critical moment versus bond stiffness parametrized by aging time,
for all ionic strengths. (b) Critical rolling displacement versus t computed from Equa-

tion (4.20) and the k0(t) data set.

show that, we plot in Figure 4.20(a) for all I the critical moments versus bond
stiffnesses obtained at the same t, i.e. measured during the same loading ramp.
Interestingly, we find a power-law relationship Mc ∝ kp0, with p = 0.47 ± 0.1, as
inferred from a direct fit. Taken into account experimental uncertainties, we expect
the exponent to be 1/2 and thus write:

Mc(t, a?) = mc

√
k0(t, a?), (4.18)
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From the fit we find a constant prefactor mc = (0.32± 0.1) · 10−16N1/2m3/2 (black
solid line). It is worth noting that an identical relationship has already been found
by Pantina and Furst for PMMA and polystyrene particles in divalent salt solu-
tions [71], but its origin remains to be elucidated. Combining Equation (4.17) with
Equation (4.18) yields:

ϑc(t, a?) ∝
96 ·mc

[a?]2
√
k0(t, a?)

≈ 3.4× 10−3√
k0(t, a?)

(4.19)

where we used the the experimental values for mc and a?. According to Equa-
tion (4.19), the growth of k0 during aging is accompanied by a reduction of the
maximum angle supported by the bonds. Hence, particle-particle contacts are able
to transmit increasingly larger torques, but, at the same time, the extent of flexural
elastic deformation shrinks. This was already evident in Figure 4.18(a), wherein δc
decreased from 500 to 100 nm in ≈ 20 min. The contacts break when a critical
rolling displacement Υc is reached:

Υc(t, a?) ∼ a?ϑc(t, a?) = 96mc

a?
√
k0(t, a?)

≈ 3.2× 10−9√
k0(t, a?)

(4.20)

The predictions of Equation (4.20) as a function of contact time, are reported in
Figure 4.20(b), according to the bond stiffness data set. As illustrated, Υc varies
from 27 nm to 4 nm —a very plausible range of variations, in accordance with recent
AFM studies on micron-sized particles [92, 52].
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4.5 Interpretation of the results
To explore in detail the possible origin of contact aging and its consequences

in terms of macroscopic aging, we model the solid-solid contacts using adhesion
theories. This approach provides a way to directly link the energy of adhesion between
the particles and their bending elasticity [147].

4.5.1 JKR and DMT models

Figure 4.21 – Adhesion theory in the DMT (a) and JKR (b) limit. In the DMT model
the contact area is determined by Hertz theory with the external load acting only
outside it. The range of the interaction dint tends to infinity. In the JKR limit the
interaction forces are assumed to have infinitesimal spatial range, and are operative
only in the contact area. The resulting pressure distribution has a (tensile) divergence

at the contact edges.

The determination of the adhesion forces between small particles and/or particles
and solid surfaces is a longstanding problem in contact mechanics [46], and is a topic
of considerable interest in diverse disciplines, including physics and biology. We
briefly review two well established theories that account for the coupling between
surface adhesion and contact mechanics: the Derjaguin-Muller-Toporov (DMT) [48]
and Johnson–Kendall–Roberts (JKR) models [102], inviting the reader to refer to
ref. [10] for a recent review on this and related topics. The range of applicability of
each theory depends on material properties and contact conditions. From a physical
point of view, they differ in their predictions for the distribution of pressures within
the contact zone and around it, and the profile of the bodies in the vicinity of the
contact (see Figure 4.21). For the DMT model, the magnitude of the compressive
contact stresses largely exceeds the interaction stresses so that the latter do not bring
about deformation on the sphere. The punch shape then remains the same as in
the adhesionless Hertz problem. The adhesion is assumed to result from long-range
attractive forces and is computed in the manner of the Derjaguin approximation, by
integrating the adhesion stress over the sphere non-contact area. In these conditions,
the relevant parameter is the extent of the long-range interaction potential, and the
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size of the contact zone has a little impact on the pull-out force [125], i.e. the force
needed to separate the bodies in contact:

FDMT = 2πâW (4.21)

with â = a1a2/(a1 + a2) the reduced radius, and W = 2γSL the work of adhesion.
JKR theory, on the other hand, neglects the range of the interaction potential and
considers the interaction forces as purely contact ones. The adhesion force is assumed
to apply only in the contact area of radius ac and corresponds to an interfacial binding
energy Ead = Wπa2

c . The shape of the elastic body is obtained by minimizing
−Ead + Uel, where Uel is the elastic deformation energy. The solution of the JKR
problem shows that the profile of the particle approaches the contact edges with
a vertical tangent. This shape entails that an infinite pressure is exerted on the
contact perimeter, with an inverse root singularity akin to that found in fracture
mechanics, ahead of a sharp crack. As long as the height of the neck is much
larger than the spatial extent of the surface interactions, a variation in ac results in
a complete transfer of work from the contact zone. In the JKR theory, thus, the
relevant parameter for the determination of the contact zone is the adhesion energy
required to create surfaces. It can be shown that the pull-out force is reduced with
respect to the DMT case:

FJKR = 3
2πâW (4.22)

The contact region between two equal-size elastic spheres in the absence of normal
applied load is a flat circular area. In both theories its radius is estimated as:

ac = A

(
3π a2W

8E∗

)1/3

(4.23)

where A is a prefactor that ranges from 1 to 31/3 ' 1.44 between the DMT and
JKR limits [48, 102, 188], E∗ = E/(1− ν2)/2 is the reduced modulus, with E and
ν respectively the Young’s modulus and the Poisson’s ratio of the material.

Tabor parameter In 1977 Tabor [188] introduced the so-called Tabor parameter:

λ =
(

W 2a

8 [E∗]2 h3

)1/3

. (4.24)

to define the range of applicability of each theory. Quite generally, JKR theory holds
for λ� 1 and applies when interaction stresses are large and the materials compli-
ant. DMT, on the contrary, is the limit for λ � 1 and is suitable for small, rigid
spheres and long range interactions.

For the SiO2 particles, taking W = 200 mJ/m2 [95] and 2a? ' 1.9 µm as upper
bounds for the adhesion energy and particle radii, a lower limit h = 0.3 nm [86] for
the gap between the surfaces, E ' 30 GPa [150] and ν = 0.17, the Tabor param-
eter [188] is estimated to be λ ' 0.9. Although far from the pure DMT case, this
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leads us to use A ' 1 in Equation (4.23). The use of the DMT estimation is pop-
ular in works dealing with Stöber silica, so we will follow this idea. This will appear
self-consistent, as our oncoming analysis will support that the stiffening of contacts
results from a growth of W , yet within a range that remains below 200 mJ/m2 so
that the upper bound λ . 0.9 remains valid. One should keep in mind that, all
things being equal, the Tabor parameter is strongly affected by the adhesion energy
W , which we cannot directly measure in our bending tests. Therefore, it remains
problematic (and out of the scope of this work) to assess the most rigorous choice
of A, since, additionally, W is time-dependent. Moreover, we emphasize that the
choice of A will not significantly change the main results.
For the 2a = 3.0 µm PMMA particles, standard values for the Young’s modulus
and Poisson ratio are E ' 3.1 GPa and ν = 0.40, whereas an upper bound for
the surface energy can be estimated as W = 100 mJ/m2 [147]. Keeping the same
minimal gap h between the surfaces, Equation (4.24) yields λ ' 2.7; similar values
are generally representative of intermediate cases between DMT and JKR behavior.

It is worth noting that rolling friction is strictly absent in the adhesive theories
proposed so far. The contact is able to transmit a non-vanishing torque only if the
pressure distribution P within the contact zone is asymmetric with respect to the
center of the contact area, which is not the case neither for JKR nor DMT. It is
clear, hence, that other effects, such as surface roughness, adhesion hysteresis etc.
must be evoked to explain the observed rolling friction. We will come back later on
this point. The strengthening of the interparticle bonds, evidenced in our three-point
bending experiments, can only be associated to a phenomenon occurring inside this
zone of radius ≈ ac. In the following, we will use two strategies to relate the growth
in time of k0 and Mc to the contact radius.

4.5.2 Pantina-Furst model

Elastic response

In a first approach, which we denote with the superscript PF , we tentatively
write k0 as that of a beam of radius ac [147]. As for such a circular cross section
the area moment of inertia is

Î = πa4
c

4 , (4.25)

using Equations (4.13) and (4.23) with A = 1 we obtain:

kPF0 (t) = 12π E a4
c(t)

a3 = (3π)7/3E

4 a1/3

(
W (t)
E∗

)4/3

(4.26)

Since E and E∗ are bulk properties that do not change over time, this expression
suggests that contact aging arises due to an increase of interaction energyW between
the silica surfaces, which causes ac and thus k0 to grow. Equation (4.26) also predicts
that the effective flexural rigidity depends on particle size only via the geometric pre-
factor a−1/3.
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Figure 4.22 – Log-lin plot of ac andW versus time for silica (a,b) and PMMA particles
(c,d) in CaCl2 aqueous media, using the measured k0 and the Pantina-Furst model.

SiO2 particles We use our k0 measurements together with Equation (4.26) to
estimate contact radii and adhesion energies in our particle rods. For the asymmetric
electrolyte CaCl2, we find ac to vary from ∼ 10 to ∼ 25 nm —which are not unrea-
sonable values —while W grows from ∼ 20 to 200 mJ/m2. The data are reported
in Figure 4.22. Note that the van der Waals contribution to the work of adhesion
can be estimated as:

W = AH
12πD2

0
(4.27)

where D0 = 0.165 nm is the surface-surface separation at contact [98] and AH =
8.3 × 10−21J is the non-retarded Hamaker constant of silica in water. A simple
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calculation leads to W ≈ 9 mJ/m2, a value that may be consistent with our data at
short aging times (< 10s). Hence, Figure 4.22(b) suggests the presence of additional
age-dependent contributions to W . We shall see later that these contributions may
be related to the silica surface chemistry (formation of Si-O-Si bridges).

It should be pointed out, however, that adhesion energies of few hundreds of
mJ/m2 are more in accordance with values reported by Atomic Force Microscope
(AFM) and Surface Force Apparatus (SFA) studies for silica surfaces in ambient
(humid) air [204, 92], but are far larger than those obtained for similar surfaces
in electrolyte solutions [128, 26, 198, 55, 86, 195] (in the few mJ/m2 range, as
reported in Table 4.1). The beam model, thus, appears to overestimate ac and thus
the adhesion forces. One should keep in mind, however, that the mentioned works
show a great variability of results. This fact may be ascribed to the surface properties
of the particles [211], which may depend on a number of factors, such as the synthesis
process, how the particles are post-treated and/or stored, the presence of impurities,
etc. For instance, in these works a careful procedure is typically required to attach
the particle to the AFM cantilever, which is likely to change its surface properties.
First, both surfaces must be cleaned, which is achieved by oxygen plasma treatment
for several minutes. Then, to remove the glue, the particles are usually treated with
UV curing [55] or heated at high temperature (> 1000◦C) in an oven [199]. It is
known that heating changes the state of surface hydroxylation [204, 222], which in
turn may alter the adhesion forces.
In our case, we find large differences in the rheology responses of our synthesized
silica particles and commercial ones (Spherometer CA). In the same physio-chemical
conditions, the mechanical strength of the suspensions is relatively high for the
former, while it is strongly reduced for the latter [72]; this fact may partially explain
the large values reported in Figure 4.22(b).

PMMA particles Using a similar approach, we compute contact radii and adhe-
sion energies for the PMMA particles and report them in Figure 4.22. These values
are again in reasonable agreement with those found in adhesion studies in ambient
environment, W ≈ 30− 50mJ/m2 [147].

Non-linear response

SiO2 particles According to the Euler-Bernoulli theory, as long as linear elasticity
applies, a “fiber” of the material parallel to the neutral axis (i.e. the axis passing
through the center of the cross section) and distant r from it, experiences a stress:

σ = Er

R
= Mr

Î
(4.28)

where R is the radius of curvature of the rod, and M the external bending moment.
The stress is zero at the center and reaches its maximum value σm at the edges
of the contact area r = ±ac. In these conditions, the rods may yield when σm
exceeds a critical value σc characteristic of the material (σm > σc). Substituting
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Table 4.1 – Typical adhesion energy between silica surfaces in aqueous electrolyte
solutions measured by AFM.

Authors Salt I [M] pH F/a [mN/m] W [mJ/m2]

Chapel et al. [26] NaCl 0.1 5.5 5.8 0.92
Dishon et al. [55] KCl 0.1 5.5 0.65 0.10

KCl 0.2 5.5 0.90 0.14
CaCl2 0.3 5.5 0.2 0.03

Meagher [128] CaCl2 0.03 5.3 6.1 0.97
CaCl2 1.00 4.1 1.2 0.19

Troncoso et al. [195] NaCl 0.001 5.1 7.96 1.27
NaCl 0.01 5.1 9.09 1.45
CaCl2 0.0003 5.1 6.79 1.08
CaCl2 0.003 5.1 7.51 1.20
CaCl2 0.03 5.1 9.33 1.49

Guleryuz et al. [86] NaCl 0.01 5.3 0.61 0.1
NaCl 0.1 12.5 6.97 1.11
NaCl 0.5 12.5 8.85 1.41
NaCl 1.0 12.5 7.51 1.20

Equation (4.25) for Î into Equation (4.28) gives for the critical moment:

Mc ∼
π

4σca
3
c (4.29)

Thus, Mc should be proportional to a3
c . This is not supported by our experiments

on silica particles, since from the previous expression and Equation (4.26) one would
obtainMc ∝ k

3/4
0 , while our data suggestMc ∝ k

1/2
0 (see Figure 4.20(a)). Therefore,

simple bending theory seems not able to describe our critical moment versus bond
stiffness curve for the SiO2 particles. One possibility to account for this behavior is
to consider that stress may localize at the contact edges; in this case, the assumption
that stress is linearly distributed across the beam section fails.
Combining Equation (4.26) with Mc ∝ k

1/2
0 yields, instead:

MPF
c (t) = ηPFa2

c(t) ∼ a4/3 ·W 2/3(t) (4.30)

where the fitted proportionality factor is equal to ηPF = (0.039 ± 0.003) N/m.
To account for this observation, Pantina and Furst [71] related the yielding of the
colloidal bonds to the applied load f exceeding the static friction force between the
particle surfaces F|| = µsL0, where L0 ∼ πaW is the adhesion force. If the critical
shear force fc for a bond to slip is fc ∼ Mc/δ, where δ ' a2

c/a is the contact
indentation associated with the formation of the contact zone with radius ac [102],
the Mc ∝ a2

c simply derives from the requirement that fc is independent of the
contact area, as usually observed in macroscopic friction. The bond yields when
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fc = F|| and the friction coefficient can then be estimated as:

µs(t) = ηPF

πW (t) (4.31)

Interestingly, if contact aging derives from an increase of W , µs would then decrease
with time. This may reflect the flattening and plastic deformation of surface as-
perities as the adhesive load increases, and may account for the observed reduction
with age of the critical rolling displacement Υc. If we now use the extrapolated W
values we can estimate the friction coefficient to decrease from 0.90 to 0.05 —a
plausible range of variation. However, the above hypothesis may be at variance with
our experimental observations. Indeed, the shear force in a three-point bending tests
is independent from the bond position and would then cause an equal distribution
of rearrangement along the particle chain, if static friction is the main mechanism
of yielding. Although sliding of adjacent particles is observed in our bending experi-
ments, our data demonstrate that rolling is predominant.

The scaling properties deduced from Equation (4.26) and from the empirical
relation, Equation (4.30), are summarized in Table 4.2.

Table 4.2 – Scaling of k0 and Mc with
a and W according to the P-F model.

a W (t)
k0 a−1/3 W 4/3

Mc a4/3 W 2/3

Table 4.3 – Scaling of k0 and Mc with
a and W according to the D-T model.

a W (t)
k0 / W

Mc a W 1/2

4.5.3 Dominik-Tielens model

Elastic response
The second model we consider is that of Dominik and Tielens and will be denoted

with the superscript DT. In [57] the authors derived an expression for the rolling
moment of a spherical particle attached to a flat substrate, in absence of sliding. The
main features of the rolling resistance calculation are illustrated in Figure 4.23(a).
Under an external torque and/or a lateral displacement Υ, adhesion hysteresis, i.e.
the energy dissipated in the making and breaking of bonds at the leading and trailing
edge of the contact, causes the pinning of the solid-solid line. In these conditions,
ac is no longer centered around the center of the original contact circle (see star and
plus symbols in Figure 4.23(b)). When an external shear force F or displacement Υ
is applied to the center of the particle, the restoring momentM can be computed by
decomposing this shifted contact area into two circles of different radii ac + Υ and
ac − Υ. The variation of ac can be related to a change in the pressure distribution
between the two half circles, P (r, ac + Υ) and P (r, ac − Υ) and results in a finite
rolling moment. In the calculation, the JKR estimation for P is used, and it turns out
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Υ

ac	 	Υac	+Υ

(a) (b)

Figure 4.23 – (a) Sketch of the rolling motion of a sphere in adhesion with a flat
substrate (figure adapted from [52]). (b) Contact area and torque contribution used

in the calculation of M (figure adapted from [108]).

that only the term associated with the JKR neck contributes to the non-vanishing
torque [57]. For a spherical particle on a flat substrate, the integration of P (r, ac±Υ)
with respect to the contact surface leads to:

M = 6πWâΥ (4.32)

where â = a is the sphere-substrate reduced radius and Υ ∼ ϑa the rolling displace-
ment. For two equal sized spheres, we have â = a/2 and

M = 3πWa2ϑ (4.33)

Hence, for small displacements, the torque is proportional to the rolling angle. The
proportionality constant, the rolling stiffness kr = 3πWa2, can be further related to
k0 through Equation (4.14), and we finally obtain:

kDT0 (t) = 288πW (t) (4.34)

The model suggest that k0 is independent of the elastic bulk properties (E,E∗) and
radius of the particles. Note that, using Equation (4.23), we can rewrite the bond
stiffness as:

kDT0 (t) = 256E∗a3
c(t)

a2 (4.35)

This elastic constant thus differs from Equation (4.26) by a factor ac/a.

SiO2 and PMMA in CaCl2 solutions

SiO2 particles For the silica particles, the predictions of the model are displayed
respectively in Figures 4.24(a) and 4.24(b). Noticeably, both aDTc andWDT are much
lower than aPFc and W PF , since they now vary from ∼ 1.5 to ∼ 5 nm and from ∼
0.01 to ∼ 0.5 mJ/m2, respectively. These adhesion energy values, which correspond
to pull off forces of few nN, are comparable with those displayed in Table 4.1,
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Figure 4.24 – Log-lin plot of ac andW versus time for silica (a,b) and PMMA particles
(c,d) in CaCl2 aqueous media, using the measured k0 and the Dominik-Tielens model.

even though a direct comparison remains difficult as time-dependent effects are not
considered in these works.

PMMA particles Similar considerations hold for the PMMA system, for which
ac varies from ∼ 2 to ∼ 7 nm and W from ∼ 0.001 to ∼ 0.09 mJ/m2, depending
on contact time and I (Figures 4.24(c) and 4.24(d)).

Non-linear response
SiO2 particles According to ref. [57], the linear elastic response is lost and the
contact area starts to move when a critical rolling displacement Υc is reached. Do-
minik and Tielens suggested that a lower bound for Υc is of the order of the distance
between atoms in the material, e.g. 0.2 nm [57]. More recently, describing the
contact zone as a Mode I opening crack, Krijt et al. [108] related Υc to the adhe-
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sion energy hysteresis ∆W = Wopening −Wclosing associated to the breakage and
formation of bonds during rolling:

Υc = ac
12

∆W
W

(4.36)

If ∆W/W is constant, Υc represents a fixed fraction of the contact radius, and is
expected to scale with a2/3. In this case, with Equations (4.32) and (4.36), the
critical moment is predicted to scale as:

Mc = π

4 ∆W · a · ac ∝ a5/3 ·∆W ·W 1/3 (4.37)

The description of the rolling resistance based on the Dominik-Tielens model presents
various debatable aspects. First of all, we should mention that the computation in-
volves the splitting of the contact area in two half circles with different contact radii,
a very strong hypothesis which (i) leads to a discontinuity in the pressure distribution
at x = 0 and (ii) has never been supported by experimental evidences. Additional
problems emerge if one considers the particle rearrangements in our bending tests
and the upper bound for Υc predicted by the theory. The latter is set by the condition
Υc < ac, as suggested by the calculation itself (see Figure 4.23). From our bending
tests, we estimated the critical displacements (angles) and observed that Υc varied
approximately in the range ∼ 4 to ∼ 25 nm (refer to Figure 4.20(b)). If we compare
these values with the contact radii displayed in Figure 4.24(a), we find Υc > ac,
which is strongly in contrast with the computation. Additionally, if we substitute
the estimated upper limit of W —∼ 0.5 mJ/m2 —in Equation (4.24), we obtain
λ = 0.015. This small value suggests that P should be estimated by the DMT the-
ory, while the D-T calculation uses JKR. These two observations lead us to rule out
the Dominik-Tielens description for the rolling resistance between our silica particles.

Nevertheless, one may still find instructive to look at the scaling laws predicted
by the model. Assuming Mc ∝ k

1/2
0 , from Equation (4.35) we obtain:

Mc(t) = ηDTa3/2
c (t) ∼ a ·W 1/2(t) (4.38)

where ηDT = (7.1±0.5) ·10−5N/m1/2, as measured from a direct fit. We summarize
the Dominik-Tielens predictions in Table 4.3.

4.5.4 Contact aging
We now discuss the possible origin of contact aging for silica and PMMA sur-

faces. We recall that the time-dependent behavior of k0 and Mc can be associated
with an increase of ac. There are various phenomena that may be responsible for
this evolution.
One possibility is an increase of the size of the neck through mass transfer. For the
silica particles, this mass transfer may be attributed to solubility variations due to
the difference in radius of curvature between the neck and the particles [95]. For
spheres in the micron range, however, the rate of dissolution is essentially negligible.
Other mass transfers such as grain boundary or surface diffusion are too slow at
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(a) (b)

Figure 4.25 – (a) Hydrogen bonding between silanols of touching surfaces. Figure
adapted from [69]. (b) Formation of siloxane bridges at the interface during time.

Figure taken from Israelachvili [98].

ordinary temperatures to capture the time behavior of the bond stiffness, thus we
ruled out sintering as a possible process. Besides, hydrogen bonding between the
silanol groups of opposite surfaces [127, 69] (Figure 4.25(a)) is too rapid to explain
the protracted increase at later times.

There is, however, clear evidence in the literature that, at room temperature, the
interface between two silica surfaces ages by the formation of siloxanes [204, 114,
119, 191, 115], as shown in Figure 4.25(b):

Si-OH + Si-OH− H2O→ Si-O-Si (4.39a)
Si-O-Si + Si-O-Si + H2O→ Si-O-Si + 2Si-OH (4.39b)

These works support that W grows logarithmically in time. Interestingly, a logarith-
mic increase of W is evident also in our extrapolated data in Figure 4.22(b), using
the P-F estimates of ac. When combined with Equation (4.26), it suggests that k3/4

0
—and not k0 —would grow logarithmically. This leads us to replot our three-point
bending data as k3/4

0 vs t, in Figure 4.14(b): we do find the logarithmic scaling to
be much more evident than in Figure 4.14(a) as it now extends over two decades
in time. Clearly, more evidence is needed to confirm this aging mechanism for our
particles, and the empirical scaling do not constitute an unambiguous evidence for
the applicability of the beam model.
The strengthening of the contacts has been also attributed to the condensation of
the surface gel layers during time [204]. It could be accounted for by considering
a time-dependent Young’s modulus [123]. However, it remains very unclear how to
define a “local” Young’s modulus and how it would affect the bonded region.
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The contact aging of PMMA particles poses different questions. In fact, they
are known to dissolve and swell upon contact with water [190]. In these conditions,
their surface is usually covered by a layer of polymeric chains, and contact aging may
be ascribed to chain interdigitation occurring at the interface [98], hence via a quite
different mechanism than in the case of silica. Indeed, it is known that molecules
of polymeric materials can interpenetrate and flow with time across the interface,
resulting in an increase of the effective contact area or number of interfacial bonds
and in aging effects. Eventually, the interface can disappear, leading to the formation
of a continuous neck, as sketched in Figure 4.26(b). Moreover, the non-monotonic
increase of W with the addition of CaCl2 (Figure 4.17(a)) could be ascribed to
the formation of ion-bridges at the interface, as suggested by Pantina and Furst in
ref. [147]. Yet, it has never been investigated how these effects are coupled with
surface dissolution, swelling and interdigitation.

Figure 4.26 – Difference in contact formation and aging for hard elastic (a) and soft
viscoelastic (b) particles. Figure taken from [98].

Another issue is that surface roughness strongly affects adhesion, either by reduc-
ing the effective contact area relative to the nominal one, or by altering the balance
between compressive and tensile stresses in the asperities [151]. For hard elastic
materials like silica, local junctions can be JKR-like even if the average deformation
remains close to the Hertzian profile, as shown in Figure 4.26(a). Surface roughness
can reduce adhesion, and this fact can partially explain the lower k0 values of PMMA
particles vs silica ones. Indeed, scanning electron micrographs in Figure 4.27 evidence
substantial differences in surface roughness between the two types of particles.

In addition, the possible existence of non-DLVO interactions at contact [83, 98],
associated to the presence of layers of adsorbed cations and water molecules on the
particle surfaces, may lead to time-dependent effects (see Section 2.2.4). Vakarelski
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(a) (b)

Figure 4.27 – Surface roughness of SiO2 (a) and PMMA (b) particles imaged by SEM.

et al. [198, 197] investigated the effect of contact time and salt species in the ad-
hesion of silica micro-particles and mica surfaces. Interestingly, they found a strong
increase of W with contact time, even in pure water. Adding low concentrations of
LiCl, NaCl, KCl, or CsCl leads to little changes in the time behavior of the adhesive
force, which roughly increased from 5 to 25 mN/m in about 50s. On the contrary,
at higher salt content, the adhesive force strongly depended on the ionic strength
and on the type of cation used. In some cases, it decreased with increased elec-
trolyte concentration, in analogy with our results for PMMA particles in NaCl (see
Figure 4.17(b)). Remarkably, adhesion was usually high for ions with large hydration
enthalpy, following the order Li+>Na+>K+>Cs+. To account for these findings,
they proposed that there exists a thin surface layers of water molecules, cations and
hydrated cations that govern how closely the surfaces can approach each other, and
thus the extent of adhesion. Highly hydrated ions form a thick but “weak” layer
that can be easily destroyed, and, therefore, the adhesion can vary rapidly with the
time of contact. Cations with low hydration enthalpy, on the other hand, form a
thin but “strong” structured layer, that slows down particle approach and results
in a lower growth rate. The proposed mechanism is schematically reported in Fig-
ure 4.28. Although our results on contact aging with different salt valencies may be
in agreement with this picture, and generally with ion-dependent effects, an accepted
theory comprising these effects is still lacking.

Our analysis underlines the absence of compelling theories describing the effects
of adhesion, DLVO interactions, surface roughness and interface chemistry, and then
emphasizes that further theoretical progress on the modelling of the contact region
between colloidal particles and aging dynamics remains much needed.
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Figure 4.28 – Cation-induced adhesion aging proposed by ref. [198].
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In this Chapter, we describe how the force-deflection data, obtained in the three-
point bending tests, are analyzed and corrected for misalignment between the focal
and the trapping planes. Although this topic is not essential for the physical inter-
pretation of our results, it represents an important part of the analysis of the contact
aging data. The reader not primarily interested in these technical details should feel
free to skip this section, but may still find it valuable to refer back to it at her/his
convenience.

5.1 Rigid body rotation

5.1.1 Force-deflection curves
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Figure 5.1 – Force versus deflection at two consecutive aging times, showing different
extents of the zero-force plateau region due to particle rearrangements.

As shown in Figure 4.10(a) and in the rest of Chapter 4, the force vs deflection
data can be split into three regimes. Usually, at the beginning of the load, no force
is detected although the deflection of the chains increases (in fact, sometimes the
force goes toward slightly negative values). At a critical deflection Ξ0, we enter
a linear elastic regime where the bending force is proportional to the deformation.
Occasionally, when the deflection reaches a threshold Ξc, particle rearrangements
within the chain may occur.
Before, we postulated that the plateau region is associated with a rigid body rotation
of the rods due to their curvature at rest and the torque induced by gravity. Here
we report clear evidence that bring decisive support to this interpretation. The first
indirect hint can be found by looking at Figure 5.1, where we report the raw data
related to two loading ramps carried out on the same rod and at two consecutive ag-
ing times. Clearly, any possible curvature is not seen at rest because, when the three
traps are aligned along the X axis, the rod tends to lie in the plane perpendicular to
the trapping plane due to gravity, and hence the microscope images represent a “2D
projection” of the real particle positions. In the first ramp (black points), the regime
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of zero-force extends up to Ξ0;1 ∼ 0.1 µm. We expect that, after a rotation around
the X axis, at Ξ0;1 the rod is coplanar with the trapping plane. When Ξ > Ξ0;1,
the rod develops a force until it yields at Ξc;1 ∼ 0.5 µm (in the following analysis we
can neglect the presence of a second, short rupture that appears at approximately
0.7 µm). The deflection increases up to a new value Ξf ;1 ∼ 1.1 µm and the force
falls down to ∼ 0.5 pN, before eventually increasing again. At the end of the first
loading ramp, the three traps are re-positioned along X, and again no curvature can
be detected by visual inspection. However, if the failure of the aggregate occurred
next to the center particle, the initial curvature should have increased by an amount
approximately equal to Ξf ;1 − Ξc;1. Thus, in the subsequent loading ramp, the rod
should reach the trapping plane only when Ξ0;2 ' Ξ0;1 + (Ξf ;1 − Ξc;1) ∼ 0.7 µm.
This is indeed evident from the plateau in the second ramp (light purple points) of
Figure 5.1. This entails that the rods bent only when they are aligned with the trap-
ping plane and the presence of a critical deflection is related to their curvature at rest.

5.1.2 Simulated motion of the rods in 3D

Figure 5.2 – System used to simulate the motion of our particle rods.

To confirm the above arguments, we also performed a numerical simulation with
Maple. Since in the plateau region the rods are assumed to behave as rigid bod-
ies, we can apply Euler-Lagrange mechanics to retrieve their equations of motion.
We approximate the particle beam with two identical rigid cylinders of length L/2,
arranged to form a triangle with a common vertex in B, as shown in the upper
panel of Figure 5.2. This triangular shape is assumed to roughly represent the ini-
tial defect of the rods. The fundamental parameter describing the curvature is thus
the height of the triangle, or, identically, the angle B̂AD = Ψ0. During motion,
the cylinders are forced to maintain contact in B, to ensure the cohesion of the
rod. To simulate the optical traps in the three-point bending geometry, we de-
fine 2 fixed points, A′ = (−Xtrap, 0, 0) and C ′ = (Xtrap, 0, 0), and a movable point
B′ = (0, ALsin(ωt), 0), as shown in the lower panel of Figure 5.2. Note that all these
points lie in the (trapping) XOY plane. Then, they are linked through springs with
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the corresponding vertexes of the rod, i.e. A with A′, B with B′ and C with C ′. For
each point, the restoring elastic force is decomposed into in-plane and perpendicular
components; this results in 3 identical radial springs (acting in the XOY plane) of
elastic constant ktrap, and in a same amount of springs acting in the Z direction and
having stiffness kz < ktrap [138], but large enough to sustain the rod weight. Note
that we neglect variations of the radial stiffness with depth Z. As the beam is rigid,
the bending is approximated by a rotation of the cylinders with a pivot point in B
that results in a variation over time of the angle B̂AD = Ψ0 + φ(t). Such a change
corresponds to a Y-displacement ∆ = L/2 (sin(Ψ0 + φ(t))− sin(Ψ0)), provided
that point B is constrained to remain in X = 0. To mimics the elastic response of
the rods, therefore, a spring with rigidity kb, applying a restoring force F = −kb∆,
is used. Taking for simplicity the position of point D as ~D(t) = (0, YD(t), ZD(t))
and calling θ(t) the polar angle formed by the plane of the beam with the trapping
plane (see small inset in Figure 5.2), we thus end up with 4 generalized coordinates
φ(t), θ(t), YD(t), ZD(t).

The Lagrangian of the problem is:

L = T − V (5.1)

where V is the total potential energy due to elastic and gravitational potential en-
ergies, and T is the sum of the rotational and kinetic energies. The equation of
motions are computed by applying the well-known formalism:

d

dt

(
∂L

∂q̇j

)
= ∂L

∂qj
(5.2)

where qj and q̇j are the generalized coordinates and velocity (resp.). A Maple script
allows to resolve numerically the above non linear differential equations with respect
to the qj. Considering the density of silica ρ = 2 g/cm3, we use the mass of 11 par-
ticles (2a = 1 µm) in water and use a standard expression for the moment of inertia
of cylinders. At rest, the position of the rod is assumed parallel to the vertical plane
(i.e. θ(0) = −π/2), and, due to equilibrium of gravitational and trapping forces, we
compute the initial value for ZD(0). We finally set YD(0) and φ(0) equal to 0, as
expected in the real experiments. Typical results as a function of time are reported in
Figure 5.3, here for a rod with initial triangle height 1.55 µm and kb = 18.5 pN/µm.
Note that, approximately at t=55s, the polar angle θ(t) (Figure 5.3(a)) reaches 0
and then oscillates around it, while, at the same time, φ(t) starts to increase (Fig-
ure 5.3(b)). This indicates that (i) the beam is aligned with the trapping plane and
(ii) begins to experience a bending force. Since at every time YD = YA = YC , the
motion of D, illustrated in Figure 5.3(c) and Figure 5.3(d), reflects the trajectories
of the end particles in a real experiment. Surprisingly, in analogy with our data, the
Y displacement (and thus the measured force in this direction) decreases to slightly
negative values until the rod lie in the Z = 0 plane. This fact can be ascribed to a
competition between the torque induced by gravity and the trapping restoring forces
in the Z direction acting at different points in the beam. Thereafter, the beam starts
to bent as both YD(t) and φ(t) increase.
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(a) (b)

(c) (d)

Figure 5.3 – Solutions of the Euler-Lagrange generalized coordinates for the simulated
beam. See text for more details.

From the generalized coordinates, we can reconstruct the 3-D motion of our silica
rods, using the experimental values for L, ktrap, Ψ0, kb and the known displacement
of the center laser. Referring to the results of Figure 5.3, we have used L = 19 µm
(n = 11 particle rod), ktrap = 6.5 pN/µm, initial plateau 1.55 µm corresponding
to Ψ0 = 0.16 rad and a measured bending stiffness kb ∼ 18.5 pN/µm. The laser
is moved with amplitude AL = 2.65 µm and frequency ω = 0.0295 rad/s. With
these parameters, we compute the Y positions of point A (equivalent to the rod end
particles, green solid line) and point B (equivalent to the rod center particle, black
solid line) during the loading ramp, and show them in Figure 5.4(a), superimposed
to real data.

Despite the rudimentary model, the results are in perfect agreement with the ex-
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periments. It is worth noting that the observed oscillations have a different source.
Whereas in the simulation they originate from the undamped dynamics encompassed
in the Lagrangian (Equation (5.1)), in the other case, they are only due to experi-
mental noise. The excellent agreement is reflected in the force-deflection curve, as
illustrated in Figure 5.4(b), where the simulation (dark red line) falls in top of the
raw data obtained in the real three-point bending test (blue points). As expected,
the center and end particles reach the trapping plane when Ξ0 equals the height
of the triangle, 1.55 µm. This is also evident in Figure 5.4(c) where we show the
parametric trajectories of the end (green) and center (black) vertexes (particles).
Blue arrows indicate their motion during the ramp.

5.1.3 Misalignment correction
To obtain the direct evidence for this, we recall that the brightness of each par-

ticles depends on its distance from the focal plane of the microscope. We access
the integrated brightness of each particle using Crocker’s centroid algorithm [41],
and report in Figure 5.5(a) the values measured for the end and center particles as
a function of Y during a loading ramp. Blue arrows indicate the motion of particles
during loading; dashed lines show the Y coordinates of particles when Ξ = Ξ0; large
filled circles mark the points reached at the maximum flexion. Before loading, the
brightness levels of the center particle is clearly different from those of the two end
particles. That is clear evidence that the particles are not at the same height, i.e.
that the rod is bent. When Ξ ≥ Ξ0, the three particles have similar brightness
levels, consistently with the expectation that they then are coplanar with the traps.
However, even then, the brightness levels are not exactly equal, which points to a
small misalignment between the microscope and trapping plane.

To correct for misalignment, we assume that the measured intensity is a linear
function of Z, which is expected to be valid because the Z differences between
particles are at most equal to Ξ0 which is below 2 µm. To obtain the prefactor
of the Z vs intensity relation, we first identify Ξ0 for each rod from the force-
deflection curve; we then observe that before loading the end particles (subscript
1 and 2) and the center one (subscript c) lie in a nearly vertical plane, due to
gravity (see colored crosses in Figure 5.5(a)); therefore Ξ0 can be identified with
(Z1 + Z2)/2 − Zc. Comparing Ξ0 with the corresponding difference in intensities
yields the desired proportionality coefficient. The consequent estimates of Z values
(up to an arbitrary origin) are reported in Figure 5.5(a) on the right vertical axis.
For each rod, the trap plane is identified using the positions of end and center
particles at the maximum flexion (large circles in Figure 5.5(a)). Using our estimated
Z coordinates, we then operate a rotation to access displacements and thus forces in
the plane of optical traps. This operation does not change significantly our results,
but slightly reduces their scatter. We label x, y, z the new axes: x is now aligned
with the centers of the end particles, and y the perpendicular axis in the plane of
the traps. The computed y, z trajectories of the end and center particles of the
rod of Figure 5.5(a) are reported in Figure 5.5(b). We also show in Figure 5.5(c)
the reconstructed 3D structure of the considered rod. Finally, according to the new
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Figure 5.4 – (a) Experimental Y -displacement of the end particle (green solid line)
and of the center particle (black solid line) during time, for a beam with initial defect
of 1.55 µm. Red solid lines are computations for point A (equivalent to the rod end
particle) and point B (equivalent to the rod center particle). Force versus deflection
curve (blue points) for the same beam in (a). The red curve is the result of the
simulated data. (c) Simulated trajectories in the Y OZ plane of points A and B.

reconstructed coordinates x and y, the corrected force (now labeled f) and deflection
(now labeled ξ) are computed according to the procedure described in Chapter 4.



142 CHAPTER 5. 3-POINT BENDING TESTS: BEHIND THE SCENE

−0.5 0 0.5 1 1.5 2 2.5
5000

6000

7000

8000

9000

10000

In
te

n
s
it
y
 [

 a
.u

. 
]

Y [ µm ]
−0.5 0 0.5 1 1.5 2 2.5

−6

−5.5

−5

−4.5

−4

−3.5

Z
 [

 µ
m

 ]

ΔI

Ξ0

(a)

−0.5 0 0.5 1 1.5 2 2.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z
 [

 µ
m

 ]

y [ µm ]

TRAPPING PLANE

(b)

(c)

Figure 5.5 – Reconstructing the 3D structure of a rod. (a) Intensity of the end (green
and purple) and center (black) particles vs Y ; the curves are parametrized by the
loading level which increases as indicated by the blue arrows. On the right axis, we
display the estimated Z coordinates deduced by linearizing the intensity vs height
relation. (b) Vertical z vs horizontal y particle displacements in the laser plane after
reconstruction of the 3D trajectories (see text). (c) Reconstructed 3D image of a rod

in both unloaded (brown) and loaded (grey) states.



6
From Micro to Macro

Contents
6.1 Elastic modulus . . . . . . . . . . . . . . . . . . . . . . 144

6.1.1 SiO2 particle suspensions . . . . . . . . . . . . . . . . 144
6.1.2 PMMA particle suspensions . . . . . . . . . . . . . . . 148

6.2 Yield stress . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3 Elastic modulus vs yield stress . . . . . . . . . . . . . 153
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 156

143



144 CHAPTER 6. FROM MICRO TO MACRO

In Section 3.2, we studied the macroscopic aging of dense silica and PMMA
suspensions, flocculated with addition of CaCl2. We performed bulk rheological
measurements for different physio-chemical conditions, and we found, whatever the
formulation, a strong growth over time of both the storage modulus G′ and the
yield stress σy. Besides, we carried out a confocal microscopy investigation of simi-
lar suspensions and demonstrated the absence of significant changes in the network
morphology occurring over the same time interval.
In Chapter 4, using laser tweezers, we performed three point flexural tests on beams
formed by identical silica and PMMA particles and demonstrated that, in these
moderate-to-high ionic strengths conditions, the particles form irreversible solid-solid
contacts that resist rolling. Moreover, their bending rigidity, as well as the maxi-
mum moment prior to particle rearrangements, grew quasi-logarithmically in time
and with a characteristic time-scale akin to that found in the macroscopic mechan-
ical responses. This fact can only be imputed to the aging of these inter-particle
solid-solid contacts.
In this Chapter, we will try to answer to the following question: can we predict
mechanical aging from contact aging, by assuming that the microstruc-
ture is rapidly fixed after flow arrest?

6.1 Elastic modulus

6.1.1 SiO2 particle suspensions
Let us start with the shear modulus aging for the SiO2 particle suspensions.

We recall that, in the tweezers experiments, we investigated contact aging using a
single particle size 2a? = 1.9 µm. For now on, we denote k0(a?, t) the corresponding
bending modulus. Moreover, when attempting to separate particles with our tweezers
setup in direct contact, we realized that, in our conditions, the bonds were too
strong to be broken by tensile forces, whereas the rods respond elastically when
small bending forces are applied. Since the floppiest elastic modes are likely to
dominate the macroscopic behavior, it is reasonable to expect that G′ is determined,
primarily, by the bending rigidity k0. Assuming further the complete absence of any
structural evolution, all these considerations lead us to propose a simple relationship
between the bending rigidity and the elastic modulus:

G′(a, φ, t) = S(φ)
a
× k0(a, t) (6.1)

with S a t-independent dimensionless quantity, characterizing the structure. Note
that we do not explicitly consider the effect of the ionic strength, as we demonstrated
that both k0 and G′ are essentially I-independent in the studied range. This expres-
sion is tested directly in Figure 6.1(a) (blue symbols) by plotting G′(t) versus k0(t)
data for the particles of size a?, where t denotes aging times as measured in the three-
point bending tests. The linear relation between these two quantities demonstrates
experimentally that Equation (6.1) holds, i.e., that, in the explored ionic strength
conditions, macroscopic aging can be attributed solely to the progressive stiffening
of interparticle contacts, the microstructure being essentially constant shortly after
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Figure 6.1 – Matching microscopic and macroscopic data. (a) G′(t) for suspensions of
ionic strength I = 0.15 M, for (i) φ ' 38% and particle diameters, 2a = 0.7 (black),
1 (green), and 1.6 µm (purple) and (ii) φ ' 36.5% and 2a ' 1.9 µm (blue), versus
the effective flexural rigidity k0(a?; t) at the same aging time t; error bars show the
standard deviation of G′ data over centered 5s intervals. (b) The shear modulus G′
(squares) for the same suspensions in (a) as a function of aging time. Filled circles
(in lighter corresponding colors) are the predictions obtained by extrapolating (see
text) the aging data from our three-point bending tests. (c-d) Similar plots, but for

suspensions with I = 0.20 M, 2a = 1.6 µm and two packing fractions.
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cessation of shearing. The linearity between G′ and k0, thus, reflects the structural
arrest of the suspension network on time scales of few seconds, and demonstrates
further that the network deformation is essentially dominated by bond bending.

To further test the above relation, we tentatively analyzed plots of G′(a, t) vs
k0(a?; t) parametrized by aging time t. Interestingly, as illustrated in Figure 6.1(a)
(black-green-purple data) and Figure 6.1(c), the linear relationship systematically
applies also when the shear modulus data, obtained at different particle sizes, are
compared with the bond stiffness for the given radius a?, no matter the ionic strength
or packing fraction. We thus are able to fit the G′(a, t) vs k0(a?, t) by a linear
expression:

G′ = C +N × k0 (6.2)

for each of our macroscopic data set, i.e. for each a, I, and φ. In some cases,
the G′ vs k0(a?) line intercepts the y axis at a small finite value, always < 50kPa.
These intercepts should be attributed to experimental errors as: (i) they do not
appear to correlate with any of our parameters (a, I, or φ); (ii) they correspond to
the indeterminacy of the origin of aging time in either rheometry or flexural bend-
ing experiments, and (iii) they lie below our experimental error bars (0.03N/m) on
k0(a?). As a consequence, assuming C ' 0 in Equation (6.2) provides equally ac-
ceptable fits, as demonstrated by red dashed lines in Figure 6.1(a). The remarkable
collapse demonstrates that macroscopic aging can be predicted using just our con-
tact aging data for a single particle size. Thereafter, using the fit parameters, we can
reconstruct the time evolution of macroscopic modulus (brightly colored symbols in
Figure 6.1(b) and Figure 6.1(d)) from the k0(a?) time series.

We now focus on suspensions with ionic strength I = 0.15 M, and report in
Figure 6.3(a) the proportionality factors N as a function of φ, extrapolated from the
linear fits. Since we use the same ionic strength, the emergence of different curves
can only be imputed to the an effect of the particle size. Clearly, one wishes to find
a function that collapses all the data into a single master curve, thus eliminating the
effect of a. To do so, in the following section we will use the Pantina-Furst model
for k0, in combination with Equation (6.1).

Pantina-Furst model Remember that in Section 4.5.2 we used Euler-Bernoulli
beam theory to express the bending stiffness k0 as a function of the contact area
between particles. Equation (4.26) predicts k0 ∝ a−1/3, which, combined with
Equation (6.1) yields for the macroscopic shear modulus:

G′(a, t) = S · (3π)7/3E

4 a4/3

(
W (t)
E∗

)4/3

= S
(a?)1/3

a4/3 k0(a?, t) (6.3)

If this relation holds, we now expect that, since [k0(a?)]3/4 does, (G′)3/4—and not
G′—grows logarithmically in time. We check this by plotting in Figures 6.2(a)
and 6.2(b) the G′ data of Figures 6.1(b) and 6.1(d), respectively, as (G′)3/4 vs t.
There is a considerable improvement on this representation of the range where a
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Figure 6.2 – Log-lin plot of [G′]3/4 vs t supporting that asymptotic growth is rather
' [log(t/τ)]4/3 as suggested by our arguments (see text for details).

logarithmic growth is observed, which supports strikingly well the scaling predicted
by our simple relation.
Next, for each of our macroscopic data set, we take the slope N of the linear fit,
and estimate the structural parameter S of equation (6.3) as:

SPF ' a4/3

(a?)1/3 N (6.4)

All of our SPF data, when plotted vs φ (see Figure 6.3(b)) remarkably collapse on a
single curve. This confirms the prediction of the beam model for the a−4/3 particle
size scaling of G′, and supports that the dimensionless prefactor S depends neither
on particle size, nor on ionic strength. Unsurprisingly, S rapidly increases with φ.
The data are consistent with its diverging at a packing fraction φc, as it fits reason-
ably well an expression of the form S = S0/(φc − φ)α, for example with φc ' 0.52
and α = 4, as shown.

We find quite striking that our silica data support that both k0 and G′ age
asymptotically as ∝ [log(t/τ)]4/3, and furthermore verify the predicted a-scaling.
Indeed, we expect this analysis to explain qualitatively the origin of the growth of
network rigidity, but not to provide consistent predictions at such a level of detail.
Thus, while the data bring compelling experimental evidence for Equation (6.3), we
also tested the possibility that k0 is independent from the particle size, like in the
Dominik-Tielens model. In this case, Equation (6.1) is not affected by the particular
value of a?, and the particle radius enters only as a linear proportionality constant
between N and S:

SDT ' a N (6.5)
(the labelDT is used to remind that a similar scaling would have be obtained with the
Dominik-Tielens rolling model). Note that, even though Equations (6.4) and (6.5)
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Figure 6.3 – (a) Proportionality prefactor N versus φ for the same I but different
particle sizes; error bars show the confidence intervals of the G′ vs k0 linear fit. (b)
Structural parameter SPF expected from the Pantina-Furst model, Equation (6.4);
different a (I) are shown with contrasting symbols (colors). (c) Structural parameter
calculated from the scaling in Equation (6.5), akin to the Dominik-Tielens predictions.
Solid lines are fits with S = S0/(φc − φ)α, with fixed α = 4 and (b) φc ' 0.518 and

(c) φc ' 0.532.

only differ by a factor (a/a?)1/3, which is a small contribution in the (restricted)
range of particle sizes used in our experiments, the collapse shown in Figure 6.3(c)
appears less convincing.

6.1.2 PMMA particle suspensions
To support the generality of our findings, we now examine the results for the 2a =

3 µm PMMA suspensions in CaCl2 solutions. Equation (6.1) between macroscopic
and contact aging can be tested directly as we used the same particle size in both
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Figure 6.4 – Macroscopic and contact aging in PMMA suspensions. (a) Shear modulus
G′ vs k0 for the same aging times, showing that the two quantities are well described
by a linear relationship. (b) Macroscopic shear modulus G′ (colored squares) for
two suspensions with φ ' 0.35 and different ionic strengths along with the modulus

reconstructed from the k0 time series (brightly colored circles) using a linear fit.

type of experiments. We report in Figure 6.4(a) our G′(t) vs k0(t) data for different
ionic strength conditions (I = 0.20-0.80 M). Quite remarkably, all of these plots are
very clearly linear, namely of the same form G′ ' C + N × k0. However, in sharp
contrast with the case of silica, the intercepts are rather large and cannot arise from
experimental errors. This entails that at very early times, when the bending rigidity
is still negligibly small, PMMA suspensions already present an initial measurable
macroscopic modulus G′0 ' C associated with the network of attractive interparticle
bonds. The linearity of the G′ vs k0 plots supports that G′ is just the sum of two
contributions: G′0, which does not age, and N × k0, which does, due to contact
aging.

G′(a, φ, I, t) = G′0(a, φ, I) + S(φ, I)
a

× k0(a, I, t) (6.6)

Our PMMA data thus demonstrate that, just as with silica suspensions, the
growth of G′ can solely be attributed to that of k0, irrespective of the initial modu-
lus G′0. The time evolution of G′ can then be reconstructed from the k0 times series,
using just the two constant parameters G′0 and N of the linear fits —see the brightly
colored symbols in Figure 6.4(b), which fall right on top of the G′ curve.

We do not have for the moment a clear explanation for the physical origin of G′0,
and why the overall suspension aging is only related to an increase of the rolling stiff-
ness, whereas the total macroscopic elasticity appears to depend also on additional
local time-independent rigidities. Observe also that G′0 is almost identical —around
12 kPa —for all the suspensions with I ≤ 0.60 M, and sharply falls to ∼4 kPa for
the higher ionic strength. At this stage, we are not able to explain this behavior,
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nor if we can attribute it to the charge reversal of the particles observed at 0.6 M in
ref. [147]. Additionally, a single structure factor S can not be retrieved by our data,
as both G′ and k0 strongly depend on I.
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6.2 Yield stress
In the previous section we demonstrated that the G′ aging of our suspensions

can be imputed solely to the aging of the particle-particle contacts, considering the
microstructure essentially frozen over time. Here, we extend these findings to the
non-linear rheological response of the suspensions, by establishing, for the fist time,
a direct link between the strengthening of the contacts and the time evolution of σy.
The quantitative agreement between microscopic and macroscopic measurements
enable us to elucidate the origin of the yield stress aging in our concentrated colloidal
suspensions.

SiO2 particle suspensions
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Figure 6.5 – Yield stress aging in a dense silica suspensions. (a) Colored filled squares
are the σy results for suspensions with ionic strength I = 0.15 M, φ ' 38% and
2a = 0.7 (black), 1 (green), 1.6 µm (purple), φ ' 36.5% and 2a ' 1.9 µm (blue). Stars
(in corresponding colors) are the predictions obtained by multiplying by a constant
proportionality factor the Mc data set at the same I. (b) Similar plot for suspensions
with φ ' 35%, 2a = 1.6 µm and I = 0.10 M (blue), I = 0.15 M (red) and I = 0.20 M

(light blue).

Recently, it has been argued [71] that the yield stress of diluted colloidal gels,
made of aggregated particles, should be essentially determined by the bending (as
opposed to elongational) micro-mechanics of the particle bonds. We now tentatively
apply this idea to our dense suspensions. From a microscopic viewpoint, this is sup-
ported by various empirical observations. Recall that the rods yield in a “brittle-like”
fashion, with the critical moment Mc marking an abrupt transition between elastic
and non linear response. A similar behavior is found in the macroscopic suspensions,
since critical strains of few tenths of % suggest that the structure is not strongly
strained prior to flow. Besides, the linear elastic domain measured in the tweezers
experiments shrinks with age and an analogous behavior can be observed by the
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analysis of the σy data (see Section 3.2). It is thus reasonable to believe that, as
we showed that the elastic shear modulus is essentially determined by the bending
rigidity of the contacts, the macroscopic yielding behavior is similarly determined by
the failure of the bonds under external torques.

In Section 4.4.1 we also demonstrated that the growth in time ofMc in our silica
rods can only be attributed to a strengthening process occurring within the inter-
particle contacts. Such contact aging, together with the observation of structural
arrest, leads us to ask whether the macroscopic yield stress growth can be related
to the time evolution of Mc, i.e whether we can write:

σy(a, φ, t) = Q(φ)
a3 ×Mc(a, t) (6.7)

where Q is again a time- and I-independent prefactor associated to the microstruc-
ture (the analogous of S).

To test this hypothesis, we first focus our attention to a suspension made of
2a? = 1.9 µm silica particles at φ = 0.365. Macroscopic yield stress measurements
at three different aging times —t=300-600-1200 s —give σy(a?, t) ∼12-20-25 Pa,
respectively, as illustrated in Figure 6.5(a) (filled blue squares). We now wish to
compare these data with the time-dependent critical moments obtained from bending
tests on identical particles. Observe that, in contrast with the case of elasticity, a
direct fit between σy andMc is not possible due to the small number of data acquired
during the rheology cycle (Section 3.2.3). However, since at the same aging time,
Mc(a?, t) ∼ (10-19-21) ·10−18Nm (see also Section 4.4.1), it is easy to show that
the ratio σy/Mc remains almost constant during the considered time interval, which
suggests, hence, that the time evolution of the yield stress and the critical moment
are proportional, i.e. that Equation (6.7) holds. Hence, a rough calculation of the
structure factor could be performed via

Q(φ) = a?3 <
σy(a?, t)
Mc(a?, t)

>t (6.8)

where < ... >t∼ 1.15 ± 0.10µm−3 denotes the average over the three aging times
t=300-600-1200 s. Using a? = 0.95 µm, Equation (6.8) yields Q ∼ 1. With this
value, we reconstruct the time evolution of the yield stress from the Mc(a?, t) time
series, as shown in Figure 6.5(a) with blue stars. The remarkable correlation be-
tween microscopic and macroscopic measurements represents a direct evidence that
the yield stress growth is determined solely by the strengthening of the particle-
particle solid contacts.

We now check whether the full set of σy vs t can be predicted only on the basis of
the critical momentsMc obtained with the particular particle size used in the bending
tests. To calculate the proportionality prefactor N , however, we need to know how
Mc scales with a. To do so without invoking a model, N is characterized using a
statistical approach to relate the yield stress to the critical moment time series. The
method is based on the Fréchet distance F (A,B) between two (discrete) curves
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A and B, a particular proximity (scalar) measure that takes into account (i) the
location and ordering of the points along the curves and (ii) the different dimensions
of the time series [60]. The proportionality factor N is simply found by firstly
defining a range of multiplication constants c, usually c = [0.01, 20]µm−3 and, then,
by searching for the c that minimizes the distance F (σy, c ×Mc) between σy and
c×Mc. The yield stress data are subsequently reconstructed from theMc time series
through N ×Mc, and then plotted in Figure 6.5(a).
Unsurprisingly, we are able to predict the σy time evolution of suspensions with
different a, only using Equation (6.7) with theMc data obtained for a? —see colored
stars in Figures 6.5(a) and 6.5(b). To our knowledge, such a relationship between
contact and yield stress aging has never been directly observed before.

6.3 Elastic modulus vs yield stress
In Section 3.2 we illustrated that the elastic modulus of our suspensions, whatever

the solid volume fraction, the particle size, the ionic strength or the resting time,
can be rescaled into a single master curve if one plots G′ · anG versus σy · anσ , where
the exponents nG and nσ are simple numbers assumed to be the same for all the
silica suspensions. We now would like to explain the emergence of this master curve
on the basis of our microscopic data, as this would represent an additional stringent
support to our previous findings. First, we rewrite the shear modulus and yield stress
a-scaling as:

G′(a) = G′(a?)
[
a?

a

]nG
(6.9a)

σy(a) = σy(a?)
[
a?

a

]nσ
(6.9b)

where a? is a reference particle size (and, for now on, is assumed to coincide with the
size of the beads used in the bending tests). We then observe that in the tweezers
experiments we found:

Mc(a?, t) = mc · [k0(a?, t)]p (6.10)
with p ∼ 1/2 (see Figure 4.20(a) and Section 4.4.1) and mc a constant proportion-
ality factor. Note that, if the time evolution of σy (through Equation (6.7)) and G′
(through Equation (6.1)) are determined by adhesion energy W (t), i.e. by contact
aging, Equation (6.10) suggests that the yield stress increases more slowly than the
shear modulus. Since the linear elastic behavior roughly extends everywhere below
the yield stress —σy = G′γc, with γc a critical macroscopic strain — Equation (6.10)
confirms, hence, that the critical strain γc = σy/G

′ is a decreasing function of time,
in agreement with our rheology measurements.

Using Equations (6.1), (6.7), (6.9) and (6.10) it is easy to show that:

G′ · anG =
 S(φ)
Q1/p(φ) ·

[
[a?]3−nσ+p(nG−1)

mc

]1/p
× [σy · anσ ]1/p (6.11)

From the bulk measurements of G′ and σy (Section 3.2), we already know that the



154 CHAPTER 6. FROM MICRO TO MACRO

−12 −11.5 −11 −10.5 −10
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g 10

(G
 ⋅ 

a 
[ N

 / 
m

 ])

log
10

(σ
y
 ⋅ a2 [ N ])

 

 

2a = 0.50 µm
2a = 0.70 µm
2a = 0.80 µm
2a = 1.00 µm
2a = 1.20 µm
2a = 1.60 µm
2a = 1.90 µm
D−T model

(a)

−10 −9.5 −9 −8.5 −8
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

lo
g 10

(G
 ⋅ 

a4/
3  [ 

N
 / 

m
2/

3  ])
 

log
10

(σ
y
 ⋅ a5/3 [ N / m1/3 ]) 

 

 

2a = 0.50 µm
2a = 0.70 µm
2a = 0.80 µm
2a = 1.00 µm
2a = 1.20 µm
2a = 1.60 µm
2a = 1.90 µm
P−F model

(b)

Figure 6.6 – (a) Elastic modulus versus yield stress scaled with nG = 1 and nσ = 2,
respectively. (b) Same thing, using the P-F estimations (nG = 4/3 and nσ = 5/3,

respectively).

shear elastic modulus should scale approximately with the inverse of the particle size,
whereas the yield stress with the inverse of the particle size squared. This suggests
nG = 1 and nσ = 2 in the previous expression. According to Equation (6.7), nσ is
equal to 2 only if Mc ∝ a. More precisely, it turns out that these exponent values
are those predicted by the Dominik-Tielens rolling model, in view of Equation (6.10)
(refer to Section 4.5.3 and Table 4.3) and, for this reason, we will refer to the D-T
model when using nG = 1 and nσ = 2. Summing up, with the above values and
p = 1/2, Equation (6.11) reduces to:

G′ · a =
 S(φ)
Q2(φ) ·

[
a?

mc

]2
× [σy · a2

]2
, (6.12)

The above relationship can be tested directly upon our macroscopic data, by plot-
ting log (G′ · a) as a function of log (σy · a2). The results, for all the studied
packing fraction, ionic strengths, resting times and particle sizes are reported in
Figure 6.6(a). The macroscopic data are then fitted by a power-law relationship
G′ · a = C × [σy · a2]u with C and u as fitting parameters, as predicted by Equa-
tion (6.12). The fit yields u = 1.75 ± 0.15 (dashed black line), which is close, but
not equal to the expectation of the model (i.e. 2). Observe, however, that if one
forces the fit using u = 2 and leave C as a free parameter (solid black line), one
still obtains a reasonable agreement; the goodness of the two fits can be roughly
compared by taking their R-squared values, R = 0.866 and R = 0.846 in the two
cases, respectively. The results of the fits are reported in Table 6.1.

The good agreement between the macroscopic data and Equation (6.12) indicates
that the term between curly brackets in the latter is constant. Since both a? and
mc are constant in our tweezers experiments, this is possible only if S(φ) ∼ Q(φ)2.
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Table 6.1 – Power-law fits to theG′ versus σy curves in Figure 6.6. Errors are confidence
intervals of the fit.

Model C u R-squared
G′ · a = C × [σy · a2]u 1.55 · 1017J−1 1.75± 0.15 0.866
G′ · a = C × [σy · a2]2 1.20 · 1020J−1 / 0.846

G′ · a4/3 = C ×
[
σy · a5/3

]u
1.30 · 1014N−1 2.04± 0.15 0.870

Using the experimental values for mc and a?, and the fitted C ≈ 1.20 · 1020J−1, we
then obtain [

a?

mc

]2
∼ 9 · 1020J−1, (6.13)

and, hence
Q(φ) ≈ 2.75×

√
S(φ) (6.14)

Let us reflect on two consequences of Equation (6.14). From Equations (6.1), (6.7)
and (6.14) one obtains:

γc(t, φ) ∼ 2.75 ·Υc(t)
96 · a

√
S(φ)

∼ 2.75 · ϑc(t)
96 ·

√
S(φ)

(6.15)

where Υc and ϑc are the interparticle critical rolling displacements and angles (resp.).
This relation is able to capture two main features of our rheology data. Indeed, since
S grows with φ and Υc(t) decreases with age of the contacts (Figure 4.20(b)),
γc(t, φ) is a decreasing function of (i) packing fraction and (ii) aging time, as we
indeed observed in Section 3.2. Note also that a similar γc vs φ behavior has been
reported in diverse experimental works [196, 22, 29] and shares some similarity with
the reduction of the limit of elastic linearity discussed in [178].

Pantina-Furst model We now analyze our scenario on the basis of the scaling
laws predicted by Pantina and Furst, and Equation (6.10) with p = 1/2. In Sec-
tion 4.5.2 we have seen that the bond stiffness and the critical bending moment
should scale as:

(I) kPF0 (a, t) ∝ a−1/3 ·W 4/3

(II) MPF
c (a, t) ∝ a4/3 ·W 2/3

Thus, nG = 4/3. Since Mc is proportional to a4/3, from Equation (6.7) one obtains
σy(t) ∝ a−5/3, i.e. nσ = 5/3. Upon inserting these values in Equation (6.11), we
get:

G′ · a4/3 =
 S(φ)
Q2(φ) ·

[
a? 3/2

mc

]2
× [σy · a5/3

]2
, (6.16)

Of course, the data collapse predicted by the model differs from that obtained pre-
viously. Yet, despite this different a-scaling, the results are still compatible with a
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power-law function G′ · a4/3 = C × [σya5/3]u. A direct fit with C and u as free
parameters yields C ∼ 1.3 · 1014N−1 and u = 2.04± 0.15, as shown in Figure 6.6(b)
(black solid line). The fit results and the corresponding R-squared value (R = 0.87)
are reported in Table 6.1. Therefore, the P-F expectations nicely agree with the
empirical G′ versus σy curve, since one gets u ∼ 2. Moreover, since we have:

[
a?3/2

mc

]2

∼ 8.35 · 1014 N−1 (6.17)

and C ∼ 1.3 · 1014N−1, we obtain a similar relationship to Equation (6.14):

Q(φ) ≈ 2.5×
√
S(φ) (6.18)

Note that the scaling exponents, nG and nσ, are based on the particular model used
to characterize the rolling properties of the contacts (P-F or D-T), while the power-
law exponent ∼ 2 is determined only by p ∼ 1/2 in Equation (6.10), i.e. by the
empirical relationship obtained in our tweezers experiments. The fact that Equa-
tions (6.12) and (6.16) with u ≈ 2 appear to well describe our macroscopic data,
hence, gives an additional support to our scenario, viz. a shear modulus and yield
stress aging that is proportional to the time-evolution of k0 and Mc, respectively,
with S and Q two time-independent quantities characterizing the microstructure.

We now study the predictions of the P-F model in terms of critical rolling angles.
Recalling thatMc = ηPFa2

c , with ηPF = 0.039±0.003N/m, the critical rolling angle
decreases with particle size and adhesion energy as:

ϑPFc (a, t) = 32ηPF
π(3π)2/3Ea1/3 ·

(
E?

W (t)

)2/3

≈ 1.85 · 10−5

a1/3W 2/3(t) (6.19)

From our bending data we first evaluate W (t) at a particular aging time, e.g.
t = 300s, and then assess ϑc versus a from Equation (6.19), as illustrated in Fig-
ure 6.7 (black solid line). We compare this estimate with the critical angles computed
from Equation (6.15), averaging γc(φ) ·

√
S(φ) over all suspensions with same par-

ticle size and different pairs (φ, I), and using the fitted SPF values (filled symbols).
The superposition of the data indicates, as expected, that the model describes qual-
itatively well our bulk rheology data.

6.4 Discussion
It would be clearly desirable to find an unambiguous scaling behavior. Unfortu-

nately, this is hardly achievable only on the basis of our rheology data in Figures 6.6(a)
and 6.6(b). We repeat that the reason is quite simple: our study, like many others
in colloidal suspensions [221, 23, 113, 131, 68], suffer from the small range of a
which is experimentally accessible (usually in the 50nm-3 µm interval). Besides, the
results are likely to be altered by experimental issues as particle polydispersity, shape,
surface roughness, etc.
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Figure 6.7 – Average critical rolling angle versus particle radius computed from rheology
measurements (γc) and Equation (6.15) (solid symbols). Solid line is the prediction of

Equation (6.19).

Nevertheless, our analysis suggests scaling exponent values that are similar to those
found in strongly flocculated colloidal suspensions where contacts may be rele-
vant [221, 23, 113, 131, 68]. Focusing on σy, for instance, we obtained σy ∝ a−2

and σy ∝ a−5/3 when we used the D-T or the P-F models, respectively. Attempts to
rationalize the yield stress behavior as a function of particle size, on the other hand,
are generally based on the idea that the solid-liquid transition arises from the tensile
failure of the colloidal bonds [172, 63], in agreement with centro-symmetric inter-
actions. These models usually predict σy ∝ a−1, in contrast with the experimental
σy ∼ a−2 dependence found in the mentioned works.

We emphasize that the core of our results is the experimental demonstration
that contact aging is determinant in shaping the mechanical properties of dense
suspensions of strongly flocculated colloidal particles. Our scenario is very clearly
supported by the combination of our observations at particle and macroscopic scales.
In particular, (i) we directly observe flexural aging using our tweezers experiment and
(ii) we establish a linear relation with macroscopic aging.
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In this work, we have studied two ionic suspension models involving particles of
sharply different natures. In both cases, we observed the same scenario: first, the
microstructure rapidly stabilizes due to the formation of irreversible contacts; then,
macroscopic aging proceeds due to the growth of flexural rigidity between particles,
i.e. the stiffening of contacts. We have analyzed this scenario through contact
models based on adhesion theories [102, 48], and we have attempted to provide an
interpretation for contact aging at the microscopic scale. We stress, however, that
our conclusions do not depend on the aging mechanisms at these scales, which is
a system-specific issue. Using two systems with drastically different aging mecha-
nisms at sub-contact level, we have indeed shown that the existence of a relationship
between contact and macroscopic aging does not depend on the microscopic mech-
anisms of aging inside the contact. Although what is actually causing contact aging
is an important and interesting problem, it is just not the goal of the present work.

It may be argued that macroscopic aging could proceed via a different mechanism
that the one we propose. One possibility could be that the structure is rapidly sta-
bilized by attractive forces bringing pairs within short distances, below about 20nm,
without actual contact formation for times comparable to aging. This requires con-
tact formation to be limited by energy barriers. More precisely, the above scenario
could be valid in the conditions when the interparticle forces present two closely
energy minima: that associated with contacts and a secondary one within 20nm.
The DLVO potential may present such a structure depending on conditions. In such
a case the structure could be rapidly stabilized by the pairs accessing secondary
minima; and the progressive formation of contacts could drive aging. The barriers
limiting contact formation would then need to correspond to activation timescales
of order comparable with the onset of aging, which is about 10s. However, we have
clear evidence that such barriers are absent. First, we have identified all the param-
eters of the DLVO interaction for our system; we showed that the ionic strengths
at which we work are well within the domain where no barrier, and no secondary
minimum exist. Second, this is directly supported by our observation that contact
cannot be reopened immediately after their formation. Hence, the key condition
for the aging scenario is that the formation of solid-solid contacts is essentially not
barrier-limited. Indeed, van der Walls contact energies lie typically in the 1000kT [98]
range. So, in general, solid-solid contacts cannot be opened by thermal activation at
room temperature [187, 207]. Therefore, at moderate or high packing fractions, the
corresponding suspensions are expected to rapidly freeze into thermally irreversible
structures. Moreover, solid-solid contacts generically display roll-resistance [44], be-
cause particle surfaces are non-ideally smooth. Since, roll-resistance and aging are
ubiquitous contact properties, our whole scenario follows from the absence of barriers
limiting the formation of contacts.

It is noteworthy that our silica particles, being micron-sized, should sediment over
seconds if they were not interacting. Yet, they stabilize at rather moderate volume
fractions (at least down to 33% [73]): this degree of stability is a signature of the
rapid formation of attractive contacts. Also, in our two systems (silica and PMMA
suspensions), rejuvenation may be achieved by a sufficiently strong preshearing, which
entails that the solid-solid contacts, although irreversible under thermal activation,
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are broken by mechanical forcing. Therefore suspensions may be both homogeneous
and easily reshuffled by shearing, even though solid-solid contacts are formed and
are stable at rest. Stability and homogeneity hence may be facilitated by contact
formation. For these reasons, our scenario—rapid stabilization by contact forma-
tion followed by contact-controlled mechanical aging—is expected to be common in
suspensions as soon as the ionic concentration is sufficient to screen out Coulombic
repulsion. This is likely to be the case of many materials of practical importance,
such as cements at the young age [169], sediments, ceramics, sewage sludges, mine
tailings, etc, which present ionic concentrations that are typically larger than those
considered here. The precise domain of relevance of this scenario, of course, will
need to be assessed case-by-case. In the relevant situations, the quantitative link we
have established between contact and mechanical aging is a plausible starting point
for the construction of predictive models.

We should also contemplate the possibility that, under certain conditions, con-
tact aging may compete with structural aging. This may occur if, for example, the
formation of contacts in not as rapid as here—i.e. is limited by non-vanishing but
small barriers—or if van der Walls contacts are weak enough to open by thermal acti-
vation. The fact that the contacts may stiffen in time may be not incompatible with
the additional presence of rearrangements. Such rearrangements appear absent in
our concentrated suspensions, due to the formation of strong, irreversible bonds and
the “high” packing fractions used. In these conditions, it has been possible to clearly
identify it. But contact strengthening must apply also in more diluted suspensions,
or gels, comprising similar particles and physio-chemical conditions, i.e. as soon as
contact formation can not be avoided. At such lower densities, however, demonstrat-
ing a relationship between contact aging and structural relaxation is rendered much
harder by the fact that other possible sources of rearrangements can not be disre-
garded. We discussed in the introduction that the development of internal stresses in
dilute gels is one of the main causes determining the unusual faster than exponential
relaxation dynamics in these systems [35, 16, 37, 87]. A stiffening of interparticle
contacts may be a source of such internal stresses, because it can change the local
force balance. Indeed, an heuristic explanation for the observed phenomena is based
on the emergence of dipole forces (and long range elastic responses) associated with
the syneresis of the gel, that is, the local shrink of the microstructure due to the
sintering of aggregate particles [35, 20]. Additionally, we have also demonstrated in
our three-point bending experiments the existence of a critical bending moment Mc

above which small-scale rearrangements are observed. Even when contacts are weak
enough that these yield events can be thermally activated, the time growth of the
energetic barrier of the critical moment is expected to have important implications
for the dynamics of the colloidal gel, as small-scale rearrangements will occur on
increasingly larger time scales [62]. The present work, thus, may provide additional
insights on the interpretation of structural aging in more diluted systems.

From a theoretical point of view, some open questions that we were not able to
fully assess, still remain. They concern the mechanics of the adhesive contacts under
external torques. In this regard, future works could be focused on the development
of micro-mechanical bending models of aggregate colloidal particles. In this work we
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have used two models that likely overlook the complexity of the contacts, and we
have shown, indeed, that they are not appropriate to describe the bending mechanics
of our colloidal particles.
Additional bending experiments are needed to understand the role of the salt valency
on the formation and aging of the adhesive contacts. Our preliminary results show
that the amplitude and time-evolution of the bending stiffness are considerably af-
fected by the addition of a monovalent, rather than a divalent, salt, and may also
depend on the hydration enthalpy or hydrated size of the cations. Moreover, it might
be interesting to investigate the role of the solution pH in the adhesion between the
particles, especially in the case of silica, for which it is known that the surface dis-
sociation may strongly depends on it [211, 127]. Lastly, it will be of considerable
interest for practical applications the study of the effects of adsorbing polymers on
adhesion, contact and macroscopic aging. Some preliminary rheology experiments
(not shown here) on suspensions of polymer grafted silica particles show that their
mechanical aging is substantially reduced. Progress on these and related questions
will open the route towards the possibility to tune mechanical aging by controlling
and tailoring the surface chemistry of particles, a fascinating perspective in many
applications.
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A
Dynamic Light Scattering

In DLS, a dilute suspension of Brownian particles is illuminated by a monochro-
matic laser, and the quasi-elastic scattered light (which implies that the magnitude
of wave vector is constant kf = ki) is detected at a scattering angle θ related to the
scattering vector q = kf − ki by q = 2 k sin(θ/2). The light scattered by a set of
N independent particles produces a random interference pattern on a screen, provide
that the light reaching the detector has not been scattered a significant number
of times (single-scattering regime). The pattern is in general formed by numerous,
irregularly spaced bright spots called speckles. If the particles positions are fixed in
time, the pattern remains unchanged. When particle positions change over time,
instead, the speckle field or interference pattern starts to fluctuate depending upon
the scatterer dynamics. In general, the intensity fluctuations are recorded for a sin-
gle speckle (fixed q) as a function of time and analyzed by means of the intensity
auto-correlation function (ACF).

g2(q, τ) = < I(q, 0)I(q, τ) >t

< I(q, t) >t

(A.1)

where < ... >t denotes an average over time and τ is the lag time. Typical
raw data and correlation function are reported in Figure A.1. The intensity auto-
correlation function is linked to the normalized electromagnetic field correlation func-
tion g1(q, τ) =< E(q, 0)E?(q, τ) > / <| E(q, 0) |2> by the Siegert formula:

g2(q, τ) = 1 + β | g1(q, τ) |2 (A.2)

where β is the Siegert factor which is inherently linked to the detection optics. It
can be shown [220] that, for a mono-size particle dispersion of Brownian particles,
the field correlation is a single exponential decay function of the form:

g1(q, τ) = e−q
2·<∆r2(τ)>/6 (A.3)

where < ∆r2(τ) >= 6Dτ is the mean square displacement. Thus,

g1(q, τ) = e−Dq
2τ = e−τ/τc (A.4)
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Figure A.1 – Intensity fluctuations in a single speckle as a function of time (left) and
corresponding intensity auto-correlation function ACF (right).

where τc(q) = 1/(Dq2) is the relaxation time. Hence, encompassed within the
correlation curve is all of the information regarding the diffusion of particles within
the sample being measured. By fitting the correlation curve to an exponential decay
function, the diffusion coefficient D can be calculated and the radius of the particles
deduced from

D = kbT

6πηa (A.5)

where, kbT is the thermal energy and η the solvent viscosity.
For a polydisperse sample, the situation is relatively more complicated, as the correl-
ogram is now a sum of exponential decays. The size distribution of the polydisperse
sample can be deduced using two main fitting procedures:

(a) the cumulant (z-average) analysis,
(b) the single distribution analysis.

In the cumulant method, one assumes that there is one overall average size and
one overall average polydispersity. Thus, the ACF is forced to fit a simple Gaussian
distribution where the z-average is the mean and the polydispersity index (PDI) is
related to the width of this simple distribution. In the other method, the distribution
by intensity is obtained from an entirely different fitting scheme; an algorithm-based
approach to resolving a mixture of exponential functions into a number of inten-
sity values each associated with a discrete size band [96]. The result is composed
of different intensity peaks which posses each their own distribution. It is worth
noting that, using Mie theory, the intensity distribution can be converted to a vol-
ume/number distribution which describes the relative proportion of each particle size
population, provide that:

(a) all particles are spherical,
(b) all particles have the same density,
(c) the real and imaginary part of the refractive index are known.
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When the sample is composed by two populations, the cumulant fit is biased because
of the assumption of a single size distribution. The results are generally in between
the two distributions. Thus, especially in the presence of even a small amount
of aggregation between particles, the z-average gives a mean size and a distribution
width which are bigger than the true ones. At the same time, also the single intensity
distribution can be somewhat misleading, in that a small amount of aggregates
or larger particles can dominate the distribution [96]. Tacking into account the
above considerations, we decide to analyze the DLS data in terms of number density
distributions, since it is less affected by the presence of aggregates [96]. Additionally,
DLS technique is strongly sensitive to sedimentation, as the intensity fluctuation of
the scattered light are affected by the presence of drift velocities.
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B
Scanning Electron Microscopy

Figure B.1 – Emission curve of an insulator versus energy of the beam electrons, ac-
cording to the Total Yield Approach (TYA).

When an insulator is imaged inside a SEM environment, the electron bombard-
ment results in a continuous charging of the surface. The charge accumulation alters
the surface potential, induces leakage currents and gives rise to hole-electron recom-
bination; all these effects preclude the acquisition of good images.

To avoid the formation of charge artifacts, here we use a strategy based on
the Total Yield Approach (TYA) [19], i.e the total emission curve of the material
under electron bombardment. According to the TYA, there are two beam energies
(crossover energies) at which the total incoming current is perfectly balanced by the
emission current. For an insulator, a typical TYA curve as a function of electron
beam energy is plotted in Figure B.1. When the beam energy E0 equals the two
crossover energies E1 and E2, the sample current Is is identical to the beam current
Ib and no net charge accumulates. However, the charging process is a dynamic effect,
while the TYA describes only stationary conditions [61]. During a continuous electron
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exposure, strong negative surface potentials develop and deviate the impinging beam
electrons from the sample surface. This not only results in poor quality images, but
modifies also the crossover energies. As these effects are stronger for larger E0,
charge artifacts can be efficiently reduced only working at E0 ∼ E1 [19, 103].



C
Particle tracking

Particle tracking is at the core of our data analysis, both for the confocal mi-
croscopy and the optical tweezers experiments. Over recent years, numerous tracking
algorithms have been developed to monitor the sub-pixel displacement of fluorescent
particles, depending on the details of the sample and the imaging system [101]. In
general, nanometer resolution can be achieved in very ideal samples, where particles
are not in touch and the signal to noise ratio (SNR) is high. In this section we
will briefly explain the strategy used to extrapolate the particle trajectories from our
images.

Centroid algorithm

In colloidal studies, the most popular tracking algorithm is the centroid one, de-
veloped by Crocker et al. [41]. The first step of the centroid method consists in
searching for local maxima (pixels) of the images, as they correspond to the near-
est pixels to the ‘true’ particle centers. Subsequently, the position estimations are
refined based on the moments of the object intensity distribution, through single or
multiple iteration steps.

In this work, we use the centroid method proposed by Kilfoil and co-workers [77].
It was claimed that the algorithm provides particle positions with resolution of 1/10
of a pixel, also in dense colloidal suspensions. Let us explore in more detail the
fundamental characteristics of this tracking scheme. Although the results are given
for the two dimensional case, they can be easily extended to three dimensions.

Image restoration

Contrast gradient The first step of the algorithm involves image restoration, as
digital images typically suffer from various shortcomings, like geometric distortion,
nonuniform contrast, and noise [41]. Contrast gradients, which usually arises from
nonuniform pixel sensitivity, can be modeled by a boxcar average over a region of
extent 2w1 + 1, where w1 is an integer larger than the particle apparent radius in
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pixels, but smaller than the typical interparticle separation.

I1(x, y) = 1
(2w1 + 1)2

w1∑
i,j=−w1

I0(x+ i, y + j) (C.1)

where I0(x, y) is the raw image. Despite interparticle distances in concentrated
suspensions are usually greater than w1, the results of Equation (C.1) remain useful
to suppress contrast gradients [101].

Single pixel noise Digitization of the CCD camera is an additional source of
noise. As the typical correlation length of such a digital noise is λn ∼ 1 pixel [41],
a common strategy is to convolve the image with a Gaussian kernel of linear size
2w1 + 1:

I2(x, y) = 1
B

w1∑
i,j=−w1

I1(x+ i, y + j) exp
(
−(i2 + j2)

4λ2
n

)
(C.2)

where B =
[∑w1

i=−w1 exp (−i2/(4λ2
n))
]2
. This convolution removes the noise without

unduly blurring the image [41].

Particle tracking

Candidate particle location After filtering the raw image, the locations of
the candidate particles are computed by identify the local maxima within the image.
The corresponding integers (xm, ym) correspond to the nearest pixels to the “true”
position. To avoid the overlapping of more than one local maximum per particle, a
pixel is considered a candidate only if it is the brightest point within a region of size
2w2 × 2w2, with w2 an integer equal to (or larger than) the particle radius in pixel.

Position refinement The location refinement is achieved by computing the cen-
troid of the intensity distribution around each local maxima [41]. To do that, a mask
of linear size 2w3 + 1 is considered around each candidate particle location. The
shift of the center (εx, εy) for integrated intensity under this mask is calculated as:(

εx
εy

)
= 1
m0
·

∑
i2+j2≤w2

3

(
i
j

)
I2(x+ i, y + j) (C.3)

where m0 = ∑
i2+j2≤w2

3
I(x+ i, y+ j) is the integrated intensity of the feature. The

particle position is finally updated to (x0, y0) = (xm + εx, ym + εy). Similarly, the
second moment of the intensity distribution, which corresponds to the particle radius
of gyration, can be computed as

m2 = 1
m0

∑
i2+j2≤w2

3

(i2 + j2) · I2(x+ i, y + j). (C.4)

Further position refinements The main improvement of Kilfoil and co-workers [77]
consists in using an iterative refinement algorithm, based on Equation (C.3). In the
k-th iteration, the position refinement (εkx, εky) is obtained using a window centered
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Figure C.1 – Sketch of the intensity interpolation routine used in each refinement
iteration. Light filled gray squares belongs to the mask used for the computation of
the shift (εx, εy). The mask for further refinement is shown with darker gray squares

and is centered on (x+ εx, y + εy). Figure taken from [77].

on the previously estimated center (xk−2 + εk−1
x , yk−2 + εk−1

y ) (i.e. obtained in the
k−1 iteration). Note that for k > 1, both xk−2 +εk−1

x and yk−2 +εk−1
y are not inte-

gers, hence the new mask is not in registry with the pixels of the underlying image.
To overcome this problem, the intensity of each pixels in the window is calculated by
a linear interpolation, using the intersection area between the mask and the original
underlying image. In Figure C.1 we report, for a 3× 3 window, an example of such
interpolation routine, according to which the intensity I of the center pixel (dark
gray square) is:

I = I1 · (1− |εx|) · (1− |εy|) + I2 · |εx| · (1− |εy|)+
+I3 · (1− |εx|) · |εy|+ I4 · |εx| · |εy|

(C.5)

Tracking generation Once the particles have been located in a sequence of
consecutive images, a standard algorithm can be used to determine the trajectories.
The details of this procedure can be found in [41].

Limits of the centroid algorithm
The centroid technique has been widely used for the characterization of colloidal

systems. The reason is twofold. On the one hand, it is a relatively simple technique,
and numerous routines have been implemented in recent years. On the other hand,
the calculations it involves are not computationally demanding, so that a huge num-
ber of images with a large number of particles can be processed in a relative small
amount of time.
Despite the centroid algorithm is known to give good results even for relatively low
quality images [101], it works better in quite dilute samples, where the intensity dis-
tribution of different particles does not interfere. We report in Figure C.2 a typical
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true location apparent location

centroid window

particle 1 particle 2

Figure C.2 – Intensity distribution overlap for two particles in contact.

problem that arises when two particles are in contact, or in close proximity to each
other. In these conditions, due to the point spread function of the microscope and to
light diffraction, the intensity distributions of the particles overlap (red dashed line).
Suppose that we are still capable to resolve the local maxima (i.e. the center candi-
dates) associated with each particle (green dashed lines). In the position refinement
step, one needs to open a window around these candidates to converge to sub-pixel
resolution. As shown in Figure C.2, however, the intensity distribution in the such a
window is asymmetric, and the extent of this asymmetry depends on (i) how close
the particles are and (ii) on image quality. In these conditions, the computed cen-
troids do not correspond, in all likelihood, to the true particle positions, but should
be biased towards the line connecting the centers. Reducing the size of the window
to exclude the overlapping region, on the other hand, results in under-sampling and
other artifacts. The technique may thus give biased results in dense suspensions with
a large number of particles in contact and low SNR.



D
Relation between kr and k0

Analytic approximate calculation

L

f

i= /(n-1)

RR cos( /2)

i

i

a

a
kr

Figure D.1 – Schematic geometry of an eleven-particles rod which bends under the
action of a bending moment M . The large magenta crosses are the particle centers.
Red spirals represent the particle-particle contacts where rotation occurs. For clarity,

the deflection has been exaggerated.

Let us consider a rod made of n particles of radius a, such that its length (the
distance between the centers of the end particles) is:

L = 2a(n− 1) (D.1)

Suppose that under an external bending moment the rod shape can be depicted as
in Figure D.1, where the red spirals represent the bonds undergoing rotation, and
the crosses the particle centers. Each bond (i.e. contact) can be ideally replaced by
a torsion spring of elastic constant kr.
If the deflection δ is considerably smaller than the length of the beam, the radius of
curvature R is R ∼ L/ϑ. The elastic energy stored in the rod can be expressed as
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a sum of the elastic energies associated with the rotations of the particles:

Eel = 1
2kr

n−1∑
i=1

ϑ2
i = n− 1

2 kr

(
ϑ

n− 1

)2

(D.2)

where we assume that all the particles rotate of the same angle ϑi ∼ ϑ/(n − 1).
Now, since the deflection at the center is δ = R−R cos (ϑ/2) and being

cos
(
ϑ

2

)
=

√√√√1− sin2
(
ϑ

2

)
≈

√√√√1−
(
ϑ2

4

)
≈ 1− ϑ2

8 +O(ϑ4) (D.3)

in the limit of small angles, we obtain:

δ = Rϑ2

8 ⇒ ϑ = 8δ
L

(D.4)

in which we used Rϑ ∼ L. Combining Equations (D.1), (D.2) and (D.4), we can
rewrite the elastic energy as:

Eel ∼
64kraδ2

L3 (D.5)

The bending force associated with this elastic deflection δ is:

Fbend = ∂Eel
∂δ

=
(

128kra
L3

)
δ = kbδ (D.6)

where kb is the bending stiffness we used throughout the manuscript. Hence:

kr ∼
(
L3

128a

)
kb (D.7)

In this work we have considered the single bond bending rigidity k0, defined as:

k0 = kb

(
L

a

)3
(D.8)

Thus, the relationship between the rolling stiffness kr and the effective bond rigidity
k0 is:

kr = k0a
2

Γ (D.9)

where Γ = 128 for this approximate calculation.

Numeric solution

The prefactor of Equation (D.9) can be calculated using an optimization tech-
nique based on energy minimization. To proceed, we schematically plot our bent
chain as in Figure D.2. As illustrated, each particle is attached to its nearest one by
a torsion spring of rigidity kr (red spirals) and is rotated by an angle ϑi = |ϕi+1−ϕi|,
with ϕi the angle of particle i with axis x. Defining the origin of the axes at the
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Figure D.2 – Sketch for the calculation of the prafactor Γ.

center of the leftmost bead, the position of particle i can be computed as follow:

xi = a ·
i−1∑
j=1

(cosϕj + cosϕj+1) (D.10a)

yi = a ·
i−1∑
j=1

(sinϕj + sinϕj+1) (D.10b)

In the limit of small angles sinϕ ∼ ϕ, the rod deflection reads:

δ = y(n+1)/2 = a ·
(n−1)/2∑
j=1

(ϕj + ϕj+1) (D.11)

The stored elastic energy is:

Eel = 1
2kr

n−1∑
i=1

(ϑi)2 = 1
2kr

n−1∑
i=1

(ϕi+1 − ϕi)2 (D.12)

Using the technique of Lagrangian multiplier we must minimize the quantity:

L = Eel −W − λ · g (D.13)

where W = Fbendδ is the work of the external bending force, λ is the Lagrangian
multiplier and

g =
i−1∑
j=1

(ϕj + ϕj+1) = 0 (D.14)

is the equality constrain. An analytical approximate solution of Equation (D.13) can
be found in [12], when the number of particle in the chain →∞. The computation
being quite tedious, here we solve it numerically with Maple. The script directly
returns the bending stiffness kb as a function of n, kr and a. Using again Equa-
tions (D.1) and (D.8), we can extrapolate the prefactor Γ of Equation (D.9). The
results are reported in Table D.1:
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Table D.1 – Prefactor Γ of Equation (D.9) computed with the Lagrange multiplier
technique.

n 11 13 15 21 51 99 501
Γ 96.969 96.671 96.492 96.240 96.038 96.009 96.000

When the number of particle in the chain tends to infinity, we obtain

kr = k0a
2

96 . (D.15)



E
Equilibrium shape of a bent chain of particles

In this section we demonstrate that, in response to a bending moment, a chain
of rigid particles, connected with torsion springs of elastic constant kr, behaves
as a thin, continuous rigid rod. As a consequence, the particle positions are in
agreement with the prediction of Euler-Bernoulli beam theory under similar load
conditions. Remember that in our three-point bending tests, the two optical traps
at the end of the chain are fixed, while the center one is slowly displaced in the y
direction. Consider a chain composed of n particles of radius a. We denote with
(xl, yl) and (xr, yr) the equilibrium positions of the left and right particles, and with
(xc, yc) the equilibrium positions of the center one (c = (n + 1)/2). Let us also
denote with capital letters the corresponding positions of the trap centers. Hence
(Xl, Yl), (Xr, Yr) and (Xc, Yc) correspond to the leftmost, rightmost and center
traps, respectively. In mechanical equilibrium, the force Fc exerted on the center
is compensated by a force Fc/2 acting on each end particles. The elastic energy
associated with these optical forces is:

Etrap = 1
2kt

[(xl −Xl)2 + (yl − Yl)2
]

+
[
(xr −Xr)2 + (yr − Yr)2

]
+

[
(xc −Xc)2 + (yc − Yc)2

]
(E.1)

where kt is the trap (radial) stiffness. Without loss of generality, we can set (Xl, Yl) =
(0, 0), which obviously leads to (Xc, Yc) = (L/2, Yc) and (Xr, Yr) = (L, 0), where
L is the chain length (Equation (D.1)). The previous equation reduces to:

Etrap = 1
2kt

[x2
l + y2

l

]
+
[
(xr − L)2 + y2

r

]
+

[
(xc − L/2)2 + (yc − Yc)2

]
(E.2)

In the elastic regime, when the center trap is at Yc > 0, the applied force results in a
deformation of the chain, i.e. a change in the equilibrium angles between the parti-
cles. In these conditions, the bead positions are parametrized by an expression akin
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to Equation (D.10), where the only difference is that xl and yl are not constrained
to lie in the origin of the reference frame, and can therefore take any particular value
(x?, y?). Thus, we have:{

xl = x?

yl = y?
if i = 1{

xi = xi−1 + a · (cosϕi−1 + cosϕi)
yi = yi−1 + a · (sinϕi−1 + sinϕi)

if 2 ≤ i ≤ n

(E.3)

where the angles ϕi are illustrated in Figure D.2. With these relationships, the
position of the center and end particles in Equation (E.2) can be expressed only as a
function of (x?, y?) and {ϕi}i=1..n. The equilibrium shape can be found via energy
minimization, given the total elastic energy

E = Etrap + Echain (E.4)

where Echain is the elastic energy stored in the chain (see Equation (D.12) and
Figure D.2):

Echain = 1
2kr

n−1∑
i=1

(ϕi+1 − ϕi)2 = k0a
2

192

n−1∑
i=1

(ϕi+1 − ϕi)2 (E.5)

where we used Equation (D.15) to switch from k0 to kr, and Etrap is given by Equa-
tion (E.2) with Equation (E.3).
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Figure E.1

A maple script allows us to perform the computation. The results (solid filled
circles) for kt = 6.5 pN/µm, 2a = 1.9 µm, n = 11, Yc = 1.5 µm and three different
flexural stiffnesses of the contacts k0 = 0.01, 0.25 and 0.4 N/m, are reported in
Figure E.1. Clearly, the data are in excellent agreement with the predictions of the
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Euler-Bernoulli beam theory (black solid lines):

y(x) = −Fbend2EI

(
Lx2

4 − |x|
3

6

)
(E.6)

with EI the flexural rigidity of the rod.
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