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Chapter 1

On Arithmetic Statistics

Automorphic forms are central objects in modern number theory. Despite their ubi-
quity, they remain mysterious and their behavior is far from understood. Embedding
them in wider families has a smoothing effect and leads to results on average: these
are the aims of arithmetic statistics and motivates the recent interest towards auto-
morphic forms in families. Among families, some are more natural and carry powerful
results, and a particular emphasis has been granted to the universal family consisting
of all the automorphic representations on a given group. This chapter is dedicated to
present new results in this philosophy.

In the case of the universal family of quaternion algebras, the growth law of the
truncated family with respect to a suitable notion of size is stated. Further statistics
lie in the equidistribution result of the global universal family with respect to a geo-
metrically significant measure. It leads to answering the Sato-Tate conjecture for this
family, concerning the local measures. Finally, the distribution of low-lying zeros of
L-functions is explored, and the density conjecture partially verified.

Other reductive groups on which these arithmetic statistics problems make sense
are mentioned as an invitation to investigate universal families on a larger scale. A
glimpse towards such a program of research is provided by exploring the counting law
for some unitary and symplectic groups of low ranks.
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1.1 Automorphic world

1.1.1 Universal family of quaternion algebras

Automorphic forms and their L-functions appear to be the central objects of mod-
ern number theory since the fertile conjectures formulated by Langlands [80] and the
powerful applications of their many avatars, such as elliptic curves [35] or modular
forms [108]. In spite of their ubiquity, they remain quite mysterious objects. Embed-
ding them in larger families has a smoothing effect: singular behavior and unreachable
objects lose their weights and this allows to establish regularity results concerning the
family as well as results on average, supplying to the lack of pointwise knowledge on
every particular object information on typical ones. This is the spirit of arithmetic
statistics.

The recent years unleashed a wide enthusiasm toward the study of families of auto-
morphic forms and their associated L-functions. Understanding what makes a family
relevant for this philosophy is a critical issue. General attempts to define a suitable no-
tion of family of automorphic forms have been made in the recent years [109, 110, 77],
with a particular emphasis towards the universal family of a group, consisting of all
its cuspidal automorphic representations.

Given such a family F , the first natural question relative to it as a whole concerns
its size. For infinite families, a truncation to a finite set makes sense of the problem.
Assuming FQ to be a finite subfamily of F indexed by a positive parameterQ , such that
FQ grow sto F when Q goes to infinity, the question is to determine the asymptotic
behavior for the size of FQ .
The general linear group is the fundamental groundwork for automorphic repres-

entations, and the Langlands philosophy considers it as an ambiant group for more
general reductive groups. The case of GL(2) is the first non-commutative one, yet
far from totally understood. One way to explore some of its features is to consider
its inner forms: they are the groups of units of quaternion algebras, groundwork of
the present thesis. Let a quaternion algebra B over a number field F and introduce
G = PB× = Z (B)\B×. Consider A (G ) the universal family of G, that is the set of
all automorphic infinite-dimensional representations of in L2(G (F )\G (A)). Following
Sarnak [109], a deep understanding ofA (G ) is of fundamental importance in the the-
ory of automorphic forms.

As an analogy and a guide for the methods, turn for a moment to a more usual set-
ting: the one of general linear groups. The universal family A (G ) embeds, via the
Jacquet-Langlands correspondence, as a subfamily of the universal familyA (PGL(2)),
composed of all the cuspidal automorphic representations of PGL(2). In the latter con-
text, even in the broader setting of cusp forms on general linear groups, Iwaniec and
Sarnak [65] have defined a good notion of size, given by the analytic conductor. It is a
positive real number c (π ) defined from the functional equation satisfied by the finite
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part L-function L(s,π ) associated to π ∈ A (PGL(2)), which takes the form

L(1 − s,π ) = επX (s,π )L(s,π ), (1.1)

where επ is the root number of π . The completing factor X (s,π ) takes value επ at the
central point 1

2 , and the additive analytic conductor is defined to be c (π ) = X ′( 12 ,π )
following the presentation of Conrey et al. [29]. Further considerations on the ana-
lytic conductor as well as discussions concerning its different avatars are carried on
in Section 2.2. The function X (s,π ) involves the usual arithmetic conductor as well as
archimedean gamma factors, so that the analytic conductor encapsulates the complex-
ity of π . It allows to truncate the universal family of PGL(2), and hence the one of G,
to a finite set [16]. The truncated universal family may then be introduced as

A (Q ) = {π ∈ A (G ) : c (π ) 6 Q }, Q > 1. (1.2)

The present work is a statistical exploration of this family in various aspects, such as
asymptotic growth, equidistribution with respect to a geometric significant measure,
behavior of the associated local components, and some statistics on the zeros of the
associated L-functions.

1.1.2 Analogy with the height on algebraic varieties

The counting problem admits an interesting analogy with the well-known question
of counting rational points of bounded height on a smooth projective variety over a
number field. The absolute Weil height is the proper notion of size in this setting and
is defined by

hPn (x ) =
∏

v

max
06i6n

|xi |1/[F :Q]v , x = (xi )06i6n ∈ Pn (F ). (1.3)

where the product runs over the places of F and does not depend on the choice of
homogeneous coordinates. Given any projective varietyV over F endowedwith a fixed
embedding ι into the projective space Pn (F ), a height function on V can be defined by
pulling back the Weil height on Pn (F ), setting

hV (x ) = hPn (ι (x )), x ∈ V . (1.4)

The most natural setting for considering such generalized questions is the one of
Fano varieties, where there are precise conjectures due to Batyrev, Manin and Peyre
[6, 99]. On those grounds, Northcott [95] proved the finiteness of the set of points of
bounded height for the projective spaces, refined by Schanuel [112] in an asymptotic
counting law.

Theorem 1 (Schanuel). There exists Cn > 0 such that for any Q > 1,

#
{
x ∈ Pn (F ) : h(x ) 6 Q

}
= CnQ

n+1
+

{
O (Q logQ ) if n = 1and F = Q;

O
(
Qn−1/[F :Q]

)
otherwise.

(1.5)
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In recent years, Sarnak has repeatedly emphasized the analogy between the Schanuel
theorem on counting rational points on projective spaces and the problem of counting
automorphic cusp forms on GL(n), so that the natural questions on algebraic varieties
carry to the theory of automorphic forms and serve as a guideline for the methods.

1.1.3 Theorem A: Counting law

Analogously to rational points on algebraic varieties, the first natural question con-
cerning a family of automorphic forms is to determine its size. The case of quaternion
algebras can be embedded in GL(2) so that, following the analogy with algebraic vari-
eties, the notion of analytic conductor used in this main theorem is inspired by the
procedure (1.4) for heights: given the by now standard notion of analytic conductor
for GL(2), the analytic conductor for quaternion algebra is provided by pulling it back
via the associated identity map between their dual groups. This canonical notion is
consistent with the one defined by the attached functional equation. The first result of
this thesis provides an asymptotic formula for the cardinality

N (Q ) = #A (Q ), Q > 1, (1.6)

referred to by Sarnak as aWeyl-Schanuel law. Rare such results exist for the whole uni-
versal family. Petrow recently handled the problem in a fairly general fashion for auto-
morphic forms on tori [14, 98]. The case of the universal family for GL(2) is handled in
a recent preprint by Brumley and Milićević [17]. For quaternion algebras, the counting
law is provided by the following statement.

Theorem A (Counting law for quaternion algebras). Let R be the finite set of places
where B ramifies. There exists C > 0 such that for any Q > 1,

N (Q ) = CQ2
+



O
(
Q1+ε

)
if F = Q and B totally definite;

O
(
Q2−δF

)
if F , Q and B totally definite;

O

(
Q2

logQ

)
if B is not totally definite.

(1.7)

The constant C > 0 is defined explicitly in (1.10), and δF = 2(1 + [F : Q])−1.

Remarks. The form of this asymptotic growth appeals some comments.

(i) There is a stricking similarity between the error term in Theorem A and that of
the classical result of Schanuel in Theorem 1 on the number of rational points of
bounded height in projective spaces. His result, when specialized to F = Q, also
has an error term that picks up an additional power of log.

(ii) The presence of a power savings error term in the totally definite case, i.e. when
every archimedean place is ramified, is noteworthy. This feature is lost without
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this assumption, like the corresponding result [17] for GL(2), where only a log-
arithmic savings is obtained. The reason for this difference lies in the passage
from smooth to sharp counting at archimedean places, see Section 3.2.5.

(iii) The assumption that B is a division quaternion algebra induces an automorphic
compact quotient, hence avoiding the technical considerations due to the con-
tinuous part of the automorphic spectrum, see Section 3.1.

(iv) The center has been removed for technical purposes and to avoid to deal with
the central terms in the Selberg trace formula. All the methods are expected to
carry on to a setting considering the center without considerable adaptation.

The precise knowledge of the constant C unveils a lot of information, and its geo-
metrical interpretation has considerable importance as in the conjectures of Peyre. An
explicit and meaningful formulation of the constant is given below, in the context of
the equidistribution properties ofA (G ), and shows striking similarities with the ones
computed for algebraic varieties [22].

1.2 Equidistribution results

1.2.1 Theorem B: Equidistribution

Beyond estimating the size of the universal family lies the question of the geometrical
distribution of the automorphic representations ofG. A good formulation of the prob-
lem is to find a measure with respect to which the universal family equidistributes,
what is carried on in this section after giving a glance at the topological and measur-
able structure the universal family is endowed with.

Each local unitary dual group Ĝv is endowed with the Fell topology and the product∏
v Ĝv is then given the product topology. Introduce the measure µ on

∏
v Ĝv that

assigns to every basic open set X =
∏

v Xv , i.e. where Xv is an open set of Ĝv and
Xv = Ĝv for all but finitely many v , the positive real number

µ (X ) =

∫ ⋆

X

dπ

c (π )2
, (1.8)

where the regularized integral is defined as

ζ⋆(1)
∏

v

ζv (1)
−1

∫

Xv

dπv
c (πv )2

. (1.9)

Here ζv is the local zeta function associated to Fv , the notation ζ⋆(1) stands for the
residue of the Dedekind zeta function of F at 1, and dπv is the Plancherel measure on
Ĝv , introduced and normalized according to the convention in Section 2.3.2.

Remarks. This integral is not as disturbing as it seems for the following reasons.
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(i) The Plancherel measure is supported on the tempered dual; since tempered rep-
resentations are generic, the conductors appearing in the integral arewell-defined
for the sets actually arising in what follows, see Section 2.2.

(ii) It is by no mean obvious that the integral (1.8) actually converges. It is the case
and Section 3.2.4 contains the explicit computations of the local factors ensuring
the convergence as well as motivating the regularization.

The measure µ has finite total mass ‖µ‖. All the definitions are now in place to
uncover the expression of the leading constant in Theorem A, namely

C =
1

2
vol(G (F )\G (A))‖µ‖, (1.10)

where the measure giving the volume of the automorphic quotientG (F )\G (A) is nor-
malized as in Section 2.1.1. The main result is the following one.

TheoremB (Equidistribution for quaternion algebras). The universal family ofG equi-
distributes with respect to the measure µ, in the following sense. For every relatively
quasi-compact open set X of

∏
v Ĝv with boundary of measure zero,

#{π ∈ A (Q ) : π ∈ X }
N (Q )

−→ µ

‖µ‖ (X ), as Q → ∞. (1.11)

1.2.2 Sato-Tate conjectures

Once global equidistribution results reached, the behavior of the local components
at a fixed place p can be investigated, following the general conjectures of Shin and
Templier [118]. This is the aim of the so-called Sato-Tate conjectures, that have their
own outside motivations worth reviewing.

An origin lying in elliptic curves

Pursuing the fruitful analogy with algebraic varieties gives ground to formulate stat-
istical problems for automorphic forms. The simplest yet already rich case is the one
of an elliptic curve E defined overQ. It can be defined by the equationy2 = x3+ax +b,
assuming for the sake of this motivating groundwork that a,b ∈ Z, so that its reduction
Ep modulo p remains smooth for almost every p, i.e. Ep is an elliptic curve on Fp .

Of great interest is to study elements of the curve Ep (Fp ). Getting rid of the x3 factor
gives a toymodel in which the number of those points would beNp (y2 = ax+b) = p+1,
up to adding a point at infinity and provideda is nonzero. More generally, for an elliptic
curve E, the number of its rational points modulo p can be written in the form

Np (E) = #Ep (Fp ) = p + 1 − ap (E), (1.12)
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where ap (E) is the trace of the Frobenius of E at p. In 1936, Hasse proved the bound
|ap (E) | 6 2

√
p, so that ap (E)/

√
p lies in [−2, 2]. Rewriting it as ap (E) = 2 cosθp (E) gives

rise to the associated Frobenius angles θp (E), lying in [0,π ]. The Sato-Tate problem
concerns the distribution of the Frobenius traces and angles. In 1963, following the
numerical works of Sato, Tate suggested the following conjecture.

Conjecture 1 (Sato-Tate for elliptic curves). For a non CM elliptic curve E, the numbers
ap (E), resp. θp (E), equidistribute in [−2, 2], resp. [0,π ], with respect to the half-circle
measure

µST =
1

π

√
1 − x

2

4
dx , resp. µ̃ST =

2

π
sin2 ϕ dϕ . (1.13)

The Sato-Tate conjecture for elliptic curves has been proven in 2006 by Clozel, Har-
ris, Shepherd-Barron and Taylor [20] under the hypothesis that the j-invariant j (E) is
not an algebraic integer, in particular implying that E is non CM. In the exceptional
case of CM curves, half of the ap (E) vanish and the limit distribution is also known.

Automorphic Sato-Tate conjecture

The work of Taylor and Wiles [126] unveiled that a semistable elliptic curve E over
Q corresponds to a modular cusp form on GL(2) of weight 2 with integer coefficients.
More generally, for modular cusp forms of weightk , the Ramanujan conjecture, known
for GL(2) by the work of Deligne [33], gives the analogous of the Hasse bound and
states that its Fourier coefficients |ap ( f ) | are bounded by 2

√
pk−1. This naturally leads

to lift the Sato-Tate problem in this modular setting.

Conjecture 2 (Modular Sato-Tate). For f a normalized non-CM modular cusp form on
SL2(Z), the

√
p−(k−1)ap ( f ) equidistribute in [−2, 2] with respect to the measure µST.

The aforementioned result of Clozel, Harris, Shepherd-Barron and Taylor proves
that this conjecture holds in the case of modular forms of weight 2 with integer coef-
ficients. In 2011, Barrett-Lamb, Geraghty, Harris and Taylor [5] generalized it to any
weight k > 2.

Towards families of automorphic representations: Corollary C

Automorphic forms give rise to automorphic representations, providing a motivation
to consider Sato-Tate conjectures in this even wider setting. An automorphic repres-
entation π ∈ A (GL(n)) decomposes as a restricted tensor product π = ⊗vπv of local
factors. Since only a finite number of the πv ’s are ramified, for a fixed π and large
enough v almost all the local component πv can be identified with its Satake paramet-
ers

πv � (α1(πv ), . . . ,αn (πv )) ∈ Tc/W , (1.14)
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where Tc is the standard complex split torus of GL(n) andW is its associated Weyl
group. These local factors living in a priori different dual groups hence have an in-
terpretation on a common ground, allowing to consider the Sato-Tate problem which
consists in determining the distribution of the local components πv .

Besides considering a fixed automorphic form forwhich information is barely reached
under strong hypothesis as above, it is possible to provide results by averaging on a
whole family of automorphic forms F . This allows not only to study the varying coef-
ficients associated to a fixed object in function of v as in the previous instances of
the conjectures, what is called "horizontal" statistics, but also to fix a parameter v and
study the coefficients αi (πv ) for π varying in F . These give rise to the "vertical" con-
jectures. Such families have been considered for instance in the works of Bruggeman
[15], Conrey-Duke-Farmer [30], Sarnak [107] and Serre [116].

Sarnak, Shin and Templier [110] surveyed the evolution of recent definitions of gen-
eral families of automorphic forms as well as their attached Sato-Tate analogues, and
formulated the Sato-Tate conjecture for families.

Conjecture 3 (Sarnak-Shin-Templier). The family F , when ordered by the analytic
conductor, is equidistributed in

∏
v Ĝv with respect to a measure µ (F ) such that

(i) it is a probability measure supported on the tempered spectrum, so does its projec-
tions µp (F ) on the local duals Ĝp;

(ii) the log-average overp exists and defines the Sato-Tate measure, more precisely there
exists a measure µST(F ) such that

1

Q

∑

Np6Q

log(Np)µp (F )|T −→ µST(F ), as Q → ∞. (1.15)

Shin and Templier [118] recently proved a precise quantitative version of this conjec-
ture in a fairly broad setting for families of automorphic representations with discrete
series at infinity. Besides, there is no result of this type when both parameters and
objects vary, only horizontal or vertical conjectures have been proven so far.

Coming back to the universal family of quaternion algebras, once the global equidistri-
bution result stated in Theorem B, the Sato-Tate conjecture questions the behavior of
the projections µp of the limit measure on the local components Ĝp when the norm
of p grows. On the common ground where all the representations in the support of
the Plancherel measures of Gp live, given by the tempered Satake parameters space
Tc/W , the Sato-Tate question acquires a precise meaning and local representations are
equidistributed with respect with the half-circle measure.

Corollary C (Sato-Tate for quaternion algebras). For all ϕ ∈ C (Tc/W ),
∫

Tc/W

ϕ̂ (x ) dµp (x ) −→
∫

Tc/W

ϕ̂ (x ) dµST(x ), as Np −→ ∞, (1.16)

where the measures µp are explicit given by (1.9).
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1.3 Low-lying zeros of L-functions

1.3.1 Importance of zeros of L-functions

The L-functions, among which the Riemann ζ function is the most celebrated repres-
entative, are ubiquitous in number theory and provide an analytic way of grasping
properties of arithmetic objects. Their zeros, even if they remain mostly mysterious,
carry information concerning the distribution of prime numbers, and more generally
the nature of the object to which they are attached, thus justifying the tremendous
efforts and interest towards the Riemann hypothesis.

Indeed, the so-called explicit formulas link distributions of the zeros to quantities
of arithmetic nature. A motivation for statistical studies on zeros of L-functions is
provided by Mazur [87], who notices that explicit formulas are generically of the form

π (x ) = MT + ET + OT, (1.17)

where π (x ) is a relevant statistic on prime numbers; MT stands for the main term
coming from particular zeros of the L-function; ET is a sum over trivial zeros that
constitutes an error term; and OT is an oscillating term coming from the other zeros.
This last term is expected to contribute as an error term, yet is often tough to estimate
and requires a sufficiently precise knowledge of the behavior of the zeros in order to
use compensations. For instance, assuming the Riemann hypothesis, every nontrivial
zero of the Riemann zeta function lies on the critical line Re(s ) = 1

2 , improving the
remainder in the prime number theorem as follows:

π (x ) = li(x ) +O
(
xe−α
√
logx

)
, without RH;

π (x ) = li(x ) +O
(√
x logx

)
, with RH.

Statistics on zeros of L-functions hence lead to a priori nontrivial results towards
the arithmetic of the underlying objects, providing a strong motivation to their study.

1.3.2 Pair correlations

Analogy between matrices and L-functions

The theory of random matrices [88] is a glass through which understand the field of
statistics on zeros of L-functions. The eigenangles of random matrices behave strik-
ingly like these zeros and, since well more explored, will serve as a guide for the L-
function world. Let A ∈ Mn (F ) be a diagonalizable unitary matrix, and consider its

eigenvalues λ(j )
A
= eiθ

(j )
A ordered such that 0 6 θ

(1)
A
6 · · · 6 θ

(n)
A
< 2π . The mean
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spacing between neighboring eigenangles is 2π
N
. In order to renormalize it to one, set

θ̃
(j )
A

:=
N

2π
θ
(j )
A
, 1 6 j 6 n. (1.18)

Similarly, associate to an L-function L(s,π ) its nontrivial zeros ρ (j )π =
1
2 + iγ

(j )
π , with

a priori γ (j )
π ∈ C without assuming the Riemann hypothesis, and ordered so that the

γ
(i )
π satisfy · · · 6 Rγ (−1)

π 6 0 6 Rγ (1)
π 6 Rγ

(2)
π 6 · · · . The mean spacing between

neighboring zeros [65] ism log c (π )
2π wherem is the degree of the L-function. Renormalize

them to 1 introducing

γ̃
(j )
π :=

log c (π )

2π
γ
(j )
π , j ∈ Z. (1.19)

The strong similarity between both settings leads to motivate statistical questions
on zeros of L-functions by existing statistical results for eigenangles of matrices.

Pair correlation for matrices

In the 50s, Wigner investigated random matrices in order to modelize atomical phe-
nomena. These are matrices of the gaussian unitary ensemble, denoted GUE(N ), i.e.
the set of unitary matrices of size N with independent random gaussian coefficients.
A particular way to grasp the behavior of their associated eigenangles is to study the
distribution of the spacings [69] between them, given by

RA[a,b] =
1

N

{
j , k : θ̃ (j )

A
− θ̃ (k )

A
∈ [a,b]

}
, A ∈ GUE(N ). (1.20)

This statistics is called the pair correlation of the matrix A. The pair correlation of a
family of matrices is naturally defined as the average of the pair correlations over the
family, that is to say in the case of the whole gaussian unitary ensemble

RGUE(N )[a,b] =

∫

GUE(N )

RA[a,b] dA. (1.21)

Dyson determined in 1962 the correlation density of GUE in the following result.

Theorem 2 (Dyson). There is a measure rGUE such that

RGUE(N )[a,b] −→
N→∞

RGUE[a,b] = RGUE[a,b] =

∫ b

a

rGUE(x ) dx , (1.22)

moreover rGUE(x ) = 1 −
(
sinπx
πx

)2
.
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Katz and Sarnak [68] proved more generally in 1997 that the spacings between the
eigenvalues of random matrices belonging to fairly general families, viz. the compact
symmetric irreducible Lie group, are all governed by the GUE distribution. Introduce
more precisely the classical groupsG (N ) among the groups of unitary matrices, ortho-
gonal matrices, or symplectic matrices of sizeN and independent gaussian coefficients.

Theorem 3 (Katz-Sarnak). For every family G (N ) of classical group, in the L1-sense,
∫

G (N )

RA[a,b] dA −→
N→∞

RGUE[a,b], a,b ∈ R. (1.23)

Firk andMiller [46] gave arguments for the ubiquity of the GUE density in statistical
modelisations in physics. The results summarized here suggest, following faithfully
the fruitful analogy betweenmatrices and L-functions, that the same universality holds
for statistics on L-functions.

Pair correlation for L-functions

Much later, Montgomery [94] first explored the analogous distribution law of spacings
between zeros of L-functions. In the particular case of the Riemann ζ function, he
strikingly noticed that the pair correlation between zeros is the same than the one
Dyson obtained for eigenangles of random unitary matrices in Theorem 2.

Theorem 4 (Montgomery, 1974). For ϕ ∈ S (R) such that supp(ϕ̂) ⊆ (−1, 1), the pair
correlation of the zeros of the Riemann zeta function is given by

1

N

∑

16j,k6N

ϕ (γ̃j − γ̃k ) −→
N→∞

∫

R

ϕ (x )rGUE(x )dx . (1.24)

Many computations led by Odlyzko [96] for other L-functions then brought strong
evidence that this statistical behavior of the zeros of L-functions seem to match the
analogous statistics for eigenangles of random matrices in GUE, leading to expect the
Montgomery result to be a general property of zeros of L-functions. This universal
behavior is known as the Montgomery-Odlyzko law. Results in this direction flour-
ished from then on, culminating with Rudnick and Sarnak [105] who proved in 1995
that the same universal distribution holds for pair correlations of a generic L-function
L(s,π ) on GL(n). The following statement is restricted to GL(2) and suits the purposes
of the present motivational background without having to introduce extra technical
condition, yet morally holds for every general linear groups.

Theorem 5 (Rudnick-Sarnak, 1996). Let π be a cuspidal automorphic representation of

GL(2,Q). Let ϕ be an even Schwartz function such that supp(ϕ̂) ⊆ (−1, 1). Then

1

N

∑

16j,k6N

ϕ (γ̃j − γ̃k ) −→
N→∞

∫

R

ϕ (x )rGUE(x )dx . (1.25)
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The result proved by Rudnick and Sarnak is the first towards the analogous conjec-
ture for every L-functions. Indeed, the Langlands functoriality conjectures [26] pos-
tulate that every L-function comes from an L-function attached to a cuspidal auto-
morphic representations on a general linear group. The result of Rudnick and Sarnak
positively answers these "standard" cases, even for higher level correlations.

1.3.3 One-level densities

The universality of the GUE law for pair correlations is surprising. Indeed, the previous
results are disappointing for they are blind to the differences between the classical
groups and it can be expected, in contrast with the Montgomery-Odlyzko law, that
other statistics will be able to distinguish among them. A second disappointment with
correlations is that they are blind to many modifications on the zeros, and in particular
do not give any importance to zeros usually of arithmetic significance, like the central
point.

One-level density for matrices

The correlation statistics considered until now are global statistics, taking into account
all eigenangles, since they consider only the distribution of spacings between them.
Katz and Sarnak broke this universality, turning their interest towards statistics con-
centrated on small eingenangles.

Definition 1. The one-level density attached to A is the distribution defined by, for ϕ
be an even Schwartz function on R and A ∈ Mn (R),

D (A,ϕ) :=
∑

16j6N

ϕ
(
θ̃
(j )
A

)
. (1.26)

Here ϕ is a quickly decreasing test function which is no more supposed to be a
function of the differences as for pair correlations. This time, large eigenangles are
essentially cut off, and hence D (A,ϕ) is a weighted average of the small eigenangles.

Definition 2. Let ϕ be an even Schwartz function on R. The one-level density of a
family F endowed with a probability measure is

D (F ,ϕ) =
∫

F
D (A,ϕ) dA. (1.27)

In the matrice setting, Katz and Sarnak [68] proved that the average density over a
family differs depending on the group considered, breaking the embarrassing univer-
sality of GUE.

Theorem 6 (Katz-Sarnak). For the classical groupsG (N ), for every real Schwartz func-
tion ϕ of compactly supported Fourier transform,

D (G (N ),ϕ) −→
N→∞

∫

R

WG (x )ϕ (x ) dx , (1.28)
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where dA is a normalized Haar measure on G (N ), and the densities functions on R are
defined by

WU(x ) = 1

WSp(x ) = 1 − sin 2πx

2πx

WSO(even) (x ) = 1 +
sin 2πx

2πx

WSO(odd) (x ) = 1 − sin 2πx

2πx
+ δ0(x )

WO(x ) =
1

2

(
WSO(even) (x ) +WSO(odd) (x )

)
= 1 +

1

2
δ0(x )

This functionWG is the one-density function for G. The fact that the limit is no
more universal but depends on the family associated to a classical group, yet also falls
in finitely many cases, gives rise to the notion of type of symmetry of a family of L-
functions. The computations of this limit detecting in some sense which of the classical
group govern the behavior of the zeros.

Remark. The result of Katz and Sarnak holds for classical groups, yet it remains to know
whether or not it remains true for more general families of groups, what would turn
the classical groups as universal representant of the different symmetries governing
the eigenangles.

One-level densities for families of L-functions

Following the enlightening analogy with random matrices, it can be expected that the
one-level density of the zeros attached to every reasonable family of L-functions be-
haves as the eigenangles of classical randommatrices groups, and in particular that the
behavior of low-lying zeros of L-functions is modeled by the classical groups. The so-
called density conjecture postulates this universality, more precisely that every reas-
onable family of matrices or L-functions will match one of these cases.

Definition 3. Let ϕ be an even Schwartz function on R and π an automorphic repres-
entation. The one-level density attached to A is

D (π ,ϕ) :=
∑

γ
(j )
π

ϕ
(
γ̃
(j )
π

)
, (1.29)

Remark. Without assuming the Riemann hypothesis, the above definition has to be

broadened, for theγ (j )
π need not be real. Motivated by the density conjecture, "Schwartz

function on R" has to be understood as a function of Schwartz class on R and of com-
pactly supported Fourier transform. This ensures the existence of an analytic continu-
ation to the whole C making sense of the expression above.
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Definition 4. Let ϕ be an even Schwartz function on R. The one-level density of a
finite family F is

D (F ,ϕ) = 1

|F |
∑

π∈F
D (π ,ϕ). (1.30)

The first result in this direction is given by Özlük and Snyder [127] in 1993 for L-
functions attached to Dirichlet characters. Since then, a wide literature has been pub-
lished concerning the statistical behavior of low-lying zeros of families of L-functions
[38, 58, 64, 84, 104]. This led Katz and Sarnak [69] to formulate the so-called density
conjecture stating the same universality of the types of symmetry arising for group of
matrices.

Conjecture 4 (Density conjecture). Let F be a family of automorphic representations
in the sense of Sarnak and FQ a finite truncation increasing to F when Q grows. Then
for all even Schwartz function on R with compactly supported Fourier transform, there is
one classical group type G such that

D (FQ ,ϕ) −→
Q→∞

∫

R

ϕ (x )WG (x ) dx . (1.31)

The family F is said to have the type of symmetry of G.

Remark. For families of L-functions associated to algebraic varieties over function
fields, the type of symmetry is determined by the monodromy of the family, see [68],
shredding light on the reason why zeros of L-functions are governed by randommatrix
groups. However, no such analogue is known on number fields.

1.3.4 Theorem D: Type of symmetry

Low-lying zeros

Considering the statistics on low-lying zeros of L-functions attached to the universal
family of quaternion algebras, the one-level density (1.30) of the truncated family is

D (A (Q ),ϕ) =
1

N (Q )

∑

π∈A (Q )

D (π ,ϕ). (1.32)

The problem is to determine whether or not the quantity D (A (Q ),ϕ) admits a limit
and unveils the associated type of symmetry according to the density conjecture. The
following statement partially determines the type of symmetry of quaternion algebras
and fulfilling the expectations of the density conjecture.

Theorem D. For every even and Schwartz function ϕ with Fourier transform compactly
supported in (−2/3, 2/3),

1

N (Q )

∑

π∈A (Q )

D (π ,ϕ) −→
Q∞

ϕ̂ (0) +
1

2
ϕ (0) =

∫

R

ϕ (x )WO (x ) dx . (1.33)
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In particular, the type of symmetry of inner forms of PGL(2) is one of the orthogonal types
of symmetry.

An important caveat ought to be mentioned concerning the orthogonal types of
symmetry. The density conjecture postulates results for Schwartz function with com-
pactly supported Fourier transform, yet with no constraint on the support. Assuming
this conjecture, proving the convergence for a narrower class of allowed Fourier sup-
ports may determine uniquely the postulated type of symmetry. However this is not
the case for all supports, and an uncertainty remains in the case or supports trapped
in (−1, 1). Explicitly, the Plancherel formula yields

∫

R

ϕ (x )W (x ) dx =

∫

R

ϕ̂ (x )Ŵ (x ) dx , (1.34)

and looking at the Fourier transforms of the densities, introducing η the characteristic
function of [−1, 1], direct computations leads to

ŴU(x ) = δ0(x )

ŴSp(x ) = δ0(x ) −
1

2
η(x )

ŴSO(even) (x ) = δ0(x ) +
1

2
η(x )

ŴSO(odd) (x ) = δ0(x ) −
1

2
η(x ) + 1

ŴO(x ) = δ0(x ) +
1

2

Unfortunately, the three orthogonal types of symmetry, viz. ŴO(x ), ŴSO(even) (x )

and ŴSO(odd) (x ) are indistinguishable in (−1, 1). Theorem D hence only partially de-
termines the type of symmetry of the universal family of quaternion algebras. Further
directions are mentioned in Chapter 4.

Non-vanishing of L-functions

Statistics on the distribution of low-lying zeros of L-functions are known to lead to res-
ults concerning vanishing at the central point, following the ideas of Iwaniec, Luo and
Sarnak [64]. Introduce the proportion of automorphic representations with vanishing
at the central point with orderm, that is

pm (Q ) =
1

N (Q )
#
{
π ∈ A (Q ) : ords=1/2L(s,π ) =m

}
, m ∈ N. (1.35)

Theorem D yields densities of vanishing of the associated L-functions. Indeed, for
everyTϕ such that Theorem D holds for functions whose Fourier transform is suppor-
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ted in (−Tϕ ,Tϕ ),

lim inf
Q→∞

p0(Q ) >
1

2
− 1

Tϕ
, (1.36)

lim inf
Q→∞

∑

m>0

mpm (Q ) 6
1

2
+

1

Tϕ
. (1.37)

Unfortunately, it yields nontrivial results on the density of non-vanishing at the
central point only if Tϕ is allowed to be large enough, namely in this case larger than
two. The second density result above is interesting for every Tϕ > 0. This, in addition
of verifying the whole density conjecture, is a strong motivation to strengthen the
bounds on the support of the Fourier transform in Theorem D.

1.4 Other ground groups

Addressing arithmetic statistics problems for different groups than inner forms of
GL(2) leads to determine what is critical for the use of the same counting method
and what is specific to the GL(2) setting. Any result in this direction provides clues
towards more general conjectures concerning both the growth rate and the form of
the constant, that are fundamental in the vein of the analogous program of Batyrev,
Manin and Peyre for algebraic varieties. Some unitary and symplectic groups of low
ranks can be explored.

The main aim of this opening towards different settings is to identify essential as-
sumptions, state precise conjectures and focus on the differences between these cases
and the one of general linear groups, thus it is natural to use some freedom on the
assumptions to make space for comments and comparisons avoid to sink in unneces-
sary technicalities. This also motivates to address the counting problem instead of the
more general equidistribution question as it could be expected in the light of the pre-
vious sections on quaternion algebras: there is no need to say these problems are by
no means irrelevant.

1.4.1 Unitary groups

Let E be a quadratic totally imaginary extension of the totally real field F , q an her-
mitian form on E3, andU the unitary group associated to q, that is to say the subgroup
of GL(3) preserving q. More precisely, it is the subgroup of GL(3, F ) defined by

U =
{
д ∈ GL(3, F ) : ∀x ,y ∈ E3, q(дx ,дy) = q(x ,y)

}
. (1.38)

As for quaternion algebras, the classification of the group of points over local fields
is known. Essentially,U (Fv ) is isomorphic to GL(3, Fv ) at half of the non-archimedean
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places, and isomorphic to the unique quasi-split unitary group in three variablesU (Fv )

at the other half of the places. There is a finite number of places, where different be-
havior can arise. AssumeU is totally definite, that is to say isomorphic to the compact
unitary groupO (3,R) at archimedean places. This in particular ensures that the auto-
morphic quotientU (F )\U (A) is compact.

There is a notion of size on such a unitary groupU , given by the same procedure as
for quaternion algebras: pulling back the standard notion of analytic conductor along
a suitable embedding, provided in this case by deep works of Flicker [47], in a general
linear group provides an analytic conductor on U , still denoted by c (π ) where π is
an automorphic representation of U . This allows to consider the truncated universal
family

AU (Q ) = {π ∈ A (U ) : c (π ) 6 Q }, Q > 1. (1.39)

Introducing the measures on the local groups and the local dual groups as normal-
ized in Section 5.1.1, it is possible to formulate a conjecture for the counting law for
the cardinality NU (Q ) of the truncated universal family ofU .

Conjecture E (with I. Petrow). The cardinality of the universal family ofU satisfies

NU (Q ) ∼ 1

4
vol(U (F )\U (A))

∫ ⋆

A (U )

dπ

c (π )4
Q4, as Q → ∞, (1.40)

where the regularized integral is defined by

∫ ⋆

A (U )

dπ

c (π )4
= ζ⋆(1)

∏

v

ζv (1)
−1

∫

Ûv

dπv
c (πv )4

. (1.41)

1.4.2 Symplectic groups

The symplectic group of rank 2 is the subgroup of GL(4, F ) defined by

GSp(4) = {д ∈ GL(4, F ) : ∃λ(д) ∈ Gm,
tдJд = λ(д) J } where J =

(
0 I2
−I2 0

)
.

Consider an inner form G of GSp(4) with compact automorphic quotient. These
are exactly the groups of isometries of negative-definite or positive-definite hermitian
forms on division quaternion algebras.

The notion of size is obtained by pulling back the analytic conductor following the
procedure for quaternion algebras or unitary groups, through a functorial embedding
recently provided by Gan and Takeda [49] refining the results of Roberts and Schmidt
[102]. This leads to consider the truncated universal family

AG (Q ) = {π ∈ A (G ) : c (π ) 6 Q }, Q > 1. (1.42)
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Introducing the measures on the local groups and the local dual groups as normal-
ized in Section 5.3.1, it is possible to formulate a conjecture for the main term of a
counting law for the cardinality NG (Q ) of the truncated universal family of G.

Conjecture F (with I. Petrow). The cardinality of the universal family of G satisfies

NG (Q ) ∼ 1

3
vol(G (F )\G (A))

∫ ⋆

A (G )

dπ

c (π )3
Q3, as Q → ∞. (1.43)

where the regularized integral is defined by

∫ ⋆

A (G )

dπ

c (π )3
= ζ⋆(1)

∏

v

ζv (1)
−1

∫

Ûv

dπv
c (πv )3

. (1.44)

Remarks. It is natural to compare the counting law provided in TheoremA and those
proposed in Conjectures E or F.

(i) The growth rate of the truncated universal family of a reductive group with
respect to its analytic conductor appears to be, for every example considered, its
reductive rank plus one, i.e. its semisimple rank plus two.

(ii) The constant in the counting law for a group G appears to be of the form

1

α
vol(G (F )\G (A))

∫ ⋆

A (G )

dπ

c (π )α
, (1.45)

for a growth rate α . This is a striking similarity with the asymptotic formulas
for volumes of height balls in adelic points of algebraic varieties over number
fields, provided by Chambert-Loir and Tschinkel [22, Theorem 1.3], which also
makes appear a zeta function of the heights.

1.5 Outline of the story

1.5.1 Universal family decomposition

Chapter 2 is mainly devoted to introducing the universal family A (G ) for quaternion
algebras, made of all its infinite-dimensional automorphic representations. This is the
main groundwork on which this thesis settles and only the last chapter deals with dif-
ferent families. The analytic conductor c (π ) is a convenient notion of size for repres-
entations, introduced in Section 2.2 by pulling back the standard notion of conductor
on GL(2). The truncated universal family is the finite set

A (Q ) = {π ∈ A (G ) : c (π ) 6 Q }, Q > 0. (1.46)
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The counting law Theorem A and the equidistribution Theorem B for the universal
family can be reformulated in terms of convergence of a measure νQ , representing
the distribution of automorphic representations of the truncated family A (Q ), to a
measure ν . More precisely,

νQ (ϕ̂) =
∑

π∈A (Q )

ϕ̂ (π ). (1.47)

The sought convergence is reduced, by the mean of a theorem of density, to a con-

vergence with respect to a well-behaved class of functions ϕ̂ ∈ F (ĜS ) acting on a finite
set of places S , as explained in Section 2.3.1. The aim then turns to proving that, as Q
grows to infinity,

νQ (ϕ̂) −→ ν (ϕ̂), ϕ̂ ∈ F (ĜS ). (1.48)

The universal familyA (G ) decomposes into harmonic subfamilies defined by adding
constraints on the spectral data attached to representations, as explained in Section 2.4.
This decomposition is led by the different classifications of representations that exists
depending on the place, and by the different ways to grasp the conductor. Introducing
R the set of places where B ramifies, the representation is decomposed as follows, and
each component is to be treated in a specific way.

π = πR ⊗ πRf ⊗ π
R
∞. (1.49)

Explicitly, the discrete spectral data consists in the arithmetic conductor q of the split
finite part of π , the isomorphism class of the ramified part πR and the discrete series
δ for a certain Levi subgroup, described by a certain set D, to which the archimedean
split part for π belongs. This data only partially classifies the representations in the
universal family. There is a continuous set of parameters achieving the description
of representations at split archimedean places πR∞, so that they are essentially para-
metrized by δ and ν , denoting πδ ,ν the representation attached to such parameters.
Continuous archimedean parameters cannot be precisely selected due to regularity
constraints in the methods, hence they are allowed to vary in a restricted set of the
form

Ωδ (X ) = {π ∈ ĜR
∞ : c (π ) 6 X and π ≃ πδ ,⋆}, δ ∈ D, X > 0. (1.50)

For fixed discrete spectral data q, πR and δ , consider the subfamily of automorphic
representations with such spectral parameters, that is

A (q,σR,δ ,Ωδ (X )) = {π ∈ A (G ) : πR ≃ σR, c(πRf ) = q, π
R
∞ ∈ Ωδ (X )}, (1.51)

so that the truncated universal familyA (Q ) decomposes into such subsets of restricted
spectral data, when the data vary. The counting measure decomposes accordingly into

νQ (ϕ̂) =
∑

Nq6Q
q∧R,S=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

δ∈D

∑

π

ϕ̂ (π ), (1.52)
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where the last sum runs over π in A (q,σR,δ ,Ωδ (Q/Nqc (σR ))). This is the content of
Section 2.4.2. It is then natural to consider the innermost sum running over more gen-
eral sets of continuous spectral parameters Ω, namely A(q,σR,δ ,Ω). A quantity more
amenable to trace formula methods has extra weights given by the spectral multipli-
cities, that is to say

B (q,σR,δ ,Ω;ϕ) =
∑

π

dim
(
π
K0 (q)

f

)
ϕ̂ (π ), (1.53)

where the sum runs over π in A (q,σR,δ ,Ω). The theory of local newforms for GL(2)
allows to recast the counting measure νQ in terms of these quantities, as explained in
Lemma 1, so that it is enough to study these sums over representations of fixed spectral
data. More precisely,

νQ (ϕ̂) =
∑

Nq6Q
q∧R,S=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

δ∈D

∑

d |q
λ2

(
q

d

)
B (d,σR,δ ,Ωδ (Q/Nqc (σR ));ϕ). (1.54)

1.5.2 Spectral count

The heart of the proof is to interpret the quantity B (q,σR,δ ,Ω;ϕ) as a spectral side of
the Selberg trace formula for a suitable test function. Lemma 4 achieves this goal up
to some error terms, which precise control is fundamental.

In contrast with the discrete spectral data that can be exactly fixed by test functions
admissible for the trace formulas, it is necessary to approximate the characteristic func-
tion for the continuous set of spectral parameters Ω by an admissible function. Such
functions are obtained by themean of Paley-Wiener type theorems, that provides func-
tions blowing up outside the tempered spectrum. The better the approximation for
the tempered spectral parameters, the worse this blow up on the complementary part,
feature encoded in a parameter ρ > 0. For this reason, only the tempered part of the
spectral continuous parameters Ωtemp is efficiently approximated by the trace formula.
In other words, there is a splitting between tempered and complementary part of the
archimedean spectrum, each part receiving different treatment, namely

B (q,σR,δ ,Ω;ϕ) = B (q,σR,δ ,Ωtemp;ϕ) + B (q,σR,δ ,Ωcomp;ϕ). (1.55)

The smoothing step closely follows the work or Brumley and Milićević [17], and the
tempered part B (q,σR,δ ,Ωtemp) is approximated by the tempered spectral part of the
trace formula applied to an explicit test function Φ, depending on the equidistribution
function ϕ; the discrete spectral data q, σR , and δ ; the the set of continuous parameters
Ω from now on assumed to be tempered; and on the approximation parameter ρ. This
is the aim of Lemma 2.70, of the form

B (q,σR,δ ,Ωtemp) = Jtemp(Φ) +O (∂ρB (q,σR,δ ,Ω)), (1.56)
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where ∂ρB (q,σR,δ ,Ω) is an error term corresponding to the fact that the test func-
tion at archimedean split places is a smoothed version of the characteristic function
of Ω. More precisely for spectral parameters farther than ρ from the boundary of Ω,
thus in some sense strongly inside or strongly outside Ω, the approximation is good
enough and the induced error term is of good quality. However, for spectral para-
meters lying in the transition zone around the boundary of Ω, the approximation is
of lower quality and is the origin of this error term as well as a justification for its
notation. This is precised by Lemma 3, and hence the quantity ∂ρB (q,σR,δ ,Ω) appears
as a smoothed version of B (q,σR,δ , ∂ρΩ), the number of representations with spectral
parameters lying in the boundary ∂ρΩ. This number is bounded by another tempered
count, amenable to the very same methods than what follows, and hence contributing
to the same error terms.

The complementary part of the spectrum is responsible for another error term. In-
deed, in order to make use of the trace formula, the whole spectral part relative to Φ

should be taken into account, and this one is

Jspec(Φ) = Jtemp(Φ) + Jcomp(Φ) + Jchar(Φ), (1.57)

where Jchar(Φ) corresponds to unwelcome global characters selected by the test func-
tion Φ, and where Jcomp(Φ) is the contribution coming from non-tempered representa-
tions whose continuous spectral parameters have tempered part lying in Ω. The char-
acter contribution is shown to contribute as an error term by directly estimating the
number of such characters by an analogous strategy, in Lemma 12, with the Selberg
trace formula replaced by the Poisson summation formula. The complementary part of
the spectrum is exponentially weighted due to the behavior of the chosen test function
at these places, and is bounded by a certain quantity Bcomp(q,σR,δ , ρ,Ω) in Lemma 13.

At last, this leads to

B (q,σR,δ ,Ω;ϕ) = Jspec(Φ) +O (∂ρB (q,σR,δ ,Ω)) +O (Bcomp(q,σR,δ , ρ,Ω)). (1.58)

Lemma 9 provides a bound for the complementary and smoothing terms, essentially
bounding them by the counting measure for different subsets than Ω, and hence amen-
able to the same methods.

1.5.3 Geometric side

In Section 3.1, the Selberg trace formula comes into play and translates the spectral
term appearing in (1.58) into a geometrical sum, running overG (F )-conjugacy classes,
of weighted orbital integrals. It is of the form

Jspec(Φ) = Jgeom(Φ). (1.59)

The main contribution to this expansion, as often expected in applications of the
trace formula, comes from the term of the geometrical expansion corresponding to the
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identity, leading to split the geometric side into

Jgeom(Φ) = J1(Φ) + Jell(Φ). (1.60)

The identity term can be explicitly computed by means of the Plancherel formula
and direct computations. However, there is still an error term coming from the ap-
proximation in the test function at archiemdean places, bounded similarly than the
one obtained above due to the smoothing (1.56), so that

J1(Φ) = vol(G (F )\G (A))Φ(1) +O (∂ρB (q,σR,δ ,Ω)), (1.61)

The critical ingredient in the estimations of this main term are sizes φ (q) of the
congruence subgroups that define the conductor. The computations carried out in
Section3.2 consist in summing over all the discrete spectral data, and yields the growth
rate of Q2 announced in Theorem A and the limit distribution measure announced in
Theorem B.

Geometrical error terms are the ones given by nontrivial orbital integrals arising in
the Selberg trace formula, encapsulated in Jell(Φ), which is of the form

Jell(Φ) :=
∑

{γ },1
vol

(
Gγ (F )\Gγ (A)

) ∫

Gγ (A)\G (A)

Φ
(
x−1γx

)
dx , (1.62)

where the indexation runs through conjugacy classes {γ } inG (F ). Since Φ is compactly
supported andG (F ) is discrete, the sum is finite. The number of elements appearing in
this sum depends on the parameter ρ governing the exponential type of the test func-
tion at infinity, and growth exponentially with ρ, as stated in Lemma 14. Bounds on
orbital integrals are consequences of bounds on their local components, using different
methods depending on the behavior of the place and the choice of the corresponding
local test function, and depend essentially in q as stated in Proposition 21. At last, a
specific choice of ρ depending on q is enough to ensure the negligibility of these error
terms compared to the identity term, finishing the proof of Theorem B.

1.5.4 Further consequences

The Sato-Tate corollary, stated in Corollary C, follows from the knowledge of the
equidistribution measure and known results for the spherical spectrum of GL(2). In-
deed, since quaternion algebra are locally almost everywhere equal to GL(2), a result
of Serre already establishes the Sato-Tate conjecture in this case when restricted to
unramified representation. Ramified contribution to the equidistribution measure is
shown to be negligible through explicit computations carried out in Section 3.5.

Estimating densities of low-lying zeros turns to be the main topic of Chapter 4.
The explicit formula restates the problem into a question concerning sums of the
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Satake parameters, rewritten as sums of associated Hecke eigenvalues of the form,
for a Schwarz function ϕ,

D (π ,ϕ) = ϕ̂ (0)− 2

log c (π )

∞∑

ν=1

*,
∑

p

(
ανπ (p) + β

ν
π (p)

)+- ϕ̂
(
ν logNp

log c (π )

)
logNp

Npν/2
+O

(
1

log c (π )

)
.

High order contributions, more precisely those corresponding to ν > 3, are not a
problem by bounds on Satake parameters provided by Blomer-Brumley in this setting
where Ramanujan is not known to hold, and are shown not to contribute to the type
of symmetry.

Lower order terms are less well controlled, even assuming the Ramanujan conjec-
ture. A fundamental step comes from the structure of the L-functions attached to the
automorphic representations ofA (G ), relating the Satake parameters ανπ (p) and β

ν
π (p)

with the Hecke eigenvalues λπ (pν ). The heart of the proof is to deal with the resulting
sums ∑

p

λπ (p
ν ), ν ∈ {1, 2}. (1.63)

Here the averaging over the family is necessary, feature already underlined in the
story of densities and correlations. The Selberg trace formula addresses the problem
of low order terms with similar methods than for Theorem B: twisting the already
built test function by the suitable Hecke opeator weights the spectral side of the trace
formula by the desired Hecke eigenvalues. Since only unramified Hecke operators are
considered, this allows to treat the sum (1.63) restricted to unramified representation
at the chosen prime. Similar considerations than in the case of the equidistribution
result leads to estimating the averaged inner sum by

∑

π∈A (dS ,σR ,δ ,Ω)
π unramified

λπ (p
ν ) = Jspec(Φ) + (Remainder). (1.64)

for a suitable test function Φ, and a remainder similar to the one obtained for the
equidistribution. There is no identity contribution because of the Hecke operators, the
elliptic contribution is hence critical. Orbital integrals are to be precisely estimated in
Section 4.4.1, and they are the seed of the limitations for the support of the Fourier
transform.

Concerning the ramified part, the already stated Blomer-Brumley bound reduces the
problem to the counting law for the harmonic subfamiliesA (q,σR,δ ,Ω), already estab-
lished on the way towards Theorem B, and enough to prove the ramified contributes
as an error term and achieving the proof of Theorem D.

Non-vanishing results are obtained as a consequence of the type of symmetry, through
Plancherel formulas and functional optimization provided for one-level densities of
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orthogonal type by Iwaniec, Luo and Sarnak [64] in the setting of holomorphic cusp
forms on GL(2).

The conclusive Chapter 5 is devoted to openings towards two classes of other ground
groups: totally definite unitary groups in three variables and inner forms of the sym-
plectic group of degree 4 that have compact automorphic quotient. These extra as-
sumptions are afforded in order to make these different groups amenable to the same
successful methods used for quaternion algebras, and to underline new challenges
arising from these new settings as well as to formulate conjecture and provide first
results towards arithmetic statistics on the universal family of these groups. The main
differences lie into the lack on functoriality of the conductor and the necessity to use
a theory of local newform for non-split places: that was not the case for quaternion
algebras since they were only finitely many.



Chapter 2

Universal Family for Quaternion
Algebras

Establishing arithmetic statistics on the family of all automorphic representations of a
groupG requires to understand as sharply as possible the structure of the spectrum. It
is necessary to order the spectrum introducing a notion of size, to be able to truncate it
into a finite set and give a meaning to the sought statistics. Moreover, a choice of para-
meters indexing the spectrumhas fundamental impact on the treatment of the problem,
for it induces a decomposition of the spectrum in more or less handable subfamilies of
fixed parameters. This chapter settles the groundwork, introducing the automorphic
representations and providing the chosen notion of size: the analytic conductor.

The whole strategy for estimating arithmetic statistics on automorphic objects con-
sists in interpreting the sough quantity in terms of a spectral side of the trace formula.
A fundamental step is to be able select these new sets as spectral sides: suitable select-
ing functions are constructed in the last sections.
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2.1 Odds and ends

Modern analytic number theory makes large use of methods coming from representa-
tion theory, measure theory and harmonic analysis, requiring to endow the considered
algebraic objects with the relevant structures. Once done, the automorphic ground-
work mentioned in the introduction is detailed in this section, in order to properly
state the problems.

2.1.1 Number theoretic landscape

Number and local fields

The aim of number theory is to explore the structure and the properties of number
fields, that is to say finite extensions of Q. Consider such a number field F , and let its
ring of integers be denoted by O.
The choice of an absolute value on F allows one to embed it in the corresponding

completion, endowing F with a well-behaved analytic structure. For a given absolute
value v , the completion of F with respect to v is denoted Fv . It is a locally compact
space, hence a local field.

Different absolute values can give rise to isomorphic completions, case inwhich they
are said to be equivalent. In order to get rid of this redundancy, the suitable notion is
the one of equivalence class of absolute values, called place and still denoted byv . The
places of F are classified into finite places and archimedean places. Finite places give
rise to non-archimedean local fields, and are parametrized by prime ideals of O; the
remaining ones are archimedean places, parametrized by conjugacy classes of complex
embeddings. The different completions of F are indexed by its places. From now on
only places will be mentioned, all the corresponding notions being defined as the ones
related to any absolute value belonging to the place.

Finite places are traditionally denoted by gothic letters p, q, r, etc. These are exclus-
ively used for ideals of O, and p specifically for prime ideals. The norm of an ideal q is
denoted Nq, it is the cardinality of the field O/q, also called residue characteristic. For
a finite place p, let wp a uniformizer of p, i.e. a generator of p.

Adeles

Non-equivalent places give rise to non-isomorphic completions, so there is no way
to complete F in a canonical fashion. However, F embeds in a locally compact ring
taking in account all its completions. This procedure is provided by the ring of adeles.
It is the breakthrough of Tate’s thesis [119], allowing to enjoy properties similar to
completeness without having to arbitrarily choose one place, so that no information
attached to the base number field F should be lost. This opens the path to harmonic
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analysis on number fields.

Definition 5. The ring of adeles A of F is the restricted product of the completions of
F with respect to their associated rings of integers. More precisely,

A =
(xv )v ∈

∏

v

Fv : for almost every v, xv ∈ Ov
 . (2.1)

Every adele can then be written as an element of the full product
∏

v Fv . Similarly,
some subsets X of the adeles can be decomposed as a product

∏
v Xv . The Xv ’s are

called the local components of X . Given a set of places S , introduce the S-part and the
prime-to-S part of a subset X , defined respectively by

XS =
∏

v∈S
Xv and X S

=

∏

v<S

Xv . (2.2)

In particular, the sets admitting a local decomposition as above decomposes as X =
XSX

S . For the case of a singleton X = {x }, the notation is lightened to x = xSxS .
The whole idea of the ring of adeles, besides grasping all the completions at once, is
to keep the possibility to enjoy the completeness of each local field. Naturally this
decomposition holds as it stands for any partition of the places in more than two sets,
and allows to lift a local behavior at S to a global one relative to the ring of adeles.

The ring of adeles is endowed with the restricted product topology. It is defined by
the basis of open sets

US ×
∏

v<S

Ov , (2.3)

where S runs through finite sets of places andUS is an open set of FS endowed with the
product topology. This topology makes A a locally compact topological ring. There is
a discrete and cocompact embedding of F in A, the so-called diagonal embedding

F −→ A

x 7−→ (x )v
(2.4)

Remark. An important fact justifying the choice of the restricted product instead of
the full product is that the product of local rings Fv would have failed to be locally
compact. Moreover, since the product topology is stronger than the product one, this
choice leads to strengthen density properties and are suitable to the purposes of prov-
ing equidistribution results.

Theorem 7 (Strong Approximation). Suppose that G is simply connected, in the sense
that the topological space G (C) is simply connected, and that G′(FS ) is noncompact for
every simple factor G′ of G over F . Let KS be a compact open subgroup of G (AS ). Then

G (A) = G (F )G (FS )K
S . (2.5)
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Moreover, ifG′(FS ) is noncompact only for every simple quotientG′ ofG over F , then the
following set of double cosets is finite:

G (F )\G (A)/G (FS )K
S . (2.6)

This property formalizes the very spirit of the adeles as announced above: embed-
ding F in a better world without loosing its identity. The decomposition (2.5) holds a
way back to the F -points ofG from properties of its adeles points, justifying the adeles
setting as the ground on which modern theoretic problems are handled.

Haar measures

Besides the completeness assets provided by the adelic setting, groups and representa-
tions involved in the exploration of the automorphic world are also handled by meas-
ure theory tools. This paragraph settles the minimal setting to precisely formulate
the problems and state the results, further details on measures on the dual groups are
provided in Section 2.3.

Prior to any choice of measure on groups or representations, it is needed to endow
underlying global and local fields with measures. A right (resp. left) Haar measure is
a positive Radon measure invariant by the right action of G, that is to say d(xд) = dx
(resp. d(дx ) = dx ) for every д in G. It is unique up to multiplication by a scalar. A
group for which left and right measures are the same is called unimodular. This is the
for instance the case for compact groups, discrete groups, abelian groups, connected
reductive groups or semisimple Lie groups. For a non-unimodular group with a right
Haar measure dд, the modular quasicharacter is δG (h) = d(hд)/ dдmeasures the failure
of G to be unimodular.

On archimedean fields, the Haar measure on R is the usual Lebesgue measure dx ,
and the Haar measure on C is 2 dx ∧ dy = | dz ∧ dz |. On non-archimedean fields, Haar
measures on F×p are normalized so that its ring of integers Op gets measure one. The
ring of adeles is endowed with the product measure. On the group of units F×, choose
d×x = dx/|x | as Haar measure.

Turning to locally compact groups G, it is necessary to endow the group of points
G (F ), G (A) and G (Fv ) with a compatible notion of measure with the one chosen on
the base local rings. Following Hahn and Getz’s presentation [55] automorphically in-
tended, let n be the dimension ofG over F . There is a unique nonzero top-dimensional
left-invariant differential form ω ∈ ∧n g up to scalar in F×. From this differential form
follows through localizing a Radon measure on Gv given by

Cc (Gv ) −→ C

f 7−→
∫

Gv

f d|ω |v

This provides a left Haar measure on Gv since ω is already a left Haar measure
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on Gv . Precise construction of those measures are provided in Knapp [74] for the
archimedean case and in Oesterlé [97] for the non-archimedean one. For eachv , fix the
Haar measure normalized so that the maximal compact subgroup Kv is given measure
one. The group of adelic points is then endowed with the product measure. SinceG (F )

embeds discretely in G (A), these choices of measures induce a quotient measure on
G (F )\G (A).

2.1.2 Automorphic world

Automorphic representations

LetG be an affine algebraic group over a global field F . The groupG (A) of adelic points
is locally compact and hence admits a Haar measure. Following the discussion above,
the quotientG (F )\G (A) is endowed with a Haar measure giving it finite volume if and
only if G (A) = G (A)1, motivating the introduction of the automorphic quotient

[G] = G (F )\G (A)1. (2.7)

This is the base ground on which automorphic theory takes place. The groupG acts
on the associated Hilbert space L2([G]) by the right regular action

д · ϕ = ϕ (xд), д ∈ G, ϕ ∈ L2([G]). (2.8)

Definition 6. An automorphic representation of G is an irreducible unitary repres-
entation π of G (A) that is isomorphic to a subquotient of the right regular action on
L2([G]). The set of all the infinite-dimensional automorphic representations of G is
denoted A (G ) and called the universal family of G.

Remarks. This definitions might seem non-standard, leading to the following re-
marks.

(i) This definition does not require to introduce the admissibility condition, as is the
standardway to do so [52], and ismore suited for efficient introductory purposes.
Both notions coincide [55].

(ii) The choice of excluding finite-dimensional representations from the universal
family, that is to say characters in the case of general linear groups, is made
so that it embeds as a subfamily of the cuspidal automorphic representations of
GL(n). For statistical purposes, this choice causes no trouble, for the number
of characters of bounded conductor is negligible compared to the size of the
universal family.

Automorphic representations are one of themost celebrated objects of modern num-
ber theory, and the present thesis addresses arithmetic statistics problems relative to
them in different settings.
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Tensor product theorem

Despite automorphic representations are rather mysterious objects, some of them are
particularly easier to grasp. Given a maximal compact subgroup Kv of Gv , a unitary
representation of Gv is unramified with respect to Kv if it admits non-zero Kv-fixed
vectors, ramified otherwise.

In the same way as the ring of adeles, objects relative to local fields are expected to
be easier than global objects, and there is hope that a local-global principle allows to
work on local components instead of on the whole global object. Fortunately, this is
the case for automorphic representations by the following structure result.

Theorem 8 (Flath). Every automorphic representation π ∈ A (G ) decomposes as a re-
stricted product π = ⊗vπv where πv is an irreducible unitary representation of Gv and is
unramified for almost every place v .

2.1.3 Quaternion algebras

After having introduced what automorphic forms are, the time has come to choose the
landscape they live on. This section is devoted to do so, presenting the quaternion al-
gebras and their structure before turning back to the associated automorphic quotient.
The settings of some unitary and symplectic groups are mentioned in Chapter 5.

First definitions

A quaternion algebra over a field F is a central simple algebra B of dimension 4 over
F . Dickson proved in the early 1900s [125, Chap. IX, Theorem 1] that this definition
generalizes the usual Hamiltonian quaternions and admits a familiar representation by
generator and relations.

Proposition 1. If the characteristic of F is not 2, then B admits a basis (1, i, j,k ) over F
such that for some a and b ∈ F×,

i2 = a, j2 = b, ij = k = −ji . (2.9)

Such a quaternion algebra is denoted DF (a,b), and is entirely determined by a and b
up to isomorphism. It can be embedded in a set of matrices over an extension of degree
at most two.

Proposition 2. If α is a root of X 2 − a in an extension of F , then the following is an
F -algebra embedding into F (α )-matrices.

DF (a,b) −→ M2(F (α ))

t + xi + yj + zk 7−→
(
t + xα b (y + zα )

y − zα t − xα

)
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A detailed account of the theory of quaternion algebra is established from an algeb-
raic point of view in Vignéras’ work [121], as well as quite comprehensively covered
in Voight’s book [122].

Structure of quaternion algebras

Let B be a quaternion algebra over a global field F . For a given placev , denote by Bv the
group of points B (Fv ). The local group Bv is isomorphic to eitherM2(Fv ), case in which
v is split, or to a division quaternion algebra, case in which v is ramified. For a given
local field Fv , there is a unique division quaternion algebra over Fv up to isomorphism.
Quaternion algebra are classified up to isomorphism by their ramification places [121].

Proposition 3. Let B be a quaternion algebra over F , and R its set of ramification places.
Then R is a finite set of even cardinality. Furthermore, it determines B up to isomorphism.

This structure theorem states a strong local similarity with GL(2), for completions
of a given quaternion algebra are almost everywhere the group of points of GL(2). This
fact appeals two comments. First, while a finite number of places will need a treatment
specific to the division quaternion algebras setting, most of them will borrow methods
and results from the GL(2) setting. Second, results obtained for global quaternion
algebras are expected to bear information concerning GL(2) automorphic forms.

From now on, consider a quaternion algebra B over F , and write R for the places of
F where B is not split. Introduce G = Z\B×, where Z denotes the center of B×.

Inner forms

The groups of units of quaternion algebras is not merely similar to GL(2) at some
places, but are its inner forms. More precisely, quaternion algebras is isomorphic to
M (2) over an algebraic closure of F and the underlying isomorphism is given by a
conjugation. Moreover, this construction exhausts all the inner forms.

Proposition 4. Let F be an algebraic closure of F . An F -algebra A is isomorphic over F
toM2(F ) if and only if A is a quaternion algebra.

Proof. The algebra A is isomorphic over F to M2(F ) if and only if A is simple over F
[125, IX, Coro. 2]. Moreover, the simple algebras over F are the quaternion algebras
by definition. This proves quaternion algebras are forms ofM2(F ). They are also inner
forms by the Skölem-Noether theorem. [115, III.1.4]. �

Automorphic quotient

Automorphic representations live in the automorphic quotientG (F )\G (A). In the case
of division quaternion algebras, a fundamental property holds and allows the use of
results unavailable for GL(2).
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Proposition 5. The automorphic quotient B (F )\B (A) is compact modulo the center.

Proof. This is the Hey theorem, quoted in Voight [122, 38.4.3]. �

Jacquet-Langlands correspondence

The Jacquet-Langlands correspondence [66] provides an embedding of the represent-
ations of a division quaternion algebra into representations of GL(2). It is stated here
in the centerless setting.

Theorem 9 (Local Jacquet-Langlands). Let v be a place where B ramifies. There is a
bijection between irreducible smooth representations of Gv and irreducible discrete series
representations of PGL(2, Fv ).

Theorem 10 (Global Jacquet-Langlands). There is a unique bijection between infinite
dimensional automorphic representations of G (A) and irreducible cuspidal automorphic
representations of PGL(2,A) that is compatible with the local Jacquet-Langlands corres-
pondence.

2.2 Analytic conductors

Once automorphic representations introduced, it is necessary to make sense of the
counting problem. In order to determine the actual size of the universal family and
some sharper statistical properties, as densities or equidistribution, it is needed to trun-
cate it to a finite set. This section explores the notion of size provided by the analytic
conductor.

The analytic conductor is an intrinsic notion of size grasping the complexity of
automorphic representations. There are different standard constructions, either based
on representation theoretic properties or using specific invariants attached to auto-
morphic L-functions. While some appear as more natural, others turn to suit more
efficiently the purposes and methods of arithmetic statistics questions. Besides intro-
ducing some of the frequent definitions of the analytic conductor appearing in the
literature, their consistency and soundness are discussed in the following paragraphs.

2.2.1 Conductor arising from functional equations

Let turn back for a moment to a more usual setting: the universal familyA (G ) embeds,
via the Jacquet-Langlands correspondence, see Theorem 10, as a subfamily of the uni-
versal family A (PGL(2)), composed of all the cuspidal automorphic representations
of PGL(2). In this latter context, even in the broader setting of cusp forms on general
linear groups, Iwaniec and Sarnak [65] have defined a good notion of size, given by
the analytic conductor. It is a real number c (π ) defined from the functional equation
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satisfied by the finite part L-function L(s,π ) associated to a generic π ∈ A (PGL(2)),
which takes the form

L(1 − s,π ) = επX (s,π )L(s,π ), (2.10)

where επ is the root number of π and takes value 1 or −1, since π is self-dual. The
quantity |X (s,π ) | takes value 1 at the central point 1

2 , leading to the definition of the
analytic conductor following Conrey et al. [30].

Definition 7. Let π be a generic automorphic representation on PGL(2). With the
completing factor introduced in (2.10), the L-analytic conductor of π is

c (π ) =
����X ′

(1
2
,π

) ���� . (2.11)

The functional equation relates the value of an L-function at a point s with its value
at the symmetric point 1−s . The easiest case is naturally the symmetric one, i.e. when
X (s,π ) = επ , corresponding to a conductor equal to zero. This leads to interpreting
X (s,π ) as a measure of the failure of L(s,π ) to be symmetric. The function X (s,π )

is built from the factors necessary to complete L(s,π ) to get a symmetrical functional
equation, and involves the usual arithmetic conductor as well as archimedean gamma
factors, so that the analytic conductor encapsulates the complexity of π .

It allows to truncate the universal family of PGL(2) into

A (Q ) = {π ∈ A (GL(2)) : c (π ) 6 Q }, Q > 1. (2.12)

This set is known to be discrete and finite by the work of Brumley [16]. Even if the
analytic conductor is a relevant notion of size satisfying the needed finiteness property,
it is a rather impenetrable quantity, as is the completing factor X (s,π ).

2.2.2 Opening the ε-factor

The definition of the analytic conductor provided above is general and efficient in its
formulation, yet it is far from easily reachable in practice. As announced in the intro-
duction, despite the finiteness of the truncated family, there is no reason for it to be
more handable than thewhole universal family, for this analytic conductor appears as a
mysterious parameter and introducing it may seem to be an unnecessary complication.
This is far from the case: the precise knowledge of the structure of the automorphic
L-functions and their associated functional equations leads to a more explicit formula-
tion of the conductor in terms of different spectral parameters, that turn out to be well
suited for trace formula treatment.

The definition of the analytic conductor is summarized by Conrey, Farmer, Keating,
Rubinstein and Snaith [29]. The Selberg class is an axiomatic definition of what an
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L-function should be in general. In particular, there is a quantity called the ε-factor
which is a way to make L(s,π ) entire, for π ∈ A (GL(2)). It is of the form

ε (s,π ) = Qs
π

∏

v |∞
Γv (s + µπ (v )). (2.13)

where Qπ is a positive real number and v runs through the archimedean places of F .
Moreover, Γv is equal to ΓR (s ) = π−s/2Γ(s/2) in case of a real place, and to ΓR (s )ΓR (s +1)
in case of a complex place. This ε-factor is such that the completed function

ξ (s,π ) = ε (s,π )L(s,π ), s ∈ C, (2.14)

is entire and satisfies the symmetric functional equation

ξ (s,π ) = επξ (1 − s,π ), s ∈ C. (2.15)

Following the presentation of Iwaniec and Sarnak [65], the analytic conductor is
defined as follows from the data of the ε-factor.

Definition 8. Let π be a generic automorphic representation on PGL(2) and introduce
the associated ε-factor (2.13). The ε-conductor of π is

cε (π ) = Qπ

∏

v

(1 + |µπ (v ) |) . (2.16)

These definitions of the analytic conductor appeal quite a few caveats concerning
their compatibility. Both notions cε and c defined above does not coincide, as straight-
forward computations show. Indeed, comparing the functional equation satisfied by
ξ (s,π ) with the definition of X (s,π ) in the completion (2.10), it follows that

X (s,π ) =
ε (1 − s,π )
ε (s,π )

. (2.17)

The explicit definition of the gamma factors (2.13) yields

log(ε )′(s ) = logQπ + log
∑

v |∞

Γ′v
Γv

(s + µπ (v )) , (2.18)

so that both definitions are equivalent up to the approximation of replacing the di-
gamma function Γ′/Γ by the logarithm. This is not an equality yet a standard approx-
imation for small values of s , in particular around the central point, provided by the
Stirling formula. At last, both definitions differ by constants and normalizing factors.
The so-called arithmetic part Qπ of the conductor is a well-defined and non ambigu-
ous notion, it is always present as it stands in any definition of the analytic conductor.
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However this is not the case for its archimedean part. It has to be underlined that
the notion of archimedean conductor is a working definition intended to reasonably
grasp the complexity of an L-function to govern some of its statistical behavior. Some
attempts have recently been made, for instance in unpublished works due to Paul Nel-
son or Peter Humphries, to find a more canonical way to define the archimedean con-
ductor, motivated by theories of local newforms, yet for now they fail to match the
expected behavior of the analytic conductor.

The fundamental property of the conductor is the finiteness of the truncated uni-
versal family as well as its relations with invariants attached to L-functions. Hence, it
allows some freedom in the choice of certain normalizing factors, for instance to ensure
non-vanishing, see Chapter 4. This feature is not present in deepest problems concern-
ing L-functions, typically subconvexity questions where the choice of the archimedean
analytic conductor might be critical. There is no need to settle this debate here, and
the methods borrowed from [17] still hold for any of the choices mentioned above, and
for a more general class of size functions.

2.2.3 Conductor as a notion of depth

Amore geometric interpretation of this notion of conductor, where the structure of the
underlying group appears, would give a better computational grasp on the conductor.
This is provided by the so-called theory of local newforms.

This section is devoted to B×more than toG, for it lightens notations. This local con-
vention makes no harm, for a representation π of G (A) is viewed as a representation
of B×(A) with trivial central character. By Flath’s theorem, an irreducible admissible
representation of B×(A) decomposes in a unique way as a restricted tensor product
π = ⊗vπv of irreducible smooth representations where almost every component πv is
unramified. It is hence natural to define first the conductor for the local components πv .
Setting c (πp) = 1 for the finite unramified components guarantees well-definiteness of
the product over all places and is required to get the consistency with the conductors
defined above. The aim of the present section is to define the notion of conductor for
the remaining local components.

Split local components

Proposition 6. Let π ∈ A (G ) and v a split place. The local component πv is infinite-
dimensional.

Proof. Since the universal family excludes global characters, a representation π in it is
generic. The Jacquet-Langlands correspondence preserves genericity, hence as shown
on the diagram below, the global Jacquet-Langlands correspondence associates to it a
generic representation JL(π ) of GL(2), thus also its local components JL(π )v . These
local components are also the images by the local Jacquet-Langlands correspondence
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JL(πv ) of the local components of π .

π∈A (B×)
JL

//

v

��

JL(π )∈A (GL(2))
generic

v
��

πv
JLv

id if v<R
//

JL(π )v
generic

At split places, the local Jacquet-Langlands correspondence is the identity, for then
B×p � GL(2, Fp). Moreover, the correspondence is unique, thus the local components
πv , at split places, are generic hence infinite-dimensional. �

This in particular implies that local components being a character can only arise
at ramified places. First of all the focus will be on split places, before turning to the
ramified places by the pullback procedure to the split ones.

Non-archimedian split case

For finite split places p, by definition Bp � M
(
2, Fp

)
so that B×p � GL(2, Fp). The

notion of local conductor for irreducible smooth infinite-dimensional representations
of GL(2) has been introduced by Casselman [21]. Consider the sequence of compact
open congruence subgroups

K0,p (p
r ) =

{
д ∈ GL (

2,Op
)
: д ≡

(
⋆ ⋆

0 ⋆

)
mod pr

}
⊆ B×p , r > 0. (2.19)

This sequence is a filtration, i.e. a decreasing sequence of subgroups. Since the rep-
resentations considered are smooth, the existence of fixed vectors for a small enough
subgroups is guaranteed. The conductor of an irreducible admissible infinite-dimensional
representation πp of B×p with trivial central character is then defined by the smallest
rank for which it happens.

Definition 9. The additive conductor of πp ∈ Ĝp is

f(πp) = min
{
r ∈ N : π

K0,p (p
r )

p , 0
}
, (2.20)

and the multiplicative and analytic conductor of πp are respectively defined by

c(πp) = p
f(πp ) and c (πp) = N c

(
πp

)
. (2.21)

The existence of the conductor is guaranteed by the work of Casselman [21], who also
states that the growth of the dimensions of the fixed vector spaces are given by

dim π
K0,p (pf(πp )+i )
p = i + 1, i > 0. (2.22)
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Global analytic conductor

Definition 10. Let π be an automorphic representation of GL(2), and write π = ⊗vπv
for its tensor product decomposition. Its global analytic conductor is defined to be

c (π f ) =
∏

v

c (πv ) . (2.23)

This gives a well-defined notion of conductor, for the πv are almost everywhere
unramified. One of the fundamental facts of the theory of local newforms is the con-
sistency with the definition of the arithmetic conductor, i.e. the depth-conductor no-
tion defined in (2.21) and the the one coming from ε-factors (2.13) of the associated
L-functions are compatible in the following way.

Proposition 7. Let π ∈ A (GL(2)). The notions of arithmetic conductor given in (2.23)
is compatible [66] with the one coming from L-functions (2.11), that is to say

∏

p

c(πp) = Qπ . (2.24)

Conductor of characters

Note that for now conductors have been defined only for generic representations.
However, characters can arise as local component at ramified places as discussed above.
Every character of B×p is a composition

B×p −→ F×p −→ C, (2.25)

where the first application is the reduced norm, and the second one a character of F×p .
In other words, every character of B×p is of the form χ0◦N where χ0 is a character of F×p .
In order to stay consistent, define the conductor of a local character at a ramified place
as the conductor of its Jacquet-Langlands embedding in PGL(2). Since the character
χ0 ◦ N is sent on the twisted Steinberg representation St ⊗ χ0, it follows

c(χ0 ◦ N ) =

{
p if χ0 unramified;
c(χ0)

2 if χ0 ramified.
(2.26)

Analytic conductor for quaternion algebras

The notion of analytic conductor defined above for automorphic representations of
GL(2) extends to a definition for representations of G, viewed as automorphic repres-
entations of B× with trivial central character. Indeed, following the pullpack procedure
for heights, define for a local representation at a ramified place v its conductor as the
one of its Jacquet-Langlands transfer.
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Definition 11. Let πv ∈ Ĝv . Its local conductor is defined by

c (πv ) = c (JL(πv )). (2.27)

Since for both split and ramified places the conductor of a local representation ofGv
is defined, the global conductor can be introduced.

Definition 12. Let π be an automorphic representation ofG, and write π = ⊗vπv . Its
global analytic conductor is defined to be

c (π ) =
∏

v

c (πv ), (2.28)

which is well-defined, for almost every component πv is unramified.

Remarks. The choice of defining the conductor at ramified place in this roundabout
way seems far from natural and appeals for some comments.

(i) The definition of the conductor (2.11) coming from the completing factor of as-
sociated L-functions is a systematic and intrinsic way to define the conductor
of a generic representation of a group G. This is provided by the Godement-
Jacquet [56] construction of L-functions, making possible the definition of the ε-
conductor without appealing to an embedding in GL(n). The Jacquet-Langlands
correspondence stated in Theorem 10 preserves the notion of L-function and
hence also makes the inner notion of ε-conductor for G compatible with the
one defined for GL(2). Since the analytic conductor is by definition compatible
betweenG and GL(2), this choice makes no harm compared to directly defining
the conductor from the associated L-functions on G.

(ii) There is a candidate introduced by Lansky and Raghuram [82] providing a fil-
tration of subgroups of G that are roughly of the same size as those introduced
in (2.19). However, it is not known whether or not the attached notion of depth-
conductor is the same.

Since the notion of size has been properly defined andmotivated, it becomes possible
to precisely state the problem and to consider the truncated universal family

A (Q ) = {π ∈ A (G ) : c (π ) 6 Q }, Q > 1. (2.29)

2.3 Equidistribution

The way a family localizes in a given measurable space is formalized in the notion of
equidistribution with respect to a measure. It is a weak convergence against a certain
class of functions. The limit measure expresses the probability of an element of the
family to appear in a given region. This section is dedicated to introduce some elements
of equidistribution and then restate Theorem B as a weak convergence against wider
and more handable class of functions.
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2.3.1 Elements of equidistribution

The whole equidistribution question consists in deciding whether the proportion of
elements of a family lying in a given zone of the space tend to the measure of that
zone. In the case of the universal family, for every open relatively compact set U
with measure zero boundary in the unitary dual, Theorem B aims at estimating the
proportion of automorphic forms lying inU , that is to say

# {π ∈ A (Q ) : π ∈ U }
N (Q )

, Q > 1. (2.30)

This statistic question suffers from the lack of individueal knowledge of automorphic
forms. The measure representing the distribution of the elements in the truncated
universal family is the counting measure

µQ =
1

N (Q )

∑

π∈A (Q )

δπ , Q > 1. (2.31)

The very same idea as theWeyl criterion for equidistribution of sequences modulo 1,
or more generally Portmanteau theorems, applies to this setting and leads to restating
the equidistribution (2.30) in a functional way. For a measure ν on Ĝ =

∏
v Ĝv , recall

that

ν ( f ) =

∫

Π̂

f (π ) dν (π ), (2.32)

for functions such that the expression above has a meaning. So that Theorem B states
that µQ ( f ) converges to µ ( f ) for every f among the characteristic functions of relat-

ively quasi-compact open sets of Π̂ with thin boundary.

The whole point in choosing a functional formulation is to enlarge the scope of the
test functions involved in (2.30) to see them as part of a wider but better-behaved space
of functions. Let S be a finite set of places of B. Define F (ĜS ) to be the space of complex
Plancherel-measurable and bounded functions on ĜS supported on a finite number of
Bernstein components and whose restriction to the tempered spectrum is continuous
outside a measure zero set.

Proposition 8 (Sauvageot). For every relatively compact open setU with thin boundary
in ĜS , the characteristic function 1U belongs to F (ĜS ).

A sequence (νn )n of Radon positive measures on Π̂ weakly converges to a measure ν if
νn ( f ) converges to ν ( f ) for every f ∈ F (ĜS ) when n goes to infinity, for every finite set S
of places. Since the considered characteristic functions lie in F (ĜS ), weak convergence
of µQ to µ implies Theorem B.
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From now on, in order to avoid the expression of N (Q ), the measure considered is
slightly modified to be

νQ =
1

Q2

∑

π∈A (Q )

δπ , Q > 1. (2.33)

This is motivated by the fact, from TheoremA, that N (Q ) is of asymptotical orderCQ2,
so that Theorem B is equivalent to: νQ weakly converges to the measure

ν = C
µ

‖µ‖ =
1

2
vol(G (F )\G (A))µ . (2.34)

2.3.2 Plancherel formulas & Fourier transformation

Technical tools suitable to deal with the action (2.32) of spaces of functions are provided
in this section. The action of automorphic representations is extended to functions on
G by

π ( f ) =

∫

G

f (д)π (д) dд, π ∈ A (G ), f ∈ Cc (G ). (2.35)

This defines a trace class operator, and allows to define its Fourier transform

f̂ (π ) = tr π ( f ), π ∈ A (G ), f ∈ Cc (G ). (2.36)

Specific choices of subclasses of functions, on which the automorphic representa-
tions are considered acting on, lead to better properties of the corresponding operators,
as in the following proposition.

Proposition 9. Let K be a compact open subgroup of G and π an automorphic repres-
entation of G. For every left-K-invariant f in Cc (G ) and every x in the representation
space Vπ of π , the image π ( f )x is K-invariant.

Proof. For every x ∈ Vπ and k ∈ K , the left-K-invariance of f yields

π (k ) (π ( f )x ) =

∫

G

f (д)π (kд)x dд

=

∫

G

f (k−1д)π (д)x dд

= π ( f )x

proving the claim. �

Of particular interest are the Hecke algebras. For a finite place v , the Hecke alegbra
H (Gv ) is the convolution algebra of complex valued, locally constant and compactly
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supported functions on Gv . For an archimedean place v , the Hecke alegbra H (Gv ) is
the convolution algebra of complex valued, smooth and compactly supported functions
on Gv . The global Hecke algebra is denoted H (G (A)) or H (G ), and is the algebra
generated by the restricted products ϕ =

∏
v ϕv , where ϕv is a function ofH (Gv ) and

almost every local component ϕp equals to 1Kp .

The unitary dual group Ĝv is endowed with the Fell topology. The Plancherel meas-
ure associated to it is the unique positive Radon measure µPlv on Ĝv such that the
Plancherel inversion formula of Harish-Chandra holds, i.e.

∫

Ĝv

ϕ̂v (πv ) dµ
Pl
v (πv ) = ϕv (1), ϕv ∈ H (Gv ). (2.37)

From now on, every integral on Ĝv will be written with the convention that dπv stands
for dµPlv (πv ), leading to no ambiguity.

2.3.3 Sauvageot density theorem

In spite of the class F (ĜS ) of test functions being wider than mere characteristic func-
tions, it has a surprusingly good analytical behavior. Indeed, the Sauvageot density
theorem [111] states that any function in F (ĜS ) can be approximated by Fourier trans-
forms of functions in the Hecke algebra of GS .

Theorem 11 (Sauvageot). For every f ∈ F (ĜS ) and ε > 0, there exist functions ϕ andψ
in the Hecke algebraH (GS ) such that

• ∀π ∈ ĜS ,
���f (π ) − ϕ̂ (π )��� 6 ψ̂ (π )

• µPlS (ψ̂ ) 6 ε

Thus, in order to prove the convergence of νQ ( f ) to ν ( f ) for every function f in

F (ĜS ), it is sufficient to prove it for such Fourier transforms. Indeed, let f ∈ F (ĜS ). For
ε > 0, Sauvageot’s theorem guarantees the existence of ϕ and ψ in the Hecke algebra

H (GS ) such that ϕ̂ and ψ̂ satisfy the conditions above. Thus

|νQ ( f ) − ν ( f ) | 6 |νQ ( f ) − νQ (ϕ̂) | + |νQ (ϕ̂ ) − ν (ϕ̂) | + |ν (ϕ̂ ) − ν ( f ) |
6 νQ (ψ̂ ) + |νQ (ϕ̂ ) − ν (ϕ̂ ) | + ν (ψ̂ )
6 |νQ (ψ̂ ) − ν (ψ̂ ) | + 2ν (ψ̂ ) + |νQ (ϕ̂ ) − ν (ϕ̂ ) |

From the definition of ν and the domination in the Sauvageot theorem, it follows since
conductors are at lmeast one that

ν (ψ̂ ) ≪ ζ⋆(1)
∏

v

ζv (1)
−1

∫

Ĝv

ψ̂ (πv )
dπv
c (πv )2
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≪
∏

v

ζv (1)
−1

∫

Ĝv

ψ̂ (πv ) dπv < µ
Pl
S (ψ̂ ) 6 ε

Thus,
|νQ ( f ) − ν ( f ) | ≪ ε + |νQ (ψ̂ ) − ν (ψ̂ ) | + |νQ (ϕ̂ ) − ν (ϕ̂ ) |. (2.38)

In order to prove that νQ weakly converges to ν , it is then sufficient to show that the
second and third terms vanish forQ → ∞, i.e. to prove the theorem for such functions

ϕ̂ and ψ̂ . A sharper result than what is needed for Theorem B can be proven, with a
precise remainder term in the case of Fourier transforms.

Theorem G. For every finite set of places S and ϕ ∈ H (ĜS ),

νQ
(
ϕ̂

)
= ν

(
ϕ̂

)
+


O

(
Q−1+ε

)
if F = Q and B totally definite;

O
(
Q−δF

)
if F , Q and B totally definite;

O
(

1
logQ

)
if B is not totally definite.

Remark. The underlying constants depend on ϕ. This is not a problem since only
convergences matter for Theorem B.

2.3.4 Admissible functions

Let ϕ ∈ H (GS ). The action of ϕ̂ (π ), shortcut notation for ϕ̂ (πS ), can be assumed to
have a selecting effect on the spectral data. Indeed, the trace Paley-Wiener theorem of
Bernstein, Deligne and Kazhdan [8] provides the fundamental properties of the Fourier
transforms.

Theorem 12 (Trace Paley-Wiener). The functions on Ĝp lying in the image by the Four-

ier transform of the Hecke algebraH (Gp) are the functions ϕ̂ on Ĝp such that

(i) for every standard Levi subgroupM ofGp and every irreducible representation σ of

M , the function ψ 7→ ϕ̂ (indMGp (ψσ )) is a regular function on the complex algebraic
varietyψ (M ) composed of the unramified characters ofM ;

(ii) there exists an open compact subgroup K of Gp dominating ϕ, i.e. such that ϕ is
nonzero only on representations having non trivial K-fixed space πK .

It follows that Fourier transforms selects representations of bounded conductor.

Proposition 10. Let ϕ ∈ H (GS ). There exists cϕ > 0 such that for every generic π ∈ ĜS

in the support of ϕ̂, the conductor of π is less than cϕ .

Proof. Since S is a finite set of places it is sufficient to prove the result for a local
component. In the case of a finite place p, let ϕp be the p-component of ϕ, where
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p ∈ S . The property (ii ) of the Trace Paley-Wiener theorem states that its Fourier

transform ϕ̂p is dominated by a certain open compact subgroup K of Gp, that is to
say is supported on representations πp having nontrivial fixed space πKp . Since K is
open and the sequence (K0,p (p

i ))i is a filtration in Gp, K contains a certain conjugate

of a K0,p (p
r ) and hence ϕ̂p is nonzero only for representations of conductor dividing

pr . Since S contains only a finite number of places, this proves that ϕ̂ selects only
representations πS ∈ ĜS with conductor dividing the product of the corresponding
pr . �

However, bounding the conductor is not enough for the purposes of the trace for-

mula, thus some modifications on ϕ̂ are necessary. However, it is far from obvious that
such modified functions are still approachable by Fourier transforms. In order to select
automorphic representations in the universal family through trace formula methods, it
is necessary to restrict the Fourier transforms considered to the generic spectrum, for
otherwise there is no notion of conductor attached to a representation. The following
proposition states that it is possible, up to another approximation by density.

Proposition 11. Let ϕ̃ be the restriction of ϕ̂ to the generic spectrum, extended by zero
elsewhere on the unitary dual. Then ϕ̃ lies in F (ĜS ).

Proof. Recall that the Sauvageot density theorem, stated in Proposition 8 provides a
criterion for functions to be approachable by Fourier transforms. All the properties
of the Sauvageot class F (ĜS ) obviously hold for ϕ̃ safe possibly the condition on the
discontinuity points. The proof is done by the explicit classification of the represent-
ations on PGL(2) on local fields. Since ϕ̃ is supported on a finite number of Bernstein
component, it is possible to assume it is supported on only one component with no
loss of generality.

For archimedean places, the only unitary non-generic representation of PGL(2,R)
is the trivial representation, and it is of zero Plancherel measure. The Steinberg rep-
resentation also lies in the boundary of the generic spectrum. Since the Steinberg
representation has positive Plancherel measure, it is not a discontinuity point of ϕ̃,
otherwise it would already have been a discontinuity point of ϕ̂, what is incompat-
ible with the Sauvageot conditions. The cases of PGL(2,C) and PGL(2, Fp) should be
treated similarly. �

The conductor of a representation in the generic spectrum is well-defined. It is also
necessary to restrict the functions to fixed conductors, what has a meaning since Pro-
position 11 allows to restrict to the generic dual. This is the meaning of the next pro-
position.

Proposition 12. Let q be a an integer ideal. Let ϕ̄ be the restriction of ϕ̃ to representations
of fixed conductor q, extended by zero elsewhere. Then ϕ̄ lies in F (ĜS ).

Proof. Since the support of q contains only a finite number of places, it is enough to
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prove the proposition for the restriction to conductors pr . This is also possible by the
explicit classification of the dual of PGL(2, Fv ). �

2.4 Universal family

The truncated universal family has to be explored further. A refined decomposition of
A (Q ) using the specific behavior at the different places is possible. The explicit notion
of conductor given through the depth notion associated to the filtration (2.19) is suit-
able to treat the corresponding split components of an automorphic representation.
Ramified and archimedean components need specific treatment yet arise in a finite
number of places. This section supply the necessary toolbox, following the presenta-
tion of Finis, Lapid and Müller [43] as well as of Brumley and Milićević [17].

2.4.1 Archimedean Langlands classification

The local Langlands classification of the archimedean admissible dual [73] of GL(2)
provides a recipe for constructing the admissible representations of reductive groups
over archimedian local fields in terms of representations of Levi subgroups. Since unit-
ary representations are in particular admissible, it induces a parametrization of the
unitary dual of GL(2, FR∞). LetL∞ the finite set of Levi subgroups of GL(2, FR∞) contain-
ing the diagonal torus. For such a LeviM , define E2(M1) to be the set of isomorphism
classes of square integrable representations ofM1. The only nonempty cases are

• E2(GL(1,R)1) consisting into the trivial character and the sign character;
• E2(GL(1,C)1) composed by the characters zk/|z |k for integers k ;
• E2(GL(2,R)1) that is the set of discrete series representations of weight k > 2.

Introduce the set D of GR
∞-classes of conjugation of pairs δ = (M,δ ) with M ∈

L∞ and δ ∈ E2(M1): they constitute the discrete spectral data parametrizing the
archimedean sprectum. Write h⋆

M,C
for the trace-zero hyperplane of the complexified

dual of the Lie algebra of M , which is a finite-dimensional C-vector space. The spec-
tral data δ ∈ D, consisting of a Levi M ∈ L∞ and a discrete series representation
δ ∈ E2(M1), along with ν ∈ h⋆

M,C
, give rise to an admissible representation of GR

∞
in the following way. The unitary induction IndGP (δ ⊗ eν ) from the unique parabolic
subgroup P containingM is not necessarily irreducible, yet the following holds.

Proposition 13 (Archimedean Langlands classification). Let δ ∈ D and ν ∈ h⋆
M,C

, de-
noteWδ the stabilizer of δ in the Weyl group of hM . There is a unique ν ′ in the class of ν
modulo translation byWδ such that the induction IndGP (δ ⊗ eν

′
) admits a unique irredu-

cible quotient, denoted by πδ ,ν . Moreover, every admissible irreducible representation of
GL(2, FR∞) arises uniquely in this way, up to infinitesimal equivalence.
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This construction exhausts the admissible dual of GL(2, FR∞) up to infinitesimal equi-
valence. This is the archimedean Langlands classification [72, Theorem 8.54], that can
be reformulated as

ĜR,1
∞ �

⊔

M∈L∞
E2(M1) × h⋆M,C/W , (2.39)

where ĜR,1
∞ stands for the admissible dual of GL(2, FR∞) up to infinitesimal equivalence.

Note that D is a discrete set, leading to refer to δ as the discrete archimedean spec-
tral parameter of π , or the discrete parameter of πR∞, while ν in h⋆

M,C
/W is called the

continuous archimedean parameter of π .

2.4.2 Decomposition

In order to address the problem of theweak convergence of νQ to prove TheoremG, it is
necessary to decompose the universal family into smaller sets with fixed spectral data,
amenable to trace formula methods. Let S be a finite set of places and ϕ ∈ H (GS ). The
conductor of π ∈ A (G ) splits into local conductors, and in particular it can be written

c (π ) = c (πR )c (π
R
∞)c (π

R
S,f )N c(π

R,S
f

). (2.40)

This decomposition emphasizes the different kind of information and behavior each
type of place is endowed with, and turns to be a guide for decomposing the counting
measure νQ (ϕ̂) of the truncated universal family. Concerning the split archimedean
places, introduce the truncated archimedean split dual

Ω(X ) =
{
πR∞ ∈ ĜR

∞ : c (πR∞) 6 X
}
, X > 0. (2.41)

This set of archimedean parameters factorizes further through the precise Langlands
classification recalled in Section 2.4.1, by fixing discrete spectral parameters, so that

Ω(X ) = Ωcomp(X ) ⊔
⊔

δ∈D
δ=(M,δ )

Ωδ (X ), (2.42)

where

Ωδ (X ) =
{
πR∞ ∈ ĜR

∞ : ∃ν ∈ ih⋆M , πR∞ ≃ πδ ,ν , c (πR∞) 6 X
}

Ωcomp(X ) =
{
πR∞ ∈ ĜR

∞ : ∃ν ∈ h⋆M,C\ih⋆M , πR∞ ≃ π⋆,ν , c (πR∞) 6 X
}

and the notation ≃ π⋆,ν stands for the existence of a δ ∈ D such that the repres-
entation is isomorphic to πδ ,ν . The set Ωcomp is called the complementary part of the
archimedean spectrum, while the remaining part is the tempered part of the spectrum.
This denomination is motivated by the fact that the representation πδ ,ν is tempered if
and only if ν lies in ih⋆

M
.



46 Chapter 2. Universal Family for Quaternion Algebras

Concerning the remaining places, recall that every ideal m is decomposed in the
form m = mSmS , where such a decomposition always means that mS is the prime-
to-S part of m, i.e. is such that mS ∧ S = 1, and mS if the S-part of m, i.e. satisfies
supp(mS ) ⊆ S . The same decomposition is used without further notice for the other
letters. The multiplicative conductor of the finite split places lying out of R is fixed to
a certain ideal q, and the isomorphism class of the ramified part is fixed to a certain
σR ∈ ĜR .

Recall from Proposition 12 that the function ϕ̄ is so that the conductor of the S-
component to be equal to a certain qS . Thus, the universal family admits the following
decomposition according to (2.40) and the choices made above:

A (Q ) = Acomp(Q ) ⊔
⊔

Nq6Q
q∧R=1

⊔

σR∈ĜR

c (σR )6Q/Nq

⊔

δ∈D
δ=(M,δ )

A (q,σR,δ ,Ω), (2.43)

where the sets of fixed spectral data are

A (q,σR,δ ,Ω) =
{
π ∈ A (G ) : πR ≃ σR, c(πRf ) = q, π

R
∞ ∈ Ωδ (Q/Nqc (σR ))

}
Acomp(q,σR,Ω) =

{
π ∈ A (G ) : πR ≃ σR, c(πRf ) = q, π

R
∞ ∈ Ωcomp(Q/Nqc (σR ))

}
and where Ω stands for Ω(Q/Nqc (σR )), convention used from now on to lighten nota-
tions.

The decomposition (2.43) of the universal family is critical for it reduces the study of
the whole family to harmonic families, easier to grasp in the context of trace formulas.
What is critical is to having got rid of the condition of belonging toA (Q ), decomposed
in local conditions. It induces a decomposition of the counting measure as

νQ (ϕ̂ ) =
1

Q2

∑

π∈A (Q )

ϕ̂ (π )

=

1

Q2

∑

π∈A (G )

c (πR )c (π
R,S
f

)c (πR
S,f

)c (πR∞)6Q

ϕ̂ (π )

=

1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

π∈A (q,σR ,δ ,Ω)

ϕ̂ (π )

+

1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

π∈Acomp (q,σR ,Ω)

ϕ̂ (π )

(2.44)

where the sum over q is meant to run through ideals of OR . The complementary part
corresponds to the second sum appearing in the line above and will be dealt with later
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and shown to contribute as an error term. Denote A(q,σR,δ ,Ω;ϕ) the innermost part
of the splitting in the first summation above, that is to say

A(q,σR,δ ,Ω;ϕ) =
∑

π∈A (q,σR ,δ ,Ω)

ϕ̂ (π ). (2.45)

2.4.3 Old and new forms

The universal family (2.29) sees no multiplicities, but the trace formula counts them.
The spectral multiplicities associated to the decomposition of L2(G (F )\G (A)), which
are more suitable weights for the forthcoming computations, are given by

m (π ,q) = dim
(
πK0 (q)

)
, (2.46)

where
ZK0(q) =

∏

pr | |q
ZpK0,p (p

r ) ⊆ B×
(
AR
f

)
, (2.47)

and K0(q) stands for the image of ZK0(q) under the natural projection B× → G. The
choice is made so that m(π ,q) , 0 is equivalent to c(πR

f
) | q. The analogous sum to

(2.45) additionally weighted by the multiplicities is

B (q,σR,δ ,Ω;ϕ) =
∑

π∈B (q,σR ,δ ,Ω)

m
(
πS ,qS

)
ϕ̂ (π ), (2.48)

where

B (q,σR,δ ,Ω) =
{
π ∈ A (Q ) : πR � σR, c

(
πRf

)
| q, πR∞ ∈ Ωδ (Q/Nqc (σR ))

}
. (2.49)

The sum defined by (2.45) counts the newforms while (2.48) counts the old ones at
finite split places out of S . The relation between them lies in the following lemma.

Lemma 1. Let q prime to R, σR irreducible unitary representations of GR , δ ∈ D and
ϕ ∈ H (GS ). Let λ2 = µ ⋆ µ where µ is the Möbius function. For every Q > 1,

A (q,σR,δ ,Ω;ϕ) =
∑

d | q
λ2

(
q

d

)
B (d,σR,δ ,Ω;ϕ) . (2.50)

Proof. Recall that Casselman provides the local multiplicities in (2.22): for every finite
split place p,

dim π
K0(pf(πp )+i )
p = i + 1, i > 0. (2.51)
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From this immediately follows, after taking the product over all finite split places, that
the global multiplicities are

m (π ,q) = τ2

(
q

c(πR )

)
, (2.52)

where τ2 = 1⋆ 1 is the divisor function. Since
(
πR

)K0 (q)
, 0 implies c(πR ) | q, the sum

defining B (q,σR,δ ,Ω;ϕ) is eventually reduced to a sum over c(πR ) | q. Thus, by the
precise knowledge (2.52) of the multiplicities,

B (q,σR,δ ,Ω;ϕ) =
∑

d | q

∑

π∈A (d,σR ,δ ,Ω)

τ2
*.,
q

c(πR
f
)

+/- ϕ̂ (π )
=

∑

d | q
τ2

(
q

d

) ∑

π∈A (d,σR ,δ ,Ω)

ϕ̂ (π )

=

∑

d | q
τ2

(
q

d

)
A (d,σR,δ ,Ω;ϕ)

(2.53)

so that B = τ2 ⋆A, with a slight abuse of notation. Hence, by Möbius inversion,

A (q,σR,δ ,Ω;ϕ) =
∑

d | q
λ2

(
q

d

)
B (d,σR,δ ,Ω;ϕ) , (2.54)

achieving the proof. �

Summing over the spectral data appearing in the decomposition (2.44), the counting
measure rewrites as

νQ (ϕ̂ ) =
1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR ))
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

d | q
λ2

(
q

d

)
B (d,σR,δ ,Ω;ϕ) . (2.55)

2.5 Spectral selection

The equidistribution property has been formulated as a convergence of spectral meas-
ures. The Selberg trace formula translates it as a purely geometrical quantity.

2.5.1 Selberg trace formula for compact cases

Since the automorphic quotient of G is compact by Proposition 5, the original formu-
lation of the trace formula, due to Selberg [3] in 1956, can be used and combined with
the multiplicity one theorem. If Φ is a function in the Hecke algebraH (G (A)), then

Jgeom(Φ) = Jspec(Φ), (2.56)
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where the spectral and geometrical parts are as follows. The geometrical part is

Jgeom(Φ) :=
∑

{γ }
vol

(
Gγ (F )\Gγ (A)

) ∫

Gγ (A)\G (A)

Φ
(
x−1γx

)
dx . (2.57)

The sum runs through conjugacy classes {γ } in G (F ). Since Φ is compactly supported
and G (F ) is discrete, the sum is finite. However its length depends on the support of
Φ what turns to be a critical difficulty for estimations, for this support depends on the
spectral parameters. The inner integrals appearing in this geometric side are called the
orbital integrals, defined by

Oγ (Φ) =
∫

Gγ (A)\G (A)

Φ
(
x−1γx

)
dx . (2.58)

The spectral part is

Jspec(Φ) =
∑

π⊆L2 (G (F )\G (A))

m(π )Φ̂(π ). (2.59)

Here π go through the isomorphism classes of unitary irreducible subrepresentations
of G (A) in L2(G (F )\G (A)), and recall that Φ̂ is the Fourier transform of Φ, see 2.3.2.

Remark. The formulaton of the spectral part (2.59) is Selberg’s original one. The
weights m(π ) are the multiplicities of the π ’s in the discrete part of the spectral de-
composition of L2(G (F )\G (A)). The multiplicity one theorem ensures these to be less
than 1, and the indexation by π actually part of L2(G (F )\G (A)) makes them nonzero,
hence equal to 1.

The admissible dual can be decomposed into tempered representations and non-
tempered representation. In view of (2.42) and anticipating that the selecting function
at split archimedean places behaves differently on the tempered spectrum and on the
complementary one, it is natural to introduce the tempered and complementary spec-
tral parts as

Jtemp(Φ) =
∑

π⊆L2 (G (F )\G (A))

πR∞≃π⋆,ν
ν∈Ωtemp

m(π )Φ̂(π )

Jcomp(Φ) =
∑

π⊆L2 (G (F )\G (A))

πR∞≃π⋆,ν
ν∈Ωcomp

m(π )Φ̂(π )

As announced in the outlook of the method, in order to have a problem amenable
to the trace formula it is necessary to formulate statistics quantities on the universal



50 Chapter 2. Universal Family for Quaternion Algebras

family as a spectral side, hence needed to select it by the Fourier transforms of suitable
test functions. The aim of the present section is to construct a function Φ ∈ H (G ) such
that

Jspec(Φ) = B (d,σR,δ ,Ω;ϕ) . (2.60)

In the case of factorizable test functions Φ = ⊗vΦv , the spectral side of the trace for-
mula factorizes as well, reducing the treatment to local statement on local, and hope-
fully simpler, quantities.

Proposition 14 (Factorization of the spectral side). If π = ⊗vπv and Φ = ⊗vΦv , then

Φ̂(π ) =
∏

v

Φ̂v (πv ). (2.61)

Hence, in order to achieve the spectral selection (2.60) it is sufficient locally select
the conditions appearing in the decomposition of the universal family (2.55) through
Fourier transforms. The places of F fall into four categories:

• the split finite part, corresponding to p < R ∪ S , where the arithmetic conductor
is caught by the means of an explicit filtration, see Section 2.19;

• the split finite part in the support of the test function ϕ̂, corresponding top ∈ S\R,
whose conductor is fixed by ϕ̂, see Proposition 12;

• the ramified part, corresponding to the finite number of v ∈ R, which deliber-
ately remains a blackbox and is handled by fixing the representations at those
places by means of matrix coefficients;

• the split archimedean part, parametrized by spectral data that are handled by
selecting functions provided by Paley-Wiener theorems.

The following sections are dedicated to construct local test functions doing so, aim
reached in Lemma 4.

2.5.2 Non-archimedean split places

For an ideal d of O, introduce the congruence subgroup given by the product of the
corresponding local congruence subgroups in (2.19), that is to say

K0(d) =
∏

pr | |d
K0,p (p

r ). (2.62)

The following result gives a test function whose Fourier transform selects the finite
split conductor.

Lemma 2. For an ideal d of O, let

εd = vol
(
K0(d)

)−1
1K0 (d)

. (2.63)
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Its Fourier transform selects the multiplicity relative to d. More precisely,

ε̂d (π ) =m(π , d), π ∈ A (G ). (2.64)

Proof. Let π be an automorphic representation of G. Then π (εd) is the projection of
the representation spaceVπ on the subspace πd of the fixed vectors by K0(d) under the
action of π . Indeed, every π (εd)v , for v in Vπ , is K0(d)-invariant, for it is an averaging
over the action of K0(d). For k0 ∈ K0(d) and v ∈ Vπ ,

π (k0)π (εd)v = vol
(
K0(d)

)−1
π (k0)

∫

K0 (d)

π (k )v dk

= vol
(
K0(d)

)−1 ∫

K0 (d)

π (k0k )v dk

= vol
(
K0(d)

)−1 ∫

K0 (d)

π (k )v dk = π (εd)v

so that its image lies in πd. The action of π (εd) is also idempotent, more precisely the
identity on πd. Indeed, for v0 ∈ πd,

π (εd)v0 = vol
(
K0(d)

)−1 ∫

K0 (d)

π (k )v0 dk

= vol
(
K0(d)

)−1 ∫

K0 (d)

v0 dk

= v0

Hence π (εd) is an idempotent endomorphism of image πd, i.e. a projection on πd. The
trace of a projection is its rank, that is to say ε̂d (π ) is the dimension of the fixed vector
spaces πd. Those are the sought multiplicitiesm(π , d), in particular are nonzero if and
only if c(π ) | d. �

2.5.3 Ramified places

For ramified places, less is known concerning the representations and the choice made
in the decomposition (2.55) is to fix the corresponding isomorphism class. In the finite
dimensional case, knowingmatrix coefficients is sufficient to determine the underlying
matrix. This property still holds for supercuspidal representations in the following
sense.

Let σR be a unitary representation of GR . A matrix coefficient associated to σR is a
function of the form, given v andw in the space of σR ,

ξv,wσR
: GR −→ C

д 7−→ 〈σ (д)v,w〉 (2.65)
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Matrix coefficients are continuous functions on GR , are compactly supported since
GR is compact, and are locally constant at finite places and smooth at archimedean
places.

Remark. The fact that matrix coefficients is considered only for ramified places is crit-
ical for selecting purposes. The loss of the compactness of the support for matrix
coefficients in the split case, where some automorphic representations are not super-
cuspidal, make them fail to select the corresponding isomorphism class. Such purposes
can be achieved by means of existence theorem, yet are less precise, see [75]. This is
the reason why the non-totally definite case or the GL(2) case are analytically harder
to deal with, see Section 2.5.4.

As for finite-dimensional matrix coefficients, orthogonality relations can be formu-
lated and are the key to selecting a fixed representation σR . For instance, Knightly and
Li [75, Corollary 10.26] provide the following proposition.

Proposition 15. Let σ and π be automorphic representations of GR , and introduce dπ
the formal degree of π . Then for every unit vectors v andw in the representation space of
σ ,

π
(
ξv,wσ

)
w = 1π≃σ

〈w,v〉
dπ

v . (2.66)

Taking for v a vector of norm d
1/2
π , it follows that π

(
ξv,vσ

)
is the orthogonal projec-

tion ontoCv and in the meanwhile selects the π ’s isomorphic to σ . So that, considering
its trace, the above into a result concerning Fourier transforms can be restated as fol-
lows.

Proposition 16. Let σ and π be automorphic representations ofGR . Let v be a vector of
norm one in the representation space of σ . Then,

ξ̂v,vσ (π ) = 1π≃σ . (2.67)

From now on, denote ξσ any choice of matrix coefficient as in Proposition 16.

2.5.4 Archimedean parameters

Based on the decomposition of the universal family 2.43, for a general bounded set of
continuous parameters Ω in h⋆

M,C
, the question is to select representations lying in sets

of the form

A (q,σR,δ ,Ω) =
{
π ∈ A (Q ) : πR ≃ σR, c(πRf ) = q, π

R
∞ ∈ Ωδ

}
.

This is a feature of non-compact archimedean groups: their dual is no more discrete
and hence admits a continuous parametrization. However, many tools in harmonic
analysis on Lie groups involve narrow classes of functions among which characteristic
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functions of such sets Ωδ are not, requiring a smoothing construction to get admissible
functions lying nearby them. This procedure is in essence provided by the fundamental
work of Duistermaat, Kolk and Varadarajan [39].

Brumley and Milićević [17] adapt this method to the automorphic setting on GL(n)
and construct a function localizing around spectral parameters (δ ,ν ), where δ is a
fixed archimedean discrete spectral datum and where ν is a continuous parameter run-
ning through a bounded set of parameters Ωδ . Smoothing procedures behave well on
tempered parameters, leading to assume Ω to be a bounded set of tempered paramet-
ers of fixed discrete part δ , leaving the non-tempered part of Ω to be proven negligible
compared to the tempered contribution.

Introduceϕ which in this section is a function in theHecke algebra ofGR
∞, and should

be denoted ϕR∞ in the following ones. The aim is to find a smooth enough function
for trace formula purposes approximating the characteristic function of Ωδ . Brumley

and Milićević [17, Section 9] achieved this goal, constructing a function hδ ,Ωρ of Paley-
Wiener type with exponential type ρ > 0 as tempered spectral-localizing function.
Let

h
δ ,Ω,ϕ
ρ := ϕ̂ hδ ,Ωρ , δ ∈ D . (2.68)

A direct consequence of their result is the following lemma, where the remainder
term is fundamental yet willingly hidden in order to ease the exposition. What is of
critical importance are the bounds on this undisclosed error term, precisely stated in
Lemma 10.

Lemma 3. For every discrete spectral data δ ∈ D, there is a function ϵδ ,Ωρ such that for
every (M,τ ) ∈ D and ν ∈ h⋆

M,C
,

(i ) h
δ ,Ω,ϕ
ρ (τ ,ν ) = 1τ∈Wδ

ν∈Ω
ϕ̂ (τ ,ν ) + ϵδ ,Ωρ (τ ,ν )

(ii ) h
δ ,Ω,ϕ
ρ (τ ,ν ) ≪ 1 τ∈Wδ

Re(ν )∈Ω
eρ‖Reν ‖

Proof. This is just encapsulating the results of [17, Lemma 9.2] and multiplying them

by ϕ̂. �

Remark. From now on every error term also depends on ϕ: this is not such a matter
since the Sauvageot theoremwill ultimately get rid of every error term to just conclude
to a convergence result, and the counting law is obtained with no ϕ added.

The same arguments used by Brumley and Milićević [17] hold with hδ ,Ωρ replaced by

h
δ ,Ω,ϕ
ρ . In particular, a version of the Paley-Wiener proven by Clozel and Delorme [24]

provides a function f
δ ,Ω,ϕ
ρ whose Fourier transform is hδ ,Ω,ϕρ .
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2.5.5 Spectrum selection

The weighted counting number B (d,σR,δ ,Ω;ϕ) should be written as a spectral side in
the trace formula. Introduce the test function

Φd,πR ,δ ,Ω,ρ;ϕ =
∏

v

Φv , (2.69)

which is built with the following local functions:

Places v Local test function Φv

< S, < R, < ∞ εd,v

< S, < R, ∈ ∞ f δ ,Ωρ,v

< S, ∈ R ξπv

∈ S, < R, < ∞ ϕv

∈ S, < R, ∈ ∞ f
δ ,Ω,ϕ
ρ,v

∈ S, ∈ R ξπv ϕ̂v (πv )

where

• ϕv is the local component of ϕ on Gv ;
• ξπv is a matrix coefficient for πv ;
• εd is the function introduced in Lemma 2, εd,v its v-component;

• f
δ ,Ω,ϕ
ρ is the function constructed Lemma 5, with Ω = Ω(Q/Nqc (πR )).

The sought weightedmeasure is barely reached by the spectral side withΦd,πR ,δ ,Ω,ρ;ϕ ,
as stated in the following fundamental lemma.

Lemma 4. Let Q > cϕ . Let d ∧ R = 1, πR ∈ ĜR , δ ∈ E2(M1) for anM ∈ L∞. Then

B (d,πR,δ ,Ω;ϕ) = Jtemp

(
Φd,πR ,δ ,Ω,ρ;ϕ

)
+O (Ξ(ϕ,πR )) +O (∂ρB (d,πR,δ ,Ω)), (2.70)

where, introducing the set X ur(G ) of unramified characters of G (A),

Ξ(ϕ,πR ) =
∑

χ∈X ur (G )
χR≃πR

m(χR, d)ϕ̂ (χ ), (2.71)

and

∂ρB (d,πR,δ ,Ω) =

∫
π∈A (d,πR ,δ )

ν∈ih⋆
M

τ2

(
d

c(πR )

)
ϵδ ,Ωρ (τ ,ν ) dν , (2.72)

where this last integral means an integration over π ∈ A (G ) of fixed discrete spectral
data d, πR and δ , and with continuous parameters varying in ih⋆

M
.
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Proof. Let Φ = Φd,πR ,δ ,Ω,ρ;ϕ . In order to determine the Fourier transform of Φ recall
the splitting into local components given by Proposition 14: for every places v,w and
every a ∈ H (Gv,w ), Eavaw = âvâw . Thus,

Φ̂ =
∏

v

Φ̂v = h
δ ,Ω,ϕ
ρ

∏

v∈R
ξ̂πv

∏

p<R
p<∞
p<S
pr | |d

ε̂pr ,v

∏

p<R
p<∞
p∈S

ϕ̂p. (2.73)

Hence only the Fourier transforms of the local components of the test function have
to be determined. The finite prime-to-S split part εd is shown to transform into the
characteristic function of conductors dividing d in Lemma 2 weighted by the corres-
ponding multiplicities. The ramified local parts ξπv are known to transform into the
characteristic functions of the isomorphism class of πv by Lemma 16. The transform of
the archimedean split part is shown to approximate the selecting function of bounded
conductors in Lemma 3, up to a smoothing error term ϵδ ,Ωρ . The action of the Fourier
transform of Φ on the tempered part follows, and (2.73) yields, for σ ∈ A (G ) with
archimedean split parameters (τ ,ν ),

Φ̂(σ ) =m(σR, d)ϕ̂ (σ f )1 σR�πR
c(σR ) | d

(
1τ∈Wδ
ν∈Ω

ϕ̂ (τ ,ν ) + ϵδ ,Ωρ (τ ,ν )

)
. (2.74)

Nevertheless, these conditions also stand for characters: in order to not being killed
by Φ̂ they have to be trivial onK0(d), i.e. they have to be unramified since det(K0(d)) =

OR . Moreover, they have to be isomorphic to πR at ramified places. The Fourier trans-
form of the chosen test function hence does not vanish on unramified characters, un-
like awaited. The corresponding extra contribution Ξ is treated separately in Lemma
12, for characters are easier to embrace and it will be shown to contribute as an error
term.

After summing over the tempered spectrum, it follows by roughly bounding ϕ̂ in
the remainder smoothing term,

Jtemp(Φ) =
∑

σ∈A (d,πR ,δ ,Ω)

τ2

(
d

c(σR )

)
ϕ̂ (σ )

+O
*.,
∫
π∈A (d,πR ,δ )

ν∈ih⋆
M

τ2

(
d

c(πR )

)
ϵδ ,Ωρ (τ ,ν ) dν

+/-
+O

*...,
∑

χ∈X ur (G )
χR≃πR

m(χR, d)ϕ̂ (χ )
+///-

that achieves the proof. �
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Remark. This lemma gets rid of treating precisely the contribution of those charac-
ters, for it is more suitable to keep the test function as easy to handle as possible in
order to ease the estimations in the geometric side below. The lack of details compared
to [17] concerning the treatment of the archimedean parameters may be a break to the
understanding. Recall from Lemma 3 that the error term ϵδ ,Ωρ is better when ν if far
from the boundary of Ω, so that it should be considered as a smooth bump function
concentrating around the boundary, so that the integral (2.72) is a smoothed version
of the counting number B (d,πR,δ , ∂ρΩ;ϕ), justifying the notation.



Chapter 3

Counting Law & Equidistribution

Endowedwith the decomposition and the sieving of the spectrum established in Chapter
2, the counting law and equidistribution problems appear to be amenable to trace for-
mulas methods. The spectral side of the Selberg trace formula approximates the sought
quantities, while the geometrical side is dominated by the identity contribution. Many
specific estimates are gathered and proven in order to show the negligibility of the
remainding terms.

The identity term in the geometric side of the trace formula yields the counting law
and equidistribution results. The volumes of the congruence subgroups used to grasp
the conductor are critical to determine the growth order, while the constant admits a
geometric interpretation in terms of the zeta function of the analytic conductor. The
error terms relative to the complementary part of the spectrum and the smoothing
effect are reduced to similar counting problems. The ones coming from the elliptic
part of the trace formula are estimated by a precise evaluation of their number and
recent bounds on orbital integrals.
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3.1 Geometric reformulation

The equidistribution property has been recast as a convergence of spectral measures
in Theorem G. The Selberg trace formula restates it as a purely geometrical quantity.
Indeed, recall from Lemma 4 that for an ideal d ∧ R = 1, a ramified part πR ∈ Ĝ,
an archimedean spectral parameter δ ∈ D, the following relation holds between the
number of old forms B (d,πR,δ ,Ω;ϕ) and the spectral part of the trace formula.

Jtemp

(
Φd,πR ,δ ,ρ,Ω;ϕ

)
= B (d,πR,δ ,Ω;ϕ) +O (Ξ(ϕ,πR )) +O (∂ρB (d,πR,δ ,Ω)). (3.1)

The trace formula stated in Section 3.1 is the equality

Jgeom(Φ) = Jspec(Φ), (3.2)

where the spectral and geometrical parts are given in (2.57) and (2.59). In order to
interpret B (d,πR,δ ,Ω;ϕ) as a spectral side, it is then necessary to add the contribution
of the complementary part of the split archimedean spectrum, namely

Jcomp(Φ) =
∑

π⊆L2 (G (F )\G (A))

πR∞≃π⋆,ν
ν∈Ωcomp

Φ̂(π ) (3.3)

The road is thus cleared towards a geometrical formulation of the counting meas-
ure parts B (d,πR,δ ,Ω;ϕ), what is carried out in this chapter. So far, from the trace
formula and the splitting of the weighted counting measure (2.55), summing the ex-
pressions (3.1) above over all the spectral data and adding the complementary part of
the spectrum, it yields

νQ (ϕ̂ ) =
1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
Jgeom

(
Φd,πR ,δ ,Ω,ρ;ϕ

)

− 1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
Jcomp(Φd,πR ,δ ,Ω,ρ;ϕ )

+O

*.....,
1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
Ξ(σR,ϕ)

+/////-
+O

*.....,
1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
∂ρB (d,πR,δ ,Ω)

+/////-
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The main contribution is carried by the first term, the remaining ones being showed
below to contribute as negligible terms. Decompose the geometrical side (2.57) Jgeom(Φ)
as sum of two terms, the first one corresponding to the identity contribution, and the
other being the elliptic remainder, in other terms

Jgeom(Φ) = vol (G (F ) \G (A)) Φ(1) + Jell(Φ), (3.4)

where the elliptic part is expressed in term of orbital integrals

Jell (Φ) =
∑

{γ },{1}
vol

(
Gγ (F )\Gγ (A)

) ∫

Gγ (A)\G (A)

Φ
(
x−1γx

)
dx .

The universal family counting measure now decomposes, via (3.1) and the splitting
above, as

νQ = vol (G (F ) \G (A)) ν1,Q + νell,Q − νcomp,Q +O (νΞ,Q ) +O (ν∂,Q ), (3.5)

where the following measures have been introduced.

ν1,Q
(
ϕ̂
)
=

1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
Φd,πR ,δ ,Ω,ρ;ϕ (1)

νell,Q
(
ϕ̂
)
=

1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
Jell(Φd,πR ,δ ,Ω,ρ;ϕ )

νcomp,Q

(
ϕ̂
)
=

1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
Jcomp(Φd,πR ,δ ,Ω,ρ;ϕ )

νΞ,Q
(
ϕ̂
)
=

1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
Ξ(σR,ϕ)

ν∂,Q
(
ϕ̂
)
=

1

Q2

∑

σR∈ĜR

c (σR )6Q

∑

Nq6Q/c (σR )
q∧R=1

∑

δ∈D
δ=(M,δ )

∑

dS | qS
λ2

(
qS

dS

)
∂ρ (d,σR,δ ,Ω)

From now on the aim is to unveil what lies behind the innermost quantities in the
sums above and estimate the contribution of each measure to the counting measure
νQ .
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3.2 Identity contribution

For a given ϕ ∈ H (GS ), the main term of νQ (ϕ̂ ) is given by the contribution ν1,Q (ϕ̂ )

of the identity, and the other terms will be shown to be negligible. This section is
dedicated to the computation of this identity contribution.

Proposition 17. The contribution of the identity is, for ϕ ∈ H (GS ),

vol (G (F ) \G (A)) ν1,Q
(
ϕ̂
)
= ν

(
ϕ̂
)
+


O (Q−1 logQ ) if D is totally definite and F = Q

O (Q−δF ) if D is totally definite and F , Q

O (log−1Q ) if there is a split infinite place

In particular, vol (G (F ) \G (A)) ν1,Q equidistributes with respect to ν .

3.2.1 Test function at 1

Before summing over the spectral data, it is necessary to look at the inner part of

ν1,Q
(
ϕ̂
)
. Fix d an ideal of OR , πR a unitary irreducible representation of GR and δ a

discrete archimedean parameter; and let for this section Φ = Φd,πR ,δ ,Ω,ρ;ϕ and Ω denote
Ω(Q/NdSc (σR )) for convenience. The very definition (2.69) of Φ gives

Φ(1) = εK0 (dS ) (1)ϕ
R
S,f (1)ξσR (1)ϕ̂R (πR ) f

δ ,Ω,ϕ
ρ (1). (3.6)

Finite split places out of S

For the prime-to-S split finite part, by definition

εK0(dS ) (1) = vol
(
K0(d

S )
)−1
. (3.7)

The volume of a cofinite subgroup depends on its index, and the indices of classical
congruence subgroups are well-known [35]. Introduce KR,S

=

∏
v<R∪S Kv . Since Z

R,S

is fully contained in KR,S
0 (dS ) for all ideal dS ,[

K
R,S

: K0

(
dS

)]
=

[
KR,S : K0

(
dS

)]
, (3.8)

by the isomorphism theorems. So thanks to the normalizations chosen for the meas-
ures,

εK0(dS ) (1) =
[
KR,S : K0

(
dS

)]
=

(
id⋆ µ2

)
(dS ) =: φ2(d

S ). (3.9)

Finite split places in S

For the S-split finite part, the Plancherel inversion formula (4.64) gives

ϕRS,f (1) =

∫

ĜR
S,f

ϕ̂RS,f (π
R
S,f ) dπ

R
S,f . (3.10)
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Ramified places

For the ramified matrix coefficient (2.67), by the Plancherel formula (4.64) and the nor-
malization chosen for ξπR ,

ξπR (1) =

∫

ĜR

1σ≃πR dµ
Pl
R (σ ) = µ

Pl
R (πR ). (3.11)

Split archimedean places

The test function f δ ,Ω,ϕρ at archimedean split places is not so immediate to evaluate at 1,
since it is not an explicit function but provided by an existence theorem. The Plancherel

formula allows to express it in terms of its Fourier transform h
δ ,Ω,ϕ
ρ for which Lemma 3

provides information. There is an error term function due to the smoothing procedure
willingly kept undisclosed and for which bounds are provided later.

Lemma 5. For every δ ∈ D, X > 0, ρ > 0 and ϕ ∈ H (G ),

f
δ ,Ω,ϕ
ρ (1) =

∫

Ω

ϕ̂ (ππδ,ν ) dν + ∂ρB (δ ,Ω), (3.12)

where

∂ρB (δ ,Ω) =

∫

ih⋆
M

εδ ,Ωρ (πδ ,ν ) dν . (3.13)

Proof. This is the proof of [17, Lemma 11.2] into which the spectral localizing function
around (δ ,Ω) they build, namely hδ ,Ωρ in their notation for reference, is replaced by

h
δ ,Ω,ϕ
ρ . The Plancherel formula gives

f
δ ,Ω,ϕ
ρ (1) =

∫

ih⋆
M

hδ ,Ωρ (ππδ,ν )ϕ̂ (ππδ,ν ) dν . (3.14)

Integrating the approximation of Lemma 3 yields
∫

ih⋆
M

hδ ,Ωρ (πδ ,Ω )ϕ̂ (ππδ,ν ) dν =

∫

Ω

ϕ̂ (ππδ,ν ) dν +

∫

ih⋆
M

εδ ,Ωρ (πδ ,ν ) dν , (3.15)

and this achieves the proof. �

Finally it follows a more explicit form of the value at the identity, namely

Φ (1) = φ2(d
S )µPlR (πR )ϕ̂ (πR )

∫

Ω

ϕ̂ (πδ ,ν ) dν

∫

πR
S,f
∈ĜR

S,f

ϕ̂ (πRS,f ) dπ
R
S,f

+ φ2(d
S )µPlR (πR )ϕ̂ (πR )∂ρB (δ ,Ω)

∫

πR
S,f
∈ĜR

S,f

ϕ̂ (πRS,f ) dπ
R
S,f .

(3.16)

The tools are now in place to, after summation of (3.16), provide a decomposition of
the counting measure of the whole universal family.
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3.2.2 Identity contribution splitting

Recall that ϕ fixes the S-part of the conductor, so that every S-part of ideal appearing
from now on is fixed, namely the only one non killed by the action of ϕ. However,
the choice made is to keep formulations in terms if ideals of the whole integer ring
O, as more convenient and helping to think about the counting law situation where
S is empty. The following decomposition holds for the identity part of the counting
measure.

Proposition 18. For every Q > 1,

ν1,Q = ν
(p)

1,Q + ν
(e1)
1,Q + ν

(e2)
1,Q , (3.17)

where ν (p)1,Q is the main identity term, namely

ν
(p)

1,Q (ϕ̂) =
1

2

ζ S,R⋆(1)ζ S,R (2)

ζ S,R (4)

∫

πR
S,f
∈ĜR

S

ϕ̂ (πR
S,f

)

c (πR
S
)2

∑

NmS
6Q/c (πR

S
)

mS∧R=1

λ2(m
S )

(NmS )2

∑

πR∈ĜR

c (πR )6Q/Nm
Sc (πR

S
)

ϕ̂ (πR )

c (πR )2
µPlR (πR )

∑

δ∈D
δ=(M,δ )

∫

Ωδ (Q/NmSc (πR )c (π
R
S
))

ϕ̂ (πδ ,ν )

c (πδ ,ν )2
dν dπRS,f

(3.18)

and ν (e1)1,Q (ϕ̂) is the error term due to the smoothing, namely

ν
(e1)
1,Q

(
ϕ̂
)
≪ 1

Q2

∫

πR
S,f
∈ĜR

S

ϕ̂ (πRS,f )

∑

Nq6Q/c (πR
S
)

q∧R=1

∑

dS | qS
λ2

(
qS

dS

)
φ2(d

S )
∑

πR∈ĜR

c (πR )6Q/Nq
Sc (πR

S
)

µPlR (πR )ϕ̂ (πR )

∑

δ∈D
δ=(M,δ )

∂ρB (δ ,Ω(Q/NmSc (πR )c (π
R
S ))) dπ

R
S,f

(3.19)

and ν (e2)1,Q (ϕ̂) is an extra error term, that is
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ν
(e2)
1,Q (ϕ̂) ≪ Q−δF+εF

∫

πR
S,f
∈ĜR

S

ϕ̂ (πR
S,f

)

c (πR
S
)2−δF+εF

∑

NmS
6Q/c (πR

S
)

mS∧R=1

λ2(m
S )

(NmS )2−δF+εF

∑

πR∈ĜR

c (πR )6Q/Nm
Sc (πR

S
)

ϕ̂ (πR )

c (πR )2−δF+εF
µPlR (πR )

∑

δ∈D
δ=(M,δ )

∫

Ωδ (Q/NmSc (πR )c (π
R
S
))

ϕ̂ (πδ ,ν )

c (πδ ,ν )2−δF+εF
dν dπRS,f

(3.20)

Proof. The counting measure has been decomposed in measures on harmonic subfam-
ilies (2.55) of fixed spectral parameters. These measures have been given a geometric
interpretation by the mean of the trace formula in Lemma 4, whose identity contri-
bution (3.16) is given above. After summation of the identity contributions over the
spectral data constituting the truncated universal family,

ν
(1)
1,Q

(
ϕ̂
)
=

1

Q2

∫

πR
S,f
∈ĜR

S,f

ϕ̂ (πRS,f )
∑

Nq6Q/c (πR
S,f

)

q∧R=1

∑

dS | qS
λ2

(
qS

dS

)
φ2(d

S )

∑

πR∈ĜR

c (πR )6Q/Ndc (π
R
S,f

)

µPlR (πR )ϕ̂ (πR )
∑

δ∈D
δ=(M,δ )

∫

Ωδ (Q/Ndc (πR )π
R
S,f

)

ϕ̂ (πδ ,ν ) dν dπ
R
S,f .

Sums of arithmetic functions on ideals of number fields can be explicitly evaluated.
This motivates a permutation of sums and integrals in order to estimate the sum over
the volumes φ2(dS ) first, so that

ν
(1)
1,Q

(
ϕ̂
)
=

1

Q2

∫

πR
S,f
∈ĜR

S

ϕ̂ (πRS,f )
∑

NmS
6Q/c (πR

S,f
)

mS∧R=1

λ2(m
S )

∑

πR∈ĜR

c (πR )6Q/Nm

µPlR (πR )ϕ̂ (πR )

∑

δ∈D
δ=(M,δ )

∫

Ωδ (Q/Nmc (πR ))

ϕ̂ (ν )
∑

NdS6Q/Nmc (πR )c (πδ,ν )
d∧R=1

φ2(d
S ) dν dπRS,f .

The following lemma estimates the innermost sum.

Lemma 6. Let ζ S,R be the prime-to-R-and-S part of the zeta function associated to F , and
ζ S,R⋆(1) its residue at 1. For any X > 0,

∑

NdS6X
d∧R=1

φ2(d
S ) =

1

2

ζ S,R⋆(1)ζ S,R (2)

ζ S,R (4)
X 2
+

{
O (X logX ) if F = Q,

O (X 2−δF ) otherwise
(3.21)



64 Chapter 3. Counting Law & Equidistribution

Remark. It is possible to note a posteriori that the remainder term shown here is sharp,
and it gives rise to the most significant remainder appearing in Theorem A and The-
orem G, safe the one coming from the smoothing part detailed in Lemma 5 that is
absent from the totally definite setting. Hence, provided the smoothing problem can
be solved and thus a sharp count realized without excessive loss, the error would have
power savings and will be similar to the totally definite case.

Proof. Remind that all the ideals superscrited S are prime to S . Standard estimates of
the sum of ideals given by Landau [79, VII u. 143 S. no8] lead to

∑

NdS6X
d∧R=1

φ2(d
S ) =

∑

N lS6X
lS∧R=1

µ2(lS )
∑

NmS
6X/N l

mS∧R=1

NmS

=

∑

N lS6X
lS∧R=1

µ2(lS )

[
ζ S,R⋆(1)

2

X 2

(N lS )2
+O

((
X

N lS

)2−δF )]

=

1

2
ζ S,R⋆(1)X 2

∑

N lS6X
d∧R=1

µ2(lS )

(N lS )2
+O

*....,
X 2−δF

∑

N lS6X
lS∧R=1

µ2(lS )

(N lS )2−δF

+////-
=

1

2

ζ S,R⋆(1)ζ S,R (2)

ζ S,R (4)
X 2
+

{
O (X logX ) if F = Q;
O (X 2−δF ) otherwise;

where the knowledge of the Dirichlet series associated to µ2 yielded

∑

N (m)6X

µ2(m)

Nm
∼ ζ⋆(1)

ζ (2)
logX = O (logX ), (3.22)

in the case F = Q, giving the worst remainder term. Otherwise, the sum is convergent.
�

This lemma induces a splitting of ν (1)1,Q as ν (p)1,Q + ν
(e2)
1,Q according to the principal and

error parts in the lemma above and, adding the error term coming from the smoothing
evaluation at the identity (3.16), achieves to prove the claim. �

3.2.3 Main part

Proposition 19. For every Q > 1, the main part admits the asymptotic development

vol (G (F ) \G (A)) ν
(p)

1,Q

(
ϕ̂

)
= ν

(
ϕ̂

)
+O (Q−2). (3.23)
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Proof. Recall the term ν
(p)

1,Q of Proposition 18, namely

ν
(p)

1,Q (ϕ) =
1

2

ζ S,R⋆(1)ζ S,R (2)

ζ S,R (4)

∫

πR
S,f
∈ĜR

S

ϕ̂ (πR
S,f

)

c (πR
S
)2

∑

NmS
6Q/c (πR

S
)

mS∧R=1

λ2(m
S )

(NmS )2

∑

πR∈ĜR

c (πR )6Q/Nm
Sc (πR

S
)

ϕ̂ (πR )

c (πR )2
µPlR (πR )

∑

δ∈D
δ=(M,δ )

∫

Ωδ (Q/NmSc (πR )c (π
R
S
))

ϕ̂ (πδ ,ν )

c (πδ ,ν )2
dν dπRS,f

The following lemmas state the convergence of the integral over archimedean para-
meters and of the sum over ramified parts.

Lemma 7. For every Re(s ) > 1, the following sum converges as Q → ∞.
∑

πR∈ĜR

c (πR )6Q

µPlR (πR )

c (πR )s
. (3.24)

Proof. The Jacquet-Langlands correspondence states a bijection between ĜR and the
discrete part of the spectrum of EPGL2(FR ), which conserves both formal degrees, which
are the Plancherel measures µPlR (πR ), and conductors by definition. Hence,

∑

σR∈ĜR

c (σR )6Q

µPlR (σR )

c (σR )s
6

∑

πR∈EPGL2 (FR )disc
µPlR (πR )

c (πR )s
, (3.25)

and that last sum is finite for Re(s ) > 1 by the case of PGL2 by the explicit computations
of [17] or by Section 3.2.4 below. Hence, it follows the sought convergence for the
ramified parts, ending the proof of the lemma. �

Lemma 8. For every Re(s ) > 1, the following integral converges absolutely as X → ∞.
∫

Ωδ (X )

ϕ̂ (πδ ,ν )

c (πδ ,ν )s
dν . (3.26)

Proof. This is Lemma 6.12 of [17] concerning the GL(2) case. �

Let

∫

ĜR

ϕ̂ (πR )

c (πR )s
dπR and

∫

ĜR
∞

ϕ̂ (πR )

c (πR∞)s
dπR∞ denote the limits in the above lemmas. The

prime-to-S-and-R part of the Dirichlet series associated to λ2 converges at 2 to ζ
S,R
F

(2)−2
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and makes the expression of ν (p)1,Q converges to

ν
(p)

1,Q −→
1

2

ζ S,R⋆(1)

ζ S,R (2)ζ S,R (4)

∫

ĜR

ϕ̂ (πR )

c (πR )2
dπR

∫

ĜR
S

ϕ̂ (πR
S
)

c (πR
S
)2
dπRS

∫

ĜR
∞

ϕ̂ (πR∞)

c (πR∞)2
dπR∞. (3.27)

3.2.4 Geometric reformulation of the constant

Previous computations unveiled the constant

ζ S,R⋆(1)

ζ S,R (2)ζ S,R (4)
. (3.28)

It is possible to give to this constant a more geometrical flavour by reformulating the
special values of the zeta functions appearing in terms of volumes. This is the content
of the following lemma.

Proposition 20. For every finite set of places S ,

ζ S,R⋆(1)

ζ S,R (2)ζ S,R (4)
=

∫ ⋆

ĜS,R

dπS,R

c (πS,R )2
= ζ S,R⋆(1)

∏

p<S∪R
ζp (1)

−1. (3.29)

Proof. The knowledge of the volumes of congruence subgroups (3.9) gives

εK0,p (pr )
(1) = vol

(
K0,p (p

r )
)−1
= (id⋆ µ2) (pr ). (3.30)

On an other hand, this volume can be computed by the Plancherel formula. Intro-
duce the volume of slices of the spectrum of fixed conductor

Mp (p
r ) =

∫

σp∈Ĝp
c(σp )=p

r

dσp.

The Plancherel inversion formula then yields

εK0,p (pr )
(1) =

∫

Ĝp

ε̂K0,p (pr )
(πp) dπp =

∫

Ĝp

τ2

(
pr

c(πp)

)
dπp

=

∑

d | pr
Mp (d)τ2

(
pr

d

)
= (Mp ⋆ τ2) (p

r )

Hence, by inversion,Mp = id⋆µ2⋆λ2. In particular, the local Dirichlet series associated
toMp is given by

Dp (s ) =
∑

m=pr

r>0

Mp (m)

Nms
=

ζp (s − 1)
ζp (s )ζp (2s )

, Re(s ) > 1. (3.31)



3.2. Identity contribution 67

Evaluating it at s = 2, a new expression for the local special values appearing in the
constant is ∫

Ĝp

dπp
c (πp)2

=

ζp (1)

ζp (2)ζp (4)
, (3.32)

proving the finiteness of the local integrals defining the equidistribution measure (1.8)
at the finite places, as claimed in the introduction. However, the infinite product over
p < R of these quantities unfortunately diverges, for 1 is a pole of ζ S,R , leading to
compensate it by the residue at 1 and to introduce the regularized integral

∫ ⋆

ĜS,R

dπS,R

c (πS,R )2
= ζ S,R⋆(1)

∏

p<S∪R
ζp (1)

−1
∫

Ĝp

dπp
c (πp)2

= ζ S,R⋆(1)
∏

p<S∪R

1

ζp (2)ζp (4)
, (3.33)

ending the proof. �

The global integral is defined to be

∫ ⋆

Π̂

dπ

c (π )2
=

∫ ⋆

ĜS,R

dπS,R

c (πS,R )2

∫

ĜS∪R

ϕ̂ (πS∪R )

c (πS∪R )2
dπS∪R = ζ

⋆(1)
∏

v

ζv (1)
−1

∫

Ĝv

dπv
c (πv )2

.

(3.34)

It thus follows the expression (1.8) of the regularized integral, giving the desired state-
ment and motivating the choice of both the measure µ and the constantC . The expres-
sion (3.27) then rewrites

ν
(p)

1,Q (ϕ̂ ) =
1

2

∫ ⋆

Π̂

ϕ̂ (π )

c (π )2
dπ +O (Q−2), (3.35)

reaching the term of the proof of Proposition 19. �

Remark. Notice that the Sauvageot theorem is a two-edged result: it opens the path
to equidistribution and allows conclusions for characteristic functions which are not

of the form ϕ̂; however it also spoils the remainder term for general functions. This

error term remains only for specific functions either admissible, i.e. of the form ϕ̂ for
ϕ in the Hecke algebra of G, in particular for the counting problem.

3.2.5 Smoothing part

The following lemma states the negligibility of the smoothing part compared to the
main one.

Lemma 9. For every Q > 1,

ν
(e1)
1,Q

(
ϕ̂

)
≪ log(Q )−1. (3.36)
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Proof. The term (3.19) coming from the smoothed selection of archimedean parts is

ν
(e1)
1,Q

(
ϕ̂
)
≪ 1

Q2

∫

πR
S,f
∈ĜR

S

ϕ̂ (πRS,f )

∑

Nq6Q/c (πR
S
)

q∧R=1

∑

dS | qS
λ2

(
qS

dS

)
φ2(d

S )
∑

πR∈ĜR

c (πR )6Q/Nq
Sc (πR

S
)

µPlR (πR )ϕ̂ (πR )

∑

δ∈D
δ=(M,δ )

∂ρB (δ ,Ω(Q/NdSc (πR )c (π
R
S ))) dπ

R
S,f ,

(3.37)

The following lemma is a straighforward adaptation of the work of Brumley and
Milićević in which the contribution of the smoothing effect is negligible.

Lemma 10. The contribution of the smoothing error term satisfies, for a suitable choice
of ρ depending on q,

∑

Nq6Q
q∧R,S=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

δ∈D

∑

d |q
λ2

(
qS

dS

)
ϕ2(d

S )µPlR (σR )∂ρB (δ ,Ω) ≪ Q2

log(Q )

Proof. This is in essence Proposition 12.1 in [17]. Their Lemma 12.2 states
∑

Nq6Q
q∧R,S=1

∑

δ∈D
Nq∂ρB (δ ,Ω(Q/Nq)) ≪ Q2

log(Q )
. (3.38)

Two slight modifications have to be mentioned because of the existence of ramified
places and of the use of a different filtration. The centerless setting leads to use a
filtration of subgroups K0(q) whose indices are of order Nq, instead of Nq2 in their
case, justifying the presence of Nq in the equation above. The existence of ramified
places is dealt with by plugging this estimates above in the whole sum,

∑

Nq6Q
q∧R,S=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

δ∈D

∑

d |q
λ2

(
qS

dS

)
ϕ2(q)µ

Pl
R (πR )∂ρB (δ ,Ω(Q/Nqc (πR )))

≪ Q2

logQ

∑

σR∈ĜR

c (σR )6Q/Nq

µPlR (πR )

c (πR )2−ε

and this last sum converges by Lemma 7, finishing the proof. �

Remark. Note that the worst error term in Theorems A and G comes from this part,
corresponding to the smoothing of the selecting function for split archimedean places.
As in the GL(2) case [17], this is where the desired power savings is lost, safe in the
totally definite case when there is no involved smoothing.
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3.2.6 Extra error term

Lemma 11. For every Q > 1,

ν
(e2)
1,Q (ϕ) ≪ Q−δF+εF , (3.39)

for all εF > 0 for the case F = Q, and for εF = 0 otherwise.

Proof. Now turn back to treatment of the ν (e2)1,Q term coming from the remainder in
Lemma 6. The bound that has to be refined is

ν
(e2)
1,Q (ϕ) ≪ Q−δF+εF

∫

πR
S,f
∈ĜR

S

ϕ̂ (πR
S,f

)

c (πR
S
)2−δF+εF

∑

NmS
6Q/c (πR

S
)

mS∧R=1

λ2(m
S )

(NmS )2−δF+εF

∑

πR∈ĜR

c (πR )6Q/Nm
Sc (πR

S
)

ϕ̂ (πR )

c (πR )2−δF+εF
µPlR (πR )

∑

δ∈D
δ=(M,δ )

∫

Ωδ (Q/NmSc (πR )c (π
R
S
))

ϕ̂ (πδ ,ν )

c (πδ ,ν )2−δF+εF
dν dπRS,f

The inner sums converge by Lemmas 7 and 8, since 2 − δF + εF is always greater than
1. It follows a remainder term in Q−δF+εF . �

At last, the asymptotic development obtained in Proposition 19 and the bounds ob-
tained in Lemmas 9 and 11 prove the equidistribution of the identity part of the count-
ing measure with respect to ν , as stated in Proposition 17.

3.3 Spectral error terms

3.3.1 Characters contribution

Recall that the global characters contribution is given by

νΞ,Q (ϕ̂) =
1

Q2

∑

Nq6Q
q∧R=1

∑

πR∈ĜR

c (πR )6Q/Nq

∑

dS | qS
λ2

(
qS

dS

)
Ξ(ϕ,πR ). (3.40)

Lemma 12. For every ε > 0,

νΞ,Q (ϕ̂) ≪ Q−1+ε . (3.41)
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Proof. Similarly to the intervention of the trace formula to make explicit the measure
νQ , the Poisson summation formula is the main tool to count characters. The count-
ing measure for characters can be interpreted as a spectral side, such that every non-
identity terms vanishes on the geometric side. Recall that for a character πR , since the
multiplicities are all equal to one,

Ξ(πR,ϕ) =
∑

χ∈X ur (G (A))
χR≃πR

ϕ̂ (χ ). (3.42)

As in Section 2.2.3, consider GL(2) instead of PGL(2) for simplicity, characters of
PGL(2) corresponding to those of GL(2) trivial on the center. Characters on GL(2)
decompose through

G (Fp) −→ F×p −→ S1, (3.43)

where the first arrow is given by the determinant and the second by characters of F×p .
In other words, a character χp of GL(2, Fp) is of the form χ0,p ◦ det where χ0,p is a
character of F×p .

At an archimedean placev , since the considered characters are trivial on the center,
they are among the trivial one and the sign, hence have conductor 1 at those places.
Archimedean characters are of the form sgnε |det|it for ε = ±1 and t ∈ R. Similarly
to the smoothing function introduced in Section 2.5.4, it is not possible to select pre-
cisely continuous parameters, it is hence necessary to supply an approximation by a
localizing function. This motivates the introduction of fv a compactly supported non-

negative smooth function such that f̂v is 1 for t = 0, and | f̂v | 6 1. In particular, it
vanishes unless t is small enough, say |t | 6 T .
For the arithmetic part of the conductor, the only characters not killed by the action

of ε̂pr are the unramified ones. Indeed, recall that

det (K0(p
r )) = O×p , (3.44)

so that χ0,p needs to be trivial on O×p , that is to say be unramified. Introduce, for every
finite split placep, the characteristic function fp ofO×p , whose Fourier transform selects
unramified characters analogously to Lemma 2.70. Introduce the global test function

f =
∏

p<R

fp

∏

v∈R
ξχv

∏

v |∞
v<R

fv . (3.45)

Since f̂p is 1 on unramified characters and the archimedean f̂v ’s are less than one ,
the Poisson summation formula gives

Ξ(πR,ϕ) 6
∑

χ∈F̂×
f̂ (χ ) =

1

vol(F×\A×)
∑

γ∈F×
f (γ ). (3.46)
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Since F× is a discrete set, choosing f∞ with a small enough support leads to kill every
f (γ ) for γ nontrivial. Hence Ξ(πR,ϕ) 6 vol(F×\A×)−1 f (1). It remains to evaluate
f (1) = fdS (1) fR (1) f∞(1). For the finite split places, fp (1) = 1, and for the ramified
places, fR (1) = µPlR (πR ). For the archimedean places, the Plancherel inversion formula
gives

f∞(1) =

∫

F̂R∞

f̂∞(χ ) dχ 6

∫

|t |6T
dχt ≪T 1. (3.47)

Finally, Ξ(πR,ϕ) ≪ µPlR (πR ). Coming back to the sum (3.40) defining νΞ,Q (ϕ̂), it follows
by using the rough bound λ2(n) ≪ Nnε ,

νΞ,Q (ϕ̂) ≪
1

Q2

∑

Nq6Q
q∧R=1

∑

πR∈ĜR

c (πR )6Q/Nq

∑

dS | qS
λ2

(
qS

dS

)
µPlR (πR )

≪ 1

Q2

∑

πR∈ĜR

c (πR )6Q

µPlR (πR )
∑

Nd6Q/c (πR )
q∧R=1

∑

Nm6Q/Ndc (πR )
q∧R=1

Nmε

≪ Q−1+ε
∑

πR∈ĜR

c (πR )6Q

µPlR (πR )

c (πR )1+ε

∑

Nd6Q/c (πR )
q∧R=1

Nd−1−ε

≪ Q−1+ε

and this last line is provided by the convergence of the sum over ramified representa-
tion, stated in Lemma 7, proving the result. �

3.3.2 Complementary spectrum

Lemma 4 provides an interpretation of the counting measure B (q,πR,δ ,Ω,ϕ) as the
tempered part of the trace formula for a suitable test function, so it is necessary to
consider the remaining complementary part of the spectrum. Lemma 3 states expo-
nential control for spectral parameters lying outside the tempered subspace, so that
the complementary contribution is bounded by ∂ρB (δ , ∂ρΩ). This section is dedicated
to prove the following lemma, which is an adaptation of the work of Brumley and
Milićević in which the complementary spectrum is shown to contribute as an error
term.

Lemma 13. The contribution of the complementary part and the smoothing error term
satisfy, for a suitable choice of ρ depending on q and a certain θ > 0,

∑

Nq6Q
q∧R,S=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

δ∈D

∑

d |q
λ2

(
qs

dS

)
ϕ2(d

S )µPlR (πR )Bcomp(δ ,Ω(Q/Nqc (πR ))) ≪ Q2−θ

(3.48)
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Proof. This is in essence Proposition 12.1 in [17]. Their Lemma 12.2 yields

∑

Nq6Q
q∧R,S=1

∑

δ∈D
NqBcomp(q,δ ,Ω(Q/Nq)) ≪ Q2−θ (3.49)

Similarly to Lemma 10, the different congruence subgroups chosen for the centerless
setting leads to input Nq in the sum above, instead of Nq2 in their case. The sum over
ramified places is dealt with by appealing to Lemma 7 which ensures the convergence.

∑

Nq6Q
q∧R,S=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

δ∈D

∑

d |q
λ2

(
qS

dS

)
Jcomp

(
Φd,πR ,δ ,Ωδ (Q/Ndc (πR ))

)

≪
∑

Nq6Q
q∧R,S=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

δ∈D

∑

d |q
NqµPlR (πR )Bcomp(δ ,Ω(Q/Ndc (πR )))

≪ Q2−θ
∑

σR∈ĜR

c (σR )6Q/Nq

µPlR (πR )

c (πR )2−θ

and this last sum converges by Lemma 7, finishing the proof. �

At last, it follows from this lemma along with Lemma 12 that the extra terms in the
spectral selecting Lemma 4 are negligible, so that the countingmeasure partB (q,πR,δ ,Ω,ϕ)
is fairly well approximated by the tempered part Jtemp(Φ) of the spectrum. Lemma 9
states that this tempered part is approximated by the whole spectral part Jspec(Φ) up
to an error term. Considering the development of the identity contribution to the geo-
metrical part given in Proposition 19, it follows for every ε > 0,

νQ = vol (G (F ) \G (A)) ν1,Q+νell,Q+


O

(
Q−1 log(Q )

)
if B totally definite and F = Q;

O
(
Q−δF+ε

)
if B totally definite and F , Q;

O
(
log(Q )−1

)
if B not totally definite.

(3.50)

3.4 Geometric error terms

The present section, aims at estimating the non-identity terms appearing in the elliptic
contribution to the geometric side, by the means of bounds on orbital integrals.
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3.4.1 Strategy

The contribution of the elliptic terms in the trace formula (5.24) is

Jell (Φ) =
∑

{γ },1
vol

(
Gγ (F )\Gγ (A)

) ∫

Gγ (A)\G (A)

Φ
(
x−1γx

)
dx . (3.51)

As a matter of fact, this expression generally requires to bound

• the length of the summation, provided it is finite;
• the global volumes vol

(
Gγ (F )\Gγ (A)

)
;

• the orbital integrals.

Since Φd,πR ,δ ,Ω,ρ;ϕ is supported onG, hence compactly supported on a compact inde-
pendent of the fixed spectral parameters, the sum is eventually finite. A crucial feature
is that the support is independent of d, for K0(d) decreases with d. Different operators
than εd might have a support increasing with d, case in which this dependence can be
no more neglected, cf. Section 4.4 for the case of Hecke operators.

However, the size of the summation does depend on the quality of the archimedean
split approximation, encoded in ρ, in a critical way. The number of conjugacy classes
appearing in the sum is bounded in the following lemma [17, Proposition 13.2].

Lemma 14. There is c > 0 such that the number of conjugacy classes γ ofG (F ) for which
Oγ (Φρ ) is nonzero is bounded by exp(cρ).

Since the global volumes do not depend on ρ, it is only needed to estimate both the
size of the sum and to bound the orbital integrals defined by

Oγ (Φ) =
∫

Gγ (A)\G (A)

Φ(xγx−1) dx , Φ ∈ H (GS ). (3.52)

The needed bound on orbital integrals is provided by the following result.

Proposition 21. There is a constant c > 0 such that for every γ ∈ G (A),

Oγ (Φ) ≪γ ,ε (Nd
S )−1+ε 


f δ ,Ω,ϕρ




∞ . (3.53)

The local components Φp’s are locally compact and almost always equal to 1Kp , so
that the corresponding orbital integrals are trivial by themeasures normalizations. The
local decomposition of orbital integrals [75] for the factorizable functions Φ = ⊗vΦv
then holds.

Proposition 22 (Factorization of the geometric side). If γ =
∏

v γv and Φ = ⊗vΦv ,
then

Oγ (Φ) =
∏

v

Oγ ,v (Φv ), where Oγ ,v (Φv ) =
∫

Gγ ,v\Gv

Φv
(
xvγvx

−1
v

)
dxv . (3.54)
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It suffices to locally dominate those orbital integrals. The split, non-split and archimedean
cases behave quite differently and require specific treatments.

3.4.2 Split orbital integrals

Almost every place is split, so precise bounds are needed in order to control the global
orbital integral. Fortunately, the test functions chosen at these places are explicit and
allows a precise control of the associated orbital integrals.

Non-archimedean split places

Lemma 15. For every ideal dS of OS ,

Oγ S (dS ) ≪ N
(
dS

)ε
. (3.55)

Proof. First, consider the split case p < R. Let γp ∈ Gp. In the case of a place p < S , the
local test function is εpr , so that

Oγ (εpr ) = vol(K )−1Oγ (1K ), where K = K0(p
r ). (3.56)

Bounds for the split orbital integrals are provided by Binder [9, Corollary 10.9] in
the specific case of GL(2), and yield the following estimate depending on γp.

Oγp
(
εpr

) ≪ε N (pr )−1+εvol(K0(p
r ))−1 ≪ε N (pr )ε . (3.57)

Otherwise, for p ∈ S , the test function is fixed to ϕp and hence can be roughly bounded
by

Oγp (ϕp) ≪ 1, (3.58)

settling the desired estimates for finite split orbital integrals. �

Archimedean split places

Lemma 16. The following holds:

Oγ R∞ ( f ) ≪ ‖ f ‖∞. (3.59)

Proof. This is essentially a rough bound on the archimedean orbital integral, see [17,
Proposition 14.2]. �

Global bounds for the last quantity is provided by [17, Lemma 7.3].

Lemma 17. For every δ ∈ D and every X > 0, there is c > 0 so that
∑

δ∈D




f δ ,Ωδ (X ),ϕ
ρ




∞ ≪ ecρX 2−1/[F :Q]. (3.60)
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3.4.3 Non-split orbital integrals

Ramified places are in finite number but the explicit behavior of local orbital integrals
could a priori be unbounded. The following lemma settles the problem.

Lemma 18. For every ramified place v ,

Oγv (Φv ) ≪γv 1. (3.61)

Proof. Archimedean and non-archimedean ramified places behave differently. Before

turning to the precise study of each case, note that whatever Φv is ξπv or ξπv ϕ̂v (πv ), the

orbital integral is dominated by the case of the matrix coefficient ξπv , for ϕ̂v is bounded.
In the ramified case, orbital integrals are characters: for a representation πv , the "main
geometric lemma" of Arthur [2] states that

Oγv (ξπv ) = Θπv (γv ), (3.62)

where Θπv stands for the Harish-Chandra character associated to πv . It is in particular
sufficient to bound characters on B×p in order to get a bound for orbital integrals.

Archimedean ramified places

At archimedean places v | ∞, the algebra Bv is isomorphic to the hamiltonian qua-
ternions, hence Θπv is a character of PSU(2). The Weyl formula for archimedean char-
acters gives in this case that the characters are of the form

χSymk (eθ ) =
sin((k + 1)θ )

sinθ
, (3.63)

where the rotations eθ ∈ SO (3) are the standard representatives for PSU(2). This ex-
pression is uniformly bounded in k and θ , so are theΘπv , thus also the orbital integrals.

Non-archimedean ramified places

Concerning the non-archimedean ramified places p ∈ R, the lead is given to Shin and
Templier [118], who build on the Sally-Shalika character formula [106] and the exposit-
ory work of Adler, DeBacker, Sally and Spice [1], in order to give explicit computations
for the characters of each supercuspidal representations of SL(2). They prove that for
every supercuspidal representation πp of SL(2, Fp), and for all semisimple regular ele-
ment γp,

|Θπp (γp) | 6 1 + 2|D (γp) |−1/2, (3.64)

whereD (γp) is theWeyl discriminant ofγp. It followsΘπp (γp) ≪ 1. Moreover, it suffices
to achieve this goal for SL2. Indeed, Labesse and Langlands [81] establish that every
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irreducible admissible representation of GL(2) restricts to a direct sum of at most four
irreducible admissible representations of SL(2).

Since the Jacquet-Langlands correspondence maps irreducible representations ofGp
to supercuspidal representations, and the image of the embedding of Gp in GL2(Fp) is
made of semisimple regular elements, the bound above apply to Bp.

The bounds obtained in the two cases of ramified places hence settle the proof. �

3.4.4 Final estimates

All the tools are now in place to work on the final estimates on νQ,ell(ϕ̂ ) and reach the
term of the proof of Theorem G.

Proposition 23. For a finite set of places S , ϕ ∈ H (GS ) and any ε > 0, the elliptic
contribution is dominated by

νell,Q (ϕ̂ ) ≪
{

Q−1+ε if B totally definite;
log(Q )−1 otherwise.

(3.65)

Proof. Previous estimates and local decomposition of orbital integrals lead to

Jell
(
Φd,πR ,δ ,Ω;ϕ

)
=

∑

{γ },1
vol(Γγ \Gγ )Oγ

(
Φd,πR ,δ ,Ω;ϕ

)

≪ (NdS )εecρ




f δ ,Ωδ (Q/Nq

Sc (πR )),ϕ
ρ





∞
Going back to the estimate for νell,Q (ϕ̂ ) and summing over the spectral data,

νell,Q (ϕ̂ ) ≪ 1

Q2

∑

Nq6Q
q∧R=1

∑

dS | qS
λ2

(
qS

dS

)
(NdS )ε

∑

πR∈ĜR

c (πR )6Q/Nq
S

ϕ̂ (πR )
∑

δ∈D
δ=(M,δ )

ecρ




f δ ,Ωδ (Q/Nq

Sc (πR )),ϕ
ρ





∞

≪ Q−1/d
∑

Nq6Q
q∧R=1

∑

dS | qS
λ2

(
qS

dS

)
ecρ (NdS )ε+1/d−2

∑

πR∈ĜR

c (πR )6Q/Nq
S

ϕ̂ (πR )

c (πR )2−1/d

where the bound (3.60) and the elementary bound λ2(n) ≪ε Nnε have been used.
Thus, since Lemma 7 and 8 ensure the convergences of the inner sum, it follows that
for ρ = α logNdS where α > 0 is small enough,

νell,Q (ϕ̂ ) ≪ε Q
−1/d+ε ,

achieving the proof that the main term contributing in 3.5 is the one coming from
the identity as stated in Proposition 23, hence also Theorems A, B and G. Note that
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besides the smoothing error term, the most significant error term comes from this
elliptic part when F = Q, for then δF = 1, and from the identity part of Proposition 17
otherwise. �

3.4.5 Specific savings in the case of F = Q

In the ramified case and when F = Q, and for totally definite quaternion algebras,
there is a similar feature than the one appearing in Schanuel’s theorem: the error term
picks an additional power of the logarithm. However, this feature is not caught by the
previous evaluation and requires specific treatment using the Howe classification of
representations at ramified places, that holds when 2 is not ramified. This classification
is briefly reminded and the corresponding computations carried out to reach the final
specific form of Theorem A for F = Q.

Proposition 24. For Q > 1, for every ε > 0,

νell,Q (ϕ̂S ) ≪ Q−1+ε log|R |Q .

Proof. For non-archimedean ramified places, in order to estimate the sum over the
ramified representations πR appearing in (2.70), the Howe construction provides and
explicit parametrization. It is exposed in the work of Corwin, Moy and Prasad [31]:
for a ramified place p ∈ R, ramified representations of Gp correspond to admissible or
subadmissible characters θ on an extension E/F of degreem = 1 or 2. Let πθ denote this
representation, avoiding to state the explicit correspondence between θ and πθ , using
it only as parametrization and referring to the article above for details and proofs of
the properties used.

Following Schmidt [113], there is a link between conductors of characters θ , de-
noted f(θ ), and conductors of the corresponding representations πθ . If E/F is a trivial
or quadratic extension and θ a character of E× unfactorizable by the norm, introdu-
cing the residual degree f = f (E/F ) of the extension, the conductor of the associated
supercuspidal irreducible representation πθ is given by

f(πθ ) =
2

[E : F ]
f (f(θ ) − 1) + 2. (3.66)

In particular,

• if E = F , f(πθ ) = 2f(θ ), so that c(πθ ) = c(θ )2;
• if E/F is unramified, f(πθ ) = 2f(θ ), so that c(πθ ) = c(θ )2;
• if E/F is ramified, f(πθ ) = f(θ ) + 1, so that c(πθ ) = pc(θ ).

Moreover, there are only a finite number of quadratic extensions of F . Indeed,
Krasner’s work give the exact number of extensions of F of given degree. Here, the
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situation is even easier and quadratic extensions of F are parametrized by F×/F×2. This
quotient is a F2-vector space, knowing its cardinality is thus equivalent than knowing
its dimension. For ϖ a uniformizer of F , the decomposition F× � ϖZ × O× leads to

F×/F×2 �
(
ϖZ/ϖ2Z

)
×

(
O×/O×2

)
� F2 ×

(
O×/O×2

)
,

and this last quotient is of finite rank. At last, a parametrization of the ramified repres-
entations by characters is reached, and the relation between conductors of correspond-

ing elements. All the tools are now in place to reach the final estimates on νQ,ell(ϕ̂S ) and
the term of the proof of Proposition 23. Previous estimates and local decomposition of
orbital integrals yields

Jell
(
Φd,πR ,ϕS

)
=

∑

{γ },1
vol(Γγ \Gγ )Oγ

(
Φd,πR ,ϕS

)
≪ N (dS )−1+ε .

Summing over the spectral data and using the elementary bound λ2(n) ≪ε Nn
ε , it

follows

νQ,ell(ϕ̂S ) ≪
1

Q2

∑

Nq6Q
q∧R=1

∑

dS | qS

(
NqS

NdS

)ε
(NdS )−1+ε

∑

πR
c (πR )6Q/Nq

S

ϕ̂S (πR ).

It is then sufficient to bound the local sums appearing on the road. This is the content
of the following lemma.

Lemma 19. For every place v ,

∑

πv∈Ĝv

c (πv )6X

1

c (πv )σ
≪

{
X

1
2−σ if σ < 1/2;

logX if σ = 1/2.

Proof. For the non-archimedian ramified places, the sum splits into the different cases
of the already mentioned Howe’s construction, recasting the sum into

∑

c (πp )6X

1

c (πp)σ
=

∑

E/F

∑

θ∈E⋆
c (πθ )6X

1

c (πθ )σ
.

Reminding that by the relation (3.66) between conductors of πθ and θ , c (πθ ) = c (θ )
or c (θ )2, so that in any case c (πθ ) > c (θ ). The number of quadratic extensions of F is
finite, thus

∑

E/F

∑

θ∈E⋆
c (πθ )6X

1

c (πθ )σ
≪

∑

πθ
c (θ )6X

E/F ramified

1

c (θ )σ
.
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Moreover, in the case of the quadratic extensions E/F , recall that if f(πθ ) = k , then
c(πθ ) = p

k , hence c (πθ ) = N c(πθ ) = p2k where Np = p2. The number of characters of
E such that f(θ ) = k is φ (pk ) = pk−1(p − 1), so that

∑

πθ
c (θ )6X

1

c (θ )σ
≪

∑

k6logp (X )/2

1

Npkσ

∑

θ
f(θ )=k

1

≪
∑

k6logp (X )/2

pk (1−2σ )

≪
{
X

1
2−σ if σ < 1/2,

logX if σ = 1/2.

The archimedian case is straightforward, for the conductors are c (Symk (SU(2))) =
1 + k2, where SU(2) stands for the standard representation of SU(2). This leads to

∑

c (πv )6X

1

c (πv )σ
=

∑

k>1
1+k26X

1

(1 + k2)σ
≪

{
X

1
2−σ if σ < 1

2 ;
logX if σ = 1

2 ;

giving the claimed result for every place. �

Finally the ultimate estimate for the elliptic contribution from (3.5) can be bounded
in a different way than the previous section. Introducing R = {ri }i the finite set of
ramified places and breaking the sum into sums over the local ramified duals lead to

νell,Q (ϕ̂S ) ≪ Q−2
∑

Nq6Q
q∧R=1

(
NqS

)ε ∑

dS | qS
(NdS )−2+ε

∑

πR
c (πR )6Q/Nq

S

1

≪ Q−2
∑

Nq6Q
q∧R=1

(
NqS

)ε ∑

dS | qS
(NdS )−2+ε

∑

πr1
c (πr1 )6Q/Nq

S

∑

πr2
c (πr2 )6Q/Nq

Sc (πr1 )

· · ·
∑

πr |R |
c (πr |R | )6Q/Nq

Sc (πr1 )···c (πr |R | )

1

Using the estimates provided by Lemma 19 repeatedly, the first bound carries a power
1
2 , then the following ones only logarithms, giving

νell,Q (ϕ̂S ) ≪ Q−3/2
∑

Nq6Q
q∧R=1

(
NqS

)−1/2+ε ∑

dS | qS

(
NdS

)−2+ε
log|R |−1Q .
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The already mentioned standard estimates on the sum of ideals then imply

νell,Q (ϕ̂S ) ≪ Q−1+ε log|R |Q,

giving the desired error term. The most significant error term comes from this elliptic
part only when F = Q, for then δF = 1, and from the identity part of Proposition 17
otherwise. �

3.5 Proof of Corollary C: Sato-Tate conjecture

Theorem B proves the existence of a measure ν with respect to which the universal
family equidistributes. It is natural to consider the projection νp of this limit measure
on the local components Ĝp. Since the νp are supported on different spaces, a suitable
setting is necessary in order to make sense of the Sato-Tate problem that concerns
convergence of the measures νp.

The literature often treat the case ofmeasures supported on the unramified tempered
spectrum, as the instances handled by Sarnak [107] or Serre [116]. In those cases, the
Satake isomorphism provides a common parametrization: if T is the standard torus of
SL(2,C), the dual group of PGL2, andW is the Weyl group ofT , then the isomorphism
classes of unramified tempered representations are parametrized by Tc/W where Tc =
T ∩ SU (2,C) is the compact part of T . This last quotient corresponds to the half-
circle, giving a common ground for all the Ĝp,independent of p. Even if the universal
family considered does include ramified representations and the νp are supported on
the whole tempered unitary dual, the contribution of the ramified part of the spectrum
vanish when p goes to infinity, so that asymptotically the spaces can be identified and
Tc/W is a posteriori still a relevant common ground to state the Sato-Tate result.

In the case of GL(2, Fp), the explicit form of the Plancherel measures have been
computed by Serre [116] and are given by

dµPlp (x ) =
Np + 1

π

(1 − x2/4)1/2
(Np1/2 + Np−1/2)2 − x2 d

x , (3.67)

In particular they converge, as Np goes to infinity, to the Sato-Tate measure on the
half-circle

dµST(x ) =
1

π

√
1 − x

2

4
dx , (3.68)

in the sense that for any ϕ̂ ∈ C (Tc/W ,C), when Np goes to infinity,

∫

Tc/W

ϕ̂ (πp) dµ
Pl
p (πp) −→

∫

Tc/W

ϕ̂ (x ) dµST(x ). (3.69)
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For ϕ̂ ∈ C (T /W ,C), let decompose the measure separating whether the representa-

tions are unramified, i.e. of conductor 1, or not. The measure νp (ϕ̂) hence splits as

∫

Ĝp

ϕ̂ (πp) dνp (πp) =

∫

Ĝp

ϕ̂ (πp)

c (πp)2
dµPlp (πp)

=

∫

Ĝ
sph
p

ϕ̂ (πp) dµ
Pl
p (πp) +

∫

Ĝram
p

ϕ̂ (πp)

c (πp)2
dµPlp (πp),

(3.70)

where Ĝsph
p stands for the unramified, also called spherical, part of the spectrum and

Ĝram
p for its ramified part. For p sufficiently large,Gp is isomorphic to PGL(2, Fp), so the

local Plancherel measures (3.67) provide the value of the first integral of the rightmost
hand side as p grows, in particular they converge to the Sato-Tate measure. For the
second one, dominating roughly by leaving the dependence in ϕ which is fixed gives

∫

Ĝram
p

ϕ̂ (πp)

c (πp)2
dµPlp (πp) ≪

∫

Ĝram
p

dµPlp (πp)

c (πp)2
=

∫

Ĝp

dµPlp (πp)

c (πp)2
−

∫

Ĝ
sph
p

dµPlp (πp). (3.71)

By the normalization of the Plancherel measure, the second integral on the right
hand side is 1. Moreover, as shown in Section 3.2.4, the first integral of the right hand
side is equal to ∫

Ĝp

dµPlp (πp)

c (πp)2
=

ζp (1)

ζp (2)ζp (4)
. (3.72)

Since this last quantity is 1 + O (Np−1) by unfolding the definition of the Dirichlet
series, it follows that the ramified part is negligible, achieving the proof of Corollary
C. �





Chapter 4

Type of Symmetry

Once established the asymptotic cardinality of the truncated universal family, further
statistical results can be investigated. A fundamental invariant attached to an auto-
morphic representation is its associated L-function. A large bunch of information is
encoded in its zeros. However, statistics on all the zeros of a family of L-functions
do not seem to carry much information. Once restricted to zeros lying near the real
axis, the so-called low-lying zeros, the universality is broken and the corresponding
statistics appear to be governed by one of the classical groups, conjecturally modeling
the symmetries of the family. The one-level density problem for quaternion algebras
is studied in this chapter and the type of symmetry is partially elucidated, providing
further evidence towards the density conjecture of Katz and Sarnak.

Explicit formulas are the central tool and recast statistics over zeros into question
concerning sums of spectral parameters. The methods involved are based on slight
modifications of the selecting functions for the harmonic families built in the previous
chapters. As generally expected, what critically determines the type of symmetry of
the family is the second order moment of such eigenvalues. These are interpreted as a
spectral sum, making the problem amenable to trace formula methods. However a cru-
cial difference arise, since the chosen test-function are no more uniformly compactly
supported, leading to finer estimations of the geometric quantities.
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4.1 Low-lying zeros of L-functions

4.1.1 One-level density

As announced in Chapter 1, once the cardinality of the universal family established,
it is natural to investigate the distribution of the low-lying zeros of the associated L-
functions. Recall that the nontrivial zeros of the L-function L(s,π ) associated to an
automorphic representation π are denoted ρ (j )π =

1
2 + iγ

(j )
π , for j ∈ Z, with a priori

γ
(j )
π ∈ C without assuming the Riemann hypothesis, and ordered so that

· · · 6 Rγ (−1)
π 6 0 6 Rγ (1)

π 6 Rγ
(2)
π 6 · · · . (4.1)

Introduce the renormalized zeros defined by

γ̃
(j )
π :=

log c (π )

2π
γ
(j )
π , j ∈ Z. (4.2)

This normalization can be interpreted as fixing the mean spacing between low-lying
zeros to one, what is sound assuming the Riemann hypothesis for then they all lie on
the critical line. Assume from now on the Riemann hypothesis for simplicity. The
density conjecture of Katz and Sarnak predicts that the one-level density of zeros of
L(s,π ) defined by

D (π ,ϕ) =
∑

ρπ

ϕ (γ̃π ) , ϕ ∈ S (R), (4.3)

is governed by a classical group, defining the type of symmetry of the family. From
now on, let S (R) denote the space of Schwartz functions on R with Fourier transform
compactly supported. This in particular implies that the functions can be analytically
continued to all C, so that all what follow hold unconditionally. Sarnak, Shin and
Templier introduced critical invariants [110, equation (7)] leading to conjecture the
underlining symmetry on the family, based on the Sato-Tate measure associated to it.
By Corollary C, this one is given by the half-circle density µST. The three invariants are
given by the associated integrals on the diagonal torus T ∩ SU (2). Using the standard
representatives (eiθ , e−iθ ) of conjugacy classes of elements ofT , they can be computed
and are equal to

i1(G ) =

∫

T

|tr t |2 dµST(t ) = 1

i2(G ) =

∫

T

(tr t )2 dµST(t ) = 1

i3(G ) =

∫

T

tr (t2) dµST(t ) = 1
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Even though the first two invariants lead to already known properties, viz. the auto-
morphic representations ofA (G ) are self-dual and cuspidal, the last one pleads for an
orthogonal symmetry type. This is confirmed by the following result.

Theorem 13. For every even and Schwartz function ϕ with Fourier transform compactly
supported in (−2/3, 2/3), as Q grows to∞,

1

N (Q )

∑

π∈A (Q )

D (π ,ϕ) −→ ϕ̂ (0) +
1

2
ϕ (0) =

∫

R

ϕ (x )WO (x ) dx . (4.4)

whereWO = 1 + 1
2δ0. In particular, this is an evidence that the type of symmetry of inner

forms of PGL2 is one of the orthogonal types of symmetry.

Remark. Unfortunately, this result does not totally determine the type of symmetry,
and is consistentwith a family governed by the three orthogonal symmetriesO , SO(even)
and SO(odd), see Section 1.3.4. This issue can be addressed either by extending the
support of the Fourier transform of the test function to β > 1, or by estimating the
statistics given by the 2-level density of low-lying zeros. See the end of the chapter for
further remarks.

4.1.2 L-functions of automorphic representations

The needed definitions and properties of L-functions are exposed for instance by Duke,
Friedlander and Iwaniec [40]. The L-function associated to π = ⊗vπv ∈ A (G ) is of the
form

L(s,π ) =
∏

p

L(s,πp) =
∑

Nq>1

aπ (q)

Nqs
, (4.5)

where the L(s,πp) are the local factors associated to the components πp at finite places
p, and can be written as

L(s,πp) =
(
1 − απ (p)Np−s

)−1 (
1 − βπ (p)Np−s

)−1
, (4.6)

where απ (p) and βπ (p) are complex numbers, called spectral parameters of π gener-
alizing the usual Satake parameters for unramified representations. For archimedean
places, there are also complex numbers απ (v ) and βπ (v ) such that the associated local
factors take the form

L(s,πv ) = Γv (s − απ (v ))Γv (s − βπ (v )),

where Γv (s ) is defined by ΓR (s ) = π−s/2Γ(s/2) for real places, and ΓR (s )ΓR (s + 1) for
complex places. The product of these archimedean L-factors is denoted L(s,π∞) and
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called the archimedean part of the L-function. Introduce the completed L-function to
be

Λ(s,π ) = c (π f )
s/2L(s,π∞)L(s,π ).

It satisfies the functional equation

Λ(s,π ) = επΛ(1 − s,π ),

where επ is the root number of π and is among 1 and −1 since L(s,π ) is self-dual..

4.2 Relation with spectral sums

4.2.1 Explicit formula

Explicit formulas relate zeros of an L-function and prime numbers and thus are a rel-
evant tool to handle one-level densities. The explicit formula of Rudnick and Sarnak
[105, 64] is in this case particularly well-suited and their proof. It is written for the base
field Q, and carry on to the setting of more general number fields without particular
modification, leading to properly rewrite the proof taking the relevant modifications
into account.

Proposition 25 (Explicit formula). For every ϕ ∈ S (R), and every R > 0,

∑

ρ
(j )
π

ϕ (γ̃π ) = ϕ̂ (0)
log c (π f )

logR
−2

∑

p

∑

ν>1

(ανπ (p)+β
ν
π (p))ϕ̂

(
ν logNp

logR

)
logNp

Npν/2 logR
+O

(
1

logR

)

where the sum on the left hand side runs through the zeros of L(s,π ) according to the

notation ρ (j )π =
1
2 + iγ

(j )
π , for j running among the integers.

Proof. The zeros of Λ(s,π ) weighted by their multiplicities correspond to the poles
of Λ′(s,π )/Λ(s,π ) weighted by their residues, and the explicit formula comes from a
double evaluation of the integral

I =
1

2iπ

∫

Re(s )=2

Λ′

Λ
(s,π )ϕ (s ) ds . (4.7)

The L-function decomposes as an Euler product Λ =
∏

v Lv , where Lv (s,π ) stands
for L(s,πv ) for simplicity. Thus, integrating its logarithmic derivative leads to

I =
∑

v

1

2iπ

∫

Re(s )=2

L′v
Lv

(s,π )ϕ (s ) ds . (4.8)
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Denote Iv the integrals appearing in the sum above, and first consider the finite
places. Since Lp (s,π ) admits the factorization (1 − απ (p)Np−s )−1(1 − βπ (p)Np−s )−1, at
every finite place the quotient appearing in Ip can be rewritten

L′p
Lp

(s,π ) = − απ (p)Np
−s

1 − απ (p)Np−s
logNp − βπ (p)Np

−s

1 − βπ (p)Np−s
logNp

= − log(Np)
∑

ν>1

(απ (p)
ν
+ βπ (p)

ν )Np−νs

Letϕ⋆ be the 1
2-shift ofϕ, that is to sayϕ

⋆(x ) = ϕ (1/2+x ). Sinceϕ is an holomorphic
function, it has no poles and thus the contour appearing in the integral (4.8) can be
translated from the vertical line of abscissa 2 to the one of abscissa 1

2 . Introduce and
develop the inverse Mellin transformMϕ of ϕ, using change of variables to get

Mϕ (y) =
1

2iπ

∫

Re(s )=1/2
ϕ (s )y−s ds

=

y−1/2

2π

∫

R

ϕ

(1
2
+ ir

)
e−ir logy dr

=

y−1/2

2π
ϕ̂⋆(logy)

so that the finite local integrals become

Ip = − log(Np)
∑

ν>1

(απ (p)
ν
+ βπ (p)

ν )Mϕ (Npν )

= − 1

2π

∑

ν>1

(απ (p)
ν
+ βπ (p)

ν )ϕ̂⋆ (ν logNp)
logNp

Npν/2
.

If ϕ is 1
2-symmetrical, then letting ϕ∨(s ) = ϕ (1 − s ) and applying the computations

above,

Mϕ∨(y) =
y−1/2

2π

∫

R

ϕ

(1
2
− ir

)
e−ir logy dr =

y−1/2

2π
ϕ̂⋆(− logy) =Mϕ (y). (4.9)

On the other hand, the Cauchy theorem allows to unfold the integral (4.7) in terms of
the zeros of Λ(s,π ). Indeed, since ϕ is entire, the only poles of the integrated function
are the zeros of Λ and the corresponding residues are their multiplicities. All these
zeros lie in the vertical strip −1 < Re(s ) < 2, so that translating the contour through
this whole band captures all the zeros and gives

I =
∑

ρπ

ϕ (ρπ ) +
1

2iπ

∫

Re(s )=−1

Λ′

Λ
(s,π )ϕ (s ) ds . (4.10)
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The functional equation of L is of the formΛ(s,π ) = επΛ(1−s,π ), thus injecting it in
the integral above and changing variables, to come back to the vertical line of abscissa
Re(s ) = 1, yield

I =
∑

ρπ

ϕ (ρπ ) −
1

2iπ

∫

Re(s )=2

Λ′

Λ
(s,π )ϕ (1 − s ) ds . (4.11)

Coming back to the definition (4.8) of I ,

∑

ρπ

ϕ (ρπ ) =
1

2iπ

∫

Re(s )=2

Λ′

Λ
(s,π ) (ϕ (1 − s ) + ϕ (s )) ds . (4.12)

Finally, for an even Schwartz function ϕ0, the function

ϕ (s ) = ϕ0

(
logR

2π

(
s − 1

2

))
, R > 0, (4.13)

is Schwartz and 1
2-symmetric, and moreover satisfies

ϕ̂⋆(s ) =

∫

R

ϕ

(
u +

1

2

)
eisu du =

2π

logR

∫

R

ϕ0(u) exp

(
isu

2π

logR

)
du

ϕ̂⋆(ν logNp) =
2π

logR
ϕ̂0

(
ν logNp

logR

)
.

Combining the two previous expressions of the integral, and adding the archimedean
places for which the treatment is the one of Rudnick and Sarnak with no modification,
directly estimated by the Stirling formula since they are reduced to digamma functions,
the symmetry (4.9) of the Mellin transform gives, up to an error term of size 1/ logR,

∑

ρπ

ϕ (ρπ ) ≃ log c (π )
1

2iπ

∫

Re(s )=2
ϕ (s ) ds − 2

∑

p

∑

ν>1

(απ (p)
ν
+ βπ (p)

ν )ϕ̂⋆ (ν logNp)
logNp

Npν/2
,

retrieving the result stated in [64]. �

The explicit formula then yields, with R = c (π ), a restatement of the one-level dens-
ity in purely arithmetic terms, up to an error term. More precisely,

D (π ,ϕ) = ϕ̂ (0)− 2

log c (π )

∑

p

∞∑

ν=1

(
ανπ (p) + β

ν
π (p)

)
ϕ̂

(
ν logNp

log c (π )

)
logNp

Npν/2
+O

(
1

log c (π )

)
.

(4.14)

After switching summations, introduce the inner sum for a fixed ν > 1,

P (ν ) (π ,ϕ) =
2

log c (π )

∑

p

(ανπ (p) + β
ν
π (p))ϕ̂

(
ν logNp

log c (π )

)
logNp

Npν/2
, (4.15)
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so that the one-level density decomposes as

D (π ,ϕ) = ϕ̂ (0) −
∑

ν>1

P (ν ) (π ,ϕ) +O

(
1

log c (π )

)
. (4.16)

The following sections are dedicated to estimate the contribution of these P (ν ) .

4.2.2 Embedding in families

While certain quantities in (4.16) will be shown to contribute as an error term, the
largest terms, corresponding to small ν , are not easily bounded and it is necessary to
exploit the extra averaging over the family.This motivating the introduction of

P (ν )
Q

(ϕ) =
1

N (Q )

∑

π∈A (Q )

P (ν ) (π ,ϕ). (4.17)

The key technical step here is to decompose the universal family by fixing some
spectral data as in Chapter 3. Recall that the quaternion algebra considered in this
chapter is totally definite, so that no split archimedean parameters δ or ν ∈ Ω shall
appear. Introduce for an ideal q of O prime to R and a representation σR in ĜR ,

P (ν )
q,σR (ϕ) =

∑

π∈B (q,σR )
m(π ,q)P (ν ) (π ,ϕ), (4.18)

where recall that

B (q,σR ) = {π ∈ A (G ) : c (πRf ) | q, πR ≃ σR }, (4.19)

so that according to the decomposition of the universal family (2.55), the average (4.17)
can be rewritten, after sieving in order to compensate the unwelcome multiplicites
introduced in (4.18) and explicitly known by the work of Casselman,

P (ν )
Q

(ϕ) =
1

N (Q )

∑

Nq6Q
q∧R=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

d |q
λ2

(
q

d

)
P (ν )
d,σR

(ϕ). (4.20)

Developing the sum in (4.18) and switching summations lead to

P (ν )
q,σR (ϕ) =

∑

p

*.,
∑

π∈B (q,σR )
m(π ,q)

(
ανπ (p) + β

ν
π (p)

)+/- ϕ̂
(
ν logNp

log c (π )

)
2 logNp

Npν/2 log c (π )
,

(4.21)
where c (π ) stands as a shortcut notation for Nqc (σR ), justifying its presence outside
the sum over the harmonic subfamily. This convention will be steadily used in the
following.
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4.2.3 High order contributions

For ν large enough, it is possible to bound directly P (ν ) (π ,ϕ) and show that they do
not contribute to the type of symmetry, using the knowledge of the cardinalities of the
subfamilies of fixed spectral parameters B (q,σR ) studied in Chapter 3.

Proposition 26. For Q > 1,

∑

ν>3

P (ν )
Q

(ϕ) ≪ 1

logQ
. (4.22)

Proof. The main aim is to bound the spectral parameters ανπ (p) + β
ν
π (p) in the sum

(4.15). For holomorphic cusp forms, the Ramanujan conjecture holds by Deligne [34]
and states that |απ (p) + βπ (p) | 6 2. For Maass forms, Kim and Sarnak in the case of Q,
and Blomer and Brumley [11] for general number fields, proved that

|απ (p) + βπ (p) | ≪ Np7/64. (4.23)

Hence for any cuspidal automorphic representation of GL(2) this last bound is valid,

in particular for π ∈ A (G ). Thus, roughly bounding ϕ̂ by a constant,

∑

ν>3

P (ν ) (π ,ϕ) ≪ 1

log c (π )

∑

p

∑

ν>3

logNp

Npν (1/2−7/64)

≪ 1

log c (π )

∑

p

logNp

Np3(1/2−7/64)

≪ 1

log c (π )

since 3( 12 −
7
64 ) > 1 and then the series converges. Turning back to the sums over

partial families (4.18) and using the fact that c (π ) > Nq,

P (ν )
q,σR (ϕ) ≪

∑

π∈B (q,σR )

1

logNq
≪ B (q,σR )

logNq
. (4.24)

The cardinality of the sieved family has been computed previously: introducing the
volumes φ2 = λ2 ⋆ µ2 ⋆ id, Lemma 4 ensures there is a remainder term R (q,σR ) such
that

B (q,σR ) = vol(G (F )\G (A))φ2(q)µ
Pl(σR ) + R (q,σR ), (4.25)

where the remainder satisfies, for a certain θ > 0,
∑

q6Q
q∧R=1

∑

σR∈ĜR

c (σR )6Q/q

R (q,σR (Q/Nqc (πR ))) ≪ Q2−θ . (4.26)
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Introduce then the following dampening lemma, justifying that the logarithmic factor
appearing in the denominator is enough to turn to whole sum negligible compared to
the one free of this factor, that is to say the cardinality of the truncated universal family
N (Q ).

Lemma 20. For every positive function f for which there is an α > 0 such that
∑

Nn6X

f (n) ∼ Xα , (4.27)

then for every ε > 0,

∑

Nn6X

f (n)

log(Nn)ε
≪ 1

log(X )ε

∑

Nn6X

f (n). (4.28)

Proof. The hyperbola method can be efficiently used in this setting. Cutting the sum
at X 1/2 for a positive X ,

∑

Nn6X

f (n)

log(Nn)ε
=

∑

Nn6X 1/2

f (n)

log(Nn)ε
+

∑

X 1/2<Nn6X

f (n)

log(Nn)ε

≪
∑

Nn6X 1/2

f (n) +
1

log(X )ε

∑

X 1/2<Nn6X

f (n)

≪ 1

log(X )ε

∑

Nn6X

f (n).

Indeed, the asymptotic assumption (4.28) yields

∑

Nn6X 1/2

f (n) ≪ Xα/2 ≪ Xα

log(X )ε
≪ 1

log(X )ε

∑

Nn6X

f (n), (4.29)

proving the lemma. �

So after summations of the contributions of the sieved families (4.25), Lemma 20
provides the bound

P (ν )
Q

(ϕ) ≪
∑

Nq6Q
q∧R=1

∑

σR∈ĜR

c (σR )6Q/Nq

φ2(q)µ
Pl
R (σR )

log(Nq)
≪ 1

logQ
, (4.30)

proving Proposition 26. More precisely, the contribution to the line above of the er-
ror term in (4.25) is negligible by (4.26), and the result is obtained by applying the
dampening lemma to the sum over q and then using the convergence of the ramified
part following Lemma 7. �
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Remark. Analogously to Iwaniec, Luo and Sarnak [64] and all the literature on low-
lying zeros, the high order terms are negligible, with a logarithmic savings. This bound
follows from directly dominating P (ν ) (π ,ϕ) without use of neither the average over the
family nor the sum over the primes.

4.3 Traces of Hecke operators

4.3.1 Hecke operators

For the two remaining cases ν = 1 and ν = 2, straightforward estimations are no more
sufficient, feature already present in [64] and generalized in the axiomatic proposed
by Dueñez and Miller [37]. The inner spectral sums in (4.21) are closely related to

traces of Hecke operators, so that P (ν )
q,σR (ϕ) should be interpreted as a spectral side of a

trace formula, using the selecting function constructed in Section 2.5.5. Let define the
normalized Hecke operators as

Tpν = Np
−ν/21T (pν ), where T (pν ) =

⋃

i+j=ν
06i6j

Kp

(
pi

pj

)
Kp. (4.31)

The Hecke operator for a global ideal n of O is defined by

Tn =
∏

pr | |n
Tpr . (4.32)

One of the main appeal of Hecke operators is that they provide an explicit recipe to
catch the coefficients of L-functions. Indeed, they satisfy the same induction relation,
hence are equal once well normalized. This is the content of the following standard
proposition.

Proposition 27. Let n be an ideal of O and π be an unramified representation at the
places dividing n. Introduce λπ (n) the eigenvalue of Tn acting on π . Then ,

aπ (n) = λπ (n). (4.33)

Moreover, for all representation ramified at one of the places dividing n, the only eigen-
value of Tpν acting on π is zero.

Proof. The Tpn satisfy [18, Prop 4.6.4] the recursive relation

Tpn+1 = TpTpn −Tpn−1, n > 0, (4.34)
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which transfers at the Hecke eigenvalues level and gives

λπ (p
n+1) = λπ (p)λπ (p

n ) − λπ (pn−1), n > 0. (4.35)

Recall that, by the Euler product decomposition of L(s,π ), the coefficients aπ (n) are
entirely determined by their values at the prime powerspn. Moreover, since the center-
less setting implies a trivial central character and hence Satake parameters related by
απ (p) = βπ (p)

−1, let α be a shortened version of απ (p). The local L-factors are

Lp (s,π ) = (1 − αNp−s )−1(1 − α−1Np−s )−1 = *,
∑

i>0

α iNp−is+-
*.,
∑

j>0

α−jNp−js+/- . (4.36)

By unfolding the power series, the coefficient of Npns is

aπ (p
n ) =

∑

i+j=n

α i

α j
. (4.37)

A straightforward computation hence leads to the recursion relation

a(pn+1) = a(p)a(pn ) − a(pn−1). (4.38)

Since this is the same relation than for the Hecke eignavelues (4.34), the two se-
quences are proportional. Moreover, p-unramified newforms are normalized so that
aπ (1) = λπ (1) = 1, leading to the equality of both sequences as claimed. The second
part of the claim is straightforward, since the operators are the unramified Hecke op-
erators, in particular are bi-Kp-invariants, and so project on Kp fixed vectors, which
are reduced to zero for p-ramified representations by definition. �

4.3.2 Spectral selection

Proposition 27 states that Hecke eigenvalues is a way to interpret the coefficients of
an automorphic representation. Since these coefficients are related to the Satake para-
meters by the Euler product development (4.36), this fact provides a clue to handle the
sums (4.21) involving them. In order to make this question amenable to the trace for-
mula method, it is necessary to have a grasp on these quantities by means of Fourier
transforms. This is provided by the following proposition.

Proposition 28. Every K-spherical vector v in a representation π is an eigenvector for
all Hecke operators. Moreover, for every ν > 0,

T̂pν (π ) =

{
λπ (p

ν ) if π is unramified at p;
0 otherwise.

(4.39)
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Proof. Since the K-Hecke operators lie in the left and right K-invariant Hecke algebra,
they project on K-fixed vector spaces by Proposition 9, so only unramified represent-
ations can have nontrivial eigenvalues. By the multiplicity one theorem, the space πK

of K-fixed vectors in Vπ is at most one dimensional. Hence every operator acts on it
as a scalar, that is by definition the eigenvalue λπ (pν ), also equals to the trace of the
convolution operator Tpν (π ). By the Proposition 27, they are equal to the coefficients
of π . �

4.3.3 Sums of Hecke eigenvalues

the above section showed that Hecke operators are a tool allowing a spectral reinter-
pretation of the spectral parameters in terms of Hecke eigenvalues in the case of un-
ramified representations. In order to explore the relations between the sums of Satake
parameters (4.21) and sums of eigenvalues of Hecke operators, this leads to introduce
the spectral sums

Λ
(ν ),ur
q,σR (p) =

∑

π∈B (q,σR )ur
m(π ,q)λπ (p

ν ). (4.40)

Moreover, introduce P (ν ),ur
q,σR to be the p-unramified part of P (ν )

q,σR (ϕ). Concerning the
ramified representations at p, introduce

Λ
(ν ),r
q,σR (p) =

∑

π∈B (q,σR )ur
m(π ,q)

(
ανπ (p) + β

ν
π (p)

)
. (4.41)

Relation in the case ν = 1

Since απ (p) + βπ (p) = λπ (p) for unramified representations, the corresponding total

sum in P (ν )
q,σR can be rewritten as

P (1),ur
q,σR (ϕ) =

∑

p

Λ
(1)
q,σR (p)ϕ̂

(
logNp

log c (π )

)
2 logNp

√
Np log c (π )

. (4.42)

Relation in the case ν = 2

By identification of the corresponding expressions of the local L-factor (4.6) follows
the relation α2

π (p)+ β
2
π (p) = λπ (p

2)− 1 holding for unramified representations. So that
the sum over primes splits as

P (2),ur
q,σR (ϕ) =

∑

p

Λ
(2)
q,σR (p)ϕ̂

(
2 logNp

log c (π )

)
2 logNp

Np log c (π )
−

∑

p

ϕ̂

(
2 logNp

log c (π )

)
2 logNp

Np log c (π )
.

(4.43)
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By the prime number theorem and integration by parts, the second sum appearing
in the right hand side rewrites

∑

p

ϕ̂

(
2 logNp

log c (π )

)
2 logNp

Np log c (π )
=

1

log c (π )
ϕ̂

(
2 log c (π )Tϕ/2

log c (π )

)

− 2

log c (π )

∫ c (π )
Tϕ /2

1

*.,
∑

p6t

logNp

Np

+/- ∂tϕ̂
(
2 log t

log c (π )

)
dt

= − 2

log c (π )

∫ c (π )
Tϕ /2

1
(log(t ) +O (1))∂tϕ̂

(
2 log t

log c (π )

)
dt

= − 2

log c (π )

∫ c (π )
Tϕ /2

1
ϕ̂

(
2 log t

log c (π )

)
dt

t
+O

(
1

log c (π )

)

=

1

2
ϕ (0) +O

(
1

log c (π )

)
,

where the fact that ϕ̂ is even and compactly supported in [−Tϕ ,Tϕ] has been used to
write ∫ Tϕ

0
ϕ̂ =

1

2

∫

R

ϕ̂ =
1

2
ϕ (0).

The expression (4.43) of P (2),ur
q,σR is hence reduced to

P (2),ur
q,σR (ϕ) =

∑

p

Λ
(2)
q,σR (p)ϕ̂

(
2 logNp

log c (π )

)
2 logNp

Np log c (π )
− 1

2
ϕ (0) +O

(
1

log c (π )

)
. (4.44)

Remark. The extra contribution 1
2ϕ (0) is crucial, and will be shown to be the only

non-archimedean contribution to the type of symmetry. It is noteworthy that that it is
determined by the relation between the Satake parameters and the coefficients, thus as
expected the structure of the L-functions attached to the elements of the family is the
essential factor determining the type of symmetry and has particularly an effect when
estimating the second moment of Hecke eigenvalue as regularly emphasized by Miller.
This feature is already present in many classical works on low-lying zeros [64, 37].

4.4 Low order contribution

It remains to evaluate the sums of order 1 and 2, displayed in (4.42) and (4.44). Decom-
pose them according to whether or not the representations are ramified at p, introdu-
cing

P (ν ),σ
q,σR (ϕ) =

∑

p

Λ
(ν ),σ
q,σR (p)ϕ̂

(
ν logNp

log c (π )

)
2 logNp

Npν/2 log c (π )
. (4.45)
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where σ ∈ {ur, r} indicates if the sum defining Λ
(ν ),σ
q,σR (p) runs through the representa-

tion unramified at p or ramified at p respectively, following the dichotomy introduced
above. Moreover, c (π ) is from now on freely use as a shortened notation when restric-
ted to families of fixed spectral data, at holds for c (π ) = Nqc (σR ).

4.4.1 Unramified part

Proposition 29. For ϕ an even Schwartz function whose Fourier transform is compactly
supported in (−2/3, 2/3),

P (ν ),ur
Q

(ϕ) ≪ 1

logQ
. (4.46)

Proof. For the representations unramified atp, the coefficients are selected by theHecke
operators as stated in Proposition 28. Write the trace formula with the selecting func-
tion of the universal family twisted by the Hecke operator (4.31), that is to say

Φ
p,ν
q,σR = TpνΦq,σR , (4.47)

so that the test function is Tpν at the place p and the other places remain unchanged
compared to the previous chapter. The result obtained in Lemma 2.70 and the extra
effect of the Hecke operator at the place p then prove that

Jspec
(
Φ
p,ν
q,σR

)
= Λ

(ν ),ur
q,σR (p) + Np−ν/2R (q,σR ). (4.48)

where it is known that the remainder term satisfies
∑

q6Q
q∧R=1

∑

σR∈ĜR

c (σR )6Q/q

∑

d | q
λ2

(
q

d

)
R (q,σR ) ≪ Q2−θ . (4.49)

so that, up to an error term, the sought spectral sums (4.40) can be approximated by the
spectral side (4.48). The Selberg trace formula states that this spectral part Jspec(Φ

p,ν
q,σR )

is equal to the corresponding geometrical side. This one decomposes as

Jgeom
(
Φ
p,ν
q,σR

)
= J1

(
Φ
p,ν
q,σR

)
+ Jell

(
Φ
p,ν
q,σR

)
, (4.50)

where the identity and elliptic terms are defined as

J1
(
Φ
p,ν
q,σR

)
= vol(G (F )\G (A))Φ

p,ν
q,σR (1)

Jell
(
Φ
p,ν
q,σR

)
=

∑

{γ }⊂G (F )

vol(Gγ (F )\Gγ (A))
∫

Gγ (A)\G (A)

Φ
p,ν
q,σR (x

−1γx ) dx

Since 1 lies outside the double classes T (pν ) defining the Hecke operator (4.31),
J1(Φ

p,ν
q,σR ) vanishes. For the elliptic terms, in critical contrast with Section 3.4, many
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difficulties arise due to the presence of Hecke operators. Indeed, the Hecke double
classesT (pν ) are not uniformly contained in a compact open subgroup, as it is the case
for the congruence subgroups K0(d). It is hence necessary to unveil the dependence
on p for the bounds on the length of the sum and on the global volumes, no more only
for the orbital integrals.

The orbital integral factorizes (3.54) as a product of local ones. Since Φp,νq,σR ,v is un-
changed at any place v safe p compared to Lemma 2.70, the same bounds provided by
Binder [9] for the local orbital integrals hold for those places, that is to say for a finite
place r different from p,

Oγr
(
Φ
p,ν
q,σR ,r

)
≪ N rε . (4.51)

Concentrating on the p-component of the test function, the associated orbital integ-
ral is precise computed by Kottwitz [86, Lemma 12.12], who show that

Oγp
(
Φ
p,ν
q,σR ,p

)
= Oγp

(
Tpν

)

= Np−ν/2Oγp (1T (pν ) )
≪ Npν/2,

Even if very general results due to Matz and Templier [86, Lemmas 11.9, 11.11, 11.14]
supply needed bound in this case, our particularGL(2)-setting allow to be more precise
and to obtain slightly better and explicit bounds. The lemma below bound the number
of conjugacy classes contributing non-trivially to the elliptic terms.

Lemma 21. The number of contributing classes to the geometric side of the trace formula
applied to the test-function Φ

p,ν
q,σR is bounded by Npν/2.

Proof. The proof is an adaptation of the counting provided by Matz and Templier,
with no need to use their rough bounds since the situation is more precise. Let lift
the setting, considering the center and embedding in GL(2) by the Jacquet-Langlands
correspondence, in order to ease the argument. Counting theG (F )-conjugacy classes is
equivalent to counting the associated characteristic polynomials, since they determine
the conjugacy classes.

Let γ be a representative of a contributing conjugacy class, that is to say such that Φ
does not vanish all along the conjugacy class of γ . By definition of the test function, at
all non-archimedean places γv is a matrix with integer entries, for either γq ∈ K0,q (q

r )

for a certain r , or γp ∈ T (pν ). Hence its characteristic polynomial Pγ has coefficients in
all the integers rings Oq, hence in the integer ring of F . Let write

Pγ = X
2
+ aγX + bγ . (4.52)

Turning to the archimedean places, the test-function is compactly supported mod-
ulo the center. Hence, up to normalizing the determinant to one by replacing γ by



98 Chapter 4. Type of Symmetry

γ̃ = γ |detγ |−1/2, the set of the contributing γ̃ lies in a fixed compact set, hence also
the coefficients of their characteristic polynomials. Since the determinant is fixed to
one, and should be equal to bγ̃ , only the linear coefficient remains undisclosed. This
is a bounded integer, and turning back to γ it shall be bounded with respect to the
archimedean normal:

|aγ |∞ ≪ |detγ |1/2∞ . (4.53)

The fact that γp lies in the Hecke double classT (pν ) and the other γq in the maximal
compact subgroupKq fixes the value of the non-archimedean norms of the determinant
at each place pν for p, and one for the other places. Since the determinant of γ lies in
F , the product formula yields

|aγ |∞ ≪ |detγ |1/2∞ =
∏

q

|detγ |−1/2q = |detγ |−1/2p = Npν/2, (4.54)

achieving the proof, for there is as many different conjucacy classes as possible linear
coefficients for Pγ . �

Moreover, the global volumes have been precisely bounded by Matz [85, Section 9]
in the specific case of GL(2), since explicitly written as special values of L-functions,
and are shown to be dominated by Npε for all ε > 0. These bounds, along with the
bounds on orbital integrals at other places obtained in the previous chapter, imply by
(4.48) that for every ε > 0,

Λ
(ν ),ur
q,σR (p) ≪ Npν+ε (Nq)ε + Npν/2+εR (q,σR ). (4.55)

Note that the action of ϕ̂ in the explicit formula ensures a sum over primes running
until c (π )Tϕ/ν . Plugging the above bounds in (4.45), the prime number theorem implies
that

P (ν ),σ
q,σR (ϕ) ≪ Nqε

∑

p

ϕ̂

(
ν logNp

log c (π )

)
logNp

log c (π )
Npν/2+ε

≪ Nqε
c (π )3Tϕ/2+ε

log c (π )
.

After summation over q, it is negligible compared to the size of the family if

∑

Nq6Q
q∧R=1

∑

σR∈ĜR

c (σR )6Q/Nq

∑

d | q
Ndε

c (π )3Tϕ/2+ε

log c (π )
= o(Q2), (4.56)

and this happens by standard estimates for Tϕ 6 2/3 − ε for any ε > 0, giving the
desired result. �
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4.4.2 Ramified part

It remains to estimate the contribution of p-ramified representations to the spectral
sum. This is the content of the following lemma.

Proposition 30. For every Q > 1 and ν > 1,

P (ν ),r
Q

(ϕ) ≪ Q2

log(Q )ν (1/2−7/64)
log logQ . (4.57)

Proof. By definition of the conductor, π is ramified at p if and only if p divides the
arithmetic conductor of π . Hence, using the Blomer-Brumley bound and the counting
law (4.25),

Λ
(ν ),r
q,σR (p) = 1p |q

∑

π∈A (q,σR )

(
ανπ (p) + β

ν
π (p)

)

≪ Np7ν/641p|qB (q,σR )

≪ Np7ν/641p|q J1
(
Φq,σR

)
+ Np7ν/64R (q,σR ).

That leads to, after summing over the primes,

P (ν ),r
q,σR (ϕ) ≪

φ2(q)µ
Pl
R (σR )

log(Nqc (σR ))

∑

p |q

logNp

Npν (1/2−7/64)
. (4.58)

Recall a technical lemma useful for the computations below.

Lemma 22. For every 0 < s 6 1 and every q,

∑

p |q

log(Np)

Nps
≪ log(Nq)1−s + log logNq. (4.59)

Proof. This is a straightforward application of the hyperbola method. Indeed, forY > 0,
partial summation gives

∑

p |q

log(Np)

Nps
=

∑

p|q
Np6Y

log(Np)

Nps
+

∑

p|q
Np>Y

log(Np)

Nps

≪
∑

Np6Y

log(Np)

Nps
+

∑

p|q
Np>Y

log(Np)

Nps

≪
∑

Np6Y

Np1−s (log(Np + 1) − logNp) + 1

Y s

∑

p |q
logNp
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≪ max

(
Y 1−s ,

logNq

Y s

)
,

and this quantity is optimized for Y 1−s
= log(Nq)Y−s , i.e. for Y = logNq, which gives

the claimed statement. �

This applied to (4.58) imples that, for every q and σR ,

P (ν ),r
q,σR (ϕ) ≪

φ2(q)µ
Pl
R (σR )

log(Nq)ν (1/2−7/64)
+ log logNq. (4.60)

Applying now Lemma 20 when summing over the spectral data yields

P (ν ),r
Q

(ϕ) ≪ 1

log(Q )ν (1/2−7/64)
+ log logQ, (4.61)

using the asymptotic size of the family provided by Theorem A. Theorem D follow
from the explicit formula (4.14), the contribution of the second order terms obtained
in (4.44) and the bounds of the remaining terms Propositions 29 and 30. �

4.5 Non-vanishing of L-functions

The type of symmetry (4.4) leads to further statistics on the family of L-functions as-
sociated to representations inA (G ). Following Iwaniec, Luo and Sarnak [64], it opens
the path to bounds on the density of non-vanishing at the central point. Let introduce
the truncated proportion of vanishing at the central point with orderm, i.e.

pm (Q ) =
1

N (Q )
#
{
π ∈ A (Q ) : ords=1/2L(s,π ) =m

}
. (4.62)

The very definition of those proportions gives the for every Q > 0,

∑

m>0

pm (Q ) = 1. (4.63)

The proportion of vanishing at the central point (4.62) could be reached by approx-
imating the Dirac mass ϕ = δ0 in the one-level density (4.3). The Plancherel formula
restates the asymptotic one-level density obtained in Theorem D, for an admissible
function ϕ, as ∫

R

ϕ (x )W (x ) dx =

∫

R

ϕ̂ (y)Ŵ (y) dy. (4.64)
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The proportion of vanishing at the central point, counted with multiplicities, can be

bounded as follows. Let ϕ be a non-negative function so that ϕ̂ (0) = 1, i.e. ϕ > δ0. By
the density result (4.4), for every ε > 0 and for Q sufficiently large,

∑

m>1

mpm (Q ) =
1

N (Q )

∑

π

∑

γπ

δ0(γπ )

6
1

N (Q )

∑

π

∑

γπ

ϕ (γπ )

6

∫

R

ϕ (x )W (x ) dx + ε

6

∫

R

ϕ̂ (y)Ŵ (y) dy + ε,

so that, for everym > 1, ε > 0 and Q sufficiently large,

pm (Q ) 6
1

m

(∫

R

ϕ̂ (y)Ŵ (y) dy + ε

)
. (4.65)

This along with the relation (4.63) imply a lower bound for the non-vanishing pro-
portion

p0(m) >
∑

m

pm (Q ) −
∑

m

mpm (Q )

> 1 −
∫

R

ϕ̂ (y)Ŵ (y) dy − ε,

providing a family of bounds depending on the function ϕ. Iwaniec, Luo and Sarnak
[64, AppendixA] constructed the optimal choice among functions supported in [−Tϕ ,Tϕ],
and computed the corresponding value given by

∫

R

ϕ̂ (y)Ŵ (y) dy =
1

Tϕ
+

1

2
, (4.66)

providing the desired result, that is in general for a support of the Fourier transform
in (−Tϕ ,Tϕ ),

lim inf
Q∞

p0(Q ) >
1

2
− 1

Tϕ
,

lim inf
Q∞

∑

m

mpm (Q ) 6
1

2
+

1

Tϕ
.

Unfortunaltely, the bound on the support of the Fourier transform of ϕ̂ by 2/3 is
too small to yield non-trivial result on non-vanishing of the associated L-functions, as
well as to uniquely unveil the conjectural type of symmetry of the universal family of
quaternion algebras. Determining the higher densities or similar statistics on the finer
families of fixed sign in the functional equation are clues to go further in this direction.





Chapter 5

Different ground groups

Previous chapters illustrated the power and relevance of trace formulas methods in
addressing arithmetic statistics questions on the universal family of the group of units
of quaternion algebras. It opens the path to explore different base groups, and this
chapter summarize joint works in progress with Ian Petrow, giving evidences towards
analogous results for some unitary as well as symplectic groups.

Exploring arithmetic statistics problems for different groups than inner forms of
GL(2) leads to unveiling necessary assumptions for dealing with universal families
by means of trace formulas. Any result in this direction provides clues towards more
general conjectures concerning both the growth rate and the form of the constant in
the counting law for universal families, in the vein of the analogous Batyrev-Manin-
Peyre program.
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5.1 Unitary groups of small ranks

5.1.1 Structure of unitary groups

Let E be a quadratic totally imaginary extension of F , let q a non-degenerate hermitian
form on the three dimensional vector spaceV over E, andU the unitary group associ-
ated to q, that is to say the subgroup of transformations in GL(3) preserving q. More
precisely, it is the group over F defined by

U =
{
д ∈ GL(3, F ) : ∀x ,y ∈ V , q(дx ,дy) = q(x ,y)} . (5.1)

The classification of the local hermitian vector spacesV is as follows. For archimedean
places, thus in the case where F = R and E = C, there are only two non-isomorphic
one-dimension hermitian vector spaces denotedV + andV −, associated to the hermitian
forms q+(x ,y) = xy and q−(x ,y) = −xy respectively. Every hermitian space of dimen-
sion n over E is isomorphic to a spaceV +p ⊕V −q where p +q = n, so that the signature
(p,q) determines the hermitian space up to isomorphism. The corresponding unitary
groups are denotedU (p,q), among which onlyU (p,q) andU (q,p) are isomorphic, and
onlyU (n) = U (n, 0) is compact.

For non-archimedean places p, there are two non-isomorphic n-dimensional vector
spaces over E, denotedV + andV −. In the case of odd dimensions n, the corresponding
unitary groups are isomorphic and quasi-split. In the case of even dimension, they are
not isomorphic and only one of them is quasi-split.

The classification of unitary groups over local fields is given in the following pro-
position [59].

Proposition 31. Let U be the unitary group attached to a vector space V over E. At a
non-archimedean placep, the local groupU (V ) is either isomorphic toGL3(Fp), in the case
where p splits in E, or to a unitary group over Fp. At archimedean places, it is classified
by its signature.

By the Chebotarev density theorem, places where U splits arise almost half of the
time, preciselywith natural density equal to one half. LetR be the set of the archimedean
places, S be the set of finite places whereU splits andT be the set of finite places where
U is isomorphic to a unitary group. As for the case of quaternion algebras, the differ-
ent behavior of each type of places is a critical issue in order to handle the problem by
trace formula methods.

From now on, consider a unitary group U on three variables, that is to say a vector
space of dimension 3 over E. Since the dimension is odd, the previous discussion en-
sures that at non-archimedean places, the local groupUp = U (Fp) is eitherGL(3, Fp) or
the unique quasi-split unitary group on Fp. Assume U to be totally definite, i.e. for all
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archimedean place v , Uv � U (3) is the compact unitary group in three variables. This
in particular ensures that the automorphic quotientU (F )\U (A) is compact.

Remark. This assumption is made for convenience, in order to get rid of many com-
plications coming from the smoothing of test functions at archimedean places, as in
Section 2.5.4, for the purpose of this opening towards different ground groups is to
underline differences with the case of the general linear group and its inner forms,
motivating a wider freedom aimed at easing notation and focusing on new features.

The normalizations of measures are taken to be the ones introduced in the works of
Rogawski [103] on the unitary group in three variables. First let introduce the standard
maximal compact subgroups of Gv . For a finite place, define Kp = GL3(Op) ∩Gp, safe
when the residual characteristic of p is two, case in which Kp is the maximal compact
subgroup described by Rogawski [103, 1.10]. For archimedean places, Kv is taken to
be the whole group U (3,R). For every place v , introduce dдv the Haar measure on Uv
normalized such that Kv gets measure 1, and dд the product measure onU (A).

Turn now to the associated local dual groups. Denote H (Uv ) the Hecke algebra
of Gv , that is the algebra consisting of complex-valued functions on Uv , compactly
supported, locally constant at finite places, smooth at archimedian ones. LetH (U (A))

be the Hecke algebra ofU (A), generated by the restricted products ⊗vϕv where ϕv lies
inH (Gv ) and is 1Kv for almost every place. The unitary dual group Ûv is endowedwith
its usual Fell topology and Plancherel measure associated with the measure chosen on
Uv , similarly to Section 2.1.1. From now on, every integral on Ûv will be written with
the convention that dπv = dµPlv (πv ), leading to no ambiguity.

Consider the universal family A (U ) consisting of all automorphic representations
ofU . Note that the cuspidality usually taken as a requirement for the universal family
is an empty condition since the automorphic quotient is compact.

5.1.2 Functorial lift

It is desirable to stick with the functoriality spirit that consists in thinking of GL(n)
as an ambiant group. It would allows to both define the analytic conductor by pulling
back the associated notion on GL(n) as in Section 2.2 and use the toolbox provdided by
known results in the general linear group setting. Let Gal(E/F ) be the Galois group,
WE be the Weil group, and introduce the relative Weil group

WE/F =WF/[WE,WE],

which fits into an exact sequence

1→WE →WE/F → Gal(E/F ) → 1.

The Galois group Gal(E/F ) having two elements, say 1 and σ , it follows thatWE/F is
the disjoint union

WE/F =WE ⊔WEwσ ,
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for some chosen pre-imagewσ of the non-trivial Galois representation σ . The L-group
[93] ofU is then defined as

LU = GL(3,C) ⋊WE/F ,

where the action ofWE/F on GL(3,C) is defined forw ∈WE by

w (д) = д

and forwwσ ∈WEwσ by

wwσ (д) =
*.,

1
−1

1

+/-
tд−1 *.,

1
−1

1

+/- .
Let G = ResE/F (GL(3)). The L-group of G is [93]

LG = (GL3(C) × GL3(C)) ⋊WE/F ,

wherew ∈WE acts trivially andwwσ ∈WEwσ acts by swapping the two factors.

Let µ : E× → C× be an unramified character. There are two of these, written 1 and
µ0. Corresponding to these, there are L-homomorphisms [90]

BCµ :
LU → LG .

If µ is trivial, this isomorphism is defined by

BC1(д ⋊w ) = (д,д) ⋊w,

for allw ∈WE/F . If µ = µ0, the Artin map

E× ≃WE,

allows to consider µ0 as a character ofWE , for which we use the same notation. Then
define forw ∈WE

BCµ0 (д ⋊w ) = (µ (w )д, µ (w )д) ⋊w

and forwwσ ∈WEwσ , define

BCµ0 (д ⋊wwσ ) = (µ (w )д,−µ (w )д) ⋊wwσ .

Deep results of Flicker [47] say that corresponding to these two maps of L-groups
there exist transfer maps between the associated universal families

B̃Cµ : A (U /F ) → A (GL(3)/E)

satisfying the Langlands functoriality conjectures [25]. That is to say, for each irre-
ducible admissible representation π of U (F ) is associated an irreducible admissible
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representation ofGL(3,E), namely B̃Cµ (π ). This allows to access all of the theory and
results of automorphic forms on GL(3).

Remark. It could also be possible to appeal to the functoriality of cyclic base change
[4, example 1] to embed the universal familyA (U ) into automorphic forms ofA (GL(6, F )),
in order to consider every group on the same field. However, cuspidality is not always
preserved under base change transfers, breaking with the common ground of the uni-
versal family of GL(n). Thus, sticking with GL(3,E) allows more control on what the
lifts are, instead of lifting from GL(3,E) to GL(6, F ) would only amplify those diffi-
culties.

5.1.3 Analytic conductors

Functorial conductor

The existence of a transfer of the universal family ofU as a subfamily of automorphic
representations of GL(3) over E would allow to pull back to the unitary group setting
many results already acquired on general groups, and to lift the notion of analytic con-
ductor, analogously to the case of heights for geenral algebraic varieties and to what
has been done in Section 2.2.3. Following [54], there is a three dimensional represent-
ation of the L-group ofU

LU →֒ GL(3,C) = LGL(3). (5.2)

The Langlands functoriality principle [26] predicts the existence of a lifting to a
map of representations A (G ) → A (GL(3)), obtained as follows. Introduce Φ(U ) the
set of Langlands parameters ofU , i.e. representations of the Weil groupWF to LU . The
Langlands conjectures, known to be true in this case by a result due to Flicker [47],
states the existence of a surjective map

A (U ) ։ Φ(U ), (5.3)

with finite fibers. Replacing A (U ) by the set AL (U ) of these fibers, called L-packets
ofU , this map leads to a bijection

AL (U ) � Φ(U ). (5.4)

It follows that there is a natural embedding AL (U ) →֒ Φ(GL(3)) by composing the
L-packets parametrization (5.4) with the embedding ofL-groups (5.2). By the Langlands
functoriality for GL(3), the setΦ(GL(3)) parametrizes the automorphic representations
of GL(3), so that it yields an embedding

θ : AL (U ) →֒ A (GL(3)). (5.5)
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The universal family is an infinite one, so in order to establish statistics on it a trun-
cation to a finite set with respect to a suitable notion of size is needed. In the setting
of cusp forms on general linear groups, such a notion is provided by the analytic con-
ductor of Iwaniec and Sarnak [65], which is defined for generic representations. This
notion can be pulled back through the previous embedding (5.5) to a notion of analytic
conductor onU by setting

cGL(π ) = cGL(3) (θ (π )). (5.6)

Geometric conductor

The notion of conductor given in Section 5.6 is hard to reach when it comes to explicit
computations, and an interpretation as a notion of depth as in Section 2.2.3 is desir-
able. The conductor can be defined for local components of representations, the global
conductor being then defined to be the product over all places. For finite places in S ,
where Up is isomorphic to the standard setting GL(3, Fp), this objective is achieved by
the filtration

KGL
1,p (p

r ) =

д ∈ GL(3)
(Op

)
: д ≡ *.,

⋆ ⋆ ⋆

⋆ ⋆ ⋆

0 0 1

+/-mod pr
 ⊆ GL

(
3,Op

)
, r > 0.

(5.7)

provided by Jacquet, Piatetski-Shapiro and Shalika [67] as a straightforward general-
ization of the one constructed by Casselman for GL(2), introduced in Section 2.2.3.

For finite places in T , where Up is isomorphic to the quasi-split unitary group on
Fp, Miyauchi [92] built an analogous filtration of compact open subgroups of GL(3, Fp)
defined by

KU
1,p (p

r ) =
*.,
OE OE p−r

pr 1 + pr OE
pr pr OE

+/- ∩U (Fp). (5.8)

This choice of filtration provides suitable notions of depth and newform for repres-
entations, providing the analogous toolbox in the setting of quasi-split unitary groups,
as stated in his central theorem [92, Theorem 0.3] as follows.

Theorem 14 (Miyauchi). Let πp be an irreducible generic representation of the quasi-
split unitary group U (Fp). Then there is a non-negative integer r such that πp admits
nonzero fixed vectors by KU

1,p (p
r ).

Both the result of Jacquet, Piatetski-Shapiro, Shalika and the one of Miyauchi ensure
that there exists fixed vectors for a small enough subgroups in both cases of GL(3, Fp)
andU (Fp). The conductor of an irreducible admissible infinite-dimensional represent-
ation πp of Up is then defined by the smallest rank for which it happens, analogously
to Definition 9.
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Definition 13. The additive conductor of a generic representation πp ofUp is defined
as

f
(
πp

)
= min

{
r ∈ N : π

KX
0,p (p

r )

p , 0
}
, (5.9)

with X ∈ {GL,U } according to whether Up is isomorphic to GL(3, Fp) or U (Fp). The
multiplicative and analytic conductor of πp are respectively defined by

c
(
πp

)
= pf(πp ) and c

(
πp

)
= N c

(
πp

)
. (5.10)

Moreover, the remaining archimedean places are in finite number thus a more sys-
tematic definition of the conductor can be chosen, as arising from the functional equa-
tion satisfied by the associated L-functions, as already mentioned in Section 2.2.1, or
by pulling back the notion of analytic conductor on GL(3) through the embedding
(5.5). As already discussed, the analytic conductor has a working definition used in
asymptotical questions, hence allowing to use some freedom of normalization in his
definition for a finite number of places without any impact to the finiteness the family.

Nevertheless, Miyauchi’s work does not state that this notion is compatible with
the one given by the conductor coming from the ε-factor of the associated L-function
defined onU . The functoriality conjecture for conductors states this compatibility.

Conjecture 5 (Functoriality of the conductor). Both notions of the conductor pulled
back from GL(3) and of the conductor as depth are compatible, that is to say for every
generic representation π ofUp,

c (π ) = cGL(π ). (5.11)

Notwithstanding this lack of proven consistency, the arithmetic statistics problems
keep their meaningwhether the functorial conductor or the filtration conductor is used
to truncate the family or not, and is motivated by the expected functoriality property.
From now on, the considered conductor is the one given by the filtrations at places in
T . Introduce the cardinality of the truncated universal family

N (Q ) = |AU (Q ) | =
∑

π∈A (U )
c (π )6Q

1. (5.12)

5.1.4 Theory of local newforms

Analogously to Section 2.4.3, the universal family sees no multiplicities, but the trace
formula counts them. The spectral multiplicities associated to the decomposition of
L2(U (F )\U (A)) are

m (π ,q) = dim πK1 (q), (5.13)

where the global congruence subgroup K1(q) is defined, for an ideal q of O, by

K1(q) =
∏

p∈S
pr | |q

KGL
1,p (p

r )
∏

p∈T
pr | |q

KU
1,p (p

r ). (5.14)
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According to this decomposition, the multiplicitym(π ,q) can be split as the product
of the multiplicitiesm(πS ,qS ) andm(πT ,qT ). In the case of finite split places in S , that
is to say a groupUp isomorphic to GL(3, Fp), the multiplicities are explicitly computed
by Reeder [101] and given by, for a place p in S ,

m
(
πp,p

r )
= d3

(
pr

c(πp)

)
. (5.15)

In the case of finite places where Up is isomorphic to the quasi-split unitary group
U (Fp), the multiplicites associated to the filtration (5.8) is given by Miyauchi [92] and
equal, for a place p in T ,

m
(
πp,p

r )
= max

(⌊
r − f(π )

2

⌋
+ 1, 0

)
. (5.16)

What is of fundamental importance is that these multiplicities are functions only of
the level pr , and not of the type of representation of πp. Even more precisely, it is a
function of q/c(π ). So that the global multiplicity (2.46) is written as

m(π ,q) =
∏

pr | |q
m(πp,p

r ). (5.17)

Decomposing the cardinality of the universal family (5.12) by fixing the discrete
spectral data given by the conductor relative to places in S andT , and the isomorphism
class of local components relatives to places in R, leads to rewriting it into

N (Q ) =
∑

π∈A (U )
c (π )6Q

1 =
∑

Nq6Q
q∧R=1

∑

πR∈ÛR
c (πR )6Q/Nq

∑

σ∈A (U )

c (σR )=q
σR≃πR

1, (5.18)

so that it is enough to concentrate from now on on evaluating the inner sums

A(q,πR ) =
∑

σ∈A (U )

c (σR )=q
σR≃πR

1. (5.19)

A more relevant quantity is to consider the counting weighted by the multiplicities,
naturally grasped by the trace formula, so that it is more suitable to introduce

B (q,πR ) =
∑

σ∈A (U )

c (σR ) |q
σR≃πR

m(π ,q) =m ⋆A(q,πR ), (5.20)
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where this abuse of notation is the same one used in Section 2.4.3. Remembering that
m(π ,q) is a function of q/c(π ) still writtenm, the notationm ⋆A stands for

m ⋆A(q,πR ) =
∑

d |q
m(q/d)A(d,πR ). (5.21)

Analogously to the sieving of Section 2.4.3 getting rid of the multiplicities in the case
of quaternion algebras, it is possible to state an explicit relation linking the numbers
of old and new forms in the case of unitary groups. Denoting m̃ the inverse by convo-
lution of the global multiplicitym, the counting problem is reduced to evaluate B, for
by Möbius inversion

A(q,πR ) = m̃ ⋆ B (q,πR ). (5.22)

In particular, this leads to a new expression of the cardinality of the universal family,

N (Q ) =
∑

Nq6Q
q∧R=1

∑

πR∈ÛR
c (πR )6Q/Nq

∑

d |q
m̃

(
q

d

)
B (q,πR ). (5.23)

5.2 Counting law for unitary groups

5.2.1 Counting law at a glance

The aim of this Section is to briefly recall the main tools and steps used in the proof
of the counting law, analogously to Section 2.5, and stress on the differences with the
case of quaternion algebras. Since the assumption onU to be totally definite ensures a
compact automorphic quotient, combined with the multiplicity one theorem, a simpler
version of the Selberg trace formula holds [3]. If Φ is a function in the Hecke algebra
H (U (A)), then

Jgeom(Φ) = Jspec(Φ), (5.24)

where the spectral and geometrical parts are given by

Jgeom(Φ) =
∑

{γ }
vol

(
Uγ (F )\Uγ (A)

) ∫

Uγ (A)\U (A)

Φ
(
x−1γx

)
dx

Jspec(Φ) =
∑

π⊆L2 (U (F )\U (A))

m(π )Φ̂(π )

where π runs through the isomorphism classes of unitary irreducible subrepresenta-
tions ofU (A) in L2(U (F )\U (A)) and {γ } vary among conjugacy classes inU (F ).
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Similarly to the construction of the test function in Section 2.5.5, it is necessary to
introduce a suitable test function in order to estimate B (d,πR ) as a spectral side of a
trace formula, analogously to Lemma 4. For a given ideal d and a representation πR of
UR , introduce

• for places p in S orT , define Φp = εKX
1,p (p

r ) , where p
r | |d andX ∈ {GL,U } is chosen

according to whetherUp is isomorphic to GL(3, Fp) or the quasi-split;
• for placesv of R, define Φv = ξπv a well-normalized matrix coefficient associated
to πv , see Section 2.5.3, underlying that matrix coefficients can be used due to
the definite assumption on U , ensuring that the πv ’s are supercuspidal repres-
entations.

Characteristic functions of subgroups coming from the filtrations (5.7) or (5.8) are
known to provide selecting functions for conductors, as in the GL(2) case treated in
Lemma 2, with the very same proof.

Lemma 23. For an ideal d of O, let

εd = vol (K1(d))
−1 1K1 (d) . (5.25)

Its Fourier transform selects the multiplicity relative to d. More precisely, for every π ∈
A (U ),

ε̂d (π ) =m(π , d). (5.26)

Since places in R consist of archimedean places whereUv is isomorphic to the com-
pact unitary groupU (3) by the totally definite assumption, only supercuspidal repres-
entations arise at these local places, thus matrix coefficients are known to transform
into the selecting function of the associated isomorphism class of representation, see
Section 2.5.3.

Lemma 24. Let σ and π be automorphic representations ofUR . Then,

ξ̂πv (σv ) = 1σv≃πv . (5.27)

No other case arises for totally definite unitary groups in three variables, so that the
global test function defined as

Φq,πR =
∏

v

Φv , (5.28)

is made so that its Fourier transform selects conductors dividing q and bad compon-
ent fixed to πR . Analogously to lemma 4, the following lemma holds for this function,
underlining the fact that the restriction to the totally definite setting as well as consid-
ering only the counting problem lead to a far less technical statement.
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Lemma 25. Let Q > 1. Let d ∧ R = 1 and πR ∈ ÛR . The old forms number and the
spectral part of the trace formula are linked by

Jspec
(
Φd,πR

)
= B (d,πR ) +O (Ξ(πR )), (5.29)

where, introducing the set XR (U ) of characters ofU (A) unramified out of R, and

Ξ(πR ) =
∑

χ∈XR (G )
χR≃πR

1. (5.30)

Remarks. In comparison with Lemma 4, some remarks arise.

(i) there is no complementary part of the spectrum, for the totally definite assump-
tion ensures a discrete archimedean spectrum made of supercuspidal represent-
ations, hence amenable to selection by matrix coefficient;

(ii) the totally definite assumption also avoids the smoothing selecting function, cf.
Section 2.5.4. This simplifies computations to a large extent, and also gets rid of
the worst error term appearing in Theorem A;

(iii) dealingwith the counting problem instead of addressing themore general equidistri-
bution questions avoids technical complications too deal with the places in the
support of the distribution test function, cf. Section 2.3.4.

5.2.2 Identity contribution

The main term is expected to be the one corresponding to the identity in the geomet-
rical side of the trace formula, see Section 3.2. Hopefully, explicit and easy to handle
test functions like Φ allows to evaluate it and, similarly to Section 3.2.1,

Φ(1) = vol(K1(q))
−1µPlR (πR ). (5.31)

By the normalization of the Haar measure as giving value 1 to the maximal compact
subgroup K , it follows that the volume vol(K1(q))

−1 equals the index [K : K1(q)].
Denoteψ (q) this index, equal to

ψ (d) =
∏

pr | |d
ψp (p

r ), (5.32)

where

ψp (p
r ) =


[KGL
p : KGL

1 (pr )] if p ∈ S,
[KU
p : KU

1 (p
r )] if p ∈ T .

(5.33)

Following the same path leading to the evaluation of the identity contribution in
Proposition 18, the summation over spectral parameters q and πR leads to

N1(Q ) =
∑

Nq6Q
q∧R=1

∑

πR∈ÛR
c (πR )6Q/Nq

∑

d |q
m̃

(
q

d

)
J1(Φd,pR )
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= vol(U (F )\U (A))
∑

Nq6Q
q∧R=1

∑

πR∈ÛR
c (πR )6Q/Nq

∑

d |q
m̃

(
q

d

)
ψ (d)µPlR (πR )

= vol(U (F )\U (A))
∑

πR∈ÛR
c (πR )6Q

µPlR (πR )
∑

Nm6Q/c (πR )
m∧R=1

m̃ (m)
∑

Nd6Q/c (πR )Nm
d∧R=1

ψ (d)

The innermost sum is estimated by means of standard arithmetic sums. Recall that
D ( f , s ) denotes the Dirichlet series associated to f on a domain where it converges.

Lemma 26. For every X > 0,

∑

Nd6X
d∧R=1

ψ (d) =
1

4

ζ⋆
S
(1)

ζS (4)
D (ψT , 4)Q

4
+O (Q4−δF ). (5.34)

Remark. It is by no mean obvious that the Dirichlet series of ψ is convergent at
4. Since it is defined as indices of explicit subgroups, there should be no difficulty in
verifying this property.

Proof. Decomposing the sum over ideals, and summing first over split places in order
to use the standard estimates [17, (5.2)], yields

∑

Nd6X
d∧R=1

ψ (d) =
∑

NdT 6X
dT∧R=1

ψ (dT )
∑

NdS6X/NdT
dS∧R=1

ψ (dS )

=

∑

NdT 6X
dT∧R=1

ψ (dT ) *,
1

4

ζ⋆
S
(1)

ζS (4)

(
X

NdT

)4
+O *,

(
X

NdT

)4−δF +-+-

=

1

4

ζ⋆
S
(1)

ζS (4)
X 4

∑

NdT 6X
dT∧R=1

ψ (dT )

Nd4
T

+O
*...,
X 4−δF

∑

NdT 6X
dT∧R=1

ψ (dT )

Nd4−δF
T

+///-
�

This allows to conclude in the computations above, with a main term given by

N
(p)
1 (Q ) =

1

4

ζ⋆
S
(1)

ζS (4)
vol(U (F )\U (A))D (ψT , 4)Q

4
∑

πR∈ÛR
c (πR )6Q

µPlR (πR )

c (πR )4

∑

Nm6Q/c (πR )
m∧R=1

m̃ (m)

Nm4
,

(5.35)

and an error term

N
(e )
1 (Q ) ≪ vol(U (F )\U (A))Q4−δF

∑

πR∈ÛR
c (πR )6Q

µPlR (πR )

c (πR )4−δF

∑

Nm6Q/c (πR )
m∧R=1

m̃ (m)

Nm4−δF
. (5.36)
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Moreover, recall that the sums over the fixed bad places converge since their em-
beddings into GL(3) converge [17], assuming the functoriality conjecture for the con-
ductor. Moreover, the inner sum running over m is the value at 4 of the convergent
Dirichlet series attached to m̃, so that

N1(Q ) =
1

4

ζ⋆
S
(1)

ζS (4)
D (ψT , 4)D (m̃, 4)vol(U (F )\U (A))Q4

∑

πR∈ÛR
c (πR )6Q

µPlR (πR )

c (πR )4
+O

(
Q4−δF

)
.

(5.37)

Remark. The Dirichlet series of m̃ is far easier to grasp than the one associated to
ψ . Indeed, the multiplicities are often of logarithmic order compared to the conductor,
so that their abscissa of convergence is expected to be 1. In the present case, this is
straightforward to check thanks to the explicit expression of these multiplicities in
(5.15) and (5.16).

5.2.3 Geometric interpretation of the constant

In the light of the geometrical restatement of the constant in the case of quaternion al-
gebras carried out in Section 3.2.4, there is a more suitable way to express the constant
above that also avoids unnecessary and ad hoc computations. By definition,

εKX
1,p (p

r ) (1) = vol
(
KX
1,p (p

r )
)−1
= ψ (pr ), r > 0. (5.38)

On an other hand, this volume can be computed by the Plancherel formula. Intro-
duce the volume of representations of fixed conductor

Mp (p
r ) =

∫

σp∈Ûp
c(σp )=p

r

dσp, r > 0.

The Plancherel inversion formula then yields, using the explicit transform of εKX
1,p (p

r )

stated in Lemma 23 and the fundamental property that the multiplicities are functions
of the level,

εKX
1,p (p

r ) (1) =

∫

Ûp

ε̂KX
1,p (p

r ) (πp) dπp =

∫

Ûp

m

(
pr

c(πp)

)
dπp

=

∑

d | pr
Mp (d)m

(
pr

d

)
= (Mp ⋆m) (pr )

Hence, by Möbius inversion, Mp = m̃ ⋆ψ , recalling that m̃ stands for the inverse by
convolution ofm. In particular, the local Dirichlet series associated toMp is given by

D
(
Mp, s

)
=

∑

m=pr

r>0

Mp (m)

Nms
= D (ψ , s )D (m̃, s ), Re(s ) > 1. (5.39)
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Evaluating it at s = 4, motivated by the exponent obtained in the identity contribution
(5.37), a new expression for the local special values appearing in the constant is

D (ψ , 4)D (m̃, 4) =

∫

Ûp

dπp
c (πp)4

, (5.40)

proving the finiteness of the local integrals defining the constant, for the Dirichlet
series are convergent. However, the infinite product over p < R of these quantities
unfortunately diverges, for 1 is a pole of ζ R

F
, leading to compensate it by the residue at

1 and to introduce the regularized integral
∫ ⋆

Û R

dπR

c (πR )4
= ζ R⋆F (1)

∏

p<R

ζp (1)
−1

∫

Ûp

dπp
c (πp)4

. (5.41)

Moreover, the factors ζp (1)/ζp (4) coming from the computations for places in S also
can be written as D (ψp, 4) for p ∈ S , sinceψS = id3 ⋆ µ, so that

D (ψp, s ) =
ζp (s − 3)
ζp (s )

, Re(s ) > 0, p ∈ S . (5.42)

At last, the identity contribution to the counting law rewrites

N1(Q ) =
1

4
vol(U (F )\U (A))Q4

∫ ⋆

Û R

dπR

c (πR )4
+O

(
Q4−δF

)
. (5.43)

5.2.4 Towards the extra contributions

Many error terms arise similarly to Chapter 3, and will be dealt with in a similar fash-
ion.

Characters contribution

The contribution of characters is addressed by the same means than Section 3.3.1, and
shown to be negligible by explicitly computing the number of unramified characters
unduly selected by the chosen test function. This result is established through use of
the Poisson summation formula, following the very same method used to establish the
counting law for the universal family of quaternion algebras.

Central contribution

A notable difference compared to previous chapters is the presence of central con-
tribution other than the identity one in the geometric side of the trace formula, for
the centerless assumption is removed. Since the center of U (F ) is a discrete subset of
U (A), its intersection with the congruence subgroups arising in the filtration is finite,
and trivial for sufficiently large level q, so that this contribution is reduced the identity
one. This result should carefully follows the lines of the corresponding treatment in
the case of GL(n) [17, Section 10.1].
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Elliptic contribution

Estimating orbital integrals is a critical issue in exploiting the trace formula in order to
get the counting law. However, a general strategy to bound orbital integrals, providing
also results in the general case, is provided along the lines of work of Kottwitz [76] and
Matz-Templier [86], and should be adapted to the setting of unitary groups in three
variables. This aspect is expected to be the more delicate and the farther from the
GL(n) case.

Smooth selection of the archimedean spectrum

The totally definite assumption is stated in order to avoid to deal with smoothing terms
in the test function at archimedean places, cf. Section 2.5.4, and non-tempered parts of
the spectrum, cf. Section 3.3.2. However, it is expected that these conditions are not ne-
cessary to carry on the computations, as for quaternion algebras or GL(2). Indeed, the
construction of the selecting functions for the continuous spectrum of locally symmet-
ric spaces is finely explored by Duistermaat, Kolk and Varadarajan [39] and adapted to
automorphic settings in various works [86, 17], providing evidence to a possible similar
treatment. Indeed, the parametrization of the archimedean spectrum by discrete data
and essentially a vector space of continuous data still holds for more general reductive
groups than GL(n), see the efficient account of Knapp [73].

Conjecture for unitary groups

These comments yield strong evidences towards a conjectural counting law similar to
the one stated for quaternion algebras in Theorem A, and motivates the following.

Conjecture H (with I. Petrow). The asymptotic development of the cardinality of the
universal family of a totally definite unitary groupU in three variables over E is

N (Q ) ∼ 1

4
vol([U ])

∫ ⋆

A(U )

dπ

c (π )4
Q4, as Q → ∞. (5.44)

Remarks. Removing the assumption on automorphic compact quotient seems auda-
cious, and no attempt has been made in this direction. However, this problem could be
amenable by method similar to the GL(n) case [17, Section 17]. The embedding in the
GL(3) setting may provide certain convergence results by pullback as well.

5.3 Symplectic groups of small ranks

Another group for which a suitable theory of local newforms is established is GSp(4).
In this context, Roberts and Schmidt [102] developed all the tools needed to an applic-
ation of the trace formula to handle arithmetic statistics problems. This group has the
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further appeal to be no form of GL(n), hence providing in some sense a genuine new
example.

5.3.1 Inner forms of GSp(4)

The symplectic group is the algebraic group defined by

GSp(4) = {д ∈ GL(4) : tдJд = λ(д) J , λ(д) ∈ Gm} where J =

(
0 I2
−I2 0

)
(5.45)

Only some inner forms of GSp(4) are considered here, using the same freedom than
in the case of unitary groups in order to give a first glance towards arithmetic statistics
for the universal family of symplectic groups. For D a division quaternion algebra
over F , let (V ,q) be a D-hermitian space of D-dimension 2, and introduce its group of
isometries

GU(V ,q) =
{
д ∈ GL(V ) : ∀x ,y ∈ V ,q(дx ,дy) = q(x ,y)}

=

{
M ∈ GL2(D) : M⋆AqM = Aq

}
This construction gives all the non-split inner forms [48] of GSp(4). Furthermore, it

is possible to characterize those with compact automorphic quotient.

Proposition 32. Let (V ,q) be aD-hermitian space ofD-dimension 2. ThenGU(V ,q) has
compact automorphic quotient if and only if F admits a real place at which D is ramified
and q is positive definite or negative definite.

Proof. By a criterion of Borel and Harish-Chandra [13], the adelic quotient of G is
compact if and only if G modulo its center is anisotropic, i.e. contains no nontrivial
split torus. This is equivalent to (V ,q) being anisotropic, i.e. q admitting no nonzero
isotropic vector. Over a number field, by the local-global principle for quadratic forms
it is equivalent to having local anisotropy at one place. For p-adic places, q has 8
variables as a quadratic form and is therefore isotropic by a result of Waring [114].
Over real places, (V ,q) is anisotropic if and only if q is positive definite or negative
definite. �

This proposition provides many examples of inner forms of GSp(4) of compact auto-
morphic quotient, for instance the group of isometries of theD-hermitian form xx̄+yȳ

provides an example over a totally definite quaternion algebra. For almost every places
v , more precisely the split ones, this group is Gv ≃ GSp(4, Fv ). Denote by S the finite
set of places where this does not happen. At these places, Ichino and Prasanna [62,
Section 2.1] recall what can happen to the underlying quaternionic hermitian spaces:

• for finite places, there is a unique hermitian space giving the unique non-trivial
inner form of GSp(4), and it is isotropic. This happens at places where D is
ramified;
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• for archimedean places, the dimension and signature parametrize the possible
groups, up to permutation of the signature, and only the hermitian space of sig-
nature (n, 0) is anisotropic;

• the Hasse principle holds in this case, without obstruction: the quaternionic her-
mitian spaces over a global field are in bijection with the families of local ones.

An unfortunate fact is that not every representation of the non-trivial inner forms,
that arise at a finite number of places, is supercuspidal. This forbids the use of mat-
rix coefficients since they act as a selecting function for isomorphism classes of su-
percuspidal representations only. The representations of inner forms of GSp(4) have
been classified recently by Gan and Tantoto [50]. It can be expected that a solution is
to use a smoothed version of such selecting functions for the non-supercuspidal rep-
resentations given by existence theorems of Paley-Wiener type [24, 75], analogously
to the treatment of split archimedean places for quaternion algebras. Even though,
this is a non-trivial question that ought to be handled with caution, so from now on
the considered family isAsc(G ) the D-supercuspidal part of the universal family ofG,
that is to say non-characters automorphic representations ofG that are supercuspidal
at places where D is ramified. For this reason, Ĝv stands for the supercuspidal dual of
Gv at ramified places.

5.3.2 Analytic conductor

Following the lines of the cases of quaternion algebras or unitary groups, the notion of
conductor coming from L-functions is hard to reach when it comes to explicit compu-
tations, so that it is suitable to define it as a notion of depth as in Sections 2.2.3 and 5.1.3.
The tensor product theorem allows to define the conductor locally. For finite places in
S , whereGp is isomorphic to the full symplectic group GSp(4, Fp), Roberts and Schmidt
constructed a filtration for which a theory of local newforms stands, provided by the
paramodular groups

K (pn ) =

*....,

O p−n

pn

pn

pn pn pn O

+////-
, n > 0, (5.46)

where the empty entries stand for integers in O. The first elements K (p0) and K (p1) of
this sequence are the two maximal compact subgroups of GSp(4, Fp) up to conjugacy.
Roberts and Schmidt established a comprehensive study of local newforms in this set-
ting, stating in particular the following result [102, Generic Main Theorem 7.5.4].

Proposition 33 (Roberts-Schmidt). Let π be a generic irreducible admissible represent-
ation of GSp(4, Fp) with trivial central character. Then there exists an integer n such that
π admits nonzero fixed vectors by K (pn ).
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As for quaternion algebras in Section 2.2 or unitary groups in Section 5.1.3, the leastn
for which it happens defines a notion of local depth-conductor, also called paramodular
level. As for the general linear group setting, this notion of conductor matches the
one coming from the ε-factor appearing in the functional equation satisfied by the
L-function associated to the representation [102, Corollary 7.5.5].

Roberts and Schmidt provide in particular the volumes of these [102, Lemma 3.3.3]
paramodular subgroups. Assuming the Haar measure is normalized so thatK (Op) gets
measure one, the volumes are

vol (K (pn )) = (1 + Np−2)Np2n, n > 0. (5.47)

The global prime-to-S paramodular subgroup is defined as the product of the cor-
responding paramodular subgroups at local places, that is to say

K (q) =
∏

pn | |q
K (pn ). (5.48)

The global prime-to-S volume is hence given by, for a q prime to S ,

vol (K (q)) =
∏

pn | |q
(1 + Np−2)Np2n = ψ (q), (5.49)

whereψ = id2 ⋆ µ is the generalized Dirichletψ -function of level 2.

5.3.3 Theory of local newforms

Decomposing the universal family ofG by fixing discrete spectral data, more precisely
the conductor at finite places out of S and the class of isomorphism of representations
at places in S , the sought cardinality of the universal family rewrites as

N (Q ) =
∑

π∈Asc (G )
c (π )6Q

1 =
∑

Nq6Q
q∧S=1

∑

πS∈ĜS

c (πS )6Q/Nq

∑

σ∈Asc (G )

c (σS )=q
σS≃πS

1. (5.50)

The innermost sum corresponds to the number of representations of fixed prime-
to-S conductor and fixed S-part, that is

A(q,πS ) =
∑

σ∈Asc (G )

c (σS )=q
σS≃πS

1. (5.51)

As for quaternion algebras or unitary groups, the trace formula naturally weights
the representations with their spectral multiplicities defined by

m (π ,q) = dim (π )K (q)
=

∏

pn | |q
m(πp,p

n ). (5.52)
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The key fact is that the multiplicities only depend on the paramodular level, or
depth-conductor, and not on the type of the representation involved, hence allowing to
sieve in order to express the newforms counting number in function the oldforms one.
Introduce the number of representations in the truncated universal family weighted
by the spectral multiplicities, or number of oldforms,

B (q,πS ) =
∑

σ∈Asc (G )

c (σS ) |q
σS≃πS

m(σ ,q). (5.53)

The dimension of the fixed vector spaces by those paramodular subgroups are given
by Roberts and Schmidt [102, Generic Oldform Theorem 7.5.6].

Proposition 34 (Roberts-Schmidt). Let π be a generic irreducible admissible represent-
ation of GSp(4, Fp) with trivial central character. Let f(πp) be the paramodular level of
πp. Then,

dim π
K (pn )
p =

⌊
(n − f(πp) + 2)2

4

⌋
, n > f(π ). (5.54)

This leads to rewriting the number of oldforms as

B (q,πS ) =
∑

d |q
m

(
q

d

)
A(d,πS ), (5.55)

thus, by Möbius inversion,

A(q,πS ) =
∑

d |q
m̃

(
q

d

)
A(d,πS ), (5.56)

where m̃ is the convolution inverse ofm. This yields a reformulation of the cardinality
of the universal family as

N (Q ) =
∑

π∈Asc (G )
c (π )6Q

1 =
∑

Nq6Q
q∧S=1

∑

πS∈ĜS

c (πS )6Q/Nq

∑

d |q
m̃

(
q

d

)
B (d,πS ). (5.57)

5.4 Counting law for symplectic groups

5.4.1 Counting law at a glance

The aim of the present section is the interpret the number B (q,πS ) as a spectral side of a
trace formula for a suitable test-function Φ = Φq,πS . A suitable test function is obtained
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by taking Φp = εK (pn ) for p
n | |q at prime-to-S places p, and the matrix coefficient Φπv =

ξπv as the S-places v . Assuming the main term comes from the identity contribution,

B (q,πS ) = Jspec(Φ) = Jgeom(Φ) ∼ J1(Φ), (5.58)

where
J1(Φ) = vol(G (F )\G (A))Φ(1). (5.59)

5.4.2 Identity contribution

Analogously to the previous cases and as a general guideline for conjectures around
the trace formula, the main contribution to the geometrical side is expected to be the
one coming from the identity. Using the preliminaries values and normalizing the
measures so that vol(K (p0)) = 1,

Φ(1) = ΦS (1)Φ
S (1) = vol (K (q))−1 ξπS (1)

= ψ (q)µPlS (πS ).

Summing over the discrete spectral parameters, that is the supercuspidal S-parts and
the prime-to-S conductors, introduce the identity contribution to the cardinality of the
universal family,

vol(G (F )\G (A))−1N1(Q ) =
∑

Nq6Q
q∧S=1

∑

πS∈ĜS

c (πS )6Q/Nq

∑

d |q
m̃

(
q

d

)
ψ (d)µPlS (πS )

=

∑

Nm6Q
m∧S=1

m̃(m)
∑

πS∈ĜS

c (πS )6Q/Nm

µPlS (πS )
∑

Nd6Q/Nmc(πS )
d∧S=1

ψ (d)

Standard computations lead to estimate the innermost sum in the following lemma.

Lemma 27. For every X > 0,

∑

Nd6X
d∧S=1

ψ (d) =
1

3

ζ S⋆(1)

ζ S (3)
X 3
+O (X 3−δF ). (5.60)

Proof. Decomposing the sum over ideals, and summing first over split places in order
to use estimates on sums of arithmetic functions [17, equation (5.2)] yields

∑

NdS6X
dS∧S=1

ψ (dS ) =
∑

N lS6X
lS∧S=1

µ (lS )
∑

NmS
6X/N l

mS∧S=1

(
NmS

)2
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=

∑

N lS6X
lS∧S=1

µ (lS )

[
ζ S⋆(1)

3

X 3

(N lS )3
+O

((
X

N lS

)3−δF )]

=

1

3
ζ S⋆(1)X 3

∑

N lS6X
dS∧S=1

µ (lS )

(N lS )2
+O

*....,
X 3−δF

∑

N lS6X
lS∧R=1

µ (lS )

(N lS )3−δF−ε

+////-
=

1

3

ζ S⋆(1)

ζ S (3)
X 3
+O (X 3−δF ) �

Inputing these estimations into the computations for the identity term leads to a
main term equal to

vol(G (F )\G (A))−1N (p)
1 (Q ) ∼ 1

3

ζ S,⋆(1)

ζ S (3)
Q3

∑

Nm6Q
m∧S=1

m̃(m)

m3

∑

πS∈ĜS

c (πS )6Q/Nm

µPlS (πS )

c (πS )3
. (5.61)

Provided the inner sum and the Dirichlet series associated to m̃ converge, it follows

vol(G (F )\G (A))−1N (p)
1 (Q ) =

1

3

ζ S,⋆(1)

ζ S (3)
Q3

∫

ĜS

dµPlS (πS )

c (πS )3

∑

Nm6Q

m̃(m)

Nm3

=

1

3

ζ S,⋆(1)

ζ S (3)
Q3

∫

ĜS

dµPlS (πS )

c (πS )3
D (m̃, 3)

where m̃ denotes the inverse of the multiplicitym with respect to the convolution. The
remainder is bounded by, assuming the convergence of relevant series

vol(G (F )\G (A))−1N (e )
1 (Q ) ≪ 1

3

ζ S,⋆(1)

ζ S (3)
Q3−δF

∫

ĜS

dµPlS (πS )

c(πS )3−δF

∑

Nm6Q
m∧S=1

m̃(m)

Nm3−δF
. (5.62)

Since these inner sums converge by the precise knowledge of the multiplicities, it
follows the asymptotic development of the identity contribution to the geometrical
side of the trace formula applied to Φ,

N1(Q ) =
1

3

ζ S,⋆(1)

ζ S (3)
Q3

∫

ĜS

dµPlS (πS )

c (πS )3
D (m̃, 3) +O (Q3−δF ). (5.63)

Remark. As already mentioned for the case of unitary groups, the Dirichlet series
are expected to have an abscissa of convergence equal to zero, for they are, in the case
considered, logarithmic quantities in the conductor.
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5.4.3 Geometric interpretation of the constant

The result above remains mysterious and unsatisfactory since the quantity D (3,m̃)

stays unfolded. Following the geometric interpretation of the constant for quaternion
algebras or unitary groups, the very definition of εK (pr ) yields

εK (pr ) (1) = vol (K (pr ))−1 = ψ (pr ), r > 0. (5.64)

Another expression of this quantity is provided by the Plancherel formula. Introduce
the volume of the representations of fixed conductor

Mp (p
r ) =

∫

σp∈Ĝp
c(σp )=p

r

dσp, r > 0. (5.65)

The explicit transform of εK (pr ) is known and leads to

εK (pr ) (1) =

∫

Ĝp

ε̂K (pr ) (πp) dπp =

∫

Ĝp

m

(
pr

c(πp)

)
dπp

=

∑

d | pr
Mp (d)m

(
pr

d

)
= (Mp ⋆m) (pr )

so thatM = m̃⋆ψ , what can be recast in the language of Dirichlet series associated to
these arithmetic functions, so that D (M, s ) = D (m̃, s )D (ψ , s ) on a common domain of
convergence. It follows that, for Re(s ) sufficiently large,

D (MS , s ) = D (m̃S , s )
ζ S (s − 2)
ζ S (s )

, (5.66)

thus, using the knowledge of the growth order by the computations above, evaluating
at s = 3 gives ∫

ĜS

dπS

c (πS )3
= D (MS , 3) = D (m̃S , 3)

ζ S,⋆(1)

ζ S (3)
. (5.67)

This leads to translating the constant in more geometrical terms, and nomore show-
ing different treatment depending on the type of place considered, taking the same
regularized product as for quaternion algebras or unitary groups. Finally, the identity
contribution is

N1(Q ) =
1

3
vol([G])

∫ ⋆

Asc (G )

dπ

c (π )3
Q3
+O (Q3−δF ). (5.68)

These computations and a similar discussion than the one held in Section 5.2.4 reveal
strong evidences towards the following conjecture.



5.4. Counting law for symplectic groups 125

Conjecture I (with I. Petrow). The asymptotic development of the cardinality of the
D-supercuspidal universal family of G is given by

N (Q ) ∼ 1

3
vol([G])

∫ ⋆

Asc (G )

dπ

c (π )3
Q3, as Q → ∞. (5.69)





Annexe A

Statistiques arithmétiques sur les
algèbres de quaternions

Conformément à l’arrêté du 25 mai 2016 fixant le cadre national de la formation et les
modalités conduisant à la délivrance du diplôme national de doctorat, la rédaction de la
présente thèse doit être complétée d’un résumé substantiel en langue officielle. Ce cha-
pitre constitue ledit résumé et consiste en la traduction condensée du premier chapitre,
introduction à la thèse.

Dans le filon de l’effervescence récente autour des familles de formes automorphes,
ce chapitre introduit les problèmes de statistiques arithmétiques pour la famille univer-
selle des algèbres de quaternions. Cette exposition du cadre se poursuit par l’énoncé
d’une loi de comptage pour la famille universelle tronquée par un paramètre perti-
nent : le conducteur analytique. Des statistiques plus précises sont fournies à travers
la notion d’équirépartition de la famille universelle par rapport à une mesure à forte
teneur géométrique. Ce résultat débouche sur une réponse affirmative aux conjectures
de Sato-Tate, concernant l’équirépartition des composantes locales pour cette famille.
Enfin, la distribution des petits zéros des fonctions L associées est étudiée, et la conjec-
ture de densité de Katz-Sarnak partiellement vérifiée. Cela permet de déterminer le
type de symétrie des algèbres de quaternions ainsi que des résultats de densité de non-
annulation des fonctions L associées au point central.
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A.1 Paysage automorphe

A.1.1 Famille universelle

Les formes automorphes et leurs fonctions L paraissent aujourd’hui comme des objets
centraux en théorie des nombres depuis les révolutionnaires conjectures de Langlands
[80] et leurs différents avatars, ainsi les courbes elliptiques [35] ou les formes modu-
laires [108]. En dépit de leur omniprésence, elles demeurent des objets mystérieux.
Plutôt que de considérer ces objets a priori très singuliers, les considérer au sein de
familles a un effet de lissage : les comportements dissonants ou inaccessibles perdent
du poids et cela mène à des résultats en moyenne, en d’autres termes sur des formes
automorphes typiques. Voilà l’esprit des statistiques arithmétiques.

The recent years unleashed a wide enthusiasm toward the study of families of auto-
morphic forms and their associated L-functions. Understanding what makes a family
relevant for this philosophy is a critical issue. General attempts to define a suitable no-
tion of family of automorphic forms have been made in the recent years [109, 110, 77],
with a particular emphasis towards the universal family of a group, consisting of all
its cuspidal automorphic representations.

Ces dernières années ont déchaîné un enthousiasme conséquent pour l’étude des fa-
milles de formes automorphes et des fonctions L associées. Des tentatives pour définir
une notion raisonnable de famille de formes automorphes ont été faites [109, 110, ?, ?],
toutes soulignant l’importance de la famille universelle associée à un groupe, consti-
tuée de toutes ses représentations automorphes.

Étant donnée une famille F d’objets, une première question naturelle relative à cette
famille est de déterminer sa taille. Pour les familles infinies, pourvu qu’il y ait unmoyen
de la tronquer en des familles finies FQ l’approchant, cela peut être quantifié par la
vitesse de croissance de la famille tronquée FQ par rapport au paramètre de troncature
Q .

Le groupe général linéaire est le terrain fondamental des représentations automorphes,
et GL(2) en est la première instance non commutative, pourtant déjà loin d’être plei-
nement maîtrisée. Une manière d’explorer certaines de ses propriérés est de considérer
ses formes intérieures : ce sont les groupes des unités des algèbres de quaternions. Soit
une algèbre de quaternion B sur un corps de nombres F , et soit G le groupe projectif
de ses unités, i.e. G = Z\B×. Soit A (G ) la famille universelle de G, autrement dit la
collection de toutes les représentations automorphes sur G (A) de dimension infinie.
Suivant les mots de Sarnak [109], une profonde compréhension de A (G ) est capitale
en théorie des formes automorphes.

En guise d’analogie et de guide pour les méthodes, considérons un instant une si-
tuation plus usuelle : la famille universelle A (G ) se réalise, par la correspondance
de Jacquet-Langlands, comme une sous-famille de la famille universelle A (PGL(2)),
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constituée de toutes les représentations autormorphes cuspidales de PGL(2). Dans ce
dernier contexte, et même dans le cadre plus large des formes cuspidales des groupes
linéaires, Iwaniec et Sarnak [65] ont introduit une bonne notion de taille, donnée par
le conducteur analytique. Il s’agit d’un réel positif c (π ) défini à partir de l’équation
fonctionnelle satisfaite par la partie finie de la fonction L associée à π ∈ A (PGL2), qui
est de la forme

L(1 − s,π ) = επXL (s )L(s,π ), (A.1)

où επ est le nombre de racines de π . Le facteur complémentaire XL prend la valeur 1
au point central 12 , et le conducteur analytique additif est défini comme c (π ) = |X ′L (

1
2 ) |,

suivant [29]. De plus amples discussions autour du conducteur analytique et de ses
différents avatars sont menées en Section 2.2.

La fonctionXL est construite à partir des facteurs nécessaires pour compléter L(s,π )
de sorte à obtenir une équation fonctionnelle symétrique, et inclut le conducteur arith-
métique ainsi que les facteurs gammas, de sorte que le conducteur analytique embrasse
la complexité de π . Cela permet de tronquer la famille universelle de PGL(2), partant
celle de G, en un ensemble fini [16]. Il est donc possible de considérer la famille uni-
verselle tronquée

A (Q ) = {π ∈ A(G ) : c (π ) 6 Q }. (A.2)

Cette thèse s’attache à explorer quelques propriétés de cette famille, telles sa crois-
sance asymptotique, son équirépartition par rapport à une certaine mesure, le compor-
tement des composantes locales, ainsi que des statistiques sur les zéros des fonctions
L associées.

A.1.2 Analogie avec la hauteur sur les variétés algébriques

Le problème du comptage et de l’équirépartition admettent une intéressante analogie
avec le problème plus standard de comptage des points rationnels de hauteur bornée
sur une variété algébrique lisse définie sur un corps de nombres. La hauteur absolue
de Weil est la bonne notion de taille dans ce contexte et est définie par

hPn (x ) =
∏

v

max
i
|xi |v , x = (xi )i ∈ Pn (F ). (A.3)

Étant donnée une variété projective V munie d’un plongement ι dans l’espace pro-
jectif Pn, une notion de hauteur sur V est obtenue en relevant la hauteur de Weil sur
Pn :

hV (x ) = hPn (ι (x )), x ∈ V . (A.4)

Le contexte le plus naturel pour généralier de telles questions est celui des variétés
de Fano, dans lequel des conjectures précises ont été formulées par Batyrev, Manin et
Peyre [99]. Dans ce filon, Schanuel a établit une loi de comptage pour les points de
hauteur bornée.
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Théorème 1 (Schanuel). Il existe une constante Cn > 0 telle que pour tout Q > 1,

#
{
x ∈ Pn (F ) : h(x ) 6 Q

}
= CnQ

n+1
+

{
O (Q logQ ) si n = 1et F = Q;

O
(
Qn−1/[F :Q]

)
sinon.

(A.5)

Dans les dernières années, Sarnak a régulièrement souligné la richesse de l’analogie
entre le théorème de Schanuel sur le comptage de points sur les variétés projectives et
le problème de comptage des formes automorphes cuspidales sur GL(n). Le cas des al-
gèbres de quaternions peut être plongé dans GL(2) de sorte que, suivant cette analogie,
la notion de conducteur analytique utilisée pour donner un sens précis au problème
de comptage et à la troncature est inspirée par la procédure pour les hauteurs : étant
donné la notion désormais standard de conducteur analytique sur GL(2), le conduc-
teur analytique pour les algèbres de quaternions est obtenu en le relevant aux formes
automorphes sur les algèbres de quaternions par le biais de l’application associée entre
leurs groupes duaux.

A.1.3 Loi de comptage

Le premier résultat de cette thèse énonce une formule asymptotique pour le cardinal

N (Q ) = #A(Q ), (A.6)

et est baptisé loi deWeyl-Schanuel par Sarnak. Le cas de la famille universelle de GL(2)
est considéré dans une prépublication récente par Brumley et Milićević [17]. Pour les
algèbres de quaternions, la loi de comptage est énoncée dans le théorème suivant.

Théorème A (Loi de comptage). Il existe une constanteC > 0 telle que pour toutQ > 1,

N (Q ) = CQ2
+



O
(
Q1+εQ

)
si F = Q et B totalement définie;

O
(
Q2−δF

)
si F , Q et B totalement définie;

O

(
Q2

logQ

)
si B non totalement définie.

(A.7)

La constante C > 0 est explicitement donnée en (1.10), et δF = 2(1 + [F : Q])−1.

Remarques. La forme de cette loi de croissance asymptotique appelle quelques com-
mentaires.

(i) Il y a une similarité frappante entre le terme d’erreur du Théorème A et celui du
résultat classique de Schanuel sur le nombre de points rationnels de hauteur bornée
sur les espaces projectifs. Son résultat, lorsqu’il est spécialisé à F = Q, présente aussi
un terme d’erreur portant une puissance du logarithme additionnelle.

(ii) La présence d’un gain par une puissance dans le cas totalement défini, c’est-à-dire
lorsque toutes les places archimédiennes sont ramifiées, est notable. La propriété est
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perdue sans cette hypothèse, ainsi que le résultat [17] dans le cadre de GL(2), où seule
un gain logarithmique est obtenu. La raison de cette différence réside dans le passage
du comptage lisse de la preuve au comptage réel, voir Section 3.2.5.

(iii) L’hypothèse que B est une algèbre à division implique un quotient automorphe
compact, induisant en particulier une forme plus simple de la formule des traces utilisée
dans la preuve, évitant les complications techniques provenant de termes supplémen-
taires peu maîtrisés, à savoir les séries de Eisenstein qui constituent le spectre continu,
voir Section ??.

(iv) L’algèbre de quaternion a été quotientée par son centre pour des raisons tech-
niques, notamment de sorte à éviter à avoir à contrôler les termes centraux dans la
formule des traces de Selberg. Voir 5 pour de plus amples informations et la mention
de résultats lorsque le centre est considéré.

La connaissance précise de la constanteC révèle de nombreuses informations, et son
interprétation géométrique a une importance considérable. Une formulation explicite
et riche de sens est donnée plus bas, dans le cadre des propriétés d’équirépartition de
A (G ).

A.2 Équirépartition

A.2.1 Notion d’équirépartition

Par-delà la détermination de la taille de la famille universelle demeure la question de la
répartition géométrique des représentations automorphes de G (A). Une formulation
précise du problème est de trouver une mesure par rapport à laquelle la famille univer-
selle s’équirépartit, ce à quoi est dédiée cette section en introduisant brièvement des
structures topologique et mesurable dont la famille universelle est munie.

Chaque dual unitaire local Ĝv est muni de la topologie de Fell et le produit
∏

v Ĝv est
muni de la topologie produit. Introduisons la mesure µ sur

∏
v Ĝv qui assigne à chaque

ouvert de baseX =
∏

v Xv , i.e. oùXv est un ouvert de Ĝv etXv = Ĝv pour presque tous
les v , le réel positif

µ (X ) =

∫ ⋆

X

dπ

c (π )2
, (A.8)

où l’intégrale régularisée est définie par

ζ⋆F (1)
∏

v

ζv (1)
−1

∫

Xv

dπv
c (πv )2

. (A.9)

Ici, ζv est la fonction zêta locale associée à Fv , ζ⋆F (1) est le résidu de la fonction zêta

de Dedekind de F en 1, et dπv est la mesure de Plancherel sur Ĝv , normalisée selon les
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conventions adoptées en Section 2.3.2.

Remarques. (i) La mesure de Plancherel est supportée sur le dual tempéré ; puisque
celles-ci sont génériques, le conducteur d’une composante πv du support de la mesure
de Plancherel est bien définie.

(ii) Il n’est nullement évident de voir que l’intégrale définissant µ converge. C’est
effectivement le cas, comme prouvé en Section 3.2.4.

La mesure µ a une masse totale finie ‖µ‖. Il est donc possible de donner une expres-
sion pour la constante du Théorème A, à savoir

C =
1

2
vol(G (F )\G (A))‖µ‖, (A.10)

où la mesure donnant le volume du quotient automorphe G (F )\G (A) est normalisée
comme en Section 2.1.1.

La résultat principal est le suivant.

ThéorèmeB (Équirépartition). La famille universelle deG s’équirépartit selon lamesure
µ. Plus précisément, pour tout ouvert X relativement quasi-compact de

∏
v Ĝv à bord de

mesure nulle, lorsque Q → ∞ on a

#{π ∈ A(Q ) : π ∈ X }
N (Q )

−→ µ

‖µ‖ (X ). (A.11)

A.2.2 Conjectures de Sato-Tate

Une origine dans les courbes elliptiques

Poursuivant la fructueuse analogie avec les variétés algébriques mène à étendre les
problèmes statistiques associés aux formes automorphes. Le cas le plus simple, quoique
déjà bien riche, est celui des courbes elliptiques E définies sur Q. Une telle courbe peut
être définie par une équation E : y2 = x3 + ax + b, supposant pour ce paragraphe
introductif que a et b sont entiers de sorte que la réduction Ep modulo p demeure lisse,
autrement dit Ep est une courbe elliptique sur Fp .

Un intérêt fondamental réside dans l’étude de la courbe E (Fp ). Retirer le facteur x3 de
l’équation donne un modèle simplifié dans lequel il y aurait Np (y2 = ax+b) = p+1 tels
points, supposant que a est non nul et ajoutant un point à l’infini. Plus généralement,
pour une courbe elliptique, le nombre de ses points rationnels modulo p peut être mis
sous la forme

Np (E) = #E (Fp ) = p + 1 − ap (E), (A.12)

où ap (E) est la trace du Frobenius de E en p. En 1936, la borne de Hasse énonce que
|ap (E) | 6 2

√
p, de sorte que ap (E)/

√
p est restreint à [−2, 2]. Il est alors possible d’écrire
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ap (E) = 2 cosθp (E), introduisant les angles de Frobenius associés θp (E), appartenant à
[0,π ]. Le problème de Sato-Tate concerne la distribution des traces et angles de Fro-
benius. En 1936, basé sur les résultats numériques de Sato, Tate suggère la conjecture
suivante.

Conjecture 1 (Sato-Tate). Pour une courbe elliptique E non CM, lesap (E) (resp. lesθp (E))
s’équirépartissent dans [−2, 2] (resp. dans [0,π ]) selon la mesure donnée par le demi-
cercle :

µST =
1

π

√
1 − x

2

4
dx , resp. µ

′,ST
=

2

π
sin2 ϕdϕ . (A.13)

La conjecture de Sato-Tate pour les courbes elliptiques a été prouvée en 2006 par
Clozel, Harris, Shepherd-Barron et Taylor sous l’hypothèque de le j-invariant de E
n’est pas entier, ce qui implique en particulier E non CM. Dans le cas exceptionnel des
courbes CM, la moitié des ap (E) s’annule et la répartition limite est connue.

Conjecture de Sato-Tate automorphe

Les travaux de Taylor et Wiles [126] ont révélé qu’une courbe elliptique correspond à
une forme modulaire de poids 2 et à coefficients entiers sur GL(2,A). Plus générale-
ment, pour les formes modulaires cuspidales de poids k , la conjecture de Ramanujan,
connue pour GL(2) par un résultat de Deligne [33], est l’analogue de la borne de Hasse
et énonce que |ap ( f ) | 6 2

√
pk−1. Cela mène à une généralisation naturelle du problème

de Sato-Tate dans le cadre automorphe.

Conjecture 2 (Sato-Tate automorphe). Soit f une forme modulaire cuspidale non CM

sur SL(2,Z), lesp−
k−1
2 ap ( f ) s’équirépartissent sur [−2, 2] selon la mesure de Sato-Tate µST.

Le résultat déjà mentionné de Clozel, Harris, Shepherd-Barron et Taylor [5] prouve
la conjecture dans le cas des formes modulaires à coefficients entiers de poids 2. En
2011, Barrett-Lamb, Geraghty, Harris et Taylor généralisent le résultat à toute forme
modulaire holomorphe non CM de poids k > 2.

Conjectures verticales en familles

Des généralisations naturelles existent pour la conjecture de Sato-Tate automorphe.
Au-delà de ne considérer qu’une unique forme automorphe pour laquelle certains ré-
sultats existent sous de fortes hypothèses, des résultats sont accessibles pour une fa-
mille entière de formes automorphes F . Cela permet non seulement d’étudier le com-
portement des coefficients associés à une forme automorphe donnée comme dans les
instances précédentes de la conjecture, appelées statistiques "horizontales", mais éga-
lement de fixer un paramètre p et d’étudier les coefficients ap (ϕ) pour ϕ parcourant F .
Ce sont les conjectures "verticales".
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Conjecture 3 (Sato-Tate verticale). Pour un p fixé, les (ap (ϕ))ϕ∈F s’équirépartissent
selon une mesure µp , qui converge vers µST lorsque p croît. À condition d’ajouter des poids

non-uniformes aux formes automorphes, à savoir Ress=1L(s,ϕ × ϕ)−1, l’équirépartition a
lieu selon la mesure de Sato-Tate µST.

De telles familles ont été considérées dans les travaux de Bruggeman [15], Sarnak
[107], Conrey-Duke-Farmer [30] et Serre [116].

Vers les représentations automorphes

Les formes automorphes donnent naissance à des représentations automorphes, me-
nant à généraliser une fois de plus les conjectures. Sarnak, Shin et Templier [110] ont
essayé d’englober les tentatives récentes de définition d’une famille de forme auto-
morphe et de donner un sens aux conjectures de Sato-Tate dans ce contexte. Une re-
présentation automorphe π ∈ A(G ) admet une décomposition en produit restreint
π = ⊗vπv de facteurs locaux. Puisque seul un nombre fini des πv sont ramifiées, pour
π fixée et un p assez grand, les composantes locales πv peuvent être identifiées à leurs
paramètres de Satake

πv � (α1(v ), . . . ,αn (v )) ∈ Tc/W , (A.14)

où Tc est un tore complexe etW est le groupe de Weyl associé. Le problème de Sato-
Tate consiste à déterminer la répartition des composantes locales πv , soit en fixant π
et en faisant varierv , explorant le problème horizontal, soit en fixantv et en laissant π
varier dans une famille donnée, ce qui est le problème vertical. Sarnak, Shin et Templier
ont formulé précisément cette conjecture pour les familles.

Conjecture 4. La famille F est équirépartie dans Π̂ selon la mesure µ (F ) telle que

(i) c’est une mesure de probabilité supportée sur le dual tempéré de G
(ii) la moyenne sur p pondérée logarithmiquement existe et converge vers la mesure de

Sato-Tate
1

x

∑

p6x

log(p)µp (F )|T −→ µST(F ) (A.15)

Shin et Templier ont récemment prouvé une version quantitative précise de cette
conjecture dans un contexte très général pour des familles de représentations auto-
morphes qui sont des séries discrètes à l’infini. De plus, aucun résultat de ce type n’a
été énoncé lorsque à la fois objets et paramètres varient.

Revenant à la famille universelle des algèbres de quaternions, une fois énoncé le
Théorème B sur l’équirépartition, la conjecture de Sato-Tate prédit le comportement
des projections µp de la mesure limite sur les composantes locales Ĝp lors la norme de
p croît. Dans le cadre commun dans lequel vivent les représentations dans le support
des mesures de Plancherel sur Gp, à savoir l’espace des paramètres de Satake Tc/W ,
l’équirépartition de Sato-Tate peut être formulée précisément.
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Corollaire C. Pour toute ϕ ∈ C (Tc/W ), lorsque Np croît indéfiniment,

∫

Tc/W

ϕ̂ (x ) dµp (x ) −→
∫

Tc/W

ϕ̂ (x ) dµST(x ). (A.16)

A.3 Petits zéros de fonctions L

A.3.1 Importance des zéros des fonctions L

Les fonctions L, parmi lesquelles l’éminente fonction zêta de Riemann, sont omnipré-
sentes en théorie des nombres et sont un moyen analytique d’embrasser des propriétés
d’objets arithmétiques. Leurs zéros, bien que demeurant essentiellement mystérieux,
regorgent d’informations capitales concernant la distribution des nombres premiers,
et plus généralement la nature des objets auxquels elles sont attachées. Ces informa-
tions sont notamment codées dans la localisation de ces zéros, justifiant les efforts et
l’intérêt considérables envers l’hypothèse de Riemann et les problèmes associés.

En effet, les soi-disantes formules explicites tissent un lien entre les répartitions de
zéros et les répartitions de quantités de nature arithmétique. Une motivation pour cet
intérêt envers l’étude statistique des zéros de fonctions L est synthtétisée par Mazur
[87], qui souligne que les formules explicites donnent une relation de la forme

π (x ) = MT + ET + OT, (A.17)

où π (x ) est une statistique sur les nombres premiers, MT est un terme principal prove-
nant de zéros particuliers de la fonction L, ET est une somme sur les zéros triviaux et
contribue comme un terme d’erreur, et OT est un terme oscillant venant des autres zé-
ros. Ce dernier terme est difficile à estimer et requiert une connaissance suffisamment
précise du comportement des zéros, de sorte à pouvoir détecter des compensations.
Ainsi, en admettant l’hypothèse de Riemann qui postule que tout zéro non trivial de
la fonction zêta se trouve sur la droite critique Re(s ) = 1

2 , le terme d’erreur dans le
théorème des nombres premiers est considérablement amélioré :

π (x ) = li(x ) +O
(
xe−α
√
logx

)
, sans RH ;

π (x ) = li(x ) +O
(√
x logx

)
, avec RH.

Ainsi, les statistiques sur les zéros de fonctions L portent d’a priori non triviaux
résultats concernant l’arithmétique des objets sous-jacents, constituant une forte mo-
tivation pour leur étude.
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A.3.2 Corrélations

Analogie entre matrices et fonctions L

La théorie des matrices aléatoires est une lunette à travers laquelle regarder le monde
des statistiques de zéros de fonctions L. En effet, les angles propres de groupes de
matrices aléatoires se comportent de manière étonnamment similaire à ces zéros et,
puisque leurs contrées sont bien plus explorées, constituent un guide pour le monde
des fonctions L automorphes. Soit A ∈ Mn (F ) une matrice unitaire diagonalisable, et

soient λ(j )
A
= eiθ

(j )
A ses valeurs propres classées de sorte que 0 6 θ (1)

A
6 · · · 6 θ (n)

A
< 2π .

L’espacement moyen entre deux angles successifs est de 2π
N
, motivant la renormalisa-

tion

θ̃
(j )
A

:=
N

2π
θ
(j )
A
. (A.18)

De manière analogue, on peut associer à une fonction L, soit L(s,π ), ses zéros non

triviaux ρ (j )π =
1
2 + iγ

(j )
π , avec a priori γ (j )

π ∈ C sans supposer l’hypothèse de Riemann,

et classés de sorte que · · · 6 Rγ (−1)
π 6 0 6 Rγ (1)

π 6 Rγ
(2)
π 6 · · · . L’espacement moyen

entre les zéros successifs[65] est de logT
2π . Cela motive de le renormaliser à 1 en posant

˜γ πj :=
log c (π )

2π
γ πj . (A.19)

Corrélation pour les matrices

Dans les années 50, Wigner a exploré les matrices aléatoires pour modéliser les phé-
nomènes atomiques. Les matrices considérées sont dans l’Ensemble Gaussien Unitaire,
noté GUE(N), autrement dit l’ensemble des matrices unitaires de taille N avec coeffi-
cients donnés par des lois gaussiennes indépendantes. Unmoyen particulier de saisir le
comportement des angles propres associés est d’étudier la répartition des espacement
entre eux, autrement dit

R2(A)[a,b] =
1

N
{j , k : θ̃ (j )

A
− θ̃ (j )

A
∈ [a,b]}, A ∈ GUE (N ). (A.20)

Ces statistiques sont appelées corrélations de la famille. Dyson a déterminé la cor-
rélation de GUE dans le résultat suivant.

Théorème 2 (Dyson). Il existe une mesure r2(GUE) telle que pour la famille des ma-
trices aléatoires de l’Ensemble Gaussien Unitaire (GUE) et pour toute ϕ ∈ S (R) telle que
supp(ϕ̂) ⊆ (−2, 2),

1

N

∑

A∈GUE (N )

∑

j,k

ϕ (γ̃
(j )
A
− γ̃ (j )

k
) −→
N∞

∫

R

ϕ (x )r2(GUE) (x )dx . (A.21)

De plus, R2(GUE)[a,b] =
∫ b

a
r2(GUE) (x )dx où r2(GUE) (x ) = 1 −

(
sinπx
πx

)2
.
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Katz et Sarnak ont prouvé plus généralement en 1997 que les espacements entre les
valeurs propres de matrices aléatoires appartenant à des familles bien plus générales,
à savoir les groupes de Lie irréductibles symétriques compacts, aussi appelés groupes
classiques, sont également régis par la densité de répartition de GUE.

Théorème 3 (Katz-Sarnak). Pour toute famille F de groupe classique et pour ϕ ∈ S (R)
telle que supp(ϕ̂) ⊆ (−2, 2),

1

N

∑

A∈F (N )

∑

j,k

ϕ (γ̃j − γ̃k ) −→
N∞

∫

R

ϕ (x )r2(GUE) (x )dx . (A.22)

Firk etMiller ont donné des arguments éclairant l’omniprésence de la densité de GUE
dans les modélisation statistiques en physique. Les résultats recueillis ici suggèrent,
suivant fidèlement la fructueuse analogie entre matrices et fonctions L, que la même
universalité a lieu pour les statistiques portant sur les zéros de fonctions L.

Corrélations pour les fonctions L

Bien plus tard, Montgomery [94] a été le premier à explorer les lois de répartitions
analogues pour les espacements entre zéros de fonctions L. Dans le cas particulier de
la fonction zêta de Riemann, il a noté demanière surprenante en 1972 que la corrélation
par paires entre zéros est la même que celle obtenue par Dyson pour les angles propres
de matrices unitaires aléatoires.

Théorème 4 (Montgomery, 1974). Pour ϕ ∈ S (R) and supp(ϕ̂) ⊆ (−1, 1), on a avec les
notation précédentes :

1

N

∑

j,k

ϕ (γ̃j − γ̃k ) −→
N∞

∫

R

ϕ (x )r2(GUE) (x )dx . (A.23)

De nombreux calculs menés par Odlyzko ont par la suite apporté un fort soutien à
la conjecture comme quoi de nombreuses statistiques sur les zéros de fonctions L se
comportent comme leurs analogues pour les angles propres de matrices aléatoires dans
GUE. Ce comportement universel est connu comme la loi de Montgomery-Odlyzko. Ces
résultats ont été dès lors été peu à peu généralisés, culminant avec Rudnick et Sarnak
[105] qui prouvent en 1995 que les statistiques sur GUE régissent les corrélations de
familles de fonctions L sur GL(n). Le théorème suivant est restreint à GL(2) de sorte
à servir de motivation suffisante pour les problèmes analogues pour les algèbres de
quaternions et évitant ainsi d’introduire des conditions techniques, bien qu’il demeure
moralement valable pour GL(n).

Théorème 5 (Rudnick-Sarnak, 1996). Soit π une représentation automorphe cuspidale

de GL(2,Q). Soit ϕ une fonction paire de classe Schwartz telle que supp(ϕ̂) ⊆ (−1, 1).
Alors

1

N

∑

j,k

ϕ (γ̃j − γ̃k ) −→
N∞

∫

R

ϕ (x )r2(GUE) (x )dx . (A.24)
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Le résultat prouvé par Rudnick et Sarnak est le premier pas dans la direction des
conjectures analogues générales pour les fonctions L. En effet, les conjectures de fonc-
torialité de Langlands [26] postulent que toute fonction L se réalise comme une fonc-
tion L attachée à une représentation automorphe cuspidale sur le groupe linéaire. Le
résultat de Rudnick et Sarnak valide ces conjectures statistiques pour ces cas "stan-
dard", y compris pour les corrélations de niveau supérieur.

A.3.3 Densités et type de symétrie

1-densité pour les matrices

En dépit de l’universalité surprenante de la loi GUE, les résultats précédents sont aussi
décevants en ce qu’ils ne discriminent pas entre les différents groupes classiques, ce qui
serait naturel. Il peut donc être attendu, à l’inverse de la loi universelle deMontgomery-
Odlyzko, que d’autres statistiques sur les zéros de fonctions L puissent être capables de
les distinguer. Une seconde insatisfaction vient de ce que les corrélations sont aveugles
à de nombreuses modifications sur les zéros qui sont a priori conséquentes, ainsi la
translation de tous les zéros et l’annulation ou non au point central, dont l’importance
est bien connue en théorie des nombres.

Les corrélations considérées jusqu’à présent sont des statistiques sur tous les zéros,
puisqu’elles ne prennent en compte que l’espacement entre eux. Katz et Sarnak ont mis
un terme à cette universalité, s’intéressant à des statistiques concentrées sur les petits
angles.

Définition 1. Soit ϕ une fonction Schwartz paire sur R et A ∈ Mn (R). La 1-densité de
A est

D (A,ϕ) :=
∑

θ
(j )
A

ϕ (θ̃
(j )
A
), (A.25)

Ici, ϕ décroît rapidement mais n’est plus supposée être une fonction des différences
successives, comme pour les corrélations. Cette fois, les grands angles propres sont

essentiellement coupés, faisant de D (A,ϕ) une densité sur les petits angles. De plus, ϕ̂
est à support compact ce qui fait que ϕ s’étend analytiquement à tout le plan complexe.

Il n’y a plus d’espoir d’obtenir des estimations asymptotiques pour ces quantités,
puisque les valeurs propres ou zéros ne sont plus en quantité infinie et leurs compor-
tements peut être fort singulier. Guidés par la philosophie de la géométrie arithmétique,
l’idée est de moyenner sur toute une famille de matrices ou de fonctions L.

Définition 2. Soit ϕ une fonction Schwartz paire sur R. La 1-densité d’une famille F
est

D (F ,ϕ) =
∑

A∈F
D (A,ϕ). (A.26)
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Dans le contexte des matrices, Katz et Sarnak ont prouvé que la densité moyenne
sur une famille diffère en fonction du groupe. Toutefois, les statistiques révèlent une
certaine universalité des groupes classiques, et semblent toujours correspondre à celles
de l’un des groupes classiques.

Théorème 6 (Katz-Sarnak, [68]). Pour les groupes classiquesG (N ), pour toute fonction
Schwartz réelle ϕ de transformée de Fourier à support compact,

D (G (N ),ϕ) −→
N∞

∫

R+

WG (x )ϕ (x ) dx , (A.27)

où dA est la mesure de Haar normalisée surG (N ) et la densité de distribution est donnée
par

Groupe G Fonction de densitéWG

U 1
USp 1 − sin 2πx

2πx
SO(2N ) 1 + sin 2πx

2πx
SO(2N + 1) 1 − sin 2πx

2πx + δ0
O 1 + 1

2δ0

Cette fonctionWG est la 1-densité pourG (N ). Le fait que la limite n’est plus univer-
selle mais dépend de la famille associée à un nombre fini de groupes classiques mène
à définir la notion de type de symétrie d’une famille de fonctions L, la densité limite
révélant en un certain sens quel groupe classique gouverne le comportement des zéros.

Remark. Le résultat de Katz et Sarnak est vrai pour les groupes classiques, il demeure
toutefois conjectural pour des familles plus générales, ce qui ferait des groupes clas-
siques les représentants universels des différents types de symétrie existant pour les
1-densités.

Un problème fondamental pour prouver l’existence du type de symétrie est la né-
cessité d’un contrôle suffisamment fort pour pouvoir prouver la convergence de la
1-densité pour des fonctions dont la transformée de Fourier a un support compact ar-
bitrairement grand. En effet, plus le support est grand, plus forte est la concentration
de la fonction test sur les petits zéros. Cela peut être précisément formulé par les résul-
tats de type Paley-Wiener qui énoncent une relation inverse entre le type exponentiel
d’une fonction et la taille du support de sa transformée de Fourier – situation pour
laquelle la gaussienne est un cas d’école éclairant. Puisque l’espoir est d’obtenir des
statistiques aussi fines que possible sur les petits zéros, il est nécessaire de concentrer
la fonction autant que possible dans un petit voisinage du point central, autrement dit
d’autoriser le support de la transformée de Fourier à croître autant que possible.

Explorons plus avant ce qui se cache derrière les grands supports de transformées
de Fourier de ces fonctions de densité. Par la formule de Plancherel,∫

R

ϕ (x )W (x ) dx =

∫

R

ϕ̂ (x )Ŵ (x ) dx , (A.28)
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permettant à l’influence du support de la transformée de Fourier d’apparaître claire-
ment. Les transformées de Fourier des fonctions de densité sont données dans la table
suivante.

Groupe Transformée deW
U δ0

USp δ0 − 1
2η

O(2N ) δ0 +
1
2η

O(2N + 1) δ0 − 1
2η + 1

O(N ) δ0 +
1
2

où η est la fonction réelle définie par

η(x ) =


1 si |x | < 1
1
2 si |x | = 1
0 si |x | > 1

Une observation fondamentale est que ces fonctions sont indistinguables lorsqu’elles
sont restreintes à (−1, 1). L’un des principaux objectifs de la littérature existante sur les
densités est dédiée à briser cette barrière et permettre des supports dépassant (−1, 1) de
sorte à déterminer le type de symétrie de la famille. Cela fait intervenir systématique-
ment des contributions "non-diagonales". Cependant,Miller a donné une reformulation
de la conjecture de densité et a montré qu’il suffit de déterminer la 2-densité pour des
supports arbitrairement petits pour déterminer le type de symétrie.

1-densité pour les familles de fonctions L

Poursuivant l’analogie avec les matrices aléatoires, il est naturel d’espérer que la 1-
densité des zéros attachée à toute famille "raisonnable" se comporte comme celles des
matrices aléatoires dans les groupes classiques, et en particulier que le comportement
des petits zéros de fonctions L calque celui des petits angles propres de matrices aléa-
toires.

Définition 3. Soit ϕ une fonction Schwartz paire sur R et A ∈ Mn (R). La 1-densité
attachée à A est

D (π ,ϕ) :=
∑

γ
(j )
π

ϕ (θ̃
(j )
A
), (A.29)

Définition 4. Soit ϕ une fonction Schwartz paire sur R. La 1-densité de la famille F
est

D (F ,ϕ) =
∑

π∈F
D (π ,ϕ). (A.30)

Le premier résultat dans cette direction est donné par Ozlük and Snyder [127] en
1993. Dès lors, une vaste littérature a été consacrée à l’étude statistique des petits zéros
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de familles de fonctions L. Cela a mené Katz et Sarnak à conjecturer que la même
universalité des types de symétrie dégagée du cas des matrices aléatoires s’applique
également pour les fonctions L.

Conjecture 5 (Conjecture de densité). Soit F une famille de représentations auto-
morphes dans le sens de Sarnak et F (Q ) une troncature finie croissant vers F lors Q
tend vers l’infini. Alors, pour toute fonction Schwartz pair sur R avec une transformée de
Fourier à support compact,

D (F (Q ),ϕ) −→
Q∞

∫

R

ϕ (x )WG (x ) dx . (A.31)

La famille F est dite avoir le type de symétrie de G.

Remark. Pour les familles de variétés algébriques sur les corps de fonctions, le type
de symétrie est déterminé par la monodromie de la famille. Cependant, aucune telle
analogie n’est connue sur les corps de nombres.

A.3.4 Type de symétrie des algèbres de quaternions

Petits zéros pour les algèbres de quaternions

Considérant les statistiques sur les petits zéros des fonctions L attachées à la famille
universelle des algèbres de quaternions, la 1-densité (1.30) de la famille tronquée est

D (A (Q ),ϕ) =
1

N (Q )

∑

π∈A (Q )

D (π ,ϕ). (A.32)

Le problème est de déterminer si la quantité D (A (Q ),ϕ) admet une limite et l’expri-
mer comme une convergence de mesures vers une mesure de densité, espérant identi-
fier l’un des types de symétrie prédits par la conjecture de densité. Le théorème suivant
répond partiellement à cette question, restreignant les types de symétrie possible pour
les algèbres de quaternions avec un support limité pour la transformée de Fourier.

Théorème D. Pour une fonction ϕ Schwartz paire sur R avec une transformée de Fourier
de support compact dans (−1, 1),

1

N (Q )

∑

π∈A (Q )

D (π ,ϕ) −→
Q→∞

ϕ̂ (0) +
1

2
ϕ (0) =

∫

R

ϕ (x )WO (x ) dx . (A.33)

où WO = 1 + 1
2δ0. En particulier, le type de symétrie des algèbres de quaternions est

orthogonal.
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Arithmetic Statistics for Quaternion Algebras

Abstract. Automorphic forms are central objects in modern number theory. Despite their
ubiquity, they remain mysterious and their behavior is far from understood. Embedding them
in wider families has a smoothing effect, allowing results on average: these are the aims of
arithmetic statistics. The whole family of automorphic representations of a given reductive
group, referred to as its universal family, is of fundamental importance. In the case of inner
forms of GL(2), that is to say groups of units of quaternion algebras, the Selberg trace formula is
a powerful method to handle it. There is a way to define a suitable notion of size, the analytic
conductor, allowing to truncate the universal family to a finite one amenable to arithmetic
statistics methods.

A counting law for the truncated universal family is established, with a power savings error
term in the totally definite case and a geometrically meaningful constant. This Weyl’s law
is generalized to an equidistribution result with respect to an explicit measure, and leads to
answer the Sato-Tate conjectures in this case. Statistics on low-lying zeros are provided, leading
to uncover part of the type of symmetry of quaternion algebras.

Strong evidence is provided that further ground groups should be amenable as well to the

same methods and conjectural counting laws are given in the case of symplectic and unitary

groups of low ranks.

Keywords. Number theory, automorphic representations, quaternion algebras, fam-
ilies of automorphic forms, analytic conductor, Selberg trace formula, counting law,
equidistribution, Sato-Tate, low-lying zeros, type of symmetry.

Mathematic Subject Classification. 11F55, 11F60, 11F66, 11F67.

Statistiques arithmétiques sur les algèbres de quaternions

Résumé. Les formes automorphes sont des objets centraux en théorie des nombres. En dépit de
leur omniprésence, elles demeurent mystérieuses et leur comportement est loin d’être entière-
ment compris. Considérer ces formes automorphes au sein de familles a un effet régularisant,
et ouvre la voie aux résultats en moyenne : voilà l’esprit des statistiques arithmétiques. La fa-
mille de toutes les représentations automorphes d’un groupe réductif donné, appelée famille
universelle du groupe, est particulièrement importante. Dans le cas des formes intérieures de
GL(2), autrement dit les groupes d’unités d’algèbres de quaternions, la formule des traces de
Selberg est une puissante méthode d’approche. Il existe une notion de taille sur les formes
automorphes, le conducteur analytique, permettant de tronquer la famille universelle en un
ensemble fini pour lequel ces problèmes de statistiques arithmétiques ont un sens.

Une loi de comptage pour la famille universelle tronquée est établie, avec un terme d’erreur
gagnant par une puissance dans le cas totalement défini, et une constante à forte teneur géo-
métrique. Cette loi de Weyl est généralisée en un résultat d’équirépartition par rapport à une
mesure explicite, et mène à vérifier les conjectures de Sato-Tate dans ce cadre. Des statistiques
sur les petits zéros des fonctions L associées sont établies, menant à dévoiler partiellement le
type de symétrie des algèbres de quaternions.

Plusieurs indices sont mentionnés laissant à croire que d’autres groupes sont abordables par

les mêmes méthodes, et les lois de comptage conjecturales pour certains groupes unitaires et

symplectiques de petits rangs sont énoncées.

Mots-clés. Théorie des nombres, représentations automorphes, algèbres de quater-
nions, familles de formes automorphes, conducteur analytique, formule des traces de
Selberg, loi de comptage, équirépartition, Sato-Tate, petits zéros, type de symétrie.
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