
HAL Id: tel-02491370
https://theses.hal.science/tel-02491370

Submitted on 26 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Serotonergic neurons of the nucleus raphe Magnus in
the control of nociceptive transmission in the dorsal

horn of the spinal cord : an optogenetic study in
different pathophysiological contexts

Franck Aby

To cite this version:
Franck Aby. Serotonergic neurons of the nucleus raphe Magnus in the control of nociceptive transmis-
sion in the dorsal horn of the spinal cord : an optogenetic study in different pathophysiological contexts.
Neurons and Cognition [q-bio.NC]. Université de Bordeaux, 2019. English. �NNT : 2019BORD0354�.
�tel-02491370�

https://theses.hal.science/tel-02491370
https://hal.archives-ouvertes.fr


THÈSE PRÉSENTÉE 

POUR OBTENIR LE GRADE DE 

DOCTEUR DE 

L’UNIVERSITÉ DE BORDEAUX 

Ecole Doctorale des sciences de la vie et de la santé 

Spécialité Neurosciences 

Par Franck Aby 

Les neurones sérotoninergiques du noyau raphé 
Magnus dans le contrôle de la transmission 
nociceptive dans la corne dorsale de la moelle 
épinière : une étude optogénétique dans différents 
contextes pathophysiologiques 

Sous la direction de : Pr Pascal Fossat 

Soutenue le 13 Décembre 2019 

Mme. Nadjar, Agnès Professeur NutriNeuro Bordeaux Présidente 

Mme. Pezet, Sophie Maître de conférences ESPCI Paris Rapportrice 

Mr. Poisbeau, Pierrick Professeur INCI Strasbourg Rapporteur 

Mme, Antri, Myriam Maître de conférences Neuro-Dol Clermont-
Ferrand 

Examinatrice 

Mr. Herry, Cyril Directeur de 
recherche 

Neurocentre 
Magendie Bordeaux 

Membre invité 

Membres du Jury 



THÈSE PRÉSENTÉE 

POUR OBTENIR LE GRADE DE 

DOCTEUR DE 

L’UNIVERSITÉ DE BORDEAUX 

Ecole Doctorale des sciences de la vie et de la santé 

Spécialité Neurosciences 

Par Franck Aby 

Serotonergic neurons of the nucleus raphe Magnus in 
the control of nociceptive transmission in the dorsal 
horn of the spinal cord: an optogenetic study in 
different pathophysiological contexts 

Under the supervision of: Pr Pascal Fossat 

Defended on december, 13th, 2019 

Mme. Nadjar, Agnès Professeur NutriNeuro Bordeaux Chair 

Mme. Pezet, Sophie Maître de conférences ESPCI Paris Rapporteur 

Mr. Poisbeau, Pierrick Professeur INCI Strasbourg Rapporteur 

Mme, Antri, Myriam Maître de conférences Neuro-Dol Clermont-
Ferrand 

Reviewer 

Mr. Herry, Cyril Directeur de 
recherche 

Neurocentre 
Magendie Bordeaux 

Invited member 

Jury members 



Titre : Les neurones sérotoninergiques du noyau raphé Magnus 
dans le contrôle de la transmission nociceptive dans la corne 
dorsale de la moelle épinière : une étude optogénétique dans 
différents contextes pathophysiologiques. 
Résumé : 

La douleur est une sensation et une expérience émotionnelle désagréable résultant de 

stimulations potentiellement nuisibles pour protéger l'intégrité du corps. Un mécanisme 

endogène impliquant le système PAG-RVM, module la sensation de douleur en filtrant les 

entrées nociceptives. Un équilibre entre des influences excitatrices et inhibitrices contrôle la 

transmission nociceptive et une perturbation de cet équilibre conduit à l’installation de douleurs 

pathologiques. Dans ce travail, nous avons utilisé une approche optogénétique pour cibler 

spécifiquement les neurones sérotoninergiques (5-HT) du noyau du raphé Magnus (RMg) 

projetant sur la corne dorsale de la moelle épinière. Nous avons montré que ces neurones 

exerçaient une action analgésique tonique par une diminution de l'excitabilité des neurones de 

projection de la corne dorsale de la moelle épinière. Cet effet étant indépendant du sexe. Nous 

avons également observé que les neurones sérotoninergiques (5-HT) sont indirectement liés 

aux neurones de projection par l'intermédiaire d'interneurones inhibiteurs locaux. Puis, nous 

avons montré que les neurones sérotoninergiques (5-HT) du RMg recevaient des projections 

des neurones à somatostatine du ventro-latérale de la substance grise périaqueducale (vlPAG) 

exerçant une facilitation descendante de la transmission nociceptive. Fait intéressant, nous 

montrons que dans un modèle de neuropathie périphérique, l'action inhibitrice des neurones à 

sérotonine (5-HT) du RMg est transformée en influence excitatrice, aussi bien chez les mâles 

que les femelles, en raison d'un déplacement de l'équilibre du chlore au sein de la moelle 

épinière. Ces résultats suggèrent que la même voie descendante peut être à la fois excitatrice et 

inhibitrice dans des conditions pathologiques, révélant des informations cruciales sur les 

changements à long terme associés à la douleur chronique. 

Mots clés : Douleur, moelle épinière, réseaux neuronaux, 5-HT, SST, KCC2, WDR,
excitabilité, douleur neuropathique, genre, électrophysiologie in vivo, optogénétique, 
pharmacologie. 
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Title: Serotonergic neurons of the nucleus raphe Magnus in the 
control of nociceptive transmission in the dorsal horn of the spinal 
cord: an optogenetic study in different pathophysiological 
contexts

Abstract: 
Pain is an unpleasant sensation and emotional experience elicited by potentially harmful 

stimulations to protect the integrity of the body. An endogenous mechanism involving the PAG-

RVM modulatory system control pain sensation by filtering nociceptive inputs. A balance 

between both excitatory and inhibitory influences control nociceptive transmission and 

impairment in this balance leads to the development of pathological pain. In the present study, 

we used an optogenetic approach to specifically target serotoninergic neurons (5-HT) that 

projected to the dorsal horn of the spinal cord. We showed that these neurons exerted a tonic 

analgesic action through a decreased excitability of projection neurons of the dorsal horn of the 

spinal cord. This effect is gender independent. We also observed that 5-HT neurons are 

indirectly connected to projection neurons through local inhibitory interneurons. Then, we 

showed that 5-HT neurons of the RMg received descending inputs from the SST neurons of the 

ventro-lateral part of the periaqueductal gray (vlPAG) that exerted downward facilitation on 

pain transmission. Interestingly, we show that 5-HT inhibitory action is switched to an 

excitatory influence in a model of peripheral neuropathy due to a spinal chloride equilibrium 

shift. These results suggest that the same descending pathway can be both excitatory and 

inhibitory upon pathological conditions, providing crucial insights about long-term changes 

associated with chronic pain. 

Keywords: Pain, spinal cord, neural networks, 5-HT, SST, KCC2, WDR, excitability,
neuropathic pain, gender, in vivo electrophysiology, optogenetics, pharmacology. 
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RESUME DE LA THESE 

La douleur est un système d'alerte essentiel qui protège l’organisme contre les lésions 

tissulaires réelles ou potentielles. La sensation de douleur est généralement désagréable mais 

s’atténue une fois le corps averti du danger et la zone endommagée sûre. Ce contrôle de la 

douleur est dû à l'existence d'un système endogène capable de moduler la transmission 

douloureuse. Ce système endogène est mobilisé aussi bien dans un contexte de stress aigu, dans 

lequel la sensation de douleur peut être efficacement diminuée ou supprimée, que par un 

contrôle inhibiteur nociceptif diffus (DNIC). Le système de contrôle endogène de la douleur est 

principalement constitué par une voie descendante contrôlant la transmission nociceptive 

directement au niveau de la corne dorsale de la moelle épinière, premier relais par lequel passent 

les informations nociceptives. Il est considéré dans la littérature que les voies descendantes 

excitatrices et inhibitrices contrôlent toutes deux la transmission nociceptive. Cependant, 

l'équilibre entre les deux influences est altéré dans le cas de douleur pathologique, ce qui 

favorise les facilitations plutôt que les inhibitions. La voie descendante de la douleur implique 

différents noyaux du tronc cérébral qui projettent directement ou indirectement sur la moelle 

épinière. Les projections indirectes, notamment ceux provenant de la partie ventro-latéral de la 

substance grise périaqueducale (vlPAG), ont généralement un relais sur le bulbe rostral 

ventromedial (RVM) d’où projettent des influences inhibitrices et excitatrices sur la corne 

dorsale de la moelle épinière. Au sein de la RVM, les cellules sérotoninergiques (5-HT) 

constituent une importante population neuronale se limitant à des noyaux précis (noyau 

obscurus, paragigantocellularis et raphé Magnus). Les neurones 5-HT du noyau raphé Magnus 

(RMg) projettent vers la partie dorsale de la moelle épinière et sont impliqués dans le contrôle 

de la douleur. Ce contrôle de la transmission nociceptive est fortement dépendant du contexte 

physiopathologique. De plus, il existe une grande diversité de récepteurs 5-HT affectant 

différemment les neurones de la corne dorsale. Cependant, à ce jour, le rôle exact des 

neurones 5-HT du RMg dans la transmission nociceptive n'est toujours pas éclairci.  

Afin de déterminer le rôle exact des neurones 5-HT du RMg dans la transmission 

nociceptive, nous avons utilisé une approche à la fois virale, pharmacologique et 

électrophysiologique chez les souris ePet-cre qui exprime la cre-recombinase spécifiquement 

dans les neurones à 5-HT.  

Tout d’abord, nous avons confirmé la bonne expression de la cre-recombinase limitée 

aux neurones 5-HT dans le raphé Magnus (RMg) ainsi que dans le raphé dorsal (DR) et le raphé 

médian (MR) en croisant des souris ePet-cre à des souris rapportrices Ai9. Par un marquage 



immunohistochimique de la tryptophane hydroxylase 2 (TPH2) nous avons observé une co-

localisation avec des neurones cre positif s’élevant à 83,8%. Nous avons également observé 

une population dense de fibres 5-HT dans la corne dorsale de la moelle épinière confirmant 

ainsi les projections 5-HT sur la moelle épinière. Puis, en utilisant une souris Gad67-GFP, nous 

avons confirmé que les neurones 5-HT du RMg ne sont pas des neurones GABAergiques mais 

présentaient un degré élevé d'interaction avec eux.  

Ainsi nous nous sommes rendus compte que les souris ePet-cre nous donnaient un outil 

crucial pour étudier le rôle précis de ces neurones dans la transmission nociceptive.  

Dans un second temps, afin de valider notre approche virale, nous avons réalisé une 

injection stéréotaxique d’un virus inductible permettant ainsi l’expression d’opsine ChR2 dans 

les neurones 5-HT du RMg. Puis trois semaines après, nous avons réalisé des enregistrements 

de neurones 5-HT exprimant les opsines en patch-clamp en courant imposé sur tranches de 

RMg. Nous avons observé que la stimulation optogénétique à 475nm induisait d’une part une 

dépolarisation neuronale rapide et reproductible et qu’un mode de stimulation à 5Hz/5ms 

induisait d’autre part un train de potentiels d'action suivant fidèlement la stimulation 

optogénétique. En revanche, la stimulation optogénétique à 525nm induisait une forte 

hyperpolarisation qui s’estompait avec l’arrêt de la stimulation confirmant ainsi que notre 

approche optogénétique nous permettait de moduler l'activité des neurones à 5-HT du 

RMg. De plus, en accord avec la littérature, nous avons observé des projections 5-HT du RMg 

visibles dans les couches profondes de la corne dorsale de la moelle épinière.  

Afin d’étudier les conséquences d’une manipulation des neurones 5-HT du RMg, nous 

avons effectué une stimulation optogénétique de ces neurones à l’aide de fibres optiques placées 

aussi bien au-dessus du RMg que de la partie lombaire de la moelle épinière. En comportement, 

chez des souris 5-HT cre en absence de lésion nerveuse, nous avons observé que l'inhibition 

optogénétique sélective des neurones 5-HT que ce soit au-dessus de la RMg ou de la corne 

dorsale spinale induisait une importante hypersensibilité mécanique et thermique confirmant 

ainsi que les neurones RMg 5-HT étaient toniquement actifs et jouaient un rôle crucial dans le 

contrôle de la transmission nociceptive. En revanche, l'activation optogénétique des neurones 

5-HT ou de leurs projections, au-dessus de la RMg ou de la corne dorsale de la moelle épinière,

engendrait une importante analgésie mécanique et thermique. Par conséquent, nous avons pu

en conclure que les neurones RMg 5-HT exerçaient une inhibition tonique descendante de

la transmission nociceptive constituant ainsi un des contrôle inhibiteur descendant

endogène de la douleur.



En raison des différences entre les sexes dans l'intégration de la douleur, nous 

avons comparé la manipulation des neurones 5-HT chez les sujets mâles et femelles et 

n'avons observé aucune différence entre les deux.  

Pour confirmer les cibles spinales de la manipulation des neurones 5-HT, nous avons 

effectué des enregistrements électrophysiologiques in vivo des neurones de la corne dorsale en 

ciblant spécifiquement les neurones à convergence (WDR) qui sont des neurones de projection 

recevant entre autres des entrées nociceptives des fibres C. Nous avons d'abord évalué la 

conséquence d'une inhibition des neurones RMg 5-HT sur l'activité des WDR, et nous avons 

observé que l'inhibition optogénétique des projections 5-HT entraînait une augmentation de 

l'activité spontanée des WDR et de leur réponse aux entrées nociceptives de fibres C ainsi 

qu'une augmentation de leur capacité à être sensibilisé. D'autre part, l'activation optogénétique 

des fibres descendantes RMg 5-HT directement au-dessus de la moelle épinière induisait une 

diminution significative des réponses évoquées des neurones WDR aux entrées nociceptives et 

une diminution significative de leur capacité à être sensibilisés. Par conséquent, nous 

montrons que les neurones 5-HT du RMg projetant sur la corne dorsale de la moelle 

épinière, inhibent constitutivement la transmission nociceptive en diminuant l'excitabilité 

des WDR. 

Dans le but de déterminer les cibles des neurones 5-HT du RMg sur les microcircuits de 

la corne dorsale, à l’aide de marquages immunohistochimiques de la tryptophane hydroxylase 

2 (TPH2), chez des souris Gad67-GFP, nous avons observé des potentiels boutons synaptiques 

de terminaison de neurones 5-HT sur des neurones GABA dans les couches profondes de la 

corne dorsale de la moelle épinière. Pour confirmer ces connexions au réseau inhibiteur local, 

nous avons dans un premier temps comparé, chez des souris 5-HT cre injectées avec un AAV 

inductible marqué à la GFP, les appositions entre les neurones GFP positifs et les neurones 

excitateurs (TLX3) ou inhibiteurs (PAX2) et nous avons constaté que les projections 5-HT sont 

nettement plus en contact avec les interneurones inhibiteurs. Puis, nous avons confirmé la 

présence de contacts réels entre les neurones RMg 5-HT et les neurones inhibiteurs, en utilisant 

des souris Gad 67-GFP*5-HT cre dans lesquelles SynMYC-revWPRE (marqueur de 

terminaison synaptique) a été exprimé dans les neurones RMg 5-HT. À l’aide d’un 

immunomarquage sur une fine coupe transversale de la partie lombaire de la moelle épinière, 

nous avons trouvé des boutons synaptiques des projections 5-HT sur les neurones à GABA et 

à parlvalbumine. Dans un second temps, afin de déterminer le rôle fonctionnel de ces contacts, 

nous avons éliminé les inhibitions induites par les neurones GABAergique/glycinergiques dans 



la corne dorsale spinale via l’injection de picrotoxine. Nous avons observé que la stimulation 

optogénétique des projections RMg 5-HT n’induisait plus une inhibition de la transmission 

nociceptive. En effet, en réalisant un enregistrement électrophysiologique associé à une 

stimulation optogénétique des projections 5-HT au-dessus de la moelle épinière, nous avons 

observé qu’un blocage de la neurotransmission GABAA/GlyR suite à une injection intrathécale 

de picrotoxine, n'induisait plus de diminution de la réponse évoquée des WDR aux stimuli 

nocifs. Par conséquent, nous avons montré que l'inhibition tonique descendante de 5-HT 

du RMg sur la transmission nociceptive passe par une excitation directe des interneurones 

inhibiteurs GABAergic/glycinergic dans les couches profondes de la moelle épinière qui à 

leur tour inhibent les neurones WDR de la corne dorsale de la moelle épinière. 

Dans un deuxième temps, en collaboration avec l'équipe de Cyril Herry, nous avons 

essayé de déterminer comment l'activité des neurones RMg 5-HT était modulée. Pour ce faire, 

à l’aide d’immunomarquages nous avons observé des potentiels boutons synaptiques de 

terminaison de neurones GABAergiques, glutamatergiques et exprimant de la somatostatine 

(SST) sur des neurones 5-HT. Nous avons d'abord établi le rôle fonctionnel des neurones 

SST du vlPAG sur la transmission nociceptive spinale en utilisant des souris SOM-IRES-

cre. Dans une approche comportementale, nous avons effectué des manipulations 

optogénétiques de ces neurones en utilisant des fibres optiques implantées bilatéralement au-

dessus du vlPAG. L'inhibition optogénétique des neurones SST a provoqué une importante 

analgésie mécanique et thermique, ce qui démontre que les neurones SST du vlPAG exercent 

une facilitation tonique descendante de la transmission nociceptive. Cet effet facilitateur est 

confirmé par l'activation optogénétique des neurones SST qui provoque une hypersensibilité 

mécanique et thermique significative. Par conséquent, nous déterminons que les neurones 

SST du vlPAG exercent une facilitation tonique descendante sur la transmission 

nociceptive qui est opposé à l’action des neurones 5-HT sur la transmission nociceptive.  

Ensuite, nous avons réalisé des enregistrements électrophysiologiques des neurones de 

la corne dorsale, centré également sur les neurones à convergence. Nous avons observé que 

l'inhibition optogénétique bilatérale des neurones SST du vlPAG induisaient à la fois une 

diminution significative de la réponse des neurones WDR en réponse aux entrées nociceptives 

ainsi qu’une diminution significative de leur capacité de sensibilisation. En revanche, 

l'activation optogénétique bilatérale des neurones SST du vlPAG a induit une augmentation 

significative de la réponse WDR aux entrées de fibres C nociceptives ainsi qu'une augmentation 

de leur capacité à être sensibilisés. Par conséquent, nous avons montré que les neurones SST 



du vlPAG facilitent la transmission nociceptive en augmentant l'excitabilité des neurones 

de la corne dorsale.  

Puis, afin de déterminer les circuits neuronaux impliqués dans cet effet, nous avons 

évalué, dans un premier temps, les cibles des neurones SST vlPAG dans la RVM et en 

particulier dans le RMg. En développant une stratégie virale et un marquage 

immunohistochimique, nous avons observé une apposition entre les projections SST du vlPAG 

et les neurones 5-HT de RMg projettant sur la moelle épinière. Nous avons également observé 

l’existence de projection de neurones SST du vlPAG en faible quantité dans la corne dorsale de 

la moelle épinière, en particulier dans la couche superficielle. On peut donc conclure que parmi 

les projections du vlPAG sur le RMg, il existe un circuit de neurones SST du vlPAG qui 

projettent vers des neurones 5-HT du Raphé Magnus projetant sur la moelle épinière 

(voie indirecte). De plus, certains neurones SST établissent aussi des connections directes 

de longue portée sur la moelle épinière (voie directe). 

Afin de déterminer le rôle fonctionnel des différentes projections (directe et indirecte) 

des neurones SST du vlPAG sur la transmission nociceptive, nous avons tout d’abord évaluer 

le rôle fonctionnel du circuit SST du vlPAG - 5-HT du RMg sur la transmission nociceptive 

(voie indirecte), chez des souris SOM-IRES-CRE en comportement, nous avons réalisé une 

activation optogénétique des projections SST du vlPAG au-dessus du RMg et observé une 

hypersensibilité mécanique et thermique significative. Puis, nous avons observé que l'activation 

optogénétique des projections SST du vlPAG au-dessus de la RMg entraînait également une 

hyperexcitabilité des neurones WDR. Cependant, en évaluant le rôle fonctionnel des projections 

directes des neurones SST du vlPAG sur la moelle épinière par des enregistrements 

électrophysiologiques unitaires ciblant les WDR associés à une stimulation optogénétique au-

dessus de la moelle épinière, nous n'avons observé aucun changement dans l'excitabilité des 

WDR. Par conséquent, nous pouvons en conclure que les neurones SST du vlPAG exercent 

une facilitation tonique descendante sur la transmission nociceptive via une action 

probable sur des neurones 5-HT du RMg.  

Dans un troisième temps, nous avons étudié les conséquences de la modulation des 

neurones 5-HT du RMg sur la transmission nociceptive en condition neuropathique.  

La 5-HT est connue pour faciliter la transmission de la douleur dans un contexte pathologique. 

Nous avons utilisé le modèle de neuropathie périphérique de lésions nerveuses partielles (SNI) 

pour étudier les conséquences de la manipulation optogénétique des neurones 5-HT du RMg 

sur la transmission nociceptive. Nous avons d'abord confirmé que la procédure SNI provoque 

une hypersensibilité mécanique et thermique à la douleur. Il est intéressant de noter que suivant 



la même approche que celle que nous avons adoptée dans le cas d'une douleur aiguë, l'inhibition 

optogénétique des neurones 5-HT ou de leurs projections au-dessus de la RMg ou de la corne 

dorsale de la moelle épinière respectivement ne produisent plus aucun changement dans la 

sensibilité mécanique et thermique, ce qui suggère que dans un contexte pathologique, les 

neurones 5-HT du RMg perdent leur effet analgésique tonique. En revanche, l'activation 

optogénétique au-dessus de ces mêmes neurones ou de leurs projections, curieusement, a induit 

une diminution significative du seuil de douleur mécanique et de la latence thermique de la 

douleur. Cet effet était également indépendant du sexe puisque aucune différence n'a été 

observée chez les mâles et les femelles testés. Ainsi, dans la douleur neuropathique, les 

neurones 5-HT du RMg perdent leur effet analgésique et exercent une facilitation 

descendante sur la transmission de la douleur. En effectuant des enregistrements 

electrophysiologiques, nous avons montré que l'inhibition optogénétique des projections 5-HT 

du RMg n’engendrait aucun changement dans l'excitabilité des WDR, tandis que l'activation 

optogénétique des projections 5-HT du RMg induisait une hyperexcitabilité des WDR. Par 

conséquent, en cas de douleur neuropathique, nous avons montré que les neurones 5-HT 

se projetant sur la corne dorsale facilitent la transmission nociceptive en augmentant la 

réponse des WDR aux entrées de fibres C, ce qui entraîne une hyperexcitabilité des WDR. 

Ensuite, nous avons étudié si la mise en place de la neuropathie pouvait induire des 

modifications des cibles des neurones 5-HT sur la corne dorsale de la moelle épinière pouvant 

ainsi expliqué l’effet opposé de ces neurones à 5-HT sur la transmission nociceptive. Nous 

avons constaté que les fibres 5-HT se projettent toujours principalement sur les interneurones 

inhibiteurs. Ayant précédemment montré que l’effet analgésique des neurones à 5-HT en 

condition de douleur aiguë dépend des interneurones inhibiteurs et des courants chlorure médiés 

par les récepteurs canaux GABA/glycine, l’homéostasie des ions chlorures des interneurones 

inhibiteurs de la corne dorsale pourrait être impliquée dans la facilitation médiée par les 

neurones 5-HT du RMg en condition de douleur neuropathique.  

Dans un modèle de douleur neuropathique incluant le SNI, il a été démontré que les 

mécanismes de désinhibition médiés par une déficience dans l’activité des co-transporteurs 

(Na+-K+-Cl-) KCC2 (Doyon, 2011 ; Kaila et al., 2014) sont responsables d'une partie de 

l'hyperexcitabilité neuronale et de l'hypersensibilité de la douleur (Coull et al., 2005 ; Beggs et 

al., 2012). Nous avons donc évalué la conséquence du changement de l'équilibre en 

chlorure des fibres afférentes ou des neurones WDR sur l'entraînement sérotoninergique 

opposé observé chez les souris témoins et les souris SNI, en utilisant une approche 

pharmacologique pour stimuler le co-transporteur KCC2 chez la souris SNI. En effet, 



1h30 après un traitement par voie orale avec de la CLP290 chez des souris 5-HT cre présentant 

une hypersensibilité mécanique et thermique, la même stimulation optogénétique des 

projections 5-HT du RMg chez les mêmes animaux provoque une analgésie mécanique et 

thermique significative, absente lors de l’utilisation du véhicule seul. Cet effet inhibiteur n'est 

pas lié au sexe puisqu’il est équivalent chez les mâles et les femelles. Ainsi, dans les conditions 

neuropathiques, nous avons montré que la facilitation induite par la RMg 5-HT est due au 

déséquilibre du gradient de chlore résultant de la diminution de l'activité du co-transporteur 

KCC2 et qu'une augmentation de l’activité du co-transporteur KCC2 peut inverser les 

conséquences du SNI. Puis, nous avons observé que la superfusion de CLP290 au-dessus de la 

moelle épinière supprime l'augmentation de l'excitabilité des WDR induite par l'activation 

optogénétique des projections 5-HT au-dessus de la moelle. Par conséquent, dans des 

conditions de douleur neuropathiques, nous avons montré que l'hyperexcitabilité WDR 

induite par la 5-HT du RMg est une conséquence de la diminution de l'activité du 

cotransporteur KCC2. 

Enfin, nous avons évalué les conséquences d'un blocage de KCC2 chez des souris naïves 

par injection ip de furosémide. Nous avons observé que l'activation optogénétique des 

projections 5-HT du RMg provoquait une hypersensibilité mécanique et thermique. Cet effet 

était équivalent chez les mâles et les femelles. 

 En conclusion, la manipulation de KCC2 a orienté le signe de l'influence 

descendante de 5-HT sur la transmission nociceptive, qui passe de l'inhibition de la 

douleur à la facilitation dans un contexte pathologique. L'ensemble de ces résultats 

suggère fortement que les changements dans l'équilibre en chlorure de la corne dorsale 

de la moelle épinière des souris neuropathiques influencent le contrôle de la douleur 

endogène.  



Figure 1 : Schéma récapitulatif  du contrôle de la transmission nociceptive dans la corne dorsale de la moelle épinière par les 

voies descendante supra-spinale, le rôle des interneurones à somatostatine du vlPAG et des neurones sérotoninergique du 

RMg. 
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Introduction 

I. INTRODUCTION 
A. PAIN 

1. Concept and Definition  

From ancient times, pain has always been a major issue of mankind, and therefore 

became the centre of attention and the object of ongoing struggle to understand and control it. 

Time after time, pain has been conceptualized in different ways, reflecting the contemporary 

spirit of the age and, therefore, has changed over recorded history with changing world views. 

It appeared that for primitive humans, there is a causal relationship between painful disease or 

pain caused by injury and magic fluids intrusion, evil spirits, or demons into the body (Tainter, 

1948). By contrast, for the ancient Egyptians (Figure 2), painful adversity was most related to 

Lord’s will or dead spirits (Leipzig, 1875), especially according to our good deeds we felt more 

or less evil. Idea behind the concept that the heart symbolizing our good deeds, was the centre 

of sensation. 

 

 
Figure 2 : Illustration of the doctors reciting an incantation and praying the gods to assist the patient’s healing before initiating 

any treatment (from School History, 2018). 

For ancient Chinese (Figure 3), pain has been considered to be due to an imbalance of 

two opposing unifying forces the Yin (passive force) and the Yang (active force), which result 

to a major disruption of flow of the chi, the vital energy associated with these two forces which 
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diffuse along the body through a 14 meridians network each linked to an internal organ or 

function and then affecting the organ or function associated (Saunders, 1967). 

 
Figure 3 : Illustration of meridians in Traditional Chinese Medicine (from TCM, Woodbridge, 2019). Meridians in traditional 

Chinese medicine (TCM) are interconnected channels of the human body through which Chi, the body’s vital energy flows. 

There are several types of them related to the theories the anma, the Ying and the Yang and the five elements. TCM aims first 

and foremost to maintain the harmony of energy within the body as well as between the body and external elements base on 

balance within the meridians. Health is related to the body's ability to maintain the dynamics necessary to cope with 

aggression. On the other hand, the disease occurs when the body has lost its ability to adapt.  

Concept close to the theory of the “Corpus Hippocratium” with the idea of a balance of the four 

moods, blood, phlegm, yellow bile and black bile in which pain occurred when there is an 

imbalance in one of these humours (Keirsey, 1998), theory-based on ancient Greece belief 

where the nature of sensory inputs and sensory organs of the body was put at the centre of their 

concerns (Keele, 1957). Starting in the Middle Age, in Europe, the concept that the centre of 

the sensory perception is more the brain than the heart appeared notably with the work of 

Albertus Magnus (Fulop-Miller, 1938) on the localisation of “the sensorium commune” in the 

anterior cerebral ventricle and suggest that more than being the centre of the sensation, the brain 

had the ability to temper the heart. This concept evolved notably through the contribution of 

great scientists such as Leonardo da Vinci, Vesalius (Vesalius et al., 1543) and Varolius (Keele, 

1957) with the idea that pain sensation was related to touch sensibility and nerves were 

considered as tubular structures. It is only centuries later (nineteenth century) with the 
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development of the pain research that emerged “The doctrine of Specific Nerve Energies” a 

theory in which external sensation or information from different part of the body are only 

provided by sensory nerves from each of the five senses (sight, hearing, smell, taste and touch) 

to the brain (Müller, 1838). From the seventeenth and during the remainder of the nineteenth 

century, the concept of pain evolved approaching the current concepts with different theories 

as the intensive theory (summation) where pain is considered, not as a unique sensory 

experience but rather as an outcome of any type of strong sensory stimulation, which suggested 

that intense activation of any sensory modality (stronger than usual) is unpleasant (Erb, 1874) 

or the specificity theory where the information is sent out from the periphery to the higher brain 

centre and come back in motor command without any alteration (Figure 4), but also with the 

Von Frey’s theory which suggests that pain is conveyed by specific fibres from the receptors at 

the periphery to spinal cord and following specific pain pathways in the neuraxis and even 

insinuates the existence of a pain centre.  

 
Figure 4 : Illustration of Descartes ‘pain pathway: “Particles of heat” (A) activate pain nerves in a spot of skin (B) and these 

signals are transmitted (C) to the brain (de) where they are reflected into motor nerves that draw the foot away from the heat 

stimulus. (Descartes, 1648) 

Thereafter, the pattern theory integrated the idea of a modulation of the afferents transmission 

in the substantia gelatinosa of the spinal cord dorsal horn before prior to full integration by the 

higher brain centre and a comeback in motor command which is more commonly known as the 

spinothalamic tract (Goldscheider, 1884). It is only recently that pain has been considered as 
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the outcome of complex interactions between central and peripheral nervous system notably 

thanks to the work of the physiologists Ronald Melzack and Patrick Wall in 1965 and their 

"Gate control theory" (Figure 5, Melzack and Wall, 1965) where a painful, nociceptive stimulus 

carried by nociceptive fibre is modulated in the substantia gelatinosa of the spinal cord through 

presynaptic inhibition from incoming beta-fibres. This mechanism suggests the existence of a 

balance between painful inputs form small diameter afferent fibres (nociceptor) and non-painful 

inputs coming from large diameter afferent fibres (non-nociceptor), and all this is under the 

control of supraspinal sites that could further modulate pain. Then, a couple of year later, in 

1992, the neuromatrix theory, evolving from the gate control theory of pain, described pain as 

“a multidimensional experience produced by characteristic neurosignature patterns of nerve 

impulses generated by a widely distributed neural network—the body-self neuromatrix—in the 

brain” (Figure 6, Melzack, 2001). Theory in which the pain felt is not only due to the integration 

of the painful information coming in over the nociceptive fibre to the pain center in the brain 

but through the balance between the painful information and the generation of subjective 

experiences involving a complex network of systems that interact to modify and influence the 

perception and response to noxious stimuli, and explain how pain could persist in the absence 

of noxious stimuli.  

 
Figure 5 : Schematic diagram of the Melzack-Wall gate control theory of pain mechanisms (1965). Aβ (Large-diameter) and 

C-fibre (small-diameter) afferent fibres project to the substantia gelatinosa (SG) and first central transmission (T) cells. The 

inhibitory effect (-) of SG on the afferent terminals is increased (+) by activity in Aβ fibres and decreased by activity in C-fibres. 

A specialized system of Aβ fibres (the central control trigger) activates certain cognitive processes that influence the 

modulating properties of the spinal gating mechanism via descending fibres (Melzack and Wall, 1965). 
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Figure 6 : Factors that contribute to the patterns of activity generated by the body-self neuromatrix, which comprises sensory 

(S), affective (A), and cognitive (C) neuromodules  (Melzack, 2001). 

Thus, as history as proven, behind pain sensation, different concepts have evolved, substantially 

shaped by the advances in research resulting in a definition accepted by the majority and 

proposed by the International Association for the Study of Pain (Merskey and Bogduk, 1994), 

Pain is now defined as “an unpleasant sensory and emotional experience associated with actual 

or potential tissue damage, or described in terms of such damage” (Figure 7). Therefore, pain 

is considered as a personal experience which involves neural mechanisms that arbitrate both 

sensory and hedonic functions. That’s the reason why pain is subjective and its study is delicate 

and complex.  

 

Figure 7 : Description of non-exhaustive factors which participate in pain perception. Modified from Dr Caleb Burgess (Burgess, 

2019) 



26 
 

Introduction 

2. Pain physiology 

 Physiological pain 

 Pain, notably its physiological aspect, can be described as a warning mechanism with a 

protective role, with the aim to keep tissue damage to a minimum following a noxious and 

potentially damaging stimulus. It corresponds to a cascade of modifications increasing with the 

intensity of the noxious stimulus, occurring in the peripheral and central nervous system,  and 

responsible for the perception of pain. However, neuronal excitation in nociception is not only 

a static process of proportionality between intensity of the stimulus and the behavioural 

responses, but some dynamic changes can also occur as the result of a leftward shift of the 

stimulus-response curve, which takes place both at the peripheral or at the central nervous 

system (as known as the sensitization). To get a real grasp of this complex phenomenon, 

Melzack and Casey put forward the idea of seeing pain as a three dimensions: The sensory 

discriminative component which refers to the perception of pain including the location, 

intensity, characteristic and duration; the motivational affective component referring to the 

unpleasantness of pain; and the cognitive component which refers to all the factors in terms of 

past experiences and probability of outcome based on individual’s beliefs (e.g., culture, past 

experiences etc…) related to pain which can influence both the sensory discriminative and the 

motivational affective dimensions negatively or positively (Figure 8, Melzack and Casey, 

1968). In contrast, it is important to remember that a greater distinction should be made between 

pain and nociception. Nociception, unlike the pain, is the neural process of encoding and 

processing noxious stimuli (IASP, 2019a) resulting from a thermal, mechanical, or chemical 

energy acting on specialized nerve ending (nociceptors) to the central nervous system and it is 

only when sensory information reaches the cerebral cortex that the perception of pain takes 

place.  

Unfortunately, a dysregulation of pain mechanism may occur and become pathological, 

notably when it loses its safety aspect and becomes no longer helpful for the protection of the 

integrity of the organism as an acute warning mechanism but on contrary, becomes chronic and 

debilitating. 
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Figure 8 : The dimensions of pain as outlined by (Melzack and Casey, 1968) described in the text above. 

  

 Sensitization 

 Neuronal excitation in nociception is not only a static process of proportionality between 

intensity of the stimulus and the behavioural responses but it may be subjected to dynamic 

changes, known as the sensitization, which is described as “a phenomenon which increased 

responsiveness of nociceptive neurons to their normal input, and/or recruitment of a response 

to normally subthreshold inputs.”(IASP, 2019a), including a modification (decrease) of the 

threshold and an increase in suprathreshold response. Phenomenon, which can occur both at 

peripheral and at the central nervous system (defined respectively as the peripheral and central 

sensitization), considered to be a key element of the physiological pain, but at some point can 

participate in emphasising the dysregulation of physiological pain, in chronic pain.    
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 Pathological Pain 

 Nevertheless, other manifestations of pain related to tissue injury can occur, notably 

when its perception is no more proportional to the intensity of the noxious stimulus and 

becomes chronic and incapacitating (Cervero and Laird, 1996). Alterations of the pain pathway, 

which lead to hypersensitivity characterised by an exaggerated response to noxious stimuli 

associated with a lowered threshold to noxious stimuli which is defined as a hyperalgesia, both 

at the site of the tissue damage (primary hyperalgesia), and surrounding the area of primary 

tissue or nerve injury bordering uninjured tissue (secondary hyperalgesia) (Treede et al., 

1992) and the appearance of pain response to innocuous stimuli (allodynia); (Figure 9). 

Hyperalgesia and allodynia highlight changes in either the peripheral or central nervous 

systems, referred as peripheral or central sensitization, respectively. This phenomenon 

implies several factors such as genetic and environmental factors, which contribute to 

sensitization resulting in persistent (chronic) pain in some individuals (even after healing has 

normally taken place) characterized also by the abnormal state and function of the spinal cord 

neurons, which become hyperactive. Under normal condition, the nociceptive sensory system 

returns to a baseline functional state as soon as healing takes place. Unfortunately, many 

components of sensitization can persist and manifest themselves as chronic pain and 

hyperalgesia, especially when the nervous system itself is injured leading to chronic 

neuropathic pain.  
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Figure 9 : Schematic representation of sensitization of nociceptors response to a peripheral stimulus induces by a tissue injury. 

In blue, weak or innocuous stimuli do not evoke pain sensation in normal condition. In red, sensitization in response to a 

stimulus after tissue damage, shifting the response function to the left. A moderate painful stimulus is now perceived as 

intense (i.e., pain hyperalgesia) and a previous innocuous stimulus can be perceived as painful (i.e., allodynia). Adapted from 

(Cervero and Laird, 1996). 

  

 Pain State Classification  

 Pain is the most commonly symptom observes in medicine, which may be expressed in 

different ways, can occur in any part of the body and affect any system, be acute or chronic, 

sporadic or constant. That is why, in the aim of a better understanding of pain disorders and to 

guide assessment or treatment, it is important to classify the different pain state. 

 

i.According to the Mechanistic/Etiology 

Six different types of pain can be distinguished based on the physiopathological mechanism.  

- Nociceptive pain 

Nociceptive pain, defined as “pain that arises from actual or threatened damage to non-

neural tissue and is due to the activation of nociceptors”(IASP, 2019a),  represents the 

normal response to noxious stimuli or injury of tissues (skin, muscles, visceral organs, 

joints, tendons, or bones). It is caused by ongoing activation of nociceptive afferent 

fibres (Aẟ and C nociceptor) through mechanical, thermal, or chemical stimulation 

(Costigan et al., 2009). Depending on the location of the nociceptors involved, 
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nociceptive pain may also be subdivided into visceral pain, deep somatic pain, and 

superficial somatic pain. 
 

- Neuropathic Pain 

Neuropathic pain, defined by the IASP as “pain caused by a lesion or disease of the 

somatosensory nervous system” and in such of terms as “burning, stabling, electrical, 

shooting pain…” by the patient, is caused by a primary lesion or dysfunction affecting 

the somatosensory nervous system (Merskey and Bogduk, 1994) both from peripheral 

nerves (peripheral neuropathic pain) to the central nervous system which is a regional 

pain associated with aberrant sensibility to temperature and to noxious stimulation 

(Bouhassira et al., 2005).  

 

- Nociplastic Pain 

Recently adopted, nociplastic pain is defined by the IAPS as “a pain that arises from 

altered nociception despite no clear evidence of actual or threatened tissue damage 

causing the activation of peripheral nociceptors or evidence for disease or lesion of the 

somatosensory system causing the pain”(IASP, 2019a). 

 

- Psychogenic Pain 

Pain disorder associated with psychological, emotional or psychosocial factors such as 

depression, anxiety and bipolar disorder, obsessive-compulsive behaviour, which 

describes both short- and long-term episodes of pain that occur usually in the absence 

of any objective inflammatory or physical pathology that could explain the pain 

sensation (Toda, 2007), People experiencing psychogenic pain even if brief episodes, 

as well as persistent symptoms, described it as very real and painful.   

 

- Mixed Pain 

Pain defines as a “complex overlap of the different known pain types (nociceptive, 

neuropathic, nociplastic) in any combination, acting simultaneously and/or concurrently 

to cause pain in the same body area (Figure 10). Either mechanism may be more 

clinically predominant at any point in time. Mixed pain can be acute or chronic 

(Freynhagen et al., 2019).  
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Figure 10 : Representation of “mixed pain” defined as the overlapping of the nociplastic, nociceptive and neuropathic pain 

(Freynhagen et al., 2019) 

 

- Idiopathic Pain 

Idiopathic pain is defined as a pain that occurs when there is no known physical or 

physiological cause or that persists after the trauma or pathology has healed (Bouhassira 

and Attal, 2012; Cheng, 2018). It arises generally from neurological dysfunction, not 

damage (such as fibromyalgia, temporomandibular disorders…). 

 

ii.According to the Anatomic perception 

It is a conventional classification of pain based on the anatomical location from which 

pain is perceived, allowing in some cases to determine the possible cause (e. g. low back pain, 

headaches, joint pain, cardiac pain... each referring to the specific location of the symptoms). 

Nevertheless, some criticism can be raised on the importance of such a classification on setting 

up a therapy notably due to the lack of anatomically defined specificity in the neurophysiology 

of pain. Indeed, pain is not always associated with a precise anatomical location but rather as a 

relaying pain.  For example, pain from internal organs, which do not have nociceptors, is not 

well localized and may masks the origin of this pain, particularly in the case of cardiac pain, 
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which can be felt in the left shoulder of the body without necessarily being associated with chest 

pain. 

 

iii. According to the Duration 

 Traditionally, one common way to classify pain is to differentiate it according to a 

temporal criterion. It is a measurable characteristic allowing differentiation between acute 

(including pain associated with tissue damage, inflammation, or a disease process that is of 

relatively brief duration regardless of how intense) and chronic pain (for pain that persists for 

extended periods of time). Conventionally, considering the duration of the symptoms, it has 

been well admitted that pain can be divided into groups (Backonja et al., 2010; Swieboda et al., 

2013): 

- Acute pain, which is defined as a pain that lasts less than 3 to 6 months. 

- Chronic pain, which is defined as a pain lasting for more than 3 to 6 months, or 

persisting after a complete tissue healing or beyond the course of an acute disease. 

- Survived pain, which describes a persisting pain despite the healing of the tissue 

damage, which resulted in acute pain 

 However, this criterion may lead to a lack of understanding of pathology because a 

single dimension of duration is not necessarily link to pathological factors.  

 

iv.According to the Intensity 

 It is a conventional pain classification based on the intensity of perceived patient pain. 

Although the fact that the sensation of pain is subjective, making it the most difficult feature to 

assess, a common point of the intensity of pain is its tolerance. That is why, in the aim to 

evaluate intensity visual, categorical or analogue scales are used to compare pain with the worst 

pain than the patient ever suffered (Figure 11). 
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Figure 11 : Comparative pain scale chart used to assess pain by an increasing factor. Scales consisting of a horizontal line, 

more or less 10 cm in length, one hand of which is “0”, meaning literally no pain and at the opposite end “10”, meaning the 

strongest pain endured in life. (Moyle, 2015) 

        

 Multidimensional Classification of Pain  

 Pain experience, as described above, covers different components such as physical, 

psychological or social component often resulting in suffering. Suffering which can be 

described as a threat to the intactness of individual’s self-concept and integrity such as our 

desire of happiness and health (Schmidt and Willis, 2007) resulting from aggression to the 

physical or emotional components of pain including loss of physical function, social isolation, 

family distress, and a sense of inadequacy or spiritual loss (Benzon et al., 2018).  

Therefore, pain approach should be multidimensional to encompass all these different 

modalities. As an alternative to the unidimensional approaches, a comprehensive taxonomy of 

pain should consider multifactorial assessment (Table 1) rather than a single dimension such as 

(Serlin et al., 1995; Cleeland et al., 1996; Sela et al., 2002) : 

- Physical effects and symptoms 

- Functional effects (such as social consequence) 

- Psychological factors (anxiety, fear …) 

- Spiritual aspect    
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Table 1 : Proposal of a comprehensive taxonomy of pain based upon multifactorial assessment (Turk and Okifuji) 

 

 

 

3. Anatomy and physiology of the pain 

 From nociception to pain sensation  

 Pain, as described above, is considered a physiological protective system essential to 

the survival, well-being, learning and adaptation of human being. However, it can become 

pathological, notably when, in absence of tissue damage or following appropriate healing of 

injured tissue, it occurs or persists and then become no longer useful as a protective system and 

become chronic and debilitating. Thus, an understanding of the physiological mechanism 

underlying pain perception will provide key elements to apprehend the mechanisms of acute 

and chronic pain. 

 One approach to understanding the pain sensation is to follow the nociceptive signal 

pathways also called nociception (a physiological process of activation of neural pathways by 

stimuli that are potentially or currently damaging to tissue) from the periphery (detected by 

specialized peripheral sensory neurons as known as the nociceptor) to the brain through the 

spinal cord.  

Four distinct processes are necessary for a nociceptor to convey noxious information to the 

CNS, with the starting point being signal transduction, which occurs in the peripheral terminals 

of primary afferent neurons.  

Pain Parameters: 
Anatomy/System 
Duration/Intensity/Quality 
Associated Abnormality (physical/psychological) 
Underlying Diseases: 
Signs/Symptoms 
Pain Mechanisms: 
NEUROPHYSIOLOGICAL 

Primary afferent involvement 
CNS involvement 

Psychological 
Cognitive–Affective–Behavioral Involvement 

Cognitive appraisal of pain 
Coping 
Affect/mood 
Environment 
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i.Sensory afferent fibres from the periphery to spinal cord 

 Sensory afferent fibres originating in the peripheral terminal group together to form 

spinal nerves, each supplying a distinct area of skin (dermatome), and overlapping more or less 

the dermatomes of neighbouring spinal nerves and later splitting to form a ventral and dorsal 

roots. Dorsal roots exclusively relate to sensory information. These sensory afferent fibres can 

be classified physiologically according to their physical characteristics such as axon diameters, 

conduction velocity and function into different groups: A fibre group with subtype Aα (or group 

I; thickly myelinated fibres, muscle proprioceptors), Aβ (or group II; less myelinated fibres, 

low-threshold mechanoreceptors), Aδ (or group III; thinly myelinated fibre, mechanoreceptor-

thermoreceptor), and C fibre group (or group IV; unmyelinated fibres, polymodal receptor). It 

is generally admitted that transduction of noxious signals from most spinal cord innervated 

tissues is mediated by the thinly myelinated Aδ fibres and unmyelinated C fibres with free nerve 

ending (nonspecialized); nevertheless, to a lesser extent, thickly myelinated fibres may also 

play a role in pain sensation (especially from the skin). To get more in detail we will mainly 

focus our attention on one type of nociceptor (mechano-heat-sensitive nociceptor), the 

cutaneous fibres which are able to respond to stimuli that are potentially or actually tissue-

damaging (noxious stimuli), such as intense mechanical stimuli (pinch, pressure, indentation), 

algesic chemical, or elevated thermal (> 45 ° C) stimuli. 

 The Aα/β fibres, as described above, are large-diameter myelinated fibres with the 

fastest peripheral conduction velocity. They are mainly involved in the transmission of non-

nociceptive input, such as hair movement, pressure or small touch and also seem to play a tonic 

inhibitory role on the nociceptive input through the recruitment of inhibitory interneurons in 

the substantia gelatinosa of the spinal cord thus modulating nociceptive input from the same 

spinal segment (main mechanism of the gate control theory (Melzack and Wall, 1965). 

 The Aδ fibres are, to a lesser extent compare to Aα/β fibres, thinly myelinated fibres 

with intermediate velocity. Depending on the specificity of their response to stimulation, Aδ 

fibres can be divided into two types (Treede et al., 1998): On one hand, the mechano-heat 

nociceptors which mainly respond to intense and potentially harmful mechanical and heat 

stimulation, and on the other hand the polymodal Aδ fibres which respond both to mechanical, 

thermal, and chemical stimulation. However, it has been shown that the mechanonociceptor Aδ 

fibres neuronal activity may lead to hyperalgesia through the increase of their discharge resulted 

from thermal stimulation. In addition, the Aδ fibres are considered to be responsible for the first 

pain sensation, pricking pain, sharpness, and transient sensation (Basbaum et al., 2009). 
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Furthermore, Aδ fibres can also be subdivided into two main classes depending on their 

neuronal activity: Type I (HTM: high threshold mechanical nociceptors) responds to both 

mechanical and chemical stimuli with a relative high heat thresholds (>50°C, (mediated by 

vanilloid receptor-like protein 1 (TRPV1) receptors and more recently TRPM3 (Vriens et al., 

2011) and the calcium-activated chloride channel ANOI (Cho et al., 2012)) (Basbaum et al., 

2009). Nevertheless, if the heat stimulus is maintained, these afferents will respond at lower 

temperatures and then will sensitize (i.e., the heat or mechanical threshold will drop) in the 

setting of tissue injury, whereas type II Aδ nociceptors have a much lower heat threshold with 

a very high mechanical threshold.  

 The C fibres, which consist of the smallest, unmyelinated, and most slowly conducting 

fibres, are also heterogeneous and mostly polymodal (including population both heat and 

mechanically sensitive CMHS (Perl, 2007) and represent the major part of the sensory afferent 

input and are mostly mobilized by nociceptive stimulation including the ability to be activate 

by action potential activity in another fibre termed coupling (Meyer et al., 1985). Most of them 

respond also to chemical stimuli in addition to noxious mechanical and cold/heat (“hot burning 

sensation”) stimuli (Davis et al., 1993). Moreover, data from C fibres in humans suggest that 

C-fibre activity is associated with a prolonged burning sensation. However, they are also 

involved in non-nociceptive somatosensory information such as in the sensation of pleasant 

touch mediates (Liljencrantz and Olausson, 2014; Kambrun et al., 2018) by C-tactile fibre (C-

LTMR) which are low-threshold mechanoreceptors with small receptive fields (Wessberg et 

al., 2003) found in hairy skin and responding to slow and light stroking (Vallbo et al., 1999); 

and itchy skin called pruritus (Ständer et al., 2003), “paradoxical heat” (Campero et al., 2009). 

  

ii.Biphasic sensation of pain: first and second pain sensation 

 The combined activation of these two groups of afferents, such as by an intense brief 

heat stimulus, results in a dual-pain sensation as Aδ fibres convey the rapid-onset first pain 

sensation, a pricking pain, leading to a nociceptive withdrawal reflex. Whereas C fibres mediate 

the slower-onset, burning second pain sensation following intense heat stimulation to the skin 

and leading to a diffuse deep pain sensation (Meyer and Campbell, 1981). Combined, Aδ- and 

C-fibre nociceptors transduce and transmit sensitive information to the central nervous system 

(CNS) concerning the intensity, location, and duration of noxious stimuli (Figure 12).  

 



37 
 

Introduction 

 
Figure 12 : First and second pain following an intense heat stimulus on hairy skin. A stepped heat stimulus (a), on hairy skin, 

is firstly signalled by Aδ fibres (A fibre type II), It leads to a dual pain sensation, an intense pain followed after a pause by a 

burning pain (e). Heat stimuli nearby pain threshold trigger two classes of nociceptors on hairy skin, Aδ fibres and C fibres 

(mechano-heat-sensitive afferents, CMHs) (b). The signal reaching the central nervous system (CNS) is both delayed and 

broader than the signal at the receptor terminals. The Aδ fibres which have a faster conduction velocity reach the CNS faster 

than the C-fibres, resulting in the broadening of the nociceptive signal (Ringkamp and Meyer, 2009), 

 

iii. detection of nociceptive stimuli: 

 Based on the description of Sherrington about a century ago, nociceptor is a sensory 

receptor defined by the IASP (IASP, 2019a) as “a high-threshold sensory receptor of the 

peripheral somatosensory nervous system that is capable of transducing and encoding noxious 

stimuli”. They are free nerve endings present more or less everywhere in the body notably in 

the skin (both in the epidermis and the dermis), muscle, blood vessel (inner layers of the blood 

vessel wall), bones (marrow and the periosteum), joints (capsule, synovium, the ligaments and 

the tendons) and internal organs (loosely and unevenly distribution), except the brain (Willis 

and Coggeshall, 2012) with a variation in terms of density of innervation between as well as 

within tissue. Most of these free ending fibres are polymodal and respond to different 

modalities, including mechanical (pinching, piercing or biting), thermal (warmth or cold), and 
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chemical stimulation (Figure 13) (Meyer, 2013; Wang et al., 2018). Different types of receptors 

are sensitive to these specific stimuli: mechanical (involving MDEG, DRASIC, TREK-1 

receptor), chemical (TRPV-1, ASIC, DRASIC receptor), thermal (involving TRPV1-2-3-4 

receptors for the heat and TRPM8 and TRAP1 receptors for the cold) (Scholz and Woolf, 2002) 

 

Figure 13 : Illustration of the activation of nociceptor resulting from tissue inflammation. Tissue inflammation leads to the 

release of a number of proinflammatory mediators that can excite and sensitize nociceptors. (Scholz and Woolf, 2002).  

Second, receptor activation usually results in the depolarization of the peripheral 

terminal. Depending on the intensity of the depolarization, the fourth element is an action 

potential that transmits information all along the peripheral nervous system to the central 

nervous system (Figure 14 & 15). Peripheral sensory neurons (first-order neurons), with their 

cell bodies remaining in the dorsal root ganglia, transmit impulses from the site of transduction 

at their peripheral terminal to the spinal cord where the central terminals contact second-order 

neurons. Second-order neurons located in the spinal cord constitute the second component in 

the transmission network. These cells send ascending projections to diverse supraspinal 

structures such as thalamus and various brainstem and diencephalic structures. Finally, 

brainstem and diencephalon neurons project to various cortical sites including somatosensory 

cortices (SI, SII) and limbic structures such as the anterior cingulate cortex (ACC). At this level, 

final stage of the nociceptive process, noxious neural activity in the somatosensory transmission 

pathway results in a subjective sensation of pain (due to the convergence of nociceptive and 

normal somatic sensory information in the same area). Phenomenon described as perception. 
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However, all along pain transmission, alterations may occur on the neural activity, phenomenon 

known as pain modulation. Pain modulation is particularly important at the level of the dorsal 

horn of the spinal cord where second-order neuron activity is modulated by either excitatory or 

inhibitory influences. I will present modulatory aspects in afferent fibres and second-order 

neurons. 

   
Figure 14 : Representation of nociceptive pathways from the peripheral nociceptor activator to the brain through four different 

processes, transduction, transmission, modulation, and perception of pain. Pain results from nociceptive (but also 

inflammatory, or neuropathic not described here) mechanisms that occur in the periphery. Activation of specific receptors 

located on the nociceptor results to the transduction of noxious thermal (cold and heat), chemical, and mechanical stimuli 

(Scholz and Woolf, 2002) Ascending afferent and descending modulatory pathways are shown. PAG, Periaqueductal gray; 

RVM, rostral ventromedial medulla; SI somatosensory cortex I. (adapt from Benzon et al., 2018) 
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Figure 15 : Efferent actions of nociceptors. A noxious stimulus at the nociceptor terminals leads to action potentials 

propagation from the nociceptive fibres not only to the central nervous system but also antidromically into peripheral branches 

resulting in the release of neuropeptides such as neurokinin A (NKA), substance P and calcitonin gene-related peptide (CGRP). 

These neuropeptides released can then stimulate epidermal cells (with proliferation of keratinocytes) (1) and immune cells (or 

degranulation of mast cell) (2) or lead to vasodilatation (3), plasma extravasation (4), and smooth muscle contraction (5). 

(Artwork by Ian Suk, Johns Hopkins University(McMahon and Meyer, 2013)) 

 

iv.Peripheral sensitization: primary hyperalgesia 

 When tissue damage occurs, it results in an increase in the responsiveness of nociceptor 

called sensitization. Various substances such as potassium, prostaglandins, histamine, or 

bradykinins (pronociceptive compound) are released, inducing an immune response (Figure 

16). Together, inflammatory and immune factors will lead to the sensitization of the nociceptor 

(peripheral sensitization) directly within the lesion and in the surrounding neurons (Fischman 

et al., 2010; Chiu et al., 2012). Sensitization following the release of these factors results in a 

pain enhancement at the site of injury termed primary hyperalgesia (Lewis, 1935), which is 

manifested as a leftward shift of the stimulus-response function that relates the magnitude of 

pain to stimulus intensity  (Figure 17).  
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Figure 16 : Potential peripheral sensitization mechanism after inflammation (Meyer, 2013). At the peripheral terminal, 

activation of nociceptor by inflammation and/or tissue injury lead to the release of numerous chemicals mediators (such as 

H+, purines (adenosine, ATP), NGF, cytokines (TNF-α) and interleukins (IL-1β, IL-6), LIF, PGE2, bradykinin, histamine, 5-HT, PAF, 

and endothelin) from non-neuronal and neuronal cells that may alter the sensitivity of peripheral nerve terminals directly  or 

indirectly (via coupling to one or more peripheral membrane-bound receptors, respectively including ASICs, K2P, and TRP 

channels,  GPCRs , P2X and RTK receptors). Ligand binding to these receptors may induce a cascade of events that includes 

activation of second-messenger systems (PKA and PKC) and alters gene regulation. (Artwork by Ian Suk, Johns Hopkins 

University; adapted from (Woolf and Costigan, 1999).5-HT, serotonin; ASICs, acid-sensitive ion channels;  ATP, adenosine 

triphosphate; CRH, corticotropin-releasing hormone; GIRK, G - protein-coupled inward rectifying potassium channel; IL-1β, IL-

6, interleukins ; H+, proton; K2P, two-pore potassium channels IL - 1 β, interleukin - 1 - beta; IL - 6, interleukin - 6; LIF, leukemia 

inhibitory factor; μ, mu-opioid receptor; M 2, muscarinic receptor; mGluR, metabotropic glutamate receptor; NGF, nerve 

growth factor; PAF, platelet-activating factor; PGE 2 , prostaglandin E 2 ; PKA, protein kinase A; PKC, protein kinase C; SSTR2A, 

somatostatin receptor 2A; TNF - α , tumor necrosis factor-alpha; TrkA, tyrosine kinase receptor A; TRPV1, transient receptor 

potential vanilloid 1; TTXr, tetrodotoxin-resistant sodium channel 
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Figure 17 : Concept of hyperalgesia and sensitization. The concept of hyperalgesia is characterized by a leftward shift of the 

stimulus-response function that relates the magnitude of pain to stimulus intensity including a decrease in pain threshold, an 

increase in pain in response to suprathreshold stimuli and spontaneous pain. Whereas sensitization is characterized by a 

leftward shift in the stimulus function that relates the neural response to stimulus intensity including a decrease in threshold 

for response, an increase in response to suprathreshold stimuli and spontaneous activity  (illustration from (Ringkamp and 

Meyer, 2009). 

 

v.Target of primary afferent:  the dorsal horn second-order neurons 

  Gross description of the dorsal horn  

 Considered as the first relay of incoming sensory information including integration and 

processing, the dorsal horn of the spinal cord has been divided into three broad regions: the 

marginal zone, the substantia gelatinosa and the nucleus proprius. Based on cytoarchitectural 

criteria (Rexed, 1952, 1954), the grey matter of the dorsal horn (which is mostly made up of 

multimodal neurons varying in size) is divided into six laminae (I to VI), including functional 

differences in dorsal horn neurons (DHNs) both in different and within laminae as well as in 

different projection patterns (Figure 18). Moreover, in each lamina of the spinal dorsal horn, 

cells, axons and terminals ending have a distinctive chemical profile, which has been shown to 

change following a lesion (Willis and Coggeshall, 1991). Besides this description, the dorsal 

horn of the spinal cord encompasses the final arborisation and endings of primary afferent fibre; 

local circuit neurons (excitatory and inhibitory interneurons); projection neurons to the brain 

(nociceptive and non-nociceptive second-order neuron); propriospinal neurons, which 

interconnect different levels of the spinal cord; and descending axons from several supraspinal 

sources. 
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Figure 18 : Rexed’s description of the spinal cord laminae. Within Dorsal horn gray matter encompasses laminae I to VI (or 

posterior grey column;(Carpenter, 1985; Cramer et al., 2014)) whereas laminae VIII to IX  is associated with the ventral horn 

(or anterior grey column). Laminae VII and X  constitute the lateral grey column with laminae X surrounding the central canal 

and laminae VII more lateral including intermediomedial nucleus, intermediolateral nucleus, posterior thoracic nucleus in the 

thoracic and upper lumbar region. Lamina I termed the marginal zone contains a high density of projection neurons processing 

nociceptive information including nociceptive-specific neurons (excited solely by nociceptors) and wide dynamic range 

neurons (also in lamina V–VI) (responded to both nociceptive and mechano-heat-receptive input). Lamina II called the 

substantia gelatinosa which can be distinct between lamina II-outer (IIo) and lamina II-inner (Iii) also receive major input from 

both nociceptive and nonnociceptive neurons. As regard with lamina III, it is neuropil present similarity with lamina II but has 

slightly larger cells and myelinated axons with low-threshold (including proprioceptors). Deeper Laminae IV and V are 

characterized by neurons of various sizes (prominent large cells for one and longitudinally oriented myelinated axons for the 

other). Lamina VI, presented only in cervical and lumbosacral enlargements, constitute a transition zone between the primary 

afferent-dominated dorsal horn and the ventral horn, with descending input predominating the mainly receive Low-threshold 

muscle afferents and both low- and high-threshold cutaneous. Nevertheless, a population of neurons (nociceptive and WDR) 

responding to noxious mechanical and thermal stimuli has been reported in the vicinity of the spinal cord central canal in 

lamina X (Honda, 1985; Honda and Perl, 1985) 

 

 Primary afferent targets 

 Incoming afferent fibres of all types (Table 2), establish a complex web of connections 

with DHNs, triggering a plastic pattern of excitatory and inhibitory inputs that determines the 

firing of DHNs mediate spinal reflex responses and projections to higher brain areas. With 

regard to Aδ and C fibres that convey the nociceptive signal to the spinal cord, they have first 

synaptic contacts with second-order neurons, in the superficial zones of the dorsal horn (I, II) 
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and deep lamina V (Fields, 1987). Also these afferents also make synaptic contact with an 

important network of inhibitory and excitatory interneurons that modulate the nociceptive 

signal before DHNs that project to superior brain centres. Regarding Aδ nociceptors, they 

project to lamina I as well as to deeper dorsal horn (lamina V) whereas  low threshold, rapidly 

conducting Aβ afferents, which respond to light touch, project to deep laminae (III, IV, V and 

to a lesser extent lamina II, notably the distal part of the arbours of hair follicle afferents (Brown 

and Fyffe, 1981)). By contrast, C nociceptors project more superficially to laminae I and II with 

some extension to laminae III (Gobel et al., 1981; LaMotte, 1977) (Figure 19). In addition, 

electrophysiological approaches demonstrate that DHNs within lamina I are generally 

responsive to noxious stimuli (through Aδ and C fibres), DHNs in laminae III and IV are 

primarily responsive to innocuous stimulation (via Aβ), and DHNs in lamina V receive a 

convergent innocuous and noxious input via direct (monosynaptic) Aδ and Aβ inputs and 

indirect (polysynaptic) C fibres inputs (Table 3). These second-order neurons can be divided 

into two distinct population: the nociceptive specific neurons and the wide dynamic range 

(WDR) neurons (Guilbaud, 1997; Meyer, 2006; Terman, 2001). 

Table 2 : Classification of nerve fibres depending on morphological characteristic, conduction velocity and type of nerve 

transmission  (adapt from (Gasser, 1941; Lloyd, 1962)) 

Muscle 

nerve 

Cutaneous 

nerve 

Myelination Avg. 

fibre 

diameter 

(µm) 

Avg. 

Velocity 

(m/s) 

Receptive field 

quality/ Receptor 

type 

I Aα Thick 12-20 72-120 Proprioceptive 

function / 

Proprioceptors  

(Muscle spindle, Golgi 

tendon organ)  

https://en.wikipedia.org/wiki/Proprioceptors
https://en.wikipedia.org/wiki/Muscle_spindle
https://en.wikipedia.org/wiki/Muscle_spindle
https://en.wikipedia.org/wiki/Golgi_tendon_organ
https://en.wikipedia.org/wiki/Golgi_tendon_organ
https://en.wikipedia.org/wiki/Golgi_tendon_organ
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II Aβ Medium 6-12 30-75 Small touch/ 

mechanoreceptor 

(Merkel nerve ending, 

Tactile corpuscle, 

Lamellar corpuscle, 

Bulbous corpuscle) 

III Aδ Thin 1-5 4,36 Small, sharp, first pain/ 

Mechano-nociceptor 

(Free nerve ending)  

IV C None 0,4-2 0,5-2 Large, dull/ nociceptor 

(Free nerve ending)  

 

 
Figure 19 : Afferent fibres terminations in the spinal cord. Large fibres (Aα and Aβ) enter in the medial division and small 

fibres (Aδ and C) enter in the lateral division of the dorsal root (Waxman, 2017).  

 

 

https://en.wikipedia.org/wiki/Merkel_nerve_ending
https://en.wikipedia.org/wiki/Merkel_nerve_ending
https://en.wikipedia.org/wiki/Tactile_corpuscle
https://en.wikipedia.org/wiki/Tactile_corpuscle
https://en.wikipedia.org/wiki/Lamellar_corpuscle
https://en.wikipedia.org/wiki/Lamellar_corpuscle
https://en.wikipedia.org/wiki/Lamellar_corpuscle
https://en.wikipedia.org/wiki/Bulbous_corpuscle
https://en.wikipedia.org/wiki/Bulbous_corpuscle
https://en.wikipedia.org/wiki/Bulbous_corpuscle
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Table 3 : Afferent fibres ending in the dorsal horn based on (Woolf et al., 1992) 

Afferents Terminal zones in dorsal horn 

Large diameter myelinated Aα/β-fibres III, IV and V 

Small diameter myelinated Aδ-fibre I and V 

Unmyelinated C-fibres II and III 

 

 Nociceptive second-order neurons 

 Second-order neurons are classified according to electrophysiological criteria such as 

responsiveness to cutaneous and deep tissue stimuli and the pattern of response elicited: Class1 

neurons or low threshold neuron if excited only by innocuous stimuli, class 2 or wide dynamic 

range neuron / convergent neurons (WDR) if excited by both innocuous and noxious stimuli 

and class 3 or high threshold/ nociceptive-specific neuron (NS) if excited only by noxious 

stimuli (Figure 20). In terms of nociception, we will mainly focus our attention on two types of 

spinal second-order nociceptive neuron (which are also projecting neurons): the nociceptive-

specific neuron (NS) and the wide dynamic range neuron (WDR).   

 Nociceptive-specific neurons respond only to noxious stimulation under physiological 

conditions. They are mostly found in the superficial laminae of the dorsal horn (I and II) and 

are mainly recruited by Aδ or C primary afferent fibres. Depending on their recruitment by Aδ 

or the combination of Aδ and C fibres they can be divided into subclasses: NS responsive only 

to noxious heat and pinch; polymodal nociceptive neurons, responsive not only to noxious heat 

and pinch but also to innocuous and noxious cold (HPC) (Craig, 1994; Dostrovsky and Craig, 

1996; Han et al., 1998).  
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Figure 20 : Single unit recording from NS neuron in the rat lumbar cord showing responses to stimuli applied to the centre of 

the hind paw. Mainly high noxious pressure induces a high level of firing while applications of needle or brush evoked  weak 

or no response (data from Light et al., 1979) 

 Wide dynamic range or convergent neurons are mostly found in deeper laminae of the 

dorsal horn (III to V) and to a lesser extent in the superficial laminae. WDR receive input from 

both nociceptive Aδ or C fibres as well as low-threshold Aβ fibres and hence are activated by 

both innocuous and noxious stimuli and include interneurons involved in polysynaptic reflexes 

(Figure 21). They constitute a volume of information, determined by the intensity, duration and 

area stimulated. Interestingly, these neurons are believed to play a key role in pain, indeed, in 

animal models, it has been shown that inflammatory pain leads to multiple modifications of 

WDR properties such as change in the receptive field, the neuronal discharge frequency and 

neuronal membrane permeability to ion exchange, all suggesting to play a role in the chronicity 

of pain (Le Bars, 2002). Finally, they are the main output of the dorsal horn network and they 

represent a good image of dorsal horn network activity. In the present manuscript, we will focus 

on WDR neurons regarding our electrophysiological approaches. 
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Figure 21 : A Ratemeter recording from a WDR neuron in the rat lumbar cord WDR neuron showing responses to stimuli 

applied to the centre of the hind paw. Light pressure induce a high level of firing while applications of radiant heat (indicated 

by a fire illustration) evoked increasing responses depending on the temperature within the noxious range data from (Le Bars 

and Chitour, 1983). 

 

 Spinal sensitization: secondary hyperalgesia 

 At the level of the dorsal horn, an increased volley of nociceptive information from 

primary afferent fibres to the second-order neuron (NS and WDR mainly) triggers a prolonged 

but reversible increase in the excitability and synaptic efficacy of these neurons termed central 

sensitization (Woolf, 2011). Phenomenon describes by the IASP as “Increased responsiveness 

of nociceptive neurons in the central nervous system to their normal or subthreshold afferent 

input” (IASP, 2019a), and may be characterised by distinct mechanisms including those 

triggered by shorter-lasting activity such as wind-up and heterosynaptic potentiation and those 

triggered by both alterations in microglia, membrane excitability, gene transcription which can 

contribute to long-lasting effects such as long term potentiation (Sandkühler, 2007; Vardeh et 

al., 2016).      

  Regarding the homosynaptic potentiation, wind-up is described as a progressive 

increase in neuronal discharge in response to repetitive and low-frequency nociceptive 

stimulations (Mendell, 1966; Fossat et al., 2007) (Figure 22). Different mechanisms lead to the 

expression of windup. It can be presynaptic due to an increase calcium level in afferent 

terminals, or postsynaptic due to activation of SP (NK1) receptors or NDMA receptors, but also 

due to intrinsic properties of WDR neurons (Reali et al., 2011; Edmondson, 2017). 
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Figure 22 : Windup of a DHN in response in the rat lumbar cord to repetitive stimulation of the sural nerve region (dots) (data 

from Fossat et al., 2007). 

 

 Spinal cord heterosynaptic sensitization is a phenomenon by which two different 

connections can elicit long term plasticity of the DHNs. Heterosynaptic potentiation lasts much 

longer than windup. Moreover, heterosynaptic potentiation induces a decrease in the threshold 

of the incoming stimuli shifting subthreshold inputs from nociceptors (Aδ and C fibres) and Aβ 

fibres into suprathreshold. These changes may lead to hyperalgesia (stimuli originating from 

Aδ and C fibres), allodynia (stimuli originating from Aβ fibres) but also secondary hyperalgesia 

induced by the recruitment of fibres outside the primarily injured area.  

One example of spinal cord heterosynaptic sensitization is long-term potentiation (LTP). 

Indeed, in the dorsal horn of the spinal cord, a persistent increase in synaptic strength following 

high frequency stimulation  (HFS, reflecting the discharge of a subtype of C-fibres at the 

beginning of noxious mechanical stimuli, (Handwerker et al., 1987)) or low frequency 

stimulation (LFS reflecting to discharge rates of C-fibres during peripheral inflammation (Puig 

and Sorkin, 1996)) at synapses of nociceptive nerve fibres (C-fibres) is consider to be a synaptic 

amplifier of nociception (Liu and Sandkühler, 1997; Sandkühler, 2007). 

 In addition, other mechanisms may also explain central sensitizations, for instance, 

alterations in post-translational processing (such as ion channels phosphorylation) and gene 

transcription, immune cell/glia activation, and disinhibition in spinal cord and/or brain may lead 

to a longer-lasting change in the dorsal horn neurons thus contributing to the persistence of 

hyperalgesia, allodynia and secondary hyperalgesia. 
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 Neuron-immune cell interactions are increasingly recognised as being a key for 

physiological and pathological processes in the central nervous system notably in the context 

of inflammation and neuropathic pain. Microglia in the spinal cord is activated in case of 

peripheral nerves injury leading to up-regulation of purinergic receptor P2X4. Activation of 

P2X4 receptors is responsible for release of brain-derived neurotrophic factor (BDNF). BDNF 

induces downregulation of KCC2 transporter in projection neurons and a chloride imbalance. 

This change in chloride equilibrium induces a phenomenon of disinhibition where GABA 

inputs are not inhibitory and this bring about hyperexcitability in the dorsal horn of the spinal 

cord. (Coull et al., 2005; Price et al., 2005; Doyon, 2011; Gagnon et al., 2013; Kaila et al., 

2014), Figure 23. The role of P2X4 in DHNs hyper-excitability has also been observed in a 

model of persistent inflammation (Figure 24; Aby et al 2018). 

 
Figure 23 : Role of Cation Chloride Cotransporters KCC2 in the regulation of Cl− reversal potential.  In adult dorsal horn neurons 

in physiological condition, the extrusion of Cl− through KCC2 maintains the anion reversal potential hyperpolarizing. However, 

disruption KCC2 expression/activity following peripheral nerve injury causes an outflux of Cl− in the cytosol which inverts the 

anion flux upon GABA-A or glycine receptor activation, and thus reverses their action (Price et al., 2005) 
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Figure 24 : Electrophysiological consequence of a P2x4 receptor depletion in mouse  model of persistent pain, In vivo data 

shows that in persistent pain condition both (A) the amplitude of wind-up which is a form of sensitization to pain that is not 

expressed by peripheral fibres and thus restricted to the dorsal horn, and (B) the intensity response curve (IR) are decreased 

in P2RX4 -/- mice as compared to WT mice. 001). P2RX4-/-, mutant mice deleted from P2X4 receptor; WT, wild-type (data 

from (Aby et al., 2018). 

 
 Endogenous pain modulation mechanism 

 At the level of the dorsal horn of the spinal cord, fibres coming from different brain 

areas modulate pain transmission. The concept of modulation refers to the mechanism by which 

pain is suppressed or increased within the dorsal horn of the spinal cord The existence of an 

endogenous control of pain  has been first observed earlier, during the World War II by Dr 

Beecher (Beecher, 1946) that noticed that there was no correlation between the amplitude of 

the wound and the pain sensation of injured soldiers. Three different mechanisms have been 

enlightened to control pain, the segmental inhibition, the endogenous opioid system, and the 

descending control. 
 

i.Segmental inhibition  

 In 1965, Melzack and Wall proposed the “gate theory of pain control,” which describes 

the ability of pain transmission from the Aδ and C nerve fibres to the dorsal horn to be blocked 

or diminished (Figure 25). To go further on the spinal gating mechanism, sensory information 

to spinal transmission neurons are carried via two classes of fibres, non-nociceptive information 

is transmitted via large diameter A-fibres while nociceptive information is transmitted via small-

diameter C-fibres (including Aδ fibres). The gating component is played out by interneurons of 

the substantia gelatinosa and they modulate input to the spinal transmission neurons through 

either presynaptic inhibition or facilitation of afferent fibres. Activity in large diameter A-fibres 

triggers substancia gelatinosa interneuron that, in turn, inhibits synaptic transmission in C-fibre 
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resulting in hypoalgesia. Moreover, activity in small-diameter C-fibres inhibits substancia 

gelatinosa interneuron and this disinhibition increases synaptic transmission resulting in 

hyperalgesia. In other words, one can “close the gate” by enhancing the output of the large-

diameter A-fibres. This led to the development of the TENS unit (transcutaneous electrical 

nerve stimulation). With such protocol, the activation of large myelinated Aβ fibres 

(touch/proprioception) inhibits nociceptive transmission. 

 
Figure 25 :  The gate control theory of pain (Melzack and Casey, 1968). Nociceptive signals conveyed by the peripheral C fibre 

inhibit the inhibitory interneuron in the substantia gelatinosa while propagating excitatory information to the spinothalamic 

tract. When mechanoreceptors are activated, the inhibition from the C fibre at the inhibitory interneuron is lowered, and the 

nociceptive signal to the spinothalamic tract is in competition with proprioceptive signals from the mechanoreceptors. + 

Excitatory synapse, − inhibitory synapse (Sufka and Price, 2002). 

  

ii.Endogenous opioid system 

 Observations in mammals of both opioid receptors concentrated in the brainstem 

(periaqueductal gray and ventral medulla) as well as in the spinal cord (lamina II of the dorsal 

horn) and production of endogenous compounds (enkephalins, endorphins, and dynorphin) that 

bind to these opioid receptors lead to the concept of Diffuse Noxious Inhibitory Controls 

(DNIC) where a localized nociceptive stimulation can produce a diffuse analgesic effect over 

the rest of the body, an analgesic approach known as counter-irritation (Marinelli et al., 2002; 

Fields, 2004; Lima et al., 2017), notably after inflammation (de Resende et al., 2011). Indeed, 

it has been shown that opioids receptors modulate the pain transmission by reducing the dorsal 
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horn neuron activity following nociceptive stimuli resulting in DNIC analgesia (de Resende et 

al., 2011).  
 

iii. Descending system 

 This system involving periaqueductal gray matter in the upper brain stem, the locus 

coeruleus, the nucleus raphe Magnus, and the nucleus reticularis gigantocellularis in the 

rostroventral medulla contributes to the descending pain suppression pathway and then inhibits 

ascending nociceptive information from the nociceptive pain pathway (Figure 26). The axons 

involved in this pathway descend down the bilateral dorsolateral funiculus and synapses in 

laminae I, II, and V of the spinal cord. Some of the common inhibitory neurotransmitters are 

serotonin as well as norepinephrine. Drugs that serve to block the reuptake of these 

neurotransmitters prolong their inhibitory action on the spinal cord neurons involved in pain 

transmission, leading to pain relief (Patetsos and Horjales-Araujo, 2016). This explains the use 

of serotonin-norepinephrine reuptake inhibitors and tricyclic antidepressants for their analgesic 

properties. Nevertheless, these drugs can cause due to improper drug tolerance or an acute drug 

intoxication from the patient, a pathologic state such as serotonin syndrome which is the product 

of the overactivation of both the central and peripheral serotonin receptors as a result of high 

levels of serotonin following inhibition of serotonin uptake, decreased serotonin metabolism, 

increased serotonin synthesis, increased serotonin release, and then activation of serotonergic 

receptors (Volpi-Abadie et al., 2013; Tschirdewahn and Eyer, 2019).  

 

 From here, to get more in detail in the comprehension of pain modulation, we will 

mainly focus our attention on the descending pain control notably those mediated by the 

brainstem with a focus on the raphe Magnus mainly and the periaqueductal gray. 
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Figure 26 : Schematic representation of pain modularity circuitry. Following a noxious stimulus, nociceptive information 

conveys by the noxious primary afferent will reach the dorsal horn of the spinal cord and then trigger the projection neuron. 

The projection fibres ascend contralaterally through the spinothalamic tract and then target the thalamus, and collateral 

projections also target mesencephalic nuclei, including dorsal reticular nuclei (DRt), the rostro ventral medulla RVM, and the 

midbrain periaqueductal gray PAG. Descending projections from the DRt are a critical component of the diffuse noxious 

inhibitory control (DNIC) pathway. Descending pain modulation is mediated through projections to the PAG, which also 

receives inputs from other sites, and communicates with the RVM as well as other medullary nuclei that send descending 

projections to the spinal dorsal horn through the dorsolateral funiculus (DLF). The noradrenergic locus coeruleus (LC) receives 

inputs from the PAG, communicates with the RVM, and sends descending noradrenergic inhibitory projections to the spinal 

cord. Antinociceptive and pronociceptive spinal projections from the RVM positively and negatively modulate nociceptive 

inputs and provide for an endogenous pain regulatory system. Ascending (red) and descending (green) tracts are shown 

schematically. Areas labelled “i–iv” in the small diagram correspond with labelled details of the larger diagram. (Ossipov et 

al., 2010) 
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B. RAPHE MAGNUS DESCENDING CONTROL 

Pain is closely controlled or modulated by the central nervous system (CNS). However, 

the intensity of the perceived pain is not necessarily proportional to the amount of stimulus 

under different conditions. Despite the fact that psychological factors contribute to the 

variability of pain, the most important underlying mechanisms responsible for the modulation 

of pain sensation are the existence of endogenous pain modulatory systems, in which brainstem 

descending pathways play a fundamental role (Millan, 2002a). The evidence of descending pain 

control came with the study Reynolds (Reynolds, D. V., 1969) who highlighted that focal brain 

stimulation of the midbrain periaqueductal gray (PAG) produced sufficient analgesia to allow 

surgery in rats without the use of chemical anaesthetics and later confirmed by Liebeskind and 

colleagues that quickly confirmed this finding and concluded that stimulation of the PAG 

activated a normal function of the brain: pain inhibition (Mayer, D. J. et al., 1971; Mayer, D. J. 

and Liebeskind, J. C., 1974). However, later evidence indicates that pain modulation is not 

limited to inhibition. Descending pathways also facilitate pain transmission at the spinal level 

(Ren, K. et al.,2000; Millan, M. J., 2002; Gebhart, G. F., 2004). Indeed, new lines of evidence 

suggest that the descending pathways exhibit dramatic plasticity and are actively involved in 

the development of persistent pain after tissue or nerve injury (Porreca, F. et al., 2002; Ren, K. 

and Dubner, R., 2002; Gebhart, G. F., 2004; Vanegas, H. and Schaible, H.-G., 2004).  

To date, the most well-characterized endogenous pain modulatory pathway involves a circuitry 

linking the midbrain PAG, rostral ventromedial medulla (RVM), and the spinal cord in which 

the first two is often viewed as the “back-bone” (Mason, 2005) 

 

 

1. The Periaqueductal Gray 

 The PAG comprises heterogeneous cell populations surrounding the Sylvius aqueduct 

with function to integrate sensory and motor responses (Bandler, R. and Shipley, M. T., 1994; 

Cameron, A. A. et al., 1995a; 1995b). It extends rostrally from the pericoerulear area of the 

pons to the opening of the third ventricle. Both the dorsal raphe nucleus ventromedial to the 

Sylvius aqueduct and the cuneiform nucleus lateral to the ventrolateral PAG are also considered 

a functional entity of the PAG for descending pain control (Jensen, T. S. and Gabhart, G. F., 

1988; Fields, H. L. and Basbaum, A. I., 1999). The anatomical studies highlight the importance 

of the midbrain PAG in descending pain modulation (Menetrey, D. et al., 1982; Hylden, J. L. 
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K. et al., 1986; Azkue, J. J. et al., 1998), PAG provides major input to most areas that are 

involved in endogenous pain control, including RVM (RMg), and to a lesser extent the spinal 

cord (Jensen, T. S. and Gabhart, G. F., 1988; Fields, H. L. and Basbaum, A. I., 1999). Moreover, 

the stimulation-produced analgesia induced by the PAG stimulation was limited to nociceptive 

processing and could not be explained by more gross stimulation produced deficits in sensory 

or motor function. Additionally, it eliminates behavioral and spinal dorsal horn neuronal 

responses to noxious stimuli including electric shock applied to the tooth pulp or limbs, noxious 

heating of the tail and hind paws, noxious pinching of the limbs, and injection of irritants into 

the viscera (Sessle, B. J. et al., 1981; Dostrovsky, J. O. et al., 1983; Gebhart, G. F., 1988). 

Stimulation mediating analgesia inducing antinociception from the PAG also involve a spinal 

release of 5-HT and NE, and both spinal 5-HT receptors and α2 adrenoreceptors (Camarata and 

Yaksh, 1985). However, in particular conditions, the PAG can also mediate descending 

facilitation of the nociception (Vanegas and Schaible, 2004; Zambreanu et al., 2005). Moreover, 

inactivation of the RVM prevents the antinociceptive effects of stimulation of the PAG, 

indicating that the connection from the PAG (dorsomedial, lateral and ventromedial column) to 

the RVM is the neuroanatomical basis for descending modulation of nociception by the PAG. 

In addition, depending on the site of stimulation, the antinociception evoked will be associated 

with different behaviour. Indeed, antinociception produced by stimulation of the ventrolateral 

PAG is often accompanied by immobility (related to a defensive fear response such as freezing) 

both mediated by glutamatergic neurons (Lau and Vaughan, 2014; Tovote et al., 2016a). Indeed, 

it has been shown that the vlPAG contains diverse subpopulations of neurons (inhibitory and 

excitatory interneurons) including somatostatin (which we have proposed to study in my thesis) 

with distinct neurochemical properties that regulate excitatory and inhibitory neurotransmission 

and then plays critical and complex roles in processing nociception (Brenner et al., 2012; 

Samineni et al., 2017) 

 PAG–RVM projection neurons express neuropeptides, excitatory amino acids, and 

serotonin. Functional studies involve excitatory amino acids, endogenous opioids, and 

serotonin in the recruitment of the RVM by the PAG to produce antinociception.  

 
 

2. Nucleus Raphe Magnus (RMg) of the RVM 

 The RMg can be considered as the brainstem output from the PAG-RVM system, 

receiving a dense innervation from the PAG and projecting to the dorsal horn through the 

dorsolateral funiculus. It is the primary relay in mediating the antinociceptive effects of 
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activation of PAG neuron. RVM neurons are likely to receive spinothalamic inputs, either 

through direct connections to their widespread dendritic arbours or relayed via other brainstem 

regions such as nucleus reticularis gigantocellularis or the PAG (Fields and Basbaum, 2005). 

The primary outputs from the RVM are thus descending projections to the dorsal horn, both 

directly and via the mesopontine tegmentum. Earlier it has been shown that electrical 

stimulation of the RMg produces strong antinociception that can be reversed by intrathecal 5-

HT receptor antagonists but also NE antagonists and GABA antagonists (Pertovaara, 2006; 

Dogrul et al., 2009; Ossipov et al., 2010). However, low-intensity electrical stimulation of the 

RVM and infusions of neuropeptides and N-methyl-D-aspartic acid (NMDA) in this region 

have been shown by various groups to facilitate nociceptive processing (Neubert et al., 2004; 

François et al., 2017). Moreover, inactivation studies highlight lesions implicating the RVM in 

a variety of models of hyperalgesia and persistent pain following noxious stimulation of a 

remote body part, and in neuropathic pain models (Porreca et al., 2001; Vanderah et al., 2001) 

and consequently demonstrate a facilitating role of the RVM in a variety of enhanced pain state 

including neuropathies. One evidence to support the RVM bidirectional control is the neural 

composition of the RVM. Some of which can be identified as, based on the responses of RVM 

neurons to noxious stimulation, the OFF-cell (that are inhibited by noxious stimulation and 

excited by opioids) and ON-cell (that are excited by noxious stimulation and inhibited by 

opioids), both associated with the suppression (OFF-cell) and facilitation (ON-cell) of the 

nociception (Fields, 2004; Benarroch, 2014). In addition, there are other types of cells, 

identified as neutral cell including those containing 5-HT which is implicated in descending 

facilitation as well as descending inhibition of nociception (Suzuki et al., 2004). Then, RVM 

mediate both descending facilitation and inhibition, an important question is to determine when 

these different pathways are activated and if changes happened in different pathological 

contexts.   
 
 A plethora of transmitters have been shown to play a major role in descending pain 

control (Millan, 2002a; François et al., 2017; Yam et al., 2018). The most studied and 

established candidates include endogenous opioid peptides, noradrenaline, and serotonin (5-

HT). All these transmitters participate in inhibition and facilitation of pain transmission through 

their respective receptor subtypes. Our attention will be mainly focused on the 5-HT which is 

one of the first neurotransmitters identified as being involved in descending pain control, which 

exact role is still mattered of debate. 
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 The Serotonin 5-HT 

i.General introduction 

 
 

            

 Considered as the hormone of happiness, the 5-hydroxytryptamine; (5-HT) better 

known as serotonin (Figure 27), is one of the major neurotransmitters of the central nervous 

system (CNS). It is a monoamine widely distributed within the organism, synthesized both in 

the periphery nervous system (PNS) as a hormone (enterochromaffin cells in the gastrointestinal 

tract and to a lesser extent platelets (Mohammad-Zadeh et al., 2008) as well as Mast cell during 

inflammatory response (Meyer, 2013) and the CNS as a neurotransmitter (in serotonergic 

neurons) where it represents not more than 3 to 5% of the total of 5-HT (Mengod et al., 2006). 

Nevertheless, in the CNS, it is implicated in multiple modulating actions such as the regulation 

of mood and emotion, sleep/wake cycle, emesis, food intake, sexual behaviour, neurovegetative 

homeostasis and other cognitive functions  as well as migraine and nociception (Müller and 

Jacobs, 2010) whose current implication is well-established but with a role still unclear because 

of contradictory conclusions on antinociceptive or pronociceptive role. 

 

ii.Peripheral vs central 5-HT 

 Although present in both the PNS and the CNS, it is important to note that for the general 

belief, there is a compartmentalization of the 5-HT to the large benefit of the periphery carried 

Figure 27 : 5-HT chemical structure and its diverse involvement in the CNS (Backström and Winberg, 2017) 
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out by the brain-blood barrier (BBB) thereby preventing any transport from one compartment 

to another and ensuring the quantitative and qualitative stability of these two separate 

compartments. 

 At the peripheral level, 5-HT covering approximately 90 to 95% of 5-HT of the body, 

is mainly synthetized in the gut by enterochromaffin cells of the mucosa via mainly the 

tryptophan hydroxylase 1 (TPH1) and released into the bloodstream, where it is carried by 

circulating platelets (Rudnick, 1977; Hranilović et al., 1996; Walther et al., 2003) through the 

action of the membrane serotonin transporter SERT, which is also expressed on lymphoblast 

(Faraj et al., 1997), monocytes (Yang et al., 2007), enterochromaffin cells, endothelial cell 

(Wheatcroft et al., 2005) and placental syncitiotrophoblasts (Balkovetz et al., 1989). It (5-HT) 

is transported all over the entire vascularized tissues (and later metabolised by the liver) to act 

as a hormone with main function in haemostasis and other non-neuronal process such as 

cardiovascular, pulmonary and genitourinary system without forgetting an immunomodulatory 

role (modulation of cytokine secretion in monocytes/macrophages cell) (Arreola et al., 2015; 

Herr et al., 2017). Indeed, along with other pro-inflammatory mediators such as histamine, 

prostaglandins, bradykinin, leukotrienes, amines, purines, cytokines and chemokines, it is one 

of the constituents of  the “inflammatory soup”, which appears to play a major role in the 

cellular processes that lead to pain in case of inflammation or tissue damage (Hamon and 

Bourgoin, 1999) by an excitatory effect on peripheral nerve fibre. Notably, it has been shown 

that systemic administration of monoamine (subcutaneously or intravenously) reproducing the 

endogenous peripheral hyperalgesic action of the 5-HT leads to sensitization of the nociceptive 

primary afferents (Aδ and C fibres) and the nociceptive neurons located in the dorsal roots 

ganglia, from which these fibres are derived, thus contributing to a peripheral hyperexcitability 

which in turn leads to a hyperalgesia. (Sommer, 2004; Sasaki et al., 2006). Phenomenon, which 

is related to a rapid increase of the resting plasma 5-HT concentrations in the case of platelet 

activation at the site of thrombus formation or inflammation (Duerschmied et al., 2009; 

Mössner and Lesch, 1998). Pronociceptive effect which may be 5-HT receptors dependent. 

(Hamon and Bourgoin, 1999; Sommer, 2004; Sasaki et al., 2006; Godínez-Chaparro et al., 

2011).  

 At the central level, in spite of its small representation with regards to the periphery 

(only 3 to 5% of the 5-HT of the body), 5-HT as a neurotransmitter, innervates all the neuroaxis 

and thus modulates the activity of a wide variety of human brain processes, behavioural and 

neuropsychological processes such as mood, perception, reward, sleep cycles, aggression, 

appetite, learning (Veenstra-VanderWeele et al., 2000). However, 5-HT has also been 
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recognized to have a role in endogenous supraspinal pain-modulating systems (Basbaum and 

Fields, 1978) where its action remains the subject of much debate (Millan, 2002a). Indeed, 

through many experimental studies, it has been shown that brainstem stimulation, depending 

upon the stimulus parameters, can cause both analgesia (Yaksh and Wilson, 1979; Le Bars and 

Villanueva, 1988) and hyperalgesia (Zhuo and Gebhart, 1991) effects on the pain behaviour in 

animals, action both mediated by descending serotonergic pathway. One reason underlying this 

two-fold action of 5-HT may lie in the fact that there is a multiplicity of 5-HT receptors present 

both at the periphery and the central nervous system with opposite effect in terms of pain. For 

instance, it has been shown that changes in term of behavioural response as reply to thermal, 

mechanical or inflammatory noxious stimuli in mutant mice deficient in either type of 5-HT 

receptors can be sometimes weaker, sometimes stronger than those observed in wild type mice 

associated (i.e., of same genetic background) depending on the type of 5-HT receptors  target 

of the genetic mutation (Kayser et al., 2007; Brenchat et al., 2012) (Figure 28). 



61 
 

Introduction 

 

 

Figure 28 : Various effect of 5-HT on the peripheral (blue frame) and central nervous systems (yellow frame) adapt from 

(Berger et al., 2009). 5-HT, serotonin; AV, atrioventricular; CHF, congestive heart failure; CNS, central nervous system; HPA, 

hypothalamic-pituitary-adrenal; HTN, hypertension; IBS, irritable bowel syndrome; SIDS, sudden infant death syndrome. 

 

iii. Neuroanatomy of central 5-HT  

 Early formed during the embryogenesis (days 11-12 on gestational stage), the 5-HT 

system is proposed to play a role in the organisation of the developing nervous system 

(cytoarchitectonic organisation of the raphe for instance) notably by acting on neurite outgrowth 

and other neural differentiation function including the synaptogenesis (Lauder, 1990). In 

addition, a correlation has been highlighted between the lineage of the 5-HT-synthesizing 

neurons and the joint action of a cascade of transcription factors located caudally to the 

midbrain-hindbrain structured in two cellular clusters in rhombomeres 1 – 3 (giving rise to 

rostral raphe cluster) and 5 – 7 (giving rise to caudal raphe cluster) compartments (Alenina et 
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al., 2006; Kiyasova and Gaspar, 2011). Among them, Pet-1, which is a 5-HT specific 

transcription factor expressed in embryonic and adult serotonergic neurons (Hendricks et al., 

1999; Kiyasova and Gaspar, 2011) and thus, Pet1 represents the privileged candidate gene to 

be used in Cre recombinase/loxP-based strategies to specifically target serotonergic neurons 

(Scott et al., 2005a) Figure 29.  

 

Figure 29 : Development of raphe 5-HT neurons. Summarization of the transcription factors known to control region-specific 

differentiation in the hindbrain. In the rostral cluster of 5-HT neurons, Shh and Fgf8 control induction and activate via Gli2 

transcription factors: Nkx2.2+ Nkx6.1+ Gata2+Ascl1 ⁄ Mash1 in rhombomere 1 (in red) and Nkx2.2+ Gata2+Ascl1 ⁄ Mash1 in 

rhombomeres 2 and 3 (in blue). Lmx1b and Pet1 (in red) control the terminal differentiation for the dorsal raphe (DR) 5-HT 

neurons, whereas that in the median raphe (MR) is controlled by Lmx1b, Pet1 and Insm1 activated by Ascl1 ⁄ Mash1 (in blue). 

Transcriptional regulation of the 5-HT neuron development in the caudal cluster is regulated by Shh and Fgf4 during induction, 

Nkx2.2+ Gata3+Ascl1 ⁄ Mash1 during neurogenesis and Lmx1b, Pet1 and Insm1 for the terminal differentiation. Tph2 

expression (in situ hybridization) on coronal sections shows the rostral level containing the B7 DR and B8 MR, and a caudal 

level containing the B2 nuclei that arise from the caudal hindbrain cluster. r1–r7, rhombomere 1–7; vMN: ventral motor 

neuron (illustration from Kiyasova and Gaspar, 2011) 

 Organizationally, the cell bodies of serotonergic neurons are exclusively located in the 

brainstem (medulla and midbrain) and particularly in cluster of cells named B1 to B9, according 

to their caudorostral distribution (Dahlstroem and Fuxe, 1964) and were centred on the midline 

raphe nuclei, extending into the subnuclei of the lateral reticular formation, from which the 

axonal projections give rise to a dense axonal innervation to nearly all over the CNS (Figure 

30).  
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 Indeed, these neurons are divided into two populations. On one hand, a rostral group 

which includes 5-HT neuron of B5 to B9 nuclei, locates in the midbrain and rostral pons (caudal 

linear  B8 group; dorsal raphe nuclei  B6 and B7 groups; median raphe nuclei  B8 and 

B5 groups and dorsal limit of the medial lemniscus  B9 group), with a major projection 

targeted to the forebrain (cerebral cortex, olfactory bulb, hypothalamus, thalamus etc.) and to a 

lesser extent to the brainstem and with various afferent projection from lateral habenula, the 

medial septum and the diagonal band of Broca and the ventral pallidum as well as several 

hypothalamic projections (medial and lateral pre-optic areas, lateral, dorsal, ventral and 

posterior divisions of the hypothalamus), the ventral tegmental areas, the laterodorsal 

tegmentum nuclei, and the cingulate cortex using both GABA or glutamate as a 

neurotransmitter (Behzadi et al., 1990; Peyron et al., 1998; Lee et al., 2003, 2005a, 2005b). 

Also, there are ascending projections from RMg and RPA nuclei and glycinergic projection 

(ventral and ventrolateral periaqueductal gray neurons, medullary rostral paragigantocellularis 

and rostral ventromedial reticular nuclei neurons) (Behzadi et al., 1990; Wang et al., 1992; 

Rampon et al., 1999). And on the other hand, a caudal group, which includes 5-HT neuron of 

B1 to B4 bulbar nuclei located in the caudal pons and the medulla (raphe Magnus, obscurus 

and pallidus nuclei, lateral medullary reticular formation), with a major projection targeted to 

Figure 30: Serotonergic pathway in the CNS of rodents, serotonergic cell body location (B1 to B9) and their major projections.  

FC, frontal cortex; MFB,  Medial Frontal Bundle; SNR, Substantia nigra reticularis; SP, Spinal cord (Lesch and Waider 2012) 
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the spinal cord (Segu and Calas, 1978; Björklund and Skagerberg, 1982; Bowker et al., 1983; 

Kwiat and Basbaum, 1992; Mason, 1999) Table 4. It is important to note on one hand that both 

groups have projections to the brainstem and on the other hand the subnuclei of the serotonergic 

group have distinctive afferent and efferent connections, with some entities more related to the 

sensory, motor or limbic systems. Indeed, serotonergic neuron from B1 (raphe pallidus) and B2 

(raphe obscurus) nuclei are targeting particularly the ventral horn of the spinal cord (somatic 

motor nuclei, cranial phrenic, trunk and limb motor neurons (Arita et al., 1993, 1995; Li et al., 

1993; Ribeiro-do-Valle, 1997)), with projections featuring large varicosities and making direct 

synaptic contacts with the motoneurons (Ridet et al., 1993; Perrin et al., 2011), while the dorsal 

horn receives mainly afferents of B3 nuclei (nucleus Raphe Magnus RMg, lateral 

paragigantocellular nucleus, LPGi) with mainly small varicose fibres projections(Felten and 

Sladek, 1983; Azmitia and Gannon, 1986). In particular,  the RMg serotonergic projections 

mainly reach the III-IV and V layers of the dorsal horn, while those from the LPGi remained 

confined to the I and II superficial layers (Ridet et al., 1993; Millan, 2002b; Gautier et al., 2017) 

with the particularity of being unmyelinated for some and partially myelinated for the others. 

Also regarding to 5-HT varicosities, most of them were shown to set up symmetrical synaptic 

contacts with the shaft of either nearby or distant dendrites in both cats and monkeys (Ruda and 

Gobel, 1980; Ruda et al., 1982) but also, it is suggested that the majority of serotonin 

transmission occurs through non-synaptic contacts between serotonin terminal varicosities and 

their targets, involving control of a paracrine mode neurons of the dorsal horn (Ruda et al., 

1982; LaMotte and de Lanerolle, 1983). (see the illustration of type of contact Figure 31 and 

Table 5).  

 In addition, this caudal group receive afferent projections from several areas of the brain 

such as several hypothalamic nuclei, the dorsolateral periaqueductal gray, the central nucleus 

of the amygdala, the bed nucleus of the stria terminalis, and the medullary reticular formation 

(Zagon, 1993; Hermann et al., 1997). Indeed, RMg receives convergent input from the 

pneumotaxic area in the medial parabrachial area and the retrofacial nuclei (Gang et al., 1993). 

There are also converging inputs from visceral sensory afferents and ventrolateral 

periaqueductal gray matter neurons onto RMg, Rob and RPa midline raphe neurons (Snowball 

et al., 1997). And there is also a caudal projection from the DR on the RMg and Rob and LPGi 

(Vertes and Kocsis, 1994). 
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Table 4 : The different serotonergic cell group and their projection (Dahlstroem and Fuxe 1964) 
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Figure 31 : Conventional 5-HT neuron schematic representation. As illustrated above, from one single 5-HT neuron, several 

different anatomical regions (A, B, C) may be innervated, as well as its nucleus of origin (through recurrent collaterals of its 

axon). Small coloured dots represent different types of 5-HT varicosities in the different territories of innervation, which are 

spread on the axon all along the distal branches, as for the yellow dot some of them do not make any synaptic contact, 

whereas others are provided with junctional complexes. Green dots correspond to the zone of membrane specialization, either 

symmetrical (inhibitory synapse) or asymmetrical (excitatory synapse), which make a contact with dendritic branches. Blue 

dots correspond to those who make contact with the dendritic spines (more rarely) and red dots to those with juxtapositions 

to cell bodies. All these various configurations are anatomical territory dependent and also axonal branches dependent, what 

is the same for the vesicular content of 5-HT varicosities which may also vary from one anatomical region to another, and in 

some regions (Descarries and Mechawar, 2000). For instance, at the level of the spinal cord, projections from the ROb and 

RPa to motoneurons have large varicosities and make direct synaptic contacts with the motoneurons while those from the 

RMg and LGPi which project via a dorsolateral pathway provide small varicose fibres to the dorsal horn in particulars 

predominantly laminae III and IV (for RMG) and laminae I and II (for LGPi) both participating in dual control of nociception 

(C) 

(B) 
(A) 



67 
 

Introduction 

Table 5 : Estimation of 5-HT synaptic incidence (%)  in  spinal mammalian CNS  ( extract from Descarries et al., 2010) 

 

 

iv.5-HT synthesis and metabolism 

 In the CNS as well as on the periphery, 5-HT is synthesized from L-tryptophan, an 

indispensable amino acid which comes exclusively from the diet in humans as well as in rodents 

(Figure 32).  
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 After its absorption, tryptophan is carried in the blood where it is mostly linked to the 

seralbumin. In its free form, tryptophan crosses the blood-brain barrier (BBB) by means of an 

active amino acid transport system which depends upon the presence of glucose and insulin, in 

competition with leucine, lysine and methionine. And tryptophan is easily uptake by all CNS 

cells, particularly 5-HT neurons (Hamon, 1995). The biosynthesis of 5-HT (Figure 33) in the 

brain is directly influenced by the extracellular level of tryptophan. In the presence of oxygen 

molecules and tetrahydropterine (proton donor), tryptophan is first hydroxylated to 5-

hydroxytryptophane (5-HTP) by tryptophan-hydroxylase (limiting step of the 5-HT 

biosynthesis (Hamon, 1995)) which is available in two isoforms depending on their precise 

location, the tryptophan-hydroxylase 1 (TPH1) in the peripheral tissues, in particular entero-

chromaffin cells in the gastrointestinal tract and the tryptophan-hydroxylase 2 which is limited 

to 5-HT neurons (Côté et al., 2003); then, 5-HTP is further processed by decarboxylation to 5-

HT through an amino acid decarboxylase (an enzyme also involved in the decarboxylation of 

decarboxylating dihydroxyphenylalanine (DOPA; and expressed in all aminergic neurons 

(Hamon, 1995)).  

 Once synthesized, the cytoplasmic 5-HT is stored in synaptic vesicles at the presynaptic 

terminations of 5-HT neurons via the vesicular monoamine transporter 2 (VMAT2), an integral 

Figure 32 : Illustration of 5-HT synthesis from the diet to CNS and PNS. The circulating tryptophan is mainly bound to 

plasma protein so only free tryptophan is available to the large neutral amino acid transporter system (competitive 

facilitated transporter) which transports the essential amino acids across the blood brain barrier (BBB) adapt from 

(Marsden, 2010) 
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presynaptic protein that regulates the packaging and subsequent release of monoamine such as 

dopamine and 5-HT from neuronal vesicles into the synapse (Harriott et al., 2018) and does so 

through an electrochemical proton gradient, produced by an ATPase located in the synaptic 

vesicle membrane (Narboux-Nême et al., 2011). In terms of 5-HT release into extracellular 

space, it can be done in different ways, the most common being a membrane depolarization 

following the arrival of an action potential at the level of the presynaptic serotonergic nerves 

terminals, starting factor of the Ca2+-dependent vesicular serotonergic exocytosis (Reubi et al., 

1978). There is also a non-conventional mechanism that takes place on 5-HT nuclei. It is a 

somatodendritic 5-HT release involving cytoplasmic 5-HT and only partly dependant on Ca2+ 

(Hery et al., 1982; Adell et al., 1993). It may correspond to a paracrine and/or autocrine 

mechanism exerted by 5-HT via a 5-HT1A activation, an autoreceptor located at the level of 

somatodendritic compartment, on serotonergic neuron themselves (Lanfumey and Hamon, 

2004).  

 Once released into extracellular space, 5-HT binds to its receptors, found on the pre- or 

postsynaptic neuron and induces a cascade signalling leading to excitation or inhibition of the 

postsynaptic neuron. Each receptor delivers a signal to the soma of the neuron, which can, by 

its cumulative effect, generate firing (insofar as it tends to bring the postsynaptic membrane 

potential closed to threshold for generating action potentials) or a transient hyperpolarization 

(since it tends to bring the membrane potential away from threshold for generating an action 

potential) of the postsynaptic neuron. It is important to note that 5-HT receptor activity can be 

controlled both in terms of duration and intensity thanks to different mechanism of inactivation, 

thus allowing to finely regulate extracellular concentration of 5-HT. At least two distinct 

mechanisms, on one hand, the reuptake, especially in serotonergic fibres, and its enzymatic 

degradation by monoamine oxidases and on the other hand the negative feedback control. 

  The reuptake mechanism involves essentially 5-HT neurons and allows 5-HT release 

from the extracellular space to be pulled back into the cytoplasm of the 5-HT neurons, 5-HT 

can either be stored again in synaptic vesicles or degraded (Hamon, 1995). This reuptake 

mechanism involves a 5-HT specific Na+ /K+ electrochemical gradient-dependent transporter, 

the 5-HT transmembrane transporter (5-HTT or SERT), which is argued to be one of the main 

regulating mechanism of the 5-HT effect on the postsynaptic 5-HT receptor. It is primarily 

expressed in 5-HT neurons (presynaptic 5-HT nerves terminals, axon and cell bodies in the 

raphe) and to a lesser extent in glial cells where it may play a second line of control (Bel et al., 

1997; Hirst, 1998; Inazu et al., 2001). SERT contains 12 transmembrane domains, which is an 

important pharmacological target for antidepressives like the family of tricyclic antidepressives, 
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which blocks the recapture of 5-HT. Another mechanism for 5-HT inactivation is its enzymatic 

degradation by the monoamine oxidase A (MAO-A) and aldehyde dehydrogenase. The MAO-

A transforms 5-HT into 5-hydroxy-indole acetaldehyde via oxidative deamination following by 

the oxidisation of the 5-hydroxy-indole acetaldehyde by aldehyde dehydrogenase into 5-

hydroxyindolic acid (5-HIAA), the major metabolite of the 5-HT, which is eliminated via the 

urinary tract (Hamon, 1995). 

 The negative feedback control mechanism, for its part, involves 5-HT autoreceptors. 

Indeed, some lines of evidence suggests that both somatodendritic and nerve terminal 

autoreceptors take part in the control of 5-HT synthesis in 5-HT neuron. Notably the 

somatodendritic 5-HT1A autoreceptor, a nerve impulse-regulating autoreceptor controlling 5-

HT neuronal firing. Moreover, the axon terminal autoreceptor 5-HT1B, which, independently of 

the existing level of the 5-HT neuronal firing, may mediate suppression of 5-HT biosynthesis 

by adjusting the availability of 5-HT storage and release in the CNS (Bel et al., 1997). 
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Figure 33 : CNS 5-HT synthesis and catabolism adpat from (Bourgoin, Gautier, and Hamon 2017). The serotonin is synthetized in 

the neuron (1), then by means of the VMAT2 is stored at the nerve terminal into vesicles (2) and released by exocytosis into the 

synaptic cleft (3). At this level, the serotonin binds to post synaptic neuron receptors and initiates a signalling cascade to the cell 

body of the postsynaptic neuron (4). After the activation of the receptor, the serotonin may get taken back up into the presynaptic 

neuron (5a), get taken up by a neighbouring glial cell (5b) or get bound to 5-HT autoreceptor (5-HT1B at the level of 5-HT nerve 

terminal 5c or 5-HT1Aat the 5-HT somatodendritic level) (Adell et al., 1993; Hjorth et al., 1995) or may get diffused away from the 

synaptic cleft via extracellular fluid (5d). In the case of serotonin reuptaking, this is done through serotonin transporters (SERT, 

(Coleman, Green, and Gouaux 2016)), located along the presynaptic membrane, by a process of pulling back serotonin into the 

cell, where some of them gets reloaded into vesicles and will be reused  (Bear, Connors, and Paradiso 2007) and the others get 

broken down by the monoamine oxydase A (MOA A) and eliminating from the cell as 5- Hydroxyindoleacetic (5-HIAA , a 

metabolite; 7) 
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v.Source and projection patterns of 5-HT to the DH 

 As mentioned above, the vast majority of the serotonergic innervation of the spinal cord 

in humans and other species is derived from the serotonin neuron of B1 to B4 bulbar nuclei and 

only a modest proportion is from the DR which predominantly projects to the thalamus, dorsal 

hippocampus, striatum, cerebral cortex which also send few collaterals to the spinal trigeminal 

nucleus (Beitz, 1982; Li et al., 1997; Wang and Nakai, 1994). Indeed, the RVM and more 

specifically the RMg, are the main source of serotonergic input to the spinal cord (and 

trigeminal nucleus) (Björklund and Skagerberg, 1982; Bowker et al., 1983; Kwiat and 

Basbaum, 1992; Mason, 1999). Widespread co-lateralisation is displayed throughout the spinal 

cord, trigeminal nucleus and medullary nuclei by the serotonergic fibres (Bowker and Abbott, 

1990; Bowker et al., 1983), thus establishing an extensive network within the spinal cord with, 

especially, in laminae I/II (superficial laminae) which exhibit many varicosities whereas lamina 

IV/VI (deeper laminae) also present a dense network of serotonergic terminals (Basbaum and 

Fields, 1984; Maxwell et al., 1996; Stewart and Maxwell, 2000) Figure 34.  

 In addition, a plethora of axo-somatic and dendritic contacts of serotonergic terminals 

have been seen in the dorsal horn which for some of them have contacts between serotonergic 

terminals and projecting neurons (PN; Figure 35-1) projecting to different brain structure such 

as the thalamus and parabrachial nuclei (PBN) (Li et al., 1997; Millan, 1997). 

 Also, there is little evidence suggesting a juxtaposition between the serotonergic fibre 

and central primary afferent fibres (PAF, Figure 35-2) (Hamon and Bourgoin, 1999; Millan, 

1997). However, some facts suggest a non-synaptically modulation of PAF activity by volume 

transmission (Ridet et al., 1993) or, via local inhibitory interneurons (ININs, Figure 35-3) as 

an alternative, including enkephalins (ENK) and GABA/glycine-containing populations 

receiving input from descending serotonergic pathways (Fields et al., 1991; Millan, 1997; Ruda, 

1988; Tsuchiya et al., 1999). Moreover, considering the presence of individual classes of 5-HT 

receptors which either enhance or decrease neuronal activity and the different location of 

specific 5-HT receptor types on PAF terminals and PN (or excitatory interneuron) on one hand, 

and on ININs on the other hand respectively facilitating or relieving the passage of nociceptive 

information to the brain. All of these pieces of evidences provide information to better 

understand the complex pattern of pro-and antinociceptive actions of 5-HT in the DH. 
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Figure 34 : Distribution of the medullary serotonergic neurons projecting to DH (nucleus raphe Magnus (RMg), raphe obscurus 

(ROb), and raphe pallidus (RPa), and in the ventrolateral reticular formation, including lateral paragigantocellular reticular 

nucleus (LPGi)). Medullary serotonergic neurons send bulbospinal axons to all laminae of the spinal cord, with for the ROb and 

RPa 5-HT neuron, projection to the somatic motor nuclei including motoneurons of lamina IX and also to the IML and for the 

RMg projection to the dorsal horn and trigeminal nucleus caudalis and innervates laminae I, II, III and IV essentially. At the 

level of the spinal cord, 5-HT increases the excitability of motoneurons but has dual effects on nociceptive processing in the 

dorsal horn (antinociceptive or pronociceptive effect according to the receptor subtype and the pathophysiological state).  

Intermedioteral cell column (IML); Nucleus raphe Magnus (RMg); Raphe obscurus (ROb); and Raphe pallidus (RPa). (adapt 

from Benarroch, 2014) 
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Figure 35 : Simplified schematic representation of the 5-HT descending fibres in the spinal cord (Müller and Jacobs, 2010). 

Illustration of apposition between 5-HT descending terminal and PAF (1), WDR (2) and ININ (3) which suggests a biphasic 

action of descending 5-HT on the spinal cord depending on the receptors involved. ININ, inhibitory interneuron; PAF, primary 

afferent fibres; WDR, wide dynamic range projecting neuron. 
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vi.Co-localisation of 5-HT with other transmitters 

 As it has been shown in the dorsal raphe nucleus (Kirifides et al., 2001), additionally to 

the 5-HT synthesis, the RMg is constituted by multiple other classes of neurone synthesising 

acetylcholine (Ach), gamma-aminobutyric acid (GABA), thyrotropin-releasing hormone 

(TRH), glycine, somatostatin, SP, ENK, dynorphin (DYN), galanin (GAL) and/or CCK 

(Bowker et al., 1983; Hökfelt et al., 2000; Kwiat and Basbaum, 1992; Maxwell et al., 1996; 

Millan, 1997; Wu et al., 1993). Also, from a sub-population of 5-HT neurons projecting to the 

DH, a colocalisation between the 5-HT and certain of the neurotransmitters mentioned above 

has been shown, such as SP, thyrotropin-releasing hormone, GABA, DYN and ENK, which 

probably interact with 5-HT in the modulation of nociceptive processing upon their concomitant 

release in the DH. In addition, it has been shown that approximately 25% of 5-HT neurons 

targeting superficial laminae contain GABA, despite the fact that they are largely lacking in 

neuropeptides (Antal et al., 1996; Maxwell et al., 1996; Stamp and Semba, 1995). On contrary, 

in deeper lamina V, little evidences suggest the presence of  GABA in serotonergic fibres from 

which a sub-population contains SP, thyrotropin-releasing hormone and/or GAL (Bowker and 

Abbott, 1990; Maxwell et al., 1996). Clearly, whether they are co-localised with 5-HT or not, 

different transmitters contained in NRM-derived neurone projecting to the DH play an 

important role in the spinal modulation of nociceptive processing. Regardless of the amplitude 

of co-existence of 5-HT with other transmitters, considered that the antinociception effect 

elicited by stimulation of NRM as purely serotonergic would be erroneous. 

 

vii.5-HT receptors with regards to nociception 

  In the spinal nociceptive circuit, the role of 5-HT is complex and not yet defined (Figure 

36). Experimental evidence tends to show that 5-HT may exert either antinociceptive or 

pronociceptive effects, depending on the physiological or pathophysiological state of the 

nociceptive system and the type of 5-HT receptors involved (Viguier et al., 2013). Indeed, 5-

HT receptors can be found on terminals of primary afferent neurons as well as on projection 

neurons and excitatory and inhibitory interneurons.  
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Figure 36 : Schematic representation of the role of the multiple classes of 5-HT receptor on the modulation of nociceptive 

processing in the DH. On the left-hand side, mechanisms mediating descending inhibition are indicated and, on the right-hand 

side, those expressing descending facilitation are shown. Actions are exerted at terminals of primary afferent fibres (PAFs), 

projection neurones (PNs) and inhibitory interneurons (ININs). (representation from Millan, 2002b) 

 

 To date, fifteen types of 5-HT receptors belonging to seven receptors classes (5-HT1 to 

5-HT7) and exhibiting heterogeneity have been identified in human (Hannon and Hoyer, 2008). 

Except for the 5-HT3, which is a ligand-gated cation channel belonging to the nicotine/γ-

aminobutyrate (GABA) family (Faerber et al., 2007), all the others are G-protein-coupled 

receptors (Masson et al., 2012), Table 6. However, this classification has been defined on a 

pharmacological basis unrelated to the role of the downstream pathway.  

 

5-HT1 receptor 

 They are coupled to Gi/o, within the adenylyl cyclase (AC) is inhibited, potassium (K+) 

channels activated and voltage-gated Ca2+ channels inhibited. Generally, 5-HT1 receptors are 

considered to have an inhibitory effect, they are divided into 6 class (from A to F (Barnes and 

Sharp, 1999)) and are present in the dorsal horn of the spinal cord (Zemlan and Schwab, 1991).   

 Located in the soma and dendrites of 5-HT neurons, 5-HT1A receptors (the most studied 

in pain) act as inhibitory autoreceptors, reducing neuronal firing. They are found in the DH, 
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expressed postsynaptically mostly in lamina II, but also in deeper laminae (Hamon and 

Bourgoin, 1999), where 5-HT1A receptors influence upon nociceptive processing is mediated 

by direct actions both pronociceptive (Millan, 1997) and antinociceptive (Millan, 1997, 2002a; 

Jeong et al., 2012) at intrinsic DH neurones such as ININs and PNs (EXINs).  

 5-HT1B and its closely tied 5-HT1D receptor, in terms of their primary structure, patterns 

of cellular coupling and ligand binding profiles (Barnes and Sharp, 1999)), are located 

presynaptically both in serotonergic terminals (autoreceptors) and in nonserotonergic terminals 

(heteroreceptors), where they inhibit neurotransmitter release. In the DH, 5-HT1B receptors are 

mostly found postsynaptically to 5-HT fibres in laminae I and IV (Cortes-Altamirano et al., 

2018) where they act as inhibitory autoreceptors on serotonergic terminals (Millan, 2002a; 

Cortes-Altamirano et al., 2018)  

 The 5-HT1 family also includes the 5-HT1E receptor (knowledge about its physiological 

role is scarce) and the 5-HT1F receptors, which are expressed in presynaptic terminals (Castro 

et al., 1997; Hannon and Hoyer, 2008). Indeed, 5-HT1F location, in the spinal cord itself, appears 

to be confined to PAF terminals, rather than generated by intrinsic DH neurones (Bruinvels et 

al., 1994; Adham et al., 1997; Castro e t al., 1997; (Hamon and Bourgoin, 1999); Ma, 2001; 

Wu et al., 2001d).  

 

5-HT2 receptors 

 Composed of several subtypes, 5-HT2 receptors are coupled to Gq/11 (Hannon and 

Hoyer, 2008), within the phospholipase C (respectively for 5-HT2A or 5-HT2C) and the 

phospholipase A2 (for 5-HT2A) is activated, with a production of inositol triphosphate (IP3), 

causing a Ca2+ release from the endoplasmic reticulum, and diacylglycerol (DAG), activating 

protein kinase C, which inhibits several K+ channels (among other functions). 5-HT2 receptors, 

predominantly located postsynaptically, in PNs especially in laminae IIi  (D’Amico et al., 2013; 

Peirs et al., 2014; Alba-Delgado et al., 2018).  

 5-HT2A receptors, activated by selective agonists, are considered to facilitate the 

nociceptive transmission by increasing the dorsal horn neural activity (Thibault et al., 2008; 

Van Steenwinckel et al., 2008; Aira et al., 2012). Indeed, in inflammatory conditions,  5-HT2A 

appeared to be involved in the induction of mechanical hypersensitivity  (Alba-Delgado et al., 

2018). However, due to its location on inhibitory interneurons, 5-HT2A is also considered to be 

involved inhibition of the pain transmission (Xie et al., 2012). 
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 Regarding 5-HT2B receptors, their functional role in the modulation of nociceptive 

processing is not well-documented except that they are mainly expressed in the DH, with a little 

expression in rat DRG. 

 5-HT2C receptors, the second major subunits of 5-HT2 receptors, are expressed in the 

DH where it has been hypothesized that they may be produced by intrinsic DH neurons mainly 

in deep laminae (possibly on PNs). Their activation by specific agonists leads to an 

antinociceptive effect which involves GABAergic mechanisms. Moreover, 5-HT2C receptor are 

mostly located on GABAergic ININs, which transforms the expected excitatory effect 

following their stimulation in an inhibitory effect throughout the CNS. 

 

5-HT3 receptors 

 5-HT3 receptors are belong to a Cys-loop family of ionotropic receptors, which includes 

the nicotinic cholinergic, GABAA, and the glycine receptor. Also, they present two subunits 

(homomeric 5-HT3A and heteromeric 5-HT3A/5-HT3B) and are described as nonselective cation 

channels which elicit fast depolarization. Their presynaptic location increases neurotransmitter 

release whereas their postsynaptic location increases activity of both projection neurons and 

inhibitory interneurons. 5-HT3 receptors activation induces an entrance of Na+ and CA2+ in the 

cell and, conversely, an exit of K+. At the spinal level, they are located mainly in the superficial 

layer of the DH (Millan, 1997, 2002a), especially on C fibre sensitive to capsaicin as well as on 

GABAergic and ENK ININs (Xie et al., 2012) and on PNs (expressing NK1 receptor of 

substance P). These diverse locations both pre and postsynaptic at the spinal nociceptive 

pathway support the idea of the multiples effect led by the activation of 5-HT3 receptor (Xie et 

al., 2012; Tan et al., 2019) sometimes antinociceptive (Xie et al., 2012), via the release of 

GABA from GABAergic ININs expressing 5-HT3) sometimes pronociceptive (Tan et al., 

2019). However, blocking the 5-HT3 receptors elicited no significant modification of the dorsal 

horn neuron excitability in naïve mice (Green et al., 2000).  

 

Gross description of 5-HT4, 5-HT6 and 5-HT7 receptors 

 5-HT4, 5-HT6, and 5-HT7 receptors are Gs protein positively coupled to adenylate 

cyclase (AC); cyclic adenosine monophosphate (cAMP, which modulates cAMP gated 

channels) produced by the stimulation of these receptors, leads to the phosphorylation of several 

proteins mediated by protein kinase A such as K+ channels. These receptors are located both in 

the central and peripheral neurons and in other tissues such as the gut and the heart. In addition, 
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5-HT7 receptors are expressed postsynaptically, particularly in local interneurons of superficial 

laminae of the dorsal horn and presynaptically in peptidergic fibres, including nociceptive 

dorsal root ganglion afferents (Bardin, 2011; Bockaert et al., 2011).  

 5-HT4 receptors are located in the superficial region of the dorsal horn (laminae I/II). 

Indeed, some early evidence shows that 5-HT4 receptors synthesized in the DRG are transported 

to cutaneous and visceral terminals as well as on central terminals of nocisponsive PAFs in DH 

(Cardenas et al.,1997a; Doak and Sawynok, 1997; Espejo and Gil, 1998; Wu et al., 2001d), 

especially on the capsaicin sensible PAF terminals, suggesting their involvement in an 

antinociceptive presynaptic control via 5-HT from the periphery in inflammatory pain 

condition. A mechanism, which induces an inhibiting modulation of the spinal nociceptive 

transmission may involve the excitation of GABAergic ININs.  

 5-HT6 receptors have been shown to have a facilitatory influence on neuronal activity 

(Barnes and Sharp, 1999). Their anatomical distribution in regions such as the amygdala, the 

thalamus and the PAG, as well as in the superficial layer of the DH leads to postulate its 

probable involvement in the descending serotonin modulation where it considered having a 

pronociceptive action. 

 5-HT7 receptors, despite the lack of information regarding their role in nociception in 

the past, have recently been shown to have a role in the 5-HT modulation of the pain 

transmission. Early evidences suggest that 5-HT7 has a pronociceptive excitatory role on 

nociception (Rocha-González et al., 2005) while an antinociceptive role has been shown on the 

nociception (Brenchat et al., 2012). A duality of effects of 5-HT7 receptors sometimes 

pronociceptive sometimes antinociceptive, supports the idea of the existence of two populations 

of 5-HT7 receptors.       

 

5-HT5 receptors 

 To date, two subunits of the 5-HT5 receptors have been identified, 5-HT5A and 5-HT5B 

receptors which are still considered to be ‘orphans’ (Grailhe et al., 2001) with little information 

concerning 5-HT5B (which may not be functional in human). Regarding descending control, 

early studies identified 5-HT5A on neurons at a high concentration in the spinal trigeminal 

nucleus and in the spinal cord (Oliver et al., 2000), where they are found in the superficial DH 

and in the DRG which altogether rapidly led to postulate their involvement in the descending 

control of pain by the 5-HT (Cortes-Altamirano et al., 2018). Concerning their transduction 

mechanism, 5-HT5A receptors have been identified to be coupled, via Gi proteins, to both K+ 
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channels (facilitatory) and AC (inhibitory), contributing to a hyperpolarization of the 5-HT5A 

receptors expressing neurons ( Francken et al., 2000; Thomas et al., 2000; Grailhe et al., 2001). 

Moreover, spinal 5-HT5 receptors have been considered to have a controversial antinociceptive 

action mechanism, which may involve the hyperpolarization of PNs contacted by nocisponsive 

PAFs in the DH superficial layer. 

    
Table 6 : Main pharmacological characteristics, cell signalling and 5-HT receptors locations involved in the serotonin 
modulation of the nociception (modified from Bourgoin, Gautier, and Hamon 2017) 

Type of 
Receptor 

Agonists Antagonists G 
protein-
coupled 
receptor 

Signal 
transduction 
de 
transduction 

Spinal 
Cord 
(protein) 

Dorsal 
Roots 
Ganglia 
(RNAm) 

Location Function 

5-HT1A 8-OH-DPAT WAY-
100,635 

Gi/o AMPc  
↘ 

+++ – 

Brainstem 
Raphe nuclei 

Neuronal 
inhibition (involve 
in sleep, feeding, 

thermoregulation, 
anxiety 

  
Alnespirone NAD 299  K+  ↗  

 

  
F-13640 (S)-UH301  Ca2+  

↘ 
 

 
5-HT1B CP 93129 GR 127,935 Gi/o AMPc  ↘ ++ ++ 

Substantia nigra 
& basal ganglia 

Neuronal 
excitation 
(involve in 

contraction, 
cerebrospinal 

fluid) 

  
CP 94253 GR 555,622  K+  ↗  

 

  
Triptans SB 224,289  Ca2+  

↘ 
 

 

  
 SB 236,057  

    
5-HT1D GR 46611 GR 127,935 Gi/o AMPc  ↘ + + 

  
L 694,247 BRL 15,572  

    

  
Triptans SB 714,786  

    
5-HT1E   

 
AMPc  

↘ 
 

    
5-HT1F   

 
AMPc  

↘ 
 

    
5-HT2A α-Me-5-HT MDL-

100,907 
Gq/11 PLC  

↗ + + Vascular & 
visceral smooth 

muscles, 
platelets, 
prefrontal 

cortex 

Neuronal 
excitation, 

smooth muscle 
contraction, 

platelet 
aggregation, 

vasoconstriction 

  
DOI MDL-11,939  PLA2  ↗  

 

  
DOB Kétansérine  K+  

↘ 
 

 

  
DOM Sarpogrelate  

    
5-HT2B α-Me-5-HT RS 127,445 Gq/11 PLC  ↗ + + Gastric fundus Contraction 

  
BW 723C86 SB 266,097  

    
5-HT2C CP 809,101 Ritansérine Gq/11 PLC  ↗ + + Choroid plexus, 

hypothalamus 
Cerebrospinal 

fluid production, 
feeding behaviour 

& mood 
  

mCPP RS-102,221  
    

  
α-Me-5-HT SB 206,553  

    

  
MK-212 SB 221,284  

    

  
Ro 60-0175 SB 242,084  
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5-HT4 BIMU-1, 
BIMU-8, BZTZ 

DAU 6285 Gs AMPc  
↗ + + GIT (neurons of 

myenteric 
plexus & 

secretory cells…) 
& CNS 

(hippocampus, 
sup and inf 

colliculi) 

Involved in 
intestinal 

secretion & 
peristatic reflex   

RS 67,506 GR 113,808  K+  
↘ 

 
 

  
Tégaserod LY 297,582  Ca2+  ↗  

 

  
 

SDZ-205,557 
 

    
5-HT5A 5-CT SB 699551 Gi/o AMPc  ↘ + + 

Closely related 
to 5-HT4 
receptor/ 

mainly located 
in CNS 

Unknown 

5-HT5B   Gi/o Unknown    

5-HT6 EMD 386,088 SB 271,046 Gs AMPc  ↗ + + 

  
WAY 181,187 SB 339,885  

    

  
WAY 208,466 BGC 20-761  

    
5-HT7 8-OH-DPAT SB 258,719 Gs AMPc  ↗ + + 

  
AS-19 SB 269,970  

    

  
E-55888 SB 656,104  

    

  
E-57431  

     

  
LP-44  

     

  
MSD-5a  

     
5-HT3 M-Cl-phényl-

biguanide 
Ondansétron 

ligand-
gated 

ion 
channel 

Na+, K+, 
Ca2+ 

 ++ ++ Parasympathetic 
terminal in GI 

tract, including 
vagal & 

splanchic 
afferents/ CNS, 

solitary tract 
nucleus & in 

area postrema 

Neuronal 
excitation, emesis 

(involve in 
anxiety)   

SR 57,277 A Granisétron  
  

   

Tropisétron 

   

↗ = activation  ;  ↘ = inhibition  ;  +,  ++,  +++ = graduel level of expression  ;  –  :  absence of expression  ;  AMPc = 
cyclic adénosine- monophosphate ; PLC : phospholipase C ; PLA2 : phospholipase A2 

 

 

 Other neurotransmitters  

 Besides the descending 5-HT fibres from the RMg, other descending monoaminergic 

fibres such as the dopaminergic fibres also mediate the descending modulation from the 

supraspinal sites (Millan, 1997, 2002b). Among them, the descending noradrenergic fibres 

involve a multiplicity of receptors including as α2 adrenoreceptors mediating antinociception 

in the DH. It is important to note that the two pathways can be coactivated and may act 

synergistically to participate in descending pain modulation. Furthermore, other types of 

neurotransmitters participate in descending pain modulation, including GABA and glycine 
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mostly present in the inhibitory interneuron. For instance, in the PAG, GABAergic terminal are 

abundant and relate to the fact that GABAergic neurons inhibit PAG output neurons involved 

in descending inhibition. Indeed GABAergic terminals from the PAG (including somatostatin) 

reach to the RVM, including the RMg (Morgan et al., 2008); as well as substance P (Commons 

and Valentino, 2002), acetylcholine (Cucchiaro et al., 2005), norepinephrine (François et al., 

2017) etc… 

 

 

3. Pain modulation as part of adaptative responses to physiological challenges  

 Stress-induced analgesia refers to the idea that any number of situations or experimental 

experiments that could be characterized as stressful induce behaviourally measurable, and 

sometimes quite potent, analgesia. For instance, stress-induced analgesia can be produced by 

electric shock, forced swim, and centrifugal rotation as well as biologically relevant threat 

stimuli such as odours from stressed animals of the same species or exposure to a predator. 

Analgesia is also elicited as a conditioned response to cues that have been paired previously 

with noxious or aversive events. This analgesia has been shown by a number of investigators 

to be mediated by the PAG–RVM system (Fanselow, 1986).  

 Two factors highlighted the idea that antinociception is recruited as part of defence 

behaviours: On one hand, antinociception is readily evoked by learned or innate danger signals 

and on the other hand, the observation that stress induces analgesia through activation of the 

PAG–RVM system. Pain behaviours must sometimes be inhibited in order to give higher 

precedence to more pressing needs such as escaping from an aggressor or avoiding detection 

by a predator. However, a more general view of pain modulation has now developed. Pain 

inhibition is currently viewed as one component of a number of organized responses that allow 

an organism to prioritize nociceptive behaviours relative to other internal and external demands. 

In addition to antinociception, such responses typically include autonomic, endocrine, and 

motor elements. One example of such an organized defence response would be antinociception 

as part of preparation for fight or flight when confronted by a predator. Although the circuitry 

through which the PAG–RVM system is brought into play in response to threat remains to be 

fully elucidated, inputs from the amygdala and hypothalamus are likely to be critical (Lumb, 

2002)  
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C. AIM OF THE THESIS 

 
Interestingly, according to the state of art, the PAG-RVM circuit involved in the descending 

modulation of the nociceptive signal in the spinal dorsal horn can be sometimes both facilitating 

and antinociceptive, notably depending on the physiological state. This can happen at the level 

of the RVM as well as of the PAG, and under the influence of different mechanisms such as 

those involved in stress or fear. Indeed, it has been shown that: 

 

- In a physiological state, electrical stimulation of the RMg in the RVM induces a 

strong antinociceptive effect inhibiting the nociceptive signal at the spinal level 

associated with a 5-HT release. This effect can be reversed by the use of some 

antagonist of 5-HT, reflecting the antinociceptive role of the 5-HT in this modulation 

- In agreement with this finding, in neuropathic pain, it has been shown a facilitating 

role of the 5-HT, mediated by the descending 5-HT fibres, has been shown. 

- Also, it has been highlight that the PAG-RVM circuit involved in descending pain 

modulation is also involved in the mechanism leading to stress induce analgesia.     

 

Taken together, those findings led us to ask: 

- What is the exact role of the 5-HT RMg in the descending modulation on nociceptive 

transmission in acute pain as well as in pathological condition? 

-  What is the target of the RMg 5-HT descending fibres which mediate the 5-HT 

effect? 

- How to explain the biphasic role of the 5-HT depending on the physiological 

condition? 

- Is the PAG-RVM circuit implicated in the stress induce analgesia? Is it involved in 

the 5-HT RMg-spinal cord circuit regulation?  
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II. MATERIALS AND METHODS  
 In the aim to investigate in vivo both in freely moving and anaesthetised animal, the 

descending neuromodulatory pathways involving 5-HT and somatostatin in the vlPAG-RMg-

DH circuitry, we developed an optogenetic approach that consists in both expressing light-

activated microbial opsin proteins in specific neural populations and Cre-driver transgenic mice 

to target opsins to genetically specified neural subtypes.   

    

A. EXPERIMENTAL APPROACHES    

1. Ethical Statement  

 All experiments followed the European Union (Council directive 86/609EEC) and 

institutional guidelines for laboratory animal care and use. Institutional licence for hosting 

animals was approved by the French Ministry of Agriculture (APAFIS#3751-

2016030711446220 v2). All efforts were made to minimize animal suffering respecting the 3R 

rules: reducing the number of animals used, replacing if possible and refining to limit signs of 

deterioration of the health status of mice. 

 

2. Animals   

 Epet-Cre (+/-) mice (5-HT-cre mice) 

 Adult 5-HT cre mice (B6.Cg-Tg (FeV-cre) 1Esd/J, Jackson Laboratory (Scott et al., 

2005b), males and females, expressing the CRE recombinase under the control of the FEV (ETS 

oncogene family) specific promoter of 5-HT neurons, were used and had between 6 and 10 

weeks of age at the time of injection or implantation. They received cannula implantation 10 

days prior to the onset of experiments and were maintained in a small social group (2-5 mice) 

under a standard 12:12 light/dark cycle, with food and water available ad libitum and 

enrichment devices, in constant temperature (21 ± 2 ° C) and humidity levels (60%). 
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 5-HT cre* Ai9 tdTomato mice  

 Adult 5-HT cre mice were bred and crossed with Ai9 reporter mice homozygous for 

Rosa-GAG-LSL-tdTomato-WPRE-conditional allele under the control of a loxP-flanked STOP 

cassette (B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (Madisen et al., 2010) Figure 37. The 

offspring express robust tdTomato fluorescence following Cre-mediated recombination in 

neurons expressing cre recombinase. They are also maintained in a small social group setting 

(2-5 mice) under a standard 12:12 light/dark cycle, with food and water available ad libitum 

and enrichment devices, in constant temperature (21 ± 2 ° C) and humidity levels (60%).  

 
Figure 37 : Development of 5-HT Cre*Ai9 tdTomato reporter mice designed to express tdTomato fluorescent protein only in 5-

HT neuron. Cre recombinase expressing in 5-HT-neurons excises the loxP-flanked stop sequence and then allows robust 

tdTomato expression within 5-HT neurons.    

 

 GAD 67-GFP* 5-HT cre mice  

 GAD 67-GFP knock-in adult mice, expressing enhanced Green Fluorescent Protein 

(EGFP) under the control of the mouse Gad1(GAD67) gene promoter (Gad1tm1.1Tama, thanks 

to the Friedrich Miescher Institute for Biomedical Research,Basel (Switzerland)(Tamamaki et 

al., 2003)), were bred and crossed with adult 5-HT cre mice (Figure 38). The resulting offspring 

express both Cre-recombinase in 5-HT neurons and robust EGFP fluorescence in GABAergic 

neurons. As for the other strains, they are maintained in a small social group setting (2-5 mice) 

under a standard 12:12 light/dark cycle, with food and water available ad libitum and 

enrichment devices, in constant temperature (21 ± 2 ° C) and humidity levels (60%). 
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Figure 38 : Development of 5-HT Cre*GAD 67-GFP  mice designed to express both Cre-recombinase in 5-HT neuron and eGFP 

in GABAergic neuron. 

 

 SST-Cre (+/+) mice and SST-Cre (+/-) mice 

 Adult SOM-IRES-cre mice (Ssttm2.1(cre)Zjh/J mice, Jackson Laboratory (Taniguchi et al., 

2011), male, expressing the CRE recombinase in the somatostatin-expressing neurons, were 

used and had between 6 and 9 weeks of age at the time of injection or implantation and received 

cannula implantation 10 days prior the onset of experiments. They were individually housed in 

a 12 h light/dark cycle with food and water available ad libitum and enrichment devices, in 

constant temperature (21 ± 2 ° C) and humidity levels (60%).  

 

3. Surgical procedure  

 Viral and tracer strategy   

 For a functional specification of the role of descending 5-HT neurons of the RMg (RMg 

5-HT) in the modulation of the nociceptive transmission in the dorsal horn of the spinal cord.   

  6- to 10-week-old B6.Cg-Tg (FeV-cre) 1Esd/J, male and female mice (Jackson 

Laboratory) were weighed then deeply anaesthetized under 4% isoflurane in an induction 

chamber then moved and maintained under 1.5% of isoflurane to be shaved and cleansed (area 

of interest) with alternating applications of Betadine red (soap) and yellow. Eyes were protected 
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with ocular gel (Ocry-gel, Lab TVM, France), 100μL (0.3μg/ml) of buprenorphine was 

intraperitoneally injected (and again 6 hours after the surgery), and 20 μL of lidocaine 1% was 

administered locally (scalp) to alleviate pain. In a second step, they were placed into a 

stereotaxic frame (RWD Desktop Digital Stereotaxic Instruments 68025, RWD) and the head 

was fixed with ear bars and maintained at 1.5-2% isoflurane, a feedback-controlled heating pad 

(FHC) ensured maintenance of core body temperature at 37 °C. Once a stable plane of 

anaesthesia was reached, the skin was opened to expose the skull and the surface was cleaned 

to expose the Bregma and Lambda. To specifically target the RMg of the RVM in the brainstem, 

three sites of injection were used, -5.6/ 0.0/ -5.6; -5.8/ 0.0/ -5.6 and -6.1/ 0.0/ -5.7 (antero-

posterior/ medio-lateral/ dorso-ventral respectively (Hof and Young, 2000)) and a small hole 

(1mm of diameter) was drilled to expose the surface of the brain (Microdrill 78001, RWD ,). 

Pulled borosilicate glass capillaries (Ringcaps, disposable capillary pipettes with ring mark, 

DURAN, Hirschmann Laborgeräte, Germany) were used to microinject a total of 300nL 

(50nL/min ) of selected viruses AAV-EF1a-DIOhChR2(H134R)-EYFPWPRE-pA or AAV-

EF1a-DIOhChR2(H134R)-mCherryWPRE-pA, (ChR2 opsin, 4.5×10^12p/ml UNC Vector 

Core) for light-activation, or AAV-CAG-Flex-ArchT-GFP (ArchT opsin, 4.7×10^12p/ml, 

UNC Vector Core) for light-inhibition, or AAV-CAG-Flex-GFP or AAV-CAG-Flex-mCherry 

(GFP tag, 4.8×10^12p/ml, UNC Vector Core) as a control for both light and virus (Yizhar et 

al., 2011) at coordinates of interest (100nl each) to have a cell-type-specific expression of 

optical actuators (Figure 39). The micropipette was kept in the injection site 5 minutes after 

injection and then retracted slowly over 3 minutes. The surgical sites were sutured and cleaned 

with betadine and treated with 1% lidocaine. Animals were kept on a heating pad and monitored 

until full recovery (30 minutes) before being returned to their cage and continued to be group-

housed after the procedure. In addition, post-operative observations were performed up to 3 

days after surgery. 
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Figure 39 :  Schematic representation of the viral strategy in 5-HT Cre mice.   

 

 For the functional specification of the role of vlPAG SOM neurons (vlPAG SST) in the 

descending modulation of the nociceptive transmission. 

  6- to 9-week-old Ssttm2.1(cre)Zjh/J mice were used, following the same protocol as described 

above, with the difference of the injection sites, 350nl of selected virus were microinjected into 

the bilateral vlPAG (-4.4/±1.5/ -2.45, 20° antero-posterior/ medio-lateral/ dorso-ventral, angle 

in degrees) to target precisely the somatostatin inhibitory interneurons (based on Tovote et al., 

2016), Figure 40. Animals were kept on a heating pad and monitored until full recovery (30 

minutes) and before being returned to their cage. As for the 5-HT-cre mice, post-operative 

observations were performed up to 3 days after surgery. 
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Figure 40 : Schematic representation of the viral strategy in SOM-IRES-Cre mice.   

 

 To characterise the anatomical distribution and a potential target of the somatostatin 

inhibitory interneuron of the vlPAG involved in the nociceptive transmission, in 6- to 9-week-

old SOM-IRES-cre mice microinjected with AAV-CAG-FLEX-GFP bilaterally in the vlPAG 

used as an anterograde tracer (Figure 41), a total of 100nl of fluorogold (2%), used as a 

retrograde tracer was injected bilaterally at the level of the spinal dorsal horn (-100<x<-300µm 

dorso-ventrally).  

In the aim to identify the potential target of RMg 5-HT projections to the spinal cord, 6- to 10-

week-old 5-HT cre mice, followed the same protocol as described for the viral injection 

including the same viral quantity and the same coordinates with the difference of the use of 

AAV9-CAG-floxed-SynMYC rev-WPRE (Myc tag, 2.5×10^13p/ml, UNC Vector Core), 

which used as an anterograde tracer. Animals were kept on a heating pad and monitored until 

full recovery (30 minutes) before being returned to their cage and continued to be group-housed 

after the procedure. Also, post-operative observations were performed up to 3 days after 

surgery. 

 



90 
 

Materials and Methods 
 

 

Figure 41 : Schematic representation of the tracer strategy in both SOM-IRES-Cre mice and 5-HT Cre mice. 

 

 

 Fibre Optic Cannula Implantation  

For 5-HT cre mice   

  Optical cannulas including KFP2301LZXX LC ceramic ferrule no flange (OD, 25mm - 

ID 230 micron - conc < 20 micron) from AMS Technologies in combination with a multimode 

optical fibre (Ø200 μm Core TECS-Clad; 0.39 numerical aperture) from Thorlabs were 

implanted, in a group of animals, at 300µm above the RMg of the RVM (Figure 42A), in another 

group, above the spinal cord (Figure 42B) and in the latter group both at 300µm above the RMg 

and above the lumbar vertebrae of the spinal cord (Figure 42C), to deliver the activating light 

to both the 5-HT neurons expressing the selected opsins in the RMg and their projecting fibres. 

Before cannula implantation, optical fibres were prepared and cleaved to the appropriate length 

(5.5mm for the RMg and <0.5mm for the lumbar vertebrae) and light intensity emitted by the 

fibres was recorded using a Thorlabs power meter (PM-100D) and set to 10mW. The surgical 

protocols were similar for implantation in both the RMg and the spinal cord and identical in 

terms of asepsis and maintenance of core body temperature (at 37 °C) as described for the viral 

injections. Animals were kept on a heating pad and monitored until full recovery (30 minutes) 

before being returned to their cage and continued to be group-housed after the procedure. Post-

operative observations were performed up to 3 days after surgery. 
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Figure 42 : Description of the fibre implantation strategy. A corresponds to the RMg implantation, B to the spinal implantation 

and C to both the RMg and the spinal implantation.    

 

 For RMg implantation, the skin was opened to expose the skull and the surface was 

cleaned to expose Bregma and Lambda. The coordinates to target the RMg were bregma -5.8, 

medio-lateral 0.0, dorso-ventral -5.2 (Al-Juboori et al., 2013),  thus a small hole was drilled to 

expose the surface of the brain. Help by a stereotaxic cannula holder (Thorlabs), the optical 

cannula was lowered into the hole, and dental cement was used to secure in place. Once the 

cement was dry, it was covered with black nail varnish to reduce the risk of external 

illumination.  

 Spinal cord implantations (Figure 43) followed the protocol described in Christensen et 

al, 2016 (Christensen et al., 2016). A 1- to 2-cm incision was made slightly caudal to the peak 

of the dorsal hump to expose the lumbar spinal region. The L4 vertebra of interest was 

identified, and then a small incision was made between the tendons and the vertebral column 

on either side. L4 vertebra was then secured using spinal adaptor clamps, and all the tissue was 

removed from the surface of the bone. Using a micro drill, we removed the spinal processes 

and the surface of this vertebra. Next, a small hole was drilled approximately 2 mm from the 

midline, centrally on the rostral-caudal axis on either the left or right side. We positioned the 

optical fibre above the drilled hole and used a small amount of superglue around the drilled 

hole and over the surface of the bone to reduce the possibility of bone bleeds and to secure the 

cannula in place. After, we cemented the cannula in place using dental cement and, after the 

cement dried, we sutured and cleaned the skin surrounding the dental cement securing the 

cannula implantation. Mice were placed on a heating blanket to awake and recover before being 
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returned to their cage and continued to be group-housed after the procedure. Post-operative 

observations were performed up to 3 days after surgery. 

 
Figure 43 : Description of the cannula implantation  above the spinal cord from (Christensen et al., 2016)  A to E correspond 

to the steps to follow as described in the text above 

 The frequency and duration of light propagation were calibrated accordingly to the 

spontaneous frequency of 5-HT neurons, previously observed in the dorsal raphe nucleus at 

around 0.5-5hz (Sengupta et al., 2017). For ChR2 opsin activation, both in freely moving and 

in anaesthetized animal, blue light at 488nm was used with low-frequency stimulation and 

small duration pulses (2 minutes at 5hz5ms power set at 10mW/mm² with a laser from 

Changchun New Industries Optoelectronics TECH.CO.,Ltd, China) to depolarize both RMg 5-

HT neurons and spinal 5-HT descending fibres. For ArchT opsin activation, both in freely 

moving and in anaesthetized animal, green light at 526.5 nm (power set at 10mW/m², laser light 

from ChangChun New Industries Optoelectronics TECH.CO.,Ltd, China) was used 

continuously during two minutes to hyperpolarize both RMg 5-HT neurons and spinal 5-HT 

descending fibres. Finally, for the adeno-associated virus tag with GFP, both blue light at 

5hz5ms or green light continuously were used to control the potential harmfulness of the 

activating light both at the level of both RMg and spinal cord.  

 

For SOM cre mice   

 Optical cannulas (KFP2301LZXX LC Ceramic Ferrule NO flange OD, 25mm - ID 230 

micron - conc < 20 micron from AMS Technologies, associated with Ø200 μm Core TECS-

Clad Multimode Optical Fibre, 0.39 numerical aperture from Thorlabs) were implanted into 

bilateral vlPAG or centrally in the RMg (Guo, 2006; Morgan et al., 2008; Tovote et al., 2016b) 

to deliver the activating light to the SST neurons expressing the selected opsins in the vlPAG 

or their projecting fibres respectively (Figure 44). Before implantation, the optical fibre was 

prepared and cleaved to the appropriate length (2.5mm for vlPAG and 5.5 mm for RMg) and 
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the light intensity emitted by the fibres was recorded using a Thorlabs power meter (PM-100D) 

and set to 10mW/mm². We used the stereotaxic protocol similar to RMg 5-HT cannulas 

implantation. 

 The skin was opened to expose the skull and the surface was cleaned to expose the 

Bregma and Lambda. The coordinates to target the vlPAG were bregma -4.4, medio-lateral 

±1.0, dorso-ventral, -1.8 angles 10°, and the same coordinates as cited before to target the RVM 

(bregma -5.8, medio-lateral 0.0, dorso-ventral -5.2), thus a small hole was drilled to expose the 

surface of the brain. Help by a stereotaxic cannula holder (Thorlabs), the optical cannula was 

lowered into the hole, and dental cement was used to secure in place. Once the cement was dry, 

it was covered with black nail varnish to reduce the risk of external illumination.  

 The frequency and duration of the light propagation were calibrated according to the 

spontaneous frequency of STT neurons, previously observed in the vlPAG at around 0-5hz 

(Tovote et al., 2016b). For activating light of somatostatin interneurons both in freely moving 

and in anaesthetized animal, blue light at 488nm was used with low-frequency stimulation for 

small duration pulses (2 minutes at 2hz5ms) to depolarize both vlPAG STT neurons and STT 

descending fibres to the RMg. For ArchT opsin activation, green light at 526.5 nm was used 

continuously during two minutes to hyperpolarize both vlPAG STT neurons and STT 

descending fibres to the RMg. Finally, for adeno-associated virus tag with GFP, both blue light 

at 5hz5ms or green light continuously were used to control the potential harmfulness of the 

activating light both at the level of both vlPAG and RMg. 

 
Figure 44 : Description of the fibre implantation strategy. A corresponds to the bilateral vlPAG implantation and B to the RMg 

implantation. 
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 Pathological pain model: Spared Nerve Injury 

 As described in the introduction, pain is a consequence of activation of nociceptive 

afferents by an actually or potentially tissue-damaging stimuli, but in some cases, pain may 

arise by activity without suitable stimulation of its peripheral sensory endings. it happens after 

a lesion of the peripheral or central nervous system and it is termed neuropathic pain and define 

by the IASP as “pain initiated or caused by primary lesion or dysfunction in the nervous 

system”. For our study, we used a model developed by Decorsted &Woolf (Decosterd and 

Woolf, 2000), the spared nerve injury (SNI) model (Figure 45), which resulted in a consistent 

and reproducible pain hypersensitivity for both mechanical and thermal stimuli in the territory 

of the spared sural nerve (Bourquin et al., 2006), maintained for several weeks; and with 

features which closely mimic the cardinal symptoms of clinically described neuropathic pain 

disorders. Briefly, the day prior to surgery, mice were tested for their mechanical threshold and 

thermal latency as described below. Then, the day of surgery, mice were anaesthetized under 

2% of isoflurane and followed the same protocol as described on Cichon and al; 2018 (Cichon 

et al., 2018). A single skin incision was made into the mid-thigh level and the biceps femoris 

muscles were separated by blunt dissection to expose the sciatic nerve and its three main 

branches. The common peroneal and tibial nerves using 6-0 nylon suture were ligated and cut 

with small scissors, removing a 2-4 mm piece of each distal nerve stump, the sural nerve was 

kept intact. Avoid any stretching or contact with the spared sural nerve. The muscle and skin 

were then sutured using 6-0 silk. Aseptic techniques as described previously were used. Mice 

were allowed to recover on a warmed surgical pad until they were able to move freely. The first 

set of behavioural testing was carried out 4 days after the surgery. 



95 
 

Materials and Methods 
 

 

Figure 45 : Schematic representation of the Spared Nerve Injury (SNI). A transection and displacement of the common peroneal 

and tibial nerves, sparing the adjacent sural and saphenous nerves leading to complete denervation of the tibial innervated 

area (red) but leaves the medial (yellow) and lateral (green) sides of the hind paw glabrous skin intact (SNI illustration from 

(Duraku et al., 2012)) 

 

4. Pain Behaviour 

 Mechanical Sensitivity  

 Animals were placed in a square Plexiglas homemade frame (25*25*50cm) with a mesh 

grid on the floor (25cm in height). After 30 minutes of habituation, animals were tested for 

mechanical threshold using Von Frey Hairs (Bioseb, France). 5 successive tests were performed 

by applying a Von Frey Hair on the plantar surface of the hind paw in mice remaining on their 

four paws (Figure 46). We assessed the mechanical threshold using the simplified up and down 

(SUDO) techniques (Bonin et al., 2014). Starting from the 10th filament (2g), the response of 

the animal to the stimulation (withdrawal or not) will give the value of the next filament. The 

lower filament is tested if the animal withdraws the paw and the upper one in the other case. 

Five successive filaments are applied. Each set of test is separated by around 5 minutes. A series 

of SUDO was performed before, during and after optogenetic stimulation of both neurons and 

fibres of interest (RMg 5-HT neurons and vlPAG SOM neurons and their descending associated 

fibres). In the SNI model, we followed the same protocol as explained above with the difference 

of hairs which were applied to the lateral region of the hind-paws.  

 Mechanical threshold was evaluated using the last filament value +/-0.5 depending on 

the value of the fifth filaments. The equation PWTforce=10(x*F+B) where F is the PWT calculated 
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in terms of filament number using SUDO and x and B were determined from a linear regression 

of the logarithm of the empirically measured filament bending force plotted against the filament 

number using the equation: Log (bending force) = x * Filament number + B., for 7<F<14, 

x=0.182 and B=-1.47; 2<F<9, x=0.240 and B=-2) was used to transform the filament value into 

a value in g. 

  For mechanical allodynia, it was assessed by measuring the number of paws withdraw 

induced by a total of five repeated applications of Von Frey Hairs of same force on each paw 

(each application separated by 10 seconds for the same paw, 1 minute between the paw and 5 

minutes between a set of experiment). These repeated measures were assessed before, during 

and after optogenetic stimulation and the value was converted in percentage of response to five 

repetitive mechanical stimuli. 

 

 

Figure 46 : Photography of a mechanical assessment with 0.6g Von Frey filament.  
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 Heat assessment 

 Animals were placed in a Plexiglas cage with a transparent glass floor (Hargreaves 

method, IITC Inc. Life Science, Tem Sega, Figure 47). An infrared laser beam of calibrated 

value was applied on the plantar surface of the hind paw until the animal withdraws its paw and 

the value of the latency in seconds is measured. Three sets of test, separated by at least 5 minutes 

to avoid any sensitization, were performed before, during and after optogenetic stimulation of 

both neurons and their descending fibres. Within a set of test, each laser beam applied on the 

different hind paws (left and right) was separated from at least 2 minutes. The average value 

was then compared between conditions (Cheah et al., 2017). 

 

Figure 47 : Photography to illustrate a thermal assessment with a plantar test during optogenetic stimulation. 

 

5. Pharmacological approach 

 Intraperitoneal injection of furosemide or vehicle 

 Intraperitoneal injection of furosemide (25mg/kg) dissolve in NaOH 1N with NaCl, or 

vehicle (NaOH+ NaCl) was done 30 minutes before the behavioural tests. Naïve SST-cre mice 

or 5-HT cre mice were maintained with one hand and a 26-gauge needle connected to a 1 μl 

syringe was inserted in the intraperitoneal right side of the mice. 
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 Intrathecal injection of Picrotoxin, Granisetron or vehicle   

 Intrathecal injection of 10μl of picrotoxin (30 μM, (Zufall, 1992)) or vehicle (0.03% of 

DMSO in ddH2O), Granisetron (2mM) or vehicle (NaCl 0.9%) (Tan et al., 2019) in naïve 5-HT 

cre mice was done 20 minutes before the behavioural tests. Naïve 5-HT cre mice were 

maintained with one hand by the pelvic girdle and a 27-gauge needle connected to a 10 μl 

Hamilton syringe was inserted in the subarachnoidal space between vertebrae L5 and L6. 

 

 Per Os administration of CLP 290 or vehicle  

 Oral administration of intrathecal injection of CLP 290 (100mg/kg) or vehicle (20% 2-

hydroxypropyl-b-cyclodextrin) was done 1h30 before the behavioural tests. SNI 5-HT cre mice 

were maintained with one hand and a force-feeding needle connected to a 1 μl syringe was 

inserted into the throat to deliver the drug or the vehicle.  

 

6. Electrophysiology recording  

 In vivo extracellular recordings  

 Mice were first anaesthetized with urethane 20% and placed on a stereotaxic frame 

(Unimécanique, Asnières, France). A laminectomy was performed on lumbar vertebrae L1–L3 

and segments L4–L5 of the spinal cord was exposed. Extracellular recordings of WDR DHNs 

were made with borosilicate glass capillaries (2 MΩ, filled with NaCl 0.7M) (Harvard 

Apparatus, Cambridge, MA, USA). Electrodes were connected to an extracellular amplifier 

(DAM80; World Precision Instrument) connected to an analogic/numeric interface (Cambridge 

Electronic Device 1401, CED, UK). Data acquisition was performed using spike2 software (v7, 

Cambridge Electronic systems, UK). Glass micropipette was gently descended to the spinal 

cord. A repetitive brush was applied to identify local field potentials and the most responsive 

part of the peripheral receptive field was selected. Bipolar stimulation electrodes were inserted 

subcutaneously in the centre of the receptive field. Mild electric shocks above the threshold for 

C-fibre were generated until an extracellular unit can be unambiguously discriminated from the 

background noise. After 5 minutes’ rest, the threshold for C response was determined and the 

criterion for the selection of a neuron was the presence of an A-fibre-evoked response (0-80ms) 

followed by a C-fibre-evoked response (80 to 300ms) to electrical stimulation of the ipsilateral 
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sciatic nerve. The threshold for C-fibre evoked response as well as and the mean number of C-

evoked response were evaluated (Figure 48). 

  Trains of electrical stimulations at 2-3 times the threshold for C-fibres were performed 

before, during and after optogenetic stimulations with an optic fibre place above the recording 

site, then a windup coefficient, which corresponds to the sum of the action potentials resulting 

from all the repeated stimulations subtracted by the number of action potentials induced by the 

response to the first stimulation multiplied by the number of stimulations is removed, was 

evaluated and compared between conditions. 

 

 

Figure 48 : Illustration of in vivo single-unit recording perform on both anesthetise 5-HT cre mice and SOM-IRES-cre mice in 

combination with both electrical (innocuous or noxious) and optogenetic stimulation (unilaterally in the RMg (A), or bilaterally 

in the vlPAG (B) or above the spinal cord (C)). (D) Wide dynamic range neuron (WDRs) response to peripheral stimulation 

consisting in a biphasic response with a fast response (blue) induced by activation of fast innocuous sensory fibres (Aβ fibres) 

followed by a late response induced by activation of noxious c-fibre (in red).  

 

 In vitro Patch-clamp recordings 

 Patch-clamp recordings were performed on brain slices from 4, 3 and 4 mice 

respectively for the GFP, ChR2 and ArchT group mice. Briefly, 6 to 12 weeks old mice were 

intracardially perfused during euthanasia (exagon/lidocaine: 300/30 mg/kg, IP) with ice-cold 

NMDG solution (containing in mM: 1,25 ascorbate, 3 Na-Pyruvate, 2 Thiourea, 93 NMDG, 93 
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HCL 37%; pH: 7,3-7,4; osmolarity: 305-310 mOsM). Brains were quickly removed and 250 

μm slices containing the RMg were prepared with a VT1000S Leica vibratome in ice-cold 

oxygenated NMDG solution before recovery for 12-15 minutes into at 34°C in the oxygenated 

NMDG solution. Slices were then transferred at room temperature into aCSF solution 

(containing in mM: 124 NaCl, 2,5 KCl, 1,25 NaH2PO4, 2 MgCl2, 2,5 CaCl2, 227 2,5 D-

glucose, 25 NaHCO3; pH: 7,3-7,4; osmolarity: 305-310 mOsM) for at least 1 hour. Slices were 

transferred in the recording chamber placed under a microscope (Nikon EF600) outfitted for 

fluorescence and IR-DIC video microscopy and perfused with oxygenated aCSF at 2-3 ml/min 

in the recording chamber. Viable RMg 5-HT neurons were visualized with a fluorescence video 

camera (Nikon, Figure 49). Borosilicate pipette (4-6 MΩ; 1.5 mm OD, Sutter Instrument) were 

filled with an intracellular solution (containing in mM: Kgluconate solution: 128 Kgluconate, 

20 NaCl, 1 MgCl2, 1 EGTA, 0,3 CaCl2, 2 Na2-ATP, 0,3 Na-GTP, 0,2 cAMP, 10 HEPES; CsCl 

solution: 150 CsCl, 2 MgCl2, 1 EGTA, 3 Na2-ATP, 0,3 Na-GTP, 0,2 cAMP, 10 HEPES; 280-

290 mOsM, pH 7.3-7.4). Recordings were made using a Multiclamp 700B amplifier, digitized 

using the Digidata 1440A interface and acquired at 2 kHz using pClamp 10.5 software (Axon 

Instruments, Molecular Devices, Sunnyvale, CA). Pipettes and cell capacitances were fully 

compensated but junction potential was not corrected. RMg 5-HT neurons were recorded in 

whole-cell current-clamp mode. Brain slices expressing ChR2 or control were opto-stimulated 

at 470nm (5Hz, 5ms pulse width) for 10 seconds every 30 seconds. Laser intensity was set as 5 

mW.mm-2. For brain slices expressing ArchT in RMg, 5-HT neurons were maintained in 

current-clamp at a firing frequency of 3 Hz while opto-stimulation at 532 nm was performed 

by applying constant light during 250 ms.  

 

Figure 49 : Photography of the tissue of interest including borosilicate pipette in A and neurons expressing a mCherry tag 

induced by a viral infection observed via Nikon EF600 microscope. 
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7. Anatomical analysis  

 Virus expression 

After completion of experiments, mice were euthanized with urethane and perfused 

through the left ventricle with 4% w/v paraformaldehyde (PFA) in 0.1 M PBS. Brain and spinal 

cords were extracted and dissected out and post-fixed for 3h at 4°C in the same solution then 

cryoprotected in a solution of 0.1 M PBS and 25% sucrose overnight and stored at -80°C. For 

verification of both the viral and tracer expression as well as the location of optic fibre in the 

vlPAG, the RMg and above the spinal cord (for the viral and tracer expression only), serial of 

20µm thin slices containing the vlPAG, RMg and spinal cord of 5-HT cre or 5-HT cre*Ai9 or 

Gad67 GFP*5-HT cre or SOM-IRES-cre mice (depending on experimental study) were 

incubated free-floating in 0.1 M PBS containing Triton X-100 (0.3%), Bovine Serum Albumin 

(1%; Sigma-Aldrich) and chicken anti-GFP (1:1000; Averlabs) or chicken anti-mCherry 

(1:1000; Abcam) or rabbit anti-Myc tag (1:500; Euromedex) or mouse anti-Myc tag (1:500; 

Roche) antibodies overnight at 4°C. After washing in 0.1 M PBS, secondary antibodies, Alexa 

fluor 488 or 568–conjugated goat anti-chicken (1:500; Thermo Fischer Scientific) or Alexa 

fluor 568–conjugated goat anti-rabbit (1:500; Thermo Fischer Scientific) or Alexa fluor 488–

conjugated goat anti-mouse (1:500; Thermo Fischer Scientific) were added in 0.1-M PBS for 2 

hours at room temperature. Sections were finally viewed on a confocal microscope (Figure 50, 

Leica TCS SPE, Mannheim, Germany) fitted with a 20x dry objective and both 40x and 63x oil 

immersion 1.3 NA objective and confocal image stacks (0.75 µm steps) were acquired for each 

sample. Moreover, images of each section were also acquired with both nanozoomer slide 

scanner viewer (for an overview of the whole section) and an epifluorescence system (Leica 

DM 5000) fitted with a 20x dry objective. 
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Figure 50 : Photography of mouse brain embedding in a tissue tek (Leica) and showing optical fibre trace (A) in a cryostat in 

the one hand and in the other confocal image of RMg 5-HT neuron expressing GFP tag with the injection site (B)   

 Immunohistochemical study 

Spinal cord or RMg or vlPAG sections were incubated free-floating in 0.1 M PBS 

containing Triton X-100 (0.3%) and Bovine Serum Albumin (1%; Sigma-Aldrich). Depending 

on the experimental study (see results) and unless specified, the following antibodies were 

tested: 

 

i.For 5-HT labelling 

Sections of the RMg or the vlPAG or the lumbar part of the spinal cord of 5-HT cre*Ai9 

or Gad67 GFP or SOM-ires-cre or wild type (WT) mice (depending on the experimental study) 

were incubated with rabbit anti-tryptophan hydroxylase 2 (TPH2) antibody (1:1000; Bio-

techne), overnight at 4°C. After washing in 0.1 M PBS, a secondary antibody Alexa Fluor 488 

(for 5-HT cre*Ai9 cre mice, 1:500; Thermo Fischer Scientific) or 568 (for Gad67 GFP or SOM-

ires-cre or WT; 1:500; Thermo Fischer Scientific) conjugated donkey anti-rabbit 0.1M PBS 

was added for 2 hours at room temperature.  

 

ii.For the assessment of excitatory, inhibitory and somatostatin neurons marker  

- For glutamatergic (excitatory) labelling in combination with 5-HT labelling 

Sections of the RMg of WT mice were incubated with guinea pig anti-VGLUT1 and 

anti-VGLUT2 antibodies (1:1000; Synaptic Systems) in combination with rabbit anti-TPH2 

antibody (1:1000; Bio-techne), overnight at 4°C. After washing in 0.1 M PBS, secondary 



103 
 

Materials and Methods 
 

antibodies Alexa Fluor 488 conjugated goat anti guinea pig (1:500; Thermo Fischer Scientific) 

with Alexa 568-conjugated goat anti-rabbit (1:500; Thermo Fischer Scientific) in 0.1M PBS 

was added for 2 hours at room temperature. 

-  For GABAergic (inhibitory) labelling in combination with 5-HT labelling 

Sections of the RMg of Wild type mice were incubated with human anti-GAD GS.67-

65 (1/1000, Sigma) in combination with rabbit anti-TPH2 (1:1000; Bio-techne) antibodies 

overnight at 4°C. After washing in 0.1 M PBS, secondary antibodies Alexa Fluor 488-

conjugated goat anti-human (1:500; Thermo Fischer Scientific) associated with Alexa Fluor 

568-conjugated goat anti-rabbit (1:500; Thermo Fischer Scientific) in 0.1M PBS were added 

for 2 hours at room temperature.  

- For Somatostatin labelling in combination with 5-HT labelling 

Sections of the RMg of Wild type mice were incubated with Guinea Pig anti-SOM 

(1/500, kindly gifted by Philippe Ciofi) in combination with rabbit anti-TPH2 (1:1000; Bio-

techne) antibodies overnight at 4°C. After washing in 0.1 M PBS, secondary antibodies Alexa 

Fluor 488-conjugated goat anti-guinea pig (1:500; Thermo Fischer Scientific) associated with 

Alexa Fluor 568-conjugated goat anti-rabbit (1:500; Thermo Fischer Scientific) in 0.1M PBS 

were added for 2 hours at room temperature. 

 

iii. For the assessment of excitatory and inhibitory interneurons in contact with 

raphe Magnus (RMg) 5-HT projections  

- For Tlx3 (excitatory interneurons marker) in combination with 5-HT neurons viral 

expression labelling 

Lumbar sections of the spinal cord of 5-HT cre mice expressing an AAV inducible virus 

tag with GFP in the 5-HT neurons of the RMg were incubated with guinea pig anti-Tlx3 

antibody (1:1000, kindly gifted by Thomas Müller) in combination with chicken anti-GFP 

antibody (1:1000; Averlabs) overnight at 4°C. After washing in 0.1 M PBS, a first round of 

amplification was performed using a biotin-conjugated goat anti guinea pig (1:500; Jackson 

immune research) was added for 1hours at room temperature then after another wash in 

0.1MPBS secondary antibodies Alexa 568–conjugated streptavidin (1:500; Molecular Probes) 

in combination with Alexa Fluor 488 conjugated donkey anti-Chicken (1:500; Thermo Fisher 

Scientific) in 0.1M PBS was added for 2 hours at room temperature. 
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- For Pax2 (inhibitory interneurons marker) in combination with 5-HT neurons viral 

expression labelling 

Lumbar sections of the spinal cord of 5-HT cre mice expressing an AAV inducible virus 

tag with GFP in the 5-HT neurons of the RMg were incubated with Goat anti-Pax2 Human 

polyclonal antibody (1:300, Bio-techne) in combination with chicken anti-GFP antibody 

(1:1000; Averlabs) overnight at 4°C. After washing in 0.1 M PBS, secondary antibodies Alexa 

Fluor 568-conjugated donkey anti-goat (1:500; Thermo Fischer Scientific) associated with 

Alexa Fluor 488 conjugated goat anti-Chicken (1:500; Thermo Fisher Scientific) in 0.1M PBS 

was added for 2 hours at room temperature.  

- For GABAergic inhibitory interneurons in combination with 5-HT neurons viral 

expression labelling 

Lumbar sections of the spinal cord of Gad67-GFP*5-HT cre mice expressing an AAV 

inducible virus tag with Myc in the 5-HT neurons of the RMg were incubated with rabbit anti-

Myc tag (1:500; Euromedex) antibody overnight at 4°C. After washing in 0.1 M PBS, a 

secondary antibody Alexa Fluor 568-conjugated goat anti-rabbit (1:500; Thermo Fischer 

Scientific) in 0.1M PBS was added for 2 hours at room temperature. 

- For Parvalbumin inhibitory interneurons in combination with 5-HT neurons viral 

expression labelling 

Lumbar sections of the spinal cord of 5-HT cre mice expressing an AAV inducible virus 

tag with Myc in the 5-HT neurons of the RMg were incubated with mouse anti-Myc tag (1:500; 

Roche) in combination with rabbit anti-parvalbumin antibody (1:5000; Bio-techne) antibodies 

overnight at 4°C. After washing in 0.1 M PBS, secondary antibodies Alexa Fluor 568-

conjugated goat anti-rabbit (1:500; Thermo Fischer Scientific) associated with Alexa Fluor 488-

conjugated goat anti-mouse (1:500; Thermo Fischer Scientific) in 0.1M PBS was added for 2 

hours at room temperature. 

After performing immunostaining, for each experiment, sections (vlPag, RMg or spinal 

cord) were then mounted on gelatine-coated slides with DakoCytomation Fluorescent 

Mounting Medium (Dako SA) and finally viewed on a confocal microscope (Leica TCS SPE, 

Mannheim, Germany) fitted with a 20x dry objective and both 40x and 63x oil immersion 1.3 

NA objective and confocal image stacks (0.75 µm steps) were acquired for each sample and 

sequential acquisition was used to prevent cross-talk between Alexa 488 and Alexa 568. Then 

for a post-analysis by using imaris microscopy image analysis software (Bitplane): 
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- With regard to colocalisation between cell,  

after estimating the diameter of each specifically labelled cell, we converted each cell as a 

sphere and then assessed the cells that were separated by 0nm from those with a difference of 

more than 0nm thus highlighting the cells colocating between them from those with a 

difference. 

- With regard to appositions between cell and fibres,  

after estimating the diameter of each specifically labelled cell and fibres, we converted each 

cell as a sphere and each fibre as a filament and then we assessed the filaments that are closed 

to (0nm apart) the edge of the cells of those that are far from them (more than 0 nm) thus 

highlighting the fibres that are in apposition with cells. 

  

8. Statistical analysis  

 All statistical analyses were completed on GraphPad (Prism, version 8.0.2). Data set 

were collected and processed randomly and no statistical methods were used to predetermine 

sample sizes. Statistical comparisons were made using unpaired and paired t-test as well as one-

way ANOVA (Unpaired and repeated measures).  

 For behavioural analysis, the mechanical threshold and thermal latency were compared 

before, during and after optogenetic stimulations. A one-way ANOVA was performed to 

compare between these three conditions.  

 For Electrophysiology: Spontaneous activity was evaluated by the mean frequency (in 

Hz) during 2 min before, during and after optogenetic stimulation of both 5-HT neurons of the 

RMg and SOM neuron of the vlPAG. A one-way ANOVA was then performed to compare 

each condition. Evoked responses to electrical stimulation of the peripheral receptive field. We 

measure the number of C-fibre induced spikes of WDR neurons after each electrical 

stimulation, for 4-5 stimulations before, during and after optogenetic stimulation. A one-way 

ANOVA was performed to compare the response during and after optogenetic stimulation to 

the response before. The windup response to trains of electrical stimulation at 2 times the 

threshold for C-fibres. From the windup response, a coefficient of windup was calculated before 

and during optogenetic stimulation. A Paired t.test was performed to compare the windup 

coefficient during optogenetic stimulation to the coefficient before.  

 All data were presented as the mean ± S.E.M. In all cases, p<0.05 was considered 

statistically significant. Individual p values are provided for each appropriate test in text. 
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9. Table of Resources 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Experimental Models: 
Organisms/Strains 

  

Ai9 cre-reporter mice 
(Rosa-GAG-LSL-tdTomato-
WPRE-conditional) 

PIV Animal facility A1 
Bordeaux University 

B6.Cg-
Gt(ROSA)26Sortm9(CAG-

tdTomato)Hze/J 

5-HT cre (Epet-Cre) 
heterozygous (+/-) knock-
in-mice 

The Jackson Laboratory B6.Cg-Tg (FeV-cre) 1Esd/J, 
Jackson Laboratory 
N°012712 

5-HT cre* Ai9 tomato PIV Animal facility A1 
Bordeaux University 

N/A 

GAD 67 – GFP mice PIV Animal facility A1 
Bordeaux University 

Gad1tm1.1Tama 

GAD 67-GFP*5-HT cre 
mice  

PIV Animal facility A1 
Bordeaux University 

N/A 

SST-Cre heterozygous (+/-) 
knock-in-mice 

N/A N/A 

SST-Cre homozygous (+/+) 
knock-in-mice 

The Jackson Laboratory Ssttm2.1(cre)Zjh/J 
N°013044 

Recombinant DNA and 
tracer 

  

AAV-CAG-FLEX-ArchT-
GFP 

Vector core (Boyden/MIT) N/A 

AAV-CAG-FLEX-GFP Vector core (Boyden/MIT) N/A 

AAV-CAG-FLEX-mCherry Vector core (Boyden/MIT) N/A 

AAV-EF1a-
DIOhChR2(H134R)-
EYFPWPRE-pA 

Vector core 
(Deisseroth/Standford) 

N/A 

AAV-EF1a-
DIOhChR2(H134R)-
mCherryWPRE-pA 

Vector core 
(Deisseroth/Standford) 

N/A 

AAV9-CAG-floxed-
SynMYC-rev-WPRE 

Vector core (Boyden/MIT) N/A 
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Fluorogold Sigma-Aldrich Cat# 39286 

Antibodies (Primary)   

Chicken polyclonal anti-
GFP Aves Labs   Cat# GFP-1010 

Chicken polyclonal anti-
mCherry Kindly gifted N/A 

Goat anti- Pax2 Human 
polyclonal  Bio-techne Cat# AF3364 

Guinea Pig anti-SOM Kindly gifted by Philippe 
Ciofi N/A 

Guinea Pig anti-TLX3 Kindly gifted by Thomas 
Müller N/A 

Guinea Pig anti-VGlut 1 Synaptic Systems Cat# 135304 

Guinea Pig anti-VGlut 2 Synaptic Systems Cat# 135404 

Human anti-GAD GS.67-65 Sigma Cat# G5163 

Rabbit anti-parvalbumin 
antibody Bio-techne Cat# AF5058 

Mouse anti-Myc clone 9E10 
(monoclonal) Roche N/A 

Rabbit anti-myc tag (IgG 
polyclonal Euromedex  Cat#06-549 

Rabbit anti-Tryptophan 
hydroxylase 2 Bio-techne NB 100-74555 

Antibodies (Secondary)   

Biotin goat anti-guinea pig Jackson immuno Cat# 106-066-006 

Donkey anti-goat Alexa 568 Thermo Fisher Scientific Cat# A-11057 

Donkey anti-rabbit Alexa 
568 Thermo Fisher Scientific Cat# A-10042 

Donkey anti-mouse Alexa 
568 Thermo Fisher Scientific Cat# A-10037 

Goat anti-chicken Alexa 
488 Thermo Fisher Scientific Cat# A-11039  

Goat anti-chicken Alexa 
568 Thermo Fisher Scientific Cat# A-11041  
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Goat anti-human Alexa 488 Thermo Fisher Scientific Cat# A-11013  

Goat anti-guinea pig Alexa 
488 Thermo Fisher Scientific Cat# A-11073  

Goat anti-mouse Alexa 488 Thermo Fisher Scientific Cat# A-11008  

Goat anti-rabbit Alexa 488 Thermo Fisher Scientific Cat# A-32731  

Goat anti-rabbit Alexa 568 Thermo Fisher Scientific Cat# A-11011  

Streptavidin Alexa 568 anti-
biotin  

Invitrogen Cat# S-11226  

Chemicals, Peptides, and 
Recombinant Proteins   

CLP 290 Kindly gifted by Yves De 
Koninck NA 

Furosemide Sigma-Aldrich Cat#F-4381 

Granisetron hydrochloride Tocris Cat#2903 

Hydroxypropyl-β-
cyclodextrin TCI AMERICA Cat#H0979  

Picrotoxin Biotechne Cat#1128 

Urethane Sigma-Aldrich Cat#U2500 

Software and Algorithms   

Adobe illustrator 2017 Adobe software N/A 

CED spike 2 Cambridge Electronic 
Design 

N/A 

Excel Microsoft N/A 

Image J (Fiji) NIH www.imagej.nih.gov 

Imaris Bitplane  Oxford instrument N/A 

GraphPad Prism 8 GraphPad Software http://www.graphpad.c 

om/scientificsoftware/ 

prism/ 

NDP.view2 Hamamatsu NDP.view2 Viewing 
software 

PowerPoint Microsoft N/A 

Word Microsoft N/A 
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B. RESULTS OF EXPERIMENTAL APPROACHES 

1. Validation of animal model 

 B6.Cg-Tg (FeV-cre) 1Esd/J or 5-HT-cre (in this study) were firstly used to confirm the 

expression of the Cre-recombinase restrained to 5-HT neurons of the DR and the MR (Scott et 

al., 2005b) but no information for the RMg. In the case of SOM-IRES-cre mice, all validations 

have been performed mainly by our collaborators but data will not is.  

   

 Characterisation of Cre-recombinase in the RMg   

 First, to confirm that cre-recombinase is restrained to serotonin neurons in the dorsal 

raphe (DR), the median raphe (MR) and the raphe Magnus (RMg) we used adult 5-HT cre*Ai9 

mice where we performed immunostaining against tryptophan hydroxylase 2 (TPH2), a specific 

enzyme of serotonin neurons Figure 51. Immunohistochemical analyses confirmed a good 

expression of Td tomato staining in the RMg and revealed that 82,06 % of TPH2 positive 

neurons are co-localised with Td tomato positive cells (Figure 51B, and 89.13% Td 

tomato/TPH2). In addition, we observed an abundant population of 5-HT fibres in the spinal 

dorsal horn confirming 5-HT projections to the spinal cord (Figure 51C).   
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Figure 51 : Epifluorescence microscopy image (taken on Hamamatsu NANOZOOMER 2.0HT) of thin slice of 5-HT cre mouse 

brain including the RMg (surrounded by a white dashes; A) showing in red the td tomato cre-recombinase expressing cell 

(A1),in green the GFP TPH2 positive cell (A2) and in yellow colocalisation of both TPH2 and Ai9 cre positive cells (A3) showing 

up 82.06% of co-localisation (TPH2/Tomato using IMARIS microscopy image analysis software (Oxford instrument; B), data 

obtained from 4 slices of 3 different brains or spinal cord). We also observed a dense population of 5-HT fibres in the dorsal 

horn of the spinal cord (C). The zoom images A1-3 and C were taken with confocal microscope Leica DM6000 TCS SP5 MP 

FLIM.   

 



111 
 

Experimental approaches results 

 Furthermore, as a control, we confirmed also a good expression of the cre-recombinase 

in 5-HT neurons of the DR and MR (Figure 52) as described by (Scott et al., 2005b). Thus, 

giving us a crucial tool to study precisely the role of RMg 5-HT in nociceptive transmission.  

 

Figure 52 : Epifluorescence microscopy image (taken on Hamamatsu NANOZOOMER 2.0HT) of thin slice of 5-HT cre mouse 

brain including the DR, MR and RMg (surrounded by a white dashes respectively) showing in red the td tomato cre-

recombinase expressing cell in each nucleus (DR, MR and RMg), as well as in green the GFP TPH2 positive cell and in yellow 

the co-localisation of both TPH2 and Ai9 cre positive cells showing up a dense co-localisation of both labelling in each nucleus 

(DR, MR and RMg respectively). Each time 4 slices from 3 different brains.  
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 In the next step, we used adult Gad67-GFP mice expressing enhanced Green Fluorescent 

Protein (EGFP) under the control of the mouse Gad1(GAD67) gene promoter and as shown in 

Figure 53, TPH2 staining confirms that 5-HT is not GABAergic neurons. Indeed, by using 

imaris 3D reconstruction (Figure 53A4), we converted confocal stack images in 3D images 

thus enabling us to quantify contacts between TPH2 positive cells (represented in white 

spheres) and GAD-67 positive cells (represented in green spheres). Accordingly, as shown, we 

revealed no co-localisation between the Gad67-GFP representing spheres and TPH2 

representing spheres but strong interaction between them (Figure 53B4).  
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Figure 53 : Confocal and 3D images of TPH2 immunostaining in thin slice of RMg of Gad67-GFP mouse. TPH2 staining showed 

no co-localisation with GABAergic neurons expressing GFP. A1 and B1 show GAD 67-GFP GABAergic neurons, A2 and B2, TPH2 

staining and A3 and B3 a merge of both TPH2 staining and GAD67-GFP GABAergic neurons. A4 and B4 represent 3D images 

of GAD 67-GFP/TPH2 merged confocal image (IMARIS microscopy image analysis software; Oxford instrument) showing no 

co-localisation between both cells but strong interaction between them.   

  

2. Validation of our viral strategy 

 We assessed the efficiency of our viral approach by stereotaxic injection of a cre-

dependent recombinant adeno-associated virus combined with a GFP tag (AAV-CAG-flex-

GFP) in RMg of 5-HT cre*Ai9 mice and vlPAG of SOM-IRES-cre mice, then three weeks after 

RMg 5-HT and vlPAG SOM neurons expressed GFP tag (Figure 54). By using a 

immunohistochemical analysis of the labelled neurons related to the viral expression (Figure 

54A1), in the 5-HT cre*Ai9 mice, we observed that 100% of cre-recombinase (Figure 54A2) 

has been infected by 250nl of virus (Figure 54A3) and also that the infected 5-HT fibres were 

mostly presented in deep layer of the dorsal horn of the spinal cord (Figure 54A4) according to 



114 
 

Experimental approaches results 

previous study in rat (Gautier et al., 2017). For SOM-IRES-cre mice, we observed an intense 

infection of somatostatin neurons following bilateral injection of 350nl virus (Figure 54B).  
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Figure 54 : Confocal image of AAV infection in RMg of 5-HT cre*Ai9 mice or in vlPAG of SOM-IRES-cre mice (A1 and B1 

respectively). As shown, for the RMg injection in 5-HT cre*Ai9 mice, 100% of cre-recombinase cell (A2) was infected with 250nl 

of AAV cre-inducible virus (A3). Also we observed tag expression extend to the projection of RMg 5-HT neurons mostly in deep 

layer of the dorsal horn of the spinal cord (A4). For the vlPAG injection in SOM-IRES-cre mice, a dense level of infection has 

been observed (B2) following an injection of 350nl of AAV cre-inducible virus. (C) Schematic representation after verification 

of the injection site location above the RMg of 5-HT cre mice expressing ChR2 (C1), ArchT (C2) and GFP (C3) respectively.  
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 Then, we ascertained the efficiency of manipulating neuronal activity by activating 

light, using slices of the RMg of 5-HT cre mice containing 5-HT infected neurons with the 

Channelrhodopsin 2 (ChR2 opsin for activating RMg 5-HT neurons) or the proton pump 

Archaerhodopsin (ArchT opsin for silencing RMg 5-HT neurons) or only a mCherry tag using 

cre-dependent adeno-associated vectors in combination with patch-clamp recording in current-

clamp mode (Figure 55). In slices expressing ChR2-mCherry (Figure 55A1-3), optogenetic 

stimulation at 470 nm induced a fast and reproducible neuronal depolarisation, and a train of 

5hz/5ms induced a train of action potentials that fairly followed light stimulation (Two-tailed 

paired t.test p=0.0156, n=7 ChR2-5-HT neurons) contrary to slices of 5-HT neurons expressing 

ArchT-GFP (Figure 55B), where a continuous optogenetic stimulation at 532 nm induced a 

strong hyperpolarisation. As a control, we also assessed the influence of the activating light, 

using mCherry-expressing slices (Figure 55C) where both 470 or 532 nm optogenetic 

stimulation at 5Hz/5ms or continuously (respectively) induced no modification in the neuronal 

activity.  

 
Figure 55 : Ex vivo Patch-clamp whole-cell recording from RMg slices containing 5-HT infected neurons. Sample current-clamp 

traces (A1-2, B and C) showing light-evoked action potential firing of 5-HT neuron expressing ChR2 opsin or hyperpolarisation 

of 5-HT neuron expressing ArchT opsin or nothing in 5-HT neuron expressing GFP only (representative of 7, 1 and 9 cells 

respectively). (A3) 470nm optogenetic stimulation at 5Hz/5ms induced an increase of the discharge frequency of 5-HT neuron 

expressing ChR2 opsin (light off 0.014±0.015Hz compared to light on 5.014±0.014Hz). Measures are reported as mean ± SEM; 

*=p=0.0156 from Wilcoxon matched-pairs signed-rank test. 
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3. Assessment of the optical fibre implantation on mechanical modality 

 First, after cannula implantation, mice remained housed in a group and displayed no 

visible signs of distress or pathology. Then, we assessed mouse mechanical threshold from mice 

implanted compare to those without any implantation and we observed no implantation related 

deficits (Figure 56). Furthermore, we verified cannula placement for the RMg implantation (as 

well as vlPAG implantation; Figure 56D-E) in the same time as we do viral expression 

verification (as described above) and for the spinal placement, we performed, in addition to 

mechanical threshold assessment, in vivo electrophysiological recording from the spinal cord 

segment in which we implanted our cannula (lumbar segment L4) and confirmed that dorsal 

horn neurons in that region had a receptive field on the plantar surface of the ipsilateral hind 

paw. 
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Figure 56 : Mechanical assessment of the different optical fibre implantation strategy. To determine if our implantation 

strategy induces any modification on the pain assessment, we compared the mechanical threshold from uncannulated animals 

to those with both cannula mono-implantation (RMg or spinal SC only) and cannula bi-implantation (RMg and SC) animals. 

Then, we observed no difference in the mechanical threshold between uncannulated animals and RMg implanted animal and 

SC implanted animal (Kruskal-Wallis test from 7 uncannulated animals, 12 RMg implanted animals and 13 SC implanted 

animals, p=0.4706, K=1.508, A) as well as no difference of the mechanical threshold between in both uncannulated animals 

and RMg-SC implanted animals (Mann-Whitney test from 7 uncannulated animals, 10 RMg-SC implanted animals, p=0.7468, 

U=31.5, B) as well as for bi-implanted animals compared to RMg implanted animals or SC implanted animals (Kruskal-Wallis 

test from 12 bi-implanted animals, 12 RMg implanted animals and 13 SC-implanted animals, p=0.5307, K=1.267, C). Bi, bi-

implanted animal both RMg and SC, RMg only, RMg-implanted animals and SC only, spinal cord-implanted animals. (D) 

Schematic representation after verification of optical fibres location above the RMg or the spinal cord of 5-HT cre mice 

expressing ChR2 (D1-2) or ArchT (D3-4) or GFP (D5-6). (E) Schematic representation after verification of optical fibres location 

above the vlPAG (E1) or the RMg (E2) of SOM-IRES-cre mice expressing AAV inducible virus in the vlPAG.  
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III. RESULTS 
A. MODULATION OF DESCENDING 5-HT NEURONS OF THE RMg ON 

SPINAL NOCICEPTIVE TRANSMISSION IN PHYSIOLOGICAL CONDITION 

1. Consequences of optogenetic manipulation of 5-HT neurons in acute pain 

 Inhibition of RMg 5-HT neurons induces mechanical hyperalgesia, mechanical 

allodynia and thermal hyperalgesia 

 First, to establish the functional role of the 5-HT neurons of the RMg (RMg 5-HT) on 

the spinal nociceptive transmission, in freely moving 5-HT cre mice, optogenetic inhibition 

with ArchT opsin were performed using an optical cannula above the RMg or above the dorsal 

horn of the spinal cord (as described in the methods). We observed that optogenetic inhibition 

with green laser light (526.5nm, continuous green activated light for 2 min, 10mW) of RMg 5-

HT neurons or RMg 5-HT descending fibres elicited a significant decrease in mechanical 

threshold and thermal latency that was suppressed after light switched off (Figure 56). Indeed, 

optogenetic inhibition with continuous green light of both 5-HT neurons or 5-HT descending 

fibres elicited a substantial decrease in mechanical threshold (Von Frey SUDO Figure 56A1, 

ArchT-5-HT, Friedman test p<0.0001, F=19.86; n=12 and ArchT-5-HT descending fibres, 

Friedman test p<0.0001, F=21.41; n=10) including a significant increase in the percentage of 

hind-paw responses to repeated normally innocuous stimuli (Repeated measure, Figure 56A2, 

ArchT-5-HT, Friedman test p<0.0001, F=19.60; n=12 and ArchT-5-HT descending fibres 

p<0.0001, F=20.36; n=12) revealing a mechanical allodynia and hyperalgesia that was 

suppressed after light switched off. By contrast, green light in both RMg 5-HT expressing GFP 

tag only (GFP-5-HT) or RMg 5-HT GFPpositive descending fibres did not change the 

mechanical threshold (Von Frey SUDO Figure 56B1, GFP-5HT, Friedman test p>0.9999, 

F=0.6667; n=6 and GFP-5-HT descending fibres, p=approximate close to 1; n=10; Repeated 

measure Figure 61B2, GFP-5-HT Friedman test p=0.9095, F=0.4211; n=7 and GFP-5-HT 

descending fibres p>0.9999, F=1; n= 8).  
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Figure 57 : Mechanical assessment of 5-HT inhibition both at the level of RMg and spinal cord (SC): Optogenetic inhibition of 

ArchT-5-HT or ArchT-5-HT descending fibres in the spinal cord with continuous green light during 2 min induced a relevant 

decrease in mechanical threshold (A1, SUDO for ArchT-5-HT: 3.7 ± 0.6g before, 1.6±0.3g during and 3.3±0.5g post-stimulation; 

for ArchT-5-HT descending fibres: 3.0±0.2g before, 1.2±0.2g during and 2.9±0.2g post-stimulation) including an increase in 

the percentage of hind-paws response to repeated innocuous stimuli (A2, Repeated measure for ArchT-5HT: 17.5±3.9 % 

before, 88.3±3.7% during and 20.8±5.6% of response post-stimulation; for ArchT-5-HT descending fibres: 8.3±3% before, 

85±5% during and 16.7±4.8% of response post-stimulation) resulting in to mechanical allodynia and hyperalgesia. On contrary, 

in control group expressing GFP alone optogenetic stimulation of GFP-5-HT neurons of the RMg (GFP-5-HT) or GFP-5-HT 

descending fibres in the spinal cord with continuous green light during 2 min induced no change in mechanical threshold (B1, 

SUDO, GFP-5-HT: 2.8±0.5g before, 2.7±0.4g during and 2.6±0.4g post-stimulation and for GFP-5-HT descending fibres: 

2.3±0.4g before, 2.3±0.4g during and 2.3±0.4g post-stimulation; B2, Repeated measure with innocuous stimuli, GFP-5-HT: 

11.4±2.6% before, 11.4±5.5% during and 15.7±6.9% of response post-stimulation and GFP-5-HT descending fibres: 10±6.5% 

before, 10±5.3% during and 7.5±5.3% of response post-stimulation). Measures are reported as mean ± SEM; A1, SUDO ArchT-

5-HT of RMg **=p=0.0062, ****= p<0.0001 and ArchT-5-HT descending fibres SC **=p=0.0013, ***=p=0.0006; A2, Repeated 

Measure ArchT-5-HT of RMg **=p=0.0015, ***=p=0.0001 and ArchT-5-HT descending fibres SC **=p=0.0022 and 

****=p<0.0001 from Dunn’s post hoc test.  

 We observed that optogenetic inhibition of both RMg 5-HT or RMg 5-HT descending 

fibres elicited a significant decrease in thermal latency resulting in thermal hyperalgesia (Figure 

58A, Plantar test ArchT-5-HT, Friedman test p<0.0001, F=15.2; n=10 and ArchT-5-HT 

descending fibres, Friedman test p=0.0023, F=12.17; n=12) compare to optogenetic 
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manipulation fo RMg 5-HT neurons or descending fibres where no modification in thermal 

latency was observed (Figure 58B, Plantar test GFP-5-HT Friedman test p=0.4645, F=2; n= 5 

and GFP-5-HT descending fibres, Friedman test p= 0.6539, F= 1.086; n=9). 

 

Figure 58 : Thermal assessment of 5-HT inhibition both at the level of RMg and spinal cord (SC): Optogenetic inhibition of 

ArchT-5-HT or ArchT-5-HT descending fibres in the spinal cord with continuous green light during 2 min induced a relevant 

decrease in thermal latency (A, Plantar test, ArchT-5-HT: 6.6±0.6s before, 5.1±0.5s during and 6.2±0.3s post-stimulation and 

ArchT-5-HT descending fibres: 4.0±0.3s before, 3.1±0.2s during and 3.6±0.3s post-stimulation) resulting in thermal 

hyperalgesia. On contrary, in control group expressing GFP alone optogenetic stimulation of GFP-5-HT or GFP-5-HT descending 

fibres in the spinal cord induced no change in thermal latency (B, plantar test, GFP-5-HT: 5.1±0.7s before, 4.5±0.6s during and 

5.3±0.7s post-stimulation and GFP-5-HT descending fibres: 4.1±0.7s before, 4.5±0.9s during and 4.5±0.8s post-stimulation). 

Measure are reported as mean ± SEM; A, ArchT-5-HT of RMg **=p=0.0035, ***=p=0.0007 and ArchT-5-HT descending fibres 

SC **=p=0.001 from Dunn’s post hoc test.  

 Consequently, inhibition of 5-HT neurons of the RMg leads to descending facilitation 

of pain transmission which let us hypothesise that within the RMg, 5-HT neurons are tonically 

active and may exert a tonic inhibition on the spinal transmission. Thus, to verify our 

hypothesis, we assessed whether 5-HT activation modulates spinal transmission. 

 

 Activation of RMg 5-HT neurons induces mechanical and thermal analgesia 

 As for 5-HT inhibition, in freely moving 5-HT cre mice micro-injected in the RMg with 

ChR2 opsin, optogenetic activation with 475nm blue activating light at 5Hz/5ms, 10mW of 5-

HT neurons of the RMg (ChR2-5-HT) or their descending fibres above the spinal cord (ChR2-

5-HT descending fibres) elicited a significant increase in both mechanical threshold  and 

thermal latency and return to baseline after light switched off (Figure 59). For SUDO Figure 
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59A1, RMg 5-HT Friedman test p<0.0001, F=28.93; n=17, RMg 5-HT descending fibres, 

Friedman test p<0.0001, F=49.73; n=27 and for Repeated measure, Figure 59A2, ChR2-5-HT, 

Friedman test p<0.0001, F=30.18; n=18 and ChR2-5-HT descending fibres, p<0.0001, F=47.2; 

n=26. 

  

 
Figure 59 : Mechanical assessment of 5-HT activation both in RMg and spinal cord (SC): Optogenetic activation of ChR2-5-HT 

neuron  or ChR2-5-HT descending fibres (A1,B2) in the spinal cord with 475nm blue activating light at 5Hz5ms during 2 min 

induced a relevant increase in mechanical threshold (A1, SUDO, ChR2-5-HT: 3.2±0.2g before, 6.3±0.5g during and 3.2±0.2g 

post-stimulation; for ChR2-5-HT descending fibres: 2.4±0.2g before, 5±0.4g during and 2.4±0.1g post-stimulation; A2, 

Repeated measure with noxious stimuli in % of response, ChR2-5-HT: 92.8±1.6% before, 18.9±2.4% during and 89.4±2.7 post-

stimulation and ChR2-5-HT descending fibres: 96.9±1.4% before, 17.7±4.1% during and 90.8±2.8% of response post-

stimulation) resulting then in mechanical analgesia. On contrary, in control group expressing GFP alone optogenetic 

stimulation of GFP-5-HT or GFP-5-HT descending fibres in the spinal cord with blue activating light at 5Hz5ms during 2 min 

induced no change in mechanical threshold (B1, SUDO, GFP 5-HT: 3.2±0.6g before, 3.1±0.4g during and 3.1±0.5g post-

stimulation and GFP-5-HT descending fibres: 2.5±0.2g before, 2.4±0.2g during and 2.3±0.3g post-stimulation; B2, Repeated 

measure with noxious stimuli in % of response, GFP-5-HT: 78.8±6.4% before, 81.3±5.8% during and 83.8±4.6 and GFP-RMg 

descending fibres: 100±0% before, 98.2±1.8% during and 100±0 post-stimulation). Measures are reported as mean ± SEM; A1, 

SUDO RMg ****=p<0.0001 and SC ****= p<0.0001; A2, Repeated Measure ChR2-5-HT of RMg ****=p<0.0001 and ChR2-5-

HT descending fibres SC ****= p<0.0001 from Dunn’s post hoc test. 
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 With regard to thermal latency (Figure 60), using plantar test, we observed that optogenetic 

activation of 5-HT neurons of the RMg (Plantar test Figure 60A, Friedman test p<0.0001, 

F=16.91; n=11 for ChR2-5-HT) or 5-HT descending fibres (Plantar test Figure 60A, Friedman 

test p<0.0001, F=39.93; n=28 for ChR2-5-HT descending fibres) induced a relevant increase in 

thermal latency resulting in a thermal analgesia. 

 

 
Figure 60 : Thermal assessment of 5-HT activation above RMg or above dorsal horn spinal cord (SC): Optogenetic activation 

of ChR2-5-HT neurons or ChR2-5-HT descending fibres with 475nm blue activating light at 5Hz5ms during 2 min induced a 

relevant increase in thermal latency resulting in a thermal analgesia (A, Plantar test, ChR2-5-HT: 3.9±0.1s before, 4.9±0.2s 

during and 3.6±0.2s post-stimulation and ChR2-5-HT descending fibres: 3.6±0.2s before, 5.2±0.3s during and 3.8±0.2s post-

stimulation). On contrary, in control group expressing GFP alone optogenetic stimulation of GFP-5-HT or GFP-5-HT descending 

fibres in the spinal cord induced no change in thermal latency (B, Plantar test, B, GFP-5-HT: 3.9±0.3s before, 3.8±0.2s during 

and 3.9±0.3s post-stimulation and GFP-5-HT descending fibres: 3.5±0.2s before, 3.4±0.3s during and 3.3±0.3s post-

stimulation). Measure are reported as mean ± SEM; A, ChR2-5-HT of RMg **=p=0.0028, ***= p=0.0002 and ChR2-5-HT 

descending fibres SC ****=p<0.0001 from Dunn’s post hoc test. 

 Therefore, as we hypothesise, 5-HT neurons of the RMg exert a direct tonic descending 

inhibition on pain transmission resulting in an increase in both mechanical and thermal 

analgesia.  

 

2. Consequences of optogenetic manipulation of 5-HT neurons on dorsal horn neurons.  

 To go further in our understanding of descending inhibitory effects mediated by RMg 

5-HT, we sought to determine the spinal targets of RMg 5-HT. Taking into account on one 

hand, the fact that inhibition of descending 5-HT fibres leads to a mechanical allodynia and 

mechanical hyperalgesia (considered to be an expression of central sensitization phenomenon 

in which wide dynamic range neurons (WDRs) are supposed to be involved) and on the other 
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hand the presence of 5-HT fibres mostly in deep layer of the spinal dorsal horn where the density 

of WDR is more important, we therefore hypothesize that WDRs, which received inputs from 

low-velocity C fibres and are mainly second-order neurons of the spinal cord, are modulated 

by 5-HT descending neuron.  

 

  RMg 5-HT neurons modulation modify WDRs integration property to noxious 

stimuli 

 We first assessed the consequence of inhibition of RMg 5-HT descending fibres on pain 

transmission in the dorsal horn of the spinal cord (Figure 61). In anesthetised 5-HT cre mice 

expressing ArchT in RMg 5-HT, we performed single-unit electrophysiological recordings of 

spinal WDRs associated with optogenetic manipulation above the spinal cord with the same 

light pattern that we used for the behaviour (526.5nm continuous green inhibiting light with 

power set at 10mW). We observed that optogenetic inhibition of RMg 5-HT projecting to the 

dorsal horn elicited an increase in both WDR spontaneous activity (Figure 61A) and WDR 

response to nociceptive C fibre input (Figure 61B, Ordinary one-way ANOVA p<0.0001, 

F=11.45; n=8).  

 

Figure 61 : In vivo single-unit recording of DHNs associated with optogenetic inhibition of 5-HT neuron of the RMg projecting 

to the dorsal horn of the spinal cord. A) one sample showing an increase of DHN response to noxious stimuli as well as an 

increase in DHN spontaneous discharge during optogenetic inhibition of Archt-5-HT descending fibres (above, representative 

WDR neuron response to noxious electrical stimuli recorded before and during optogenetic stimulation). B) Mean number 

DHNs responses to C-fibre input is increased during optogenetic stimulation of Archt-5-HT descending fibres (mean number of 
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C-spike before 1.4±0.6, during 4.9±0.6 and after 1.5±0.5). Measure are reported as mean ± SEM; B, Mean number of C spike 

**= p=0.0021 and ****= p<0.0001 from Dunn’s post hoc test. 

 By contrast, optogenetic activation of RMg 5-HT descending fibres (475nm blue 

activating light at 5Hz5ms with power set at 10mW) in 5-HT cre mice expressing ChR2 in RMg 

5-HT neurons induced a decrease in WDR response to nociceptive inputs (Figure 62, Friedman 

test p=0.0004, F=28.46; n=14).  

 

Figure 62 : In vivo single-unit recording of DHNs associated with optogenetic activation of 5-HT descending fibres into the 

dorsal horn of the spinal cord. A) One sample showing a decrease of DHN response to noxious stimuli during optogenetic 

stimulation of ChR2-5-HT descending fibres (above, representative WDR neuron response to noxious electrical stimuli recorded 

before and during an optogenetic stimulation). B) Mean number DHNs responses to C-fibre input is decreased during 

optogenetic activation of ChR2-5-HT descending fibres (mean number of C-spike before 7.4±1.3, during 6.0±1.2 and after 

6.3±1.3). Measure are reported as mean ± SEM; B, Mean number of C spike *= p=0.0373 from Dunn’s post hoc test. 

 Furthermore, we observed that optogenetic manipulation of RMg 5-HT descending 

fibres modified the sensitization properties of DHN (Figure 63). Indeed, by focusing on the 

WDR ability to express a Windup, which results in a progressive increase in WDR response to 

low frequency repetitive electrical stimulation of C-fibres with the same intensity, we observed 

that optogenetic inhibition of the RMg 5-HT descending fibres increased the windup coefficient 

(see methods; Two-tailed t.test p=0.0156, W=28; n=7 DHN), and optogenetic activation of the 

RMg 5-HT descending fibres decreased the windup coefficient (Two-tailed t.test p=0.0339; 

W=-60; n=13 DHN).   
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Figure 63 : Consequence of optogenetic modulation of 5-HT  descending fibres on the DHN windup. A-B) Above, one sample 

showing a decrease (A) or an increase (B) of DHN response resulting from repeated electrical C-fibres activation at 1Hz before 

and during optogenetic activation (in blue) or inhibition (in green). A) Optogenetic activation of 5-HT descending fibres resulted 

in a decrease of the windup coefficient (mean number of C-spike before 67.1±17.1 and during 28.7±8.6), (B) while optogenetic 

inhibition resulted in an increase of the windup coefficient (mean number of C-spike before 9.7±1.7 and during 30.7±4.6). 

Measure are reported as mean ± SEM; ChR2-5-HT, *=p= 0.0339 and ArchT-5-HT, *=p=0.0156 from Wilcoxon matched-pairs 

signed-rank test. 

 Also, as a control of optogenetic stimulation (Figure 64), in anesthetised 5-HT cre mice 

expressing GFP only in RMg 5-HT, we performed single-unit electrophysiological recordings 

of spinal WDRs associated with light illumination above the spinal cord with the same light 

pattern that we used for optogenetic activation or inhibition (5Hz5ms at 475nm blue light or 

continuous green light for at 10mW respectively) and we observed no change in either DHN 

response to C-fibre activation or DHN windup coefficient.  

 

Figure 64 : In vivo single-unit recording of DHNs in 5-HT cre mice expressing GFP in the RMg 5-HT neuron associated with an 

optogenetic stimulation above the dorsal horn of the spinal cord. Whatever the optogenetic stimulation pattern, no change 

has been observed both in DHN C-evoked response (A, blue light, Friedman test p=0.3814, F=10.70; n=10 DHN and B, green 

light, Kruskal-Wallis test p= 0.9894, K=2.593; n=7 DHN) and DHN windup coefficient (C, Wilcoxon matched-pairs signed-rank 

test p=0.53, n=13 DHN).  
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 Therefore, RMg 5-HT projecting to the dorsal horn, tonically inhibit nociceptive 

transmission by decreasing WDR excitability resulting from a decrease in WDR response to C-

fibres inputs as well as a decrease in sensitization properties.  

 

3. RMg 5-HT inhibitory influence is not gender dependent 

 Because it has previously been shown that pain integration may be under the influence 

of gender difference (Mogil and Bailey, 2010) we decided to find out if it was also the case for 

5-HT descending pain modulation. Thus, we compared the effect of optogenetic stimulation of 

5-HT descending fibres into the dorsal horn both in males and females (Figure 65). We 

observed no sex difference of 5-HT optogenetic stimulation-inducing inhibition on nociceptive 

transmission in both males and females whatever the modality measured. Indeed, optogenetic 

activation of 5-HT neurons induced on both male and female an increase in both mechanical 

threshold (Figure 65A1, SUDO, for male Friedman test p<0.0001, F=28.44 and for female 

p<0.0001, F=21.41; n=16 and 11 respectively) and thermal latency (Figure 65A2, Plantar test, 

male Friedman test p<0.0001, F=24.47 and female p<0.0001, F=16.55; n=17 and 11 

respectively), resulting in both cases in a mechanical and thermal analgesia. Also WDR 

excitability was the same in anesthetised males and females. Indeed, optogenetic activation of 

5-HT descending fibres induced in both males and females a decrease in DHNs response to 

noxious stimuli (Figure 65B, Friedman test p=0.0164, F=18.73; n=11 male WDR and 

p=0.0018, F=24.61; n=6 female WDR).  
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Figure 65 : Gender do not influence tonic 5-HT-induced inhibition on pain transmission. Optogenetic activation of ChR2-5-HT 

descending fibres induced in both male and female, a relevant increase in mechanical threshold (A1 for male ChR2-5HT 

descending fibres: 2.6±0.2g before, 5.7±0.5g during and 2.5±0.1g post-stimulation; for female ChR2-5HT descending fibres: 

2.2±0.1g before, 3.9±0.3g during and 2.2±0.1g post-stimulation) and thermal latency (A2 for male ChR2-5HT descending 

fibres: 4.0±0.3s before, 5.8±0.3s during and 0.3±0.3s post-stimulation; for female ChR2-5HT descending fibres: 3.0±0.3s 

before, 4.3±0.3s during and 2.9±0.3s post-stimulation). B) With regard to DHN excitability, DHNs C-fibre evoked response is 

decreased both in male and female during optogenetic stimulation of 5-HT descending fibres (male mean number of C-spike 

before 6.0±1.4, during 5.1±1.4 and after 5.7±1.5 optogenetic stimulation and female mean number of C-spike 4.8±2.0 before, 

3.2±1.6 during and 4±2.1 after optogenetic stimulation; n=11 male DHN and 6 female DHN). Measure are reported as mean 

± SEM; SUDO male, ****=p<0.0001 and female **=p<0.01, ***=p<0.001; Plantar test male **=p<0.01, ****=p<0.0001 and 

female **=p<0.01, ***= p<0.001; Mean number of C spike male *1=p=0.004, *2=p=0.0218 and female *p=0.0354 from Dunn’s 

post hoc test. 

 

4. Target of RMg 5-HT neuron on the dorsal horn of the spinal cord 

 To go further in understanding this mechanism, we next wanted to determine the targets 

of 5-HT neurons on the dorsal horn microcircuits. We hypothesised that RMg 5-HT neuron 

inhibitory effect might be mediated through inhibitory neurons. To test this possibility, in 

Gad67-GFP mice (Figure 66A1), we performed TPH2 immunostaining (Figure 66A2) and by 
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using microscopy image analysis, we observed potential synaptic button of 5-HT fibres onto 

GABA neurons in deep layer of the dorsal horn of the spinal cord (Figure 66A3-4 represented 

in green). 

 

Figure 66 : Confocal image and 3D representation of immunostaining against TPH2 in thin slice of lumbar spinal cord of GAD67 

mice. GFP positive neurons (in green) in deep layer of the spinal cord are contacted by TPH2 putative synaptic button (in red, 

arrow). 3D reconstruction of GAD 67/ TPH2 merged confocal image (A4), green sphere corresponding to TPH2 putative 

synaptic button close to GFP positive neuron and red sphere those far from GFP67 positive neuron.  

 To confirm these connections to the local inhibitory network, we compared, in 5-HT cre 

mice injected with AAV-CAG-FLEX-GFP, appositions between GFP staining and excitatory 

(TLX3) or inhibitory (PAX2) neurons and we found that 5-HT fibres are substantially more in 

apposition with inhibitory interneurons (Figure 67C, unpaired Two-tailed t test p<0.0001; n=10 

for Pax2 and 9 for Tlx3).  



132 

 

Results 

 



133 

 

Results 

 

Figure 67 : Confocal image and 3D representation of AAV-flex-GFP expression in 5-HT descending fibres in combination with 

Tlx3 and Pax 2 staining in thin slice of the lumbar spinal cord of 5-HT cre mice. A1-3) Tlx3 excitatory marker immunostaining 

(red) showed superficial cell body that is not contacted by GFP fibres. B1-3) Pax2 inhibitory marker immunostaining (red) 

showed cell body in the dorsal horn of the spinal cord that is contacted with GFP fibre (green) from 5-HT neurons of the 

RMg. C) imaris 3D reconstruction allow quantification of contacts between cell bodies and fibres. Proportions of cell bodies 

contacted by GFP fibres on the total amount of cell bodies are plotted for Pax2 and Tlx 3 respectively. Proportions are 

substantially higher for Pax2 than for Tlx3 (82.23% for Pax2 and 15.49% for Tlx3, unpaired Two-tailed T.test p<0.0001. 

 Then, in order to determine if real synaptic contacts are present between RMg 5-HT and 

inhibitory neurons, we used Gad67-GFP*5-HTcre mice in which SynMYC-rev-WPRE was 

expressed 5-HT RMg 5-HT. into the RMg, we performed immunostaining in the dorsal horn of 
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the spinal cord of SynMyc together with GFP or parvalbumin (Figure 68A and B) and we found 

synaptic buttons of 5-HT fibres onto GABA and parvalbumin neurons.  
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Figure 68 : Confocal image of AAV-CAG-floxed-SynMYC-rev-WPRE expression (revealed in red for A1-3 and in green for B1-3) 

in 5-HT neurons of the RMg projecting to the dorsal horn in combination with Gad67 and Parvalbumin (PV) staining in thin 

slice of lumbar spinal cord of both Gad67-GFP*5-HTcre (A) and 5-HT cre mice (B). A1-4) Gad67-GFP positive staining (green) 

showed cell body (white arrow) and fibres (orange arrow) that are contacted by 5-HT synaptic buttons (in red). B1-4) PV 

immunostaining (red) showed mainly cells bodies in deep layer dorsal horn of the spinal cord that are contacted by 5-HT 

synaptic buttons (green). 

 Thus, it can be concluded that the tonic descending inhibitory action of 5-HT neurons 

of the RMg on nociceptive pain transmission passes through the inhibitory interneuron of the 

spinal cord dorsal horn. 
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 RMg 5-HT descending inhibition on pain transmission is mediated by dorsal 

horn inhibitory interneurons. 

 To verify this hypothesis, we performed optogenetic stimulation of RMg 5-HT in freely 

moving 5-HT cre mice expressing ChR2 opsin, with an intrathecal injection of picrotoxin (10µl 

of a competitive inhibitor of glycine receptors (GlyRs) and a non-competitive antagonist of γ-

aminobutyric acid (GABAA) receptor) thus removing inhibition induced by 

GABAergic/glycinergic inhibitory neurons in the dorsal horn of the spinal cord (Figure 73). 

Optogenetic stimulation (475nm, 5Hz/5ms light activation for 2 min, 10mW) of 5-HT neurons, 

no longer elicited mechanical and thermal analgesia: mechanical threshold (Figure 69A SUDO 

picrotoxin, Friedman test p=approximate; n=5). Thermal latency (Figure 69B Plantar test 

picrotoxin, Friedman test p=0.9537, F=0.4; n=5) compare to the same optogenetic stimulation 

protocol in 5-HT cre mice with vehicle injection (Figure 69A, SUDO, Friedman test p=0.0123, 

F=10; n=5 and Figure 69B, Plantar test, Friedman test p=0.0239, F=7.6, n=5).  

 

 

Figure 69 : Mechanical (A) and Thermal (B) assessment in freely moving using an optogenetic activation of 5-HT descending 

fibres above the dorsal horn spinal cord(SC) associated with an intrathecal injection of picrotoxin or vehicle: A) Optogenetic 

activation of ChR2-5-HT descending fibres with 475nm blue activating light at 5Hz5ms during 2 min associated with intrathecal 

injection of picrotoxin induced no change in neither mechanical threshold (0.3±0.0g before, 0.3±0.0g during and 0.3±0.0g 

post-stimulation; n=5) nor in thermal latency (3.3±0.4s before, 3.6±0.6s during and 3.4±0.3s post-stimulation; n=5) compare 

to those with intrathecal vehicle injection where an increase in both mechanical threshold (2.8±0g before, 5.9±0.4g during 

and 2.8±0g post-stimulation; n=5) and thermal latency have been observed  (3.8±0.2s before, 5±0.220s during and 3.9±0.2s 

post-stimulation; n=5). Measure are reported as mean ± SEM; A, SUDO vehicle *=p=0.0354 and B, plantar test *=p=0.0228 

from Dunn’s post hoc test. 
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 Blockade of the GABAa neurotransmission using an intrathecal picrotoxin injection 

suppressed the descending inhibitory effect elicited by the optogenetic activation of RMg 5-HT 

neurons expressing ChR2 opsin (Figure 70). Indeed, in these animals, optogenetic stimulation 

no longer induced a decrease of the C-evoked response to noxious stimuli (Friedman test 

p=0.1026, F15.90; n=11 DHN with picrotoxin DHN compare to p=0.0004, F=28.46; n=14 

without picrotoxin). 

 

Figure 70 : In vivo single-unit recording of DHNs in 5-HT cre mice expressing ChR2 in RMg 5-HT neuron associated with 

optogenetic stimulation. Intrathecal picrotoxin injection suppressed the descending inhibitory effect mediate by ChR2-5-HT 

neurons. Indeed, DHNs C-fibre evoked response is no longer modify during optogenetic stimulation of 5-HT neurons (mean 

number of C-spike before 9.2±2.0, during 8.6±2 and after 9±2.1 with intrathecal picrotoxin injection compared to mean 

number of C-spike before 7.4±1.3, during 6.0±1.2 and after 6.3±1.4 in control). Measure are reported as mean ± SEM. Mean 

number of C spike control, *= p=0.0373 from Dunn’s post hoc test. 

 Therefore, the descending 5-HT neurons projection to the dorsal horn, tonically inhibit 

nociceptive spinal transmission by acting on dorsal horn GABAergic/glycinergic inhibitory 

interneurons resulting in a decrease of DHN excitability. However, in previous studies, it has 

been shown that activation of 5-HT3 receptors evoked GABA release in the spinal cord 

(Kawamata et al., 2003) and may enhanced inhibitory transmission in the spinal dorsal horn 

(Xie et al., 2012), therefore we hypothesised that RMg 5-HT descending action on 

Gabaergic/glycinergic inhibitory interneurons may pass through the activation of 5-HT3 

receptors activation. 

To test that possibility, in 5-HT-cre mice (Figure 71), we performed double 

immunostaining of 5-HT3 receptor in combination with Pax2 and compared appositions 

between inhibitory (PAX2) neurons and 5-HT3 receptor and we found the presence of 5-HT3 

receptors on inhibitory interneurons. 
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Figure 71 : Confocal image of immunostaning against 5-HT3 (A1) and Pax2 (A2) in thin slice of lumbar spinal cord of 5-HT cre 

mice. Pax 2 positive cells are colocalised with 5-HT3 staining confirming the presence of 5-HT3 receptors on spinal cord 

inhibitory interneurons (white arrows, A3-4). 

 

 RMg 5-HT descending action on GABAergic/glycinergic inhibitory interneuron 

does not pass through 5-HT3 receptors activation. 

 To verify this hypothesis, we performed optogenetic stimulation of RMg 5-HT in freely 

moving 5-HT cre mice expressing ChR2 opsin, with an intrathecal injection of granisetron 

(10µl of a 5-HT3 receptor antagonist) thus removing the ability to activate 

GABAergic/glycinergic inhibitory neurons in the dorsal horn of the spinal cord via this receptor 
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(Figure 72). Optogenetic stimulation (475nm, 5Hz/5ms light activation for 2 min, 10mW) of 

5-HT neurons, always elicited mechanical and thermal analgesia as for the vehicle: mechanical 

threshold, Figure 72A1 SUDO granisetron, Friedman test p=0.0123, F=10; n=5; Figure 72A2, 

Repeated measure, granisetron, Friedman test p=0.0123, F=10; n=5 and Figure 72B Plantar test 

granisetron, Friedman test p=0.085, F=0.4; n=5 compare to the same optogenetic stimulation 

protocol in 5-HT cre mice with vehicle injection (Figure 72A1, SUDO, vehicle, Friedman test 

p=0.0123, F=10; n=5 and Figure 72A2, Repeated measure vehicle, Friedman test p=0.0123, 

F=10; n=5  69B, Plantar test, Friedman test p=0.0239, F=7.6, n=5).  

 

 
Figure 72 : Mechanical (A) and Thermal (B) assessment in freely moving using an optogenetic activation of 5-HT descending 

fibres above the dorsal horn spinal cord(SC) associated with an intrathecal injection of granisetron or vehicle: A) Optogenetic 

activation of ChR2-5-HT descending fibres with 475nm blue activating light at 5Hz5ms during 2 min associated with intrathecal 

injection of granisetron induced a significant increase of the mechanical threshold (SUDO, 2.6±0.2g before, 5.5±0.5g during 

and 2.6±0.19g post-stimulation; n=5 and Repeated measure, 100±0.0% before, 0±0.0% during and 100±0.0% post-stimulation; 
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n=5 ) and the thermal latency (3.6±0.3s before, 4.2±0.2s during and 3.4±0.2s post-stimulation; n=5) as for those with 

intrathecal vehicle injection (SUDO 2.8±0g before, 5.9±0.4g during and 2.8±0g post-stimulation; n=5 and Repeated measure, 

100±0.0% before, 4±4.00% during and 100±0.0% post-stimulation; n=5) and thermal threshold have been observed  (3.8±0.2s 

before, 5±0.2s during and 3.9±0.2s post-stimulation; n=5). Measure are reported as mean ± SEM; A2, Repeated measure 

granisetron *1=*²=p=0.0354, vehicle *1=*²=p=0.0354; A2, SUDO granisetron *1=*²=p=0.0354, vehicle *1=*²=p=0.0354 and B, 

plantar test granisetron **=p=0.0089, vehicle *=p= 0.0228 from Dunn’s post hoc test. 

Therefore, since no modification has been observed on the RMg 5-HT induced-

descending pain inhibition following the blockade of 5-HT3 receptors we can conclude that 5-

HT3 are not involved in the activation of GABAergic/glycinergic inhibitory interneurons 

resulting in the inhibition of the nociceptive transmission.  

 Next, we wanted to know how 5-HT neuron activity was modulated. Indeed, using an 

immunohistochemistry approach associating both confocal microscopy and 3D imaris images 

analysis (Figure 73A 1-4 and B1-4, VGLUT1-3, GAD65-67 for glutamatergic and GABAergic 

inputs respectively), we observed that 5-HT neurons receive inputs from both glutamatergic 

and GABAergic neurons. In particular, these inputs include somatostatin neurons (SST, Figure 

73C1-4). SST neurons derived from vlPAG and appear to have a sympathetic inhibitory effect 

on bulbospinal neurons (Bou Farah et al., 2016). vlPAG is also an important descending pain 

modulatory system through the rostral ventromedial medulla and is associated with spinal cord 

5-HT release (Cui et al., 1999). vlPAG contains various subpopulations of neurons (GABAergic 

and glutamatergic neuron) that control pain transmission (Brenner et al., 2012). All this suggest 

that the 5-HT neural activity may be influenced by somatostatin neurons of vlPAG (vlPAG 

SST). 
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Figure 73 : Confocal image and 3D representation of GAD 65-67, VGLUT 1-3, TPH2 and SOM immunostaining in thin slice of 

RMg of WT mouse. Both GAD 65-67 and VGLUT 1-2 and TPH2 and SOM staining showed dense afferent inputs on 5-HT 

neurons. A1, B1 and C1 show glutamatergic, GABAergic and somatostatin staining respectively. A2, B2 and C2, TPH2 staining 

and A3, B3 and C3 a merge of both TPH2 and glutamatergic and GABAergic staining revealing that 5-HT neurons received 

dense inputs from both of them. A4, B4 and C4 represent a 3D reconstruction of VGLUT 1-2/TPH2, GAD 65-67/ TPH2 and 

SOM/TPH2 merged confocal image respectively (IMARIS microscopy image analysis software; Oxford instrument) revealing 

spots contact between VGLUT 1-2 spots (A4, in blue, 2199 VGLUT 1-2 spots are close to TPH2 neurons staining revealed in 

violet) or GAD 65-67 spots (B4, in blue on a total average of 5880 GAD 65-67 spots labelled in blue, 772 GAD 65-67 spots are 

close to TPH2 neurons staining revealed in violet) or SOM spots (C4, in red) and 5-HT neurons (in red or green for the merge 

with  somatostatin spots). WT for wild type mice. 

 

 

B. DESCENDING INFLUENCE OF SST NEURONS OF vlPAG ON PAIN 

TRANSMISSION. 

1. Consequences of optogenetic manipulation of SST neurons in acute pain 

 Inhibition of vlPAG SST neurons induces mechanical and thermal analgesia 

 First of all, we established the functional role of SST neurons of the vlPAG (vlPAG 

SST) on the spinal nociceptive transmission. In freely moving SOM-IRES-CRE mice, 

optogenetic inhibition with ArchT opsin was performed using optical cannulas bilaterally 

implanted above the vlPAG (Figure 74 and 75). With regard to mechanical threshold, 

optogenetic inhibition (526.5nm continuous green inhibiting light for 2 min, power set at 10mw) 

of SST neurons of the vlPAG elicited a relevant increase in mechanical threshold and thermal 

latency with a return to baseline after light switched off (Figure 74) that was not observed in control 
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group expressing GFP alone. Indeed, using both Von Frey SUDO and repeated measure, we 

observed that optogenetic inhibition of SST neurons induced a significant increase in mechanical 

threshold (Figure 74A, SUDO, Friedman test p<0.0001, F=20.76; n=12) including a substantial 

decrease in the percentage of response of the hind-paws to repeated noxious stimuli (Figure 74B, 

Repeated measure, Friedman test p<0.0001, F=19.6; n=12) resulting in mechanical analgesia.  

 

 
Figure 74 : Mechanical assessment of SST inhibition in the vlPAG. Optogenetic inhibition with ArchT-SST neuron with 526.5nm 

continuous green inhibiting light during 2 min induced a relevant increase in mechanical threshold (A, SUDO, 3.5±0.3g before, 

7.0±0.6g during and 3.4±0.2g post-stimulation) including a decrease in the percentage of hind-paws response to repeated 

noxious stimuli (B, Repeated measure in % of response: 90±2.1% before, 14.2±4.5% during and 87.5±2.8 post-stimulation) 

resulting in mechanical analgesia compared to control group expressing GFP alone where no modification has been observed 

(SUDO: 4±1.2g before, 4±1.2g during and 4±1.2g post-stimulation; n=3 and Repeated measure with noxious stimuli, 90±5.8% 

before, 86.67±13.3% during and 90±10% post-stimulation; n=3). Measures are reported as mean ± SEM; A, SUDO 

**=p=0.0010, ***=p=0.0002 and B, Repeated measure **=p=0.0015, ***=p=0.0001 from Dunn’s post hoc test. 

 With regard to thermal latency, using plantar test, we observed that optogenetic inhibition 

of SST neurons induced a significant increase in thermal latency resulting in thermal analgesia 

(Figure 75, Plantar test, Friedman test p<0.0001, F=20.67; n=12) compared to what we observed 

in GFP SST mice. 
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Figure 75 : Thermal assessment of SST inhibition in the vlPAG. Optogenetic inhibition with ArchT-SST neuron with 526.5nm 

continuous green inhibiting light during 2 min induced a relevant increase in thermal latency (Plantar test: 3.5±0.3s before, 

7.0±0.6s during and 3.4±0.2s post-stimulation) resulting in thermal hyperalgesia compared to the control group expressing 

GFP alone where no modification has been observed (Plantar test, 5.3±0.8s before, 4.2±0.3s during and 4.4±1s post-

stimulation; n=2). Measures are reported as mean ± SEM; **=p=0.0085 and ****=p<0.0001 from Dunn’s post hoc test. 

 So unlike what we observed with 5-HT cre mice expressing ArchT in 5-HT neurons of 

the RMg, optogenetic inhibition of SST neurons of the vlPAG results in a downward inhibition 

of pain transmission that suggest that within the vlPAG, SST neurons are tonically active and 

may exert tonic facilitation on pain transmission.   

 

 Activation of vlPAG SST neurons induces mechanical hyperalgesia and 

allodynia and thermal hyperalgesia 

 As for the ArchT-SST mice, in freely moving SOM-IRES-CRE mice, optogenetic 

activation with ChR2 opsin was performed using optical cannulas bilaterally implanted above 

the vlPAG (Figure 76 and 77). With regard to mechanical threshold, optogenetic activation 

with blue laser light (475nm blue activated light at 2hz5ms for 2 min, power set at 10mW) of 

SST neurons of the vlPAG (ChR2-SST) elicited a significant decrease in mechanical threshold 

that was suppressed after light switched off (Figure 76). Indeed, using Von Frey SUDO and 

repeated measured, we observed that optogenetic activation of vlPAG SST neurons decreased 

substantially the mechanical threshold including a substantial increase in the percentage of 
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hind-paws response to repeated innocuous stimuli (Figure 76A, SUDO, Friedman test 

p<0.0001, F=20.24; n=17 and Figure 76B, Repeated measure p=0.0008, F=11.79; n=8) 

resulting in mechanical allodynia and hyperalgesia. Phenomenon that was not observed with 

SOM-IRES-CRE mice expressing GFP in SST neurons of the vlPAG using the same pattern of 

optogenetic activation (Figure 76A, SUDO, Friedman test p=0.1738, F=3.5, n=12; Figure 76B, 

Repeated measure, Friedman test p>0.9999, F=0.2; n=5).  

 

 
Figure 76 : Mechanical assessment of SST activation in the vlPAG. Optogenetic activation with ChR2-SST neurons with 475nm 

blue activating light at 5Hz5ms during 2 min induced a relevant decrease in mechanical threshold (A, SUDO: 3.5±0.4g before, 

1.9±0.3g during and 3.4±0.3g post-stimulation) including a substantial increase in the percentage of hind-paws response to 

repeated innocuous stimuli (B, Repeated measure in % of response: 6.3±2.6% before, 77.5±10.3% during and 7.5±2.5 post-

stimulation) resulting in mechanical allodynia and mechanical hyperalgesia compared to control group expressing GFP alone 

where no modification has been observed (SUDO: 3±0.3g before, 3±0.3g during and 2.9±0.3g post-stimulation; Repeated 

measure with innocuous stimuli: 12±5.8% before, 12±5.8% during and 10±6.3% post-stimulation). Measures are reported as 

mean ± SEM; A, SUDO ChR2 **=p=0.0017, ***=p=0.0002; B, Repeated measure ChR2 *=p=0.0173 and **=p= 0.0054 from 

Dunn’s post hoc test. 

 With regard to thermal threshold, using plantar test, we observed that optogenetic activation 

of SST neurons induced a significant decrease in thermal threshold resulting in thermal 

hyperalgesia (Figure 77, Plantar test, Friedman test p=0.0006, F=14.92; n=13) compared to what 

we observed in GFP-SST mice where optogenetic stimulation of SST neuron of the vlPAG 

expressing GFP induced no modification of thermal latency (Figure 77, Plantar test, Friedman 

test p=0.6013, F=1.4; n=10). 
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Figure 77 : Thermal assessment of SST activation in the vlPAG. Optogenetic activation with ChR2-SST neuron with 475nm blue 

activating light at 5Hz5ms during 2 min induced a relevant decrease in thermal latency resulting in thermal hyperalgesia 

(Plantar test: 6.7±0.5s before, 4.3±0.4s during and 6.2±0.4s post-stimulation) compared to the control group expressing GFP 

in vlPAG of SST mice where no modification has been observed (Plantar test: 5.8±0.4s before, 5.4±0.5s during and 5.5±0.3s 

post-stimulation). Measures are reported as mean ± SEM; *=p=0.0121 and ***=p=0.0004 from Dunn’s post hoc test 

 Therefore, it can be concluded that SST neurons of the vlPAG exert a tonic descending 

facilitation on pain transmission. These results are the exact opposite to what we observed in 5-

HT cre mice where optogenetic activation of 5-HT neurons of the RMg resulted in descending 

inhibition of the pain transmission.    

 

2. Consequence of optogenetic manipulation of vlPAG SST neuron on dorsal horn 

neurons  

 We then assess the functional consequence of optogenetic modulation of SST neurons 

of the vlPAG on dorsal horn neurons. To do so, in anesthetised SOM-IRES-cre mice expressing 

ChR2 or ArchT opsin or GFP tag in vlPAG SST neuron, we performed single-unit 

electrophysiological recordings targeting WDRs associated with bilateral optogenetic 

stimulation above vlPAG with the same light pattern that we used for behavioural experiments. 
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 vlPAG SST neuron modulation modifies WDRs integration property to noxious 

stimuli 

 In anesthetised SOM-IRES-cre mice expressing ArchT in the SST neurons of the 

vlPAG, bilateral optogenetic inhibition of SST neurons (526.5nm continuous green inhibiting 

light for with power set at 10mW) elicited a significant decreased both in WDR response to 

nociceptive C fibre transmission (Figure 78A, Friedman test p=0.0229, F=20.75; n=18) and of 

the windup coefficient (Figure 78B, Two-tailed t test p=0.0313, n=6 DHN), resulting in a 

decrease of DHN excitability.  

 

 

Figure 78 : In vivo single-unit recording of DHNs associated with optogenetic inhibition of vlPAG SST neurons. A) Above, 

representative WDR neuron response to noxious electrical stimuli recorded before and during optogenetic stimulation. ArchT 

vlPAG SST optogenetic inhibition decreased DHN excitability resulting from both a decrease in the mean number of DHNs 

responses to C-fibre input (mean number of C-spike before 7.3±1.3, during 5.5±1 and after 5.8±1) and a decrease in the 

coefficient of windup (from 116.8±31.0 before to 18.3±17.6 during optogenetic stimulation). Measure are reported as mean 

± SEM; Mean number of C spike *=p<0.0229 from Dunn’s post hoc test and Coefficient Windup *= p=0.0313 from Wilcoxon 

matched-pairs signed-rank test. 

 By contrast, bilateral optogenetic activation of SST neurons (475 nm blue activating 

light at 2hz5ms, power set at 10mW) with SOM-IRES-cre mice expressing ChR2 in SST 

neurons of the vlPAG elicited a significant increase of the WDR response to nociceptive C fibre 

transmission (Figure 79A, Friedman test p<0.0001, F=73.81; n=18 DHN) and a relevant 
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increase of windup coefficient (Figure 79B, Two-tailed t test p=0.0039; n=10 DHN) resulting 

in a hyper-excitability of DHN. 

 

 

Figure 79 : In vivo single-unit recording of DHNs associated with optogenetic activation of SST neurons of the vlPAG. A) Above, 

representative WDR neuron response to noxious electrical stimuli recorded before and during optogenetic stimulation. 

Optogenetic activation with ChR2-SST neurons increased DHN excitability resulting from both an increase in the mean number 

of DHNs responses to C-fibre input (mean number of C-spike before 4.4±0.5, during 7.7±1.1 and after 4.4±0.6) and an increase 

in the windup coefficient (from 10.1±6.8 before to 82.2±3 during optogenetic stimulation). Measure are reported as mean ± 

SEM; A, Mean number of C spike **= p=0.0010, ***1=p=0.0002, ***2=p=0.0003 and ****= p<0.0001 from Dunn’s post hoc 

test and B, Coefficient Windup **= p=0.0039 from Wilcoxon matched-pairs signed-rank test. 

 In addition to that, in anesthetised SOM-IRES-cre mice expressing GFP only in the 

vlPAG SST neurons, bilateral optogenetic stimulation in vlPAG SST neuron with both optical 

pattern (5Hz5ms at 475nm blue activating light or continuous green inhibiting light at 10mW 

respectively) induced no change in either DHN response to C-fibre activation (Figure 80A, 

Friedman test p=0.1743, F=3.650; n=10) or DHN windup coefficient (Figure 80B, Two-tailed 

t test p=0.6250, n=5 DHN).  
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Figure 80 : In vivo single-unit recording of DHNs associated with optogenetic stimulation of vlPAG SST neuron. A)  In SOM-IRES 

cre mice expressing GFP in the vlPAG associated with a bilateral optogenetic stimulation above the vlPAG, no change has been 

observed both in DHN C-evoked response (mean number of C-spike before 3.7±1.1, during 3.9±1.4 and after 2.8±0.9) and DHN 

windup coefficient (from 10.2±14.6 before to 1.8±7.6 during optogenetic stimulation). 

 Therefore, by contrast with RMg 5-HT neuron, vlPAG SST neurons facilitate the 

nociceptive transmission resulting in an increase in WDR excitability.  

 We then hypothesised that vlPAG SST facilitation on pain transmission may pass 

through RMg 5-HT neurons. 

 

 vlPAG SST facilitation partly passes through RMg 5-HT neuron 

 To verify our hypothesis, we developed a viral strategy, as described in the method, in 

which SOM-IRES cre mice were microinjected bilaterally in the vlPAG with AAV-CAG-

FLEX-GFP (Figure 81A) associated with a bilateral injection of fluorogold 2% into the dorsal 

horn of the spinal cord (Figure 81B). Then, post-mortem, we performed immunostaining in 

cross-section of RMg against TPH2 (Figure 81C). 



151 

 

Results 

 

Figure 81 : Viral strategy where AAV-CAG-FLEX-GFP virus was microinjected bilaterally in the vlPAG (A) of SOM-IRES cre mice 

associated with a bilateral injection of fluorogold 2% into the dorsal horn of the spinal cord  (B). Then in cross-section of the 

raphe Magnus we performed immunostaining against TPH2 (C). Images were obtained with an epifluorescence microscope.  

 We compared then, at the level of the RMg, apposition between TPH2 staining (Figure 

82A1), GFP staining (Figure 82A2) and fluorogold (FG) autofluorescence (Figure 82A3) and 

we found colocalisation between GFP-SST fibres staining from the vlPAG, TPH2 

immunostaining and FG staining from the spinal cord (Figure 82A4). Thus it can be concluded 

that vlPAG SST fibres project to the raphe Magnus and contact 5-HT neurons that project to 

the spinal cord. 
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Figure 82 : Confocal image (A1-4 and B1) and 3D representation (B2) of vlPAG AAV-flex-GFP positive fibres (A2) with FG (A3) 

and TPH2 (A1) staining in thin cross-section of raphe Magnus of SOM-IRES cre mice. (A1) TPH2 immunostaining (in red) 

showing RMg 5-HT neurons positive neurons colocalised with FG staining (A3, in blue) from the spinal cord dorsal horn in 

contact with GFP- SST fibres form the vlPAG (A4, in green). (B2) Imaris 3D reconstruction of RMg TPH2 positive cell (in red) 

colocalises with FG staining (in blue) in contact with vlPAG SST positive fibre (in green) (B1). 

 To confirm the functional effect of these connections, in freely moving SOM-IRES-

CRE mice expressing ChR2 opsin in SST neurons of the vlPAG, optogenetic activation was 

performed using an optical cannula implanted above the RMg. With regard to mechanical 

threshold, optogenetic activation with blue laser light (475nm blue activated light at 2hz5ms 

for 2 min, power set at 10mW) of SST descending fibres in RMg elicited a significant decrease 

in mechanical threshold (Figure 83) and thermal latency (Figure 84) that was suppressed after 

light switched off. Figure 80A, RMg SST Von Frey SUDO Friedman test p=0.0002, F=15.08; 

n=8 and Figure 83B, Repeated measure Friedman test p=0.0001, F=13.87; n=8 as well as what 

we had observed with an optogenetic stimulation of ChR2-SST neurons directly above the 

vlPAG (Figure 83A, Von Frey SUDO, Friedman test p<0.0001, F=20.24; n=17 and Figure 80B, 

Repeated measure Friedman test p=0.0008, F=11.79; n=8) and Figure 84, RMg SST Plantar 

test, Figure 84, Friedman test p=0.0080, F=9.250; n=8) 
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Figure 83 : Mechanical assessment of SST descending fibres activation from the vlPAG above the RMg (ChR2-SST descending 

fibres) compare to SST neurons activation directly above the vlPAG (Chr2-vlPAG SST). Optogenetic activation of ChR2-SST 

neuron above the vlPAG or ChR2-SST descending fibre in the RMg with blue activating light at 2hz5ms during 2 min induced a 

relevant decrease in mechanical threshold (A, SUDO, ChR2-SST descending fibres: 2.8±0g before, 1.3±0.2g during and 2.6±0.1g 

post-stimulation compared to ChR2-vlPAG SST: 3.5±0.4g before, 1.9±0.3g during and 3.4±0.3g post-stimulation) including an 

increase in the percentage of hind-paws response to repeated innocuous stimuli (B, Repeated measure, for ChR2-SST 

descending fibres % of response: 7.5±3.6% before, 88.8±2.2% during and 13.8±2.6 post-stimulation compare to ChR2-vlPAG 

SST % of response: 6.3±2.6% before, 77.5±10.3% during and 7.5±2.5 post-stimulation) resulting in mechanical allodynia and 

hyperalgesia. Measures are reported as mean ± SEM; A, SUDO, ChR2-SST descending fibres RMg, *=p=0.0119, **=p=0.0023; 

ChR2-vlPAG SST of vlPAg, **=p=0.0017 and ***p=0.0002; B, Repeated measure, ChR2-SST descending fibres RMg, 

*=p=0.0248, ***=0.0009 and ChR2-vlPAG SST of vlPAG *=p=0.0173 and **=p=0.0054 from Dunn’s post hoc test. 
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Figure 84 : Thermal assessment of SST descending fibres activation from the vlPAG above the RMg (ChR2-SST descending 

fibres) compare to SST neurons activation directly above the vlPAG (Chr2-vlPAG SST). ). Optogenetic activation of ChR2-SST 

neuron above the vlPAG or ChR2-SST descending fibre in the RMg with blue activating light at 2hz5ms during 2 min induced a 

relevant decrease in thermal latency resulting in thermal hyperalgesia (Plantar test, ChR2-SST descending fibres: 5.1±0.2s 

before,3.7±0.2s during and 4.8±0.4s post-stimulation compared to ChR2-vlPAG SST: 6.7±0.5s before, 4.3±0.4s during and 

6.2±0.4s post-stimulation). Measures are reported as mean ± SEM; ChR2-SST descending fibres RMg *1=p=0.0119, 

*²=p=0.0248 and ChR2-vlPAG SST of vlPAg *=p=0.0121 and ***=p=0.0004 from Dunn’s post hoc test. 

 In addition, in anesthetised SOM-IRES-cre mice expressing ChR2 opsin in vlPAG SST 

neurons, we observed that optogenetic stimulation (475 nm blue activating light at 2hz5ms,  

power set at 10mW) of vlPAG SST descending fibres in RMg also elicited a relevant increase 

of the WDR response to nociceptive C fibre transmission (Figure 85, p<0.0001, F=34.33; n=9 

DHN) resulting in a hyper-excitability of WDR.. 
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Figure 85 : In vivo single unit recording of DHNs associated with an optogenetic activation of SST descending fibres above the 

RMg (ChR2-SST descending fibres) or SST neurons above the vlPAG (ChR2-SST). Optogenetic activation of ChR2-SST above the 

vlPAG or ChR2-SST descending fibres above the RMg with blue activating light at 2hz5ms during 2 min induced a relevant 

increase of DHN excitability resulting from an increase in the mean number DHNs responses to C-fibre input (ChR2-STT 

descending fibres mean number of C-spike before 5.5±1.6, during 10.5±1.7 and 5.7±1.4 after optical stimulation compare to 

ChR2 vlPAG SST mean number of C-spike before 4.4±0.5, during 7.7±1.1 and 4.4±0.6 after optical stimulation). Measure are 

reported as mean ± SEM; ChR2-STT descending fibres RMg *=p=0.0427 and ChR2-STT of vlPAG **= p=0.0010, ****= p<0.0001, 

***1=p=0.0002 and ***2=p=0.0003 from Dunn’s post hoc test. 

 Therefore, as we hypothesize, vlPAG SSt neurons exert a tonic descending facilitation 

on pain transmission through probable inhibition of RMg 5-HT neurons. 

 Interestingly, with this viral approach (Figure 86 and 87), we also observed some 

vlPAG SST fibres in the dorsal horn of the spinal cord, especially in superficial layer (Figure 

87 A1-3) as well as some FG staining colocalised with GFP-SST positive neurons in the vlPAG 

(Figure 86A1-2). 
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Figure 86 : Result of the viral strategy combined with the use of retrograde tracer (A). Confocal image (A1) and 3D 

reconstruction (A2) of cross-section of the vlPAG showing GFP positive cell in colacolise with FG staining from the spinal cord.  
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Figure 87 : Result of the viral strategy combined with the use of retrograde tracer. Confocal image (A1) of thin cross-section 

of the spinal cord showing vlPAG descending fibres (white arrows). In vivo biphoton microscope acquisition of vlPAG SST long-

range fibres at a depth of 16 µm (A2, descending fibres) and 280µm (A3, superficial layer) into the dorsal horn of the spinal 

cord seen from above (green arrows).  

 Therefore, we hypothesise that vlPAG SST-induced descending facilitation may also 

pass through an inhibition directly in the dorsal horn neuron of the spinal cord. 

 

 vlPAG SST-induce facilitation does not pass through dorsal horn spinal cord. 

 To confirm the functional role of the spinal cord vlPAG SST descending fibres on 

nociceptive transmission, in anesthetised SOM-IRES-cre mice expressing ChR2 opsin in 

vlPAG SST neurons, we performed single-unit electrophysiological recording targeting WDRs 

associated with optogenetic stimulation above the spinal cord with the same light pattern that 

we used for the behaviour (2Hz5ms blue activating light at 475nm). Interestingly, we observed 

no change in either WDR response to C-fibre activation (Figure 88A, p=0.6987, F=0.7170; 

n=14 DHN) or WDR windup coefficient (Figure 88B, p>0.9999; n=7 DHN).   
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Figure 88: In vivo single-unit recording of DHNs associated with optogenetic activation of SST descending fibres above the 

dorsal horn of the spinal cord. Optogenetic activation of ChR2-SST descending fibres with blue activating light at 2hz5ms 

during 2 min above the spinal cord induced no change in DHN excitability neither in the mean number DHNs responses to C-

fibre input nor in the windup coefficient (mean number of C-spike before 5.317±1.426, during 6.308±1.688 and after 

6.412±1.894; n=14 DHN and for windup coefficient before 141.4±63.38 and during 153.1±79.21; n=7 DHN). Measure are 

reported as mean ± SEM. 

 Thus, although long-range SST neurons project to the spinal cord, they do not appear to 

influence nociceptive transmission. 

 We can, therefore, conclude that in conditions of acute pain, RMg 5-HT neurons exert 

a tonic inhibitory action on nociceptive transmission through direct action on 

Gabaergic/glycinergic inhibitory interneurons in the deep layer of the spinal dorsal horn and 

itself being under the influence of inhibitory somatostatin projection from the vlPAG. 

 However, RMg 5-HT, which exerts a tonic descending inhibition on pain transmission 

in acute pain, is known to facilitate pain transmission in pathological context (Gautier et al., 

2017).  

 

C. DESCENDING RMg 5-HT MODULATION ON SPINAL NOCICEPTIVE 

TRANSMISSION IN NEUROPATHIC PAIN. 

 Chronic pain in human is defined as a pain lasting for more than 3 to 6 months or 

persisting after a complete tissue healing or beyond the course of an acute disease. In the aim 

to mimic both the cardinal symptoms of clinically described neuropathic pain disorders and its 

duration in time, we used a spared nerve injury (SNI) model which resulted in consistent and 

reproducible pain hypersensitivity.  
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1. SNI leads as expect to mechanical and thermal hyperalgesia   

 First, we confirmed that SNI procedure resulted in a consistent neuropathic pain 

including a relevant decrease in the mechanical threshold and thermal latency observable 4 days 

later (Figure 89A, Ordinary one-way ANOVA SUDO, from j0 ipsi vs j0 contra, p=0.9977, 

n=20 and 20 respectively; j0 ipsi vs j4 ipsi, p<0.0001, n=20 and 19 respectively compared to j0 

contra vs j4 contra, p=0.6103, n=20 and 19 respectively, to j0 ipsi vs j7 ipsi, p<0.0001, n=20 

and 20 respectively compared to j0 contra vs j7 contra, p=0.9899; n=20 and 20 respectively and 

Figure 89B, Mann-Whithney test, plantar test j0 ipsi vs j0 contra, p=0.5294, n=24 and 24 

respectively compared to j7 contra vs j7 ipsi, p=0.0007, n=18 and 18 respectively) that lasts 

over time and this in both females (Figure 89A1, Ordinary one-way ANOVA SUDO from j0 

ipsi vs j0 contra, p>0.9999, n=12 and 12 respectively; j0 ipsi vs j4 ipsi, p<0.0001, n=12 and 8 

respectively compared to j0 contra vs j4 contra, p=0.9967, n=12 and 8 respectively; to j0 ipsi 

vs j7 ipsi, p<0.0001, n=12 and 6 respectively compared to j0 contra vs j7 contra, p=0.9737, 

n=12 and 6 and Figure 89B1, Mann-Whithney test plantar test, j0 ipsi vs j0 contra, p=0.6139, 

n=13 and 13 respectively compared to j7 contra vs j7 ipsi, p=0.0157, n=7 and 7 respectively) 

and males (Figure 89A2, Ordinary one-way ANOVA SUDO from j0 ipsi vs j0 contra, 

p=0.9938, n=14 and 14 respectively; j0 ipsi vs j4 ipsi, p<0.0001, n=14 and 11 respectively 

compared to j0 contra vs j4 contra, p=0.1182, n=14 and 11 respectively; to j0 ipsi vs j7 ipsi, 

p<0.0001, n=14 and 14 respectively compared to j0 contra vs j7 contra, p=0.9477, n=14 and 14 

and Figure 89B1, Mann-Whithney test plantar test, j0 ipsi vs j0 contra, p=0.2104, n=11 and 11 

respectively compared to j7 contra vs j7 ipsi, p=0.0104, n=11 and 11 respectively). 
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Figure 89 : Mechanical (A) and thermal (B) assessment of pain in SNI mice. Mechanical threshold and thermal latency after a 

sparse nerve injury substantially decrease in both females (A1-B1) and females (A2-B2). A) SUDO, ipsi from j0=2.7±0.2g, 
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j4=0.8±0.1g, j7=0.4±0.0g to j14=0.5±0.0g; n=20, 19, 20, 6 respectively compared to contra from j0=2.5±0.1g, j4=3.102±0.291g, 

j7=2.7±0.2g to j14=2.6±0.2g; n=20, 19, 20,6 respectively. A1) SUDO female, ipsi j0=2.8±0.2g, j4=0.5±0.1g and j7=0.4±0.1g; 

n=12, 8 and 6 respectively compared to contra j0=2.9±0.3g, j4=2.7±0.4g and j7=2.4±0.5g, n=12, 8, 6 respectively. A2) SUDO 

male, ipsi j0=2.8±0.3g, j4=1±0.2g and j7=0.4±0.0g; n=14, 11 and 14 respectively compared to contra j0=2.6±0.2g, j4=3.4±0.4g 

and j7=2.9±0.2g, n=14, 11, 14 respectively. B) Plantar test, ipsi j0=3.9±0.3s and j7=3.5±0.2s; n=24 and 18 respectively 

compared to contra j0=4.1±0.3s and j7=5±0.4s; n=24 and 18 respectively. B1) Plantar test, female ipsi j0=3.3±0.4s and 

j7=2.7±0.2s; n=13 and 7 respectively compared to contra j0=3.3±0.2s and j7=4.2±0.4s; n=13 and 7 respectively. B2) Plantar 

test, male ipsi j0=4.6±0.3s and j7=3.9±0.2s; n=11 and 11 respectively compared to contra j0=5.1±0.3s and j7=5.5±0.5s; n=11 

and 11 respectively. Measure are reported as mean ± SEM; SUDO, for all ****=p<0.0001, for female ****=p<0.0001 and male 

****=p<0.0001 from Dunn’s post hoc test; Plantar test for all ***=p=0.0007, for female *=p=0.0157 and male *=p=0.0104 

from Mann-Whitney test. Pink rectangles show the period of optogenetic manipulations. 

 

2. Consequences of optogenetic manipulation of 5-HT neurons in neuropathic pain  

 Inhibition of RMg 5-HT neurons does not influence the nociceptive transmission 

 We performed optogenetic manipulation during the Second and third week after SNI 

surgical procedure (pink rectangle in figure 91). Interestingly, in freely moving 5-HT cre mice 

expressing ArchT opsin in 5-HT neurons of the RMg (the same group that we had used to 

perform mechanical and thermal assessment in acute pain condition), we observed that, after a 

sparse nerve injury, optogenetic inhibition with continuous green laser light (526.5nm 

continuous green inhibiting light for 2 min with power set at 10mW) of RMg 5-HT using an 

optical cannula above the RMg or above the dorsal horn of the spinal cord elicited no change 

in mechanical threshold and thermal latency (Figure 90 and 91). Mechanical threshold was not 

modified (Figure 90A1, SUDO, SNI-ArchT-5-HT, Friedman test p=0.7778, F=2; n=5 and SNI-

ArchT-5-HT descending fibres, Friedman test p>0.9999, F=0.2857; n=5 and Figure 91B1 

Repeated measure SNI-ArchT-5-HT, Friedman test p=0.3951, F=2.8; n=5 and SNI-ArchT-5-

HT descending fibres, Friedman test p=0.1605, F=3.875; n=5) contrary to what we observed in 

the same animals before SNI procedure (Figure 90A2)).    
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Figure 90 : Mechanical assessment of 5-HT inhibition both at the level of RMg and spinal cord (SC) in neuropathic condition: 

Optogenetic inhibition of SNI-ArchT-5-HT or SNI-ArchT-5-HT descending fibres above the RMg or the spinal cord, respectively, 

with continuous green light during 2 min induced no change in mechanical threshold (A1, SUDO for SNI- ArchT-5-HT: 0.4±0.1g 

before, 0.4±0.1g during and 0.3±0.0g post-stimulation; for SNI-ArchT-5-HT descending fibres: 0.4±0.1g before, 0.4±0.1g during 

and 0.4±0.1g post-stimulation and B1, Repeated measure, with innocuous stimuli or to a lesser extent slightly noxious stimuli, 

for SNI-ArchT-5HT: 16±11.7% before, 24±10% during and 28±4.9% of response post-stimulation; for SNI-ArchT-5-HT 

descending fibres: 44±9.8% before, 40±11% during and 28±8% of response post-stimulation) contrary to what we had 

observed before the SNI where optogenetic inhibition of ArchT-5-HT above the RMg or ArchT-5-HT descending fibres above 

the spinal cord, had elicited a mechanical allodynia and hyperalgesia. Measures are reported as mean ± SEM; A2, SUDO, 

ArchT-5-HT of RMg **=p=0.0062, ****= p<0.0001 and ArchT-5-HT descending fibres SC **=p=0.0013, ***=p=0.0006; B2, 

Repeated Measure ArchT-5-HT of RMg **=p=0.0015, ***=p=0.0001 and ArchT-5-HT descending fibres SC **=p=0.0022 and 

****=p<0.0001 from Dunn’s post hoc test.  

 Thermal latency was not changed (Figure 91A, Plantar test SNI-ArchT-5-HT, Friedman 

test p=0.3673, F=2.8; n=5 and SNI-ArchT-5-HT descending fibres, Friedman test p=0.6914, 

F=1.2; n=5) contrary to what we observed before the SNI where optogenetic inhibition of 

ArchT-5-HT or ArchT-5-HT descending fibres above both the RMg or the spinal cord 

respectively, had elicited a thermal hyperalgesia (Figure 91B).  
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Figure 91 : Thermal assessment of 5-HT inhibition both at the level of RMg and spinal cord (SC) in neuropathic condition: 

Optogenetic inhibition of SNI-ArchT-5-HT or SNI-ArchT-5-HT descending fibres above the RMg or the spinal cord, respectively, 

with continuous green light during 2 min induced no change in mechanical threshold (A, Plantar test for SNI- ArchT-5-HT: 

3.135±0.149s before, 2.761±0.107s during and 2.779±0.160s post-stimulation and for SNI-ArchT-5-HT descending fibres: 

2.707±0.107s before, 2.70±0.330s during and 2.665±0.159s post-stimulation) contrary to what we observed before the SNI 

where optogenetic inhibition of ArchT-5-HT above the RMg or ArchT-5-HT descending fibres above  the spinal cord, had elicited 

a thermal hyperalgesia. Measure are reported as mean ± SEM; B, ArchT-5-HT of RMg **=p=0.0035, ***=p=0.0007 and ArchT-

5-HT descending fibres SC **=p=0.001 from Dunn’s post hoc test.  

 Therefore, contrary to what we observed in acute pain conditions, in neuropathic pain 

conditions, the inhibition of 5-HT of the RMg does not modify the mechanical threshold or the 

thermal latency, suggesting that 5-HT, in neuropathic pain conditions, loses its tonic activity.  

 

 Activation of RMg 5-HT neurons induces mechanical hyperalgesia and 

allodynia and thermal hyperalgesia. 

  As for the inhibition, in freely moving 5-HT cre mice expressing ChR2 opsin in RMg 

5-HT (the same group that we had used to perform mechanical and thermal assessment in acute 

pain condition), we observed that, after a spared nerve injury, optogenetic activation with a blue 

activating light (475nm, blue light at 5Hz/5ms, 10mW for 2 minutes) of RMg 5-HT using an 

optical cannula above the RMg or above the spinal cord dorsal horn elicited significant decrease 

in both mechanical threshold and thermal latency that was suppressed after light switched off 

(Figure 92 and 93. Mechanical threshold (Figure 92A1, SUDO, SNI-ChR2-5-HT, Friedman 
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test p=0.0041, F=11.47; n=6 and SNI-ChR2-5-HT descending fibres, Friedman test p<0.0001, 

F=34.86; n=18 and Figure 89A2, Repeated measure, SNI-ChR2-5-HT, Friedman test 

p=0.0054, F=9.478; n=6 and SNI-ChR2-5-HT descending fibres, Friedman p<0.0001, F=24.40; 

n=18). By Contrast, we confirmed before the SNI, that optogenetic manipulation elicited 

mechanical analgesia (Figure 92A2).  

 

Figure 92 : Mechanical assessment of 5-HT activation both at the level of the RMg and spinal cord (SC) in neuropathic pain 

condition: Optogenetic activation of SNI-ChR2-5-HT neurons or SNI-ChR2-5-HT descending fibres above the RMg or the spinal 

cord respectively, with 475nm blue activating light at 5Hz5ms during 2 min induced a relevant decrease in mechanical 

threshold (SUDO A1, SNI-ChR2-5-HT: 0.2±0.0g before, 0.1±0.0g during and 0.2±0.0g post-stimulation; for SNI-ChR2-5-HT 

descending fibres: 0.3±0.0g before, 0.1±0.0g during and 0.3±0.0g post-stimulation and B1, Repeated measure with innocuous 

stimuli: SNI-ChR2-5-HT: 23.3±6.1% before, 83.3±3.3% during and 26.7±4.2% post-stimulation; for SNI-ChR2-5-HT descending 

fibres: 14.4±5.0% before, 86.7±4% during and 21.1±6.3% post-stimulation) resulting then in mechanical allodynia and 

hyperalgesia as opposed to what has been observed in acute pain condition, where optogenetic activation of ChR2-5-HT above 

the RMg or ChR2-5-HT descending fibres above the spinal cord resulted in mechanical. Measures are reported as mean ± SEM; 

SUDO, A1, SNI-ChR2-5-HT of RMg: *1=p=0.0122, *²=p=0.0283 and SNI-ChR2-5-HT descending fibres SC, ****=p<0.0001; A2, 

ChR2-5-HT of RMg or ChR2-5HT-descending fibre SC, ****=p<0.0001 and Repeated measure, B1, SNI-ChR2-5-HT of RMg, 
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*1=p=0.0122, *²=0.0283 and ChR2-5-HT descending fibres SC, ***=p=0.0007, ****=p<0.0001 and B2, ChR2-5-HT of RMg or 

ChR2-5HT-descending fibre SC, ****=p<0.0001 from Dunn’s post hoc test. 

 Thermal latency (Figure 93A Plantar test, Friedman test, SNI-ChR2-5-HT, p=0.0055, 

F=9.333; n=6 and SNI-ChR2-5-HT descending fibres, p<0.0001, F=21.33; n=18). Again, 

before SNI, optogenetic activation of RMg 5-HT elicited thermal analgesia (Figure 93B). 

 
Figure 93 : Thermal assessment of 5-HT activation both at the level of RMg and spinal cord (SC) in neuropathic condition: 

Optogenetic activation of SNI-ChR2-5-HT above the RMg or SNI-ChR2-5-HT descending fibres above the spinal cord with 

475nm blue activating light at 5Hz5ms during 2 min induced a relevant decrease in thermal latency (A, Plantar test for SNI-

ChR2-5-HT: 3.3±0.2s before, 2.5±0.1s during and 3.3±0.1s post-stimulation and SNI-ChR2-5-HT descending fibres: 3.9±0.2s 

before, 2.9±0.2s during and 3.9±0.3s post-stimulation) resulting then in thermal hyperalgesia as opposed to what we 

observed before the SNI where optogenetic activation of ChR2-5-HT above the RMg or ChR2-5-HT descending fibres above 

the spinal cord, had elicited a thermal analgesia. Measure are reported as mean ± SEM; A, SNI-ChR2-5-HT of RMg: 

*=p=0.0418, **=p=0.0078 and SNI-ChR2-5-HT descending fibres SC, ***=p=0.0001 and B, ChR2-5-HT of RMg, **=p=0.0028, 

***=p=0.0002 and ChR2-5-HT descending fibres SC, ****=p<0.0001from Dunn’s post hoc test.  

 By contrast, in mice expressing only GFP tag, optogenetic manipulation had no effect. 

(Figure 94).   



167 

 

Results 

 

Figure 94 : Mechanical and thermal assessment of 5-HT activation both at the level of the RMg and spinal cord (SC) in 

neuropathic pain condition: Optogenetic stimulation of SNI-GFP-5-HT neurons or SNI-GFP-5-HT descending fibres above the 

RMg or the spinal cord respectively, with 475nm blue activating light at 5Hz5ms during 2 min induced no change in mechanical 

threshold (A, SUDO, SNI-GFP-5-HT: 0.3±0.0g before, 0.3±0.1g during and 0.3±0.1g post-stimulation, Friedman test 

p=approximate, n=4; for SNI-GFP-5-HT descending fibres: 0.3±0.1g before, 0.3±0.1g during and 0.3±0.1g post-stimulation, 

Friedman test p>0.9999, F=2; n=4) and thermal latency (B, Plantar test for SNI-GFP-5-HT: 2.3±0.2s before, 3.0±0.4s during and 

3±0.5s post-stimulation, Friedman test p=0.4306, F=2; n=4 and SNI-GFP descending fibres: 2.6±0.3s before,2.5±0.2s during 

and 2.9±0.7s post-stimulation, Friedman test p=0.9306, F=0.5; n=4). Measures are reported as mean ± SEM. 

 Therefore, in neuropathic pain, 5-HT neurons of the RMg lose its analgesic effect and 

exert descending facilitation on pain transmission. 

 

 RMg 5-HT descending facilitation is not influenced by gender 

 However, in clinical practice, it has been shown that women are more likely to develop 

chronic neuropathic pain (Chenaf et al., 2018; IASP, 2019b) and we hypothesized that 5-HT of 

the RMg may contribute to this difference. We compared the effect of optogenetic activation 

of 5-HT descending fibres into the dorsal horn both in males and females expressing ChR2 

opsin in RMg 5-HT with regard to the mechanical and thermal sensation and we observed no 

difference (Figure 95).Indeed, optogenetic activation of 5-HT neurons induced in male and 

female a significant decrease in both mechanical threshold (Figure 95A, SUDO, for male 

Friedman test p<0.0001, F=18.73 and for female p<0.0001, F=14; n=11 and 7 respectively) and 

thermal latency (Figure 95B, Plantar test, male Friedman test p=0.0029, F=11.09 and female 

p=0.0027, F=10.57; n=11 and 7 respectively), resulting in both cases in mechanical allodynia 

and mechanical and thermal hyperalgesia. 
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Figure 95 : Gender do not influence 5-HT-induced facilitation on pain transmission in neuropathic pain. A) Optogenetic 

activation of SNI-ChR2-5-HT descending fibres induced in both male and female, a relevant decrease in mechanical threshold 

(A for male SNI-ChR2-5HT descending fibres: 0.3±0.0g before, 0.1±0.0g during and 0.3±0.1g post-stimulation; for female SNI-

ChR2-5HT descending fibres: 0.3±0.0g before, 0.1±0.0g during and 0.2±0.0g post-stimulation) and thermal latency (B for male 

SNI-ChR2-5HT descending fibres: 3.9±0.2s before, 2.9±0.2s during and 3.9±0.3s post-stimulation; for female SNI-ChR2-5HT 

descending fibres: 3.9±0.5s before, 2.8±0.3s during and 4±0.5s post-stimulation) without any difference with regard to the 

intensity of 5-HT descending facilitation in both male and female (C, Net change induced by 5-HT optogenetic activation, SUDO 

for male -64.1±4.6% compare to female -60.4±6.7% and Plantar test for male -25.7±4% compare to female -26.6±5.1%). 

Measure are reported as mean ± SEM; SUDO male *=p=0.0112, ****=p<0.0001 and female ***=p=0.0004; Plantar test male 

*=p=0.0112, **=p=0.0057 and female *=p=0.0151, **=0.0066 from Dunn’s post hoc test.  

   

 

3. Consequences of optogenetic manipulation of 5-HT neurons on dorsal horn neurons. 

 In neuropathic pain condition, the modulation of 5-HT neurons of the RMg 

modify differently DHN excitability 

 We next assessed the consequence of manipulation of RMg 5-HT on pain transmission 

within the dorsal horn (Figure 96 and 97). With regard to WDR excitability, in anesthetised 5-

HT cre mice expressing ArchT in the 5-HT neurons of RMg, in vivo recording of the spinal 

WDRs associated with optogenetic stimulation above the spinal cord (526.5nm continuous 

green inhibiting light with power set at 10mW) showed no change in response to nociceptive 

C-fibre stimulation (Figure 96A)  
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Figure 96 : In vivo single-unit recording of DHNs associated with optogenetic inhibition of 5-HT neuron of the RMg projecting 

to the dorsal horn of the spinal cord in neuropathic pain condition. A-B above, representative WDR neuron response to noxious 

electrical stimuli recorded before and during optogenetic stimulation before (B) and after SNI procedure (A). In neuropathic 

pain condition (A), DHN excitability did not change during optogenetic stimulation of SNI-Archt-5-HT descending fibres (the 

mean number of C-spike before 3.7±1, during 3.8±1 and after 3.8±1.3; ordinary one-way ANOVA p=0.9961, F=0.1664; n=4) as 

opposed to what we observed before the SNI where optogenetic inhibition of SNI-Archt-5-HT descending fibres above the 

spinal cord, had resulted in DHN hyper-excitability. Measure are reported as mean ± SEM; B, Mean number of C spike **= 

p=0.0021 and ****= p<0.0001 from Dunn’s post hoc test. 

 By contrast, optogenetic activation of RMg 5-HT using 475nm blue activating light at 

5Hz5ms induced a significant increase in WDR response to nociceptive inputs (Figure 97A2, 

Ordinary one-way ANOVA p=0.0013, F=5.187; n=7) resulting in DHN hyper-excitability 

which is the opposite to what we observed before the SNI.  
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Figure 97 : In vivo single unit recording of DHNs associated with optogenetic activation of 5-HT neurons of the RMg projecting 

to the dorsal horn of the spinal cord in neuropathic pain condition. One sample showing an increase (A1) or a decrease (B1) 

of DHN response to noxious stimuli during optogenetic stimulation of ChR2-5-HT descending fibres (above, representative 

WDR neuron response to a noxious electrical stimuli recorded before and during optogenetic stimulation before (B) and after 

SNI procedure (A)). In neuropathic pain condition (A2), the mean number DHNs responses to C-fibre input is increased during 

optogenetic activation of SNI-ChR2-5-HT descending fibres (mean number of C-spike before 4±0.6, during 9.3±2.0 and after 

3.3±0.5) as opposed to what we observed before the SNI (B2) where optogenetic inhibition of SNI-Archt-5-HT descending fibres 

above the spinal cord, had resulted in a decrease of the DHN excitability (mean number of C-spike before 7.4±1.3, during 

6.0±1.2 and after 6.3±1.4). Measure are reported as mean ± SEM; A, Mean number of C spike *= p=0.0274, **=0.0079 and B, 

Mean number of C spike *= p=0.0373 from Dunn’s post hoc test.  

 Therefore, in neuropathic pain condition, 5-HT neurons projecting to the dorsal horn, 

facilitate the nociceptive transmission by increasing WDR response to C-fibres inputs resulting 

in WDR hyper-excitability.  
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4. RMg 5-HT neurons target also inhibitory interneuron in the dorsal horn of the spinal 

cord in SNI condition 

 We then studied possible changes induce by neuropathic condition in RMg 5-HT targets 

onto the dorsal horn of the spinal cord (Figure 98). To do so, as with the acute pain condition, 

we compared apposition between GFP staining and both excitatory (Tlx3, Figure 98A2) and 

inhibitory (Pax2 Figure 98B2) interneurons and we found that 5-HT fibres (Figure 98A1-B1) 

always mainly project onto inhibitory interneurons (Figure 98A3-B3).  
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Figure 98 : Confocal image and 3D representation of AAV-flex-GFP expression in 5-HT neurons of the RMg projecting into the 

dorsal horn of the spinal cord in combination with Tlx3 (A) and Pax2 (B) staining in thin slice of lumbar spinal cord of 5-HT cre 

mice with a spared nerve injury. A1-4) Tlx3 excitatory marker immunostaining (red) showed superficial cell body that are very 

little contacted by GFP fibres (A4 white sparrow). B1-4) Pax2 inhibitory marker immunostaining (red) showed cell body in 

dorsal horn of the spinal cord that are mostly contacted with GFP fibre (B4 white sparrow) from 5HT neurons of the RMg.  

 Thus, it can be suggested that, in neuropathic pain conditions, the descending facilitation 

induced by RMg 5-HT neurons on nociceptive pain transmission passes also through the 

inhibitory interneuron of dorsal horn of the spinal cord, In neuropathic pain model including 

SNI, it has been shown that disinhibition mechanisms are responsible for a part of neuronal 
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hyper-excitability and pain hypersensitivity (Coull et al., 2005; Beggs et al., 2012), which 

suggest that the opposite serotonergic drive observed in control and SNI may be due to the 

change in chloride balance in afferent fibres or DHNs neurons that would switch inhibitory 

influences onto excitatory. (Lavertu et al., 2014).  

 

 

 

D. INFLUENCE OF DHN CHLORIDE BALANCE ON RMg 5-HT 

MODULATION. 

1. RMg 5-HT-induced pain facilitation is mediated by dorsal horn KCC2 cotransporter 

in SNI 

 CLP 290 reverse the RMg 5-HT facilitation on pain transmission 

 It has been shown that the chloride balance is mediated by the cationic chloride 

cotransporters KCC2 (Doyon, 2011; Kaila et al., 2014). A decrease in KCC2 activity or 

expression could lead to disinhibition mechanisms. We used a pharmacological approach to 

boost KCC2 in SNI 5-HT cre mice expressing ChR2 opsin in RMg 5-HT neurons. Per os 

treatment of SNI mice with CLP290 (Mapplebeck et al., 2019a), a specific enhancer of KCC2 

transporters, induced a slight but significant increase in mechanical threshold and thermal 

latency (Figure 99). Indeed, in SNI mice where optogenetic activation of 5-HT descending 

fibres (SNI-ChR2-5-HT descending fibres) induced a mechanical allodynia and hyperalgesia 

(Figure 99A control, SUDO, SNI-ChR2-5-HT descending fibres, Friedman test p<0.0001, 

F=23.41; n=12 and Figure 99B control, Repeated measure SNI-ChR2-5-HT descending fibres, 

Friedman test p<0.0001, F=20.57; n=12) and thermal hyperalgesia (Figure 99C control Plantar 

test, SNI-ChR2-5-HT descending fibres, Friedman test p=0.0018, F=12.67; n=12) 1h30 after 

CLP290, the same optogenetic activation in the same animals induces a significant increase in 

mechanical threshold (Figure 99B CLP 290, SUDO, SNI-ChR2-5-HT descending fibres, 

Friedman test p<0.0001, F=22.21; n=12 and Figure 99B CLP290, Repeated measure SNI-

ChR2-5-HT descending fibres, Friedman test p<0.0001, F=21.51; n=12) and thermal latency 

resulting in mechanical and thermal analgesia (Figure 99C CLP 290 Plantar test, SNI-ChR2-5-

HT descending fibres, Friedman test p<0.0001, F=20.67; n=12) that was not present when the 

vehicle (i.e, HSPD 20%) alone was applied (Figure 99A vehicle, SUDO, SNI-ChR2-5-HT 

descending fibres, Friedman test p<0.0001, F=22.74; n=12 and Figure 99B vehicle, Repeated 
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measure SNI-ChR2-5-HT descending fibres, Friedman test p<0.0001, F=22.21; n=12 and 

Figure 99C vehicle Plantar test, SNI-ChR2-5-HT descending fibres, Friedman test p=0.0001, 

F=18.17; n=12).  

 

 
Figure 99 : CLP 290 treatment on 5-HT cre mice with a spared nerve injury expressing ChR2 opsin in 5-HT neurons of the RMg. 

CLP290 prevent mechanical and thermal hypersensitivity induced by optogenetic activation of 5-HT descending fibres. A, B 

and C control) In SNI mice, optogenetic stimulation induced a decrease in mechanical threshold (A control, SUDO for SNI-ChR2-
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5-HT descending fibres: 0.3±0.0g before, 0.1±0.0g during and 0.3±0.0g post stimulation) including an increase in the 

percentage of hind-paws response to repeated innocuous stimuli stimuli (B control, Repeated measure for SNI-ChR2-5-HT 

descending fibres: 8.3±3.9% before, 91.7±3.0% during and 10±3.9% of response post stimulation) and a decrease in thermal 

latency (C control, Plantar test, for SNI-ChR2-5-HT descending fibres: 4.3±0.3s before, 3.1±0.2s during and 4.3±0.3s post 

stimulation) resulting in mechanical allodynia and hyperalgesia and  in thermal hyperalgesia. A, B and C clp290) In the same 

animals, 1h30min after CLP290 per os application, the same optogenetic stimulation induced an increase in mechanical 

threshold (A clp290, SUDO for SNI-ChR2-5-HT descending fibres: 0.6±0.0g before, 2±0.1g during and 0.6±0.0g post-

stimulation) including an increase in the percentage of hind-paws response to repeated noxious stimuli (B clp 290, Repeated 

measure for SNI-ChR2-5-HT descending fibres: 90±3.0% before, 13.3±4.5% during and 81.7±5.2% of response post-stimulation) 

resulting in mechanical analgesia and an increase in thermal latency (C, clp 290, Plantar test, for SNI-ChR2-5-HT descending 

fibres: 5±0.3s before, 6.6±0.4s during and 5.3±0.3s post-stimulation) resulting in thermal analgesia. A, B and C vehicle) 

Whereas vehicle per os treatment has no effect on either the mechanical threshold (A vehicle, SUDO for SNI-ChR2-5-HT 

descending fibres: 0.3±0.0g before, 0.1±0.0g during and 0.3±0.0g post-stimulation; B vehicle, Repeated measure with 

innocuous stimuli for SNI-ChR2-5-HT descending fibres: 3.3±3.3% before, 93.3±2.8% during and 6.7±3.8% of response post-

stimulation) and thermal latency (C vehicle, Plantar test, for SNI-ChR2-5-HT descending fibres: 4.6±0.4s before, 3.3±0.3s during 

and 4.5±0.3s post-stimulation). Measures are reported as mean ± SEM; A, SUDO, control ***1=p=0.0007, ***²=p=0.0003; 

CLP290 ***1=p=0.0007, ***²=p=0.0003 and vehicle ***=p=0.0005; B, Repeated measure, control ***=p=0.0005; CLP290 

***1=p=0.0001, **=p=0.0015 and vehicle ***1=p=0.0003, ***²=p=0.0007; C, Plantar test, control **1=p=0.0022, 

**²=p=0.0085; CLP290 **=p=0.0085, ****=p<0.0001 and vehicle **=p=0.0010, ***=p=0.0002 from Dunn’s post hoc test. 

 Therefore, in neuropathic conditions, RMg 5-HT-induced facilitation is due to chloride 

imbalance induced by a decrease in KCC2 activity. Boosting KCC2 can reverse the 

consequence of SNI. 

 

 CLP 290 induced RMg 5-HT inhibition is not influenced by gender  

 Then, we decided to find out if the restoration of RMg 5-HT inhibitory effect induced 

by the CLP290 treatment in SNI 5-HT cre mice was on the influence of gender. To do so, we 

compared in SNI 5-HT cre mice treated with CLP290, the effect of optogenetic activation on 

the mechanical and thermal sensation both in males and females (Figure 100) and we observed 

no difference(Figure 100A, SUDO, for male Friedman test p=0.0041, F=10.8 and for female 

p=0.0041, F=11.47; n=6 and 6 respectively) and thermal threshold (Figure 100B, Plantar test, 

male Friedman test p=0.0055, F=9.333 and female p=0.0001, F=12; n=6 and 6 respectively), 

resulting in both cases in mechanical and thermal analgesia.   
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Figure 100 : Gender do not influence CLP290 treatment-induced  5-HT descending inhibition on pain transmission in 

neuropathic pain. A) In SNI 5-HT mice treated with CLP290, optogenetic activation of SNI-ChR2-5-HT descending fibres induced 

in both male and female, a relevant increase in mechanical threshold (A for male clp290: 0.6±0.0g before, 2.3±0.2g during 

and 0.6±0.0g post-stimulation; for female clp290: 0.6±0.0g before, 1.7±0.1g during and 0.5±0.1g post-stimulation) and 

thermal latency (B for male clp290: 5.2±0.2s before, 7.1±0.3s during and 5.2±0.3s post-stimulation; for female clp290: 4.7±0.5s 

before, 6.2±0.6s during and 5.4±0.5s post-stimulation). Measure are reported as mean ± SEM; SUDO male *=p=0.0187 and 

female *1=0.0283, *²=p=0.0122; Plantar test male *=p=0.0418, **=p=0.0078 and female **=p=0.0011 from Dunn’s post hoc 

test. 

 
 CLP 290 suppresses WDR hyperexcitability 

 We next evaluated the effect of CLP290 in the control of WDR excitability by RMg 5-

HT in anesthetised SNI mice (Figure 101). In vivo recordings of WDR show that CLP290 

superfusion above the spinal cord dorsal horn suppressed the increase in WDR excitability 

induced by optogenetic activation of 5-HT descending fibres (Figure 101AB2, Ordinary one-

way ANOVA p=0.0013, F=5.187; n=7).  
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Figure 101 : In vivo single unit recording of DHNs superfused with clp290 associated with optogenetic activation of 5-HT 

descending fibres above the dorsal horn of the spinal cord in neuropathic pain condition. One sample showing no change (A1) 

or an increase (B1) of DHN response to noxious stimuli during optogenetic stimulation of ChR2-5-HT descending fibres (above, 

representative WDR neuron response to a noxious electrical stimuli recorded before and during optogenetic stimulation with 

(A) or without clp290 superfusion (B)). In animals treated with CLP 290, the optogenetic activation of 5-HT descending fibres 

in SNI did not increase evoke response of DHNs to nociceptive stimulation (A2, mean number of C-spike before 10.7±2.7, during 

10.8±3.4 and after 11.7±4.5) as opposed to what we observed in neuropathic animals *= p=0.0274, **=0.0079 from Dunn’s 

post hoc test. 

 Thus, in neuropathic pain conditions, WDR hyper-excitability induced by RMg 5-HT is 

a consequence of the decrease activity of the KCC2 cotransporter, suggesting that an 

impairment in KCC2 cotransporters activity alone may also induces a shift in the RMg 5-HT-

induced inhibition on pain transmission in acute pain condition. 
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2. RMg 5-HT-induced inhibition on pain transmission is mediated by dorsal horn 

KCC2 cotransporter in acute pain 

 Blockade of the spinal KCC2 reverse RMg 5-HT induced inhibition in acute pain 

 To test for that hypothesis, we blocked the cationic-chloride cotransporter KCC2 with 

ip injections of furosemide (inhibitor of K-CL cotransporter including KCC2) in naïve 5-HT 

cre mice expressing ChR2 opsin in RMg 5-HT neurons.30 min after furosemide injection, we 

observed that optogenetic activation of RMg 5-HT descending fibres elicited a mechanical and 

thermal hypersensitivity (Figure 102). Indeed, in naive animals activation of RMg 5-HT 

descending fibres elicits an increase in mechanical threshold (Figure 102A control, SUDO, 

ChR2-5-HT descending fibres, Friedman test p<0.0001, F=22.21; n=12 and Figure 99B 

control, Repeated measure ChR2-5-HT descending fibres, Friedman test p<0.0001, F=22.62; 

n=12) and thermal latency (Figure 102C control Plantar test, ChR2-5-HT descending fibres, 

Friedman test p=0.0001, F=18.17; n=12), subsequent Furosemide injection induces a relevant 

decrease in mechanical threshold (Figure 102B Furosemide, SUDO, ChR2-5-HT descending 

fibres, Friedman test p<0.0001, F=21.78; n=12 and Figure 102B Furosemide, Repeated 

measure ChR2-5-HT descending fibres, Friedman test p<0.0001, F=22.40; n=12) and thermal 

latency (Figure 102C Furosemide Plantar test, ChR2-5-HT descending fibres, Friedman test 

p=0.0001, F=18.77; n=12) with the same optogenetic manipulation and that was not present 

when the vehicle alone was injected (Figure 102A vehicle, SUDO, ChR2-5-HT descending 

fibres, Friedman test p<0.0001, F=22.74; n=12 and Figure 102B vehicle, Repeated measure 

ChR2-5-HT descending fibres, Friedman test p<0.0001, F=22.29; n=12 and Figure 102C 

vehicle Plantar test, ChR2-5-HT descending fibres, Friedman test p<0.0001, F=18.67; n=12). 
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Figure 102 :  In naive animals expressing ChR2 opsin in 5-HT neurons of the RMg, optogenetic activation of 5-HT descending 

fibres induced an increased in mechanical threshold (A control, SUDO for ChR2-5-HT descending fibres: 2.4±0.1g before, 
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5.1±0.4g during and 2.5±0.1g post-stimulation) including a decrease in the percentage of hind-paws response to repeated 

noxious stimuli (B control, Repeated measure for ChR2-5-HT descending fibres: 100±0% before, 11.7±3% during and 91.7±4.6% 

of response post-stimulation) and an increase in thermal threshold (C control, Plantar test, for ChR2-5-HT descending fibres: 

3.5±0.4s before, 5.2±0.4s during and 3.7±0.4s post-stimulation) resulting in mechanical and thermal analgesia. A, B and C 

furosemide) In the same animals, 30min after furosemide injection, the same optogenetic stimulation induced a decrease in 

mechanical threshold (A, SUDO furosemide for ChR2-5-HT descending fibres: 1.7±0.3g before, 0.3±0.0g during and 1.6±0.3g 

post-stimulation) including an increase in the percentage of hind-paws response to repeated innocuous stimuli (B, Repeated 

measure Furosemide for ChR2-5-HT descending fibres: 0±0% before, 96.7±2.2% during and 6.7±2.8% of response post-

stimulation) and a decrease in thermal threshold (C, Plantar test furosemide, for ChR2-5-HT descending fibres: 4.1±0.3s before, 

2.8±0.2s during and 4.0±0.3s post-stimulation) resulting in mechanical allodynia and hyperalgesia and in thermal 

hyperalgesia. A, B and C vehicle) Whereas vehicle injection has no effect on either the mechanical threshold (A vehicle, SUDO 

for ChR2-5-HT descending fibres: 2.4±0.1g before, 5.1±0.4g during and 2.4±0.1g post-stimulation; B vehicle, Repeated 

measure with noxious stimuli for ChR2-5-HT descending fibres: 98.3±1.7% before, 11.8±3.9% during and 88.3±3% of response 

post-stimulation) and thermal threshold (C vehicle, Plantar test, for ChR2-5-HT descending fibres: 3.6±0.4s before, 5.1±0.5s 

during and 3.8±0.4s post-stimulation). Measures are reported as mean ± SEM; A, SUDO, control ***1=p=0.0003, 

***²=p=0.0007; furosemide **=p=0.0022, ***=p=0.0003 and vehicle ***=p=0.0005; B, Repeated measure, control 

**=p=0.0015, ***=p=0.0001; furosemides **=p=0.0022, ****=p<0.0001 and vehicle **=p=0.0044, ****=p<0.0001; C, Plantar 

test, control **=p=0.0010, ***=p=0.0002; furosemide **=p=0.0010, ***=p=0.0002 and vehicle **=p=0.0022, ****=p<0.0001 

from Dunn’s post hoc test. 

 In conclusion, an alteration in KCC2 activity following peripheral nerve damage 

induces a switch in the RMg 5-HT control of nociceptive transmission from inhibition to 

facilitation cause by a KCC2-induced change in Chloride equilibrium. (Gagnon et al., 2013). 

 

 KCC2 impairment induced facilitation is not influenced by gender 

 
 Then, we decided to find out if the switch of RMg 5-HT effect induced by a blockade 

of KCC2 cotransporter in naïve 5-HT cre mice was under the influence of gender. To do so, we 

compared in naïve 5-HT cre mice treated with Furosemide, the effect of optogenetic activation 

of 5-HT descending fibres in males and females (Figure 103). We observed no difference in 

the descending facilitation induced by optogenetic activation of 5-HT descending fibres under 

furosemid (Figure 103A, Mechanical threshold, SUDO, for male Friedman test p=0.0041, 

F=11.47 and for female p=0.0082, F=10.33; n=6 and 6 respectively; Figure 103B, thermal 

latency Plantar test, male Friedman test p=0.0081, F=9 and female p=0.0055, F=9.333; n=6 and 

6 respectively). 
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Figure 103 : Gender do not influence furosemide-induced 5-HT descending facilitation on pain transmission in acute pain. A) 

In naïve 5-HT mice treated with furosemide, optogenetic activation of ChR2-5-HT descending fibres induced in both male and 

female, a relevant decrease in mechanical threshold (A for male furosemide: 2.6±0.2g before, 0.3±0.0g during and 2.4±0.2g 

post-stimulation; for female furosemide: 0.7±0.1g before, 0.3±0.1g during and 0.7±0.2g post-stimulation) and thermal latency 

(B for male furosemide: 5.0±0.3s before, 3.0±0.3s during and 4.9±0.3s post-stimulation; for female furosemide: 3.3±0.2s 

before, 2.5±0.2s during and 3.2±0.2s post-stimulation). Measure are reported as mean ± SEM; SUDO male *1=p=0.0122, 

*²=0.0283 and female *=p=0.0187; Plantar test male *=p=0.0187 and female *=p=0.0418, **=p=0.0078 from Dunn’s post hoc 

test 

  

 
 To conclude, pharmacological KCC2 manipulation oriented the sign of 5-HT 

descending influence on nociceptive transmission, that changes from pain inhibition to 

facilitation in pathological context.  
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IV. GENERAL DISCUSSION 
 Pain, defined as “an unpleasant sensory and emotional experience associated with actual 

or potential tissue damage, or described in terms of such damage” is a warning mechanism with 

a protective role to keep tissue damage to a minimum. Moreover, a descending endogenous 

mechanism controls pain sensation by filtering nociceptive inputs to some extent at the level of 

the dorsal horn of the spinal cord (Millan, 2002a). This descending control of pain, involving 

periaqueductal grey matter in the upper brainstem and the nucleus raphe Magnus in the rostral 

ventromedial medulla is one of the major system that control nociceptive transmission by 

exerting an efficient inhibitory tone to the dorsal horn of the spinal cord (Millan, 2002a; Fields, 

2004; Lisovoski, 2006; Kim et al., 2018). It is now largely considered that a balance between 

both excitatory and inhibitory influence controls nociceptive transmission and that unbalanced 

influences are involved in pathological pain (Vanegas and Schaible, 2004; Ossipov et al., 2014). 

Among these excitatory and inhibitory influences are serotonin neurons, which have been 

shown to play a major role in pain control. However, it must be noted that many questions 

remained unanswered about the exact role of 5-HT of the raphe Magnus in pain control since 

5HT exerts opposite modulations according to pathophysiological states (Bourgoin et al., 

2017b).  

By combining pharmacological, optogenetic, single-unit recordings and virus-based 

approaches associated with the used of transgenic mice expressing cre-recombinase in 5-HT 

and SST neurons respectively, we investigated the specifical role of serotoninergic projection 

from the raphe Magnus into the dorsal horn of the spinal cord in the descending pain modulation 

in acute and neuropathic pain condition.  

 

A. CHARACTERIZATION OF THE ROLES OF RMg 5-HT NEURONS ON 

SPINAL NOCICEPTIVE TRANSMISSION IN PHYSIOLOGICAL CONDITION 

First of all, by crossing ePet-cre mice (Scott et al., 2005a) to an Ai9 reporter mice 

(Madisen et al., 2010) generated in our animal facility, we first confirmed that cre-recombinase 

is restrained to 5-HT neurons in the raphe Magnus (RMg) as well as in the dorsal raphe (DR) 

and the median raphe (MR). Indeed co-localisation with tryptophan hydroxylase 2 (TPH2) a 

specific enzyme expressed exclusively in 5-HT neurons (Côté et al., 2003), show up to 83.8% 

co-localisation. We also observed an abundant population of 5-HT fibres in the spinal dorsal 

horn thus confirming 5-HT projections to the spinal cord. Using a Gad67-GFP mouse 
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(Tamamaki et al., 2003), we also observed that 5-HT neurons are not GABAergic neurons but 

have a high degree of interaction with them. Consequently, the ePet cre mice gave us a crucial 

tool to study the precise role of such neurons in nociceptive transmission. Then we assessed the 

validity of our viral approaches, using slices of RMg containing 5-HT neurons expressing ChR2 

opsin 3 weeks after stereotaxic injection in the RMg of an AAV inducible virus including ChR2 

opsin labelled with mCherry, we performed patch-clamp recordings in current-clamp mode and 

observed that optogenetic stimulation with blue activating light has induced a fast and 

reproducible neuronal depolarisation, and a train of 5Hz/5ms has also induced a train of action 

potentials that fair-fully followed light stimulation by contrast slices of RMg containing 5-HT 

neurons expressing ArchT-GFP, continuous optogenetic stimulation with green inhibiting light 

resulted in a strong hyperpolarisation which confirmed that our optogenetic approach allowed 

us to modulate the RMg 5-HT neurons activity. In addition, we noted that 5-HT neurons of the 

RMg specifically projected into the deep layer of the spinal cord since 5-HT fibres were visible 

at this level. Data which are in accordance with the literature (Benarroch, 2014; Gautier et al., 

2017). 

In a second time, in order to reliably alter the RMg 5-HT neurons activity, we performed 

optogenetic stimulation of those neurons using optical fibre placed above the RMg or the 

lumbar part of the spinal cord. In freely moving mice in absence of nerve injury, we observed 

that selective optogenetic inhibition RMg 5-HT elicited a significant mechanical and thermal 

hypersensitivity. This result shows that RMg 5-HT neurons are tonically active and inhibit the 

nociceptive transmission at the level of the spinal cord. Data which are in accordance with 

previous studies where it has been demonstrated a link between pain hypersensitivity and 

selective lesion of 5-HT neurons by a specific neurotoxin infused at the rostral ventral medulla, 

RVM (Wei et al., 1999). it is also in accordance with pain hypersensitivity associated with an 

important decrease in 5-HT expression due to 5HT neurons differentiation in mice lacking the 

transcription factor Lmx1b (Zhao et al., 2007). We also show that optogenetic activation of 

RMg 5-HT neurons elicited a significant mechanical and thermal analgesia. Therefore, we 

concluded that RMg 5-HT neurons exerted a tonic descending inhibition on pain transmission 

which is in accordance the literature (Schwaller et al., 2017). It has been shown in previous 

studies that a direct electrical stimulation of the RMg (Mayer and Liebeskind, 1974; Oliveras 

et al., 1975) generated a strong analgesic effect in response to noxious stimuli and this, due to 

the release of 5-HT at the level of the dorsal horn of the spinal cord (Bourgoin et al., 1980; 

Hentall et al., 2006) and therefore makes RMg 5-HT a key element of the inhibitory descending 
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endogenous pain control (Millan, 2002a; Suzuki et al., 2004; Zhao et al., 2014; Bourgoin et al., 

2017c).  

Then to decipher the spinal targets of RMg 5-HT neurons, we performed in vivo single-

unit recordings of the dorsal horn neurons and focused on wide dynamic range (WDR) neurons 

that are mainly second-order neurons projecting to the upper brain structures and receive 

nociceptive inputs from low-velocity C fibres. We observed that optogenetic inhibition of RMg 

5-HT resulted in an increase in WDR spontaneous activity and WDR response to nociceptive 

C fibre inputs as well as an increase in windup. Optogenetic activation of RMg 5-HT induced 

also both a significant decrease in WDR responses to nociceptive inputs and a significant 

decrease of windup (Figure 104). We, therefore, revealed that 5-HT neurons of the RMg which 

projected to the deep layer of the dorsal horn, tonically inhibit nociceptive transmission by 

decreasing WDR excitability. Finally, these results strongly demonstrate the role of 5HT 

neurons in filtering nociceptive inputs and may explain their activation following nociceptive 

stimulation although RMg 5HT are not considered as on or off cells (Gau et al, 2013)field 

2004).  

 
Figure 104 : Schematic representation of the consequence of RMg 5-HT optogenetic manipulation on pain transmission. A) In 

black, weak or innocuous stimuli do not evoke a pain sensation in normal condition partly due to a tonic inhibition exerts by 

5-HT neurons of the RMg. In red, pain hypersensitivity in response to a stimulus after RMg 5-HT optogenetic inhibition, shifting 

the response function to the left. A moderate painful stimulus is now perceived as intense (i.e., pain hyperalgesia) and a 

previously innocuous stimulus can be perceived as painful (i.e., allodynia). In blue, pain inhibition in response to a stimulus 

after RMg 5-HT optogenetic activation, shifting the response function to the right. A moderate painful stimulus is less 

perceived as painful (i.e., pain analgesia). B) In black, weak or innocuous stimuli do not evoke WDR response in normal 

condition. In red, WDR hyper-excitability in response to a stimulus after RMg 5-HT optogenetic inhibition, shifting the response 

function to the left. A moderate painful stimulus elicited an increase in the dorsal horn neuron response and an increase in 

their ability to be sensitized. In blue, a decrease WDR excitability in response to a stimulus after RMg 5-HT optogenetic 

activation, shifting the response function to the right.  
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Furthermore, to go into more details, we next determined the targets of RMg 5-HT 

neurons on the dorsal horn microcircuits. Indeed, it has been shown in previous studies that 5-

HT could enhance the release of GABA partly due to the activation of 5-HT3R expressed on the 

surface of inhibitory interneurons and then inhibit sensory transmission (Xie et al., 2012). By 

using Gad67-GFP mice, we performed TPH2 immunostaining and observed potential 5-HT 

synaptic buttons onto GABA neurons in deep layers of the dorsal horn. To confirm these 

connections to the local inhibitory network, we compared, in 5-HT cre mice injected with a cre 

dependant AAV containing a GFP tag, appositions between GFP and excitatory (Tlx3) or 

inhibitory (PAX2) neurons and found that 5-HT fibres are substantially more in apposition with 

inhibitory interneurons. We next confirmed the presence of real contacts between RMg 5-HT 

fibres and inhibitory neurons, by using Gad 67-GFP*5-HT cre mice in which SynMYC-

revWPRE was expressed in the RMg 5-HT neurons, we performed immunostaining on thin 

cross-section slice of lumbar spinal cord, of SynMyc in combination with GFP or parvalbumin 

and found synaptic buttons of 5-HT fibres onto GABA and parvalbumin neurons. We confirm 

the connections between RMg 5HT fibres and spinal inhibitory network by blocking GABAa 

and glycine receptors. This resulted in a blockade of optogenetic stimulation of RMg 5HT on 

pain behaviour and WDR hyperexcitability. 

 Therefore, we showed that RMg 5-HT tonic descending inhibition on pain transmission 

passed through direct excitation of GABAergic/glycinergic inhibitory interneurons in deep 

layer of the spinal cord which in turn inhibit spinal dorsal horn neuron. Data which is in line 

with the mode of action of 5-HT on spinal dorsal horn neuron as well as the modifications 

observed in the dorsal horn modulating the pain transmission, proposed in previous studies 

(Zhang et al., 2001; Kawamata et al., 2003; Lu and Perl, 2007; Sadlaoud et al., 2010; Thibault 

et al., 2014; Chalermkitpanit et al., 2017) Figure 105.  

However, we observed no effect of a blockade of 5-HT3 receptors using an intrathecal 

injection of granisetron (5-HT3R antagonist) on RMg 5-HT-induced inhibition on pain 

transmission following optogenetic activation, thus demonstrating that RMg 5-HT induced 

inhibition does not pass through 5-HT3R expressed on the surface of GABAergic/glycinergic 

inhibitory interneurons, data which is consistent with the fact that 5-HT3R is not involved in 

acute pain control (Zeitz et al., 2002; Guo et al., 2014) and thus suggests the involvement of 

other receptors such as 5-HT2A (Alba-Delgado et al., 2018) 
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Figure 105 : Simplified schematic representation of tonic 5-HT descending inhibitory action into the spinal cord. Illustration of 

apposition between RMg 5-HT descending terminal and inhibitory interneuron which illustrate an inhibitory action of 

descending 5-HT on the spinal nociceptive transmission through activation of dorsal horn inhibitory interneurons resulting in 

a decrease in WDR response to C-fibres inputs as well as in a decrease in its ability to be sensitized. WDR, wide dynamic range 

projecting neuron. 

 

B. 5-HT NEURONS OF THE RMg SEEMS TO BE CONNECTED TO THE 

STRESS INDUCED ANALGESIA NETWORK. 

In a second step, through collaboration with the team of Cyril Herry, we tried to 

determine how RMg 5-HT neuron activity is modulated. To do so, we performed VGLUT1-3, 

GAD-65-67 and SST immunostaining for glutamatergic, GABAergic and SST inputs 

respectively in combination with TPH2 immunostaining in cross-section of thin RMg slice in 

naïve mice, and observed potential GABAergic, glutamatergic and SST inputs onto RMg 5-

HT. Indeed, it has been shown that vlPAG contained various subpopulations of neurons that 

control pain transmission (Samineni et al., 2017) passing through rostral ventromedial medulla 

(Gebhart et al., 1983; Maione et al., 2006; Waters and Lumb, 2008) and associated with spinal 

cord 5-HT release (Cui et al., 1999). Moreover, SST neurons derived partly from vlPAG 
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appeared to have a sympathetic inhibitory effect on bulbospinal neurons (Bou Farah et al., 

2016). We first established the functional role of SST neurons of the vlPAG on the spinal 

nociceptive transmission by using SOM-IRES-cre mice (Taniguchi et al., 2011). In freely 

moving mice, we performed optogenetic manipulations of those neurons using optical fibres 

bilaterally implanted above the vlPAG. Optogenetic inhibition of SST neurons elicited a 

significant mechanical and thermal analgesia. Consequently, SST neurons of the vlPAG exert 

a tonic downward facilitation of pain transmission maybe through disinhibitory mechanisms in 

the PAG (Connor et al., 2004). This facilitatory effect is confirmed with optogenetic activation 

of SST neurons that elicit a significant mechanical and thermal hypersensitivity. Therefore, we 

determine that SST neurons of the vlPAG exerted a tonic descending facilitation on pain 

transmission which is the exact opposite of the role of the RMg 5-HT on pain transmission. 

Data which is in accordance with the vlPAG facilitating role on pain transmission which is 

mediated by a subpopulation of the vlPAG (Connor et al., 2004; Samineni et al., 2017).   

Next, to we performed in vivo single-unit recording of the WDR to determine if vlPAG 

SST control excitability in the dorsal horn of the spinal cord. We observed that bilateral 

optogenetic inhibition of vlPAG SST neurons expressing ArchT elicited both a significant 

decrease in WDR neurons response in response to nociceptive inputs and a significant decrease 

in windup. By contrast, bilateral optogenetic activation of SST neurons expressing ChR2 

induced a significant increase in WDR response to nociceptive C fibre inputs as well as an 

increase in windup. Therefore, we showed that SST neurons of the vlPAG, tonically facilitate 

the nociceptive transmission by increasing WDR excitability. Results that can be linked to the 

phenomenon of tonic GABAergic interneurons inhibition observed on vlPAG glutamatergic 

neurons, which are thought to be the output projecting neurons controlling the descending 

inhibition of nociception (Tovote et al., 2016c; Samineni et al., 2017).  

 

Figure 106 : Schematic representation of the consequence of vlPAG SST neuron optogenetic manipulation on pain 

transmission. A) In black, weak or innocuous stimuli do not evoke a pain sensation in normal condition. In red, pain 
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hypersensitivity in response to a stimulus after vlPAG SST neurons optogenetic activation, shifting the response function to the 

left. A moderate painful stimulus is now perceived as intense (i.e., pain hyperalgesia) and a previously innocuous stimulus can 

be perceived as painful (i.e., allodynia). In blue, pain inhibition in response to a stimulus after vlPAG SST neurons optogenetic 

inhibition, shifting the response function to the right. A moderate painful stimulus is less perceived as painful (i.e., pain 

analgesia). B) In black, weak or innocuous stimuli do not evoke WDR response in normal condition. In red, WDR hyper-

excitability in response to a stimulus after vlPAG SST neurons optogenetic activation, shifting the response function to the left. 

A moderate painful stimulus elicited an increase in the dorsal horn neuron response and an increase in their ability to be 

sensitized. In blue, a decrease WDR excitability in response to a stimulus after vlPAG SST neurons optogenetic inhibition, 

shifting the response function to the right. 

Furthermore, to go into more detail, we next assessed the targets of vlPAG SST neurons 

into the rostral ventral medulla (RVM) and in particular into the RMg. We use cre dependant 

AAV containing a GFP tag in SST cre mice associated with a bilateral injection of retrograde 

tracer (fluorogold 2%) into the dorsal horn of the spinal cord. We also performed TPH2 

immunostaining on RMg cross-section. Comparing apposition between TPH2, GFP and 

fluorogold (FG) autofluorescence we found that vlPAG SST contacts RMG 5HT that project 

onto spinal cord. These results show for the first time the presence of long-range SST neurons 

in the vlPAG, in accordance with what is observed in other brain structures (réf). Second, it 

suggests a descending network controlling pain transmission involving vlPAG SST, 5HT 

neurons and dorsal horn of the spinal cord. We also found some vlPAG SST fibres projecting 

directly in the spinal cord. 

Then, we studied the functional role of vlPAG SST- RMg5-HT circuit on pain 

transmission and we show that activation of SST fibres projecting in the RMg induces a 

significant mechanical and thermal hyperalgesia and increase in WDR excitability. By contrast, 

optogenetic activation of SST fibres projecting to the spinal cord had no effect. These results 

demonstrate the role of vlPAG SST-RMg 5HT circuit in controlling pain transmission at the 

level of the spinal cord. (Figure 107).  
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Figure 107 : Schematic representation of the consequence of vlPAG SST descending fibres optogenetic activation on pain 

transmission. A) In black, weak or innocuous stimuli do not evoke a pain sensation in normal condition. In red, pain 

hypersensitivity in response to a stimulus after vlPAG SST descending fibres optogenetic activation, shifting the response 

function to the left. A moderate painful stimulus is now perceived as intense (i.e., pain hyperalgesia) and a previously 

innocuous stimulus can be perceived as painful (i.e., allodynia). B) In black, weak or innocuous stimuli do not evoke WDR 

response in normal condition. In red, WDR hyper-excitability in response to a stimulus after vlPAG SST descending fibres 

optogenetic activation, shifting the response function to the left. A moderate painful stimulus elicited an increase in the dorsal 

horn neuron response and an increase in their ability to be sensitized.  

Therefore, our results strongly suggest that SST neurons of the vlPAG exerted a tonic 

descending facilitation on pain transmission through probable inhibition of RMg 5-HT neurons. 

This is an interesting result because if we refer to the literature, PAG is considered as a key 

element of the PAG-RVM network participating in the inhibition of nociceptive transmission, 

especially in the context of fear. Therefore, our results suggest that the analgesia resulting from 

fear behaviour (Tovote et al., 2016c) mediate by vlPAG may pass through inhibition of vlPAG 

SST neurons that allow RMg 5-HT neurons disinhibition and activate a 5HT mediate 

descending inhibition of pain transmission. 
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Figure 108 : Simplified schematic representation of vlPAG SST inhibitory action on pain transmission through RMg 5-HT. 

Illustration of descending facilitation mediates by vlPAG SST neurons on the spinal nociceptive transmission partly due to 

through inhibition of RMg 5-HT neuron resulting in an increase of WDR excitability as well as an increase in its ability to be 

sensitized. WDR, wide dynamic range projecting neuron. 

 

C. CHARACTERIZATION OF THE ROLES OF RMg 5-HT NEURONS ON 

SPINAL NOCICEPTIVE TRANSMISSION IN NEUROPATHIC PAIN CONDITION 

In neuropathic pain, 5HT is known to facilitate pain transmission (Rahman et al., 2006, 

2011; Gautier et al., 2017). To study the consequences of optogenetic manipulation of RMg 

5HT on nociceptive transmission in neuropathic pain, we used the spared nerve injury (SNI) 

model of peripheral neuropathy to mimic both the cardinal symptoms of clinically described 

neuropathic pain disorders and its duration in time. We first confirmed that SNI procedure 

elicits mechanical and thermal pain hypersensitivity. Interestingly, optogenetic inhibition RMg 
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5HT did not modify both mechanical and thermal sensitivity suggesting that in a pathological 

context, RMg 5-HT neurons lose its tonic activity, phenomenon that has not been observed in 

the past to my knowledge.  

By contrast, optogenetic activation of RMg 5HT induced a significant decrease in 

mechanical pain threshold and thermal pain latency (Figure 94-95). Therefore, in neuropathic 

pain, 5-HT neurons of the RMg lose its analgesic effect and exert descending facilitation on 

pain transmission which is in accordance with the facilitation induced by 5-HT observed in the 

literature (Ossipov et al., 2014; Huang et al., 2019).  

By performing, in vivo single-unit recoding targeting WDR, we showed that optogenetic 

inhibition of RMg 5-HT descending fibres showed no change in the WDR excitability, by 

contrast, optogenetic activation of 5HT RMg descending fibres resulted in WDR hyper-

excitability. Therefore, in neuropathic pain condition, we showed that 5-HT neurons projecting 

to the dorsal horn, facilitate the nociceptive transmission by increasing WDR response to C-

fibres inputs resulting in WDR hyper-excitability.   

 
Figure 109 : Schematic representation of the consequence of RMg 5-HT optogenetic manipulation on pain transmission in 

neuropathic pain condition. A) In pink, weak or innocuous stimuli already evoke a pain sensation in neuropathic pain condition. 

In red, pain hypersensitivity in response to a stimulus after RMg 5-HT optogenetic activation, shifting the response function to 

the left. A moderate painful stimulus is now perceived as intense (i.e., pain hyperalgesia) and a previously innocuous stimulus 

can be perceived as painful (i.e., allodynia). RMg 5-HT optogenetic inhibition no longer induce pain modulation in response to 

a stimulus. B) In pink, weak or innocuous stimuli already evoke WDR response in neuropathic pain condition. In red, WDR 

hyper-excitability in response to a stimulus after RMg 5-HT optogenetic activation, shifting the response function to the left. 

A moderate painful stimulus elicited an increase in the dorsal horn neuron response and an increase in their ability to be 

sensitized. RMg 5-HT optogenetic inhibition no longer induce WDR modulation in response to a stimulus. 

Next, we then assessed possible changes induce by neuropathy in RMg 5-HT targets 

onto the dorsal horn of the spinal cord. To do so, by comparing apposition between GFP staining 

and both excitatory (Tlx3) and inhibitory (Pax2) interneurons we found that 5-HT fibres still 

mainly project onto inhibitory interneurons which suggested the involvement of the dorsal horn 
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inhibitory interneuron in the descending facilitation mediate by the 5-HT of the RMg in 

neuropathic pain (Ciranna, 2006; Moon and Park, 2017). 

 

 

D. IMPAIRMENT of CHLORIDE BALANCE RESULTS IN THE SHIFT OF 

RMg 5-HT MODULATION FROM INHIBITION TO EXCITATION ON PAIN 

TRANSMISSION.  

In neuropathic pain model including SNI, it has been shown that disinhibition 

mechanisms mediated by an impairment in KCC2 (Doyon, 2011; Kaila et al., 2014) are 

responsible for a part of neuronal hyper-excitability and pain hypersensitivity (Coull et al., 

2005; Beggs et al., 2012). Therefore, we assessed the consequence of the change in chloride 

equilibrium in afferent fibres or WDR neurons on the opposite serotonergic drive observed in 

control and SNI. by using a pharmacological approach to boost KCC2 in SNI mice. Indeed, 

1h30 after per os treatment with CLP290 (a specific enhancer of KCC2 transporters (Lavertu 

et al., 2014; Chen et al., 2018; Mapplebeck et al., 2019b)) of SNI mice that express mechanical 

and thermal hypersensitivity, the same optogenetic stimulation of RMg 5-HT descending fibres 

in the same animals induces a significant mechanical and thermal analgesia that was not present 

after per os application of  the vehicle alone. Therefore, in neuropathic conditions, we showed 

that RMg 5-HT-induced facilitation is due to chloride imbalance induced by a decrease in 

KCC2 activity consequently, boosting KCC2 can reverse the consequence of SNI (Bergeron et 

al., 2014; Chen et al., 2018; Mapplebeck et al., 2019b).  

Furthermore, to go into more detail, we evaluated the effect of CLP 290 in the control 

of WDR excitability by RMg 5-HT neurons in SNI mice. We showed that CLP290 superfusion 

above the spinal cord suppressed the increase in WDR excitability induced by optogenetic 

activation of 5-HT descending fibres. Indeed, neither an increase in amplitude nor increase in 

evoked response of WDR upon 5-HT stimulation was observed (Figure 103).  Thus, in 

neuropathic pain conditions, we showed that WDR hyper-excitability induced by RMg 5-HT is 

a consequence of the decreased activity of the KCC2 cotransporter.  

Finally, we assessed the consequence of a blockade of KCC2 in naïve mice with ip 

injection of furosemide. We observed that optogenetic activation of RMg 5-HT descending 

fibres now elicited a mechanical and thermal hypersensitivity (Figure 104). Therefore, we 

showed that impairment in KCC2 cotransporters activity alone also induces a shift in the RMg 

5-HT-induced inhibition on pain transmission in acute pain condition. Data which is in 
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accordance with the concept of GABA disinhibition leading to paradoxical post-synaptic 

excitation on nociceptive pain transmission (Doyon, 2011; Kaila et al., 2014; Lavertu et al., 

2014). Indeed, it is considered that the inhibitory or excitatory effect mediated by both GABAA 

and glycine receptor are determined by level of the Cl− concentration gradient across the cell 

membrane and alterations in the function of cation chloride cotransporters inducing changes in 

chloride ion driving force may reduce, eliminated or in this instance converted into paradoxical 

excitation. In physiological conditions in mature central neurons in the dorsal horn, cation 

chloride cotransporters KCC2 maintained the Cl- reversal potential hyperpolarized (necessary 

for GABAA and glycine receptor to mediate inhibition) via Cl- extrusion (Doyon, 2011; Kaila 

et al., 2014), thus the excitatory action of RMg 5-HT neurons on inhibitory interneurons results 

in an inhibition on pain transmission. However, an impairment both in KCC2 activity or 

expression following peripheral nerve injury induces a depolarizing shift in the Cl- reversal 

potential weakening GABAA/Gly-R-mediated inhibition. Consequently, an intracellular Cl- 

accumulation occur in such an extent that intracellular chloride concentration exceeds the 

extracellular concentration and then GABAA receptors activation by GABA release of 

inhibitory interneurons following RMg 5-HT activation leads to an outflux of Cl-, resulting in 

depolarization and excitation of second-order neurons (Price et al., 2005; Gagnon et al., 2013). 

 

E. RMG 5-HT INFLUENCE ON PAIN TRANSMISSION IS NOT GENDER 

DEPENDENT  

It has been observed in previous study that gender may influence the pain felt (Mogil and 

Bailey, 2010), Therefore we decided to assess its involvement on 5-HT descending pain 

modulation both in acute pain condition and in pathological pain condition. By comparing the 

effect of optogenetic stimulation of 5-HT descending fibres into the dorsal horn both in males 

and females in each situation interestingly, we observed no sex difference of 5-HT optogenetic 

stimulation-inducing inhibition or facilitation on nociceptive transmission in both males and 

females whatever the modality measured. Observations which can be explained by the fact that 

the influence of RMg 5-HT on pain transmission is modulated by the balance of KCC2 

transporter and that KCC2 is uniquely responsible for regulating chloride and downregulation 

has been shown to contribute equally to pain hypersensitivity in males and females 

(Mapplebeck et al., 2019a).  
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In conclusion, in my thesis, we show that an alteration in KCC2 activity following 

peripheral nerve damage induces a switch in the RMg 5-HT control of nociceptive transmission 

from inhibition to facilitation caused by a KCC2-induced change in Chloride equilibrium which 

is not under the influence of the gender. (Gagnon et al., 2013; Lavertu et al., 2014; Alves and 

Lin, 2018; Mapplebeck et al., 2019b).  
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Figure 110 : In physiological condition, cation chloride cotransporters KCC2 maintained the Cl- reversal potential 

hyperpolarized (necessary for GABAA and glycine receptor to mediate inhibition) via Cl- extrusion, thus the excitatory action of 

RMg 5-HT neurons on inhibitory interneurons results in an inhibition on pain transmission. In neuropathic condition, an 

impairment both in KCC2 activity or expression following peripheral nerve injury induces a depolarizing shift in the Cl- reversal 

potential weakening GABAA/Gly-R-mediated inhibition. Therefore, an intracellular Cl- accumulation occur in such an extent 

that intracellular chloride concentration exceeds the extracellular concentration and then GABAA receptors activation by GABA 

release of inhibitory interneurons following RMg 5-HT activation leads to an outflux of Cl-, resulting in depolarization and 

excitation of second-order neurons. 
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