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Résumé
Dans cette thèse de doctorat, nous étudions les réseaux sans fil et les appareils reconfigurables
qui peuvent accéder à des réseaux de type radio intelligente, dans des bandes non licenciées
et sans supervision centrale. Nous considérons notamment des réseaux actuels ou futurs
de l’Internet des Objets (IoT), avec l’objectif d’augmenter la durée de vie de la batterie des
appareils, en les équipant d’algorithmes d’apprentissage machine peu coûteux mais efficaces,
qui leur permettent d’améliorer automatiquement l’efficacité de leurs communications sans
fil. Nous proposons deux modèles de réseaux IoT, et nous montrons empiriquement, par des
simulations numériques et une validation expérimentale réaliste, le gain que peuvent apporter
nos méthodes, qui se reposent sur l’apprentissage par renforcement. Les différents problèmes
d’accès au réseau sont modélisés avec des Bandits Multi-Bras (MAB), mais l’analyse de la
convergence d’un grand nombre d’appareils jouant à un jeu collaboratif sans communication
ni aucune coordination reste délicate, lorsque les appareils suivent tous unmodèle d’activation
aléatoire. Le reste de ce manuscrit étudie donc deux modèles restreints, d’abord des bandits
multi-joueurs dans des problèmes stationnaires, puis des bandits mono-joueur non station-
naires. Nous détaillons également une autre contribution, la bibliothèque Python open-source
SMPyBandits, qui permet des simulations numériques de problèmes MAB, qui couvre les
modèles étudiés et d’autres.

Abstract
In this PhD thesis, we study wireless networks and reconfigurable end-devices that can access
Cognitive Radio networks, in unlicensed bands and without central control. We focus on
Internet of Things networks (IoT), with the objective of extending the devices’ battery life,
by equipping them with low-cost but efficient machine learning algorithms, in order to let
them automatically improve the efficiency of their wireless communications. We propose
different models of IoT networks, and we show empirically on both numerical simulations and
real-world validation the possible gain of our methods, that use Reinforcement Learning. The
different network access problems are modeled as Multi-Armed Bandits (MAB), but we found
that analyzing the realistic models was intractable, because proving the convergence of many
IoT devices playing a collaborative game, without communication nor coordination is hard,
when they all follow random activation patterns. The rest of this manuscript thus studies
two restricted models, first multi-players bandits in stationary problems, then non-stationary
single-player bandits. We also detail another contribution, SMPyBandits, our open-source
Python library for numerical MAB simulations, that covers all the studied models and more.





Resumé des Travaux de Thèse

Ce manuscrit conclut ma thèse de doctorat, qui a débuté en octobre 2016 et s’est terminée en
novembre 2019. Mes recherches se sont déroulées au laboratoire IETR à Rennes en France,
dans l’équipe SCEE hébergée sur le campus de Rennes de l’école d’ingénieurs CentraleSupélec.
J’étais supervisé par le professeur Christophe Moy, à Rennes, et j’étais également co-encadré
par la docteure Émilie Kaufmann, à qui j’ai souvent rendu visite à Inria Lille Nord Europe.

Contexte de cette thèse

Les problèmes sous-jacents qui motivent cette thèse sont les questions du réchauffement
climatique et de l’augmentation de la population mondiale. Au cours des 150 dernières an-
nées, l’humanité a développé de nombreuses technologies de communication différentes, et
depuis la fin des années 1890, les télécommunications sans fil entre des appareils fabriqués
par l’homme ont été rendues possibles, et de plus en plus fréquentes dans nos vies. Avec
l’avènement des réseaux de l’Internet des Objets (IdO), des milliards d’objets à basse consom-
mation devraient être déployés dans lemonde entier, permettant un large éventail de nouvelles
applications. Il existe aujourd’hui un consensusmondial sur le fait qu’avec la tendance actuelle
à l’accroissement démographique et la crise énergétique, toute nouvelle technologie déployée
doit être à la fois bonmarché et efficace sur le plan énergétique, ainsi qu’adaptée pour desservir
un grand nombre de personnes et d’appareils. Ces technologies des nouveaux réseaux sans
fil de l’IdO devraient pouvoir s’adapter automatiquement à différents environnements et
différents contextes d’application, et être aussi efficaces que possible. C’est pourquoi, en plus
de l’effort habituel de recherche et développement pour concevoir de nombreux systèmes
d’accès radio efficaces, couvrant tous les cas possibles, le moment est venu de le combiner
avec un apprentissage machine peu coûteux, dans le but d’atteindre le niveau de gain de
performance nécessaire pour que les promesses de l’IdO deviennent réalité.

C’est ainsi que nous avons décidé de nous intéresser dans cette thèse à l’amélioration de la
durée de vie des batteries des objets de l’IdO et la réduction du coût énergétique des réseaux
de l’IdO. Nous proposons d’atteindre ces deux objectifs conjointement, en intégrant une prise
de décision décentralisée à faible coût, directement dans les futurs objets de l’IdO.



Ma thèse de doctorat porte donc sur les applications possibles de l’intégration d’un certain
type d’algorithmes d’apprentissage machine (des algorithmes de type bandits multi-bras),
afin de permettre aux objets de l’IdO d’optimiser leurs communications sans fil et d’apprendre
à s’organiser automatiquement et sans contrôle central ni coordination.

Des anciens téléviseurs aux standards de l’IdO. Historiquement, trois grandes familles de
systèmes de communication sans fil ont été déployées dans les grands réseaux commerciaux :
d’abord, la radiodiffusion centralisée (e.g., radio ou télédiffusion), puis les systèmes bidirec-
tionnels centralisés (e.g., 4G ouWi-Fi), et aujourd’hui la collecte décentralisée de données pour
les réseaux de l’Internet des Objets (e.g., réseaux capteurs). Ce troisième type de systèmes
peut être désigné comme décentralisé : même si une station de base centrale est toujours en
charge de nombreux objets (ou appareils), ce sont les objets qui déclenchent l’envoi de paquets
radio, et les seules données descendantes qu’ils peuvent recevoir sont de courts accusés de
réception (ou acquittements, en anglais acknowledgements, noté Ack), envoyés par la station de
base pour indiquer le succès ou l’échec de chaque paquet envoyé. Cette famille de systèmes
sans fil est appelée Internet des Objets (IdO, ou Internet of Things, IoT), et un exemple typique
d’application de tels réseaux de l’IdO est celui des réseaux sans fil de capteurs.

Pour le développement futur des « réseaux intelligents » (smart grid), des « villes intel-
ligentes » (smart cities), des « maisons intelligentes » (smart homes) ou de « l’agriculture
intelligente » (smart agriculture), des réseaux de capteurs devraient être largement déployés.
Deux exemples d’applications futures qui sont déjà en cours de déploiement, en France ou à
l’étranger, sont les « bâtiments connectés » et « l’agriculture connectée ». Pour les bâtiments,
l’objectif principal est de réduire le coût de chauffage des bâtiments vides en utilisant des
réseaux de capteurs afin d’obtenir des données précises et régulières sur la température dans
toutes les pièces et tous les étages, pour permettre au contrôle centralisé du chauffage de
minimiser son coût et sa consommation énergétique. Pour l’agriculture, un exemple peut être
d’équiper chaque tête de bétail (dans les grandes fermes) de capteurs qui émettent régulière-
ment des informations biologiques, telles que la température corporelle ou le niveau de stress,
afin d’optimiser l’heure de traite des vaches, de surveiller la santé des animaux, etc.

Ce troisième type de systèmes sans fil est caractérisé par sa nature décentralisée, puisque les
communications sont initialisées et régulées par les objets, et non par un système de contrôle
centralisé. En effet, un contrôle central nécessite des paquets de signalisation très réguliers,
qui ont été identifiés comme trop lourds pour ce type de systèmes. Dans les réseaux de l’IdO
actuels et futurs, de nombreux objets hétérogènes utilisent la même station de base (aussi
appelée point d’accès, ou base station, access point ou gateway) pour des applications différentes.
Un problème commun est la forte contrainte en terme de consommation énergétique de ces
objets, car la plupart d’entre eux seront déployés sans alimentation directe et fonctionneront
sur une batterie minuscule, dont la durée de vie devrait être maximisée. Ainsi, la plupart des
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entreprises promettant des solutions d’IdO vendent aujourd’hui des objets ayant une durée de
vie supérieure à 10 ans, comme SIGFOX [CVZZ16]. Une autre contrainte commune aux objets
de l’IdO est leur faible besoin en communication, car la plupart des applications n’auront
besoin d’envoyer qu’un ou quelques messages chaque jour, en nette opposition avec le débit
de données élevé recherché pour les systèmes centralisés (tels que 4G/5G et Wi-Fi). De nom-
breuses normes différentes pour les réseaux de l’IdO ont été proposées ces dernières années,
et elles consistent en une spécification à la fois pour la couche PHYsique et la couche Medium
Access Control (MAC). Pour citer quelques exemples de normes pouvant être utilisées pour
des réseaux de type IdO, ZigBee, Z-Wave ou Bluetooth visent des communications à courte
portée (jusqu’à 2m), tandis que LoRaWAN, SIGFOX, Ingenu ou Weightless sont destinés aux
communications à plus longue portée (jusqu’à 50 km). Nous référons à l’article [CVZZ16]
pour plus de détails, et les références dans [AC18] ou notre dernier travail [MBDT19].

Épuisement du spectre radio. Un problème majeur des technologies sans fil actuelles est
la question de l’épuisement du spectre radio : dans la plupart des bandes de fréquences,
la totalité du spectre de radio fréquences (RF) est désormais attribuée et les bandes libres
n’existent plus, ce qui limite la possibilité d’ajouter de nouveaux usages. Comme le montre la
Figure 1.1 ci-dessous, presque tout le spectre est affecté à divers usages, qui vont de la radio-
navigation maritime (historiquement le premier usage des radio-communications, e.g., dans le
Titanic), à la recherche spatiale, les communications inter satellitaire, la téléphonie mobile et
de nombreuses autres applications. Les organismes de réglementation dans le monde, comme
l’Union Internationale des Télécommunications (ITU, voir www.ITU.int), la Commission
Fédérale des Communications aux États-Unis d’Amérique du Nord (FCC, voir FCC.gov) ou la
Conférence Européenne des Administrations des Postes et des Télécommunications en Europe
(CEPT, voir CEPT.org), ainsi que différentes campagnes demesure indépendantes, ont montré
que la plupart des fréquences du spectre des fréquences radio-électriques sont utilisées de
manière inefficace. Cela signifie qu’une bande peut être attribuée à un certain usage unique,
mais qu’elle peut être libre de tout utilisateur à certains moments et/ou endroits. Nous nous
référons à [PPS11] pour une étude sur l’utilisation mondiale du spectre, et à [VMB+10] pour
la situation en Europe.

Les bandes des réseaux cellulaires (2G/3G/4G/5G) sont surchargées dans la plupart des
régions du monde, mais d’autres bandes de fréquences (comme les fréquences militaires ou
de radio amateures) sont moins utilisées. Des études indépendantes réalisées dans certains
pays ont confirmé cette observation et conclu que l’utilisation du spectre peut fortement
dépendre à la fois du moment et du lieu, comme le montre [LBCU+09] par exemple. En outre,
l’attribution fixe du spectre empêche l’introduction de nouveaux services, en particulier pour
les objets à bas prix ou pour les marchés de niche. C’est ainsi qu’au cours des quinze dernières
années, grâce à un lobbying actif de la communauté de la radio intelligente, les organismes de
réglementation dans le monde se sont demandé s’il fallait permettre un nouveau paradigme de
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communication sans fil : permettre aux utilisateurs non titulaires d’une licence d’utiliser des
bandes sous licence s’ils ne causent pas d’interférence aux utilisateurs payants, titulaires d’une
licence. Ces initiatives sont examinées par la Radio Intelligente (RI, ou Cognitive Radio, CR),
que nous détaillons ci-dessous, et en particulier pour l’AccèsDynamique au Spectre (ADS, ou
Dynamic Spectrum Access, DSA), pour lesquelles nous renvoyons aux articles [ALVM06, GB12]
pour plus de détails.

Radio Intelligente et Bandits Multi-Bras

Dans cette thèse, nous étudions les réseaux Internet des Objets à longue portée, caractérisés
principalement par trois contraintes essentielles : faible consommation d’énergie (ou longue
durée de vie des batteries), longue portée, et un faible cycle d’utilisation (i.e., faible à très
faible nombres de messages par jour). Plus précisément, nous étudions les interconnexions
possibles entre Radio Intelligente et l’apprentissage statistique appliquées aux réseaux de
l’IdO. Définissons et détaillons les deux concepts séparément.

Des TIC à la Radio Intelligente (RI). Nous pouvons affiner le premier champ d’étude de
cette thèse, étape par étape : des technologies de l’information et communication (TIC), aux
télécommunications, aux communications sans fil, puis à la Radio Intelligente, et enfin à la
Radio Logicielle (RL, ou Software Defined Radio, SDR). La transition de l’approche historique
de la radio matérielle aux architectures RL est un processus graduel, qui a commencé au
début des années 1990 et s’est accéléré dans les années 2000. Une RL est un système de
radiocommunication où les composants qui ont été traditionnellement implémentés par du
matériel dédiés (e.g., mélangeurs, filtres, modulateurs/démodulateurs, détecteurs, etc) sont de
plus en plus implémentés aumoyen de logiciels sur un processeur. Même si le paradigme de la
RI a été initié par des recherches de l’armée des États-Unis d’Amérique duNord dans les années
1980, l’industrie civile a commencé à s’intéresser à la RI au cours des vingt dernières années,
et la RI a également suscité beaucoup d’intérêt de la part du milieu universitaire. Comme la RI
n’est pas une technologie standard, elle n’a pas de définition unique, commençons donc par
citer la définition de deux chercheurs dont les travaux ont été à l’origine du développement
de la RI, dont le premier vient de paraître il y a vingt ans.

• J.Mittola, en 1999, a proposé que « une radio vraiment intelligente qui serait autonome, sensible
aux RF et à l’utilisateur, et qui inclurait la technologie logicielle et les capacités d’apprentissage
machine ainsi qu’une grande connaissance de l’environnement radio haute-fidélité » [MM99].

• Puis S. Haykin en 2005 a aussi dit que « une radio intelligente (RI) est un système de
communication sans fil intelligent qui est capable de connaître son environnement, d’apprendre
et d’adapter ses paramètres de fonctionnement (e.g., puissance d’émission et fréquence porteuse)
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à la volée, dans le but de fournir une communication fiable à tout moment, en tout lieu et efficace
sur le plan spectral » [Hay05].

• L’encyclopédieWikipédia dit ceci « une RI est une radio qui peut être programmée et configurée
dynamiquement pour utiliser les meilleurs canaux sans fil à proximité afin d’éviter les interférences
et la congestion des utilisateurs. Une telle radio détecte automatiquement les canaux disponibles
dans le spectre radio, puis modifie en conséquence ses paramètres de transmission ou de réception
pour permettre plus de communications sans fil simultanées dans une bande de spectre donnée à
un endroit donné ». (en.Wikipedia.org/wiki/Cognitive_radio)

L’une des façons possibles d’envisager la flexibilité du spectre est la suivante. Dans les
bandes sous licences, il y a des utilisateurs primaires (UP) qui paient un abonnement pour
accéder au réseau, par exemple n’importe qui doit payer pour avoir un numéro de téléphone
mobile et utiliser le réseau. Comme nous l’avons vu dans les définitions ci-dessus de la
philosophie de la CR, nous pouvons imaginer que si le réseau n’est utilisé par aucun UP à
un certain endroit et à une certaine heure, les utilisateurs non licenciés, appelés utilisateurs
secondaires (US), pourraient l’utiliser aussi, éventuellement en payant un abonnement auprès
de l’opérateur du réseau. La réglementation stipule que les UP ont une priorité stricte, mais
même si les bandes RF sont attribuées, les mesures dans le monde réel montrent souvent que
certaines bandes ne sont pas utilisées de manière intensive, et donc si un US était équipé d’une
capacité de détection spectrale efficace, il pourrait analyser son environnement, et utiliser
une bande sous licence si et seulement si elle est exempte de tout UP. Ceci définit le concept
d’Accès Opportuniste au Spectre (AOS, ou Opportunistic Spectrum Access, OSA), pour lequel
nous nous référons à l’article [ZS07] pour plus de détails.

Des statistiques ou de l’apprentissage machine aux bandits multi-bras. Nous sommes in-
téressés par l’apprentissage séquentiel et en particulier par les Bandits Multi-Bras (BMB), qui
sont apparus comme des problèmes intéressants au sein de la communauté des statistiques
et de l’apprentissage séquentiel, comme le montrent les travaux pionniers de [Tho33, Rob52,
LR85]. Les BMB sont également inclus dans le concept plus général d’apprentissage par ren-
forcement (ApR, ouReinforcement Learning, RL), lui-même un des domaines de l’apprentissage
machine (AM, ouMachine Learning, ML). Le livre de référence sur l’ApR est [SB18], citons
donc la définition qu’en donnent R. Sutton et A. Barto : « l’apprentissage par renforcement, c’est
apprendre quoi faire – comment faire le lien entre les situations et les actions – pour maximiser un
signal de récompense numérique. L’apprenant n’est pas informé des mesures à prendre mais doit plutôt
découvrir quelles actions sont les plus gratifiantes en les essayant ».

Nous illustrons ci-dessous l’idée d’un cycle d’apprentissage, alternant entre action et
réaction, en Figure 1. Un-e joueur-se (ou un-e apprenant-e) interagit avec son environnement
en prenant une action A(t) (e.g., un choix dans un ensemble fini, A(t) ∈ {1, . . . , K}, ou un
vecteur A(t) ∈ Rd), et ensuite en observant une récompense r(t), qui est une certaine mesure
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du succès de cette action, fournie par l’environnement (e.g., r(t) ∈ {0, 1} pour échec/succès
binaire, ou r(t) ∈ R). Le but de la joueuse est de maximiser ses récompenses, par des essais et
des erreurs (i.e., actions et récompenses). De nombreux problèmes du monde réel peuvent
être présentés comme des problèmes d’apprentissage par renforcement, comme l’illustrent
l’article [BR19] et la Section 2.2, par exemple apprendre à marcher, à conduire, à jouer à un
jeu vidéo, découvrir quel traitement est efficace pour guérir une certaine maladie, etc.

Joueuse Environnement

Action

Récompense

Figure 1 – Cycle de l’apprentissage par renforcement : un-e joueur-se interagit avec son environnement
par des actions, et observe une récompense, de façon itérative.

Comme cette thèse se concentre sur les modèles d’apprentissage par renforcement, il est
important de souligner que dans de tels modèles de prise de décision, l’apprenant n’a pas
accès à l’ensemble des réactions possibles de l’environnement après avoir choisi son action. En
d’autres termes, la joueuse ne voit que la récompense donnée par son action à chaque tour, et
non la récompense qui aurait été donnée si elle avait choisi une des autres actions. Ce genre de
rétroaction limitée s’appelle l’information de type bandit (bandit feedback), et nous discutons
de l’histoire et du concept des bandits (BMB) en détails dans le prochain Chapitre 2. Les
essais cliniques et l’identification du meilleur traitement ont été historiquement les premières
applications des BMB depuis les années 1930, avec les premiers travaux de W. Thompson
[Tho33], car les BMB sont un exemple simple mais puissant du dilemme bien connu entre
exploration et exploitation. Lorsqu’il est confronté à un ensemble de K actions dont les effets sur
l’environnement sont inconnus, l’apprenant doit trouver un équilibre entre explorer les actions
inconnues, afin de recueillir plus d’informations à leur sujet, et en exploitant la meilleure
action, selon ses connaissances actuelles. Les problèmes de bandits ont été étudiés à la fois
dans la communauté de l’apprentissage machine et de la statistique, depuis les années 1950
avec des pionniers comme H. Robbins [Rob52], et c’est un domaine de recherche actif depuis
les années 1990 [AVW87a, AVW87b, ACBFS95, Agr95]. La recherche sur les bandits a produit
une vaste littérature durant les années 2000 [ACBF02, ACBFS02, AB09] et continue d’être un
sujet actif, comme l’illustrent les livres [BCB12, LS19, Sli19] et les nombreuses applications
des bandits les dernières années [BR19].

Accès Opportuniste au Spectre (AOS). Les deux communautés de l’AOS et des bandits ont
commencé à interagir, et les travaux qui en ont résulté ont suscité un grand intérêt de la part
des deux communautés, depuis la fin des années 2000 et le début des années 2010, avec des
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travaux pionniers comme [LZ08, LZ10, JEMP09, JEMP10]. L’accent est mis sur un US accédant
à un spectre sous licence, occupé par un UP, qui a une priorité stricte sur l’US, qui doit suivre
un schéma d’accès de type « écoute avant de transmettre ». Les hypothèses sont les suivantes :
l’US est équipé d’une capacité de détection, et considère un ensemble fixe et fini de K canaux
orthogonaux, i.e., différentes bandes de fréquences dans un spectre sous licence. Par exemple,
il peut s’agir d’un ensemble de K = 3 canaux Wi-Fi à différentes fréquences, émis par la
même station Wi-Fi. Une autre hypothèse est que UP et US sont synchronisés dans le temps,
en subdivisant le temps en pas de temps discrets. Ainsi, si l’US passe un peu de temps au
début de chaque plage horaire pour essayer de détecter un UP, il peut rechercher la présence
ou l’absence d’un UP, avant de transmettre pendant le reste de la plage horaire, sans entrer en
collision avec l’UP. Si l’US était capable d’analyser tous les K canaux, il pourrait simplement
émettre dans l’un des canaux libres s’il y en avait, ou ne pas émettre si tous les canaux sont
utilisés à un pas de temps donné. Cependant, on sait que la détection spectrale est coûteuse
en énergie, en particulier pour la détection à large bande, comme le montrent les articles
[YA09, SB11] (spectrum sensing). C’est pourquoi la plupart des travaux sur l’AOS limitent la
capacité de détection de l’US à un seul canal à la fois. Cette hypothèse, ainsi que l’hypothèse
selon laquelle les UP ne peuvent pas être perturbés (sans laquelle aucune réglementation ne
sera jamais acceptée pour l’AOS), impose à l’US de transmettre dans le canal qu’il a analysé, si
et seulement s’il a été détectée sans aucun UP, et ce à chaque pas de temps.

En se concentrant sur un US s’insérant dans un réseau permettant l’AOS, il doit décider
séquentiellement d’un canal à analyser (dans l’ensemble des canaux, [K] = {1, . . . , K}), puis
il écoute ce canal et effectue une détection de PU, et enfin il transmet dans ce canal s’il a été
détecté libre. Le but de l’US est de minimiser sa consommation d’énergie (nous rappelons que
nous nous concentrons sur la radio intelligente « écologique », green radio) et de maximiser
son débit de données sur la liaison montante, ou de façon équivalente, de maximiser son
nombre de transmissions réussies. Si les différents canaux ne sont pas uniformément occupés
par les UP, et si l’on suppose une certaine stationnarité sur le trafic des UP, alors l’objectif
de l’US se résume à explorer les différents canaux et à exploiter les meilleurs. Le problème
de l’AOS est donc un problème d’exploration/exploitation, avec un ensemble fini d’actions
(les canaux, également appelés bras), dans un cycle séquentiel d’action-réponse (les pas de
temps sont t ∈ N∗), sous l’information de rétroaction partielle (i.e., l’US reçoit l’information
concernant un seul canal parmi K). Ces trois hypothèses sont celles qui limitent le cadre
général de l’apprentissage séquentiel au cas spécifique des bandit multi-bras (voir Figure 1).

BMB pour l’AOS, et un bref historique de ces recherches par l’équipe SCEE. Les travaux
antérieurs de notre équipe SCEE ont montré que les BMB peuvent être utilisés pour modéliser
le problème de prise de décision de l’AOS : les bandes de fréquences orthogonales (ou canaux)
sont modélisées par des bras k ∈ {1, . . . , K}, et la récompense obtenue par l’objet après avoir
analysé le canal k au temps t est modélisée par une récompense r(t) ∈ {0, 1}. En effet, r(t) = 1
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indique qu’aucun utilisateur primaire n’a été détecté (et donc qu’un message d’US peut être
envoyé), alors que r(t) = 0 indique que le canal k est occupé durant l’intervalle de temps t,
et qu’aucun message d’US ne doit être envoyé, jusqu’à la fin de cet intervalle. Ce modèle a
d’abord été étudié par W. Jouini lors de sa thèse de doctorat avec C. Moy [Jou17], il y a dix
ans, d’abord dans l’article [JEMP09] puis avec [JEMP10, JMP12].

Leurs travaux ont été parmi les premiers à proposer l’utilisation de l’apprentissage par
renforcement pour la radio intelligente et le problème AOS, notamment le modèle BMB
et l’algorithme UCB1, en parallèle des premiers travaux de Q. Zhao et de son équipe, par
exemple [LZ08, LZ10]. Peu de temps après, en 2014, C. Moy et son étudiant C. Robert
[RMZ14, Moy14, Moy14] ont développé des preuves de concept utilisant du matériel radio
réaliste et la radio logicielle, avec des cartes USRP et le logiciel MATLAB/Simulink. Dans
une seconde thèse, N. Modi a étudié de 2014 à 2017 l’impact sur la durée de vie des batteries
d’un objet sans fil de l’utilisation des algorithmes BMB pour optimiser la sélection des canaux,
[Mod17]. Le compromis entre des reconfigurations fréquentes, qui coûtent en énergie, mais
qui permettent d’apprendre rapidement est étudié de façon empirique dans [DMNM16].

En 2017, C. Moy a continué à travailler dans cette direction, avec un étudiant post-doctoral,
S. Darak, qui a mené à des publications telles que [DNMP16, DMP16]. Par exemple, des
preuves de concepts comme [KDY+16] ont prouvé la capacité de telles approches sur des
signaux radio réels pour l’AOS. Certaines analyses de réelles mesures radio effectuées pour les
canaux ionosphériques HF ont également prouvé que les solutions basées sur l’apprentissage
BMB sont appropriées et résolvent efficacement ce type de problèmes de prise de décision
sur les signaux sans fil du monde réel [MGMM+15]. Depuis 2017, S. Darak et son équipe à
l’IIIT Delhi en Inde, ont travaillé activement dans la recherche sur la radio intelligente à l’aide
de bandits multi-bras. Par héritage de son travail au sein de l’équipe SCEE, certains de leurs
travaux récents sont également illustrés par des démonstrations réalistes utilisant USRP et le
système MATLAB/Simulink [KYDH18, SKHD18, JKYD18]. Pour plus de détails sur l’état de
la recherche sur la radio intelligente, nous renvoyons aux enquêtes [GB12, MM12].

Limitations et spécificités des réseaux de l’IdO. La littérature susmentionnée a essentielle-
ment montré que les algorithmes BMB peuvent être appliqués avec succès au problème de
l’AOS. Toutefois, si l’on considère des objets de RI qui ne peuvent pas effectuer de détection
spectrale active, tels que des objets à faible coût et à faible consommation d’énergie conçus
pour les futurs réseaux de l’IdO, le modèle BMB qui utilise cette détection active pour vérifier
l’absence d’UP dans le cadre de l’AOS ne peut plus être appliqué. En outre, dans la plupart des
cas, les réseaux de l’IdO utilisent des bandes non licenciées et il n’y a donc plus de distinction
entre UP et US. En d’autres termes, il n’y a plus de priorité entre les utilisateurs des réseaux
de l’IdO. Les autres spécificités des réseaux de l’IdO peuvent être énumérées comme suit, et
nous nous référons à l’article [CVZZ16] pour plus de détails.
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• La plupart des objets sont à faible coût, fonctionnent sur dumatériel de mauvaise qualité
et ont des capacités logicielles et d’alimentation limitées (c’est-à-dire de minuscules
batteries). Cela signifie que même s’ils ne sont pas équipés de capacités de détection
particulières, ils sont équipés d’un émetteur ainsi que d’un récepteur (Tx et Rx, i.e., un
émetteur-récepteur), et ils ont des capacités de stockage et de calcul peu complexes
(petits processeurs embarqués),

• une seule station de base IdO devra gérer un très grand nombre d’objets, et ne peut leur
envoyer des ordres de coordination afin d’optimiser le réseau,

• les objets ont des cycles de fonctionnement faibles à très faibles (seulement quelques
messages par minute ou par mois), et sont en charge d’initier leurs communications en
voie montante (up-link).

Une coordination centrale des objets avec leur station de base est donc impossible car il
faudrait qu’ils communiquent en permanence avec la station de base, ce qui viole les deux
dernières contraintes. De plus, en raison de leur matériel limité (Rx/Tx), de leur puissance de
calcul limitée et de la durée de vie limitée de leur batterie, bien que les objets soient capables
d’utiliser leur antenne de réception pour écouter dans un canal occasionnellement (pendant
quelques intervalles de temps après chaque message envoyé), ils ne peuvent pas effectuer de
détection spectrale à chaque instant, comme cela est envisagé pour l’AOS (i.e., au début de
chaque intervalle, dans un schéma de type « écoute avant de transmettre »).

On pourrait penser qu’en l’absence de détection spectrale, l’apprentissage par renforcement
n’est plus applicable, mais n’importe quel objet d’un vrai réseau de l’IdO reçoit encore des
informations sur son environnement, après certaines ou toutes ses transmissions. Dans la
plupart des normes IdO, un message (sur la voie montante) envoyé à une station de base
doit être suivi d’un message (sur la voie descendante) renvoyé par la station de base pour
indiquer si le message a été bien reçu, décodé et compris. En utilisant cette rétroaction, qui
consiste en un acquittement (ou acknowledgement, Ack) reçu peu après chaque transmission
réussie, ou en l’absence d’Ack après une transmission échouée, il est possible qu’un objet de
l’IdO puisse également optimiser ses communications, grâce à un algorithme d’apprentissage
par renforcement correctement conçu.

Nos contributions

Nous commençons par formuler le problème étudié dans cette thèse, puis nous développons
notre approche. Si nous résumons les problèmes étudiés en une seule question, ce pourrait
être la suivante : « peut-on adapter les outils de prise de décision déjà appliqués avec succès à la Radio
Intelligente (RI) pour l’Accès Opportuniste au Spectre (AOS) aux besoins spécifiques de la RI pour
les (futurs) réseaux de l’Internet des Objets (IdO) ? ». Nous répondons partiellement à cette
problématique par les étapes de recherche suivantes.
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Explorer la jungle des algorithmes BMB

Nous avons commencé par explorer la riche littérature des bandits multi-bras, car il existe
de nombreux algorithmes différents, avec de nombreuses variantes du problème présenté
ci-dessus. Nous commençons donc la première partie de cette thèse par le Chapitre 2, qui
présente le modèle BMB et passe en revue les algorithmes les plus importants conçus pour
résoudre les problèmes stochastiques et stationnaires de bandits. Afin de bien comprendre
quels algorithmes pourraient être adaptés aux contraintes susmentionnées de la RI pour les
réseaux de l’IdO, nous ne nous sommes pas seulement intéressés par la mesure habituelle
des performances d’un algorithme BMB (i.e., son regret, voir ci-dessous en Section 2.3), mais
aussi par leurs performances empiriques en termes de complexité de calcul et de stockage,
tant du point de vue des analyses théoriques que des mesures réelles.

Notre exploration du grand nombre d’algorithmes et de modèles BMB développés dans la
littérature récente nous a donné l’ambition d’écrire un seul logiciel permettant à n’importe
quel-le chercheur-euse d’implanter facilement de nouveaux modèles et algorithmes, afin de
comparer les modèles existants et d’explorer empiriquement les performances de nouveaux
algorithmes. Pour atteindre cet objectif, nous avons développé une bibliothèque de simulation
des problèmes BMB, dans le langage populaire Python. À notre connaissance, nous avons
écrit la bibliothèque libre de simulation la plus exhaustive pour les problèmes BMB, appelée
SMPyBandits [Bes18, Bes19], qui est publiée en ligne sous licence libre (open-source) et qui
est hébergée sur GitHub.com/SMPyBandits. Nous présentons en détail son architecture et ses
fonctionnalités dans le Chapitre 3. Une documentation complète est disponible en ligne, ainsi
que des instructions pour reproduire les simulations présentées dans la suite de cette thèse.

Étant donné le grand nombre d’algorithmes BMB disponibles, nous nous intéressons
aussi à la question de savoir comment un-e ingénieur-e peut choisir l’algorithme à mettre en
œuvre, dans un objet de l’IdO donné, afin de doter cet objet de la capacité de s’adapter de
manière robuste à son futur environnement. Pour répondre à cette question, nous présentons
deux approches. La première est une comparaison empirique d’algorithmes existants, se
focalisant sur les plus efficaces et les mieux connus, en Section 3.3 et 3.4. Nous confirmons
que les algorithmes les plus utilisés, tels que UCB [ACBF02], l’échantillonage de Thompson
(Thompson sampling) [Tho33] et kl-UCB [CGM+13], sont les plus efficaces en termes de regret,
et offrent un bon équilibre entre regret et complexité (temps etmémoire). La seconde approche
est la sélection d’algorithme en ligne, consistant à agréger un ensemble (fini) d’algorithmes
et à découvrir automatiquement lequel est le plus efficace, contre un problème donné, avec
notre contribution Aggregator que nous détaillons en Chapitre 4. Ce travail sur l’agrégation
des algorithmes BMB était motivé par le cadre AOS, pour lequel les travaux antérieurs ne
considéraient que l’algorithme UCB1 sans vraiment justifier ce choix. Cette contribution a été
présentée à la conférence IEEE WCNC à Barcelone, en Espagne, en avril 2018.
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Nos modèles de réseaux de l’IdO et de BMB décentralisé

Dans la deuxième partie de cette thèse, nous commençons par proposer et étudier différents
modèles de réseaux de l’IdO, avec des simulations et un prototype réel (i.e., une preuve de
concept), puis nous étudions des questions intéressantes sur deux modèles mathématiques
de bandits, issues de la simplification de notre premier modèle.

Nous étudions deux modèles de réseaux de l’IdO dans le Chapitre 5. Le premier modèle
considère que les objets ont simplement des données à envoyer régulièrement à une station
de base, à des moments imprévisibles ou aléatoires. De tels objets utilisent les acquittements
commeun retour d’information, afin d’optimiser leurs communications sur la liaisonmontante,
en accédant aux meilleurs canaux, c’est-à-dire le canal le moins occupé par le trafic ambiant.
L’objectif de ce premier modèle est d’améliorer la qualité de service (QdS, ouQuality of Service,
QoS) de l’application de ce réseau de l’IdO, en appliquant un ApR décentralisé (côté objet),
afin de réduire le taux d’échec de transmission. La station de base recevra donc plus de
paquets de liaison montante des objets desservis, s’ils peuvent apprendre par eux-mêmes un
accès efficace au spectre. Cela implique aussi que le réseau peut accepter plus d’objets tout
en maintenant la même QdS. Notre deuxième modèle considère ensuite les retransmissions
de paquets, et bien que les deux modèles soient similaires, l’application d’un algorithme
d’apprentissage décentralisé efficace permet dans ce cas d’augmenter la durée de vie des
batteries de chacun des objets, ainsi que la QdS de l’ensemble du réseau, puisque moins de
retransmissions réduisent aussi la charge locale du spectre.

Le premier modèle sans retransmission est issu du premier article écrit au cours de cette
thèse, qui a initié une collaboration avec R. Bonnefoi, un autre doctorant de notre équipe
SCEE. Nous l’avons présenté à la conférence EAI CROWNCOM à Lisbonne, au Portugal, en
septembre 2017, où il a obtenu le « prix du meilleur papier » [BBM+17]. La preuve de concept
(PdC) a continué notre collaboration fructueuse, et a été montrée pendant trois jours à la
conférence IEEE ICT à Saint-Malo, France, en juin 2018 [BBM18], et aussi à la conférence
IEEE WCNC à Marrakech, Maroc, en avril 2019 [BBM19]. Notre deuxième modèle, avec
retransmissions, correspond à la dernière collaboration avec R. Bonnefoi, qui a été présentée à
l’atelier MoTION, également pendant la conférence IEEE WCNC 2019 [BBMVM19].

Dans les deux modèles de réseaux de l’IdO présentés ci-dessus, l’idée maîtresse est de
laisser chaque objet dynamique d’un tel réseau exécuter un algorithme d’apprentissage de
manière totalement décentralisée, afin d’optimiser le système complet. Il est important de
noter que chaque objet ne communique, et donc n’apprend, qu’à quelques unes et non à
toutes les étapes, en suivant son propre processus d’activation aléatoire (nous nous limitons à
un processus d’activation purement aléatoire, Bernoulli de probabilité p). Cela signifie que
chaque objet vise son propre objectif local, qui est de maximiser sa récompense cumulée, d’une
manière égoïste et complètement agnostique des autres objets ayant le même objectif. Il est
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bien connu en théorie des jeux que jouer égoïstement peut être désastreux pour la mesure de
performance centralisée, on peut penser aux « dilemmes » populaires, tels que le dilemme du
prisonnier. Il était donc assez surprenant que nos simulations numériques, ainsi que la preuve
de concept réaliste, aient montré que l’apprentissage BMB décentralisé et égoïste conduisait à
une coordination efficace entre les objets, dans tous les scénarios considérés, malgré le fait
que ces objets ne peuvent communiquer directement entre eux, et reçoivent seulement un
indicateur de collision depuis la station de base à laquelle ils sont associés.

Nous avons donc d’abord essayé d’analyser la performance de cet algorithme décentralisé,
que nous appelons Selfish, dans le modèle de la Section 5.2, mais en raison du nombre aléatoire
d’objets actifs à chaque pas de temps (i.e., dès que la probabilité p d’activation est p < 1), nous
n’avons pas pu développer une analyse propre. C’est la raison pour laquelle nous affaiblissons
l’hypothèse d’avoir M ≫ K (ou même simplement M > K) dans un réseau avec un canal
sans fil orthogonal K dans le Chapitre 6, qui est équivalent à avoir p < 1, et nous considérons
le cas d’objets actifs à chaque étape de temps (i.e., p = 1), et nous nous limitons donc à M ≤ K

objets. Le modèle que nous avons étudié comporte différentes variantes, selon le niveau de
rétroaction, et couvre à la fois le cas AOS (i.e., avec détection des UP) ou le cas IdO (i.e., sans
détection). L’objectif était de comprendre l’heuristique du Chapitre 5, Selfish, dans le cadre
plus simple des BMB multi-joueurs, qui a été étudié auparavant pour le cas de l’AOS, comme
étudié par exemple par [LZ10, AMT10, AMTA11]. Le cas AOS couvert par notre modèle peut
sembler légèrement différent de celui considéré par [JEMP10] et d’autres travaux antérieurs,
car notre modèle exige qu’un Ack soit renvoyé par la station de base si la transmission a réussi,
même dans le cas où l’information de détection est indisponible. Il est en fait équivalent aux
modèles précédemment étudiés d’applications des BMB pour l’AOS, puisqu’ils ne prennent
en compte que des objets synchronisés, un US et des UP, et donc si la détection indique qu’un
canal est libre pour un intervalle de temps, le message envoyé par l’US sera certainement reçu
avec succès par la station de base (dans le modèle idéal), donc il n’y aura aucun risque de
collision, donc il n’a pas besoin d’Ack.

D’une part, dans le cadre de l’AOS, nous n’avons pas réussi à obtenir de résultat positif
pour l’algorithme Selfish, car nous avons prouvé que dans certains petits problèmes (e.g.,
K = 3 et M = 2), Selfish-UCB peut présenter un regret linéaire avec une faible probabilité,
et donc souffre d’un regret moyen linéaire. Ce résultat a ensuite été confirmé et analysé
par d’autres chercheurs dans [BP18] (Annexe F). D’autre part, nous avons été en mesure
de proposer de nouveaux algorithmes pour ce problème de bandit multi-joueurs (avec in-
formations de détection), et nous avons analysé notre proposition, appelée MCTopM, pour
montrer qu’elle atteint une borne supérieure de regret logarithmique à temps fini, qui améliore
considérablement les résultats précédents. Notre algorithme atteint également un nombre
logarithmique de collisions et de changements de bras, et permet à un groupe fixe de M objets
d’apprendre efficacement à utiliser les M meilleurs canaux orthogonalement pour presque
toutes leurs communications montantes. Ce fort résultat théorique dépend fortement de la
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présence d’une information de détection spectrale et, par conséquent, nos résultats ne sont
pas (encore) applicables au modèle IdO sans détection.

Comme expliqué plus haut, le modèle de Chapitre 5 s’est révélé trop complexe à anal-
yser, principalement parce que nous considérons un réseau d’IdO avec de nombreux ob-
jets, chacun suivant des profils d’activation aléatoires. La difficulté ne réside pas dans le
fait que nous essayons d’analyser des algorithmes de bandits, conçus pour résoudre des
problèmes stationnaires, appliqués à un problème non stationnaire, mais plutôt que nous
considérons des algorithmes qui jouent tous à différents instants d’activations (aléatoires),
ce qui donne des sous-ensembles différents et imprédictibles des pas de temps synchronisés
globaux. Généraliser à différentes probabilités d’activation conduirait à un modèle encore
plus difficile à analyser, et imposer un maximum de M ≤ K objets n’est en fait pas vraiment
réaliste pour les réseaux de l’IdO, même si cela conduit au modèle du Chapitre 6.

D’une part, si le profil d’activation de tous les périphériques peut être corrigé, par exemple
en se basant sur une affectation centralisée des périphériques à différents créneaux horaires,
alors le modèle de bandit multi-joueurs du Chapitre 6 peut être utilisé pour permettre à chaque
groupe de M ≤ K périphériques d’apprendre une affectation orthogonale optimale dans les
K canaux (e.g., les groupes peuvent être le jeu des périphériques que tous émettent au même
instant). Cependant, même si nous continuons à supposer un temps synchronisé dans tout le
reste de la thèse, il est difficile de soutenir que cette hypothèse d’un calendrier centralisé pour
les objets peut être réaliste, car nous étudions le cas de l’apprentissage décentralisé pour l’AOS
et l’IdO précisément afin d’éviter un surcoût dû à une signalisation régulière et un contrôle
central des objets par la station de base, comme nous l’avons expliqué précédemment.

D’autre part, une autre façon d’affaiblir l’hypothèse de non stationnarité est de prendre le
point de vue d’un seul objet, comme dans le cas de l’AOS mentionné ci-dessus, où l’accent est
mis sur un US entouré de plusieurs UP ayant des comportements stochastiques et stationnaires.
Si nous nous concentrons sur un objet de l’IdO, son environnement (i.e., les autres objets)
est non stationnaire, ce qui signifie que ses propriétés moyennes peuvent fluctuer dans le
temps, mais les environnements réels présentent généralement des non-stationnarité avec
une certaine structure. C’est pourquoi nous considérons l’hypothèse de stationnarité par
intervalles de temps, dans la dernière contribution et le dernier chapitre de cette thèse.

Afin de bien comprendre également comment les algorithmes BMB se comportent dans
un environnement non stationnaire, nous avons étudié la littérature sur les BMB adverses ou
non stationnaires, principalement pour les deux cas d’environnements variant lentement ou
changeant brusquement. Nous commençons notre dernier Chapitre 7 en passant en revue les
travaux existants, et nous avons choisi de nous concentrer sur les problèmes de bandits sta-
tionnaires par morceaux, ce qui signifie que le problème de bandit sous-jacent est stationnaire
sur certains intervalles, séparés par des points de changement situés à des moments inconnus.
Supposer que l’environnement est stationnaire par morceaux est en effet cohérent pour les
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applications aux réseaux sans fil, où un point de changement peut par exemple correspondre
à l’arrivée d’un nouveau groupe d’objets dans le réseau. Des exemples d’une telle situation
peuvent être une nouvelle entreprise arrivant sur le marché dans une ville (par exemple, les
compteurs Linky qui sont installés aujourd’hui en France), ou l’agriculteur voisin installant
des capteurs sur son propre troupeau de vaches, etc. Deux grandes familles d’algorithmes
ont été proposées pour les problèmes stationnaires par morceaux, qui consistent générale-
ment à combiner un algorithme efficace conçu pour le problème des bandits stationnaires
(e.g., Thompson Sampling ou kl-UCB), avec un moyen de s’adapter aux changements dans
les distributions des bras. Les algorithmes passivement adaptatives utilisent une fenêtre de
taille fixe ou évolutive [GM11], ou un facteur d’oubli, pour oublier les observations passées
[KS06, GGCA11], tandis que les algorithmes activement adaptatifs utilisent un test statistique
pour détecter les points de changement [MS13, AF15]. Comme la littérature récente a montré
que cette dernière approche est généralement plus compétitive, en obtenant de meilleurs
résultats tant sur le plan empirique que théorique, nous avons choisi de développer notre
propre algorithme activement adaptatif.

Suite à deux travaux précédents récents [LLS18, CZKX19], nous combinons une stratégie
d’indices efficace (kl-UCB) et un test efficace de détection des points de changement, dans
l’hypothèse de récompenses bornées. Nous nous appuyons sur des résultats très récents à
propos du Test du Rapport de Vraisemblance Généralisé (Generalized Likelihood Ratio Test,
GLRT) pour les variables gaussiennes et sous-gaussiennes [Mai19], mais nous nous concen-
trons plutôt sur les récompenses bornées et les distributions de Bernoulli. Les récompenses
bornées sont en effet généralement plus appropriées pour les applications de RI, comme nous
l’avons discuté ci-dessus. En utilisant le fait que les variables bornées dans [0, 1] ne sont pas
seulement 1/4 sous-Gaussiennes mais aussi sous-Bernoulli, nous prouvons les premières
garanties à temps fini pour le GLRT pour des variables bornées. Nous montrons d’abord des
bornes à temps finis à la fois sur la probabilité de fausse alarme de notre test, et sur son délai
de détection, sous des hypothèses raisonnables sur la longueur des séquences stationnaires.
Notre algorithme est alors présenté en deux variantes, selon que les points de changement
soient locaux (i.e., une seule moyenne de bras change à chaque point de changement) ou
globaux (i.e., peut-être que toutes les moyennes des bras changent à la fois). Nous prouvons
qu’en combinant l’algorithme kl-UCB, asymptotiquement optimale pour les problèmes sta-
tionnaires, et notre nouvelle analyse du GLRT pour les récompenses bornées, nous obtenons
des garanties de pointe sur le regret de notre algorithme proposé, noté GLR-klUCB. Nous
considérons la même hypothèse que nos concurrents, en supposant que la longueur des inter-
valles stationnaires est « assez longue » pour que les points de changement soient détectables.
La meilleure borne supérieure de regret est obtenue lorsque l’algorithme connaît à l’avance
l’horizon et le nombre de points de changement, mais notre algorithme n’a pas besoin d’avoir
d’autres connaissances sur la difficulté du problème pour être paramétré de manière optimale.
La performance de GLR-klUCB est également illustrée par des expériences numériques sur
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des données synthétiques, où il est démontré qu’il surpasse tous les algorithmes passivement
adaptatifs ainsi que les précédents algorithmes activement adaptatifs. Ce dernier chapitre
est basé sur un de nos derniers travaux, publié à la conférence GRETSI à Lille, en août 2019
[BK19a]. Notre travail a aussi mené à une version longue [BK19b], qui sera complétée avec
des résultats plus récents, afin de le soumettre bientôt à une revue (probablement le Journal
of Machine Learning Research) avant décembre 2019.

Ce manuscrit se termine par une liste d’abréviations et de notations, puis de figures,
d’algorithmes, de morceaux de code et de tableaux, et enfin des références bibliographiques.

Contributions

Nous pouvons énumérer les points suivants pour résumer les principales contributions de cette
thèse. Elles se situent à trois niveaux : des modèles BMB pour plusieurs contextes radio liés à
la radio intelligente et l’IdO ; des preuves théoriques associées aux problèmes d’apprentissages
correspondants ; et enfin des implantations d’algorithmes à but de simulations, de partage
avec la communauté, et de validation par des démonstrations radio réalistes.

Nous signalons le chapitre, ainsi que les conférences nationales ou internationales dans
lesquelles ont été publiés les résultats correspondants.

• Nous avons écrit la bibliothèque de simulation pour les problèmes BMB la plus complète,
appelée SMPyBandits, qui est écrite en Python et publiée en ligne sous une licence open-
source [Bes18, Bes19]. Nous présentons en détail son architecture et ses fonctionnalités
dans le Chapitre 3, ainsi que différents exemples de son utilisation. Une documentation
complète est disponible en ligne, ainsi que des instructions exhaustives pour reproduire
les simulations numériques utilisées tout au long de ce manuscrit de thèse.

• Nous présentons le problème du choix de l’algorithme qu’un-e ingénieur-e devrait
utiliser, ou de la sélection d’algorithme parmi la riche collection des différents algo-
rithmes de bandits dans la littérature, dans le Chapitre 4. Nous présentons un algorithme
d’agrégation d’algorithmes, appelé Aggregator, comme une solution en ligne au prob-
lème de sélection d’algorithmes, et nous montrons par des simulations numériques qu’il
peut atteindre de bonnes performances empiriques ([BKM18], publié à WCNC 2018).

• Nous proposons différents modèles pour les réseaux de l’Internet des Objets (IdO), dans
le Chapitre 5, où les objets dotés de capacités de radio intelligente peuvent mettre en
œuvre de leur côté des algorithmes BMB, pour augmenter automatiquement la durée de
vie de leur batterie. Cela permet également à davantage d’objets d’utiliser lemême réseau
tout en maintenant un taux élevé d’accès au spectre sans souffrir de collisions radio
(publiés à CROWNCOM 2017 [BBM+17], démonstration ICT 2018 [BBM18], WCNC
2019 [BBM19] et MOTIoN 2019 [BBMVM19]).
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• Nous avons réalisé une démonstration réaliste du modèle proposé ci-dessus [BBM18,
BBM19], présentée à ICT 2018, et nous la détaillons en Section 5.3. Nous avons aussi
réalisé une vidéo de présentation de six minutes, hébergée sur youtu.be/HospLNQhcMk.

• Nous formalisons le modèle du bandit multi-joueur, pour lequel nous avons introduit
deux variantes, dans le Chapitre 6. Pour le cas avec information de détection spectrale
(spectral sensing), nous proposons deux algorithmes, et nous analysons notre algorithme
MCTopM, pour prouver qu’il est très efficace, à temps fini et asymptotiquement. Nous
présentons aussi des expériences numériques approfondies pour montrer qu’il est bien
plus efficace que les autres algorithmes de la littérature. Notre travail [BK18a], publié
à ALT 2018, a également contribué à un nouvel élan à la recherche sur les bandits
multi-joueurs, certains travaux de recherche récents s’étant construits sur nos résultats.

• Nous donnons une revue détaillée de la littérature sur les différentes extensions du
modèle BMB multi-joueurs, particulièrement active ces deux dernières années.

• Nous présentons ensuite le modèle de bandits multi-bras stationnaire par morceaux,
dans le Chapitre 7, et une vue détaillée de l’état de l’art de la recherche sur ce modèle
([BK19a] publié à GRETSI 2019, [BK19b]). Nous proposons un nouvel algorithme
activement adaptatif, pour ces problèmes stationnaires par morceaux, GLR-klUCB, qui
atteint des performances empiriques et des garanties théoriques comparables à l’état de
l’art, tout en utilisant des hypothèses plus faibles car notre approche n’a pas besoin de
connaître de borne sur la difficulté du problème à part le nombre de points de ruptures.

Organisation du manuscrit

L’ordre de lecture du manuscrit peut suivre n’importe quel chemin, entre l’introduction
donnée dans le Chapitre 1, et la conclusion générale qui constitue le dernier Chapitre 8.
Comme le montre le graphique de la Figure 2 ci-dessous, la thèse est organisée en deux parties,
correspondant aux deux lignes intermédiaires de la figure suivante.

• Dans la Partie I, nous commençons par le Chapitre 2 qui présente les modèles de bandits
multi-bras (BMB), les concepts et les notations utilisés dans tout ce document. Ce
premier chapitre est nécessaire à la lecture du reste du manuscrit. Le Chapitre 3 présente
notre bibliothèque de simulations SMPyBandits, qui est utilisée par les Chapitres 2, 4, 6
et 7 pour leurs simulations numériques. Nous terminons cette première partie par le
Chapitre 4, qui détaille la première contribution : un nouvel algorithme pour la sélection
séquentielle d’algorithmes BMB.

• La deuxième Partie II contient ensuite trois chapitres, qui sont inclus à la fois dans
l’ordre logique et chronologique, mais peuvent être lus quasiment indépendamment.
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Chapitre 1
Introduction

Chapitre 2
Modèle bandits multi-bras
stochastique et stationnaire

Chapitre 3
SMPyBandits : bibliothèque
de simulations pour BMB

Chapitre 4
Sélection séquentielle
d’algorithme BMB

Chapitre 5
Deux modèles BMB

pour les réseaux de l’IdO

Chapitre 6
Modèle BMB
Multi-joueurs

Chapitre 7
Modèle BMB

Non-stationnaire

Chapitre 8
Conclusion générale

Figure 2 – Organisation de la thèse. Cette thèse peut se lire en suivant n’importe quel chemin contenant
le Chapitre 1, le Chapitre 2, au moins un des trois Chapitres 5, 6 ou 7, et la Conclusion.

Le Chapitre 5 commence par proposer et étudier différents modèles de réseaux de l’IdO,
pour lesquels nous montrons que les algorithmes BMB peuvent être utilisés avec succès.
Nos deux modèles sont intéressants et proches de la réalité, mais ils se sont révélés trop
complexes pour proposer une analysemathématique de la bonne performance empirique
des solutions envisagées. Pour cette raison, nous simplifions les modèles précédents
dans la suite du document, afin d’établir des preuves mathématiques garantissant la
convergence, ainsi que les gains en performance apportés par ces algorithmes de bandit.
Les deux Chapitres 6 et 7 étudient chacun un modèle intermédiaire, situé entre le
modèle BMB stationnaire à un joueur du Chapitre 2 et les modèles de réseaux de l’IdO
du Chapitre 5. Ces deux études ont chacune donné des résultats théoriques à la pointe
de la recherche, sur les deuxmodèles de bandits multi-joueurs et de bandits stationnaires
par morceaux, que nous avons aussi validé par des expériences numériques.

Note sur le droit intellectuel. Ce document et les ressources additionnelles requises
pour le générer (notamment les fichiers LATEX, les morceaux de code Python, les figures etc)
sont distribuées publiquement, selon les termes de la licence MIT open-source, en ligne sur
GitHub.com/Naereen/phd-thesis/.

Copyright 2016-2019, © Lilian Besson.
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Chapter 1

Introduction

This manuscript concludes my doctoral thesis, which started in October 2016 and finished
in November 2019. My research took place at the IETR laboratory in Rennes (France), in the
SCEE team, hosted on the Rennes campus of the engineering school CentraleSupélec. I was
supervised by Professor Christophe Moy, in Rennes, and I was also co-supervised by Doctor
Émilie Kaufmann, whom I visited many times at Inria Lille Nord Europe in Lille (France).

1.1 Context of this thesis

The root of the problems motivating this thesis are the questions of global warming and the
increase of the world population. In the last 150 years, humankind has developed different
communication technologies, and since the late 1890s, wireless communications between
manufactured devices have beenmade possible, andmore andmore frequent in our lives. With
the advent of Internet of Things networks (IoT), billions of autonomous low-power devices are
expected to be deployedworldwide, allowing awide range of different applications. It is now a
world-wide consensus that with the current trend of population increase and with the ongoing
energy crisis, any newly deployed technology should be both cheap and energy efficient, as
well as adapted to serve a large number of people and devices. Such IoT technologies should
be able to adapt automatically to different environments and application contexts, and be
as efficient as possible. In addition to the usual Research and Development effort to design
different efficient radio access schemes, covering all the possible cases, now the time has come
to combine it with cheap and promising Machine Learning in order to (try to) attain the level
of performance gain necessary for the IoT promises to become reality.

That is why we are interested in this thesis about improving the battery life of IoT end-
devices and reducing the energy cost of IoT networks. We propose to attain these two goals
jointly, by embedding low-cost decentralized decision making on directly into the future IoT
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devices. Our focus in this PhD thesis is thus on the possible applications of embedding a
certain kind of Machine Learning algorithms (Multi-Armed Bandit algorithms), in order to
let the IoT devices optimize their wireless communications and learn to be self-organized
automatically and without central control nor coordination.

From old TV to the IoT standards. Historically, three main families of wireless commu-
nication systems have been deployed in massive commercial networks: first, centralized
broadcasting (e.g., radio or TV broadcasting), then centralized bi-directional systems (e.g.,
4G or Wi-Fi), and nowadays decentralized data harvesting for the Internet of Things (IoT)
networks (e.g., sensor networks). This third kind of systems can be designed as decentralized:
because even if a central base station is still in charge of many devices, the devices initiate
the sending of up-link packets, and the only down-link data they can receive are short ac-
knowledgements, sent from the base-station to indicate success or failure of every up-link
packet. This family of wireless systems are referred to as Internet of Things (IoT), and a typical
example of application of such IoT networks is for sensor wireless networks.

For the future development of “smart grids”, “smart cities”, “smart homes”, or “smart
agriculture”, sensor networks are promised to be widely deployed. Two examples of future
applications that are already in deployment, in France or other countries, are “connected
buildings” and “connected agriculture”. For buildings, the main goal is to reduce the cost of
heating empty buildings and use sensor networks to get accurate and regular data about the
temperature in all rooms and floors, and let the centralized heat control optimize its cost and
energy consumption. For agriculture, one example can be to equip every cow (in large farms)
with sensors that regularly emit biological information, such as body temperature or stress
level etc, in order to optimize the time of milking, to monitor the health of the animals etc.

This third kind of wireless systems is characterized by its decentralized nature, where
communications are initialized and regulated by the devices, not by a centralized control
systems. Indeed, a central control requires signaling packets that have been identified as too
heavy for these kinds of systems. In the present and future IoT networks, many devices of
heterogeneous natures are using the same antenna for different applications. A common
problem is the strong constraint that such IoT devices have on their power consumption, as
most of them will be deployed without a direct power access and will run on a tiny battery,
which lifespan should be maximized. Most commercial IoT companies nowadays indeed sell
a lifespan larger than 10 years, like SIGFOX [CVZZ16]. Another common constraint for IoT
devices is their low duty cycles, as most applications target a need for one or a few messages
to send every day, in strike opposition to the high data-rate pursued for centralized systems
(such as 4G/5G and Wi-Fi). Many different standards for IoT networks have been proposed in
the recent years, and they consist in a specification for both the PHYsical and the Medium
Access Control (MAC) layers. To quote some examples of IoT standards, ZigBee, Z-Wave or
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Bluetooth are targeting short-range communications (up-to 2m), while LoRaWAN, SIGFOX,
Ingenu or Weightless are designed for long-range communications (up-to 50 km). We refer to
the survey [CVZZ16] and references in our recent articles [MB19, MBDT19] for more details.

Spectrum Scarcity. A major problem of current wireless technologies is the issue of spec-
trum scarcity: in most kinds of frequency bands, the entire RF spectrum is now allocated
and free bands no longer exist, and this limits the possibility of adding any new usage. As
illustrated in Figure 1.1 below, almost the entire spectrum is allocated to various usages,
that goes from maritime radio-navigation (historically the first usage of radio telecommu-
nication, e.g., in the Titanic), to space research, inter-satellite, mobile telephony and many
other applications. Regulatory bodies in the world, like the International Telecommunication
Union (see www.ITU.int), the Federal Communications Commission in the United States of
North America (see FCC.gov) or the European Conference of Postal and Telecommunications
Administrations in Europe (see CEPT.org), as well as different independent measurement
campaigns, found that most radio frequency spectrum are inefficiently utilized. This means
that while a band can be allocated to a certain unique usage, it can be free from any user in
certain times and/or places. We refer to [PPS11] for a survey on the worldwide spectrum
utilization, and to [VMB+10] for the situation in Europe.

Free

Figure 1.1 – A chart representing the allocation of radio spectrum in the United States of North
America in 2016. © United States of North America, Department of Commerce, published online at
www.ntia.doc.gov/files/ntia/publications/january_2016_spectrum_wall_chart.pdf.
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Cellular network bands are overloaded in most parts of the world (2G/3G/4G/5G), but
other frequency bands (such as military, amateur radio and paging frequencies) are less
utilized. Independent studies performed in some countries confirmed that observation,
and concluded that spectrum usage highly depends on both time and place, as shown by
[LBCU+09] for instance. Moreover, the fixed spectrum allocation prevents the introduction
of new services, especially for low-cost or small markets equipment. Therefore, in the last
15 years, thanks to an active lobbying by the cognitive radio community, regulatory bodies
all over the world have been considering whether to allow a new wireless communication
paradigm: enable unlicensed users in licensed bands, if they would not cause any interference
to the (paying) licensed users. These initiatives are considered by the Cognitive Radio field
that we detail below, and especially forDynamic SpectrumAccess (DSA), for which we refer
to the surveys [ALVM06, GB12] for more details.

1.2 Cognitive Radio and Multi-Armed Bandits

In this thesis, we study Internet of Things networks characterized by mainly three essential
constraints: low power consumption (or long battery life), long-range communications, and
low duty cycle. More precisely, we study the possible interconnections between Cognitive
Radio andMachine Learning applied for IoT networks. Let us define and detail both concepts.

From IT to Cognitive Radio. We can narrow down the first field of study of this thesis,
steps by steps: from Information Technologies (IT), to Telecommunications, to Wireless
Communications, then to Cognitive Radio (CR), and finally to Software Defined Radio (SDR).
The transition from the historical approach of hardware-based radio to SDR architectures is a
gradual process, that started in the early 1990s and has accelerated in the 2000s. A SDR is a
radio communication system where components that have been traditionally implemented
in hardware (e.g., mixers, filters, modulators/demodulators, detectors, etc) are more and
more implemented by means of software on a processor. Even though the SDR paradigm
was initiated by the United States of North America defense research in the 1980s, over the
past 20 years the civil industry has started to be interested by SDR, and CR has got significant
attention from the academia as well. As CR is not a standard technology, it does not have
a single definition, so let us start by quoting the definition of two researchers whose works
constitutes the roots of the development of CR, the first one having appeared just 20 years ago.

• J. Mittola in 1999 proposed that “a really smart radio that would be self-, RF- and user-aware,
and that would include software technology and machine learning capabilities along with a lot of
high-fidelity knowledge of the radio environment” [MM99].

• Then S. Haykin in 2005 also said that “a CR is an intelligent wireless communication system
that is capable of being aware of its surroundings, learning, and adapting its operating parameters
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(e.g., transmit power and carrier frequency) on the fly with an objective of providing reliable
anytime, anywhere, and spectrally efficient communication” [Hay05].

• The Wikipedia encyclopedia states “a CR is a radio that can be programmed and configured
dynamically to use the best wireless channels in its vicinity to avoid user interference and conges-
tion. Such a radio automatically detects available channels in wireless spectrum, then accordingly
changes its transmission or reception parameters to allow more concurrent wireless communica-
tions in a given spectrum band at one location”. (en.Wikipedia.org/wiki/Cognitive_radio)

One possible way of considering spectrum flexibility is the following. In licensed bands,
there are Primary Users (PU) paying to access the network, for instance anybody has to pay
to have a mobile phone number and use cellular networks. As exposed in the definition above
of the CR philosophy, we could imagine that if the network is unused by any PU in a certain
location and time, then non licensed users, referred to as Secondary User (SU), could use it,
possibly by also paying some rent to the network operator. Regulation states that PU have a
strict priority, but even though the RF bands are allocated, real world measurements often
show that some bands are not densely used, and thus if a SU was equipped with an efficient
spectrum sensing capacity, it could analyze its environment, and use a licensed band if and only
if it is free of any PU. This defines the concept of Opportunistic Spectrum Access (OSA), for
which we refer to the survey [ZS07] for more details.

From Statistics or Machine Learning to Multi-Armed Bandits. We are interested by Multi-
Armed Bandits (MAB) learning, which emerged as an interesting problem in the statistics
community and among researchers interested by sequential learning, as shown by the pioneer
works of [Tho33, Rob52, LR85]. It is also included in the more general concept of Reinforce-
ment Learning (RL), itself one of the field of Machine Learning (ML). The reference book on
RL is [SB18], so let us quote the definition of RL given by R. Sutton andA. Barto: “Reinforcement
learning is learning what to do - how to map situations to actions - so as to maximize a numerical
reward signal. The learner is not told which actions to take, but instead must discover which actions
yield the most reward by trying them”.

We illustrate below the idea of a learning cycle, alternating between action and feedback,
in Figure 1.2. A player (or learner) interacts with its environment by taking an action A(t)
(e.g., a choice in a finite set, A(t) ∈ {1, . . . , K}, or a vector A(t) ∈ Rd), and then by observing a
reward r(t), which is a certain measure of success of this action, produced by the environment
(e.g., r(t) ∈ {0, 1} for binary failure/success, or r(t) ∈ R). The goal of the player is to
maximize its rewards, by trials and errors (i.e., actions and rewards). Many real-world
problems can be framed as Reinforcement Learning problems, as illustrated by the survey
[BR19] and Section 2.2, for instance learning to walk, to drive, to play a board or computer
game, discovering which treatment is efficient in healing a certain disease (clinical trial), etc.
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Player Environment

Action

Reward

Figure 1.2 – Reinforcement learning cycle: a learner interacts with its environment through actions,
and observes a reward, iteratively.

As this thesis focuses on Reinforcement Learning models, it is important to highlight
that in such decision making models, the learner does not have access to the entire reaction
of the environment after taking its action. In other words, the player only sees the reward
generated by playing its action at every round, and not the reward that would have been
given if she chose any other action. This kind of limited feedback is called bandit information,
and we discuss the history and the concept of MAB in details in the next Chapter 2. Clinical
trials and treatment discovery were historically the first application of MAB since the 1930s,
with the early work of W. Thompson [Tho33], as MAB are indeed a simple yet powerful
example of the well-known exploration vs exploitation dilemma. When facing a set of K actions
whose effects on the environment are unknown, a learner must balance between exploring
the unknown actions, in order to collect more information about them, and exploiting the
best action, according to its current knowledge. The MAB problem has been studied in
both the machine learning and the statistics communities, since the 1950s with pioneers like
H. Robbins [Rob52], and more recently it is an active field of research, since the late 1990s
[AVW87a, AVW87b, ACBFS95, Agr95]. The research onMAB has produced a vast literature in
the 2000s [ACBF02, ACBFS02, AB09] and continues to be a topic of high interest, as illustrated
by the surveys and books [BCB12, LS19, Sli19], and the wide range of applications of MAB in
the recent years [BR19].

Opportunistic Spectrum Access. The two communities of OSA and MAB have started to
interact, and the resulting works have received a great interest from both communities, since
the late 2000s and early 2010s, with pioneers works like [LZ08, LZ10, JEMP09, JEMP10]. The
focus is on one SU accessing a licensed spectrum, occupied by PU that have a strict priority over
the SU, which has to follow a “listen-before-talk” access scheme. The following hypotheses
are made: the SU is equipped with a spectrum sensing capability, and considers a fixed and
finite set of K orthogonal channels, i.e., different frequency bands in a licensed spectrum.
For instance, it can be a set of K = 3 Wi-Fi channels at different frequencies, emitted by the
same Wi-Fi station. Another hypothesis is that both PU and SU are synchronized in time,
by sub-dividing the time in discrete time steps (or rounds). Thus if the SU spends a short
time in the beginning of each time slot to perform sensing, it can scan for the presence or
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absence of any PU before transmitting, without colliding with the PU during the rest of the
time slot. If the SU was able to sense for all the K frequency bands, it could simply transmit
in one of the free channels if any, or not transmit if all channels are used at a given time
step. However, sensing is known to be costly, in terms of energy consumption, especially for
wide-band sensing, as detailed in the surveys [YA09, SB11], thus most works on OSA limit the
sensing capacity of SU to sensing only one channel at a time. This assumption, along with the
hypothesis that PU cannot be disturbed (without which no regulation will ever be accepted
for OSA), enforces the SU to transmit in the channel that it sensed, if and only if it was sensed
free from any PU.

Focusing on one SU in an OSA network, it has to sequentially decide a channel to sense
(in the set of channels, [K] = {1, . . . , K}), then it performs spectrum sensing, and finally it
transmits in this channel if it was sensed free. The goal of the SU is to minimize its energy
consumption (we remind that we focus on “green” cognitive radio) and to maximize its
up-link data rate, or equivalently, to maximize its number of successful transmission. If the
different channels are not uniformly used by the PU, and if we assume a stationary hypothesis
on the PU traffic, then the goal of the SU boils down to exploring the different channels
and exploiting the best ones. This frames the Opportunistic Spectrum Access problem as an
exploration/exploitation problem, with a finite set of actions (the channels, also called arms),
in a sequential action-then-feedback cycle (time steps are t ∈ N∗), under partial information
feedback (i.e., the player receives sensing feedback about only one channel over K). These
three hypotheses are the ones that restrict from the general sequential learning framework to
the specific MAB case (see Figure 1.2).

MAB for OSA, and a short history of these researches at the SCEE team. Previous works
of our SCEE team showed that MAB can be used to model the OSA problem: orthogonal
frequency bands (or channels) aremodeled by arms k ∈ {1, . . . , K}, and the feedback obtained
by the CR-equipped device after sensing the channel k at time t is modeled by a reward of
r(t) ∈ {0, 1}. Indeed, r(t) = 1 indicates that no Primary User was sensed (and thus the SU
can send a message), while a reward of r(t) = 0 indicates that the channel k is busy during
the time slot t, and no message should be sent, until the end of that slot. This model was first
studied by W. Jouini during his PhD thesis with C. Moy [Jou17], about ten years ago, first in
the article [JEMP09] and later in [JEMP10, JMP12].

Their works were among the first ones to propose to use Reinforcement Learning for Cog-
nitive Radio and the OSA problem, especially the MAB model and the UCB1 algorithm, along
with the early works of Q. Zhao and her team, for instance with [LZ08, LZ10]. Shortly after in
2014, proof-of-concepts using real-world radio hardware and Software Defined Radio were de-
veloped by C. Moy and his student C. Robert, using USRP boards and the MATLAB/Simulink
software [RMZ14, Moy14]. In a second PhD thesis, N. Modi studied from 2014 to 2017 the
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impact on the battery life of a wireless device of using MAB algorithms to optimize channel
selections [Mod17]. The trade-off between rapid software reconfigurations that cost energy
but allow to learn quickly is studied empirically in [DMNM16].

In 2017, C. Moy continued to work on this direction, with a post-doctoral student, S. Darak,
leading to publications such as [DNMP16, DMP16]. For example, proof-of-concepts like
[KDY+16] have proven the capability of such approaches on real radio signals for OSA. Some
analysis on real radio measurements made for HF ionospheric channels have also proven that
solutions based on MAB learning are appropriate, and solve efficiently this kind of decision-
making problems on real-world wireless signals [MGMM+15]. Since 2017, S. Darak, and his
team at IIIT Delhi in India, have actively worked in the research on cognitive radio using
multi-armed bandits. Inheriting from his work with the SCEE team, some of their recent
works are also illustrated with realistic demos using USRP and the MATLAB/Simulink system
[KYDH18, SKHD18, JKYD18]. For more details on the state of research on Cognitive Radio,
we refer to the surveys [GB12, MM12].

Limitations and specifities of IoT networks. The aforementioned literature has essentially
shown that MAB algorithms can be applied successfully on the SU side for the OSA problem.
However, if we consider CR-ready devices that cannot perform spectrum sensing, such as
low-cost and low energy-consumption end-devices designed for the future Internet of Things
networks, the MAB model that uses sensing to detect PU in the OSA case can no longer be
applied. Moreover, in most cases, the IoT networks use unlicensed bands, and as such there is
no longer a distinction between PU and SU. In other words, there is no longer any priority
between users in IoT networks. The other specificities of IoT networks can be listed as follows,
and we refer to the survey [CVZZ16] for more details.

• most IoT devices are very low-cost devices, run on low-quality hardware, and have
limited software and power capabilities (i.e., tiny batteries). It means that even if they
are not equipped with particular spectrum sensing capabilities, they are equipped with
a transmitter as well as with a receiver (Tx and Rx, i.e., a transceiver), and they have
low-complexity storage and computation capabilities (i.e., small embedded processors),

• a single IoT base station will have to handle a very large number of devices, and cannot
send coordination orders to them in order to optimize the network,

• IoT devices have low to very low duty cycles (few messages every minute to only a few
every month), and are in charge of initiating their up-link communications.

A central coordination of the devices with their base station is thus impossible as it would
require them to communicate continuously with the base station, which violates the two last
constraints. Moreover, due to both their limited hardware (Rx/Tx), limited computational
power and limited battery life, the IoT devices are able to use their received antenna to sense
one channel occasionally (typically, for a few time slots after every single up-link message),
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but they cannot perform spectrum sensing like it is considered for OSA and CR (i.e., at the
beginning of a time slot, in a “listen-before-talk” scheme).

One could think that in the absence of sensing, Reinforcement Learning is no longer
possible, but any real IoT device still receives some information about its environment after
some or every of its transmissions. In most IoT standards an up-link message sent to a base
station can be followed by a down-link message sent back by the base station, to indicate
if the up-link message was successfully received and understood. By using this feedback,
which consists in an acknowledgement (Ack) message received shortly after every successful
transmission, or in an absence of Ack after a failed transmission, it is possible that an IoT
end-device can also use awell-designed RL algorithm, in order to optimize its communications.

1.3 Our contributions

We start by formulating the problem studied in this thesis, and then we develop the organiza-
tion of the contributions. If we sum-up the studied problems and summarize them in one
question, it could be the following: “Can we adapt the decision making tools, already successfully
applied to Cognitive Radio for Opportunistic Spectrum Access, to the specific needs of CR for the
(future) Internet of Things networks?” We answer partially to this problematic by the following
steps.

1.3.1 Exploring the Jungle of MAB algorithms

We started by exploring the rich literature ofmulti-armed bandits, asmany different algorithms
exist, with lots of variants on the simple problem presented above. We thus start the first part
of this thesis with Chapter 2, which presents the MAB model and reviews the most important
algorithms designed to solve stochastic and stationary MAB problems. In order to clearly
understand which algorithms could be adapted to the aforementioned constraints of CR for
IoT networks, we were not only interested by the usual measure of performance of any MAB
algorithm (its regret, see below in Section 2.3), but also by their empirical performances in
terms of computational complexity and storage requirements, from the points of view of both
theoretical analyses and real-world measurements.

Our exploration of the large number of MAB algorithms and models developed in the
recent literature has given us the ambition to write a single software allowing anyone to
easily implement new models and algorithms, in order to compare the existing ones and
empirically explore the performances of newly proposed algorithms. To tackle this goal, we
developed a library of simulation of MAB problems, in the Python language. To the best of
our knowledge, we wrote the most exhaustive open-source library for bandits. Our library
SMPyBandits is published online, under an open-source licence [Bes18, Bes19], and hosted on
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GitHub.com/SMPyBandits. We present in details its architecture and its features in Chapter 3,
along with different examples of its usage. A full documentation is available online, as well as
exhaustive instructions to reproduce the simulations presented in the rest of this thesis.

Because there are somanyMAB algorithms available, we are also interested by the question
of how an engineer can choose the algorithm to implement, in a given IoT object, in order to
equip this object with the capacity to adapt robustly to any environment. To answer this ques-
tion, we present two approaches. The first one is an empirical comparison of the most efficient
and well known existing algorithms, in Sections 3.3 and 3.4. We confirm that widely used and
not too sophisticated algorithms, such as UCB [ACBF02], Thompson sampling [Tho33] and
kl-UCB [CGM+13], are the most efficient in terms of regret, and offer a good balance between
regret and (time and memory) complexity. The second approach is online algorithm selection,
consisting in aggregating a (finite) set of algorithms and automatically discovering which
one performs the most efficiently, against a given problem, with our contribution Aggregator
that we detail in Chapter 4. This work on aggregating MAB algorithms was motivated for the
OSA case of CR, where many previous research works only considered the UCB1 algorithm
without really justifying their choice. This contribution was presented in the IEEE WCNC
conference in Barcelona, Spain, in April 2018.

1.3.2 Two models of IoT networks and decentralized MAB

In the second part of this thesis, we start by proposing and studying different models of IoT
networks, with simulations and a real-world proof-of-concept, and then we study interesting
questions on two mathematical models of MAB, arising from simplification of our first model.

We study two models of IoT networks in Chapter 5. The first model considers IoT de-
vices that simply have data to regularly send to a base station, at unpredictable or random
times. Such devices use acknowledgements as feedback, in order to optimize their up-link
communications, by accessing more the best channels, i.e., the channel less occupied by the
surrounding traffic. The goal of this first model is to increase the Quality of Service (QoS)
of such IoT network, by applying decentralized RL on the device side in order to reduce the
rate of failed transmissions. The base station will thus receive more up-link packets from the
devices being served, if they can successfully learn by themselves an efficient spectrum access
scheme. It implies that the network can serve more end-devices while maintaining the same
QoS. Our second model then considers packet retransmissions, and while the two models are
similar, the application of an efficient decentralized learning algorithm now results in both an
increased battery life for each of the devices, and an increased QoS for the entire network, as
less retransmissions reduce the local spectrum load.

The model without retransmission comes from the first article written during this thesis,
which initiated a collaboration with R. Bonnefoi, another PhD student of our team SCEE. We
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presented it at the EAI CROWNCOM conference in Lisboa, Portugal in September 2017, where
it obtained the “best paper award” [BBM+17]. The proof-of-concept (PoC) continued the
fruitful collaboration, and was demonstrated during three days at the IEEE ICT conference in
Saint-Malo, France, in June 2018 [BBM18], and later at the IEEE WCNC conference in Mar-
rakech, Morocco, in April 2019 [BBM19]. The second model with retransmissions concluded
our collaboration with R. Bonnefoi, and resulted in a paper presented in the 1st MoTION
workshop, also during the IEEE WCNC 2019 conference [BBMVM19].

In both models of IoT networks presented above, the core idea is to let every dynamic
device run a learning algorithm in a fully decentralized way, in order to optimize the entire
system. We highlight that each device communicates, and thus learns, only at some rounds
and not at all the time steps, by following its own random activation process (we restrict to a
purely random Bernoulli activation process of probability p). This means that each of them
target its own local objective, which is to maximize its cumulated reward, in a selfish way and
by being agnostic about the other devices following the same objective. It is well known in
game theory that playing selfishly can be disastrous for the centralized performance measure,
one can think of popular “dilemmas”, such as the prisoner dilemma. So it was quite surprising
that the numerical simulations, as well as the realistic PoC, showed that decentralized selfish
MAB learning leads to efficient coordination between devices in all the considered scenarios,
despite the fact that these IoT objects cannot communicate directly with each other, and receive
only a collision feedback from the base station they are associated to.

That is why we first tried to analyze the performance of this decentralized algorithm, that
we refer to as Selfish, in the model of Section 5.2, but due to the random number of active
devices at each time step (i.e., as soon as the probability p of activation is p < 1), we were
unable to develop a clean analysis. That is the reason why we relax the hypothesis of having
M ≫ K (or even simply M > K) devices in a network with K orthogonal wireless channel
in Chapter 6, that is equivalent to having p < 1, and we consider the case of IoT devices
communicating at every time step (i.e., p = 1), and so we restrict to only up-to M ≤ K devices.
The model we studied comes with different variants, depending on the feedback level, and
covers both the OSA case (i.e., with sensing of PU) or the IoT case (i.e., without sensing).
The goal was to understand the heuristic of Chapter 5, Selfish, in the simpler framework
of multi-player MAB, which has been studied before for the case of OSA, for instance by
[LZ10, AMT10, AMTA11]. The OSA case covered by the studied model can seem to slightly
differ with the one exposed above, from [JEMP10] and other previous works, as our model
requires that an Ack is sent back by the base station if the transmission was successful, even
in the case where sensing information is available. It is actually equivalent to the previously
studied models of applying MAB for OSA, as they only considered synchronized devices, only
one SU and PU, and thus if the sensing indicates that one channel is free at one time slot, the
up-link message sent by the SU device is sure to be successfully received by the base station
(in the ideal model), so there is no risk of collision, and thus no need for an Ack.
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On the one hand, in the OSA setting, we failed to obtain positive result for the Selfish
policy, as we proved that in some limited settings (e.g., K = 3 channels and M = 2 devices),
Selfish-UCB can suffer from linear regret with a small probability, and thus suffers from linear
mean regret. This result was later confirmed and analyzed by other researchers in [BP18]
(Appendix F). On the other hand, we were able to propose new algorithms for this multi-
player bandit problem with sensing information, and we analyzed our proposal MCTopM to
show that it achieves a finite-time logarithmic regret upper bound, and improves significantly
over previous state-of-the-art results. Our algorithm also achieves a logarithmic number of
collisions and arm switches, and allows a fixed group of M devices to efficiently learn to use
the M best channels orthogonally for almost all their up-link communications. This strong
theoretical result heavily depends on the presence of sensing feedback, and as such our results
are not (yet) applicable to the IoT model without sensing.

As explained above, the model of Chapter 5 was found intractable to analyze, mainly
because we consider an IoT network with many end-devices, all following random activation
patterns. The difficulty does not reside in the fact thatwe are trying to analyzeMAB algorithms,
designed to tackle stationary problems, applied on a non-stationary problem, but rather that
we consider algorithms which are all playing in different (random) activation times, subsets
of the global synchronized time steps. Generalizing to different activation probabilities would
lead to a model even harder to analyze, and enforcing at most M ≤ K devices is in fact not
really realistic for IoT networks, even though this leads to the interesting model of Chapter 6.

On the one hand, if the activation pattern of all devices could be fixed, for instance based
on a centralized affectation of the devices to different time slots, then the model of multi-player
bandit from Chapter 6 can be used to let every group of M ≤ K devices learn an optimal
orthogonal affectation in the K channels (e.g., groups can be the set of devices that all emit
at the same time). However, even if we continue to assume a synchronized time in all the
rest of the thesis, it is hard to argue that this hypothesis of a centralized time schedule for the
end-devices can be realistic, because we study the case of decentralized learning for OSA and
IoT precisely in order to avoid signaling and any central control of the devices by the base
station, as we explained before.

On the other hand, another way to relax the non-stationary hypothesis is to take the
point-of-view of a single device, like in the OSA case mentioned above, where the focus is on
one SU surrounded by many PU having stationary behaviors. If we focus on one IoT device,
its environment (i.e., the surrounding devices) is non-stationary, meaning that its average
properties can fluctuate with time, but real environments usually present non-stationarities
with certain structures. It is thus interesting and realistic to enforce stationarity on some time
intervals, and this leads to the last contribution and the last chapter of this thesis.

In order to also understand precisely how MAB algorithms behave under non-stationary
environment, we studied the literature on adversarial and on non-stationary MAB, for the two
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1.3 Our contributions

cases of slowly-varying and abruptly-changing environments. We begin the last Chapter 7 by
reviewing the existing works, and we chose to focus on the piece-wise stationary problem (i.e.,
abruptly-changing), meaning that the underlying bandit problem is stationary on consecutive
intervals, separated by change-points located at unknown times. Assuming the environment
to be piece-wise stationary indeed makes sense for applications to wireless networks, where
a change-point can for instance corresponds to the arrival of a new group of end-devices in
the network. Examples of such a situation can be a new company arriving on the market in
one city (e.g., the Linky counters being set-up nowadays in France), or the neighbor farmer
installing sensors on his own herd of cows, etc. Two main families of algorithms have been
proposed for the piece-wise stationary problem, that usually consists in combining an efficient
policy designed for the stationary MAB problem (e.g., Thompson Sampling or kl-UCB) and a
way to adapt to changes in the arms distributions. Passively adaptive policies use a window
of a fixed or evolving size [GM11], or a discount factor, in order to forget about the past
observations [KS06, GGCA11], while actively adaptive policies use a statistical test to detect
the change-points [MS13, AF15]. As the recent literature showed that the later approach is
usually more competitive, by obtaining better results from both empirical and theoretical
aspects, we chose to develop our own actively adaptive algorithm.

Following two recent previous works [LLS18, CZKX19], we combine an efficient index
policy (kl-UCB) and an efficient change-point detection test, under the assumption of bounded
rewards. We build on very recent results on the Generalized Likelihood Ratio test (GLRT) for
Gaussian and sub-Gaussian variables [Mai19], but we instead focus on bounded rewards and
Bernoulli distributions. Bounded rewards are indeed usually more appropriate for Cognitive
Radio applications, as shown above. Using the fact that bounded variables in [0, 1] are not
only 1/4 sub-Gaussian but also sub-Bernoulli, we prove the first finite-time guarantees for
the GLRT for bounded variables. We first show finite-time bounds on both the false alarm
probability of the test, and its detection delay, under mild assumptions on the lengths of the
stationary sequences. Our algorithm is then presented in two variants, whether change-points
are local (i.e., only one arm mean changes at each change-point) or global (i.e., possibly all
the arm means change at a time). We prove that by combining the policy kl-UCB, efficient
for stationary problems, and our new analysis of the GLRT for bounded rewards, we obtain
state-of-the-art guarantees on the regret of the proposed algorithm, denoted GLR-klUCB.
We consider the same hypothesis as our competitors, by assuming that the length of the
stationary intervals to be “long enough” for the change-points to be detectable. The best
regret upper-bound is obtained when the algorithm knows before-hand the horizon and the
number of change-points, but our algorithm does not need to have any other knowledge of the
problem difficulty to be tuned optimally. The performance of GLR-klUCB is also illustrated
on numerical experiments on synthetic data, where it is shown to outperform all the passively
adaptive policies as well as the previous actively adaptive policies. This last chapter is based
on our last work, published at the GRETSI conference in Lille, France, in August 2019 [BK19a].

13



Introduction

This work also leads to the long version article [BK19b], that will be partially rewritten and
completed with more recent results, in order to submit it soon to a journal (probably the
Journal of Machine Learning Research) in 2020.

This manuscript ends with a list of abbreviations and notations, then with lists of figures,
algorithms, code samples and tables, and finally the list of the bibliographical references.

1.3.3 Summary of the contributions

We can list the following points to summarize the main contributions of this thesis.

• We developed SMPyBandits, an exhaustive open-source simulation library for MAB
problems, that we published on-line under an open-source licence (MIT) [Bes18, Bes19].
We present it in details in Chapter 3.

• We present in Chapter 4 an algorithm called Aggregator for aggregation of algorithms
as an online solution to the algorithm selection problem, and numerical simulations to
illustrate that it achieves state-of-the-art empirical performances [BKM18].

• We propose different models for IoT networks, in Chapter 5, where end-devices with
cognitive radio capabilities can implement MAB algorithms on their side, to automati-
cally increase their battery life and allow more devices to use the same network while
maintaining a high Quality of Service [BBM+17, BBM19, BBMVM19, MB19, MBDT19].

• We implemented a proof-of-concept of the aforementioned model [BBM18], and we
present it in Section 5.3, and in a 6-minute video, hosted at youtu.be/HospLNQhcMk.

• We present three variants of the multi-players bandit model in Chapter 6. For the case
with sensing information, we propose two new algorithms, and we give an analysis
for our algorithm MCTopM to show it is order-optimal, as well as extensive numerical
experiments to demonstrate its excellent performance in comparison with the rest of
the literature. Some recent research works built up on our results, and the research on
multi-players bandits has been quite active since its publication [BK18a].

• We also present the piece-wise stationary MAB model, in Chapter 7, and a detailed
literature review of the research on non-stationary MAB [BK19b, BK19a]. We propose
a new actively adaptive algorithm for the piece-wise stationary problem, GLR-klUCB,
that achieves state-of-the-art performance, while requiring no prior knowledge on the
problem difficulty other than the number of break-points.
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1.4 Organization of the thesis

1.4 Organization of the thesis

The reading order of the manuscript can be any top-down path between the Introduction in
the current Chapter 1, and the Conclusion in the last Chapter 8. The thesis is organized in two
parts, corresponding to the two intermediate lines of the following Figure 1.3.

Chapter 1
Introduction

Chapter 2
The Stochastic

Multi-Armed Bandit models

Chapter 3
SMPyBandits: simulation

library for MAB

Chapter 4
Online selection

of the best algorithm

Chapter 5
Two MAB models
for IoT networks

Chapter 6
Multi-players

Multi-Armed Bandits

Chapter 7
Piece-Wise Stationary
Multi-Armed Bandits

Chapter 8
General Conclusion

Figure 1.3 – A reading map of the thesis. Any top-down path containing Chapter 1, Chapter 2, at least
one of the three Chapters 5, 6 and 7, and the Conclusion is a self contained way to read this thesis.

First, in Part I (second line), we start by the next Chapter 2, required for the rest of the
document, as we introduce the MAB models and the notations used in this thesis. Conversely,
even if Chapters 2, 6 and 7 use numerical simulations based on our simulation library SMPy-
Bandits, the Chapter 3 where we present SMPyBandits is not required to understand them.
We conclude this part with Chapter 4, where we detail one of the first contributions of this
thesis, a new algorithm for online MAB algorithms selection.

Then, the second Part II contains three chapters (third line), that are included in both the
logical and chronological orders, but can be read almost independently. Chapter 5 starts by
presenting different models of IoT networks where we show that MAB algorithms can be
used with success. Our two models are interesting and close to reality, but they appeared to
be too general to propose a mathematical analysis of the good empirical performance of the
considered solutions. For this reason, we weaken the models for the rest of the document, and
both Chapters 6 and 7 study an intermediate model, lying between the stationary single-player
MAB model from Chapter 2 and the intractable IoT networks models from Chapter 5.
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1.5 List of publications

Weconclude this chapterwith a list ofworks published duringmyPhD.All the followingworks
are published entirely and freely, on the HAL platform (on HAL.Archives-Ouvertes.fr).
The complete list can be found on CV.Archives-Ouvertes.fr/lilian-besson. The following
publications are ordered historically, from the most recent to the oldest.

Publications in international conferences with proceedings

• Decentralized Spectrum Learning for IoTWireless Networks CollisionMitigation, by Christophe
Moy & Lilian Besson. 1st International ISIoT workshop, at Conference on Distributed
Computing in Sensor Systems, Santorini, Greece, May 2019. See Section 5.3. [MB19]

• Upper-Confidence Bound for Channel Selection in LPWA Networks with Retransmissions, by
Rémi Bonnefoi, Lilian Besson, JulioManco-Vasquez&ChristopheMoy. 1st International
MOTIoN workshop, at IEEE WCNC, Marrakech, Morocco, April 2019. See Section 5.4.
[BBMVM19]

• GNU Radio Implementation of MALIN: “Multi-Armed bandits Learning for Internet-of-things
Networks”, by Lilian Besson, Rémi Bonnefoi & Christophe Moy. Wireless Communication
and Networks Conference, Marrakech, Morocco, April 2019, See Section 5.3. [BBM19]

• Multi-Player Bandits Revisited, by Lilian Besson&Émilie Kaufmann. Algorithmic Learning
Theory, Lanzarote, Spain, April 2018, See Chapter 6. [BK18a]

• Aggregation of Multi-Armed Bandits learning algorithms for Opportunistic Spectrum Access,
by Lilian Besson, Émilie Kaufmann & Christophe Moy. Wireless Communication and
Networks Conference, Barcelona, Spain, April 2018, See Chapter 4. [BKM18]

• Multi-Armed Bandit Learning in IoT Networks and non-stationary settings, by Rémi Bonnefoi,
Lilian Besson, Christophe Moy, Émilie Kaufmann & Jacques Palicot. Conference on
Cognitive Radio Oriented Wireless Networks, Lisboa, Portugal, September 2017, Best Paper
Award. See Section 5.2. [BBM+17]

Demonstrations in international conferences

• MALIN: “Multi-Arm bandit Learning for Iot Networks” with GRC: A TestBed Implementation
and Demonstration that Learning Helps, by Lilian Besson, Rémi Bonnefoi, Christophe Moy.
Demonstration presented in International Conference on Telecommunications, Saint-Malo,
France in June 2018. See YouTu.be/HospLNQhcMk for a 6-minutes presentation video.
See Section 5.3. [BBM18]
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1.5 List of publications

French language conferences with proceedings

• Analyse non asymptotique d’un test séquentiel de détection de ruptures et application aux bandits
non stationnaires (in French), by Lilian Besson&Émilie Kaufmann, GRETSI 2019, August
2019, See Chapter 7. [BK19a]

Submitted works

• Decentralized Spectrum Learning for Radio Collision Mitigation in Ultra-Dense IoT Networks:
LoRaWAN Case Study and Measurements, by Christophe Moy, Lilian Besson, Guillaume
Delbarre & Laurent Toutain, July 2019. See Chapter 5. [MBDT19]
Submitted for a special volume of the Annals of Telecommunications journal, on “Ma-
chine Learning for Intelligent Wireless Communications and Networking”.

• SMPyBandits: an Open-Source Research Framework for Single and Multi-Players Multi-Arms
Bandits (MAB) Algorithms in Python, by Lilian Besson and others, active development
since October 2016, HAL.Inria.fr/hal-01840022. It currently consists in about 45000
lines of code, hosted on GitHub.com/SMPyBandits, and a complete documentation ac-
cessible on SMPyBandits.rtfd.io or SMPyBandits.GitHub.io.
See Chapter 3. [Bes18, Bes19]
Submitted for a special track of the Journal of Machine Learning Research, for Machine
Learning Open-Source Software (MLOSS), in October 2019.

• The Generalized Likelihood Ratio Test meets klUCB: an Improved Algorithm for Piece-Wise
Non-Stationary Bandits, by Lilian Besson & Émilie Kaufmann, February 2019.
See Chapter 7. Preprint at HAL.Inria.fr/hal-02006471. [BK19b]
An updated version is in writing, with Julien Seznec and Odalric-Ambrym Maillard.

In progress works waiting for a new submission

• What Doubling-Trick Can and Can’t Do for Multi-Armed Bandits, by Lilian Besson & Émilie
Kaufmann, September 2018. Preprint at HAL.Inria.fr/hal-01736357. [BK18b]

Copyright notice. This document and the additional resources required to compile it (in-
cluding LATEX code, Python snippets, images etc) are publicly published, under the terms of
the open-sourceMIT License, online at GitHub.com/Naereen/phd-thesis/.

Copyright 2016-2019, © Lilian Besson.
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Part I

Exploring the Jungle of Multi-Armed
Bandit algorithms
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Chapter 2

Stochastic Multi-Armed Bandits

As explained in Chapter 1, we focus in this thesis on Reinforcement Learning (RL), and
especially on decision-making models with a finite number of resources, called arms, and
under a stochastic hypothesis: an arm being associated to a binary or real-valued distribution.
In this chapter, we present the common base of the more sophisticated mathematical models
studied in this thesis: the stochastic multi-armed bandit (MAB) model, by restricting to the
single-player and stationary stochastic case. Wemotivate this model and discuss its application
to and beyond Cognitive Radio (CR). We define the notion of regret of an algorithm, and
present important results of regret lower-bound from the literature, which quantify what no
algorithm can achieve. A short review of the most important families of MAB algorithms
is then given, and we highlight some algorithms that are crucially used in the rest of this
thesis, like UCB, kl-UCB and Thompson sampling, which all achieve logarithmic regret
upper-bounds for our main target of interest, that are binary distributed problems.

– C’est cool ça, des bandits haha !
Le Barbare, John Lang, Le Donjon de Naheulbeuk,

Saison III, Épisode 37 : “La stratélique”.

Contents
2.1 The stochastic Multi-Armed Bandit model . . . . . . . . . . . . . . . . . . . 22
2.2 Applications of stochastic MAB . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Measuring the performance of a MAB algorithm . . . . . . . . . . . . . . . 30
2.4 Review of stochastic MAB algorithms . . . . . . . . . . . . . . . . . . . . . 36
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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Stochastic Multi-Armed Bandits

2.1 The stochastic Multi-Armed Bandit model

Multi-Armed Bandits (MAB) models were introduced by Thompson as early as in 1933
[Tho33], and later studied from the 1950s by Robbins [Rob52] and others. This family of
models was first proposed for clinical trials, and later applied to a wide range of different
problems. Their name refers to one-armed bandits found in casinos, as shown in Figure 2.2
below. We now formally introduce the model.

A MAB refers to a decision-making game, where a player has to sequentially select one
action in a usually finite set of actions (or arms), and only receives a (random) feedback
about the selected action, also called a reward. We always consider K ∈ N, K ≥ 2 arms, and
discrete times t ∈ N∗. We denote [K] the set {1, . . . , K}. Each arm k ∈ [K] is associated with
a stream of rewards (Yk,t)t∈N∗ , and when the player decides at time t to play (or pull) the arm
A(t) ∈ [K], she receives a reward r(t) .= YA(t),t from this stream. She keeps playing an arm
and observing a reward iteratively, and so on for a finite number of steps t (or rounds), from
t = 1 until t = T for an horizon T . A commonly studied goal for the player is to maximize its
sum of received rewards,

∑T
t=1 r(t) (or its mean in stochastic and stationary models).

The difficulty of this decision-making game comes from balancing the trade-off between
exploration, because the player has to observe as much as possible all the arms to get more
knowledge about the distributions of their rewards, and exploitation, because she also has
to select as much as possible the best arm in insight. The MAB model is a famous example
of a reinforcement learning model, where the decision-making process has to adapt to an
unknown environment using noisy observations, alternating between decisions and observa-
tions. We illustrate this cycle in Figure 2.1 below. For more details on reinforcement learning,
in particular about more generic models, we refer to the famous book [SB18].

Player MAB problem

Chooses a discrete action k = A(t) ∈ {1, . . . , K}

Observes a real-valued reward r(t) = Yk,t ∈ R

Figure 2.1 – Reinforcement learning cycle in a MAB model, for time steps t = 1, . . . , T .

This quantity
∑T

t=1 r(t) can indeed be random, and it usually depends on two aspects.
First, the rewards may depend on the randomness of the environment, i.e., the unknown
and unpredictable values r(t) = YA(t),t. Then this quantity also depends on the player’s
decision-making policy, i.e., the choices A(t), that are based on (all) the past observations,

22



2.1 The stochastic Multi-Armed Bandit model

i.e., A(1), YA(1),1, . . . , A(t− 1), YA(t−1),t−1, and possibly on an external source of randomness.
Without loss of generality, it can be given by a sequence U0, U1, . . . of i.i.d. random values,
uniformly distributed on [0, 1], and that has to be independent from the samples Yk,t. External
randomness is used in most MAB algorithms, e.g., to uniformly break ties in an index policy.

About notations. We use in this thesis the usual notations from the MAB literature, and a
summary is included in the Nomenclature, in the Appendix (Page 254).

Main references for the curious reader. For more details and a more formal introduction
to multi-armed bandits, we suggest the interested reader to work on a very recent text-book
by Slivkins [Sli19]. Another excellent but reasonably short survey is the book by Bubeck and
Cesa-Bianchi [BCB12], while the more recent book by Lattimore and Szepesvári [LS19] is the
most complete resource about bandit algorithms. Finally, we recommend [BR19] for a short
but good survey on applications of MAB.

2.1.1 Finite arms and stochastic rewards

In all this thesis, we focus on the model with finite arms, that is A(t) ∈ {1, . . . , K} for a fixed
and known number of arms K ∈ N, K ≥ 2. We focus on the stochastic MAB, in which the
reward stream is drawn from some (unknown) distributions, before the beginning of the game.
We associate a real-valued distribution to each arm, denoted νk for arm k ∈ [K]. We assume
that rewards are stationary, meaning that (Yk,t)t∈N∗ is independent and identically distributed
(i.i.d.), and Yk,t ∼ νk for any t ≥ 1. We only consider binary rewards, i.e., Yk,t ∈ {0, 1}, or
real-valued rewards, i.e., Yk,t ∈ R, and in all this thesis rewards are one-dimensional.

Themost commonobjective for the player is tomaximize its expected rewardsE[
∑T

t=1 r(t)] =∑T
t=1 E[YA(t),t]. The expectation E[•] is taken on the rewards (Yk,t)k,t, as well as on the external

random variables (Us)s, i.e., on the algorithm’s decisions. Other commonly studied objectives
include best-arm identification (BAI) [ABM10], risk- or cost-aware reward maximization etc.

An interactive demo to discover theMAB problem (for the novice). If you are discovering
here the concept of bandits, we would like to recommend you to go online and play a few
times with an interactive demonstration. On this demo, you will be facing a MAB problem
with K = 5 arms, and you have T = 100 decisions to make. The demo is hosted onmywebsite,
at perso.crans.org/besson/phd/MAB_interactive_demo/, and it is illustrated below.

The web-page looks like Figure 2.2 below. The arms follow Bernoulli distributions, i.e.,
νk = B(µk), of unknownmeansµk ∈ [0, 1] (thismeans that ∀k ∈ [K], ∀t ∈ [T ],P(Yk,t = 1) = µk

and P(Yk,t = 0) = 1− µk). Your goal in this interactive demonstration is to obtain the highest
possible cumulated reward in T = 100 steps, i.e., to maximize

∑100
t=1 r(t). Your decisions are
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Stochastic Multi-Armed Bandits

Figure 2.2 – Screenshot of the demonstration available on my website, for a current step of t = 24.

made sequentially: at time t, you pick one of the arms, A(t) ∈ {1, 2, 3, 4, 5} = [5], then the
demo shows the random reward obtained from this (virtual) casino machine (in yellow), i.e.,
the binary value r(t) ∈ {0, 1}, that is sampled i.i.d. from νk. The UI of the demo also shows the
current value of t (“total plays”) and

∑t
s=1 r(s) the “total reward”. For each arm, we show the

sum of rewards obtained from that arm, i.e., Xk(t) .=
∑t

s=1 r(s)1(A(s) = k), in the “Rewards”
line, and the number of pulls of that arm, i.e., Nk(t) .=

∑t
s=1 1(A(s) = k) in the “Pulls” line.

The demo also shows the estimated probability of each arm, that is µ̂k(t) .= Xk(t)/Nk(t) (when
Nk(t) > 0), in the “Estimated Probs” line.

In the first Figure 2.2, the current state of the game is shown at time t = 24. At this step, the
player has collected a sum of rewards of 14, by observing X(t) = [6, 2, 2, 2, 2] rewards of value
1 in the K = 5 different arms. Arms were sampled N(t) = [8, 4, 4, 4, 4] times, meaning that
the value 0 was seen respectively [2, 2, 2, 2, 2] times, and currently arm 1 appears to be the best
one. The true means of the arms are µ = [0.6, 0.2, 0.55, 0.7, 0.5], and (much) more samples
are needed before the player can accurately identify arm 4 as the best arm. In the second
Figure 2.3 below, we display the result of an example of run, when the player was following
the UCB1 algorithm from [ACBF02] (we present it below in Section 2.4.2). After T = 100
steps, the player obtained a cumulated reward of 56, by playing mostly arms 4, 3, 5, 1, 0 (in
decreasing order of number of plays). The empirical means µ̂k(T ) correctly identify the
best arm (arm 4), but do not correctly rank the arms as arms 1 and 3 obtained means of
µ̂1(T ) = 0.5 < µ̂3(T ) = 0.6 but the true means are µ3 = 0.55 < µ1 = 0.6. Other examples of
such results, for different algorithms, and T = 100 or T = 10000, are given in Section 2.4.5.
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2.1 The stochastic Multi-Armed Bandit model

Figure 2.3 – Screenshot of the demonstration, at the end of the game after T = 100 steps, where the
player suffers from an empirical regret of RUCB1

T = µ∗T − 56 = 0.7T − 56 = 14 after following the
UCB1 algorithm. You can try it online at perso.crans.org/besson/phd/MAB_interactive_demo/

Decisions can (and should) depend on the past observations. A bandit algorithm A is also
referred to as a strategy or a policy. The algorithm A selects an arm A(t) at time t, possibly
by using the past observations and the past external randomness. As shown below, being
oblivious to the past yields very poor performance (cf. the pure exploration policy in Sec-
tion 2.4.1), so efficient policies indeed depend on the successive feedbacks. More formally, an
algorithm can be defined as a sequence ofmeasurable functions (At)t≥1, whereAt maps the past
observations Ot

.= (U0, YA(1),1, U1, . . . , YA(t−1),t−1, Ut−1) to an arm At(Ot)
.= A(t) ∈ [K] (we

remind that we denote r(s) = YA(s),s the s-th reward). The initial information is reduced to
O1 = (U0), and the first decision is A(1) = A1(O1). Usually, most algorithms start by selecting
A(1) = 1, . . . , A(K) = K (or a permutation of the K arms) in the K first steps t = 1, . . . , K

(e.g., Algorithm 2.3). An algorithm is said to be deterministic if it does not depend on the
external randomness U0, U1, . . . , but in this thesiswe only use non-deterministic algorithms
(in particular, index policies need Ut to break ties in the arg max, see Algorithm 2.3 below).

2.1.2 Common assumptions on the reward distributions

In the example above, we consider Bernoulli distributions, but other real-valued distributions
have been studied in the literature. From now on and until the last chapter of this thesis, we
only consider stochastic rewards. The piece-wise stationary model is studied in Chapter 7.
We also focus only on real-valued rewards, meaning that Yk,t ∈ R for all arm k and time t.
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Stochastic Multi-Armed Bandits

An important hypothesis is whether rewards are bounded or not, and whether the player
knows if they are bounded or not before starting the bandit game. Moreover, if rewards are
known to be bounded, let say in an interval [a, b], another important hypothesis is whether
the player knows the values of a and b or not. Intuitively, the bandit game is easier if the
player knows the support of the distributions, and we restrict to this case in all the thesis, i.e.,
a, b are always supposed to be known. Most of the algorithms proposed in the literature follow
this hypothesis as well. The mostly used infinitely supported distributions are Gaussian,
exponential and Poisson, while in the literature, the Bernoulli distribution is the most common
case of finitely supported distributions. Continuous-valued distributions with finite support
also included truncated versions of infinitely supported distributions, in particular truncated
Gaussian are used for numerical experiments in some research articles.

The normalization trick. If the player knows that rewards are bounded in an interval [a, b],
and if she knows a and b (for a < b), thenwith no loss of generalitywe can restrict to the interval
[0, 1], as if r ∈ [a, b], the player can instead consider the normalized reward r′ = r−a

b−a that lies
in [0, 1]. Note that this “normalization trick” is implemented for any policy in our library
SMPyBandits, with the lower and amplitude optional arguments, respectively representing a

the lower-bound on rewards and b− a the length of the interval of possible values of rewards.

One-dimensional exponential family. In the literature, parametric assumptions on the
rewards are sometimes considered, typically the assumption is that rewards belong to a real-
valued distribution lying in an exponential family. One-dimensional exponential families
include Bernoulli and Poisson distributions, as well as Gaussian distributions with a fixed
variance. In most cases, our main interest is Bernoulli distributions, but we prefer to present
the more general notations of exponential families in one dimension.

Given a measure λ, that is usually the natural Lebesgue measure on R, an exponential
family of probability distributions is defined as the distributions whose density (relative
to λ) can be written as Pη(x|λ) = h(x) exp (ηx−A(η)), for a parameter η (the canonical
parameter), and a function h. The cumulant function A(η) is entirely determined by η and
h, as A(η) = ln (

∫
h(x) exp(ηx)λ(dx)). The natural parameter space is the set of values of η

such that this integral A(η) is finite, and usually the literature focuses on regular and minimal
exponential families (i.e., when the natural parameter space is a non-empty open set in R).

We mention two important results on exponential families:

1. A distribution in such a family is entirely characterized by its parameter η. And the mapping
η 7→ Eη[X] is one-to-one, ifEη is the expectation under the probabilistic model Pη. That is
why one-dimensional distributions are entirely characterized by their mean, µ = Eη[X].
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2.1 The stochastic Multi-Armed Bandit model

2. A second important result is a simplified form for the Kullback-Leibler divergence [KL51],
for two distributions lying in the same exponential family. The KL divergence is also
called the relative entropy, and it is a measure of how one probability distribution is
different from a second, reference probability distribution.

Definition 2.1. The Kullback-Leibler divergence between distributions with densities d1 and
d2, wrt to λ, is defined as

KL (d1, d2) .=
∫

d1 ln
(

d2
d1

)
λ(dx) = Ed1

[
ln
(

d2
d1

)]
∈ R+ ∪ {+∞}. (2.1)

Following this Definition 2.1 for two distributions d1 = P(x|η1) and d2 = P(x|η2) in the
same exponential family E , we canuse a shorter notation andwriteKL(η1, η2) .= KL(P(x|η1),P(x|η2)),
which can be simplified to use only the two parameters η1 and η2 of d1 and d2, and µ1 = Eη1 [X]
the mean of distribution d1, KLE (η1, η2) = Ed1 [(η1 − η2)X]−A(η1) + A(η2) = (η1 − η2)µ1 −
A(η1) + A(η2). Without diving more in the details of exponential families, it is interesting to
illustrate this definition and the notations with two important examples:

• Bernoulli distributions can be seen as an exponential family with h(x) = 1, and for a
Bernoulli distribution of mean µ ∈ [0, 1], denoted B(µ), the parameter is η = µ/(1− µ),
giving A(η) = ln(1 + eη) (with the limit behavior η = +∞ if µ = 1).

The KL divergence between B(x) and B(y), of parameters η, η′ is given by kl(x, y) .=
KLB(η, η′) = x ln(x/y) + (1−x) ln((1−x)/(1−y)), and it is also called the relative binary
entropy. It satisfies kl(x, y) ≥ d1/4(x, y) (Pinsker’s inequality).

• Gaussian distributions of a known variance are a one-dimensional exponential family,
and in this thesis we do not consider Gaussian with an unknown variance. For a variance
of σ2, the family uses h(x) = 1/

√
2πσ2 exp(−x2/(2σ2)), and for a Gaussian distribution

with mean µ ∈ R, denotedN (µ, σ2), the parameter is η = µ/σ2, giving A(η) = µ2/(2σ2).

The KL divergence between N (x, σ2) and N (y, σ2), of parameters η, η′ is given by
dσ2(x, y) .= KLN ,σ2(η, η′) = (x− y)2/(2σ2) (see Chapter 8 of [Jor10]).

Hypotheses in this thesis. In the rest of this thesis, we only consider bounded rewards in
the mathematical developments, and we mostly focus on Bernoulli distributions, because
they are usually the most relevant choice for the considered applications. In Chapter 5, we only
study models with binary rewards. Then, when we study multi-players bandits in Chapter 6,
we explain that restricting to the Bernoulli case is interesting and not restrictive, as it is actually
the hardest case (since continuous distributions has a null mass on Yk,t = 0, they yield a
much simpler problem as the sensing/no sensing distinction no longer makes sense), but this
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work can be extended to any one-dimensional exponential families. Finally, in Chapter 7 we
analyze our proposed algorithm for bounded distributions, without restricting to Bernoulli
distributions, but we use the fact that bounded distributions on [0, 1] are sub-Bernoulli, and
our analysis use the Bernoulli Kullback-Leibler divergence kl.

Sub-Gaussian and sub-Bernoulli distributions. A lot of research works considers rewards
distributions that are not Gaussian but sub-Gaussian, meaning distributions whose moment
generating function is dominated by that of a Gaussian distribution with the same mean
(and a known variance). For instance, bounded distributions on [0, 1] are known to be 1/4
sub-Gaussian, and this fact is used for instance in [Mai19]. In Chapter 7, we instead consider
sub-Bernoulli distributions, formally introduced in Definition 7.1. Such hypothesis is also
proposed for other families of distributions, for instance the recent article [KT19] analyses
their Follow-the-Perturbed-Leader algorithm for perturbations following any sub-Weibull
distribution, that generalize both sub-Gaussian and sub-Exponential distributions.

About Markov models. Finally, we note that Markov bandit models have also been consid-
ered for Cognitive Radio applications [LZ08]. They are not studied in this thesis, even though
we did implement them in SMPyBandits. They were introduced in the 1980s, by Whittle in
[Whi88] and Anantharam and others in [AVW87b]. A Markov MAB model maps an arm to
a Markov chain [Nor98], instead of a distribution, and thus they are no longer stochastic. A
Markov model exists in two flavors: rested or restless. For K arms, each Markov chain has a
finite number of states s, each corresponding to a (constant) reward that the player obtains if
she selects this arm while its Markov chain is in state s. Rested Markov models means that
only the state of the selected arm’s Markov chain can change, following its Markov transition
matrix. Restless models remove this hypothesis, making them harder to track and solve. Such
models were less studied than stationary or adversarial models, but some interesting works
applied Markov models to Cognitive Radio in the last 10 years For instance, [MGMM+15]
proposed a CR model mixing MAB and Hidden Markov Models (HMM), solved by a mixed
policy called UCB-HMM. A reader curious about Markov chains could start to read Chapter 3
of [LS19] (Section 3.2) and then refer to [Nor98].

2.2 Applications of stochastic MAB

The blooming success of the research on multi-armed bandits is easily explained by the
different possibilities of applying MAB models to real-world discrete-time decision making
problems. This research field has been very active since the years 2010s, but it started as early
as 1933 with [Tho33], andwas active since the 1980s and the seminal works by Lai and Robbins
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2.2 Applications of stochastic MAB

[LR85] and by Anantharam and others [AVW87a]. MAB have been applied successfully to
various decision making problems, like the following:

Clinical trials have been the first historical application of MAB models, where an arm
represents a treatment, and the distribution associated with such treatment can be a Bernoulli
distribution: a reward of 0 means the treatment did not heal the disease, and a reward of 1
indicates a success. The mean of an arm, in this application, represents the mean success rate
of a treatment. Following the “best arm identification” model, the goal of a doctor in a clinical
trial is to identify the best treatment, i.e., the arm with highest mean, in a number of trials as
short as possible. And following our model of interest, maximizing the rewards corresponds
to maximizing the number of patients being successfully treated.

MAB can also be applied to a broader setting of online content recommendation. The
seminal work of [LCLS10] studies the application of contextual bandit to news articles recom-
mendation, as it is used in practice on platforms such as Microsoft’s Bing news website. Other
famous examples include online advertisement or in other kinds of content recommendation,
such as for video streaming platforms like YouTube or Netflix. In such models, the arms corre-
spond to items to recommend (e.g., ads, articles or movies), and the contexts contain features
about each user of the system. An interesting work is [LRC+16], who studies slowly-varying
non-stationary models applied to recommender systems.

Using bandit algorithms for improved machine learning models or algorithms has been
an active research domain for the last ten years or so. As presented below in Chapter 4, a
certain “leader” bandit algorithm can be used to select on the run the best bandit algorithm
from a pool of “followers” algorithms. Other possible use cases include hyper-parameter
optimization, or features selection. Hyper-parameters include real-valued parameters, for
instance for supervisedmachine learningwe can think of the step sizemultiplier γ in a gradient
descent, the width ρ of a Radial Based Function (RBF) kernel, the margin C in a Support
Vector Machines (SVM), etc. Discrete-valued parameters are also common, like a choice in a
fixed set of kernel functions or the depth of neural networks, and higher dimensional or more
complex hyper-parameters can for instance be the entire architecture of a neural network.

Applications for CognitiveRadio. As highlighted in Chapter 1, the focus of thiswork is on
cognitive radio and IoT networks, where arms can represent wireless orthogonal channels, but
more generally any resource characterizing the communication between awireless device and a
gateway (e.g., the spreading factor for LoRa [KAF+18], the power allocation forNOMA [Z. 19],
etc). In the model of Opportunistic Spectrum Access (OSA) with sensing [JEMP09, JEMP10],
the samples Yk,t represent the feedback obtained by the CR-equipped device after sensing the
channel k, at the beginning of its t-th transmission slot. A reward of r(t) = 1 indicates that
no Primary User was sensed, while a reward of r(t) = 0 indicates that the channel k is busy
at time t and no up-link message can be sent. We study a similar model of using MAB for
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Cognitive Radio but without the OSA structure of Primary and Secondary users, i.e., without
sensing information but only a collision indicator, in Chapters 5 and 6.

The different applications discussed in this section are still active research directions, and
a curious reader can find other interesting applications of MAB models and algorithms in
[BR19], such as game tree search or network routing in Section 1.2 of [LS19].

2.3 Measuring the performance of a MAB algorithm

As explained above, the main objective of a player facing a bandit game is to maximize
its (expected) cumulated reward. In particular, an efficient algorithm should see its mean
reward converge to the maximum reward, if the horizon grows. In the bandit literature, the
performance of an algorithm is often measured in terms of regret, a performance measure
that we now introduce.

2.3.1 Introducing the (mean) regret

Let us first introduce some notations. We consider a stochastic and stationary MAB problem,
with K arms of distributions ν1, . . . , νK = (νk)k, that generate i.i.d. samples Yk,t ∼ νk, for any
time t. We focus on distributions fully characterized by their means, that can be Bernoulli
or any one-dimensional exponential family. We denote µk

.= E[Yk,t] ∈ R the mean of the
distribution of arm k (it will be referred to as the mean of arm k). To define the regret, we first
need to distinguish between optimal and sub-optimal arms.

Definition 2.2. Consider a bandit problem of K arms with distributions of means µ = µ1, . . . , µk.
Denote µ∗ .= maxk µk the largest mean. The best arm can be non unique, and any arm k having
µk = µ∗ is said to be optimal, while arms satisfying µk < µ∗ are called sub-optimal.

If the goal of the player is to maximize E
[∑T

t=1 r(t)
]
, the optimal strategy for this bandit

problem is to always pull one of the optimal arms (it can be not unique), but it is unrealistic
as the player does not know the true means, nor the optimal arms (as long as they are not all
optimal, i.e., in nontrivial problems). Comparing the difference between the performance of a
fixed baseline and that of the player is a common approach in machine learning research, and
here we can compare with the oracle strategy that always obtains an (expected) reward of µ∗.
For a fixed horizon T , if k∗ denotes the index of any optimal arm, let us introduce the (mean)
regret RA

T of an algorithm A as RA
T

.= E
[∑T

t=1(Yk∗,t − r(t))
]
. As the rewards from arm k∗ are

i.i.d. (as for all arms), and by linearity of the expectation, we can rewrite this expression to
obtain the following definition of the regret.
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2.3 Measuring the performance of a MAB algorithm

Definition 2.3 (Regret). For an algorithm A, a bandit problem of K arms characterized by their
means µ1, . . . , µK , with µ∗ .= maxk µk, then its (mean) regret at horizon T is RA

T defined as

RA
T = E

[
T∑

t=1
(Yk∗,t − r(t))

]
= E

 T∑
t=1

Yk∗,t︸ ︷︷ ︸
i.i.d. from νk∗

− E
[

T∑
t=1

r(t)
]

(2.2)

= T × E [Yk∗,1]−
T∑

t=1
E [r(t)] = Tµ∗ −

T∑
t=1

E [r(t)] . (2.3)

One first need to observe that RA
T ≥ 0 for any T and A, and that RA

T ≤ µ∗T , in particular
RA

T ≤ T if the rewards lie in [0, 1]. Thus any algorithm has RA
T = O(T ), which justifies why we

are interested in efficient algorithms that achieve at least a sub-linear regret, i.e., RA
T = o(T ).

A useful decomposition of the regret. Recall that Nk(t) .=
∑t

s=1 1(A(s) = k) denotes the
number of times arm k was selected between times 1 and t, and that the samples Yk,t are
all i.i.d. of mean µk. The gap between any arm k ∈ [K] and an optimal arm is defined as
∆k

.= µ∗ − µk (an arm k is thus sub-optimal if and only if ∆k > 0), and thus we can write
the following decomposition on the regret. Its proof is simple and it is not a contribution, but we
include it below for readers that are unfamiliar with conditioning arguments.

Proposition 2.4 (Regret decomposition). The (mean) regret RA
T can be decomposed as a sum

of the number of selections of sub-optimal arms k, weighted by their gaps:

RA
T =

K∑
k=1

∆k E[Nk(T )] =
∑

k=1,...,K
∆k>0

∆k E[Nk(T )]. (2.4)

Proof. Weuse the chain rule of expectation and a conditioning onOt, because the expectation is
taken on the randomness of the (i.i.d.) samples (Yk,t)t and on the decisions of the player (A(t))t,
which are measurable wrt to the past observations Ot = (U0, YA(1),1, U1, . . . , YA(t−1),t−1, Ut−1).
Thus we can rewrite the expected cumulated reward as follows:

E
[

T∑
t=1

r(t)
]

= E
[

T∑
t=1

K∑
k=1

Yk,t1(A(t) = k)
]

=
K∑

k=1

T∑
t=1

E [Yk,t1(A(t) = k)]
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=
K∑

k=1

T∑
t=1

E
[
E [Yk,t|Ot]1(A(t) = k)

]
=

K∑
k=1

T∑
t=1

E
[
E [Yk,1]1(A(t) = k)

]

=
K∑

k=1
E [Yk,1]︸ ︷︷ ︸

µk

T∑
t=1

E [1(A(t) = k)]︸ ︷︷ ︸
=Nk(T )

=
K∑

k=1
µkE [Nk(T )] .

Thus RA
T = Tµ∗ −

∑T
t=1 E [r(t)] = Tµ∗ −

∑K
k=1 µkE[Nk(T )] =

∑K
k=1(µ∗ − µk)E[Nk(T )], as∑K

k=1 E[Nk(T )] = T . The sum is then simplified to only count sub-optimal arms.

Consequences. Such a decomposition of the regret can be useful for at least two reasons:

On the one hand, from a numerical simulation point-of-view, when we run a finite number
of repetitions of the same stochastic experiment, if we want to compute and visualize the
regret, we can either use the definition with the rewards, or the decomposition and simply
sum the product of the gaps ∆k with the number of sub-optimal draws. Both quantities are
indeed equal in expectation, but with only a finite number of experiments and observations,
the first estimate is more noisy than the second one, since the randomness on the rewards is
(partially) removed in the decomposition (2.4) (thanks to the conditioning on Ot done in the
proof). In our library SMPyBandits, we implement both estimators, and all values of regret
used in this thesis are based on the one using the decomposition of Proposition 2.4, because it
gives faster convergence, and also “smoother” plots.

On the other hand, this decomposition is necessary as theoretical analyses of the regret
of (single-player) MAB algorithms are usually based on controlling the sub-optimal draws
Nk(T ) and not directly the regret RA

T . Even if we prove that controlling Nk(T ) is no longer
sufficient to obtain low regret for the multi-players case, we extend this decomposition in
Chapter 3 (in Lemma 6.5), and it is the first quantity we prove to be bounded by O(ln(T ))
when we prove the regret upper-bound of our proposal MCTopM-kl-UCB.

2.3.2 Regret lower-bounds

We include here two well-known results about what bandit algorithms cannot do. First, a
problem-dependent lower-bound states that any algorithm suffers a regret at least Ω(ln T ) on
any parametric problem [LR85]. Then, a worst-case result states that for any algorithm, there
exists a certain problem instance such that the algorithm can perform as badly as Ω(

√
KT )

[ACBFS02]. In certain families of problems, e.g., K Bernoulli distributed arms, the difficulty of
a problem is characterized by a constant that depends only on the arms means. This measure
of difficulty of a problem is hidden in the Ω notation in these lower-bounds.

In all this section, we restrict to stationary stochastic problems with K ≥ 2 arms. We do
not give proofs of the following theorems, as they can be found in the historical papers, and
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2.3 Measuring the performance of a MAB algorithm

simpler proofs are given in recent references, such as [BCB12], [LS19], or Chapter 2 in [Sli19]
for instance. Let I denote the set of all problem instances, with K ≥ 2 arms. We assume that
rewards lie in [0, 1], to present the lower-bounds, we prefer to focus on Bernoulli distributions,
for simplicity. To specify the dependency on an instance I ∈ I, we denote the regret of A on
instance I and horizon T by RA

T (I). We also index the Landau notations o(. . . ) and O(. . . )
by I , for instance RA

T (I) = oI(ln(T )) means RA
T (I) = o(cI ln(T )) where the “constant” cI can

depend on the problem instance I (e.g., on its means and on K) but not on the time horizon T .

Problem-dependent lower-bound in Ω(ln T ). The following two theorems were proven
in [LR85]. These lower-bounds are of highest interest to design efficient algorithms, and a
significant part of the research on MAB algorithms has focused on finding algorithms that
match the Lai and Robbins’ lower-bound asymptotically [LR85]. This means that a finite-time
or an asymptotic upper-bound is proven on the regret of algorithm A, that asymptotically
matches the lower-bound. When the regret upper-bound matches the lower-bound with the
same constant as in the big-O notation, we say that the algorithm is asymptotically optimal,
otherwise the algorithm is said to be order-optimal if it matches the lower-bound with a larger
constant.

Theorem2.5. NoalgorithmA can achieve a (mean) regretRA
T (I) = oI(ln(T )) for all Bernoulli

problem instances I ∈ I. [Sli19, Theorem 2.12]

We consider uniformly efficient1 algorithms, to rule out algorithms achieving low regret
on some problem instances while achieving linear regret on other instances. In particular, it is
necessary to rule out algorithms that always pick the same arm, as on some problem instances
such fixed-arm algorithms can achieve zero regret.

Definition 2.6. An algorithm A is uniformly efficient if its (mean) regret satisfies RA
T (I) =

oI(T α), for any value α > 0 and any problem instance I ∈ I.

This family is non-empty, as it contains for instance the UCB1 algorithm, since its regret is
proven to be logarithmic on any Bernoulli problem instance (in Theorem 2.12 below). Now
we can state the second logarithmic lower-bound, for algorithms in this family.

Theorem 2.7. If A is uniformly efficient, then for any arbitrary Bernoulli problem instance I , its
regret is asymptotically lower-bounded by CI ln(T ), or in other words, lim infT →∞

RA
T (I)

ln(T ) ≥ CI .
[Sli19, Theorem 2.13],

1This notion is then extended to “strongly uniformly efficient algorithms”, in the multi-players case with Defini-
tion 6.7, where we also include a notion of (expected) fairness.

33



Stochastic Multi-Armed Bandits

Theorem 2.12 from [Sli19] specifies a possible value for the constant CI . Note that the
lower-bound of Lai and Robbins, proven in [LR85], is more general and applies to any one-
dimensional exponential family E , by replacing the Bernoulli Kullback-Leibler divergence kl
with the KL divergence of this family, klE .

Theorem 2.8. If A is uniformly efficient, and I an arbitrary Bernoulli problem instance.
• The bound from Theorem 2.7 holds with CI =

∑
k:∆k>0

∆k
kl(µk,µ∗) .

• For any ε > 0, the bound also holds at finite time with C ′
I = CI−ε, meaning that there exists

a constant C ′
I depending only on I , and a time T0 such that ∀T ≥ T0, RA

T (I) ≥ C ′
I ln(T ).

It is interesting to note that the first lower-bound of Theorem 2.8 can be directly used to
design efficient algorithms2, as thanks to the regret decomposition given in Proposition 2.4
above, the expression of CI essentially says that any efficient algorithm should sample each
sub-optimal arm k about ln(T )/kl(µk, µ∗) times in the total of T time steps. Many algorithms
have been proven to achieve logarithmic regret in the stochastic case, and in particular it is the
case of the algorithms used in the rest of thesis, UCB1 from [ACBF02], Thompson sampling
from [Tho33] and analyzed in [AG12, KKM12], and kl-UCB from [GC11, CGM+13]. Such
bounds are valid in different settings: UCB1 is order-optimal for bounded rewards or one-
dimensional exponential families (i.e., it matches the asymptotic lower-bound of [LR85]),
while Thompson sampling is optimal for binary rewards, and kl-UCB and KL-UCB have been
proven to be optimal respectively for both cases. Chapter 16 of [LS19] contains more details.

Worst-case lower-bound inΩ(
√

T ). For a fixed horizonT , it is interesting to note that one can
find instances I that are so “hard” that a logarithmic regret (lower or upper) bound that uses
a constant CI no longer brings any information. Indeed, we can naively bound the regret by
RA

T ≤ (maxk ∆k)T , and thus if (maxk ∆k) can be taken so small that CI ln(T )≫ (maxk ∆k)T ,
a regret upper bound like RA

T ≤ CI ln(T ) is useless.

For this reason, another family of regret bounds is relevant, that are not problem-dependent
but worst-case, or also called minimax [AB09, AB10] or problem-independent. We give
an example of such a result below. The following theorem is from [ACBFS02], and [Sli19,
Theorem 2.1]. We also refer to Chapter 15 of [LS19].

2 Tracking this quantity, by using empirical estimates of the means, is used for instance in the OSSB algorithm
proposed in [CMP17], which is proven to attain the lower-bound for a wider range of problems (for problems
called structured stochastic bandits).
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Theorem 2.9. Fix the number of arms K, and an algorithm A. Then for any horizon T , there
exists a Bernoulli problem instance IT on which A suffers at least a regret RA

T (IT ) ≥ Ω(
√

KT ).

Similarly to what is considered for the first lower-bound, a natural question is to know if
there is an algorithm achieving a regret upper-bound of the form RA

T (I) ≤ O
(√

KT
)
for any

instance, independently on the problem difficulty. The question has been answered since the
early 2000s, as it is for instance the case for the Exp3 algorithm from [ACBF02]. In the last
decade, some algorithms were shown to achieve both a problem-dependent logarithmic and a
minimax upper-bounds, like MOSS from [AB09] or recently kl-UCB++ from [MG17], and
such results are usually referred to as “best of both worlds”.

2.3.3 Other measures of performances

In the rest of this thesis, the theoretical performance analysis of an algorithm that we obtained
are all expressed in terms of the mean regret RA

T (in Chapters 6 and 7), but we quickly mention
other measures of performances that we consider in our works and in this manuscript.

First, when doing numerical experiments about bandits, if one studies the regret as an
empirical mean based on a “large” number of random repetitions (e.g., N = 1000 repetitions),
it is important to not only show the mean value but also the variance of the values taken by
the regret on each repetition, to verify that all algorithms perform consistently. Indeed, by
only visualizing the mean of 1000 values, it is possible that we miss some “bad runs”: if 1 run
out of the 1000 gives linear regret (i.e., RA

T ∝ T) and the 999 other give logarithmic regret,
then the mean will appear logarithmic. This is the case of the Selfish algorithm that is defined
and explored in Chapter 6. On the contrary, for efficient algorithms, we can visualize the
entire distribution as a histogram, or the variance of the values of RA

T , and if the number N is
reasonably large, we can verify that the regret appears logarithmic for all runs.

The switching cost SCA(T ) counts howmany times the player’s decision has changed from
one round to the next one, i.e., SCA(T ) .=

∑T −1
t=1 1(A(t) ̸= A(t+1)). It has recently gained inter-

est in the literature, for instance the authors of [TRY17] proposed an algorithm that adaptively
tries to balance the trade-off betweenminimizing the regret andminimizing the switching cost.
Indeed, in single-player models it is easy to show that achieving logarithmic regret directly
implies a logarithmic upper-bound on the switching cost, and conversely the lower-bound
from [LR85] also gives an asymptotic logarithmic lower-bound. Even if SCA(T ) = Θ(ln T )
for an efficient algorithm, it can be interesting to numerically evaluate this quantity, as a large
value might indicate an algorithm that is alternating too much between the optimal arm and
other arms. It is relevant for cognitive radio applications, as a hardware reconfiguration costs
energy, and so changing channel from two consecutive time steps has a nontrivial energy cost,
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as highlighted in [DMNM16]. We also find interesting to study SCA1,...,AM (T ), the sum of the
switching costs of the M players in a multi-players bandit game (if player j uses algorithm
Aj for j = 1, . . . , M), as studied in Chapter 6. Our proposed algorithm, MCTopM, achieves
order-optimal logarithmic regret as well as a logarithmic number of switches.

Finally, another interesting measure of performance is the fairness. It was not studied
much for single-player problems, and usually it means that each arm must be explored at
least a given fraction of the total horizon T (i.e., “arm-wise fairness”). It was studied in a very
recent article [PGNN19], where a different notion of regret is introduced to account for the
fairness constraint. The authors show that different algorithms, based on UCB1 or Thompson
sampling, can achieve logarithmic regret while respecting the fairness constraints. In this
thesis, we only consider fairness in the multi-players bandit models, in Chapter 6, where
fairness refers to a different notion (i.e., “cooperative fairness”), in Section 6.3.2.

2.4 Review of stochastic MAB algorithms

This Section reviews the most important families of stochastic MAB algorithms, from naive
and simple strategies, to strategies based on the optimism or the Bayesian principles, to recent
“best-of-both-worlds” strategies.

Implementation. We describe our library SMPyBandits in more details in Chapter 3. All
the algorithms described in this chapter are implemented in SMPyBandits, in the Policies
module, alongside with many more algorithms (there are about 65 for single-player stochastic
problems). A complete list of the implemented policies can be found on the following web
page on the documentation, SMPyBandits.GitHub.io/docs/Policies.html.

2.4.1 Naive or simple strategies

Pure exploitation or pure exploration. Let us first describe two naive strategies, that both fail
dramatically. We recall the notations introduced above in Section 2.1.1, the sums of rewards are
Xk(t) .=

∑t
s=1 r(s)1(A(s) = k), and the numbers of samples are Nk(t) .=

∑t
s=1 1(A(s) = k).

The estimated means, or empirical averages, are µ̂k(t) .= Xk(t)/Nk(t) (when Nk(t) > 0).

– The uniform strategy always plays the K arms uniformly at random, ∀t ∈ [T ], A(t) ∼
U([K]), where U(S) denotes the uniform distribution on a set S, and U([K]) the uniform
distribution on [K] = {1, . . . , K} (i.e., ∀t,∀k ∈ [K],P(A(t) = k) = 1

K ). The player only explores
without using the collected information, and this strategy fails dramatically for any nontrivial
problem (i.e., linear regret). Indeed it obtains a linear (mean) regret RT = 1

K

∑K
k=1 ∆kT

which gives RT ∝ T for any problem with at least one sub-optimal arm (i.e., all nontrivial
problems, ruling out the case where µ1 = µ2 = · · · = µK).
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– The “Follow-the-Leader” strategy consists in first playing once each arm, then always
playing A(t) ∈ arg max µ̂k(t). The player only exploits the collected information, and this
strategy can fail dramatically, i.e., obtain linear regret in some problems. Indeed consider
K = 2 Bernoulli arms of means µ1 = 1/2 and µ2 = ε where ε < 1/2, then with probability ε/2
the player observes a reward of 0 for arm 1 then 1 for arm 2 on the first rounds, and so she will
play arm 2 for the T−2 remaining rounds, giving a linear (mean) regretRT ≥ ε

2

(
1
2 − ε

)
(T−1).

Simple efficient strategies: ε-greedy and Explore-then-Exploit. As illustrated by the two
previous examples, an efficient strategy needs to solve the trade-off between exploration and
exploitation. The two following solutions both consist in splitting the T time steps into T0

steps of exploration and T − T0 steps of exploitation.

1 for t = 1, 2, . . . , T do
2 Sample a value uniformly in [0, 1]: Ut ∼ U([0, 1])
3 if Ut < ε (i.e., with probability ε) then
4 Play uniformly at random A(t) ∼ U({1, . . . , K}) // Explore
5 else
6 Play uniformly among the arms of maximal empirical mean:

A(t) ∼ U(arg max
1≤k≤K

µ̂k(t)) // or Exploit

7 Observe a reward r(t), and update Xk(t), Nk(t) and µ̂k(t)
8 end

Algorithm 2.1: A simple efficient strategy, the ε-greedy algorithm.

– The ε-greedy strategy (in Algorithm 2.1) consists in alternating exploration and exploita-
tion at a certain ratio [ACBF02]. Fix 0 < ε < 1, then at each round, with probability ε the
player selects an arm uniformly at random (exploration) and with probability 1− ε the arm
with highest empirical mean is selected (exploitation). On the one hand, if ε is constant, then
the (mean) regret still grows linearly, as it is lower bounded by (ε 1

K

∑K
k=1 ∆k)T . In average,

T0 = εT steps are spent on exploration. On the other hand, if a lower-bound d on the positive
gaps is known beforehand, we can consider a sequence (εt)t∈N∗ decreasing with time t, for
instance εt = ε0/t with ε0 = 6K/d2, for a constant 0 < d < mink:∆k>0 ∆k. Then it was shown
in [ACBF02] that the regret of ε-greedy is of the order of K ln(T )/d + o(T ), which leads to an
order-optimal regret of O(K ln(T )), but this is not satisfactory, as mink ∆k needs to be known
in advance, which is usually not the case for real applications. Here again, an average of
T0 ≤ ε0 ln(T ) steps are spent on exploration.

– The “Explore-then-Exploit” strategy (inAlgorithm2.2), presented for instance in [BCB12],
first explores uniformly the K arms for T0 time steps, then only exploits the arm identified as
the best arm after these first T0 steps (i.e., one of the arms with highest empirical means, after
T0/K samples of each arm). Usually we restrict to T0 being a multiple of K.
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1 for t = 1, 2, . . . , T do
2 if t ≤ T0 then
3 Play sequentially A(t) ∈ 1 + (t mod K) // Explore
4 else
5 if t = T0 then
6 Pick one arm A(T0) = k uniformly among the arms of maximal

empirical mean: A(t) ∼ U(arg max
1≤k≤K

µ̂k(T0)) // then Exploit

7 Play the same arm A(t) = A(T0)
8 Observe a reward r(t), and update Xk(t), Nk(t) and µ̂k(t)
9 end
Algorithm 2.2: A simple efficient strategy, the Explore-then-Exploit algorithm.

Here again, if a lower-bound d > 0 on the positive gaps is known beforehand, one can find
a tuning of T0 that gives a logarithmic regret, as stated in Theorem 2.10 below. It proves that
the “explore-then-exploit” strategy can also obtain an order-optimal regret, RT ≤ K(4/d2)(1 +
ln(d2T/4)) = O(K ln(T )), if it is tuned with a fixed time T0 using prior knowledge on the
problem (i.e., d) and the horizon T .

Theorem 2.10. For any instance I with K arms with Bernoulli distributions in [0, 1], of
means µ1, . . . , µk, and any horizon T > K, and if d ≤ ∆ = mink ∆k is known, let
T0 = ((2K)/d2) ln(d2T/(2K)). Then the Explore-then-Exploit algorithm with parameter T0

verifies the following finite-time regret bound

R
Explore-then-Exploit
T ≤ 2K

d2 ln
(

d2T

2K

)
= O

(
K ln(T )

∆2

)
. (2.5)

Proof. If p denotes the probability that the chosen arm is not optimal, the algorithm suffers
from a linear regret for the first T0 rounds, then with probability p it suffers from a linear
regret for the remaining T − T0 rounds, and with probability 1− p it suffers no regret. Thus
we have RT ≤ (maxk:∆k>0 ∆k)T0 + p(T − T0). We then prove that p ≤ 2K exp(−T0d2/4).

We use Hoeffding’s inequality from [Hoe63], reminded below in Lemma 2.11. First for the
case of two arms: if µ1 = µ2 +∆, then p = P(µ̂1 < µ̂2) ≤ P(µ̂1 < µ1−∆/2)+P(µ̂2 > µ2 +∆/2),
and both terms can be bounded by using Hoeffding’s inequality with a (non-random) number
of samples n ≤ T0/K, to obtain p ≤ 2 exp(−T0∆2/(2K)). Then for K ≥ 2 arms, a simple union
bound on the sub-optimal arms gives p ≤ 2(K − 1) exp(−T0d2/(2K)), if d is a lower-bound
on the positive gaps ∆k.
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So this bound on p gives RT ≤ KT0 + 2K exp(−T0d2/(2K))T (as maxk:∆k>0 ∆k ≤ 1 and
T − T0 ≤ T ). Optimizing the right hand-side on T0 gives T0 = ((2K)/d2) ln(d2T/(2K)).

Lemma 2.11. Let Z1, . . . , Zn be n i.i.d. samples from a Bernoulli distribution of parameter
µ ∈ [0, 1] (where n is fixed), of empirical mean Ẑn

.= 1
n

∑n
i=1 Zi, Hoeffding’s inequality gives∀x < µ, P(Ẑn < x) ≤ exp(−2n(x− µ)2),

∀x > µ, P(Ẑn > x) ≤ exp(−2n(x− µ)2).
(2.6)

An extension of this strategy is to consider not a fixed time T0 but a random time τ at which
exploration stops. This time τ must be a stopping time3, in the sense that it is a measurable
random variable, dependent of the past observations. The strategy is then referred to as
“explore-then-commit” (ETC), and the idea is to use a statistical test at every time step t, and
stop as soon as enough samples were collected to effectively identify the best arm with a
certain confidence level δ. Choosing δ ∝ 1/T and using a lower-bound d on the gaps typically
lead to an order-optimal algorithm, as shown in [GKL16].

For both cases, the strategy obtains sub-optimal regret if it is tuned independently of the
problem at hand, but can be tuned to be efficient (i.e., with logarithmic regret) if a lower-bound
on the gaps ∆k is known. As such, this weakness makes the presented strategies inapplicable
on an unknown problem, and so they are less interesting from a practical point-of-view.

2.4.2 The optimism principle and index policies: UCB1, kl-UCB etc

A large family of algorithms are index based, as they compute an index Uk(t) on each arm k at
time t, and they play the arm that maximizes their index, i.e., A(t) = arg maxk Uk(t). If more
than one indexes maximize (Uk(t))k, the arm is chosen from the set, usually in a uniformly
random manner: A(t) ∼ U(arg maxk Uk(t)) (using the external randomness, as explained
above). The Algorithm 2.3 below details a generic index policy, that includes well known and
efficient algorithms such as UCB1, kl-UCB and many others.

The UCB1 index policy: using Hoeffding’s inequality to build confidence intervals. Let
us consider another approach for adaptive exploration, known as “optimism under uncer-
tainty”: assume each arm is as good as it can possibly be given the observations so far, and
choose the best arm based on these optimistic estimate. This intuition took roots in [LR85],
and later lead to the UCB1 algorithm, analyzed in [ACBF02] for bounded rewards.

3See Chapter 3 of [LS19], and we use this notion again in Section 7.5.
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1 for t = 1, 2, . . . , T do
2 if t ≤ K then
3 Play arm A(t) = t;
4 else
5 For each arm, compute the index UA

k (t);
6 Play arm A(t) uniformly among the arms of maximal index:

A(t) ∼ U(arg max
1≤k≤K

UA
k (t));

7 Observe a reward r(t) and update Xk(t), Nk(t) and µ̂k(t);
8 end
Algorithm 2.3: A generic index policy A, using indexes UA

k (t) (e.g., UCB1, kl-UCB
etc).

For a parameter α, the UCB indexes are computed as follows, as a sum of the average reward
µ̂k(t) .= Xk(t)

Nk(t) and a confidence radius ξk(t) .=
√

α ln(t)
Nk(t) .

UUCB1
k (t) = UCBk(t) .= Xk(t)

Nk(t)︸ ︷︷ ︸
Exploitation µ̂k(t)

+
√

α
ln (t)
Nk(t)︸ ︷︷ ︸

Exploration ξk(t)

. (2.7)

This selection rule A(t) ∼ U(arg max
1≤k≤K

UA
k (t)) makes sense for the following reasons: an

arm k is chosen at step t because it has a large UCBk(t), which can happen for two reasons. i)
Because the average reward µ̂k(t) is large, in which case this arm is likely to have a high mean
reward µk, ii) and/or because the confidence radius ξk(t) is large, in which case this arm has
not been explored much. Either reason makes this arm worth choosing. One can also observe
that ξk(t) → ∞ if t → ∞ while Nk(t) ≪ ln(t), which can be used to prove that the UCB1

algorithm tries all arms at least Ω(ln(T )) times (in average). Furthermore, these two terms
µ̂k(t) and ξk(t) in the UCB defined in (2.7) respectively represent exploitation and exploration,
and summing them up is a natural way of dealing with the exploitation/exploration trade-off.
The constant parameter α in ξk(t) also controls this trade-off, and the theoretical analysis
suggests to restrict to α ≥ 1/2, and to choose α = 1/2 for optimal uniform performance (i.e.,
on all problems, [ACBF02]).

We present the regret bound, which was first stated in [ACBF02], and to explain how
Hoeffding’s inequality is used we prove it below. Note that for the rest of the manuscript, we
use the kl-UCB algorithm (and more subtle concentration inequality) whenever we analyze
the regret of a newly introduced algorithm (i.e., in Chapters 6 and 7), but we think the simpler
proof of UCB1 is enlightening for the reader. This has the advantage of being non asymptotic.
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Theorem 2.12 (Regret bound for UCB1). For any instance I with K arms with bounded
distributions in [0, 1], of means µ1, . . . , µk, and any horizon T > K, the UCB1 algorithm with its
parameter4 α = 2 verifies the following finite-time regret bound

RUCB1
T (I) ≤

 ∑
k:∆k>0

8
∆k

 ln(T ) +
∑

k:∆k>0
∆k

(
1 + π2

3

)
. (2.8)

Proof. We focus on bounded distributions in [0, 1], for which Hoeffding’s inequality gives the
inequality (2.6), as stated above in Lemma 2.11. Thanks to the regret decomposition from
Proposition 2.4, we can focus on bounding E[Nk(T )] for any sub-optimal arm k.

The first trick consists in writing the following, which is true for any n ≥ 1:

Nk(T ) = 1 +
T∑

t=K+1
1(A(t) = k) ≤ 1 + n +

T∑
t=n

1(A(t) = k, Nk(t) ≥ n). (2.9)

Remember that UCBk(t) = µ̂k(t)+ξk(t) for any arm k. According to the Algorithm 2.3 (see
line 6), a sub-optimal arm k can be chosen only if UCBk(t) ≥ UCBk∗(t). Both µ̂k(t) and ξk(t)
use n = Nk(t) samples of arm k, but as (2.9) above started to isolate Nk(t), we add the freedom
of considering different number of samples (using n), so we introduce the notation µ̂k,n(t)
and ξk,n(t) where Nk(t) is replaced with n if n ≥ Nk(t), i.e., µ̂k,n(t) = 1

n

∑t−1
s=1 r(s)1(A(s) =

k, Nk(s) ≤ n) and ξk,n(t) =
√

2 ln(t)/n. Thus, we can continue from (2.9) and write

Nk(T ) ≤ 1 + n +
T∑

t=n

1(A(t) = k, Nk(t) ≥ n)

≤ 1 + n +
T∑

t=n

1(µ̂k∗,Nk∗ (t)(t) + ξk∗,Nk∗ (t)(t) < µ̂k,Nk(t)(t) + ξk,Nk(t)(t), Nk(t) ≥ n)

= 1 + n +
T∑

t=n

1

(
min

0<nk∗ ≤t
µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < max

n<nk≤t
µ̂k,nk

(t) + ξk,nk
(t)
)

(2.10)

So two union bounds, on nk∗ for the min and on nk for the max, give two sums

Nk(T ) ≤ 1 + n +
T∑

t=n

t∑
nk∗ =1

t∑
nk=n

1
(
µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < µ̂k,nk

(t) + ξk,nk
(t)
)

(2.11)

4 For simplicity we present the theorem and its proof in the restricted case of α = 2. More details on this proof
can be found for instance in Section 1.3 of [Sli19], while for instance Chapter 2 of [BCB12] Theorem 2.1) and
Chapter 7 of [LS19] (Theorem 7.2) both give more general proofs, in particular for any value of α ≥ 1

2 .
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Now, at time t, this event µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < µ̂k,nk
(t) + ξk,nk

(t) implies at least one of
the following three events:


I1

.= (µ̂k∗,nk∗ (t) ≤ µk∗ − ξk∗,nk∗ (t)),

I2
.= (µ̂k,nk

(t) ≥ µk + ξk,nk
(t)),

I3
.= (µk∗ < µk + 2 ξk,nk

(t)).

• For the first two events I1 and I2, we carefully fixed the number of samples so they are no
longer random (they are respectively to nk∗ and nk), we can use Hoeffding’s inequality
to obtain P(Ij) ≤ 1/t4 (for j = 1, 2).

• For the last event I3, observe that µk∗ < µk + 2ξk,nk
(t) means ∆k − 2

√
2 ln(t)/nk < 0,

where we remind the notation of the gap ∆k
.= µk∗−µk. Thus if nk ≥

⌈
8 ln(T )

∆2
k

⌉
≥
⌈

8 ln(t)
∆2

k

⌉
(as T ≥ t), then this inequality actually cannot happen: P(∆k − 2

√
2 ln(t)/nk < 0) = 0,

so as soon as nk ≥ 8 ln(T )
∆2

k
, P(I3) = 0.

Taking the expectation of Nk(T ) from (2.10), and setting n = nT
.= ⌈8 ln(T )

∆2
k
⌉ thus gives

E[Nk(T )] ≤ 1 + 8 ln(T )
∆2

k

+
T∑

t=nT

t∑
nk∗ =1

t∑
nk=nT

P
(
µ̂k∗,nk∗ (t) + ξk∗,nk∗ (t) < µ̂k,nk

(t) + ξk,nk
(t)
)

≤ 1 + 8 ln(T )
∆2

k

+
T∑

t=nT

t∑
nk∗ =1

t∑
nk=nT

(
P(I1)︸ ︷︷ ︸
≤1/t4

+P(I2)︸ ︷︷ ︸
≤1/t4

+P(I3)︸ ︷︷ ︸
=0

)

≤ 1 + 8 ln(T )
∆2

k

+
T∑

t=nT

t∑
nk∗ =1

t∑
nk=nT

2 1
t4

We actually have that
t∑

nk∗ =1

t∑
nk=nT

2 1
t4 ≤ 2

t∑
nk∗ =1

1
t3 ≤ 2 1

t2 , whose sum for t = 1 to∞ is 2π2

6 .

≤ 8 ln(T )
∆2

k

+ 1 + 2
T∑

t=1

1
t2 ≤

8 ln(T )
∆2

k

+ 1 + 2
∞∑

t=1

1
t2 ≤

8 ln(T )
∆2

k

+ 1 + π2

3 . (2.12)

To sum up, we obtain the following finite-time bound on Nk(T ) for any sub-optimal arm k

E[Nk(T )] ≤ 8 ln(T )
∆2

k

+
(

1 + π2

3

)
.

By using the regret decomposition from Proposition 2.4, this gives

RUCB1
T =

∑
k:∆k>0

∆kE[Nk(T )]
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≤
∑

k:∆k>0

8
∆k

ln(T ) +
∑

k:∆k>0
∆k

(
1 + π2

3

)
=

∑
k:∆k>0

8
∆k

ln(T ) + o(ln(T )) .

We see in this Theorem 2.12 that UCB1 has the advantage of not relying on any prior
knowledge of the problem difficulty, of being anytime and computationally simple, for both
memory and time aspects. Moreover, UCB1 achieves an order-optimal problem-dependent
regret upper bound in O((

∑
k:∆k>0

1
∆k

) ln(T )), meaning that it matches the asymptotic regret
lower-bound of Lai and Robbins up-to a constant factor [LR85] (see the definition above in
page 33). UCB1 requires a constant storage capacity for each arm (storing Xk(t) and Nk(t)
require two integers or a float and an integer, i.e., O(1)), giving a storage capacity of O(K),
independently of the horizon T . It also needs to perform some mathematical operations, but
a square-root and a logarithm are cheap, thus it costs a O(1) constant time for each arm and
time step, thus a time O(KT ) for the T time steps.

We use UCB1 as the base building block for other policies in Chapter 5, for these reasons.
Moreover, theUCB1 algorithm has the advantage of being easy to explain and understand, and
its decisions can be interpreted clearly: by reading the values of µ̂k(t) and UCBk(t), anyone
can see why an arm was chosen at anytime. This is why it is used in the proof-of-concept
demonstration presented in Section 5.3.

The kl-UCB index policy. The kl-UCB algorithm follows the same spirit as the UCB1 algo-
rithm presented above, it is an index policy (see Algorithm 2.3), which also builds upper
confidence bounds on the unknown mean of each arm. The KL-UCB algorithm was first
proposed in [GC11] for one-dimensional exponential families, and then the kl-UCB algorithm
was introduced in [CGM+13] for bounded rewards. In all this thesis, we either restrict to
exponential families or to bounded rewards in [0, 1], for which we use the fact that they are
sub-Bernoulli, thus we prefer to only present kl-UCB.

Instead of using a confidence radius ξk(t) based on Hoeffding’s inequality, the kl-UCB
algorithm rather uses Chernoff’s concentration inequality for the considered exponential
family [C+52, Che81]. We remind that we consider rewards bounded in [0, 1]. Consider an
exploration function f(t), that is typically chosen as f(t) .= ln(t)+ c ln(ln(t)) for the theoretical
analyses (with c ≥ 3), and f(t) .= ln(t) in practice, then the kl-UCB indexes are defined by

Ukl-UCB
k (t) .= sup

q∈[0,1]

{
q : kl

(
Xk(t)
Nk(t) , q

)
≤ f(t

Nk(t)

}
. (2.13)

For Bernoulli distributions, kl-UCB builds tighter confidence intervals than UCB1, in the
sense that Ukl-UCB

k (t) < UUCB
k (t) but with the same probability coverage. This is justified by
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Pinkser’s inequality, which gives kl(x, y) ≥ 2(x− y)2. The KL-UCB and kl-UCB algorithms
achieve finite-time regret logarithmic upper-bounds on their regret, and have been proven
to be asymptotically optimal, respectively for one-dimensional exponential families and for
binary rewards [GC11, CGM+13]. In particular, we highlight that kl-UCB achieves a finite-
time regret upper-bound, that matches the asymptotical lower-bound of Lai and Robbins
[LR85] for Bernoulli distributed problems, which is our main focus in both Chapters 6 and 7.

A note about the implementation of kl-UCB algorithms. Implementing this kind of pol-
icy requires to implement two things. The first one is usually easy: one has to implement
kl(x, y) the Kullback-Leibler divergence of the considered one-dimensional family, for instance
kl for Bernoulli distributions has a closed form and is easy to compute. The second one is less
obvious: one has to solve the optimization problem in (2.13). Any iterative algorithm for nu-
merical optimization of one-dimensional functions can be used (e.g., see [BV04] for a survey),
but as the kl(x, •) function is usually convex (for any x), two practical and mathematically
correct solutions are Newton’s method or a bisection search. The search space for q can be
restricted to [Xk(t)/Nk(t), 1] instead of [0, 1], and for simplicity and efficiency, in this case a
naive bisection search works well. For instance, a precision level of ε = 10−8 is enough for
numerical simulations, and typically the bisection search terminates in between 5 to 20 steps.

If we perform numerical simulations with kl-UCB algorithms, we are interested in having
efficient implementations, and ideally kl-UCB should not be significantly slower than UCB.
The bottleneck of the performance is the computations of theKL functions and the optimization
problem, and we note that our library SMPyBandits implements the two parts in both a naive
Python implementation (file kullback.py) and in a Python module written in a C file5, in an
optimized way (file kullback_py3.c). For the supported families of distributions (including
Bernoulli, Gaussian, exponential and Poisson), wewrote both a naive Python and an optimized
CPython version of their Kullback-Leibler divergence (i.e., KL(x, y)) and a bisection search
for the optimization problem for the kl-UCB index (i.e., supq KL(x, q) ≤ z).

Variants on UCB1. Many variants of the UCB1 algorithms have been studied in the
multi-armed bandits literature. For instance, UCB-H replaces the ln(t) by a ln(T ) (as well as
kl-UCB-H), and it actually corresponds to the first algorithm analyzed in [ACBF02]. Using an
estimator for the variance of the arms’ samples gives UCB-V, which was proven to be efficient
against Gaussian distributions with unknown variance. Other variants include UCB+, UCB†

from [Lat18], UCBoost, and many more. All these variants are usually comparable to the
original UCB1 algorithm, in terms of time andmemory complexity, and they achieve improved
regret upper bounds in the same setting or some extensions of the initial setting.

5 We also wrote an intermediate implementation that uses Cython [BBS+19], to have a file with a syntax
closer to Python, while gaining from almost the same performance speed-up as with the optimized C version,
see file kullback_cython.pyx. These implementations are also published an independent Python package, on
GitHub.com/Naereen/Kullback-Leibler-divergences-and-kl-UCB-indexes (also on Pypi), as well as a Julia
package, on GitHub.com/Naereen/KullbackLeibler.jl.
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2.4.3 Bayesian policies

Thompson sampling is the oldest known MAB algorithms, dating back from the first paper by
Thompson in 1933 [Tho33]. It became popular since its asymptotical and finite-time analyses
in [AG12, KKM12]. Thompson sampling uses a Bayesian point of view: instead of building
confidence intervals on the means of the arms like UCB1 does, it starts with a prior πk(0) on
the K distributions (e.g., a flat uniform prior), and then after every observation (k, r(t)) it
updates the posterior distribution of the arm k with a new data r(t), from πk(t) to πk(t + 1).
Thompson sampling makes its decision at time t by first sampling a random sample sk ∼ πk(t),
and then playing according to the “optimism under uncertainty” philosophy if these samples
represent the arms (expected) quality, i.e., A(t) ∈ arg maxk sk.

For problems with Bernoulli distributions on the K arms, the best choice of prior is a
Beta distribution, that starts as an initially uniform prior (i.e., ∀k, πk(0) .= Beta(1, 1)), and
maintains a distribution πk(t) .= Beta(Xk(t)+1, Nk(t)−Xk(t)+1), as Xk(t) counts the number
of successes observed on arm k, and Nk(t)−Xk(t) counts the number of failures. We detail
the Thompson sampling algorithm in this case, below in Algorithm 2.4, as it corresponds
to the case used in Chapter 5 in Section 5.2.4. In this setting, as well as for one-dimensional
exponential families, Thompson sampling was proven to achieve finite-time and asymptotical
optimal problem-dependent bounds [KKM12, AG12].

1 for t = 1, 2, . . . , T do
2 For each arm, sample sk(t) ∼ πk(t− 1) from the posterior of arm k,

πk(t− 1) = Beta(Xk(t− 1) + 1, Nk(t− 1)−Xk(t− 1) + 1);
3 Play arm A(t) uniformly among the arms of maximal random sample:

A(t) ∼ U(arg max
1≤k≤K

Uk(t));

4 Observe a reward r(t) and update Xk(t) and Nk(t);
5 end
Algorithm 2.4: Thompson Sampling for Bernoulli rewards, with Beta prior/posteriors.

Bayes-UCB from [KCG12] also uses the Bayesian point of view, updated like for Thompson
sampling, but used in a different way. Instead of sampling from the posteriors and playing
the arms with maximum sample, Bayes-UCB computes the (1− 1/(t(ln(t))5) quantile of each
arm, at time t, and plays the arm with the largest quantile. It was also proven to achieve
an asymptotical optimal problem-dependent bound for binary (Bernoulli) bandits [KCG12].
Bayes-UCB is comparable to Thompson sampling in terms of memory complexity, but it can be
slower, as computing a quantile is generally more costly than just sampling from a distribution.

We mention a third Bayesian algorithm for curiosity, AdBandits introduced in [TdSCC13],
because it has not gained any popularity despite its good empirical performance. AdBandits
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follows the same assumptions as Thompson sampling, and for instance for Bernoulli problems
it uses a Beta posterior on each arm. It uses a random mixture of two algorithms: with a
certain probability it follows Thompson sampling decision rule, otherwise it samples the arm
with highest empirical mean (i.e., forced exploitation). It was proposed in the small article
[TdSCC13] and illustrated on empirical simulations, but no theoretical analysis was given.
We illustrate in Section 3.3 that it can achieve good performance in practice.

Finally, we would like to mention that a recent work [KT19] presented an approach that
closes the gap between the two aforementioned point-of-views, frequentist algorithms such
as UCB and Bayesian algorithms such as Thompson sampling. The authors of [KT19] showed
that their Randomized Confidence Bound (RCB) algorithm can achieve the same regret upper
bounds as UCB1 or Thompson sampling, with uniformly distributed perturbations. Their RCB
algorithm ressembles UCB1, and builds the same confidence interval [LCBk(t), UCBk(t)] on
arm k at time t (the lower confidence bound isLCBk(t) .= µ̂k(t)−ξk(t)), but instead ofmaximiz-
ing the UCB, a random sample is simply taken on each interval sk ∼ U([LCBk(t), UCBk(t)]),
and the played arm is the one maximizing this sample, i.e., A(t) ∈ arg maxk sk.

2.4.4 Other policies

We can briefly mention other families of policies.

BESA (Best Empirical Sampled Average) was introduced in [BMM14], in order to fix a
simple observation: if arm 1 has 100 samples and arm 2 has 50 samples, it should make more
sense to only use 50 samples of arm 1 to compute and compare their empirical means. Based
on this idea, the BESA algorithm for K = 2 arms is quite simple: at each time step, if arms 1
and 2 have respectively n1 and n2 samples, and if n1 > n2 (for instance), first it sub-samples
n2 observations from n1, then it computes the mean of these observations, and play the arm
maximizing this mean (now that there is the same number of observations for both arms, it
makes more sense to compare these quantities). It was analyzed partially, for the two-armed
case it was proven to be asymptotically optimal for one-dimensional exponential families, and
the authors illustrated that it can be very efficient empirically. However, analyzing it in the
generic case was found to be difficult, and it is still an open problem.

Policies for adversarial bandits. Another important family of bandits algorithms are the
algorithms proposed for the adversarial setting [ACBFS02]. The first of them is the Exp3
policy, for “Exponential weights for Exploitation and Exploration”, which is an example of the
well-known multiplicative weights update algorithm6, a family of algorithms developed since the
1950s, and applied to a wide range of different domains. The Exp3 policy maintains weights
wk(t) on the K arms, and at time t it samples an arm from the distributionwhich is amixture of

6 For more details, see this article by J. Kun, JeremyKun.com/2017/02/27/the-reasonable-effectiveness-
of-the-multiplicative-weights-update-algorithm. The survey [AHK12] gives more details.
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w(t) = [w1(t), . . . , wK(t)] and the uniform distribution, i.e., P(A(t) = k) .= (1− γ)wk(t) + γ 1
K .

The weights are initially uniform, i.e., wk(0) = 1/K, and then at each time after observing a
reward Yk,t from arm k, Exp3 updates the weight of the chosen arm multiplicatively, using
wk(t + 1) = wk(t)× exp(r̂k(t)/(γNk(t))). The weights are then renormalized, to have a sum∑

k wk(t + 1) = 1. This notation r̂k(t) means an unbiased estimator of the reward r(t) = Yk,t,
that is, r̂k(t) = r(t)/P(A(t) = k). Like for the ε-greedy policy, the parameter γ can be constant,
or can be a non-increasing sequence (γt)t∈N∗ . It was proven in [ACBFS02] that Exp3 with
constant parameter γ achieves RT = O

(√
KT ln(T )

)
problem-independent regret, while

using a decreasing sequence, such as γt =
√

ln(K)/K ln(t)/t gives an order-optimal problem-
independent regret upper-bound of O

(√
KT

)
. A short proof of this results and more details

on Exp3 are given in [BCB12]. Many other policies have been proposed for adversarial bandits,
like Follow-the-Perturbed-Leader or Follow-the-Regularized-Leader for linear adversarial
bandits, and we refer to Parts III and VI of [LS19] for more details.

Hybrid policies. As explained before, in the last few years, the MAB research community
has been interested in finding algorithms which achieves both a problem-dependent loga-
rithmic and a minimax upper-bounds. We present here some solutions that are index-based
(see Algorithm 2.3). The first example is MOSS from [AB09], or kl-UCB++ in [MG17]. If
we denote g(t, T, K) = ln+(y(t)(1 + ln+(y(t))2)), and y(t) = T

Kt , with ln+(x) = max(0, ln(x)),
then they use the following indexes:

UMOSS
k (t) .= Xk(t)

Nk(t) + max

0,

√√√√ ln
(

t
KNk(t)

)
Nk(t)

 .

Ukl-UCB++
k (t) .= sup

q∈[0,1]

{
q : kl

(
Xk(t)
Nk(t) , q

)
≤ g(Nk(t), T, K)

Nk(t)

}
.

Both algorithms are index policies, but they are not anytime. For any K, T , and problem
instances I in a certain family I (e.g., with Bernoulli distributions), they satisfy regret bounds
like the following, for two constants cA ≥ 1 and c′

A ≥ 1, that depend on the algorithm, and a
constant CI that depend on the problem instance only: RA

T ≤ min(cA
√

KT, c′
ACI ln(T )).

More recently, the kl-UCB-switch from [GHMS18] is the first algorithm to be proven
to obtain simultaneously a distribution-free regret bound of optimal order

√
KT , and a

distribution-dependent regret bound of optimal order as well, by matching the CI ln(T )
asymptotic lower-bound by [LR85]. It is an index policy that uses modified versions of the
indexes of kl-UCB+ for arms that are not sampled much (see [Hon19] for more details),
and of MOSS+ for the other arms. If the two indexes are defined by UMOSS+

k (t) .= Xk(t)
Nk(t) +

max(0,

√
ln
(

T
KNk(t)

)
/Nk(t)) and UKL-UCB+

k (t) .= sup
q∈[0,1]

{
q : kl

(
Xk(t)
Nk(t) , q

)
≤ ln( T

KNk(t))/Nk(t)
}
,
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and if f(T, K) = ⌊(T/K)γ⌋ for γ = 1/5, then kl-UCB-switch uses the index defined as follows:

Ukl-UCB-switch
k (t) .=

UKL-UCB+
k (t) if Nk(t) ≤ f(T, K),

UMOSS+
k (t) if Nk(t) > f(T, K).

.

Finally, it is worth mentioning the Exp3++ algorithm, as a recent variant of Exp3 that uses
an adaptive tuning of its parameters, proposed by [SL17]. It is anytime, and it was also proven
to obtain good “best-of-both-world” performance.

2.4.5 Comparison of the main algorithms on an example Bernoulli problem

We finish this Section 2.4 by illustrating the performance of different algorithms, on the small
MAB problem used in the online demonstration shown above (see Figures 2.2 and 2.3). We
consider K = 5 arms following Bernoulli distributions, of means µ1 = 0.6, µ2 = 0.2, µ3 =
0.55, µ4 = 0.7, µ5 = 0.5 (unknown to the algorithms), and first a horizon T = 100 (like in the
online demo) then a larger value of T = 10000. The best arm is µ4 and the smallest gap is
∆ = 0.1, thus a lower-bound on the gaps is taken as d = ∆.

The different algorithms being compared are the following, in the order they were pre-
sented above: first we include the pure-exploration and pure-exploitation algorithms, then
the ε-greedy (with εt = ε0/t and ε0 = 6K/d2 = 3000) and Explore-then-Commit (with
T0 = K4/d2 ln(d2T/4) = 2000 ln(T/400)) algorithms from Section 2.4.1, which both uses a
tuning based on a prior knowledge of ∆ (that gives large values of ε0 and T0 yielding linear
regret for small horizon). We then include efficient algorithms, that do not need prior knowl-
edge of the T (they are anytime) nor ∆ (they are robust and efficient on unknown problems):
UCB1 (with α = 1), kl-UCB (with Bernoulli kl = KLB), and Thompson sampling (with Beta
posteriors and flat uniform priors).

We first give in Table 2.1 the cumulated rewards as well as the estimated regrets of the dif-
ferent algorithms, for one simulation. First, the rewards are computed as 1

N

∑N
j=1

∑T
t=1 r

(j)
A(t)(t),

where r
(j)
k (t) means the reward stream of the different runs j = 1, . . . , N . Then the estimated

regret is not computed as 1
N

∑N
j=1

∑T
t=1 r

(j)
k∗ (t) − r

(j)
A(t)(t), as this first formula could give a

negative regret and is more noisy, but as µ∗T − 1
N

∑N
j=1

∑K
k=1 µkN

(j)
k (T ), as this later formula

gives a more robust estimator, as noted the proof of Proposition 2.4 (in Page 32 above). It
shows that the performance can fluctuate a lot, as on both cases the pure exploitation strategy
was very lucky and obtains close-to-optimal performance, even though we proved that it
suffers from a linear mean regret.

Then in Table 2.2 we show the results of the average on N = 1000 independent runs. We also
include in Figures 2.4, 2.5 below the mean cumulated rewards and mean regrets as functions
of the current time step t, for T = 10000 (and N = 1000). The reward of the best arm is also
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Algorithms Rewards Regret for T = 100 Rewards Regret for T = 10000
Pure exploration 46 20.9 5171 1886.4
Pure exploitation 65 1.15 6997 0.95

ε-greedy 50 20.9 6657 382.2
Explore-then-Commit 49 15 5766 1199.8

UCB1 63 10.3 6920 78.4
kl-UCB 56 12.4 6922 70.2

Thompson sampling 51 12.2 6949 44.2

Table 2.1 – Cumulated rewards and regret, for horizons T = 100 and T = 10000, for only one run of the
simulation, for different algorithms.

plotted in Figure 2.4, and it serves as an upper-bound to illustrate convergence of the average
rewards (i.e., 1

t (r(1) + · · · + r(t))), which should converge to µ∗ when t → ∞ for efficient
algorithms. Conversely, we also add the Lai & Robbins’ logarithmic lower-bound on regret
(CI ln(t) from Theorem 2.8) on the regret plots in Figure 2.5. It should not be surprising
that the black line of the lower-bound is above the values of the regret as the lower-bound
is only asymptotic. We can clearly identify the behavior of the different strategies: the three
efficient strategies indeed achieve a sub-linear regret (see Figure 2.5b), that looks logarithmic,
as supported by the theory, while the naive strategies achieve linear regret. The two simple
strategies also achieve sub-linear regret but are less efficient: both ε-greedy and E-t-C starts as
pure exploration, respectively until ε0/t becomes smaller than 1 and until t > T0, then they
usually identify correctly the best arm and start to catch up with the best policies.
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Figure 2.4 – Average of the cumulated rewards, as function of t, for T = 10000 and N = 1000.
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Algorithms Rewards Regret for T = 100 Rewards Regret for T = 10000
Pure exploration 51 19 5099 1900
Pure exploitation 62 8.3 6349 653

ε-greedy 51 18.7 6460 542
Explore-then-Commit 57 12.9 5795 1207

UCB1 60 9.8 6921 79
kl-UCB 61 9.3 6927 72

Thompson sampling 60 9.6 6951 49

Table 2.2 – Cumulated rewards and regret, for horizons T = 100 and T = 10000, averaged over N = 1000
independent simulations (j = 1, . . . , N), for different algorithms.
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2.4.6 Summary of this review of MAB algorithms

We gave an overview of the most well known families of MAB algorithms, designed and
analyzed for the single-player case of the stationary and stochastic bandit model. Except the
naive and simplest strategies given as introductory examples, most of the policies presented
above are order-optimal for at least one of the models of binary or bounded rewards, or one-
dimensional exponential families, and some of them are known to be asymptotically optimal in
different settings. We illustrated the performance of two naive, two simple and three efficient
strategies, on the example of Bernoulli-distributed problem used for the online demonstration
from Section 2.1. This also serves as a first example of simulation performed with our library
SMPyBandits, before its presentation in the next chapter. In the rest of this thesis, we mainly
use UCB1 or Thompson sampling when simplicity and realistic deployment is favored in
Chapter 5, and kl-UCB when we focus on mathematical developments in Chapters 6 and 7.

2.5 Conclusion

In this chapter, we presented the multi-armed bandit model, by restricting to a finite number
of arms and real-valued rewards. Our main focus is binary or bounded rewards, or one-
dimensional exponential families of distributions, and stochastic and stationary problems.
By showcasing a small interactive demonstration made available online, we presented the
notations used in all this thesis. We then used the Bernoulli-distributed problem underlying
this demonstration to present numerical simulations, comparing some algorithms using our
Python open-source library SMPyBandits, that is presented in details in the next Chapter 3.

We generalize this MAB model in Chapter 5, by studying decentralized learning of a large
set of independent players, all having different random activation times. This extension is
significantly harder than the base model presented in this chapter, and it is too complicated to
analyze. This model is more generic and realistic, and as such more suitable for applications
to Internet of Things (IoT) networks, where arms model orthogonal wireless channels, players
model communicating devices (i.e., IoT end-devices) and rewards model successes or failures
of a wireless packet sent by a device. We take a more formal approach in the rest of the
thesis, first by considering M ≤ K devices facing a stationary environment, that is an IoT
network of K orthogonal frequency channels, in a decentralized way in Chapter 6, and then
by considering a single device facing a non-stationary (piece-wise stationary) problem in
Chapter 7. For both directions, we present natural extensions of the base model, and we detail
our contributions that obtained state-of-the-art results, for the two problems of stationary
multi-players and single-player piece-wise stationary bandits.
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Chapter 3

SMPyBandits: an exhaustive Python
library to simulate MAB problems

SMPyBandits is a library that has been developed in the Python language since the beginning
of this PhD. It is designed to allow easy and fast numerical simulations on single-player
and multi-players Multi-Armed Bandits (MAB) algorithms. Its name stands for Single-
and Multi-Player Bandits in Python. To the best of the authors’ knowledge, it is the most
exhaustive open-source implementation of state-of-the-art algorithms and different kinds of
MAB models. This chapter details the organization of the library and what it implements in
terms of arm distributions, models, algorithms and visualizations. Then we use it to perform
a numerical comparison of the main state-of-the-art single-player bandit algorithms, and a
study to compare time and memory costs of some of the most well-known and most widely
used MAB algorithms. Note that almost all the numerical simulations used in the rest of the
thesis are based on SMPyBandits.

1. Beautiful is better than ugly.
3. Simple is better than complex.

The Zen of Python, by Tim Peters (in PEP20).
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3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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SMPyBandits: an exhaustive Python library to simulate MAB problems

3.1 Introduction

I started the development of the SMPyBandits library in December 2016, and I worked on it
actively in 2017 and 2018. It is a Python package, designed to allow easy and fast numerical
simulations on single-player and multi-players Multi-Armed Bandits (MAB) algorithms. This
library is by far the most exhaustive open-source implementation of state-of-the-art algorithms
and different kinds of MAB models, according to the authors’ knowledge. It aims at being
simple to use and maintain, and has a clean and well documented codebase, and it uses the
popular open-source Python language. It allows fast prototyping of simulations, with an
easy configuration system and command-line options to customize experiments. Experiment
results are saved in an optimized binary format (HDF5) as well as high quality plots of useful
visualizations. More than two years of active development have shown how easy it can be to
add new algorithms, new arm distributions, and new bandit models (e.g., Markov or non-
stationary). It is hosted on GitHub, and uses the state-of-the-art development technologies,
by using two online services of continuous integration to run automated tests and to build its
online documentation.

SMPyBandits stands for Single- and Multi-Player Bandits in Python. The library does not
aim at being blazing fast or optimized in terms of memory usage, as it comes with a Python
implementation [Fou17], and uses only standard open-source Python packages (i.e., no hard
to install dependencies). Some critical parts are also available as a C Python extension, and
the just-in-time Numba compiler [I+17] is used whenever it is possible, so we can note that
we optimized the time efficiency of what could be (easily) optimized. However if simulation
speed really matters, one should rather refer to less exhaustive but faster implementations, like
for example [Lat16a] in C++ or [Raj17] in Julia. Note that both are not maintained anymore,
and contain just a few algorithms for the simple stationary MAB model.

In this Chapter 3, we start by presenting in Section 3.2 the organization of the library. We
use the library to compare the most famous and most efficient single-player MAB algorithms
in Section 3.3, then we discuss in Section 3.4 about the time and memory costs the same
algorithms. The take away messages are two-fold: from a practical point-of-view, it is usually
advised to use the simplest algorithm and we advise to use UCB (as we do in the next
Chapter 5), and that for theoretical works where optimality of the MAB algorithm is analyzed,
we advise to use kl-UCB (as we do in the next Chapters 6 and 7). Finally, in Appendix 3.6 we
include some small files showing how to use the library, and we conclude with some details
regarding the use of parallel computing to speed-up simulations.

References. The code for SMPyBandits is hosted at GitHub.com/SMPyBandits/SMPyBandits,
its documentation is at SMPyBandits.GitHub.io, and all the library is freely publicly released
under the MIT open-source license. This chapter is based on the article [Bes18].
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3.2 Presentation of the library

3.2 Presentation of the library

We start by explaining how SMPyBandits simulates MAB problems, by detailing its compo-
nents: MAB problems (single- or multi-players), and reward distributions. We then detail
how it implements MAB algorithms (e.g., UCB), and what kind of information is displayed,
saved and plotted after a batch of simulations of bandit problems. The main goal of the library
is to be easily able to simulate MAB algorithms (e.g., three algorithms like UCB, kl-UCB and
Thompson sampling) on one or more bandit models (single- or multi-players) defined by the
number of arms K and their distributions (νk)k∈[K], for some time steps that range from t = 1
to the horizon T . After the simulation, the library then displays statistical summary of the
(mean) rewards accumulated by each algorithm, as well as regret and other visualizations.
The same problem is simulated for N independent repetitions (e.g., N = 100) in order to show
mean results with low variances.

3.2.1 Single- and multi-players MAB problems

For the classical single-player stochastic MAB model, as defined in Chapter 2, a stochastic
MAB problem is defined by K ≥ 2 distributions (νk)k∈[K] (also called arms), used to generate
the i.i.d. samples Yk,t ∼ νk,∀t. An agent chooses arm A(t) ∈ [K] at time t and observes
the reward r(t) = YA(t),t without knowing the other (hidden) rewards (in opposition to the
full-information setting where (Y1,t, . . . , YK,t) is observed). Her goal is to maximize

∑T
t=1 r(t),

which require to trade-off between exploring the unknown K arms, exploiting the arm which
is currently estimated to be the best one.

Simulation loop for single-player MAB. Any simulation library targeting single-player
bandit problems must implement at least three components: reward distributions, MAB
algorithms, and a simulation loop that essentially looks like this. First, initialize the MAB
problem and one or more algorithms, Then, for t = 1 to t = T (known beforehand), repeat
the following block (for each algorithm). Ask algorithm A her chosen arm A(t), then sample
a (random) reward r(t) (i.i.d.) from distribution νA(t), and finally feeds the observation
(A(t), r(t)) to the algorithm. At the end, compute the cumulated reward, the regret, then plot
visualizations etc. Note that the second step should be repeated a large number of times (e.g.,
N = 100), in order to study mean regret and not only the regret in one single trajectory. If
one wants to compare algorithms on a same problem, it is possible to sample all the rewards
(Yk,t)k∈[K],t∈[T ] before-hand, and store them so that for each repetition of the simulation, the
randomness from the environment (i.e., the rewards) has the same impact on all the algorithms
(with the option configuration["cache_reward"] = True).
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Simulation loop for multi-players MAB. For Cognitive Radio dealing with OSA problems
and other applications, an extension is to consider M ≥ 2 players, interacting on the same K

arms. Whenever two or more players select the same arm at the same time (e.g., for OSA, the
same frequency channel), they all suffer from a radio collision. Different collision models have
been proposed, and the simplest one consists in giving a 0 reward to each colliding players.
Without any centralized supervision or coordination between players, they must learn to
access the M best resources (i.e., arms with highest means) without collisions. We refer to
Chapter 6 which introduces the multi-players bandit model.

SMPyBandits implements all the collision models found in the literature (in the module
Environment.CollisionModels), as well as all the algorithms known by the authors (in the
module PoliciesMultiPlayers). In particular, it includes rhoRand from [AMTA11], MEGA
from [AM15], MusicalChair from [RSS16], and our state-of-the-art algorithms RandTopM and
MCTopM from [BK18a], and more recent solutions. For comparison, realistic (e.g., UCB for
multiple play) or full-knowledge centralized algorithms are also implemented.

Any simulation library targeting multi-players bandit problems must implement at least
another component: a simulation loop that essentially looks like this. First, initialize the MAB
problem with M players, and one or more cohorts of M players (one player is one algorithm,
usually M times the same one), For t = 1 to t = T (known beforehand), repeat the following
block (for each cohort). Ask each player Aj her chosen arm Aj(t), then query the collision
model to know which player will get a zero reward (for a collision) and which player will get
a random reward from the environment. Then, sample (random) feedback Yk,t (i.i.d.) from
distributions νk, and compute the rewards rj(t) from the random feedback using the collision
model. Finally, feed the observation (Aj(t), YAj(t),t, rj(t)) to player j, for all the M players, The
default collision model is the most widely studied in the literature, where a player encounters
a collision (i.e., received a zero reward rj(t) = 0) if she is not the only one to have chosen an
arm k = Aj(t), otherwise rj(t) = YAj(t),t if she is the only one playing this arm. At the end,
compute the accumulated reward, the regret, then plot visualizations etc.

3.2.2 Reward distributions

We focus on one dimensional distributions (i.e., r(t) ∈ R), implemented in the Arms mod-
ule. The library supports discrete distributions: Bernoulli (Bernoulli), binomial (Binomial),
Poisson (Poisson), and a generic discrete distribution (DiscreteArm), as well as continuous
distributions, which can be truncated to an interval [a, b] or have unbounded support (R):
exponential (Exponential), gamma (Gamma), Gaussian (Gaussian) and uniform (Uniform). The
default is to use the same distribution for the K arms, as this is the setting studied in the
literature, but it also possible to mix them. For instance the following code in Code 3.1 creates
three arms, following Bernoulli distributions, with respective means 0.1, 0.5, 0.9, and a MAB
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object which encapsulates the problem. We give another example for truncated Gaussian
distributions on [0, 1], and a visualization of a histogram of 10000 rewards, below in Figure 3.1.

1 from SMPyBandits.Arms import *
2 from SMPyBandits.Environment import MAB
3

4 arm1 = Bernoulli(0.1) ; arm2 = Bernoulli(0.5) ; arm3 = Bernoulli(0.9)
5 bernoulli_problem = MAB([arm1, arm2, arm3])
6

7 # but also
8 means = [0.1, 0.5, 0.9]
9 bernoulli_problem = MAB({'arm_type': Bernoulli, 'params': means})

10

11 gaussian_problem = MAB({'arm_type': Gaussian, 'params': means})
12 gaussian_problem.plotHistogram() # display the histogram shown below

Code Example 3.1 – Example of Python code to create Bernoulli and Gaussian arms, a MAB problem
with K = 3 arms, and to plot a histogram of rewards, with SMPyBandits.
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3 arms: [N(0.1, 0.05), N(0.5, 0.05), N(0.9, 0.05)]
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Figure 3.1 – Histogram of 10000 i.i.d. rewards obtained from three arms with a Gaussian distribution
truncated to [0, 1], of respective means 0.1 (in red), 0.5 (in green) and 0.9 (in blue).

For more details, an interested reader can refer to the following Jupyter notebook [K+16]:
SMPyBandits.GitHub.io/notebooks/Easily_creating_MAB_problems.html.

We have not yet added support for higher dimensional distributions of rewards, such as
linear bandits, but it would be an interesting extension of SMPyBandits. However, note that
our library does support finite-state real-valuedMarkovMABmodels, where arms correspond
to Markov chains [Nor98], in the two rested/restless variants, as introduced by [AVW87b].
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3.2.3 Multi-Armed Bandits algorithms

SMPyBandits is a complete open-source implementation of single-player (classical) bandit
algorithms, containing over 65 algorithms (in the module Policies). It uses a well-designed
hierarchical structure and class inheritance scheme (as detailed on the various UML diagrams
shown on the uml_diagrams folder) to minimize redundancy in the codebase. For instance,
most existing algorithms are index policies (see Algorithm 2.3), and new ones are easily
written by inheriting from the IndexPolicy class (Policies.IndexPolicy). For instance the
code specific to UCB1 (with α = 2) is as written and fully documented in a file as short as
this:

1 from numpy import sqrt, log # mathematical functions
2 from IndexPolicy import IndexPolicy # base class
3

4 class UCB(IndexPolicy):
5 """ The UCB policy for bounded bandits.
6 Reference: [Lai & Robbins, 1985], [Auer et al. 2020]. """
7

8 def computeIndex(self, arm):
9 r""" Compute the current index :math:`U_k(t)`, at time t (:attr:`self.t`)

10 and after :math:`N_k(t)` pulls of arm k (``arm``):
11

12 .. math:: U_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\frac{2 \log(t)}{N_k(t)}}.
13 """
14 if self.pulls[arm] < 1: # forced exploration in the first steps
15 return float('+inf')
16 else: # or compute UCB index
17 estimated_mean = self.rewards[arm] / self.pulls[arm]
18 exploration_bias = sqrt((2 * log(self.t)) / self.pulls[arm])
19 return estimated_mean + exploration_bias

Code Example 3.2 – Code defining the UCB1 algorithm, as a simple example of an Index Policy.

3.2.4 Summary of the features

With this numerical framework, simulations can run on a single CPU or a multi-core machine
using joblib [Var17], and summary plots are automatically saved as high-quality PNG, PDF
and EPS, using matplotlib [Hun07] and seaborn [W+17]. Raw data from each simulation is
also saved in an HDF5 file, using h5py [C+18], an efficient and compressed binary format, to
allow easy post-mortem manipulation of any simulation results. Making new simulations

58

https://github.com/SMPyBandits/SMPyBandits/
https://SMPyBandits.GitHub.io/docs/Policies.html
https://SMPyBandits.GitHub.io/uml_diagrams/README.html
https://SMPyBandits.GitHub.io/docs/Policies.IndexPolicy.html


3.2 Presentation of the library

is very easy, one only needs to write a configuration script (configuration.py), without
needing a complete knowledge of the internal code architecture.

3.2.5 Documentation of the library

A complete documentation, for each algorithm and the entire codebase, is available online
at SMPyBandits.GitHub.io. It uses the Sphinx software [B+18], and the content is directly
written in the Python files as docstrings (in """...""", see in the example of Code 3.2 given
above), so users have access to the documentation from within their IDE or the Python
console. The most interesting component of the library is the many MAB algorithms being
implemented: for each of them, the documentation gives a reference to a research paper (e.g.,
[ACBF02] for UCB in Code 3.2), as well as a bird-eye view of its behavior. For most algorithms,
especially for index policies, the internal variables of the implementation are carefully linked
to the notations of each paper, and formulas explaining the way the algorithm selects its arm
are usually given. Whenever it is needed, we also included warnings or information about the
empirical performance of the more costly algorithms.

The documentation also contains extensive examples of all intermediate numerical func-
tions, that are also used as tests (using doctest.testmod from the standard library). For
example, Figure 3.2 below show two screenshots from the documentation. We show the main
page, and the list of algorithms in the Policies module.

Figure 3.2 – Screenshots from two pages of the documentation: the homepage
(SMPyBandits.GitHub.io), and a list of all the algorithms in the Policies module.
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3.2.6 How to run experiments?

We show how to install SMPyBandits, and an example of how to run a simple experiment. See
this page SMPyBandits.GitHub.io/How_to_run_the_code.html for more details. SMPyBan-
dits is also available on Pypi, see pypi.org/project/SMPyBandits, you can install it directly
with sudo pip install SMPyBandits, or from a virtualenv [BP+16]. This bash code shows
how to clone the code, and install the requirements for Python 3 (once):

1 # 1. get the code in the folder you want
2 $ git clone https://GitHub.com/SMPyBandits/SMPyBandits.git
3 $ cd SMPyBandits.git
4 # 2. install the requirements
5 $ pip install -r requirements.txt

Code Example 3.3 – Example of Bash code to download and install dependencies of SMPyBandits.

Simulations are easily executed, e.g., Code 3.4 shows how to start N = 1000 repetitions of
a simple non-Bayesian Bernoulli-distributed problem, for K = 9 arms, a horizon of T = 10000
and on 4 CPU. It takes about 20 min, on a 4-core 64-bit GNU/Linux laptop. Environment
variables (N=1000 etc) in the command line are not required, but they are convenient.

1 # 3. run a single-player simulation
2 $ BAYES=False ARM_TYPE=Bernoulli N=1000 T=10000 K=9 N_JOBS=4 \
3 MEANS=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] \
4 python3 main.py configuration.py

Code Example 3.4 – Example of Bash code to run a simple experiment with SMPyBandits.

3.2.7 Example of a simulation and illustration

A small script configuration.py is used to import the arm classes (Arms module), the pol-
icy classes (Policies module) and define the problems and the experiments. Choosing
the algorithms to include is done by changing the configuration["policies"] list in the
configuration.py file. For instance, one can compare the standard anytime kl-UCB algo-
rithm (class klUCB in Policies module) against the non-anytime variant kl-UCB++ algorithm
(klUCBPlusPlus), and also UCB with α = 1 (UCB) and Thompson sampling (Thompson) with
a Beta posterior (Posterior.Beta)).
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1 configuration["policies"] = [
2 { "archtype": klUCB, "params": { "klucb": klucbBern } },
3 { "archtype": klUCBPlusPlus, "params": {"horizon": T, "klucb": klucbBern}},
4 { "archtype": UCBalpha, "params": { "alpha": 1 } },
5 { "archtype": Thompson, "params": { "posterior": Beta } }
6 ]

Code Example 3.5 – Example of Python code to configure the list of algorithms tested on a problem.
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Figure 3.3 – Example of a single-player simulation showing the average regret of four algorithms (UCB,
kl-UCB++, kl-UCB and Thompson sampling). They all perform very well: each algorithm is known to
be order-optimal (i.e., its regret is proven to match the lower-bound up-to a constant), and each but
UCB is known to be asymptotically optimal (i.e., with the constant matching the lower-bound).

Running the simulation as shown above will save figures in a sub-folder, as well as save
data (pulls, rewards, regret and other data) in a HDF5 file1 [C+18]. Figure 3.3 above shows
the average regret for these 4 algorithms. The Figure 3.4 below shows the histogram of regret
obtained at the end of the experiment (i.e., RT ) for the same example.

3.2.8 Dependencies on other Python libraries

This library is written in Python [Fou17], for versions 2.7+ or 3.4+, using matplotlib [Hun07]
for 2D plotting, numpy [vdWCV11] for data storing, random number generations and opera-

1 For example, this simulation produced this HDF5 file
GitHub.com/SMPyBandits/SMPyBandits/blob/master/plots/paper/example.hdf5
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Figure 3.4 – Histogram of regret for the same experiment as of Figure 3.3. For instance, Thomson
sampling is very efficient in average (in green), and UCB shows a larger variance (in red).

tions on arrays, scipy [JOP+01] for statistical and special functions, and seaborn [W+17] for
clean plotting and colorblind-aware colormaps.

Optional dependencies include joblib [Var17] for parallel simulations, numba [I+17] for
automatic speed-up on small functions (using a Just-in-Time compiler), sphinx [B+18] for
generating the documentation, virtualenv [BP+16] for launching simulations in isolated
environments, and jupyter [K+16] used with ipython [PG07] to experiment with the code.

All the quoted libraries are free and open-source and can be installed in one commandusing
the pip (pip.PyPa.io) or conda (conda.anaconda.org) package manager. When SMPyBan-
dits is installed using pip install SMPyBandits, the dependencies are of course automati-
cally installed if not already present.

3.2.9 Continuous integration with Read the Docs and Travis CI

Since 2017 and 2018, SMPyBandits is using two online continuous integration (CI) services,
to automatically build and host its documentation, and to automatically test the library on
some numerical simulations. These CI services are free for open-source works, and are both
triggered whenever a modification of the codebase is sent to the hosting platform GitHub.
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Read the Docs. Since 2017, we have been using the free web service provided by Read the
Docs (ReadTheDocs.org). Read the Docs allows to automatically build the documentation
after every commit. This allows to regularly check that the library is well formatted and can be
imported correctly, as well as keeping the online documentation up-to-date. Moreover, they
offer to host the documentation online, at SMPyBandits.ReadTheDocs.io. For more details,
see ReadTheDocs.org/projects/SMPyBandits. Since its first use, the service did about 180
builds, and about 10% of them were useful to detect newly introduced issues or bugs in
the code. The build is configured using the .readthedocs.yml file in SMPyBandits main
folder, and it builds the documentation in about two minutes. I have also been building the
documentation manually on a weekly basis, to also host it on SMPyBandits.GitHub.io thanks
to GitHub pages. In the last two years, the documentation saw about 20000 unique visits,
while the GitHub project have been visited about 4500 unique visits.

Travis CI. Since 2018, we use the free web service provided by Travis CI (Travis-CI.org).
It allows to automatically run short numerical simulations after every commit, in order to
check that each modification on any part of the codebase does not break anything, as well as
giving an up-to-date example of log files that shows online the results of different examples of
experiments. The tests cover all the main models and almost all the algorithms implemented
in SMPyBandits, and it has been proven very useful to quickly find and fix new bugs. For
more details, see Travis-CI.org/SMPyBandits/SMPyBandits. Since its first use, the service
did about 190 builds, and about 30% of them were useful to detect newly introduced issues or
bugs in the code. The build is configured using the .travis.yml file in SMPyBandits main
folder, and it runs numerical experiments with a short horizon (e.g., T = 100) and a small
number of repetitions (i.e., N = 4), but covering all the different models implemented by
SMPyBandits (and even including some that are not covered in this chapter, like the Markov
model, or the sparse multi-players model). Builds typically run for 15 minutes, and Travis CI
have been proven to be very useful in our development process.

3.2.10 List of research works using SMPyBandits

SMPyBandits has been used for the following research articles since 2017, and it is used for
the previous and the next chapters of this thesis (except in Chapter 5). We give a link to a page
on the documentation, that gives detailed instructions to reproduce the results presented in
this research paper, details about the models and the notations, and bibliographic references.

• In [BKM18] and in Chapter 2 above, we used SMPyBandits to illustrate and compare
different aggregation algorithms. We designed a variant of the Exp4 algorithm for
online aggregation of experts [BCB12], called Aggregator. The documentation page is
on SMPyBandits.GitHub.io/Aggregation.html
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• In [BK18a] and in Chapter 6 below, we used SMPyBandits for all the simulations for
multi-players bandit algorithms. We designed the two RandTopM and MCTopM algorithms
and proved than they obtain logarithmic regret in the usual setting, and outperform sig-
nificantly the previous state-of-the-art solutions (i.e., rhoRand, MEGA and MusicalChair).
Similarly, see the page SMPyBandits.GitHub.io/MultiPlayers.html

• In [BK18b], we used SMPyBandits to illustrate and compare different "doubling trick"
schemes. SMPyBandits.GitHub.io/DoublingTrick.html

• In [BK19b] and [BK19a], and in Chapter 7 below, we used SMPyBandits for piece-wise
stationary MAB models (only for the single-player case). We illustrate and compare
different algorithms designed for this family of non-stationary problems. We designed
the GLRklUCB policy, and implemented most of the state-of-the-art passive or active
adaptive policies, both adversarial- or stochastic-based, designed to tackle the piece-
wise stationary MAB problems. We also implemented a large benchmark of different
piece-wise stationary problems. See SMPyBandits.GitHub.io/NonStationary.html

3.3 Experimental comparisons of state-of-the-art algorithms

In this section, we use the SMPyBandits library to compare experimentally various state-of-
the-art (single-player) algorithms on some MAB problems. We first detail the list of different
algorithms that we compare. We then give the results of the numerical experiments, in terms
of mean regret at the end of the experiment of different horizons T . Additional results in terms
of real measurements of time and memory are given and discussed in the next Section 3.4.

3.3.1 Experimental setup: algorithms and problems

We consider the 9 following algorithms, and 7 more are described in Appendix 3.6.1. For
each of them, we give a bibliographic reference, that corresponds to a recent article studying
it and not the first one which introduced it. We give the chosen tuning of its parameters,
for parametric algorithms. Algorithms that are “not anytime” use the exact value of the
horizon T , and when increasing values of T are studied for the same problem, they use
the correct successive values. For reproducibility, we also give in “typewriter font” the
name of the corresponding class in the Policies module in SMPyBandits (e.g., UCB1 is
Policies.UCBalpha).

1. ε-greedy [BCB12] (EpsilonDecreasing), using εt = ε0/t, and ε0 = 0.1 (chosen arbi-
trarily). It has a very small cost in terms of time and memory, but it usually achieves
linear regret in practice, despite of the theoretical regret bound.
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2. Explore-then-Commit (ETC_KnownGap), that knows the horizon, and a lower-bound on
the gap between arms (chosen arbitrarily as δ = 0.01, valid for all problems). Similarly
to ε-greedy, it has a very small footprint in terms of time and memory, but most of the
times it only obtains large (linear) regret.

3. Exp3++ from [SL17] (Exp3PlusPlus), using α = 3 and β = 256 as advised.

4. UCB1 from [ACBF02] (UCBalpha), shown in Algorithm 2.3 above, using α = 1. It
achieves order-optimal problem-dependent bounds with a O(K ln(T )/∆2) regret.

5. kl-UCB from [CGM+13] (klUCB), also shown inAlgorithm2.3 above, using the Bernoulli
KL divergence and the corresponding kl-UCB indexes (coded as kullback.klucbBern).
It is computationally more costly that UCB, even if empirically we found that even in
the worst cases kl-UCB is no more than one order of magnitude slower than UCB.

6. Thompson sampling from [KKM12] (Thompson), using a Beta prior and posterior, ini-
tially uniform (i.e., πk(0) = Beta(1, 1)). It is efficient in terms of storage, and even if K

random samples must be sampled from the arms posteriors at each time step t, Thomp-
son sampling is not much slower than UCB, if the random number generator used for
the simulations is efficient (it is the case for SMPyBandits, as we use numpy.random
module which relies on highly optimized C or Cython code).

7. Bayes-UCB from [KCG12] (BayesUCB), using a Beta prior and posterior, initially uniform,
i.e., πk(0) = Beta(1, 1). It is comparable to Thompson sampling in terms of memory
complexity, but slower as computing a quantile is more costly than sampling from a
distribution. But in particular for Bernoulli distributed arms and for Beta posteriors and
priors, Bayes-UCB is only about twice as slow as Thompson sampling.

8. AdBandits from [TdSCC13] (AdBandits), using α = 1. In practice, it is usually (slightly)
more efficient than both Thompson sampling and Bayes-UCB in terms of regret, it is
comparable in terms of computation times, but costs more memory.

9. BESA (Best Empirical Sampled Average) from [BMM14], which is implemented with a
binary tournament, written in a naive but efficient way (i.e., not using recursive functions,
by using the BESA class with the ”non_recursive”=True option). But the extension to
K > 2 arms is still costly in terms of both time and memory, as illustrated below, and
blows-up exponentially when K increases.

We focus on the most well known algorithms, discussed in Section 2.4, and two others that
are efficient but less known (AdBandits and BESA). To highlight that SMPyBandits implements
many other MAB algorithms proposed in recent works, we detail in Appendix 3.6.1 7 other
algorithms. They are more recent (e.g., 3 from 2018 and 2 from 2019) and are usually more
complex, or based on a different point-of-view. The numerical results presented below include
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these extra algorithms, to justify empirically that despite their respective qualities, and despite
being very efficient, it is reasonable to focus on UCB and kl-UCB in the rest of this thesis, as
they stay comparable with or more efficient than other recent algorithms, but are simpler
to implement (e.g., when comparing UCB to ApproximatedFHGittins or MOSS-Anytime) to
manipulate theoretically (e.g., when comparing kl-UCB to BESA, PHE or RCB).

Randomly sampled problems. For brevity, we prefer to focus on a single kind of distribu-
tions (Bernoulli), but similar results were observed for other distributions, in particular for
(possibly truncated) Gaussian distributions.

For a fixed number of arms K ≥ 2, instead of simulating a large number of times the
same problem, we generate a new random problem for each independent run. We consider a
randomly generated vector of means, each being sampled uniformly at random in [0, 1], with
a minimum gap of ∆min, as well as minimum and maximum values of µmin and µmax, that
is denoted by µ ∼ E(∆min, µmin, µmax). This space E∆min is defined as {µ ∈ [µmin, µmax]K :
mink ̸=k′ |µk −µk′ | ≥ ∆min}. We use µmin = ∆min and µmax = 1−∆min, and the value used for
∆min is 0.1 for K ≤ 3 (for “easy” problems), and 1

3K for K ≥ 5 (for “harder” problems).

Other parameters of the experiments. On the one hand, we fix K = 8 and we consider
increasing values for the horizon, from T = 1000 to T = 50000. On the other hand, we fix
T = 5000 and we consider as well an increasing number of arms, from K = 2 to K = 32.
For all experiments, we run N = 1000 independent simulations. We show in Code 3.6 in the
Appendix below more details about how to run these experiments.

3.3.2 Experiments results

We give in Figures 3.5 and 3.6 below the results of the experiments.

Summary of the experiments. We are able to check empirically that the regret of all the
efficient algorithm indeed scales as predicted by the theory, that is linearly in the number of
arms, and logarithmically in the horizon, i.e., RT = O(K ln T ). The main take-awaymessage is
the following: in all the rest of this thesis, we focus on two algorithms depending if simplicity
or efficiency is favored:

• UCB is used in the more applied Chapter 5, when simplicity is favored,

• kl-UCB is used, in the two more theoretical Chapters 6 and 7, when we analyze mathe-
matically the performance of an algorithm that is running on top of a classical stationary
MAB policy, like our two contributions, MCTopM and GLR.
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Figure 3.5 – Regret vs different values of K (RT / ln(T )), for T = 5000 and for 16 algorithms. The y-axis
is in log-scale. All algorithms appear to have a regret slowly growing with respect to K, as predicted
by the regret bounds which are linear with respect to the number of arms. Bayesian algorithms appear
to be the most efficient, and kl-UCB as well as UCB are also seen to be efficient. Both the ε-greedy and
Explore-then-Commit algorithms performed poorly, actually they achieve linear regret.

3.4 Comparing real measurements of time and memory costs

In this section, we report additional experiment results from the simulations described in
the previous Section 3.3. Instead of studying on the efficiency of the algorithms (i.e., their
regret), we report results of real measurements in terms of computational time as well as
memory storage. While the results reported in the previous section should not depend
on the implementation of the different algorithms, the results in this section concern real
measurements of both time and memory consumptions of the simulation software used for
these simulations. Hence, the reported results highly depend on many factors, including how
the code is written, and where and when it is run. We take precautions to ensure the fairness
of the comparison between the different algorithms, as detailed in Appendix 3.6.2.

3.4.1 Computational time

In Figure 3.7, we can see that Bayesian algorithms appear to be the most efficient (i.e., in the
bottom left corner), and kl-UCB is very close to their best empirical performances. UCB,
algorithms that were proven to perform similarly to UCB (i.e., PHE and RCB), and other index
policies inspired by UCB (ApprFHG, UCB†) enjoy very similar performances: a larger regret
than Bayesian algorithms and kl-UCB, but a shorter running time. This observation highlights
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Figure 3.6 – Regret vs different values of T (RT /K), for K = 32 and for 16 algorithms. All efficient
algorithms appear to have a logarithmic regret with respect to the horizon, as predicted. The respective
ranking of all the algorithms also appears to remain preserved for different values of T , which is also
backed-up by theoretical results: if two algorithms A and A′ has a regret close to their regret bounds,
of the form RT ≤ O(K ln(T )), and the bound for A use a smaller constant than the bound for A′, A
should obtain a smaller regret than A′ no matter the horizon. Bayesian algorithms appear to be the
most efficient, and kl-UCB as well as UCB are also shown to be efficient. Finally, we also observe once
more that both ε-greedy and Explore-then-Commit performed poorly, achieving linear regret.

an interesting trade-off between having a small regret, and being fast and computationally
efficient. We also observe that BESA has a low regret but is much slower than all the other
algorithms, because its complexity is exponentially growing wrt K the number of arms.

Moreover, in the two Figures 3.8 and 3.9, we are able to check empirically that the com-
putational time of all the efficient algorithm indeed scales as predicted by the theory, that is
linearly in the number of arms in the horizon, i.e., TT = O(KT ).

3.4.2 Memory cost

Like for the computational cost discussed above, in Figure 3.10, we can see that Bayesian
algorithms like Thompson sampling again appear to be the most efficient (i.e., in the bottom
left corner), and kl-UCB is close to their best empirical performances. UCB and other index
policies inspired by UCB (ApprFHG, UCB†) enjoy very similar performances: a larger regret
than Bayesian algorithms and kl-UCB, but a similar memory cost. This time, there is no clear
trade-off between optimality in terms of regret and memory cost, and based on simply this
Figure 3.10, one could advise to use Thompson sampling rather than kl-UCB.

68



3.4 Comparing real measurements of time and memory costs

3 4 5 6 7 8 9
Normalized running time (log scale)

0

1

2

3

4

No
rm

al
ize

d 
m

ea
n 

re
gr

et
 (l

og
 sc

al
e)

Mean results from 28 different values of K and T
EpsilonDecreasing
ETC_KnownGap
Exp3++
UCB
kl-UCB
Thompson
BayesUCB
AdBandits
BESA
MOSS-Anytime
ApprFHG
UCB
kl-UCB-switch
Tsallis-Inf
RCB
PHE

Figure 3.7 – Normalized mean regret vs normalized running time (in micro-seconds), aggregating
the results from different values of K and T , for 16 algorithms. Both the x-axis and y-axis are in
log-scale. UCB and kl-UCB are among the best algorithms, while AdBandits, Thompson sampling
and Bayes-UCB slightly outperform them in terms of regret, and have similar running times.
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Figure 3.8 – Normalized running time vs different values of K (TT /T), for T = 5000 and for 16
algorithms. y-axis is in log-scale. All algorithms except BESA has a linear normalized running time,
meaning that for K arms they use a computation time proportional to K, as predicted: TT = O(KT ).
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Figure 3.9 –Normalized running time vs different values of T (TT /T ), forK = 32 and for 16 algorithms.
y-axis is in log-scale. All algorithms except BESA has a constant normalized running time, meaning
that for T rounds they use a computation time proportional to T , as predicted: TT = O(KT ).

Moreover, in the two Figures 3.11 and 3.12, we are able to check empirically that the
memory cost of all the efficient algorithm indeed scales as predicted by the theory, that is
linearly in the number of arms but independently of the horizon, i.e.,MT = O(K).

Conclusion. The simplest (but most efficient) algorithms have a time complexity at each
time step t ∈ [T ] bounded by O(K), independently of t, and thus have a total time complexity
bounded by TT = O(KT ), as well as a memory cost proportional to the number of arms but
independent of the horizons, i.e., bounded byMT = O(K).
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Figure 3.10 – Normalized mean regret vs normalized memory costs (in bytes), aggregating the results
from different values of K and T , for 16 algorithms. Both the x-axis and y-axis are in log-scale.
Thompson sampling appears as the best algorithm in this visualization, while UCB has the advantage
of being memory efficient, and kl-UCB obtains similar performances.
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Figure 3.11 – Normalized memory cost vs different values of K (MT /K), for T = 5000 and for 16
algorithms. y-axis is in log-scale. All algorithms (except BESA) has an almost constant memory cost,
meaning that for K arms they use a storage proportional to K, as predicted:MT = O(K).
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Figure 3.12 – Normalized memory cost vs different values of T (MT /K), for K = 32 and for 16
algorithms. y-axis is in log-scale. All algorithms have a growing normalized memory cost, meaning
that for T rounds they use a computation time almost independent of T , as predicted:MT = O(K).
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3.5 Conclusion

We also shown a trade-off between optimality in terms of regret, and efficiency in terms
of time complexity or memory cost. Our position regarding this trade-off is motivated by
Occam’s razor principle. On the one hand, if the algorithm should be implemented on a
cognitive radio device that has limited hardware capacity (for instance), one can reasonably
aim at the simplest yet order-optimal algorithms, and we advise to use UCB and algorithms
running on top of this simple index policy, as we do in Chapter 5. On the other hand, if one is
more interested in the mathematical developments and wants to prove the tightest possible
regret upper bounds, aiming at more efficient but more complex algorithms is interesting, and
we chose the kl-UCB algorithm as the base bandit policy for our works in Chapters 6 and 7.

3.5 Conclusion

We chose to present here the Python library SMPyBandits in this chapter, rather than in the
Appendix, because all the numerical experiments on single-player multi-armed bandits in
Chapter 4, and on more sophisticated models in the last two Chapters 6 and 7 are built on
SMPyBandits. We detailed the three following main points of our library:

(i) The purpose of SMPyBandits is to easily implement numerical simulations of stochas-
tic or piece-wise stochastic problems of single- or multi-players multi-armed bandits.
SMPyBandits is distributed on GitHub and Pypi freely, under an open-source license,
and it is extensively documented (at SMPyBandits.GitHub.io). Our library allows any
researcher to easily run numerical simulations of different kinds of multi-armed bandit
problems, requiring only a small knowledge of Python thanks to its documentation, its
well-designed API, and many examples of simulation scripts and configuration files
included.

(ii) We detailed how SMPyBandits is implementing arms, problems, algorithms, and use
these components to implement a simulation loop, with various visualizations being
performed after the simulation. As far as now, SMPyBandits is restricted to the finite-arm
case, but it supports a wide range of arms distributions. Different kinds of models are
implemented, from stationary single-player to piece-wise stationary multi-players with
different collision models. One of the main qualities of the library is that it is quite
exhaustive, as all the main families of algorithms covering these different models have
been implemented, even very recent algorithms from the literature, as we followed the
active research from December 2016 to June 2019. More than 65 algorithms or variants
of algorithms are implemented for the single-player case, 5 for the experts aggregation
problem, about 15 for the multi-players case, and about 20 for the piece-wise stationary
problem. All the codebase is fully documented, and the library is using continuous
integration to run automated tests on the code after everymodification. When comparing
algorithms on a problem, the main performance measure is the regret, but the library
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also computes, stores and visualizes other measures, such as best-arm selection rate,
mean cumulated reward, as well as real time or memory costs.

(iii) Finally, we presented how to use SMPyBandits, if one wants to run some pre-designed
simulations or design new simulations. Running a simulation is very easy, and different
examples showed that the main parameters such as the time horizon T or the number of
repetitions can be configured directly from the command line when running the Python
script, or by modifying the code. Designing a new simulation requires to have a basic
knowledge of Python, but not to dive into the implementation of the library.

We want to conclude by highlighting that a significant amount of time during my PhD
was devoted to the development of SMPyBandits, and as such the library, its documentation
and this chapter are considered an important contribution of this thesis. Our library is used
for the numerical simulations in the rest of this document, except Chapter 5. We also used it
in other publications not included in this thesis, like our work on doubling tricks [BK18b].

Perspectives

An interesting task that I would have liked to complete is to interface the library with a
web-based interactive demonstration, in order to allow anyone to launch simulations without
any knowledge of programming. It is already possible to reproduce some of the experi-
ments presented in this thesis, by following the instructions given in the documentation (see
Section 3.2.10), by using the Jupyter notebooks [K+16] made available2.

Finally, the most exciting thing that could happen to our SMPyBandits library would be to
see it gaining popularity! Its documentation has seen already about 25000 visits, the project on
GitHub had 130 stars in November 2019, and based on the features requested and the emails
received about it, we counted between ten to twenty researchers in other labs who use or used
SMPyBandits. While this is a good start, we believe that the library is mature and interesting
enough to hope to see it being used by more people. We have submitted a summary paper
presenting SMPyBandits [Bes18] to the MLOSS track of the Journal of Machine Learning
Research (JMLR), and we hope that it will be accepted, as it would give more visibility to this
work. As a personal note, I would like to continue working on SMPyBandits, and implement
the most interesting requested features, as well as maintain it, and possibly continue to add
recent algorithms by following actively the research in this community. I would also love to be
able to teach an under-graduate course on reinforcement learning and bandits in the future,
and to use my library as a support to illustrate a course and its practical sessions.

2 These notebooks are hosted on both the GitHub repository of SMPyBandits and on my website on
perso.crans.org/besson/PhD/notebooks/. They can be used locally if you install the library, but can also
be used on cloud platforms, like Binder mybinder.org/v2/gh/SMPyBandits/SMPyBandits/master or Google
Colab colab.research.google.com/github/SMPyBandits/SMPyBandits/tree/master/notebooks/
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3.6 Appendix

We give in this appendix more details regarding the numerical experiments presented in
Section 3.3 and 3.4 above, for the other algorithms used in our benchmark, and details on the
methodology used to measure the time and memory.

3.6.1 Additional details about numerical experiments in Section 3.3

This Appendix section starts by describing 7 more algorithms that are also compared with the
9 presented above in Section 3.3.

10. MOSS-Anytime from [DP16], using α = 1 (MOSSAnytime), is an anytime variant of
MOSS [BS12], using an adaptive tuning of its parameter. It obtains good “best of
both world” performances, meaning that it achieves O(K ln(T )/∆2) regret for problem-
dependent bounds, and O(

√
KT ) for problem-independent bounds. Empirically, it

performs usually similarly to UCB, and is slightly more costly in terms of both time and
memory.

11. Approximated Finite-Horizon Gittins from [Lat16b] (ApproximatedFHGittins), using
α = 1, mimics the UCB algorithm but uses a more complicated function to compute
the upper confidence bounds. It achieves order-optimal problem-dependent bounds
with a O(K ln(T )/∆2) regret. Empirically, it performs usually similarly to UCB and
MOSS-Anytime, and is slightly more costly in terms of both time and memory.

12. UCB† from the same author [Lat18] (UCBdagger), using α = 1, mimics the UCB algo-
rithm but uses a much more complicated function to compute the upper confidence
bounds, and uses more storage. It also achieves order-optimal problem-dependent
bounds with a O(K ln(T )/∆2) regret. Empirically, it performs usually similarly to UCB
and MOSS-Anytime, and is slightly more costly in computation time, but it is much
more costly in terms of memory.

13. Anytime variant of kl-UCB-switch from [GHMS18] (klUCBswitchAnytime), is a very
recent variant of KL-UCB [CGM+13]. It mimics the KL-UCB algorithm but uses a
much more complicated function to compute the upper confidence bounds, and uses
more storage. It is anytime, and was proven to obtain good “best of both world” perfor-
mances, meaning that it achieves an asymptotically optimalO(ln(T )) regret for problem-
dependent bounds, and O(

√
KT ) for problem-independent bounds. Empirically, it

usually outperforms (slightly) kl-UCB in terms of regret, and costs about the same
memory, but it is slower.

14. Tsallis-Inf from [ZS19] (TsallisInf), using α = 1/2 (it seems to be the most efficient
of the algorithms described in the article). It is based on the online mirror descent
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algorithm with a Tsallis entropy regularizer, and it is anytime. It was also proven to
obtain good “best of both world” performances. Empirically, we were unable to find any
problem where it performs as well as UCB (or any other efficient algorithm), and we
are confident that our implementation is correct3. Tsallis-Inf is also slower than UCB
(about as slow as kl-UCB-switch), and costs an-order-of-magnitude more memory.

15. RCB (Randomized Confidence Bound) from [KT19] (RCB), using α = 1 and pertur-
bations uniformly sampled in [0, 1]. We prefer to use the simplest of the algorithms
described in the article. It was analyzed and found to be order-optimal for problem-
dependent bounds, and empirically we found that it is usually performs slightly worse
than UCB, in terms of regret, time and memory. It is included because it remains com-
parably efficient with the other state-of-the-art algorithms, and because the key message
from [KT19] is very interesting: “the optimism embedded in UCB can be replaced by
simple randomization”.

16. PHE (Perturbed-History Exploration) from [KSGB19] (PHE), using a perturbation scale
of 0.5 as advised. The algorithm adds O(t) i.i.d. pseudo-rewards to its history in round
t, and then pulls the arm with the highest estimated value in its perturbed history. It
was also analyzed and found to be comparable with UCB. Like RCB, PHE was found
to be empirically slightly worse than other state-of-the-art algorithms. Interestingly, its
time and memory consumption stay constant with respect to the step number t and
the horizon T , because generating and summing t pseudo-rewards from a Bernoulli
distribution can actually be done in O(1) time and space, by using efficient sampling
methods for sampling from a Binomial distribution.

How to run such experiments. We give below in Code 3.6 a Bash command to run the
experiments presented in Sections 3.3 and 3.6.1 above. It uses for loops and environment
variables from Bash, and not Python, mainly for concision, but we could also have done the
same by writing a Python script that calls the main.py script for these values of T and K.

3.6.2 Methodology details for measurements of time and memory

The results reported in Section 3.4 highly depend on many factors, including how the code is
written, and where and when it is run. We detail both below:

Quality and optimization of the code: The same level of optimization is used in all the codebase
of SMPyBandits, and most of the time, the code is pure and naive Python and was not

3 Despite a serious amount of time spent on this implementation, maybe it has some bug which explains the
poor empirical performance obtained by Tsallis-Inf in our simulations. Exploring in more details this kind of
algorithms is very interesting, as algorithms based on online mirror descent make a rich connection between
multi-armed bandit and online convex optimization [H+16], and a short-term future work in SMPyBandits will
be to explore different values of α for Tsallis entropy regularization, or other families of regularization.
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1 $ for T in $(seq 5000 5000 50000); do \
2 DEBUG=False NOPLOTS=False SAVEALL=True N_JOBS=-1 N=1000 BAYES=True \
3 T=$T K=8 python3 main.py configuration.py \
4 && cp logs/main_py3_log.txt logs/main_py3_log__N1000_BAYES_T{T}_K8.txt \
5 done
6 $ for K in $(seq 2 2 32); do \
7 DEBUG=False NOPLOTS=False SAVEALL=True N_JOBS=-1 N=1000 BAYES=True \
8 T=5000 K=$K python3 main.py configuration.py \
9 && cp logs/main_py3_log.txt logs/main_py3_log__N1000_BAYES_T5000_K{K}.txt \

10 done

Code Example 3.6 – Bash code to run the large-scale experiments presented in Sections 3.3 and 3.6.1,
for K = 8 and T ∈ {5000, . . . , 50000} and T = 5000 and K ∈ {2, . . . , 32}.

optimized. Mathematical functions (e.g., √•, ln) and random numbers used are using numpy
and numpy.random modules [vdWCV11], which are based on C and Cython code [BBS+19]
and can be considered highly efficient. Computations of Kullback-Leibler and indexes for
kl-UCB algorithms are based on a compiled CPython extension written in C [Fou17] and
can also be considered highly efficient. As we can safely affirm that the code of the different
algorithms has the same level of optimization, the comparison is fair, and we do not favor any
algorithm in their implementation in SMPyBandits.

About the experimental environment: the exact measurements used for the figures displayed
below highly depend on the machine used for the simulation, the version of the language and
its libraries (see above in Section 3.2.8 for details about SMPyBandits), as well as the number
of CPU cores being used (here, we used 12 cores in a 12-core desktop) etc. As long as the
different algorithms and simulations are performed on the same environment, the comparison
we make from them are fair and do make sense.

About the measurement protocol. To be precise, we used the two following approaches to
measure the real time and memory costs of the different algorithms.

For time, we used the time.time() function from Python’s standard library, that gives the
current time in micro-seconds. In the Evaluator object of SMPyBandits, before launching
the “for” loop on t ∈ [T ] for one algorithm, the system time is stored, and when the loop
is finished, the time used for this loop is the current system time minus the starting time.
This measurement gets averaged on the N = 100 (independent) repetitions, and consistently
measure the time efficiency of the algorithms.

For memory, we use two different approaches whether the code runs on a UNIX or a
Windows system. On UNIX, the resource module allows to measure the memory of the
current process, and by counting the difference in memory used by the Evaluator object
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before and after the “for” loop, we can track the memory used by the algorithm to store all its
interior variables.

In both cases, the “for” loop takes some time and stores many variables, but the only
difference in terms of both time or memory between two algorithms is explained by the
difference in the implementation of the algorithms.

Comparingmeasurements. But what is important in these simulation results is not the exact
values, but rather to compare the costs of the different algorithms, and thus only the relative
difference in terms of time and memory costs are important. Relative difference for costs do
not depend much on the code and the machine used for the simulation. The computation
time is normalized, that is it is divided by the horizon, to count the (average) time used by
an algorithm at time t from t = 1 to t = T , while the memory cost is not normalized. Thus,
we can check that efficient algorithms have a running time independent on the horizon T ,
instead of just observing a linear dependency, and we can check that efficient algorithms have
a memory cost independent on the horizon. All the considered algorithms in this Chapter
are efficient in this aspect, but in Chapter 7 we study algorithms that essentially have to store,
and run computations, on an increasing number of observations (e.g., CUSUM-UCB), so their
computation cost at time t increases (linearly) with t, and thus they are more costly. We
can also check that efficient algorithms have a running time and a memory cost linear in the
number of arms K, while more complex algorithms like BESA suffer from an exponential
blow-up of their complexity when K increases.

Normalizing data. The two figures below regret normalized data, in the following way.
For each algorithm, we ran simulations to obtain its (empirical) regret, computation time
and space requirement, for different problems with different values of K and T . Simply
considering the average of such measurements makes no sense, as for instance two values
of the regret for T = 1000 or T = 50000 do not have the same order of magnitude. We know
that efficient algorithms are expected to follow these patterns:

• The final regret RT should scale as O(K ln(T )),

• The total computation time TT should scale as O(KT ) (i.e., a computation time of O(K)
for each time step t),

• The total memory costMT should scale as O(K), independent of the horizon.

Thus, on the one hand, when we show aggregated results from all the different values of K

and T , we normalized the data by dividing the regrets by K ln(T ), the times by KT and the
memory by K. On the other hand, when we plot a quantity (RT , TT ,MT ) as a function of T

(resp. of K) we only normalize by K (resp. by T ).
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Chapter 4

Expert aggregation for online MAB
algorithms selection

The review of MAB algorithms given in the previous Chapter 2 showed that there is a large
collection of different algorithms designed for different kinds of bandit problems. In this
chapter, we discuss the question of online algorithm selection. We tackle the question of how
to select a particular bandit algorithm when a practitioner is facing a particular (unknown)
bandit problem. Instead of always choosing a fixed algorithm, or running costly benchmarks
before real-world deployment of the chosen algorithm, another solution could be to select
a few candidate algorithms, where at least one is expected to be very efficient for the given
problem, and use online algorithm selection to automatically and dynamically decide the best
candidate. We propose an extension of the Exp4 algorithm for this problem, that we called
Aggregator, and illustrate its performance on some bandit problems.

– Y’a toujours au moins deux solutions à un problème.
Élias de Kelliwic’h, interprété par Bruno Fontaine,

Kaamelott, Livre III, Épisode 67 “La Potion de Fécondité II”.
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Expert aggregation for online MAB algorithms selection

4.1 Different approaches on algorithm selection

For any real-world applications of MAB algorithms, several solutions have been explored
based on various models, and for any model, typically there are many algorithms available, as
we have seen above. We gave in Section 2.4 an overview of the main families of algorithms
designed to tackle stochasticMAB problems, andwemainly focused on the UCB1, kl-UCB and
Thompson sampling algorithms. But a rich research literature has produced many different
algorithms tackling the MAB problem, as suggested for instance by the length of the reference
book [LS19]. Thus, when a practitioner is facing a problem where MAB algorithms could be
used, it is not an easy task to decide which algorithm to implement. It is hard to predict which
solution could be the best for real-world conditions at every instant, and even by assuming a
stationary environment, when one is facing a certain problem but has limited information
about it, it is hard to know beforehand which algorithm can be the best solution.

In this chapter, we first present two naive approaches for selecting an algorithm when
facing a new problem, and then we detail the online approach that uses a “leader” MAB
algorithm running on top of a pool of “followers” algorithms, and we present our contribution
that is a new “leader” algorithm based on Exp4.

Publication. This chapter is based on our article [BKM18].

Outline. This chapter is organized as follows. First, we give more motivations in the rest of
this section, then we explain how to combine such stationary MAB algorithms and aggregate
them. We present the proposed algorithm, called Aggregator, in Section 4.2, Finally, we present
numerical experiments in Section 4.3, on Bernoulli and non-Bernoulli MAB problems, com-
paring the regret of several algorithms against different aggregation algorithms. Theoretical
guarantees are shortly discussed in Section 4.4.

4.1.1 Motivation for online algorithm selection

Many different learning algorithms have been proposed by the machine learning community,
and most of them depend on several parameters, for instance α for UCB1, the prior for Thomp-
son sampling or Bayes-UCB, the kl function for kl-UCB etc. Every time a new MAB algorithm
A is introduced, it is compared and benchmarked on some bandit instances, parameterized
by µ = (µ1, . . . , µK), usually by focusing on its expected regret RA

T . For a known and specific
instance, simulations help to select the best algorithm in a pool of algorithms, but when one
wants to tackle an unknown real-world problem, one expects to be efficient against any problem,
of any size and complexity in a certain family: ideally one would like to use an algorithm that
can be applied identically against any problem of such family.
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4.1 Different approaches on algorithm selection

Naive approaches. On the one hand, a practitioner can decide to pick one algorithm, maybe
because it seems efficient on other problems, or maybe because it is simple enough to be used
in its application. It might be unrealistic to implement complicated algorithms on limited
hardware such as embedded chips in a very low-cost IoT end-device, and for instance a
practitioner could choose to only consider the UCB1 algorithm (or other low-cost algorithms).
On the other hand, if prior knowledge on the application at hand is available, one could
implement some benchmarks, and compare a set of algorithms on different problems. If a
leader appears clearly, it is then possible to choose it for the application.

Illustrative example. For instance, if you know that the considered problem can either have
K arms with very close means, or one optimal arm far away from the other, two versions
of UCB1 will perform quite differently in the two problems: using a large α, i.e., favoring
exploration, will give low regret in the first case and high regret in the second case, while
using a low α, i.e., favoring exploitation, will obtain opposite performances. A first approach
can be to use an intermediate value, as α = 1/2 suggested by theory, but another approach
could be to consider an aggregated vote of different versions of UCB1, each running with a
different value of α (e.g., in a logarithmic grid), and let a “leader” learning algorithm decide
which value of α is the best for the problem at hand.

4.1.2 Online algorithm selection with expert aggregation

The online approach is interesting in the case where the computation power or memory
storage of the application is not a limitation factor, but where one cannot run benchmarks
before deploying the application. We consider a fixed set of algorithms, and we use another
learning algorithm on top of this set, to learn on the fly which one should be trusted more, and
eventually, used on its own.

The aggregation approach is especially interesting if we know that the problem the appli-
cation will face is one of a few known kinds of problems. In such cases, if there are N different
sorts of problems, and if the practitioner has prior knowledge on it, she can use the naive
approach by selecting algorithm Ai which should perform well on problem i, for i ∈ [N ].
Then she can use the aggregation of A1, . . . ,AN when facing an unknown problem. To the
best of the authors’ knowledge, aggregation algorithms, such as Exp4 which dates back from
2002 [ACBF02], have actually never been used in practice for stochastic MAB problems. For
instance, if we look at the applications of MAB for Opportunistic Spectrum Access, like it
was proposed in [JEMP09, JEMP10, JMP12], online selection of MAB algorithms was never
discussed, and usually the considered algorithm is simply UCB1, with no discussion regarding
this choice.
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Expert aggregation for online MAB algorithms selection

4.1.3 Aggregating bandit algorithms

We assume to have N ≥ 2 MAB algorithms, A1, . . . ,AN , and let Aaggr be an aggregation
algorithm, which runs the N algorithms in parallel (with the same slotted time), and use
them to choose its arms based on a voting from their N decisions. Aaggr depends on a pool
of algorithms and a set of parameters. We would like that Aaggr performs almost as well as
the best of the Aa, with a good choice of its parameters, independently of the MAB problem.
Ideally Aaggr should perform similarly to the best of the Aa. To simplify the presentation, we
restrict in Algorithm 4.1 to bandit algorithms that give deterministic recommendations: one
arm is chosen with probability 1 and the others with probability 0. However, both Exp4 and
Aggregator can be adapted to aggregate randomized bandit algorithms, i.e., algorithms that
output a probability distribution q(t) = (qk(t))k∈[K] over the K arms at each time step, and
draw the next selected arm according to this distribution. For instance, Thompson sampling
uses its posterior distribution, or UCB can use a distribution with a mass of 1/n on the n ≥ 1
arms of maximal index, and a mass of 0 on the other arms.

The aggregation algorithm maintains a probability distribution πt on the N algorithms
Aa, starting from a uniform distribution. The probability of trusting the decision made by
algorithmAa at time t is thus πt

a. Aaggr then simply performs aweighted vote on its algorithms:
it first decides whom to trust by sampling a ∈ [N ] from πt, then follows Aa’s decision: a ∼
πt, Aaggr(t) = A(t) = Aa(t). We prove below that it is equivalent to first let all the algorithms
decide their arm, i.e., Aa(t), and then to compute ∀k ∈ [K], pt

k
.=
∑N

a=1 πt
a × 1({Aa(t) = k}),

the weighted probability that one of the N aggregated algorithms chose arm k, and finally to
sample A(t) ∼ πt.

Proposition 4.1. The two following sampling schemes for the aggregated algorithm
Aaggr [A1, . . . ,AN ] are equivalent, i.e., they give the same distribution on the action chosen
by Aaggr, Aaggr(t) = A(t).

1. Sample a(t) ∼ πt first, then trusts Aa(t)’s decision: Aaggr(t) = A(t) = Aa(t)(t),

2. Let Aa(t) be the arm chosen by algorithm Aa (sampled from qt
a), for each a ∈ [N ], and

compute ∀k ∈ [K], pt
k

.=
N∑

a=1
πt

a × 1(Aa(t) = k). Then, play Aaggr(t) = A(t) ∼ pt.

Proof. For any fixed time step t ∈ [T ], we denote respectively P (t) and P ′(t) the distribu-
tion of action of the aggregated algorithm Aaggr at time t, respectively under the first and
second sampling scheme. Let qt

a ∈ ∆K be the distribution of the chosen action by algo-
rithm Aa (for a ∈ [N ]), that depends on the past observations (as well as some external
randomness, see Section 2.1). The first sampling scheme gives Pk(t) = P(Aaggr(t) = k) =
P(∪· Na=1Aaggr(t) = Aa(t) = k, a(t) = a) =

∑N
a=1 P(Aa(t) = k)P(a(t) = a) =

∑N
a=1 qa,k(t)πt

a,
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4.2 The Aggregator algorithm

by independence of a(t) ∼ πt and Ai(t) ∼ qi(t) (for all i). The second sampling scheme
gives P ′

k(t) = P(Aaggr(t) = k) = E[pt
k] by definition, and E[pt

k] =
∑N

a=1 πt
aE[1(Aa(t) = k)] =∑N

a=1 πt
aP(Aa(t) = k) =

∑N
a=1 qa,k(t)πt

a. Thus we showed that Pk(t) = P ′
k(t), so the two

sampling schemes are equivalent, as claimed.

The main questions are then to know what observations (i.e., arms and rewards) should
be given as feedback to which algorithms, and how to update the trusts at each step, and our
proposal Aggregator differs from Exp4 on these very two points. The considered aggregation
algorithms are special cases of the well-known multiplicative weights update algorithm.

4.2 The Aggregator algorithm

The Aggregator algorithm is detailed in Algorithm 4.1. At every time step, after having
observed a reward r(t) = YA(t),t for its chosen action A(t), the algorithm updates the trust
probabilities from πt to πt+1 by a multiplicative exponential factor (using the learning rate
and the unbiased reward). Only the algorithmsAa who advised the last decision get their trust
updated, in order to trust more the “reliable” algorithms.

Unbiased estimate of the rewards. The reward estimate is unbiased in the following sense.
If one had access to the samples Yk,t for all arms k, the reward incurred by algorithm a at time
t would be ra(t) = YAa(t),t. But we are not in the full information setting (see [CBL06]), but in
the bandit setting, so only one of the samples Yk,t can be observed, r(t) = YA(t),t. This quantity
can only be observed for those algorithms a for which At

a = A(t). However, by dividing by
the probability of observing this recommendation, one obtains an unbiased estimate of ra(t).
More precisely, if we define the estimate by

r̂a(t) .=
YAa(t),t
pt

Aa(t)
1(Aa(t) = A(t)), (4.1)

then it satisfies EOt [r̂a(t)|Ot] = YAa(t),t, for all a, where the expectation is taken conditionally
to the history of observations up to round t, Ot. Observe that r̂a(t) = 0 for all algorithms a

such that Aa(t) ̸= A(t).

An important feature of Aggregator is the feedback provided to each underlying bandit
algorithm, upon the observation of armA(t). Rather than updating only the trusted algorithms
(that is the algorithms which would have drawn arm A(t)) with the observed reward r(t),
we found that updating each algorithm with the (original) reward observed for arm A(t)
improves the performance drastically. As expected, the more feedback they get, the faster the
underlying algorithms learn, and the better the aggregation algorithm is. This intuition is
backed up by theory explained in [MM11].
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1 Input: N bandit algorithms, A1, . . . ,AN , with N ≥ 2
2 Input: A sequence of learning rates, (ηt)t≥1, e.g., ηt = ln(N)/(tK)
3 Data: Initial uniform distribution, π0 = U([N ])
4 Result: Aaggr = Aggregator [A1, . . . ,AN ]
5 for t = 1, . . . , T do // At every time step
6 for a = 1, . . . , N do // Can be parallel
7 Aa updates its internal state (e.g., UCB indexes);
8 It chooses Aa(t) ∈ [K];
9 end
10 Let pt

k
.=

N∑
a=1

πt
a × 1(Aa(t) = k), ∀k ∈ [K];

11 Then Aaggr chooses arm A(t) ∼ pt;
12 Give original reward (A(t), r(t)) to each Aa (maybe not on its chosen arm);
13 Compute an unbiased estimate of the reward, r̂(t) = r(t)/pt

A(t);
14 for a = 1, . . . , N do
15 if Aa was trusted, i.e., Aa(t) = A(t) then
16 πt+1

a = exp(ηtr̂(t))× πt
a ; // Trusted more

17 else
18 πt+1

a = πt
a ; // Do not update the trust now

19 end
20 Renormalize the new weights πt+1: πt+1 .= πt+1/

∑N
a=1 πt+1

a .
21 end
Algorithm 4.1: The Aggregator algorithm, aggregating N MAB algorithmsA1, . . . ,AN .

Regarding the update of πt, one can note that the trust probabilities are not all updated
before the normalization step, and an alternative would be to increase πa if Aa(t) = A(t) and
to decrease it otherwise. It would not be so different, as there is a final renormalization step, and
empirically this variation has little or no impact on the performance of Aggregator.

Comparison with Exp4. The Exp4 algorithm dates from [ACBFS02], and for instance it
is also well explained in Section 4.2 of [BCB12]. It is similar to Aggregator, presented in
Algorithm 4.1, but differs in the two following points. The first difference is that a ∼ πt is
sampled first and the arm chosen byAa is trusted, whereas Aggregator needs to listen to the N

decisions to perform the updates on πt. Then, Exp4 gives back an observation (i.e., a pair arm,
reward) only to the last trusted algorithm whereas Aggregator gives it to all algorithms. The
second difference is that after having computed the reward estimate r̂a(t), Exp4 updates the
estimated cumulative reward for each algorithm, R̃a(t) =

∑t
s=1 r̂a(t)×1(As

a = As
aggr). Instead

of updating πt multiplicatively as we do for our proposal, Exp4 recomputes it, proportionally
to exp(ηtR̃a(t)). Note that there is no difference for the case of constant learning rates, and it
does not differ much for decreasing learning rates as well.
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We also note that Exp4 uses losses instead of rewards, with ℓ(t) = 1− r(t), but this is only
a change of vocabulary. A learner can equivalently play to maximize its cumulated rewards
or to minimize its cumulated losses. Most works on using expert advice and game theory
usually prefer to think about losses, as for instance the book [CBL06].

How to choose ηt. The sequence of non-negative learning rates (ηt)t≥1 used by Exp4 can be
arbitrary. It can be constant but should be non-increasing [BCB12, Theorem 4.2]. If the horizon
T is known (and fixed), they advise to use ηt

.= η = 2 ln(N)/(TK). However, for real-world
communication problems, it can be considered unrealistic to assume a fixed and known time
horizon. For more discussion on this hypothesis, we refer to Section 1 of our article [BK18b].
Thus we prefer an alternative horizon-free choice of learning rates, ηt

.= ln(N)/(tK) suggested
by [BCB12]. It is non-increasing, and it is obtained by minimizing the upper-bound on the
regret derived in [BCB12, pp48]. We compared both approaches empirically, and the second
one usually performs better. We also stick to this sequence (ηt)t≥1 of decreasing learning rates
for Aggregator.

4.3 Experiments on simulated MAB problems

We focus on i.i.d. MAB problems, with K = 9 arms. Similar behaviors are observed for other
values, e.g., trying up-to K = 100 gave the same results. For Bernoulli problem, the first one
uses µ = [0.1, . . . , 0.9], and is considered as a “simple” problem. The second one is divided
in three groups: 2 very bad arms (µ = 0.01, 0.02), 5 average arms (µ = 0.3 to 0.6) and 3 very
good arms (µ = 0.78, 0.8, 0.82), and it is considered as a “harder” problem. The horizon is
set to T = 20000 (but its value is unknown to all algorithms), and simulations are repeated
1000 times, to estimate the expected regret. This empirical estimation of the expected regret
RT is plotted below, as a function of T , comparing some algorithms A1, . . . ,AN (for N = 6),
and their aggregation with Aggregator (displayed in orange bold), using the parameter-free
learning rate sequence, ηt

.= ln(N)/(tK).

Lower-bound. The Lai & Robbins’ logarithmic lower-bound [LR85] is also plotted. It corre-
sponds to the second case in Theorem 2.7. It is crucial to note that the lower-bound is only
asymptotic, and as such one should not be surprised to see regret curves smaller than the
lower-bound (e.g., for the easier Bernoulli problem in Figure 4.1)

Comparing the algorithms against the same realizations. Note that for each of the N =
1000 simulations, we choose to generate all the rewards beforehand, i.e., one full matrix
(Yk,t)k∈[K],t∈[T ], for each of the N repetitions, in order to compare the algorithms on the same
realizations of the MAB problem. Similar plots and similar results are obtained if this choice
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is not made, but it makes more sense to compare them against the same randomization. Note
that this choice is the default in SMPyBandits, but the other possibility is implemented as well,
by changing cache_rewards to true or false in the configuration dictionary. We refer to
the online documentation for explanations on all these details.

We compare the Aggregator algorithm, as well as other aggregation algorithms, Exp4
from [BCB12], CORRAL from [ALNS17] and LearnExp from [AHK17], all with their default
parameters. The aggregated algorithms consist in: a naive uniform exploration (to have at
least one algorithmwith bad performances, i.e., linear regret, that is not included in the plots to
reduce clutter), UCB with α = 1/2, three kl-UCB algorithms (resp. with Bernoulli, Gaussian
and exponential kl functions), and Bayes-UCB and Thompson sampling with uniform prior.

Figures 4.1 and 4.4 are in semilog-y scale, this helps to see that the best algorithms can be an
order of magnitude more efficient than the worst, and the Aggregator performs similarly to the
best ones, when the other aggregation algorithms are usually amongst the worst. Figure 4.5 is
in semilog-x scale to show that the regret of efficient algorithms are indeed logarithmic.
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7), B(0.8), B(0.9) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
CORRAL(N= 6, broadcast to all)
LearnExp(N= 6, η= 0.9)
UCB(α= 1)
Thompson
KL-UCB(Bern)
KL-UCB(Exp)
KL-UCB(Gauss)
BayesUCB
Lai & Robbins lower bound = 7.52 log(T)

Figure 4.1 – On a “simple” Bernoulli problem (semilog-y scale). Aggregator is in bold red.

For Bernoulli problems (Figures 4.1 and 4.2), UCB with α = 1/2, Thompson sampling,
Bayes-UCB and kl-UCB+ (with the binary kl function) all perform similarly, and Aggregator
is found to be as efficient as all of them. For Gaussian and exponential arms, rewards are
truncated into [0, 1], and the variance of Gaussian distributions is fixed to σ2 = 0.05 for all
arms, and can be known to the algorithms (the kl function is adapted to this one-dimensional
exponential family). Figure 4.3 uses only Gaussian arms, with a large gap between their
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.01), B(0.02), B(0.3), B(0.4), B(0.5), B(0.6), B(0.795), B(0.8), B(0.805) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
CORRAL(N= 6, broadcast to all)
LearnExp(N= 6, η= 0.9)
UCB(α= 1)
Thompson
KL-UCB(Bern)
KL-UCB(Exp)
KL-UCB(Gauss)
BayesUCB
Lai & Robbins lower bound = 101 log(T)

Figure 4.2 – On a “harder” Bernoulli problem, they all have similar performances, except LearnExp,
and our proposal Aggregator outperforms its competitors.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time steps t= 1. . T, horizon T= 20000

0

100

200

300

400

Cu
m

ul
at

ed
 re

gr
et

 R
t
=
tµ

∗
−

t ∑ s
=

1
10

00
[r
s
]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [G(0.1, 0.05), G(0.2, 0.05), G(0.3, 0.05), G(0.4, 0.05), G(0.5, 0.05), G(0.6, 0.05), G(0.7, 0.05), G(0.8, 0.05), G(0.9, 0.05) ∗ ]

Aggregator(N= 6)
Exp4(N= 6)
CORRAL(N= 6, broadcast to all)
LearnExp(N= 6, η= 0.9)
UCB(α= 1)
Thompson
KL-UCB(Bern)
KL-UCB(Exp)
KL-UCB(Gauss)
BayesUCB
Lai & Robbins lower bound = 2.72 log(T)

Figure 4.3 – On an “easy” Gaussian problem, only Aggregator shows reasonable performances, thanks
to Bayes-UCB and Thompson sampling.
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Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), G(0.1, 0.05),Exp(10, 1), B(0.5), G(0.5, 0.05),Exp(1.59, 1), B(0.9) ∗ , G(0.9, 0.05) ∗ ,Exp(0.215, 1) ∗ ]
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Lai & Robbins lower bound = 7.39e+ 07 log(T)

Figure 4.4 – On a harder problem, mixing Bernoulli, Gaussian, Exponential arms, with 3 arms of each
type with the same mean.

102 103 104

Time steps t= 1. . T, horizon T= 20000

0

25

50

75

100

125

150

175

200

Cu
m

ul
at

ed
 re

gr
et

 R
t
=
tµ

∗
−

t ∑ s
=

1
10

00
[r
s
]

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: [B(0.1), G(0.1, 0.05),Exp(10, 1), B(0.5), G(0.5, 0.05),Exp(1.59, 1), B(0.9) ∗ , G(0.9, 0.05) ∗ ,Exp(0.215, 1) ∗ ]
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Exp4(N= 6)
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Figure 4.5 – The semilog-x scale clearly shows the logarithmic growth of the regret for the best algo-
rithms and our proposal Aggregator, even in a hard “mixed” problem (cf. Figure 4.4).
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means and a relatively small variance, giving an “easy” problem. And Figure 4.4 shows
a considerably harder “mixed” problem, when the distributions are no longer in the same
one-dimensional exponential family and so the Lai & Robbins’ lower-bound no longer holds.

For each of the 4 problems considered, the Aggregator algorithm is the best of all the aggre-
gation algorithms, and its regret is close to the best of the aggregated algorithms. Especially in
difficult problems with mixed distributions, Aggregator showed to be more efficient that Exp4
and orders of magnitude better than the other reference aggregation algorithms LearnExp
and CORRAL (see Figures 4.4 and 4.5).

Reproducibility. The experiments in this section are based on our library SMPyBandits, and
the page SMPyBandits.GitHub.io/Aggregation.html gives instructions to reproduce them.

4.4 Conclusion – Towards theoretical guarantees

The Aggregator does not have satisfying theoretical guarantees in terms of regret RT , unlike
many bandit algorithms. Another notion, the adversarial regret, denoted by RT , measures
the difference in terms of rewards, between the aggregation algorithm Aaggr and the best
aggregated algorithm Aa. This is in contrast with the (classical) regret, which measure the
difference with the best fixed-arm strategy (Definition 2.3). Thus, even if the aggregated
algorithms have logarithmic (classical) regret, having an adversarial regret scaling as

√
T does

not permit to obtain a logarithmic (classical) regret for the aggregation algorithm. Under some
additional hypotheses, [BCB12, Theorem 4.2] proves that Exp4 has a bounded adversarial
regret, RT ≤ 2

√
TN ln(K), with the good choice of the learning rate sequence (ηt)t≥1.

The proposed algorithm follows quite closely the architecture of Exp4, and a similar
bound for Aggregator is expected to hold. This would be a first theoretical guarantee, but
not satisfactory as we saw above that simple algorithms (like UCB) have regrets scaling as
ln(T ) [ACBF02, BCB12], not

√
T . Regret bounds in several different settings are proven for

the CORRAL algorithm [ALNS17], but no logarithmic upper-bound can be obtained from
their technique, even in the simplest setting of stochastic bandits. However, Aggregator seems
to have a (finite-horizon) logarithmic regret in all the experiments we performed, for both
Bernoulli and non-Bernoulli problems (e.g., Gaussian, exponential and Poisson distributions).
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Chapter 5

Improving Spectrum Usage of IoT
Networks with Selfish MAB Learning

After detailing in Part I the MAB model, we now come back to our main question of interest.
In this chapter, we focus on wireless networks following the hypotheses common to present
and future Internet of Things (IoT) networks exposed in Chapter 1. Our goal is to show
that the IoT devices can automatically learn to increase their battery life and their successful
transmission rates, without changing anything on the IoT standard side. We propose two
models of IoT networks, composed ofmany independent IoT end-devices, that can use low-cost
Reinforcement Learning (RL) algorithms in order to learn how to improve their spectrum
access. Decentralized RL for IoT lets the devices use acknowledgements sent back by their Base
Station as a reward, instead of sensing feedback like for OSA. We consider many independent
“dynamic” devices, each communicating with a small probability at every instant. Simulations
show that dynamic devices can greatly improve their spectrum efficiency, by using MAB
algorithms like UCB. We also developed a proof-of-concept using USRP platforms, for a
real-world validation of this approach. In a second step, we consider a second model where a
dynamic device has to (try to) retransmit a message, in case of a failed first transmission, up-to
a fixed number of retransmissions. We compare heuristics based on UCB, and simulations
confirm that the non-naive heuristics also significantly improve the network efficiency.
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5.1 Introduction andmotivations forMAB learning for IoTNetworks

After the first chapters that presented the model of MAB, we go back to the initial problems
studied in this thesis, and thus we focus on Internet of Things (IoT) networks. As explained in
the introduction in Chapter 1, unlicensed bands are more and more used and considered for
mobile and LAN (Local Area Network) and for Internet of Things communication standards.
This heavy use of unlicensed bands, in particular with the expected exponential growth of the
number of IoT devices, will cause performance drop, due to radio collisions that could even
compromise IoT promises.

Efficient Medium Access Control (MAC) policies allow devices to avoid interfering traffic
and can significantly reduce the spectrum contention problem in unlicensed bands. As end-
devices battery life is a key constraint of IoT networks, and as IoT networks are decentralized,
because the devices initiate transmissions, this leads to IoT protocols using as low signaling
overhead as possible and simple ALOHA-based mechanisms. In this chapter, we analyze the
performance of Multi-Armed Bandits (MAB) algorithms, that could be used in combination
with a time-frequency slotted ALOHA-based protocol. We highlight that even without chang-
ing anything on the level of IoT standards, our proposal is just an add-on capability that can be
used on a unit-per-unit basis. We consider the UCB[ACBF02], and the Thompson-Sampling
(TS) algorithms [Tho33, AG12, KKM12], for the first model. For the demonstration as well as
for the second model, without loss of generality, we preferred to focus on heuristics based on
the simplest algorithm (i.e., UCB), to give a clear presentation of the different ideas explored
to solve the problem of learning in order to retransmit efficiently.

We present in Section 5.2 how the MAB algorithms can be used in a unlicensed but
frequency- and time-slotted IoT network. Several devices are using bandit algorithms, and the
assumptions made by the stochastic bandit algorithms are not satisfied: as several agents learn
simultaneously and their activation processes are random, their behavior is not stationary.
As far as we know, we provide the first practical study to confirm robustness of the use of
stochastic bandit algorithms for decision making in IoT networks with a large number of
intelligent devices in the network, which makes the environment “strongly not stationary”.
This specific context makes it very hard to give mathematical proofs of convergence and of
efficiency of bandit algorithms (that is why we relax the hypothesis and only consider up-to
M ≤ K players in Chapter 6). We then validate the model with a hardware implementation on
real radio signals, detailed in Section 5.3. We conclude this chapter by presenting in Section 5.4
an extension of this model to take into account another aspect of the ALOHA protocol, that is
the possibility for dynamic devices to retransmit their packets if the Ack was not received.

Publications. This chapter ismainly based on our articles [BBM+17, BBM18, BBM19, BBMVM19,
MB19, MBDT19].
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5.2 Selfish learning for many dynamic devices with low activation
probabilities in an IoT network

As explained before in Chapter 1, the future IoT networks will require to support more and
more communicating devices. In this section, we show that intelligent devices in unlicensed
bands can useMAB learning algorithms to improve spectral resource exploitation. We evaluate
the performance of two classical MAB learning algorithms, UCB and Thomson Sampling,
to handle the decentralized decision-making of Spectrum Access, applied to IoT networks.
We mean by decentralized that learning is performed on the device side, and is spread on the
totality of the devices in a network. We also evaluate the learning performance when the
number of intelligent end-devices grows.

The aim of this section is to assess the potential gain of learning algorithms in IoT scenarios,
even when the number of intelligent devices in the network increases, and the network usage
is more and more fluctuating. To do that, we suppose an IoT network made of two types
of devices: static devices that use only one channel (fixed in time), and dynamic devices that
can choose the channel for each of their transmissions. Static devices form an interfering
traffic, which could be generated by devices using other standards as well. Note that instead of
assuming that each static device uses a fixed channel, we could also assume a looser hypothesis:
if each static device uses a fixed sub-set of the K channels, and a purely uniform random access
in its set of considered channels, then in average the observed occupancy of the K channels
can be modeled as if it were occupied by (more) static devices using only one channel. So
this first hypothesis is actually not constraining. We first evaluate the probability of collision
if the dynamic devices randomly select their channels (that is, a naive approach), and if a
centralized controller would optimally distribute all of them in the channels at the beginning
of the scenario. This second approach is ideal, but not realistic for the most common situation
of decentralized co-located IoT networks, and it is just used here as a reference. Then, these
three reference scenarios allow to evaluate the performance of bandit algorithms, such as UCB
and TS, in a decentralized network, in terms of successful communications rate, as it reflects
the network efficiency. We show that these algorithms have near-optimal performance, even
when the proportion of end-devices increases and the interfering traffic from other devices
becomes less and less stochastic, more and more fluctuating and unpredictable.

5.2.1 System model and notations

We present our system model, which consists of one gateway and many IoT devices, using a
frequency- and time- slotted protocol.

One gateway and many devices. We consider the system model presented in Figure 5.1,
where a set of devices all sends up-link packets to a (unique) network gateway. Messages
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can be sent in a fixed number K ≥ 2 of wireless channels, that are assumed to be orthogonal,
that is, a message in channel k will not cause collision to a message in another channel
j ̸= k. The communication between IoT devices and this gateway is done through a simple
pure acknowledged ALOHA-based protocol where devices transmit up-link packets of fixed
duration whenever they want. We mean here by ALOHA-based that devices do not use sensing,
and we do not consider retransmissions of packets (we relax this hypothesis in Section 5.4).

Figure 5.1 – In our system model, some dynamic devices (in the IoT network in blue) transmit packets
to a gateway and suffer from the interference generated by neighboring networks (in orange left/right).

The devices can transmit their packets in one of the K channels. In the case where the
gateway –of the corresponding IoT network– receives an up-link message in one channel, it
transmits an acknowledgement to the end-device in the same channel, after a fixed delay. This
is realistic in IoT networks such as networks based on LoRaWAN. In a more general setting, if
there were more than one gateway in the same IoT network being considered, the network
would reply to the device by letting only one gateway sends back an acknowledgement. The
natural choice is for the network to send this acknowledgement by the gateway which received
the up-link message. For simplicity but without loss of generality, we consider a network
with only one gateway, but still it is important to observe the distinction between the gateway,
which is simply a RF node, and the IoT network in charge of receiving, handling, and replying
to the incoming up-link messages from the IoT devices being paired in the network.

These communications operate in unlicensed ISM bands and, consequently, they can suffer
from interference generated by uncoordinated co-localized and/or neighboring networks (two
are shown in orange in Figure 5.1, in left or right). This interfering traffic is uncontrolled,
and is most likely unevenly distributed over the K different channels, as each IoT protocol or
IoT network can choose to use a different subset of channels. In order to simulate networks
designed for the IoT, we consider a protocol with no sensing and no repetition of up-link
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messages. The gateway is in charge of sending back an acknowledgement, after some fixed-
time delay, to any device paired with this gateway in this network (i.e., in blue in Figure 5.1)
which succeeded in sending an up-link packet. By considering a small number of orthogonal
wireless channels, and a unique PHY layer configuration (i.e., modulation, waveform, etc),
and in case of a non-uniform traffic in the different channels, the device can improve their
usage of the network if they are able to learn on the fly the best channels to use, that is, the
most vacant one. Indeed, in this model, the quality of the channels (i.e., the resources) are
identified by their vacancy, or one minus their occupancy rates.

We note that MAB learning has also started to be applied to also optimize the PHY layer
parameters, see for instance [KAF+18] which followed our article [BBM+17], but in this thesis
we chose to restrict to the spectrum access problem and thus we only consider MAB models
where the arms correspond to orthogonal frequency bands.

Figure 5.2 – The considered time-frequency ALOHA-based communication protocol [Abr70, Rob75].
Each frame is composed by a fixed duration up-link slot in which the end-devices transmit their
(up-link) packets. If a packet is well received, the gateway replies by transmitting an Ack, after the ack
delay.

Slotted protocol. For simplicity, and as in all this thesis, we only consider a discrete protocol
(i.e., slotted). As illustrated in Figure 5.2, we suppose a slotted protocol, in both time and
frequency. All devices share a synchronized time, and know in advance K, the finite number
of available RF channels. In each time slot, the devices try to send packets to the unique gate-
way, which listens continuously to all channels, following an ALOHA-based communication
protocol [Abr70, Rob75], with no sensing. Each time slot is divided in two parts: first for
up-link communications in which data packets are sent by end-devices to the gateway. In
one channel, if only one packet is sent in this part of the slot, the gateway can decode it and
sends an acknowledgement to the device in the second part (on the same channel). If two
or more devices send an up-link packet in the same slot, the up-link packets collide, and the
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acknowledgement (Ack) is not transmitted. In this case, we say that there is a collision in this
time slot. In other words, if the gateway cannot successfully decode the incoming (up-link)
messages because they were corrupted by collisions, it does not send any Ack back. This way,
no collision can occur on the down-link messages, easing the analysis of collisions.

Static vs dynamic devices. Wemake the following assumptions on the network. We assume
that there are two types of end-devices in the network:

• Static end-devices are identical, and each of them uses only one channel to communicate
with the gateway, with no loss of generality. Their choice is assumed to be fixed in time
(i.e., stationary). The traffic generated by these devices is considered as an interfering
traffic for other devices.

• Dynamic (or smart) end-devices can use all the available channels, by quickly changing
their communication channel at any time slot, following a Machine Learning policy. For
that end, they use their history of successes or failures of their past communication they
experienced in each channel, to learn about channel availability. We also assume that the
dynamic end-devices can run simple embedded decision making algorithms, and have
limited but reasonable computing as well as storage capacities. Note that of course we
assume a limited storage capacity, so no device stores the full history of communications
successes and failures, but they only store average rates (which can be stored using
two integers for each of the K channels). Our goal is to propose a learning algorithm
than can be implemented by each dynamic device, in a decentralized and independent
manner, in order to improve their successful communications rate automatically.

We further assume that there are K ≥ 2 channels, D ≥ 0 dynamic end-devices, and S ≥ 0
static devices with 0 ≤ Sk ≤ S static devices in channel k ∈ [K] (so S =

∑K
k=1 Sk).

Random emission patterns. We suppose that all devices follow the same emission pattern,
being fixed in time, and we choose to model it as a simple Bernoulli process: all devices have
the same probability to send a packet in any (discrete) temporal slot, and we denote p ∈ (0, 1)
this probability. The parameter p essentially controls the frequency of communication for each
device, once the time scale is fixed, and 1/p is proportional to the duty cycle. For instance, for
IoT devices sending messages with a duration of 1 second and possibly at every second, then
on a daily basis we have p = 1/(12 × 60 × 60) ≃ 1.5 × 10−5. In the experiments below, p is
about 10−3, because in a crowded network p should be smaller than K/(S + D) for all devices
to communicate successfully (in average).

Some assumptions on the network occupation. We focus on dense networks, in which the
number of devices S+D is very large compared to K (for instance, about 1000 to 100000, while
K is about 4 to 256). As this problem is only interesting if devices are able to communicate
reasonably efficientlywith the gateway, we assume that devices only communicate occasionally,
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i.e., with a low duty cycle, as it is always considered for IoT. Note that even unlicensed bands
have such limitations, as for instance this is a strict requirement for any device using the
868MHz ISM band in Europe (and its regulation also enforces a maximum transmission
power, but we do not consider power transmission in this work). We prefer this choice rather
than non-crowded networks, i.e., where S + D ≤ K, as the former makes more sense for
realistic IoT networks.

On the opposite, imagine if there were only K = 4 channels being occupied by D+S = 100
devices, each communicating with a high rate of p = 1/10, with a non-zero occupancy in each
channel (i.e., ∀k, Sk > 0). Then, almost all time slots will lead to collisions in all channels, for a
uniformly random access scheme, and thus the network efficiency (i.e., successful communica-
tions rate) will be so close to zero that using learning algorithms cannot improve much. Such
scenario is not our target of interest, and thus we prefer to only consider feasible scenarios
where p is smaller than K/(S + D), in order to have an average of active devices not larger1 than
the number of channels.

Link with the MAB model. All devices follow a Bernoulli emission process. Consider
the network from the point of view of one dynamic device: every time a dynamic device
has to communicate with the gateway, it has to choose one channel (at each transmission
t ≥ 1, t ∈ N), denoted as A(t) = k ∈ [K]. Then, the dynamic device waits in this channel A(t)
for an acknowledgement sent by the gateway, during a certain period (e.g., 5 seconds for the
example considered above). Before sending another message (i.e., at time t + 1), the dynamic
device knows if it received or not this Ack message. For this reason, selecting channel (or arm)
k at time t yields a (random) feedback, called a (binary) reward, r(t) .= Yk,t ∈ {0, 1}, being
0 if no Ack was received before the next message, or 1 if Ack was successfully received. The
goal of the dynamic device is to minimize its packet loss ratio, or equivalently, to maximize its
number of successful transmissions, or its cumulative reward,

∑T
t=1 r(t), which is the usual

objective in MAB problems (see Section 2.1).

This problem is a special case of the stochasticMABwith Bernoulli distributions. Contrarily
to many previous works done in the CR field and for Opportunistic SpectrumAccess [JEMP10,
JMP12], the reward r(t) does not come from a sensing phase before sending the t-th message,
as it would do for any “listen-before-talk” model. In our model, rewards rather come from
receiving or not an acknowledgement from the gateway, between the t-th and t+1-th messages.
A reward of one indicates that the acknowledgement was received on time, and a reward of
zero indicates the opposite.

The problem parameters are S1, . . . , SK which represent the (stationary) occupancy of the
channels by the static devices, and they are unknown to each dynamic device, so to maximize
their cumulated rewards, they must learn the distributions of the channels, in order to be
able to progressively improve their respective successful communications rate. The goal is

1 In Chapter 6 we simply consider the case of p = 1 and M = D ≤ K dynamic devices, referred to as players.
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thus to propose a simple sequential algorithm to be applied identically and independently
by each dynamic device, in a fully distributed setting (each device runs its own algorithm,
from its observations), in order to minimize collisions and maximize the fraction of successful
transmissions of all the dynamic devices. This requires to tackle the so-called exploration-
exploitation dilemma: a device has to try all channels a sufficient number of times to get a robust
estimate of their qualities, while not selecting the worst channels too many times. Before
presenting the MAB algorithms used in the experiments, we present some simple baseline
(reference) policies.

5.2.2 Three reference policies

We present three different policies that can be used to assess the efficiency of the learning
algorithms presented later on. The first one is naive but can be used in practice, while the
two others are very efficient but require full knowledge on the system (i.e., an oracle) and are
thus unpractical. They are however useful for our numerical simulations, and are used as
references, to show that our MAB-based approaches quickly learn to perform almost optimally.
Their short names are used in the legend on Figures 5.3, 5.5), and are given in “quotes” in the
corresponding paragraphs.

1st - Naive policy: Random Channel Selection (“Random”)

We derive here the probability of having a successful transmission, for a dynamic device, in
the case where all the dynamic devices make a purely random channel selection (i.e., uniform
on i ∈ [K]). This reflects a naive policy that could be implemented by all the dynamic devices,
and it provides a reference scenario to compare against. Note that even nowadays this is still
the solution implemented for real IoT devices deployed in new LoRaWAN networks.

In this case, for one dynamic device, a successful transmission happens if it is the only
device to choose channel k, at that time slot. the Sk static devices in each channel k are assumed
to be independent, and static and dynamic devices are assumed to not transmit at each time t

with a fixed probability 1− p, so probability of successful transmission is computed as follows.

P(success|sent) =
K∑

k=1
P(success|sent in channel k)︸ ︷︷ ︸

No one else sent in channel k

P(sent in channel k)︸ ︷︷ ︸
=1/K, by uniform choice

(5.1)

All dynamic devices follow the same policy in this case, so the probability of transmit-
ting at that time in channel k for any dynamic device is p/K, and there are D − 1 other
dynamic devices. As they are independent, the probability that no other dynamic device sent
in k is q = P(

⋂D−1
j=1 device j did not send in k) =

∏D−1
j=1 P(device j did not send in k). And

P(device j sent in k) = p× 1/K, by uniform choice on channels and the Bernoulli emission
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hypothesis. So q =
∏D−1

j=1 (1− p/K) = (1− p/K)D−1. Thus we can conclude,

P(success|sent) =
K∑

k=1
(1− p/K)D−1︸ ︷︷ ︸

No other dynamic device

× (1− p)Sk︸ ︷︷ ︸
No static device

× 1
K

= 1
K

(
1− p

K

)D−1 K∑
k=1

(1− p)Sk . (5.2)

This probability (5.2) is constant wrt time, and easy to compute numerically. Comparing
the successful transmission rate of any policy against this naive policy is important, as any
efficient learning algorithm should outperform it, maybe after a long enough initial learning
period.

2nd - (Unachievable) Optimal oracle policy (“Optimal”)

We investigate here the optimal policy that can be achieved if the dynamic devices have a
perfect knowledge of the distribution of static devices (Sk)k, and a fully centralized decision
making2 is possible. We want to find the stationary distribution of devices into channels that
maximizes the probability of having a successful transmission.

If the oracle chooses a fixed configuration of dynamic devices, it means that for each
dynamic device the oracle affects it to a unique channel for all time steps. Then there is a
number Dk of devices affected to channel k being fixed in time (i.e., stationary), and thus this
probability is computed as before:

P(success|sent) =
K∑

k=1
P(success|sent in channel k) P(sent in channel k)

=
K∑

k=1
(1− p)Dk−1︸ ︷︷ ︸

Dk−1 others

× (1− p)Sk︸ ︷︷ ︸
No static device

× Dk/D︸ ︷︷ ︸
Sent in channel k

. (5.3)

Consequently, an optimal allocation vector (D1, . . . , DK) ∈ RK is a solution of the following
real-valued constraint optimization problem:

arg max
D1,...,DK

K∑
k=1

Dk(1− p)Sk+Dk−1, (5.4a)

such that
K∑

k=1
Dk = D, (5.4b)

Dk ≥ 0 ∀k ∈ [K]. (5.4c)
2 This optimal policy needs an oracle seeing the entire system, and affecting all the dynamic devices, once and

for all, for a fixed stationary scenario, in order to avoid any signaling overhead. This is not possible in IoT contexts
as several completely independent networks may operate in a single place.
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Proposition 5.1. The Lagrange multipliers method [BV04] can be used to solve the constraint
real-valued maximization problem introduced in equation (5.4). It gives a closed form expression
for the (unique) optimal solution D∗

k(λ), depending on the system parameters, and the unknown
Lagrange multiplier λ ∈ R.

D∗
k(λ) =

( 1
ln(1− p)

[
W
(

λe
(1− p)Sk−1

)
− 1

])+
. (5.5)

Proof. • In a realistic scenario, we can assume that Dk ≤ −2
ln(1−p) ≈

2
p , ∀k ∈ [K]. For

such values for Dk, the objective function f : (D1, . . . , DK) 7→
∑K

k=1 Dk(1− p)Sk+Dk−1

is concave as the sum of concave functions3.

• The Lagrange multipliers method can be applied to the optimization problem (5.4a),
with a concave objective function f , linear equality constraints (5.4b) and linear inequal-
ity constraints (5.4c). The strong duality condition is satisfied in this case [BV04], so
finding the saddle points will be enough to find the maximizers.

More details are given in Section 5.6.1 in the Appendix of this Chapter.

Where in the equation (5.5), (a)+ .= max(a, 0), andW denotes theW-Lambert function
which is the reciprocal bijection of x 7→ xex on R+ = [0, +∞) (which can be computed
numerically in an efficient manner, [CGH+96]). Moreover, condition (5.4b) implies that the
Lagrange multiplier λ is the solution of the constraint

∑K
k=1 D∗

k(λ) = D. This single constraint
can be solved numerically, with simple one-dimensional root finding algorithms.

Note that solving the optimization problem provides the optimal real values (D∗
k)k, which

have to be rounded to find the optimal integer number of devices for channel k. Any rounding
choice will give about the same distribution, up-to a difference of only one device by channel,
and so we chose to round from below for the first channels: D̂k = ⌊D∗

k⌋ for 1 ≤ k < K, and
D̂K = D −

∑K−1
k=1 D̂k.

3rd - A greedy approach of the oracle strategy (“Good sub-optimal”)

We propose a sequential approximation of the optimal policy: the third solution is a sub-
optimal naive policy, simple to set up, but also unpractical as it also needs an oracle. End-
devices are iteratively inserted in the channels with the lowest load (i.e., the index k minimizing
Sk + Dk(τ) at global time step τ). Once the number of devices in each channel is computed,
the probability of sending successfully a message is also given by equation (5.3). This is the

3 It is worth noting that f is neither concave nor quasi-concave on [0, ∞)K [Lue68, Yaa77].
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policy that would be used by dynamic devices if they were inserted one after the other, and if
they had a perfect knowledge of the channel loads.

5.2.3 Sequential policies based on bandit algorithms

While the stochastic MAB model has been used to describe some aspects of Cognitive Radio
systems, it is in principle not suitable for our IoT model, due to the non-stationarity of the
channels occupancy, caused partly by the learning policy used by dynamic devices, but mainly
by their random activation processes. In our model, every dynamic device implements its
own learning algorithm, independently. For one device, the time t refers to the number of
times it accessed the network (following its Bernoulli transmission process, i.e., its duty cycle),
not the total number of time slots from the beginning, as rewards are only obtained after a
transmission, and IoT devices only transmit sporadically, due to low transmission duty cycles.

Using a bandit algorithm for IoT devices. The IoT application is challenging in that there
are multiple players (the dynamic devices) interacting with the same arms (the channels),
without any centralized communication (they do not even know the total number of dynamic
devices). We propose algorithms in which each dynamic device ignores all the other one
and implements a learning algorithm to play a bandit game. In each time slot, if it has to
communicate (which happens with probability p), then it chooses a channel and it receives a
reward 1 if the transmission is successful, 0 otherwise. Each device aims at maximizing the
sum of the rewards collected during its communication instants, which shall indeed maximize
the fraction of successful transmissions. Besides the modified time scale (rewards are no
longer collected at every time step), this looks like a usual bandit problem. However, it cannot
be modeled as a stochastic MAB, as the rewards are (unfortunately) not i.i.d.: they not only
depend on the (stationary, i.i.d.) behavior of the static devices, but also on the behavior of
other dynamic devices, that is not stationary (because of learning and random activation of
each device). Despite this, we show in the next subsection that running a stochastic bandit
algorithm for each device based on its own rewards is surprisingly successful.

Considered algorithms. The two algorithms we consider are UCB (“UCB” in the figures)
and Thompson sampling (TS) (“Thompson-sampling”), and they are presented in Section 2.4.
The UCB algorithm uses α = 1/2 in our experiments. The TS algorithm is known to be
empirically efficient, and for these reasons it has been used successfully in various applications,
including problems from Cognitive Radio [TCLM16, MTC+16], and also in previous work on
decentralized IoT-like networks [DMP16].
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Adversarial bandit algorithms? Instead of using MAB algorithms assuming a stochastic
hypothesis on the system, we could try to use MAB algorithms designed to tackle a more
general problem, that makes no hypothesis on the interfering traffic. The adversarial MAB algo-
rithms is a broader family, of which a well-known and efficient example is the Exp3 algorithm
[ACBF02, BCB12]. Empirically, the Exp3 algorithm turned out to perform significantly worse
than both UCB and TS in the same experiments, therefore we did not report results here.

5.2.4 Numerical results

We suppose a network with S + D = 2000 end-devices, and one IoT gateway. Each device
sends packets following a Bernoulli process, of probability p = 10−3 (e.g., this is realistic: one
packet sent about every 20 minutes, for time slots of 1s). The RF band is divided in K = 10
channels. Each static device only uses one channel, and their uneven distribution in the 10
channels is chosen as (S1, · · · , SK) = S × (0.3, 0.2, 0.1, 0.1, 0.05, 0.05, 0.02, 0.08, 0.01, 0.09),
to keep the same proportions when S decreases. The dynamic devices have access to all the
channels, and use learning algorithms. We simulate the network during 106 discrete time
slots, during which each device transmits on average 1000 packets (i.e., the learning time is
about 1000 steps, for each algorithm). We tried similar experiments with other values for K

and this distribution vector, and results were similar for non-homogeneous repartitions.

Clearly, the problem is less interesting for a homogeneous distribution, as all channels are
equivalent for dynamic devices, and so even with D small in comparison to S, the system
behaves like in Figure 5.3d, where the performance of the five approaches are very close.

First results. Figure 5.3 presents the successful transmission rate as a function of time. The
two MAB algorithms, UCB and Thompson Sampling (TS), are compared against the naive
random policy (which is outperformed easily by the MAB algorithms), and the two (optimal
and greedy) oracle policies (which outperform slightly the MAB algorithms). The results are
displayed when 10%, 30%, 50% and 100% of the traffic is generated by dynamic devices.

We can see in Figure 5.3 that the TS algorithm (in red +) outperforms the UCB algorithm
(in blue ∗), when the number of end-devices is below 50%. When the number of end-devices
is higher, both algorithms have almost the same performance, and perform well after a
small number of transmissions (i.e., they show quick convergence). Moreover, we can see in
Figures 5.3a, 5.3b, and 5.3c that both have better success rate than the random policy and the
probability of successful transmission is between the optimal oracle and sub-optimal oracle
policies. For instance, for 10% of dynamic devices, after about 1000 transmissions, using UCB
over the naive uniform policy improved the successful transmission rate from 83% to 88%,
and using Thompson Sampling improved it to 89%. Increasing the number of end-devices
decreases the gap between the optimal and random policies: as expected intuitively, the more
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(a) 10% of dynamic devices
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(b) 30% of dynamic devices
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(c) 50% of dynamic devices
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Figure 5.3 – Performance of two MAB algorithms, UCB in blue and Thompson Sampling in red,
compared to extreme reference policies without learning or oracle knowledge, when the proportion of
dynamic end-devices in the network increases, from 10% to 100%.

dynamic devices, the less useful are learning algorithms, and basically for networks with only
dynamic devices, the random policy is as efficient as the optimal one, as seen in Figures 5.3d
and on the right end side of Figure 5.4.

Successful transmission rate as a function of the number of dynamic devices. To better
assess the evolution of the optimal policy compared to the random one, we have displayed on
Figure 5.4 the evolution of the gain, in terms of successful transmission rate, provided by the
optimal oracle and the two learning policies, after 106 time slots, i.e., about 1000 transmissions
for each IoT device. We can see that when the proportion of end-devices is low (e.g., 1%
of devices are dynamic), the optimal policy provides an improvement of 16% compared to
random channel selection. The TS algorithm always provides near-optimal performance, but
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Figure 5.4 – Learning with UCB and Thomson Sampling, with many dynamic devices. The learning
gain, for each device, decreases with the proportion of dynamic devices in the network. Note that the
values (16% etc) depend on the distribution of static devices into the K channels (i.e., S1, . . . , SK) but
the general profile of this plot does not depend much on these parameters.

the UCB algorithm has a slower rate of convergence and performs consequently worse after
1000 transmissions, for instance it only provides a gain of 12% for the same proportion of
dynamic devices (1%), for the considered values of S1, . . . , SK .

Figure 5.4 also shows that learning keeps near-optimal performance even when the propor-
tion of devices becomes large. Note that when this proportion increases, the assumptions of a
stochastic MAB model are clearly violated, and there is no mathematical justification for the
efficiency of TS and UCB algorithms. Hence, it is surprising to have near optimal performance
with stochastic MAB algorithms applied to partly or fully dynamic scenarios.

A safety check. We include another simulation in Figure 5.5, with a uniform distribution of
static devices (i.e., ∀k, Sk = S/K), to check that learning approach (here, only UCB) also gives
interesting gain of performance, and achieve a close-to optimal successful transmission rate.
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(b) 30% of intelligent devices

Number of slots ×105
2 4 6 8 10

S
u
c
c
e
s
s
fu

l 
tr

a
n
s
m

is
s
io

n
 r

a
te

0.8

0.81

0.82

0.83

0.84

0.85

0.86

UCB
Random
Optimal
Good sub-optimal

(c) 50% of intelligent devices
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Figure 5.5 – Performance of the UCB bandit algorithm for the special case of uniform distribution of
the static devices, when the proportion of intelligent devices in the network increases, from 10% to
100%.

Except for the limit case of 100% of dynamic devices, which corresponds to Figures 5.3d and
5.5d, where the uniform access performs as well as the optimal oracle solution, theMAB-based
approach almost instantly outperforms the baseline.

Reproducibility. The simulation code used for the experiments in Section 5.2.4 is for MAT-
LAB or GNU Octave, and it was written in collaboration with Rémi Bonnefoi, in May 2017.
Instructions to reproduce our experiments are given, and the code is open-sourced under the
MIT License, at Bitbucket.org/scee_ietr/rl_slotted_iot_networks.
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5.3 Proof-of-concept of our model for real-world validation

In this section, we present a demonstration showcased at the International Conference on
Telecommunication (ICT) in June 2018 [BBM18, BBM19], implementing a proof-of-concept
(PoC) of the model introduced in Section 5.2. As far as we know, this is the first demonstration
of running learning algorithms on the end-device side for Internet of Things networks, in real
radio conditions, as highlighted it in our paper [MB19].

This PoC implements an IoT network the following way: one base station, one or several
intelligent (i.e., learning) devices, embedding the proposed solution, and a traffic generator
that emulates radio interference from many other devices. Intelligent devices communicate
with the base station with a wireless ALOHA-based protocol with acknowledgements, which
does not require any specific overhead for the learning. Similarly to the previous section,
network access is modelled as a discrete sequential decision making problem, and using the
framework and algorithms from MAB learning, we show that intelligent devices can improve
their access rate to the network, by using low complexity and decentralized algorithms, such as
UCB and Thompson Sampling. This solution could be added in a straightforward and costless
manner in most IoT networks, such as LoRaWAN networks, just by adding this feature at the
higher level of the MAC layer, in all or only some of the devices, without any modification on
the network side, and no signalling overhead for the devices.

Related works. This work is new for the IoT context, but previous works have similarly
implemented proof-of-concepts to show that Reinforcement Learning (RL) algorithms can
be used within real-world wireless communications. Starting from 2010, the works of W.
Jouini and C. Moy [JEMP09, JEMP10, JMP12] were among the first ones to propose to use
RL for Cognitive Radio, especially MAB and the UCB algorithm, and proof-of-concepts were
developed with C. Robert from 2013 [RMZ14, Moy14]. Between 2015 and 2017, C. Moy, N.
Modi and S. Darak (of our team SCEE) continued to work on this direction [DNMP16, DMP16,
DMNM16, KDY+16]. Since 2017, S. Darak and his team at IIIT Delhi (India) have been quite
active in the research onCRusingMAB, and some of their recentworks are illustratedwith real-
world demo using USRP and the MATLAB/Simulink system [KYDH18, SKHD18, JKYD18].

5.3.1 Context of this demonstration

We describe the way we implemented a demo where we evaluate MAB algorithms, used in
combination with a pure ALOHA-based protocol, such as the ones employed in LPWAN. This
demonstration is the first implementation which aims at assessing the potential gain of MAB
learning algorithms in IoT scenarios. We use a test-bed designed in 2017 by the SCEE team
at the Rennes campus of CentraleSupélec [Bod17, Appendix 3], containing different USRP
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boards [Ett], controlled by a single laptop running the GNU Radio software [GNUb], and
where the intelligence of each device corresponds to a learning algorithm, implemented as a
GNU Radio block [GNUa] and written in Python or C++.

In our demo, we consider a simple wireless network, that reproduces the model of Sec-
tion 5.2, consisting of one base station (i.e., radio access point), and a certain interfering
background traffic, assumed to be stationary (i.i.d.), which is generated by end-devices com-
municating in other networks. Some dynamic intelligent devices (end-user or autonomous
devices) try to communicate with the base station, with a low-overhead protocol. This com-
munication can be done in different channels which are also shared by devices using other
networks. Once the base station receives a packet transmitted by a dynamic device in one
channel (i.e., if no collision occurred), it transmits back to it an acknowledgement in the same
channel, after a fixed-time delay, as it is done in the LoRaWAN standard. This Ack allows the
device to learn about the channel quality (i.e., mean availability) and thus, to use learning
algorithms for the purpose of best channel selection.

We can generate scenarios with different parameters (number of channels, interfering
traffic load on each channel, etc) in order to evaluate the performance of learning in various
settings. Moreover, we compare the performance of learning strategies with that of the random
uniform access to channels, which is the current state-of-the-art of commercial LPWAN
solutions [RKS17]. This allows to check that in case of uniform traffic, when there is nothing
to learn, the intelligent devices at least do not reduce their successful communications rate
in comparison to the naive devices. This also shows that in case of non-uniform stationary
traffic, MAB learning algorithms indeed help to increase the global efficiency of the network
by improving the success rate of the intelligent devices. The benefits are twice and of primary
importance for IoT networks: the proposed approach can mitigate RF collisions, and enhance
intelligent device battery lifetime if they do retransmissions.

5.3.2 Physical model and user interface of our GNU Radio implementation

In this section, we present the implementation ofMAB algorithms in themodel of IoT networks
presented in Section 5.2.1. We first describe the simplified physical layer of this demo, then
we present our GNU Radio implementation.

Physical layer and protocol. We implement a simple PHY/MAC layers solution, in order
to demonstrate the possibility of improvement of the performance of IoT communications in
unlicensed bands. We could have used any physical layer and any ALOHA-based protocol.
We choose to implement our own physical layer and protocol, for both clarity and conciseness,
and because developing a complete IoT network protocol stack is no more my research work
and would have fall outside of the scope of this thesis.
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Regarding the physical layer, we consider a QPSK constellation (Quadrature Phase-Shift
Keying, e.g., see references in [Bod17]). Moreover, we use simplified packets composed of
two parts. The first part is the preamble which is used for the purpose of synchronization
(phase correction). Then, we have the index of the user, which is a sequence of QPSK symbols.
For example, this index can be a simple QPSK symbol (±1 ± 1j), or a sequence of QPSK
symols if the PoC has to consider more users. With ℓ QPSK symbols, we can indeed fit
at most 4ℓ/2 = 22ℓ−1 devices, and not 4ℓ due to the use of a conjugate index to send back
acknowledgements from the base station. Once the base station receives an up-link packet, it
detects this index and transmits an acknowledgement which has the same frame structure, but
where the index is the conjugate of the index of the up-link packet (z 7→ z, e.g., 1 + j 7→ 1− j).
Thanks to this index, we can have several devices communicating with the same base station.
In turn, the end-device that receives the acknowledgement demodulates it, and checks if the
index is the conjugate of its own index. In this case, the Ack was sent for him, and it knows
that its packet has been received and decoded correctly by the base station.

Figure 5.6 – Schematic of our implementation that presents the role of each USRP platform.
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Figure 5.7 – Two pictures showing the SCEE test-bed [Bod17, Appendix 3], taken in 2018.

Equipment. We use USRP N210 boards [Ett], from Ettus Research (National Instrument),
with version 4 of their FPGA system and version 5.1 of the RBX system. As illustrated in
Figure 5.6, the implementation is composed of at least 3 USRP: the base station, a traffic
generator which emulates the interfering traffic (made by surrounding static devices), and
at least one dynamic device. Each dynamic device has its own USRP and its own learning
algorithm.

The boards have their own power supply, and are all connected to a local Ethernet switch,
itself connected to a single laptop, running GNU/Linux and Ubuntu. The pictures in Figure 5.7
show the test-bed used for these experiments. To ease the synchronization in both time and
frequency between the boards representing the dynamic devices and the base station, we use
an Octoclock [Oct], also a product of Ettus Research, and coaxial cables connecting every
platform to the Octoclock for time (PPS) and frequency synchronization, but this is not
mandatory.
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Details about our implementation. We used the GNU Radio Companion software (GRC,
version 3.7 in 2017), and a laptop runs a GRC design to configure and control each USRP
platform. As such, one laptop can run in parallel the control program of any number of boards4.
The GNU Radio software provides the framework and tools to build and run software radio
or just general signal-processing applications. GNU Radio applications are flow-graphs: a
series of signal processing blocks connected together to describe a data flow. For maximum
efficiency, we wrote all of our blocks in C++. These flow-graphs can be written in either C++
or the Python programming language. The GNU Radio infrastructure is written entirely in
C++, and many of the user tools are written in Python. GNU Radio Companion is a graphical
user interface (UI) used to develop GNU Radio applications: GRC is effectively a Python
code-generation tool. When a flow-graph is compiled in GRC, a Python code is produced,
which can be executed to connect to the USRP, create the desired GUI windows and widgets,
and create and connect the blocks in the flow-graph.

Illustrations of the flow-graph for the three components of the presented demonstration
are included in Appendix 5.6.2, in Figures 5.15, 5.16 and 5.17.

User Interface. We have designed a user interface in order to visualize the results obtained
with the experimental demonstration. This user interface is shown in Figure 5.8. We can see
that it is made of three parts, one for each USRP, as highlighted in circled red numbers.

Figure 5.8 – User interface of our demonstration.

4 Even if in practice, maximum efficiency is kept as long as there is not more than one GRC design by CPU core.
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1 The first part is the interface of the IoT traffic generator, where we see the traffic generated
by this USRP, presented in a waterfall view in the time vs frequency domain. Messages of
the random traffic, generated by surrounding static devices, are shorter in time by purpose
(they could be coming from other IoT standard), in order to distinguish them from an
intelligent device traffic on the “waterfall” visualizations of the traffic.

2 The second part is the interface of the intelligent device which is made of four parts. At
the top left, we observe the constellation of the transmitted packet a . At the bottom
left, we have a time/frequency view of the lasts packets transmitted by the device b .
We can see, in this view that the device transmitted its last 9 packets in channels #3 and
#4. Then, at the top right of this interface c , we can see the traffic observed by this
device, where we have the interfering traffic (green), the up-link packets transmitted by
this device (red) and the acknowledgements sent by the base station (blue). Colors in the
“waterfall” represent the RF power level received at the device antenna. Hot colors are for
closer elements, as for instance the device Tx antenna (reception) is close to the device
Rx antenna (transmission), and consequently for the device waterfall these signals are
colored in red (see graph c in part 2 ). Finally, at the bottom right d , we have four
histograms showing the performance indicators of the chosen MAB algorithm (number
of transmissions, number of successful transmissions, UCB indexes and success rates, in
each channel).

3 The last part is the interface of the base station, where we can see the traffic observed by
the base station a and the channels in which the last acknowledgements have been sent
b . The observed traffic is coherent with c of part 2 , as the elements are very close
the one from the others on the test-bed. Colors may change, as they depend on the exact
distance between the different transmitters and receivers. See more details in [MB19].

5.3.3 Experimental results

We compare in this PoC the two algorithms described in Section 2.4 (UCB and Thompson
sampling) against a uniform access algorithm, that uniformly selects its channel at random.
Note that we could run more algorithms, but with no real added-valued in terms of validation
of the proposed learning-based approach, which is our goal. For one dynamic device, three
algorithms are compared by their mean successful communications rates, on a horizon of
T = 2000 communication slots, and were using three algorithms: uniform random access (in
cyan), Thompson Sampling (“TS”, in green) and UCB (in red).

In Figure 5.9 below, we show the results averaged on 10 repetitions using the same condi-
tions. Each experiment has been done on a duration of about half a day, due to the IoT sporadic
transmission mode that we want to respect (like in the model of Section 5.2). However, we
make devices generate one message every 5 seconds, in order to artificially speed up the
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Figure 5.9 – Less than 400 communication slots (i.e., less than 100 trials in each channel) are sufficient
for the two learning devices (UCB and Thompson Sampling) to reach a successful communications
rate close to 80%, which is twice as much as the non-learning (uniform) device, which stays around
40% of success. Similar gains of performance were obtained in other scenarios.

process and with no loss of generality (as we are using real hardware). Learning can be useful
only when there is a large enough difference between “good” and “bad” channels, Each device
was learning to access 4 different non-overlapping channels, that we chose to have occupancy
rates of (µk)k = [15%, 10%, 2%, 1%]. Note that a maximum occupancy rate of 15% could seem
not so high, but indeed it is, because for a pure ALOHA access mode, a naive dynamic device
only obtains about 40% success rate, under such occupancy of the channels (see the “uniform”
plot in Figure 5.9). The occupancy rate of a channel, which denotes the mean occupancy,
is implemented using the traffic generator, to emulate the presence of Si static devices with
emission probability p (that is, µi = Si × p here).

When facing the same stationary background traffic, we see that the learning devices are
both quickly more efficient than the naive uniform device. We obtain an improvement in
terms of successful communications rate from 40% to about 60% in only 100 communications
(about 16 min), and up-to 80% in only 400 communications. In stationary environments, both
the TS and UCB algorithms are efficient and converge quickly, resulting in a strong decrease
in collisions and failed communication slots. UCB is faster to learn but eventually TS gives a
(slightly) better average performance.

Similar results are obtained for overlapping channels, when dynamic devices are learning
in the presence of multiple devices, all using the same learning algorithm. However, our
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experimental test-bed cannot run hundreds of intelligent devices. Empirical results confirm
the simulations presented in Section 5.2 (see Figure 5.4). Such results are very encouraging,
and illustrate well the various strong possibilities of MAB learning applied to IoT networks.

Availability of data and materials. The source code of our demonstration is fully available
online, open-sourced under GPLv3 license, at bitbucket.org/scee_ietr/malin-multi-arm
-bandit-learning-for-iot-networks-with-grc/. It contains both the GNURadio Compan-
ion flowcharts and blocks, with ready-to-use Makefiles to easily compile, install and launch
the demonstration. The demonstration only requires a laptop and open-source free softwares,
as the laptop should run a GNU/Linux distribution (like Ubuntu or Debian), in addition to
USRP platforms from Ettus Research.

Video. As depicted in Figure 5.10 below, we realized a 6-minute video to sum-up our
demonstration and advertise our work online, and it is available on the YouTube hosting
platform, at youtu.be/HospLNQhcMk. The video shows examples of 3dynamic devices learning
simultaneously, confirming the results of Figure 5.9 for overlapping channels. It also shows
the connections between the USRP boards, the Octoclock, the master laptop etc, completing
the presentation of the SCEE test-bed already shown in Figure 5.7.

Figure 5.10 – Screenshot of the video of our demonstration, youtu.be/HospLNQhcMk.
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5.4 Extending the model to account for retransmissions

We presented in Section 5.2 low-cost algorithms following well-known approaches, such as
Upper-Confidence Bound (UCB), and we have reported encouraging results. When consider-
ing the application of MAB algorithms for slotted wireless protocols in a decentralizedmanner,
other recent directions of research include theoretical analysis, like what we present in the next
Chapter 6, or realistic empirical PoC like in [RMZ14, DMNM16, DNMP16, KDY+17] or the
previous Section 5.3, and finally applications to multi-hoping networks [MTC+16, TCLM16]
or other kinds of networks [AC18, WCN+19, WBMB+19]. None of the mentioned works
discuss the impact of retransmissions on the performance of MAB learning algorithms.

In this section, we extend the previous model to take into account the possibility for
retransmissions of a message after a collision. This is of major importance as most protocols
for real-world IoT networks can use retransmissions, it is for instance the case of the LoRaWAN
standard [RKS17]. As before, we propose and evaluate different learning strategies based on
MAB algorithms. However, the price to be paid is a shorter battery lifetime for IoT devices. So
this approach would be used only for devices with strong delivery constraints (e.g., for health-
care applications), or that can refuel their energy over time (e.g., for robotic applications).

We want to assess the performance of MAB algorithms for channel selection in LPWA net-
works operating in unlicensed bands, while taking into account the impact of retransmissions
on the network performance. For this reason, several decision making strategies are applied
after a first retransmission (i.e., when a collision occurs). The proposed approach employs
contextual information provided by the number of retransmissions, and is again implemented
independently by each device, so that no coordination among them is needed. Moreover,
our UCB-based heuristics again show low complexity, which make them suitable for being
embedded in LPWA devices, like in the previous sections.

The contributions of this section can be thus summarized as follows. Firstly, we provide
a close form approximation of the radio collision probability after a first retransmission. By
doing this, we highlight the need to develop a learning approach for channel selection upon
collision. Secondly, different heuristics are proposed to cope with retransmissions. Lastly, we
conduct simulations in order to compare the performance of the proposed heuristics with
a naive uniform random approach, and a UCB strategy (i.e., without any learning for the
retransmissions, that is, the same channel is used for retransmission).

5.4.1 Presentation of the model with retransmissions

LPWA network. Like in the previous sections of this chapter, we consider an LPWA network
[RKS17], composed of a gateway and a large number of end-devices that regularly send short
data packets, where K channels (K > 1) are available for the transmission of their packets.
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We assume that this network is constituted by two types of devices: On the one hand, we have
static devices that operate in one channel5 in order to communicate with the gateway. On the
other hand, there are IoT devices, that possess the additional advantage of being able to select
any of the K available channels to perform their transmissions.

Like in the previous model presented in Section 5.2, regardless the type of devices, each of
them follows a slotted ALOHA protocol [Rob75], and has a probability p > 0 to transmit a
packet in a time slot. We make the hypothesis that the transmission is successful if the channel
is available, otherwise it fails upon radio collision. The novelty compared to the previous
model is that in case of RF (up-link or down-link) collision that prevents the devices from
receiving the Ack from the gateway, these devices will attempt to retransmit their packet up-to
MaxBackOff times6, with MaxBackOff ∈ N∗. It is important to note that, every retransmission
is carried out after a random back-off time, uniformly distributed in {0, . . . , m − 1}, where
m ∈ N∗ is the length of the back-off interval (note the difference between m and MaxBackOff).

Model of IoT devices. The aforementioned contention process can be described by aMarkov
chain model [Nor98] similar to the one presented in [YFE12], as it is depicted in Figure 5.11.
When a device has a packet to transmit, it goes from an idle state to a transmission state, while
considering retransmissions due to different collision probabilities, pc, pc1, . . . , pcMaxBackOff−2,
at each MaxBackOff back-off stage. At each time slot, a transition from an idle state to a
transmission state (denoted as Trans.) occurs if a packet transmission is required, while
waiting states (denoted as Wait), correspond to a m back-off interval.

Figure 5.11 – The Markov model of the behavior of all devices paired to the considered IoT network
using the ALOHA protocol. Note: MaxBackOff is written M , to have smaller and simpler labels.

5 Note that, for unlicensed bands, this definition also encompasses any device following a different standard or
trying to establish communication with gateways of other networks.

6 We denote it MaxBackOff instead of M like we did in our paper [BBMVM19], as M is used in next Chapter 6.

117



Improving Spectrum Usage of IoT Networks with Selfish MAB Learning

A device aims to select a channel with the highest probability of successful transmissions,
for which it uses a reinforcement learning approach, again formulated as a MAB problem.
Contrarily to what may appear at first sight, the goal is not to minimize the number of retransmis-
sions, but to maximize the probability of successful transmission, considering both the first
transmission of a message and the retransmissions of the same message. Indeed, the objective
of each device is to maximize its battery life by minimizing its total number of transmissions. We
address the problem of channel selection taking into account the described Markov model
for the retransmissions of end-devices. It motivates this section for which we consider the
number of retransmissions, carried out by each device.

5.4.2 Motivations for the proposed approach

We consider IoT devices with a constraint on their QoS, imposing the successful delivery of
their messages. When such an IoT device experiments a collision, it goes in a back-off state
to retransmit the same packet on the same or another channel. If all devices remain in the
same channel for retransmissions, it is a well-known result that it could result in a sequence
of successive collisions with the same packets’ devices that previously collided. Thus, it
seems interesting to consider in the decision making policy the possibility for a device to
retransmit in a different channel. One of our motivations to develop new MAB algorithms for
the considered problem is this option of using a different communication channel between
the first transmission and the next retransmissions.

By considering this possibility, the device will have to learn more, thus, we expect the
learning time to be longer, but it could be possible that the final performance gain increases
too, in terms of network performance. We present in Section 5.4.5 an analysis to check this
performance gain, for various heuristics based on the UCB algorithm. Here after, we start by
presenting a mathematical derivation that backups this idea. To do so, we study the collision
probabilities considering the Markov process depicted in Figure 5.11, and foresee the impact
of using bandit strategies, as well as setting guidelines for the design of heuristic approaches.

Probability of collision at a second transmission slot. It is well known [Abr70, Rob75]
that having a collision during an access time can be overcome by a retransmission procedure
(this can take several retransmission attempts). Our goal here is to obtain a mathematical
approximation of the collision probability at the second transmission slot pc1, as a function of
the first collision probability pc. We make two approximationsH1 andH2 defined as (they
are hypotheses on which the rest of this section is built),

• H1: The probability pc1, is composed by the sum of two probabilities: i) the probability
of colliding consecutively twice, i.e., the devices that collide at a given time slot and
collide againwhen retransmitting their packets, and ii) the probability of collision among
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devices that did not collide in the same previous collision. Moreover, we suppose that
the number of devices involved in a collision is small in comparison to the total number
of devices. This is very realistic as a very small proportion of devices transmit at the
same period, due to their low duty cycle.

• H2: The total number of back-off stages at time t is constant, and it is assumed to be large
enough to consider that no device will ever be in the last failure state (this case is the
one on the right side in Figure 5.11), after MaxBackOff successive failed retransmissions
(otherwise, its battery life can be threatened if it does not have re-fueling capabilities).

Considering one device and one channel, we denote xi
t the probability that it is transmitting

a packet for the (i + 1)-th time in a given time slot t (with i ∈ {0, . . . , MaxBackOff − 1}), and
we denote xt =

∑MaxBackOff−1
i=0 xi

t the probability that it transmits a packet (i.e., just the sum
on i of xi

t). We consider N > 0 active devices following the same policy.

We assume to be in the steady state [Nor98], in the Markov chain model depicted in
Figure 5.11, and thus the probabilities no longer depend on the slot number t (i.e., ∀t, xt = x).
Therefore, the probability that this device has a collision at the first transmission is pc, and has
the following expression

pc = 1− (1− x)N−1 ⇐⇒ x = 1− (1− pc)
1

N−1 . (5.6)

Moreover, from (5.6)we define the probability pcp(n) that involves the collision of n packets
sent by each IoT device (for any 1 ≤ n ≤ N − 1), during the first transmission slot, and is
defined by pcp(n) =

(N−1
n

)
xn (1− x)N−1−n. As explained above, if an IoT device experiences

a collision at the first transmission, it proceeds for the retransmission of its packet after a
random back-off interval. We denote pca the probability to have a collision with a packet
involved in the previous collision. Under theH1 assumption, the number of packets involved
in the same previous collision remains very small in comparison to the total number of devices
that may transmit during this time. In other words, this collision probability does not depend
on previous retransmissions and is equal to pc. So, the probability that the same device’s
packet experiences again a collision at the second time slot is

pc1 = pca + (1− pca) pc. (5.7)

If the device has a collision at the first attempt, we consider pbp(n) the probability that it
has a collision with exactly n packets (for any 1 ≤ n ≤ N − 1), and that at least one of the n

devices involved in this first collision chooses the same back-off interval,

pbp(n) =
(

N − 1
n

)
xn (1− x)N−1−n

[
1−

(
1− 1

m

)n]
. (5.8)

119



Improving Spectrum Usage of IoT Networks with Selfish MAB Learning

Besides, pca is the conditional probability of collisionwith a packet sent by a device involved
in the previous collision given that the packet experienced collision at its first transmission.
Hence, under hypothesisH2, we can use Bayes theorem and the law of total probability to relate
pca with pbp(n), and the different probabilities that a device experienced a collision during
the first slot and has the same back-off interval for its retransmission is, pca = 1

pc

∑N−1
n=1 pbp(n).

Therefore, the expression of pca is

1
pc

N−1∑
n=1

(
N − 1

n

)
xn (1− x)N−1−n

[
1−

(
1− 1

m

)n]

= 1− 1
pc

N−1∑
n=1

(
N − 1

n

)
xn (1− x)N−1−n

(
1− 1

m

)n

. (5.9)

Once again underH1, assuming that the number of devices involved in the first collision
is small compared to N − 1, the first N0 ≪ N − 1 terms of the sum in (5.9) are predominant.
We derive pca ≃ 1− 1

pc

∑N0
n=1

(N−1
n

)
xn (1− x)N−1−n

(
1− 1

m

)n
. Moreover, for these terms, n is

small compared to N − 1, and so N − 1− n can be approximated to N − 1. Thus it gives,

pca ≃ 1− (1− x)N−1

pc

N0∑
n=1

(
N − 1

n

)
xn
(

1− 1
m

)n

. (5.10)

Assuming H1 amounts to consider that x ≪ 1. As a consequence, the sum in equation
(5.10) can be supplemented by negligible terms,

pca ≃ 1− (1− x)N−1

pc

N−1∑
n=1

(
N − 1

n

)
xn
(

1− 1
m

)n

. (5.11)

The binomial theorem expands the sum in (5.11), so we can rewrite the expression of pca

pca ≃ 1−
( 1

pc
− 1

)[
1 +

(
1− (1− pc)

1
N−1

)(
1− 1

m

)]N−1
. (5.12)

Finally, our approximation of pc1 can be obtained by inserting (5.12) in (5.7).

pc1 = pca + (1− pca) pc = (1− pc)pca + pc

≃ (1− pc) (1−
( 1

pc
− 1

)[
1 +

(
1− (1− pc)

1
N−1

)(
1− 1

m

)]N−1
+ pc. (5.13)

Behavior analysis of pc and pc1 In order to assess the proposed approximation, we suppose
a unique channel where all the devices follow the same contention Markov process. We
simulate an ALOHA protocol with a maximum number of retransmissions MaxBackOff = 10,
a maximum back-off interval m = 10, and a transmission probability p = 10−3. In Figure 5.12,
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we show the collision probabilities for different number of devices N (from N = 50 to
N = 400), for both pc and pc1. We can verify that the obtained approximation is very precise
for lower values pc1 ≤ 30% (i.e., red and orange curves are quite close). Moreover, a significant
gap between pc1 and pc, of up-to 10%, can be observed, which suggests us to resort to MAB
algorithms for the channel selection for both the first transmission and next retransmissions.
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Figure 5.12 – Our approximation (in red) of pc1 (in orange), probability of collision at the second
transmission, is more precise for smaller N . We also include pc (in blue).

Learning is useful for non-congested networks. It is worth highlighting that, if we write
(5.7) as pc1 = pc+pca (1− pc), then it is obvious that pc1 is always larger than pc (as pca (1− pc) >

0). But for large values of pc, pca (1− pc) ≃ 0 so the gap gets small, and for small values of pc

the gap is significant. Moreover, we can verify (e.g., numerically or by differentiating) that
the gap decreases when pc increases (for fixed N and m). This backups mathematically the
observation we made from Figure 5.12: the smaller the pc, the larger is the gap between pc

and pc1. We interpret this fact in two different situations:

• On the one hand, in a congested network, when devices suffer from a large probability of
collision on their first transmission (i.e., pc is not so small), then pc1 ≃ pc and so devices
cannot really hope to reduce their collision probabilities even if the use a different channel
for retransmission.

• On the other hand, if pc is small enough, i.e., in a network not yet too congested, then the
derivation above shows that pc1 > pc, meaning that the possible gain of retransmitting
in a different channel that the one used for the first transmission can be large, in terms
of collision probability (e.g., up-to 10% in this experimental setting). In other words,
when learning can be useful (small pc), learning to retransmit in a different channel can
have a large impact on the global collision rate, thus justifying our approach.
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5.4.3 The first heuristic: UCB unaware of retransmissions

This first heuristic we propose is unaware of retransmission: the same channel is used for
retransmissions. The UCB algorithm is implemented independently by each device, we
denote it “first-stage” UCB, and we present it in Algorithm 5.1. It is the same algorithm
as the Algorithm 2.3 in Section 2.4.2 (using the same UCB indexes as we defined them in
equation (2.7)), but we write it again to make clear the difference with first transmission and
retransmission of messages. Note that a device using this first approach is only able to select a
channel for the first transmission (using UCB, line 3-5), and then it uses the same channel for
all the corresponding retransmissions of a packet (if retransmissions happen, line 7-8).

1 for t = 1, . . . , T do
2 if First packet transmission then
3 Compute ∀k, Uk(t) = µ̂k(t) +

√
α ln(t)/Nk(t);

4 Transmit in channel A(t) ∼ U(arg maxk Uk(t));
5 Reward r(t) = 1, if Ack is received, else 0;
6 else // Retransmit in same channel
7 j← last channel selected by first-stage UCB;
8 Transmit in channel A(t) = j;
9 end

Algorithm 5.1: First-stage UCB and retransmission in same channel (“Only UCB”).

More formally, for one device, let Nk(t) be the number of times the channel k (for k ∈ [K])
was selected up-to time t − 1, for t ≥ 1 for any t ∈ N, Nk(t) =

∑t−1
τ=1 1(A(τ) = k). The

empirical mean estimator µ̂k(t) of channel k is defined as µ̂k(t) = 1
Nk(t)

∑t−1
τ=1 r(τ)1(A(τ) = k),

where r(t) = Yk,t is the reward obtained after transmission in channel k at time t. The upper
confidence bound in each channel k is defined as Uk(t) = µ̂k(t) +

√
α ln(t)/Nk(t). Finally, the

transmission channel at time step t is A(t) ∼ U(arg maxk Uk(t)).

Small warning about notations: local (device) time vs global (gateway) time. In
the algorithms presented in this chapter, the time step t does not refer to the global time step
(as seen from the gateway), but rather the current number of up-link transmissions (or
retransmissions) that was carried out by the device. Each device wakes up whenever it has
to send some data, following its own emission process (we restrict to a Bernoulli process
of small probability, e.g., p = 10−3), and whenever it wakes up, it sends its packet, and
will send again for at most MaxBackOff times (e.g., MaxBackOff = 10) until it receives an
Ack. In other words, the time steps t in the following algorithms denote the number of
up-link packets sent by the device, and these up-link transmissions or retransmissions
can happen at different (global or real-world) times. The local index t is independent on
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the global time (i.e., the time of the gateway), and IoT device does not need to care about
this difference. From the device point-of-view, the learning occurs at successive times
(whenever the device wakes up), regardless of the global time.

5.4.4 Heuristics to (try to) learn how to retransmit efficiently

A device that implements the UCB algorithm is led to focus its transmissions and retrans-
missions in the channel which is currently identified as the best. As explained above in
Section 5.4.2, focusing in one channel could increase the collision probability in retransmis-
sions. We describe here the proposed heuristics for the channel selection in a retransmission.
It is carried out taking into account that a device can incorporate a different channel selection
strategy while being in a back-off state. Hence, a natural question is to evaluate whether using
this additional contextual information can improve the performance of a learning policy.

For that end, all of our heuristics comprise two stages: the first stage is a UCB algorithm
employed for the first attempt to transmit, and the second stage is another algorithm used
for channel selections for the next retransmissions. We present below four heuristics for this
second stage. Their short names (with their colors) are used in the legend on Figures 5.13,
5.14), and are given in “quotes” in the corresponding paragraphs.

Uniform random retransmission “(Random”). In this first proposal, the device uses a
random channel selection, following a uniform distribution (on [K]). It is described below
in Algorithm 5.2. More precisely, the first-stage UCB use rewards built from the acknowl-
edgments that the device received or not for its first-stage transmission, but do not use any
feedback about any of the retransmissions of any message.

1 for t = 1, . . . , T do
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else // Random retransmission
5 Transmit in channel A(t) ∼ U(1, . . . , K);
6 end

Algorithm 5.2: Heuristic: uniform random retransmission “(Random”).

UCB for retransmission (“UCB”). Instead of applying a random channel selection for
retransmission, another heuristic is to use a second UCB algorithm in the second stage. In
other words, we expect that this algorithm is able to learn the best channel to retransmit a
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packet. It is described in Algorithm 5.3, and it is still a practical approach, since the storage
requirements and time complexity remains linear w.r.t. the number of channels K (i.e.,O(K)).
Note that, we use the subscript (r) to denote the variables µ̂r(t), Br

k(t) and U r
k (t), related to

the UCB algorithm employed for the retransmission.

1 for t = 1, . . . , T do
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else // Packet retransmission with the other UCBr

5 Compute ∀k, U r
k (t) = µ̂k

r(t) +
√

α ln(t)/N r
k (t);

6 Transmit in channel Cr(t) ∼ U(arg maxk U r
k (t));

7 Reward rr(t) = 1, if Ack is received, else 0;
8 end

Algorithm 5.3: Heuristic: UCB for retransmission (“UCB”).

K different UCBs for retransmission (“K UCB”) Another heuristic is to not use the same
algorithm no matter where the collision occurred, but to use K different second-stage UCB
algorithms. It means that after a failed first transmission in channel j, the device relies on
the j-th algorithm to decide its retransmission. The corresponding algorithm is depicted in
Algorithm 5.4. Each of these algorithms are denoted using the subscript (j), for j ∈ [K].

1 for t = 1, . . . , T do // At every time step
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else // Packet retransmission with one of the K UCBj

5 j← last channel selected by first-stage UCB;
6 Compute ∀k, U j

k(t) = µ̂k
j(t) +

√
α ln(t)/N j

k(t);
7 Transmit in channel Aj(t) ∼ U(arg maxk U j

k(t));
8 Reward rj

Aj(t)(t) = 1 if Ack is received, else 0;
9 end

Algorithm 5.4: Heuristic: K different UCBs for retransmission (“K UCB”).

Although, this approach increases the complexity and storage requirements (now, of order
O(K2)). For the LPWA networks of interest, such as LoRaWAN, the cost of its implementation
is still affordable, since a small number of channels is used. For instance, for K = 4 channels,
the memory to store K + 1 = 5 algorithms is of the order of the requirements to store one.
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Note that for other networks this heuristic could not be practical. The storage requirements
and time complexity is now quadratic in K, and as such we no longer consider this heuristic
to be a practical proposal in some LPWA networks, as for instance Sigfox networks consist in
a large number of very narrow-band channels (e.g., K = 128). But for LoRaWAN networks
with K = 4, storing K + 1 = 5 algorithms does not cost much more than storing 2.

Delayed UCB for retransmission (“Delayed UCB”). This last heuristic is a composite of
the random retransmission (Algorithm 5.2) and the UCB retransmission (Algorithm 5.3)
approaches. Instead of starting the second stage UCB directly from the first retransmission,
we introduce a fixed delay ∆ ∈ N, ∆ ≥ 1, and start to rely on the second stage UCB after ∆
transmissions. The selection for the first steps is handled with the random retransmission.

The idea behind this delay is to allow the first stage UCB to start learning the best channel,
before starting the second stage UCB (see details in Algorithm 5.5). The number of trans-
missions to wait before applying the second algorithm is denoted by ∆, it has to be fixed
before-hand7. Note that, we use the subscript (d) to denote the variables related to the delayed
second-stage UCB algorithm.

1 for t = 1, . . . , T do // At every time step
2 if First packet transmission then
3 Use first-stage UCB as in Algorithm 5.1;
4 else if t ≤ ∆ then // Random retransmission
5 Transmit randomly in a channel A(t) ∼ U(1, . . . , K).
6 else // Packet retransmission with delayed UCBd

7 Compute ∀k, Ud
k (t) = µ̂k

d(t) +
√

α ln(t)/Nd
k (t);

8 Transmit in channel Ad(t) ∼ U(arg maxk Ud
k (t));

9 Reward rd
Ad(t)(t) = 1 if Ack is received, else 0;

10 end
Algorithm 5.5: Heuristic: delayed UCB for retransmission (“Delayed UCB”).

Other ideas that we did not explore. Instead of considering a first-stage UCB followed
by a random channel retransmission, we could have considered a random first-stage chan-
nel retransmission followed by a second-stage UCB. This was not considered in our study
[BBMVM19], and we preferred to not add it to the experiments presented below, for three
reasons: to avoid clutter in the plots, to win some time as these experiments had to run for

7 Choosing the value of ∆ could be done by extensive benchmarks but such approach goes against the
reinforcement learning idea: a heuristic should work against any problem, without the need to simulate the
problem before-hand to find a good value of some internal parameter. As such, we only consider a delay of
∆ = 100 in our experiments, and we did not try to optimize it.

125



Improving Spectrum Usage of IoT Networks with Selfish MAB Learning

quite a long time, but mainly because the first-stage channel selection is most important one
as we illustrate by the large difference in terms of performance between the uniform channel
selection and the “Only UCB” heuristic, below in Figures 5.13 and 5.14.

Using another bandit policy? We could have chosen any bandit algorithm for the “first
stage” component used in this Section, and for simplicity and clarity we focused on a simple
but efficient one (UCB). We believe that the same empirical results, but more importantly,
the same conclusions, could be given if we used Bayes-UCB or other bandit algorithm for the
base building block in the different heuristics proposed in this section. Our goal here was not
to optimize on the bandit policy (as we presented in Section 3.3 some numerical simulations
doing precisely this), but rather to compare the different heuristics, for a fixed bandit policy
(for which we preferred to use UCB for simplicity).

5.4.5 Numerical results

We simulate our network considering N devices following the contention Markov process
described in Section 5.4.1, and a LoRaWAN standard with K = 4 channels, as in Section 5.2.
Each device is set to transmit with a fixed probability p = 10−3, i.e., a packet about every 20
minutes for time slots of 1 s. For the evaluation of the proposed heuristics, a total number of
T = 20 × 104 time slots is considered, and the results are averaged over 1000 independent
random simulations.

In a first scenario, we consider a total number of N = 1000 IoT devices, with a non-uniform
distribution of static devices given by 10%, 30%, 30%, 30% for the four channels. In otherwords,
the channels are occupied8 respectively 10%, 30%, 30%, and 30% of time, and the contention
Markov process considered is given by MaxBackOff = 5, and m = 5. In Figure 5.13, we show
the successful transmission rate versus the number of slots, for all the proposed heuristics.

A first result is that all the heuristics clearly outperform the non-learning approach that
simply uses random channel selection for both transmissions and retransmissions (i.e., the
“no UCB” curve in black), which is (still) the current state-of-the-art in IoT networks. The
improvement of the heuristics over the non-learning approach is clear, and for every heuristic
that uses a kind of learning mechanism it can be observed that the successful transmission
rate increases rapidly (or equivalently the PLR decreases). Moreover, all of these approaches
show a fast convergence making them suitable for the targeted application. It is also worth
mentioning that the employment of the same UCB algorithm for retransmissions, denoted

8 Note that we consider higher occupancy rates that the ones considered previously in Section 5.3, because
the goal of this experimental section is to evaluate our approach that uses learning to optimize the way each
device retransmits its packets. We need to have a large enough probability pc of retransmission if we want to see a
difference between the different learning heuristics, which is why we consider a network more densely occupied
than the one considered in Section 5.3.
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here as “OnlyUCB”, achieves a better performance, while a “Random” retransmission features
a slight degradation. This result can be explained as follows: the loss of performance related
to the separation of information for several algorithms is greater than the gain obtained by
considering the first transmissions and retransmissions separately.
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Figure 5.13 – Comparison between the exposed heuristics for the retransmission:“ Only UCB”, “Ran-
dom”, “UCB”, “K UCB”, and “Delayed UCB”. The usage of the same learning policy for transmissions
and retransmission is named “Only UCB”, whereas the usage of a random channel selection, for both
transmission and retransmission, is labeled as “no UCB”. First scenario: learning helps but learning
to retransmit smartly is not needed, as we observe that the random retransmission heuristic achieves
similar performance than the others. We considered N = 1000 static IoT devices, that occupy the 4
channels in a static way leading to mean occupancy rates of 10%, 30%, 30%, 30%.

Wealso consider in these experiments the case of anALOHAprotocol usingMaxBackOff =
5, and m = 10, a statistic distribution of the devices about 40%, 30%, 20%, 10% for the four
channels, and N = 2000 IoT devices. The corresponding results are depicted in Figure 5.14.
In this case the successful transmission rate is degraded compared with achieved results in
Figure 5.13. We can explain this by the fact that we are considering in this network an increased
number of devices, which increases the collision probability. It is important to highlight, that
the “Random” retransmission heuristic shows a poor performance in comparison to the other
heuristics, and it can be attributed to the fact that the number of retransmission is increased,
and consequently a learning approach is able to take advantage of it. Furthermore, the “UCB”,
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“K UCB” and “Delayed UCB” heuristics behave similarly to “Only UCB”, after a similar
convergence time.
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Figure 5.14 – Second scenario: learning helps a lot (a gain of 30% in terms of collision probability),
and learning to retransmit smartly is needed. We observe that the random retransmission achieves
poor performance compared to the others. We considered N = 2000 static IoT devices, that occupy the
4 channels in a static way leading to mean occupancy rates of 10%, 30%, 30%, 30%.

The conclusions we can draw from these results are twofold. Firstly, MAB learning algo-
rithms are very useful to reduce the collision rate in LPWA networks, a gain of up-to 30% of
successful transmission rate is observed after convergence. Secondly, using learning mecha-
nisms for retransmissions can be a simple yet efficient and interesting way to reduce collisions
in IoT networks, even in networks with massive deployments of IoT as this can be checked in
Figure 5.14, where the random retransmission heuristic is greatly outperformed by the any of
the UCB-based approaches, that use learning for channel selection during the retransmission
procedure. With 10% to 30% occupancy rates the considered example of IoT network can
indeed be considered as an IoT network with a massive deployment of devices.

Reproducibility. The source code (MATLAB or Octave) used for the simulations and the
figures of this section is open-sourced under the MIT License. It was written in collaboration
with Rémi Bonnefoi and Julio César Mango-Vasquez, in the summer 2018, and is published at
Bitbucket.org/scee_ietr/ucb_smart_retrans.
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5.5 Conclusion – Towards theoretical guarantees

We focused in this chapter on models of IoT networks, and we proposed to use classical
stationary multi-armed bandit learning algorithms implemented in a selfish and decentralized
manner by each of the dynamic devices in the IoT network. We presented two models of
wireless IoT networks, without relying on the feedback provided by spectrum sensing, and
inspired by the ALOHA protocol. We proposed two versions, with or without retransmissions
of up-link packages in case of collisions. We conclude that this learning-based approach
is efficient, as it allows the IoT devices to automatically and independently increase their
successful transmission rates.

It is also quite surprising that stochastic MAB algorithms can be of any use in such non-
stationary applications. Unfortunately, it turned out to be of extreme difficulty to analyze
analytically the considered model with thousands of independent devices, all communicating
and learning in their own (random) time scales. That is why we focus on two different
simplifications of this model in the next chapters, for which we are able to provide a rigorous
theoretical analysis.

Multi-Players MAB. On the one hand, we are actually able to analyze a simpler model, if
we assume to have at most M ≤ K devices with a transmission probability of p = 1. Instead
of the experiment-driven direction pursued in this chapter, another possibility is to consider
a multi-players MAB model to describe our problem. The main difference between the two
models is the fact that in Chapter 5, M ≫ K devices transmit their messages at every time
step, by following a random activation process (with a fixed transmission probability p < 1).
If static and dynamic devices that have to transmit at a fixed time are denoted active devices,
then their random activation patter makes the number of active devices an (unpredictable)
random variable. Analyzing multi-players MABmodels under this hypothesis is much harder,
and is left as a future work. We study the case of M ≤ K devices learning independently to
play a K-armed bandit in the next Chapter 6.

Non-stationary MAB. On the other hand, while it is hard to analyze the models of this
chapter because of the unpredictable behaviors of the IoT devices’ activation patterns and the
evolving number of active devices, we are also able to analyze a simpler model, if we focus
on a single player accessing a network which is assumed to be piece-wise stationary, that are
bandit problems which are stationary on “long enough” intervals, of unknown locations and
lengths. We then study this second direction in Chapter 7.
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5.6 Appendix

5.6.1 Proof of Proposition 5.1

We include here the missing details of the proof of Proposition 5.1. First, we need to justify
that the objective function is quasi-convex, in each of its coordinates. Then, we develop
the computation of D∗

i (λ), as a closed form expression of the system parameters (K, p), the
distribution of static devices (S1, . . . , SK) and the Lagrange multiplier λ.

Quasi-convexity.
• For 0 < γ < 1, the function g(x) .= xγx is quasi-convex on [0,∞), i.e., g(ηx + (1− η)y) ≤

max(g(x), g(y)) for any x, y ∈ [0,∞) and η ∈ [0, 1] (definition from [Lue68]). Indeed,
g(ηx + (1 − η)y) = η [x(γx)η] γ((1−η)y) + (1 − η)

[
y(γy)1−η

]
γηx, and γ((1−η)y) ≤ 1 and

γηx ≤ 1. But also (γx)η ≤ γx as η ≤ 1, and the same holds for (γy)1−η ≤ γy. So
g(ηx + (1− η)y) ≤ η(xγx) + (1− η)(yγy) which is a convex combination of xγx and yγy,
so smaller than the larger of the two values, and so g(ηx + (1− η)y) ≤ max(xγx, yγy).

• The function f(D1, . . . , DK) .=
K∑

i=1
Di(1 − p)Si+Di−1 is quasi-convex in each of its co-

ordinates, on [0,∞)K , as a sum of component-wise quasi-convex functions (with γ =
(1− p) ∈ (0, 1), thanks to the first point). □

Derivation of the Lagrange multiplier solution. Let us now prove the expression for D∗
i

given above in (5.5).

• If D
.= (D1, . . . , DK), the Lagrangian is denoted L(D, λ) .= f(D) + λ(D −

K∑
i=1

Di), and

its derivative w.r.t. Di is ∂
∂Di
L(D, λ) = (1− p)Si+Di−1 + ln(1− p)Di(1− p)Si+Di−1 − λ.

• So the gradient is zero ∂
∂Di
L(D, λ)|Di=D∗

i
= 0 iff D∗

i satisfies (1−p)D∗
i (1+ln(1−p)D∗

i ) =
λ/(1 − p)Si−1. Let x = ln(1− p)D∗

i this is equivalent to ex(1 + x) = λ/(1 − p)Si−1 and
with y = 1 + x, we get eyy = λe/(1− p)Si−1.

• By using the W-Lambert function W [CGH+96], reciprocal of y 7→ eyy, we get x =
y − 1 = W(λe/(1 − p)Si−1) − 1. So the gradient of the Lagrangian is zero iff D∗

i =
max(0, x/ ln(1 − p)) =

[
1

ln(1−p)W(λe/(1− p)Si−1)− 1
]+

, because D∗
i has to be non-

negative. This gives the i-th coordinate of the unique saddle point of f(D), and so
the unique solution to the maximization problem (5.4a), thanks to [Lue68, Theorem 1].
□
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5.6.2 Illustration of the GNU Radio Companion Flowcharts

For the curious reader, we wanted to include here an illustration and a description of the three
components of the demonstration we presented above in Section 5.3.

The code corresponding to the following components is written in C++ and Python for the
hand-written blocks, and using the GUI of the GNU Radio Companion software. The flow-
graphs are saved as XML files, and the complete code of our proof-of-concept is fully available
online, open-sourcedunderGPLv3 license, at bitbucket.org/scee_ietr/malin-multi-arm-bandit
-learning-for-iot-networks-with-grc/.

Random traffic generator

Figure 5.15 shows the random traffic generator flow-graph. Generator is the only hand-
written block, which is configured with a list of active channels, a list of occupancy rate, and
constants about the PHY layer (preamble length and data length). It uses one USRP equipped
with one antenna, as it only emits data (by using the “UHD: USRP” block in“Sink” mode).

Figure 5.15 – The random traffic generator flow-graph.

IoT base station

The IoT base station is presented in Figure 5.16 below. We wrote the following blocks:

• 1) the Demodulator block, which is configured with a list of detection threshold (on the
received power),

• 2) the Check_ack block, which is configured with a maximum block error and an ac-
cepted error rates (to decide when a message is close enough to an acknowledgement),

• and finally 3) the send_ack block, which is configured with the list of active channels,
and knowledge about the PHY layer (delay before sending the Ack and its length).

All blocks need to know the constants about the PHY layer (preamble length and data length).
The base station uses one USRP board equipped with two antennas, to emit and receive data
(by using “Sink” and “Source” modes).
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Figure 5.16 – The IoT base station flow-graph.

IoT dynamic device

Figure 5.17 below shows the IoT dynamic device flow-graph. The hand-written blocks are

• 1) the Renormalized_ack block, which is configured with the list of active channels and
extra knowledge about the PHY layer (preamble length, message length, and a threshold
to tune detection of the incoming Ack),

• 2) the Demodulator and 3) the Check_ack blocks, both shared with the IoT gateway,

• and finally 4) the generator_SU block, which embeds the UCB or Thompson Sampling
algorithm, and which is configured with the list of active channels.

Most blocks need to know constants about the PHY layer (preamble length and data length).
Any of the IoT dynamic devices also uses one USRP board equipped with two antennas, to
emit and receive data (“Sink” and “Source” modes).

We note the difference between the base station and the end-devices. The base station uses
its Rx antenna to scan the entire range of the K channels, at all time steps ; while dynamic
devices use their Rx antennas only to listen for the acknowledgement sent by the base station if
it received and decoded its up-link packet. After each transmission, the dynamic device listens
to one channel during a certain time interval, in the channel used for up-link transmission.

Figure 5.17 – The IoT dynamic device flow-graph.
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Chapter 6

Multi-Players Multi-Armed Bandits

In this chapter, we are interested in a more formal approach to the decentralized learning
problem presented of many end-devices accessing the same IoT wireless network than in the
previous Chapter 5. We restrict to the easiest case of at most M ≤ K devices using a network
with K orthogonal frequency channels. Each device has data to transmit at every instant,
that is we restrict to the case of an activation probability of p = 1, under the hypothesis of
random activation patterns of Chapter 5. We discuss three feedback levels that give variants
of the multi-players MAB model previously studied in the literature, and we define the
centralized regret as a measure of performance of multi-player bandits algorithms. Using a
decomposition of the centralized system regret, we start by explaining the intuition about the
expected behavior of any efficient decentralized algorithm, and then we propose RandTopM
and MCTopM, two new orthogonalization schemes. Combining them with the kl-UCB index
policy gives efficient algorithms, that achieve state-of-the-art performance in terms of their
regret, which is also backed up by numerical simulations. We conclude by reviewing different
extensions of the multi-players models.
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6.1 Motivations for multi-players MAB models

As we saw in Chapters 1 and 5, a crucial step for the development of Cognitive Radio is
to insert multiple smart devices (at least M ≥ 2), in the same environment, or background
traffic. In this Chapter 6, we are interested in a more formal approach to the decentralized
learning problem presented in the previous Chapter 5. Such networks can be modelled using
a decentralized multi-players multi-armed bandit problem, where arms are channels and
players are dynamic IoT devices. The decentralized hypothesis means that the central base
station (or gateway) does not given any direct order to the devices, they are all in charge
of deciding the channel they each want to use at each time step. Moreover, the devices are
independent and do not directly communicate with each other either. We show that dynamic
end-devices are able to use limited feedback sent by the gateway to learn to find orthogonal
affectations of the group of end-devices to the best radio channels, automatically and without
explicit communication with each other. In other words, the end-devices are able to learn to
cooperate efficiently, in a completely decentralized and autonomous manner.

We consider M identical dynamic IoT devices, communicating with a unique gateway, in
K orthogonal channels and in an acknowledgment-based wireless protocol slotted in time. A
perfect time and frequency synchronization is assumed, and some i.i.d. background traffic is
assumed to be non-uniformly distributed in the K channels. As before, if two or more devices
decide to use the same channel at the same time, a collision arises and none of sent up-link
packet can be received by the gateway. Unfortunately, it is very hard to formally analyze the
IoT network models we presented in Chapter 5, mainly because of the random activation
process of all the dynamic (i.e., learning) devices. Even if there are many identical bandit
algorithms learning independently and in a decentralized way, the difficulty mainly comes
from the fact that all of them are only communicating at some (random) time steps, and at
each time step the number of communicating devices is random and unpredictable.

Mainly for these two reasons, for this Chapter 6 we prefer to only consider at most M ≤ K

devices, communicating at each time step. Note that in the model of Chapter 5, this hypothesis
M ≤ K corresponds to choosing a probability of activation of p = 1, as we assumed that (in
average) no more than K devices should be active at the same step. We start by reviewing
previous works on multi-players MAB models, which all considered the easier case of sensing
feedback. But in the model studied in this chapter, each device also uses a Multi-Armed Bandit
algorithm, to maximize its number of successful communications, by using the received
acknowledgement Ack as a (random) binary reward after each up-link message (i.e., at each
time step). With the presence of a central controller that can assign the devices to different
channels, this amounts to choosing at each time step several arms of aMAB in order tomaximize
the global rewards, and can thus be viewed as an application of the multiple-play bandit,
introduced by [AVW87a] and recently studied by [KHN15]. They essentially proved that

136



6.1 Motivations for multi-players MAB models

existing algorithms can be easily extended to the multiple-play case, with provable guarantees
on their regret. Due to the communication cost implied by a central controller, a more relevant
model is the decentralized multi-players multi-armed bandit model, introduced by [LZ10] and
further studied shortly after in [AMT10, AMTA11], in which players select arms individually
and collisions may occur, that yield a loss of reward. Further algorithms were proposed in
similar models by [TL12] and [KNJ12] (under the assumption that each arm is a Markov
chain), and by [AM15, AM16] and [RSS16] for i.i.d. arms. In the point of view of the wireless
protocol, each time frame is separated as before in a sensing phase (during which the device
senses for the background traffic), an up-link phase (during which the device sends a packet
to the gateway if it sensed the chosen channel to be free), and a down-link phase (during
which it waits for an Ack from the gateway). In this first model, the binary reward is 1 only
if the channel was sensed to be free of background traffic and if Ack was received, and the
device has access to both information. We present two algorithms, RandTopM and MCTopM,
based on the combination of an efficient MAB index policy (we chose kl-UCB) and a smart
orthogonalization procedure, based on a random hoping procedure calledMusical Chair. Like
in previous works, we consider the centralized system regret (multi-players regret), or simply
referred to as regret. We start by showing an improved asymptotical regret lower-bound for
any algorithm of a certain class. We then analyze the MCTopM algorithm and we show that
its regret upper-bound is logarithmic, improving over the previous state-of-the-art. We also
present extensive numerical simulations that show that our proposal outperforms all previous
solutions and is much more efficient in this easier model of sensing feedback with a fixed and
known number of players M accessing K ≥M channels.

The goal for every player is to select most of the time one of the M best arms, without
colliding too often with other players. A first difficulty relies in the well-known trade-off
between exploration and exploitation: players need to explore all the arms to estimate theirmeans,
while trying to focus on the best arms to gain as many rewards as possible. The decentralized
setting considers wireless protocol with no direct or explicit exchange of information between
players, and assumes that the players only know K and M . To avoid collisions, players should
furthermore find orthogonal configurations, i.e., the M players use the M best arms without
any collision, without explicitly communicating1 with each other. Hence, in that case the
trade-off is to be found between exploration, exploitation and low collisions.

All these above-mentioned works are motivated by the OSA problem, in which it is as-
sumed that sensing occurs, that is, each smart device observes the availability of a channel
(i.e., a reward from the arm) before trying to transmit and possibly experiment a collision
with other smart devices. However some real radio networks do not use sensing at all, e.g.,

1Onemust now be careful about this aspect when stating that “no explicit communications are allowed between
players” in the model, as [BP18] proved that even in the no sensing case, the “communication trick” can be used
to exchange information between players, by generating collisions at some pre-agreed times. We discuss this work
more in details at the end of this chapter, in Section 6.7.3.
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emerging standards currently or recently developed for Internet of Things (IoT) networks, such
as LoRaWAN. Thus, to take into account these new applications, algorithms with additional
constraints on the available feedback have to be proposed, within the multiple-player MAB
model. Especially, the typical approach that combines a (single-player) bandit algorithm
based on the sensing information –to learn the quality of the channels while targeting the best
ones– with a low-complexity decentralized collision avoidance protocol, is no longer possible.
Our article [BK18a] was the first to study this other model of multi-players bandits for the
“no sensing” case, for which we only proposed a heuristic, the naive Selfish strategy as it was
already used in Chapter 5. Even if empirical simulations showed that Selfish-kl-UCB performs
very well, it is a mistake to only consider mean regret, as we found on numerical simulations
as well as formal derivation on a simple example of K = M = 2 that the Selfish heuristic
can have a linear regret with a low probability (and so asymptotically it has linear expected
regret and fails to solve “no sensing” multi-players MAB problems). We do not propose any
other efficient algorithm, but our work presented in April 2018 has strongly inspired two
articles published shortly after [LM18, BP18]. They confirmed our findings that Selfish can
have a linear regret, and they both proposed new algorithms. We include some numerical
simulations to compare some of them, and we present in details the current state-of-the-art of
research on multi-players MAB models without sensing.

Outline. The rest of this chapter is organized as follows. We first introduce the multi-
players bandit model with three feedback levels in Section 6.2. We define the regret, and
then present a useful decomposition in Section 6.3. The Selfish, RandTopM and MCTopM
algorithms are introduced in Section 6.4, for which we present a theoretical analysis in Sec-
tion 6.5. We report the results of an experimental study in Section 6.6. Finally, we present in
Section 6.7 a review of the recent literature which studies variants of the model presented
in this Chapter. For some extensions, we discuss how to adapt our proposals and illustrate
the empirical performances of such modification of MCTopM-kl-UCB, leaving theoretical
analyses as future works.

Publication. This chapter is mainly based on our article [BK18a].

6.2 Three feedback levels for the multi-players bandit model

Similarly to what is presented in Chapter 2, we consider a K-armed Bernoulli bandit model,
of horizon T ≥ 2, in which arm k is a Bernoulli distribution with mean µk ∈ [0, 1]. We denote
(Yk,t)t∈[T ] the i.i.d. (binary) reward stream for arm k, that satisfies P(Yk,t = 1) = µk and that is
independent from the other rewards streams.

Generalization to other distributions. However we mention that our lower bound and
all our algorithms (and their analysis) could be extended to one-dimensional exponential
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families (just like for the kl-UCB algorithm of [CGM+13]). For simplicity, we focus on the
Bernoulli case, that is also the most relevant for Cognitive Radio problems, by considering
channels’ availabilities as a source of binary rewards.

In the multi-players MAB setting, there are M ∈ [K] players (or agents), that have to make
decisions at some pre-specified time instants. At time step t ∈ N, t ≥ 1, player j selects an arm
Aj(t), independently from the other players’ selections.

Definition 6.1. A collision occurs at time t if at least two players choose the same arm. We
introduce the two events, for j ∈ [M ] and k ∈ [K],

Cj(t) .= {∃j′ ̸= j : Aj′(t) = Aj(t)} and Ck(t) .=
{

#{j : Aj(t) = k} > 1
}

, (6.1)

that respectively indicate that a collision occurs at time t for player j (Cj(t), j in superscript), and
that a collision occurs at time t on arm k (Ck(t), k in subscript).

Each player j then receives (and observes) the binary rewards rj(t) ∈ {0, 1},

rj(t) .= YAj(t),t 1(Cj(t)). (6.2)

In other words, she receives the reward of the selected arm if she is the only one to select this
arm, and a reward zero otherwise. This provides another reason to focus on the Bernoulli
model. It is the hardest model, in the sense that receiving a reward zero is not enough to detect
collisions. For other models, the data streams (Yk,s)s are usually continuously distributed,
with no probability mass at the value of zero (e.g., Gaussian). Hence receiving rj(t) = 0
directly gives 1(Cj(t)) = 1. Note that other models for rewards loss have also been proposed
in the literature, for instance the reward could be randomly allocated to one of the players
selecting it. To stay consistent with the model presented in the previous Chapter 5, and for
simplicity, we preferred to focus on full reward occlusion in this chapter.

A multi-players MAB strategy is formally defined as a tuple A = (A1, . . . ,AM ) of arm
selection strategies for of each of the M players, and the goal is to propose a strategy that
maximizes the total reward of the system, under some constraints. First, each player j should
adopt a sequential strategy Aj , that decides which arm to select at time t based on previous
observations. Previous observations for player j at time t always include the previously chosen
arms Aj(s) and received rewards rj(s) for s < t, but may also include the sensing information
YAj(t),t or the collision information Cj(t). More precisely, depending on the application, one
may consider the following three observation models, (I), (II) and (III).

If the arms have continuous distributions (or are such that P(Yk,s = 0) = 0), the sensing
information YAj(t),t and collision information Cj(t) can always be extracted from the reward
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information. But for Bernoulli distributions, one may consider the following three observation
models, that are not equivalent:

(I) Simultaneous sensing and collision: player j observes YAj(t),t and Cj(t). We note that
this first model was never previously studied, but we do not focus on it because of its
unrealistic aspect, and its simplicity (it is easier than the following model, for which we
obtain good theoretical results).

(II) Sensing, then collision: player j observes YAj(t),t, then observes the reward, and thus
also Cj(t) only if YAj(t),t = 1. This common setup, studied for example by [AMTA11,
RSS16], is relevant to model the OSA problem: the device first checks for the presence of
primary users in the chosen channel, if this channel is free (YAj(t),t = 1), the transmission
is successful (rj(t) = 1) if no collision occurs with other smart devices (Cj(t)).

(III) No sensing: player j only observes the reward rj(t). For IoT networks, this reward can be
interpreted as an acknowledgement from a Base Station, receivedwhen a communication
was successful. A lack of acknowledgment may be due to a collision with a device from
the background traffic (YAj(t),t = 0), or to a collision with one of the other players
(Cj(t)). However, the sensing and collision information is censored. Recently, our
work presented in Chapter 5 [BBM+17] presented the first (bandit-based) algorithmic
solutions under this (harder) feedback model, in a slightly different setup, more suited
to large scale IoT applications. As explained above, this third model was found to be
too general to analyze mathematically, and we did not present theoretical results of
convergence of the algorithms considered in Chapter 5.

Under each of these three models, we define F j
t to be the filtration generated by the

observations gathered by player j up to time t (which contains different information under
models (I), (II) and (III)). While a centralized algorithm may select the vector of actions for all
players (A1(t), . . . , AM (t)) based on all the observations from

⋃
j F

j
t−1, under a decentralized

algorithm the arm selected at time t by player j only depends on the past observation of this
player. More formally, Aj(t) is assumed to be F j

t−1-measurable.

Definition 6.2. We denote by µ∗
1 the best mean, µ∗

2 the second best etc, and by M -best the (non-
sorted) set of the indices of the M arms with largest mean (best arms): if µ∗

1 = µk1 , . . . , µ∗
M =

µkM
then M -best = {k1, . . . , kM}. Similarly, M -worst denotes the set of indices of the K −M

arms with smallest means (worst arms), [K] \M -best.
Note that they are both uniquely defined whenever µ∗

M > µ∗
M+1.

Following a natural approach in the bandit literature, like in Section 2.3, we evaluate the
performance of a multi-players strategy using the expected regret (later simply referred to as
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regret), that measures the performance gap with respect to the best possible strategy. The
regret of the strategy A at horizon T is the difference between the cumulated reward of an
oracle strategy, assigning in this case the M players to M -best, and its cumulated reward:

Definition 6.3. The excepted centralized multi-players regret is defined by

RA
T (µ, M) .=

(
M∑

k=1
µ∗

k

)
T − Eµ

 T∑
t=1

M∑
j=1

rj(t)

 . (6.3)

With this definition, maximizing the expected sum of global reward of the system is
indeed equivalent to minimizing the regret, and we investigate the best possible regret rate of a
decentralized multi-players algorithm in the next section.

6.3 Decomposing the multi-player regret to get an intuition for the
design of efficient decentralized algorithms

In this section, we provide a useful decomposition of the regret (Lemma 6.5) that permits
to establish a new problem-dependent lower bound on the regret (Theorem 6.8), and also
provides key insights on the derivation of regret upper bounds (Lemma 6.9).

Warning. The regret lower bound that we gave in [BK18a] is not applicable to any
algorithm, as it was discovered by E. Boursier and V. Perchet. As they explain in Section 2.4
in [BP18], the proof we gave in the Appendix of our paper [BK18a] was wrong in just
one step. The results stated in this section are now correct, thanks to the modifications
that we added here, that is, to consider this information term Iµ,λ(Aj , T ). The cost for
this modification is to restrict the lower-bound to a smaller class of algorithms, which
should contain RhoRand, RandTopM and MCTopM, but not the two algorithms proposed
SIC-MMAB from [BP18] and Multiplayer Explore-then-Commit (M-ETC) from [KM19].
Proving that the proposed algorithms are in this class is left as an open question.

6.3.1 A useful regret decomposition

We introduce additional notations in the following definition.
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Definition 6.4. Let N j
k(T ) .=

∑T
t=1 1(Aj(t) = k), and denote Nk(T ) .=

∑M
j=1 N j

k(T ) the
number of selections of arm k ∈ [K] by any player j ∈ [M ], up to time T .

Let Ck(T ) be the number of colliding players on arm k ∈ [K] up to horizon T :

Ck(T ) .=
T∑

t=1

M∑
j=1

1(Cj(t))1(Aj(t) = k). (6.4)

Note that when n players choose arm k at time t, this counts as n collisions, not just one. So Ck(T )
counts the total number of colliding players rather than the number of collision events. Hence
there is small abuse of notation when calling it a number of collisions.

We now provide a regret decomposition for any bandit instances with a strict gap between
the M best arms and the other arms (i.e., µ∗

M > µ∗
M+1).

Lemma 6.5. For any bandit instance µ ∈ PM
.=
{

µ ∈ [0, 1]K : µ∗
M > µ∗

M+1

}
, it holds that

RA
T (µ, M) =

∑
k∈M -worst

(µ∗
M − µk)Eµ[Nk(T )]︸ ︷︷ ︸

(a)

(6.5)

+
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[Nk(T )])︸ ︷︷ ︸
(b)

+
K∑

k=1
µkEµ[Ck(T )]︸ ︷︷ ︸

(c)

.

In this decomposition, term (a) counts the lost rewards due to sub-optimal arms selections (k ∈
M -worst), term (b) counts the number of times the best arms were not selected (k ∈M -best),
and term (c) counts the weighted number of collisions, on all arms.

Proof. Using the definition of regret RA
T (µ, M) from (6.3), denoted here RT , and this collision

indicator ηj(t) .= 1(Cj(t)),

RT =
(

M∑
k=1

µ∗
k

)
T − Eµ

 T∑
t=1

M∑
j=1

YAj(t),tη
j(t)

 =
(

M∑
k=1

µ∗
k

)
T − Eµ

 T∑
t=1

M∑
j=1

µAj(t)η
j(t)


The last equality comes from the linearity of expectations, and the fact that Eµ[Yk,t] = µk (for
all t, from the i.i.d. hypothesis), and the independence with Aj(t), ηj(t) and Yk,t (observed
after playing Aj(t)). So Eµ[YAj(t),tη

j(t)] =
∑

k Eµ[µk1(Aj(t), t)ηj(t)] = Eµ[µAj(t)η
j(t)]. And so

RT = Eµ

 T∑
t=1

∑
j∈M -best

µj −
T∑

t=1

M∑
j=1

µAj(t)η
j(t)
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=

 1
M

∑
j∈M -best

µj

− K∑
k=1

M∑
j=1

µkEµ

[
N j

k(T )
]

+
K∑

k=1
µkEµ [Ck(T )] .

For the first term, we have TM =
K∑

k=1

M∑
j=1

Eµ

[
N j

k(T )
]
, and if we denote µ∗ .= 1

M

∑
j∈M -best

µj the

average mean of the M -best arms, then,

=
K∑

k=1

M∑
j=1

(µ∗ − µk)Eµ

[
N j

k(T )
]

+
K∑

k=1
µkEµ [Ck(T )] .

If ∆k
.= µ∗ − µk is the gap between the mean of the arm k and the M -best average mean, and

if M∗ denotes the index of the worst of the M -best arms (i.e., M∗ = arg mink∈M -best(µk)), we
can split [K] into three disjoint sets M -best∪· M -worst = (M -best \ {M∗})∪· {M∗} ∪· M -worst

=
∑

k∈M -best\{M}
∆kEµ [Nk(T )] + ∆M∗Eµ [NM∗(T )]

+
∑

k∈M -worst
∆kEµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )] .

But for k = M∗, NM∗(T ) = TM∗ −
∑

k∈M -best\{M}
Eµ [Nk(T )] −

∑
k∈M -worst

Eµ [Nk(T )], so by

recombining the terms, we obtain,

=
∑

k∈M -best\{M}
(∆k −∆M∗)Eµ [Nk(T )] + ∆M∗TM∗

+
∑

k∈M -worst
(∆k −∆M∗)Eµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )] .

The term ∆k −∆M∗ simplifies to µM∗ − µk, and so ∆M∗ = 1
M

∑M
k=1 µk − µM∗ by definition of

µ∗. And for k = M∗, µM∗ − µk = 0, so the first sum can be written for k = 1, . . . , M only, soIt

RT =
∑

k∈M -best
(µM∗ − µk)Eµ [Nk(T )] +

∑
k∈M -best

(µk − µM∗)T

+
∑

k∈M -worst
(µM∗ − µk)Eµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )]

And so we obtain the decomposition with three terms (a), (b) and (c).

RT =
∑

k∈M -best
(µk − µM∗) (T − Eµ [Nk(T )])

+
∑

k∈M -worst
(µM∗ − µk)Eµ [Nk(T )] +

K∑
k=1

µkEµ [Ck(T )] .
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Which is exactly the decomposition we wanted to prove.

The regret decomposition in Lemma 6.5 is valid for both centralized and decentralized
algorithms. For centralized algorithms, due to the absence of collisions, (c) is obviously
zero, and (b) is non-negative, as Nk(T ) ≤ T . For decentralized algorithms, (c) may be
significantly large, and term (b) may be negative, as many collisions on arm k may lead to
Nk(T ) > T (which is counter intuitive with such notations). However, a careful manipulation
of this decomposition shows that the regret is always lower bounded by term (a). Figure 6 in
Appendix F of [BK18a] illustrates two cases of M < K and M = K, and the different impact
of the three terms (a), (b) and (c) on the regret.

Lemma 6.6. For any strategy A and µ ∈ PM , the regret is lower-bounded by (a):

RA
T (µ, M) ≥

∑
k∈M -worst

(µ∗
M − µk)Eµ[Nk(T )].

Proof. Note that term (c) is clearly lower bounded by 0 but it is not obvious for (b) as there is
no reason for Nk(T ) to be upper bounded by T (it counts the selections of arm k by all the
players, and for instance if player 1 is fixed on arm 1 and player 2 plays it at least once, then
N1(T ) ≥ T + 1). Let N !

k(T ) .=
∑T

t=1 1(∃!j, Aj(t) = k), where the notation ∃! stands for “there
exists a unique”. Then Nk(T ) =

∑T
t=1

∑M
j=1 1(Aj(t) = k) can be decomposed as

Nk(T ) =
T∑

t=1
1(∃!j, Aj(t) = k) +

T∑
t=1

M∑
j=1

ck,t1(Aj(t) = k) = N !
k(T ) + Ck(T ).

We focus on the two terms (b) + (c) from the decomposition of RA
T (µ, M) from Lemma 6.5,

(b) + (c) =
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[N !
k(T )]) +

∑
k∈M -best

µ∗
MEµ[Ck(T )]

+
M∑

k=1
µkEµ[Ck(T )]−

∑
k∈M -best

µkEµ[Ck(T )]

=
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[N !
k(T )]) +

∑
k∈M -best

µ∗
MEµ[Ck(T )] +

∑
k∈M -worst

µkEµ[Ck(T )]

=
∑

k∈M -best
(µk − µ∗

M )(T − Eµ[N !
k(T )]) +

M∑
k=1

min(µ∗
M , µk)Eµ[Ck(T )].

And now both terms are non-negative, as N !
k(T ) ≤ T , min(µ∗

M , µk) ≥ 0, and Ck(T ) ≥ 0, so
(b) + (c) ≥ 0 which proves that RA

T (µ, M) = (a) + (b) + (c) ≥ (a), as wanted.
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6.3.2 An improved asymptotic lower bound on the regret

Similarly to what we present above in Section 2.3, we use the Kullback-Leibler divergence kl to
express this lower bound. We first introduce the assumption under which we derive a regret
lower bound, that generalizes the assumption of uniform efficiency given in Definition 2.6, a
classical assumption made by [LR85] in single-player bandit models.

Definition 6.7. An algorithm A is strongly uniformly efficient if for all µ ∈ PM ,

∀a ∈ (0, 1),RA
T (µ, M) =

T →+∞
o(T α), (6.6)

and ∀a ∈ (0, 1), ∀j ∈ [M ], k ∈M -best, T

M
− Eµ[N j

k(T )] =
T →+∞

o(T α). (6.7)

Having a small regret on every problem instance (i.e., being uniformly efficient) is a
natural assumption, that rules out policies tuned to perform well only on specific instances
(e.g., fixed-armed policies). From this assumption RA

T (µ, M) = o(T α) and the decomposition
of Lemma 6.5 one can see2 that for every k ∈M -best, T − Eµ[Nk(T )]=o(T α), and so

M∑
j=1

(
T

M
− Eµ[N j

k(T )]
)

= o(T α). (6.8)

The additional assumption in (6.7) further implies some notion of fairness, as it suggests
that each of the M players spends on average the same amount of time on each of the M

best arms. Note that this assumption is satisfied by any strategy that is invariant under
every permutation of the players, i.e., for which the distribution of the observations under
Aσ = (Aσ(1), . . . ,Aσ(M)) is independent from the choice of permutation σ ∈ ΣM of the set
{1, . . . , M}. In that case, it holds thatEµ[N j

k(T )] = Eµ[N j′

k (T )] for every arm k and (j, j′) ∈ [M ],
hence (6.7) and (6.8) are equivalent, and strong uniform efficiency is equivalent to standard
uniform efficiency. Note that the algorithms studied in Section 6.4 are permutation invariant,
and MCTopM-kl-UCB is thus an example of strongly uniformly efficient algorithm, as we
prove in Section 6.5 that its regret is logarithmic on every instance µ ∈ PM .

About fairness. In the proofs of the regret bounds for RhoRand in [AMTA11], the authors
briefly mention that their policy is invariant under permutation and that this yields a certain
fairness guarantee, but without formalizing it more. The notion of fairness defined above can
be interpreted as a “cooperative fairness”, opposed to the notion of “arm fairness” that has been
studied in a few papers on single-player stochastic MAB. For instance, [PGNN19] requires that

2With some arguments used in the proof of Lemma 6.6 to circumvent the fact that (b) may be negative.
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each arm must be sampled at least a given fraction of bandit game, i.e., ∀k,E[Nk(T )] ≥ rkT ,
where the constraint vector [r1, . . . , rK ] ∈ [0, 1]K is known by the algorithm.

Collision information. The following notations and the hypothesis on the collision infor-
mation term (6.9) comes from Appendix E of [KM19]. Similarly to what we did in Section 2.1,
consider the observations Oj

t that player j gathered after t rounds of its algorithm Aj for a
fixed player j ∈ [M ], defined as Oj

t
.=
(
U j(1), YAj(1),1, Cj(1), . . . , U j(t), YAj(t),t, Cj(t)

)
, where

U j(t) denotes some external source of randomness useful to select Aj(t + 1). For instance, an
algorithm based on ranks and UCB indexes, like RhoRand, when two arms have the same
maximum index the decision is an arg max, and ties are usually broken by a uniform random
selection among the arms with maximum index.

Fix a problem µ, then introduce an alternative model parameterized by λ, with a small
difference between µ. Fix a sub-optimal arm k and ε > 0, and λk = µ∗

M + ε and λℓ = µℓ for
any ℓ ̸= k. We denote POj

t
µ the distribution of the vector Oj

t under the model µ when using
algorithm Aj . Then we introduce the collision information term as:

Iµ,λ(Aj , T ) .=
T∑

t=1
KL(PCt|Oj

t−1
µ ,PCt|Oj

t−1
λ ). (6.9)

For a decentralized strategyA that has access to the sensing information (i.e., ruling outmodel
(III)), and satisfies Iµ,λ(Aj , T ) = o(ln(T )), we now state a problem-dependent asymptotic
lower bound on the number of sub-optimal arms selections. The additional hypothesis on
Iµ,λ(A, T ) essentially says that “the collisions do not bring too much information on the arm
means”. The theorem stated below is proven in the Appendix of [BK18a], and it also yields
an asymptotic logarithmic lower bound on the regret.

Theorem 6.8. Under observation models (I) and (II), consider a strongly uniformly efficient
decentralized policy A = (A1, . . . ,AM ) and a problem µ ∈ PM . Furthermore, if Aj satisfies
Iµ,λ(Aj , T ) = o(ln(T )), then

∀j ∈ [M ], ∀k ∈M -worst, lim inf
T →∞

Eµ[N j
k(T )]

ln(T ) ≥ 1
kl(µk, µ∗

M ) . (6.10)

And so if A1, . . . ,AM all satisfy this hypothesis, from Lemma 6.6, it follows that

lim inf
T →+∞

RA
T (µ, M)
ln(T ) ≥M ×

 ∑
k∈M -worst

(µ∗
M − µk)

kl(µk, µ∗
M )

 . (6.11)
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Observe that the regret lower bound (6.11) is tighter than the state-of-the-art lower bound
in this setup, given by [LZ10], that states that

lim inf
T →+∞

RA
T (µ, M)
ln(T ) ≥

∑
k∈M -worst

 M∑
j=1

(µ∗
M − µk)

kl(µk, µ∗
j )

 , (6.12)

as for every k ∈ M -worst and j ∈ [M ], kl(µk, µ∗
j ) ≥ kl(µk, µ∗

M ). It is worth mentioning that
[LZ10] considered the more general assumption for A that there exists some numbers (aj

k)
such that aj

kT − Eµ[N j
k(T )] = o(T α) whereas in Definition 6.7 we make the choice aj

k = 1/M .
Our result could be extended to this case, but we chose to keep the notation simple and focus
on fair allocation of the optimal arms between players. We also highlight that the proof of the
bound of [LZ10] contained the same mistake as our proof in [BK18a], but by using the same
hypothesis and modification in the proof, it is applicable to the same class of algorithms as
our Theorem 6.8 (i.e., algorithms A such that Iµ,λ(Aj , T ) = o(ln(T ))).

Price of decentralized learning. Interestingly, our lower bound is exactly a multiplicative
constant factor M away from the lower bound given by [AVW87a] for centralized algorithms
(which is clearly a simpler setting). This intuitively suggests the number of players M as the
(multiplicative) “price of decentralized learning”. However, to establish this regret bound, we
lower bounded the number of collisions by zero, which may be too optimistic. Indeed, for an
algorithm to attain the lower bound (6.11), the number of selections of each sub-optimal arm
should match the lower bound (6.10) and term (b) and term (c) in the regret decomposition
of Lemma 6.5 should be negligible compared to ln(T ).

To the best of the authors’ knowledge, no algorithm has been shown to experience only
o(ln(T )) collisions in expectation so far, for every M ∈ {2, . . . , K} and µ ∈ PM . The best
candidate would be the Sic-MMAB algorithm [BP18], whose number of collisions is proven
to be O

(
(ln(T ))2) = o(ln(T )) in high probability (Lemma 8), but not o(ln(T )) in expectation.

Since our article [BK18a], we kept as a future work the question of finding a lower bound on
theminimal number of collisions experienced by any strongly uniformly efficient decentralized
algorithm. Such result would thus be a nice complement to our Theorem 6.8.

6.3.3 Towards regret upper bounds

A natural approach to obtain an upper bound on the regret of an algorithm is to upper bound
separately each of the three terms defined in Lemma 6.5. The following result shows that term
(b) can be related to the number of sub-optimal selections and the number of collisions that
occurs on the M best arms.
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Lemma 6.9. The term (b) in Lemma 6.5 is upper bounded as

(b) ≤ (µ∗
1 − µ∗

M )
( ∑

k∈M -worst
Eµ[Nk(T )] +

∑
k∈M -best

Eµ[Ck(T )]
)
. (6.13)

Proof. Recall that we want to upper bound (b) .=
∑

k∈M -best(µk − µM∗) (T − Eµ[Nk(T )]). First,
we observe that, for all k ∈ M -best, T − Eµ[Nk(T )] ≤ T − Eµ

[∑T
t=1 1(∃j : Aj(t) = k)

]
=

Eµ

[∑T
t=1 1(∀j, Aj(t) ̸= k)

]
= Eµ

[∑T
t=1 1(k /∈ Ŝt)

]
, where we denote by Ŝt = {Aj(t), j ∈ [M ]}

the set of selected arms at time t (with no repetition). With this notation one can write

(b) ≤ (µ1 − µM∗)
∑

k∈M -best
(T − Eµ[Nk(T )]) ≤ (µ1 − µM∗)Eµ

 ∑
k∈M -best

T∑
t=1

1(k /∈ Ŝt)


= (µ1 − µM∗)Eµ

 T∑
t=1

∑
k∈M -best

1(k /∈ Ŝt)

 .

The quantity
∑

k∈M -best 1(k /∈ Ŝt) counts the number of optimal arms that have not been
selected at time t. For each mis-selection of an optimal arm, there either exists a sub-optimal
arm that has been selected, or an arm in M -best on which a collision occurs. Hence

∑
k∈M -best

1(k /∈ Ŝt) =
∑

k∈M -best
1(Ck(t)) +

∑
k∈M -worst

1(∃j : Aj(t) = k),

which yields

Eµ

 T∑
t=1

∑
k∈M -best

1(k /∈ Ŝt)

 ≤ ∑
k∈M -best

Eµ [Ck(T )] +
∑

k∈M -worst
Eµ [Nk(T )]

and Lemma 6.9 follows.

This result can also be used to recover Proposition 1 from [AMTA11], giving an upper
bound on the regret that only depends on the expected number of sub-optimal selections,Eµ[Nk(T )]
for k ∈M -worst, and the expected number of colliding players on the optimal arms, Eµ[Ck(T )] for
k ∈M -best. Note that, in term (c) the number of colliding players on the sub-optimal arm k

may be upper bounded as Eµ[Ck(T )] ≤MEµ[Nk(T )].

In the next section, we present an algorithm that has a logarithmic regret, by controlling its
sub-optimal selections, while ensuring that the number of sub-optimal selections is matching
the lower bound of Theorem 6.8.
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6.4 New algorithms for multi-players bandits

Regardless of whether sensing is or not possible, we start by presenting formally in Section 6.4.1
the Selfish heuristic, as it was used by all the IoT devices in the first model presented in
Chapter 5. It does not use an orthogonalization strategy as the collisions are directly accounted
for in the UCB-like indices that are used by each device to select its channel (i.e., by each
player to select its arm, in the bandit vocabulary). Selfish can also be used under observation
model (III) –without sensing, and without the knowledge of M . It was conjectured in [BK18a]
that Selfish can suffer linear regret, and later confirmed in [LM18, BP18]. When sensing is
possible, that is under observation models (I) and (II), most existing strategies build on a
single-player bandit algorithm (usually an index policy) that relies on the sensing information,
together with an orthogonalization strategy to deal with collisions. Following this approach, we
introduce two new algorithms, RandTopM and MCTopM, in Section 6.4.2.

Remark. Wewant to strengthen the fact that in all the proposed algorithms, the players
do not know their numbers j ∈ [M ], and they do not need to know it to achieve low regret.
This would be an unrealistic hypothesis, as explained in Section 6.7.1 below.

6.4.1 The Selfish heuristic, with or without “sensing”

Under observationmodel (III) no sensing information is available and the previous algorithms
cannot be used, as the sum of sensing information Sj

k(t) and thus the empirical mean µ̂j
k(t)

cannot be computed, hence neither the indices U j
k(t). However, one can still define a notion of

empirical reward received from arm k by player j, by introducing

S̃k
j(t) .=

T∑
t=1

rj(t)1(Aj(t) = k) and letting µ̃k
j(t) .= S̃k

j(t) / N j
k(t). (6.14)

Note that µ̃k
j(t) is no longer meant to be an unbiased estimate of µk as it also takes into

account the collision information, that is present in the reward. Based on this empirical
reward, one can similarly defined modified indices as (where f(t) = O(ln(t)) is an exploration
function)

Ũk
j(t) .=

µ̃k
j(t) +

√
f(t)/(2N j

k(t)) for UCB,

sup
{

q ∈ [0, 1] : N j
k(t)× kl(µ̃k

j(t), q) ≤ f(t)
}

for kl-UCB.
(6.15)

Given any of these two index policies (UCB or kl-UCB), the Selfish algorithm is then
playing like a single-player index policy (see Algorithm 2.3) Aj(t) ∈ U(arg maxk∈[K] Ũk

j(t−
1)). The name “selfish” comes from the fact that each player is targeting, in a “selfish” way, the
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arm that has the highest index, instead of accepting to target only one of the M best. The reason
that this may work precisely comes from the fact that Ũk

j(t) is no longer an upper-confidence
on µk, but some hybrid index that simultaneously increases when a transmission occurs and
decreases when a collision occurs. This behavior is easier to be understood for the case of
Selfish-UCB in which, letting N j,C

k (t) =
∑t

s=1 1(Cj(t)) be the number of collisions on arm k,
one can show that the hybrid Selfish index induces a penalty proportional to the fraction of
collision on this arm and the quality of the arm itself:

Ũk
j(t) = U j

k(t)−
(

N j,C
k (t)

N j
k(t)

)
︸ ︷︷ ︸

fraction of collisions

(
1

N j,C
k (t)

T∑
t=1

YAj(t),t1(Cj(t))1(Aj(t) = k)
)

︸ ︷︷ ︸
estimate of µk

. (6.16)

From a bandit perspective, it looks like each player is using a stochastic bandit algorithm
(UCB or kl-UCB) when interacting with K arms that give a feedback (the reward, and not the
sensing information) that is far from being i.i.d. from some distribution, due to the collisions.
As such, the algorithm does not appear to be well justified, and one may rather want to use
adversarial bandit algorithms like Exp3 [ACBFS02], that do not require a stochastic (i.i.d.)
assumption on arms. However, we found out empirically that Selfish is doing surprisingly
well when using UCB-like indexes, greatly outperforming Selfish based on Exp3, like what
we found in Chapter 5 in harder settings.

We illustrate in Section 6.5.3 that Selfish does have a (very) small probability to fail (badly),
for some problem with small K, which precludes the possibility of a logarithmic regret for
any problem. In most cases, it empirically performs similarly to all the algorithms described
before, and usually outperforms RhoRand, even if it neither exploits the sensing information,
nor the knowledge of the number of players M . Practitioners may still be interested by the
algorithm, especially for Cognitive Radio applications in which sensing is hard or cannot
be considered. In fact, we used the Selfish heuristic in Chapter 5, in the different models,
using UCB or Thompson sampling as the underlying policy. Thus we propose next our
main contribution, the MCTopM algorithm, proved to be asymptotically optimal for the
identification of sub-optimal arms (when using kl-UCB), attaining order-optimal logarithmic
regret, and outperforming all the other algorithms for the “sensing case”.

6.4.2 Two new strategies based on indices and orthogonalization

The approaches we now describe for multi-players bandits can be used in combination with
any index policy (see Algorithm 2.3), but we restrict our presentation to UCB algorithms,
for which strong theoretical guarantees can be obtained. In particular, we focus on two
types of indices: UCB1 [ACBF02] and kl-UCB [CGM+13]. For player j ∈ [M ] denote Sj

k(t) .=∑t
s=1 Yk,s1(Aj(t) = k) the current sumof rewards obtained for arm k, then µ̂j

k(t) .= Sj
k(t)/N j

k(t)
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(if N j
k(t) ̸= 0) is the empirical mean of arm k, and thus one can define the index

U j
k(t) .=

µ̂j
k(t) +

√
f(t)/(2N j

k(t)) for UCB,

sup
{

q ∈ [0, 1] : N j
k(t)× kl(µ̂j

k(t), q) ≤ f(t)
}

for kl-UCB,
(6.17)

where f(t) is some exploration function, usually taken to be ln(t) in practice, and slightly larger
in theory (e.g., f(t) = ln(t) + 3 ln(ln(t))), which ensures that P(U j

k(t) ≥ µk) ≳ 1 − 1/t (see
[CGM+13]). A classical (single-player) UCB algorithm aims at the arm with the largest index,
as presented above in Section 2.4.2. However, if each of the M players selects the arm with
the largest UCB, all the players will end up colliding most of the time on the best arm. To
circumvent this problem, several coordination mechanisms have emerged, that rely on ordering
the indices and targeting one of the M -best indices.

Two ideas for orthogonalization. On the one hand, the TDFS algorithm [LZ10] relies on
the player agreeing in advance on the time steps at which they will target each of the M best
indices. Even though some alternative without pre-agreement are proposed, they are quite
complicated and we prefer to focus on other approaches. On the other hand, the RhoRand
algorithm [AMTA11] relies on randomly selected ranks. More formally, letting π(k, U) be the
index of the k-th largest entry in a vector U, in RhoRand each player maintains at time t an
internal rank Rj(t) ∈ [M ] and selects at time t, Aj(t) .= π

(
Rj(t), [U j

ℓ (t)]ℓ∈[K]
)
. If a collision

occurs, a new rank is drawn uniformly at random, Rj(t + 1) ∼ U([M ]).

Our two proposals. We now propose two alternatives to this strategy, that do not rely on
ranks and rather randomly fix themselves on one arm in M̂ j(t), that is defined as the set of
arms that have the M largest indices (at the current time t and for player j),

M̂ j(t) .=
{

π
(
k, {U j

ℓ (t)}ℓ∈[K]
)

, k = 1, . . . , M
}

. (6.18)

The RandTopM algorithm. We precisely state the first proposal below in Algorithm 6.1.
RandTopM is essentially a refinement over RhoRand, to not use the indirection of ranks, and
a simpler version of MCTopM. The difference with MCTopM is that the latter introduces
a concept of a “Chair”, by considering a binary “being fixed” state sj(t), as presented in
Algorithm 6.2 below. In RandTopM, player j is always considered “not fixed”, and a collision
always forces a uniform sampling of the next arm from M̂ j(t).

The MCTopM algorithm. The second proposal MCTopM is stated below as Algorithm 6.2,
it is a slightly more complex extension of the RandTopM algorithm. From there on, we
focus on MCTopM as it is easier to analyze and performs better. Both algorithms ensure that
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1 Let Aj(0) ∼ U([K]) and Cj(0) = False
2 for t = 1, . . . , T do
3 if Aj(t− 1) /∈ M̂ j(t) then
4 if Cj(t− 1) then // collision at previous step
5 Aj(t) ∼ U

(
M̂ j(t)

)
// randomly switch

6 else // randomly switch on an arm that had smaller UCB
7 Aj(t) ∼ U

(
M̂ j(t) ∩

{
k : U j

k(t− 1) ≤ U j
Aj(t)(t− 1)

})
8 else
9 Aj(t) = Aj(t− 1) // stays on the same arm

10 Play arm Aj(t), get new observations (sensing and collision),
11 Compute the indices U j

k(t + 1) and set M̂ j(t + 1) for next step.
12 end
Algorithm 6.1: The RandTopM decentralized learning policy (for an index policy U j).

player j always selects at time t + 1 an arm from M̂ j(t). When a collision occurs for a player
implementing the RandTopM algorithm, that player randomly switches armwithin M̂ j , while
MCTopM uses a more sophisticated mechanism, that is reminiscent of “Musical Chair” (MC)
and inspired by the work of [RSS16]: players tend to fix themselves on arms (“chairs”) and
ignore future collision when this happens.

1 Let Aj(0) ∼ U([K]) and Cj(0) = False and sj(1) = False
2 for t = 1, . . . , T do
3 if Aj(t− 1) /∈ M̂ j(t) then // transition (3) or (5)
4 Aj(t) ∼ U

(
M̂ j(t) ∩

{
k : U j

k(t− 1) ≤ U j
Aj(t)(t− 1)

})
// not empty

5 sj(t) = False // aim at an arm with a smaller UCB at t− 1
6 else if Cj(t− 1) and sj(t− 1) then // collision and not fixed
7 Aj(t) ∼ U

(
M̂ j(t)

)
// transition (2)

8 sj(t) = False
9 else // transition (1) or (4)
10 Aj(t) = Aj(t− 1) // stay on the previous arm
11 sj(t) = True // become or stay fixed on a “chair”
12 Play arm Aj(t), get new observations (sensing and collision),
13 Compute the indices U j

k(t + 1) and set M̂ j(t + 1) for next step.
14 end
Algorithm 6.2: The MCTopM decentralized learning policy (for an index policy U j).

More precisely, under MCTopM, if player j did not encounter a collision when using arm k

at time t, then shemarks her current arm as a “chair” (sj(t) = True), andwill keep using it even
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if collisions happen in the future (lines 9-11). As soon as this “chair” k is no longer in M̂j(t),
a new arm is sampled uniformly from a subset of M̂ j(t), defined with the previous indices
U j(t) (lines 3-5). The subset enforces a certain inequality on indices, U j

k′(t− 1) ≤ U j
k(t− 1)

and U j
k′(t) ≥ U j

k(t), when switching from k = Aj(t − 1) to k′ = Aj(t). This helps to control
the number of such changes of arm, as shown in Lemma 6.13. The considered subset is never
empty as it contains at least the arm replacing the k ∈ M̂ j(t − 1) in M̂ j(t). Collisions are
dealt with only for non-fixed players j, and when the previous arm is still in M̂ j(t). In this
case, a new arm is sampled uniformly from M̂ j(t) (lines 6-8). This stationary aspect helps to
minimize the number of collisions, as well as the number of switches of arm. The five different
transitions (1), (2), (3), (4), (5) refer to the notations used in the analysis of MCTopM (in the
next section), and they are illustrated in Figure 6.1 below.

(0) Start t = 0

Not fixed, sj(t− 1)Fixed, sj(t− 1)

(1) Cj(t− 1), Aj(t− 1) ∈ M̂ j(t)

(2) Cj(t− 1),
Aj(t− 1) ∈ M̂ j(t)

(3) Aj(t− 1) /∈ M̂ j(t)

(4)
Aj(t− 1) ∈ M̂ j(t)

(5) Aj(t− 1) /∈ M̂ j(t)

Figure 6.1 – Player j using MCTopM, represented as “state machine” with 5 transitions. Taking one of
the five transitions means playing one round of the Algorithm 6.2, to decide Aj(t) using information
of previous steps.

6.5 Finite-time upper-bound on the regret of MCTopM

We now focus on obtaining positive results for the algorithmswe proposed in Section 6.4 above.
Section 6.5.1 gives an asymptotically optimal analysis of the expected number of sub-optimal
draws for our two proposals RandTopM and MCTopM as well as for RhoRand, when they are
combined with kl-UCB indices, and then we restrict to the most efficient algorithm MCTopM,
by proving in Section 6.5.2 that it achieves a logarithmic number of collisions and regret.
Finally, Section 6.5.3 shortly discusses a negative result regarding Selfish.

6.5.1 Common analysis for RandTopM- and MCTopM

Lemma 6.10 gives a finite-time upper bound on the expected number of draws of a sub-optimal
arm k for any player j, that holds for both RandTopM-kl-UCB and MCTopM-kl-UCB. Our
improved analysis also applies to RhoRand. Explicit expressions for Cµ, Dµ can be found in
the proof given below.
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Lemma 6.10. For anyµ ∈ PM , let player j ∈ [M ] use theRandTopM-,MCTopM- orRhoRand-
kl-UCB decentralized policy with exploration function f(t) .= ln(t) + 3 ln(ln(t)). Then for any
sub-optimal arm k ∈M -worst there exists problem-dependent constants Cµ, Dµ > 0 such that

Eµ[N j
k(T )] ≤ ln(T )

kl(µk, µ∗
M ) + Cµ

√
ln(T ) + Dµ ln(ln(T )) + 3M + 1︸ ︷︷ ︸

=o(ln(T ))

. (6.19)

It is important to notice that the leading constant in front of ln(T ) is the same as in the
constant featured in Equation (6.10) of Theorem 6.8. This result proves that the lower bound on
sub-optimal selections is asymptotically matched for the three considered algorithms. This is
a strong improvement in comparison to the previous state-of-the-art results [LZ10, AMTA11].

Proof. Fix k ∈ M -worst and a player j ∈ [M ]. The key observation is that for MCTopM,
RandTopM as well as the RhoRand algorithm, it holds that(

Aj(t) = k
)

=
(
Aj(t) = k, ∃m ∈M -best : U j

m(t) < U j
k(t)

)
. (6.20)

For each algorithm, the arm selected at time t always belongs to the set M̂ j(t) of arms with
M largest indices. Selecting the sub-optimal arm k at time t implies that k ∈ M̂ j(t), and that
one of the arms in M -best must be excluded from M̂ j(t), because there are M arms in both
M -best and M̂ j(t). In particular, arm k must have a larger index than this particular arm m.

Thanks to (6.20) and if Pµ denote here the probability under model µ, it is easy to decom-
pose the number of selections of arm k by user j up to round T as

Eµ[N j
k(T )] = Eµ

[
T∑

t=1
1

(
Aj(t) = k

)]
=

T∑
t=1

Pµ

(
Aj(t) = k

)
.

=
T∑

t=1
Pµ

(
Aj(t) = k, ∃m ∈ [M ] : U j

m∗(t) < U j
k(t)

)
.

Considering the relative position of the upper-confidence bound U j
m∗(t) and the corre-

sponding mean µ∗
m = µm∗ , one can write the decomposition

Eµ[N j
k(T )] ≤

T∑
t=1

Pµ

(
∃m1 ∈ [M ] : Um∗

1
(t) < µ∗

m

)
+

T∑
t=1

Pµ

(
Aj(t) = k, ∃m2 ∈ [M ] : Um∗

2
(t) ≤ Uk(t),∀m3 ∈ [M ] : Um3∗(t) ≥ µ∗

m3

)
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Eµ[N j
k(T )] ≤

M∑
m1=1

T∑
t=1

Pµ

(
Um∗

1
(t) < µ∗

m1

)
+

T∑
t=1

Pµ

(
Aj(t) = k, ∃m2 ∈ [M ] : µ∗

m2 ≤ Uk(t)
)

≤
M∑

m1=1

T∑
t=1

Pµ

(
Um∗

1
(t) < µ∗

m1

)
+

T∑
t=1

Pµ

(
Aj(t) = k, µM∗ ≤ Uk(t)

)
(6.21)

where the last inequality (for the first term) comes from the fact that µM∗ is the smallest of
the µm∗ for m ∈ [M ].

Now each of the two terms in the right hand side of (6.21) can directly be upper bounded
using tools developed by [CGM+13] for the analysis of kl-UCB. The leftmost term in (6.21)
can be controlled using Lemma 6.11 below that relies on a self-normalized deviation inequality,
whose proof exactly follows from the proof of Fact 1 in Appendix A of [CGM+13].

Lemma 6.11. For any arm k, if U j
k(t) is the kl-UCB index with exploration function f(t) =

ln(t) + 3 ln(ln(t)), then
T∑

t=1
Pµ

(
U j

k(t) < µk

)
≤ 3 + 4e ln(ln(T )).

The rightmost term in (6.21) can be controlled using Lemma 6.12, that is a direct conse-
quence of the proof of Fact 2 in Appendix A of [CGM+13]. Denote kl′(x, y) the derivative of
the function x 7→ kl(x, y) (for any fixed y ̸= 0, 1).

Lemma 6.12. For any arms k and k′ such that µk′ > µk, if U j
k(t) is the kl-UCB index with

exploration function f(t),

T∑
t=1

Pµ

(
Aj(t) = k, µk′ ≤ U j

k(t)
)
≤ f(T )

kl(µk, µk′) +
√

2π

√
kl′(µk, µk′)2

kl(µk, µk′)3

√
f(T )

+ 2
(

kl′(µk, µk′)
kl(µk, µk′)

)2

+ 1. (6.22)

Putting things together, one obtains the non-asymptotic upper bound

Eµ

[
N j

k(T )
]
≤ ln(T ) + 3 ln(ln(T ))

kl(µk, µM∗) +
√

2π

√
kl′(µk, µM∗)2

kl(µk, µM∗)3

√
ln(T ) + 3 ln(ln(T ))

+ 2
(

kl′(µk, µM∗)
kl(µk, µM∗)

)2

+ 4Me ln(ln(T )) + 3M + 1, (6.23)

which yields Lemma 6.10, with explicit constants Cµ and Dµ.
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As announced, Lemma 6.13 controls the number of switches of arm that are due to the
current arm leaving M̂ j(t), for both RandTopM and MCTopM. It essentially proves that
lines 3-5 in Algorithm 6.2 (when a new arm is sampled from the non-empty subset of M̂ j(t))
happen a logarithmic number of times. The proof of this result is given below.

Lemma 6.13. For any µ ∈ PM , any player j ∈ [M ] using RandTopM- or MCTopM-kl-UCB,
and any arm k, it holds that

T∑
t=1

P
(
Aj(t) = k, k /∈ M̂ j(t)

)
=

 ∑
k′,µk′ <µk

1
kl(µk, µk′)

 ln(T )

 ∑
k′,µk′ >µk

1
kl(µk′ , µk)

 ln(T ) + o(ln(T )). (6.24)

Proof. We analyze the case when the current arm leaves the set M̂ j (Line 4):

T∑
t=1

P
(
Aj(t) = k, k /∈ M̂ j(t)

)

≤
T∑

t=1
P
(
Aj(t) = k, k /∈ M̂ j(t), Aj(t + 1) ∈ M̂ j(t) ∩ {k′ : U j

k′(t− 1) ≤ U j
k(t− 1)}

)

≤
T∑

t=1

∑
k′ ̸=k

P
(
Aj(t) = k, Aj(t + 1) = k′, U j

k′(t) ≥ U j
k(t), U j

k′(t− 1) ≤ U j
k(t− 1)

)

=
∑
k′ ̸=k

T∑
t=1

P
(
Aj(t) = k, Aj(t + 1) = k′, U j

k′(t) ≥ U j
k(t), U j

k′(t− 1) ≤ U j
k(t− 1)

)
︸ ︷︷ ︸

.=Nk′

Now, to control Nk′ , we distinguish two cases. If µk < µk′ , one can write

Nk′ ≤
T∑

t=1
P
(
U j

k′(t) ≤ µk′

)
+

T∑
t=1

P
(
Aj(t) = k, U j

k(t− 1) ≥ µk′

)

The first sum is o(ln(T )) by Lemma 6.11. To control the second sum, we apply the same trick
that led to the proof of Lemma 6.12 in [CGM+13]. Letting kl+(x, y) .= kl(x, y)1(x ≥ y), and
µ̂j

k,s be the empirical mean of the s first observations from arm k by player j, one has

T∑
t=1

P
(
Aj(t) = k, U j

k(t− 1) ≥ µk′

)
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= E
[

T∑
t=1

t−1∑
s=1

1

(
Aj(t) = k, N j

k(t− 1) = s
)
1

(
s× kl+

(
µ̂j

k,s, µk

)
≤ f(t)

)]

≤ E

 T∑
s=1

1

(
s× kl+

(
µ̂j

k,s, µk

)
≤ f(T )

) T∑
t=s−1

1

(
Aj(t) = k, N j

k(t− 1) = s
)

≤
T∑

s=1
P
(
s× kl+

(
µ̂j

k,s, µk

)
≤ f(T )

)
, (6.25)

where the last inequality uses that for all s,

T∑
t=s−1

1

(
Aj(t) = k, N j

k(t− 1) = s
)

=
T∑

t=s−1
1

(
Aj(t) = k, N j

k(t) = s + 1
)
≤ 1.

From (6.25), the same upper bound as that of Lemma 6.12 can be obtained using the tools
from [CGM+13], which proves that for T →∞,

Nk′ = ln(T )
kl(µk, µk′) + o(ln(T )).

Ifµk > µk′ , we rather use thatNk′ ≤
T∑

t=1
P
(
U j

k(t) ≤ µk

)
+

T∑
t=1

P
(
Aj(t + 1) = k′, U j

k′(t) ≥ µk

)
,

and similarly Lemma 6.11 and a slight variant of Lemma 6.12 to deal with the modified time
indices yields Nk′ = ln(T )

kl(µk′ ,µk) + o(ln(T )). Summing over k′ yields the result.

6.5.2 Regret analysis of MCTopM with kl-UCB indexes

For MCTopM, we are furthermore able to obtain a logarithmic regret upper bound, by propos-
ing an original approach to control the number of collisions under this algorithm. First, we
can bound the number of collisions by the number of collisions for players not yet “fixed on
their arms” (sj(t)), that we can then bound by the number of changes of arms.

Lemma 6.14. For any µ ∈ PM , if all players use the MCTopM-kl-UCB decentralized policy,
and M ≤ K, then the total average number of collisions (on all arms) is upper-bounded by

Eµ

[
K∑

k=1
Ck(T )

]
≤M2 (2M + 1)

 ∑
a,b=1,...,K

µa<µb

1
kl(µa, µb)

 ln(T ) + o(ln T ) . (6.26)
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Note that this bound is in O
(
M3), which significantly improves over the O

(
M
(2M−1

M

))
bound, proven by [AMTA11] for RhoRand. The obtained bound is worse than the O

(
M2)

proven by [RSS16] for Musical Chair. However, unlike Musical Chair, our algorithm does not
need any prior knowledge on the problem complexity, at it is indeed not very satisfying from
an applicative point of view to require a prior knowledge of µ∗

M − µ∗
M+1.

Proof. A key feature of both the RandTopM and MCTopM algorithms is Lemma 6.13, that
states that the probability of switching from some arm because this arm leaves M̂ j(t) is small.

Figure 6.1 presented above provides a schematic representation of the execution of the
MCTopM algorithm, that has to be exploited in order to properly control the number of
collisions. The sketch of the proof is the following: by focusing only on collisions in the “not
fixed” state, bounding the number of transitions (2) and (3) is enough. Then, we show that
both the number of transitions (3) and (5) are small: as a consequence of Lemma 6.13, the
average number of these transitions is O(ln T ). Finally, we use that the length of a sequence of
consecutive transitions (2) is also small (on average smaller than M), and except for possibly
the first one, starting a new sequence implies a previous transition (3) or (5) to arrive in the
state “not fixed”. This gives a logarithmic number of transitions (2) and (3), and so gives
Eµ[

∑
k Ck(T )] = O(ln T ), with explicit constants depending on µ and M .

As in Algorithm 6.2, sj(t− 1) is the event that player j decided to fix herself on an arm at
the end of round t− 1. Thus sj(0) is false, and sj(t) is defined inductively from sj(t− 1) as

sj(t) =
(
sj(t− 1) ∪

(
sj(t− 1) ∩ Cj(t− 1)

))
∩
(
Aj(t) ∈ M̂ j(t− 1)

)
. (6.27)

For the sake of clarity, we now explain Figure 6.1 in words. At step t, if player j is not
fixed (sj(t− 1)), she can have three behaviors when executing MCTopM. She keeps the same
arm and goes to the other state sj(t) with transition (1), or she stays in state sj(t) in two cases.
Either she sampled Aj(t) uniformly from M̂ j(t)∩ {m : U j

m(t− 1) ≤ U j
k(t− 1)}with transition

(3), in case of collision and if Aj(t− 1) ∈ M̂ j(t), or she sampled Aj(t) uniformly from M̂ j(t)
with transition (2), if Aj(t− 1) /∈ M̂ j(t). In particular, note that (3) is executed and not (2) if
Cj(t− 1). Transition (3) is a uniform sampling from M̂ j(t) (the “Musical Chair” step).

For player j and round t, we now introduce a few events that are useful in the proof. First,
for every x = 1, 2, 3, 4, 5, we denote Ij

x(t) the event that a transition of type (x) occurs for player
j after the first t observations (i.e., in round t, to decide Aj(t)). Formally they are defined by

Ij
1(t) .=

(
sj(t− 1), Cj(t− 1), Aj(t− 1) ∈ M̂ j(t)

)
,

Ij
2(t) .=

(
sj(t− 1), Cj(t− 1), Aj(t− 1) ∈ M̂ j(t)

)
, and I3(t) .=

(
sj(t− 1), Aj(t− 1) /∈ M̂ j(t)

)
,

I3(t) .=
(
sj(t− 1), Aj(t− 1) ∈ M̂ j(t)

)
, and I5(t) .=

(
sj(t− 1), Aj(t− 1) /∈ M̂ j(t)

)
.
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Then, we introduce C̃j(t) as the event that a collision occurs for player j at round t if she is
not yet fixed on her arm, that is C̃j(t) .=

(
Cj(t), sj(t)

)
.

A key observation is that Cj(t) implies
⋃M

j′=1 C̃j′(t), as a collision necessarily involves at
least one player j′ ∈ [K] not yet fixed on her arm (sj′(t−1)). Otherwise, if they are all fixed,
i.e., for all j′, sj′(t− 1), then by definition of sj(t− 1), none of the player changed their arm
from t− 1 to t, and none experienced any collision at time t− 1 so by induction there is no
collision at time t. Thus,

∑M
j=1 P(Cj(t)) can be upper bounded by M

∑M
j=1 P(C̃j(t)) (union

bound), and it follows that if C(T ) .=
∑K

k=1 Ck(T ) then

Eµ[C(T )] ≤M
M∑

j=1

T∑
t=1

P(C̃j(t)).

We can further observe that C̃j(t) implies a transition (2) or (3), as a transition (1) cannot
happen in case of collision. Thus another union bound gives

T∑
t=1

P(C̃j(t)) ≤
T∑

t=1
P(Ij

2(t)) +
T∑

t=1
P(Ij

3(t)). (6.28)

In the rest of the proof we focus on bounding the number of transitions (2) and (3).

Let N j
x(T ) be the random variable denoting the number of transitions of type (x). Neglect-

ing the event sj(t− 1) for x = 3 and sj(t) for x = 5, one has

Eµ[N j
x(t)] =

T∑
t=1

P(Ij
x(t)) ≤

T∑
t=1

P
(
Aj(t− 1) /∈ M̂ j(t)

)
≤

T∑
t=1

K∑
k=1

P
(
Aj(t− 1) = k, k /∈ M̂ j(t)

)
,

(6.29)
which is O(ln T ) (with known constants) by Lemma 6.13. In particular, this controls the
second term in the right hand side of (6.28).

To control the first term
∑T

t=1 P(Ij
2(t)) we introduce three sequences of random variables,

the starting times (θi)i≥1 and the ending times (τi)i≥1 (possibly larger than T ), of sequences
during which I2(s) is true for all s ∈ [θi, . . . , τi − 1], but not before and not after, that is
∀i ∈ {1, . . . , n(T )}, Ij

2(θi − 1) ∩
⋂τi−1

t=θi
Ij

2(t) ∩ Ij
2(τi) with n(T ) the number of such sequences,

i.e., n(T ) .= inf{i ≥ 1 : min(θi, τi) ≥ T} (or 0 if θ1 does not exist). If θi = 1, the first sequence
does not have term Ij

2(θi − 1).

Now we can decompose the sum on t = 1, . . . , T with the use of consecutive sequences,

Eµ[N j
2 (t)] = Eµ

[
T∑

t=1
1

(
Ij

2(t)
)]

= Eµ

n(T )∑
i=1

τi−1∑
t=θi

1 +
θi+1−1∑

t=τi

0

 = Eµ

n(T )∑
i=1

(τi − θi)

 .
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Both n(T ) and τi − θi ≥ 0 have finite averages for any i (as τi − θi ≤ T ), and n(T ) is a stopping
time with respect to the past events (that is, F j

T ), thus we can use Wald’s Lemma [Wal45], to
obtain a decomposition with two terms (α) and (β), Eµ[N j

2 (t)] ≤ Eµ [n(T )]×max
i≥1

Eµ [τi − θi].

(α) To control Eµ[n(T )], we can observe that the number of sequences n(T ) is smaller than
1 plus the number of times when a sequence begins (1 plus because maybe the game starts in a
sequence). And beginning a sequence at time θi implies Ij

2(θi − 1) ∩ Ij
2(θi), which implies a

transition of type (3) or (5) at time θi−1, as player j is in state “not fixed” at time θi (transitions
(1) and (4) are impossible). As stated above, Eµ[N j

x(T )] = O(ln T ) for both x = 3 and x = 5,
and so Eµ[n(T )] = O(ln T ) also.

(β) To control Eµ [τi − θi], a simple argument can be used. The union of events
⋃τi−1

t=θi
Ij

2(t)
implies Cj(t) for τi − θi consecutive times. The very structure of RandTopM gives that in
this sequence of transitions (2), the successive collisions (i.e., Cj(t− 1) ∩ Cj(t)) implies that
each new arm Aj(t) for t ∈ {θi, τi − 1} is selected uniformly from M̂ j(t), a set of size M

with at least one available arm. Indeed, as there is M − 1 other players, at time t at least one
arm in M̂ j(t) is not selected by any player k′ ̸= k, and so player j has at least a probability
1/M to select a free arm, which implies Cj(t), and so implies the end of the sequence. In
other words, the average length of sequences of transitions (2), Eµ [τi − θi], is bounded by the
expected number of failed trial of a repeated Bernoulli experiment, with probability of success
larger than 1/M (by the uniform choice of Aj(t) in a set of size M with at least one available
arm). We recognize the mean of a geometric random variable, of parameter λ ≥ 1/M , and so
Eµ [τi − θi] = 1

λ ≤
1

1/M = M .

This finishes the proof as Eµ[N j
2 (T )] =

∑T
t=1 P(Ij

2(t)) = O(ln T ) and so
∑T

t=1 P(C̃j(t) ∩
(Aj(t) = k)) = O(ln T ) and finally Eµ[C(T )] =

∑K
k=1 Eµ[Ck(T )] = O(ln T ) also.

We can be more precise about the constants, by using the previous arguments successively.

Eµ[C(T )] ≤M
M∑

j=1

(
T∑

t=1
P(Ij

2(t)) +
T∑

t=1
P(Ij

3(t))
)

= M

 M∑
j=1

Eµ[N j
2 (T )] + Eµ[N j

3 (T )]


≤M2 (Eµ[n(T )]Eµ[θi − τi]) + M2Eµ[N1

3 (T )]

≤M2(1 + Eµ[N1
3 (T )] + Eµ[N1

5 (T )])M + M2Eµ[N1
3 (T )]

≤ 2M3Eµ[N1
3 (T )] + o(ln T ) + M2 ∑

a,b=1,...,K
µa<µb

ln(T )
kl(µa, µb)

+ o(ln T )

≤
(
2M3 + M2

) ∑
a,b=1,...,K

µa<µb

ln(T )
kl(µa, µb)

+ o(ln T ) .
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Thus we prove the desired inequality, with explicit constants depending only on µ and M .

K∑
k=1

Eµ[Ck(T )] = Eµ[C(T )] ≤M2 (2M + 1)
∑

a,b=1,...,K
µa<µb

ln(T )
kl(µa, µb)

+ o(ln T ) . (6.30)

Logarithmic switching cost for MCTopM. While Lemma 6.14 bounds the number of colli-
sions, another consequence of our proof is that we have also bounded the (expected) number
of switches of arms, SCA(T ) =

∑T −1
t=1 P(Aj(t + 1) ̸= Aj(t)). We controlled the total number of

transitions (2), (3) and (5) (see Figure 6.1), which are the only transitions when a player can
change its arm. Thus, the total number of arm switches is also logarithmic, if the M players
use MCTopM-kl-UCB. This additional guarantee was never clearly stated for previous works,
like RhoRand. Even though minimizing the number of arms switching was not a goal, this
guarantee is appealing, in particular for Cognitive Radio applications, where switching arms
means re-configuring a radio hardware, an operation that costs energy. An algorithm guaran-
teeing a small number of switches is thus interesting, and for instance [DMNM16] studied the
empirical impact of the number of hardware reconfigurations on the battery life of a dynamic
end-devices. This work highlighted a trade-off between minimizing regret and minimizing
the number of switches of arms. On a more experimental note, it was shown in [DMNM16]
that the previous state-of-the-art policy for multi-players bandits, RhoRand, could be tuned
to run in batches, in order to reduce by a certain multiplicative factor its switching cost while
multiplying its regret by the same factor. While such ideas can interest a practitioner, they
does not change the asymptotic behavior of SCA1,...,AM (T ), which is Θ(ln(T )) for any efficient
policy. We also note that introducing explicit switching costs in the regret, like it was done in
previous works like [TRY17] for single-player bandits, could also be fruitful.

Logarithmic Regret for MCTopM. Now that the sub-optimal arms selections and the col-
lisions are both proven to be at most logarithmic in Lemmas 6.10 and 6.14 above, it follows
from our regret decomposition (Lemma 6.5) together with Lemma 6.9 that the regret of
MCTopM-kl-UCB is logarithmic. More precisely, we obtain a finite-time problem-depend
upper bound on the regret of this algorithm.

Theorem 6.15. If all M players use MCTopM-kl-UCB, and M ≤ K, then for any problem
µ ∈ PM , there exists a problem dependent constant GM,µ, such that the regret satisfies:

RA
T (µ, M) ≤ GM,µ ln(T ) + o(ln T ) . (6.31)

Moreover, the dependency of the constant regarding the number of players is GM,µ = O
(
M3).
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Strong uniform efficiency. As soon as RT = O(ln(T )) for all problems, MCTopM is clearly
proven to be uniformly efficient, as ln(T ) is o(T α) for any α ∈ (0, 1). And as justified after
Definition 6.7 (page 145), uniform efficiency and invariance under permutations of the users
implies strong uniform efficiency, and so MCTopM satisfies Definition 6.7.

6.5.3 Discussion on Selfish

The analysis of the Selfish algorithm is harder, but we obtained some understanding of the
behavior of this algorithm, that seems to be doing surprisingly well in many contexts, as in
our experiments with K = 9 arms and in extensive experiments not reported in this section.
However, a disappointing result is that we found simple problems, usually with small number
of arms, for which the algorithm may fail. For example with M = 2 or M = 3 players
competing for K = 3 arms, with means µ = [0.1, 0.5, 0.9], the histograms in Figure 6.2 suggest
that with a small probability, the regret RT of Selfish-kl-UCB can be very large.

In the Appendix E of our article [BK18a], we explained when such situations may happen,
and we included a conjectured (constant, but small) lower bound on the probability that
Selfish experience collision almost at every round. This result would then prevent Selfish from
having a logarithmic regret. However, it is to be noted that the lower bound of Theorem 6.8
does not apply to the censored observation model (III) under which Selfish operates. The Sic-
MMAB algorithm proposed in [BP18] answers the question we left open last year in [BK18a],
of whether logarithmic regret is at all possible for the “no sensing” case (model (III)). They
confirmed that Selfish-UCB can indeed suffer linear regret, and proposed an algorithm based
on a “communication trick” to achieve logarithmic regret for this harder model (III).

6.6 Experimental results for multi-player bandits with sensing

In all the numerical simulations, we focus on the model with sensing, i.e., model (I) or (II).
We illustrate here the empirical performances of the algorithms presented in Section 6.4,
used in combination with the UCB or kl-UCB indices. The analysis given in Section 6.5 was
focusing on kl-UCB, because it is well known that it is more efficient both in practice and
in theory. To illustrate this, we first show below the result of some experiments comparing
different algorithms that use either the UCB or the kl-UCB indexes. Our proposed algorithms,
MCTopM, RandTopM and Selfish are bench-marked against the state-of-the-art RhoRand
algorithm.

We also include a (unrealistic) centralized multiple-play kl-UCB algorithm, as defined
by [AVW87a], essentially to check that the “price of decentralized learning” is not too large.
Centralized multiple-play index policies are very similar to single-player index policies (see
Algorithm 2.3), they work by computing an index U ′

k(t) for each arm k ∈ [K], and then sort
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the arm by decreasing index, and affect the M players to the M arms with highest index. They
are based on a central supervision, as a single algorithm is in charge of deciding the arms
used by the M players, and as such they are both unrealistic to set-up in practice, and falling
outside of our focus that is on decentralized algorithms.

First experiment: UCB vs kl-UCB. The first experiment is considering K = 9 arms, with
means µ = [0.1, 0.2, . . . , 0.9], and M = 3 then 6 then 9 players. Note that here and as in all this
section we consider different algorithms that know the number of players M (see Section 6.7.1
below for a discussion on the case when M could be unknown). Performance is measured
with the expected regret up to horizon T = 10000, estimated based on 1000 repetitions on the
same bandit instance.

Algorithm Index policy M = 3 players M = 6 M = 9

Centralized multiple-play UCB 321± 30 233± 25 0
kl-UCB 94± 17 68± 18 0

Selfish UCB 1263± 157 3694± 387 12420± 404
kl-UCB 243± 31 743± 113 3005± 492

RhoRand UCB 1455± 208 4775± 463 11794± 1083
kl-UCB 394± 96 2385± 412 7057± 1053

RandTopM UCB 1020± 92 2899± 418 470± 346
kl-UCB 258± 43 902± 234 551± 520

MCTopM UCB 980± 76 1466± 132 43± 13
kl-UCB 248± 40 410± 54 42± 10

Table 6.1 – Regret for all orthogonalization policies and different numbers of players. Using kl-UCB is
much more efficient than using UCB, for multi-players bandit (here in a simple problem with K = 9
arms).

We report in Table 6.1 above the results in terms of mean regret, plus or minus one
standard deviation. The conclusions are three fold: first we observe for any of the compared
algorithms, using kl-UCB is always (much) better than using UCB. Second, we observe that
our proposal MCTopM is outperforming the state-of-the-art RhoRand policy, and performs
closely to the centralized (unrealistic) approach. Third we observe in the last column, when
M = K = 9, that MCTopM is achieving constant regret, as we proved that the regret upper-
bound of Theorem 6.15 is indeed O(1) if there is no arms in M -worst, and it shows that the
orthogonalization scheme proposed for MCTopM is very efficient, especially in comparison
to previous state-of-the-art approaches using ranks. Additional experiments and illustrations
are given below. We illustrate below the (empirical mean) regret Rt as a function of time and
not only results in terms of empirical mean regret RT at the end of the bandit game.

The purpose of this work is not to optimize on the index policy, but rather propose new
ways of using indices in a decentralized setting, and as we observed in Table 6.1 that using
kl-UCB rather than UCB indices always yield better practical performance, from now on we
only report results for kl-UCB.
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Histogram of regrets for different multi-players bandit algorithms
3 arms: [B(0.1), B(0.5) ∗ , B(0.9) ∗ ]

Figure 6.2 – Regret for M = 2 players, K = 3 arms, horizon T = 5000, 1000 repetitions and µ =
[0.1, 0.5, 0.9]. Axis x is for regret (different scale for each part), and the green curve for Selfish shows a
small probability of having a linear regret (17 cases of RT ≥ T , out of 1000). The regret for the three
other algorithms is very small for this problem, always smaller than 100 here.

Other experiments. We now present more results for two bandit instances. The first instance
is a small problemwith K = 3 arms andmeans µ = [0.1, 0.5, 0.9], for the case of M = 2 players.
It is used to illustrate that in some unlucky runs, Selfish can suffer a linear regret, as illustrated
in Figure 6.2. The second instance considers K = 9 arms with means µ = [0.1, 0.2, . . . , 0.9],
three cases are presented: M = 6 in Figure 6.3, and for the two limit cases M = 2 and
M = 9 = K in Figure 6.4. We also include histograms showing the distribution of the final
regret RT , as this allows to check if the regret is indeed small for each run of the simulation.
We also include the asymptotic lower bound from Theorem 6.8 on regret plots.

We also compared our algorithms to with MEGA [AM15] and Musical Chair [RSS16], in
the presence of sensing, i.e., observation model (II), for which they were developed. Yet these
two algorithms were found to both be very hard to use efficiently in practice, and we show
in Figure 6.5 that they perform poorly in comparison to RhoRand, RandTopM and MCTopM.
MEGA needs a careful tuning of five parameters (c, d, p0, α and β) to attain reasonable
performances. No good guideline for tuning them is provided and using cross validation,
as suggested by [AM15], can be considered out of the scope of online sequential learning.
Musical Chair consists of a random exploration phase of length T0 after which the players
quickly converge to orthogonal strategies targeting the M best arms. With probability at least
1− δ, its regret is proven to be “constant” (of order ln(1/δ)). The theoretical minimal value
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for T0 depends on δ, on the horizon T and on a lower bound ε on the gap ∆ = µ∗
M − µ∗

M+1,
and the practical tuning is hard too.
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Figure 6.3 – Regret (in log-log scale), for M = 6 players for K = 9 arms, horizon T = 5000, for 1000
repetitions on problem µ = [0.1, . . . , 0.9]. RandTopM (in light green) outperforms Selfish (in green),
both clearly outperform RhoRand. The regret of MCTopM is logarithmic, empirically with the same
slope as the lower bound. The x axis on the regret histograms have different scale for each algorithm.
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Multi-players M= 9 : Cumulated centralized regret, averaged 200 times
9 arms: [B(0.1) ∗ , B(0.2) ∗ , B(0.3) ∗ , B(0.4) ∗ , B(0.5) ∗ , B(0.6) ∗ , B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

9×  RandTopM-KLUCB
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Centralized lower-bound = 0 log(t)

Figure 6.4 – Regret (in log-log scale), for M = 2 and 9 players for K = 9 arms, horizon T = 5000, for
problem µ = [0.1, . . . , 0.9]] for problem µ = [0.1, . . . , 0.9]. In different settings, RandTopM (in light
green) and Selfish (in green) can outperform each other, and always outperform RhoRand. MCTopM
is always among the best algorithms, and for M not too small, its regret seems logarithmic with a
constant matching the lower bound.
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Multi-players M= 3 : Cumulated centralized regret, averaged 100 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

3×  CentralizedMultiplePlay(KLUCB)
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3×  MCTopM-KLUCB
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3×  MusicalChair(T0 = 257182)

Figure 6.5 – Regret for M = 3 players for K = 9 arms, horizon T = 123456, for 100 repetitions on
problem µ = [0.1, . . . , 0.9]. With a perfect knowledge on the horizon and the gap (∆ = 0.1 here) and by
using the parameters suggested from their respective articles, MEGA and Musical Chair perform badly,
even in this simple setting. The first two Musical Chair instances use the optimal T0 value from [RSS16],
with ε taken slightly smaller than the gap ∆ (ε = 0.99∆), and respectively with δ = 0.5 and δ = 0.1,
for which the regret can be bounded with probability 0.5 and 0.9 respectively. The third instance uses
the optimal T0 corresponding to δ = 1/T , that is guaranteed to have an expected regret of order ln(T ).
The log-y scale is used to easily differentiate between the different algorithms, and highlight that our
proposal (in light green∇) outperform both MEGA and Musical Chair by three orders of magnitudes!
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Multi-players M= 6 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]
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Figure 6.6 – Regret for M = 6 players, K = 9 arms, horizon T = 5000, against 500 problems µ
uniformly sampled in [0, 1]K . RhoRand (top blue) is outperformed by the other algorithms (and the
gain increases with M). MCTopM (bottom green) outperforms all the other algorithms in most cases.

Uniformly sampled problems. Experiments with a different problem for each repetition,
that is uniformly sampled µ ∼ U([0, 1]K), are also considered, in Figure 6.6 and 6.7. This helps
to check that no matter the complexity of the considered problem (one measure of complexity
being the constant in our lower bound), MCTopM performs similarly or better than all the
other algorithms, and Selfish outperformsRhoRand inmost cases. Figure 6.6 is a good example
of outstanding performances of MCTopM and Selfish in comparison to RhoRand. Empirically,
our proposals were found to always outperform RhoRand, and except for Selfish that can fail
badly on problems with small K, we verified that MCTopM outperforms the state-of-the-art
algorithms in many different problems, and is more and more efficient as M and K grows.

Note that more numerical experiments were conducted for the article [BK18a], and in
particular the last pages of the paper show more figures, in other settings.

Reproducibility. The experiments in this chapter use our library SMPyBandits, and the
page SMPyBandits.GitHub.io/MultiPlayers.html gives instructions to reproduce them.
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Figure 6.7 – Regret for M = 2 players, K = 9 arms, horizon T = 5000, against 500 problems µ
uniformly sampled in [0, 1]K . RhoRand (top blue) is outperformed by the other algorithms (and the
gain increases when M increases), which all perform similarly in such configurations. Note that the
(small) tail of the histograms come from complicated problems µ and not failure cases.
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Multi-players M= 9 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]
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Figure 6.8 – Regret for M = K = 9, horizon T = 5000, against 500 problems µ uniformly sampled in
[0, 1]K . This extreme case M = K shows the drastic difference of behavior between RandTopM (red)
and MCTopM (light green), with constant regret, and RhoRand (blue) and Selfish (green), with large
regret.
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6.7 Literature review of extensions of the multi-player MABmodel

Before concluding this chapter, we review many extensions to the three models presented
above in Section 6.2 that were introduced in recent literature. We wanted to highlight that
the community has been quite active on research on multi-players bandits in the last 10 years,
but especially active since last spring 2018. For instance, our article [BK18a] was the first to
propose the “no sensing” case, and it was studied by (at least) two independent group of
researchers since its publication in April 2018 [BP18, LM18]. Another example is the model
with different arm means among players, who was initially studied in [AMT10, KNJ12] and
then more recently in [BL18, KM19].

Many extensions of the simpler model of multi-players bandits have been considered. The
number of players M can be fixed but initially unknown to the players, the sensing information
can be absent (like the model (III) presented above), there could be communications between
players (happening at each time step or only occasionally), or M could evolve over time to
model the possibility of arrivals or departures of players (i.e., connection’s and disconnections
of devices in a wireless networks). Also inspired by real-world wireless networks, the arm
means may vary among players, for instance to model players located at different distance
of the gateway, and we can also consider networks with some “jammers” whose purpose is
not to communicate to the gateway in a collaborative way, like the M devices, but to interfere
with the communications of the M devices.

Finally, we can also be interested by models where M stays fixed, but the environment
evolves, for instance with abrupt changes in the means of arms. This last model makes a good
connection between this chapter and the next one, and an exciting future work is to further
study this model in order to tackle this kind of problems by merging our contributions for
stationary multi-players bandits and for non-stationary single-player bandits.

6.7.1 Unknown (fixed) number of players

In the model we presented above, we assumed the number of players M to be fixed in time
during the learning process. Without removing this hypothesis (we study this case below in
Section 6.7.2), it is interesting to remark that we made no hypothesis on whether the players
can know this value M or not. Our proposals, RandTopM and MCTopM, both assume to
know M beforehand, like it was done for their main inspiration, RhoRand.

Performance of our proposals for a wrong value of M . We can start by asking whether
the most efficient algorithm, MCTopM-kl-UCB, is still efficient if it uses a value M ′ different
from the real number of players M . Even though we did not include numerical simulations
for this case in Section 6.6 above, we did some tests, which confirmed two disappointing

171



Multi-Players Multi-Armed Bandits

results that were also proven analytically. First, the three algorithms (RhoRand, RandTopM
and MCTopM) give linear regret if they are using a value M ′ strictly smaller than M (and
if µ∗

M−1 > µ∗
M), as players will converge to play about T − O(ln(T )) times the M − 1 best

arms, leading to at least one collision most of the time, and thus a linear regret. Second, if
the M players falsely use a value M ′ > M , then there is also a certain (fixed) probability to
achieve a linear regret. Indeed, imagine one player (M = 1) running MCTopM with the false
knowledge of M ′ = 2, and if it learned to accurately identify the set of the 2 best arms, then
the MCTopM orthogonalization scheme can make it play the worst of the two arms, and as
M = 1 this player will never encounter any collision, thus playing this sub-optimal arm for
about T −O(ln(T )) times, also leading to linear regret.

Interpretation of the hypothesis of knowing M for real-world networks. One could crit-
icize our approach if we study a wireless networks with no central coordination from the
gateway, in particular where the devices cannot be assigned to a channel or be assigned a
unique ID by the gateway when they first log in the network. Then in such networks, if one
wants to apply an algorithm like MCTopM-kl-UCB, the M devices need to know their number
M , and have to receive it from the gateway, as it is the only part of this example of network
which known M . It seems unrealistic to ask the gateway to send the fixed value M to each
device, and not a unique ID to each device, for instance idj ∈ [K].

If the M players each have a unique ID, then a simple explore-then-commit algorithm
(see Section 2.4.1), running on top of a round-Robin phase can achieve order-optimal regret.
If the players know the time horizon T , then they can fix a confidence level δ. For the first
T0 time steps, the M players will use a simple round-Robin game, using their (unique) ID
to stay orthogonal: player j starts at arm j, then j + 1, then cycle in [K]. They encounter
no collision in these time steps, and then user j targets the j-th best arm among the set of
M -best arm. If T0 is large enough, all players have built the same estimate of the ranking of
the arms (and not only correctly identified the set of M -best arms), with high probability (at
least δ), and thus they will also encounter no collision and no regret from after time T0. The
mean regret of such approach is easily bounded by RT ≤MT0 + (1− δ)(T − T0), so by using
δ = 1− 1/T , RT = O(T0). By calibrating T0 based on δ (which needs prior knowledge of T ,
see the proof we gave in Section 9) and the minimal gap ∆ between M -best and M -worst, one
can show, using similar arguments as used by [RSS16] for the Musical Chair policy, that with
large probability a constant regret is obtained. A logarithmic regret can be obtained from the
same bound, proving the order-optimist of this simple approach, if we assume that user j

knows it is user number j. Without giving more details, we let the interested refer to what is
explained for the algorithms presented in [DH18, JKYD18, KDH+19]. These works assume a
prior knowledge of ∆, or other measures of the difficulty of the problem, and as such we do
not find them comparable with the approach chosen here.
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Two ideas to estimate M . Someworks studied the samemodel as model (II) “with sensing”,
under the hypothesis that players do not know in the value of M . As illustrated above, if we
consider algorithms building on the same ideas as RhoRand or MCTopM, it seems mandatory
to first build an estimate of the value of M then run the initial algorithm that assumed a perfect
knowledge of M . Two possible directions exist to estimate M on the fly.

The first idea comes from [AMTA11], and the intuition behind it is quite simple, even if
the mathematical derivations are not. All players will build an estimate M̂ j(t) of the number
of players, that start by M̂ j(0) = 1. As soon as one collision is observed, a player knows that
M ≥ 2, so M̂ j(t + 1) = 2. Then, based on probabilistic computations on the expected number
of collisions if there were m players, all following the same strategy (e.g., RhoRand in the
case of ), and because the formula is simple to compute for different m, the authors proposed
a statistical test of the hypothesis M ≤ M̂ j(t) against M > M̂ j(t) which is expressed as a
simple comparison of the current number of collisions (since last update of M̂ j(t)) against a
threshold. If a player observed “too many” collisions (that are unlikely to be caused by only
M̂ j(t)− 1 other players), then she increases her current estimate M̂ j(t + 1) = M̂ j(t) + 1.

The second idea comes from [RSS16], and suppose to know beforehand both the horizon
T and a certain measure of the difficulty of the problem (i.e., a lower bound on the minimal
gap between twomeans). If all the M players start to play for a long enough time T0 uniformly
at random among all the K arms, then the (expected) number of collisions observed E[Cj

T0
]

by any player j is a (relatively simple) function of M . By knowing K and T0 and if all
players use the same mechanism, then they can invert the formula to obtain the most likely
estimate of M which explained the observations of Cj

T0
collisions. This second approach works

empirically very fine, but it requires a fine tuning of the stopping time T0. J. Rosenski and O.
Shamir and L. Szlak study the performance of their algorithm with high-probability bounds
[RSS16], and the tuning of T0 they propose depends on prior knowledge on the problem. For
this reason, we are not fond of this approach, as this hypothesis is quite unrealistic if one
wants to apply this kind of algorithms for real-world wireless networks. We note that all
the following works assume some sort of prior knowledge on the difficulty of the problem:
[KDY+17, KYDH18, SKHD18, JKYD18, DH18, KDH+19, TPHD19].

Extension of our proposals to learn the value of M . Similarly to what was proposed for
the RhoEst algorithm in [AMTA11], we could have worked on proposing and analyzing
an extension of our proposals that could efficiently learn the value of M the number of
players. We implemented this RhoEst policy in our library SMPyBandits [Bes19], as well as
this mechanism for RandTopM and MCTopM. Building from the theoretical analysis given
for RhoEst in [AMTA11], and the analysis of MCTopM-kl-UCB, we believe it is possible to
show that the aforementioned extension also achieves sub-linear regret without requiring
players to know M in the beginning of the bandit game. More precisely, we believe that
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MCTopM-kl-UCB can still give order-optimal logarithmic regret if M players use it, and this
extension of Theorem 6.15 is not included due to space constraints. Writing its proof and
performing more simulations are left as possible future work.

Simulations. We consider a bandit problem with K = 9 arms, of means 0.1, . . . , 0.9, and
three different cases of M = 3, 6, 9 players, for 100 independent repetitions and a horizon of
T = 10000. As before, we include the centralized multiple-play kl-UCB as an unachievably
efficient baseline, the Selfish-kl-UCB algorithmas a heuristicwhich does not require to knowM .
Then we compare the RhoRand, RandTopM and MCTopM algorithms, using kl-UCB, which
know M beforehand, with their extensions implementing the same algorithm as RhoEst, to
estimate M on the fly.

Algorithms Hyp. on M M = 3 players M = 6 players M = 9 players
Centralized multiple-play Known M 92± 20 70± 16 0

Selfish Don’t need M 250± 34 735± 85 3010± 472

RhoRand Known M 417± 103 2481± 449 6639± 1035
Estimate M 1422± 1051 9030± 1922 7264± 1009

RandTopM Known M 268± 45 941± 217 437± 367
Estimate M 688± 614 4256± 2701 1155± 544

MCTopM Known M 244± 39 401± 55 44± 13
Estimate M 563± 546 1560± 1293 618± 29

Table 6.2 – Mean regret ± 1 std-dev, for different algorithms on the same problem with M = 3, 6, 9,
comparing algorithmswhich knows M against algorithmswhich estimate M on the fly. All use kl-UCB.

One can observe in Table 6.2 the empirical performances of different algorithms in an
example problem, in each case of low, medium and maximum number of players (M = 3, 6, 9
for K = 9 arms). The three algorithms RhoRand, RandTopM and MCTopM all suffer from
similar increase on their regret when they have to estimate M on the fly (written “Estimate
M” in red, in Table 6.2). Our proposals are still much more efficient than RhoRand when
using the procedure to estimate M described from [AMTA11]. For the two non-extreme cases
(M = 3, 6), the performance drop when having to estimate M is quite large, and consistent
on the different algorithms.
The extreme case of M = K players is of highest interest, as MCTopM achieves a very small
regret (proven to be O(1) as it is just the expected time of the orthogonalization process),
while the same algorithm with unknown M suffers from a much larger regret. In this extreme
case, RhoRand and its extension both perform very closely, as expected, and much worse than
MCTopM. Additional simulations, for increasing time horizons T , confirmed the expected
order-optimal regret of this extension of MCTopM-kl-UCB.
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6.7.2 Arrival and departures of players: the “dynamic setting”

As reminded above, the model assumes that the number of players M remains fixed during
all the bandit game. However, in real-world wireless networks, when players model com-
municating devices connected to a single gateway, devices can arrive or leave the network
at any time. The existing previous work on multi-players bandit models are all motivated
by possible applications to wireless networks, but most of them assume M to be fixed. The
first work studying the relaxation of this hypothesis is [RSS16], where this case is called the
“dynamic setting”. If the arrival or departures of players is not random, but determined in
advance while still being unknown to any player, the natural notion of regret is the following,
where the expectation E[•] is capturing the randomness in the sensing information, as well as
in the players’ decisions (i.e., collisions):

R
dyn
T

.=
T∑

t=1

M(t)∑
k=1

µ∗
k − E

 T∑
t=1

M(t)∑
j=1

rj(t)

 . (6.32)

In [RSS16], the authors explain that if the model allows arrival or departures of players at
any time step, then the game is much harder, and sub-linear regret is most likely un-achievable,
if we consider the natural extension of the definition of regret as in the model presented in
Section 6.2 above. But this negative results depends on how arrival of players are modeled: if
an arriving player has no prior memory of the previous observations, i.e., if it model a new
device, then if there is no restriction on the number or frequency of arrival or departures, we
can most likely prove that sub-linear regret is not achievable in general. A simple but extreme
example shows that regret has to be linear for any bandit strategy (in the observation model
with sensing). Consider K = 2 Bernoulli-distributed arms of means µ1 = µ2 = 1/2, and one
player is always active and play any bandit strategy (e.g., MCTopM-kl-UCB). Every time step,
another player is either arriving, without any knowledge of the problem (e.g., it is a fresh
and new IoT device). Then no matter the strategy of these new players, even if they all play
MCTopM-kl-UCB for instance, if they play a uniformly efficient strategy there is a non-zero
probability that player 1 suffers from a collision at each time step, thus resulting in linear
centralized system regret.

The authors of [RSS16] also assume that the players all know a lower-bound L on the
length of all the intervals during which arrival or departures of players are allowed. A naive
idea, if L is large enough, is simply to restart the underlying algorithm every L time steps,
in order to directly benefit from the theoretical guarantees of the “static setting” (where M

stays constant). Unfortunately this idea yields a large regret if the length of “static” intervals
L is too small. Applied to the Musical Chair algorithm, the authors in [RSS16] call this basic
extension Dynamic Musical ChairUnder the simple hypothesis that the overall number of
players entering and leaving the game is sub-linear in T (i.e., a o(T )), they analyze the regret

175



Multi-Players Multi-Armed Bandits

of Dynamic Musical Chair and prove it is also sub-linear (see Theorem 2 in Section 3.4). Under
the same hypothesis, and if the lower-bound L is known before-hand and is large enough, then
we could also apply the same idea as from [RSS16] to our approach. We believe that we could
easily prove a sub-linear regret bound, if all players run MCTopM-kl-UCB, and if currently
active players restart their memory of the past observations every L time steps. As the regret
guarantee is stronger (i.e., smaller regret upper-bound) for MCTopM than Musical Chair, we
also believe that in this “slowly varying” dynamic setting, applying the idea of Dynamic
Musical Chair from [RSS16] to MCTopM would also give a small regret upper-bound.

After being introduced in [RSS16], some more recent works studied the case of arrival
or departures of players, usually referred to as “dynamic setting” or “dynamic case”. For
instance, [BP18] studies in Section 4 the first algorithm proposed for the dynamic case under
the no-sensing model. They study the same notion of regret as the one proposed in [RSS16]
and given above in (6.32), see Equation (10) in Section 4.2.1. With the assumption of a non-
decreasing number of players, i.e., if only arrivals of players are considered, they prove a
regret upper-bound of the Dyn-MMAB algorithm in Theorem 3 . If all arriving players are
using their Dyn-MMAB algorithm, the “dynamic” regret is bounded by O

(
M2K ln(T )/µ∗

M

)
,

if M = M(T ) is the total number of players involved in the problem.

6.7.3 Without sensing information

We presented in Section 6.2 the model (III), without sensing information. Players can only
observe Yk,t, the product of the i.i.d. random sensing information from arm k and of the
no-collision indicator. This model seems harder than the model with sensing information, and
even though the proposal Selfish works fine in simulations (in terms of average regret), we
proved that it can yield linear regret. In our paper [BK18a] as well as in the previous sections,
it was left as a future work to know if an algorithm can achieve sub-linear regret in this harder
model without sensing information.

Inspired by the publication of our article [BK18a], E. Boursier and V. Perchet studied this
question in the following summer 2018 [BP18]. Their main contribution is an answer to the
aforementioned open problem, as they showed that the model without sensing information is
essentially not harder than the model with sensing information. Similarly, G. Lugosi and A.
Mehrabian studied the same problem [LM18]. In both works, the authors detail algorithms
that give a logarithmic system regret, if M ≤ K players all independently implement the
proposed solution.

The “communication trick”. The recent work [BP18] proposed an idea they called the
“communication trick”. It essentially allow any player to send one bit to all the others, at some
pre-agreed time steps, with no modification on the model. Thanks to this “communication
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trick”, recent research efforts have been more focus on studying the basic model –without
explicit communications between players–, while proposing algorithms that can rely on some
communication between players. This trick essentially use the fact that the players share
a synchronized time, thus they can use a collision as a way to directly exchange one bit of
information between two players. Such process is slow and not efficient, as all but two players
must do nothing when player i is sending a bit to player j, but it does build a communication
protocol in the model without explicit communication between players. We note that this
“communication trick” is used for instance in [KM19], and we let the interested reader refer to
these two recent works [BP18, KM19].

Estimating collisions through uniform exploration. [LM18] gives a first algorithm with
expected regret ofO

(
MK ln(T )/∆2), if∆ = µ∗

M−µ∗
M+1 ̸= 0, achieving a better dependency re-

gardingM when compared to our result (our bound isO
(
M3)) but at the cost of (much) larger

constants hidden in the O notation, and a non-fully explicit algorithms which usually obtain
bad (or worse) empirical performance. Then they study an interesting extension that works
also if ∆ = 0 or if ∆ is so close than the bound in 1/∆2 becomes useless for “small horizons”.
This behavior is well known for classical bandits, where bounds of the form ln(T )/∆2 become
worse than a linear regret T if ∆ is very small (i.e., ∆≪

√
ln(T )/T ). For this extension, their

proposed algorithm is proven to achieveO
(
K2M(ln(T ))2/µ + KM min(

√
T ln(T ), ln(T )/∆′)

)
regret, if µ is a lower-bound on µ∗

M and ∆′ = max(∆, min{|µ∗
M − µ∗

i | : µ∗
M > µ∗

i }) (that both
have to be known beforehand by the algorithm). The proposed algorithms in [LM18] are all
based on the Musical Chair algorithm from [RSS16], and the curious reader should read for
instance their Algorithm 2 (page 15) for more details.

The results presented in [LM18] are based on some hypotheses, for instance the tuning they
propose for the length g of the uniform exploration phase in the beginning of their “Musical
Chair”-like algorithm is based on a prior knowledge of the horizon T . In Section 4 they explain
how to relax the assumptions of their results. For the same example, the “doubling trick”
technique can be used to obtain a regret upper bound for an algorithm unaware of the value of
T , within a constantmultiplicative factor of the upper bound given for the algorithm aware of T

(Section 4.1). Because the regret bound is of the formO
(√

T ln(T )
)
, a simple “doubling trick”

of increasing horizons of lengths Ti = 2i works well, as proposed in [CBL06] and as studied
in depth in our article [BK18b]. They also study in Section 4.3 an extension of the model for
the case with more players than arms, but we do not give more details on this aspect. Their
definition of a centralized regret for this case is an interesting and natural generalization of
the definition, and they also proposed an algorithm achieving O

(
MK ln(T ) exp(4M/K)/∆2)

regret in this case. Finally, they also proposed in Section 4.4 an extension of their algorithm to
estimate the number of players M , which is analyzed as for the Musical Chair algorithm in
[RSS16], and also achieve logarithmic regret. Note that it is significantly harder to estimate
M without collision information, and Algorithm 3 in page 24 is quite complex. We did not
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implement it, and it would be interesting to run some numerical simulations in order to
validate it empirically.

About Selfish-UCB inefficiency. It is also proven in Appendix A of [BP18] that Selfish-UCB
has a linear regret, in the theoretical case, with a very neat argument from number theory
(using Lindemann-Weierstrass theorem). As we conjectured, there is a gap between the
theoretical result and its practical consequence, as the Theorem 4 they gave is only valid for
real-valued number, and not for hardware-represented floating point number. Their proof is
supporting what we illustrated in Figure 4 in [BK18a]. Their argument is essentially to prove
that for Selfish-powered players using the simple UCB-indexes, with a probability p at time t

(both independent from T ), two players might have the same number of pulls and the same
observed rewards for each arm. In that case, the two players would pull the same arms and
thus collide for a long time, until they reach a “tie breaking point” where they could choose
different arms thanks to a random tie breaking rule (e.g., if two values of their UCB indexes
are the same, the arg max is a uniform random choice among the two arms). They prove that
it is unlikely to encounter any of these “tie breaking points”, in theory if the UCB indexes are
real-valued number (that can be rational or irrational).

Additional numerical simulations. To illustrate the difficulty of the “no sensing” case, we
illustrate here the performances of different algorithms designed specifically for this setting.
As above, we consider a bandit problem with K = 9 arms, of means 0.1, . . . , 0.9, and three
different cases of M = 3, 6, 9 players, for N = 100 independent repetitions, and horizon
T = 10000. We include the Selfish-kl-UCB algorithm as a heuristic, as well as the Improved
Musical Chair algorithm from [LM18] and Sic-MMAB from [BP18]. It is also interesting to
add the centralized multiple-play kl-UCB is included as an unrealistic efficient baseline, as it
does not use the sensing information but only the joint information (the reward) rj(t), because
it directly affects the player in an orthogonal configuration and thus never encounters any
collision (thus rj(t) = Yt,Aj(t) for each j, t). For the two other algorithms, we use the advised
tuning of their parameters: for Sic-MMAB, we used T0 = ⌈K ln(T )⌉, for Improved-MC, we
used c = 1 which gives g = 235, whereas in the paper the authors use c = 128 for their analysis.
We found empirically no difference when using different values of the constant c or g, and
unfortunately the regret of Improved-MC was always found to be linear3.

We give in Table 6.3 the mean regret obtained for these different algorithms, and we
observe a drastic difference between the unrealistic centralized algorithm, which achieves
a very small regret, the heuristic Selfish-kl-UCB which achieve small mean regret (but is
small to fail in theory and in some instances), and the two other algorithms. We were unable

3 For instance Improved-MC obtained a mean regret 12150 for T = 10000, for M = 3, K = 9, but seeing one
value for one horizon does not mean anything, and we also experimented with larger values of T and found a
similar linear behavior.

178



6.7 Literature review of extensions of the multi-player MAB model

to find any bug in our implementation of Improved Musical Chair from [LM18] and all the
different tuning of c (or g) explored gave the same disappointing result (i.e., linear regret).
The Sic-MMAB algorithm performs better than the Selfish heuristic for the extreme case of
M = K, but its large regret in this case shows that the orthogonalization protocol developed
by [BP18] is not fast to converge (for illustration, for the same problem for M = K = 9 for the
“sensing” case, MCTopM-kl-UCB achieves a mean regret of about 40, two orders of magnitude
smaller!). Further empirical evaluation would be needed to fully understand the situation,
and a first future work would be to either fix our implementation of the algorithm proposed
by [LM18] or propose an efficient modification, and illustrate in some problems that it can
indeed achieve sub-linear regret (maybe it does but only for large horizons, even if we did try
larger values of T like up-to T = 200000).

Algorithms \ Number of players M = 3 M = 6 M = 9
Centralized Multiple play kl-UCB 91± 21 70± 16 0± 0

Selfish-kl-UCB 249± 35 728± 94 2953± 501
Sic-MMAB 1705± 340 3915± 300 1713± 52

Improved Musical Chair 12149± 60 22341± 77 27462± 85

Table 6.3 – Comparison of the mean regret ± 1 std-dev, for different algorithms, on the same problem
with M = 3, 6, 9 players, for the “no sensing” case. More work is needed on our implementation on
Improved Musical Chair. The results on Sic-MMAB confirm the numerical experiments of [BP18].

6.7.4 With direct communication or coordination between players

In the models of IoT networks considered in this thesis, we assume that the different IoT
devices cannot communicate with each other, and can only communicate with their gateway. This
hypothesis is realistic, mostly for energy consumption and spectrum efficiency reasons. Of
course, we can relax it, and in practice in some families of wireless networks, communication
between devices are possible. Note that this extension is not considering a graph of distributed
agents all playing cooperatively to solve a unique bandit game, like it is studied in the “graph
bandit” problem [Val16]. We are interested here by an extension of the model where players
can send some bits to one or all the other players, at some or every time steps.

Clearly, the problem is easier by allowing communication, and it is quite immediate to see
that the communication capacity between players must be limited otherwise the problem is
already known and solved. Indeed, imagine that at each time step t, all the M players could
share an unbounded number of bits with the other players, at no cost (even if this hypothesis
is clearly unrealistic for wireless networks). Then they can share all their observations, and
they can all run the same multiple-plays MAB algorithm [AVW87a], like for instance the
extension of Thompson sampling for multiple-plays studied in [KHN15], or extensions of
KL-UCB from [LKC17]. In this setting, a logarithmic regret is easily obtained, and the regret
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upper-bound of the two aforementioned algorithms asymptotically achieve the lower-bound
from [AVW87a].

A more interesting extension is thus to limit the communication between players, either to
a small number of bits or just one bit, at every or only some time steps. We identified that the
state-of-the-art on this direction of research consists in the two very recent works [TZZ19] and
[WHCW19]. Distributed pure exploration is studied in [TZZ19], where the proposed new
lower bounds for the regret of any algorithm for the distributed best arm identification problem,
under the fixed time or fixed confidence settings. The also propose effective algorithms
that asymptotically match their lower-bounds (up-to logarithmic factors, in some cases).
The second work studies distributed learning for (not necessarily stochastic) multi-armed
bandits as well as linear bandits [TZZ19]. For a distributed K-armed bandit with M agents,
they developed two protocols achieving near-optimal regret O(

√
MKT ln(T )), and requiring

little communication cost, one is independent of the time horizon T and use O(M ln(T ))
communications, and the other is independent of the number of armsK anduseO(MK ln(M))
communications. Their model and algorithms fit in the distributed, decentralized framework
we advertise in all this thesis, and this last work is very interesting.

Additionally, after the recent work [BP18] introduced the “communication trick”, some
recent research efforts have been more focus on studying the basic model –without explicit
communications between players–, while proposing algorithms that can rely on some com-
munication between players. This “communication trick” is used for instance in [KM19]. Due
to space constraint, we let the interested reader refer to these last two works [BP18, KM19] as
they are both solid, and well explained.

Another line of research is to consider models that are closer to realistic wireless com-
munication networks, as it is done in [AM16, AM18]. Explaining in details their model and
proposed solutions is out of the scope of this thesis, but we sum-up the contributions of the
latest [AM18]. They address several aspects of the challenge of communication networks
shared by many users simultaneously: learning unknown stochastic network characteristics,
sharing resources with other users while keeping coordination overhead to a minimum. The
solution they proposed combines Multi-Armed Bandit learning with a lightweight signalling-
based coordination scheme, and ensures convergence to a stable allocation of resources. Their
work considers single-user level algorithms for two scenarios: an unknown fixed number of
users, and a dynamic number of users, both for different arms means for each user. Analytic
performance guarantees, proving convergence to stable marriage configurations, are presented
for both setups. Similarly to our work, the algorithms are based on a system-wide perspective,
rather than focusing on single user welfare.
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6.7.5 With different arm utilities among players

In the multi-players model presented in this chapter, we assume that the arm distributions are
the same for all the players. For cognitive radio applications, where arms model channels and
players are radio devices, it can be unrealistic to consider that two players, maybe located at
different distances from the gateway or equipped with different hardwares, encounter the
same mean quality when accessing the same channel. Motivated by this weakness, some
researchers studied an interesting extension of the model of interest, considering multi-players
MAB models with different arms distributions among players. Starting in 2012 by [KNJ12]
where arms are Markov chain, this model was studied more actively recently, in two articles
published in 2018 [DH18, BL18] and two more in 2019 [KM19, TPHD19].

In such models, instead of considering K arms characterized by a vector of distributions,
(νk)1≤k≤K , if there is M players we consider a matrix of distributions, (νj

k)1≤k≤K,1≤j≤M . Two
users j and j′ can experience different utilities for the same arm k, i.e., νj

k ̸= νj′

k . The goal
stays the same, each player wants to maximize its cumulated reward, with or without explicit
communications between players, with or without sensing information, but always without
central supervision. Like before, maximizing the rewards of each player simultaneously is
maybe not possible. As soon as the matrix is not invariant under permutation of the users, the
problem nature changes fundamentally: instead of finding an optimal orthogonal assignment
of the M players to the M -best arms, the goal of the system is now to reach an equilibrium
position, also referred to as a stable marriage. Assignment are also called matching, and
total (mean) reward of an assignment is its utility. Such equilibrium position means that
the utility obtained by the M player cannot be increased by swapping two users. Indeed
imagine justM = 3 players andK = 3 arms, and Bernoulli distributions of means [0.1, 0.5, 0.5],
[0.1, 0.5, 0.5] and [0.9, 0.5, 0.1] for player 1, 2 and 3. Then two optimal affectations of players to
arms are [3, 2, 1] or [2, 3, 1], both giving the same utility of 1.9.

In this extension, performance is still evaluated by a system regret, now defined as the
difference between the sum of the cumulated rewards by the M players, and the utility of any
matching. The question is to know if it is possible to obtain a logarithmic –or even sub-linear–
regret in this problem is more difficult that for the model presented in Section 6.2. This
question was first answered in [BL18], and proposed an algorithm based on alternating three
phases, and increasing their lengths after the end of each epoch (2p for the p-th epoch). First,
players explore in order to estimate the expectations of the arm rewards ; then players use their
“Game of Thrones” dynamics (GoT, inspired by Musical Chair [RSS16]) and play the optimal
solution most of the time ; finally players play the action they played most of the time in the
recent GoT phases. They proved that their GoT algorithm achieves a regret of O((ln(T ))2+κ),
for any positive constant κ, as small as possible, if κ is known by the algorithm.
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Until the very recent work of [KM19], it was unknown if a logarithmic regret was possible.
They proposed an algorithm that is based on two phases: first, players will learn M and learn
orthogonal ranks, using the “communication trick” of [BP18], and then one player is elected
as a leader and the others are followers. This second step, after initialization, is also using
epoch of increasing lengths 2p. Until the optimal solution, each epoch is alternating three
phases. Followers start by a Round-Robin uniform exploration with no collision, then they
use the “communication trick” to communicate their samples to the leader, and finally they
start an exploitation phase until the end of the game if the leader player tells them so. The
leader can thus collect enough samples from all arms and all players, and is able to solve
iteratively the stable marriage problem, and sends back the successive estimate of the solution
to the players. In the easiest case when their is a unique optimal matching, their algorithm
Multiplayer Explore-Then-Commit (M-ETC) is the first one to achieve logarithmic regret,
in the form of RT = O

(
MK ln(KT ) + KM3 ln(MKT )/∆ + KM2(ln(M ln(KT )/∆))2), if ∆

is defined as the gap between the utility of the best matching and the utility of that of the
matching with second best utility. In the generic case, their algorithmM-ETCwith Elimination
achieves a regret of O((ln(T ))1+κ) for any positive constant κ.

Finally, we note that previous works all focused on the “sensing” case, but most likely
sub-linear regret can be achieve by decentralized algorithms that leverage the same techniques
as introduced by [BP18, LM18] for the “no sensing case”. We conclude by noting that this
model was recently studied by two very recent other works, [DH18, TPHD19], who obtained
results comparable to the results from the two works presented above. They both also study
the case of dynamic settings, with arrival or departures of players, as presented in Section 6.7.2.
Both articles [DH18, TPHD19] use the terminology of ad-hoc networks, and they compare
empirically their proposal with some previous works, while [KM19] do not include numerical
simulations, and while [BL18] illustrate the performance of their GoT algorithm on a simple
example, they do not compare with other algorithms. It would be interesting to compare
empirically all the different approaches. Another interesting directions are to study the
possible extension of this model with different arm utilities by players to the non-stationary
case, or real-world validation of such decentralized algorithms in real IoT networks.

6.7.6 Modeling more closely a real wireless network

We simply quote here three recent articles which proposed a similar approach of using
decentralized reinforcement learning algorithms on the device-side on wireless networks,
but proposed models closer to the reality of wireless networks. The first work is [NC17],
which proposes to use a decentralized learning based on deep learning, in the “no sensing”
case, but in a model where the users have to learn not only the channels to use for their
up-link messages (only from the feedback through the acknowledgements, like in Section 5.2),
but where they have to learn the whole “spectrum access actions”. The work of [AM18] is
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discussed above for the case with communicating players, and their model is very interesting
from the point-of-view of real-world wireless communication protocols.

Finally, the very recent work of [ZBLN19] is the first one to present experiments of re-
inforcement learning done on simulated LTE and 5G channels. The mathematics behind
their model are actually quite close to the model, but they explain it in terms of OFDMA and
Quality-of-Service (QoS). Their algorithm is essentially based on a pre-agreement of the M

players, that will deterministically run an alternation of exploration phase, auction phase and
exploitation phase, of (exponentially) increasing durations. By diving into the details of the
modulation and giving explicitly the form of the up-link messages sent by the devices, the
authors are able to set-up two different up-link packets, to efficiently perform the auction
phase (see Figure 2). They prove a regret upper-bound of the order RT = O(ln(T )), with no
special care regarding the constants, but we can also note that their algorithm require a prior
knowledge of ∆min a problem-dependent constant (Theorem 3).

6.7.7 Can MAB learning also be used to learn the rank for RhoRand ?

Similarly to the proof-of-concept of applyingMAB learning in an IoT network thatwe presented
in Section 5.3, in [DNMP16, DMP16], the authors study the same model and focused on the
RhoRand policy, for the OSA case. It was the state-of-the-art back in 2016, and the authors
combine it with UCB or kl-UCB, as well as an extension using Bayes-UCB from [KCG12].
Their idea is to use the same skeleton as RhoRand, that is to assign a rank to each player,
and make players change their rank after any collision. But instead of selecting a new rank
uniformly at random among [M ], they proposed to use a “second-stage” learning policy, based
on Bayes-UCB, to (try to) learn the best rank while still exploring each rank from time to time.
This is a very natural idea: use a bandit algorithm to balance the exploration/exploitation
aspect of rank selection, instead of a random hoping. This algorithm is named RhoLearn,
and it is implemented in SMPyBandits, where it can use Bayes-UCB, or any of the 65 or more
bandit algorithms available in the library. Even if no theoretical guarantee backs up this idea of
second-stage learning with Bayes-UCB, empirical simulations found that it can be efficient. We
illustrate this in Table 6.4 below, where we consider the same problem as described above in
Section 6.7.3 (Table 6.3). We include different RhoLearn algorithms, that uses kl-UCB, Bayes-
UCB or Exp3 for the second-stage learning, and we include both the centralized multiple-play
version of kl-UCB and MCTopM-kl-UCB for comparison.

6.7.8 With malicious jammers

In all this chapter and the previous research literature, another common hypothesis is that
all the M players are pursuing the same goal, and are all behaving nicely by following the
same algorithm. Distributed algorithms proposed in the literature aim to maximize the
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Algorithm \ Number of players M = 3 M = 6 M = 9
Centralized multiple-play kl-UCB 92± 20 70± 16 0

RhoRand-kl-UCB 417± 103 2481± 449 6639± 1035
RhoLearn-kl-UCB + kl-UCB 546± 190 1172± 295 1416± 347

RhoLearn-kl-UCB + Bayes-UCB 561± 219 1204± 394 1363± 331
RhoLearn-kl-UCB + Exp3 529± 175 1659± 331 5134± 976

MCTopM-kl-UCB 244± 39 401± 55 44± 13

Table 6.4 – Comparing RhoRand and RhoLearn on a simple MP-MAB problem with K = 9 arms.

network throughput by ensuring orthogonal channel allocation for the SU. However, these
algorithms work under the assumption that all the SU faithfully follow the algorithms which
may not always hold due to the decentralized nature of the network. In the paper [SKHD18],
the authors study for the first time distributed algorithms that are robust against malicious
behavior, also called jamming attack. They consider both the cases of jammers launching
coordinated and uncoordinated attacks, and consider a set of J jammers. In the coordinated
attack, the jammers select non-overlapping channels to attack in each time slot and can
significantly increase the number of collisions for SU. They setup the problem in each scenario
as a multi-players bandit and develop algorithm, and their analysis shows that when the SU
faithfully implement proposed algorithms, the regret is constant with high probability. They
validate their claims through extensive synthetic experiments and also through a realistic
USRP. Their synthetic experiments consider different cases, for different values of K the
number of channels, M the number of players and J the number of jammers.

6.7.9 Towards non-stationary multi-players MAB models

Since the beginning of this thesis, all the studied bandit problems were stationary: the rewards
coming from choosing arm k are i.i.d. and follow the same distribution νk. The next Chapter 7
is focused on the piece-wise stationary bandit model, a relaxation of this hypothesis.

When we were working on multi-players bandits, in Autumn 2017 and 2018 [BK18a],
we left the study of the piece-wise stationary case as a future work, and shortly after we
were excited to see that three independent works tackling this question were published, in
December 2018 [WS18a] and in February 2019 [ALK19, BV19]. Without diving too much into
the details, we review here these three works. Without a more serious analysis, we conjecture
that it should not be difficult to merge the regret lower-bound for stationarymulti-playersMAB
(Theorem 6.8) and the lower-bound for piece-wise stationary single-player MAB from [GM11].
We conjecture that any reasonable decentralized bandit algorithm must suffer a regret at least
Ω(M

√
KΥT T ) for M ≤ K players, K arms, and ΥT stationary intervals.
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Extending the single-player case. On the one hand, piece-wise stationary multi-players
MAB can be tackled by extending algorithms developed for the single-player case. In [WS18a],
the authors study exactly the samemulti-players bandit model as our model, and they propose
two distributed algorithms that can efficiently be used by M ≤ K players to achieve sub-linear
regret for piece-wise stationary problems, essentially by considering it as a harder case of a
stationary problem.

The proposed the RR-SW-UCB# algorithm, which combines their SW-UCB# algorithm,
previously proposed in [WS18b], and a Round-Robin hoping, under the assumption that each
user j ∈ [M ] knows its ID j (we criticize this unrealistic assumption in Section 6.7.1 above).
The SW-UCB# algorithm is discussed more in details in the literature review of Chapter 7
below. If ΥT is bounded by ΥT = O(T γ), for a known γ but an unknown ΥT , they prove for
instance in Theorem 2 [WS18a] that the expected cumulative regret of their RR-SW-UCB#
algorithm is bounded by RT = O

(
T

1+γ
2 ln(T )

)
(what we call the centralized system regret).

This bound is of the same order as the bound obtained by the same authors for the SW-UCB#
algorithm in [WS18b] for the single-player case. If ΥT = O(T γ), this bound is comparable
to the results obtained for most of the research literature on piece-wise stationary bandits
(earlier works like D-UCB in [GM11] have the ln(T ) outside the square root, while more
recent works all improved this aspect and have the ln(T ) in the square root, like for instance
our algorithm GLR-klUCB in [BK19b] and presented in Chapter 7). Even if their analysis is
not explicit regarding the constant, in the case where ΥT = O(T γ) for a known γ, their regret
upper-bound actually matches the conjectured lower-bound, up to a logarithmic factor ln(T ).

And finally, even though numerical simulations in their papers [WS18b, WS18a] are inter-
esting and confirm the regret upper-bounds, they do not compare with any other algorithm,
and thus a future work can be to study this direction in more details. Sadly, a major drawback
of their work is that assume that player j ∈ [M ] knows its index j, and as we explained above
this small hypothesis is actually quite strong, as it allows players to be already orthogonal,
and it reduces greatly the difficulty of the decentralized bandit problem.

In the adversarial setting. On the other hand, another possibility is to extend ideas devel-
oped for the adversarial setting. In [ALK19], the authors essentially consider the piece-wise
stationary as an easier case of an adversarial problem. The recent work [BV19] also proposes
a decentralized algorithm that can achieve sub-linear regret (O(T 3/4)) under an adversarial
multi-players bandit model.

In [ALK19], the authors build on the Musical Chair algorithm from [RSS16], to let the
M players converge to a ranking in an efficient and decentralized way (cf. Algorithm 1),
and they apparently discovered the “communication trick” independently from [BP18] to
use (virtual) communications between players to set up a “coordinator” player and M − 1
“followers” (running respectively their Algorithms 2 and 3). Their key algorithmic technique

185



Multi-Players Multi-Armed Bandits

is to imitate the idealized case where there is full communication between the players. Then,
to address the no-communication constraint, we enforce the players to keep the same decisions
(arms) within long periods of time (blocks). This gives them the chance to coordinate between
themselves via a simple protocol that uses collisions as a primitive, yet effective manner of
communication.

Their proposal is using the Exp3 algorithm from [ACBFS02] on a combinatorial prob-
lem: they consider “meta” arms that are affectations of the M players to M distinct arms
among the K arms. As soon as the “coordinator” can effectively use one algorithm to de-
cide the arms played by all the M players, they show that the regret will grow as RT =
O
(
M4/3K2/3(ln(K))1/3T 2/3

)
as shown in Theorem 4.1 (they used K for M the number of

players, and N for K the number of arms). This bound is much worse than the one obtained
for the first article [WS18a], but is more general, and it is much worse than the bound of
O
(√

KT ln(K)
)
obtained for Exp3 for the single-player adversarial setting in [ACBFS02].

Note that this bound in T 2/3 is of the same order as the one given in [AM15], for the MEGA
algorithm. However, we note that the dependency in M is surprisingly better for their result
than for the regret upper-bound for MCTopM-kl-UCB (which scales in M3 in Theorem 6.15).

Moreover, at first sight, this idea of “meta” arms implies an exponential blowup in terms
of computational and storage cost, as there is

(M
K

)
such “meta arms”, but the authors provide

in Section 4.1 and Lemma 4.1 [ALK19] an interesting discussion regarding the time efficiency
of their proposed algorithm, and they show it can stay polynomial in M and K by leveraging
techniques from the Determinental Point Processes (DPP, see [GBV18] and references therein
for a good introduction). In this second work also, we can note the poor experimental section,
as the proposed algorithm is only compared against the Musical Chair algorithm, in “easy”
problems (small number of break-points ΥT ). Despite being more complicated than other
approaches, their algorithm “C & P” should not be too hard to implement by ourselves, and
studying its empirical performance is an interesting future work.

6.8 Conclusion

To sum up, we presented in this chapter three variants of Multi-Players Multi-Armed Bandits,
with different levels of feedback being available to the decentralized players, under which we
proposed efficient algorithms. The two easiest models are the ones with sensing information
(i.e., for OSA), for which our theoretical contribution improves both the state-of-the-art upper
and lower bounds on the regret. In the absence of sensing, we also provide some motivation
for the practical use of the interesting Selfish heuristic, a simple index policy based on hybrid
indices that are directly taking into account the collision information, like in Chapter 5.
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We also reviewed various variants of this model and we discussed the related literature,
which has proven to be very active in the last two years. For some models, we explained why
our approach does not work efficiently without modifications, but we detailed and illustrated
how to adapt MCTopM to other settings. For example, it assumes to know the number of
players M before-hand, but we illustrated that a previously introduced technique to estimate
M on the run can also be applied to our proposal and give satisfactory empirical performances.
Further works would be required to adapt the theoretical analysis to these various extensions,
such as the “dynamic” case which allows arrivals or departures of devices, and which is
especially interesting for Cognitive Radio applications.

– Victoriae mundis et mundis lacrima.
Bon, ça ne veut absolument rien dire, mais je trouve que c’est assez dans le ton.
Le Roi Loth, interprété par François Rollin,
Kaamelott, Livre IV, “Le désordre et la nuit”.

– C’est pas moi qu’explique mal, c’est les autres qui sont cons !
Perceval, interprété par Franck Pitiot,
Kaamelott, Livre IV, “Perceval Fait Raitournelle”.
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Chapter 7

Piece-Wise Stationary Bandits

In this last chapter, we are also interested in a more formal approach to the decentralized
learning problem presented in Chapter 5. Instead of keeping the stationary hypothesis but
considering 2 ≤M ≤ K devices accessing a wireless networks with K orthogonal frequency
channels, as we did in Chapter 6, we are now interested in another direction of formal analysis
of the intractable models of IoT networks of Chapter 5. We study a generalization of the single-
player stationary bandit model, to account for possible non-stationarity of the rewards. We
review existing works on piece-wise stationary MAB models, then we study the Generalized
Likelihood Ratio Test (GLRT) for bounded or sub-Bernoulli distributions. We are able to
prove finite-time guarantees for our test, on its false alarm probability and detection delay, and can
be combined with an efficient bandit policy (kl-UCB), to propose an efficient algorithm for
piece-wise stationary problems, GLR-klUCB. We analyze its regret, and show that it achieves
state-of-the-art finite-time regret bounds. Finally, we showcase numerical experiments on
which our approach outperform other state-of-the-art solutions.
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7.1 Motivations for non stationary MAB models

As highlighted in Chapters 1 and 5 for cognitive radio applications, aswell as other applications
such as recommender systems, the assumption that the arms distribution do not change over
time may be a big limitation. Indeed, in cognitive radio or IoT networks, new devices can
enter or leave the network, which impacts the availability of the radio channel they use to
communicate, making it non stationary. And for instance in online recommendation, the
popularity of items is also subject to trends. Hence, there has been some interest on how to
take those non-stationary aspects into account within a multi-armed bandit model.

A first possibility to cope with non-stationary is to model the decision making problem as
an adversarial bandit problem [ACBFS02]. Under this model, rewards are completely arbitrary
and are not assumed to follow any probability distribution. For adversarial environments,
the pseudo-regret, which compares the accumulated reward of a given strategy with that of
the best fixed-arm policy, is often studied. The pseudo regret of the Exp3 algorithm has been
shown to be O(

√
KT ), which matches the lower bound given by [ACBFS02]. However, this

model is a bit too general for the considered applications, where reward distributions do not
necessarily vary at every round. For these reasons, an intermediate model, called the piece-wise
stationary MAB, has been introduced in Section 8 of the seminal paper [ACBFS02]. They
propose a simple extension of the Exp3 policy, referred to as Exp3.S, that uses exponential
weights like Exp3 tweaked with an adaptive forced exploration probability to passively adapt
to changes. It was shown that Exp3.S attains a regret of O(

√
KTS ln(KT )), when comparing

with an arbitrary sequence of comparators that does not switch for more than S − 1 times.
Running their algorithm over the non-stationary problem, and picking their comparators
sequence as the best arm in each stationary interval, one can already get

√
ΥT T ln(T ) regret,

and the only prior knowledge needed to run the Exp3.S algorithm is T and ΥT . Moreover,
Exp3.S is efficient in terms of both storage and computation time, and is simple to implement.

It could seem that the problem is considered as solved by the Exp3.S algorithm, but it was
actively studied since the seminal paper [ACBFS02]. Two main reasons explain the dynamic
research on this problem: first, it is well known that despite their qualities, exponential-
weights algorithms like Exp3 can usually be greatly outperformed by UCB-based algorithms,
for stochastic problems, and so it is expected that Exp3.S can be outperformed by other
algorithms, thus any practical applicationmight benefit from algorithms that are more efficient
than Exp3.S. The second reason is that passively adaptive algorithms function as black-box
models: they do not try to detect changes and do not explain why they changed from one
arm to another. A lot of the recent research has been focused on actively adaptive algorithms,
precisely because they allow to interpret their decisions, by detecting changes on arms with
statistical tests. The piece-wise stationary MAB model has then been studied by [KS06] and
[YM09]. This model is sometimes referred to as the abruptly changing [WS18b], or switching
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environments [MS13]. In this model, described in full details in Section 7.2, the (random)
reward of arm k at round t has some mean µk(t), that is constant on intervals between two
break-points, and the regret is measuredwith respect to the current best arm k∗

t
.= arg maxi µk(t).

Outline. We introduce the model in Section 7.2, and we review related works in Section 7.3.
In Section 7.4, we study the Generalized Likelihood Ratio test for sub-Bernoulli distributions
(B-GLRT) as a change-point Detector (CPD) algorithm. We introduce the two variants of
GLR-klUCB algorithm in Section 7.5, where we also present upper bounds on their regret.
The unified regret analysis is given in Section 7.6, we prove one result in Section 7.7. We
discuss numerical experiments in Section 7.8, with more details in the Appendix 7.10.

Publications. This chapter is based on our articles [BK19b, BK19a].

7.2 The piece-wise stationary bandit model

A piece-wise stationary bandit model generalizes the model of Chapter 2. It is characterized by a
set of K arms, and a horizon T . A (random) stream of rewards (Yk,t)t∈[T ] is associated to each
arm k ∈ [K]. We assume that the rewards are bounded, and without loss of generality we
assume that Yk,t ∈ [0, 1]. We denote by µk(t) .= E[Yk,t] the mean reward of arm k at round t. At
each round t, a decision maker has to select an arm A(t) ∈ [K], based on her past observations,
and receives the corresponding reward r(t) .= YA(t),t. At time t, we denote by k∗

t an optimal
arm, i.e., an arm with maximal expected reward µk∗

t
(t) .= maxk µk(t) (possibly not unique).

A policy A chooses the next arm to play based on the sequence of past plays and obtained
rewards. Like for stationary problems (see Definition 2.3 in Chapter 2), the performance
of A is measured by its (piece-wise stationary) regret, the difference between the expected
reward obtained by an oracle policy playing an optimal arm k∗

t at time t (that can change at
each round), and that of the policy A. We use the same notation as the regret for stationary
problem without ambiguity, as in this chapter we only consider the following definition,

RA
T

.= E
[

T∑
t=1

(
µk∗

t
(t)− µA(t)(t)

)]
. (7.1)

In the piece-wise i.i.d. model, we furthermore assume that a relatively small number of
break-points ΥT (wrt the horizon T , i.e., ΥT = o(T )), which is defined by

ΥT
.=

T −1∑
t=1

1 (∃k ∈ [K] : µk(t) ̸= µk(t + 1)) . (7.2)
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If we denote τ (0) .= 0, we define the i-th break-point by τ (i) .= inf{t > τ (i−1) : ∃k : µk(t) ̸=
µk(t + 1)} for i ∈ [ΥT ]. Hence for t ∈ [τ (i) + 1, τ (i+1)], that is on any stationary segments, the
rewards (Yk,t) associated to each arm k are i.i.d. (hence the name piece-wise stationary).

Note than when a break-point occurs, we do not assume that all the arms means change,
but that there exists an arm whose mean has changed. Depending on the application, many
scenarios can be meaningful: changes can occur on all arms simultaneously (due to some
exogenous event), or only one or a few arms change at each break-point. For instance, for a
cognitive radio application in a IoT-like network, we can imagine that all the devices of one
company (or network provider) use a fixed (or a subset of) channel(s), and on a particular
day in a city, if the company deploys a lot of new devices, then one (or some) channel(s) see
their mean occupancy rates abruptly change.

We define NCk the number of change-points on arm k by NCk
.=
∑T −1

t=1 1 (µk(t) ̸= µk(t + 1)),
which is clearly bounded by NCk ≤ ΥT , but there can be an arbitrary difference between these
two quantities for some arms. If CT

.=
∑K

k=1 NCk is the total number of change-points on the
arms, we have CT ∈ {ΥT , ΥT + 1, . . . , KΥT }. We illustrate the two extreme cases in problems
1 and 2 presented in Figures 7.1 and 7.2 below.

An interesting interpolation. The piece-wise stationary bandit model can be viewed as an
interpolation between stationary and adversarial models, as the stationary model corresponds
to ΥT = 0 (i.e., one stationary segment), while some adversarial models can be considered
as a special (worst) case, with ΥT = T − 1 (when considering an adaptive or an oblivious
adversary). However, typical analyzes of algorithms designed for the piece-wise stationary
model assume a small number of changes, typically ΥT = o(

√
T ). Note that the adversarial

model of [ACBFS02] is quite powerful, and the authors presented in Section 8 of their paper
the Exp3.S algorithm for the piece-wise stationary problem, as explained in Section 7.1 above.

Two examples of problems. To illustrate themodel, we give here two examples of piece-wise
stationary problems used for the numerical experiments presented in Section 7.8.

Problem 1. We consider K = 3 arms changing ΥT = 4 times until T = 5000. The arm
means (µk(t))k∈[K],t∈[T ] are shown in Figure 7.1 below. Note that changes happen on only one
arm (i.e., CT = ΥT = 4), and the optimal arm changes once at τ

(1)
2 = 2000.

Problem 2. This problem is close to Problem 1, with a minimum optimality gap of 0.1
(at any time, the smallest difference between two means is at least 0.1), and illustrated in
Figure 7.2. However, all arms change at every break-point (i.e., CT = KΥT = 12), with
identical gaps of 0.1 for arms 0 and 1, and of 0.2 for arm 2 (between two break-points, the
mean change of +0.1 for arm 0 and −0.1 for arm 1 and −0.2 for arm 2). The first optimal
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History of means for Non-Stationary MAB, Bernoulli with 4 break-points
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Figure 7.1 – Problem 1: K = 3 arms with T = 5000, and Υ = 4 changes occur on only one arm at a
time (i.e., C = 4). The means are in [0, 1], and there are C + 1 = 5 stationary intervals of equal lengths.
Some changes do not modify the optimal arm (e.g., at T = 1000 and T = 4000) and others do.

arm decreases at every change (2 with ∇ markers), and one arm stays the worst (1 with ⋄
markers).

7.3 Review of related works

We review previous works that studied the piece-wise stationary bandit model, or variants of
this model. To the best of the authors’ knowledge, all the previous works are based on the
idea of combining a classical bandit policy, such as Thompson sampling, UCB or Exp3, with
a strategy to account for changes in arms’ distributions. Following the vocabulary used in
previous works, we make the distinction between passively and actively adaptive strategies.
On the one hand, actively adaptive strategies monitor the arms’ rewards, by using change
detection algorithms [BN93], and reset the history of pulls and rewards of one or all the arms
as soon as a change is detected. On the other hand, passively adaptive strategies use a (fixed)
discount factor or a limited memory size, while most active strategies use a growing memory.

Passively adaptive algorithms. Their common idea is to adapt a classical policy into forget-
ting old rewards. If the forgetting behavior is done efficiently, then the policy can efficiently
focus mostly on the most recent rewards, and passively adapt to changes whenever they

195



Piece-Wise Stationary Bandits

0 1000 2000 3000 4000 5000
Time steps t= 1. . . T, horizon T= 5000

0.2

0.4

0.6

0.8

Su
cc

es
siv

e 
m

ea
ns

 o
f t

he
 K

=
3 a

rm
s

History of means for Non-Stationary MAB, Bernoulli with 4 break-points
Arm #0
Arm #1
Arm #2

Figure 7.2 – Problem 2: K = 3 arms with T = 5000, and Υ = 4 changes occur on all arms (i.e., C = 12).
The means are again in [0, 1], and there are also C + 1 = 5 stationary intervals of equal lengths.

happen. The Discounted UCB (D-UCB) algorithm is an adaptation of the UCB algorithm,
first introduced in [KS06]. It works by decreasing all the past rewards by a discount factor
γ ∈ (0, 1), when receiving a new reward from an arm, so that the recent rewards weight more
in the (discounted) empirical means, that are used for the computation of its UCB indexes.
The regret of D-UCB was proven to be upper-bounded by O(

√
ΥT T ln(T )) in [GM11], with a

tuning γ = 1−
√

ΥT /T/4, dependent on ΥT . The Sliding-Window UCB (SW-UCB), proposed
by [GM11], uses a sliding window of a fixed size τ , to store only the most τ recent rewards
for each arm. They prove that tuning its window-size to τ = 2

√
T ln(T )/ΥT , gives a bound

on the regret of SW-UCB of the form O(
√

ΥT T ln(T )).

Both D-UCB and SW-UCB build on a stationary policy, but for example Exp3.S from
[ACBFS02] builds on the Exp3 policy, which is designed for the adversarial case. Exp3.S
actually achieves a good regret upper-bound, of the form O(

√
KΥT T ), with no additional

prior knowledge except that of T and ΥT . It constitutes a good baseline for the numerical
experiments in Section 7.8, even if we did find that Exp3.S performs worse that the most of the
other approaches based on extending stationary bandit algorithms (e.g., SW-UCB). Similarly,
previous works showed that older algorithms have no or weaker regret guarantees, and have
been proven to be less efficient empirically, or are designed for more specific settings.

The idea of using a simple discount factor, as for D-UCB, was recently adapted to a Bayesian
policy, with the Discounted Thompson sampling (DTS) algorithm presented by [RK17]. Even
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if no theoretical guarantee was given, it can be empirically very efficient, but we found that
DTS is not robust on the choice of if its discount factor γ ∈ (0, 1), contrarily to what was
highlighted in the paper. The DTS algorithm can perform well in practice, for instance with
γ = 0.75 on Problems 1 and 2 (see Section 7.8). In general, we found that passively adaptive
approaches can be efficient when their parameters are well tuned, but our experiments show
that actively adaptive algorithms perform significantly better.

Actively adaptive algorithms. Afirst line of research uses frequentist change-point detectors
[BN93], combined with stationary policies, usually index policies like UCB. When using an
efficient change-point Detector (CD) algorithmwith an efficient index policy, these approaches
usually performmore efficiently than the passively algorithms. TheAdapt-EVE algorithm from
[HGB+06] used a Page-Hikley (PH) Test and the UCB policy, but no theoretical guarantee
was given. The Windowed-Mean Shift algorithm from [YM09] is more generic and combines
any efficient bandit policy with a CD test based on a sliding window, but their approach is not
applicable to the bandit setting of interest in this chapter, as they consider side observations.
The Exp3.R algorithm from [AF15, AFM17] combines a CD algorithm with Exp3, and the
history of all arms are reset as soon as a sub-optimal arm is detecting to become optimal. A
regret bound of O(ΥT

√
T ln(T )) was proven, even when ΥT is known.

Two recent and relatedworks use the two-sidedCUSUMCDalgorithm forCUSUM-UCB in
[LLS18] and a specific and simpler CD algorithm for the Monitored UCB (M-UCB) algorithm
introduced in [CZKX19]. The CUSUM test is rather complicated and it is parametric: it uses
the first M samples (for a fixed M ∈ N∗) from one arm to compute an average û0, and then
builds two randomwalks, using the remaining observations for this arm. A change is detected
when one of the randomwalks crosses a threshold h. It requires the tuning of three parameters,
M and h as well as a drift correction parameter ε ∈ (0, 1). The PH test, also studied in [LLS18],
is similarly complex, and we found in numerical experiments that PHT-UCB performs very
similarly to CUSUM-UCB. Even if it has the advantage of not requiring a parameter M , it has
no theoretical guarantee, so we do not include PHT-UCB in the experiments presented below.
In comparison, M-UCB uses a much simpler test, based on the w most recent observations
on one arm (for a fixed and even number w ∈ 2N∗), and compares with a fixed threshold h

the difference of the sum of rewards for the first half and the second half. It is numerically
much simpler, and has the advantage of using only a bounded memory (of order O(Kw) for
K arms). Both approaches also introduced a mechanism to force a uniform exploration of
each arm, parameterized by ω ∈ (0, 1) (note that it is called α in both papers, but we rename
it ω in this chapter to avoid clutter with α of UCB1 in (2.7)).

When all their parameters are tuned correctly, both approaches are proven to achieve
good regret upper-bounds, of order O(K

√
ΥT T ln(KT )). As both results are valid under

(slightly) different assumptions, we consider the two results to be the current state-of-the-art.
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As for previous works, tuning their parameters requires to know both the horizon T and
the number of break-points ΥT . But most importantly it requires a prior knowledge of the
problem difficulty, by assuming to know a lower bound on both the length of stationary
segments (e.g., L for M-UCB) or on the changes on the means of arms (e.g., ε for CUSUM).
CUSUM-UCB achieves a better regret upper bound, of the order of O(

√
ΥT T ln(T/ΥT )),

but only for Bernoulli distributions, and when its 4 parameters (ω, ε, M, h) are tuned based
on problem-dependent knowledge. M-UCB achieves a regret bounded by O(

√
ΥT T ln(T )),

for bounded distributions, and when its 4 parameters (ω, b, w, γ) are also tuned based on a
problem-dependent knowledge of δ̃ and L (see Assumption 1 and Remark 1 in [CZKX19]).

On the one hand, CUSUM-UCB performs local restarts using this test, to reset the history
of one arm for which the test detects a change. On the other hand, M-UCB performs global
restarts using this test, to reset the history of all arms whenever the test detects a change on one
of the arms. Compared to CUSUM-UCB, note that M-UCB is numerically much simpler as it
only uses a sub-linear memory (wrt T ), of order O(Kw) for K arms (as w grows with T ).

Another interesting recent work is [AGO18], where the authors propose an efficient
algorithm, AdSwitch, for the two-armed case (K = 2). It proceeds in episodes, starting a new
episode whenever the algorithm detects a change in one of the arms. Each episode consists
of three phases, estimation, exploitation then exploration. First, an estimation phase where
both arms are played alternatingly until their means can be distinguished. Then follows an
exploitation phase, and finally with some low probability, an exploration phase is started
that checks whether a change has occurred. Similarly to what previous approaches did (e.g.,
CUSUM uses a threshold ε), this phase checks for changes of a certain minimum magnitude,
but the innovation in this work is that this algorithm does not need any prior knowledge of
the minimum magnitude. Instead, it uses geometrically decreasing magnitudes dk = 2−i,
meaning that even difficult changes should be detected, possibly in a later episode, as each
episode only considers a few different values of dk. They prove that their algorithm achieves a
regret bound ofO(ln(T )

√
ΥT T ), without a prior knowledge of ΥT . However, this work as two

drawbacks: first, the algorithm currently only applies to two arms, and the generalization does
not seem straightforward. Then, the theoretical result is valid for “sufficiently large constants
C1 and C2”, with a large constant C hiding in the O(•) notation. We did some experiments
with AdSwitch, even if it is not included in the benchmark presented below in Section 7.8. It
uses two parameters C1, C2 that are set at large values for the theoretical analysis, and while
we explored numerically different choices, it seemed that setting C1 = C2 = 1 gave the best
performance (which is outside of the comfort zone of the theoretical analysis). Even for this
tuning, and for problems with just K = 2 arms, empirically this policy is performing poorly
in comparison to other policies based on active CD detection and kl-UCB indexes.

198



7.3 Review of related works

Expert aggregation. Another line of research on actively adaptive algorithms uses a Bayesian
point of view. A Bayesian CD algorithm is combined with Thompson Sampling in [MS13],
and more recently [AMF17] introduced the Memory Bandit algorithm. It is presented as
efficient empirically, but no theoretical guarantee are given for these two works, and due to its
complexity, we do not include it in our experiments. The idea behind Memory Bandit is to
use an expert aggregation algorithm, like Exp4 from [ACBF02] or our Aggregator algorithm
from Chapter 4 [BKM18], modified to efficiently aggregate a growing number of experts,
using techniques presented in [MM17]. A new expert is introduced at each time step, and
experts correspond to different Thompson sampling algorithms, each using a different history
of pulls and rewards. Intuitively, after a change-point the newest experts will soon become
the most efficient, as they are learning by using rewards drawn from the new distribution(s).
Note that obtaining regret bounds for these methods is still an open-problem, and as they are
computationally more costly, we chose to not include them in our experiments.

Slowly-varying model. A different setting where the quantity of interest is not ΥT but the
total variational budget VT , was introduced by [BGZ14], for which they proposed the RExp3
algorithm. The total variation budget VT is defined as

∑T −1
t=1

∑K
k=1 D(νk(t), νk(t + 1)), for a

certain measure of difference D, which measures how much the two distributions of any arm
k have changed from time t to time t + 1. Two examples can be the total variation distance
∥ · ∥T V or the Kullback-Leibler divergence. The RExp3 algorithm can also be qualified as
passively adaptive: it is based on (non-adaptive) restarts of the Exp3 algorithm. As the total
variational budget satisfies ∆changeΥT ≤ VT ≤ ΥT , with ∆change the minimum magnitude of
a change-point, their regret bound of order of O(V 1/3

T T 2/3) is actually weaker than existing
results in our setting.

The slowly-varying model is quite different from the setting we are considering in this
chapter, and even if the most recent works on this model are very interesting [WS18b], we
preferred to focus on the piece-wise stationary (also called abruptly changing) model, hence
we do no include any of these algorithms in the experiments presented in Section 7.8.

Another point-of-view on prior knowledge of ΥT . In this chapter, like in our two main
inspirational works [CZKX19, LLS18], we assume that the algorithm knows in advance the
number of break-points ΥT . Another interesting point-of-view is the one presented by [WS18b,
WS18a], where the authors assume that there exists a number ν ∈ (0, 1) for which ΥT = o(T ν),
and they also assume that any algorithm tackling such problems can know in advance the
value of ν (or an upper-bound on ν), in order to tweak its parameters from this value ν, but
cannot know the exact value of ΥT . This interpretation is interesting too, but empirically we
found that the SW-UCB# algorithm proposed in [WS18b] performs comparably to SW-UCB,
and thus we did not include it in the experiments presented below in Section 7.8.
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Adversarial or non-stationary contextual bandits. For contextual bandits, two very recent
works are [LWAL18] and [CLLW19]. While both works target a more general setting, their
algorithms are also applicable to non-contextual bandits, i.e., classical bandits like the model
studied in this chapter. From Table 1 in [LWAL18], one can see that their two algorithms
Exp4.S and Ada-ILTCB recover the same regret guarantees as we do, in the non-contextual
case: that is, a O(ΥT

√
T ) regret without knowing the number of changes and O(

√
ΥT T ) with

this knowledge. We discuss both these algorithms: first, in the non-contextual case, Exp4.S
actually reduces to Exp3.S, which we discussed above. Then, the Ada-ILTCB algorithm is
however a less appealing candidate for the setting of this chapter, for the following reason.
This algorithm requires as input a parameter L which needs to be an upper bound on the
largest stationary sequence in the problem, in order for its regret to scale as ΥT

√
L (neglecting

K and ln factors). It is claimed that the tuning L = T/ΥT yields the optimal bound
√

ΥT T .
However, this tuning is only possible in a “balanced” instance without stationary sequence
longer than T/ΥT . In a piece-wise stationary instance with a stationary sequence of length T/2,
one cannot get better than O(ΥT

√
T ) regret, by setting L = T/2 (see for instance the problem

4 in our benchmark below in Section 7.8), and as such the regret bound of Ada-ILTCB appears
much worse than the announced O(

√
ΥT T ) bound. Besides, no experiments are reported by

[LWAL18], and the Ada-ILTCB algorithm seems much more complicated to implement than
other alternatives, so we prefer to not include it in the experiments presented later.

Positioning of our results. The two algorithmsCUSUM-UCB andM-UCB are both analyzed
under some reasonable assumptions on the problem parameters –the means (µk(t))– mostly
saying that the break-points are sufficiently far away from each other. However, the proposed
guarantees only hold for parameters tuned using some prior knowledge of the means. Indeed,
while in both cases the threshold h can be set as a function of the horizon T and the number
of break-points ΥT (also needed by previous approaches to obtain the best possible bounds),
the parameter ε for CUSUM and w for M-UCB require the knowledge of ∆change the smallest
magnitude of a change-point. In this chapter, we propose the first algorithm that does not
require this knowledge, and still attains a O(

√
ΥT T ln(T )) regret. Moreover we propose the first

comparison of the use of local and global restarts within an adaptive algorithm, by studying
two variants of the proposed algorithm. In others words, if we want to apply our proposal to
piece-wise stationary problems such as problem 1 or 2 presented above (see Figures 7.1, 7.2), it
only needs to know beforehand that T = 5000 and ΥT = 4 for these examples, but it does not
need to know the amplitude of changes ∆change = maxk,t |µk(t)−µk(t + 1)| nor the optimality
gap or a bound on the optimality gap at any time step ∆opt = maxk,k′ |µk(t)− µk′(t)|.

Moreover, we can use the two problems 1 and 2 to illustrate the expected empirical behavior
of GLR-klUCB. Problem 1 has only local changes, meaning that at any change-point, only one
arm sees its distribution change, while problem 2 has only global changes, meaning that all
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arms see their distribution change at each change-point. They illustrate the two extreme cases
of having CT = ΥT (for problem 1) and CT = KΥT (for problem 2).

• On the one hand, we expect the local restart variant of GLR-klUCB to outperform the
global restart variant for problem 1, as the intuition suggests that it is sub-optimal to
reinitialize the memory of the observations of the K − 1 arms whose distributions did
not change after a change-point is detected (as the global restart variant does).

• On the other hand, we expect the global restart variant to outperform the local restart
variant for problem 2, as detecting a change on any arm is enough to know that all arms
changed and to reinitialize the memory of all arms, and thus the intuition suggests that
it is sub-optimal to reinitialize only the memory of the observation of the arm on which
the change-point was detected (as the local restart variant does).

Of course, in a given environment, without additional prior knowledge on the difficulty of
the problem at hand, the algorithm cannot know which situation is more likely to happen,
between having only local changes (CT = ΥT ) or only global changes (CT = KΥT ), or any
intermediate setting between the two extreme cases. Thuswe do not believe to be able to design
a policy that could be uniformly better than the two variants of GLR-klUCB. Surprisingly,
numerical experiments show that the local variant of GLR-klUCB actually outperforms the
global variant for both problem 1 and 2, as shown below in Table 7.2, and in other problems as
shown in Table 7.3. Understanding this difference in terms of numerical performance of the
two variants is left as future work. Finally, on the practical side, we can note that while the
proposed B-GLRT test is more complex to implement than the test used byM-UCB, we propose
two heuristics to speed it up while not losing much in terms of regret, in Appendix 7.10.3.

About kl-UCB. OurproposalGLR-klUCB is inspired by both theM-UCB andCUSUM-UCB
algorithms [LLS18, CZKX19]. Previous works focused on using UCB, but we propose to use
kl-UCB instead, as it is known to be more efficient for Bernoulli rewards as well as for a more
generic case of bounded or one-dimensional exponential families [CGM+13]. Theoretical
results for [LLS18] and [CZKX19]were only given for UCB, but they suggested that extending
the results to kl-UCB (or other efficient stationary policies) should not be difficult. For a fair
comparison, we therefore chose to compare the different change-point detector algorithms
combined with kl-UCB. We also include in Table 7.1 a comparison of the performance of
different algorithms when using UCB or kl-UCB indexes, in order to illustrate that using a
more efficient index policy always improves performance, as predicted.
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7.4 The Bernoulli GLRT change-point Detector

Sequential change-point detection has been extensively studied in the statistical community,
from the 1930s with pioneer works like [Wil38] and later on with seminal works like [Bar59,
SV95]. We refer to the book [BN93] for a survey. In this section, we are interested in detecting
changes on the mean of a probability distribution with bounded support.

Assume that we collect independent samples X1, X2, . . . all from some distributions sup-
ported in [0, 1]. We want to discriminate between two possible scenarios: all the samples come
from distributions that have a common mean µ0, or there exists a change-point τ > 1 such that
X1, . . . , Xτ have some mean µ0 and Xτ+1, Xτ+2, . . . have a different mean µ1 ̸= µ0. A sequen-
tial change-point detector is a stopping time1 τ̂ with respect to the filtration Ft

.= σ(X1, . . . , Xt)
such that (τ̂ <∞) means that we reject the hypothesisH0 : (∃µ0 ∈ [0, 1] : ∀t ∈ N∗,E[Xt] = µ0).

Generalized Likelihood Ratio tests date back to the seminal work of [Wil38], and were for
instance studied for change-point detection by [Bar59, SV95]. Exploiting the fact that bounded
distribution are (1/4)-sub Gaussian (i.e., their moment generating function is dominated by
that of a Gaussian distribution with the same mean and a variance 1/4), the (Gaussian) GLRT,
recently studied in depth by [Mai19], and can be used for this problem. We propose instead
to exploit the fact that bounded distributions are also dominated by Bernoulli distributions.

Definition 7.1 (Sub-Bernoulli distributions). We call a sub-Bernoulli distribution any
distribution ν that satisfies lnEX∼ν

[
eλX

]
≤ ϕµ(λ) with µ

.= EX∼ν [X] and ϕµ(λ) .= ln(1 −
µ + µeλ) is the log moment generating function of a Bernoulli distribution with mean µ, for any
µ ∈ [0, 1].

Lemma 1 of [CGM+13] establishes that any bounded distribution supported in [0, 1] is
a sub-Bernoulli distribution. As explained in Section 2.1.2, this work can be applied to any
bounded distribution without loss of generality, as a reward in r ∈ [a, b] can clearly be mapped
to [0, 1] simply by using r′ = (r− a)/(b− a). We assume that both the decision maker and the
algorithm know beforehand the values of a and b.

7.4.1 Presentation of the test

If the samples (Xt) were all drawn from a Bernoulli distribution, this change-point detec-
tion problem would reduce to a simple parametric sequential test of H0 : (∃µ0 : ∀t ∈
N∗, Xt

i.i.d.∼ B(µ0)), against the alternative H1 : (∃µ0 ̸= µ1, τ ∈ N∗ : X1, . . . , Xτ
i.i.d.∼

B(µ0) and Xτ+1, Xτ+2, . . .
i.i.d.∼ B(µ1)).

1 Stopping times are for instance presented formally in Chapter 3 of [LS19].
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The Generalized Likelihood Ratio statistic for this test is defined by

GLR(n) .=
sup

µ0,µ1,τ<n
ℓ(X1, . . . , Xn; µ0, µ1, τ)

sup
µ0

ℓ(X1, . . . , Xn; µ0) , (7.3)

where ℓ(X1, . . . , Xn; µ0) and ℓ(X1, . . . , Xn; µ0, µ1, τ) respectively denote the likelihoods of the
first n observations under a model inH0 andH1. High values of this statistic tend to indicate
rejection ofH0. By using the form of the likelihood for Bernoulli distributions, this statistic can
be written with the binary relative entropy kl, defined by kl(x, y) .= x ln

(
x
y

)
+ (1−x) ln

(
1−x
1−y

)
for x, y ∈ [0, 1] (with the usual convention that t ln(t) .= 0 if t = 0). Indeed, we show below in
Appendix 7.10.2 that for Bernoulli distributions, we have

ln GLR(n) = sup
s∈[n−1]

[s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] . (7.4)

where for s ≤ s′, µ̂s:s′
.= 1

s−s′+1
∑s′

t=s Xt denotes the average of the observations Xs, . . . , Xs′ .
This motivates the following definition of the Bernoulli GLRT change-point detector.

Definition 7.2. The Bernoulli GLRT (B-GLRT) change-point detector with threshold function
β(n, δ) is the stopping time τ̂δ defined by

τ̂δ
.= inf

{
n ∈ N∗ : sup

s∈[n−1]
[s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] ≥ β(n, δ)

}
. (7.5)

with the convention that we enforce [s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] = 0 when-
ever we have µ̂1:s = µ̂s+1:n, in particular if µ̂1:n ∈ {0, 1}, then µ̂1:s = µ̂s+1:n = µ̂1:n ∈ {0, 1}.

Asymptotic properties of the GLRT for change-point detection have been studied by [LX10]
for Bernoulli distributions and more generally for any one-parameter exponential family E , for
which the GLR test is defined as in (7.5), but with kl(x, y) replaced by the Kullback-Leibler
divergence klE(x, y) between two elements in that exponential family that have mean x and y

(see Definition 2.1). For example, the Gaussian GLR studied by [Mai19] corresponds to the
stopping time (7.5) with the quadratic divergence d(x, y) = 2(x− y)2, when the variance is set
to σ2 = 1/4, and non-asymptotic properties of this test are given for any (1/4)-subGaussian
samples. Note that Pinsker’s inequality gives that kl(x, y) ≥ 2(x− y)2, hence the B-GLRT may
stop earlier that the Gaussian GLR. In the next section, we provide new non-asymptotic results
about the B-GLRT under the assumption that the samples (Xt) come from a sub-Bernoulli
distribution, which in particular holds for any distribution supported in [0, 1].
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7.4.2 Non-asymptotic properties of the B-GLRT

When used for a bandit problem, the two main properties of a sequential change-point
detection test are its false alarm probability and its detection delay. A small false alarm probability
ensures that no detection occurs before it should (i.e., no useless detection occur on stationary
segments), and a small detection delay ensures that, if the stationary segments are long
enough, then every change-points on every arm will be detected after a short enough amount
of samples from that arm. We give below two lemmas: Lemma 7.3 bounds the false alarm
probability for a certain choice of threshold function, and Lemma 7.5 bounds the detection
delay if there are enough samples before the change-point.

False alarm probability. In Lemma 7.3 below, we propose a choice of the threshold function
β(n, δ) under which the probability that there exists a false alarm under i.i.d. data is as small as
we want. To define β, we first introduce the function T , defined for x > 0 by

T (x) .= 2h̃

(
h−1(1 + x) + ln(2ζ(2))

2

)
, (7.6)

where for u ≥ 1 we define h(u) .= u − ln(u) and its inverse h−1(u), we define h̃(x) .=
e1/h−1(x)h−1(x) if x ≥ h−1(1/ ln(3/2)) and h̃(x) .= (3/2)(x − ln(ln(3/2))) otherwise, for any
x ≥ 0, and with the value ζ(2) = π2/6. Even if it does not have a closed form expression, the
function T is easy to compute numerically. The inverse h−1 can be computed usingW , the
LambertW function [CGH+96], which is the inverse of x 7→ xex, as h−1(x) = −W(−e−x).

The use of T for the construction of concentration inequalities that are uniform in time
is detailed in [KK18], where tight upper bound on this function T are also given: T (x) ≃
x + 4 ln

(
1 + x +

√
2x
)
for x ≥ 5 and T (x) ∼ x when x is large.

Lemma 7.3. For a probabilistic model P = Pµ0 under which Xt ∈ [0, 1], and ∀t,EP [Xt] = µ0,
the B-GLRT test τ̂δ (from Definition 7.2) satisfies Pµ0(τ̂δ <∞) ≤ δ, with the threshold

β(n, δ) .= 2T
(

ln(3n
√

n/δ)
2

)
+ 6 ln(1 + ln(n)). (7.7)

Proof. Lemma 7.3 is presented for bounded distributions and is actually valid for any sub-
Bernoulli distribution. It could also be presented for more general distributions satisfying

E[eλX ] ≤ eϕµ(λ) with µ = E[X], (7.8)
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7.4 The Bernoulli GLRT change-point Detector

where ϕµ(λ) is the log moment generating of some one-dimensional exponential family E . The
Bernoulli divergence kl(x, y) would be replaced by the corresponding divergence klE in that
exponential family. Let us go back to the Bernoulli case with divergence kl(x, y). We first have

s×kl (µ̂1:s, µ̂1:n)+(n−s)×kl (µ̂s+1:n, µ̂1:n) = inf
λ∈[0,1]

[s× kl (µ̂1:s, λ) + (n− s)× kl (µ̂s+1:n, λ)] .

Hence the probability of a false alarm occurring is upper bounded as

Pµ0 (Tδ <∞) ≤ Pµ0 (∃s ∈ N∗, n ∈ N∗, s < n : s kl (µ̂1:s, µ̂1:n) + (n− s) kl (µ̂s+1:n, µ̂1:n) > β(n, δ))

≤ Pµ0 (∃s ∈ N∗, n ∈ N∗, s < n : s kl (µ̂1:s, µ0) + (n− s) kl (µ̂s+1:n, µ0) > β(n, δ))

≤
∞∑

s=1
Pµ0 (∃n > s : s kl (µ̂1:s, µ0) + (n− s) kl (µ̂s+1:n, µ0) > β(n, δ))

=
∞∑

s=1
Pµ0

(
∃r ∈ N∗ : s kl (µ̂s, µ0) + r kl

(
µ̂′

r, µ0
)

> β(s + r, δ)
)

,

where µ̂s and µ̂′
r are the empirical means of respectively s and r i.i.d. observations with mean

µ0 and distribution ν, that are independent from the previous ones. As ν is sub-Bernoulli, the
conclusion follows from Lemma 7.4 below and from the definition of β(n, δ), if we denote
F (x) .= ln(1 + ln(x)),

Pµ0 (Tδ <∞)

≤
∞∑

s=1
Pµ0

(
∃r ∈ N∗ : s kl (µ̂s, µ0) + r kl

(
µ̂′

r, µ0
)

> 6F (s + r) + 2T
(

ln(3(s + r)3/2/δ)
2

))

≤
∞∑

s=1
Pµ0

(
∃r ∈ N∗ : s kl (µ̂s, µ0) + r kl

(
µ̂′

r, µ0
)

> 3F (s) + 3F (r) + 2T
(

ln(3s3/2/δ)
2

))

And so we have Pµ0 (Tδ <∞) ≤
∞∑

s=1
exp(− ln(3s3/2/δ)

2 ) =
∞∑

s=1
δ

3s3/2 ≤ δ.

Lemma 7.4. Consider a one-dimensional exponential family E , and let νµ be the unique distribution
in this family that has mean µ, with moment generating function ϕµ(λ) = EX∼νµ [eλX ]. Let
klE(µ, µ′) .= KL(νµ, νµ′) be the KL divergence associated to E . Let (Xi)i∈N∗ and (Yk)i∈N∗ be two
independent i.i.d. processes, with respective means µ and µ′, such that E[eλX1 ] ≤ eϕµ(λ) and
E[eλY1 ] ≤ eϕµ′ (λ). Denote µ̂s

.= 1
s

s∑
i=1

Xi and µ̂′
r

.= 1
r

r∑
i=1

Yk. Then for every s, r ∈ N∗ we have,

P
(
∃r ∈ N∗ : s klE (µ̂s, µ) + r klE (µ̂′

r, µ′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + 2T
(x

2

))
≤ e−x,

(7.9)
where T is the function defined in (7.6).

Proof. This Lemma 7.4 is proven in Appendix 7.10.2.
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Detection delay. Another key feature of a change-point detector is its detection delay under a
model in which a change from mean µ0 to mean µ1 occurs at time τ . We already observed
that from Pinsker’s inequality, the B-GLRT stops earlier than a Gaussian GLR. Hence, we can
leverage some techniques from [Mai19] to upper bound the detection delay of the B-GLRT.
Letting ∆ = |µ0 − µ1|, one can essentially establish that for τ larger than (1/∆2) ln(1/δ) (i.e.,
enough samples before the change), the delay can be of the same magnitude (i.e., enough
samples after the change). In the bandit analysis in Section 7.6, the detection delay will be cru-
cially used to control the probability of the good event (in Lemma 7.13 and the corresponding
Lemma not included here, but given in Appendix of [BK19b]).

Lemma 7.5. For a probabilistic model P ′ = Pµ0,µ1,τ under which Xt ∈ [0, 1], and ∀t ≤
τ,EP ′ [Xt] = µ0, ∀t > τ,EP ′ [Xt] = µ1, the B-GLRT test satisfies

Pµ0,µ1,τ (τ̂δ ≥ τ + u) ≤ exp

− 2τu

τ + u

(
max

[
0, ∆−

√
τ + u

2τu
β(τ + u, δ)

])2
 . (7.10)

where ∆ = |µ0 − µ1| denotes the gap of the change-point.

Proof. It is actually not used as such in the proofs of the regret upper bounds given below,
because a similar but more specific result is used and proven in the proofs. For instance, see
below in Section 7.7.2 (more specifically, in page 218).

For a threshold β chosen as in the Lemma 7.3, a consequence of the Lemma 7.5 is that if the
break-point τ happens after about O(∆−2 ln(1/δ)) samples, the detection time will be of the
same magnitude (with high probability). In other words, if the B-GLRT test gathers enough
samples before a change-point, its delay τ̂δ is of order O(∆−2 ln(1/δ)), with high probability.

7.4.3 Practical considerations

Lemma 7.3 provides the first non-asymptotic control of false alarm for the B-GLRT employed
for bounded data. However, the threshold (7.7) is not fully explicit as the function T (x) can
only be computed numerically. Note that for sub-Gaussian distributions, results from [Mai19]
show that the smaller and more explicit threshold β(n, δ) =

(
1 + 1

n

)
ln
(

3n
√

n
δ

)
, can be used to

prove an upper bound of δ for the false alarm probability of the GLR,with quadratic divergence
d(x, y) = 2(x− y)2. For the B-GLRT, numerical simulations suggest that the threshold (7.7)
is a bit conservative (see Appendix 7.10.4), and in practice we recommend to keep only the
leading term and use β(n, δ) = ln(3n3/2/δ) = ln(3) + 3/2 ln(n)− ln(δ).

Also note that, as any test based on scan-statistics, the B-GLRT can be costly to implement as
at every time step t, it considers all previous time steps as a possible position for a change-point
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7.5 A new algorithm for piece-wise stationary bandits

(i.e., s ∈ [n− 1] if there are n samples). Thus, it can be interesting in practice to down-sample
the possible values of both n and s, that is to use a large stopping time, defined by

τ̃δ = inf
{

n ∈ N : sup
s∈Sn

[s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)] ≥ β(n, δ)
}

, (7.11)

for subsets N and Sn. Following the proof of Lemma 7.3, we can easily see that this variant
obtains the same false-alarm control. However, the detection delay may be slightly increased.
In Appendix 7.10.3 we show that using these practical tweaks has little impact on the regret of
the bandit strategy introduced below, while speeding up its computation time.

7.5 A new algorithm for piece-wise stationary bandits

We start by giving the pseudo-code of our algorithm, and by explaining every part, then we
give its finite-time regret upper bounds, for the two variants of using local or global restarts.
The analysis in both cases is using a unified proof technique, that we present before giving
more details about the proof of half of the results (the other proof can be found in [BK19b]).

We now present the GLR-klUCB algorithm, which combines a bandit algorithm with a
change-point detector running on each arm. It also needs a third ingredient, some forced
exploration parameterized byω ∈ (0, 1) to ensure that each arm is sampled enough and in order
to also be able to detect changes on arms currently under-sampled by the bandit algorithm.
GLR-klUCB combines the kl-UCB algorithm, as it is given and analyzed by [CGM+13], with
the B-GLRT change-point detector introduced in Section 7.4. This algorithm, formally stated
as Algorithm 7.1, can be used in any bandit model with bounded rewards, and we expect
it to be very efficient at least for Bernoulli distributions, which are the most relevant for our
applications of interest (see Chapter 1 and 5).

When does GLR-klUCB restart? The GLR-klUCB algorithm can be viewed as a kl-UCB
algorithm allowing for some restarts on the different arms. A restart happens when the B-
GLRT change-point detector detects a change on the arm k that has been played (line 9). To
be fully specific, GLRδ(Z1, . . . , Zn) = True if and only if

sup
s∈[n−1]

[
s× kl

(
1
s

s∑
i=1

Zk,
1
n

n∑
i=1

Zk

)
+ (n− s)× kl

(
1

n− s

n∑
i=s+1

Zk,
1
n

n∑
i=1

Zk

)]
≥ β(n, δ), (7.12)

with β(n, δ) defined in (7.7), or β(n, δ) = ln(3n3/2/δ), as we recommend in practice (see
Section 7.4.3). We remind that in this notation, if Ẑ1:s = Ẑs+1:n (i.e., if all observations
Z1, . . . , Zn are equal), then we set the left-hand side of (7.12) to 0, and the B-GLRT cannot
detect a change-point. We define the (kl-UCB like) index used by our algorithm, by denoting
τk(t) the last restart that happened for arm k before time t, nk(t) .=

∑t
s=τk(t)+1 1(A(s) = k) the
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1 Input: Parameters: exploration rate ω ∈ (0, 1), confidence level δ > 0
2 Input: Option: Local or Global restart
3 initialization: ∀k ∈ [K], τk = 0 and nk = 0;
4 for t = 1, 2, . . . , T do
5 if t mod

⌊
K
ω

⌋
∈ [K] then // forced exploration

6 A(t) = t mod
⌊

K
ω

⌋
;

7 else
8 A(t) ∈ U

(
arg maxk∈[K] UCBk(t)

)
, with UCBk(t) defined in (7.13);

9 Play arm A(t) : nA(t) = nA(t) + 1;
10 Observe the reward YA(t),t : ZA(t),nA(t) = YA(t),t;
11 if GLRδ(ZA(t),1, . . . , ZA(t),nA(t)) = True then // change-point is detected
12 if Global restart then
13 ∀k ∈ [K], τk = t and nk = 0; // restart all arms
14 else
15 τA(t) = t and nA(t) = 0; // restart only this arm
16 end

Algorithm 7.1: The GLR-klUCB algorithm, with Local or Global restarts.

number of selections of arm k, and µ̂k(t) .= 1
nk(t)

∑t
s=τk(t)+1 Yk,s1(A(s) = k) their empirical

mean (if nk(t) ̸= 0). With the exploration function f(t) .= ln(t) + 3 ln(ln(t)) if t > 1 and
f(t) = 0 otherwise, the index is defined using the binary relative entropy kl as

UCBk(t) .= max
{

q ∈ [0, 1] : nk(t)× kl (µ̂k(t), q) ≤ f(t− τk(t))
}

. (7.13)

Two options for restarts. For this algorithm, we simultaneously investigate two possible
behaviors: global restart (reset the history of all arms once a change was detected on one of
them, line 11), and local restart (reset only the history of the arm on which a change was
detected, line 13), which are the two different options in Algorithm 7.1. Under local restart, in
the general case the times τk(t) are not equal for all arms, hence the index policy associated to
(7.13) is not a standard UCB algorithm, as each index uses a different exploration rate f(t−τk(t)).
It is important to highlight that in the CUSUM-UCB algorithm, which is the only existing
algorithm based on local restart, the UCB indexes are defined differently2: f(t − τk(t)) is
replaced by f(nt) with nt

.=
∑K

k=1 nk(t).

Threshold function β. We present in Appendix 7.10.4 numerical simulations that compare
different choices of threshold functions β. We compare the non-explicit function used in

2 This alternative is currently not correctly supported by theory, as we found mistakes in the analysis of
CUSUM-UCB: themain problem resides in the use ofHoeffding’s inequalitywith a random number of observations
and a random threshold to obtain Eq. (31)-(32) in the paper [LLS18].
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Lemma 7.3 (that makes use of a numerical approximation of the function T ), with the simpler
value β(n, δ) = ln(3n

√
n/δ), as well as two other choices. To sum-up these simulations, they

validate the use of a simpler and more explicit threshold, thus we recommend in practice to
use β1(n, δ) = ln(3n

√
n/δ).

Forced exploration. GLR-klUCB (lines 3-5) generalizes the deterministic exploration pro-
posed for M-UCB by [CZKX19], whereas CUSUM-UCB performs a uniform random explo-
ration. Both approaches are parameterized by ω ∈ (0, 1). More precisely, CUSUM-UCB
samples arm k with probability ω/K at each time step, and M-UCB uses a deterministic
scheme, to force exploring the K arms: when the time since the last restart, t − τ , is found
to be in [K] modulo ⌈1/ω⌉. Both solutions ensure that all arms are sampled enough on each
stationary sequence, so that the CD algorithm has enough i.i.d. samples to detect changes. A
consequence of this forced exploration is given in Proposition 7.6 below.

Proposition 7.6. For every pair of instants s ≤ t ∈ N∗ between two restarts on arm k, i.e., for a
i ∈ [NCk], one has τ

(i)
k = τk(t) < s ≤ t < τ

(i+1)
k , it holds that nk(t)− nk(s) ≥

⌊
ω
K (t− s)

⌋.
Proof. We consider one arm k ∈ [K], and when the GLR-klUCB algorithm is running, we
consider two time steps s ≤ t ∈ N∗, chosen between two restart times for that arm k. Lines 3-4
state that A(u) = u mod ⌈K

ω ⌉ if u mod ⌈K
ω ⌉ ∈ [K], thus we directly find

nk(t)− nk(s) =
t∑

u=s+1
1(A(u) = k)

≥
t∑

u=s+1
1

(
A(u) = k, A(u) = u mod

⌈
K

ω

⌉)

≥
t∑

u=s+1
1

(
k = u mod

⌈
K

ω

⌉)

=
(
t− (s + 1) + 1

)
/

⌈
K

ω

⌉
≥
⌊

ω

K
(t− s)

⌋
.

Other forced exploration schemes? We present in Appendix 7.10.5 numerical simulations
that compare three different options of forced exploration schemes. We compare the uni-
formly random exploration used by CUSUM-UCB, against the deterministic scheme used
in Algorithm 7.1, and against a more complicated scheme based on tracking and inspired by
[GK16]. To sum-up these simulations, the deterministic scheme gives an efficient change-point
detection algorithm, and an efficient GLR-klUCB policy. As it is the simplest one to handle in
our proofs, this is the one we chose for Algorithm 7.1.
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7.6 Finite-time upper-bounds on the regret of GLR-klUCB

This section gives the finite-time regret bounds for the two variants, and interpretations of
both results. We include only one proof, as the other is given in [BK19b].

7.6.1 Results for GLR-klUCB using global restarts

Recall that τ (i) denotes the position of the i-th break-point and let µ
(i)
k be the mean of arm k on

the segment between the i- and (i + 1)-th break-point: ∀t ∈ {τ (i−1) + 1, . . . , τ (i)}, µk(t) = µ
(i)
k .

Let i∗ = arg maxk µ
(i)
k and the largest gap at break-point i as ∆(i) .= maxk∈[K] |µ

(i)
k −µ

(i−1)
k | > 0.

Assumption 7.7. Define d(i) .= d(i)(ω, δ) .=
⌈

4K

ω(∆(i))2 β(T, δ) + K
ω

⌉
. Then we assume that

there are enough samples between two global change-points. In other words, we assume for
all change i ∈ [ΥT ], τ (i) − τ (i−1) ≥ 2 max(d(i), d(i−1)).

Assumption 7.7 is easy to interpret, and it is actually a standard assumption in non-
stationary bandits. It requires that the distance between two consecutive break-points is
large enough: how large depends on the magnitude of the largest change that happen at
those two break-points. Under this assumption, we provide in Theorem 7.8 a finite time
problem-dependent regret upper bound. It features the algorithm’s parameters ω and δ, the
KL-divergence terms kl(µ(i)

k , µ
(i)
k∗ ) expressing the hardness of the (stationary) MAB problem

between two break-points, and the ∆(i) terms expressing the hardness of the change-point
detection problem in the i-th segment.

Theorem 7.8. For ω and δ for which Assumption 7.7 is satisfied, the regret of GLR-klUCB with
parameters ω and δ based on Global Restart satisfies the following finite-time regret bound

RT ≤ 2
ΥT∑
i=1

4K

ω
(
∆(i))2 β(T, δ) + ωT + δ(K + 1)ΥT (7.14)

+
K∑

k=1

∑
i=1,...,YT

µ
(i)
k

̸=µ
(i)
k∗

(
µ

(i)
k∗ − µ

(i)
k

)
kl
(
µ

(i)
k , µ

(i)
k∗

) ln(T ) +O
(√

ln(T )
)

.

Warning: We highlight that this result is finite-time and not asymptotic, but if it uses the
notationO

(√
ln(T )

)
for simplicity. This last termO (. . . ) does not mean the whole inequality

is only valid for T → ∞, but it rather means that at finite time, the inequality is valid with
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the last term being a function g(T ), which is upper-bounded by a certain c0 ×
√

ln(T ), from a
certain time T0 (i.e., ∀T ≥ T0). It is also the case of the next Theorem 7.11.

Corollary 7.9. For “easy” problems satisfying the corresponding Assumption 7.7, let ∆opt denote the
smallest value of a sub-optimality gap on one of the stationary segments, and ∆change be the smallest
magnitude of any change-point on any arm, then the regret of GLR-klUCB with parameters ω and δ

based Global Restarts satisfies
1. Choosing ω =

√
ln(T )/T , δ = 1/

√
T (with no prior knowledge of ΥT ) gives

RT = O
(

K(
∆change)2 ΥT

√
T ln(T ) + (K − 1)

∆opt ΥT ln(T )
)

, (7.15)

2. Choosing ω =
√

ΥT ln(T )/T , δ = 1/
√

ΥT T (with prior knowledge of ΥT ) gives

RT = O
(

K(
∆change)2

√
ΥT T ln(T ) + (K − 1)

∆opt ΥT ln(T )
)

. (7.16)

7.6.2 Results for GLR-klUCB using Local Restarts

Some new notations are needed to state a regret bound for GLR-klUCB using local restarts, and
to distinguish notations between the results for the two variants (local and global restarts), we
denote ℓ instead of i for the indexes of change-points. We let τ

(ℓ)
k denote the position of the ℓ-th

change-point for arm k: τ
(ℓ)
k = inf{t > τ

(ℓ−1)
k : µk(t) ̸= µk(t + 1)}, with the convention τ

(0)
k = 0,

and let µ
(ℓ)
k be the ℓ-th value for themean of arm k, such that ∀t ∈ [τ (ℓ−1)

k +1, τ
(ℓ)
k ], µk(t) = µ

(ℓ)
k .

We also introduce the gap ∆(ℓ)
k = µ

(ℓ)
k − µ

(ℓ−1)
k > 0.

Assumption 7.10. Define d
(ℓ)
k

.= d
(ℓ)
k (ω, δ) .=

⌈
4K

ω

(
∆(ℓ)

k

)2 β(T, δ) + K
ω

⌉
. Thenwe assume that

there are enough samples between two local change-points. In other words, we assume that
for all arm k and all change-point of that arm ℓ ∈ [NCk], τ

(ℓ)
k − τ

(ℓ−1)
k ≥ 2 max(d(ℓ)

k , d
(ℓ−1)
k ).

Assumption 7.10 is easy to interpret, as Assumption 7.7, but it is non standard the literature,
and to the best of the authors’ knowledge, this analysis is the first one to consider such
assumption on the problem difficulty. It requires that any two consecutive change-points on
a given arm are sufficiently spaced (relatively to the magnitude of those two change-points).
Under that assumption, Theorem 7.11 provides a regret upper bound that scales with similar
quantities as that of Theorem 7.8, except that the number of break-points ΥT is replaced with
the total number of change-points CT

.=
∑K

k=1 NCk, which verifies ΥT ≤ CT ≤ KΥT .
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Theorem 7.11. For ω and δ for which Assumption 7.10 is satisfied, the regret of GLR-klUCB
with parameters ω and δ based on Local Restart satisfies the following finite-time regret bound

RT ≤ 2
K∑

k=1

NCk∑
ℓ=1

4K

ω
(
∆(ℓ)

k

)2 β(T, δ)+ωT+2δCT +
K∑

k=1

NCk∑
ℓ=1

ln(T )
kl(µ(ℓ)

k , µ∗
i,ℓ)

+O
(√

ln(T )
)

, (7.17)

where µ∗
i,ℓ

.= inf
{

µk∗
t
(t) : µk∗

t
(t) ̸= µ

(ℓ)
k , t ∈ [τ (ℓ)

k + 1, τ
(ℓ+1)
k ]

}
.

Like for the first Theorem 7.8, we highlight that this result is finite-time. The proof of
GLR-klUCB with local restarts is not included, but it can be found in the Appendix of [BK19b],
as it is quite similar to the proof for global restarts given above. The main difficulty relies in
defining the “good event” ET , and proving that it happens with high probability (by showing
that the complementary event Ec

T is highly unlikely). We can directly obtain different regret
upper-bounds for different choices of the two parameters ω and δ. We prefer to state the four
cases, as this highlights the modularity of our analysis given by Theorem 7.11.

Corollary 7.12. For “easy” problems satisfying the corresponding Assumption 7.10, with ∆opt and
∆change defined as in Corollary 7.9, then the regret of GLR-klUCB with parameters ω and δ based Local
Restarts satisfies

1. Choosing ω =
√

ln(T )/T , δ = 1/
√

T (with no prior knowledge of ΥT or CT ) gives

RT = O
(

K(
∆change)2 CT

√
T ln(T ) + CT

(∆opt)2 ln(T )
)

, (7.18)

2. Choosing ω =
√

ΥT ln(T )/T , δ = 1/
√

ΥT T (with prior knowledge of ΥT and “optimist” guess
ΥT ≃ CT ≪ KΥT ) gives

RT = O
(

K2(
∆change)2

√
ΥT T ln(T ) + KΥT

(∆opt)2 ln(T )
)

, (7.19)

3. Choosing ω =
√

CT ln(T )/T , δ = 1/
√

CT T (with prior knowledge of CT ) gives

RT = O
(

K(
∆change)2

√
CT T ln(T ) + CT

(∆opt)2 ln(T )
)

, (7.20)

4. Choosing ω =
√

KΥT ln(T )/T , δ = 1/
√

KΥT T (with prior knowledge of ΥT and “pessimist”
guess CT ≃ KΥT ) gives

RT = O
(

K(
∆change)2

√
CT T ln(T ) + CT

(∆opt)2 ln(T )
)

. (7.21)
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7.7 Proof of the regret upper-bounds

7.6.3 Interpretation and comparison of the results

The regret bounds we obtain for the two variants of GLR-klUCB, in Theorems 7.8 and 7.11
respectively, both show that there exists a tuning of ω and δ as a function and T and the
number of changes such that the regret is of order Oh(K

√
ΥT T ln(T )) and Oh(K

√
CT T ln(T ))

respectively, where the Oh notations ignore the gap terms. For very particular instances
such that ΥT = CT , i.e., at each break-point only one arm changes (e.g., problem 1 from
Figure 7.1), the theory advocates the use of local restarts. Indeed, while the regret guarantees
obtained are similar, those obtained for local restarts hold for a wider variety of problems as
Assumption 7.10 is less stringent than Assumption 7.7. Besides those specific instances, our
results are essentially worse for local than for global restarts. However, we only obtain regret
upper bounds – thus providing a theoretical safety net for both variants of our algorithm, and
the practical story is different, as discussed in Section 7.8. Indeed, we find that GLR-klUCB
performs better with local restarts, uniformly on all problems.

One can note that with the tuning of ω and δ prescribed by Corollaries 7.9 and 7.12, the
regret bounds of GLR-klUCB hold for problem instances for which two consecutive break-
points (or change-points on an arm) are separated by more than (about)

√
T ln(T )/(∆change)2

rounds. Hence those guarantees are valid on “easy” problems only, with “few” changes of
“large” magnitudes, in particular they do not hold for the harder problems 3 or 5 presented
in Section 7.8. However, this does not prevent our algorithms from performing well on
more realistic instances, as shown by the numerical experiments, for instance with problem 3
presented in the next Section 7.8. And M-UCB [CZKX19] is also analyzed for the same type
of unrealistic assumptions, while its practical performance is illustrated beyond those.

7.7 Proof of the regret upper-bounds

This section starts by giving a unified analysis of regret of the two variants of GLR-klUCB,
then we give the proof of the finite-time regret bound for the variant using global restarts. The
proof of the other variant using local restarts follows the skeleton of the unified analysis, and it
can be found in Appendix E of [BK19b].

7.7.1 Sketch of the unified regret analysis

We emphasize that our approach is significantly different from those proposed by [CZKX19]
for M-UCB and by [LLS18] for CUSUM-UCB. Recall that in this Chapter, the regret is defined
asRT

.= E
[∑T

t=1(µk∗
t
(t)− µA(t)(t))

]
. First, we introduceD(T, ω) the (deterministic) set of time

steps atwhich the forced exploration is performed before timeT (see lines 3-4 inAlgorithm7.1),
and as we observe that µk∗

t
− µA(t) ≤ 1 because rewards are assumed to be bounded in [0, 1],

we can write a first decomposition of the regret, first without the expectation defining the
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mean regret:

T∑
t=1

(µk∗
t
(t)− µA(t)(t))

≤
T∑

t=1
1(t ∈ D(T, ω)) +

T∑
t=1

(µk∗
t
(t)− µA(t)(t))1

(
t /∈ D(T, ω), UCBA(t)(t) ≥ UCBk∗

t
(t)
)

≤ ωT +
T∑

t=1
1
(
UCBk∗

t
(t) ≤ µk∗

t
(t)
)

+
K∑

k=1

T∑
t=1

(µk∗
t
(t)− µk(t))1

(
A(t) = k, UCBk(t) ≥ µk∗

t
(t)
)

.

Introducing some good event ET , to be specified in each case, and its complementary Ec
T , one

can write the following decomposition, that highlights two important terms (A) and (B)

RT ≤ TP (Ec
T ) + ωT + E

[
1(ET )

T∑
t=1

1

(
UCBk∗

t
(t) ≤ µk∗

t
(t)
)]

︸ ︷︷ ︸
(A)

(7.22)

+ E
[
1(ET )

T∑
t=1

(µk∗
t
(t)− µA(t)(t))1

(
UCBA(t)(t) ≥ µk∗

t
(t)
)]

︸ ︷︷ ︸
(B)

.

Each analysis requires to define an appropriate good event, stating that some change-points are
detected within a reasonable delay. Each regret bound then follows from upper bounds on
term (A), term (B), and on the failure probability P(Ec

T ). To control (A) and (B), we split the
sum over consecutive segments, [τ (i) + 1, τ (i+1)] for global restarts and [τ (i)

k + 1, τ
(i+1)
k ] for each

arm k for local restarts, and use elements from the analysis of kl-UCB from [CGM+13].

The tricky part of both proofs, which crucially exploits Assumption 7.7 or 7.10, is actually
to obtain an upper bound on P(Ec

T ). For example for local restarts (Theorem 7.11), the good
event is defined as ET (ω, δ) .=

(
∀k ∈ [K],∀ℓ ∈ [NCk], τ̂

(ℓ)
k ∈

[
τ

(ℓ)
k + 1, τ

(ℓ)
k + d

(ℓ)
k

])
, where τ̂

(ℓ)
k

is defined as the ℓ-th change detected by the algorithm on arm k, and d
(ℓ)
k = d

(ℓ)
k (ω, δ) is defined

in Assumption 7.10. Introducing the event C(ℓ)
k

.=
{
∀j ≤ ℓ, τ̂

(ℓ)
k ∈

[
τ

(j)
k + 1, τ

(j)
k + d

(j)
k

]}
, that

all the changes up to the ℓ-th have been detected, a union bound yields this decomposition

P(ET (ω, δ)c) ≤
K∑

k=1

NCk∑
ℓ=1

P
(
τ̂

(ℓ)
k ≤ τ

(ℓ)
k | C(ℓ−1)

k

)
︸ ︷︷ ︸

(a)

+
K∑

k=1

NCk∑
ℓ=1

P
(
τ̂

(ℓ)
k ≥ τ

(ℓ)
k + d

(ℓ)
k | C

(ℓ−1)
k

)
︸ ︷︷ ︸

(b)

. (7.23)

• Term (a) is related to the control of probability of false alarm,which is given byLemma7.3
for a change-point detector running in isolation. Observe that under the bandit algo-
rithm, the change-point detector associated to arm k is based on (possibly much) less
than t − τk(t) samples from arm k, which makes false alarm even less likely to occur.
Hence, it is easy to show that (a) ≤ δ.
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7.7 Proof of the regret upper-bounds

• Term (b) is related to the control of the detection delay, which is more tricky to obtain
under the GLR-klUCB adaptive sampling scheme, when compared to a result like
Lemma 7.5, or Theorem 6 in [Mai19] for the change-point detector running in isolation.
More precisely, we need to leverage the forced exploration to be sure we have enough
samples for detection, thanks to Proposition 7.6. This explains why delays defined in
Assumption 7.10 are scaled by 1/ω. Using some elementary calculus and a concentration
inequality given in Lemma 7.14, we can finally also prove that (b) ≤ δ.

Finally by controlling terms (a) and (b), the “bad event” is unlikely: P(Ec
T ) ≤ 2CT δ. By

putting together the three pieces, that are a bound on (A), (B) and P(Ec
T ), we obtain the

desired finite-time upper-bound on the regret of GLR-klUCB.

7.7.2 Proof for GLR-klUCB with global restarts

The proof uses these notations: let τ̂ (i) be the i-th change detected by the algorithm, leading
to the i-th (full) restart and let τ̂(t) be the last time before t that the algorithm restarted. We
denote nk(t) .=

∑t
s=τ(t)+1 1(A(s) = k) the number of selections of arm k since the last (global)

restart, and µ̂k(t) .= 1
nk(t)

∑t
s=τ(t)+1 Yk,s1(A(s) = k) their empirical average (if nk(t) ̸= 0).

As explained before, our analysis relies on the general regret decomposition (7.22), with
the following appropriate good event. Let d(i) be defined as in Assumption 7.7, we define

ET (δ) .=
(
∀i ∈ [ΥT ], τ̂ (i) ∈

[
τ (i) + 1, τ (i) + d(i)

])
. (7.24)

Under the good event, all the change-points are detected within a delay at most d(i). From
Assumption 7.7, as the period between two changes are long enough, if ET (δ) holds, then for
all change k, we have τ (i) ≤ τ̂ (i) ≤ τ (i+1). So we can prove the following.

Lemma 7.13. The “bad event” ET (δ) defined in (7.24) is unlikely: P(Ec
T (δ)) ≤ δ(K + 1)ΥT .

We now turn our attention to upper bounding the two terms (A) and (B) in (7.22).

Upper bound on term (A).

(A) ≤ E
[
1(ET )

T∑
t=1

1

(
nk∗

t
(t) kl

(
µ̂k∗

t
(t), µk∗

t
(t)
)
≥ f(t− τ(t))

)]

≤
ΥT∑
i=1

E

1(ET )
τ (i+1)∑

t=τ (i)+1

1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂(t))

)
≤

ΥT∑
i=1

E

d(i) + 1(ET )
τ (i+1)∑

t=τ̂ (i)+1

1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂ (i))

)
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≤
ΥT∑
i=1

d(i) +
ΥT∑
i=1

E

1(C(i))
τ (i+1)∑
t=τ̂ (i)

1

(
nk∗(t) kl (µ̂k∗(t), µk∗) ≥ f(t− τ̂ (i))

) ,

where we introduce the event C(i) that all the changes up to the i-th have been detected:

C(i) =
{
∀j ≤ k, τ̂ (j) ∈ {τ (j) + 1, . . . , τ (j) + d(j)}

}
. (7.25)

Clearly, ET ⊆ C(i) and C(i) is Fτ̂ (i)-measurable. Observe that conditionally to Fτ̂ (i) , when C(i)

holds, µ̂k∗(t) is the average of samples that have all mean µ
(i)
k∗ . Thus, introducing µ̂s as a

sequence of i.i.d. random variables with mean µ
(i)
k∗ , one can write

E

1(C(i))
τ (i+1)∑
t=τ̂ (i)

1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂ (i))

)∣∣∣∣∣∣Fτ̂ (i)


= 1(C(i))

τ (i+1)∑
t=τ̂ (i)

E
[
1

(
nk∗(t) kl

(
µ̂k∗(t), µ

(i)
k∗

)
≥ f(t− τ̂ (i))

)
| Fτ̂ (i)

]

≤ 1(C(i))
τ (i+1)−τ̂ (i)∑

t′=1
P
(
∃s ≤ t′ : s kl(µ̂s, µ

(i)
k∗ ) ≥ f(t′)

)

≤
T∑

2=1

1
t ln(t) ≤ ln(ln(T )),

where the last but one inequality relies on the concentration inequality given in Lemma 2
of [CGM+13], for the choice f(t) = ln(t) + 3 ln(ln(t)). The last inequality comes from a
sum-integral comparison, as

∫ T
1

1
t ln(t)dt = ln(ln(T )). Finally, the law of total expectation gives

(A) ≤
ΥT∑
i=1

[
d(i) + ln(ln(T ))

]
. (7.26)

Upper bound on term (B). We let µ̃
(i)
k,s denote the empirical mean of the first s observations

of arm k made after time t = τ̂ (i) +1. Rewriting the sum in t as the sum of consecutive intervals
[τ (i) + 1, τ (i+1)], we obtain

(B) ≤ E
[
1(ET )

ΥT∑
i=1

τ (i+1)∑
t=τ (i)

(
µ

(i)
k∗ − µ

(i)
A(t)

)
1

(
UCBA(t)(t) ≥ µ

(i)
k∗

) ]

≤
ΥT∑
i=1

E
[
1(ET )τ̂ (i) + 1(ET )

τ (i+1)∑
t=τ̂ (i)+1

(
µ

(i)
k∗ − µ

(i)
A(t)

)
1

(
UCBA(t)(t) ≥ µ

(i)
k∗

) ]

≤
ΥT∑
i=1

d
(i)
k +

K∑
k=1

E
[
1(ET )

τ (i+1)∑
t=τ̂ (i)+1

(
µ

(i)
k∗ − µ

(i)
k

)
1

(
A(t) = k, UCBk(t) ≥ µ

(i)
k∗

) ]
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≤
ΥT∑
i=1

d
(i)
k +

K∑
k=1

ΥT∑
i=1

(
µ

(i)
k∗ − µ

(i)
k

)
×

E
[
1(ET )

τ (i+1)∑
t=τ̂ (i)+1

t−τ̂ (i)∑
s=1

1 (A(t) = k, nk(t) = s)1
(
s kl(µ̃(i)

k,s, µ
(i)
k∗ ) ≤ f(τ (i+1) − τ̂ (i))

) ]

≤
ΥT∑
i=1

d
(i)
k +

K∑
k=1

ΥT∑
i=1

(
µ

(i)
k∗ − µ

(i)
k

)
E
[
1(ET )

nk(τ (i+1))∑
s=1

1

(
s kl(µ̃(i)

k,s, µ
(i)
k∗ ) ≤ f(τ (i+1) − τ (i))

) ]

≤
ΥT∑
i=1

d
(i)
k +

K∑
k=1

ΥT∑
i=1

(
µ

(i)
k∗ − µ

(i)
k

)
E
[
1(C(i))

nk(τ (i+1))∑
s=1

1

(
s kl(µ̃(i)

k,s, µ
(i)
k∗ ) ≤ f(τ (i+1) − τ (i))

) ]
.

Conditionally to Fτ̂ (i) , when C(i) holds, for s ∈ [nk(τ (i+1))], µ̃
(i)
k,s is the empirical mean

from i.i.d. observations of mean µ
(i)
k . Therefore, introducing µ̂s as a sequence of i.i.d. random

variables with mean µ
(i)
k , it follows from the law of total expectation that

(B) ≤
ΥT∑
i=1

d(i) +
K∑

k=1

ΥT∑
i=1

(
µ

(i)
k∗ − µ

(i)
k

) τ (i+1)−τ (i)∑
s=1

P
(
s× kl(µ̂s, µ

(i)
k∗ ) ≤ f(τ (i+1) − τ (i))

)
·

If µ
(i)
k∗ > µ

(i)
k by definition, we can use the analysis of kl-UCB from [CGM+13] to further upper

bound the right-most part, and we obtain

(B) ≤
ΥT∑
i=1

d(i) +
K∑

k=1

ΥT∑
i=1

1

(
µ

(i)
k ̸= µ

(i)
k∗

)
(
µ

(i)
k∗ − µ

(i)
k

)
kl(µ(i)

k , µ
(i)
k∗ )

ln(T ) +O
(√

ln(T )
) . (7.27)

Combining the regret decomposition (7.22) with Lemma 7.13 and the two upper bounds
of (A) in (7.26) and of (B) in (7.27),

RT ≤ 2
ΥT∑
i=1

4K

ω
(
∆(i))2 β(T, δ)+ωT+δ(K+1)ΥT +

K∑
k=1

∑
i:µ(i)

k
̸=µ

(i)
k∗

(
µ

(i)
k∗ − µ

(i)
k

)
kl
(
µ

(i)
k , µ

(i)
k∗

) ln(T )+O
(√

ln(T )
)

,

which concludes the proof. □

Controlling the probability of the good event: proof of Lemma 7.13

Recall that C(i) defined in (7.25) is the event that all the break-points up to the k-th have been
correctly detected. Using a union bound, one can write

P(Ec
T ) ≤

ΥT∑
i=1

P
(

τ̂ (i) /∈ {τ (i) + 1, . . . , τ (i) + d(i)}
∣∣∣ C(i−1)

)
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And thus we can split between a term corresponding to a false alarm and a term corresponding
to a bounded detection delay,

P(Ec
T ) ≤

ΥT∑
i=1

P
(
τ̂ (i) ≤ τ (i) | C(i−1)

)
︸ ︷︷ ︸

(a)

+
ΥT∑
i=1

P
(
τ̂ (i) ≥ τ (i) + d(i) | C(i−1)

)
︸ ︷︷ ︸

(b)

.

The final result follows by proving that (a) ≤ Kδ and (b) ≤ δ, as detailed below.

Upper bound on (a): controlling the false alarm. We have τ̂ (i) ≤ τ (i), which implies that
there exists an arm whose associated change-point detector has experienced a false-alarm, i.e.,

(a) ≤ P
(
∃k ∈ [K],∃s < t ≤ nk(τ (i)

k ) : s kl
(
µ̂

(i−1)
k,1:s , µ̂

(i−1)
k,1:t

)
+ (t− s) kl

(
µ̂

(i−1)
k,s+1:t, µ̂

(i−1)
k,1:t

)
> β(t, δ) | C(i−1))

≤
K∑

k=1
P
(
∃s < t : s kl(µ̂1:s, µ

(i−1)
k ) + (t− s) kl(µ̂s+1:t, µ

(i−1)
k ) > β(t, δ)

)
,

where the last inequality simply comes from a union bound on k ∈ [K], and with µ̂s:s′
.=∑s′

r=s Zi,r where Zi,r is an i.i.d. sequence with mean µ
(i−1)
k . Indeed, conditionally to C(i−1),

the nk(τ (i)) successive observations of arm k arm starting from τ̂ (i) are i.i.d. with mean µ
(i−1)
k .

Using Lemma 7.4, term (a) is upper bounded by Kδ. □

Upper bound on term (b): controlling the delay. From the definition of ∆(i), there exists an
arm k such that ∆(i) .= |µ(i)

k − µ
(i−1)
k |. We shall prove that it is unlikely that the change-point

detector associated to this arm k does not trigger within the delay d(i).

First, it follows from Proposition 7.6 that there exists t ∈ {τ (i), . . . , τ (i) + d(i)} such that
nk(t) − nk(τ (i)) = r, where r

.= ⌊ ω
K d(i)⌋ (as the mapping t 7→ nk(t) − nk(τ (i)) is non-

decreasing, is 0 at t = τ (i) and its value at τ (i) + d(i) is larger than r). Using the inclusion(
τ̂ (i) ≥ τ (i) + d(i)

)
⊆
(
τ̂ (i) ≥ t

)
, the event

(
τ̂ (i) ≥ τ (i) + d(i)

)
further implies that

nk(τ (i)) kl
(
µ̃

(i−1)
i,nk(τ (i)), µ̃

(i−1)
i,nk(t)

)
+ r kl

(
µ̃

(i−1)
i,nk(τ (i)):nk(t), µ̃

(i−1)
i,nk(t)

)
≤ β(nk(τ (i)) + r, δ),

where µ̃
(i−1)
k,s denotes the empirical mean of the s first observation of arm k since the (i− 1)-th

restart τ̂ (i−1) and µ̃
(i−1)
i,s:s′ the empirical mean that includes observation number s to number s′.

Conditionally to C(i−1), µ̃
(i−1)
i,nk(τ (i)) is the empirical mean of nk(τ (i)) i.i.d. replications of mean

µ(i−1), whereas µ̃
(i−1)
i,nk(τ (i)):nk(t) is the empirical mean of r i.i.d. replications of mean µ

(i)
k .

Moreover, Proposition 7.6 shows that nk(τ (i)) is bounded in a certain interval, nk(τ (i)) ∈[⌊
ω
K

(
τ (i) − τ̂ (i−1)

)⌋
,
(
τ (i) − τ̂ (i−1)

)]
. Conditionally to C(i−1), by using Assumption 7.7, we
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can prove that d(i−1) ≤ (τ (i) − τ (i−1))/2, and thus we obtain furthermore that

nk(τ (i)) ∈
{⌊

ω

2K
(τ (i) − τ (i−1))

⌋
, . . . , τ (i) − τ (i−1)

}
.= Ii.

Introducing µ̂a,s (resp. µ̂b,s) the empirical mean of s i.i.d. observations with mean µ̂
(i−1)
k (resp.

µ̂
(i)
k ), such that µ̂a,s and µ̂b,r are independent, it follows that

(b) ≤ P
(
∃s ∈ Ii : s kl

(
µ̂a,s,

sµ̂a,s + rµ̂b,r

s + r

)
+ r kl

(
µ̂b,r,

sµ̂a,s + rµ̂b,r

s + r

)
≤ β(s + r, δ)

)
,

where we used the following property on means of x = y + z observations Zi: µ̃1:x = µ̃1:y+z =
1

y+z

∑y+z
i=1 Zi = 1

y+z (yµ̃1:y + zµ̃y+1:z), with x = nk(t) = y + z = nk(τ (i)) + r, in order to
compute µ̃

(i−1)
i,nk(t) =

(
nk(τ (i))µ̃(i−1)

i,nk(τ (i)) + rµ̃
(i−1)
i,nk(τ (i)):nk(t)

)
/(nk(τ (i)) + r).

Using Pinsker’s inequality, and introducing the gap ∆(i)
k

.= µ
(i−1)
k − µ

(i)
k (which is such

that ∆(i) = |∆(i)
k |), one can write

(b) ≤ P
(
∃s ∈ Ii : 2sr

s + r
(µ̂a,s − µ̂b,r)2 ≤ β(s + r, δ)

)
≤ P

(
∃s ∈ N : 2sr

s + r

(
µ̂a,s − µ̂b,s −∆(i)

k

)2
≥ β(s + r, δ)

)
+ P

(
∃s ∈ Ii : 2sr

s + r

(
µ̂a,s − µ̂b,r −∆(i)

k

)2
≤ β(s + r, δ), 2sr

s + r
(µ̂a,s − µ̂b,r)2 ≤ β(s + r, δ)

)
Using Lemma 7.14 stated in Appendix 7.10.2, and a union bound, the first term in the right
hand side is upper bounded by δ (as β(r + s, δ) ≥ β(r, δ) ≥ ln(3s

√
s/δ)). For the second term,

we use the observation

2sr

s + r

(
µ̂a,s − µ̂b,r −∆(i)

k

)2
≤ β(s + r, δ) ⇒ |µ̂a,s − µ̂b,r| ≥ |∆

(i)
k | −

√
s + r

2rs
β(s + r, δ)

and, using that ∆(i) = |∆k
k|, one obtains

(b) ≤ δ + P
(
∃s ∈ Ii : ∆(i) ≤ 2

√
s + r

2sr
β(s + r, δ)

)
. (7.28)

Define smin
.=
⌊

ω
K (τ (i) − τ (i−1))/2

⌋
. Using the fact that the two mappings s 7→ (s + r)/sr and

s 7→ β(s + r, δ) are respectively decreasing and increasing in s, one has, for all s ∈ Ii,

2s + r

sr
β (s + r, δ) ≤ 2smin + r

sminr
β (T, δ) ≤ 4β(T, δ)⌊

ω
K d(i)⌋ ,
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where the last inequality follows from the fact that r ≤ smin as d(i) ≤ (τ (i) − τ (i−1))/2 by
Assumption 7.7. Now the definition of d(i) readily implies that

⌊
ω
K d(i)

⌋
> 4β(T,δ)

(∆(i))2 , which yields

∀s ∈ Ii, 2s + r

sr
β (s + r, δ) ≤

(
∆(i)

)2
.

Hence, the probability in the right-hand side of (7.28) is zero, which yields (b) ≤ δ. □

7.8 Experimental results for piece-wise stationary bandits

In this section we report results of numerical simulations performed on synthetic data, in order
to compare the performance of GLR-klUCB against other state-of-the-art approaches, on some
piece-wise stationary bandit problems. For simplicity, we restrict to rewards generated from
Bernoulli distributions, even if GLR-klUCB can be applied to any bounded distributions.

We report results obtained on five different piece-wise stationary bandit problems, illus-
trated in Figures 7.1 and 7.2 above, and Figures 7.5, 7.6 and 7.7 below. We present regret tables
and regret plots, for which the mean regret was estimated using 1000 independent runs.

Algorithms and parameters tuning. We include in this study two algorithms designed for
the classical stationary MAB, kl-UCB [GC11], and Thompson sampling [AG12, KKM12], and
an “oracle” version of kl-UCB, that we call Oracle-Restart. This algorithm knows the exact
locations of the break-points, and restarts kl-UCB at those locations (without any delay).

Then, we compare our algorithms to several competitors designed for a piece-wise sta-
tionary model. For a fair comparison, all algorithms that use UCB as a sub-routine were
adapted to use kl-UCB instead, which yields better performance3. Moreover, all the algo-
rithms are tuned as described in the corresponding paper, using in particular the knowledge
of the number of break-points ΥT and the horizon T . We first include three passively adaptive
algorithms: Discounted kl-UCB (D-kl-UCB, [KS06]), with discount factor γ = 1−

√
ΥT /T/4,

Sliding-Window kl-UCB (SW-kl-UCB, [GM11]) using window-size τ = 2
√

T ln(T )/ΥT and
Discounted Thompson sampling (DTS, [RK17]) with discount factor γ = 0.95. For this last
algorithm, the discount factor γ = 0.75 suggested by the authors was performing signifi-
cantly worse on the problem instances we tried. More precisely, we found that γ ≤ 0.95
gives better performances for short-term problems (problems 1, 2, 4) and γ ≥ 0.95 is better
suited for long experiments (problems 3, 5). Additionally, we include the Exp3.S algorithm
from [ACBFS02], setting its parameters as in the Corollary 8.3 of the paper: ω = 1/T and
γ = min(1,

√
K(ΥT ln(KT ) + e)/((e− 1)T )), based on a prior knowledge of T and ΥT .

3 [LLS18, CZKX19] both mention that extending their analysis to the use of kl-UCB should not be too difficult.
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Themain goal here is to compare against actively adaptive algorithms. We includeCUSUM-klUCB,
tuned with M = 150 and ε = 0.1 for easy problems (1, 2, 4) and ε = 0.001 for hard problems
(3, 5), and with h = ln(T/ΥT ), ω =

√
ΥT ln(T/ΥT )/T , as suggested in the paper [LLS18]. Fi-

nally, we include M-klUCB, tuned with w = 150, based on a prior knowledge of the problems
as the formula using δmin given in [CZKX19] is too large for small horizons (on all the problem
instances), a threshold b =

√
w ln(2KT ) and γ =

√
ΥT K(2b + 3

√
w)/(2T ) as suggested by

Remark 4 in the paper [CZKX19].

For GLR-klUCB, we explore the two different options with Local and Global restarts, us-
ing respectively δ = 1/

√
ΥT ,ω = ω0

√
ΥT ln(T )/T and δ = 1/

√
KΥT T ,ω = ω0

√
KΥT ln(T )/T

from Corollaries 7.9 and 7.12. Both choices of ω appear to be too large empirically, as they
come from minimizing the regret upper-bound rather than the regret itself, thus the constant
is set to ω0 = 0.05. We show in Appendix G of [BK19b] a sensitivity analysis on ω, which
concludes to a robustness regarding this parameter, with similar regret as soon as ω ≤ 0.1. We
do not use a constant δ0 to change the confidence level to δ = δ0δT , as we verified empirically
that δ0 = 1 is uniformly better for different problems. To speed up the simulations, two opti-
mizations are used, with ∆n = ∆s = 10, and CUSUM also uses the first trick with ∆n = 10
(see Appendix 7.10.3 for more details).

Time and memory costs of GLR-klUCB. Finally, we mention that we discuss in details in
Appendix F of [BK19b] about the time and memory complexities of GLR-klUCB, and the
other algorithms considered for the numerical experiments. To sum up, at every time step
the CPD algorithm needs a time O(ni) = O(dmax), and at the end, the time complexity of
CUSUM-klUCB as well as GLR-klUCB is O(KTdmax), which can be up-to O

(
KT 2), much

more costly thanO(KT ) for kl-UCB for instance. Our proposal GLR-klUCB requires a storage
of the order of O(Kdmax) and a running time of the order of O(KTdmax). We validated the
two bounds experimentally, with results presented in Tables 2 and 3 in [BK19b].

Examples of detection delays on one run for two simple problems. Before giving larger
results that compare our approach against other algorithms, we consider the two problems
1 and 2 presented above in Figures 7.1 and 7.2 (for T = 5000). For one (random) simulation,
we give below examples of the efficiency of the change-point detection algorithm used by
GLR-klUCB as well as CUSUM-klUCB and M-klUCB, by showing the times at which they
detect a change and reinitialize their memory of observations of one or all the arms. As
shown below, in the experiments summary, the three algorithms based on change-point
detection obtain sub-linear regret, but they have different behaviors. The test in M-UCB
usually detects less changes, while the test in CUSUM-UCB usually detects more changes and
even unnecessary changes. On the examples presented below as well as large scale examples,
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all the tests appear to have no (or a small number of) false alarm, and always a small detection
delay for changes that are “easy enough” to be efficiently detected.

Problem 1 has only local changes, and important changes, that denote here changes on
the current optimal arm, happen only at t = 2000 when arm 2 becomes sub-optimal (µ2 goes
from 0.9 to 0.1) and arm 0 becomes optimal, and at t = 3000 when arm 0 stays optimal but
sees its mean change from 0.3 to 0.7. Other changes concern arm 1 at t = 1000 and t = 4000.
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Locations of change-points detected by different algorithms (problem 1)

Figure 7.3 – Locations of the detected change-points for four algorithms on Problem 1.

Figure 7.3 displays the locations of the successively detected change-points by four algo-
rithms, 1) M-klUCB, 2) CUSUM-klUCB, 3) GLR-klUCB with local restart, 4) GLR-klUCB with
global restart. In this “easy” problem, all algorithms correctly detect the important changes,
except CUSUM which detected a change on arm 1 (in red) twice after the change-point located
at t = 3000. The three other algorithms have a very small delay, for instance only 9 samples
from arm 0 (in blue) after its change at time t = 2000 are enough for the GLR test to detect
a change. Very small delays are possible only after having collected a lot of samples of the
arm which changed, and for instance the same algorithm obtains a delay of 32 samples from
arm 1 for the next change at t = 3000, because this arm was sampled less. On this problem,
while M-klUCB detects the same changes as GLR-klUCB, with larger but comparable delays,
it is seen to obtain a larger regret than the two GLR variants, simply because the tuning of its
forced exploration probability (i.e., ω) makes it explore sub-optimal arms more often.

Problem 2 has only global changes, and important changes happen only at t = 1000 when
arm 2 sees its mean change from 0.9 to 0.7, then at t = 2000 when it becomes sub-optimal (µ2
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goes from 0.7 to 0.5) and arm 0 becomes optimal, and at t = 3000 and t = 4000 when arm 0
stays optimal but sees its mean change from 0.6 to 0.7 and then from 0.7 to 0.8.
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Locations of change-points detected by different algorithms (problem 2)

Figure 7.4 – Locations of the detected change-points for four algorithms on Problem 2.

Like for the first problem, we illustrate the behavior of the same four algorithms in Fig-
ure 7.4. In this other problem, the difference between M-klUCB and CUSUM-klUCB is clear:
the first algorithm fails to detect any change, leading to a large regret, while the second one
detects the changes that happen on the currently optimal arm and some other changes. Draw-
ing conclusions on their behavior from a single simulation is meaningless, as this example of
behavior is counter intuitive: On the one hand, CUSUM uses local restarts, and it should be
less efficient than global restarts for this problem, as changes are all global. On the other hand,
M-klUCB uses global restarts, but here it fails to detect any change. The two GLR-klUCB
variants correctly detect the important changes, and we observe that their delays to detect
a change can vary, mainly due to the randomness (we remind that we illustrate only one
repetition of the simulation here). For instance, after the change on arm 1 (in red), the local
restart detects it at time t = 2376 and the global restart detects it at time t = 2701.

In these two examples, we compare the two variants of GLR-klUCB, with the two state-of-
the-art policies CUSUM-klUCB and M-klUCB, that are all based on combining kl-UCB with
a change-point detection algorithm. The results given above should be taken carefully, they
only have the purpose of being an illustration of the possible behaviors of these algorithms, as
they are the results of only one (random) simulation! But it is still interesting to compare the
final regret in one run, as given above, with the mean regret for 1000 independent runs, as
given below in Table 7.2. The values change, but the ranking stays the same: GLR-klUCB

223



Piece-Wise Stationary Bandits

outperforms both CUSUM-klUCB and M-klUCB, and the test based on CUSUM seems more
efficient than the test based of M-klUCB in the problems at hand.

Illustrations of the rest of the benchmark. We continue here the presentation of the other
problems of our benchmark, after Figures 7.1 and 7.2 above for the two problems 1 and 2.

Problem 3. (see Figure 7.5) This problem is harder, with K = 6, ΥT = 8 and T = 20000.
At every break-point, almost all arms change, and means are bounded in [0.01, 0.07]. The gaps
∆ are much smaller than for the first problems, with amplitudes ranging from 0.02 to 0.001.
Note that the assumptions of the regret upper bounds for GLR-klUCB are violated, as well as
the assumptions for the analysis of M-UCB and CUSUM-UCB. It is interesting to say that this
problem is inspired from Figure 3 of [CZKX19], where the synthetic data was obtained from
manipulations on a real-world database of clicks from Yahoo!. The details fall outside of the
scope of this section, and are well explained in the paper [CZKX19].
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Figure 7.5 – Problem 3: K = 6, T = 20000, C = 19 changes occur on most arms at Υ = 8 break-points.

Problem 4. Like problem 1, it uses K = 3 arms, Υ = 4 change-points and T = 5000, but
the stationary sequences between successive change-points no longer have the same length,
as illustrated in Figure 7.6. Classical (stationary) algorithms such as kl-UCB can be “tricked”
by large enough stationary sequences, as they start by learning with a large confidence the
optimal arm, and then fail to adapt to a new optimal arm after a change-point. We observe
below in Table 7.3 that they can suffer higher regret when the change-points are more spaced
out, like for instance for this problem starting with a longer stationary sequence of length T/2.
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Figure 7.6 – Problem 4: K = 3, T = 5000, C = 12 changes occur on all arms at Υ = 4 break-points.

Problem 5. Like problem 3, this harder problem is inspired from synthetic data obtained
from a real-world database of clicks from Yahoo!, but from another competitor paper, see
Figure 3 from [LLS18]. It is a much harder piece-wise stationary problem, with Υ = 81
change-points on K = 5 arms for a longer horizon of T = 100000. Some arms change at
almost every time steps, for a total number of break-points C = 179, but the optimal arm is
almost always the same one (arm 0, with •). It is a good benchmark to see if the actively
adaptive policies do not detect too many changes, as the Oracle-Restart policy suffers higher
regret in comparison to kl-UCB. Means are also bounded in [0.01, 0.07], with small gaps of
amplitude in [0.001, 0.02], as shown in Figure 7.7.

First experiment: UCB vs kl-UCB. Similarly to what is presented in Chapter 6 in Table 6.1,
we start by some experiments that justify the focus on the kl-UCB index policy. Indeed, the
purpose of this work is not to optimize on the index policy, but rather propose new ways of
using indices for piece-wise stationary problems. We run two experiments on problems 1 and
2, with a horizon of T = 20000 and 1000 independent repetitions, for which we compare UCB
against kl-UCB, for CUSUM-, M-, GLR and the oracle policy. We report in Table 7.1 below the
results (in terms of mean regret), and we observe that using kl-UCB rather than UCB indices
always yields better practical performance.

Thus it is fair to compare our proposal against the modified versions of the two algorithms
CUSUM- and M- that use the kl-UCB index policy instead of UCB, as they perform uniformly
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Figure 7.7 – Pb 5: K = 5, T = 100000, C = 179 changes occur on some arms at Υ = 81 break-points.

better with kl-UCB than with UCB (the same tendency was observed on all other problems).
We also note that, without surprise, the oracle policy also performs (much) better with kl-UCB
than with UCB. Consequently, from now on we only report results for kl-UCB.

Algorithm Index policy Problem 1 Problem 2
Oracle-Restart UCB 216 219

kl-UCB 54 67

M- UCB 878 2040
kl-UCB 817 1485

CUSUM UCB 439 381
kl-UCB 304 316

GLR (Local) UCB 191 232
kl-UCB 132 186

Table 7.1 – Mean regret ± 1 std-dev, on problems 1 and 2 with T = 5000. We conclude that using
kl-UCB is much more efficient than using UCB, for non-stationary bandit.

Results on the entire benchmark. The two Tables 7.2 and 7.3 show the final regret RT

obtained for each algorithm. Results highlighted in bold show the best non-oracle algorithm
for each experiment, with GLR-klUCB being the best non-oracle strategy for problems 1 and
2. Thompson sampling and kl-UCB are efficient, and better than Discounted-kl-UCB which
is inefficient. DTS and SW-kl-UCB can sometimes be more efficient than their stationary
counterparts, but perform worse than the Oracle and most actively adaptive algorithms. For
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kl-UCB indexes, M- and CUSUM- outperform the previous algorithms, but GLR- is often
better. On these problems, GLR-klUCB with Local restarts is always more efficient than with
Global restarts. Note that on problem 2, all means change at every break-point, hence one
could expect the Global variant to be more efficient, yet the experiments show the superiority
of Location variant on every instance. The Exp3.S algorithm was found to outperform other
algorithms based on Exp3, including recent variants like Exp3++ [SL17] or Exp3.R from
[AFM17]. Exp3.S usually performs similarly to M-klUCB, but it is greatly outperformed by
the oracle algorithm, by GLR-klUCB and by CUSUM-klUCB.

Algorithms \ Problems Pb 1 Pb 2 (T = 5000) Pb 3 (T = 20000)
Oracle-Restart kl-UCB 37± 37 45± 34 257± 86

Exp3.S 352± 51 310± 62 665± 93
kl-UCB 270± 76 162± 59 529± 148

Discounted-kl-UCB 1456± 214 1442± 440 1376± 37
SW-kl-UCB 177± 34 182± 34 1794± 71

Thompson sampling 493± 175 388± 147 1019± 245
DTS 209± 38 249± 39 2492± 52

M-klUCB 290± 29 534± 93 645± 141
CUSUM-klUCB 148± 32 152± 42 490± 133

GLR-klUCB(Local) 74± 31 113± 34 513± 97
GLR-klUCB(Global) 97± 32 134± 33 621± 103

Table 7.2 – Mean regret ± 1 std-dev, on problems 1, 2 (with T = 5000) and 3 (T = 20000).

Algorithms \ Problems Pb 4 (T = 5000) Pb 4 (T = 10000) Pb 5
Oracle-Restart kl-UCB 68± 40 86± 50 126± 54

Exp3.S 551± 63 860± 109 723± 121
kl-UCB 615± 74 1218± 123 106± 36

SW-kl-UCB 202± 33 322± 47 228± 27
Discounted-kl-UCB 911± 210 1741± 200 2085± 910
Thompson sampling 756± 65 1476± 137 88± 39

DTS 250± 39 481± 58 238± 24
M-klUCB 337± 46 544± 47 116± 36

CUSUM-klUCB 267± 69 343± 94 117± 34
GLR-klUCB(Local) 99± 32 128± 42 149± 34
GLR-klUCB(Global) 128± 32 185± 47 152± 32

Table 7.3 – Mean regret ± 1 std-dev. Problem 4 use K = 3 arms, and a first long stationary sequence.
Problem 5 use K = 5, T = 100000 and is much harder with Υ = 82 break-points and C = 179 changes.

We highlight that the best non-oracle strategies are actively adaptive, thus the experiments
confirm that an efficient bandit algorithm (e.g., kl-UCB) combined with an efficient change-
point detector (e.g., GLR) provides efficient strategies for the piece-wise stationary model.
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Regret plots. We show below on Figure 7.8 and additional in Appendix 7.10.1 the simulation
results for the five problems. The results of Tables 7.2 and 7.3 focus on the value of RT at the
end of each bandit game, but it is also interesting to observe two plots for each experiment.
First, we show the mean regret as a function of time (i.e., Rt for t ∈ [T ]), for 9 of the considered
algorithms (as they are outperformed by the others, Exp3.S and Discounted-kl-UCB are
not included in order to avoid clutter). Efficient stationary algorithms, like TS and kl-UCB,
typically suffer a linear regret after a change on the optimal arm, if they had “too” many
samples before the change-points (e.g., on Figure 7.8 and even more on Figures 7.11 and 7.13).
This illustrates the conjecture that classical algorithms can suffer linear regret even on simple
piece-wise stationary problems.
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Figure 7.8 – Mean regret as a function of time, Rt for horizon T = 5000, for problem 1.

On simple problems, like problem 1, all the algorithms being designed for piece-wise
stationary environments perform similarly, but as soon as the gaps are smaller or there are
more changes, we observe that GLR-klUCB can outperform the two other actively adaptive
algorithms CUSUM-klUCB and M-klUCB (e.g., on Figure 7.9), and performs much better
than passively adaptive algorithms DTS and SW-kl-UCB (e.g., on Figure 7.12). Our approach
is the algorithm which performs the closer to the oracle for problem 4.

Finally, in the case of hard problems, like problems 3 and 5, that have a lot of changes
but where the optimal arm barely changes, we verify in Figure 7.13 that kl-UCB and TS can
outperform the oracle policy. Indeed the oracle policy is sub-optimal as it restarts as soon
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Figure 7.9 – Mean regret as a function of time, Rt for horizon T = 5000, for problem 2.

as one arm change but is unaware of the meaningful changes, and stationary policies which
quickly identify the best arm will play it most of the times, achieving a smaller regret. We
note that, sadly, all actively adaptive policies fail to outperform stationary policies on such
hard problems, because they do not observe enough rewards from each arm between two
restarts (i.e., the Assumptions 7.7 and 7.10 for the two Theorems 7.8 and 7.11 are not satisfied).
We can also verify that the two options, Local and Global restart, for GLR-klUCB, give close
results, and that the Local option is always better.

We also show the empirical distribution of the regret RT , on Figure 7.10 below. It shows
that algorithms efficient in terms of regret also have a small variance on their regret.

Reproducibility. The experiments in this chapter use SMPyBandits, and the instructions to
reproduce them are given on SMPyBandits.GitHub.io/NonStationaryBandits.html.
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Figure 7.10 – Histograms of the distributions of regret RT (T = 5000) for problem 1.

7.9 Conclusion

In this chapter, we studied and presented the piece-wise stationary bandit model, starting
by reviewing existing works. We proposed a new algorithm for this problem, GLR-klUCB,
which combines the kl-UCB algorithm with the Bernoulli GLR change-point detector. This
actively adaptive method attains state-of-the-art regret upper-bounds when tuned with a
prior knowledge of the number of changes ΥT , but without any other prior knowledge on the
problem, unlike its best two competitors, CUSUM-UCB and M-UCB, that require to know a
lower bound on the smallest magnitude of a change. We also gave numerical evidence of the
efficiency of our proposal.

This chapterwas an interesting direction of analysis of the intractablemodel fromChapter 5,
of independent end-devices running embedded MAB learning algorithms to improve their
spectrum access in an IoT network. Instead of dealing with the multi-players aspect, as we did
in the previous Chapter 6, we dealt in Chapter 7 about the non-stationary aspect. Different
kinds of non-stationary bandit models have been considered in the literature, including
adversarial, slowly-varying or abruptly-changing bandits, and as found the later to be the
most appropriate to model non-stationarity of cognitive radio networks, we focus on abruptly-
changing or piece-wise stationary bandit problems. Our proposed algorithm achieves state-
of-the-art results for this model, by requiring a weaker prior knowledge on the problem
difficulty when compared with its best competitors. An important future work is to investigate
whether actively adaptive approaches can attain an order-optimal O(

√
ΥT T ) regret upper-
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bound without the knowledge of ΥT the number of break-point. Another possible future
work is to propose an algorithm that could blindly adapt to both the slowly-varying and the
abruptly-changing models, as well as being efficient against stationary models.

As suggested by the “dynamic case” of multi-players bandits presented in Chapter 6,
another promising direction of future work is to study non-stationary distributed multi-
players bandits. A natural extension of the model presented in this chapter is to consider
non-communicating players cooperating in a decentralized way to play the same bandit game,
as it was proposed recently in [WS18a]. The authors build on their recent work [WS18b] and
show that a regret bounded by O(

√
T

1+ν
2 ln(T )) can still be achieved by M players, in the

number of breaking points is ΥT = O(T ν). Their algorithm assume that player j knows its
ID j ∈ [M ] as well as ν, and removing these hypotheses is an interesting direction of future
work. Furthermore, a promising direction is to directly try to join our contributions from
Chapters 6 and 7, and propose an efficient algorithm using three parts: kl-UCB indexes for
arm selection, MCTopM for orthogonalization (i.e., dealing with collisions), and GLR-klUCB
for non-stationarity (i.e., dealing with abrupt changes).
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7.10 Appendix

We start by including figures as complementary illustrations to the numerical results presented
in Section 7.8 above. We then give some additional useful results, along with their proofs,
and then we give complementary numerical experiments to justify some choices made in the
presentation of our proposal GLR-klUCB.

7.10.1 Additional figures

We give here plots showing the mean regret Rt as a function of time, and histograms of the
distributions of the final regret RT , for the different problems of our benchmark. Figures 7.8
and 7.10 above show that our two proposals are efficient against problem 1, and Figure 7.9
concerns problem 2. Then we show similar results for problem 4 in Figure 7.11.
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Figure 7.11 – Mean regret as a function of time, Rt for horizon T = 5000, for problem 4. We see that
after a “long enough” stationary interval, the algorithms designed for stationary problems lose track
of the best arm, and suffer from linear regret for a long period (e.g., Thompson sampling in yellow ⋄).

For harder problems, like problems 3 and 5, the stationary policy kl-UCB can outperform
actively adaptive strategies, if the stationary intervals are too short or if the gap between arms
are too small. In other words, we illustrate in Figures 7.12 and 7.13 that while the actively
adaptive strategies can be very efficient when applied to problems that are not too difficult to
track, they can become sub-optimal for difficult problems.
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Figure 7.12 – Mean regret as a function of time, Rt for horizon T = 20000, for problem 3.
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Figure 7.13 – Mean regret as a function of time, Rt for horizon T = 100000, for problem 5.
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7.10.2 Omitted proofs

This Appendix gives some proofs omitted in the main text of this chapter. The remaining
missing proofs can be found in the article [BK19b].

Simplified expression for the GLR statistic

First, we consider the denominator in the expression of GLR(n) (7.3), that is the sup on
µ0. We have ℓ(X1, . . . , Xn; µ0) =

n∏
i=1

ℓ(Xi; µ0) by independence of the observations Xi, and

ℓ(Xi; µ0) = µXi
0 (1− µ0)1−Xi for Bernoulli distributions. Therefore, taking the logarithm gives

ln [ℓ(X1, . . . , Xn; µ0)] =
n∑

i=1
ln [ℓ(Xi; µ0)] =

n∑
i=1

Xi ln(µ0) + (1−Xi) ln(1− µ0)

= ln(µ0)×
(

n∑
i=1

Xi

)
+ ln(1− µ0)×

(
n−

n∑
i=1

Xi

)
= n (µ̂1:n ln(µ0) + (1− µ̂1:n) ln(1− µ0)) .

For a constant a ∈ [0, 1], let h(x) .= a ln(x)+(1−a) ln(1−x) on (0, 1), andwe are trying to solve
supx∈[0,1] h(x). If a = 0 or a = 1, h is maximum at x = a. Now if a ̸= 0, As h is of concave and of
class C1, we can just differentiate and find the root of its derivative, h′(x) = a/x−(1−a)/(1−x),
so h′(x) = 0 if and only if x = a. Thus in all cases, supx∈[0,1] h(x) = h(a). Here, we have
a = µ̂1:n, and thus we solved the supµ0 optimization problem found in the denominator of the
GLR(n) expression. By replacing µ0 = µ̂1:n, we obtained the following (unique) solution,

sup
µ0

ln [ℓ(X1, . . . , Xn; µ0)] = n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n)) . (7.29)

Now let us consider the nominator of the GLR(n) expression, that is the sup on µ0, µ1, τ .
We can again work with log-likelihoods, and so we have

ln [ℓ(X1, . . . , Xn; µ0, µ1, τ)]

=
τ∑

i=1
Xi ln(µ0) + (1−Xi) ln(1− µ0) +

n∑
i=τ+1

Xi ln(µ1) + (1−Xi) ln(1− µ1)

= s
(
µ̂1:s ln(µ0) + (1− µ̂1:s) ln(1− µ0)

)
+ (n− s)

(
µ̂s+1:n ln(µ1) + (1− µ̂s+1:n) ln(1− µ1)

)
.

Because we solved in (7.29) the sup for the denominator, we have

GLR(n) =
sup

µ0,µ1,τ<n
ℓ(X1, . . . , Xn; µ0, µ1, τ)

exp [n (µ̂1:n ln(µ0) + (1− µ̂1:n) ln(1− µ0))] ,
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= sup
µ0,µ1,τ<n

ℓ(X1, . . . , Xn; µ0, µ1, τ)
exp [n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n))] ,

= exp
[

sup
µ0,µ1,τ<n

[
ln
[ ℓ(X1, . . . , Xn; µ0, µ1, τ)
exp [n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n))]

]]]
,

When the last equation comes from the fact that exp is increasing. Thus by taking the logarithm
of both sides, we obtain

ln GLR(n) = sup
µ0,µ1,τ<n

[
ln
[ ℓ(X1, . . . , Xn; µ0, µ1, τ)
exp [n (µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n))]

]]
,

= sup
µ0,µ1,s∈[n−1]

[
s
(
µ̂1:s ln(µ0) + (1− µ̂1:s) ln(1− µ0)

)
+ (n− s)

(
µ̂s+1:n ln(µ1) + (1− µ̂s+1:n) ln(1− µ1)

)
− n

(
µ̂1:n ln(µ̂1:n) + (1− µ̂1:n) ln(1− µ̂1:n)

)]
.

By linearity and independence, we can separate the joint optimization problem on µ0, µ1, s in
two optimizations problems for µ0, s and µ1, s, that can first be solved explicitly for µ0 (resp.
µ1) and then left to be solved for s. By definition, n µ̂1:n =

∑n
i=1 Xi = s µ̂1:s + (n− s) µ̂s+1:n,

so the right hand side (negative) part involving µ̂1:n can be distributed in the two left hand
side (positive) terms, which are both handled similarly. For instance for µ0, we use the same
computation as above with the function h to find the optimum: µ̂1:s ln(µ0)+(1−µ̂1:s) ln(1−µ0)
is optimum for µ0 = µ̂1:s. Similarly, the term for µ1 gives that supµ1 µ̂s+1:n ln(µ1) + (1 −
µ̂s+1:n) ln(1− µ1) is attained for µ1 = µ̂s+1:n. Finally, by replacing the two expressions of the
solutions for µ0 and µ1, we obtain

ln GLR(n) = sup
s∈[n−1]

[
s×

(
µ̂1:s ln(µ̂1:s) + (1− µ̂1:s) ln(1− µ̂1:s)

− µ̂1:s ln(µ̂1:n) + (1− µ̂1:s) ln(1− µ̂1:n)
)

+(n− s)×
(
µ̂s+1:n ln(µ̂s+1:n) + (1− µ̂s+1:n) ln(1− µ̂s+1:n)

− µ̂s+1:n ln(µ̂1:n) + (1− µ̂s+1:n) ln(1− µ̂1:n)
)]

.

We conclude by recognizing the expressions of s× kl(µ̂1:s, µ̂1:n) and (n− s)× kl(µ̂s+1:n, µ̂1:n).

Proof of Lemma 7.4.

Using the same construction as in the proof of Theorem 14 in [KK18], one can prove that
for every λ ∈ I (for an interval I), there exists a non-negative super-martingale Mλ(s) with
respect to the filtration Ft

.= σ(X1, . . . , Xt) that satisfies E[Mλ(s)] ≤ 1 and

∀s ∈ N∗, Mλ(s) ≥ eλ[s kl(µ̂s,µ)−3 ln(1+ln(s))]−g(λ)
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for some function g : I → R. This super-martingale is of the formMλ(s) .=
∫

eη
∑s

i=1 Xi−ϕµ(λ)sdπ(η),
for a well-chosen probability distribution π, and the function g can be chosen to be any

gξ : [0; 1/(1 + ξ)] −→ R

λ 7→ λ(1 + ξ) ln
(

π2

3(ln(1 + ξ))2

)
− ln(1− λ(1 + ξ))

for a parameter ξ ∈ [0, 1/2].

Similarly, if we denote F ′
r the filtration σ(Y1, . . . , Yr), there exists an independent super-

martingale W λ(r) w.r.t. the filtration F ′
r, such that

∀r ∈ N∗, W λ(r) ≥ eλ[rkl(µ̂′
r,µ)−3 ln(1+ln(r))]−g(λ),

for the same function g(λ). In the terminology of [KK18], the two following processes are g-
DCC (for Doob-Cramér-Chernoff), X(s) .= s kl(µ̂s, µ)−3 ln(1+ln(s)) andY (s) .= r kl(µ̂r, µ)−
3 ln(1 + ln(r)), as for both processes Doob’s inequality can be applied in combination with the
Cramér-Chernoff method to obtain deviation inequalities that are uniform in time.

Here we have to modify the technique used in the Lemma 4 of [KK18] in order to take
into account the two stochastic processes, and the presence of super-martingales instead of
martingales (for which Doob inequality still works). One can write

P
(
∃r ∈ N∗ : s kl (µ̂s, µ) + r kl

(
µ̂′

r, µ′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + u
)

≤ P
(
∃r ∈ N∗ : Mλ(s)W λ(r) > eλu−2g(λ)

)
= lim

n→∞
P
(
∃r ∈ [n] : Mλ(s)W λ(r) > eλu−2g(λ)

)
= lim

n→∞
P
(

sup
r∈[n]

Mλ(s)W λ(r) > eλu−2g(λ)
)

.

Using that M̃(r) .= Mλ(s)W λ(r) is a super-martingale with respect to the filtration F̃r
.=

σ(X1, . . . , Xs, Y1, . . . , Yr), one can apply Doob’s maximal inequality to obtain

P
(

sup
r∈[n]

Mλ(s)W λ(r) > eλu−2g(λ)
)
≤ e−(λu−2g(λ))E[M̃(1))]

= e−(λu−2g(λ))E[Mλ(s)W λ(1)]

≤ e−(λu−2g(λ)),

using that Mλ(s) and W λ(1) are independent and have an expectation smaller than 1.
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Putting things together yields

P
(
∃r ∈ N∗ : s kl (µ̂s, µ) + r kl

(
µ̂′

r, µ′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + u
)
≤ e−(λu−2gξ(λ)),

for any function gξ defined above. The conclusion follows by optimizing for both λ and ξ,
using Lemma 18 in [KK18].

A concentration result involving two arms

The following result is useful to control the probability of the good event in our two regret
analyzes. Its proof follows from a straightforward application of the Cramér-Chernoff method
[BLM13], and is given below.

Lemma 7.14. Let µ̂i,s be the empirical mean of s ∈ N∗ i.i.d. observations with mean µi, for
i ∈ {a, b}, that are σ2-sub-Gaussian. Define ∆ .= µa − µb. Then for any s, r > 0, we have

P
(

s r

s + r

(
µ̂a,s − µ̂b,r −∆

)2
≥ u

)
≤ 2 exp

(
− u

2σ2

)
. (7.30)

Proof of Lemma 7.14. We first note that

P
(

s r

s + r

(
µ̂a,s − µ̂b,r −∆

)2
≥ u

)
≤ P

(
µ̂a,s − µ̂b,r ≥ ∆ +

√
s + r

sr
u

)
+ P

(
µ̂b,r − µ̂a,s ≥ −∆ +

√
s + r

sr
u

)
, (7.31)

and those two quantities can be upper-bounded similarly using the Cramér-Chernoff method.

Let (Xi) and (Yi) be two i.i.d. sequences that are σ2-sub-Gaussian with mean µ1 and µ2

respectively. Let n1 and n2 be two integers and µ̂1,n1 and µ̂2,n2 denote the two empirical means
based on n1 observations from Xi, and n2 observations from Yi respectively. Then for every
λ > 0, as x 7→ exp(λx) is increasing, if p

.= P (µ̂1,n1 − µ̂2,n2 ≥ µ1 − µ2 + x), we have

p ≤ P
(

1
n1

n1∑
i=1

(Xi − µ1)− 1
n2

n2∑
i=1

(Yi − µ2) ≥ x

)

= P
(

exp
(

λ

(
1
n1

n1∑
i=1

(Xi − µ1)− 1
n2

n2∑
i=1

(Yi − µ2)
))
≥ exp(λx)

)
.
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And so thanks to Markov’s inequality, we obtain

p ≤ exp(−λx)E
[
exp

(
λ

1
n1

n1∑
i=1

(Xi − µ1)
)]

E
[
exp

(
−λ

1
n2

n2∑
i=1

(Yi − µ2)
)]

= exp
(
−λx + n1ϕX1−µ1

(
λ

n1

)
+ n2ϕY1−µ2

(
− λ

n2

))
≤ exp

(
−λx + λ2σ2

2n2
+ λ2σ2

2n1

)
,

where the last inequality uses the sub-Gaussian property, on the two centered variables X1−µ1

and Y1−µ2. In order to obtain the tightest bound on the left-hand side probability, we can look
for the value of λ that minimizes the right-hand side of the inequality yields. By differentiating
and by convexity, we find the value

λ
.= 1

2
x

σ2/(2n1) + σ2/(2n2)

which yields the tighter inequality on this probability,

p = P (µ̂1,n1 − µ̂2,n2 ≥ µ1 − µ2 + x) ≤ exp
(
− n1n2

n1 + n2

x2

2σ2

)
.

Using this inequality twice in the right hand side of (7.31) concludes the proof.

7.10.3 Two numerical optimization tricks for GLR-klUCB

As the main weakness of GLR-klUCB is its numerical efficiency, we suggest here two simple
ideas to drastically speed-up its computation time.

1. The first optimization, parameterized by a constant ∆n ∈ N∗, is the following idea. We
can test for statistical changes not at all time steps t ∈ [T ] but only every ∆n time steps
(i.e., for t satisfying t mod ∆n = 0). In practice, instead of sub-sampling for the time
t, we propose to sub-sample for the number of samples of arm i before calling GLR to
check for a change on arm i, that is, ni(t) in Algorithm 7.1. Note that the first heuristic
using∆n can be applied toM-UCB as well asCUSUM-UCB andPHT-UCB, with similar
speed-up and typically leading to similar consequences on the algorithm performance.

2. The second optimization is in the same spirit, and uses a parameter ∆s ∈ N∗. When
running the GLR test with data Z1, . . . , Zt, instead of considering every splitting time
steps s ∈ [t], in the same spirit, we can skip some and test not at all time steps s but only
every ∆s time steps.
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The new GLR test is using the stopping time T̃δ defined in (7.11), with T = {t ∈ [T ], t

mod ∆n = 0} and St = {s ∈ [t], s mod ∆s = 0}. The goal is to speed up the computation
time of every call to the GLR test (e.g., choosing ∆s = 10, every call should be about 10 times
faster), and to speed up the overhead cost of running the tests on top of the index policy
(kl-UCB), by testing for changes less often (e.g., choosing ∆n = 10 should speed up the all
computation by a factor 10).

Empirical validation of these optimization tricks. We consider the problem 1 presented
above (Figure 7.1), with T = 5000 and 100 repetitions, and we give the means (± 1 standard-
deviation) of both regret and computation time ofGLR-klUCBwith Local restarts, for different
parameters ∆n and ∆s, in Table 7.4 below. The other parameters of GLR-klUCB are chosen
as δ = 1/

√
KΥT T and ω = 0.1

√
K ln(T )/T (from Corollary 7.12). The algorithm analyzed in

Section 7.6 corresponds to ∆n = ∆s = 1.

∆n \ ∆s 1 5 10 20
1 44± 29 44± 28 50± 31 53± 28
5 48± 29 41± 30 44± 28 47± 31
10 51± 32 43± 26 47± 28 46± 29
20 46± 31 46± 34 46± 31 49± 31

∆n \ ∆s 1 5 10 20
1 50 s ± 4.5 s 11.1 s ± 1.2 s 5.8 s ± 0.5 s 3.3 s ± 0.3 s
5 17.9 s ± 1.6 s 5.08 s ± 3.3 s 2.5 s ± 0.3 s 1.7 s ± 0.2 s
10 14.9 s ± 1.9 s 3.47 s ± 0.4 s 2.1 s ± 0.2 s 1.4 s ± 0.2 s
20 12.1 s ± 1.1 s 3.02 s ± 0.3 s 1.9 s ± 0.2 s 0.2 s ± 0.1 s

Table 7.4 – Effects of the two optimizations parameters ∆n and ∆s, on the mean regret RT (top) and
mean computation time (bottom) for GLR-klUCB on a simple problem. Using the optimizations with
∆n = ∆s = 20 does not reduce the regret much but speeds up the computations by about a factor 50.

On the same problem, theOracle-Restart kl-UCB obtained amean regret of 37 for a running
time of 711ms, while kl-UCB obtained a regret of 270 for a time of 587ms. In comparison with
the two other efficient approaches, M-kl-UCB obtained a regret of 290 for a time of 943ms,
and CUSUM-klUCB obtained a regret of 148 for a time of 46 s. This shows that our proposal
is very efficient compared to stationary algorithms, and comparable to the state-of-the-art
actively adaptive algorithm. Moreover, this shows that two heuristics efficiently speed-up
the computation times of GLR-klUCB. Choosing small values, like ∆n = 20, ∆s = 20, can
speed-up GLR-klUCB, making it fast enough to be comparable to recent efficient approaches
like M-UCB and even comparable to the oracle policy. It is very satisfying to see that these
optimizations do not reduce much the regret of GLR-klUCB, as it still outperforms most
state-of-the-art algorithms, and significantly reduces the computation time as wanted. With
such numerical optimization, GLR-klUCB is not significantly slower than kl-UCB while being
much more efficient for piece-wise stationary problems.
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7.10.4 Comparison of different threshold functions β

We compare different threshold functions, βi(n, δ) for i ∈ {1, 2, 3, 4}, that can be used in the
B-GLRT test used for the GLR-klUCB algorithm (see the details in equation (7.12) and in
Algorithm 7.1). In the B-GLRT test, there is a sup optimization problem on s ∈ [n−1], and this
sup is compared with the threshold β(n, δ). The threshold function given in (7.7) was chosen
to obtain Lemma 7.3, that is a false alarm probability bounded by δ. We note that we also
considered the possibility of using a threshold that could be a function of both n the sample
size as well as s ∈ [n− 1] the “splitting index” between means µ̂1:s and µ̂s+1:n. We did some
preliminary experiments to explore this direction and did not find a significant difference, in
terms of numerical efficient of the resulting GLR-klUCB algorithm, and mathematically the
analysis presented in Section 7.4.2 is simpler to follow if the threshold are uniform on s.

β1 The first variant is the one we advised to use in practice for GLR-klUCB, it is very simple
to compute numerically: β1(n, δ) .= ln

(
3n3/2

δ

)
= − ln(δ) + ln(3) + 3/2 ln(n).

β2 The second variant is smaller without this power 3/2: β2(n, δ) .= ln
(

1
δ

)
+ ln(1 + ln(n)).

β3 The third variant is using the function T , as introduced by (7.6). The function T is
computed with a numerical approximation4 of the Lambert functionW , as explained in
Section 7.4.2, β3(n, δ) .= 2T

(
ln(2n3/2)/δ

2

)
+ 6 ln(1 + ln(n)).

β4 The forth variant is using the function T̃ (x) = x + 4 ln(1 + x +
√

2x), as a simple
approximation of T (x), which is valid and quite accurate as soon as x ≥ 5, β4(n, δ) .=
2T̃

(
ln(2n3/2)/δ

2

)
+ 6 ln(1 + ln(n)).

As before, we consider the three problems 1, 2 and 4, with time horizon T = 5000, and we
present in Table 7.5 the mean results of 100 independent runs. We only consider the variant
of GLR-klUCB based on Local restarts, and we used the parameters ωT , δT as given by the
Corollary 7.12, and with the deterministic exploration scheme.

Threshold function Problem 1 Problem 2 Problem 4
β1(n, δ) 70± 30 109± 32 99± 29
β2(n, δ) 73± 28 99± 32 88± 32
β3(n, δ) 77± 27 89± 32 134± 35
β4(n, δ) 77± 30 101± 30 135± 30

Table 7.5 – Mean regret ± 1 standard-deviation, for different choices of threshold function β(n, δ), on
three problems of horizon T = 5000, for GLR-klUCB.

As we could expect, the four choices give comparable results, as well as β3 and β4. The
first two choices give better performance in most cases, and they are computationally less
costly. We note that the threshold β1 is closer mathematically to the threshold β3, that was

4 The Lambert W function is available in Python as scipy.special.lambertw from scipy [JOP+01].
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used in the analysis, and thus it is the one we advise to use in practice. The sum-up of these
experiments is that a practitioner should use the simplest and most explicit threshold β1,
instead of the more complicated one that was used for the analysis. Therefore, the choice
of threshold function β1(n, δ) .= ln

(
3n3/2/δ

)
for GLR-klUCB presented in Algorithm 7.1 is

validated by these experiments.

7.10.5 Comparison of mechanisms used to enforce uniform exploration

We compare different exploration mechanisms that can be used to enforce a sufficient explo-
ration of all arms in the GLR-klUCB algorithm. All options are parameterized by a constant
ω ∈ (0, 1), which essentially represents the fraction of time steps spent in the forced exploration,
either in average or in total.

1. The deterministic exploration corresponds to the one described in Algorithm 7.1. At
time t, if t mod

⌊
K
ω

⌋
∈ [K], then the arm At = t mod

⌊
K
ω

⌋
is played. It is the simplest,

both to compute numerically and to handle mathematically, as the proof of Proposi-
tion 7.6 is short and simple. Its deterministic nature makes it the easiest choice for
the proof skeleton given in Section 7.7.1, as the set D(T, ω) used in the decomposition
(7.22) of the regret is deterministic, and thus it greatly simplifies the manipulation of
expectations and random events. Note that this mechanism is also the one used by
M-UCB [CZKX19].

2. The uniform random exploration is the one proposed for CUSUM-UCB [LLS18]. At
time t, a random arm is played with probability ω/K. That is, first we sample a boolean
variable from a Bernoulli law of mean ω, so that 1 indicates a random play (with proba.
ω), and 0 indicates a play using the UCB indexes (with proba. 1 − ω). Then if it is a
random play, arm i ∈ [K] is selected uniformly at random (with probability 1/K), and
arm At = i is played. Proving a result like Proposition 7.6 is not much harder for this
second mechanism, but the difficulty lies in extending the proof skeleton we give in
Section 7.7.1 to have a random set D(T, ω).

3. The tracking-based exploration mechanism is inspired by the tracking trick used in
[GK16], and it is actually quite intuitive. At any time t, instead of having a uniform
probability of forcing an exploration of every arm, it can make sense to force exploring
arms that are currently not explored enough. This way, we actively enforce that each
arm have enough samples. At time t, the goal is for any arm i to have been sampled
more than ω × (t− τi) time, if t− τi represents the number of time steps since the last
restart on this arm i. So the tracking-based exploration samples an arm i uniformly at
random among the set of arms i such that ni(t) < ω(t− τi), if it is not empty, otherwise it
plays according to the UCB indexes. Numerically, it is not much more complicated than
the two previous solutions. It was the first direction we pursued for our analysis, but
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we dropped it since mathematically, it was harder to prove a result like Proposition 7.6,
and it was also harder to incorporate the randomness of this exploration scheme in the
regret decomposition (7.22).

Note that the analysis we gave in Section 7.6 is based on the deterministic exploration, but
with a careful handling of random events and if we prove a result similar to Proposition 7.6,
we believe our analysis could also be extended to another exploration mechanism.

As before, we consider the three problems 1, 2 and 4, with time horizon T = 5000, and we
present in Table 7.6 the mean results of 100 independent runs. We include the two variants of
GLR-klUCB, based on Local restarts or Global restarts, for which we used the parameters
ωT , δT as given by the two Corollaries 7.9 and 7.12.

Exploration mechanism Variant Problem 1 Problem 2 Problem 4

Deterministic exploration Local 68± 33 116± 36 99± 33
Global 97± 28 134± 36 131± 32

Uniform random exploration Local 74± 30 108± 33 106± 31
Global 91± 30 134± 33 129± 33

Tracking-based exploration Local 73± 32 104± 33 89± 29
Global 96± 26 133± 32 120± 30

Table 7.6 – Mean regret ± 1 standard-deviation, for different choices of exploration mechanisms, on
three problems of horizon T = 5000, for GLR-klUCB, with local or global restarts.

As expected, all options give similar results, and each of the three options was found to
outperform the two others in one of the three problems considered for these experiments
(problems 1, 2 and 4). The result highlighted in bold in Table 7.6 shows the best algorithm
in each problem. We note that in terms of its average regret on the different problems, the
tracking-based exploration is the best choice. The sum-up of these experiments is that it is
sufficient to use the simplest exploration scheme based on a deterministic exploration, rather
than a more complicated exploration scheme based on tracking. Therefore, our choice of the
deterministic exploration scheme for GLR-klUCB presented in Algorithm 7.1 is validated by
these experiments.

– Par exemple, vous prenez aujourd’hui. Vous comptez sept jours. Ça vous emmène dans une
semaine. Et bien on sera exactement le même jour qu’aujourd’hui. . . À une vache près, hein. . .
C’est pas une science exacte.
Karadoc, interprété par Jean-Christophe Hembert,
Kaamelott, Livre II, “Sept cent quarante-quatre”.
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Chapter 8

General Conclusion and Perspectives

Conclusion on our contributions

We started this manuscript by detailing the historical, scientific and technical contexts of our
research during this PhD. We explained the problems that motivate and justify our works.
The main question we studied was “Can we adapt the decision making tools, already successfully
applied to Cognitive Radio for Opportunistic Spectrum Access, to the specific needs of CR for the
(future) Internet of Things networks?” We first gave a strong theoretical background on the
reinforcement learning model considered in this thesis, that is the multi-armed bandit model.
We then focused on our problems of solving the spectrum scarcity issue in unlicensed bands,
in the context of the future Internet of Things networks. We worked on extending to the
specificities of such IoT networks the ideas underlying the previously studied applications of
machine learning to solve the spectrum scarcity issue in licensed networks.

Ourmain contribution to answer our problematic is a model of Internet of Things networks,
based on an ALOHA-like protocol slotted in time and frequency, and that considers one IoT
base station serving a large number of devices following the IoT constraints (low-cost, low duty
cycle, long range etc). In such a IoT network, we focused on many dynamically reconfigurable
IoT end-devices, that are able to run low-cost and low-complexity decision making algorithms,
embedded on each device using their limited computational and storage capacities. We
proposed two models, whether the considered IoT standard enforces the devices to try to
retransmit a few times their up-link packet in case of a failed transmission (i.e., a collision
with other devices), or to drop their packet after a failed transmission (i.e., with or without
retransmission). Both models are realistic, and for both cases we proposed to use multi-armed
bandit (MAB) algorithms, such as UCB or Thompson sampling, in order that the numerous
IoT devices improve their spectrum access scheme, on their own, by learning which of the K

frequency channels are the less occupied ones by the environmental traffic (in average).
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The approach we thus advocate is to use low-complexity MAB algorithms such as kl-UCB
or Thompson sampling, or variants tuned to be robust in slowly-evolving non-stationary
scenario (e.g., Sliding-Window UCB, Discounted-Thompson, or actively adaptive algorithm
such as the one of Chapter 7, GLR-kl-UCB). For a company thatmanufactures IoT end-devices,
it is very simple and cheap in terms of both hardware and software costs to implement such
MAB algorithms on the low-cost embedded processors, and equip all the produced IoT devices
with this capacity of using online machine-learning for their spectrum access. The embedded
decision-making algorithm automatically improves the channel selection of each device, in a
fully decentralized way. It also increases the total number of successful up-link transmissions,
and thus this increases the Quality of Service of the considered IoT application. Finally, such
algorithm also allowsmore devices to be served by the same IoT gateway. Another consequence
is a reduced energy consumption and an increased battery life for the IoT end-devices.

The advocated approach also has the advantage of not requiring to change anything on
the IoT standard, as the only modification happens on the device side, by letting it actively
decide the channels it uses for up-link transmissions, instead of relying on a naive uniform
channel access. We also note that this approach can easily be used to allow the IoT devices to
optimize by themselves other parameters of their wireless communications on the fly, as the
multi-armed bandit framework is not restricted to be applied to the selection of frequency
channel but can be applied to any exploration-exploitation problemwith a finite set of possible
options. The solution we propose can thus be easily extended to also select dynamically other
parameters such as the coding rate or spreading factor of a LoRa network (e.g., [KAF+18]),
the emission power in a NOMA standard, or any other discrete-valued parameters that have
an impact on the successful transmissions rates and can be optimized on the device’s side by
using reinforcement learning.

Moreover, from a theoretical point-of-view, even though it was found hard to propose
a rigorous analysis of our model of IoT networks, because of the large number of devices
having different random and unpredictable activation patterns, our contributions also include
an analysis of two restricted models. On the one hand, we considered a model where the
devices have data to transmit at each time step, relaxing the hypothesis of a random activation
process (with a small probability, as IoT devices have low duty cycles), and thus by restricting
to the case of at most M ≤ K devices using a wireless standard with K orthogonal frequency
channels. This first model is similar to the multi-player bandit model studied in the last 10
years, and for stationary and stochastic environments we were able to propose an efficient
algorithm, MCTopM. Our proposed algorithm performs very well in practice and we obtained
interesting guarantees on its regret, as well as on the number of radio collisions and on
radio reconfigurations that the devices will suffer if they all implement our solution. On the
other hand, we studied a model that focuses on only one device but relaxes the hypothesis
of stationarity on the surrounding radio traffic, and considers that is can be stationary in
consecutive intervals of time, of unknown durations. This second model is similar to the piece-
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wise stationary (or abruptly-changing) bandit model studied since the 2000s, and we solved
it by proposing a new actively adaptive bandit policy, for which we obtained state-of-the-art
results, in terms of its regret and its false alarm probability and delay of detection.

Finally, from an application point-of-view, we also presented a realistic implementation of
a proof-of-concept of our first model of IoT network, that was used to validate empirically the
proposed approach. We showed that the IoT devices can effectively use a multi-armed bandit
algorithm to automatically learn to favor certain frequency channels over others, and finally to
optimize their spectrum access, to reduce their number of failed transmissions. Our proposed
approach is to use decentralized reinforcement learning algorithms, directly embedded on
the IoT end-devices, in order to improve their spectrum access and channel selection schemes.
We confirmed from both numerical simulations and a validation on real radio traffic and real
hardware that our proposal is an excellent candidate to start to solve the spectrum scarcity
issue for unlicensed bands, that is cheap and easy to deploy.

Perspectives

The works presented in each chapter suggest possible directions of future studies.

For our models of IoT networks. The first model presented in Section 5.2 could easily be
generalized with two probabilities pS and pD, if the S static and D dynamic devices have
different transmission patterns, and less easily with a different probability per device. Also,
other emission patterns could be considered, instead of a Bernoulli process for each user.
In this entire Chapter 5, we prefer to consider that all the devices have the same activation
probability, to keep the notations and the model as simple as possible. Moreover, for the sake
of simplicity we supposed that all devices use the same standard. Future works could consider
more realistic interference scenarios and IoT networks, with non-slotted time, more than one
base station etc. Another extension could be to consider not a Bernoulli activation process
(or any random process), but a fixed rate of transmission, e.g., one transmission a day. In this
case, additionally to deciding the channel for communication (i.e., where to communicate),
each device could thus also have to decide when to communicate. However, this clearly leads
to a much larger action space, as there are many time slots in one day (for example), and thus
we believe that as soon as the action space becomes too large in this extension, the simple
MAB-based learning approach could be no longer appropriate. It is well-known in the MAB
literature that the larger the action space, the slower is the convergence speed of any stationary
MAB algorithms. Thus, it could be exciting to study the possible application of contextualMAB
[LCLS10, LWAL18] or structured MAB [CMP17] models and algorithms for this extension.
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For multi-player bandits. The study on multi-players bandits in Chapter 6 suggests several
further research directions. First, one could investigate the notion of optimal algorithms in the
decentralized multi-players model with sensing information. So far we provided the first
matching upper and lower bound on the expected number of sub-optimal arms selections,
which suggests some form of (asymptotic) optimality. However, sub-optimal draws turn out
to not be the dominant terms in the regret, both in our upper bounds and in practice. Thus a
promising future work is to identify some notion of minimal number of collisions. This could be
similar to what a recent work [WHCW19] studied for the minimal amount of communication
needed to achieve logarithmic regret, in a similar model that authorizes direct communications
between players.

We also presented many extensions of the multi-players bandit model in Section 6.7, and
even if some have already been implemented, an important future work is to implement the
most interesting ones in SMPyBandits (see tickets 120, 124, 185). From the point-of-view of
the theoretical analysis, we are especially interested by first extending our proposed algorithm
MCTopM to the case of an unknown number of players. Then we could also address the most
interesting extension for the application to wireless networks, i.e., the “dynamic case” which
allows for arrivals and departures of players in the multi-player bandit game.

Regarding non-stationary bandits. We believe that the new proof technique of Chapter 7
could be used to analyze GLR-klUCB under less stringent assumptions than the one made in
this chapter (and in previous works), that would require only a few “meaningful” changes
to be detected. This promising research direction is left for future work, but the hope is that
the regret would be expressed in terms of the number of such meaningful changes, instead
of the number of break-points ΥT . We shall moreover investigate whether actively adaptive
approaches can attain a O(

√
ΥT T ) regret upper-bound without the knowledge of ΥT . We

also believe that combining change-point localization with an efficient change-point detection
algorithm, such as GLR-klUCB, could lead to an interesting class of more efficient algorithms.
Another very interesting futurework is to study possible extensions of our approach, especially
to the slowly-varying model, as studied in [BGZ14, LRC+16, WS18b], or to other models such
as the rotting bandit model [SLC+19], which is interesting for many applications even if it
does not seem directly usable for the cognitive radio setting.

For our library SMPyBandits. A few tasks are left on SMPyBandits, a first one could be
to implement new variants of the single-player stochastic models, as well as variants for
the multi-players or the non-stationary cases. For more details, see the issue tickets at
GitHub.com/SMPyBandits/SMPyBandits/issues/. A second interesting task could be to add
support for the “dynamic case” of multi-players bandits to allow arrivals or departures of
players (ticket 124).
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Unifying multi-player and non-stationary bandits. A natural next step after this thesis is
to study non-stationary distributed multi-players bandits, to unify the models from Chapter 6
and 7. A natural extension of the non-stationary model is to consider non-communicating
players cooperating in a decentralized way to play the same bandit game, as it was proposed
recently in [WS18a]. We could also build on the proof technique used in this paper, even if we
are interested in removing the hypothesis that player j knows its ID j ∈ [M ] before starting
to play. A promising direction is to directly try to join our contributions from Chapter 6
and 7, and propose an efficient algorithm using three parts: kl-UCB indexes for arm selection,
MCTopM for orthogonalization (i.e., dealing with collisions), and the Bernoulli GLR break-
point detector for non-stationarity (i.e., dealing with abrupt changes). The three parts should
be inter-connected, the same way we built MCTopM-kl-UCB and GLR-klUCB, by connecting
two of the three components together. We propose a simple idea to incorporate the detected
change-points by B-GLR test in the orthogonalization procedure MCTopM: whenever a
change-point is detected, the player is no longer “fixed” on its chosen arm. Even if we already
obtained promising results on preliminary numerical simulations, analyzing such a strategy
that combines MCTopM, GLR and kl-UCB is left as a challenging future work.

Finally, I would be very interested in looking at a unique “unified” algorithm that can be
used in all the different settings studied in this thesis, and maybe others, and automatically
adapt to the setting at hand. For instance, even if GLR-klUCB is very efficient for piece-wise
stationary problems, its forced exploration makes it sub-optimal for stationary problems. An-
other example is for multi-players bandits, where MCTopM-kl-UCB performs sub-optimally
on piece-wise stationary problems. One approach to obtain a unified “master” algorithm
could be to use expert aggregation on the different state-of-the-art algorithms presented in
this thesis, and as each one was proven to be efficient in one setting, the resulting aggregated
algorithm would also be efficient in each of the different settings. As this approach does not
seem theoretically promising, as illustrated in Section 4.4, a preferred approach could be to
design a “unified” algorithm which adapts automatically to the kind of problem it is facing.

Je vous remercie d’avoir lu cette thèse. Merci de me signaler toute erreur par courriel ou sur GitHub :
Thanks for reading this document. Please notify me about any mistake by e-mail or on GitHub:

↪→ GitHub.com/Naereen/phd-thesis/issues/new
↪→ Lilian.Besson@{Crans.org, Inria.fr, live.fr}

– Les rêves, ça se compare pas. . .
Le Roi Arthur, interprété par Alexandre Astier,
Kaamelott, Livre VI, Épisode 9, “Dies Irae”.
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Appendix A

About Doubling Tricks for
Multi-Armed Bandits

This appendix quickly presents the contributions of another publication that was not presented
in the main text of this thesis. We studied doubling tricks and their possible uses for multi-
armed bandits, between fall 2017 and spring 2018, and we wrote an article [BK18b] which
was rejected at the COLT 2018 conference, and unfortunately we lacked the time to improve it
and resubmit it to another conference.

Motivations for anytime algorithms. As introduced in Chapter 2, an online reinforcement
learning algorithm is anytime if it does not need to know in advance the horizon T of the
experiment. Depending on the context of the practical application of interest, it might be
unrealistic to assume to know in advance T . We give two examples to illustrate where this
prior knowledge can be realistic or not. On the one hand, consider clinical trials: it is likely
that the number of patients is known before starting the trial, and for this model we refer to all
the research that studies the setting of fixed-time best-arm identification [ABM10, GK16]. On
the second hand, consider cognitive radio and decentralized MAB learning implemented on
IoT devices (like we present it in Chapter 5): usually a learning step corresponds to an up-link
and then down-link message sent and received by the IoT device, and so the time horizon T

denotes the total number of such messages. While it can be assumed that the device will run
for instance for 10 years (as it is advertised by some companies [CVZZ16]), many kinds of
application such as medical sensors or connected fields cannot predict the number of total
communications before setting up the device.

For this later range of applications, it is of highest interest to be able to use low-cost MAB
algorithms that do not rely on prior knowledge of the problem for which they will be applied,
and especially do not need to know the horizon T . In this thesis, while we proposed in
Chapter 6 any-time algorithms solving the presented problem of stationary multi-players
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bandit, our solution for the problem of non-stationary MAB problem studied in Chapter 7
does rely on a prior knowledge of the horizon T . It is an interesting direction of research to
know what is the best approach to fix this weakness: work more and design algorithms that
are inherently any-time, or use a generic technique to avoid depending on a prior knowledge
of T , and automatically transform our non-anytime approach to make it anytime.

Solution to “patch” a non-anytime algorithm. A well-known technique to obtain an any-
time algorithm from any non-anytime algorithm is the “Doubling Trick”, as first introduced in
[CBL06] and used for instance in [AO10, AGO18]. In the context of adversarial or stochastic
multi-armed bandits, the performance of an algorithm is measured by its regret, and we study
two families of sequences of growing horizons (geometric and exponential) to generalize
previously known results that certain doubling tricks can be used to conserve certain regret
bounds. In a broad setting, we prove that a geometric doubling trick can be used to conserve
(minimax) bounds in RT = O(

√
T ) but cannot conserve (distribution-dependent) bounds

in RT = O(ln(T )). We give insights as to why exponential doubling tricks may be better, as
they conserve bounds in RT = O(ln(T )), and are close to conserving bounds in RT = O(

√
T ).

Interestingly, we prove that they conserve bounds of the mixed form RT = O(T γ(ln(T ))δ), for
0 < γ < 1 and δ > 0, and so an exponential doubling trick could be used to obtain an anytime
version of the algorithm we propose for non-stationary bandits, GLR-klUCB in Chapter 7.
However, our study was only focusing on stationary bandit, and it is left as a future work to
explore the harder case of piece-wise stationary problems.

In our article [BK18b], we also present numerical experiments in the case of stationary
MAB problems, to compare the performance of efficient anytime algorithms, like kl-UCB,
against efficient non-anytime algorithms, like kl-UCB++ from [MG17], made anytime with
different choices of doubling-trick. We conclude that for such problems, if T is not known
before, it is always more efficient to use policies that were designed to be anytime that to use a
doubling trick. For example, an applicative paper written in 2018, [LLL19], only tested the
use of an exponential doubling trick combined with kl-UCB++, but most surely the kl-UCB
algorithm would have given better empirical performance as well as more robust results. . .

To conclude this work, we would need to complete the study of the doubling tricks, and
instead of focusing on two families (geometric and exponential), we need to completely
characterize the doubling tricks that allow to preserve certain regret bounds. Such doubling is
given either by the function mapping the current time t to the current estimate of the horizon
T (t), or the sequence (Ti)i∈N∗ of successive estimates of the horizons. We are interested in
pursuing this work, in the hope of finding an intermediate sequence, growing faster than a
geometric but slower than an exponential doubling sequence, that can preserve both worlds,
problem-dependent bounds in O(ln(T )) and problem-independent bounds in O(

√
T ).
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Abbreviations and Notations

Acronyms and Abbreviations
Ack Acknowledgement
ALOHA ALOHA (not an acronym)

BTS Base Tranceiver Station (or gateway)
CPU Central Processing Unit
CR Cognitive Radio
DSA Dynamic Spectrum Access
GLR, GLRT Generalized Likelihood Ratio, Generalized Likelihood Ratio Test
i.i.d. identically and independently distributed (variables, observations or samples)

IoT Internet of Things
ISM Industrial, Scientific and Medical (bands)
KL Kullback-Leibler (divergence)
klUCB Kullback-Leibler Upper Confidence Bound (algorithm)

LAN Local Area Network
LPWAN Low-Power Wide-Area Network
MAB Multi-Armed Bandit
MAC Medium Access Control (layer)
MCTopM Musical-Chair on Top-M (algorithm)

ML Machine Learning
NB-IoT Narrow-Band Internet of Things
NOMA Non-Orthogonal Multiple Access
OSA Opportunistic Spectrum Access
PHY PHYsical (layer)
PLR Packet Loss Ratio
PU Primary User
QPSK Quadrature Phase-Shift Keying
RAM Random Access Memory
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RandTopM Random Hoping on Top-M (algorithm)

RF Radio Frequency
RL Reinforcement Learning
SCEE Signal, Communication et Électronique Embarquée (research team in CentraleSupélec,

campus of Rennes)

SNR Signal to Noise Ratio
SU Secondary User
TS Thompson Sampling (algorithm)

UCB Upper Confidence Bound (object or algorithm)

USRP Universal Software Radio Peripheral
WLAN Wireless Local Area Network
wlog with loss of generality
wrt with respect to
Exponents
yj Usually denotes a variable depending on a player in Chapter 6 (for j ∈ [M ]), or

to distinguish between different independent runs in numerical simulations in
Chapter 2 (for j ∈ [N ])

y(i), y(ℓ) Usually the superscript index (i) or (ℓ) denotes a variable in the i-th stationary
interval, under the point-of-views of global or local changes, in Chapter 7

Greek symbols
α Denotes the parameter of a UCB algorithm in Chapters 2 and 5

α0, δ0 Usually denotes a constant scaling of a parameter of an algorithm, for instance
εt = ε0/t is used in Chapter 2, or α = α0αT is used in Chapter 7

β(n, δ) Usually denotes a threshold for the statistical (GLR) tests in Chapter 7

µ, ν, λ Vector of means (µk) = µ1, . . . , µK , or vector of distributions (νk)k or (λk)k (char-
acterizing a problem)

∆n, ∆s Parameters of numerical optimization tricks in Chapter 7

∆ Usually denotes the gap in terms of means of arms, usually between the best and
second best arms, in Chapters 2, 6. In Chapter 5 in Algorithm 5.5 it denotes a delay.
In Chapter 7, it can denote different gaps (∆opt and ∆change)

δ Usually denotes a lower-bound on the gap ∆, known beforehandby an algorithm,
in Chapters 6, 7. Also denote a confidence level of an algorithm in Section 7.4

γ Usually denotes a discount factor, e.g., in D-UCB or D-TS in Chapter 7

µ∗, µ∗
k Mean of the optimal arm (i.e., µ∗ = maxk µk), and mean of the k-th best arm

µk, µk(t), µj
k, µ

(i)
k Mean of arm k, arm k at time t (in Chapter 7), arm k for user j (in Chapter 6), arm

k in the i-th stationary interval (in Chapter 7)

νk, νk(t), νj
k Distribution of arm k, arm k at time t, arm k for user j

ω Denotes a parameter controlling the forced exploration mechanism in Chapter 7
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π It usually denotes the number π ≃ 3.14 . . ., but it also denotes a probability distri-
bution in Chapter 4 or a permutation in Section 6.4.2

τ Length of a sliding-window, e.g., in SW-UCB in Chapter 7

τ j
k , τ

(i)
k Location of a change-point, e.g., the j-th change-point on arm k, in Chapter 7

ΥT Number of break-points in a piece-wise stationary MAB problem in Chapter 7. NCi

denotes the number of change-points on arm i, and CT =
∑K

i=1 NCi the number
of change-points on the arms

ε Usually denotes a small positive real value, e.g., the parameter for the ε-greedy
algorithm, or the drift correction parameter for CUSUM in Chapter 7

Indices
xk Usually denotes a variable depending on an arm, for k ∈ [K]

Yk,t Usually denotes a variable depending on an arm k ∈ [K] and on time t ∈ [T ]

Roman symbols
A An algorithm, also referred to as a policy or a strategy. A1, . . . ,AN denote the N

aggregated algorithms in Chapter 4 and A1, . . . ,AM denotes the algorithms of the
M players in Chapter 6

H0,H1,H2 Hypothesis, in Chapters 5 and 7

T In Chapter 7, denote a function in (7.6) and a set of time steps in Section 7.10.3

MaxBackOff Maximum number of retransmission of a packet in the ALOHA protocol in Chap-
ter 5

UCBk(t) Upper-Confidence Bound (UCB) of arm k at time t for an index policy

µ̂k(t) Empirical mean of rewards obtained for arm k at time t

A(t), Aj(t) Decision of algorithm A at time t ∈ [T ], A(t) ∈ [K] (from algorithm A), decision
for user j ∈ [M ] in Chapter 6 (from algorithm Aj)

Ck(t), Cj(t) In Chapter 6, collision indicator on arm k ∈ [K] or for user j ∈ [M ], at time t

Cµ, Dµ, GM,µ In Chapter 6, constants depending on the problem parameters only and on M

D, Dk In Chapter 5, total number of dynamic devices in the network or in channel k

d(i), d(ℓ) Lower-bound on number of samples for accurate detection of change-points in
Chapter 7

i, j Usually denotes the i-th or j-th player, i, j ∈ [M ] in Chapter 6

K Number of arms for multi-armed bandit games

k Usually denotes the k-th arm, k ∈ [K], mainly used in subscripts

M Number of player for multi-players bandit games in Chapter 6

m Maximum length of the back-off interval after a collision, in Chapter 5

N Usually denotes the number of independent repetitions of the same numerical
experiments (e.g., N = 1000). In Chapter 5, N denotes the number of IoT (dynamic)
devices in the studied network

Nk(t) Number of samples obtained for arm k at time t

Ot, Oj
t Vector of observations until time t in Chapters 2 and 6 (for player j)
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p In Chapter 5, probability of transmission for the devices following a Bernoulli
random emission pattern (e.g., p = 10−5)

r(t), rj(t) Reward obtained at time t, for user j at time t

RT , RA
T , RA

T (I) Regret of an algorithm A for horizon T (on instance I)

S, Sk In Chapter 5, total number of static devices in the network or in channel k

T Time horizon, the duration of the bandit game (always T ≥ 1)

t, s, n, r Time step, t ∈ [T ]. Chapter 7 also uses s, n and r, e.g., in the sup of the stopping
times or some technical lemmas

T0, T1 Fixed durations of some algorithms based on different phases, e.g., for Explore-
then-Exploit or Musical Chair from [RSS16]

Uk(t) Index of arm k at time t for an index policy

U j
k(t), U j(t) Index of (arm k) at time t of user j for an index policy in Chapter 6

Yk,t Random sample from the arm k at time t

Mathematical notations
[K], T , [N ] etc For an integerN ∈ N, N ≥ 0, [N ] denotes the set {1, . . . , N} = {n ∈ N : 1 ≤ n ≤ N}.

If the order is important, it is ordered from 1 to N .

E , ET Used in Chapter 7 to denote “good events” that happen most of the time

F , Ft Filtration in a probabilistic model, after t− 1 prior observations

W LambertW function, the first branch of the inverse of x 7→ x exp(x), cf. [CGH+96]

E Expectation under a probabilistic model

kl Binary relative entropy, KullBack-Leibler divergence between two Bernoulli distri-
bution: kl(x, y) = x ln(x/y) + (1− x) ln((1− x)/(1− y))

⌊•⌋, ⌈•⌉ Floor ⌊x⌋ = sup{n ∈ Z, n ≤ x} and ceil ⌈x⌉ = inf{n ∈ Z, x < n} functions

1(E) Indicator function of an event E (= 1 if and only if the event E is true)

P Probability measure under a probabilistic model

X̂ Usually denotes an “empirical value”, a mean or an estimate of a quantity X that
depends on time, e.g., µ̂k the empirical mean of arm k

X̃ Usually denotes another “empirical value” or an estimate of a quantity X that
depends on time, e.g., S̃t the set of selected arms in Section 6.4.1. Also denotes a
surrogate for a function without a closed form, e.g., T̃ in Section 7.10.4

d(x, y) Divergence function between two distributions of parameters x and y, in a one-
dimensional exponential family, in Chapter 7

Ec Complement of an event E

f , g, h Real-valued functions, e.g., the exploration function used for kl-UCB indexes, f(t) =
ln(t) + 3 ln(ln(t))

o(•), O(•), Ω(•) Landau notations for positive functions: f(x) = o(g(x) means that g(x) ̸= 0 and
f(x)/g(x)→ 0 for x→∞, f(x) = O(g(x)) means that there exists x0, K > 0 such
that f(x) ≤ Kg(x) from x ≥ x0, and f(x) = Ω(g(x)) means g(x) = O(f(x))

X ′ Usually denotes a “wrong value” of a variable X , for instance M ′ denotes in Sec-
tion 6.7.1. Also denotes the derivative of a function, e.g., f ′
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