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Transition metal dichalcogenide monolayers (TMDs) are recently discovered two-dimensional materials. They host a strong intrinsic spin-orbit coupling (SOC), that acts as an effective Zeeman field with opposite, out-of-plane orientations in the +K and -K corners of the Brillouin zone (valleys). This SOC, and its interplay with disorder, strongly influences the behavior of quantum coherent phenomena in TMDs. In this thesis, we investigate two such phenomena: superconductivity and interference corrections to the conductance, which include weak (anti-) localization and universal conductance fluctuations.

Several superconducting TMDs have been experimentally found in both n-doped (MoS 2 , WS 2 ) and p-doped (NbSe 2 , TaS 2 ) regimes. Here, the intrinsic SOC causes unusual "Ising pairing" of the Cooper pairs, formed of electrons from opposite valleys with strongly pinned out-of-plane spins. In-plane magnetic fields are thus not efficient in breaking the Cooper pairs by the paramagnetic effect, which results in a large enhancement of the in-plane upper critical field -the main signature of Ising superconductivity. In the first part of this work, we calculate the upper critical field as well as the density of states of disordered superconducting TMDs. We show that intravalley scattering does not affect these properties, but that they strongly depend on intervalley scattering, which provides a depairing mechanism. In p-doped Ising superconductors, where multiple bands cross the Fermi level, we identify interband scattering as another important mechanism. We show that weak intervalley and interband scattering can explain experimental observations in n-and p-doped TMD superconductors, respectively.

In the second part of this work, we calculate the interference corrections to the conductance in the normal state of TMDs, which can serve as an independent probe of SOC and disorder. Because of the interplay between valley structure and SOC, these materials exhibit a rich behavior of weak (anti-) localization and universal conductance fluctuations, which is qualitatively different from other two-dimensional systems such as conventional metals or graphene. Our results can also be used to describe graphene/TMD heterostructures, where SOC is induced in the graphene sheet. We discuss parameter regimes that can be used to interpret recent experiments and assess the strength of SOC and disorder. Furthermore, we show that an in-plane Zeeman field can be used to distinguish contributions of different kinds of SOC to the weak (anti-) localization.

Résumé

Les monocouches de dichalcogénures de métaux de transition (TMD) sont des matériaux bidimensionnels découverts récemment. Ils possèdent un fort couplage spin-orbite (SOC) intrinsèque qui agit comme un champ Zeeman effectif perpendiculaire, mais avec des orientations opposées dans chaque vallée située autour des points +K et -K de la zone Brillouin. En présence de désordre, ce SOC influence fortement les phénomènes quantiques cohérents dans les TMD. Dans cette thèse, nous étudions deux de ces phénomènes : la supraconductivité et les corrections à la conductance dues aux interférences quantiques, telles que la localisation ou l'anti-localisation faible, ainsi que les fluctuations universelles de la conductance.

Une supraconductivité a été identifiée expérimentalement dans plusieurs TMD, aussi bien dans les régimes dopés n (MoS 2 , WS 2 ) que p (NbSe 2 , TaS 2 ). Dans ces matériaux, le SOC intrinsèque provoque un "appariement d'Ising" inhabituel des paires de Cooper. En effet, celles-ci sont formées avec des électrons provenant de vallées opposées, donc leurs spins sont figés perpendiculairement à la couche. Un champ magnétique appliqué parallèlement à la couche n'est donc pas efficace pour briser les paires de Cooper par l'effet paramagnétique, ce qui entraîne une augmentation considérable du champ critique dans le plan. C'est la signature principale de la supraconductivité d'Ising. Dans la première partie de ce travail, nous calculons le champ critique et la densité des états dans les TMD supraconducteurs désordonnés. Nous montrons que la diffusion intra-vallée n'affecte pas ces propriétés. En revanche, elles dépendent fortement de la diffusion inter-vallée qui produit un mécanisme de brisure des paires de Cooper. Dans les supraconducteurs Ising dopés p, dans lesquels plusieurs bandes croisent le niveau de Fermi, nous identifions la diffusion inter-bande comme un autre mécanisme important de brisure des paires. Nous montrons qu'une faible diffusion inter-vallée ou inter-bande peut expliquer les observations expérimentales dans les supraconducteurs TMD dopés n ou p, respectivement. Dans la deuxième partie de ce travail, nous calculons les corrections à la conductance dues aux interférences quantiques dans les TMD métalliques. Leur mesure peut servir de sonde indépendante pour identifier la nature du SOC et du désordre. En raison de l'interaction entre la structure de la vallée et le SOC, ces matériaux présentent un riche comportement de localisation (ou anti-localisation) faible et des fluctuations universelles de la conductance, qui sont qualitativement différents des autres systèmes bidimensionnels, comme les métaux conventionnels ou le graphène. Nos résultats peuvent également être utilisés pour décrire les hétéro-structures graphène/TMD, dans lesquelles le SOC est induit dans la couche de graphène. Nous discutons différents régimes de paramètres qui permettent d'interpréter des expériences récentes et d'évaluer l'intensité du SOC et du désordre. En outre, nous montrons qu'un champ Zeeman dans le plan peut être utilisé pour distinguer les contributions de différents types de SOC à la localisation ou l'anti-localisation faible.
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Chapter 1 Introduction

Since the discovery of graphene [1], atomically thin two-dimensional (2D) materials have become a focus of scientific interest, due to their exceptional electrical, optical, and mechanical properties not found in the bulk. Graphene, for instance, is characterized by significant mechanical strengh and flexibility, and has high electron mobility [2]. A new addition to the family of 2D materials are monolayers of transition metal dichalcogenides (TMDs). TMDs, in their most common 2H variant (see Sec. 2.1), have a hexagonal lattice structure, with two inequivalent lattice sites. Like graphene, they have minima/maxima of the conduction/valence band at the ±K corners of the Brillouin zone, called valleys. Unlike graphene, however, they are not inversion-symmetric. This allows for a large band gap in their spectrum [START_REF] Mak | Atomically thin MoS 2 : a new direct-gap semiconductor[END_REF][START_REF] Wang | Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[END_REF], making them a promising candidate for a new generation of transistors [START_REF] Wang | Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[END_REF][START_REF] Radisavljevic | Singlelayer MoS 2 transistors[END_REF]. Taken from [START_REF] Navarro-Moratalla | Two-dimensional superconductivity: The Ising on the monolayer[END_REF].

One of the most intriguing properties of TMDs is their intrinsic spin-orbit coupling (SOC), which is due both to their heavy constituent atoms and the absence of inversion symmetry. It is often dubbed "Ising" SOC, as it acts as an effective Zeeman field with opposite, out-of-plane orientations in the two valleys [START_REF] Zhu | Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors[END_REF][START_REF] Kormányos | k• p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF][START_REF] Xiao | Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides[END_REF]. The coupling of spin and valley degrees of freedom leads to a variety of novel phenomena in spintronics [START_REF] Wang | Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[END_REF] and optics, as electrons from different valleys can be excited selectively with circularly polarized light [START_REF] Mak | Control of valley polarization in monolayer MoS 2 by optical helicity[END_REF][START_REF] Zeng | Valley polarization in MoS 2 monolayers by optical pumping[END_REF].

The Ising spin-orbit coupling also plays an important role in the intrinsic superconductivity that has been observed in several TMDs [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF][START_REF] Lu | Evidence for two-dimensional Ising superconductivity in gated MoS 2[END_REF][START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF][START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF]. Namely, it causes unusual "Ising pairing" of the Cooper pairs and a great enhancement of the in-plane upper critical field. Furthermore, Ising SOC can be induced in graphene sheets by coupling them to TMDs in heterostructures. This hybrid system can exhibit interesting phenomena such as edge states [START_REF] Gmitra | Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides[END_REF][START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF] and the spin Hall effect [START_REF] Avsar | Spin-orbit proximity effect in graphene[END_REF][START_REF] Garcia | Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures[END_REF][START_REF] Milletarì | Covariant conservation laws and the spin Hall effect in Dirac-Rashba systems[END_REF] (see Sec. 2.4).

Understanding the role of disorder in TMDs is of particular importance for assessing the possibility of their applications, and has recently become a subject of intensive theoretical study [START_REF] Kaasbjerg | Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides[END_REF][START_REF] Möckli | Robust parity-mixed superconductivity in disordered monolayer transition metal dichalcogenides[END_REF][START_REF] Ochoa | Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides[END_REF][START_REF] Ilic | Enhancement of the upper critical field in disordered transition metal dichalcogenide monolayers[END_REF][START_REF] Ilić | Weak localization in transition metal dichalcogenide monolayers and their heterostructures with graphene[END_REF][START_REF] Sosenko | Unconventional superconductivity and anomalous response in hole-doped transition metal dichalcogenides[END_REF]. Disorder is unavoidable in TMDs, and can be caused by the gating techniques used to prepare the samples, the substrate, as well as the defects in the crystal lattice. We can distinguish intravalley disorder, associated with small momentum transfer (within a single valley), and intervalley disorder, associated with large momentum transfer (between two valleys). The latter is of particular significance, as it acts as an effective spin-flip mechanism. Namely, electrons scattered from one valley to another "feel" the opposite orientations of Ising SOC field.

In this thesis, we theoretically investigate two quantum coherent phenomena in disordered TMDs: superconductivity and the quantum interference corrections to conductance. Both are very well understood in "conventional" thin materials (such as 2D electron gasses [START_REF] Tinkham | Introduction to superconductivity[END_REF][START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF]), whereas in TMDs the unique interplay of SOC, disorder, and valley structure leads to qualitatively novel behavior. Our work contributes to understanding the role of disorder in TMDs, both in the normal and superconducting state, and provides a framework for interpreting numerous recent experiments.

TMDs belong to a large family of superconductors without inversion symmetry, which are, in general, platforms for unconventional superconductivity [START_REF] Smidman | Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review[END_REF][START_REF] Bauer | Non-centrosymmetric superconductors: introduction and overview[END_REF]. In Sec. 1.1, after a brief introduction to non-centrosymmetric superconductors, we introduce exotic "Ising" superconductivity in TMDs, which is the subject of the first part of this thesis. In Sec. 1.2 we discuss quantum interference effects in TMDs, including weak localization and universal conductance fluctuations, which are the subject of the second part of this thesis. These phenomena are especially useful as a probe of disorder and SOC. Section 1.3 provides a detailed outline of this work.

TMDs as non-centrosymmetric superconductors

Superconductivity is the phenomenon of zero electrical resistance below a certain (critical) temperature [START_REF] Onnes | The resistance of pure mercury at helium temperatures[END_REF], accompanied by an expulsion of magnetic fields from the superconducting body (Meissner effect) [START_REF] Meissner | Ein neuer effekt bei eintritt der supraleitfähigkeit[END_REF]. Historically, it is one of the first studied macroscopic quantum phenomena. Bardeen, Cooper, and Schrieffer (BCS) [START_REF] Bardeen | Theory of superconductivity[END_REF] gave its microscopic description, proposing that electrons pair into bosonic Cooper pairs due to an attractive electron-phonon interaction. Cooper pairs in the so-called conventional superconductors are spin-singlets with zero total momentum, meaning that they are formed from electrons with opposite spins and momenta. Furthermore, conventional superconductors exhibit a gap in their quasiparticle spectrum, with sharp peaks in the density of states at the gap edge.

Within the Landau theory of phase transitions, superconductors are characterized by a complex order parameter Ψ = |Ψ|e iθ with a given phase θ. It is not invariant under global phase shifts, meaning that the U (1) gauge symmetry 1 is broken in the superconducting state (see Refs. [START_REF] Houzet | Applications of symmetries in superconductivity[END_REF][START_REF] Mineev | Introduction to unconventional superconductivity[END_REF] for more details). The fact that every superconductor has a phase leads to important consequences which are measurable in experiment, such as the Josephson effect [START_REF] Josephson | Possible new effects in superconductive tunnelling[END_REF].

Superconductors can be classified with respect to the symmetries that are broken upon transitioning from the normal state. If only the U (1) gauge symmetry is broken, the superconductor is conventional. On the other hand, if some other symmetry of the normal state is broken as well (such as lattice symmetries or time-reversal symmetry), the superconductor is unconventional. Unconventional superconductivity was studied since the 80's in the context of high-critical-temperature [START_REF] Dagotto | Correlated electrons in high-temperature superconductors[END_REF] and heavy fermion superconductors [START_REF] Stewart | Heavy-fermion systems[END_REF]. It remains a very active research field today, linked with many applications such as superconducting spintronics [START_REF] Linder | Superconducting spintronics[END_REF] and topological superconductivity [START_REF] Sato | Topological superconductors: a review[END_REF].

If inversion symmetry is absent in a superconductor, it can host strong SOC, which can be of Dresselhaus [START_REF] Dresselhaus | Spin-orbit coupling effects in zinc blende structures[END_REF] or Rashba [START_REF] Bychkov | Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[END_REF] kind. This SOC splits the Fermi surface and lifts the spin degeneracy. This has little effect on singlet pairing, but it can promote unconventional triplet pairing, where the Cooper pairs form from electrons with the same spin. As parity is not a good quantum number in these systems, singlet-triplet mixing can take place [START_REF] Gor | Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state[END_REF]. Numerous non-centrosymmetric superconductors have been discovered in recent years, including heavy fermion systems, rare earth compounds, various 2D materials (oxide interfaces, Pb monolayers, TMD monolayers), and many more [START_REF] Smidman | Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review[END_REF][START_REF] Bauer | Non-centrosymmetric superconductors: introduction and overview[END_REF].

In thin superconducting films, upon applying an in-plane Zeeman field H, the Fermi surface becomes spin-split and momenta of spin-up and -down electrons become shifted by ±q = ± 1 2 gµ B H/v F , where µ B is the Bohr magneton, g is the g-factor, and v F is the Fermi velocity. Then, at low temperatures, it becomes energetically favorable to pair a spin-up electron, with the momentum k+q, and a spin-down electron, with the momentum -k+q. Thus, a Cooper pair with a finite momentum 2q is formed, and the order parameter is spatially modulated ∆(x) = ∆ 0 e 2iqx . This is the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [START_REF] Fulde | Superconductivity in a strong spin-exchange field[END_REF][START_REF] Larkin | Inhomogeneous state of superconductors[END_REF]. In non-centrosymmetric superconductors, the combined effect of magnetic field and Rashba SOC can stabilize a different modulated phase -the so-called helical phase [START_REF] Edel'shtein | Characteristics of the Cooper pairing in two-dimensional noncentrosymmetric electron systems[END_REF], whose modulation is fixed to the direction transverse to the field and depends on the strength of SOC. Ising SOC, by contrast, is not expected to stabilize a spatially non-uniform phase [START_REF] Ilic | Enhancement of the upper critical field in disordered transition metal dichalcogenide monolayers[END_REF]. Namely, only some SOC, which satisfies the so-called gyrotropic point group symmetry, can lead to the appearance of helical phases [START_REF] He | Novel Magnetoelectric Effects in Gyrotropic Superconductors and the Case Study of Transition Metal Dichalcogenides[END_REF].

Helical phases are linked with a novel coupling of magnetic fields and supercurrents. This leads to various magnetoelectric effects, such as the possibility of static magnetization inducing supercurrents (in 2D) and vice-versa [START_REF] Smidman | Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review[END_REF][START_REF] Bauer | Non-centrosymmetric superconductors: introduction and overview[END_REF]. As TMD superconductors do not support helical phases, they are not expected to exhibit magnetoelectric effects (except if uniaxial strain is applied to the monolayers, as shown in Ref. [START_REF] He | Novel Magnetoelectric Effects in Gyrotropic Superconductors and the Case Study of Transition Metal Dichalcogenides[END_REF]).

In addition, non-centrosymmetric superconductors could present a way to realize topological superconductors. This exotic state of matter exhibits a quasiparticle gap in the bulk, but hosts gapless edge states, called Majorana modes, at its boundaries [START_REF] Kitaev | Unpaired Majorana fermions in quantum wires[END_REF]. Majorana modes can be combined to form extended fermionic states, making them robust against local perturbations. Furthermore, they satisfy non-Abelian statistics. These properties offer a promising platform to realize topologically protected quantum computing [START_REF] Smidman | Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review[END_REF][START_REF] Nayak | Non-Abelian anyons and topological quantum computation[END_REF].

Most proposals to realize topological superconductivity rely on combining several conventional materials. A prime example is a hybrid structure of a conventional superconductor and a semiconducting nanowire with Rashba SOC [START_REF] Alicea | New directions in the pursuit of Majorana fermions in solid state systems[END_REF]. Non-centrosymmetric superconductors provide an alternative to these approaches, as they could host topological superconductivity intrinsically, provided that strong enough spin-triplet pairing gap is present in the system [START_REF] Sato | Topological superconductors: a review[END_REF]. Note that these superconductors can be either nodal or "fully gapped". In the former case, the superconducting gap vanishes at some points on the Fermi surface, while in the latter case the gap is non-zero on the whole Fermi surface.

TMDs as non-centrosymmetric superconductors

TMDs where only one spin-split band is occupied, have been identified as intrinsic topological superconductors [START_REF] Hsu | Topological superconductivity in monolayer transition metal dichalcogenides[END_REF]. Such a regime can be achieved in p-doped TMDs, because of the large spin-splitting due to Ising SOC in the valence band (see Sec. 2.2). Furthermore, a nodal topological phase has been proposed in NbSe 2 subject to high inplane fields [START_REF] He | Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides[END_REF]. Finally, hybrid structures of a TMD superconductor and a half-metal have been proposed to host Majorana modes [START_REF] Zhou | Ising superconductivity and Majorana fermions in transition-metal dichalcogenides[END_REF].

An important aspect to address when studying unconventional superconductivity is the effect of impurities. In conventional superconductors, robustness against nonmagnetic disorder is guaranteed by the Anderson theorem [START_REF] Anderson | Theory of dirty superconductors[END_REF], provided that disorder in not strong enough to cause localization of single-particle states. Namely, although momentum is not a good quantum number in the presence of disorder, such that there are no states of opposite momentum that can pair, the Anderson theorem states that Cooper pairs can still form from time-reversed states and that disorder, therefore, has no effect. The situation is different for unconventional superconductivity, which is generally destroyed by disorder [START_REF] Mineev | Introduction to unconventional superconductivity[END_REF]. Taken from [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF] Superconductivity has been found in several TMDs: MoS 2 [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF][START_REF] Lu | Evidence for two-dimensional Ising superconductivity in gated MoS 2[END_REF] and WS 2 [START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF] in the ndoped regime, and NbSe 2 and TaS 2 [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF][START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF] in the p-doped regime. Notably, measurements of the in-plane upper critical field (H c2 ) 2 , in these materials reach up to 60 T, greatly surpassing the so-called Pauli limit H p = √ 2∆ 0 /(gµ B ), which corresponds to the magnetic field at which the paramagnetic energy is equal to the condensation energy of a Cooper pair. Here ∆ 0 = 1.76k B T c , and T c is the critical temperature of the superconductor. This enhancement of H c2 can be understood as a consequence of Ising SOC and the 2D nature of TMDs. Namely, the Cooper pairs are formed from electrons from opposite valleys, with strongly pinned out-of-plane spins due to the Ising SOC. This is the so-called "Ising" pairing. Magnetic fields can suppress superconductivity by two different mechanisms: by coupling to the momentum of electrons (orbital effect) or by coupling to their spins (paramagnetic effect). In 2D, in-plane fields do not couple to the electron momentum, so the orbital effect can be neglected [START_REF] Tinkham | Introduction to superconductivity[END_REF]. On the other hand, due to the Ising SOC, the in-plane field is also not efficient in breaking the Cooper pairs by the paramagnetic effect. Thus, the in-plane upper critical field is greatly enhanced.

Ising superconductivity

Ising superconductivity is not unconventional in a sense of the classification provided earlier in this section, as it does not break any additional symmetries of the normal state. Nevertheless, it is significantly different from the ordinary singlet pairing phase, and exhibits several unusual properties, as will be discussed in the following. If an in-plane field H is applied along the x-direction, the effective magnetic field in the two valleys is given by h eff η = he x + η∆ so e z , where e i is a unit vector in the i-direction, h = 1 2 gµ B H is the energy associated with an in-plane Zeeman field, ∆ so is Ising SOC, and η = ±1 is the valley index [see Fig. 1.3 (a)]. For finite in-plane fields, we can think of two separate singlet-pairing channels: one for degenerate and one for non-degenerate electrons (at opposite momenta). The non-degenerate channel corresponds to pairing where one electron is aligned whereas the other electron is anti-aligned with their respective "local" field. These electrons have an energy difference of h 2 + ∆ 2 so when their momenta are opposite and, thus, their contribution to pairing is suppressed by the field. The amplitude of the non-degenerate channel is h 2 /(h 2 + ∆ 2 so ), determined by the overlap of electron spin directions. The degenerate channel corresponds to pairing of electrons that are both aligned or anti-aligned with their respective "local" field, and have the same energy when their momenta are opposite. Thus, their contribution to pairing is not affected by the field. Here the channel amplitude is given as ∆ 2 so /(h 2 + ∆ 2 so ). The degenerate channel does not exist in the conventional singlet-pairing phase. In Ising superconductors, by contrast, it plays a very important role and leads to a divergence of the in-plane upper critical field, as degenerate pairing can persist up to arbitrary fields at zero temperature. This divergence is a unique property of Ising superconductors. The expression for the upper-critical field h c2 = 1 2 gµ B H c2 takes the form [START_REF] Ilic | Enhancement of the upper critical field in disordered transition metal dichalcogenide monolayers[END_REF][START_REF] Frigeri | Spin susceptibility in superconductors without inversion symmetry[END_REF] ln

T c T = h 2 c2 h 2 c2 + ∆ 2 so ψ 1 2 + i h 2 c2 + ∆ 2 so 2πT -ψ 1 2 , (1.1) 
where T and T c are the critical temperatures at finite and zero field, respectively, ψ is the digamma function, and we choose the units where k B = = 1. Here, the amplitude of the pairing channel enters as a prefactor, while the energy difference of paired electrons enters in the ψ functions. Figure 1. 3 (b) shows the temperature dependence of H c2 obtained from Eq. (1.1) for a realistic value of SOC in MoS 2 (∆ so is obtained from first-principle calculations [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF]) .

Experimental measurements of H c2 , which go to temperatures as low as T ∼ 0.1T c , show no upturn at low temperatures and no indications of the divergence, and it is clear that the simple theory presented above fails to quantitatively describe superconductivity in TMDs. This can be remedied by adding additional ingredients to the theory, that would limit h c2 and cut-off the divergence. Rashba SOC caused by gating was considered in Refs. [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF][START_REF] Lu | Evidence for two-dimensional Ising superconductivity in gated MoS 2[END_REF]. While it indeed acts as a competing effect to Ising SOC by driving the electron spins to an in-plane orientation, an unrealistically large value is needed in order to explain the measurements [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF].

In Chapter 5, we show that disorder provides a realistic mechanism that limits h c2 . We calculate the in-plane upper critical field and the density of states in the superconducting state. We show that intravalley scattering does not affect the superconducting properties, similarly to the Anderson theorem for conventional superconductors. Intervalley scattering, on the other hand, provides an effective spin-flip mechanism and breaks Cooper pairs. It suppresses the degenerate pairing channel and cuts-off the divergence. We show that weak intervalley scattering can explain the H c2 measurements in n-doped TMD superconductors (MoS 2 and WS 2 ).

Multiband superconductivity

The band structure of p-doped TMDs is more complicated compared to their n-doped counterparts. Here, aside from the band associated with the ±K points, another band centered around the Γ point is also present at the Fermi level [see Fig. 1.4 (b)]. Note that the Γ band also exhibits intrinsic SOC, but significantly weaker in comparison to the K band [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF][START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF]. If both these bands contribute to superconductivity in p-doped TMD superconductors (NbSe 2 and TaS 2 ), the theory presented in Chapter 5 no longer applies. Indeed, tunneling measurements of the density of states in trilayer NbSe Taken from [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF]. (b) Band structure of p-doped NbSe 2 at the Fermi level. Taken from [START_REF] Sohn | An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2[END_REF].

Quasiparticle spectra at zero in-plane magnetic field in Ref. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF] are well described within the McMillan model [START_REF] Schopohl | Tunneling density of states for the two-band model of superconductivity[END_REF][START_REF] Mcmillan | Tunneling model of the superconducting proximity effect[END_REF]. This model assumes that the coupling of the two bands comes from scattering of quasiparticles from one band to the other. By fitting the experimental data with this model, it is found that superconductivity develops predominantly in the K-band (with a large superconducting gap) and is induced by proximity effect in the Γ-band (giving rise to a smaller gap). Similar arguments have been invoked to interpret the quasiparticle spectra of the well-known multiband superconductors MgB 2 [START_REF] Schmidt | Evidence for two-band superconductivity from break-junction tunneling on MgB 2[END_REF] and bulk NbSe 2 [START_REF] Noat | Quasiparticle spectra of 2 H-NbSe 2 : Twoband superconductivity and the role of tunneling selectivity[END_REF].

An additional argument in favor of this explanation comes from the dependence of the quasiparticle spectra on in-plane fields measured in Ref. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF]. The smaller gap in the spectrum is completely suppressed by the field of 1.2 T, while the larger gap remains barely affected up to the maximal field used in this experiment -6.4 T. This is compatible with a larger gap coming from the K-band and being "protected" from the in-plane fields by the Ising SOC. On the other hand, the smaller gap comes from the Γ-band, where SOC is weak and does not provide such "protection" from the field.

In Chapter 6 we develop a model for two band Ising superconductors. We assume that the superconductivity originates from the K-band and that it is induced in the Γ band. We consider disorder within the K band (intra-and intervalley), within the Γ band, as well as interband disorder. We calculate the in-plane upper critical field and the density of states in the superconducting state, generalizing the results of Chapter 5 to a multiband scenario. We show that interband scattering presents an additonal mechanism that limits H c2 . Due to the inverse proximity effect in the K-band, the Cooper pairs "leak" into the Γ-band, where there is no Ising protection and the supperconductivity is more easily suppressed by the field.

Small interband scattering, of the order of the superconducting gap, allows us to account both for the shape of the density of states [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF] and for the magnitude of H c2 [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF][START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF] in p-doped TMD superconductors.

Quantum interference corrections in TMDs

In disordered materials, scattering from impurities causes the electron trajectories to behave as a random walk. The conductance of this system is then related to the probability of electrons to propagate between two points x 1 and x 2 ,

P(x 1 → x 2 ) = i A i 2 , (1.2) 
where A i represents the amplitudes of all possible paths between the two points. As disorder is random, different paths will have different phases. Then, we may assume that all interference terms A i A j (i = j) will have a disorder-dependent phase and vanish upon disorder averaging, yielding

P(x 1 → x 2 ) = i |A i | 2 , (1.3) 
which amounts to the well-known classical, or Drude, conductance. In the full quantum mechanical treatment of this problem, however, certain interference terms can, in fact, "survive" the averaging. For example, if two electrons move along time reversed paths in loops, their phases will cancel out, and this process will contribute to the probability P . This introduces correction to the Drude conductance in forms of weak localization (WL) corrections and universal conductance fluctuations (UCF) 3 . These phenomena are especially relevant in one-and two-dimensional systems, where electron interference is more pronounced than in 3D systems. WL and UCF have been extensively studied in the 80's and 90's [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF], as they can be used as a probe of electron coherence times, as well as momentum and spin relaxation rates. They remain invaluable today in the study of the properties of novel materials. In TDMCs, WL and UCF are governed by the interplay of SOC and disorder, similarly to Ising superconductivity, as we will discuss in the further text.

An important quantity which limits the quantum interference phenomena is the socalled inelastic dephasing rate τ -1 φ . It increases as a function of temperature T , and can be due to electron-electron interaction (τ -1 φ ∝ T ), electron-phonon interaction (τ -1 φ ∝ T 4 ), or other mechanisms that introduce dephasing [START_REF] Rammer | Quantum transport theory[END_REF]. Coherent quantum transport in the entire sample is possible only if the length of the sample L does not exceed the coherence length L φ = Dτ φ , where D is the diffusion constant. In conventional metals, constructive electron interference along time-reversed trajectories increases the probability of electrons moving in closed loops (see Fig. 1.5). As a consenquence, the conductance will be smaller compared to the classical Drude case. This phenomenon is known as WL [START_REF] Gor'kov | Particle conductivity in a twodimensional random potential[END_REF]. In the presence of strong SOC, on the other hand, the spin precession of electrons can lead to a phase shift, which results in destructive interference and a positive correction to the Drude conductance, known as weak anti-localization (WAL) [START_REF] Hikami | Spin-orbit interaction and magnetoresistance in the two dimensional random system[END_REF]. Observation of WAL in a material is often taken as a proof of strong SOC. W(A)L in two-dimensional, single-band systems with SOC is theoretically well understood withing the Hikami-Larkin-Nagaoka (HLN) theory [START_REF] Hikami | Spin-orbit interaction and magnetoresistance in the two dimensional random system[END_REF], which describes the corrections to the Drude conductivity due to W(A)L.

Weak (anti-) localization

In Dirac materials, such as TMDs, graphene, or surface states of topological insulators, the physical picture becomes more complex. The band structure of these materials is characterized by a non-trivial Berry phase, which introduces a phase shift of φ B = π(1 -E g /µ) to electron interference. Here, 2E g is the band-gap or so-called "Dirac mass", and µ is the chemical potential. In the massless limit (e.g. in graphene), this phase shift is φ B = π (leading to WAL [START_REF] Suzuura | Crossover from symplectic to orthogonal class in a twodimensional honeycomb lattice[END_REF]), while no phase shift is introduced in the large mass limit (leading to WL [START_REF] Lu | Competition between weak localization and antilocalization in topological surface states[END_REF]). Furthermore, in materials with multiple valleys, processes that break valley degeneracy, such as intervalley scattering, also influence the WL corrections [START_REF] Mccann | Weak-localization magnetoresistance and valley symmetry in graphene[END_REF][START_REF] Imura | Anti-localization of graphene under the substrate electric field[END_REF]. A theory which takes all these effects into account for the case of graphene was developed by McCann and Fal'ko (MF) [START_REF] Mccann | z→-z symmetry of spin-orbit coupling and weak localization in graphene[END_REF]. It gives a full description of WL and WAL with any disorder that satisfies time-reversal symmetry. In the presence of spin-orbit impurities and in the regime of strong intervalley scattering, such that the valley physics is suppressed, it reduces to the HLN formula.

W(A)L can be probed experimentally by applying a perpendicular magnetic field, which break the time-reversal symmetry and, thus, suppresses the electron interference [START_REF] Hikami | Spin-orbit interaction and magnetoresistance in the two dimensional random system[END_REF]. By measuring the resulting magnetoconductance as a function of the field and fitting it to the theoretical models, one can extract parameters such as momentum or spin relaxation rates, and gain insight into the amplitude and mechanism of SOC 4 .

Recently, a significant number of WL magnetoconductance measurements were performed in TMDs [START_REF] Schmidt | Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer MoS 2[END_REF][START_REF] Zhang | Robustly protected carrier spin relaxation in electrostatically doped transition-metal dichalcogenides[END_REF][START_REF] Costanzo | Gate-induced superconductivity in atomically thin MoS 2 crystals[END_REF] and graphene/TMD heterostructures [START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF][START_REF] Wang | Origin and magnitude of "designer" spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides[END_REF][START_REF] Yang | Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures[END_REF][START_REF] Völkl | Magnetotransport in heterostructures of transition metal dichalcogenides and graphene[END_REF][START_REF] Wakamura | Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS 2[END_REF][START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF], and were interpreted using the HLN and MF theories, respectively. However, the applicability of HLN and MF theories to these materials is limited, since they were both developed to describe spin-degenerate systems and do not capture the spin splitting caused by the presence of Ising SOC. A theory for TMDs that takes it into account was given by Ochoa et al. [START_REF] Ochoa | Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides[END_REF] in the regime close to the bottom/top of the conduction/valence band, |µ| ≈ E g . This parameter regime, however, does not fully describe graphene/TMD heterostructures and highly doped TMDs, where |µ| E g5 .

In Chapter 7, we develop a general theory of W(A)L for a diffusive Dirac material with Ising SOC, that can be applied to TMDs and graphene/TMD heterostructures. Namely, we generalize Ref. [START_REF] Ochoa | Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides[END_REF] for any chemical potential. As discussed above, a number of mechanisms influence the interference correction in these materials, including SOC, Berry phase induced by the Dirac-like band structure, and the valley structure. This results in a rich and complex behavior of WL and WAL, which we analyze in several regimes of interest for the interpretation of recent experiments. Similarly to Ising superconductivity, we find that one of the most important mechanisms for describing W(A)L is the interplay between Ising SOC and intervalley scattering. Since both TMDs and graphene/TMD heterostructures are expected to have substantial Ising SOC [START_REF] Kormányos | k• p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF][START_REF] Gmitra | Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides[END_REF][START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF], our newfound regimes are experimentally relevant and can be used to extract parameters from the interference-induced magnetoconductance in both systems.

One of the main difficulties when interpreting the experiments comes from the fact that there may be multiple parameter combinations that can fit the same data equally well. For example, both Ising SOC and spin-dependent scattering can lead to pronounced WAL signals. For this reason, we include an in-plane Zeeman fields in our theory, which can help overcome these ambiguities, as different kinds of disorder and SOC yield a different interplay with the field.

Universal conductance fluctuations

Let us imagine a d-dimensional, macroscopic, diffusive conductor of the size L. Assuming that L c = max(L φ , L T ) is the size of the smallest piece of the conductor that remains statistically independent, such that L L c , the fluctuations of conductance are of the order δG 2 /G 2 ∝ (L c /L) d [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF], where G is the Drude conductance. Here, L T = D/T is the characteristic thermal length. We see that, for a macroscopic conductor, conductance fluctuations are small and diminish with sample size.

However, in mesoscopic samples whose size is smaller than the electron coherence length, L φ > L, much larger conductance fluctuations of the order δG ∝ e 2 /h are found. These fluctuations are said to be universal, as they do not depend on disorder, but only on the shape and size of the sample. This phenomenon is a consequence of electron interference, and was predicted independently by Altshuler [START_REF] Altshuler | Fluctuations in the extrinsic conductivity of disordered conductors[END_REF] and Lee et al. [START_REF] Lee | Universal conductance fluctuations in metals[END_REF].

A simple qualitative explanation of the UCF can be given in terms of energy level statistics for disordered systems [START_REF] Altshuler | Repulsion of energy levels and conductivity of small metal samples[END_REF]. Namely, the average conductance in units e 2 /h can be expressed as a number of electron energy levels in an energy window with a width of the order of the Thouless energy E T = 2πD/L 2 , centered around the Fermi level. As the fluctuation of the number of energy levels in any interval are predicted to be of order 1 [START_REF] Altshuler | Repulsion of energy levels and conductivity of small metal samples[END_REF], this automatically yields conductance fluctuations of the order e 2 /h.

Similarly to WL, UCF is sensitive to SOC due to the dephasing introduced by spin precessions [START_REF] Feng | Mesoscopic conductance fluctuations in the presence of spin-orbit coupling and Zeeman splitting[END_REF][START_REF] Chandrasekhar | Effect of spin-orbit and spin-flip scattering on conductance fluctuations[END_REF]. In the presence of strong spin-orbit scattering, for instance, the amplitude of UCF reduces four times compared to the case without SOC with the same sample geometry. In graphene, as well as other multivalley materials, the amplitude of UCF is four times larger compared to conventional metals, due to valley degeneracy. Breaking this degeneracy by intervalley scattering reduces this amplitude [START_REF] Kharitonov | Universal conductance fluctuations in graphene[END_REF][START_REF] Kechedzhi | Quantum kinetic equation and universal conductance fluctuations in graphene[END_REF]. We see that the amplitude of UCF can be a rich source of information on SOC, valley structure, and electron decoherence. Experimentally, UCF is usually not investigated on a large ensemble of samples. Rather, it is done by varying a physical parameter such as the chemical potential or magnetic field in a single sample. Conductance as a function of this parameter fluctuates, and is called a "fingerprint" of the specific sample. It is reproducible and thus readily distinguished from external noise, and allows for the determination of the amplitude of UCF. As UCF can be measured in the same experimental setup as W(A)L, these two phenomena are often studied jointly.

In Chapter 8, we calculate the UCF for TMDs and their heterostructures with graphene. We calculate the amplitude of UCF, which aside from sample geometry, again, mainly depends on the ratio of Ising SOC and intervalley scattering. In contrast to W(A)L, UCF in these materials was not extensively studied in experiments. Our results could motivate more experimental efforts, and serve as an additional probe of SOC and disorder, complementary to WL and WAL.

Outline of the thesis

The first few Chapters of this thesis, 2, 3 and 4, serve to set the stage and introduce imporant concepts, before discussing our main results in the subsequent Chapters (Part I and Part II).

Chapter 2 introduces TMDs, their structure, physical, and chemical properties, and Ising SOC. This is followed by an overview of experiments in superconducting TMDs, including the measurements of the upper critical field, whose great enhancement suggests exotic Ising superconducitivity in these materials. Finally, we introduce graphene/TMD heterostructures, where Ising SOC is induced in graphene sheets in contact with TMDs.

Next, in Chapter 3, we present a low-energy model for the normal state of TMDs and their heterostructures with graphene, in the form of the Dirac Hamiltonian. By assuming that the chemical potential is the dominant energy scale in the system, this model can be significantly simplified by projecting to the conduction or valence band. We account for disorder in these systems phenomenologically, by introducing symmetryallowed scattering potentials and expressing them in the projected basis.

In Chapter 4 we provide the basics of the theoretical formalisms used to obtain our main results in Part I and Part II. We introduce standard diagrammatic techniques for disordered systems, followed by the quasiclassical (Eilenberger) formalism for disordered superconductors.

In Part I, we study the behavior of disordered Ising superconductors subjected to in-plane magnetic fields. In Chapter 5, we focus on n-doped TMD superconductors, such as MoS 2 and WS 2 , where only the ±K pockets of the Fermi surface participate in superconductivity. We discuss the important role of interevalley scattering, which provides an effective spin-flip and pair-breaking mechanism. In Chapter 6, we study pdoped TMD superconductors, such as NbSe 2 and TaS 2 . Here, in addition to ±K pockets, the Γ pocket of the Fermi surface also contributes to superconductivity. We show that even a small amount of interband scattering (from K to Γ pocket, and vice-versa) has a profound effect on the superconducting properties.

In Part II, we study interference corrections to the conductance in TMDs and their heterostructures with graphene, which can be used as an effective probe of SOC and disorder in these systems. In Chapters 7 and 8, we calculate weak (anti-) localization correction and universal conductance fluctuations, respectrivelly. We show that both quantities depend on a complex interplay between SOC, disorder, and valley structure, and discuss parameter regimes of interest for the interpretation of recent experiments.

In Chapter 9, we summarize the main results of this thesis and discuss possible directions for further research.

Appendices provide technical details related to the results presented in the main text.

Chapter 2

Introduction to TMDs

In this Chapter, we provide a brief introduction to TMDs, including their physical properties (Sec. 2.1), Ising SOC (Sec. 2.2), and superconducting properties (Sec. 2.3). Finally, in Sec. 2.4, we introduce graphene/TMD heterostructures, and discuss their properties and applications.

Structure and properties

Transition metal dichalcogenide monolayers are two-dimensional, atomically thin materials of the form MX 2 , where M is a transition metal (from groups IV, V and VI of the periodic table, with partially filled d sub-shells) and X is a chalcogen (group XVI of the periodic table). These compounds can crystalize in many structures, including 2H-, 1T -, 1T -and T d -type lattices. In this thesis, we study only TMDs of the most common 2H type 1 (M=Mo, W, Nb, Ta and X=S, Se), whose lattice has hexagonal structure when looked at from above, similar to graphene, but with two different atoms in the unit cell. Each monolayer consists of three layers of atoms: layer of M atoms is sandwiched between two layers of X atoms [see Fig. 2.1 (a)]. Bulk TMDs are formed of monolayers which are weakly interacting via Van-der-Waals forces. This allows for production of monolayers by exfoliation techniques (top-down methods). They can also be synthesized by chemical vapor deposition on metal supstrates, as well as epitaxially on SiC substrates (bottom-up methods) [START_REF] Wang | Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[END_REF]. Note that the properties of the quasi two-dimensional bulk crystals which consist of many stacked monolayers (N > 10), such as well-studied bulk NbSe 2 , are not determined by the monolayer.

Mo-and W-based TMDs are intrinsically semiconducting, with a band gap of the order 1 eV. On the other hand, Nb and Ta have one less d-electron in the outermost shell compared to Mo and W. As a result, the chemical potential of Nb and Ta-based TMDs intrinsically lies in the valence bands, and these materials exhibit p-type metallic behavior.

Monolayer TMDs show a variety of properties which are not present in the bulk. For instance, in semiconducting TMDs, there is a transition from the indirect band gap in the bulk to a direct one in the monolayer. This is of particular importance for application 1 TMDs with structures other than 2H have also been identified as platforms for novel quantum transport [START_REF] Soluyanov | Type-II Weyl semimetals[END_REF][START_REF] Deng | Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe 2[END_REF][START_REF] Sun | Prediction of Weyl semimetal in orthorhombic MoTe 2[END_REF] and superconducting [START_REF] Qi | Superconductivity in Weyl semimetal candidate MoTe 2[END_REF][START_REF] Sajadi | Gate-induced superconductivity in a monolayer topological insulator[END_REF][START_REF] Hsu | Inversion-protected topological crystalline superconductivity in monolayer WTe 2[END_REF] phenomena. Most notably, recent experiments in 1T WTe 2 , which has a monoclinic crystal lattice, have confirmed a quantum spin Hall insulator state [START_REF] Wu | Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal[END_REF][START_REF] Shi | Imaging quantum spin Hall edges in monolayer WTe 2[END_REF]. of these materials in electronics [START_REF] Mak | Atomically thin MoS 2 : a new direct-gap semiconductor[END_REF][START_REF] Radisavljevic | Singlelayer MoS 2 transistors[END_REF]. More importantly, absence of inversion symmetry in the monolayers allows for a large intrinsic SOC (see Sec. 2.2), whereas in the bulk the effective spin-orbit fields originating from adjacent mirror-symmetric planes cancel out.

The low-energy band structure of TMDs is dominated by d-orbitals originating from transition metals. As seen in Fig. 2.1 (b), minimum of the conduction band is at the ±K corners of the Brillouin zone, called valleys. In the valence band, aside from the ±K points, the Γ point contributes to the low-energy physics as well. Note that the orbital character of carriers changes depending on the momentum and the chemical potential. Namely, at the ±K points in the conduction band and at the Γ point in the valence band, the carriers are predominantly from the d z 2 orbitals. At the ±K points in the valence band, the carriers are predominantly from the d x 2 -y 2 ± id xy orbitals.

Ising spin-orbit coupling

The d orbitals of heavy transition metal atoms are responsible for sizeable spin-orbit interaction in TMD monolayers. Near the ±K points in the Brillouin zone, this SOC takes a form of an effective out-of-plane Zeeman field, with opposite orientations in the two valleys. As a consequence, a large valley-dependent spin-splitting occurs in the valence band as well as in the conduction band, though with a much smaller magnitude [see Fig. 2.2 and Fig. 2. 1 (b)]. This difference in magnitude of SOC comes from the different orbital character of carriers in the conduction and valence band at the K-point, as discussed in Sec. 2.1. Table 2.1 shows the magnitude of spin-splitting in some of the most studied TMD monolayers.

In the Γ pocket of p-doped TMDs, intrinsic SOC that drives the electron spins to out-of-plane orientation exists as well. It is significantly weaker (by more than an order of magnitude [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF][START_REF] Sohn | An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2[END_REF]) compared to the SOC in the K pockets, which is due to different orbital character of the K and Γ pockets in the valence band. Furthermore, it is anisotropic, with a form ∆ Γ so (θ) ∼ ∆ Γ so cos(3θ), where θ is the angle associated with momentum direction [see Fig. 1.4 (b)].

In few-layer TMDs, the adjacent layers have opposite orientations of Ising SOC due to the inversion of crystal field between layers. Then, total SOC of a few-layer sample is [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF][START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF][START_REF] He | Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides[END_REF] and [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF], respectively.

weaker compared to monolayer ones, due to partial cancellation of SOC between layers. However, the coupling of adjacent layers is much weaker compared to Ising SOC, according to first principle calculations [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF][START_REF] Sohn | An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2[END_REF], meaning that strong spin-valley locking due to Ising SOC is expected in few-layer TMDs as well. In the bulk, the cumulative effect of interlayer coupling between many layers completely cancels out the Ising SOC.

It is important to distinguish intrinsic Ising SOC from the better known extrinsic Rashba SOC [START_REF] Bychkov | Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[END_REF]. The latter appears due to interaction with a substrate or external electric fields, and breaks the mirror symmetry of the system. Rashba SOC acts as a competing effect to Ising SOC, as it drives the electron spins to an in-plane orientation. Its effect in TMDs is expected to be weak -for example, in Ref. [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF], it is estimated by numerical band structure calculations that in ionic liquid-gated (see Sec. 2.3) n-doped MoS 2 Rashba SOC amounts for ∼1% of total spin-polarization. Moreover, Rashba SOC is anisotropic and creates a spin texture on the Fermi surface, in contrast to Ising SOC which only polarizes the spins.

Superconducting TMDs

Bulk NbSe 2 is a well studied superconductor, whose properties are well described by the two-band McMillan model [START_REF] Mcmillan | Tunneling model of the superconducting proximity effect[END_REF] (see Ref. [START_REF] Noat | Quasiparticle spectra of 2 H-NbSe 2 : Twoband superconductivity and the role of tunneling selectivity[END_REF] and its references). It was even studied in ultrathin samples obtained by exfoliation [START_REF] Frindt | Superconductivity in Ultrathin NbSe 2 Layers[END_REF] in 1971, where superconductivity was found in 4-layer samples. However, superconductivity in few-layer TMDs has attracted significant scientific attention only recently, when they were identified as a platform for exotic "Ising" superconductivity.

In addition to p-doped NbSe 2 [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF] monolayers, intrinsic superconductivity was confirmed in n-doped MoS 2 [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF][START_REF] Lu | Evidence for two-dimensional Ising superconductivity in gated MoS 2[END_REF] and WS 2 [START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF], as well as in p-doped TaS 2 [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF] monolayers. MoS 2 and WS 2 , which are intrinsically semiconducting, need to be heavily doped to achieve sufficient carrier density for superconductivity, which is usually done by the ionic liquid gating technique [START_REF] Goldman | Electrostatic gating of ultrathin films[END_REF]. On the other hand, no gating is necessary in NbSe 2 and TaS 2 , where the chemical potential intrinsically lies in the valence band.

Highest critical temperature of T c ∼ 7K [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF][START_REF] Lu | Evidence for two-dimensional Ising superconductivity in gated MoS 2[END_REF] was reported in MoS 2 flakes with a thickness of ∼1nm, where high carrier density and superconductivity was induced in the topmost layer only by liquid gating. In true monolayers, T c ∼ 1.5K for MoS 2 [START_REF] Costanzo | Gate-induced superconductivity in atomically thin MoS 2 crystals[END_REF] and WS 2 [START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF], and T c ∼ 3K for NbSe 2 [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF] and TaS 2 [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF]. These experiments also confirm superconductivity in few-layer counterparts of these materials, where the critical temperature generally rises as a function of the number of layers. The reasons for "weaker" superconductivity in monolayer compared to few-layer samples may include the effect of quantum fluctuations or Coulomb interaction between electrons, both of which are more pronounced in thinner samples and negatively affect superconductivity (see Ref. [START_REF] Costanzo | Gate-induced superconductivity in atomically thin MoS 2 crystals[END_REF] for a detailed discussion of these phenomena). An exception to this trend is TaS 2 where, surprisingly, T c decreases as the number of layers increases, which is still not well understood [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF].

The main distinguishing feature of superconductivity in TMD monolayers is its exceptional robustness to in-plane magnetic fields. This is understood as a consequence of the 2D nature of these materials, which excludes orbital depairing by the field, combined with strong Ising SOC, which suppresses paramagnetic depairing (as discussed in Sec. 1.1.1). Fig. 2.3 shows the H c2 (T ) measurements for TMD superconductors, and comparison with other superconductors with strongly enhanced H c2 . In few-layer TMDs, H c2 is also significantly enhanced, but smaller compared to monolayers, as interlayer coupling competes with Ising SOC and decreases its effective magnitude. This is illustrated using the example of TaS 2 in the right panel of Fig. 2.3.

Spectroscopy of few-layer NbSe 2 superconductors was performed in several experiments [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF][START_REF] Sohn | An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2[END_REF][START_REF] Khestanova | Unusual suppression of the superconducting energy gap and critical temperature in atomically thin NbSe 2[END_REF]. In Refs. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF][START_REF] Khestanova | Unusual suppression of the superconducting energy gap and critical temperature in atomically thin NbSe 2[END_REF], the two-gap structure can be resolved in the density of states in the superconducting phase [see Fig. 1.4 (a)], and the ratio ∆/T c ≈ 2 was found (different from the standard BCS result ∆/T c ≈ 1.76). Both of these results are compatible with multiband superconductivity2 . Refs. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF][START_REF] Sohn | An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2[END_REF] studied the evolution of quasiparticle spectra as a function of in-plane fields, and showed that the spectral gap is very robust to applied fields, in-line with "Ising" protection of the Cooper pairs in the K-band.

Graphene/TMD heterostructures

The low-energy band structure of graphene is described by the Dirac cones, situated at the ±K corners of the Brillouin zone. Their unusual linear dispersion, ξ q = v F |q|, where and comparison with other superconductors with strongly enhanced H c2 . The latter include a ferromagnetic superconductor UCoGe (where triplet pairing is predicted [START_REF] Huy | Superconductivity on the border of weak itinerant ferromagnetism in UCoGe[END_REF]), layered superconductors (LaSe) 1.14 (NbSe 2 ) [START_REF] Samuely | Two-dimensional behavior of the naturally layered superconductor (LaSe) 1.14 (NbSe 2 )[END_REF] and TaS 2 (Py) 0.5 [START_REF] Morris | Anisotropic superconductivity in layer compounds[END_REF], and thin Pb films (where strong Rashba SOC is expected [START_REF] Sekihara | Two-dimensional superconducting state of monolayer Pb films grown on GaAs (110) in a strong parallel magnetic field[END_REF]). Taken from [START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF]. Right: H c2 (T ) curve of superconducting TaS 2 for various material thicknesses, from monolayer (1L) to five-layer (5L). Taken from [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF]. B p and H p denote the Pauli limit, introduced in Sec. 1.1.1.

v F is the Fermi velocity and q is the momentum measured from ±K, yields a non-trivial Berry phase φ B = π. This has remarkable repercussions in quantum transport, most notably, weak-antilocalization (as discussed in Sec. 1.2.1 ) [START_REF] Ando | Berry's phase and absence of back scattering in carbon nanotubes[END_REF] and an unusual quantum Hall effect [START_REF] Zhang | Experimental observation of the quantum Hall effect and Berry's phase in graphene[END_REF], where the quantization of conductance is observed in experiment even at room temperatures. Furthermore, in their seminal work, Kane and Mele showed that the so-called Kane-Mele SOC, which satisfies the lattice and mirror symmetry of the graphene sheet, can lead to the appearance of the quantum spin Hall insulator state [START_REF] Kane | Quantum spin Hall effect in graphene[END_REF]. This state is topologically protected, and is characterized by helical edge states, where the two spin-species move in opposite directions along the sample edge. However, Kane-Mele SOC in graphene is found to be too weak for observation of this phenomenon in experiment. For this reason, a lot of experimental effort is devoted to inducing SOC in graphene. One of the most promising approaches to do so are heterostructures of graphene and semiconducting TMDs. A number of magnetoconductance measurements [START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF][START_REF] Wang | Origin and magnitude of "designer" spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides[END_REF][START_REF] Yang | Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures[END_REF][START_REF] Völkl | Magnetotransport in heterostructures of transition metal dichalcogenides and graphene[END_REF][START_REF] Wakamura | Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS 2[END_REF][START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF] in these systems, reveal weak antilocalization signals, consistent with strong induced SOC. At the same time, there are no adverse effects to transport quality in the graphene sheets.

Numerical band structure calculations of graphene/TMD heterostructures show that the Dirac cones of graphene are well preserved inside the band-gap of TMDs, as shown in Fig. 2.4 (a). Upon zooming in to the vicinity of ±K points [Fig. 2.4 (b)], we see outof-plane spin-polarization due to induced Ising SOC. Physically, induced SOC originates from hybridization of π orbitals of graphene with d orbitals of transition metal [START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF]. Aside from the Kane-Mele SOC [START_REF] Kane | Quantum spin Hall effect in graphene[END_REF] mentioned previously, TMDs also induce the so-called valley-Zeeman SOC in the graphene sheet, which breaks its inversion symmetry and causes spin splitting in the band structure [see Eq. (3.1)]. First principle calculations [START_REF] Gmitra | Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides[END_REF][START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF] suggest that the valley-Zeeman component dominates over the Kane-Mele one. Although valley-Zeeman SOC is not compatible with the quantum spin Hall effect, it can lead to other novel phenomena in graphene, such as the spin Hall effect [START_REF] Avsar | Spin-orbit proximity effect in graphene[END_REF][START_REF] Garcia | Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures[END_REF][START_REF] Milletarì | Covariant conservation laws and the spin Hall effect in Dirac-Rashba systems[END_REF]. Furthermore, a combined effect of the valley-Zeeman and Rashba SOC can lead to the appearance of a new kind of edge states which are not of topological origin [START_REF] Gmitra | Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides[END_REF][START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF].

Chapter 3

Modeling disordered TMDs and their heterostructures with graphene

In this Chapter, we introduce a model for disordered TMDs and their heterostructures with graphene, which will be used in the remainder of this thesis. In Sec. 3.1, we start by formulating a low-energy model for the K-band. This includes the Dirac-like Hamiltonian describing the band structure, and a phenomenological disorder potential. Assuming that the chemical potential is the dominant energy scale, we proceed by projecting this model to the conduction/valence band. As discussed in Sec. 3.2, the simpler effective model obtained this way is appropriate for the description of n-doped TMDs, and n-or p-doped graphene/TMD heterostructures. On the other hand, for p-doped TMDs, it needs to be supplemented with additional ingredients to account for the Γ-band and related disorder.

Model in the vicinity of ±K points

The low-energy Hamiltonian describing TMD monolayers in the vicinity of the ±K points, and in the presence of a parallel magnetic field is given by [START_REF] Kormányos | k• p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF] H q = H 0 +H SOC +H W +H || , where

H 0 = v(q x σ x η z + q y σ y ) + E g σ z , H SOC = ∆ KM σ z s z η z + ∆ V Z s z η z + λ(σ x s y η z -σ y s x ) + ζ(q x σ x s z + q y σ y s z η z ), H W = κ(q 2 x -q 2 y )σ x -2κq x q y σ y η z , H || = hs x . (3.1)
Here, we use units where = k B = 1. The two Dirac cones are described by H 0 , where q = (q x , q y ) = q(cos θ, sin θ) is a small momentum measured from ±K, v is the velocity associated with the linearized kinetic dispersion, and E g is the difference in on-site energy responsible for opening the band gap. Spin-orbit coupling is described by H SOC , where ∆ KM and ∆ V Z characterize Kane-Mele and valley-Zeeman SOC 1 , respectively. Rashba SOC, which is related to a mirror symmetry breaking due to the substrate or external fields, is described by λ. The spin-dependence of the velocity is accounted for by ζ. H W describes the so-called trigonal warping, which accounts for the slight anisotropy of the Fermi surface [START_REF] Kormányos | k• p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF]. Finally, H || is the in-plane Zeeman field, where the Zeeman energy h = 1 2 gµ B B || is determined by the amplitude of the in-plane magnetic field and the gfactor, which is expected to take the standard value g ≈ 2 in these materials for in-plane fields. We introduce Pauli matrices σ x,y,z , s x,y,z and η x,y,z , defined as

σ x = s x = η x = 0 1 1 0 , σ y = s y = η y = 0 -i i 0 , σ z = s z = η z = 1 0 0 -1 . (3.
2) The matrices σ x,y,z span the basis of d-orbitals of the transition metal, |d z2 and 1/ √ 2 (|d x 2 -y 2 + iη |d xy ), which dominate the states in the conduction and valence band of TMDs, respectively. Here, the index η = ±1 describes the two valleys. The matrices s x,y,z and η x,y,z act in spin and valley space, respectively. The Hamiltonian (3.1) contains all terms up to the first order in q allowed by the symmetries of the system, as well as H W and H || , which break rotational and time-reversal symmetry 2 , respectively.

Furthermore, the low-energy sector of graphene/TMD heterostructures is also well described by the Hamiltonian (3.1). The matrices σ x,y,z in this case act in the space of two sublattices of graphene. As discussed in Sec. 2.4, the Dirac cones of graphene in these heterostructures are preserved and are within the TMD band gap. The coupling to the TMD modifies the graphene spectrum by introducing the staggered sublattice potential, E g σ z , and SOC, H SOC .

Projection to the conduction/valence band

To proceed, we assume that the Dirac Hamiltonian H 0 gives the dominant contribution to the energy of the system. H 0 is diagonalized by a unitary transformation U q = e -iηzαq e iβqσyηz e iαqσzηz , tan 2α q = q y q x , tan 2β q = vq E g .

It has a simple spectrum, E q = ± q 2 v 2 + E 2 g . After projecting U q H q U † q onto the conduction or valence band, we obtain the effective Hamiltonian

H q = ±ξ q + ∆ so s z η z ± λ vq F µ (s y cos θ -s x sin θ) + κ vq 3 F µ cos (3θ) η z + hs x . (3.4) 
Here, the upper and lower sign, correspond to projection onto the conduction and valence band, respectively. The energy is measured from the chemical potential, ξ q = E q -µ. Furthermore, we have introduced the Fermi momentum q F = µ 2 -E 2 g /v and spin-orbit splitting

∆ so = ±∆ KM E g µ + ∆ V Z ± ζ vq 2 F µ . (3.5) 
Note that at E g = 0 (as in the case of graphene, e.g.), Kane-Mele SOC does not contribute to the spin-orbit splitting. The chemical potential µ is assumed to be sufficiently above the band gap E g , so that it is the dominant energy scale, |µ| -E g ∆ so , λ, h, κq 2 F . Note that the effective Hamiltonian (3.4) holds only if the both spin-split bands are occupied. For instance, in p-doped TMDs, due to the very large spin-splitting (see Sec. 2.2), it is possible to achieve doping such that only one spin-split band is occupied. This doping regime is not addressed in our work, but the related quantum coherent phenomena were previously studied in Ref. [START_REF] Ochoa | Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides[END_REF] (weak localization) and Ref. [START_REF] Sosenko | Unconventional superconductivity and anomalous response in hole-doped transition metal dichalcogenides[END_REF] (superconductivity). The spectrum of the Hamiltonian (3.4) in the conduction band is represented schematically in Fig. 3.1. 

Model for disorder

The effect of potential impurities can be modeled by introducing a random disorder,

H D0 qq = U 0 q-q + i=±,x j=x,y V ij q-q σ i η j , (3.6) 
where σ ± = 1 ± σ z , which describe two individual sites (" + " and " -") in the space of σ matrices. The first term in Eq. (3.6) is the intravalley contribution, which is diagonal in spin space and in the space of σ matrices. The second term represents all spinindependent intervalley contributions allowed by time-reversal and hexagonal symmetry, and includes on-site (i = ±), and hopping (i = x) contributions. Intervalley disorder requires large momentum transfer, and is caused by short-range impurities, such as atomic defects. Upon rotating U q H D0 qq U † q and projecting to the conduction band, a variety of other scattering processes will be generated as combinations of the band structure and potential scattering parameters.

For simplicity, we will account for these processes, as well as all other possible scattering processes, phenomenologically, by independent scattering potentials. To do so, we supplement H D0 qq with all the other disorder terms allowed by the time-reversal symmetry. The disorder Hamiltonian is then given as H D qq = H D0 qq + δH D qq , where

δH D qq = i=x,y,z U i q-q Σ i + i=0,x,y,z j=x,y,z A ij q-q Σ i s j η z + j=x,y i=x,y,z M ij q-q σ y s i η j . (3.7) 
Here Σ 0,z,x = σ 0,x,z and Σ y = σ y η z . The first and second term account for spin-dependent and spin-independent intravalley contributions, respectively. The third term describes spin-dependent intervalley disorder. We characterize the random disorder potentials by Gaussian correlators and assume that different kinds of disorder are uncorrelated:

U i q U j q = U 2 i δ ij δ qq , X ij q X kl q = X 2 ij δ ik δ jl δ qq . (3.8)
Here, the brackets ... represent disorder averaging and X = A, V, M . Furthermore, we use the abbreviation q = -q. We proceed by writing the rotated phenomenological disorder Hamiltonian, U q H D qq U † q , in the projected basis as sum of the potential component H D0 qq , and the non-potential component δH D qq , namely, as

H D qq = H D0 qq + δH D qq ,
where

H D0 qq = U 0 q-q + j=x,y i=±,x V ij q-q g i θ,θ η j , δH D qq = i=x,y,z U i q-q f i θ,θ + i=0,x,y,z j=x,y,z A ij q-q f i θ,θ s j η z + j=x,y i=x,y,z M ij q-q g y θ,θ s i η j . (3.9)
Here, the functions f i θ,θ and g i θθ capture the anisotropy of the projected disorder potential, which is due to the momentum dependence of the unitary transformation U q introduced in Eq. (3.3). In particular,

2f 0 θ,θ = 1 + e -iηz(θ-θ ) ± E g µ 1 -e -iηz(θ-θ ) , 2f x θ,θ = ± vq F µ e -iηzθ + e iηzθ η z , g + θ,θ = 1 ± E g µ , g - θ,θ = E g µ ∓ 1 e iηz(θ+θ ) . (3.10) Furthermore, f y θ,θ = if x θ, θ η z , f z θ,θ = f 0 θ,θ , g x θ,θ = f 0 -θ,θ
, and g y θ,θ = iη z f x -θ,θ . Here, we used the notation θ = θ + π. As in Eq. (3.4), the upper and lower sign correspond to the projection onto the conduction and valence band, respectively. Anisotropy of the disorder potential will play an important role in describing the quantum interference phenomena in Part II of this thesis. Namely, in simple metals, anisotropic disorder usually only leads to the renormalization of the diffusion constant and the transport time. It has more profound physical consequences in our system, as it captures the Berry curvature due to the Dirac-like band structure.

The total scattering rate due to disorder, calculated in the self-consistent Born approximation (see Chapter 4) is

τ -1 = τ -1 0 + τ -1 z + τ -1 iv + i=z,zv,iv j=e,o τ -1 i,j . (3.11) 
The individual contributions to Eq. (3.11) are defined in the left column of Table 3.1 3 , where we introduced the Fermi velocity, v F = v 2 q F /µ, and the density of states per valley and per spin at the Fermi level at the K-points, ν 0K = µ/(2πv 2 F ).

Assuming that only potential disorder is present in the system, we can estimate the phenomenological scattering rates, related with the parameters in Eq. (3.8), as shown in the right column of Table 3.1. We do so by comparing the disorder terms generated by H D qq after rotation and projection onto the conduction band with the terms generated by H D0 qq only, but taking into account corrections up to order 1/µ. In this way, we can relate the phenomenological disorder parameters with the main Hamiltonian (3.1) and the magnitude of the potential disorder.

Effective model in the conduction and valence band

As the low-energy behavior in n-doped TMDs, and n-or p-doped graphene/TMDs heterostructures is dominated by the K band, these materials are well described by the effective Hamiltonian H q and the disorder potential H D qq . This model is used in the study of single-band Ising superconductivity in Chapter 5, and to study quantum corrections to the conductance in Part II of this thesis.

In p-doped TMDs, the Γ band is also relevant. In this case, the Hamiltonian becomes

H KΓ q = H q 0 0 H Γ q KΓ , (3.12) 
where KΓ denotes the matrix structure in the K -Γ band space. Note that the blocks in the matrix in Eq. (3.12) have different sizes, namely, H q is a 4 × 4 matrix in spin and valley space, while H Γ q is a 2 × 2 matrix in spin space. The Hamiltonian H Γ q describes the Γ band and is given as

H Γ q = p 2 Γ 2m * + ∆ Γ so cos (3θ Γ )s z + hs x . (3.13)
Here, p Γ is the momentum and θ Γ is the angle associated with its direction, m * is the effective mass of holes, while ∆ Γ so is the strength of the anisotropic SOC. Disorder potential which accounts for the presence of the Γ band has the form

H D,KΓ qq = H D qq β q-q β q-q α q-q KΓ . (3.14)
Here, we have introduced two new scattering processes, with the random potentials α q-q and β q-q , which describe scattering within the Γ band and between two bands, respectively. We characterize them by the Gaussian correlators

α q α q = α 2 δ qq , β q β q = β 2 δ qq . (3.15)
We define scattering rates associated with the new processes (in the self-consistent Born approximation) as

1 2τ Γ = πν 0Γ α 2 , Γ ΓK = πν 0Γ β 2 , Γ KΓ = πν 0K β 2 .
(3.16)

Effective model in the conduction and valence band

Intravalley scattering rates Estimates

τ -1 0 = πν 0K U 2 0 (1 + E 2 g µ 2 ) / τ -1 z1 = πν 0K (U 2 x + U 2 y ) v 2 q 2 F µ 2 τ -1 z2 = πν 0K U 2 z (1 + E 2 g µ 2 ) τ -1 z = τ -1 z1 + τ -1 z2 τ -1 z1 , τ -1 z2 ∝ τ -1 0 ( κvq 3 F µ 2 ) 2 τ -1 z,e1 = πν 0K (A 2 xz + A 2 yz ) v 2 q 2 F µ 2 τ -1 z,e2 = πν 0K A 2 zz (1 + E 2 g µ 2 ) τ -1 z,e = τ -1 z,e1 + τ -1 z,e2 τ -1 z,e1 , τ -1 z,e2 ∝ τ -1 0 ( ∆ KM v 2 q 2 F µ 3 ) 2 τ -1 z,o1 = πν 0K i,j=x,y (A 2 ij ) v 2 q 2 F µ 2 τ -1 z,o2 = πν 0K (A 2 zx + A 2 zy )(1 + E 2 g µ 2 ) τ -1 z,o = τ -1 z,o1 + τ -1 z,o2 τ -1 z,o1 , τ -1 z,o2 ∝ τ -1 0 ( λvq F µ 2 ) 2 τ -1 zv,e = πν 0K A 2 0z (1 + E 2 g µ 2 ) τ -1 zv,e ∝ τ -1 0 ( κv∆ KM q 3 F µ 3 ) 2 τ -1 zv,o = πν 0K (A 2 0x + A 2 0y )(1 + E 2 g µ 2 ) τ -1 zv,o ∝ τ -1 0 ( λEgvq F µ 3 ) 2

Intervalley scattering rates

Estimates

τ -1 iv = πν 0K i=x,y [2 j=± V ji (1 + j Eg µ ) 2 + (V 2 xi ) v 2 q 2 F µ 2 ] / τ -1 iv,e = πν 0K (M 2 zx + M 2 zy ) v 2 q 2 F µ 2 τ -1 iv,e ∝ τ -1 iv ( ∆ KM vq F µ 2 ) 2 τ -1 iv,o = πν 0K i,j=x,y (M 2 ij ) v 2 q 2 F µ 2 τ -1 iv,o ∝ τ -1 iv ( λvq F µ 2 ) 2
Table 3.1: Left: Diagonal scattering rate, τ -1 0 , and the 11 other independent scattering rates originating from the disorder Hamiltonian (3.9). The notation for the scattering rates was taken and adapted from Ref. [START_REF] Mccann | z→-z symmetry of spin-orbit coupling and weak localization in graphene[END_REF]. The index z indicates that the related disorder has a structure in the space of σ matrices. zv and iv indicate coupling to the valley matrices η z and η x,y , respectively. Indices e and o indicate coupling to the spin matrices s z and s x,y , respectively. Spin-independent disorder is represented by the rates τ -1 0 , τ -1 z , and τ -1 iv , which describe diagonal, intervalley, and σ matrix-dependent intravalley disorder, respectively. Spin-dependent disorder is represented by the rates τ -1 i,j (i = z, zv, iv; j = e, o), which describe intra-(i = z, zv) or intervalley (i = iv), and spin-preserving (j = e) or spin-flipping (j = o) disorder. Right: Estimates of the phenomenological scattering rates, obtained by the combination of band structure parameters and potential disorder only, assuming that all intervalley components of the potential disorder are of similar strength.

Here, ν 0Γ = m * /(2π) is the density of states per spin in the Γ-band. Note that we have defined two interband rates, corresponding to scattering from K to Γ band (Γ KΓ ) and vice-versa (Γ ΓK ). They are different due to different densities of states in the two bands.

Note that we model the Γ-band and related disorder using only the simplest terms, in contrast to our description of the K-band in Eqs. (3.4) and (3.9), where we account for all possible processes allowed by the time-reversal symmetry. The minimal model given in Eqs. (3.12) and (3.14) will be sufficient for our discussion of multiband Ising superconductivity in Chapter 6.

Chapter 4 Theoretical tools

In this Chapter, we will present basics of the theory for disordered systems, which will be used to obtain most of the results in this work. The main objective of this theory is to obtain the Green's function G of a disordered system, which captures its microscopic details, and can be used to calculate measurable quantities of interest. Important concepts in this theory are disorder-averaging and the ergodic hypothesis. Namely, we assume that the statistical average of some property of a disordered system is equal to its ensemble average over all possible disorder realizations. Therefore, instead of calculating the Green's function for a given system (which is in general very complicated), we calculate the disorder-averaged Green's function G , which is more accessible and suitable for further manipulations and analytical calculations.

There are a number of different approaches to calculate G and higher-order correlations (e.g. GG ). The most general, non-perturbative method is provided by functional field integration and the non-linear sigma model [START_REF] Altland | Condensed matter field theory[END_REF]. For our work, simpler perturbative methods, such as diagrammatic [START_REF] Bruus | Many-body quantum theory in condensed matter physics: an introduction[END_REF][START_REF] Sadovskii | Diagrammatics: lectures on selected problems in condensed matter theory[END_REF] and quasiclassical methods [START_REF] Kopnin | Theory of nonequilibrium superconductivity[END_REF], are sufficient, as we will study only weak disorder on the scale of the Fermi energy.

In the normal state, we use the diagrammatic method, which provides an intuitive framework for studying quantum coherent phenomena. We use it to calculate WL and UCF corrections in Part II of this work. In the superconducting state, diagrammatic calculations are still possible, but become more cumbersome due to a more complex structure of the Green's functions. The quasiclassical method provides a simpler, but equivalent, alternative. We use it in the calculation of superconducting properties of TMDs in Part I of this work.

After defining Green's functions in Sec. 4.1, we proceed by introducing basic principles of the diagrammatic method in Sec. 4.2. In Sec. 4.3, we provide an introduction to the BCS theory of superconductivity, after which we define Gor'kov Green's functions and the quasiclassical method for superconductivity. For clarity, we will illustrate these methods on an example of the simplest, 2D electron gas (2DEG) Hamiltonian. In TMDs these methods are readily generalized, and Green's functions acquire a matrix structure in the spin and valley space.

Green's functions

Green's functions

Let us consider the Hamiltonian of the form

H = p c † p ξ p c p , (4.1) 
where ξ p describes energy dispersion of the system, and c

( †)
p is an annihilation (creation) operator. In the imaginary time formalism, at finite temperature, we may define Green's function as

G p (τ ) = -T τ c p (τ )c † p (0) T , (4.2) 
where τ is the imaginary time, and T τ is the time-ordering operator given as

T τ [A(τ 1 )B(τ 2 )] = Θ(τ 1 -τ 2 )A(τ 1 )B(τ 2 ) -Θ(τ 2 -τ 1 )B(τ 2 )A(τ 1 ). (4.3)
Here, ... T denotes the thermodynamic average, and Θ is the Heaviside step function.

Evolution of the operators is given by the following law in the Heisenberg representation

dc ( †) p (τ ) dτ = [H, c ( †) p ]. (4.4)
Next, we introduce the Fourier transform

G pωn = 1/T 0 dτ e iωnτ G p (τ ), (4.5) 
where ω n = 2πT (n + 1 2 ) is the fermionic Matsubara frequency, T is the temperature, and G pωn is the Matsubara Green's function. Combining the above equations, we find that it satisfies

G p = (iω n -ξ p ) -1 . (4.6)
It is often of interest to calculate zero-temperature retarded (R) and advanced (A) Green's functions G R,A p , which are related to many measurable physical quantities. They are obtained from Matsubara Green's functions by the analytical continuation

G R,A p ( ) = G p (iω n → ± i0 + ) = ( -ξ q ± i0) -1 . (4.7)

Diagrammatic methods for disordered systems

Let us supplement the Hamiltonian (4.1) with a disorder term

H D = pp c † p V p-p c p . (4.8)
Here, V p-p is a random potential. For simplicity, we assume Gaussian white-noise distribution. Namely

V p = 0, V p V p = V 2 δ pp . (4.9) 
Here, ... represents disorder averaging. To start, we define Feynman rules of a diagrammatic theory for disordered systems, as shown in Fig. 4.1. Thin lines represent "bare" Green's function of a clean system, whereas the thick lines correspond to disorderaveraged Green's function. Here, we consider zero-temperature Green's functions for simplicity, but similar considerations hold at finite temperature [START_REF] Bruus | Many-body quantum theory in condensed matter physics: an introduction[END_REF]. Dashed lines represents the impurity potential. Note that, although disorder breaks translational invariance, it is restored in G by disorder averaging, i.e. G qq = G q δ qq . Next, we expand the disorder averaged Green's function perturbatively in V , as shown in Fig. 4.2. Note that all impurity lines need to be paired, as diagrams with unpaired impurity lines vanish upon disorder averaging, as dictated by the condition V p = 0. We can now express G using the Dyson equation, represented diagramatically in Fig. 4.3 (a)

G = G 0 + G 0 Σ G , or G = (G -1 0 -Σ) -1 . (4.10)
Here Σ is the self-energy, which is a sum of all irreducible diagrams, that is, all diagrams that cannot be split into simpler ones by cutting G 0 lines. Contribution of the reducible diagrams is negligible if disorder is weak on the scale of the Fermi energy. The dominant, lowest order, contribution to Σ is given by the second term in the diagrammatic expansion in Fig. 4.2. Neglecting all other terms in the self-energy constitutes the so-called first Born approximation. Then, we have

Σ R,A p = d 2 q (2π) 2 V q G R,A p-q0 V q = V 2 d 2 p (2π) 2 G R,A p0 = 1 2τ dξ p G R,A p0 . (4.11)
Here, we have introduced the scattering rate associated with the disorder potential, 1/(2τ ) = πν 0 V 2 , where ν 0 = m/(2π) is the density of states at the Fermi level and 4.2. Diagrammatic methods for disordered systems m is the effective mass of electrons. Using the expression for the Green's function (4.7) and assuming the dispersion of the 2DEG, ξ p = |p| 2 /2m -µ, where the chemical potential µ is the dominant energy scale, µ 1/(2τ ), we solve the last integral in Eq. (4.11). It yields Σ R,A p = Σ±i/(2τ ), the real part of which can be absorbed into the chemical potential, and thus neglected. The disorder-averaged Green's function is then

G R,A p = -ξ p ± i 2τ -1
.

(4.12)

Finally, using G R,A p obtained this way to calculate the self-energy in Eq. (4.11), as shown diagramatically in Fig. 4.3 (b), constitutes the self-consistent Born approximation. In the model we are considering, it yields the same result as the first Born approximation.

Two-particle correlation functions: diffusons and Cooperons

Having established the method to calculate single-particle disorder averages, we now turn to two-particle correlation functions of the form G R G A . Such quantities are related with many response functions [START_REF] Bruus | Many-body quantum theory in condensed matter physics: an introduction[END_REF]. Most importantly for our study in Part II of this thesis, they are used in the calculation of the conductances within the linear response theory. We may write

G R p 1 p 1 G A p 2 p 2 +ω = G R p 1 G A p 2 +ω δ p 1 p 1 δ p 2 p 2 + G R p 1 G A p 2 +ω Γ p 1 p 2 ,p 1 p 2 ω G R p 1 G A p 2 +ω δ p 1 -p 2 -p 1 +p 2 , (4.13)
where the first line is the disconnected part, and the function Γ is the so-called vertex function. Momentum conservation at the diagram vertices is accounted for by the δfunctions.

We proceed by calculating the vertex function Γ. Within the approximation µ 1/τ , the dominant contributions to it are non-crossing (ladder) diagrams and maximally crossed diagrams, as ilustrated in Fig. 4.4 (a) and (b), respectively. Note that, as in the case of single-particle disorder averaging, all impurity lines need to be paired. 

Γ qω = V 2 + 2πV 2 Π qω Γ qω , (4.14) 
where Π qω is the polarization operator, defined as

Π qω = ν 0 dξ p G R p G A p+q +ω ≈ ν 0 τ (1 + iωτ -D|q| 2 ). (4.15)
Here, we have introduced the diffusion constant D = 1 2 v 2 F τ , and assumed that disorder is sufficiently strong, such that τ ω, τ D|q| 2 1. Finally, the vertex function is

Γ qω = 1 2πν 0 τ 2 1 D|q| 2 -iω = D(q). (4.16)
This is the so-called diffuson or diffusion pole, which is related to the classical diffusion probability of electrons and determines the Drude conductance. We proceed by calculating the sum of all maximally crossed diagrams, which can be related to ladder diagrams by inverting the lower branch of the diagram, as illustrated in Fig. 4.6. Therefore, we can again employ the Bethe-Salpeter equation to find the vertex function Γ. In this case, it depends only on the momentum p 1 + p 2 = p 2 + p 1 = Q, and we have

Γ Qω = 1 2πν 0 τ 2 1 D|Q| 2 -iω = C(Q). (4.17)
This is the so-called Cooperon. It describes an additional contribution to the diffusion probability of electrons due to quantum interference, which leads to weak localization and antilocalization. Cooperons and diffusons are central objects in the study of mesoscopic transport phenomena, which will be employed extensively in Part II of this thesis. An important difference between these two quantities stems from their response to perpendicular magnetic fields, in whose presence the momenta are modified as p → p -eA, where A is a vector potential. In diffusons, the momentum q remains unchanged by the field, while in Cooperons Q → Q -2eA. As a consequence, diffusons are unaffected by such fields, whereas the Cooperons become quickly suppressed (as the Cooperon pole (4.17) decays).

Quasiclassical methods for superconductivity 4.3.1 Basics of BCS theory

The microscopic theory of superconductivity proposed by Bardeen, Cooper and Schrieffer, has been exceptionally successful in the description of conventional superconductivity [START_REF] Bardeen | Theory of superconductivity[END_REF]. Its extensions are also widely used in the study of unconventional superconducting phases [START_REF] Mineev | Introduction to unconventional superconductivity[END_REF].

The basic idea of BCS is that electrons in a solid form the Cooper pairs, mediated by an attractive interaction between electrons. Such attraction is most commonly due to electron-phonon interaction in conventional superconductors. The corresponding Hamiltonian is

H BCS = p c † p ξ p c p + pp λ pp c † p↑ c † p↓ c p ↓ c p ↑ , (4.18) 
where λ pp describes the attractive interaction. We approximate it by

λ pp = -λ, for |ξ p | < Ω D , 0, for |ξ p | > Ω D , (4.19) 
where λ is the so-called BCS coupling constant, and Ω D is the Debye frequency. We use the shorthand notation p = -p. Then, we treat the interaction term in Eq. (4.18) in the mean field approximation, by defining the superconducting order parameter ∆ as

∆ = -λ p c p↓ c p↑ T . (4.20) 
The above equation is often called the self-consistent gap equation. The BCS Hamiltonian is now

H BCS = p c † p ξ p c p + ∆ p c † p↑ c † p↓ + h.c. (4.21)
Next, we introduce the Nambu spinor Ψ p = (c ps sc † ps ) T , where s = ±1 is the spin index. The Hamiltonian becomes, up to a constant shift in the chemical potential,

H BCS = p Ψ † p H BdG p Ψ p , H BdG p = ξ p τ z + ∆τ x , (4.22) 
where τ x,y,z are Pauli matrices in particle-hole space.

H BdG p is the Bogoliubov-de Gennes Hamiltionan. It is readily diagonalized, with eigenvalues E p = ± ξ 2 p + ∆ 2 .
From here, we can find the density of states in the superconducting state

ν( ) = ν 0 | | √ 2 -∆ 2 Θ(| | -∆), (4.23) 
where ν 0 is the density of states in the normal state. A finite superconducting order parameter opens a gap of size 2∆ in the quasiparticle spectrum, with sharp coherence peaks at the gap edge, as shown in Fig. 4.7. The superconducting gap ∆ depends on temperature T through the self-consistency condition (4.20), and decays as T is increased until it vanishes at the critical temperature T c . At zero temperature, the superconducting gap can be related with T c as

∆(T = 0) = ∆ 0 = 1.76T c . (4.24)
Assuming the vanishing gap, ∆ → 0, the self-consistency condition yields another important result

T c ≈ 1.13Ω D e -1/(λν 0 ) . (4.25) 
This allows one to replace two parameters of the theory which are not accessible in experiments, Ω D and λ, with a measurable quantity T c . Furthermore, Eq. (4.25) showcases the so-called BCS instability, as an arbitrarily small attraction λ is sufficient for the onset of superconductivity, due to the exponential dependence.

Green's functions for superconductivity

Analogously to Sec. 4.1, we can introduce Green's functions for the superconducting state as Ĝpωn0 = -

1/T 0 dτ e iωnτ T τ Ψ p (τ ) ⊗ Ψ † p (0) T . (4.26) 
Here, the symbol "⊗" denotes the tensor product.

Using the equation of motion, dΨ

( †) p (τ )/dτ = [H BCS , Ψ ( †) p ], we find that it satisfies Ĝpωn0 = (iω n -H BdG p ) -1 = G F F † G † . (4.27)
Ĝ is called Gor'kov Green's function, and it has a matrix structure in the particle-hole space. The component G ∼ c † c is related to normal-state correlations, while F ∼ cc is related to superconducting correlations and vanishes in the normal state. The disorder Hamiltonian (4.8) in the Nambu basis is given as H D = qq Ψ † q V q-q τ z Ψ q . Within the Born approximation, we obtain for the disorder-averaged Gor'kov Green's function Ĝpωn

(iω n -H BdG p -Σp ) = 1, or (iω n -H BdG p -Σp ) Ĝpωn = 1, where Σp = 1 2τ dξ p τ z Ĝpωn0 τ z . (4.28)

Quasiclassical approximation

The equations for the Gor'kov Green's functions simplify significantly within the quasiclassical approximation, which assumes a separation of the energy scales related to the normal-state and superconducting properties: µ ∆, 1/τ . We define the quasiclassical Green's function as

g = i π dξ p τ z Ĝpωn . (4.29)
Then, we multiply the two equations from the first line of Eq. (4.28) by τ z , from left and right, respectively, and subtract them. The source term, ξ q , cancels out as a result. After integrating the resulting expression over energies, we find that the quasiclassical Green's function satisfies the following commutator equation

[ω n τ z + ∆τ y + 1 2τ g, g] = 0, (4.30) 
known as the Eilenberger equation. Similar derivation for the more general case of nonhomogeneous superconductivity can be found in Ref. [START_REF] Kopnin | Theory of nonequilibrium superconductivity[END_REF].

The statement of the Anderson theorem for the uniform superconducting phase immediately follows from Eq. (4.30), as the self-energy due to disorder potential commutes with g. Thus, simple scalar disorder does not modify the superconducting properties (this is not the case, however, for e.g. magnetic disorder).

The solution of Eq. (4.30) is not unique, and it needs to be supplemented by the normalization condition,

g 2 = 1. (4.31)
Right-hand side of Eq. (4.31) is the unity matrix acting in the particle-hole and spin space. For a detailed derivation of this condition, see e.g. Ref. [START_REF] Kopnin | Theory of nonequilibrium superconductivity[END_REF]. In short, it can be shown that g 2 = const. Then, since in the normal state g = τ z , we have g 2 = τ 2 z = 1. Finally, let us relate the Green's function g with some physical quantities. The selfconsistency condition (4.20) can be rewritten as

∆ = 1 2 λT πν 0 ωn Tr[τ x g(ω n )], (4.32) 
whereas the density of states in the superconducting phase is given as

ν( ) = ν 0 Tr[τ z g(iω n → + i0 + )]. (4.33)
Part I

Ising superconductivity in in-plane magnetic fields Chapter 5

Single-band Ising superconductors

In this Chapter, we study n-doped TMD superconductors (MoS 2 , WS 2 ), where only the K-band is present at the Fermi level. We focus on superconducting properties in the presence of in-plane magnetic fields. As the orbital effect is negligible for such fields, superconductivity is only affected by the paramagnetic effect which competes with strong pinning of the electron spins to out-of-plane orientation by the Ising SOC. Studying the evolution of superconducting properties as a function of an in-plane fields provides insight into exotic Ising superconductivity. We formulate the quasiclassical equations for disordered Ising superconductors in Sec. 5.1 and use it to calculate the in-plane upper critical field and the density of states. In Sec. 5.2 we discuss our results in the absence of intervalley scattering, where, notably, h c2 diverges at zero temperatures. Sec. 5.3 is devoted to the role of intervalley scattering, which provides an effective spin-flip mechanism and leads to the saturation of h c2 , consistent with experiments. In Sec. 5.4, we examine the conditions for realizing a non-uniform FFLO phase and/or first-order phase transition in Ising superconductors. The part of these results related to h c2 was published in Ref. [START_REF] Ilic | Enhancement of the upper critical field in disordered transition metal dichalcogenide monolayers[END_REF], where we used a more complicated diagrammatic method instead of quasiclassics (as discussed in Sec. 5.1.2).

Model for Ising superconductors

The Hamiltonian for disordered TMD superconductors is given as

H BCS = qq Ψ † q H BdG qq Ψ q , H BdG qq = H q δ qq + H D qq ∆δ qq ∆δ qq -s y η x [H qδ qq + H D q q]
T s y η x ,

(5.1) where Ψ q = (c qσsη sc † qσsη ) T is the Nambu spinor. The normal state Hamiltonian H q and the phenomenological disorder potential H D qq were introduced in Chapter 3. We model superconductivity with the simplest singlet-pairing potential, where Cooper pairs necessarily form from electrons in two different valleys, as their momenta need to be opposite.

To proceed, we simplify the model by neglecting Rashba SOC and trigonal warping, as well as all disorder terms except potential disorder H D0 qq . BdG Hamiltonian then becomes

H BdG qq = [H 0 + ∆ KM σ z s z η z + ∆ V Z s z η z ]δ qq τ z + H D0 qq τ z + ∆δ qq τ x + hδ qq s x .
(5.2)

Model for Ising superconductors

We proceed by rotating it, [

1 ph ⊗ U q ]H BdG qq [1 ph ⊗ U † q ]
, where 1 ph is the unity matrix in the particle-hole space, and projecting to the conduction band. The unitary transformation U q was introduced in Chapter 3. We assume that the chemical potential µ is sufficiently far above E g on the relevant energy scales determining the superconducting properties (∆, T

|µ -E g |). The BdG Hamiltonian in the conduction band is then given as

H BdG qq = [ξ q δ qq + ∆ so δ qq s z η z + H D0 qq ]τ z + ∆δ qq τ x + hδ qq s x , (5.3) 
where H D0 qq is the potential disorder in the projected basis.

Quasiclassical equations

Starting from the projected Hamiltonian Eq. ( 5.3), the derivation of the quasiclassical Eilenberger equation is standard (see Chapter 4.3 and Appendix B.1). We obtain

[(ω n + ihs x )τ z + iη∆ so s z + ∆τ y + 1 2τ 0 g η + 1 2τ iv g η, g η ] = 0. (5.4)
Here g η is the quasiclassical Green's function for valley η, which must satisfy the normalization condition g 2 η = 1. Note that the above equation holds for arbitrary values of intra-and intervalley scattering (i.e., the diffusive limit was not assumed 1 ). We see that intravalley scattering drops out immediately from the Eilenberger equation, as the relevant contribution to the self-energy commutes with g η . Therefore, intravalley disorder does not affect the superconducting properties of Ising superconductors, similarly to the Anderson theorem for conventional superconductors where scalar disorder has no effect, as discussed in Sec. 4.3.

The quasiclassical Green's function that solves (5.4) has the following structure

g η = c 0 τ y + c x τ y s x + d 0 τ z + d x τ z s x + ηb y s y τ x + ηa z s z , (5.5) 
which is readily checked by substituting this form into Eq. (5.4) and verifying that no additional terms are generated. The components d 0 and c 0 are the only ones that exist at zero magnetic field, and in that case they correspond to the normal and anomalous part of the Green's function, respectively. The components d x and c x describe the influence of an in-plane Zeeman field, while the components a z and b y capture the effect of Ising SOC and its interplay with the field. The self-consistency condition can be written as

∆ = λT πν 0K ωn c 0 (ω n ), (5.6) 
while the density of states is obtained from the component d 0 after the analytical continuation ν(

) = ν 0K [d 0 (iω n → + i0 + )]. (5.7)
Combining the normalization condition g 2 η = 1 and Eq. (5.5), we obtain

a z = b y d x c 0 , c x = - d x d 0 c 0 , (5.8) 
and the normalization condition becomes

(c 2 0 + d 2 0 + b 2 y ) 1 + d 2 x c 2 0 = 1.
(5.9)

Then, substituting Eq. (5.5) into the Eilenberger equation, we obtain the following set of equations for the components of g η

ω n b y -iη∆ so d x d 0 c 0 + 1 τ iv b y d 0 1 + d 2 x c 2 0 = 0, ω n d x d 0 c 0 -ihc 0 -iη∆ so b y + ∆d x = 0, -ω n c 0 + ih d x d 0 c 0 + ∆d 0 = 0, -ih b y d x c 0 + iη∆ so d x -∆b y - 1 τ iv b y c 0 1 + d 2 x c 2 0 = 0. ( 5.10) 
We use this system of equations, together with the normalization condition (5.9) as a starting point to calculate the in-plane upper critical field and the density of states in the superconducting phase.

The calculation of the upper critical field can be done by assuming a vanishing superconducting gap (∆ → 0), and linearizing the system by keeping only the first order terms in ∆, as presented in Sec. 5.1.2.

Obtaining the density of states is more challenging, as the system needs to be solved for any ∆, which, in general, needs to be done numerically. However, analytical solutions are possible in the absence of intervalley scattering (see Appendix B.1, where we provide the full g η for this case), as well as in various regimes of the intervalley scattering strenght, as we will discuss in Sec. 5.3.

Solution near the phase transition

Close to the phase transition, where ∆ → 0, the quasiclassical Green's function can be written as g η ≈ τ z + δg η . Here, τ z is the normal state contribution, and δg η ∼ ∆ is a small correction due to superconductivity. Assuming δg 2 η 1, the normalization condition yields 0 = {τ z , δg η }, which implies δg η = c 0 τ y + c x s x τ y + ηb y s y τ x , and d 0 ≈ 1, a z , d x ≈ 0. Now, the system of equations (5.10) can be readily solved to obtain c 0 (ω n ). Combining this with the self-consistency condition (5.6) and using the standard BCS result T c ≈ 1.13 Ω D e -1/(λν 0K ) , we finally have

ln T T c = 2πT ωn ∆ 2 so + ω n (ω n + τ -1 iv ) h 2 c2 (ω n + τ -1 iv ) + ω n [∆ 2 so + ω n (ω n + τ -1 iv )] - 1 ω n , (5.11) 
where h c2 is the upper critical field. The above equation can be used to obtain the h c2 (T ) curve. This result can alternatively be obtained using diagrammatic methods, as presented in Appendix B.4. This approach has been used in our publication, Ref. [START_REF] Ilic | Enhancement of the upper critical field in disordered transition metal dichalcogenide monolayers[END_REF]. As can be seen by comparing the calculations in this section and in Appendix B.4, the calculation within the quasiclassics is much simpler, illustrating the superiority of this method for studying Ising superconductivity.

Superconducting properties in the absence of intervalley scattering

In the absence of intervalley scattering, 1/τ iv = 0, the critical line given by Eq. (5.11) does not depend on disorder. In that case, Eq. (5.11) can be alternatively expressed as

ln T c T = h 2 c2 ρ 2 ψ 1 2 + iρ 2πT -ψ 1 2 , (5.12) 
where ψ(z) is the digamma function, and ρ = ∆ 2 so + h 2 . In this form, it ressembles -and generalizes to arbitrary intravalley disorder -an expression derived by Frigeri et al. [START_REF] Frigeri | Superconductivity without Inversion Symmetry: MnSi versus CePt 3 S i[END_REF] in the clean case. It also reproduces the h c2 (T ) calculation from Ref. [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF], where the linearized gap equation was solved numerically in the disorder-free case, using a complex tight-binding model for the conduction band of MoS 2 .

As seen in Fig. 5.1, h c2 is enhanced in the presence of spin-orbit coupling, especially at low temperatures. In fact, it diverges in the zero-temperature limit for finite ∆ so . Physically, this can be understood as a consequence of the inability of the Zeeman field to completely align the electron spins in the in-plane orientation, due to the anti-parallel outof-plane field provided by the Ising SOC. As discussed in Sec. 1.1, Ising superconductors have a degenerate pairing channel with the weight ∆ 2 so /ρ 2 , that is not suppressed by the magnetic fields, thus leading to the divergence. As in the limit T → 0 h c2 diverges, we can approximate our results assuming h c2 ∆ so , ∆ 0 . Then, we have

ln 2h c2 ∆ 0 ≈ ∆ 2 so h 2 c2 ln T c T .
(5.13)

For weak Ising SOC (∆ so ∆ 0 ), the critical curve h c2 (T ) only deviates from the conventional one at very low temperatures, where Eq. (5.13) yields

h c2 ∝ ∆ so ln T c T for T T c exp -c ∆ 2 0 ∆ 2 so . (5.14)
Here, c is a dimensionless constant of order 1. In the more interesting case of large Ising SOC, ∆ so ∆ 0 , Eq. (5.13) yields a logarithmic divergence starting at higher temperatures,

h c2 ≈ ∆ so ln T c T / ln 2∆ so ∆ 0 for T T c ∆ 0 ∆ so . (5.15)
Close to T c , the critical field h c2 is small, and the assumptions ∆ so h c2 and ln Tc T ≈ Tc-T Tc hold. In the limit ∆ 0 ∆ so , one obtains the standard result h c2 ≈ 2.16T c 1 -T /T c . For strong SOC, ∆ so ∆ 0 , we obtain a square-root dependence on temperature as well, but with an enhanced prefactor,

h c2 ≈ ∆ so 1 ln 2∆so ∆ 0 1 - T T c . (5.16) 
The density of states in the absence of intervalley scattering can be obtained from the full quasiclassical Green's function, specified in Appendix B.2. In the regime ∆ so ∆ 0 , , the DoS acquires a particularly simple form

ν( ) = ν 0K | | 2 -∆2 , with ∆ = ∆ so ρ ∆.
(5.17)

This result resembles the one for conventional superconductors at h = 0, but with a renormalized superconducting gap ∆ which is reduced by h. Fig. 5.6 (a) shows the plot of the DoS in this regime. Ising protection of Cooper pairs is apparent from the form of ∆, where we see that the superconductivity remains barely affected until the magnetic field reaches h ∼ ∆ so . In contrast to conventional superconductors, which exhibit spinsplitting of the coherence peak once the Zeeman field is applied, Ising superconductors will have a single coherence peak even at high magnetic fields due to Ising protection. Spinsplitting occurs, however, if Ising SOC is weak, ∆ so ∆ 0 . Close to zero temperature, the gap in the quasiparticle spectrum does not close for arbitrary magnetic field, which is in line with the divergence of h c2 .

Role of intervalley scattering

At finite magnetic fields, intervalley scattering provides an effective spin-flip mechanism, since electrons scattered between different valleys "feel" opposite values of the Ising SOC field. This pair-breaking effect leads to a saturation of h c2 (as illustrated in Fig. 5.2), as well as rounding of the coherence peaks in the quasiparticle spectra. We will focus on the realistic case of strong Ising SOC ∆ so ∆ 0 , and discuss h c2 and the DoS in the regimes τ -1 iv ∆ 2 so /∆ 0 and τ -1 iv ∆ 0 , as well as in the overlap regime, ∆ 0 τ -1 iv ∆ 2 so /∆ 0 , where the results acquire the simplest form. In Appendix B.3, we show a numerical calculation of h c2 in the limits T → 0 and T → T c in a broad range of intervalley disorder strength, and compare these results with the analytical estimates made in this section. [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF] [blue dots in (c)] taking the g-factor to be g = 2.

Regime

τ -1 iv ∆ 2 so /∆ 0
In this regime, poles in the ω n -dependent terms in the expression for the critical line Eq.

(5.11) can be evaluated perturbatively to yield:

ln T c T = ∆ 2 so ρ 2 ψ 1 2 + h 2 c2 2πτ iv ρ 2 T -ψ 1 2 + h 2 c2 ρ 2 ψ 1 2 + iρ 2πT -ψ 1 2 . (5.18)
The above result holds even if SOC is weak ( ∆ 0 ), as long as ∆ so τ iv 1. The first and second term here correspond to the degenerate and non-degenerate pairing channels (introduced in Sec. 1.1.1), respectively. By comparing with Eq. (5.12), we see that the main effect of weak intervalley scattering is to provide an effective pair-breaking rate for the degenerate pairing channel, which yields an additional mechanism for the suppression of h c2 . As a consequence, h c2 now saturates at T → 0.

Assuming 1/τ iv ∆ 0 , such that h c2 ∆ so still holds, we estimate from Eq. (5.18

) that ln[2h c2 /∆ 0 ] ≈ ∆ 2 so /h 2 c2 ln[τ 2 h c2 ], which evaluates to h c2 (T = 0) ≈ ∆ so ln(∆ 0 τ iv )/ ln 2∆ so ∆ 0 (5.19)
in logarithmic accuracy, at zero temperature. In the vicinity of T c , the critical line is still described by Eq. (5.16) in that parameter regime. If intervalley scattering is stronger τ -1 iv ∆ 0 , the upper critical field satisfies h c2 ∆ so , so the expression (5.18) reduces to Eq. (5.23).

Weak intervalley scattering of the order of ∆ 0 is compatible with h c2 measurements in both MoS 2 [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF][START_REF] Lu | Evidence for two-dimensional Ising superconductivity in gated MoS 2[END_REF] and WS 2 [START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF]. The curve corresponding to 1/(τ iv T c ) = 1.5 shown in Fig. 5.2 (c) gives a good fit of the experimental data for MoS 2 from Ref. [START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF] using their estimate for ∆ so /T c . The experimental data for WS 2 from Ref. [START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF] is only available in a small temperature window close to T c (see Fig. 2.3). It can be well explained even without intervalley scattering, taking ∆ so = 19.5 meV=150T c [START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF], which sets the lower bound for Ising SOC. The value of SOC obtained from first-principle calculations is slightly larger, ∆ so = 30 meV=230T c . In this case, intervalley scattering of 1/(τ iv T c ) = 6 is required to explain the data.

The density of states in the superconducting phase is given by

ν( ) = ν 0K | | 2 -∆ 2 ( ) , (5.20) 
where we have defined an effective energy-dependent gap ∆( ), determined from the equation

∆( ) = ∆ 1 + α √ ∆( ) 2 -2 , where ∆ = ∆ so ρ ∆, α = 1 τ iv h 2 ρ 2 .
(5.21)

The derivation of Eq. (5.21) is given in Appendix B.2. This result resembles the well known Abrikosov-Gor'kov formula (AG), where α corresponds to a depairing parameter. AG theory was originally derived to describe superconductors with magnetic impurities [START_REF] Abrikosov | Contribution to the theory of superconducting alloys with paramagnetic impurities[END_REF], but its validity was since extended to many other situations where timereversal symmetry is broken and a dissipation mechanism that mixes time-reversed states is present [START_REF] Maki | Gapless superconductivity[END_REF]. In our case, time-reversal symmetry is broken by the magnetic field, while intervalley scattering provides the dissipation mechanism.

In most AG superconductors, depairing parameter is quadratic or linear in the timereversal symmetry breaking field2 . In the case of Ising superconductors, this dependence is more complex, and the renormalized gap ∆ also depends on the field. At large intervalley scattering τ -1 iv ∆ 0 , where ∆ so h c2 , we recover the standard quadratic dependence as α ≈ h 2 /(τ iv ∆ 2 so ) and ∆ ≈ ∆. Energy at the gap edge can be expressed using the standard expression [START_REF] Abrikosov | Contribution to the theory of superconducting alloys with paramagnetic impurities[END_REF] 2/3 g = ∆2/3 -α2/3 .

(5.22)

One of the most notable features of the AG theory is the appearance of the gapless superconducting phase, which occurs when the gap edge disappears at ∆ = α. Furthermore, the shape of the quasiparticle spectra depends only on a single parameter α/ ∆, as shown in Fig. 5.3.

Overlap regime ∆

0 τ -1 iv ∆ 2 so /∆ 0
In this disorder range, the regimes presented in Secs. 5.3.1 and 5.3.3 overlap. Both h c2 and the DoS can be captured using a Abrikosov-Gor'kov depairing parameter α = h 2 /(∆ 2 so τ iv ). Namely, the critical line h c2 (T ) is given by ln

T c T = ψ 1 2 + α 2πT -ψ 1 2 , (5.23) 
which is known as the standard depairing equation. The DoS satisfies Eq. (5.21), with α → α and ∆ → ∆. At T → 0, we calculate

h c2 (T = 0) ≈ ∆ 2 so τ iv ∆ 0 2 , (5.24) 
while close to T c we have

h c2 = 4 π ∆ 2 so τ iv (T -T c ).
(5.25)

5.3.3 Regime τ -1 iv ∆ 0
For strong intervalley scattering, electrons are so frequently scattered between the two valleys that the valley structure becomes suppressed. The effect of Ising SOC can then be captured by an effective spin-orbit scattering rate ∆ 2 so τ iv , and the system behaves as a conventional superonductor with spin-orbit impurities. A theory for such systems was developed by Maki et al. [START_REF] Maki | Pauli paramagnetism and superconducting state[END_REF]. The upper critical line is given by ln

T c T = 2πT ωn ω n + ∆ 2 so τ iv h 2 c2 + ω n (ω n + ∆ 2 so τ iv ) - 1 ω n , (5.26) 
and the density of states is

ν( ) = ν 0K 1 2 ± | | 2 -∆ 2 ± ( ) , where ∆ ± ( ) = ∆ 1 ∓ h + 1 2 ∆ 2 so τ iv √ ∆ 2 ∓ ( )-2 . (5.27)
The derivation of the last equation is given in Appendix B.2. Here, ∆ ± ( ) = [c 0 ( ) ± c x ( )]/[d 0 ( ) ± d x ( )] is related to spin-up (+) and spin-down electrons (-). The two spin species therefore contribute differently to the DoS, which leads to spin-splitting in the quasiparticle spectra, as illustrated in Fig. 5.6 (d). However, if the effective spin-orbit rate is strong, ∆ 2 so τ iv ∆ 0 , the two spin species mix, there is no spin-splitting, and we recover the Abrikosov-Gor'kov regime presented in Sec. 5.3.1.

Intervalley scattering of the order τ -1 iv ∆ 2 so /∆ 0 completely suppresses the effect of Ising SOC. In this regime, we find the standard paramagnetically limited formula for the upper critical field ln

T c T = ψ 1 2 + ih c2 2πT -ψ 1 2 .
(5.28)

At zero temperature, Eq. (5.28) gives h c2 (T = 0) ≈ ∆ 0 /2, while close to T c we have

h c2 ≈ 2.16T c 1 -T /T c . The density of states is ν( ) = ν 0K 1 2 ± ± h ( ± h) 2 -∆ 2 , (5.29)
where the effect of the Zeeman field is to simply shift the energies of spin-up and spindown electrons by ±h.

The presented results cover the full range of intervalley disorder strength. Summary of all analyzed regimes is given in Fig. 5.4. In Fig. 5.5, we show the results of a selfconsistent calculation of the superconducting gap as a function of magnetic field, done by numerically solving the system of equations (5.10) paired with the self-consistency condition (5.6). Finally, in Fig. 5.6, we show the evolution of the quasiparticle spectra in magnetic fields, for various values of intervalley disorder. 

Nature of the phase transition

In Secs. 5.1-5.3, we assumed that the normal-superconductor phase transition of the second order and into a uniform superconducting state. However, at lower temperatures, this is not necessarily true. Firstly, in conventional paramagnetically limited superconductors, singlet-paired Cooper pairs yield nearly zero spin susceptibility at low temperatures, which leads to an abrupt, first-order phase transition at H c2 [START_REF] Tinkham | Introduction to superconductivity[END_REF]. Secondly, as discussed in Sec. 1.1, a transition to the non-uniform FFLO phase can occur [START_REF] Fulde | Superconductivity in a strong spin-exchange field[END_REF][START_REF] Larkin | Inhomogeneous state of superconductors[END_REF]. In order to study the nature of the phase transition, we consider quadratic corrections in a finite 

= 0 (h c2 ≈ 9.5T c ), (b) τ -1 iv = T c (h c2 ≈ 8.2T c ), (c) τ -1 iv = 10T c (h c2 ≈ 4.5T c ), (d) τ -1 iv = 10 3 T c (h c2 ≈ 1.2T c ).
Ising SOC is set to ∆ so = 20T c . Values of the superconducting gap ∆ were obtained self-consistently for every parameter combination at the temperature T = 0.5T c (See Fig. 5.5). The relatively high temperature was chosen for numerical convenience, as the self-consistent calculation of ∆ converges quicker, while the qualitative behavior remains the same compared to lower temperatures.

modulation wave vector and cubic corrections in the gap amplitude ∆ in the vicinity of the transition. We find that both do not affect the transition when ∆ so ∆ 0 , and that moderate disorder does not change these conclusions.

FFLO phase

In the FFLO phase, the superconductor is spatially modulated. At the second-order transition into that state, we account for an exponentially modulated order parameter ∆(x) = ∆ p e ip.x , where p is the modulation wavevector, by modifying the pairing term in the BCS Hamiltonian,

H F F LO = ηq c † ηq H ηq c ηq + ∆ p ηq c † ηq+p/2↑ c † ηq+p/2↓ + h.c.. (5.30)
Then, the Eilenberger equation in the clean case has a form

[(ω n + ihs x + i ∆(x))τ z + iη∆ so s z , g η (x)] = 1 2 qv F ∇ x g η (x), (5.31) 
where the gradient source term accounts for the spatial dependence of the Green's function [START_REF] Kopnin | Theory of nonequilibrium superconductivity[END_REF]. Here, ∆(x) = ∆(τ + e ipx + τ -e -ipx ), with τ ± = (τ x ± iτ y )/2. In the vicinity of the phase transition, we have

g η (x) = τ z + f η (τ + e ipx + τ -e -ipx )
, where f η = f 0 + f x s x + ηf y s y . After solving Eq. (5.31) to obtain f 0 , we have

∆ p = λT πν 0K ωn dθ 2π f 0 (ω n ) = λT πν 0K ωn dθ 2π ω2 n + ∆ 2 so ωn (ω 2 n + ρ 2 ) , (5.32) 
where ωn = ω n -iv F p.q/2. In order to consider the instability toward an FFLO state along the upper critical line h c2 (T ), we further assume that the modulation wavevector is small, v F |p| ∆ 0 . After summing over Matsubara frequencies, we obtain

ln T T c = dθ 2π ∆ 2 so ρ 2 ψ 1 2 -ψ 1 2 - iv F p.q 4πT + h 2 c2 ρ 2 ψ 1 2 -ψ 1 2 + 2iρ -iv F p.q 4πT .
(5.33) Expanding the above expression in small p and integrating over angles yields

ln T T c = - h 2 c2 ρ 2 ψ 1 2 + iρ 2πT -ψ 1 2 + v 2 F |p| 2 T 2 c 16π 2 h 2 c2 T 2 F 1 (T, ∆ so ), (5.34) 
where

F 1 (T, ∆ so ) = - h c2 T c 2 ψ (2) 1 2 + h 2 c2 ρ 2 ψ (2) 1 2 + iρ 2πT -ψ (2) 1 2 . (5.35)
Here, ψ (2) (z) is the second derivative of the digamma function.

The last term in Eq. (5.34) is the correction to the result in the uniform case, Eq. (5.12), due to the modulation. The instability toward the FFLO state is determined by the sign of F 1 along the line h c2 (T ) for the uniform state. Namely, if F 1 > 0 (resp. F 1 < 0), h c2 decreases (resp. increases) when the order parameter is modulated.

We evaluate F 1 along the upper critical line derived for the uniform state in Fig. 5.7 (a). At ∆ so = 0, F 1 changes sign at T * = 0.56T c , signaling a transition into the FFLO state below that temperature. At small ∆ so , we find that F 1 changes sign at two temperatures T * 1 and T * 2 , with T * 1 < T < T * 2 . The range of temperatures T * 1 < T < T * 2 , where the FFLO state can be expected shrinks as ∆ so increases, and it eventually disappears at ∆ so 0.30∆ 0 , thus excluding the possibility of an FFLO phase at larger ∆ so .

In general, the FFLO phase is quickly destroyed by weak disorder [START_REF] Aslamazov | Influence of impurities on the existence of an inhomogeneous state in a ferromagnetic superconductor[END_REF], which is what we expect as well for Ising superconductors, even in the presence of intravalley scattering only.

5.5. Summary

First-order phase transition

In order to study the possibility of a first-order phase transition, the linearized selfconsistency equation is not sufficient and we need to include higher order terms in ∆. Starting from the full expression for c 0 (ω n ) (see Appendix B.2), expanding up to third order in ∆, and summing over Matsubara frequencies, the self-consistency condition becomes

ln T T c = - h 2 c2 ρ 2 ψ 1 2 + iρ 2πT -ψ 1 2 + ∆ 2 T 4 c 16πh 4 cs T 2 F 2 (T, ∆ so ), (5.36) 
where

F 2 (T, ∆ so ) = 4h 4 c2 πT 4 c (2πT ) 3 ωn>0 (∆ 2 so + ω 2 n )[h 2 c2 (∆ 2 so -3ω 2 n ) + (∆ 2 so + ω 2 n ) 2 ] ω 3 n (h 2 c2 + ∆ 2 so + ω 2 n ) 3
.

(5.37)

The last term in Eq. (5.36) is the correction to the linearized gap equation (5.12) due to a finite amplitude of the order parameter in the vicinity of the transition. The order of the transition is determined by the sign of F 2 along the second-order transition line h c2 (T ). Namely, if F 2 > 0 (resp. F 2 < 0), the transition remains second-order (resp. a change of the order of the transition occurs).

At ∆ so = 0, we find that F 2 = (h c2 /T c ) 2 F 1 . Thus, the sign change occurs at the same temperature and, as a consequence, for T < T * = 0.56T c the transition into the FFLO state is in competition with a first-order transition. At finite ∆ so , we evaluate F 2 along the upper critical line derived for the uniform state in Fig. 5.7 (b). We find that its temperature dependence is qualitatively similar to, though quantitatively different from F 1 . Thus, a change of the transition order may occur in a finite temperature range, if Ising SOC is weak. On the other hand, F 2 remains positive at all temperatures if ∆ so 0.52∆ 0 , and therefore the transition remains a second-order transition at larger Ising SOC.

As large intervalley disorder τ -1 iv ∼ ∆ 2 so /∆ 0 negates the effect of Ising SOC, the possibility of a first-order transition is restored in this regime.

Summary

In conclusion, in this Chapter we have formulated a quasiclassical theory of Ising superconductivity and used it to study the effect of disorder on n-doped TMD monolayer superconductors. We have calculated in-plane upper critical field and density of states in the superconducting phase. We have predicted that these quantities are robust to intravalley scattering, while intervalley scattering suppresses h c2 and introduces smearing of the density of states. Furthermore, we have identified intervalley scattering as a likely mechanism for the more moderate enhancement of h c2 observed in experiment, as weak disorder of this kind can explain the experimetal data. Chapter 6

Multiband Ising superconductors

In Chapter 5, we showed that the properties of n-doped TMD superconductors (MoS 2 and WS 2 ) are well explained with a model incorporating Ising SOC and intervalley scattering. However, this model is not sufficient in p-doped TMDs (NbSe 2 and TaS 2 ), as their multiband nature plays an important role in the superconducting properties (as discussed in Secs. 1.1.2 and 2.3). In this Chapter, we present a quasiclassical theory of Ising superconductivity which accounts for the multiband effects.

We assume that superconductivity originates from the K-band and is induced in the Γ-band by proximity effect in the momentum space. The mechanism coupling the two bands is provided by interband scattering. At zero magnetic field, a theoretical description of this system is given by the McMillan model [START_REF] Mcmillan | Tunneling model of the superconducting proximity effect[END_REF]. It is in excellent agreement with measured quasiparticle spectra of trilayer NbSe 2 from Ref. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF], and can account for the observed two-gap structure. Note that our model neglects intrinsic superconductivity in the Γ-band, which is mainly motivated by convenience in calculations. Allowing for intrinsically superconducting Γ-band would not introduce any qualitative changes to our results. In fact, it would introduce small quantitative changes, which would quickly become negligible at higher fields where this band transitions to the normal state (while the K-band remains superconducting).

Furthermore, the single-band theory from Chapter 5 cannot explain the h c2 measurements in p-doped TMDs. SOC at the ±K points is larger by an order of magnitude in the valence band compared to conduction band (see Chapter 2.2). Yet, H c2 in p-doped TMDs is only slightly larger than in MoS 2 (see Fig. 2.3). The magnitude of intervalley scattering required to compete with such a large SOC, and to explain the experiments, is unphysically large (τ -1 iv ∼ ∆ so T c ) [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF]. In Sec. 6.3, we show that interband scattering provides an additional mechanism that limits H c2 , and that weak disorder of this kind (∼ T c ) can explain the experimental data.

The structure of this Chapter is as follows. We start by formulating the quasiclassical Eilenberger equations in Sec. 6.1, using the model of the K-and Γ-band presented in Chapter 3. In Sec. 6.2, we discuss the superconducting properties in the absence of a magnetic field, reproducing the results of the McMillan model. Next, we calculate the in-plane upper critical field in Sec. 6.3 and compare it to experimental mesurements. In Sec. 6.4, we calculate the density of states in the superconducting state as a function of magnetic field. Finally, in Sec. 6.5, we discuss the regime of strong SOC in both bands, where our results significantly simplify. Our analysis in this Chapter is mostly focused 6.1. Quasiclassical equations on the regime of strong SOC in the K-band, ∆ so T c , τ -1 iv , (∆ Γ so ) 2 τ Γ , Γ KΓ , Γ ΓK (in-line with first principle calculations, see Sec. 2.2), and weak interband disorder Γ KΓ , Γ ΓK ∼ T c (in-line with experiment [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF]).

Quasiclassical equations

Starting from the model for disordered p-doped TMDs from Chapter 3, we derive quasiclassical Eilenberger equations for the K-band

[(ω n + ihs x )τ z + iη∆ so s z + ∆τ y + Γ KΓ g Γ + 1 2τ iv g K η , g K η ] = 0, (6.1) 
and for the Γ-band

[(ω n + ihs x )τ z + 1 2τ Γ,so s z g Γ s z + Γ ΓK 2 (g K η + g K η ), g Γ ] = 0. (6.2)
Here, we introduced two quasiclassical Green's functions, g K η and g Γ , which describe the K-band and the Γ-band, respectively. As in Chapter 5, we neglect Rashba SOC and trigonal warping, as well as non-potential disorder in the K-band. Intervalley scattering (τ -1 iv ) couples the two valleys in the K-band, while interband scattering (Γ KΓ and Γ ΓK ) couples the two bands, as illustrated in Fig. 6.1. We account for the effect of spin-orbit coupling in the Γ-band by an effective rate τ -1 Γ,so = (∆ Γ so ) 2 τ Γ . Namely, if we assume sufficiently strong disorder, τ -1 Γ ∆ Γ so , which randomizes the direction of momenta, the anisotropic SOC in the Γ-band will contribute as an effective spin-orbit scattering rate τ -1 Γ,so . This statement is derived in Appendix C.1. Both Eilenberger equations need to be supplemented with the normalization condition

[g K η ] 2 = 1, [g Γ ] 2 = 1. (6.
3)

The form of the quasiclassical Green's function for the K-band, which solves Eq. (6.1), is the same as the one used in Chapter 5, namely

g K η = c K 0 τ y + c K x τ y s x + d K 0 τ z + d K x τ z s x + ηb K y s y τ x + ηa K z s z . (6.4) 
The Green's function for the Γ-band, which solves Eq. (6.2), is given as

g Γ = c Γ 0 τ y + c Γ x τ y s x + d Γ 0 τ z + d Γ x τ z s x . (6.5)
Substituting the expressions (6.4) and (6.5) into the Eilenberger equations (6.1) and (6.2), and taking into account the normalization condition (6.3), leads to a system of coupled equations for the components of g K η and g Γ , as written in Appendix C.2. The superconducting order parameter ∆ is determined self-consistently by

∆ = λT πν 0K ωn c K 0 (ω n ). (6.6)
Note that only g K contributes to Eq. (6.6), as our model assumes that superconductivity originates from the K-band only. The density of states can be written as

ν( ) = N K ν 0K [d K 0 ( )] + N Γ ν 0Γ [d Γ 0 ( )], (6.7) 
after the analytical continuation iω n → + i0 + . Here, we introduced phenomenological parameters N K and N Γ , called the tunneling selectivity towards the K-and-Γ band, respectively, where N K + N Γ = 1. These quantities account for possible preferential tunneling to certain bands in experiment, due to the details of the band structure of the material and/or the experimental setup [START_REF] Noat | Quasiparticle spectra of 2 H-NbSe 2 : Twoband superconductivity and the role of tunneling selectivity[END_REF].

Multiband superconductivity in the absence of a magnetic field

In the absence of an in-plane Zeeman field, the form of the quasiclassical Eilenberger equations and quasiclassical Green's functions significantly simplifies. We have

[ω n τ z + ∆τ x + Γ KΓ g Γ , g K η ] = 0, [ω n τ z + Γ ΓK 2 (g K η + g K η ), g Γ ] = 0, (6.8) 
where

g K η = c K 0 τ y + d K 0 τ z , (c K 0 ) 2 + (d K 0 ) 2 = 1, g Γ = c Γ 0 τ y + d Γ 0 τ z , (c Γ 0 ) 2 + (d Γ 0 ) 2 = 1. (6.9)
After substituting Eq. (6.9) into Eq. (6.8), performing the analytical continuation iω n → +i0 + , and defining effective energy-dependent order parameters ∆ X ( ) = -i c X 0 ( )/d X 0 ( ), where X = K, Γ, we obtain

∆ K ( ) = ∆ + Γ KΓ ∆ Γ ( ) √ ∆ 2 Γ ( )-2 1 + Γ KΓ √ ∆ 2 Γ ( )-2 , ∆ Γ ( ) = Γ ΓK ∆ K ( ) √ ∆ 2 K ( )-2 1 + Γ ΓK √ ∆ 2 K ( )-2 . (6.10)
The density of states is then given as This result is equivalent to the so-called McMillan formula for multiband superconductivity [START_REF] Mcmillan | Tunneling model of the superconducting proximity effect[END_REF]. It was first derived for junctions of normal metals and superconductors [START_REF] Mcmillan | Tunneling model of the superconducting proximity effect[END_REF], and later found to be valid for multiband superconductors where bands are coupled by disorder [START_REF] Schopohl | Tunneling density of states for the two-band model of superconductivity[END_REF]. As a superconductor (or a superconducting band) is coupled to a normal metal (or a normal band), the Cooper pairs can transfer to the normal metal (normal band) and induce superconductivity in it. This is the so-called superconducting proximity effect.

ν( ) = N K ν 0K | | 2 -∆ 2 K ( ) + N Γ ν 0Γ | | 2 -∆ 2 Γ ( ) . ( 6 
In Fig. 6.2, we plot Eq. (6.11) for various values of interband scattering. The quasipar- ticle spectra in the K-and Γ-band have the same gap edge. The spectrum in the Γ-band exhibits one coherence peak at the energy corresponding to the induced superconducting gap. In the K-band, at sufficiently weak disorder (black and read curves in Fig. 6.2) two features are visible in the spectrum, corresponding to the intrinsic superconducting gap (at higher energies) and to an induced gap (at lower energies). These features cannot be resolved at stronger disorder (green curve in Fig. 6.2), due to a higher degree of band mixing.

Interband scattering modifies the superconducting critical temperature, due to the inverse proximity effect. Solving the self-consistent gap-equation (6.6) in the vicinity of the phase transition to the normal state, we obtain ln

T * c T c = Γ KΓ Γ KΓ + Γ ΓK ψ 1 2 + Γ KΓ + Γ ΓK 2πT c -ψ 1 2 . (6.12)
Here, T c is the real critical temperature, while T * c is the "bare" critical temperature, corresponding to the case without interband disorder, and defined using the standard BCS relation

T * c = 1.13Ω D exp[-1/(λν 0K )]
. Equation (6.12) therefore describes the degree to which the bare critical temperature is suppressed by interband disorder.

The standard BCS relation at zero temperature, ∆ 0 ≈ 1.76T c , no longer holds in multiband superconductors. This is illustrated in Fig. 6.3, where we see that in the presence of interband disorder, the ratio ∆/T c is enhanced compared to the standard BCS result. Let us discuss these results in comparison with experiments in few-layer superconducting NbSe 2 , which measured its quasiparticle spectra [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF][START_REF] Sohn | An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2[END_REF][START_REF] Khestanova | Unusual suppression of the superconducting energy gap and critical temperature in atomically thin NbSe 2[END_REF]. Refs. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF][START_REF] Khestanova | Unusual suppression of the superconducting energy gap and critical temperature in atomically thin NbSe 2[END_REF] measured an unusual shape of the density of states compatible with multiband superconductivity. As mentioned previously in Sec. 1.1.2, Ref. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF] found a very good agreement with the McMillan model, taking interband disorder to be Γ KΓ , Γ ΓK ∼ T c . Furthermore, all experiments found the ratio ∆/T c > 1.76, which is also a feature of multiband superconductivity.

Upper critical field

In this section, we calculate the effect of interband scattering on the upper critical field in Ising superconductors, by solving the self-consistent gap equation (6.6) in the vicinity of the phase transition, where ∆ → 0. Here, the quasiclassical Green's functions can be written as g K η = τ z +δg K η and g Γ η = τ z +δg Γ , where τ z is the normal state contribution and δg K η , δg Γ ∼ ∆. Close to the second-order phase transition, we have (δg K η ) 2 , (δg Γ ) 2 1. Then, the normalization condition (6.3) yields {τ z , δg K η } = 0 and {τ z , δg Γ } = 0, which leads to δg

K η = c K 0 τ y + c K x s x τ y + ηb K y s y τ x , δg Γ = c Γ 0 τ y + c Γ x s x τ y , and d K 0 , d Γ 0 ≈1; a K z , d K x , d Γ
x ≈ 0. Now, we can use the system of equations specified in Appendix C.2 to obtain c K 0 . Combining this with the self-consistency condition (6.6) and the relation (6.12) yields ln

T T * c = 2πT ωn ∆ 2 so + ωn (ω n + τ -1 iv ) h2 c2 (ω n + τ -1 iv ) + (ω n -τ -1 Γ,so )[∆ 2 so + ωn (ω n + τ -1 iv )] - 1 ω n . (6.13)
Here, we have introduced

ωn = ω n + Γ KΓ -AΓ KΓ Γ ΓK (ω n + Γ ΓK ), hc2 = h c2 + AΓ KΓ Γ ΓK h c2 , τ -1 iv = τ -1 iv + AΓ KΓ Γ ΓK (ω n + Γ ΓK ), τ -1 Γ,so = AΓ KΓ Γ ΓK τ -1 Γ,so , A = [(ω n + Γ ΓK )(ω n + Γ ΓK + τ -1 Γ,so ) + h 2 c2 ] -1 . (6.14)
Equation (6.13) can be used to numerically calculate the h c2 (T ) diagram. We chose the notation so that Eq. (6.13) resembles the results from the single-band scenario, Eq. (5.11). Namely, in the absence of interband scattering, we have ωn → ω n , τ -1 iv → τ -1 iv , T * c → T c and τ -1 Γ,so → 0, and Eq. (6.13) reduces to Eq. (5.11).

In Fig. 6.4 (a) we plot the h c2 (T ) curve for various strengths of interband disorder, taking strong SOC of ∆ so = 100T c . For simplicity, we take Γ KΓ = Γ ΓK . For comparison, in Fig. 6.4 (b), we plot the h c2 (T ) diagram for a single-band system with intervalley scattering of the same strength. Similarly to intervalley scattering (see Chapter 5), interband scattering also suppresses the H c2 divergence at zero temperature. The mechanism of suppression is the inverse proximity effect in the K-band. Namely, proximity-induced superconductivity in the Γ band is not protected by strong Ising SOC from the in-plane magnetic fields. Due to interband scattering, the Cooper pairs from the K-band can "leak" into the Γ band, where they are easily broken by the magnetic field. As seen from Fig. 6.4, this process is very efficient is suppressing superconductivity, much more so than intervalley scattering.

The green curve in Fig. 6.4 showcases an important feature of multiband superconductivity, as the h c2 (T ) curve in this case has qualitatively different behaviors at high and low fields. Namely, at low fields, superconductivity exists in both bands. However, after some threshold field, superconductivity in the Γ-band gets suppressed, and this band transitions to the normal state. As the field is further increased, only the K-band contributes to superconductivity, resulting in a qualitatively different behavior compared to low fields. For stronger interband disorder (blue and orange curves in Fig. 6.4) this feature is absent due to the higher degree of band-mixing.

In Fig. 6.5 (a), we examine how SOC in the Γ-band affects the upper critical field. It "protects" the superconductivity in the Γ-band, making it more robust to applied magnetic fields. First, let us consider the case τ -1 Γ,so ∆ so , where the Γ-band will become normal at some threshold field while the K-band remains superconducting above it. In this case, τ -1 Γ,so only modifies the low-field part of the h c2 (T ) diagram. SOC in the Γ-band has a more significant impact on the upper critical field only if it is comparable to the SOC in the K-band (τ -1 so,Γ ∼ ∆ so ), which is not expected in realistic TMDs. In Fig. 6.5 (b), we examine how intervalley scattering affects h c2 in the multiband Ising superconductor. Unsurprisingly, its main effect is an additional suppression of h c2 .

Experimental measurements of the upper critical field in monolayer and few-layer samples of NbSe 2 [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF][START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF][START_REF] Sohn | An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2[END_REF] and TaS 2 [START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF] can be explained by taking high Ising SOC as expected for these systems (of the order magnitude ∆ K so ∼ 100T c ), and weak interband disorder (Γ KΓ , Γ ΓK ∼ T c ). This situation corresponds to the blue curve in Fig. 6.4 (a). In order to obtain similar h c2 within the single-band model, an unrealistically large intervalley scattering would be needed (τ -1 iv ∼ ∆ so ), as illustrated by the gray curve in Fig. 6.4 (b). In Fig. 6.6, we show that our multiband model is in a good agreement with the h c2 measurements from Ref. [START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF]. 

= Γ ΓK = τ -1 iv = 2T c , τ -1 Γ,so = 3.5T c .
Note that these measurements of h c2 (T ) did not find a qualitatively different behavior at high and low fields [like in the green curve in Fig. 6.4 (a)]. Within our model, the absence of this feature suggests either strong-enough interband scattering [as illustrated in Fig. 6.4 (a)] or strong-enough SOC in the Γ-band [as illustrated in Fig. 6.5 (a)].

Density of states

In this section, we will examine the evolution of the density of states in the superconducting state with applied in-plane field. As in the previous text, we will make two realistic assumptions: strong SOC in the K-band, ∆ so T c , τ -1 iv , τ -1 Γ,so , Γ KΓ , Γ ΓK , and weak interband disorder Γ KΓ , Γ ΓK ∼ T c . Under these assumptions, the Eilenberger equations (6.1) 6.5. Regime of strong SOC in both bands and (6.2) become

∆ K ( ) = ∆ so ρ ∆ + Γ KΓ 2 ± ∆ ± Γ ( ) √ [∆ ± Γ ( )] 2 -2 1 + ± Γ KΓ 2 √ [∆ ± Γ ( )] 2 -2 + h 2 ρ 2 τ iv 1 √ ∆ 2 K ( )-2 , ∆ ± Γ ( ) = ∆so ρ Γ ΓK ∆ K ( ) √ ∆ 2 K ( )-2 + 1 2τ Γ,so ∆ ∓ Γ ( ) √ [∆ ∓ Γ ( )] 2 -2 1 ∓ h + Γ ΓK √ ∆ 2 K ( )-2 + 1 2τ Γ,so 1 √ [∆ ∓ Γ ( )] 2 -2 . ( 6.15) 
where ρ = ∆ 2 so + h 2 . Here ∆ K ( ) and ∆ ± Γ ( ) are effective energy dependent order parameters in the K-and Γ-band, respectively. The two signs in ∆ ± Γ ( ) denote spin-up (+) and spin-down (-) electrons of the Γ-band. The derivation of Eq. (6.15) is given in Appendix C.2. The density of states is given as

ν( ) = N K ν 0K | | 2 -∆ 2 K ( ) + 1 2 N Γ ν 0Γ ± | | 2 -[∆ ± Γ ( )] 2 . (6.16)
Here, the factor 1/2 is required to account for the contribution of the single spin species of the Γ-band to the DoS. Equation (6.16) reduces to Eq. (6.6) when there is no spinsplitting in the Γ-band (∆ + Γ = ∆ - Γ ). In Fig. 6.7 we plot the DoS using Eqs. (6.15) and (6.16), taking strong SOC ∆ so = 100T c and weak interband scattering Γ KΓ = Γ ΓK = T c . In Fig. 6.7 (a) we consider the case τ -1 iv = τ -1 Γ,so = 0. In Figs. 6.7 (b) and 6.7 (c), we examine how SOC in the Γ-band and intervalley scattering modify this case, respectively.

In Fig. 6.7 (a), upon increasing the Zeeman field, the quasiparticle peak in the Γ-band first becomes spin-split (red curve), followed by complete suppression of superconductivity (green curve). In the K-band, this manifests itself in a suppression of the smaller (induced) gap in the quasiparticle spectrum. Further increasing the magnetic field results in a suppression of the larger (intrinsic) gap.

In Fig. 6.7 (b), due to the SOC of the Γ-band, applying an in-plane Zeeman field does not cause spin-splitting of the DoS, and the Γ-band remains superconducting up to higher fields compared to the previous case. The high field behavior in the K-band remains essentially unchanged compared to Fig. 6.7 (a).

The behavior of the DoS in 6.7 (c) is qualitatively very similar to Fig. 6.7 (a), the main difference being that total suppression of superconductivity in the K-band occurs at lower fields due to the effect of intervalley scattering.

Regime of strong SOC in both bands

The expression for the linearized gap equation, Eq. (6.13), and for the density of states, Eqs. (6.15) and (6.16), significantly simplify if SOC is sufficiently strong in both the K-and the Γ-band, if we assume ∆ 2 so τ iv , τ -1 Γ,so T c , Γ KΓ , Γ ΓK , and either h/∆ so 1 or τ -1 iv T c , Γ KΓ , Γ ΓK . Under these assumptions, the effect of magnetic field is captured by the Abrikosov-Gor'kov depairing parameters

α K (h) = h 2 ∆ 2 so τ iv , α Γ (h) = h 2 τ Γ,so .
(6.17) 

= τ -1 Γ,so = 0 (h c2 ≈ 27T c ); (b) τ -1 iv = 0, τ -1 Γ,so = 10T c (h c2 ≈ 27T c ); (c) τ -1 iv = 10T c , τ -1 Γ,so = 0 (h c2 ≈ 16T c
). The graphs were plotted using Eqs. (6.15) and (6.16), where the gap ∆ was calculated selfconsistently for the given parameter combination at T = 0.3T c . The relatively high temperature was chosen for numerical convenience, as the self-consistent calculation of ∆ converges quicker, while the qualitative behavior remains the same compared to lower temperatures.

The linearized gap equation can now be written as ln

T T * c = 2πT ωn 1 ω n + α K (h c2 ) + Γ KΓ -Γ KΓ Γ ΓK [ω n + α Γ (h c2 ) + Γ ΓK ] -1 - 1 ω n . (6.18)
Eq. (6.18) can be alternatively expressed in terms of digamma functions ψ, as shown in Appendix C.3. This form allows us to make analytical estimates of h c2 in the limits T → T c and T → 0 (see Appendix C.3 for detailed derivations).

For temperatures in the vicinity of T c , taking ∆ 2 so τ iv τ -1 Γ,so , which is likely the case 6.6. Summary in TMDs, and Γ KΓ , Γ ΓK ∼ T c , we obtain

h c2 = C T c -T T c τ -1 Γ,so T c . (6.19)
Here, C is a dimensionless quantity of the order 1, which depends on interband disorder, and is defined in Appendix C.3. On the other hand, close to T = 0, assuming that ∆ 2 so τ iv τ -1 Γ,so , such that h 2 c2 τ Γ,so T c , we have

h c2 (T = 0) = ∆ * 0 2 -Γ KΓ ∆ 2 so τ iv , (6.20) 
where ∆ * 0 = 1.76T * c . The expressions (6. [START_REF] Garcia | Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures[END_REF]) and (6.20) showcase the qualitatively different behavior of h c2 in multiband superconductors for temperatures T → T c and T → 0, at low and high fields, respectively, as discussed previously in Sec. 6.3. The low-field behavior given in Eq. ( 6. [START_REF] Garcia | Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures[END_REF]) is determined by the Γ-band, as the induced superconductivity diminishes and ultimately disappears as the field is increased, while the K-band remains largely unaffected. By contrast, the high field behavior given in Eq. (6.20) (where the Γ-band is normal) is dominated by the K-band.

Next, we consider the DoS in the regime of strong SOC in both bands, where the effective order parameters from Eq. (6.15) simplify to

∆ K ( ) = ∆ + Γ KΓ ∆ Γ ( ) √ ∆ 2 Γ ( )-2 1 + Γ KΓ √ ∆ 2 Γ ( )-2 + α K (h) √ ∆ 2 K ( )-2 , ∆ Γ ( ) = Γ ΓK ∆ K ( ) √ ∆ 2 K ( )-2 1 + Γ ΓK √ ∆ 2 K ( )-2 + α Γ (h) √ ∆ 2 Γ ( )-2 . (6.21) 
The DoS can now be expressed using Eq. (6.16). In this regime, we don't need to distinguish between the two spin species in the Γ-band, in contrast to Eq. (6.15), due to the large SOC that mixes them. Eq. (6.20) has the same form as the so-called Keiser-Zuckermann model [START_REF] Kaiser | McMillan model of the superconducting proximity effect for dilute magnetic alloys[END_REF]. It is a refinement of the McMillan model, developed to describe superconductors in contact with normal metals, where Abrikosov-Gor'kov depairing comes from magnetic impurities. Eq. (6.21) has been found to be in good agreement with measured quasiparticle spectra of trilayer NbSe 2 subjected to low fields (H < 3.5T ) in Ref. [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF], see Fig. 6.8. This study found that the secondary gap in the quasiparticle spectrum gets suppressed by low fields, while the primary gap remained unchanged up to H = 6.4T . This corresponds to the parameter regime α Γ α K , consistent with strong SOC in the K-band and weak SOC in the Γ-band.

Summary

In this Chapter, we have formulated a quasiclassical theory for multiband superconductivity in p-doped TMD monolayers, and studied their behavior in in-plane magnetic fields. We show that weak interband disorder, of the order ∼ T c , can account for both the amplitude of h c2 and the shape of the density of states measured in these materials.

We are currently collaborating with the experimental group of Marco Aprili and Charis Quay (Laboratoire de Physique des Solides, Paris), and applying the theory developed in this Chapter to explain their measurements of quasiparticle spectra of trilayer NbSe 2 subjected to high in-plane fields. Γ,so =0.5 meV and ∆ 2 so τ iv >6.7 meV.

Part II

Interference correction to the conductance in TMDs and graphene/TMD heterostructures Chapter 7

Weak localization

In Part I, we found that the interplay of Ising SOC and disorder, particularly intervalley and interband scattering, plays a crucial role in explaining the properties of superconducting TMDs. In order to learn more about the role of disorder in these materials, we turn to their normal state. Namely, in Part II of this thesis, we study quantum interference corrections to the conductance, W(A)L in this Chapter and UCF in the next. These phenomena are sensitive to, and provide an independent source of information on SOC, disorder, and Berry phase due to the Dirac-like band structure. Our results also extend to graphene/TMD heterostructures, whose properties are described by the same model as TMDs (see Chapter 3).

In Part II, we will focus only on the physics of ±K points, meaning that the presented results hold in n-doped TMDs and n-and p-doped graphene/TMD heterostructures, but not in p-doped TMDs, where the Γ-band appears in the spectrum.

Note that the model presented in Chapter 3 is used under different assumptions in Parts I and II. Firstly, and most importantly, in order to carry out analytical calculations in Part II, we need to assume that the diagonal disorder rate τ -1 0 is the dominant one, i.e., τ -1 ≈ τ -1 0 , and to use the diffusive approximation |µ| -E g τ -1 0 ∆ so , h, λ, κq 2 F . This is not the case in Part I, where the presented results hold for any disorder strength and any ratio of intra-and intervalley scattering. Secondly, in Part II, we are able to account for the effect of Rashba SOC, trigonal warping, and non-potential disorder (See Eqs. (3.4) and (3.7)), which was not possible (analytically) in Part I , where the diffusive approximation was not assumed.

In this Chapter, we develop a theory of W(A)L for both TMDs and graphene/TMD heterostructures. These phenomena were recently very actively explored in experiments, as they can reveal information about SOC and disorder, which is of interest for numerous applications of these materials (see Chapters 1 and 2 for more details). In Sec. 7.1, to set the stage, we calculate the classical, Drude conductivity for TMDs and their heterostructures with graphene. In Sec. 7.2, we calculate the Cooperons, which are the main ingreadients for formulating the theory of W(A)L. In Sec. 7.3, we write the general expression for the W(A)L magnetoconductance and the main result of this Chapter, which we then analyze in several regimes of interest for interpreting recent experiments. Finally, we consider the effect of an in-plane Zeeman field in Sec. 7.4, which can be used to distinguish the contributions of different kinds of SOC to the WL magnetoconductance. In Sec. 7.4, we compare our results with recent experiments. The results presented in 7.1. Drude conductivity this Chapter are published in Ref. [START_REF] Ilić | Weak localization in transition metal dichalcogenide monolayers and their heterostructures with graphene[END_REF].

Drude conductivity

In order to describe quantum transport in our system, we will employ the standard diagrammatic technique for disordered systems. In particular, we introduce disorderaveraged, zero-temperature retarded (R) and advanced (A) Green's functions as

G R,A qω = ω -H q ± i 2τ -1 . (7.1)
Here, H q describes TMDs in the n-doped regime, or graphene/TMD heterostructures in the n-and p-doped regimes, and is given in Eq. (3.4). The self-energy ±i/(2τ ) is calculated from the self-consistent Born approximation, ω is the frequency, and the inverse scattering time τ -1 is given in Eq. (3.11).

In the following, we will assume that the diagonal disorder rate τ -1 0 is the dominant one, i.e., τ -1 ≈ τ -1 0 , and we will use the diffusive approximation |µ| -E g τ -1 0 ∆ so , h, λ, κq 2 F . The current operator along the x-direction for Dirac materials is given by J q = ∂H q /∂q x = vσ x η z [START_REF] Bernevig | Topological insulators and topological superconductors[END_REF]. Upon projecting to the conduction/valence band, it becomes J xq = v F cos θ. As the disorder potential in the projected basis becomes anisotropic, the current vertex is renormalized, as illustrated in diagrammatic form in Fig. 7.1 (a). Namely, the bare vertex is dressed by a series of ladder diagrams, known as diffusons. The renormalized vertex is then given as

Jxq = τ tr τ 0 J xq with τ tr = 1 + v 2 q 2 F 4E 2 g + v 2 q 2 F τ 0 . (7.2)
Here, we have introduced the transport time τ tr , which takes the value τ 0 at the bottom of the conduction band µ ≈ E g , where the spectrum is parabolic (similarly to conventional metals), and 2τ 0 deep in the conduction band µ E g , where the spectrum is linear (as in graphene) [START_REF] Mccann | Weak-localization magnetoresistance and valley symmetry in graphene[END_REF]. Within the linear response theory, the Drude conductivity is then given as 

σ = e 2 2π d 2 p (2π) 2 Tr Jxq G R qω J xq G A qω = 4e 2 ν 0K D, ( 7 

Cooperons

The interference correction to the Drude conductivity (7.3) can be expressed in terms of Cooperons, C ab,a b αβ,α β , which represent disorder averages of two Green's functions and correspond to maximally crossed diagrams [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF]. The Greek indices in the subscript (Latin indices in the superscript) correspond to the spin (valley) degree of freedom and take values ±1. The Cooperons are determined from a system of coupled Bethe-Salpeter equations, as shown in diagrammatic form in Fig. 7.2 (a). Namely,

C ab,a b αβ,α β (θ, θ ; Q) = W ab,a b αβ,α β (θ, θ ) + 2π 0 dθ 2π W aa 1 ,bb 1 αα 1 ,ββ 1 (θ, θ )Π a 1 b 1 α 1 β 1 ,α 2 β 2 (θ ; Q)C a 1 b 1 ,a b α 2 β 2 ,α β (θ , θ ; Q). (7.4)
Here, summation over repeated indices is assumed, and we have introduced the disorder correlator W and the polarization operator Π as We proceed by solving Eq. ( 7.4) in the presence of the dominant diagonal scattering only in Sec. 7.2.1, in order to resolve the angular structure of the Cooperons. Next, we include all other types of disorder in Sec. 7.2.2.

W ab,a b αβ,α β (θ, θ ) = [H D qq ] aa αα [H D qq ] bb ββ and Π ab αβ,α β (θ; Q) = ν 0K dξ q [G R q +ω ] a αα [G A q+Qω ] b ββ , ( 7 

Cooperons in the presence of diagonal disorder only

In order to resolve the angular structure of the Cooperons, we will first consider the case where only the diagonal disorder with rate τ -1 0 is present. The other types of scattering will not affect this structure, but only introduce additional Cooperon gaps. Furthermore, the angular structure is independent of the spin structure. Therefore, we also neglect the spin structure here, setting ∆ so and h to zero. To simplify the notation, spin indices are omitted in this subsection. We proceed with this calculation in the same spirit as in Ref. [START_REF] Shan | Spin-orbit scattering in quantum diffusion of massive Dirac fermions[END_REF]. First, we expand the Cooperons and the disorder correlator in harmonics,

C ab,a b (θ, θ ; Q) = ∞ n,m=-∞ C ab,a b nm (Q)e -i(nθ-mθ ) , W ab,a b (θ, θ ) = ∞ n=-∞ W ab,a b n e -in(θ-θ ) . (7.7) 
Furthermore, a = a and b = b in the absence of intervalley scattering. The only Cooperon that enters the interference correction (7.6) is the intravalley one, C aa,aa (θ, θ ). From Eqs. (7.4) and (7.7), we get a system of coupled equations for its harmonics, whose solution yields

C aa,aa (θ, θ ; Q) = C aa,aa 00 (Q) + C aa,aa aa (Q)e -ia(θ-θ ) with C aa,aa ii (Q) = 1 2πν 0K τ 2 0 1 D i |Q| 2 -iω + τ -1 φ + Γ i . (7.8)
Here, a = ±1,

Γ 0 = 1 τ 0 (µ-Eg) 2 (µ+Eg) 2 and Γ a = 1 τ 0 2E 2 g µ 2 -E 2 g
are the relevant Cooperon gaps, and

D 0 = 1 8 v 2 F τ 0 (3 + E 2 g µ 2 ) and D a = v 2 F τ 0 (E 2 g +µ 2 ) 2 (µ 2 -E 2 can therefore write C aa,aa (θ, θ; Q) = Ξ 2πν 0K τ 2 0 1 D|Q| 2 -iω + τ -1 φ + Γ Ξ , where Ξ =          1, µ Eg -1 2 τ 0 τ φ , 0, 2 τ 0 τ φ µ Eg -1 2τ φ τ 0 , -1, µ Eg 2τ φ τ 0 , (7.9) and Γ 1 = τ -1 0 [vq F /(2µ)] 4 , Γ -1 = 2τ -1 0 (E g /µ) 2 .
Note that the diffusion constants D 0 and D a reduce to D, introduced in Eq. ( 7.3), in the relevant limits.

Upon inserting Eq. ( 7.9) into Eq. ( 7.6), we obtain the quantum correction for massive Dirac fermion systems in the presence of smooth disorder, consistent with Ref. [START_REF] Shan | Spin-orbit scattering in quantum diffusion of massive Dirac fermions[END_REF]. Its behavior is governed by the doping-dependent coefficient Ξ: for a large Dirac mass E g (Ξ = 1), we get WL, whereas in the massless system (Ξ = -1), we get WAL. The quantum correction vanishes in the intermediate mass regime. This can be reinterpreted [START_REF] Shan | Spin-orbit scattering in quantum diffusion of massive Dirac fermions[END_REF] in terms of the Berry phase of a massive Dirac material given as ϕ B = π(1 -E g /µ), which introduces no phase shift to the electron interference in the large mass limit (leading to WL), and a shift of π for massless systems (leading to WAL).

Next, we will find the intervalley Cooperon C aā,aā (θ, θ ). Note that it does not enter the quantum correction (7.6), but it is useful to resolve its angular structure for later use. We find that the only harmonic that is not gapped is C 00 , and we can write 

C aā,aā (θ, θ ; Q) = C aā,aā 00 (Q) = 1 2πν 0K τ 2 0 1 D|Q| 2 -iω + τ -1 φ . ( 7 

Cooperons in the presence of all disorder terms

We proceed to solve the Cooperon equation (7.4) in the presence of all disorder terms. Additional intervalley Cooperons of the form C aā,āa can now exist. Since they are coupled to C aā,aā via intervalley scattering, which does not introduce additional angular dependence, they will also be angularly-independent. Using Eqs. (7.9) and (7.10), we can write for all Cooperons

C ab,a b (Ξ; Q) = [C aa,aa 00 (Q)δ Ξ,1 + C aa,aa aa (Q)δ Ξ,-1 ]δ aa δ bb δ ab + C aā,b b 00 (Q)δ a bδ a b , W ab,a b (Ξ) = [W aa,aa 0 δ Ξ,1 + W aa,aa a δ Ξ,-1 ]δ aa δ bb δ ab + W aā,b b 0 δ a bδ a b . (7.11)
We explicitly write the components of the disorder correlator W from Eq. (7.11) in Appendix D.2.3. Eq. (7.4) can now be written in a simpler, angularly-independent form,

C ab,a b αβ,α β (Ξ; Q) = W ab,a b αβ,α β (Ξ) + W aa 1 ,bb 1 αα 1 ,ββ 1 (Ξ)Π a 1 b 1 α 1 β 1 ,α 2 β 2 (Q)C a 1 b 1 ,a b α 2 β 2 ,α β (Ξ; Q). (7.12)
Using Eq. (7.11), the expression for the inteference correction δσ (7.6), after solving the integrals over angles, can be written in a simpler manner as

δσ = - e 2 D π (2πν 0K τ 2 0 ) d 2 Q (2π) 2 C ab,ba αβ,βα (Ξ, Q)[Ξδ ab + δ a b], (7.13) 
where summation over repeated indices is assumed. Next, we employ a transformation to the singlet-triplet basis [START_REF] Mccann | z→-z symmetry of spin-orbit coupling and weak localization in graphene[END_REF] in spin and valley space,

M ll ss = 1 4 [s y s s ] αβ [η x η l ] ab M ab,a b αβ,α β [s s s y ] β α [η l η x ] b a , (7.14) 
where indices s, s = 0 and l, l = 0 correspond to spin-and valley-singlet Cooperon modes, respectively, while s, s = x, y, z and l, l = x, y, z correspond to spin-and valley-triplet modes. Here, the operator M can stand for a Cooperon (C), disorder correlator (W ), or a polarization operator (Π). The disorder correlator is diagonal in the singlet-triplet space, W ll ss (Ξ) = W l s (Ξ)δ ss δ ll , and the Cooperon equation (7.12) after the transformation becomes

C ll ss (Ξ; Q) = W l s (Ξ)δ ss δ ll + W l s (Ξ)Π ll 1 ss 1 (Q)C l 1 l s 1 s (Ξ; Q). (7.15)
The quantum correction involves only the diagonal Cooperons C ll ss ≡ C l s . Note that triplets modes C x s and C y s are related to the intravalley Cooperons, while the valley-singlet C 0 s and triplet C z s are related to intervalley ones. Finally, the interference correction, Eq. (7.13), in the new basis has the form

δσ = - e 2 D π (2πν 0K τ 2 0 ) d 2 Q (2π) 2 s c s l=0,z c l C l s (Ξ; Q) + Ξ l=x,y c l C l s (Ξ; Q) , (7.16) 
where c s = -1, 1, 1, 1 and c l = 1, 1, 1, -1 for s, l = 0, x, y, z. Eq. ( 7.16) generalizes similar expressions from Refs. [START_REF] Mccann | z→-z symmetry of spin-orbit coupling and weak localization in graphene[END_REF] and [START_REF] Ochoa | Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides[END_REF], which are valid at Ξ = -1 and Ξ = 1, respectively. In Appendix D.3, we present derivation of Eqs. (7.15) and (7.16), as well as explicit forms of the polarization operator Π and the disorder correlator W in the singlet-triplet basis.

The diagonal Cooperon modes C l s , necessary to compute δσ, are determined by solving Eq. (7.15). Due to the spin-splitting described by ∆ so and h, the polarization operator Π ll ss (Q) is not diagonal in the singlet-triplet space. As a consequence, some Cooperon modes are coupled. As will be discussed in the further text, the coupling of different Cooperon modes by the spin-splitting fields suppresses them. In a physical sense, Cooperons coupled by the fields describe interference of electrons coming from two spin-split bands, which is suppressed by the energy difference of the electrons. On the other hand, interference of electrons in degenerate bands is described by the non-coupled Cooperons. Note that momentum-dependent parts of the Hamiltonian (3.4), such as Rashba SOC and trigonal warping, do not cause coupling of different Cooperon modes in the diffusive limit, but only enter their gaps.

a. Non-coupled Cooperon modes. First, we solve the Cooperons that are not coupled by the Ising SOC or the in-plane field, with the indices (s, l) = (y, x), (y, y), (z, 0), (z, z). They are given by

C l s = 1 2πν 0K τ 2 0 1 P l s , (7.17) 
(see Appendix D.4 for derivation). Here, we introduced P l s = D|Q| 2 -iω + τ -1 φ + Γ l s , where the Cooperon gaps Γ l s are specified in Table 7.1. Because the intravalley Cooperons have different angular dependence in the two extreme limits of Eq. (7.9), their gaps Γ x s and Γ y s will also depend on the relevant limit (right-hand side of Table 7.

1). Intervalley

Cooperons, on the other hand, do not depend on angles and chemical potential and have the same gaps for any µ (left-hand side of Table 7.1). The Cooperon gaps contain the scattering rates originating from the phenomenological disorder potential (3.9). Their estimates, listed in Table 3.1, are inversely proportional to the scattering times τ 0 and τ iv . These rates are therefore induced and reinforced by disorder, and behave similarly to the Elliott-Yafet spin relaxation mechanism [START_REF] Elliott | Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors[END_REF][START_REF] Yafet | g Factors and spin-lattice relaxation of conduction electrons[END_REF]. This includes the well-known scattering rate due to the Kane-Mele SOC [START_REF] Mccann | z→-z symmetry of spin-orbit coupling and weak localization in graphene[END_REF], captured by τ -1

z,e ∝ τ -1 0 (

∆ KM v 2 q 2 F µ 3
) 2 (see Table 3.1). Additionally, scattering rates that are proportional to the potential scattering time τ 0 also enter the gaps:

τ -1 BR = 2 λvq F µ 2 τ tr , τ -1 W = 2 κvq 3 F µ 2 τ 0 . (7.18)
They are related with Rashba SOC and trigonal warping, respectively. These rates appear since electrons, due to the details of the band structure, acquire an additional phase upon propagation in-between two scattering events. This effect is suppressed by disorder. The first rate in Eq. ( 7.18) is associated with the Dyakonov-Perel [START_REF] Perel | Spin orientation of electrons associated with the interband absorption of light in semiconductors[END_REF] spin relaxation mechanism. The second rate describes the suppression of intravalley Cooperons due to the breaking of rotational symmetry by trigonal warping, as discussed in Ref. [START_REF] Mccann | Weak-localization magnetoresistance and valley symmetry in graphene[END_REF].

b. Coupled Cooperon modes. Next, we address the coupled Cooperon modes. The effect of the in-plane Zeeman field h applied along the x-direction is such that it couples the spin-singlet C l 0 and spin-triplet C l x Cooperons, as discussed for conventional metals [START_REF] Maekawa | Magnetoresistance in two-dimensional disordered systems: effects of Zeeman splitting and spin-orbit scattering[END_REF]. Ising SOC behaves similarly to an effective Zeeman field in z-direction, but acts differently from the true Zeeman field as it does not break the time-reversal symmetry, and therefore does not affect the spin-and valley-singlet C 0 0 , which is protected by this symmetry. It couples the Cooperons C 0(z) x with C z(0) y

, and C

x(y) 0 with C y(x) z , as discussed in Ref. [START_REF] Ochoa | Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides[END_REF]. The equations for all the coupled Cooperon modes can be compactly written in a matrix form

   P x(y) 0 ∓2∆ so -2ih ±2∆ so P y(x) z 0 -2ih 0 P x(y) x       C xx(yy) 00 C xy(yx) 0z C xx(yy) 0x C yx(xy) z0 C yy(xx) zz C yx(xy) zx C xx(yy) x0 C xy(yx) xz C xx(yy) xx    = 1 2πν 0K τ 2 0 ,    P 0(z) x -2∆ so -2ih 2∆ so P z(0) y 0 -2ih 0 P 0(z) 0       C 00(zz) xx C 0z(z0) xy C 00(zz) x0 C z0(0z) yx C zz(00) yy C z0(0z) y0 C 00(zz) 0x C 0z(z0) 0y C 00(zz) 00    = 1 2πν 0K τ 2 0 , (7.19) 
(see Appendix D.4 for derivation). Eq. (7.19) summarizes 4 matrix equations, each involving 3 coupled modes. Since the Green's functions are diagonal in valley space, the equations for intra-and intervalley Cooperons are decoupled. This can be seen in Eq. (7.19), where the left-hand (right-hand) side describes matrix equations for intravalley (intervalley) Cooperon modes.

Relaxation gaps for C 0 and C z Relaxation gaps for C x and C y at Ξ = -1

Γ 0 0 = 0 Γ x x = Γ x y = Γ y x = Γ y y = τ -1 * + 2τ -1 z,e + τ -1 z,o + τ -1 zv,o + τ -1 BR Γ 0 x = Γ 0 y = 2τ -1 z,e + τ -1 z,o + 2τ -1 zv,e + τ -1 zv,o + 2τ -1 iv,e + τ -1 iv,o + τ -1 BR = τ -1 s Γ x 0 = Γ y 0 = τ -1 * + 2τ -1 zv,e + 2τ -1 zv,o Γ 0 z = 2τ -1 z,o + 2τ -1 zv,o + 2τ -1 iv,o + 2τ -1 BR = 2τ -1 asy Γ x z = Γ y z = τ -1 * + 2τ -1 z,o + 2τ zv,e -1 + 2τ -1 BR Γ z 0 = 2τ -1 iv + 2τ -1 iv,e + 2τ -1 iv,o
Relaxation gaps for C x and C y at Ξ = 1

Γ z x = Γ z y = 2τ -1 iv + 2τ -1 z,e + τ -1 z,o + 2τ -1 zv,e + τ -1 zv,o + τ -1 iv,o + τ -1 BR Γ x x = Γ x y = Γ y x = Γ y y = τ -1 * * + τ -1 z,o2 + τ -1 zv,o + τ -1 BR Γ z z = 2τ -1 iv + 2τ -1 z,o + 2τ -1 zv,o + 2τ -1 iv,e + 2τ -1 BR Γ x 0 = Γ y 0 = τ -1 * * + 2τ -1 z,e2 + 2τ -1 z,o2 + 2τ -1 zv,e + 2τ -1 zv,o Γ x z = Γ y z = τ -1 * * + 2τ -1 z,e2 + 2τ -1 zv,e + 2τ -1 BR τ -1 * = τ -1 iv + 2τ -1 z + τ -1 iv,e + τ -1 iv,o + τ -1 W + 2 τ 0 E 2 g µ 2 τ -1 * * = τ -1 iv + τ -1 z1 + τ -1 z,e1 + τ -1 z,o1 + τ -1 iv,e + τ -1 iv,o + τ -1 W + 1 16τ 0 v 4 q 4 F µ 4
Table 7.1: Left: Relaxation gaps Γ l s for intervalley Cooperons, where indices s and l denote spin and valley, respectively. There are 8 intervalley Cooperons. The time-reversal symmetry sets the gap Γ 0 0 to zero, while the xy symmetry imposes equality of all x and y spin-triplet gaps. As a result, there are only 5 independent gaps. The scattering rates τ -1 asy and τ -1

s = τ -1 sym + τ -1
asy , related to the valley-singlet gaps Γ 0 i (i = x, y, z), are introduced in Eqs. (7.26) and (7.27). Right: Relaxation rates for intravalley Cooperons, which depend on the chemical potential, captured by the coefficient Ξ. In each regime, there are 8 intravalley Cooperons. xy symmetry imposes equality of all x and y triplet gaps, in both spin and valley space. As a result, there are only 3 independent gaps. Since at Ξ = 0 intravalley Cooperons do not contribute to the quantum correction, the related gaps are not included in the table. For a definition of the different scattering rates, see Table 3.1.

Interference-induced magnetoconductance

After inverting the matrices in Eq. (7.19), we obtain all Cooperon modes. Combining them with Eq. (7.16), and introducing the conductance quantum σ 0 = e 2 /(2π 2 ), we arrive at the expression for the interference correction

δσ = 2πσ 0 D d 2 Q (2π) 2 -Ξ 1 P x y + 1 P y y + A( y z , x x , x 0 ) + A( x z , y x , y 0 ) - 1 P 0 z + 1 P z z + A( z y , 0 0 , 0 x ) -A( 0 y , z 0 , z x ) , (7.20)
where

A( l 1 s 1 , l 2 s 2 , l 3 s 3 ) = 2πν 0K τ 2 0 (C l 1 s 1 + C l 2 s 2 -C l 3 s 3 ) = -P l 1 s 1 P l 2 s 2 + P l 3 s 3 P l 1 s 1 + 4h 2 + P l 2 s 2 P l 3 s 3 + 4∆ 2 so P l 1 s 1 P l 2 s 2 P l 3 s 3 + 4h 2 P l 1 s 1 + 4∆ 2 so P l 2 s 2 .
(7.21) Here, each A accounts for one set of coupled Cooperons, that is, one matrix equation from Eq. (7.19).

The above equation is the main result of this Chapter. It is readily evaluated analytically in the absence of the in-plane Zeeman field. The divergent integral over momenta in Eq. ( 7.20) can be handled by introducing an upper cutoff associated with the inverse mean free path l -1 = √ Dτ 0 , which is the smallest length scale in our system. At h = 0, we then obtain

δσ σ 0 = -2Ξ ln τ -1 τ -1 φ + Γ x x - 1 2 ln τ -1 τ -1 φ + Γ 0 z + 1 2 ln τ -1 τ -1 φ - 1 2 ln τ -1 τ -1 φ + Γ z 0 + 1 2 ln τ -1 τ -1 φ + Γ z z + γ iv ± ± ln τ -1 τ -1 φ + Γ + iv ± Γ - iv γ iv + Ξγ s ± ± ln τ -1 τ -1 φ + Γ + s ± Γ - s γs . (7.22)
Here, we have introduced Γ ± iv = (Γ z x ± Γ 0 x )/2 and Γ ± s = (Γ x 0 ± Γ x z )/2, as well as

γ iv,s = 1 1 -2∆so Γ - iv,s 2 . (7.23)
The coefficients γ iv and γ s capture the effect of the spin splitting. They are real if 1 ≥ 4∆ 2 so /Γ 2 iv,s , and imaginary otherwise. Although the rates Γ - iv,s can be negative and the coefficients γ iv,s can be imaginary, their combination entering Eq. (7.22) is such that the imaginary parts cancel out, so that the conductance is always real (as it should be).

Quantum interference is very sensitive to a magnetic field B ⊥ perpendicular to the monolayer, as it breaks the coherence of time-reversed paths of electrons, responsible for WL and WAL. This is used as a probe of W(A)L in experiments, which measure the magnetoconductance as a function of B ⊥ . The perpendicular field couples to the momentum of the electrons, unlike the parallel field B , which only couples to spin via the Zeeman effect. It leads to a quantization of momenta, |Q| → Q n = (n+1/2)/l 2 B , where n = 0, 1, 2... denotes the Landau levels and l B = /4eB ⊥ is the magnetic length. We assume l B l, such that the diffusive limit is not violated, which imposes a constraint on the maximum field B ⊥ /(4eDτ 0 ). We then evaluate the magnetoconductance ∆σ = δσ(B ⊥ ) -δσ(0) as

∆σ σ 0 = 2ΞF B ⊥ B φ + B x x + 1 2 F B ⊥ B φ + B 0 z - 1 2 F B ⊥ B φ + 1 2 F B ⊥ B φ + B z 0 - 1 2 F B ⊥ B φ + B z z -γ iv ± ±F B ⊥ B φ + B + iv ± B - iv γ iv -Ξγ s ± ±F B ⊥ B φ + B + s ± B - s γs . (7.24) 
Here, we have introduced

F (z) = ln(z) + ψ 1 2 + 1 z ≈ z 2 24 , z 1, ln z, z 1, (7.25) 
where ψ(z) is the digamma function, and B j i = Γ j i /(4eD) are effective magnetic fields associated with the scattering rates.

Eq. ( 7.24) acquires a simple form if the decoherence rate τ -1 φ is either the dominant or the smallest scattering rate. For very long τ φ , such that τ -1 φ Γ l s , all the gapped Cooperons can be neglected, and only the third term in Eq. (7.24) remains. Then, we have ∆σ/σ 0 = -(1/2)F (B ⊥ /B φ ), as in conventional metal with strong spindependent disorder. For short decoherence times, τ -1 φ Γ l s , all the Cooperon gaps can be neglected. Different contributions to Eq. (7.24) then cancel pairwise, and we obtain ∆σ/σ 0 = 2ΞF (B ⊥ /B φ ). This exhibits WL, WAL or a vanishing quantum correction for Ξ = 1, -1, 0 respectively, similarly to a Dirac material in a smooth disorder potential. This limiting case contributes to the interference correction with a four times larger prefactor compared to the previous one -a consequence of spin and valley degeneracy.

The magnetoconductance formula Eq. (7.24) captures the rich weak localization behavior of TMDs and graphene/TMD. Due to the large number of parameters it is difficult to apply it directly to experiments. In the next section, we will present and discuss several realistic regimes in which this result significantly simplifies, and compare them to the existing theories. Furthermore, we will discuss the effect of a finite in-plane Zeeman field.

Regime of strong short-range disorder

The regime where intervalley scattering dominates over all spin-dependent scattering rates, τ -1 iv τ -1 i,j , with i = z, zv, iv and j = z, o, is the most commonly used regime when interpreting the measurements of the quantum correction. Such a large magnitude of intervalley scattering is expected in samples with an abundance of atomic defects, or in small samples, where the edges can contribute to this kind of scattering. In that case, the effect of spin-dependent disorder can be captured with only two scattering rates,

τ -1 sym = 2(τ -1 z,e + τ -1 zv,e + τ -1 iv,e ), τ -1 asy = τ -1 z,o + τ -1 zv,o + τ -1 iv,o + τ -1 BR . (7.26) 
Here τ -1 sym contains all the spin-dependent scattering processes that satisfy mirror (z → -z) symmetry and, thus, preserve the electron spin. On the other hand, τ -1 asy contains spin-flip processes that break this symmetry. In the presence of potential disorder only, we can use the estimates provided in Table 3.1 to identify the dominant contributions to these rates. In that case, we find that the symmetric rate is dominated by τ -1 z,e , which describes the Elliott-Yafet spin-relaxation mechanism induced by Kane-Mele SOC, while the asymmetric rate is dominated by τ -1 BR , which describes the Dyakonov-Perel spin relaxation mechanism induced by Rashba SOC. If additional spin-orbit impurities are present in the system, the symmetric and asymmetric rates are not limited by the band structure SOC parameters.

In this regime, Γ - iv ≈ Γ + iv ≈ τ -1 iv , and γ iv ≈ 1/ 1 -4∆ 2 so τ 2 iv . Furthermore, we will assume that the effect of trigonal warping captured in τ -1 * and τ -1 * * for intravalley Cooperons (see the bottom of Table 7.1) is small compared to intervalley scattering. Then, we have τ -1 * ≈ τ -1 * * ≈ τ -1 iv , and the magnetoconductance (7.24) becomes

∆σ σ 0 = 2ΞF B ⊥ B φ + B iv + 1 2 F B ⊥ B φ + 2B asy - 1 2 F B ⊥ B φ -γ iv F B ⊥ B φ + B iv (1 + 1 γ iv ) -F B ⊥ B φ + B iv (1 -1 γ iv ) + B s . (7.27) 
Here τ -1 s = τ -1 sym + τ -1 asy , and B i = /(4eDτ i ). We see that the magnetoconductance is determined by a combination of valley and spin physics, described by the intervalley scattering rate τ -1 iv , and spin scattering rates τ -1 sym and τ -1 asy . The interplay between intervalley scattering and Ising SOC is captured by the coefficient γ iv . We will proceed by analyzing this interplay in two limits: τ -1 iv ∆ so and ∆ so τ -1 iv . Within these two limits, we can readily address 3 regimes of the decoherence rate:

(i) τ -1 φ τ -1 s , (ii) τ -1 s τ -1 φ τ -1
iv , and (iii) τ -1 iv τ -1 φ , where the quantum correction acquires a simple form. The cases (i) and (iii), where the decoherence rate is the dominant or the smallest one, respectively, were previously discussed in the general context of Eq. (7.24). The intermediate regime (ii) is not universal. In the limit τ -1 iv ∆ so , it yields ∆σ/σ 0 = F (B/B φ ). This is analogous to a conventional metal without SO impurities, and represents a sum of three spin-triplets C 0 i (i = x, y, z), which contribute as (3/2)F (B ⊥ /B φ ), and a spin-singlet C 0 0 , which contributes as -(1/2)F (B ⊥ /B φ ). For ∆ so τ -1 iv , the two triplets C 0 x and C 0 y are suppressed by the SOC, and the quantum correction vanishes.

We obtain more complex behavior in the crossover regimes τ -1 φ ∼ τ -1 s [which includes (i) and (ii)] and τ -1 φ ∼ τ -1 iv [which includes (ii) and (iii)]. Strong intervalley scattering completely suppresses the valley structure in the first regime, so that the magnetoconductance is determined by the spin physics only. On the other hand, the valley physics dominates in the second regime, as the effect of spin-scattering is washed out by electron decoherence.

a.

Limit τ -1 iv ∆ so : Here, Eq. (7.27) simplifies, as γ iv ≈ 1. In the crossover regime τ -1 φ ∼ τ -1 s , the first and the fourth term of Eq. (7.27) are suppressed by the large intervalley scattering, and we obtain ∆σ

σ 0 = 1 2 F B ⊥ B φ + 2B asy - 1 2 F B ⊥ B φ + F B ⊥ B φ + Bs . (7.28) 
Here, we have introduced

τ -1 s = τ -1 iv 1 - 1 γ iv + τ -1 s ≈ 2∆ 2 so τ iv + τ -1 s , (7.29) 
and Bs = /(4eDτ s ). As valley structure and spin-splitting are suppressed in this regime, the system behaves similarly to a diffusive metal with spin-orbit impurities, and Eq. (7.28) is equivalent to the conventional Hikami-Larkin-Nagaoka (HLN) formula (see also Sec. 1.2.1). This remains true even when intervalley scattering becomes comparable to intervalley scattering, for τ -1 iv ∼ τ -1 0 . Equation (7.28) still holds in that case, although with a modified diffusion constant (see Appendix D.5).

The effect of Ising SOC is captured by an additional contribution to the symmetric rate, τ -1 sym → τ -1 sym + 2∆ 2 so τ iv 1 , which stems from the coupling of the Cooperon modes

C 0(z) x
with C z(0) y by this SOC. This effect was already discussed in Refs. [START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF][START_REF] Cummings | Giant Spin Lifetime Anisotropy in Graphene Induced by Proximity Effects[END_REF][START_REF] Garcia | Spin transport in graphene/transition metal dichalcogenide heterostructures[END_REF], and used to estimate ∆ so from the experimental data in graphene/TMD heterostructures. However, the estimated SOC is of the same order of magnitude as τ -1 iv , which is outside of the region of validity of this formula (τ -1 iv ∆ so ). Instead, the full formula provided by Eq. ( 7.27) should be used in order to get a more reliable estimate of the Ising SOC.

If τ -1

s ∼ τ -1 φ ∼ τ -1
asy , Eq. (7.28) exhibits WAL-WL crossover as the magnitude of the perpendicular field is increased. We next consider the regime τs τ -1 φ ∼ τ -1 asy . Here, the last term of Eq. (7.28) is suppressed due to the combined effect of all mirror-symmetric SOC in the system, as τ -1 sym + 2∆ 2 so τ iv τ -1 φ . We thus have

∆σ σ 0 = 1 2 F B ⊥ B φ + 2B asy - 1 2 F B ⊥ B φ . (7.30) 
This corresponds to pure WAL behavior as a function of B ⊥ , that saturates on the scale of B asy . This kind of saturation was noticed in several recent experiments that show flat WAL curves, such as Refs. [START_REF] Costanzo | Gate-induced superconductivity in atomically thin MoS 2 crystals[END_REF][START_REF] Wakamura | Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS 2[END_REF][START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF]. The interference correction vanishes for τ -1

s τ -1 φ τ -1
asy , and shows pure WL behavior if τ -1

s ∼ τ -1 φ τ -1 asy , given as ∆σ σ 0 = F B ⊥ B φ + Bs . (7.31) 
Next, we address the crossover regime τ -1 φ ∼ τ -1 iv . Here, the spin scattering rates can be neglected, and the second and third term of Eq. (7.27) cancel out, which yields

∆σ σ 0 = 2ΞF B ⊥ B φ + B iv + F B ⊥ B φ -F B ⊥ B φ + 2B iv . (7.32) 
This result at Ξ = -1 is equivalent to Ref. [START_REF] Mccann | Weak-localization magnetoresistance and valley symmetry in graphene[END_REF], which describes graphene without spindependent impurities. As a function of a perpendicular field, it exhibits pure WL for Ξ = 1 and Ξ = 0, and a WL-WAL crossover for Ξ = -1. Fig. 7.3 (a) gives a schematic representation of the different regimes in the limit τ -1 iv ∆ so .

b. Limit ∆ so τ -1 iv : Since γ iv ≈ 0, here only the first three terms of Eq. (7.27) contribute to the magnetoconductance. In the crossover regime τ -1 φ ∼ τ -1 s ,we again obtain Eq. (7.30). Similarly to the previously considered case analyzed below Eq. (7.30), saturated WAL in this regime can be understood as a consequence of strong mirror-symmetric SOC which suppresses Cooperons that would lead to WL. However, this suppression is now predominantly caused by spin-splitting due to ∆ so , irrespective of the magnitude of τ -1 sym . This regime, therefore, presents an alternative to the standard HLN theory to interpret the experiments showing saturated WAL signals.

Finally, we analyze the crossover regime τ -1 φ ∼ τ -1 iv . We find

∆σ σ 0 = 2ΞF B ⊥ B φ + B iv , (7.33) 
which exhibits pure WAL, pure WL, or vanishes for Ξ = 1, Ξ = -1 and Ξ = 0, respectively. Fig. 7.3 (b) gives a schematic representation of the different regimes in the limit ∆ so τ -1 iv . Fig. 7.4 illustrates the behavior of the magnetoconductance beyond the two extreme limits τ -1 iv ∆ so and ∆ so τ -1 iv , analyzed above. In particular, Fig. 7.4 (a) addresses the crossover from the regime described by Eq. (7.28) to Eq. (7.30) as the magnitude of Ising SOC is increased. Similary Fig. 7.4 (b) shows a crossover from Eq. (7.32) to Eq. (7.33).

Regime of weak short-range disorder

In this section, we analyze the regime where intervalley scattering rate is much weaker than the spin-scattering rates, τ -1 sym , τ -1 asy τ -1 iv , which is appropriate for large samples without atomic defects. The intervalley spin-scattering rates are assumed to be even weaker, τ -1 iv,e/o τ -1 iv , and thus neglected. The magnetoconductance formula is then given as

∆σ σ 0 = 2ΞF B ⊥ B φ + B x x - 1 2 F B ⊥ B φ + 1 2 F B ⊥ B φ + 2B iv -Ξγ s ± ±F B ⊥ B φ + B + s ± B - s γs .
(7.34) In this regime, the quantum correction is governed by the interplay between ∆ so and a combination of the spin-scattering rates Γ - s , described by the coefficient γ s . Unlike the case of strong short-range disorder, the Cooperons containing γ iv cancel out in this regime, so the ratio of intervalley scattering and Ising SOC does not affect ∆σ. The three intravalley Cooperon gaps Γ x i (i = 0, x, y, z) that enter Eq. (7.34) have a similar structure. To simplify further analysis, we will assume that they are of the same order of magnitude. s . In the crossover regions described by Eqs. (7.28)-(7.33), the magnetoconductance at low (high) perpendicular field behaves the same as in the left (right) adjacent region on the τ -1 φ arrow. In panel (a), the regime of vanishing interference correction between τ -1 asy and τ -1

s disappears if τ -1 asy ∼ τ -1 sym .
Starting from the regime τ -1 iv ∆ so , upon increasing ∆ so , the region of WL between τ -1 s and τ -1 iv in panel (a) "shrinks", until it disappears for ∆ so ∼ τ -1 iv . As ∆ so is further increased to ∆ so τ -1 iv , the behavior in the regime τ -1 φ ∼ τ -1 iv reduces to Eq. (7.33), and we finally reach the situation depicted in the panel (b). We proceed similarly to the previous section, and analyze the three extreme limits with respect to the decoherence rate. If it is the smallest, τ -1 φ τ -1 iv , or the largest, Γ x i τ -1 φ , scattering rate, the general arguments presented after Eq. (7.24) apply. In the intermediate limit τ -1 iv τ -1 φ Γ x i , the quantum correction vanishes. We next examine the crossover regimes. For τ -1 φ ∼ τ -1 iv , we have

∆σ σ 0 = - 1 2 F B ⊥ B φ + 1 2 F B ⊥ B φ + 2B iv . (7.35) 
This formula is determined by intervalley scattering only, and exhibits WAL behavior which saturates on the scale of B iv . Finally, in the crossover regime τ -1 φ ∼ Γ x i we have

∆σ σ 0 = 2ΞF B ⊥ B φ + B x x -Ξγ s ± ±F B ⊥ B φ + B + s ± B - s γs . (7.36) 
In the limit Γ - s ∆ so , one should consider all three terms in Eq. ( 7.36) since γ s ≈ 1. As ∆ so increases, the second line of Eq. (7.36) becomes suppressed, until it vanishes for ∆ so Γ - s , where γ s ≈ 0. We see that the qualitative behavior of the magnetoconductance remains the same for any γ s , and thus, any ∆ so . It only depends on the doping coefficient Ξ, and exhibits WL, WAL, or neither for Ξ = 1, -1, and 0, respectively. These conclusions are schematically represented in Fig. 7.5. 

Effect of an in-plane Zeeman field

At sufficiently high in-plane Zeeman field, all spin-singlet C l 0 and spin-triplet C l x Cooperons are suppressed, and we arrive at the asymptotic formula for the magnetoconductace,

∆σ σ 0 = i=x,z ΞF B ⊥ B φ + B x i + 1 2 F B ⊥ B φ + B 0 i - 1 2 F B ⊥ B φ + B z i . (7.37) 
The magnitude of the in-plane Zeeman field required to reach the high-field formula (7.37) differs depending on the parameter regime, as will be discussed in the following. Note that it will always be reached if h ∆ so , τ -1 i , where τ -1 i are all scattering rates except the diagonal one, τ -1 0 . First, we analyze the regime where the short-range disorder rate is much larger than all spin-dependent disorder rates, τ -1 iv τ -1 s . In this case the asymptotic formula acquires the form Starting from the general expression (7.20), we will next check the magnitude of h needed to reach this formula in the limits τ -1 iv ∆ so and ∆ so τ -1 iv . Let us consider τ -1 iv ∆ so . If the decoherence rate τ -1 φ is larger than all spinscattering rates, the spin structure is suppressed, and the in-plane Zeeman field has no effect. In this case, the formula (7.38) is valid for any h and is equivalent to Eq. (7.32). On the other hand, if τ -1 φ is of the order of the spin-scattering rates, all the valley-singlet Cooperons, C 0 s , contribute to the magnetoconductance at h = 0 [Eq. (7.28)], and a finite h acts by suppressing the spin-singlet Cooperon C 0 0 and the spin-triplet Cooperon C 0 x . For fields of the order τ -1 s h τ -1 iv , Eq. (7.38) holds, but with B s replaced with Bs . Therefore, unless τ -1 s ∆ 2 so τ iv , the Ising SOC still has an effect at such fields, through the contribution 2∆ 2 so τ iv to the effective rate τ -1 s . In that case, the high-field asymptotic formula is reached only at very high fields of the order of intervalley scattering, namely h τ -1 iv . Next, we consider the limit ∆ so τ -1 iv . In this regime, the Cooperons C j i and C i j , where i = x, y and j = 0, z, are suppressed by the strong ∆ so at h = 0. In order to reach the asymptotic formula Eq. (7.38), a large field h ∆ so is needed. It negates the effect of the Ising SOC and restores C j y and C i z Cooperons, while suppressing all C l 0 and C l x

∆σ σ 0 = 2ΞF B ⊥ B φ + B iv + 1 2 F B ⊥ B φ + 2B asy + 1 2 F B ⊥ B φ + B s -F B ⊥ B φ + 2B iv . (7.38) 
Cooperons. Finally, we address the limit of weak short-range disorder, τ -1 sym , τ -1 asy τ -1 iv τ -1 iv,e/o , described by Eq. ( 7.34) at h = 0. Similarly to the previously considered case, strong h negates the effect of ∆ so and suppresses all spin-singlet and x-triplet Cooperons. Here, the asymptotic formula takes the form

∆σ σ 0 = Ξ i=x,z F B ⊥ B φ + B x i , (7.39) 
and is reached if the in-plane Zeeman field is the largest energy scale, h Γ x i , ∆ so , τ -1 φ (i = 0, x, y, z). The prefactor Ξ indicates that it can exhibit WAL, WL, or neither depending on the doping, similarly to Eq. (7.36).

To illustrate a situation where applying the in-plane field can help in the interpretation of the quantum correction, we plot two magnetoconductance curves with a similar shape, but with significantly different parameters in Fig. 7.6 (black line). The first curve [Fig. 7.6 (a)] has strong spin-scattering and no Ising SOC, while the second one has weaker spinscattering and strong SOC [Fig. 7.6 (b)]. The high-field saturation curve (dashed line) has a similar shape in both cases, and is described by Eq. (7.38). The amplitude of WL at high fields is somewhat larger in the case of strong SOC, as the spin-orbit scattering is weaker, which means that the second line of Eq. (7.38) gives a larger contribution compared to the other case. More importantly, this case is more resistant to the effect of the applied field, and the crossover to WL happens at a much higher field amplitude. This is consistent with the above analysis, as the expected crossover field is h ∼ τ -1 s for Fig. 7.6 (a) and h ∼ ∆ so for Fig. 7.6 (b). Thus, applying an in-plane field helps distinguish the contributions of Ising SOC and spin-dependent scattering to the quantum correction.

Comparison with experiments

A significant number of W(A)L magnetoconductance measurements were recently performed in TMDs [START_REF] Schmidt | Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer MoS 2[END_REF][START_REF] Zhang | Robustly protected carrier spin relaxation in electrostatically doped transition-metal dichalcogenides[END_REF][START_REF] Costanzo | Gate-induced superconductivity in atomically thin MoS 2 crystals[END_REF] and graphene/TMD heterostructures [START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF][START_REF] Wang | Origin and magnitude of "designer" spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides[END_REF][START_REF] Yang | Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures[END_REF][START_REF] Völkl | Magnetotransport in heterostructures of transition metal dichalcogenides and graphene[END_REF][START_REF] Wakamura | Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS 2[END_REF][START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF]. They generally observe strong WAL signals at low perpendicular fields, that either saturate as the field is increased [START_REF] Costanzo | Gate-induced superconductivity in atomically thin MoS 2 crystals[END_REF][START_REF] Wakamura | Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS 2[END_REF][START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF] [as illustrated in Figs. 7.7(a) and (c)], or cross over to WL [START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF][START_REF] Zhang | Robustly protected carrier spin relaxation in electrostatically doped transition-metal dichalcogenides[END_REF][START_REF] Wang | Origin and magnitude of "designer" spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides[END_REF][START_REF] Yang | Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures[END_REF][START_REF] Völkl | Magnetotransport in heterostructures of transition metal dichalcogenides and graphene[END_REF] [as illustrated in Fig. 7. 7 (b)]. An exception is Ref. [START_REF] Schmidt | Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer MoS 2[END_REF], which observed WL at low fields and WAL at high fields. Most of these experiments were interpreted using the conventional HLN formula, given by Eq. (7.28). As we discuss in Sec. 7.3.1, this formula only holds if intervalley scattering is very large (τ -1 iv ∆ so ). However, it is not clear if this regime is justified, especially taking into account that both TMDs [START_REF] Kormányos | k• p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF] and graphene/TMD heterostructures [START_REF] Gmitra | Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides[END_REF][START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF] are expected to host substantial valley-Zeeman SOC. Our theory, for instance Eq. (7.27), 7.6. Summary holds for any ratio of ∆ so and τ -1 iv , and might provide an alternative explanation of the experiments.

The case where saturated WAL behavior is observed in graphene/TMD heterostructures [START_REF] Wakamura | Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS 2[END_REF][START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF] is of particular interest. Namely, such scenario can be taken as a proof that strong, mirror symmetric SOC is induced in the graphene sheet by the TMD. As discussed in Sec. 7.3.1, the magnetoconductance in this case is described by Eq. (7.30). However, the question remains if the dominant contribution to the symmetric rate τ -1 sym comes from the Kane-Mele SOC [τ -1 sym ∝ 1 τ 0 ( ∆ KM µ ) 2 ], or from the valley-Zeeman SOC (τ -1 sym ∝ ∆ 2 V Z τ iv ). Applying a perpendicular magnetic field could be helpful in distinguishing them. Namely, as shown in Sec. 7.4, the WAL signal from valley-Zeeman SOC is significantly more resistant to the in-plane fields. These two kinds of SOC lead to different spin-dependent phenomena in graphene (as discussed in Sec. 2.4), and only the Kane-Mele SOC is linked to the quantum spin Hall effect.

An in-plane Zeeman field was applied in one experiment in graphene/TMD heterostructures [START_REF] Zihlmann | Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures[END_REF]. However, in contrast to our and other theories that account for such fields [START_REF] Mccann | z→-z symmetry of spin-orbit coupling and weak localization in graphene[END_REF][START_REF] Maekawa | Magnetoresistance in two-dimensional disordered systems: effects of Zeeman splitting and spin-orbit scattering[END_REF], the experiment measured vanishing magnetoconductance at high fields. This is explained as a consequence of ripples, which increasingly contribute to the dephasing rate τ -1 φ as the field is increased [START_REF] Lundeberg | Rippled graphene in an in-plane magnetic field: effects of a random vector potential[END_REF]. Therefore, the effect of the in-plane fields can only be studied in samples which are sufficiently flat, or, alternatively, if a theoretical model for τ -1 φ (h) for a rippled sample is known. Such a model was developed for graphene in Ref. [START_REF] Lundeberg | Rippled graphene in an in-plane magnetic field: effects of a random vector potential[END_REF].

Summary

In this Chapter, we have developed a theory of weak localization magnetoconductance for TMD monolayers and their heterostructures with graphene, using the standard diagrammatic technique for disordered systems. The interplay between spin and valley physics in these materials yields a rich behavior of the quantum correction to the conductivity, which we discuss in several regimes of interest for the interpretation of recent experimental data. We generalize the HLN and MF theories and propose a formula that can be used to extract the magnitude of Ising SOC and disorder from the experiments in all regimes. In some cases, interpreting the experiments is not straightforward, as different parameter combinations may explain the data equally well. An in-plane Zeeman field can be used as an additional tuning parameter to help distinguish between the contributions of different processes.

Chapter 8

Universal conductance fluctuations

In Chapter 7, we studied one manifestation of electronic interference in conducting TMDs and graphene/TMD heterostructures -the weak (anti)localization. In this Chapter, we expand upon this by studying another interference phenomenon -universal conductance fluctuations (UCF), for the same systems. We use the same model as in Chapter 7, which accounts for physics of the K-band, under the same assumptions of dominant diagonal disorder τ -1 0 ≈ τ -1 , and taking the diffusive limit |µ| -E g τ -1 0 ∆ so , λ, κq 2 F . Note that, unlike in Chapter 7, we do not consider the effect of an in-plane Zeeman field here.

Similarly to WL, we show that the amplitude of UCF is determined by a combination of several processes: spin-splitting due to SOC, valley-and spin-dependent scattering, and the Berry phase due the Dirac-like band structure. Measuring the amplitude of UCF in experiments can be used to gain insight about these processes, which is particularly useful if combined with information extracted from W(A)L experiments.

To start, we calculate the diffusons in Sec. 8.1, which are the basic building blocks needed to formulate the theory of UCF. We only briefly discuss this calculation, as it shares many similarities with the calculation of Cooperons in Sec. 7.2. We proceed by calculating the general expression for the UCF in Sec. 8.2. Finally, we discuss our results in a regime which corresponds to a likely experimental situation, where Ising SOC and intervalley scattering are much stronger than spin-dependent scattering.

Diffusons

Diffusons D ab,a b αβ,α β are disorder averages of two Green's functions, which correspond to ladder diagrams in diagrammatic perturbation theory (different from Cooperons, which correspond to maximally-crossed diagrams, see also Sec. 7.1). The diffusons satisfy the system of coupled Bethe-Salpeter equations (shown in diagrammatic form in Fig. 8.1)

D ab,a b αβ,α β (θ, θ ; q) = W ab,a b αβ,α β (θ, θ ) + 2π 0 dθ 2π W aa 1 ,bb 1 αα 1 ,ββ 1 (θ, θ ) Πa 1 b 1 ,a 2 b 2 α 1 β 1 ,α 2 β 2 (θ ; q)D a 2 b 2 ,a b α 2 β 2 ,α β (θ , θ ; q). (8.1)
We use the same notation conventions as in Sec. 7.2, where the Greek indices in the subscript (Latin indices in the superscript) correspond to spin (valley) degrees of freedom and take values ±1. Summation over repeated indices is assumed. We have introduced the disorder correlator W and the polarization operator Π as

W ab,a b αβ,α β (θ, θ ) = [H D qq ] aa αα [H D q q ] b b β β and Πab αβ,α β (θ; q) = ν 0K dξ p [G R p +ω ] a αα [G A p+qω ] b β β . (8.2) 
Note that they are different from the related quantities introduced for Cooperons in Eq. (7.5), as they have different configurations of momenta and indices related to the advanced Green's functions (lower branch of the diagrams in Fig. 8.1).

As done in Sec. 7.2.1 for Cooperons, we first resolve the angular structure of diffusons by calculating them in the presence of diagonal disorder only. We distinguish intravalley diffusons D aa,aa , which are related to the Drude conductivity, and intervalley ones D aā,aā , which do not enter the conductivity but appear in the expression for UCF. We expand in harmonics

D ab,a b (θ, θ ; q) = ∞ n,m=-∞ D ab,a b nm (q)e -i(nθ-mθ ) , W ab,a b (θ, θ ) = ∞ n=-∞ W ab,a b n e -in(θ-θ ) , (8.3) 
and by solving Eq. (8.1), we find for intravalley diffusons 1

D aa,aa (θ, θ ) = 1 2πν 0K τ 2 0 1 D|q| 2 -iω + τ -1 φ , (8.4) 
while the intervalley diffusons are D aā,aā (θ, θ ; q) = D aā,aā 00 (q) + D aā,aā aa (q)e -ia(θ-θ )

with D aa,aa ii

(q) = 1 2πν 0K τ 2 0 1 D i |q| 2 -iω + τ -1 φ + Γ i . (8.5) 
Here, D i and Γ i are diffusion constants and gaps introduced below Eq. (7.8). Therefore, same as intravalley Cooperons, intervalley diffusons are suppressed by a large gap Γ i ∝ 1 The appearance of the dephasing rate τ -1 φ in diffusons might seem surprising at first. Namely, diffusons are most commonly associated with Goldstone modes that correspond to the conservation of the number of particles [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF], and dephasing is therefore forbidden. However, diffusons that enter conductance fluctuations are different. Here, the paired electron trajectories correspond to two separate copies of the sample. These trajectories explore different configurations of external degrees of freedom, and as a consequence, the resulting diffusons are sensitive to dephasing [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF][START_REF] Lee | Universal conductance fluctuations in metals[END_REF].

τ -1 0 , except close to the band bottom (µ/E g -1 2 τ 0 /τ φ ) where D 00 is not suppressed, and deep in the conduction band (µ/E g 2 τ 0 /τ φ ), where D aa is not suppressed. We can write

D aā,aā (θ, θ ) = 1 2πν 0K τ 2 0 δ Ξ,1 D|q| 2 -iω + τ -1 φ + Γ 1 + δ Ξ,-1 D|q| 2 -iω + τ -1 φ + Γ -1
e -ia(θ-θ ) , (8.6) where the coefficient Ξ and gaps Γ ±1 are introduced in Eq. (7.9).

We proceed by finding diffusons in the presence of all disorder terms in the same manner as in Sec. 7.2.2. We can write the angularly-independent form for all diffusons D ab,a b (Ξ; q) = D aa,a a 00 (q)δ ab δ a b + [D aā,aā 00 (q)δ Ξ,1 + D aā,aā aa (q)δ Ξ,-1 ]δ aa δ bb δ a b, W ab,a b (Ξ) = W aa,a a 0 δ ab δ a b , + [ W aā,aā

0 δ Ξ,1 + W aā,aā aa δ Ξ,-1 ]δ aa δ bb δ a b. (8.7)
Then, the angularly-independent form of the Bethe-Salpeter equation (8.1) reads

D ab,a b αβ,α β (Ξ; q) = W ab,a b αβ,α β (Ξ) + W aa 1 ,bb 1 αα 1 ,ββ 1 (Ξ) Πa 1 b 1 α 1 β 1 ,α 2 β 2 (q)D a 1 b 1 ,a b α 2 β 2 ,α β (Ξ; q). (8.8) 
Next, we employ the transformation to the singlet-triplet basis [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF] M

ll ss = 1 4 [s s ] αβ [η l ] ab M ab,a b αβ,α β [s s ] β α [η l ] b a (8.9) 
to Eqs. (8.7) and (8.8). It differs from the transformation for Cooperons given in Eq. (7.14), as it does not involve the matrix s y η x , related to time-reversal of the advanced Green's function in Cooperons. Finally, in the absence of the Zeeman field, we find that D ll ss (Ξ, q) satisfy the same equations as C ll ss (Ξ, Q), namely Eqs. (7.17) and (7.19), with the same gaps, summarized in Table . 7.1. The fact that diffusons and Cooperons are dephased in the same way by the spin-orbit and valley-dependent scattering, was reported previously in Refs. [START_REF] Chandrasekhar | Effect of spin-orbit and spin-flip scattering on conductance fluctuations[END_REF] and [START_REF] Kharitonov | Universal conductance fluctuations in graphene[END_REF][START_REF] Kechedzhi | Quantum kinetic equation and universal conductance fluctuations in graphene[END_REF], respectively.

General expression for the UCF

Let us consider a rectangular sample, with a length L along the x-direction and the width W along the y-direction. We take that the sample is connected to leads along the x-direction, as shown in Fig. 8.2. 

General expression for the UCF

Within the linear response theory, conductance along the x-direction, before disorder averaging, is given as

σ ∝ p 1 p 2 J xp 1 G R p 1 p 2 J xp 2 G A p 2 p 1 .
Here, J xp is the current operator, introduced above Eq. (7.2). Fluctuations of this conductance can be expressed as 

δG 2 = σσ -σ σ ∝ p 1 p 2 p 3 p 4 J xp 1 G R p 1 p 2 J xp 2 G A p 2 p 1 J xp 3 G R p 3 p 4 J xp 4 G A p 4 p
δG 2 1 = 2 e 2 2πL 2 2 H 2 1 d 2 q (2π) 2 D ab,cd
αβ,γδ (q)D cd,ab γδ,αβ (q)[δ ab δ cd + Ξ 2 δ a bδ c d], (8.11) while the fluctuations of the diffusion constant [Fig. 8.3 (b)] are

δG 2 2 = e 2 2πL 2 2 H 2 2 d 2 q (2π) 2 D ab,cd
αβ,γδ (q)D ba,dc βα,δγ (q)[δ ab δ cd + Ξ 2 δ a bδ c d]. (8.12) Here, H 1 and H 2 are dressed Hikami boxes, shown in diagrammatic form in Fig. 8.3 (c) and (d). They evaluate to

H 1 = πν 0K τ 3 0 τ tr τ 0 v 2 F , H 2 = 2H 1 . (8.13)
Next, after the transformation to the singlet-triplet basis, we have

δG 2 1 = 2 e 2 Dν 0K τ 2 0 L 2 2 ss d 2 q (2π) 2 ll =0,z
D ll ss (q)D l l s s (q) + Ξ 2 ll =x,y

D ll ss (q)D l l s s (q) , δG 2 2 = e 2 Dν 0K τ 2 0 L 2 2 ss d 2 q (2π) 2 ll =0,z [D ll ss (q)] 2 + Ξ 2 ll =x,y [D ll ss (q)] 2 . (8.14)
We can split the diffusons to ones diagonal in singlet-triplet space (D ll ss = D l s ) and the nondiagonal ones. As seen from Eq. (7.19), the off-diagonal diffusons vanish in the absence of Ising SOC, and only a number of them are non-zero when Ising SOC is present: D kl ij and D ij kl , where (i, j) = (x, y), (y, x) and (k, l) = (0, z), (z, 0). Let us introduce functions M 1,2 (q), that collect all non-diagonal diffusons

M 1 (q) = D 0z xy (q)D z0 yx (q) + D z0 xy (q)D 0z yx (q) = - 1 2 (i,j) (k,l) [D kl ij (q)] 2 , M 2 (q) = D xy 0z (q)D yx z0 (q) + D yx 0z (q)D xy z0 (q) = - 1 2 (i,j) (k,l) [D ij kl (q)] 2 . (8.15) 
The total UCF, δG 2 = δG 2 1 + δG 2 2 , are then

δG 2 = 4 e 2 Dν 0K τ 2 0 L 2 2 d 2 q (2π) 2 6 l=0,z;s D l s (q) 2 + 6Ξ 2 l=x,y;s D l s (q) 2 -4M 1 (q) -4Ξ 2 M 2 (q) . (8.16)
After expressing the diffusons with Eqs. (7.17) and (7.19), the expression for the UCF becomes

δG 2 = e 2 D hL 2 2 d 2 q (2π) 2 s,l=0,z 6 (P l s ) 2 + ± 4(1 + 2γ 2 iv ) (P + iv ± Γ - iv γ iv ) 2 + 24Ξ 2 (P x x ) 2 + ± 4Ξ 2 (1 + 2γ 2 s ) (P + s ± Γ - s γs ) 2 + 16(1 -γ 2 iv ) (P + iv ) 2 -( Γ - iv γ iv ) 2 + 16Ξ 2 (1 -γ 2 s ) (P + s ) 2 -( Γ - s γs ) 2
. (8.17)

The quantities P l s were defined below Eq. (7.17), and Γ ± iv,s and γ iv,s were defined in Eq. (7.23). Furthermore, we have introduced P + iv,s = D|q| 2 -iω + τ -1 φ + Γ + iv,s . The integral over momenta can be evaluated by introducing the quantization q x = nπ/L, (n = 1, 2, 3...) and q y = nπ/W (m = 0, 1, 2...). As the sample is connected to leads 8.3. Regimes of UCF in the x-direction, as illustrated in Fig. 8.2, the zero mode (m = 0) appears only for the y-direction. UCF are then

δG 2 = e 2 h 2 m,n s,l=0,z 6 [α nm + ( L L l s ) 2 ] 2 + ± 4(1 + 2γ 2 iv ) [α nm + ( L L + iv ) 2 ± 1 γ iv ( L L - iv ) 2 ] 2 + 24Ξ 2 [α nm + ( L L x x ) 2 ] 2 + ± 4Ξ 2 (1 + 2γ 2 s ) [α nm + ( L L + s ) 2 ± 1 γs ( L L - s ) 2 ] 2 + 16(1 -γ 2 iv ) [α nm + ( L L + iv ) 2 ] 2 -[ 1 γ iv ( L L - iv ) 2 ] 2 + 16Ξ 2 (1 -γ 2 s ) [α nm + ( L L + s ) 2 ] 2 -[ 1 γs ( L L - s ) 2 ] 2 . (8.18)
Here, α nm = π 2 n 2 + (L/W ) 2 π 2 m 2 + (L/L φ ) 2 , and we have introduced length scales associated with the diffuson gaps, L l s = D/Γ l s , and L φ = Dτ φ .

Regimes of UCF

Eq. (8.18) is the main result of this Chapter, which describes the behavior of UCF in TMDs and their heterostructures with graphene. In the following, we analyze this result in various regimes and compare it with previous theories. We will take the length of the sample L L φ , which is a necessary condition for UCF to appear, as otherwise all coherence effects are suppressed. We will assume a realistic regime where intervalley scattering and Ising SOC dominate over spin-dependent scattering: ∆ so , τ -1 iv τ -1 s . As discussed in Sec. 7.3.1, the effect of spin-dependent scattering in this regime is captured by only two rates, τ -1 sym and τ -1 asy , defined in Eq. (7.26). Furthermore, γ iv = 1/ 1 -4∆ 2 so τ iv and γ s ≈ 0. We will assume that the effect of trigonal warping, captured by the rates τ -1 * and τ -1 * * is negligible compared to intervalley scattering, such that τ -1 * , τ -1 * * ≈ τ -1 iv . In that case, Eq. (8.18) becomes

δG 2 = e 2 h 2 mn 6 α 2 nm + 6 (α nm + 2 L 2 L 2 asy ) 2 + 12 (α nm + 2 L 2 L 2 iv ) 2 + 4(1 + 2γ 2 iv ) [α nm + L 2 L 2 iv (1 + 1 γ iv )] 2 + 4(1 + 2γ 2 iv ) [α nm + L 2 L 2 iv (1 -1 γ ) + L 2 L 2 s ] 2 + 24Ξ 2 (α nm + L 2 L 2 iv ) 2 + ± 4Ξ 2 [α nm + L 2 L 2 iv ± 2i L 2 L 2 so ] 2 + 16(1 -γ 2 iv ) [α 2 nm + L 2 L 2 iv (1 -1 γ iv ) + L 2 L 2 s ][α nm + L 2 L 2 iv (1 + 1 γ iv )] + 16Ξ 2 (α nm + L 2 L 2 iv ) 2 -(2i L 2 L 2 so ) 2 . (8.19)
Here, we introduced L asy = Dτ asy , L s = √ Dτ s and L so = D/∆ so . The following separation between relevant length scales holds under our assumptions: L iv , L so L s < L asy .

We can represent the conductance fluctuations as

δG 2 = AR 0 , R 0 = 24 e 2 h 2 mn α -2 nm , (8.20) 
where R 0 is the amplitude of UCF in a conventional metal. It depends on the geometry of the sample, e.g. taking a long and narrow sample (nanowire) with L φ L W yields R 0 = 24 n (π 4 n 4 ) -1 (e 2 /h 2 ) 2 = 4/15(e 2 /h) 2 [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF].

The value of A depends on the details of non-diagonal disorder, as well as on spin-orbit coupling. If L is the largest length scale in the system, L L asy , we obtain A = 1/4. This is the same result as in conventional metals with strong spin-dependent impurities [START_REF] Feng | Mesoscopic conductance fluctuations in the presence of spin-orbit coupling and Zeeman splitting[END_REF][START_REF] Chandrasekhar | Effect of spin-orbit and spin-flip scattering on conductance fluctuations[END_REF]. On the other hand, if L is the shortest length scale, L L iv , L so , we obtain A = 2(1+Ξ 2 ), which corresponds to a case of a Dirac material in a smooth (diagonal) disorder potential. For the case Ξ = -1, which holds in graphene, we reproduce the result A = 4 found for pristine graphene [START_REF] Kharitonov | Universal conductance fluctuations in graphene[END_REF][START_REF] Kechedzhi | Quantum kinetic equation and universal conductance fluctuations in graphene[END_REF]. The same result holds in Dirac materials with high mass E g (Ξ = 1). The four-fold increase in the amplitude of UCF, compared to conventional metals, is a consequence of the valley degeneracy.

Outside of these two extreme cases, A ∈ [ 1 4 , 2(1 + Ξ 2 )]. Spin-and valley-dependent disorder, as well as Ising SOC, all act by suppressing the value of A compared to the maximal one. We analyze this value in the two cases, for τ -1 iv ∆ so and for ∆ so τ -1 iv , and summarize our results in Table 8.1. In the regime τ -1 iv ∆ so , as in Sec. 7

.3.1, it is (a) τ -1 iv ∆ so L L asy L asy L Ls Ls L L iv L iv L 1/4 1/2 1 2(1+Ξ 2 ) (b) ∆ so τ -1 iv L L asy L asy L L iv L iv L L so L so L 1/4 1/2 1+Ξ 2 2(1 + Ξ 2 )
Table 8.1: Value of the coefficient A, related to the amplitude of universal conductance fluctuations, in the regimes (a) τ -1 iv ∆ so , and (b) ∆ so τ -1 iv useful to introduce an effective scattering rate τ -1 s = τ -1 s + 2∆ 2 so τ iv , and the associated length scale Ls = √ Dτ s . The amplitude of UCF can be measured in experiment, and serve as an useful probe of various microscopic processes that influence the quantum interference. The system behaves as a conventional metal (A = 1) in the regime τ -1 iv ∆ so with Ls L L iv . Here, both valley and spin physics are suppressed, by intervalley scattering and electron decoherence, respectively. Value of A < 1, indicates that the physics of the sample is dominated by spin-dependent phenomena, either due to spin-orbit scattering or due to Ising SOC. Value of A > 1 shows that the valley physics dominates (due to intervalley scattering and Ising SOC), while spin-dependent scattering plays a lesser role. Finally, the value A > 2 could serve as an indication that the Fermi level of the system is either close to the band bottom (Ξ = 1), or deep in the band (Ξ = -1).

UCF can be studied in the same experimental setup as WL magnetoconductance, but preferably at higher perpendicular magnetic fields, where field-sensitive Cooperons are suppressed and do not contribute. As discussed in Chapter 7, it is difficult to reliably interpret the WL magnetoconductance measurements in TMDs and graphene/TMD heterostructures, due to a large number of processes that can influence it. Measuring UCF 8.4. Summary could provide useful complementary information.

So far, no dedicated, high-field, experimental studies of the UCF in TMDs or graphene/ TMD heterostructures have been performed. Let us mention that in Ref. [START_REF] Yang | Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2[END_REF] (see its supplemental material), which measured W(A)L magnetoconductance in graphene / WS 2 , the UCF signal was extracted in the low-field regime. This was done by subtracting the W(A)L contribution, obtained by fitting the data to the HLN formula, from the magnetoconductance. The amplitude of UCF was then used to estimate the coherence rate τ -1 φ , which was found to be in agreement with the HLN fits.

Summary

In this Chapter, we have studied UCF in TMDs and graphene/TMD heterostructures using the standard diagrammatic technique for disordered systems. We generalize previous theories that concern simple metals with spin-orbit impurities and graphene. We account for the complex behavior of UCF in these materials, resulting from the interplay of spin, valley, and Berry phase physics, and provide a formula that can be used to interpret experiments in all parameter regimes.

Chapter 9

Conclusions and perspectives

In this thesis, we investigated how the unique interplay of intrinsic, Ising, spin-orbit coupling and disorder influences the quantum coherent phenomena in transition metal dichalcogenide monolayers (TMD). In Part I, we addressed the unusual Ising superconductivity in TMDs, while in Part II, we studied the quantum interference corrections to the conductance in the normal state of TMDs and their heterostructures with graphene.

The results are directly applicable to a significant number of recent experiments. To obtain them, we used analytical techniques for disordered systems, including the quasiclassical Eilenberger Green's functions for superconductivity, and diagrammatic methods. Below we summarize our main findings:

• Measurements of the upper critical field in the n-doped (MoS 2 , WS 2 ) and p-doped (NbSe 2 , TaS 2 ) TMD superconductors show a large enhancement of the upper critical field (H c2 ), well beyond the Pauli limit, which has been attributed to the intrinsic Ising SOC. The simple theory for clean Ising superconductors, however, fails to describe these experiments, as it overestimates H c2 . In order to study how disorder affects this picture, we formulated the quasiclassical theory of disordered TMDs, and calculated H c2 and the density of states in the superconducting state, in both n-and p-doped regimes. We found that intravalley scattering, which can be caused by any kind of disorder, does not modify the superconducting properties, similarly to the Anderson theorem for conventional superconductors.

-We first studied n-doped Ising superconductors in Chapter 5, where only the K-bands are present at the Fermi level. We showed that intervalley scattering, which is caused by short-range disorder, has a significant effect on the superconducting properties, as it acts as an effective spin-flip mechanism. Thus, it limits H c2 and introduces smearing of the density of states. We found that weak intervalley scattering of the order of the superconducting gap is enough to explain the experimental measurements of H c2 .

-In Chapter 6, we studied p-doped TMDs, which are multiband superconductors. Here, aside from the K-band, the Γ-band contributes to the superconductivity as well. We assumed that superconductivity develops primarily in the K-band, and that it is induced by proximity effect in the Γ-band. The two bands are coupled by interband disorder , in-line with recent experiments [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF]. We found that weak interband disorder, of the order of the superconducting gap, can account for both the amplitude of the upper critical field and the shape of the density of states measured in experiment.

• Having established that disorder plays a crucial role in explaining the superconducting properties of TMDs, we turned to studying the quantum interference corrections to their conductance in the normal state, as an additional, independent probe of disorder and SOC. Our results also extend to graphene/TMD heterostructures, which are described by a similar model as TMDs. We studied weak (anti-) localization in Chapter 7 and universal conductance fluctuations in Chapter 8. Both of these phenomena are governed by a complex interplay of several ingredients that infuence quantum interference: spin-splitting due to Ising SOC, valley structure and intervalley scattering, and the Berry phase due to the Dirac-like band structure. Our results generalize previous theories for graphene and simple metals with spin-orbit impurities, and describe novel behavior beyond them. We discussed our results in various regimes of interest for the interpretation of recent experiments.

Many questions still remain open for future work, in particular in relation to superconductivity in TMDs. In this thesis, we considered only the simplest, uniform, s-wave phase. A number of theoretical studies have considered more exotic scenarios with triplet pairing and topological properties [START_REF] Hsu | Topological superconductivity in monolayer transition metal dichalcogenides[END_REF][START_REF] He | Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides[END_REF], but only in the clean case. An extension of the quasiclassical formalism presented in this thesis could be used to study the effect of disorder. In order to explore the viability of these exotic phases in realistic experimental situations, and to examine the robustness of edge states, it is important to know the effect of disorder, particularly because unconventional superconductivity is usually very sensitive to it.

Hybrid systems of TMDs and other materials, such as ferromagnets, topological materials, or other superconductors, are still largely unexplored. Such systems could host novel physical phenomena, including topological superconductivity, as recently predicted for a junction of an Ising superconductor and a half-metal wire [START_REF] Zhou | Ising superconductivity and Majorana fermions in transition-metal dichalcogenides[END_REF]. Furthermore, additional information about TMDs can be obtained from their non-equilibrium properties. For instance, the inverse Edelstein effect [START_REF] Edelstein | Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems[END_REF] is a phenomenon where a non-equilibrium spin accumulation drives electric currents. Studying it in TMDs in a juction with a ferromagnet under ferromagnetic resonance condition could provide additional information about spin-relaxation. Some experiments in such setups have already been performed [START_REF] Shao | Strong Rashba-Edelstein effect-induced spin-orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers[END_REF]. The hybrid systems mentioned above can also be studied using the quasiclassical formalism.

Conclusion (Français)

Au cours de cette thèse, nous avons étudié comment les effets mutuels du couplage spinorbite (SOC) d'Ising intrinsèque et du désordre influencent les phénomènes de cohérence quantique dans les monocouches de dichalcogénures de métaux de transition (TMD). Dans la première partie, nous avons étudié la supraconductivité exotique, dite d'Ising, dans les TMD ; dans la deuxième partie, nous avons étudié les corrections à la conductance dans l'état normal qui sont induites par les interférences quantiques dans les TMD et les hétérostructures graphène /TMD. Les résultats sont directement applicables à un nombre considérable d'expériences récentes. Nous les avons obtenus par des méthodes analytiques adaptées à l'étude des systèmes désordonnés, telles que les fonctions de Green quasiclassiques pour la supraconductivité, et les méthodes diagrammatiques pour les interférences quantiques. Nous résumons ci-dessous nos principaux résultats : -Dans le Chapitre 6, nous avons étudié les TMD dopés p qui sont des supraconducteurs multibandes. En plus des bandes K, la bande Γ contribue également à la supraconductivité. Nous avons supposé que la supraconductivité se développe principalement dans les bandes K et qu'elle est induite par effet de proximité dans la bande Γ. Les deux bandes sont couplées par le désordre inter-bande, en accord avec des expériences récentes [START_REF] Dvir | Spectroscopy of bulk and few-layer superconducting NbSe 2 with van der Waals tunnel junctions[END_REF]. Nous avons constaté qu'un faible désordre inter-bande, caractérisé par un taux de transition de l'ordre de gap supraconducteur, peut expliquer à la fois l'amplitude du champ critique et la forme de la densité d'états mesurée expérimentalement. De nombreuses questions restent ouvertes pour les travaux futurs, en particulier en ce qui concerne la supraconductivité dans les TMD. Dans cette thèse, nous n'avons considéré que le cas le plus simple d'une supraconductivité de type s. Un certain nombre d'études théoriques ont examiné des scénarios plus exotiques conduisant à des appariements triplets et exhibant des propriétés topologiques [START_REF] Hsu | Topological superconductivity in monolayer transition metal dichalcogenides[END_REF][START_REF] He | Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides[END_REF], mais seulement dans le cas sans désordre. Une extension du formalisme quasi classique présenté ici pourrait être utilisée pour étudier l'effet du désordre. Afin d'explorer la viabilité de ces phases exotiques dans des situations expérimentales réalistes et d'examiner la robustesse des états de bord, il est important de connaître l'effet du désordre, notamment parce que la supraconductivité non-conventionnelle y est généralement très sensible.

Les systèmes hybrides de TMD et d'autres matériaux, tels que les composés ferromagnétiques, les matériaux topologiques ou d'autres supraconducteurs, sont encore peu explorés. De tels systèmes pourraient présenter de nouveaux phénomènes physiques, y compris la supraconductivité topologique, comme il a été récemment prédit dans une jonction entre un supraconducteur d'Ising et un fil demi-métallique [START_REF] Zhou | Ising superconductivity and Majorana fermions in transition-metal dichalcogenides[END_REF]. En outre, des informations supplémentaires sur les TMD peuvent être obtenues à partir de leurs propriétés hors-équilibre. Par exemple, l'effet Edelstein inverse [START_REF] Edelstein | Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems[END_REF] est un phénomène où une accumulation de spin hors-équilibre induit des courants électriques. Etudier ces effets dans une jonction entre un TMD et un métal ou un isolant ferromagnétique placé dans les conditions de la résonance ferromagnétique pourrait fournir des informations supplémentaires sur la relaxation du spin. Des expériences ont déjà été réalisées dans de telles configurations [START_REF] Shao | Strong Rashba-Edelstein effect-induced spin-orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers[END_REF]. Les systèmes hybrides mentionnés ci-dessus peuvent également être étudiés en utilisant le formalisme quasi-classique. Functions F 0 and G i are defined in Appendix A. The quasiclassical Green's function must satisfy the normalization condition

g 2 ηθ = 1. (B.6)
In order to resolve the angular structure of g ηθ , we expand it into first harmonics in angle θ g ηθ ≈ g η0 + g η1 cos θ + g η2 sin θ. (B.7)

Then, we substitute this expansion in Eq. (B.4) to obtain a system of coupled equations for the harmonics g ηi . We find its solution yields g η0 = 0 and g η1 , g η2 = 0. Therefore, the quasiclassical Green's function can be taken to be independent on angles. Thus, the reduced self-energy (B.5) simplifies to

σ η = 1 2τ 0 g η + 1 2τ iv g η, (B.8)
and Eq. (B.4) reduces to the Elenberger equation (5.4) from the main text.

B.2 Derivations of some results from Chapter 5

Full quasiclassical Green's function in the absence of intervalley scattering.

Solving the system of equations (5.10) in the absence of intervalley scattering (τ -1 iv = 0) yields

c 0 = ∆ √ 2 [ω 2 n + ∆ 2 so + (∆ -h) 2 ][ω 2 n + ∆ 2 so + (∆ + h) 2 ][(ω 2 n + ∆ 2 )∆ 2 so + ω 2 n h 2 )] -1/2 × ∆ 2 so (ω 2 n + ∆ 2 + ∆ 2 so ) 2 + [(ω 2 n + ∆ 2 so ) 2 + ∆ 2 (ω 2 n -∆ 2 so )]h 2 -ω 2 n h 4 + [∆ 2 so (ω 2 n + ∆ 2 + ∆ 2 so ) + ω 2 n h 2 ] (ω 2 n + ∆ 2 + ∆ 2 so + h 2 ) 2 -4∆ 2 h 2 1/2
. (B.9)

Other components can then be expressed as

d 0 = ω n 2∆(ω 2 n + ∆ 2 so ) ω 2 n + ∆ 2 so + h 2 -∆ 2 + (ω 2 n + ∆ 2 so + h 2 -∆ 2 ) 2 + 4∆ 2 (ω 2 n + ∆ 2 so ) , (B.10) and d x = -i c 0 (ω n c 0 -∆d 0 ) hd 0 , b y = ∆ so (ω n c 0 -∆d 0 ) ω n h . (B.11)
Derivation of Eq. (5.21) The system of equations (5.10), after some algebraic manipulations, can be rewritten as

h 2 c 0 d 0 + (ω n c 0 -∆d 0 )(ω n d 0 + ∆c 0 ) + ∆ 2 so τ iv (ω n c 0 -∆d 0 ) ωnτ iv d 0 + 1 + d 2 x c 2 0 = 0, (B.12) with d x = -i c 0 (ω n c 0 -∆d 0 ) hd 0 , b y = i∆ so d x d 0 c 0 ω n + 1 τ iv d 0 1 + d 2 x c 2 0 -1 . (B.13)
If we assume ∆ 2 so τ iv ∆ 0 , we can take d x /c 0 1, which will be justified a posteriori. Then, Eq. (B.12) becomes

ω n c 0 -∆d 0 = - h 2 ∆ 2 so τ iv c 0 d 0 1 + ω n τ iv d 0 , (B.14) which leads to d x c 0 = - ih ∆ 2 so τ iv c 0 1 + ω n τ iv d 0 , b y = - h ∆ so c 0 . (B.15)
Starting from the expression for d x in Eq. (B.15), we immediately see that the assumption d x /c 0 1 is justified for h c2 ∆ 2 so τ iv . However, this assumption holds even at higher fields h ∼ ∆ 2 so τ iv , as in that case Eq. (B.14) gives c 0 ∼ ∆∆ 2 so τ iv /h 2 1, which yields d x /c 0 1 when combined with Eq. (B.15). The normalization condition (5.9) now simplifies to Then, the normalization condition (5.9) becomes

(c 2 0 + d 2 0 ) 1 + d 2 x c 2 0 = 1, (B.18)
and the system of equations (5.10) simplifies to

-ω n c 0 -ihc x + ∆d 0 = 0, -ω n c x -ihc 0 + ∆d x + ∆ 2 so τ iv (c 0 d x -d 0 c x ) = 0. (B.19) Next, we introduce c ± = 1 2 (c 0 ± c x ) and d ± = 1 2 (d 0 ± d x ). The normalization condition (B.19) becomes c 2 ± + d 2 ± = 1, (B.20)
and Eq. (B. [START_REF] Garcia | Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures[END_REF]) can be rewritten as In this section, we numerically evaluate h c2 for single band Ising superconductors in the limits T → 0 and T → T c in a broad range of intervalley disorder. We compare these results with analytical estimates made in Sec. 5.3. The value of upper critical field at zero temperature h c2 (0) can be obtained from the following equation

-(ω n ± ih)c ± -∆d ± ± ∆ 2 so τ iv (c -d + -d -c + ) = 0. (B . 
ln 2h c2 (0) ∆ 0 = ∞ 0 dω ∆ 2 so + ω n (ω n + τ -1 iv ) h 2 c2 (ω n + τ -1 iv ) + ω n [∆ 2 so + ω n (ω n + τ -1 iv )] - ω ω 2 + h 2 c2 . (B.22)
We plot h c2 (0) obtained this way in Fig. B.1 (a) as a function of 1/τ iv . We verify that Eq. (5. [START_REF] Garcia | Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures[END_REF]) is in good agreement with these results in the relevant parameter regime and that h c2 (0) reaches ∆ 0 /2 for strong disorder. Close to T c , the critical field h c2 is small, and the assumptions ∆ so h c2 and ln Tc T ≈ Tc-T Tc hold. Expanding Eq. (5.11) in the main text in this regime yields a square-root behavior chemical potentials specified in the main text. In particular, we obtain where we used the notation ωn = ω n + 1/(2τ 0 ) + 1/(2τ iv ). We note that, in general, the renormalized vertex function Π η is dependent on the polar angle θ, due to the anisotropy of the projected disorder potential, Eq. (3.9). The We readily check that Π η (θ) is fully determined by its first harmonics in θ:

ν 0K d ξ q G +,
Π s 1 s 2 η (θ) = Π s 1 s 2 η0 + Π s 1 s 2 η1 cos θ + Π s 1 s 2 η2 sin θ. (B.30)
Namely, by combining Eqs. (B.29) and (B.30), after integration over θ , we verify that no higher harmonics are generated. Furthermore, the equation for the constant part of the vertex functions Π η0 is decoupled from the angle-dependent parts Π η1 and Π η2 . Replacing the Π η (θ) in Eq. (B.27), we see that the angle-dependent contributions vanish after the integration over momenta. Therefore, it is sufficient to compute only Π η0 . The eight different Π η0 are determined from the linear system of equations obtained C.2. Derivation of Eq. (6.15)

Finally, this allows us to write for the angluarly-independent part as [M + 1 2 (∆ Γ so ) 2 τ Γ s z g Γ 0 s z , g Γ 0 ] = 0, (C.5) which, finally, reduces to Eq. (6.2).

C.2 Derivation of Eq. (6.15)

Substituting Eq. ( 6.4) into the Eilenberger equation (6.1), we obtain the system of equations for the components of g K η :

-

ω n c K 0 -ihc K x + ∆d K 0 + Γ KΓ (c Γ 0 d K 0 + c Γ x d K x -d Γ 0 c K 0 -d Γ x c K x ) = 0, -ω n c K x -ihc K 0 -i∆ so b K y + ∆d K x + Γ KΓ (c Γ 0 d K x + c Γ x d K 0 -d Γ 0 c K x -d Γ x c K 0 ) = 0, -iha K z + i∆ so d K x -∆b K y - 1 τ iv 1 + (d K x ) 2 (c K 0 ) 2 c K 0 -Γ KΓ (c Γ 0 b K y + d Γ x a K z ) = 0, ω n b K y + i∆ so c K x + 1 τ iv b K y 1 + (d K x ) 2 (c K 0 ) 2 d K 0 -Γ KΓ (c Γ x a K z -d Γ 0 b K y ) = 0, (C.6)
which needs to be supplemented with the normalization condition (6.3), yielding

a K z = b y d x c 0 , c K x = - d K x d K 0 c K 0 , [(c K 0 ) 2 + (d K 0 ) 2 + (b K y ) 2 ] 1 + (d K x ) 2 (c K 0 ) 2 = 1.
(C.7) Similarly, for the Γ-band, upon substituting Eq. (6.5) into the Eilenberger equation (6.2), we obtain the system of equations for the components of g Γ :

-ω n c Γ 0 -ihc Γ x + Γ ΓK (c K 0 d Γ 0 + c K x d Γ x -d K 0 c Γ 0 -d K x c Γ x ) = 0, -ω n c Γ x -ihc Γ 0 + 1 τ Γ,so (c Γ 0 d Γ x -d Γ 0 c Γ x ) + Γ ΓK (d Γ x c K 0 + d Γ 0 c K x -c Γ x d K 0 -c Γ 0 d K x ) = 0, (C.8)
and the normalization condition yields

c Γ x = - d Γ x d Γ 0 c Γ 0 , [(c Γ 0 ) 2 + (d Γ 0 ) 2 ] 1 + (d Γ x ) 2 (c Γ 0 ) 2 = 1.
(C.9)

In the limit assumed in the main text, ∆ so T c , τ -1 iv , τ -1 Γ,so , Γ KΓ , Γ ΓK , we can take d K

x /c K 

ω n ρ 2 ∆ 2 so c K 0 + 1 τ iv h 2 ∆ 2 so c K 0 d K 0 = ∆d K 0 + Γ KΓ [c Γ 0 d K 0 - ρ 2 ∆ 2 so d Γ 0 c K 0 ]. (C.12)
Finally, the normalization condition (C.9) now simplifies to

(c K 0 ) 2 ∆ 2 so ρ 2 + (d K 0 ) 2 = 1. (C.13)
In the Γ-band, we can define c Γ ± = 1 2 (c Γ 0 ± c Γ x ) and d Γ ± = 1 2 (d Γ 0 ± d Γ x ). Then, Eq. (C.8) can be rewritten as Here, we have introduced

-(ω n ± ih)c Γ ± ± 1 τ Γ,so (c Γ -d Γ + -d Γ -c Γ + ) + Γ ΓK (c K 0 d Γ ± -d K 0 c Γ ± ) =
χ = 4Γ KΓ Γ ΓK + [Γ KΓ -Γ ΓK + α K (h c2 ) -α Γ (h c2 )] 2 1/2 , γ ± = 1 2 -χ 2 ± χ[Γ KΓ -Γ ΓK + α K (h c2 ) -α Γ (h c2 )] , β ± = 1 2 Γ KΓ + Γ ΓK + α K (h c2 ) + α Γ (h c2 ) ∓ χ , (C.17)
where h c2 is the upper critical field.

For temperatures close to T = 0, using the asymptotic behavior ψ(z)≈ ln z when Then, assuming that ∆ 2 so τ iv τ -1 Γ,so , such that α Γ (h c2 ) T c , Eq. (C.18) becomes ln(∆ * 0 /2) = ln[Γ KΓ + α K (h c2 )], which evaluates to Eq. (6.20) in the main text. where e θ = (cos θ , sin θ ), and we expand up to second order in small momentum Q.

The function F 0 is defined in Appendix A. The impurity line can be rewritten as

U 2 0
F 0 aθθ = 1 2πν 0K τ 0 z 0 + z 1 e -ia(θ-θ ) + z 2 e -2ia(θ-θ ) , (D.5)

where

z 0 = (1 + E g /µ) 2 2(1 + E 2 g /µ 2 ) , z 1 = 1 -E 2 g /µ 2 (1 + E 2 g /µ 2 ) , z 2 = (1 -E g /µ) 2 2(1 + E 2 g /µ 2 ) . (D.6)
We expand in harmonics

U 2 0 F 0 aθθ = n,m=0 ,1,2 
z nm e i(nθ-mθ ) , C aa,aa (θ, θ ; Q) = n,m=0,1,2

Z nm (Q)e i(nθ-mθ ) , (D. 

Φ =    1 -Π 0 τ 0 -1 2 Q 2 v 2 F τ 2 0 -iQ + 2 v F τ 0 - Q 2 + 4 v 2 F τ 2 0 -iQ - 2 v F τ 0 1 -Π 0 τ 0 -1 2 Q 2 v 2 F τ 2 0 -iQ + 2 v F τ 0 - Q 2 + 4 v 2 F τ 2 0 -iQ - 2 v F τ 0 1 -Π 0 τ 0 -1 2 Q 2 v 2 F τ 2 0    , (D.9)
where Q ± = Q x ± iQ y , and Π 0 = -iω + τ -1 φ . The diagonal elements Z ii are the leading order terms in the diffusive limit. Z 22 will always have a non-vanishing Cooperon gap of the order τ -1 0 , so we only need to consider Z 00 and Z 11 . They are given by

Z 00 = 1 2πν 0K τ 2 0 1 g 0 2τ 0 + 1 2 1 g 1 + 1 Q 2 v 2 F τ 0 + Π 0 , Z 11 = 1 2πν 0K τ 2 0 1 g 1 2τ 0 + 1 2 1 g 0 + 1 g 2 + 1 Q 2 v 2 F τ 0 + Π 0 , (D.10)
where g i = 2(1 -z i )/z i . Finally, after introducing C aa,aa 0 (Q) = Z 00 and C aa,aa a (Q) = Z 11 , as well as Γ 0 = g 0 2τ 0 = 1 2 , we obtain Eq. (7.8) from the main text C aa,aa (θ, θ ; Q) = C aa,aa 0 (Q) + C aa,aa a (Q)e -ia(θ-θ ) .

τ 0 (µ-Eg) 2 (µ+Eg) 2 , Γ a = g 1 2τ 0 = 1 τ 0 2E 2 g µ 2 -E 2 g , D 0 = 1 2 1 g 1 + 1 v 2 F τ 0 = 1 8 v 2 F τ 0 (3 + E 2 g µ 2 ) and D a = 1 2 1 g 0 + 1 g 2 + 1 v 2 F τ 0 = v 2 F τ 0 (E 2 g +µ 2 ) 2 (µ 2 -E 2 g )
(D.11)

D.2.2 Intervalley Cooperons

To find the intervalley Cooperons C aā,aā (θ, θ ; Q) in the presence of diagonal disorder only, we repeat the same procedure as in Sec. D. where the function F 0 is defined in Appendix A. The impurity line can be rewritten as

U 2 0 F 0 θθ = 1 2πν 0K τ 0 z 1e -i(θ-θ ) + z 0 + z 1 e i(θ-θ ) , (D.13) 
where z nm e i(nθ-mθ ) , C aā,aā (θ, θ , Q) = n,m=-1,0,1 Z nm (Q)e i(nθ-mθ ) , (D.15) and find that the expansion coefficients satisfy Z = (1 -z Φ) -1 z .

z 1 = z 1 = 1 -E 2 g /
The diagonal elements Z ii are the leading order terms in the diffusive limit. Z 11 and Z 11 will always has a non-vanishing Cooperon gap of the order τ -1 0 , so we only need to consider Z 00 , which is given as

Z 00 (Q) = 1 2πν 0K τ 2 0 1 g 0 2τ 0 + 1 2 1 + 1 g 1 + 1 g 1 Q 2 v 2 F τ 0 + Π 0 , (D.16)
where g i = 2(1 -z i )/z i . Finally, after introducing C aā,aā 0 = Z 00 we obtain Eq. (7.10) of the main text C aā,aā (θ, θ ; Q) = C aā,aā 0 .

(D.17)

D.2.3 Angularly independent form of the disorder correlator

The explicit expression for the disorder correlator defined in Eq. The functions F i , F i and G i are defined in Appendix A. From here, we find the components of W (θ, θ ) that appear in Eq. Here, τ -1 BR and τ -1 W are the scattering rates introduced in Eq. (7.18) of the main text.

D.4 Solving the Cooperon equations

Having transformed all the relevant quantities to the singlet-triplet space in Sec. (D. The signs outside and inside the parentheses concern n-and p-doped samples, respectively. At µ ≈ E g , the intervalley contribution to the transport time comes predominantly from one site ("+" for n-doped, "-" for p-doped samples), and the diffusion constant is D = 1 2 v F (τ -1 0 + τ -1 iv,+ ) -1 . At µ E g , both sites contribute equally, together with hopping disorder, and the diffusion constant is D = 1 2 v F ( τ -1 0 2 + τ -1 iv,+ + τ -1 iv,-+ 3 2 τ -1 iv,x ) -1 .
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 11 Figure 1.1: Schematic representation of Ising SOC. Taken from [6].

Figure 1 . 2 :

 12 Figure 1.2: In-plane upper critical field in MoS 2 .Taken from[START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF] 

Figure 1 . 3 :

 13 Figure 1.3: (a) Fermi surface of TMDs at finite in-plane magnetic fields. (b) Upper critical field calculated from Eq. (1.1).

2

 2 show a two-gap structure, suggesting contributions from two bands [see Fig. 1.4 (a)].
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 14 Figure 1.4: (a) Quasiparticle spectra of bulk and few-layer NbSe 2 . Taken from [57]. (b) Band structure of p-doped NbSe 2 at the Fermi level. Taken from [58].
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 15 Figure 1.5: Quantum interference along time-reversed paths. Taken from [65].

Figure 1 . 6 :

 16 Figure 1.6: "Magnetofingerprint" of a gold nanowire. Taken from [91].

Figure 2 . 1 :

 21 Figure 2.1: (a) Structure of TMDs, as seen from the side and from above. Black sites correspond to M atoms, while yellow sites correspond to X atoms. Taken from [100]. (b) Band structure of TMDs, obtained by density functional theory (DFT) calculations. 2∆ cb and 2∆ vb denote spinsplitting in the conduction and valence band, respectively. Taken and adapted from Ref. [8].

Figure 2 . 2 :

 22 Figure 2.2: Results of a DFT band structure calculation showing spin-splitting in the conduction and valence band of TMDs in the vicinity of the K point. Taken from [8].

Figure 2 . 3 :

 23 Figure 2.3: Left: H c2 (T ) curve of various superconducting TMDs: MoS 2 , WS 2 and NbSe 2 ,and comparison with other superconductors with strongly enhanced H c2 . The latter include a ferromagnetic superconductor UCoGe (where triplet pairing is predicted[START_REF] Huy | Superconductivity on the border of weak itinerant ferromagnetism in UCoGe[END_REF]), layered superconductors (LaSe) 1.14 (NbSe 2 )[START_REF] Samuely | Two-dimensional behavior of the naturally layered superconductor (LaSe) 1.14 (NbSe 2 )[END_REF] and TaS 2 (Py) 0.5[START_REF] Morris | Anisotropic superconductivity in layer compounds[END_REF], and thin Pb films (where strong Rashba SOC is expected[START_REF] Sekihara | Two-dimensional superconducting state of monolayer Pb films grown on GaAs (110) in a strong parallel magnetic field[END_REF]). Taken from[START_REF] Lu | Full superconducting dome of strong Ising protection in gated monolayer WS 2[END_REF]. Right: H c2 (T ) curve of superconducting TaS 2 for various material thicknesses, from monolayer (1L) to five-layer (5L). Taken from[START_REF] Sergio | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[END_REF]. B p and H p denote the Pauli limit, introduced in Sec. 1.1.1.

Figure 2 . 4 :

 24 Figure 2.4: Results of the electronic band structure calculations for graphene/TMD heterostructures. Taken and adapted from [16]. (a) Band structure along high-symmetry lines. Dirac cones of grapene are well preserved within the TMD band-gap. (b) Band structure in the vicinity of ±K. Two spin-split subbands are visible, due to induced Ising SOC.
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 31 Figure 3.1: Schematic representation of the conduction band of TMD monolayers in the vicinity of the ±K corners of the Brillouin zone. The spin splitting in the two valleys is opposite due to the Ising SOC.
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 41 Figure 4.1: Feynman rules for disordered systems. (a) "Bare" Green's function. (b) "Dressed", disorder-averaged Green's function. (c) Impurity line.

Figure 4 . 2 :

 42 Figure 4.2: First few terms in the diagrammatic expansion of the disorder-averaged Green's function. For the definition of diagram elements, see Fig. 4.1.
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 43 Figure 4.3: (a) Diagrammatic representation of the Dyson equation. (b) Diagrammatic representation of the self-energy in the self-consistent Born approximation.

Figure 4 . 4 :

 44 Figure 4.4: (a) Example of a ladder diagram. (b) Example of a maximally crossed diagram. The arrows represent disorder-averaged single-particle Green's functions.
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 45 Figure 4.5: Diagrammatic representation of the Bethe-Salpeter equation.
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 46 Figure 4.6: Relation between the maximally-crossed and ladder diagrams
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 47 Figure 4.7: Density of states of a conventional superconductor.

Figure 5 . 1 :

 51 Figure 5.1: Upper critical field as a function of temperature in the absence of intervalley scattering for different values of Ising SOC, as described by Eq. (5.12). The plot on the right shows the same result but with a different scale for the x-axis to illustrate the logarithmic divergence at low temperature when ∆ so = 0.
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 52 Figure 5.2: Upper critical field as a function of the temperature for various strengths of Ising SOC and intervalley scattering: (a) ∆ so /T c = 0.3, (b) ∆ so /T c = 3, and (c) ∆ so /T c = 12. The choice of parameters ∆ so /T c = 12 and 1/(τ iv T c )=1.5 [dashed line in (c)] gives a good fit of the experimental data from Ref. [12] [blue dots in (c)] taking the g-factor to be g = 2.

Figure 5 . 3 :

 53 Figure 5.3: Quasiparticle spectra for superconductors described by the AG theory, for various values of the parameter α/ ∆. Note that ∆ depends on α through the self-consistent gap equation.
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 54 Figure 5.4: Summary of all regimes of intervalley scattering, assuming large Ising SOC ∆ so ∆ 0 .

Figure 5 . 5 :

 55 Figure 5.5: Superconducting gap ∆ as a function of the in-plane magnetic field, for various values of intervalley disorder. Ising SOC is set to ∆ so = 20T c , and the temperature is T = 0.5T c . All quantities are normalized with respect to T c -the critical temperature at h = 0.

Figure 5 . 6 :

 56 Figure 5.6: Quasiparticle spectra of Ising superconductors subjected to in-plane fields, for various values of intervalley scattering: (a) τ -1 iv= 0 (h c2 ≈ 9.5T c ), (b) τ -1 iv = T c (h c2 ≈ 8.2T c ), (c) τ -1 iv = 10T c (h c2 ≈ 4.5T c ), (d) τ -1 iv = 10 3 T c (h c2 ≈ 1.2T c ).Ising SOC is set to ∆ so = 20T c . Values of the superconducting gap ∆ were obtained self-consistently for every parameter combination at the temperature T = 0.5T c (See Fig.5.5). The relatively high temperature was chosen for numerical convenience, as the self-consistent calculation of ∆ converges quicker, while the qualitative behavior remains the same compared to lower temperatures.

Figure 5 . 7 :

 57 Figure 5.7: Temperature-dependence of F 1/2 (T, ∆ so ) for various values of the Ising SOC. (a) FFLO: F 1 (T, ∆ so ) defined in Eq. (5.35), evaluated along the upper critical line in the uniform state. The dashed black line corresponds to the critical value of the Ising SOC, ∆ F F LO so = 0.53T c 0.30∆ 0 , above which the function F 1 remains positive for all temperatures. (b) First order phase transition: F 2 (T, ∆ so ) defined in Eq. (5.37), evaluated along the upper critical line in the uniform state. The dashed black line corresponds to the critical value of Ising SOC ∆ 1→2 so = 0.92T c 0.52∆ 0 , above which the function F 2 remains positive for all temperatures.

Figure 6 . 1 :

 61 Figure 6.1: Schematic representation of the intervalley and interband scattering.
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 62 Multiband superconductivity in the absence of a magnetic field

Figure 6 . 2 :

 62 Figure 6.2: Density of states in the superconducting state for a multiband superconductor in the absence of magnetic field, for various strengths of interband disorder. For simplicity, we assume ν 0K = ν 0Γ , such that Γ KΓ = Γ ΓK = Γ. Left and right panel describe the K and Γ band, respectively. Note that the superconducting gap depends on interband disorder through the self-consistency condition (6.6).
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 63 Figure 6.3: Superconducting gap at zero temperature as a function of interband disorder strength, obtained self-consistently from Eq. (6.6). For simplicity, we assume ν 0K = ν 0Γ , such that Γ KΓ = Γ ΓK = Γ.
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 64 Figure 6.4: Upper critical field as a function of temperature at ∆ so = 100T c : (a) for various strengths of interband disorder, taking τ -1 iv = τ -1 Γ,so = 0; (b) for various strengths of intervalley disorder. For simplicity, we assume ν 0K = ν 0Γ , such that Γ KΓ = Γ ΓK = Γ.
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 65 Figure 6.5: Upper critical field as a function of temperature at ∆ so = 100T c , Γ KΓ = Γ ΓK = T c : (a) for various values of SOC in the Γ-band, taking τ -1 iv = 0; (b) for various values of intervalley scattering, taking τ -1Γ,so = 0.

Figure 6 . 6 :

 66 Figure 6.6: Comparison of experimental data from Ref. [14] (blue dots) and our multiband model for the parameter combination: ∆ so = 150T c (compatible with values extracted from first-principles, see Table2.1), Γ KΓ = Γ ΓK = τ -1 iv = 2T c , τ -1 Γ,so = 3.5T c .

Figure 6 . 7 :

 67 Figure 6.7: Density of states in the superconducting state for multiband Ising superconductors at ∆ so = 100T c , Γ KΓ = Γ ΓK = T c , for various in-plane magnetic fields. Panels on the left-hand (right-hand) side correspond to the K-band (Γ-band). Parameters used are: (a) τ -1 iv= τ -1 Γ,so = 0 (h c2 ≈ 27T c ); (b) τ -1 iv = 0, τ -1 Γ,so = 10T c (h c2 ≈ 27T c ); (c) τ -1 iv = 10T c , τ -1 Γ,so = 0 (h c2 ≈ 16T c). The graphs were plotted using Eqs. (6.15) and(6.16), where the gap ∆ was calculated selfconsistently for the given parameter combination at T = 0.3T c . The relatively high temperature was chosen for numerical convenience, as the self-consistent calculation of ∆ converges quicker, while the qualitative behavior remains the same compared to lower temperatures.

Figure 6 . 8 :

 68 Figure 6.8: Comparison between experimental measurements of the density of states in trilayer NbSe 2 (left) and the fit provided by the Keiser-Zuckermann equation (6.21) (right) from Ref. [57]. Parameters of the fit presented in the right panel are: ∆ 0 = 0.42 meV, Γ KΓ = Γ ΓK = 0.09 meV, τ -1Γ,so =0.5 meV and ∆ 2 so τ iv >6.7 meV.

. 3 )where D = 1 2 v 2 F

 32 τ tr is the diffusion constant, and the factor 4 originates from spin and valley degeneracy. The corresponding diagram is shown in Fig. 7.1 (b). Derivation of Eqs. (7.2) and (7.3) is presented in Appendix D.1.

Figure 7 . 1 :

 71 Figure 7.1: (a) Vertex renormalization. (b) Drude conductivity diagram. Solid arrows represent Green's functions, while the dashed lines represent disorder. The upper (lower) branch of the diagrams corresponds to retarded (advanced) Green's functions.

. 5 )τ 3 0×

 53 respectively. Note that the Green's functions are diagonal in valley space, so the polarization operator only depends on two valley indices. The weak localization correction δσ can now be expressed in terms of Cooperons as 2πδ(θ -θ ) -2πν 0K τ 0 W ab,ab αβ,αβ (θ, θ ) Jxq Jxq C ab,ba αβ,βα (θ, θ ; Q). (7.6) Here, the first contribution in the square bracket comes from the bare Hikami box [28] [shown in Fig. 7.2 (b)], while the second one comes from two Hikami boxes dressed by an intravalley impurity line [shown in Fig. 7.2 (c)].

Figure 7 . 2 :

 72 Figure 7.2: (a) Bethe-Salpeter equation for the Cooperons. (b) Bare Hikami box. The Hikami boxes with external lines that are diagonal in spin-space give a dominant contribution to the quantum correction in the diffusive limit. (c) Dressed Hikami boxes. For the definition of diagram elements, see Fig. 7.1. Greek indices in the subscript describe spin, while Latin indices in the superscript describe the valley degree of freedom.

. 10 )

 10 Detailed derivation of Eq. (7.10) is presented in Appendix D.2.2.

Figure 7 . 3 :

 73 Figure 7.3: Schematic representation of the WL behavior in the regime of strong short-range disorder, τ -1 iv τ -1 s . In the crossover regions described by Eqs. (7.28)-(7.33), the magnetoconductance at low (high) perpendicular field behaves the same as in the left (right) adjacent region on the τ -1 φ arrow. In panel (a), the regime of vanishing interference correction between τ -1 asy and τ -1

Figure 7 . 4 :

 74 Figure 7.4: Interference-induced magnetoconductance as a function of a weak perpendicular magnetic field under the influence of increasing Ising SOC. We take the chemical potential to be deep in the conduction band, such that Ξ = -1. The fields B sym and B asy are determined by the Elliott-Yaffet contribution from the Kane-Mele SOC, and the Dyakonov-Perel contribution due to the Rashba SOC, respectively, as well as other sources of spin-orbit scattering [see Table 3.1 and Eq. (7.26)]. The effect of the valley-Zeeman SOC is captured by the parameter ∆ so τ iv . (a) All curves are plotted for the parameters B iv = 200B φ , B sym = B asy = 3B φ . The dashed black line corresponds to Eq. (7.28), while the dotted line corresponds to Eq. (7.30) (b) All curves are plotted for the parameters B iv = 10B φ , B sym = B asy = 0.02B φ . The dashed black line corresponds to Eq. (7.32), while the dotted line corresponds to Eq. (7.33).
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 75111 Figure 7.5: Schematic representation of the WL behavior in the regime of weak short-range disorder, τ -1 sym , τ -1 asy

Figure 7 . 6 :

 76 Figure 7.6: Influence of the in-plane Zeeman field on the magnetoconductance curves. The solid black line represents the curve at zero in-plane Zeeman field, while the dashed line represents the saturation curve given by Eq. (7.38) at high fields. (a) The parameters for the plot are B iv = 100B φ , B sym = B asy = 10B φ , B so = 0, and Ξ = -1. The crossover to WL happens at B ⊥ ≈ 10B φ . (b) The parameters for the plot are B iv = 100B φ , B sym = B asy = 3.5B φ , B so = 120B φ , and Ξ = -1. The crossover to WL happens at B ⊥ ≈ 30B φ .
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 77 Figure 7.7: Measurements of the interference-induced magnetoconductance as a function of applied perpendicular field in some TMDs and graphene/TMD heterostructures. (a) and (b): measurement results for ionic-liquid gated MoS 2 samples, from Refs. [78] and [77], respectively. Differently colored curves in (a) and (b) correspond to various temperatures and gate voltages, respectively. (c): measurements for a graphene/WS 2 heterostructure, from Ref. [82].
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 81 Figure 8.1: Diagrammatic form of the Bethe-Salpeter equation for the diffusons. Greek indices in the subscript describe spin, while Latin indices in the superscript describe valley degree of freedom.

Figure 8 . 2 :

 82 Figure 8.2: Rectangular sample geometry, where L and W are the length and width of the sample, respectively. The gray lines represent leads to which the sample is connected.

  3 c ,(8.10) where the subscript c means that factorizable contributions are subtracted, i.e., AB c = AB -A B . There are two processes that contribute to δG 2[START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF]: fluctuations of the density of states and of the diffusion constant, represented diagrammaticaly in Figs.8.3(a) and (b), respectively. The diagrams for UCF, in general, involve products of two diffusons, or two Cooperons. In the following, we assume the regime of strong perpendicular magnetic fields, such that all Cooperons are suppressed. Then, only the diffusons (which remain unaffected by the field, see Sec. 4.2.1) contribute to the UCF. This high-field regime is suitable for experimental investigation of the UCF, as one can tune the magnetic field to observe the fluctuations, whose amplitude remains constant as a function of the field. At the same time, the field-dependent W(A)L effects are suppressed and do not influence the measurements.

Figure 8 . 3 :

 83 Figure 8.3: (a) and (b): Diagrammatic form of the two contributions to the UCF -fluctuations of the density of states (a) and fluctuations of the diffusion constant (b). Gray wavy lines represent diffusons. Diagrams where the retarded (R) and advanced (A) Green's functions exchange places need to be considered as well. (c) and (d): Dressed Hikami boxes.

  After performing the analytical continuation iω n → + i0 + , and defining the effective order parameter ∆( ) = -i c 0 ( )/d 0 ( ), Eqs. (B.14) and (B.16) straightforwardly lead to Eq. (5.21) in the main text.Derivation of Eq. (5.27) In the limit τ -1 iv ∆ 0 , we obtain from Eq. (B.12)

21 )

 21 Then, after performing the analytical continuation iω n → + i0 + , and defining the effective order parameters ∆± ( ) = -i c ± ( )/[d ± ( )],Eqs. (B.20) and (B.21) lead to Eq. (5.27) in the main text. B.3. Numerical analysis of h c2 in the limits T → 0 and T → T c B.3 Numerical analysis of h c2 in the limits T → 0 and T → T c

2 n

 2 h c2 T c (T c -T ) [ω n (ω n + 1 τ iv ) + ∆ 2 so ] (B.24)and ω n = (2n + 1)πT c (n integer). We plot 1/ √ C obtained this way in Fig.B.1 (b). We verify that Eq. (5.16) is in good agreement with these results in the relevant parameter regime, and that h c2 ≈ 2.16T c 1 -T /T c for strong disorder.

Figure B. 1 :

 1 Figure B.1: Behavior of the critical field h c2 (T ) close to 0 and T c as a function of disorder strength for various values of the Ising SOC. We show numerical (solid lines) and approximate (dashed lines) results. (a) The critical fields h c2 (0) at T = 0, obtained from Eq. (B.22) and from Eq. (5.19), calculated up to the second order in the logarithmic approximation. The black dash-dotted line corresponds to the result in the absence of SOC, h c2 = ∆ 0 /2. (b) Behavior of h c2 close to T c : we plot 1/ √ C = [-(dh 2 c2 (T )/dT )| Tc /T c ] 1/2 , obtained from Eq. (B.24) and from Eq. (5.16). The black dash-dotted line corresponds to 1/ √ C = 2π/ 7ζ(3) ≈ 2.16 in the absence of SOC.

Figure B. 3 :

 3 Figure B.3: (a) Diagrammatic representation of the disorder-averaged self-consistency condition given by Eq. (B.25). (b) Bethe-Salpeter equation for the renormalized vertex functions Π ss η . For the definition of diagram elements, see Fig. B.2. We use the abbreviation s = -s.

Π s 1 s 2 η

 2 Π η are determined by a system of Bethe-Salpeter equations [corresponding to diagrams in Fig. B.3 (b)]:θ,θ G +,s 1 s ηq ωn G -,s 2 s ηq ωn [sδ ss + Π ss η (θ)] + i=±,x j=x,y V 2 ij G i θ,θ G +,s 1 s ηq ωn G -,s 2 s ηq ωn [sδ ss + Π ss η (θ)] . (B.29)

0 1 (

 1 similarly to Sec. B.2). Then, the second line of Eq. (C.Eqs. (C.10) and (C.11) into the first or third line of Eq. (C.6), we obtain

  perform the analytical continuation iω n → + i0 + , and define effective order parameters ∆K ( ) = -i c K 0 ( )/d K 0 ( ) and ∆ ± Γ ( ) = -i c Γ ± ( )/d Γ ± ( ).Then, the first line of Eq. (6.15) readily follows from Eqs. (C.12) and (C.13), whereas the second line of Eq. (6.15) follows from Eqs. (C.14) and (C.15).C.3 Derivation of Eqs. (6.[START_REF] Garcia | Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures[END_REF]) and (6.20)The sum over Matsubara frequencies in the linearized gap equation (6.18) can be evaluated analytically

χ 2

 2 ln β + + γ - χ 2 ln β -.(C.18)

D. 2 .

 2 Angular structure of Cooperons D.2 Angular structure of Cooperons D.2.1 Intravalley CooperonsLet us consider the intravalley Cooperon C aa,aa (θ, θ ; Q). In the presence of diagonal disorder only, it satisfies the following Bethe-Salpeter equationC aa,aa (θ, θ , Q) 0 -τ -1 φ τ 0 -iQ•e θ v F τ 0 -(Q•e θ ) 2 v 2 F τ20 ]C aa,aa (θ , θ ; Q), (D.4)

  n-m)θ [1+iωτ 0 -τ -1 φ τ 0 -iQ•e θ v F τ 0 -(Q•e θ ) 2 v 2 F τ 2 0 ], n, m = 0, 1, 2.(D.8) The expansion coefficients then satisfy Z = (1 -zΦ) -1 z, with

2 . 1 .

 21 They are determined by the Bethe-Salpeter equationC aā,aā (θ, θ , Q) = U 2 0 F 0 θθ +U 2 0 (2πν 0K τ 0 ) 2π 0 dθ 2π F 0 θθ [1+iωτ 0 -τ -1 φ τ 0 -iQ•e θ v F τ 0 -(Q•e θ ) 2 v 2 F τ20 ]C aā,aā (θ , θ ; Q), (D.12)

µ 2 2

 2 in Sec. D.2.1, we expand in harmonicsU 2 0 F 0 θθ = n,m=-1,0,1

  (7.5) isW ab,a b αβ,α β (θ, θ ) = δ aa δ bb i=0,x,y,z δ a bF i θθ + δ ab F i aθθ × U 2 i δ αα δ ββ + (A 2 ix + A 2 iy )abδ α β δ α ᾱ δ β β + A 2 iz abαβδ αα δ ββ +δ aā δ b b δ a b i=±,x j=x,y δ α ᾱ δ β β δ α β +G y θθ (M 2 zx +M2zy )αβδ αα δ ββ .(D.18)

1 0 1 0 4 4 4 sl 1 i 1 i= τ - 1 z

 11444111 (7.11) of the main text asW aa,aa 0 (Ξ = 1) = 1 2πν 0K (τ -1 0 + τ -1 z2 )δ αα δ ββ + (τ -1 zv,e + τ -1 z,e2 )αβδ αα δ ββ + (τ -1 zv,o + τ -1 z,o2 )δ α ᾱ δ β β δ α β , (D.19) -τ -1 z )δ αα δ ββ + (τ -1zv,e -τ -1 z,e )αβδ αα δ ββ + (τ -1 zv,o -τ -1 z,o )δ α ᾱ δ β β δ α β , (D.20) + τ -1 z )δ αα δ ββ + (τ-1 zv,e + τ -1 z,e )αβδ αα δ ββ + (τ-1 zv,o + τ -1 z,o )δ α ᾱ δ β β δ α β + δ a b 2πν 0K τ -1 iv δ αα δ ββ -τ -1 iv,e αβδ αα δ ββ -τ -1 iv,o δ α ᾱ δ β β δ α β . (D.21)D.3 Transformation to the singlet-triplet basisIn this section, we will provide details about the transformation of the interference correction δσ, Bethe-Salpeter equation, disorder correlator Π and polarization operator W to the singlet-triplet basis. This transformation is given ass s ] αβ [η x η l ] ab A ab,a b αβ,α β [s s s y ] β α [η l η x ] b a . s y ] βα [η l η x ] ba A ll ss [s y s s ] α β [η x η l ] a b . (D.23)Instead of four indices in spin and valley space, the transformed quantities are simpler with only two spin (s, s ) and two valley indices (l, l ).Transforming the interference correction δσ. For the upcoming calculation, it is convenient to introduce the quantityCab,a b αβ,α β (Ξ, Q) ≡ C ab,a b αβ,α β (Ξ; Q)[Ξδ ab δ a b + δ a bδ a b ], (D.24)so that the interference correction Eq. (7.13) may be rewritten asδσ =αβ,βα (Ξ, Q), (D.25)where summation over repeated indices is assumed. Then, transforming Cab,a b αβ,α β (Ξ, Q) to the singlet-triplet basis yieldsCab,ba αβ,βα (Ξ, Q) = 1 ss ll [s s s y ] βα [η l η x ] ba Cll ss (Ξ, Q)[s y s s ] βα [η x η l ] ba = 1 ss ll T r[s s s y s T s s T y ]T r[η l η x η T l η T x ] Cll ss (Ξ, Q) = ss ll δ ss δ ll (-δ s0 + δ sx + δ sy + δ sz )(δ l0 + δ lx + δ ly -δ lz ) Cll ss (Ξ, Q). (D.26)Here, Cll ss (Q) is obtained by transforming Eq. (D.24) to singlet-triplet basis asCll ss (Ξ, Q) = C ll ss (Ξ, Q)[Ξ(δ lx + δ ly )(δ l x + δ l y ) + (δ l0 + δ lz )(δ l 0 + δ l z )]. (D.27) Finally, combining Eqs. (D.26) and (D.27) leads to Eq. (7.16) of the main text. Transforming the Bethe-Salpeter equation. We start from the Bethe-Salpeter equation in the original basis, Eq. (7.12), and express all relevant quantities in the singlettriplet basis using Eq. (D.23). Then, using the completeness relation of Pauli matrices 1 [s s s y ] βα [η l η x ] ba [s y s s ] α β [η x η l ] a b = δ aa δ bb δ αα δ ββ , (D.28) we readily obtain the Bethe-Salpeter equation in the singlet-triplet basis, Eq. (7.15). Transforming the disorder correlator W . Starting from the expressions for the disorder correlator in the original basis, Eqs. (D.19)-(D.21), and applying the transformation (D.22), we obtain δ ss δ ll . (D.29)Here, for l ∈ {x, y}, we haveΩ l s (Ξ = 1) = 1 2πν 0K τ -1 z,2 + (τ -1 zv,e + τ -1 z,e2 )(δ sx + δ sy -δ s0 -δ sz ) + (τ -1 zv,o + τ -1 z,o2 )(-δ s0 + δ sz ) , (D.30) τ -1 zv,e -τ -1 z,e )(δ sx +δ sy -δ s0 -δ sz )+(τ -1 zv,o -τ -1 z,o )(-δ s0 +δ sz ) , (D.31) while for l, l ∈ {0, z} we have τ -1 zv,e + τ -1 z,e )(δ sx + δ sy -δ s0 -δ sz ) + (τ -1 zv,o + τ -1 z,o )(-δ s0 + δ sz ) + 1 2πν 0K (δ l0 -δ lz ) τ -1 iv -τ -1 iv,e (δ sx + δ sy -δ s0 -δ sz ) -τ -1 iv,o (δ s0 + δ sz ) . (D.32)Transforming the polarization operator Π. The polarization operator, defined in Eq. (7.5), has the following form in the singlet-triplet basisΠ ll ss (θ; Q) = ν 0K 4 dξ q [s y s s ] αβ [η x η l ] ab [G R q +ω ] aa αα [G A q+Q ] bb ββ [s s s y ] β α [η l η x ] b a = ν 0K 4 dξ q T r[s y s s η x η l G A q+Qω s s s y η l η x [G R q +ω ] T ]. (D.33)After solving the energy integrals of Green's functions, we getΠ ll ss (Q) = δ ss δ ll 2πν 0K τ 0 1 -τ 0 Π -τ 0 τ -1 i + N ll ss + M l s δ ss δ ll ,(D.34)where Π = D|Q| 2 + τ -1 φ -iω, and τ -is the sum of all scattering rates except the dominant one, τ -1 0 :τ -+ τ -1 iv + k=z,iv,zv l=e,o τ -1 k,l . (D.35)The polarization operator (D.34) consists of three parts. The first term is diagonal, while the second and third term have a more complicated structure. The second term, N , is responsible for the coupling of different Cooperon modes via Ising SOC and the in-plane Zeeman field. The third term, M, introduces Dyakonov-Perel-like scattering rates to the Cooperon gaps. We have N ll ss (Q) = -4πν 0K τ 2 0 ∆ so [(δ s0 δ s z + δ s 0 δ sz ) l lz (δ l0 -1)(δ l 0 -1)]| -4πν 0K τ 2 0 ∆ so [(δ l0 δ l z + δ l 0 δ lz ) s sz (δ s0 -1)(δ s 0 -1)] + 4πν 0K τ 2 0 ihδ ll (δ s0 δ s x + δ s 0 δ sx ),where ijk is the Levi-Civita symbol, andM l s = -2πν 0K τ 2 0 τ -1 BR (δ sx + δ sy + 2δ sz ) + τ -1 W (δ lx + δ ly )] . (D.36)

1 -τ 0 l 1 s 1 N ss 1 ll 1 C l 1 l s 1 sδ 1 iτ 2 0 l 1 s 1 N ss 1 ll 1 C l 1 l s 1 s 1 i

 111121111 3), we proceed to solve the Bethe-Salpeter equations. Using the expressions from Sec. (D.3), we obtain from Eq. (7.15)C ll ss (Ξ; Q) = 1 2πν 0K τ 0 δ ss δ ll + 1 + Ω l s (Ξ)τ 0 Πτ 0 -τ 0 τ -1 (Ξ, Q), (D.37) ll δ ss = Π + τ -(Q). (D.38)Next, we introduce the Cooperon relaxation gaps as Γ l s (Ξ) = τ -and summarized in Table.

7 . 1 0K τ 2 0δ 1 2πν 0K τ 2 0 l 1 s 1 N ss 1 ll 1 C l 1 l s 1 s 1 0 1 tr = τ - 1 0µ 2 2 xi v 2 q 2 F µ 2 (D. 43 )D. 5 . 1 0

 7121211111122224351 of the main text. Finally, we have1 2πν ll δ ss = Π + Γ l s (Ξ) C ll ss (Ξ, Q) -(Ξ, Q), (D.40)which can be compactly rewritten as 4 scalar equations for uncoupled Cooperon modes -Eq. (7.17) of the main text, and 4 matrix equations for Cooperon modes coupled by ∆ so and h -Eq. (7.19) of the main text.D.5 Diffusion constant in the regimeτ -1 iv ∼ τ -We generalize the calculation of the transport time and the diffusion constant presented in Eq. (7.2), to account for intra-and intervalley terms of the potential disorder H D0 qq on an equal footing. This yields τ -site intervalley disorder, whileτ -1 iv,x = πν 0K i=x,yV Diffusion constant in the regime τ -1 iv ∼ τ -describes hopping intervalley disorder.

  

  MoS 2 MoSe 2 WS 2 WSe 2 NbSe 2 TaS 2

	2∆ cb so [meV]	3	22	-32	-37	/	/
	2∆ vb so [meV] 148	186	429	466	150	330

Table 2 .

 2 

1: Spin-splitting in the conduction and valence band at the ±K points for various TMD monolayers. Data for Mo-and W-based TMDs was obtained from numerical band structure calculations from Ref.

[START_REF] Kormányos | k• p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF]

. This reference also provides values of the SOC in the valence band estimated from various optical experiments, which agree well with the reported theoretical values. Data for NbSe 2 and TaS 2 is obtained from numerical band structure calculations from Refs.

Table 2 .

 2 

1), Γ KΓ

•

  Les mesures du champ critique dans les supraconducteurs TMD dopés n (MoS 2 , WS 2 ) et dopés p (NbSe 2 , TaS 2 ) montrent une nette augmentation du champ critique (H c2 ) -bien au-delà de la limite de Pauli -qui a été attribuée au SOC d'Ising. Cependant, la théorie simple des supraconducteurs d'Ising sans désordre ne parvient pas à décrire ces expériences, car elle surestime H c2 . Afin d'étudier comment le désordre affecte cette image, nous avons formulé la théorie quasiclassique des TMD désordonnés, puis nous avons calculé H c2 et la densité des états dans l'état supraconducteur dans les régimes dopés n et p. Nous avons constaté que la diffusion intra-vallée, qui peut être causée par tout type de désordre, ne modifie pas les propriétés supraconductrices, de façon analogue au "théorème d'Anderson" pour les supraconducteurs conventionnels.-Dans le Chapitre 5, nous avons d'abord étudié les supraconducteurs d'Ising dopés n, dans lesquels seules les bandes K sont présentes au niveau Fermi. Nous avons montré que la diffusion inter-vallées, qui est causée par un désordre à courte portée, a un effet significatif sur les propriétés supraconductrices, car elle agit comme un mécanisme efficace de spin-flip. Ainsi, ce type de désordre limite H c2 et induit un élargissement de la densité d'états. Nous avons constaté qu'une faible diffusion inter-vallée caractérisée par un taux de transition de l'ordre du gap supraconducteur suffit à expliquer les mesures expérimentales de H c2 .

•

  Ayant établi que le désordre a un rôle crucial dans l'explication des propriétés supraconductrices des TMD, nous nous sommes tournés vers l'étude des corrections à la conductance dues aux interférences quantiques dans l'état normal. Ces études fournissent une sonde supplémentaire et indépendante du désordre et du SOC. Nos résultats s'étendent également aux hétérostructures graphène/TMD, qui sont décrites par un modèle similaire aux TMD. Nous avons étudié la localisation et l'antilocalisation faibles au Chapitre 7 et les fluctuations universelles de la conductance au Chapitre 8. Ces deux phénomènes sont régis par une interaction complexe de plusieurs ingrédients qui modifient les interférences quantiques : le spin-splitting dû au couplage spin-orbite d'Ising, la structure des vallées, la diffusion inter-vallée et la phase Berry due à la structure de bande de type Dirac. Nos résultats généralisent les théories antérieures pour le graphène et les métaux simples contenant des impuretés spin-orbite. Nous avons discuté nos résultats dans divers régimes pertinents pour l'interprétation d'expériences récentes.

  s 1 s 2 ηqωn G -,s 3 s 4 ηqωn = πν 0K sgn(ω n ) 2ω n (ω 2 n + h 2 + ∆ 2 so ) × h 2 (1 -δ s 1 s 2 )(1 -δ s 3 s 4 ) + h(iω n -s 3 η∆ so )(1 -δ s 1 s 2 )δ s 4 s 4 -h(iω n -s 1 η∆ so )δ s 1 s 2 (1 -δ s 3 s 4 ) + (2ω 2 n + h 2 + ∆ 2 so δ s 1 s3 + s 1 2iω n η∆ so δ s 1 s 3 )δ s 1 s 2 δ s 3 s 4 ,(B.28)

The upper critical field H c2 is defined the magnetic field at which the transition to the normal state happens in type II superconductors. In experiment, the transition point is usually defined as the point where the resistance of the sample reaches 50% of the normal state resistance[START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF][START_REF] Tinkham | Introduction to superconductivity[END_REF].

Note that we assume sufficiently dilute disorder, such that the correction to the conductance due to quantum interference is small compared to the Drude conductance. At high disorder concentrations, single-particle states localize and electron transport comes to a complete halt. This is the so-called strong (or Anderson) localization[START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF].

An interesting application of W(A)L magnetoconductance measurements is found in the study of the surface states of topological insulators such as Bi 2 Se 3[START_REF] Garate | Weak localization and antilocalization in topological insulator thin films with coherent bulk-surface coupling[END_REF][START_REF] Steinberg | Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films[END_REF][START_REF] Chen | Tunable surface conductivity in Bi 2 Se 3 revealed in diffusive electron transport[END_REF]. Namely, at zero or positive top gate bias, only the electrons from the n-doped bulk contribute to the quantum transport, while at negative bias, the Dirac point of the gapless surface states contributes as well. Both the surface and bulk states produce WAL signals of equal amplitude, originating from the Berry phase and strong spin-orbit coupling, respectively. By tuning the top-gate bias from zero to negative, several experiments[START_REF] Steinberg | Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films[END_REF][START_REF] Chen | Tunable surface conductivity in Bi 2 Se 3 revealed in diffusive electron transport[END_REF] observed doubling of the amplitude of the WAL. This is a strong indication of the presence of the conducting channel on the surface of Bi 2 Se 3 due to the topological surface states.

Note that the parameter regime |µ| E g is not relevant in superconducting TMDs, where µ E g holds[START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS 2[END_REF][START_REF] Xi | Ising pairing in superconducting NbSe 2 atomic layers[END_REF].

The shape of the quasiparticle spectra could, alternatively, be explained by considering a single anisotropic gap[START_REF] Noat | Quasiparticle spectra of 2 H-NbSe 2 : Twoband superconductivity and the role of tunneling selectivity[END_REF]. Moreover, the high ratio of ∆ and T c can be accounted for by strong-coupling corrections[START_REF] Tinkham | Introduction to superconductivity[END_REF]. The multiband scenario, however, is corroborated by band structure calculations, and thus more likely.

The fact that Ising SOC in TMDs is strong in the valence and weak in the conduction band[START_REF] Kormányos | k• p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF], taking into account that the σ-matrices roughly span the space of these two bands, means that ∆ KM and ∆ V Z are of similar amplitudes but with opposite signs in these materials. Note that this is not necessarily the case in graphene/TMD heterostructures.

Note that the time-reversal operator in this basis is T = is y η x K, where K is complex conjugation.

The fact that there are 11 distinct scattering rates, excluding the diagonal τ -1 0 , can be understood as follows. As discussed in the caption of Table7.1 in Chapter 7, there are 11 distinct Cooperon/diffuson gaps. Therefore, there should be 11 independent scattering rates to accommodate the same number of independent Cooperon/diffuson channels.

3.2. Effective model in the conduction and valence band

The quasiclassical Eilenberger equation paired with the diffusive approximation is known as the Usadel equation[START_REF] Kopnin | Theory of nonequilibrium superconductivity[END_REF]. In our theory, these equations are equivalent, as intravalley scattering has no effect.

If a magnetic field is applied, examples of quadratic-in-field depairing include superconductors with strong spin-orbit scattering and the orbital effect in thin films, while superconducting surface sheaths exhibit linear-in-field depairing[START_REF] Maki | Gapless superconductivity[END_REF].

g ) 2 are diffusion constants. Furthermore, we introduced the inelastic dephasing rate, τ -1 φ . Detailed derivation of Eq. (7.8) is given in Appendix D.2.1.We see that, in general, both C 00 and C aa will have a large gap of the order τ -1

We remind that this effective rate was also found in our study of Ising superconductivity in Sec. 5.3 in the same parameter regime.

B.4. Diagrammatic calculation of h c2 [Eq.(5.11)] 

0

and, thus, will be suppressed in the diffusive limit, except in two special cases. Firstly, Γ 0 vanishes at µ = E g . Close to the band bottom, for µ/E g -1 2 τ 0 /τ φ , one finds Γ 0 τ -1 φ . Thus, in this regime, the Cooperon C 00 is not suppressed. Secondly, Γ a vanishes for µ → ∞. Thus, deep in the band, at µ/E g 2τ φ /τ 0 , one finds Γ a τ -1 φ , and the Cooperon C aa is not suppressed either. Higher-order harmonics, although nonzero, will always have a non-vanishing gap of the order τ -1 0 and will be neglected. We Appendix A

Some useful definitions

In this Appendix, we define a number of functions related with anisotropy of the disorder potential in the projected basis. They will be extensively used in Appendices B and D, where they appear in impurity lines in diagrammatic calculations, as well as in disorderinduced self-energy in the quasiclassical formalism. We define

Where i = 0, x, y, z and j = +, -, x. Functions f and g are defined in Eq. (3.9). Functions F are related to intravalley disorder, and are given as

and

Functions G are related with intervalley disorder, and are given as

The upper and lower sign in Eq. (A.4) hold in conduction and valence band, respectivelly.

Appendix B Ising superconductivity

In this Appendix, we provide technical details and derivations related to Chapter 5. We derive the Eilenberger equation (5.4) 

B.1 Derivation of the Eilenberger equation

Starting from the BdG Hamiltonian for single-band Ising superconductors (5.2), we find that the disorder-averaged Gor'kov Green's function G ηq is determined by the equation

Here, Σ ηq is the self-energy associated with the potential disorder (3.6), calculated using the self-consistent Born approximation. It is defined as

Next, we define the quasiclassical Green's function as

Note that it depends on the angle θ, due to the anisotropy of the projected disorder potential. After integrating Eq. (B.1) over energies ξ q and using the definition (B.3), we obtain the Eilenberger equation

where we have introduced the reduced self-energy

B.4 Diagrammatic calculation of h c2 [Eq. (5.11)]

In the vicinity of the second-order phase transition, in the absence of disorder, ∆ solves the linearized self-consistent gap equation

where λ is the BCS pairing amplitude and Ω D is a cut-off frequency. Here, we have introduced particle and hole Green's functions, defined as

respectively.

In the presence of impurities, the disorder-averaged Green's function can be calculated from the Dyson equation represented diagrammatically in Fig. 4.

, where the self-energy Σ ± η is obtained using the self-consistent Born approximation. As a result, we find Σ ± η = ∓i[1/(2τ 0 ) + 1/(2τ iv )]sgn(ω n ). In upper and lower branch in all these diagrams represent the Green's functions G + and G -, respectively, and all internal momenta (in-between scattering events) are integrated over. In Here, s, s , s = ±1 denote spin indices. We evaluate the integrals over the momenta using the residue theorem with the substitution

dξ q dθ, valid in the regime of after integrating (B.29) over angles: 

Appendix C

Multiband superconductivity

In this Appendix, we provide technical details and derivations related to Chapter 6. In Sec. C.1, we derive Eq. ( 6.2) from the main text, and justify the use of the rate τ -1 Γ,so to describe SOC in the Γ-band. In Sec. C.2, we derive the expression for the DoS given in Eq. ( 6.15) from the main text. Finally, in Sec. C.3, we derive h c2 estimates given in Eqs. (6.19) and (6.20).

C.1 Spin-orbit coupling and the diffusive limit in the Γ-band

The Eilenberger equations for the K-and Γ-band are

and

respectively. Here, ... θ denotes averaging over the Fermi surface in the Γ-band. We proceed by assuming that disorder is the dominant energy scale in the Γ-band (diffusive limit), such that τ -1 Γ ∆, h, ∆ Γ so , Γ KΓ , Γ Γ,K . In that case, the quasiclassical Green's function g Γ θ is nearly isotropic. We can expand it into harmonics as

where we introduced M = (ω n + ihs x )τ z + Γ ΓK 2 (g K η + g K η ). From the angularly-dependent part of this equation, we have

C.3. Derivation of Eqs. (6.19) and (6.20) For temperatures close to T = T c , the critical field is small h c2 ∆ 2 so τ iv , τ -1 Γ,so , and we may approximate ln T Tc ≈ Tc-T Tc . Then, expanding Eq. (6.18) in this regime gives

Here, we introduced the functions

(C.20)

Here ψ (1) (z) is the first derivative of the digamma function ψ(z). Finally, after assuming ∆ 2 so τ iv τ -1 Γ,so , we obtain Eq. (6.19) from the main text, where

Appendix D

Weak localization

In this Appendix, we provide technical details and derivations related to Chapter 7. In Sec. D. which is Eq. ( 7.3) from the main text. Here, the factor 4 comes from spin and valley degeneracy.