
HAL Id: tel-02492122
https://theses.hal.science/tel-02492122v1

Submitted on 26 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Multi-Party Computation and Privacy
Aurélien Dupin

To cite this version:
Aurélien Dupin. Secure Multi-Party Computation and Privacy. Cryptography and Security [cs.CR].
CentraleSupélec, 2019. English. �NNT : 2019CSUP0010�. �tel-02492122�

https://theses.hal.science/tel-02492122v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
CENTRALESUPÉLEC

COMUE UNIVERSITÉ BRETAGNE LOIRE

École Doctorale N°601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par Aurélien DUPIN

Secure Multi-Party Computation and Privacy
Calculs Multi-Parties et Vie Privée

Thèse présentée et soutenue à l’ÉCOLE NORMALE SUPÉRIEURE de PARIS, le 13 juin 2019
Unité de recherche : CIDRe
Thèse N° 2019-05-TH

Composition du jury

Directeurs de thèse : Christophe BIDAN CentraleSupélec
David POINTCHEVAL École Normale Supérieure

Encadrant industriel : Renaud DUBOIS Thales

Rapporteurs : Sébastien CANARD Orange Labs
Marine MINIER Université de Lorraine

Président : Jean-Sébastien CORON Université du Luxembourg
Examinateurs : Duong Hieu PHAN Université de Limoges

Jean-Marc ROBERT École de Technologie Supérieure

ACKNOWLEDGEMENT

Tout mémoire de thèse commence par le remerciement de toutes les personnes impliquées
dans l’élaboration de ladite thèse. C’est en rédigeant cette partie que je me rends compte que
j’ai eu la chance de rencontrer énormément de personnes, avec lesquelles mes échanges ont
été des plus enrichissants.

Je commence par remercier mes directeurs de thèse, Christophe Bidan et David Pointcheval,
qui ont su me guider tout au long de ces trois dernières années, et sans lesquels je me serai
probablement égaré. Apprendre auprès d’eux aura été extrêmement instructif et sympathique.

Je tiens aussi à remercier Renaud Dubois et Éric Garrido de m’avoir donné l’opportunité
de réaliser ma thèse dans un cadre industriel. Il s’agissait pour moi d’une condition nécessaire
pour me lancer dans un doctorat. Et quel cadre! Le souvenir de ce petit bureau étriqué au milieu
d’un couloir avec vue sur la A86 m’emplie déjà de nostalgie!

Je remercie également Marine Minier et Sébastien Canard d’avoir consenti à être rappor-
teurs et pour leurs remarques pertinentes. Compte tenu de l’épaisseur de ce document, cela
n’a pas dû être facile. J’espère que ce manuscrit vous aura intéressé et que sa lecture aura
été agréable et instructive. Je remercie également Jean-Sébastien Coron, Duong Hieu Phan et
Jean-Marc Robert d’avoir accepté d’être examinateurs pour ma soutenance.

Je remercie particulièrement Jean-Marc Robert, grâce à qui j’ai découvert l’univers de la
cryptographie pendant mon master au Canada, et qui a par conséquent énormément influencé
mon cursus universitaire et professionnel. Avec du recul, je ne regrette pas ce choix, bien au
contraire.

Je souhaite aussi exprimer ma gratitude aux membres et anciens membres de l’équipe
chiffre de Thales: Emeline, Renaud, Éric, Ange, Thomas R, Thomas P, Olivier B, Olivier O, Syl-
vain, David, Mickaël, Philippe, Alexandre, Sonia, Didier, Julien, Simon, Jean-Paul et Matthieu.
Ils ont su m’accueillir dans leur équipe et me soutenir durant ces trois années de thèse. Je tiens
à remercier tout particulièrement Thomas Prest pour avoir libéré son poste au bon moment –ce
qui a largement simplifié ma recherche d’emploi–. Grâce à lui, l’équipe devra encore supporter
ma présence pendant quelques années. Toujours grâce à lui, je vais enfin pouvoir profiter de
la crème brulée du jeudi midi, et rien que pour ça, ça valait le coup de faire une thèse.

Je remercie également les membres de l’équipe crypto de l’ENS: Romain pour nous avoir
affranchis de la notion de matin, Chloé pour son sens de la diplomatie, Mélissa pour m’avoir ac-
compagné sur chaque continent, Balthazar pour ces moments mémorables, Geoffroy pour ses
réponses concises, Georg pour avoir été mon meilleur élève, Michele M, Michele O, la com-

3

munauté italienne pour avoir si peu d’imagination pour les prénoms, Dahmun pour sa capacité
à mentir, Brice pour m’avoir offert un voyage en Australie, Michel pour m’avoir permis de par-
ticiper à l’organisation d’eurocrypt, Adrian –membre émérite de la Houda team–, Louiza pour ...
je ne sais quoi mais merci beaucoup, Jérémy, Pooya, Antoine, Anca, Alain, Thierry, Rafael, Flo-
rian, Pierre-Alain, Houda, Léo, Hugo, Théo, Thibaut, Léonard, Édouard, Julia, Céline, Quentin,
Damien, Fabrice, Azam, Ehsan, Pierrick pour m’avoir fait investir dans le marché de la crevette,
mes quarante crevettes pour s’être entredévorées, Nespresso, César, les stagiaires.

Ma gratitude va également aux membres de l’équipe CIDre de CentraleSupélec. J’ai finale-
ment passé très peu de temps avec cette équipe durant ces trois années, mais nos échanges
ont toujours été très agréables et instructifs.

Je remercie aussi Megguy et mes parents pour leur soutien indéfectible pendant ces trois
années et même avant, et mes plus proches amis –non-crypto– Axel, Antoine, Alexia et Amy
de m’avoir permis de m’évader quand j’en avais besoin. Je leur suggère d’ailleurs de ne pas
dépasser les remerciements lors de leur lecture. Non Alexia, il n’y a pas d’images.

Enfin, je tiens à remercier sincèrement, chaleureusement, amicalement, spontanément,
cordialement, franchement, loyalement, réellement, directement, ouvertement et surtout sim-
plement Alice, Bob, l’adversaire honnête-mais-curieux et la majorité honnête qui m’auront ac-
compagné tout au long de cette thèse.

Si votre nom n’apparaît pas dans ces remerciements, c’est soit que j’ai oublié de vous
mentionner –auquel cas je vous prierai de m’en excuser–, soit que vous n’avez aucunement
contribué à cette thèse, comme la grande majorité des êtres peuplant cette planète –auquel
cas vous n’auriez aucune raison de lire ce document–.

4

RÉSUMÉ

L’information numérique n’a pas cessé de se développer ces dernières décennies. Les don-
nées privées appartenant à des individus, des entreprises ou même des gouvernements sont
devenues le fondement technique sur lequel s’appuient divers modèles économiques. Dans le
domaine de la cryptographie, nous pensons généralement à des clés privées ou à des mots de
passe, mais ce n’est pas ce type d’information qui nous intéresse dans cette thèse. Cette thèse
s’intéresse aux données qui constituent le fondement même d’une entité. Pour une personne,
il peut s’agir de sa situation économique (revenus, prêts, impôts ...) ou de sa santé (historique
médical ...) ou plus simplement son âge, son adresse, ses opinions politiques ou toute autre
information qu’il ou elle ne souhaite pas révéler à n’importe qui. Pour une entreprise, il peut
s’agir d’une base de données de clients, d’employés, de sa situation économique ou toute
information sur son fonctionnement interne.

Historiquement, la cryptographie s’intéresse à la conception de schémas de chiffrement
permettant à des utilisateurs distants, qui se connaissent généralement et se font confiance,
de communiquer de manière sécurisée malgré la présence d’un adversaire externe. Bien que
cet objectif soit déjà compliqué à atteindre, son énoncé est simple à comprendre. Dans notre
société moderne hyper connectée et centrée sur les informations personnelles, les choses de-
viennent malheureusement plus compliquées. Avec la diversification des appareils connectés
et des réseaux sociaux, nous devons désormais communiquer, interagir et collaborer avec un
grand nombre de parties, que nous ne connaissons souvent pas et auxquelles nous faisons
encore moins confiance. Il est même possible que nous ayons des conflits d’intérêts avec cer-
taines d’entre elles! À la différence de la cryptographie classique, il est donc indispensable
de supposer que l’adversaire est interne et qu’il peut être une ou plusieurs parties. Malgré
cela, il faut collaborer avec eux, ce qui implique souvent l’utilisation de nos données privées.
Cette situation paradoxale nous amène donc à concevoir de nouveaux outils cryptographiques
permettant de contrôler la fuite d’informations confidentielles alors même qu’elles sont commu-
niquées et utilisées par des tiers auxquels nous ne faisons pas confiance.

De tels outils ont été formellement introduits en 1982 par Andrew Yao [Yao82] en tant que
calculs deux-parties sécurisés (2PC). L’objectif du 2PC est de concevoir des protocoles au-
torisant deux utilisateurs à calculer coopérativement une fonction arbitraire de leurs données
privées sans toutefois révéler lesdites données à la partie opposée. Yao donne une preuve de
faisabilité en imaginant une solution au problème des millionnaires. Le problème est défini de
la manière suivante: deux millionnaires souhaitent savoir lequel des deux est le plus riche sans

5

Partie 1 Partie 2 · · · Partie n

x1 y1 x2 y2 xn yn

Calculs multi-parties sécurisés
f(x1, x2, . . . , xn) = (y1, y2, . . . , yn)

Figure 1: Calculs multi-parties sécurisés

révéler sa fortune à l’autre. Le protocole de Yao permet donc à deux utilisateurs de comparer
de façon sécurisée deux valeurs privées. En 1986, Yao trouve une solution générale au prob-
lème du 2PC permettant ainsi de calculer n’importe quelle fonction, et non uniquement une
comparaison. Sa solution prit plus tard le nom de garbled circuits. En quelques mots, un des
utilisateurs va “chiffrer” la fonction à évaluer (vue comme un circuit Booléen) tandis que l’autre
va pouvoir l’évaluer sans apprendre les valeurs intermédiaires.

Une généralisation naturelle des calculs deux-parties sécurisés est définie par les cal-
culs multi-parties sécurisés (MPC). Ce nouveau problème peut être vu comme n participants
cherchant à calculer une fonction de leurs paramètres privés d’une manière sécurisée, c’est-
à-dire tel que l’exactitude du résultat et l’anonymat de leurs données soient assurés. Con-
crètement, si le participant i connait xi pour 1 ≤ i ≤ n, alors le MPC permet de déter-
miner f(x1, . . . , xn) = (y1, . . . , yn), tel que le participant i apprennent uniquement yi, comme
représenté dans la Figure 1. Dans la plupart des cas d’applications, les utilisateurs obtiennent
le même résultat y1 = · · · = yn. En 1987, Goldreich, Micali et Widgerson [GMW87] détaillent la
première solution générale de MPC.

Comme mentionné précédemment, au contraire de la cryptographie traditionnelle, nous
considérons dans les protocoles 2PC et MPC que l’adversaire est interne au protocole. Il est
un des utilisateurs, voire plusieurs. Par conséquent, il est nécessaire de définir de nouveaux
modèles d’attaquants. Ces adversaires peuvent être catégorisés selon leur capacité ou volonté
à dévier des spécifications du protocole. Nous étudions essentiellement deux modèles: le mod-
èle semi-honnête et le modèle malveillant.

Par définition, l’adversaire semi-honnête, ou honnête-mais-curieux, ne dévie pas du proto-
cole, mais cherche à apprendre plus d’information qu’autorisé, en exploitant le résultat et les
calculs intermédiaires. Il s’agit donc de vérifier que le protocole ne révèle pas d’information sen-
sible par inadvertance. Les protocoles conçus dans ce modèle ont l’avantage d’être générale-
ment très efficaces et ils sont souvent considérés comme une étape importante vers des mod-

6

èles de sécurité plus élevés.

À l’inverse, l’attaquant malveillant peut dévier arbitrairement du protocole afin d’obtenir des
informations sur les données des autres parties. Dans ce modèle, la sécurité est souvent as-
surée par l’ajout de mécanismes garantissant que l’adversaire ne peut pas dévier du protocole
ou que le protocole s’interrompra avant de divulguer des données privées. Toutefois, ce haut
niveau de sécurité s’accompagne souvent d’une perte d’efficacité.

Dans ce contexte, cette thèse apporte diverses contributions. Les travaux de Yao [Yao86],
connus sous le nom de “garbled circuits”, sont une solution générale au problème de 2PC
dans le modèle semi-honnête. Il est cependant vite apparu évident que cette solution n’était
pas sécurisée face à un adversaire malveillant. En effet, ce dernier peut aisément modifier
la fonction à évaluer sans que l’autre partie puisse s’en apercevoir. Ainsi, l’attaquant peut
apprendre l’information de son choix. L’utilisation de “cut-and-choose” s’est révélée être une
contre-mesure adéquate face à un tel adversaire: un grand nombre de circuits sont générés
par l’attaquant et seule une portion est évaluée, les autres étant vérifiés par la partie opposée.
Toutefois, cette solution s’accompagne d’un surcoût considérable.

Depuis, de nombreuses optimisations ont été réalisées, tant sur les “garbled circuits” que
sur le “cut-and-choose”. Néanmoins, il n’a jamais était défini clairement comment un adversaire
malveillant pouvait corrompre un circuit à évaluer. C’est là qu’intervient la première contribution
de cette thèse: nous définissons formellement quelles modifications du circuit l’adversaire peut
faire sans que cela soit détecté par le participant honnête. Nous montrons que ses possibilités
sont étonnamment limitées, du moins plus restreintes que ce que la précédente revue de lit-
térature laisse suggérer. Nous analysons ensuite l’impact de cette étude sur des circuits réels
et observons que certains circuits ne nécessitent pas l’utilisation de “cut-and-choose” pour être
sûrs face à un adversaire malveillant.

La seconde contribution apporte un nouveau domaine d’application au MPC. En effet, nous
étudions le cas des services basés sur la localisation, qui sont devenus de plus en plus présents
ces dernières années. Toutefois, ces applications reposent aujourd’hui sur l’honnêteté des gens
à transmettre leur véritable position. S’ils ont une motivation à tricher, ils peuvent le faire facile-
ment. Les systèmes de preuves de localisation corrigent ce défaut en permettant à un prouveur
d’obtenir des preuves de sa présence à un endroit et un instant donnés, à l’aide des témoins qui
sont autour de lui. Il pourra ensuite fournir ces preuves à un vérifieur afin d’obtenir l’accès à un
service. Cependant, on peut facilement concevoir que ces différents utilisateurs ne souhaitent
pas révéler leur identité et leur position à chaque génération de preuve de localisation.

Notre seconde contribution est une conception du premier système de preuve de locali-
sation respectueux de la vie privée. Grâce à l’utilisation de calculs multi-parties sécurisés, le
prouveur est en mesure d’obtenir ses preuves, tout en garantissant que son identité et sa posi-
tion ne sont pas révélés aux témoins. Réciproquement, l’identité et la position des témoins ne

7

sont révélées ni au prouveur, ni au vérifieur.
En contribution annexe de ce travail, nous concevons aussi un nouveau protocole de calcul

de maximum sécurisé. Ce protocole permet à n participants de savoir lequel d’entre eux pos-
sède la plus grande valeur sans les révéler. À la différence des protocoles précédents nécessi-
tantO(n2) opérations, notre solution ne requiert queO(n log(n)) opérations, mais s’accompagne
d’une petite divulgation d’information. Bien que nous l’ayons conçue spécifiquement dans le
cadre des preuves de localisation, nous pensons que notre solution peut s’appliquer à de nom-
breux scénarios où cette fuite d’information est tolérable.

La dernière contribution porte sur l’étude de primitives facilement évaluables en calculs
multi-parties. Plus spécifiquement, notre étude porte sur le générateur pseudo-aléatoire de Gol-
dreich (PRG de Goldreich). Les générateurs pseudo-aléatoires localisés permettent d’étendre
une petite chaîne aléatoire en une chaîne pseudo-aléatoire de plus grande taille, tel que chaque
bit de sortie ne dépende que d’un nombre constant d de bits d’entrée. Cette particularité donne
à cette primitive de nombreuses applications dans diverses branches de la cryptographie, et
particulièrement en MPC grâce à sa faible complexité. En effet, cela rend cette famille de PRG
facilement évaluable par un groupe de participants de sorte qu’aucun d’entre eux ne connaisse
la chaîne aléatoire initialement utilisée.

Tandis que la sécurité théorique du PRG de Goldreich a été intensivement étudiée, aboutis-
sant à de nombreux critères que doivent vérifier les paramètres pour être sécurisés, peu de ré-
sultats s’intéressent à la sécurité concrète et l’efficacité réelle de cette primitive. Motivés par les
nombreuses applications théoriques et l’espoir de voir des instanciations pratiques ce celles-ci,
nous initions une analyse de la sécurité réelle du PRG de Goldreich.

8

TABLE OF CONTENTS

Introduction 13
Applications of Secure Multi-Party Computations . 14
Adversary Models . 16
Contributions . 17
Organization . 19
Personal Publications . 20

1 Preliminaries 21
1.1 Yao’s Millionaires’ Problem . 22
1.2 Adversary Models . 22
1.3 Useful Tools for Multi-Party Computation . 23

1.3.1 Homomorphic Encryption Schemes . 24
1.3.2 Zero-Knowledge Proof . 25
1.3.3 Oblivious Transfer . 26

1.4 Garbled Circuits: a General Solution to the 2PC Problem 29
1.5 Secret Sharing: a General Solution to the MPC Problem 30
1.6 MPC-Friendly Primitives . 31
1.7 Regarding the Preprocessing Model . 32

2 On the Leakage of Corrupted Garbled Circuits 33
2.1 Preliminaries . 35

2.1.1 Formal Definition . 35
2.1.2 Simplest Garbling Scheme . 36
2.1.3 The Point-and-Permute Trick . 40
2.1.4 The 25% Row-Reduction . 41
2.1.5 The Free-XOR Trick . 42
2.1.6 The Two-Half-Gate Technique . 44
2.1.7 Privacy-Free Garbled Circuits . 46
2.1.8 Corruption of Garbled Circuits . 47
2.1.9 The Cut-&-Choose Paradigm . 49

2.2 Motivation of Our Work . 52
2.3 Corruption of Optimized Garbled Circuits . 53

9

TABLE OF CONTENTS

2.4 Delimitation of the Corruption . 54
2.4.1 Impossibility of Reducing the Number of Garbled Keys to One 55
2.4.2 Impossibility of Three-Key Wires - Part 1 56
2.4.3 Impossibility of Three-Key Wires - Part 2 59
2.4.4 Impossibility of Turning a Non-Linear Gate into a Linear Gate 65
2.4.5 About Other Non-Linear Gates . 66
2.4.6 Fitting Everything Together . 66
2.4.7 Ensuring the Correct Garbling of Input Wires 68

2.5 Applications to Real Circuits . 70
2.5.1 The Greater-Than Function . 71
2.5.2 The Addition Function . 72
2.5.3 The Equality-Test Function . 72
2.5.4 Trade-Off with Cut-&-Choose . 74
2.5.5 Garbled Circuits with Covert Adversaries 74

2.6 Conclusion . 78

3 Location Proof System based on Multi-Party Computations 81
3.1 Introduction . 83
3.2 Preliminaries . 84

3.2.1 Group Signature Schemes . 84
3.2.2 Prior Location-Proof Systems . 85
3.2.3 Secure Two-Party Comparison Protocol 86
3.2.4 Secure Multi-Party Maximum Protocol . 88

3.3 Problem Statement . 89
3.3.1 Location-Proof Generation Protocol Outline 90
3.3.2 Adversary Models . 91

3.4 Location-Proof Gathering and Verifying . 92
3.4.1 Location-Proof Gathering . 92
3.4.2 Security Properties of the Overall Process 93
3.4.3 Location-Proof Verifying . 94

3.5 Secure Multi-Party Maximum Protocol . 95
3.5.1 The Protocol Description . 95
3.5.2 The Protocol Security . 96
3.5.3 The Protocol Analysis . 97

3.6 Secure Iterative Two-Party Comparison Protocol 98
3.6.1 The Protocol Correctness . 98
3.6.2 The Protocol Security . 100
3.6.3 The Protocol Complexity . 102

10

TABLE OF CONTENTS

3.6.4 The Maximum Transfer . 102
3.7 Complexity of the Overall System . 103
3.8 Conclusion . 104

4 On the Concrete Security of Goldreich’s Pseudorandom Generator 107
4.1 Introduction . 109

4.1.1 Goals and Results . 111
4.1.2 Organization of the Chapter . 112

4.2 Preliminaries . 112
4.2.1 Hypergraphs . 113
4.2.2 Predicates . 113
4.2.3 Pseudorandom Generators . 114
4.2.4 Implications of Polynomial-Stretch Local Pseudorandom Generators . . . 117
4.2.5 On the Security of Goldreich’s PRG . 118

4.3 Guess & Determine Cryptanalysis of Goldreich’s PRG with P5 121
4.3.1 The Attack - Asymptotic Description . 121
4.3.2 Complexity Analysis . 122
4.3.3 Success Probability . 125
4.3.4 Seed Recovery . 126
4.3.5 Concrete Instantiation of the Attack . 128
4.3.6 Experiments . 132

4.4 Algebraic Cryptanalysis of Goldreich’s PRG with P5 134
4.4.1 A Polynomial Attack with Degree-Two Linearization 136
4.4.2 Gröbner Approach . 143
4.4.3 Conclusion . 145

4.5 About the Ordered Case . 146
4.5.1 Guess and Determine . 146
4.5.2 Algebraic Attack on the Ordered Case . 147

4.6 Other Results . 148
4.7 Conclusion and Open Questions . 148

5 Conclusion 151

Bibliography 162

11

INTRODUCTION

In the last few decades, the world has turned into a modern information-driven society. The
everyday life of individuals, companies and governments is full of cases where various kinds of
private information are valuable resources. While cryptographers might think of keys or pass-
words, these types of secrets are not the main concern in this thesis. Instead, this thesis is
concerned with the data that is related to the primary business of a private person or a corpo-
ration. For a person, this might be information about his or her economic situation (incomes,
loans, tax, ...), about his or her health condition (past or current diseases, allergies, ...) or more
simply about his or her age, address, political tendencies and so on. Instead, for a company,
it might be a customer database, the economic situation or information related to its internal
functioning. For governments, it could be a list of tax-fraud suspects, positions of satellites, etc.

Cryptography has been historically dealing with the design of encryption schemes, permit-
ting distant parties, who generally know and trust each other, to communicate securely even in
the presence of an external eavesdropper. Although this goal is not trivial to reach, its purpose
is easy to understand. Things get much more complicated in modern society: using electronic
devices, we need to communicate, interact and do business with a large number of parties,
some of whom we have never met, and most of whom we do not trust. Some of these parties
may even have conflicts of interest with us! In this context, unlike in traditional cryptography,
we have to assume that the adversary may be one or several of the inside participants. And
yet, we have to do business with them, which often requires our private data. This paradoxical
situation calls for cryptographic tools for controlling leakage of confidential data while they are
being communicated and computed on, even in the case where their owner does not trust the
parties he or she is interacting with.

Such tools were formally introduced in 1982 by Andrew Yao [Yao82] as secure two-party
computation (2PC), which is a subfield of cryptography. The goal of 2PC is to create proto-
cols allowing two parties to co-operatively compute an arbitrary function of their private inputs
without sharing the clear value of their inputs with the opposing party. Yao gives evidence of
feasibility with a solution to the so-called Millionaires’ Problem. The problem is stated as fol-
lows: two millionaires wish to learn who is the richer without telling their actual wealth to the
other. Beside the undeniable breakthrough that it represented in the upper class at that time, it
also gave intuitions about feasibility of such problems. In 1986, Yao found a general solution for
the two-party computation problem [Yao86]. His general solution later took the name of garbled
circuits, which allows one of the participants to “encrypt” the function to evaluate (seen as a

13

Introduction

Player 1 Player 2 · · · Player n

x1 y1 x2 y2 xn yn

Secure Multi-Party Computation
f(x1, x2, . . . , xn) = (y1, y2, . . . , yn)

Figure 2: Multi-party computation

Boolean circuit) and the other to obliviously evaluate it on “encrypted” inputs, without leaking
any intermediate value. Not only this solves the 2PC problem, but it is also very efficient, and
even optimal, in terms of rounds of communication.

A natural generalization of the secure two-party computation is the secure secure multi-
party computation (MPC). Secure multi-party computation can be defined as the problem of
n participants to compute an agreed function of their inputs in a secure way, where secu-
rity means guaranteeing the correctness of the output as well as the privacy of the users’
inputs. Concretely, if participant i knows xi for 1 ≤ i ≤ n, then MPC allows to compute
f(x1, . . . , xn) = (y1, . . . , yn), such that player i learns yi but nothing more, as shown in Fig. 2.
In most applications, the participants obtain the same output y1 = · · · = yn.

In 1987, Goldreich, Micali and Widgerson [GMW87] detail the first general solution to secure
multi-party computation. Their solution is based on secret sharing, which enables a participant
to split his data into several shares that will be sent to each of the participants, with the guar-
antee that any individual share does not leak any sensitive information. The authors then show
how to perform operations on these shares without revealing them.

Since then, both two-party and multi-party computations have attracted a lot of interest.
New generic solutions have been designed and decades of optimizations have made garbled
circuits and secret-sharing based solutions very efficient ([ZRE15, DPSZ12] and many others).
Interestingly, custom protocols were also given, restricted to a single function and sometimes
in some specific context. They are often more efficient than generic solutions.

Applications of Secure Multi-Party Computations

2PC and MPC enjoy a wide variety of applications. Let us describe two that have been com-
mercialized: a private double auction system and a privacy-preserving data mining system.

14

Introduction

Private Double Auction

A double auction is a process of trading goods when potential buyers and sellers submit their
bids to an auctioneer. In this context, a bid is the quantity the bidder agrees to buy/sell for
a given price. The auctioneer then determines the price p that clears the market: the supply
matches the demand.

However, the auctioneer has access to all bids for any price p′ 6= p. This brings new pri-
vacy issues. For example, if a seller initially agreed to sell at p′ � p, this might leak sensitive
information about his or her economic situation, and thus disadvantaging him or her in future
negotiations. This is particularly true if the auctioneer has interests that conflicts with the bid-
ders.

This tricky situation was met by the Danish sugar beet farmers in 2008. Here is the context:
several thousand farmers produce sugar beets, which are sold to a single corporation (a buyer’s
monopoly). Farmers have contracts that give them rights and obligation to sell a certain amount
of beets to this company at a certain price. These contracts can be traded between the farmers.
Such trades were historically very limited and done via bilateral negotiations. However, due to
several political factors, there was an urgent need to reallocate contracts between farmers:
a nationwide double action was required. However, since a bid reveals the productivity and
the economic situation of a farmer, they were not willing to let the corporation acting as an
auctioneer, nor any other entity.

As explained in [BCD+09], this situation was solved using secure multi-party computations.
More precisely, secret sharing was used to split the farmers’ bid between the parties. Then a
private double auction algorithm was performed on the shared data, thus allowing to determine
the price p and the quantity that each farmer committed to buy/sell for price p, without leaking
any additional information. Since then, the system has been used several times by thousands
of Danish farmers.

Privacy-Preserving Data Mining

In most countries, databases containing personal, medical or financial information about in-
dividuals are classified as sensitive and the corresponding laws specify who can gather and
process them. However, this sensitive information plays a crucial role in medical, financial or
social studies. Thus, one needs new mechanisms for conducting statistical surveys without
compromising the privacy of the participants. The corresponding research area is commonly
referred as privacy-preserving data mining.

Most approaches focus on anonymized inputs (through k-anonymity) or randomized in-
puts (roughly speaking, a small error is added to individuals’ inputs). However, the nature of
these solutions leads to a trade-off between privacy and accuracy of the outcomes. The more

15

Introduction

anonymized or randomized the inputs are, the more privacy-preserving the system becomes
but the more meaningless the statistical survey is. Also the security is preserved only on aver-
age.

Sharemind [BLW08] gives the first commercial solution based on secure multi-party com-
putation. It is designed with secret sharing: the participants of the survey split their personal
data among a few servers, that will perform operations on the shares. Sharemind thus allows
to reach both privacy and accuracy of the outcomes, as long as the majority of the servers are
honest.

In 2015, this solution was actually used for a large-scale statistical study in Estonia, as
reported in [BKK+15]. Using Sharemind, social scientists managed to cross the Estonian Tax
database with the Ministry of Education database in order to analyze the correlation between
working during university studies and failing to graduate in time. In this context, MPC allows to
compute meaningful statistics without leaking any information about incomes or degree course.

In 2016, a similar solution was deployed to analize the gender and ethnicity wage disparities
in the Greater Boston Area [LVB+16]. Although 50 of the biggest employers had agreed to take
part in this study, none would let sensitive employee wage data their servers and no institution
was willing to gamble on hosting, and possibly losing, the data. MPC and secret sharing solved
this issue.

Adversary Models

As shown in these two cases of application, unlike traditional cryptographic scenarios, such
as encryption or signature, one must assume that the adversary in a 2PC or MPC protocol
is one (or more in the case of MPC) of the participants engaged in the system. Therefore, it
soon appeared essential to define new adversary models. Adversaries faced by the different
protocols can be categorized according to how willing they are to deviate from the protocol.
There are essentially two types of adversaries: the semi-honest adversary and the malicious
adversary.

The semi-honest adversary does not deviate from the protocol specification but tries to
gather more information than allowed out of the protocol. Thus, it is a weak security model that
only prevents from inadvertent leakage of information between the parties. However, protocols
in the semi-honest model are often very efficient and are generally considered as an important
first step for achieving higher levels of security.

The malicious adversary may arbitrarily deviate from the protocol specification in its attempt
to force the output or to learn more information on the other parties’ inputs. Protocols that
achieve security in this model provide a very high security guarantee. Security against malicious
adversaries is often achieved by ensuring with cryptographic mechanisms that the participants

16

Introduction

cannot deviate from the protocol, or the protocol will abort without leaking anything. However,
using these tools generally leads to a reduction in efficiency.

In order to better understand the motivation and the possibilities of a malicious adversary, let
us focus on the private double auction system previously described. Obviously, any participant
has an incentive to force the output of double auction so that he or she buys/sells at any chosen
price. If their is no countermeasure, the malicious participant may try to do so by sending
inconsistent shared data to the other users. Similarly, the malicious participant can also deviate
from the protocol during the evaluation of the double auction algorithm by computing another
function (in order to change the output of the algorithm).

Alternatively, a malicious participant could also deviate from the protocol in order to learn
more information than allowed, which can give a clear competitive advantage in the double
auction. For example, he or she can try to make the protocol abort for some condition on
the other parties inputs (e.g. some condition on the buying price of a specific concurrent).
In this case, if the protocol is restarted, he can repeat the same attack under some other
condition (e.g. the buying price of another concurrent), until he or she accumulates enough
information to maximize the profit. Then, any party has to prove that he or she is running the
expected computation (while keeping the manipulated data secret), which often leads to lower
performances.

Note that in the malicious model, no distinction is made between the deviations that are
undetected by the other parties and the corruptions that are detected (such as the abortion of
the protocol). In some context, it is reasonable to consider that an adversary is willing to cheat
only if the risk of getting caught is “not too high”. In the example previously described, if the
honest parties can determine who is responsible for the abortion of the protocol, they may just
ban the adversary and restart the protocol. Then, the adversary must remain undetected. This
behavior is captured by the covert adversary. Although it has been less studied, this model can
lead to more efficient solutions than in the malicious model.

Contributions

On the Leakage of Corrupted Garbled Circuits

The pioneering work of Yao [Yao86], known as garbled circuits, is a general solution to the
secure two-party computation problem, which is extremely efficient in terms of rounds of com-
munications, that is constant and optimal. It involves two parties: a generator that builds the
garbled circuit to be evaluated, and an evaluator that executes it on its inputs. It was originally
designed in the semi-honest model and it was clear that a malicious generator could modify the
logic gates of the garbled circuit before sending it to the evaluator for execution.

17

Introduction

Applying cut-&-choose to garbled circuits soon appeared to fix this issue, but requires to
generate, transmit and evaluate a large number of garbled circuits, which can clearly lead to a
serious overcost.

Since then, a lot of work has been made to optimize the garbled circuits, on the one hand
[BMR90, NPS99, KS08, ZRE15], and the cut-&-choose, on the other hand [MF06, LP07, sS11,
MR13, Lin13, sS13, AMPR14, WMK17]. The best of these approaches still requires s garbled
circuits for a statistical security of 2−s against malicious adversaries, thus resulting in a serious
overhead compared to the semi-honest model.

However, all these techniques aim at avoiding any kind of modification on the circuit. Nev-
ertheless, it has never been studied which modifications a malicious generator can make to a
single garbled circuit, still leading to an accepted execution, and then why the cut-&-choose is
necessary.

The first contribution of this thesis is to define formally what the adversary is able to corrupt.
We prove that, for a large class of circuits, the malicious generator is limited to add NOT gates
on the wires of his choice. Hence, his possibilities are much more restricted than what we could
have expected from the previous state of the art. We also show some impacts of this result
on real circuits and on cut-&-choose based solutions. Finally, we give a garbled-circuit solution
against covert adversaries that is not based on cut-&-choose.

Location Proof System Based on Multi-Party Computations

We show how multi-party computations can help users to protect their privacy in everyday
life. More specifically, we study the case of location-based services that have become quite
popular (e.g. GPS, location-based advertising, augmented reality games). Their variety and
their numerous users show it clearly. However, these applications rely on the people’s honesty
to use their real location. If they are motivated to lie about their position, they can easily do
so. A location-proof system allows a prover to obtain proofs from nearby witnesses, for being
at a given location at a given time. Such a proof can be used to convince a verifier later on.
However, provers and witnesses may not want to broadcast their identity or their position each
time they generate location proofs.

Many solutions have been designed in the last decade, but none protects perfectly the
privacy of their participants. In this thesis, a solution is presented in which a malicious adver-
sary, acting as a prover, cannot cheat on his position. It relies on multi-party computations and
group-signature schemes to protect the private information of both the prover and the witnesses
against any semi-honest participant.

Additionally, this thesis also gives a new secure multi-party maximum computation protocol
for the specific context of location-proof systems. This protocol allows n users to know which
one of them has the greatest value without revealing these values. It requires O(n log(n)) com-

18

Introduction

putations and communications, which greatly improves the previously known solutions having
O(n2) complexities, but at the cost of some small leakage that we analyze. Although it is de-
signed for our location-proof system, it can be applied to any scenario in which a small infor-
mation leakage is acceptable.

On the Concrete Security of Goldreich’s Pseudorandom Generator

Historically, the design of symmetric cryptographic primitives (such as block ciphers, pseudo-
random generators, and pseudorandom functions) has been motivated by efficiency consider-
ations (memory consumption, hardware compatibility, ease of implementation,...). The field of
multi-party computation, where parties want to jointly evaluate a function on secret inputs, has
led to the emergence of new efficiency considerations: the efficiency of secure evaluations of
symmetric primitives is strongly related to parameters such as the circuit depth of the primitive,
and the number of its AND gates. This observation has motivated the design of MPC-friendly
symmetric primitives in several recent works (e.g. [ARS+15, CCF+16, MJSC16, GRR+16]),
that aim for an efficient secure evaluation.

Local pseudorandom generators allow to expand a short random string into a long pseudo-
random string such that each output bit depends on a constant number d of input bits. Due
to its extreme efficiency features, this intriguing primitive enjoys a wide variety of applications
in cryptography and makes very promising candidate MPC-friendly PRGs. In the polynomial
regime, where the seed is of size n and the output of size ns for s > 1, the only known solution
is the Goldreich’s PRG.

While the security of Goldreich’s PRG has been deeply investigated, with a variety of results
deriving provable security guarantees against class of attacks in some parameter regimes and
necessary criteria to be satisfied by the underlying parameters, little is known about its con-
crete security and efficiency. Motivated by its numerous theoretical applications and the hope
of getting practical instantiations for some of them, we initiate a study of the concrete secu-
rity of Goldreich’s PRG. Along the way, we develop a new guess-and-determine-style attack,
and identify new criteria which refine existing criteria and capture the security guarantees of
candidate local PRGs in a more fine-grained way.

Organization

The rest of this manuscript is organized as follows: Chapter 1 gives the basic cryptographic
notions that will be used in the following chapters. Next, Chapter 2 defines formally how a
malicious adversary can corrupt a circuit and what the impact on real circuits. Chapter 3 gives
both practical and theoretical contributions to secure multi-party computations: we give the first

19

Introduction

construction of location-proof system based on MPC and we also give a new secure maximum
computation scheme. Finally, in Chapter 4, by cryptanalyzing it, we study the concrete efficiency
of an MPC-friendly pseudorandom generator: the Goldreich’s pseudorandom generator.

Personal Publications

[CDM+18] G. Couteau, A. Dupin, P. Méaux, M. Rossi, and Y. Rotella. On the concrete
security of Goldreich’s pseudorandom generator. In ASIACRYPT 2018, Part
II, LNCS, pages 96–124. Springer, Heidelberg, December 2018.

[DPB18] A. Dupin, D. Pointcheval, and C. Bidan. On the leakage of corrupted garbled
circuits. In ProvSec 2018, LNCS, pages 3–21. Springer, Heidelberg, 2018.

[DRB18] 1 A. Dupin, J.-M. Robert, and C. Bidan. Location-proof system based on
secure multi-party computations. In ProvSec 2018, LNCS, pages 22–39.
Springer, Heidelberg, 2018.

1This work was partially done during my Master at the École de Technologie Supérieure of Montreal (Canada),
with the supervision of Jean-Marc Robert.

20

CHAPTER 1

PRELIMINARIES

In this chapter, we introduce all the basic tools like homomorphic encryption, zero-knowledge
proof and oblivious transfer that will be used throughout this thesis. For comparison purpose,
we also present some seminal solutions such as secret sharing.

Contents
1.1 Yao’s Millionaires’ Problem . 22

1.2 Adversary Models . 22

1.3 Useful Tools for Multi-Party Computation . 23

1.3.1 Homomorphic Encryption Schemes . 24

1.3.2 Zero-Knowledge Proof . 25

1.3.3 Oblivious Transfer . 26

1.4 Garbled Circuits: a General Solution to the 2PC Problem 29

1.5 Secret Sharing: a General Solution to the MPC Problem 30

1.6 MPC-Friendly Primitives . 31

1.7 Regarding the Preprocessing Model . 32

21

Partie , Chapter 1 – Preliminaries

Protocol 1.1: Yao’s millionaires problem and its solution [Yao82]
Input: The two integers a and b of Alice and Bob, where a, b ≤ N . The public key NA of

Alice and its encryption function EA(·) and decryption function DA(·).
Output: Bob learns whether a ≥ b or a < b.
Step 1: Bob picks a random x ∈ ZNA , encrypts k = EA(x) and sends k − b.
Step 2: Alice does the following:
repeat

Alice takes a random prime number p of size |NA|/2.
for i = 1 à N do

Alice computes yi = DA(k − b+ i) and zi = yi mod p.
end

until ∀i,∀j 6= i, |zi − zj | ≥ 2;
Step 3: Alice sends z1, z2, . . . , za, za+1 + 1, . . . , zN + 1 and p to Bob.
Step 4: Bob read the bth element sent by Alice, noted z′b.

Bob determines a ≥ b if and only if z′b = x mod p.

1.1 Yao’s Millionaires’ Problem

Yao’s millionaires’ problem is a well-known problem presented by Andrew Yao in the early eight-
ies [Yao82], that introduced the concept of secure two-party computation. The problem dis-
cusses two millionaires, Alice and Bob, who are interested in knowing which of them is richer
without revealing their actual wealth. The first solution was given by Yao himself [Yao82] and is
presented in Protocol 1.1. It only uses of a public-key encryption scheme and does not require
any homomorphic property.

The correctness of this protocol is easy to prove: remark that yb = x, then zb = x mod p. If
a ≥ b, then we have z′b = zb = x mod p. Otherwise, we have z′b = zb + 1 6= x mod p.

Although this protocol is correct, it is highly inefficient due to its exponential complexity.
Since then, more efficient solutions have been designed, either from generic tools or with cus-
tom protocols. Such protocols are given in Chapter 3.

Since the problem is analogous to a more general problem where two participants have
inputs a and b and the goal is to determine whether a ≥ b without leaking the clear values a and
b, let us call these solutions secure two-party comparison protocols.

1.2 Adversary Models

Secure multi-party computation is about designing protocols for allowing participants to jointly
compute a public function over their private inputs. If the parties follow the protocol specifica-
tions, then they are guaranteed that their private information remains secret. But what if one of
the participants does not follow the instructions? What if one of them deviates from the proto-

22

1.3. Useful Tools for Multi-Party Computation

col? If one of the participants does not follow the rules, it is very likely that the protocol leaks
more information than allowed unless the protocol was specifically designed to resist such at-
tacks.

Therefore, when designing MPC protocols, defining what kind of adversary we are dealing
with is a crucial matter. The first adversary model that is generally considered is the semi-
honest adversary, which is also referred as passive adversary or honest-but-curious adversary.
The following definition is extracted from [HL10] :

Definition 1.1 (semi-honest adversary model). A semi-honest adversary follows the protocol
specification exactly, but it may try to learn more information than allowed by looking at the
messages that it received and its internal state.

Of course, it is not always realistic to assume that all participants will behave correctly. In
fact, designing protocols in the semi-honest adversary model is often seen as a first step toward
more powerful adversaries. Malicious adversaries (also known as active adversaries), on the
contrary, do not follow the rules. The following definition is also extracted from [HL10] :

Definition 1.2 (malicious adversary model). A malicious adversary may use any efficient attack
strategy and thus may arbitrarily deviate from the protocol specification.

Designing protocols against malicious adversaries ensures privacy for the participants how-
ever they behave, but often requires use of heavy cryptographic mechanisms. This may result in
impractical solutions. Thus it is sometimes interesting to define intermediate adversary models,
yet realistic.

In the malicious adversary model, there is no distinction between deviations that are de-
tected by the other parties and deviations that are indistinguishable. Therefore, in many con-
texts, it is reasonable to consider that the adversary is willing to cheat only if the risk of getting
caught is not too high. Then, we can define the covert adversary as in [AL07]:

Definition 1.3 (covert adversary with ε-deterrent). A covert adversary with ε-deterrent can de-
viate from the protocol as long as the probability of being caught by the honest parties is lower
than ε.

In this thesis, we consider those three kinds of adversaries.

1.3 Useful Tools for Multi-Party Computation

In this section, we detail three cryptographic tools that are particularly useful when designing
secure multi-party computation protocols.

23

Partie , Chapter 1 – Preliminaries

1.3.1 Homomorphic Encryption Schemes

Homomorphic encryption is a particular form of encryption that allows computations on en-
crypted data. It generates an encrypted result which, after decryption, matches the result of the
operations as if they were computed on the plaintext.

Several kinds of homomorphic encryption schemes can be defined, depending on the na-
ture of the operations they allow to perform:

• Multiplicative encryption schemes: these schemes allow to perform multiplication over
encrypted data. The RSA [RSA78] and the ElGamal [ElG84] encryption schemes are two
of them. Indeed, with these two schemes, multiplying two ciphertexts allows to obtain an
encryption of the product of the two plaintexts.

• Additive encryption schemes: they allow to perform addition over encrypted data, and by
extension a multiplication between an encrypted value and a clear value. The Paillier’s
cryptosystem [Pai99] is an example: multiplying two ciphertexts creates an encryption of
the sum of the two plaintexts.

• Fully Homomorphic Encryption (FHE) schemes: they support both addition and multipli-
cation, which makes any circuit evaluable over encrypted data. The first construction was
given by Gentry in 2009 [Gen09] and has attracted a lot of interest. Despite major opti-
mizations, the size of the ciphertexts and the overcost for performing operations are still
an important issue.

In this thesis, we are mostly interested in additive schemes. Let us detail the Paillier’s cryp-
tosystem. Let p and q be two secret large prime numbers. The public and private keys are
defined as follows:

pk = N = p · q and sk = ϕ(N) = (p− 1)(q − 1) .

Let m ∈ ZN be the message to encrypt and r ∈ Z∗N be a random number chosen by the
encrypter. Then the encryption function is

EN : ZN × Z∗N → Z∗N2

EN (m, r) = (1 +N)m · rN mod N2

= c .

24

1.3. Useful Tools for Multi-Party Computation

And the decryption function is

Dϕ(N) : Z∗N2 → ZN

Dϕ(N)(C) = (cϕ(N) mod N2)− 1
N

· ϕ(N)−1 mod N

= m .

The correctness of this decryption can be proven under the binomial theorem and Euler’s the-
orem. Note that this encryption scheme is probabilistic and has the following homomorphic
properties:

EN (m1, r1) · EN (m2, r2) = EN (m1 +m2, r1r2)

EN (m1, r)m2 = EN (m1m2, r) .

These properties make this tool a very interesting primitive for secure multi-party computation.
The contributions of Chapter 3 heavily rely on these properties.

1.3.2 Zero-Knowledge Proof

A zero-knowledge proof (ZKP) is a protocol allowing a prover to convince a verifier that a given
statement is true, without leaking any information apart from the fact that the statement is true.
It has many cryptographic applications and most particularly in MPC, since it allows a user to
prove that it has not deviated from a protocol. Informally, a proof must satisfy the following three
properties:

1. Correctness: if the statement is true and the prover knows a proof of this, he will succeed
in convincing the verifier.

2. Soundness: if the statement is false, no prover can convince the verifier of the truth of the
statement, except with some small probability.

3. Zero-knowledge: if the statement is true, no verifier learns anything other than the fact
that the statement is true.

The Schnorr protocol [Sch90] is an example of zero-knowledge proof permitting a prover
to prove knowledge of discrete logarithm without revealing it. This protocol is shown in Proto-
col 1.2.

Informally, the correctness of this protocol can be easily proven using the fact that

gaye = gr−exgex = gr ,

25

Partie , Chapter 1 – Preliminaries

Protocol 1.2: Schnorr protocol for proving knowledge of a discrete logarithm
Input: Let G be a public group of order q and generator g, where the discrete logarithm

problem is hard. x ∈ Z∗q is known only by the prover. Let y = gx be public.
Output: The verifier is convinced that the prover knows x
Commitment phase: the prover picks a random r ∈ Z∗q , computes the commitment
c = gr and sends c to the verifier.

Challenge phase: the verifier picks a random challenge e ∈ Z∗q and sends it to the prover.
Answer phase: the prover sends a = r − e · x mod q to the verifier.
Verification: the verifier accepts the proof (c, e, a) if and only if c = ga · ye

which indeed matches c. The soundness property can be proven by showing that an adversarial
prover able to produce a valid tuple (c, e, a) without knowing x can be used to compute any
discrete logarithm in G (and in fact x itself). The zero knowledge property relies on the existence
of an efficient simulator that takes as input (y, e) and outputs a valid proof (c, e, a) without
needing the secret x. Note that the simulator computes the answer a before the challenge c.

ZKP is very convenient for proving that no participant has deviated from the protocol. Thus,
it allows to turn any protocol secure in the semi-honest model into a protocol secure in the
malicious model. The efficiency of this transformation depends on the protocol to secure.

1.3.3 Oblivious Transfer

1 out of 2 Oblivious Transfer

1 out of 2 oblivious transfer, also known as 1-2 oblivious transfer or just oblivious transfer (OT),
is a useful primitive for secure multi-party computation. The protocol involves two participants:
a sender and a receiver. The sender has two messages m0 and m1 and the receiver has a bit b
and wishes to receive mb, while keeping b secret. The sender wants to ensure that the receiver
learns only one of the two messages. Even, Goldreich, and Lempel gave the first solution to
this problem [EGL82], using any public-key encryption scheme. This solution is described in
Protocol 1.3.

As shown in Protocol 1.4, 1 out of 2 oblivious transfers can be made more efficient with
additive homomorphic encryption schemes. Note that this protocol is only secure against semi-
honest adversaries. Indeed, for example, a malicious receiver could send an encryption of 2
(instead of 0 or 1) during Step 1 and learn m1 −m0. This would be crucial if we consider two
plaintext English messages: knowing the difference could allow to recover them both. This can
be prevented by adding some zero-knowledge proofs.

Note that 1 out of 2 oblivious transfer of long messages (longer than the encryption scheme
allows in Protocol 1.3 or 1.4) can be reduced to oblivious transfer of short strings using any
pseudorandom generator G. Very briefly, the sender generates two keys k0 and k1 and sends

26

1.3. Useful Tools for Multi-Party Computation

Protocol 1.3: Oblivious Transfer Protocol of Even et al. [EGL82]
Input: Alice has two secret messages m0 and m1 (of same size), a public encryption

function EA(·) and a decryption function DA(·). Bob has a bit b.
Output: Bob learns mb.
Step 1: Alice chooses two random strings r0 and r1 (same size as the ciphertexts) and
sends them to Bob.

Step 2: Bob chooses a random string k (same size as the messages), computes
q = EA(k)⊕ rb ans sends it to Alice.

Step 3: Alice computes k0 = DA(q ⊕ r0) and k1 = DA(q ⊕ r1) and sends
(m0 ⊕ k0,m1 ⊕ k1) to Bob.

Step 4: Bob gets mb = (mb ⊕ kb)⊕ k.

Protocol 1.4: Oblivious Transfer Protocol from Additive Homomorphic Encryption Scheme
Input: Alice has two secret messages m0 and m1. Bob has a bit b, a public encryption

function EB(·) and a decryption function DB(·).
Output: Bob learns mb.
Step 1: Bob computes EB(b) and sends it to Alice.
Step 2: Alice computes homomorphically

EB(mb) = EB(m0 + b(m1 −m0))

and sends it to Bob.
Step 3: Bob decrypts and obtains mb.

m0 ⊕G(k0) and m1 ⊕G(k1). The two parties then run a regular OT where the sender’s input is
(k0, k1). This trick is sometimes referred as hybrid oblivious transfer.

1 out of n and k out of n Oblivious Transfer

A natural generalization of this problem is the 1 out of n oblivious transfer and then k out of n
oblivious transfer. Both have been solved by Brassard, Crépeau and Robert [BCR87]. In the
1 out of n OT, the sender now has n secrets and the receiver wishes to obtain one of them.
As before, the choice of the receiver and the other messages must remain secret. Note that it
makes this primitive 2PC-complete1: if two parties have respective inputs x1 and x2 and want
to compute f(x1, x2), it “suffices" for the first party to compute f(x1, x

′
2) for every possible value

of x′2 and then to act as the sender in a 1 out of n oblivious transfer protocol. The other party
acts as the receiver and obliviously receives the x2

th messages, that is f(x1, x2).
The solution of Brassard et al. [BCR87] allows to build 1 out of n OT from 1 out of 2 OT only.

Then, the 1 out 2 OT is also 2PC-complete. Of course, when dealing with secure multi-party
computation, more efficient solutions than the one just described are generally desirable.

1i.e. it is a general solution to the 2PC problem.

27

Partie , Chapter 1 – Preliminaries

Protocol 1.5: Oblivious transfer extension of Ishai et al. [IKNP03]
Input: The sender has n pairs (mj,0,mj,1) of `-bit messages, 1 ≤ j ≤ n.
The receiver has n choices b = (b1, . . . , bn).
A security parameter λ and a random oracle H : [m]× Fλ2 → F`2.
Output: The receiver learns mj,bj , 1 ≤ j ≤ n.
Step 1: The sender picks a random bit vector s of size λ.
Step 2: The receiver picks a random n× λ bit matrix T .
Step 3: The parties run λ OT protocols with reverse roles:

the receiver has inputs (T i, b⊕ T i),
the sender has input si and obtains si · b⊕ T i, 1 ≤ i ≤ λ.

Step 4: Let Q denote the n× λ matrix of values obtained by the sender.
For 1 ≤ j ≤ n, the sender sends ((yj,0, yj,1)) where

yj,0 = mj,0 ⊕H(j,Qj) and yj,1 = mj,1 ⊕H(j,Qj ⊕ s) .

Step 5: For 1 ≤ j ≤ n, the receiver decrypts mj,bj = yj,bj ⊕H(j, Tj).

In the rest of the thesis, we only consider 1 out of 2 oblivious transfer, that will be referred
as oblivious transfer (OT) to improve readability.

Oblivious Transfer Extension

Due to its massive usage in secure protocols, efficiency is particularly crucial for oblivious
transfer. In the two previous protocols, the bottleneck relies on the use of public-key encryption
schemes, both in terms of computation and communication.

Therefore, the problem of extending a small number of OT to a large number of OT, with
no additional asymmetric operations, has attracted a lot of interest. It has been solved by Ishai
et al. [IKNP03] in the random oracle model2. In this model, the authors show that an arbitrary
number of OT can be made from λ regular OT, where λ is a security parameter. Then, only
O(λ) asymmetric operations are necessary for any number of OT.

Their solution is illustrated in Protocol 1.5. For a matrix M , we note M i the ith column of this
matrix and Mj the jth row.

The correctness of this protocol relies on the fact that Qi = si · b ⊕ T i. This implies that
Qj = bj · s⊕ Tj . Then, the definition of yj,0 and yj,1 can be developed as follows:

yj,0 = mj,0 ⊕H(j, bj · s⊕ Tj) and yj,1 = mj,1 ⊕H(j, bj · s⊕ s⊕ Tj) .

It is now easy to see that the vector s (that is unknown to the receiver) will disappear in yj,bj .
Similarly, the security relies on the fact that s does not disappear from yj,bj . We refer the reader

2A random oracle is an oracle that responds to every unique query with a truly random response chosen uniformly
from its output domain. If a query is repeated, then it responds the same way.

28

1.4. Garbled Circuits: a General Solution to the 2PC Problem

to the original paper for more details.
Then, this allows to build a large number of OT from λ OT where the roles are inverted, with

a small communication overhead (2n messages are sent in Step 4).
In some specific cases, Asharov et al. [ALSZ13] propose two optimizations to reduce this

overhead: random-OT and correlated-OT.

Random-OT. In Protocol 1.5, consider that it is acceptable that the n pairs of messages
(mj,0,mj,1) are chosen uniformly at random at the end of the protocol. Then, the authors sug-
gest to define in Step 4:

mj,0 = H(j,Qj) and mj,1 = H(j,Qj ⊕ s) .

Therefore, there is no need to transmit yj,0 and yj,1, which completely removes the overhead.
However, the sender does not know mj,0 and mj,1 before Step 4, which implies a deep change
of functionality: the sender has no input but an output.

Correlated-OT. Similarly, consider that in each pair one of the messages (say mj,0) can be
chosen uniformly at random at the end of the protocol and the other message is correlated to
the first (mj,1 = fj(mj,0)). Then, the same trick can be applied:

mj,0 = H(j,Qj) and mj,1 = fj(mj,0) .

Therefore, only yj,1 has to be transmitted, which lower by half the communication overcost.
However, as for random-OT, (mj,0,mj,1) is outputted to the sender.

1.4 Garbled Circuits: a General Solution to the 2PC Problem

The seminal work of Yao [Yao86], which later took the name of Yao’s garbled circuits, is a gen-
eral solution to the two-party computation problem. It is extremely efficient in terms of number
rounds of communications, which is constant and independent of the function to evaluate.

The target function is seen as a Boolean circuit: a collection of gates and wires to connect
them. The two parties called generator and evaluator are responsible for respectively generat-
ing and evaluating the garbled circuit. At a high level, the generator prepares the garbled circuit
by replacing the two possible values (0 and 1) of each wire by two random keys. He then “en-
crypt" and shuffle the truth table of each gate under these keys. These encrypted truth tables
are given to the evaluator, along with the random keys representing the input of the generator.

After the evaluator retrieves the keys representing his input through oblivious transfer pro-
tocols, he can then start evaluating the circuit. Basically, knowing the encrypted truth table of

29

Partie , Chapter 1 – Preliminaries

a gate and one key for each input wire is enough information to evaluate it and obtain the key
matching the output. But it does not allow to decrypt the keys, and thus the evaluator can oblivi-
ously evaluate the entire circuit without learning any information. Finally, the evaluator decrypts
the result by looking at some decryption table that is provided by the generator.

It was originally designed in the semi-honest adversary model, but can be adapted to mali-
cious adversaries using further mechanisms, like cut-&-choose and ZKP.

Decades of optimizations have made this tool very practical. Indeed XOR gates of the
Boolean circuit are no longer transmitted and are evaluated for free. Only non-linear opera-
tions, which can be seen as multiplications in F2, require some encryptions and decryptions.

Chapter 2 gives an extended introduction to garbled circuits, optimizations and countermea-
sures to malicious adversaries.

1.5 Secret Sharing: a General Solution to the MPC Problem

Secret sharing is about splitting a secret among a group of n participants, each of whom is given
a share of the secret. The secret can then be reconstructed only if some predefined subset of
shares are combined together. An individual share alone does not leak any information about
the secret.

The work of Shamir [Sha79] introduced the first solution to (t, n)-threshold secret sharing:
a specific case of secret sharing where any subset of t shares or more among n allows to
efficiently reconstruct the secret. On the contrary, the knowledge of less than t shares reveals
nothing. Shamir’s secret sharing is based on a polynomial representation of the secret over a
finite field F. The only restriction is that |F| > n, but we will assume for simplicity that F = Zp for
some prime p > n.

Let s be the secret and fs(X) = F[X] be a random polynomial of degree t − 1 such that
fs(0) = s. The secret is then shared by sending to participant Pj the share sj = fs(j) for each
1 ≤ j ≤ n. It is then trivial that the polynomial fs (and therefore the secret s itself) can be
reconstructed by any t shares or more, using the Lagrange interpolation.

Later, it has been demonstrated that if t ≤ (n − 1)/2, then the shamir’s secret sharing
becomes a general solution the multi-party computation problem in the semi-honest model.
Indeed, it is easy to prove that it allows addition and multiplication over shared inputs, and
therefore any function. For two secrets a and b, if each participant Pj has fa(j) and fb(j),
then he can locally compute fa+b(j) = fa(j) + fb(j), and fa+b(X) is a polynomial of degree
t − 1 and fa+b(0) = a + b. Similarly, he can also compute fab(j) = fa(j) · fb(j), which is a
valid share of fab(0) = ab. However, the polynomial fab(X) is of degree 2t − 2 and thus 2t − 1
shares are necessary to reconstruct the secret. Since t ≤ (n− 1)/2, there are enough shares,
but no further multiplication can be made without lowering the degree of the polynomial. To

30

1.6. MPC-Friendly Primitives

perform this degree reduction, each participant Pj creates n new shares of his own share
fab(j) and sends one to each other participant. Each participant can then locally compute the
Lagrange interpolation of the received shares and produce f ′ab(j) where f ′ab(X) is of degree
t. This process allows to compute an unlimited number of multiplications but requires O(n2)
communications.

Note that, like for garbled circuits, addition is made for free whereas multiplication requires
communications. Besides, remark that the number of rounds of communications is proportional
to the depth of the circuit to evaluate. Therefore, secret sharing based solutions calls for new
cryptographic primitives with minimal multiplicative and depth complexity, so that they can be
computed efficiently via secret sharing.

There are plenty of schemes of secret sharing allowing computation over shares (see for
example [DPSZ12]), but they all require a quadratic number of communications for performing
a certain type of operation.

1.6 MPC-Friendly Primitives

Historically, the design of symmetric cryptographic primitives (such as block ciphers, pseudo-
random generators, and pseudorandom functions) has been motivated by efficiency consider-
ations (memory consumption, hardware compatibility, ease of implementation,...). The field of
secure multi-party computation has led to the emergence of new efficiency considerations: the
efficiency of secure evaluation of a symmetric primitive is strongly related to parameters such
as its circuit depth, and the number of its AND gates. This is particularly true for garbled circuits
and secret sharing as mentioned previously.

This observation has motivated the design of MPC-friendly symmetric primitives in several
recent works (e.g. [ARS+15, CCF+16, MJSC16, GRR+16]). Secure evaluation of such sym-
metric primitives enjoys a wide variety of applications.

Among many MPC-friendly primitives, Goldreich’s pseudorandom generator has attracted
a lot of interest due to its applications in many cryptographic constructions. A pseudorandom
generator (PRG) maps a random seed to a longer pseudorandom string, with the guarantee that
the output of the PRG cannot be distinguished from the uniform distribution. The Goldreich’s
pseudorandom generator can be defined as follows: let n be size of the seed, let m be the size
of the output and let (σ1, . . . , σm) be a list of m subsets of bits of the seed, such that each
subset is of small size: for any i ≤ m, |σi| = d(n), where d(n)� n (in actual instantiations, d(n)
can for example be logarithmic in n, or even constant). Fix a simple predicate P : {0, 1}d(n) 7→
{0, 1}, and define the function f : {0, 1}n 7→ {0, 1}m as follows: on input x ∈ {0, 1}n, for any
subset S of [n], let x[σ] denote the subset of the bits of x indexed by σ. Compute f(x) as
P (x[σ1])|| · · · ||P (x[σm]) (that is, f(x) is computed by applying the predicate P to all subsets of

31

Partie , Chapter 1 – Preliminaries

the bits of x indexed by the sets σ1, . . . , σm).
This construction makes this PRG an interesting candidate for MPC-friendly since every

output bit only depends on d(n) bits of the seed. In practice d(n) can be as small as five and
the predicate can be limited to a single multiplication. In order to measure its efficiency, a study
of concrete parameters of this PRG with some specific predicates is made in Chapter 4.

1.7 Regarding the Preprocessing Model

In this thesis, only the most general settings are covered but some more specific settings have
been studied a lot by the cryptographic community. One of them particularly makes sense for
multi-party computation: the preprocessing model.

In this model, the computation is separated in two phases: a preprocessing (or offline3)
phase and an online phase. In the preprocessing phase, the participants do not know their
inputs yet, but they have access to the function f to evaluate and they wish to compute every-
thing that does not depend on the input (shared coin flipping, generation and transmission of
a garbled circuit, ...). In the online phase, the parts that depend on the inputs are computed. It
generally results in very efficient online phase.

This allows drastic efficiency improvement in several primitives, among which:

• Oblivious transfer : it is known since [Bea95] that oblivious transfers can be preprocessed
on random inputs, and then “derandomized” in the online phase to OTs of chosen inputs.

• Garbled Circuits: the generation, the transmission and the OT phase of the garbled circuit
protocol can be preprocessed. In the online phase, it just remains to derandomize the
OTs and to evaluate the circuit. In the malicious setting, the cut-&-choose can also be
made offline.

• Secret sharing: SPDZ [DPSZ12] is a special kind of secret sharing in the malicious ad-
versary model, that takes advantage of the preprocessing model to preprocess multipli-
cations over random data (that allows more efficient multiplications in the online phase)
and proofs that no participant is deviating from the protocol.

As already noticed, this setting is out of the scope of the thesis, but the preliminaries of
Chapter 2 and our results also apply in this model. This model is also one of the motivations of
our studies in Chapter 4.

3The “offline" term can be misleading since it often requires interactions between the participants.

32

CHAPTER 2

ON THE LEAKAGE OF CORRUPTED

GARBLED CIRCUITS

The seminal work of Yao [Yao86], known as garbled circuits, is a general solution to the secure
two-party computation problem, which is extremely efficient in terms of rounds of communica-
tions, which is constant and optimal. The protocol designed by Yao, is asymmetric and involves
two parties: the generator is responsible for creating the garbled circuit to be evaluated, and
an evaluator is responsible for executing it on its inputs. Originally, it was designed in the semi-
honest model, assuming that the generator correctly generates the circuit, and it was clear that
a malicious generator could easily modify the logic gates of the garbled circuit before sending
it to the evaluator for execution. Applying cut-&-choose to garbled circuits soon appeared to fix
this issue, but requires to generate, transmit and evaluate a large number of garbled circuits.

Since then, a lot of work has been made to optimize both garbled circuits [BMR90, NPS99,
KS08, ZRE15] and cut-&-choose based solutions [MF06, LP07, sS11, MR13, Lin13, sS13,
AMPR14, WMK17]. Unfortunately, the best of these approaches still requires the generator
to generate and transmit s garbled circuits for a statistical security of 2−s against malicious
adversaries, thus resulting in a serious overhead compared to the semi-honest model.

However, all these techniques based on cut-&-choose aim at avoiding any kind of modifi-
cation on the circuit, without having to define them explicitely. Suprisingly, it has never been
studied which modifications a malicious generator can make to a single garbled circuit, still
leading to an accepted execution, and therefore why the cut-&-choose is necessary.

In this chapter, a detailed introduction to garbled circuits is first given. Hopefully, it should
allow readers with a basic cryptographic background to be more familiar with this elegant tool.
Our contribution comes after: we prove that, for a large class of circuits, the malicious generator
is limited to add NOT gates on the wires of his choice. Hence, his possibilities are much more
restricted than what we could have expected from the previous state of the art. Finally, we show
some impacts of this result on real circuits and on cut-&-choose based solutions.

33

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Contents
2.1 Preliminaries . 35

2.1.1 Formal Definition . 35

2.1.2 Simplest Garbling Scheme . 36

2.1.3 The Point-and-Permute Trick . 40

2.1.4 The 25% Row-Reduction . 41

2.1.5 The Free-XOR Trick . 42

2.1.6 The Two-Half-Gate Technique . 44

2.1.7 Privacy-Free Garbled Circuits . 46

2.1.8 Corruption of Garbled Circuits . 47

2.1.9 The Cut-&-Choose Paradigm . 49

2.2 Motivation of Our Work . 52

2.3 Corruption of Optimized Garbled Circuits . 53

2.4 Delimitation of the Corruption . 54

2.4.1 Impossibility of Reducing the Number of Garbled Keys to One 55

2.4.2 Impossibility of Three-Key Wires - Part 1 56

2.4.3 Impossibility of Three-Key Wires - Part 2 59

2.4.4 Impossibility of Turning a Non-Linear Gate into a Linear Gate 65

2.4.5 About Other Non-Linear Gates . 66

2.4.6 Fitting Everything Together . 66

2.4.7 Ensuring the Correct Garbling of Input Wires 68

2.5 Applications to Real Circuits . 70

2.5.1 The Greater-Than Function . 71

2.5.2 The Addition Function . 72

2.5.3 The Equality-Test Function . 72

2.5.4 Trade-Off with Cut-&-Choose . 74

2.5.5 Garbled Circuits with Covert Adversaries 74

2.6 Conclusion . 78

34

2.1. Preliminaries

2.1 Preliminaries

Although garbled circuits have been heavily modified, optimized and formalized since the mid-
80s, the original idea is due to the work of Andrew Yao [Yao86]. As mentioned in his paper,
garbled circuits appear to be a general solution to the two-party computation problem, in the
sense that it allows to solve this problem for any function f , even in the presence of semi-honest
participants.

Informally, the generator G (one of the parties) is responsible for generating a garbled circuit
representing the function f to evaluate, that one can see as an “encrypted" version of the
circuit computing f . Roughly speaking, each wire of the circuit is associated two random keys
(later called garbled keys) having hidden semantics 0 and 1. Then, “encrypted" truth tables
(later called garbled gates or garbled truth tables) are provided to the evaluator E (the other
party) to propagate garbled keys across gates, while keeping their semantics secret. Finally, E
is responsible for evaluating it, so that he learns (and possibly returns) the result while keeping
all intermediate values of this circuit secret.

The work of Beaver, Micali, and Rogaway [BMR90] is the first to introduce the term gar-
bled circuit and also the first to give a construction based on symmetric primitives. Later, the
first construction based on pseudorandom functions was given by Naor, Pinkas and Sumner
[NPS99], allowing many other works to optimize garbled circuits and to make this tool very
practical.

2.1.1 Formal Definition

Despite the fact that almost thirty years passed since the original work of Yao, the first general
formalization of garbled circuits was made by Bellare, Hoang and Rogaway [BHR12].

A garbling scheme G consists in five components G = (Gb,Enc,Dec,Ev, ev). A garbling
algorithm Gb is a randomized algorithm that generates from the function f : {0, 1}n → {0, 1}m

and a security parameter λ three functions (F, e, d): a garbled function F , an encoding function
e and a decoding function d. An encryption algorithm Enc takes the input x of the function
to evaluate and the encoding function e and returns a garbled input X = e(x). This garbled
input can be used along with F and the evaluation algorithm Ev to obtain the garbled output
Z = F (X). Finally, the decryption algorithm Dec and the decryption function d allow to decrypt
this garbled output and to obtain the final result z = f(x), which must be equal to the output of
the insecure evaluation algorithm ev. Then, it is required that f = d ◦ F ◦ e. This decomposition
of G is illustrated in Fig. 2.1.

The work of Bellare et al. [BHR12] also defines three security properties that capture the
general case:

• Privacy : a party acquiring (F,X, d) does not learn more about the input x than the result

35

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Gb

x Enc Ev Dec z = f(x)

ev z = f(x)

1λ

f
e

F

d

X Z

Figure 2.1: Components of a garbling scheme G = (Gb,Enc,Dec,Ev, ev)

f(x) already allows to learn. Formally, there must exist a simulator S that takes as input
(1λ, f, f(x)) and whose output cannot be distinguished from (F,X, d) generated the usual
way.

• Obliviousness: a party acquiring (F,X) does not learn any information about x. More
specifically, there must exist a simulator S that takes as input (1λ, f) and whose output
cannot be distinguished from (F,X) generated the usual way.

• Authenticity : a party acquiring (F,X) should be unable to produce a garbled output Z∗ 6=
F (X), such that the decryption algorithm does not abort (i.e. Dec(d, Z∗) 6= ⊥), except with
negligible probability.

In some specific cases, a garbling scheme may satisfy a subset only of these security
properties, which may result in a more efficient solution.

Now that garbled circuits have been formally defined, let us see how it works in practice.

2.1.2 Simplest Garbling Scheme

In this part, a “de-optimized" version of [NPS99] is detailed. More specifically the version pre-
sented here is roughly equivalent to the original solution of Yao [Yao86], except that asymmetric
operations are replaced by symmetric tools. This choice makes this part and the following op-
timizations much more accessible to non-specialists. Therefore, the presented scheme is only
for educational purpose and, up to my knowledge, has never been published.

We consider a symmetric encryption scheme based on a hash function, noted H.

H : F2n → F2λ , n ≥ λ

For a message m ∈ F2λ , a key k ∈ F2λ and a salt i (of any size), the encryption function E

36

2.1. Preliminaries

wi′

wi′′
wi

k0
i′ , k

1
i′

k0
i′′ , k

1
i′′

k0
i , k

1
i

H(k0
i′ ||k0

i′′) Ei
k0
i′

(Ei
k0
i′′

(kgi(0,0)
i))

H(k0
i′ ||k1

i′′) Ei
k0
i′

(Ei
k1
i′′

(kgi(0,1)
i))

H(k1
i′ ||k0

i′′) Ei
k1
i′

(Ei
k0
i′′

(kgi(1,0)
i))

H(k1
i′ ||k1

i′′) Ei
k1
i′

(Ei
k1
i′′

(kgi(1,1)
i))

Figure 2.2: On the left side, a gate gi with garbled keys at the input and output wires. On the
right side, the corresponding non-shuffled garbled truth table.

of the scheme is defined as:
Eik(m) = m⊕H(k|i)

The function f to evaluate is public and we assume that both parties already agreed on
some public circuit representation of it Cf . We note x and y the respective inputs of the gen-
erator G and the evaluator E. Note that (x, y) refers to the input x defined in [BHR12] (see
Section 2.1.1). We note wi the ith wire of Cf (for some arbitrary order), I the set of input wires
of the circuit, IX the input wires carrying x, IY the input wires carrying y (I = IX ∪ IY) and O
the set of output wires. Finally, we note gi the gate that outputs wi (unless wi ∈ I).

Garbling algorithm (F, e, d) ← Gb(1λ, f): for each wire wi of the circuit, the generator G
randomly generates keys k0

i and k1
i (of size λ) having secret semantics 0 and 1. Let us call

them the garbled keys for wi. Then, for each gate gi of the circuit, taking as input some wires
wi′ and wi′′ , G generates a garbled truth table (also called garbled table or garbled gate) by
hashing the input garbled keys and encrypting the outputs garbled keys with the corresponding
input garbled keys. The identifier i of the gate is used as salt for the PRF used in the encryption
scheme. The situation is illustrated in Fig. 2.2. The four rows of the garbled gate are then
randomly shuffled by G. These garbled tables correspond to the garbled circuit F . Next, G
computes the commitment table for each output wire of the circuit wi ∈ O. A commitment table
is a mapping between the hashed garbled keys and their clear value, a trivial solution would be
(0, H(k0

i)), (1, H(k1
i)). These commitment tables correspond to d and will be used to decrypt

the result. Finally, garbled tables and commitment tables (in the formal definition F and d) are
transmitted to the evaluator E. Note that G knows the garbled keys of all input wires wi ∈ I and
their clear value, which represent the encryption function e.

Encryption algorithm X ← Enc(e, (x, y)): G knows e and x (his input). Therefore, for every
wire wi ∈ IX carrying some input bit xj of x, G can directly compute the garbled key kxji and
send it to E, while keeping the clear value of x private. These keys correspond to the first part
of the garbled input X. The second part, that depends on the evaluator’s private input y is a
bit trickier to obtain. For every wire wi ∈ IY carrying some input bit yj of y, E wants to retrieve
k
yj
i without revealing yj , and G wants to ensure that only one of the two garbled keys k0

i and

37

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

k1
i for wi is learnt by E. Oblivious transfers allow to solve this issue. For efficiency reasons, OT-

extension and random-OT1 can be used. We refer the reader to Section 1.3.3 for more details
about oblivious transfers and its optimizations.

Evaluation algorithm Z ← Ev(F,X): the evaluator E knows one (and only one) garbled key
for each wire of I and these keys represent the input value x and y (although x is kept secret).
He also knows the garbled table for each gate of the circuit and a commitment table for each
wire of O. Note that with a garbled table for gi, as shown in Fig. 2.2, if E has two keys kai′ and
kbi′′ for some hidden input bits a and b, then he is able to compute k

gi(a,b)
i , while keeping a,

b and gi(a, b) secret. More specifically, E computes and uses H(kai′ ||kbi′′) to determine which
row of the garbled table to decrypt. Then, he can decrypt Eika

i′
(Ei

kb
i′′

(kgi(a,b)i)) to retrieve kgi(a,b)i .

To evaluate the entire circuit, E starts by evaluating, as just described, the first gate, the input
garbled keys of which he already knows, and obtains the output garbled keys. He can then
evaluate the entire circuit, one gate at a time, until he gets the garbled keys for the wires of O
(that represent Z).

Decryption algorithm z ← Dec(d, Z): E has computed one garbled key k
zj
i for each wire

wi ∈ O (that represent Z) and has been given the commitment tables (for d) of the form
(0, H(k0

i)), (1, H(k1
i)). Then, he can hash the garbled keys he has and reconstruct the clear

result z, that must be equal to f(x, y).
At the end of this decryption algorithm, E learns the result z = f(x, y). Instead of naively

returning this result to G, he returns Z (i.e. the garbled keys kzji for each wire wi ∈ O). Since
G knows d, he can also run the decryption algorithm. Thanks to the authenticity property of
the garbling scheme, this convinces the generator G that z is indeed the correct evaluation of
f(x, y) and not an arbitrary value chosen by an adversarial evaluator.

An overview of the full protocol is presented in Fig. 2.3. Note that only three communications
are necessary since the first one (the transmission of the garbled circuit) can be merged with
the answer of the OT protocol. If it is not required that G learns the result, then only two are
necessary, which is optimal in terms of rounds of communications.

The reason of the salt i used in the encryption scheme is to avoid linear dependencies
between several garbled truth tables. As shown in Fig. 2.2, the same salt is used for an entire
gate gi. From this point, to simplify notations, this salt will be omitted unless necessary.

To sum up, Yao’s garbled circuits are an elegant solution to solve the two-party computation
problem, furthermore, in a constant number of rounds. However, the communication cost is
linear in the size of the circuit to evaluate. Indeed, as shown previously, a garbled truth table
has to be transmitted for each gate of the circuit. This transmission is the bottleneck of the
protocol and decades of optimizations aimed at making it more efficient.

1Random-OT implies that the garbled keys of IY are known to the generator only after the OT protocol. Then, a
part of the garbled circuit (the gates connected to IY) cannot be pre-computed.

38

2.1. Preliminaries

Generator
Input: x

Evaluator
Input: y

Generate two garbled keys k0
i and k1

i per wire wi of Cf
Generate a garbled table for every gate of Cf
Generate a commitment table per wire of O

Garbled tables, commitment tables,
∀wi ∈ IX carrying xj , one garbled key kxji

OT

∀wi ∈ IY , k0
i and k1

i
y

∀wi ∈ IY , kyji

Evaluate sequentially every garbled gate using the
known garbled keys
Decrypt the garbled output using the commitment tables
Learn the result f(x, y)

One garbled key for each wire of O

Decrypt the garbled output using the commitment tables
Learn the result f(x, y)

Figure 2.3: Garbled circuits protocol overview

39

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

wi′

wi′′
wi

k0
i′ , k

1
i′ , pi′

k0
i′′ , k

1
i′′ , pi′′

k0
i , k

1
i , pi

(a)

0 0 gi(0, 0)
0 1 gi(0, 1)
1 0 gi(1, 0)
1 1 gi(1, 1)

(b)

k0
i′ k0

i′′ Ek0
i′

(Ek0
i′′

(kgi(0,0)
i))

k0
i′ k1

i′′ Ek0
i′

(Ek1
i′′

(kgi(0,1)
i))

k1
i′ k0

i′′ Ek1
i′

(Ek0
i′′

(kgi(1,0)
i))

k1
i′ k1

i′′ Ek1
i′

(Ek1
i′′

(kgi(1,1)
i))

(c)

s(kpi′i′) = 0 s(kpi′′i′′) = 0 E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

s(kpi′i′) = 0 s(kpi′′i′′) = 1 E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

s(kpii′) = 1 s(kpi′′i′′) = 0 E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

s(kpi′i′) = 1 s(kpi′′i′′) = 1 E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

(d)

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

(e)

Figure 2.4: (a) a gate gi with garbled keys and a permute bit at the input and output wires. (b)
the clear truth table. (c) the unsecure garbled truth table. (d) the garbled truth table sorted by
the select bit of the input keys. (e) the final garbled truth table.

2.1.3 The Point-and-Permute Trick

The point-and-permute trick of Beaver, Micali and Rogaway [BMR90] is an elegant optimization
for garbled circuits to get rid of the input column of Fig. 2.2.

From now on, we call s() the function that takes a garbled key as input and outputs the least
significant bit of that key. This least significant bit of a garbled key is referred as select bit.

Consider the boolean gate gi shown in Fig. 2.4.a and its corresponding (clear) truth table
in Fig. 2.4.b. Observe that if one wanted to send a description of gi, then the third column of
Fig. 2.4.b would be sufficient, using the convention that the two first columns are sorted. The
work of Beaver et al. [BMR90] manages to apply the same trick to garbled truth tables.

Roughly speaking, a random permute bit pi is picked by G for every wire wi of the circuit. A
new constraint is added to the generation of the garbled keys: the select bit of a garbled key (the
least significant bit2) is now the clear value masked with the permute bit. More specifically, the
select bit of kai is a⊕ pi. Remark that it implies the select bit of every garbled key is arranged so

2Coding the select bit in the least significant bit of a key is a widespread convention. It could be any other bit or
any other way of differentiating the two garbled keys of a wire. Without loss of generality, we use this convention in
the rest of the chapter.

40

2.1. Preliminaries

that the two garbled keys for a same wire have opposite select bits. Then we have the following
facts:

s(kai) = a⊕ pi
s(kpii) = 0 s(kpii) = 1

s(k0
i) = pi s(k1

i) = pi

Therefore, one can replace the values of the clear truth table (Fig. 2.4.b) by their respective
garbled keys, as shown in Fig. 2.4.c. The resulting truth table is definitely insecure but can be
sorted by the select bit (i.e. the least significant bit) of the input garbled keys. This situation
is illustrated in Fig. 2.4.d. Using the convention that a garbled truth table is now sorted by the
select bit of the input keys, the two first columns of Fig. 2.4.d become unnecessary. Then, G
only has to generate and transmit four ciphertexts, as shown in Fig. 2.4.e. We stress that these
four ciphertexts are no longer randomly shuffled. When evaluating, E just has to look at the
select bit of the keys he knows to determine which one of the ciphertext he must decrypt.

More formally, the garbling algorithm (F, e, d) ← Gb(1λ, f) is now changed as follows: for
every wire wi, G picks a random bit pi, called permute bit. The select bit of a garbled key is
the clear value masked with the permute bit. More specifically, the select bit of kai is a ⊕ pi.
Instead of being randomly shuffled, the garbled truth tables can be sorted by these select bits,
as shown in Fig. 2.4.e. These tables can then be sent to E.

The evaluation algorithm Z ← Ev(F,X) has to be modified accordingly: when evaluating
a gate, E uses the select bit of the garbled keys to determine which row he should decrypt.
More specifically, for a gate gi, if he has input garbled keys kai′ and kbi′′ , then he can decrypt the
(2 · s(kai′) + s(kbi′′))th ciphertext and retrieve the relevant key kgi(a,b)i .

Thanks to this optimization, the size of a garbled table is reduced to only four ciphertexts,
thus reducing the communicational cost of garbled circuits by half.

2.1.4 The 25% Row-Reduction

Naor, Pinkas and Sumner [NPS99] introduced garbled row-reduction as a way of reducing the
number of ciphertexts that describe a garbled gate. The main idea of their optimization is that
instead of randomly picking two garbled keys for each wire wi, one of them can be dependent
of the input garbled keys of gi (the gate that outputs wi), and the garbling scheme still remains
secure.

Concretely, the garbled keys are chosen such that the first ciphertext of a garbled truth table
will always be the all-zeroes string and thus does not have to be transmitted. This situation is
illustrated in Fig. 2.5. It implies that kgi(pi′ ,pi′′)i is the decryption of zero: D

k
pi′′
i′′

(D
k
pi′
i′

(0)).

41

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

wi′

wi′′
wi

k0
i′ , k

1
i′ , pi′

k0
i′′ , k

1
i′′ , pi′′

k0
i , k

1
i , pi

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i)) = 0

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

E
k
pi′
i′

(E
k
pi′′
i′′

(kgi(pi′ ,pi′′)i))

Figure 2.5: On the left side, a gate gi with garbled keys and a permute bit at the input and output
wires. On the right side, the corresponding garbled truth table with only three ciphertexts.

The garbling algorithm (F, e, d) ← Gb(1λ, f) is therefore changed as follows: the generator
G randomly chooses a permute bit and two garbled keys (according to the point-and-permute
trick previously described) for every wire of I. For every gate gi taking as input some wires wi′
and wi′′ , G sets one of the garbled keys for wi k

gi(pi′ ,pi′′)
i = D

k
pi′′
i′′

(D
k
pi′
i′

(0)), which also fixes the

permute bit pi. The other key kgi(pi′ ,pi′′)i is randomly chosen by G as usual (still according to the
point-and-permute trick). G now generates the garbled truth tables as usual, except for the first
ciphertext, which is the all-zeroes string by definition and thus does not have to be computed
nor transmitted to the evaluator E.

Very few modifications are made to the evaluation algorithm Z ← Ev(F,X): for a gate gi, if
E has input garbled keys kai′ and kbi′′ , if (2 · s(kai′) + s(kbi′′)) 6= 0, then he can decrypt as usual.
Otherwise, he simply assumes that the cipertext is the all-zeroes string and decrypts it.

Therefore, this optimization manages to lower the communication cost of garbled circuit by
25%. Since only one garbled key is randomly generated per wire, this work also drastically
reduces the need for randomness generation, although the question of randomness generation
is not explored further in this thesis.

Finally, another contribution of Naor, Pinkas and Sumner [NPS99] has to be mentioned:
they describe a way to further reduce the size of garbled gates to only two ciphertexts, based
on polynomial interpolation. Unfortunately, this second optimization is not compatible with the
free-XOR trick that follows and is beaten by more recent works.

2.1.5 The Free-XOR Trick

The free-XOR trick of Kolesnikov and Schneider [KS08] allows to garble XOR gates for free.
They observe that the difference between the two keys for a wire k0

i ⊕ k1
i can be the same for

all wires of the circuit, and the scheme still remains secure. The idea is to let G choose a global
offset ∆ that will be used to differentiate the two garbled keys for a same wire k0

i ⊕ k1
i = ∆.

That way, when E has to evaluate a XOR gate, he just bitwise XOR the two input garbled keys
to obtain the output garbled key. Note that, in order to make it compatible with the point-and-

42

2.1. Preliminaries

permute technique, ∆ has to be odd.

The garbling algorithm (F, e, d) ← Gb(1λ, f) is optimized as follows: G starts by picking
randomly an odd global offset ∆ of size λ. For every wire wi ∈ I, he randomly chooses one of
the garbled keys (say k0

i having hidden semantic 0), accordingly to the point-and-permute trick,
and sets the other key to be the bitwise-XOR of the first and the global offset (k1

i = k0
i ⊕ ∆).

For a non-XOR gate gi, the key kgi(pi′ ,pi′′)i is computed as before (i.e. the decryption of zero),

and the other key is set as kgi(pi′ ,pi′′)i = k
gi(pi′ ,pi′′)
i ⊕ ∆. This also sets the permute bit pi. The

generation of garbled truth tables is made as usual for non-XOR gates. For a XOR gate gi,
having wi′ and wi′′ as input, the two garbled keys for the output wire wi are set at k0

i = k0
i′ ⊕ k0

i′′

and k1
i = k0

i ⊕ ∆. This implies that pi = pi′ ⊕ pi′′ . No garbled truth tables are made for XOR
gates.

For a XOR gate gi, observe that:

{
k0
i = k0

i′ ⊕ k0
i′′

k1
i = k0

i ⊕∆
=⇒


k0
i = k0

i′ ⊕ k0
i′′

k0
i = k1

i′ ⊕ k1
i′′

k1
i = k1

i′ ⊕ k0
i′′

k1
i = k0

i′ ⊕ k1
i′′

Then, the evaluation algorithm Z ← Ev(F,X) has to be slightly modified: the evaluation
of non-XOR gates remains unchanged. The evaluation of a XOR gates gi is made by bitwise-
XORing the input garbled keys together. If E has input garbled keys kai′ and kbi′′ , the output
garbled key is ka⊕bi = kai′ ⊕ kbi′′ .

Not only there is no ciphertext to transmit for XOR gates, but also the output garbled keys of
any gate fully depend on the input keys and thus do not require any randomness to generate.
Recursively, the garbled keys of the whole circuit fully depend on the garbled keys of I.

Remark that it also implies that the random-OT optimization cannot be used any longer,
since the two garbled keys of any wire of IY are correlated. Then the correlated-OT protocol
should be used instead. Note that (as for the random-OT), the garbled keys of IY , and thus
the garbled keys of the entire circuit, are known to the generator only after the correlated-OT
protocol. This means that the garbling algorithm comes after the exchange of the inputs. If this
situation is not desirable, then the OT extension should be used alone. We refer the reader to
Section 1.3.3 for more details about oblivious transfer.

In order to grasp the impact of this optimization, here are some statistics about real circuits,
defined in [KSS09]. 66% of the gates of a multiplexer (of any size) are XOR gates. Thus the
size of a multiplexer garbled circuit (in number of transmitted ciphertexts) is reduced by 66%.
Similarly, the additioner circuit cost is reduced by 80%. The cost of the AES S-box, as designed
in [BP11], is reduced by 73%.

43

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

γ

1
a a ∧ b

2

b
k0
B, k

1
B, pB

k0
A, k

1
A, pA

k0
Bγ , k

1
Bγ

k0
X , k

1
X , pX

k0
Y , k

1
Y , pY

Figure 2.6: The two half-gates of an AND gate

2.1.6 The Two-Half-Gate Technique

More recently, Zahur, Rosulek and Evans [ZRE15] found a solution to reduce the size of a gar-
bled gate to only two ciphertexts, and that remains compatible with the previous optimizations.
In fact, this work is a very clever combination of the previous optimizations and is based on the
following fact:

∀γ ∈ F2, a ∧ b = (a ∧ γ)︸ ︷︷ ︸
First half-gate

⊕ (a ∧ (b⊕ γ))︸ ︷︷ ︸
Second half-gate

Therefore, every AND gates of the circuit is implicitly replaced by the corresponding sub-
circuit shown in Fig. 2.6, where γ is a bit randomly chosen by the generator G. A similar equation
and a similar sub-circuit can be obtained from “any gate whose truth table contains an odd
number of ones (e.g. AND, NAND, OR, NOR, etc.).” [ZRE15]. For simplicity, we only focus
w.l.o.g. on AND gates.

An AND gate is then replaced by two AND gates and two (free) XOR gates. The two new
AND gates are called half-gates and are defined as follows:

Definition 2.1 (Half-gate). AND gate for which one of the parties knows one of the inputs.

Indeed, for the first half-gate a ∧ γ, G knows γ, and for the second half-gate a ∧ (b ⊕ γ),
note that b ⊕ γ can be revealed to E without leaking b. At first sight, it does not look like an
improvement, but the authors show that combining the previous optimizations in the particular
case of half-gates, one can garble a half-gate with a single ciphertext. Thus, the total cost of
the original AND gate is two ciphertexts.

In this section, we no longer need the symmetric encryption scheme E. Instead, we directly
work with the hash function H.

H : F2n → F2λ , n ≥ λ

Since an AND gate is now replaced by a fairly complex sub-circuit, we need to define a
few notations that will be used to describe this optimization. We now call a and b the two

44

2.1. Preliminaries

(presumably secret) input bits of the AND gate gi and are carried by the wires wA and wB. wBγ ,
wX and wY respectively refer to the intermediate wires carrying b ⊕ γ, a ∧ γ and a ∧ (b ⊕ γ).
According to these notations, the garbled keys and permute bits of these wires are as usual:
k0
Bγ , k1

Bγ and so on. All those notations are illustrated in Fig. 2.6. The wire carrying γ is fictive:
it has no garbled key and no permute bit, this will be explained later.

Consider the first half-gate. G knows γ and we will use this knowledge to garble this gate
with only two ciphertexts and then apply the previous optimizations to reduce it to only one. If
γ = 0, then the half-gate must output k0

X for any value of a. Therefore, we only need a two-
ciphertext garbled table. If γ = 1, the half-gate must output kaX . We also need a two-ciphertext
garbled table. In both cases, the garbled truth table is applied the point-and-permute trick (so
that E can decrypt the s(kaA)th ciphertext) and the 25%-row reduction (so that the first ciphertext
is the all-zeroes string). Therefore, only one ciphertext (that we call G) has to be transmitted. E
can then evaluate it by decrypting either zero or G (depending on the value of s(kaA)) with the
garbled key kaA that he knows.

The computation of b ⊕ γ is fictive. Since G knows γ, he can directly define k0
Bγ = kγB,

k1
Bγ = kγB and pBγ = pB ⊕ γ. Then, no generation or evaluation is needed. G gives pB ⊕ γ

to E, allowing him to learn the clear value b ⊕ γ of the garbled key kb⊕γBγ obtained during the
evaluation, without leaking the sensitive values b and γ.

Consider now the second half-gate. As just described, E knows b ⊕ γ. If b ⊕ γ = 0, then
the half-gate must output 0. Then, the encryption of k0

Y under k0
Bγ must be provided. This

first encryption is nullified, using the same trick as in the 25%-row reduction (k0
Y = H(k0

Bγ)). If
b⊕γ = 1, then the half-gate must output a. In that case, it gets trickier, G computes an encryption
E of k0

Y ⊕ k0
A under k1

Bγ (E = k0
Y ⊕ k0

A ⊕ H(k1
Bγ)). Note that the point-and-permute trick is

unnecessary since the evaluator E already knows the clear value of b ⊕ γ. The ciphertext E is
transmitted to E. When evaluating, if b ⊕ γ = 0, he simply computes k0

Y = H(k0
Bγ). Otherwise,

he computes ka∧(b⊕γ)
Y = E ⊕ kaA ⊕H(k1

Bγ) (this is correct since kaA = k0
A ⊕ a∆).

The generation of E and G is illustrated in Tab. 2.1. Very few modifications have to be made
to this garbling algorithm to garble other “gate[s] whose truth table contains an odd number of
ones (e.g. NAND, OR, NOR, etc.).” [ZRE15]. We will call later these gates non-linear gates in
F2.

Table 2.1: Garbling the half-gates of an AND gate gi

First half-gate Second half-gate
Garbled table if γ = 0 Garbled table if γ = 1 b⊕ γ Garbled table
k0
X ⊕H(kpAA |2i) = 0 kpAX ⊕H(kpAA |2i) = 0 0 k0

Y ⊕H(k0
Bγ |2i+ 1) = 0

k0
X ⊕H(kpAA |2i) = G kpAX ⊕H(kpAA |2i) = G 1 k0

Y ⊕ k0
A ⊕H(k1

Bγ |2i+ 1) = E

Similarly to the previous sections, the identifier i of the gate is used as salt for the hash

45

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

function. More specifically, since we now have two (half-)gates, note that 2i and 2i+ 1 are used
respectively for the first and second half-gates. Unless necessary, we omit these salts in order
to improve readability.

The evaluation of the half-gates is illustrated in Tab. 2.2. For gates other than AND, the
evaluation remains exactly the same. Note that there are four different possible evaluations of
the half-gates (one for each input combination), noted from K1 to K4. If E and G were correctly
generated, then three of these results would collide, so that there are only two distinct garbled
key for the output wire. For example, if gi is an AND gate and if pA = 0, then we should have
K1 = K2 = K3.

Table 2.2: Evaluating the half-gates of a gate gi

Inputs First half-gate Second half-gate Garbled output key
kpAA k0

Bγ H(kpAA) H(k0
Bγ) K1 = H(kpAA)⊕H(k0

Bγ)
kpAA k1

Bγ H(kpAA) E ⊕H(k1
Bγ)⊕ kpAA K2 = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA
kpAA k0

Bγ G⊕H(kpAA) H(k0
Bγ) K3 = G⊕H(kpAA)⊕H(k0

Bγ)
kpAA k1

Bγ G⊕H(kpAA) E ⊕H(k1
Bγ)⊕ kpAA K4 = E ⊕G⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA

2.1.7 Privacy-Free Garbled Circuits

Jawurek et al. [JKO13] demonstrated that garbled circuits can be used as a practical solution to
zero-knowledge proof of knowledge protocols. The evaluator E (i.e. the prover) can prove any
statement “∃x : f(x) = 1” to the generator G (i.e. the verifier) without revealing x, using a single
garbled circuit for f .

However, in this particular context, E has the input x and G has no input at all. Since E
knows the entire input, he also knows the value of each intermediate wire of the garbled circuit,
and thus there is no need to hide these values to E. Then, the privacy property as defined in
Section 2.1.1 becomes unnecessary.

Frederiksen et al. [FNO15] showed that in this context, the size of the garbled circuits can be
significantly reduced. The work of [ZRE15] provides an optimal garbling scheme in this context.

Since E knows every value, the garbled gates can be viewed as half-gates, and thus require
a single ciphertext. More precisely, they are equivalent to the second half-gate, as defined in
Section 2.1.6. For an AND gate, this ciphertext is E = H(k0

B)⊕H(k1
B)⊕ k0

A and the evaluation
algorithm is modified as presented in Tab. 2.3.

Although we focus only on the general case in the contributions of this chapter, they also
apply to the privacy-free garbling scheme of [ZRE15]. Additionally, one of our constructions
partially uses this specific scheme for efficiency reasons.

46

2.1. Preliminaries

Table 2.3: Evaluating the privacy-free garbled gate

Inputs Garbled output key
k0
A k0

B K1 = H(k0
B)

k0
A k1

B K2 = E ⊕H(k1
B)⊕ k0

A

k1
A k0

B K3 = H(k0
B)

k1
A k1

B K4 = E ⊕H(k1
B)⊕ k1

A

wi′

wi′′
wi

k0
i′ , k

1
i′

k0
i′′ , k

1
i′′

k0
i , k

1
i

H(k0
i′ ||k0

i′′) Ek0
i′

(Ek0
i′′

(kgi(0,0)
i))

H(k0
i′ ||k1∗

i′′) Ek0
i′

(Ek1∗
i′′

(kgi(0,1)
i))

H(k1
i′ ||k0

i′′) Ek1
i′

(Ek0
i′′

(kgi(1,0)
i))

H(k1
i′ ||k1∗

i′′) Ek1
i′

(Ek1∗
i′′

(kgi(1,1)
i))

Figure 2.7: Example of selective failure attack. A corrupted garbled key k1∗
i′′ is used for encryp-

tion in the garbled truth table instead of k1
i′′ .

2.1.8 Corruption of Garbled Circuits

Now that we have seen how to garble a circuit, let us see how a malicious generator G can
cheat. For simplicity, consider that the garbling scheme is unoptimized. There exists two kinds
of corruptions: those that cannot be detected, since the evaluation always succeeds, and those
that may lead the adversary to get caught, because of an invalid output (inconsistent with the
commitments).

Selective Failure Attacks

We first consider the latter category, that leads to the so-called selective failure attacks. These
are corruptions of the garbled circuit that make it executable only if a condition on internal
values is met. If not, the protocol aborts: E does not obtain a correct output and thus cannot
send back a result to G. Then, G learns whether the condition is met, but, if not, E detects the
corruption and G gets caught. More specifically, the malicious G could use inconsistent keys to
construct a garbled gate or to exchange inputs during the oblivious transfer step.

Let us see two examples, first, with the modification of an internal gate, and then with a
corrupted oblivious transfer during the initialization step.

Alteration of an internal garbled gate. We consider an internal corrupted gate garbled as in
Fig. 2.7. Suppose a key k1∗

i′′ has been used for the generation of the garbled truth table instead
of k1

i′′ .
During the evaluation, if E gets k1

i′′ , then he has no way of evaluating the gate and E is
compelled to abort the protocol. If E gets k0

i′′ , he can evaluate the gate as usual and does not

47

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

even notice the corruption.

If the protocol aborts, G learns that k1
B should have been used and E detects the attack. But

if the protocol runs correctly, G learns the normal output, plus an internal bit k0
B, and E does not

detect it.

Note that if the point-and-permute technique is used, the attack is a bit different. E is always
able to (possibly incorrectly) evaluate a gate. Therefore, after such a corrupted gate, E will get
an inconsistent key, that will be used to evaluate the rest of the circuit. It will not be detected
until the last gate of the circuit, the output of which will not match any value of the commitment
table as defined in Section 2.1.2. Because he cannot return a valid output, E is forced to abort
the protocol, and the leakage is exactly the same as previously described.

Remark that if G makes several such attacks in the circuits and if the protocol aborts, he
does not know which attack (or both) lead to an abortion, which reduces the leakage of infor-
mation. In that case, he learns much more information if the protocol succeeds.

Corruption during the oblivious transfer. We now consider E has some input bit b and G
generates honestly the circuit using k0

B and k1
B. However, during the oblivious transfer step, G

uses k0
B and k1∗

B . Then, if b = 1, E gets an inconsistent key and the leakage of information
is just as before. Note that the circuit itself is not modified, meaning that cut-&-choose based
solutions (that will be introduced later) does not solve this issue. More specific and efficient
solutions have been designed, such as s-probe-resistant matrices [LP07, sS13].

Roughly speaking, an s-probe-resistant matrix is a public Boolean matrix M used to encode
the evaluator’s input y = My′, such that every bit of y depends of at least s bits of y′. The
function to evaluate now becomes f ′(x, y′) = f(x,My′). Then, E chooses a random y′ that
matches y = My′ and the rest of the garbled circuit protocol is performed using the function f ′.
It is now easy to see that G carries out s′ < s such selective failure attacks, then no information
about y is leaked. Then, G has to perform at least s attacks, which the protocol to abort with
probability 1−2−s without leaking any meaningful information. In terms of efficiency, the garbling
and the evaluation of M is free (it is only made of XOR gates), but the length of y′ is slightly
higher than the one of y. Different approaches aim at reducing this overcost.

Information vs. Detection. In both above cases, the malicious generator can be detected
since the failure is part of the way to learn information. Hence, the adversary must make the
protocol fail with non-negligible probability to learn something. In the rest of the chapter, we
restrict the study to context where the potential gain of information is not worth the risk of
getting caught by the honest party. Moreover, if the garbled circuit and the inputs were signed
by the generator, the evaluator could easily prove to some authority that the garbled circuit is
indeed non-executable. This seems reasonable in many real-life cases. We thus limit alterations

48

2.1. Preliminaries

wi′

wi′′
wi

k0
i′ , k

1
i′

k0
i′′ , k

1
i′′

k0
i , k

1
i

H(k0
i′ ||k0

i′′) Ek0
i′

(Ek0
i′′

(k0
i))

H(k0
i′ ||k1

i′′) Ek0
i′

(Ek1
i′′

(k0
i))

H(k1
i′ ||k0

i′′) Ek1
i′

(Ek0
i′′

(k0
i))

H(k1
i′ ||k1

i′′) Ek1
i′

(Ek1
i′′

(k0
i))

Figure 2.8: On the left side, a gate gi supposed to be an AND gate. On the right side, the
corrupted corresponding garbled table that always ouputs False.

to the garbled circuit that do never lead to a failure.

Undetectable Corruptions

In order to be undetectable, the corrupted circuit must keep the same topology and the outputs
must match the values of the commitment tables.

For simplicity, consider the original garbling scheme of Section 2.1.2. A malicious generator
G can easily make such a corruption by changing the functionality of a gate before garbling it.
The example given in Fig. 2.8 shows how to turn (w.l.o.g.) an AND gate into (w.l.o.g.) a gate
that always outputs False. Generalizing it to the whole circuit, a malicious generator can easily
choose the output of the circuit. Similarly, he can also make the circuit output a part of (or
even the entire) evaluator’s private input. These modifications can be made arbitrarily by the
generator and it will not be detected by the evaluator.

These two kinds of corruptions (selective failure attacks and undetectable corruptions) are
traditionally prevented by cut-&-choose based solutions.

2.1.9 The Cut-&-Choose Paradigm

As described previously, if the generator G is malicious, he can construct a garbled circuit that
computes a function that is different from the one that E and G agreed on, or he can make
it abort under some conditions on E’s inputs. A well-known approach for such problems in
cryptography is the cut-&-choose technique.

Loosely speaking, in the context of garbled circuits, G generates a set of t garbled circuits
for the function f and send them all to E. Then, E randomly chooses a subset of the t garbled
circuits and asks G to open this subset. G complies and reveals all the garbled keys for the
requested garbled circuits. E can then check that these garbled circuits are correctly garbled. If
this verification fails, he can safely abort the protocol. Otherwise, the exchange of the inputs and
the evaluation of the unopened garbled circuits is done as in the semi-honest case. Clearly, this
solution solves the problem of G corrupting the garbled circuit. Indeed, an adversarial G now
has to guess which subset will be randomly chosen by E. The number t of garbled circuits

49

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

depends on some statistical security parameter s 3.

However, it is not sufficient since it creates new problems within itself:

1. Input consistency for the generator : a malicious G can provide inconsistent input garbled
keys for the t circuits. In other words, he can submit different values of x for the unopened
circuits.

2. Input consistency for the evaluator : a malicious G can switch some garbled keys for an
input wire of E for some circuits during the oblivious transfer phase (thus after the opening
phase), resulting in different values of y (the difference of which is known to the adver-
sary). Similarly, a malicious E can submit different values of y for the unopened circuits.

3. Output consistency : the evaluated circuits (i.e. those that are unopened) may output dif-
ferent results if some of them are corrupted by G. The protocol must specify what E should
do since an abortion would leak one bit of information.

The state of the art provides a large number of solutions that answer these issues in different
manners and that aim are reducing the number of garbled circuits t required to reach a security
level s.

Input Consistency for the Generator

Two main approaches have been introduced to solve the first issue.

First, the work of Mohassel and Franklin [MF06] uses a commitment scheme with efficient
proof-of-equality. This tool allows one to generate commitments (of zero and one in these set-
tings) and then to efficiently prove that two (or more) commitments are for the same value
(zero or one) without revealing any information. As shown in [Ped91], this scheme can be built
from the ElGamal encryption scheme. Given a finite group G and a generator g, the commiter
randomly picks h ∈ G and sends

EGCommit(h,m, r) = (gr, hrgm) .

This commitment is computationally-hiding and perfectly-binding. Moreover, given two com-
mitments EGCommit(h,m1, r1) and EGCommit(h,m2, r2), the commiter can prove the equality
m1 = m2 by revealing r1 − r2. The verifier can then check that

hr1gm1

hr2gm2
= hr1−r2 .

3Small values of s are generally considered (i.e. 40 or 60) since an adversarial generator is given only one try to
guess which circuits are to be opened and which circuits are to be evaluated.

50

2.1. Preliminaries

Roughly speaking, the garbled keys for the input wires of G are no longer chosen randomly
but are commitments of zero and one (i.e. EGCommit(h, 0, r) and EGCommit(h, 1, r)). After the
opening procedure, G can send a garbled key (i.e. a commitment EGCommit(h, xi, rj)) for each
bit xi and for each unopened circuit and then prove that all garbled keys for xi commit to the
same bit. The drawback of this solution is that the generation of the input garble keys requires
some exponentiations, which is computationally more expensive

A different technique is presented by [LP07]: t sets of t pairs of commitments (without proof-
of-equality) are generated by G for the two garbled keys for all input wires of G. All the 2t2|x|
commitments are transmitted to E. Then, cut-&-choose is also applied to the t sets. This solution
does not use any exponentiation, but requires a large number of commitments. This solution is
no longer used in more recent works and we refer the reader to this paper for more details.

Input Consistency for the Evaluator

A countermeasure against a malicious G trying to switch the garbled keys for an input bit yi of E
is to add a commitment table to the input wires of E. Or even more efficiently, another solution
would be to fix the permute bit of these wires to zero. This allows E to check that all garbled
keys he receives for his input yi from the oblivious transfer phase have semantic values yi.

The input consistency against a malicious evaluator can be forced by transmitting all the
t garbled keys for the input bit yi in a single oblivious transfer. Not only it solves this security
issue, but it also makes the number of oblivious transfer protocols independent of t.

Output Consistency

In this part, we define what should happen if some evaluated circuits output different results,
although all opened circuits were correctly garbled. It means that the adversarial generator has
corrupted a few circuits and that these circuits were not opened. However, there are also some
unopened circuits correctly garbled. This last issue is the trickiest one and has attracted a lot
of interest.

The first solution, described in [MNP+04] is to have only one evaluated circuit and t − 1
opened circuits. This clearly solves the problem but is limited to very small values of the security
parameter s, since it gives t = 2s. Indeed, the adversary correctly guesses which circuit will be
evaluated with probability 1/t.

Later, several works [MF06, LP07, sS11] propose to open a constant fraction ct of the
circuits and to output the majority result. In this case, the adversary must corrupt a majority of

51

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

evaluated circuits and none opened circuits. The probability of success of such an adversary is(t−ct
d t−ct2 e

)
(t
d t−ct2 e

) < 2−s .

The works of [MF06, LP07] originally specified a constant c = 1/2 but Shelat and Shen [sS11]
later proved that an optimal setting is c = 0.6, which gives t ≈ 3s.

More recently, Lindell [Lin13] designed an optimal solution that requires only t = s garbled
circuits. The core idea is to build a mechanism that allows E to learn the input x of the generator
if and only if the evaluated circuits output different results (i.e. if G is malicious). Then, E learns
x and can run an insecure evaluation f(x, y) and return the honest result to the malicious G,
who learns nothing more than in the honest case. Therefore, the adversary wins if he is able to
guess which circuits will be opened and which will be evaluated. Moreover, the author suggests
to open any circuit with probability 1/2 (with the constraint that at least one is not opened).
Then, the probability of success of the adversary is 2−s. In [Lin13], this mechanism is based on
small garbled circuits, which takes as input x and the output of the evaluated garbled circuits.
However, these smaller garbled circuits also require to be secure against a malicious generator,
thus the previous solution t = 3s has to be applied.

Afshar et al. [AMPR14] get rid of this overcost by using zero-knowledge proofs and com-
mitment schemes. Very briefly, the commitment scheme EGCommit is used to commit all input
bits of G. This is no overcost, since it was already necessary for the input consistency issue.

EGCommit(h, xi, r) = (gr, hrgxi) .

The garbled keys of the output wires of the circuits are arranged so that learning two different
results allows E to retrieve the trapdoor logg(h), and then the input x. Zero-knowledge proofs
are used to convince E that obtaining two different results indeed allows to compute logg(h).

2.2 Motivation of Our Work

As seen in the previous section, a lot of work has been made to optimize cut-&-choose based
solutions, that aim at avoiding any kind of modification on the circuit. Nevertheless, it has never
been studied which modifications a malicious generator can make to a single garbled circuit,
still leading to an accepted execution, and then why the cut-&-choose is necessary.

Before the most recent general optimization of semi-honest garbling schemes of Zahur, Ro-
sulek and Evans [ZRE15], such a study would have been meaningless. Indeed, it was obvious
that an adversary could apply any modification of his choice as long as the topology of the cir-
cuit remains the same. Some examples are given in Section 2.1.8. In other words, any binary

52

2.3. Corruption of Optimized Garbled Circuits

gate could be turned into any other binary gate and the resulting corrupted garbled circuit would
be still executable for any input.

However, the recent improvement of [ZRE15] manages to reduce the size of a garbled truth
table to only two ciphers (instead of three since the work of Naor et al. [NPS99], or even four
before that). Whereas this result can be seen as a nice improvement for an honest party, it
is clearly an extra constraint for a malicious party, given that he can now change only two
variables instead of three or four. Since then, it is not clear which modifications can actually be
made, and we prove in this chapter that it is much more limited than suggested in the previous
state-of-the-art.

More specifically, we prove that a malicious generator is limited to turn non-linear gates into
other non-linear gates. We define non-linear gates and by opposition linear gates as follows:

Definition 2.2 (non-linear gate). A non-linear gate is “any gate whose truth table contains an
odd number of ones (e.g. AND, NAND, OR, NOR, etc.).” [ZRE15]. A non-linear gate computes
a non-linear operation in F2.

Definition 2.3 (linear gate). A linear gate is a gate that computes a linear operation in F2 (e.g.
XOR, XNOR, True, False, etc.).

Then, such corruptions are equivalent to say that an adversary is only able to add NOT
gates to a circuit or to allow abortion of the protocol.

The rest of this chapter is organized as follows: we first show how these modifications can
be made and then prove that these are the only possible alteration. Finally, we show the impact
of this contribution on real circuits.

2.3 Corruption of Optimized Garbled Circuits

We consider the garbling scheme of [ZRE15], as described in Section 2.1.6.

If G garbles the half-gates by switching some garbled keys, as shown in Tab. 2.4, it is easy
to prove that the resulting gate computes ā ∧ b, and that the execution algorithm of E remains
unchanged. Moreover, this modified garbled truth table is actually the correct way of garbling
ā ∧ b.

Table 2.4: Turning a ∧ b into ā ∧ b

First half-gate Second half-gate
Garbled table if γ = 0 Garbled table if γ = 1 b⊕ γ Garbled table
k0
X ⊕H(kpAA) = 0 kpAX ⊕H(kpAA) = 0 0 k0

Y ⊕H(k0
Bγ) = 0

k0
X ⊕H(kpAA) = G kpAX ⊕H(kpAA) = G 1 k0

Y ⊕ k1
A ⊕H(k1

Bγ) = E

53

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Similarly, we show in Tab. 2.5 and Tab. 2.6 how to obtain a correct garbling of a∧ b̄ and a ∧ b
from a corrupted AND gate.

Table 2.5: Turning a ∧ b into a ∧ b̄

First half-gate Second half-gate
Garbled table if γ = 1 Garbled table if γ = 0 b⊕ γ Garbled table
k0
X ⊕H(kpAA) = 0 kpAA ⊕H(kpAA) = 0 0 k0

Y ⊕H(k0
Bγ) = 0

k0
X ⊕H(kpAA) = G kpAA ⊕H(kpAA) = G 1 k0

Y ⊕ k0
A ⊕H(k1

Bγ) = E

Table 2.6: Turning a ∧ b into a ∧ b

First half-gate Second half-gate
Garbled table if γ = 0 Garbled table if γ = 1 b⊕ γ Garbled table
k1
X ⊕H(kpAA) = 0 kpAA ⊕H(kpAA) = 0 0 k0

Y ⊕H(k0
Bγ) = 0

k1
X ⊕H(kpAA) = G kpAA ⊕H(kpAA) = G 1 k0

Y ⊕ k0
A ⊕H(k1

Bγ) = E

Combining these three modifications, one can turn a AND gate into any of the eight non-
linear gates. The example of the OR gate is also given Tab. 2.7, which is a combination of the
three previous corruptions. Note that other ways exist to obtain the same results, but we chose
these because they represent the honest ways of garbling ā ∧ b, a ∧ b̄ and a ∧ b, as described
in [ZRE15].

Table 2.7: Turning a ∧ b into a ∨ b

First half-gate Second half-gate
Garbled table if γ = 1 Garbled table if γ = 0 b⊕ γ Garbled table
k1
X ⊕H(kpAA) = 0 kpAA ⊕H(kpAA) = 0 0 k0

Y ⊕H(k0
Bγ) = 0

k1
X ⊕H(kpAA) = G kpAA ⊕H(kpAA) = G 1 k0

Y ⊕ k1
A ⊕H(k1

Bγ) = E

These modifications can be made arbitrarily by the generator and it will not be detected by
the evaluator unless a cut-&-choose solution is used. In the rest of the chapter, we are proving
that no other modification can be made by a probabilistic polynomial-time adversary, or the
protocol may abort.

2.4 Delimitation of the Corruption

Let us now prove that the above modifications and their combinations are the only ones that
can be made by an adversarial generator G, if it does not want to get detected. We call f the
function to evaluate and Cf a Boolean circuit representation of it.

54

2.4. Delimitation of the Corruption

We assume in this section that the (possibly corrupted) garbled circuit is executable for all
inputs, since the adversary does not want to get detected.

Let us start with the obvious limitations. First, as already mentioned, the topology of the
Boolean circuit to evaluate is public, which ensures that G cannot cheat on the number of gates
or the way they are connected. Second, because of the free-XOR trick [KS08], XOR gates have
no garbled truth tables to transmit, then they cannot be corrupted either.

But G can still garble “correctly” another circuit Cf ′ (computing some other function f ′ in-
stead of f). By correct garbling, we mean that G garbles Cf ′ in accordance with the garbling
algorithm (and its optimizations), and keeps the number of gates and the way they are con-
nected to each other unchanged, as if f ′ was the correct function to evaluate. XOR gates of Cf
must also be present in Cf ′ . More specifically, we have the following restrictions :

1. Only two ciphers are sent for each non-linear gate.

2. XOR gates are not transmitted.

3. There is a global offset that differentiates the two garbled keys of each wire of Cf ′ (in
accordance with the free-XOR trick [KS08]) and this offset is odd (as required by the
point-and-permute technique [BMR90]).

4. Cf ′ is Boolean: for every wire of the circuit, there are two garbled keys.

The requirement of an odd offset follows from the fact that we took the convention that
the select bit of a key is its least significant bit. If select bits were represented differently, the
requirement would have to be changed accordingly.

It is obvious that the first two requirements are met. Otherwise, E will refuse to evaluate the
circuit. In this section, we show that if the input wires of Cf are correctly garbled (i.e. have a
common odd offset), then the rest of the circuit is also correctly garbled, or the protocol may
abort. Thereafter, we provide a construction to ensure that input wires are correct. This will help
to prove that the adversary is only able to turn a non-linear gate into another non-linear gate.

For the sake of simplicity, we consider that the original circuit is only composed of XOR and
AND gates and we show later that the same result applies for the other gates.

Since the evaluation algorithm shown in Tab. 2.2 are the keystone of our proofs, we recall
here in Tab. 2.8 a shorter version of it.

The correct generation of E and G are detailed in Section 2.1.6, but since we consider that
G is malicious, we cannot make any assumption of their value.

2.4.1 Impossibility of Reducing the Number of Garbled Keys to One

The first thing to prove is that, for any garbled gate, there are at least two output garbled keys.
Consider the case where an adversary wants to alter an AND gate (w.l.o.g.) so that it always

55

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Table 2.8: Evaluating the half-gates

Select bits Inputs Garbled output key
0 0 kpAA k0

Bγ K1 = H(kpAA)⊕H(k0
Bγ)

0 1 kpAA k1
Bγ K2 = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA
1 0 kpAA k0

Bγ K3 = G⊕H(kpAA)⊕H(k0
Bγ)

1 1 kpAA k1
Bγ K4 = E ⊕G⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA

outputs True (or always False), whatever the inputs are. Then, he must choose E and G in
Tab. 2.8, so that the four garbled output keys are equal. Then, we have the following system of
equations:

K2 = K1

K3 = K1

K4 = K1

⇐⇒


E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA = H(kpAA)⊕H(k0
Bγ)

G⊕H(kpAA)⊕H(k0
Bγ) = H(kpAA)⊕H(k0

Bγ)
E ⊕G⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA = H(kpAA)⊕H(k0
Bγ)

⇐⇒


E = H(k0

Bγ)⊕H(k1
Bγ)⊕ kpAA

G = H(kpAA)⊕H(kpAA)
kpAA = kpAA

We thus proved here the following lemma:

Lemma 2.1. For any garbled gate, if the first operand has two garbled keys with an odd offset,
then the output wire has at least two possible garbled keys.

Proof. If we indeed have kpAA ⊕k
pA
A = ∆ that is odd (i.e. the two garbled keys of the first operand

have an odd offset), then we have kpAA 6= kpAA and the four keys cannot be equal.

2.4.2 Impossibility of Three-Key Wires - Part 1

In the last part, we showed that if the input wires are correct, there are at least two garbled
keys per wire. In this section, we aim at proving that there exists no wire having more than two
possible garbled keys, while the circuit remains evaluable.

As described in Section 2.1.2, the garbled circuit is considered to have two commitments
on the garbled keys of its output wires in O. This ensures that output wires have at most two
possible keys, or the protocol aborts when a third key is obtained. Then, if some wire of the
circuit has three possible keys or more, then there must be a gate that reduces it to only two.
We show that such a gate is impossible.

As defined in Section 2.1.3, s() refers to the function that takes a garbled key as input and
outputs the select bit of that key. This function tells the evaluator which line of Tab. 2.8 he should
use while evaluating: s(kpAA) = 0 and s(k0

A) = pA.

56

2.4. Delimitation of the Corruption

a

b⊕ γ

kA; k′A; k′′A

kBγ ; k′Bγ

k; k′

Figure 2.9: Reducing the number of keys of the first operand: Impossible

Since the previous notations are irrelevant if there are more than two keys or if the point-
and-permute trick is not followed by the adversary, we now call kX , k′X the two distinct garbled
key for a wire wX , and k′′X a third garbled key when needed.

We remind that H() is a hash function that is assumed to behave like a random function
from F2n to F2λ and we expect the following problems to be computationally unfeasible by any
polynomially bounded adversary :

1. Finding distinct k1, k
′
1 ∈ F2λ , so that H(k1) = H(k′1) requires 2λ/2 evaluations of H() on

average (Birthday paradox).

2. Finding distinct k1, k
′
1 ∈ F2λ , so that H(k1)⊕ k1 = H(k′1)⊕ k′1 requires 2λ/2 evaluations of

H() on average (Equivalent to the birthday paradox).

3. For given i and j, finding k1, k
′
1, k2, k

′
2 ∈ F2λ , so that k1 6= k

′
1, k2 6= k

′
2 and H(k1|i) ⊕

H(k′1|i)⊕H(k2|j)⊕H(k′2|j) = 0 requires 2λ/4 evaluation of H() on average.

4. For given i and j, finding k1, k
′
1, k2, k

′
2 ∈ F2λ , so that k1 6= k

′
1, k2 6= k

′
2 and H(k1|i) ⊕ k1 ⊕

H(k′1|i)⊕ k
′
1 ⊕H(k2|j)⊕H(k′2|j) = 0 requires 2λ/4 evaluations of H() on average.

All these properties can be proven if H is modelled as a random oracle, using the birthday
paradox bound. Note that in the definition of these problems, the adversary can freely choose
the garbled keys k1, k

′
1, k2 and k

′
2, whereas for garbled gates, they are constrained by the

garbling of the previous gates. Intuitively, solving these problems requires a lot more evaluations
than listed above.

These properties lead to the following lemma, illustrated in Fig. 2.9:

Lemma 2.2. For any garbled gate, if the first operand has at least three possible garbed keys,
and the second has at least two, then the output wire has at least three garbled keys.

Proof. We note kA, k′A and k′′A the three keys of the first operand and kBγ , k′Bγ the two keys of
the second operand.

Suppose first that we have the following select bits s(kA) = s(k′A) = 0, s(kBγ) = 0 and
s(k′Bγ) = 1. We add no constraint on s(k′′A). We can apply the evaluation algorithm for each

57

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

combination, as shown in Tab. 2.8, and we obtain the following set of garbled output keys:
K1 = H(kA)⊕H(kBγ)
K2 = E ⊕H(kA)⊕H(k′Bγ)⊕ kA
K3 = H(k′A)⊕H(kBγ)
K4 = E ⊕H(k′A)⊕H(k′Bγ)⊕ k′A

We also have K5 and K6 that depends on k′′A. Then, the adversary has to reduce the number
of keys to two. Thanks to the properties of the hash function, K1 and K3 are different. Then,
he has to choose E that maps K2 and K4 to K1 or K3. If we try K2 = K1, then we get
K4 = H(k′A)⊕H(kBγ)⊕ kA ⊕ k′A.

Because the first operand has three keys, kA 6= k′A and K4 6= K3. Because of Property 2 of
the hash function, K4 cannot be mapped with K1. A similar result would have been obtained if
we first assumed K2 = K3. Then, the combination of select bits s(kA) = s(k′A) = 0, s(kBγ) = 0
and s(k′Bγ) = 1 and any k′′A cannot be reduced to two garbled keys.

Let us see the case s(kA) = s(k′A) = s(kBγ) = s(k′Bγ) = 0. We add no constraint on s(k′′A).
Then, we get: 

K1 = H(kA)⊕H(kBγ)
K2 = H(kA)⊕H(k′Bγ)
K3 = H(k′A)⊕H(kBγ)
K4 = H(k′A)⊕H(k′Bγ)

We also have K5 and K6 that depends on k′′A. Then, the adversary has to reduce the
number of keys to two. Thanks to Properties 1 and 3 of the hash function, K1, K2, K3 and K4

are different.
Let us see the case s(kA) = s(k′A) = s(kBγ) = s(k′Bγ) = 1. We add no constraint on s(k′′A).

Then, we get: 
K1 = E ⊕G⊕H(kA)⊕H(kBγ)⊕ kA
K2 = E ⊕G⊕H(kA)⊕H(k′Bγ)⊕ kA
K3 = E ⊕G⊕H(k′A)⊕H(kBγ)⊕ k′A
K4 = E ⊕G⊕H(k′A)⊕H(k′Bγ)⊕ k′A

We also have K5 and K6 that depends on k′′A. Then, the adversary has to reduce the
number of keys to two. Note that in this particular case, the choice of E and G has no impact
on the number of distinct keys. From Property 1 of the hash function, we know that K1 6= K2.
Property 2 allows to claim K1 6= K3 and Property 4 K2 6= K3. Then, K1, K2 and K3 are
different. In this particular case, it is even possible to prove that there cannot be less than six
distinct keys.

58

2.4. Delimitation of the Corruption

a

b⊕ γ

k0
A ⊕ k1

A = ∆

k0
Bγ ⊕ k1

Bγ = ∆

k ⊕ k′ 6= ∆

Figure 2.10: Modification of the offset: Impossible

Finally, let us see the case s(kA) = s(k′A) = 1, s(kBγ) = 0 and s(k′Bγ) = 1. We add no
constraint on s(k′′A). Then, we get:

K1 = G⊕H(kA)⊕H(kBγ)
K2 = E ⊕G⊕H(kA)⊕H(k′Bγ)⊕ kA
K3 = G⊕H(k′A)⊕H(kBγ)
K4 = E ⊕G⊕H(k′A)⊕H(k′Bγ)⊕ k′A

We also haveK5 andK6 that depends on k′′A. Then, the adversary has to reduce the number
of keys to two. Thanks to Property 1 of the hash function, K1 and K3 are different. Then, he
has to choose E that maps K2 and K4 to K1 or K3. We describe below the case K2 = K1 and
show that K4 does not map any other key.

K2 = K1 ⇐⇒ E = H(kBγ)⊕H(k′Bγ)⊕ kA
⇐⇒ K4 = G⊕H(k′A)⊕H(kBγ)⊕ kA ⊕ k′A

Because of Property 2 of the hash function, K4 cannot be mapped with K1 and K4 6= K3

since kA 6= k′A. A similar result would have been obtained if we first assumed K2 = K3.
All other cases are changes of variables of the already studied cases, which ends the proof

of Lemma 2.2.

2.4.3 Impossibility of Three-Key Wires - Part 2

In this part, we study the opposite problem, where the second operand has at least three
garbled keys and the first has at least two. The proof being trickier, we need to demonstrate
Lemma 2.3 as a preliminary step.

Lemma 2.3. For any gate, if the operands have two garbled keys and have the same odd offset,
then the output wire has the same offset or at least three keys.

Proof. This situation is illustrated in Fig. 2.10. Consider the case where the adversary wants
to corrupt a garbled AND gate (w.l.o.g.) so that the offset is altered in the process. Then, he
must choose such E and G in Tab. 2.8. We prove here that it cannot be done. As stated in

59

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Section 2.1.6, there are four evaluation algorithms, the output of which, noted K1 to K4 collide
so that there are at least two distinct results (from Lemma 2.2, the case K1 = K2 = K3 = K4

is already proven to be impossible).

First, let us see the case K1 = K2 = K3. As expected, the output wire has the same odd
offset ∆:
K1 = H(kpAA)⊕H(k0

Bγ)
K2 = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA = K1

K3 = G⊕H(kpAA)⊕H(k0
Bγ) = K1

K4 = E ⊕G⊕H(kpAA)⊕H(k1
Bγ)⊕ kpAA

⇒


K1 = H(kpAA)⊕H(k0

Bγ)
E = H(k0

Bγ)⊕H(k1
Bγ)⊕ kpAA

G = H(kpAA)⊕H(kpAA)
K4 = K1 ⊕∆

The same result is obtained from the case K1 = K2 = K4:
K1 = H(kpAA)⊕H(k0

Bγ)
K2 = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA = K1

K3 = G⊕H(kpAA)⊕H(k0
Bγ)

K4 = E ⊕G⊕H(kpAA)⊕H(k1
Bγ)⊕ kpAA = K1

⇒


K1 = H(kpAA)⊕H(k0

Bγ)
E = H(k0

Bγ)⊕H(k1
Bγ)⊕ kpAA

G = H(kpAA)⊕H(kpAA)⊕∆
K3 = K1 ⊕∆

The same result is obtained from the case K1 = K3 = K4:
K1 = H(kpAA)⊕H(k0

Bγ)
K2 = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA
K3 = G⊕H(kpAA)⊕H(k0

Bγ) = K1

K4 = E ⊕G⊕H(kpAA)⊕H(k1
Bγ)⊕ kpAA = K1

⇒


K1 = H(kpAA)⊕H(k0

Bγ)
E = H(k0

Bγ)⊕H(k1
Bγ)⊕ kpAA

G = H(kpAA)⊕H(kpAA)
K2 = K1 ⊕∆

The same result is obtained from the case K2 = K3 = K4.
K1 = H(kpAA)⊕H(k0

Bγ)
K2 = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA
K3 = G⊕H(kpAA)⊕H(k0

Bγ) = K2

K4 = E ⊕G⊕H(kpAA)⊕H(k1
Bγ)⊕ kpAA = K2

=⇒


K1 = H(kpAA)⊕H(k0

Bγ)
K2 = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA
E = G⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA ⊕H(kpAA)⊕H(k0
Bγ)

K4 = H(kpAA)⊕H(k0
Bγ)⊕∆ =⇒ K4 = K1 ⊕∆

We now prove that all other cases appear to be impossible.

60

2.4. Delimitation of the Corruption

{
K1 = K2

K3 = K4
⇔
{
E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA = H(kpAA)⊕H(k0
Bγ)

G⊕H(kpAA)⊕H(k0
Bγ) = E ⊕G⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA

⇔
{
E = H(k0

Bγ)⊕H(k1
Bγ)⊕ kpAA

E = H(k0
Bγ)⊕H(k1

Bγ)⊕ kpAA

This implies that kpAA = kpAA and ∆ = 0. This is not possible since the operands have two distinct
garbled keys and since the offset ∆ is odd.

{
K1 = K4

K2 = K3
⇔
{
E ⊕G⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA = H(kpAA)⊕H(k0
Bγ)

G⊕H(kpAA)⊕H(k0
Bγ) = E ⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA

⇔
{
E ⊕G = H(kpAA)⊕H(kpAA)⊕H(k0

Bγ)⊕H(k1
Bγ)⊕ kpAA

E ⊕G = H(kpAA)⊕H(kpAA)⊕H(k0
Bγ)⊕H(k1

Bγ)⊕ kpAA
⇔ ∆ = 0

{
K1 = K3

K2 = K4
⇔
{
G⊕H(kpAA)⊕H(k0

Bγ) = H(kpAA)⊕H(k0
Bγ)

E ⊕H(kpAA)⊕H(k1
Bγ)⊕ kpAA = E ⊕G⊕H(kpAA)⊕H(k1

Bγ)⊕ kpAA

⇔
{
G = H(kpAA)⊕H(kpAA)
G = H(kpAA)⊕H(kpAA)⊕ kpAA ⊕ k

pA
A

⇔∆ = 0

In the case of a XOR gate, the offset is also propagated, since garbled keys are simply
XORed together. 

K1 = k0
A ⊕ k0

B

K2 = k0
A ⊕ k0

B ⊕∆ = K1 ⊕∆
K3 = k0

A ⊕∆⊕ k0
B = K1 ⊕∆

K4 = k0
A ⊕∆⊕ k0

B ⊕∆ = K1

This ends the proof of Lemma 2.3.

We now aim at concluding the last case with the following lemma:

Lemma 2.4. If the input wires of the circuit have garbled keys with an odd global offset, then
the garbled circuit cannot have a gate such that the second operand has at least three possible
garbed keys, and the first has at least two, while the output wire has only two garbled keys.

61

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

a

b⊕ γ

kA; k′A

kBγ ; k′Bγ ; k′′Bγ

k; k′

Figure 2.11: Reducing the number of keys of the second operand: Impossible

Proof. From Lemma 2.2, we know this is true if the two operands have at least three keys. We
thus focus to the case where the first operand has two keys and the second operand has three
keys, as illustrated in Fig. 2.11. For this proof, we consider that the input wires of I are correctly
garbled : these wires have two garbled keys and they have an odd global offset ∆. We study the
case of the first gate, called F , of the circuit (in topological order) that has two garbled inputs
for the first operand and three (or more) for the second.

Since F is the first of its kind in the circuit and because of Lemma 2.2, the sub-circuit that
links the inputs of the circuit to the first operand wire of F have only wires with exactly two
garbled keys. Moreover, since all input wires of this sub-circuit have the global offset ∆ and
because of Lemma 2.3, all wires of the sub-circuit, including the first operand of F , have this
same odd offset ∆.

Remark that an input wire of the circuit cannot have three keys. Then the three keys (or
more) of the second operand of F come from a corrupted gate F ′ that outputs three distinct
keys (or more). However, the two operand wires of F ′ have two possible garbled keys, and, with
a similar approach, we can show that they have the same offset ∆ as the first operand of F .

Using the same convention as before, we call kA and k′A the keys of the first operand and
kBγ , k′Bγ and k′′Bγ the keys of the second operand. As stated above, the computation of kBγ ,
k′Bγ and k′′Bγ engages the choice of ∆, and consequently kA⊕k′A. We develop here the trickiest
case s(kA) = s(kBγ) = s(k′Bγ) = 0 and s(k′A) = s(k′′Bγ) = 1, which gives the following set of
keys: 

K1 = H(kA)⊕H(kBγ)
K2 = H(kA)⊕H(k′Bγ)
K3 = E ⊕H(kA)⊕H(k′′Bγ)⊕ kA
K4 = G⊕H(k′A)⊕H(kBγ)
K5 = G⊕H(k′A)⊕H(k′Bγ)
K6 = E ⊕G⊕H(k′A)⊕H(k′′Bγ)⊕ k′A

Thanks to the property of the hash function, K1 and K2 are different. Then, the adversary
must choose E and G, so that K3 to K6 collide with K1 or K2. Let us first consider the case
K4 = K1.

62

2.4. Delimitation of the Corruption

K4 = K1 =⇒



G = H(kA)⊕H(k′A)
K1 = K4 = H(kA)⊕H(kBγ)
K2 = K5 = H(kA)⊕H(k′Bγ)
K3 = E ⊕H(kA)⊕H(k′′Bγ)⊕ kA
K6 = E ⊕H(kA)⊕H(k′′Bγ)⊕ k′A

Then we have two more cases to enumerate : K3 = K1 and K3 = K2.

{
K4 = K1

K3 = K1
=⇒



G = H(kA)⊕H(k′A)
E = H(kBγ)⊕H(k′′Bγ)⊕ kA
K1 = K3 = K4 = H(kA)⊕H(kBγ)
K2 = K5 = H(kA)⊕H(k′Bγ)
K6 = H(kA)⊕H(kBγ)⊕ kA ⊕ k′A

Then, K6 is different from K1 since ∆ is odd and thus non-zero. Matching K6 and K2 is
computationally unfeasible since it would require that H(kBγ) ⊕ H(k′Bγ) = ∆ and we demon-
strated above that the values of kBγ and k′Bγ commits the value of ∆. The same result can be
obtained if we assumed that K4 = K2 and/or K3 = K2

Let us now see the case s(kA) = s(kBγ) = 0 and s(k′A) = s(k′Bγ) = s(k′′Bγ) = 1. Using the
four evaluation algorithms on each of the combinations, we have the following set of keys:

K1 = H(kA)⊕H(kBγ)
K2 = E ⊕H(kA)⊕H(k′Bγ)⊕ kA
K3 = E ⊕H(kA)⊕H(k′′Bγ)⊕ kA
K4 = G⊕H(k′A)⊕H(kBγ)
K5 = E ⊕G⊕H(k′A)⊕H(k′Bγ)⊕ k′A
K6 = E ⊕G⊕H(k′A)⊕H(k′′Bγ)⊕ k′A

Thanks to the property of the hash function, K2 and K3 are different. Then, the adversary
must choose E and G, so that K1 and K4 to K6 collide with K2 or K3. Let us first consider the

63

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

case K1 = K2, then the system of keys becomes:

K1 = K2 =⇒



E = H(kBγ)⊕H(k′Bγ)⊕ kA
K1 = K2 = H(kA)⊕H(kBγ)
K3 = H(kA)⊕H(kBγ)⊕H(k′Bγ)⊕H(k′′Bγ)
K4 = G⊕H(k′A)⊕H(kBγ)
K5 = G⊕H(k′A)⊕H(kBγ)⊕ k′A ⊕ kA
K6 = G⊕H(k′A)⊕H(kBγ)⊕H(k′Bγ)⊕H(k′′Bγ)⊕ k′A ⊕ kA

Then we have two more cases to enumerate : K4 = K2 and K4 = K3.

{
K1 = K2

K4 = K2
=⇒



E = H(kBγ)⊕H(k′Bγ)⊕ kA
G = H(kA)⊕H(k′A)
K1 = K2 = K4 = H(kA)⊕H(kBγ)
K3 = H(kA)⊕H(kBγ)⊕H(k′Bγ)⊕H(k′′Bγ)
K5 = H(kA)⊕H(kBγ)⊕ k′A ⊕ kA
K6 = H(kA)⊕H(kBγ)⊕H(k′Bγ)⊕H(k′′Bγ)⊕ k′A ⊕ kA

{
K1 = K2

K4 = K3
=⇒



E = H(kBγ)⊕H(k′Bγ)⊕ kA
G = H(kA)⊕H(k′A)⊕H(k′Bγ)⊕H(k′′Bγ)
K1 = K2 = H(kA)⊕H(kBγ)
K3 = K4 = H(kA)⊕H(kBγ)⊕H(k′Bγ)⊕H(k′′Bγ)
K5 = H(kA)⊕H(kBγ)⊕H(k′Bγ)⊕H(k′′Bγ)⊕ k′A ⊕ kA
K6 = H(kA)⊕H(kBγ)⊕ k′A ⊕ kA

Note that in the two cases, K5 and K6 are simply switched around. Then, we only focus
on the former case. K5 is different from K2 since ∆ is odd and thus non-zero. Matching K6

and K3 is computationally unfeasible since it would require that H(kBγ)⊕H(k′Bγ) = ∆ and we
demonstrated above that the values of kBγ and k′Bγ commits the value of ∆. The same result
would be obtained if we assumed first that K1 = K3. Indeed, it would only be a permutation of
the keys k′Bγ and k′′Bγ .

Let us see the case s(kA) = s(kBγ) = s(k′Bγ) = s(k′′Bγ) = 0 and s(k′A) = 1. Using the four

64

2.4. Delimitation of the Corruption

evaluation algorithms on each of the combinations, we have the following set of keys:

K1 = H(kA)⊕H(kBγ)
K2 = H(kA)⊕H(k′Bγ)
K3 = H(kA)⊕H(k′′Bγ)
K4 = G⊕H(k′A)⊕H(kBγ)
K5 = G⊕H(k′A)⊕H(k′Bγ)
K6 = G⊕H(k′A)⊕H(k′′Bγ)

This case is easier since the three first keys are different because of the properties of the
hash function.

Let us see the case s(kA) = 0 and s(k′A) = s(kBγ) = s(k′Bγ) = s(k′′Bγ) = 1. Using the four
evaluation algorithms on each of the combinations, we have the following set of keys:

K1 = E ⊕H(kA)⊕H(kBγ)⊕ kA
K2 = E ⊕H(kA)⊕H(k′Bγ)⊕ kA
K3 = E ⊕H(kA)⊕H(k′′Bγ)⊕ kA
K4 = E ⊕G⊕H(k′A)⊕H(kBγ)⊕ k′A
K5 = E ⊕G⊕H(k′A)⊕H(k′Bγ)⊕ k′A
K6 = E ⊕G⊕H(k′A)⊕H(k′′Bγ)⊕ k′A

The three first keys are different because of the properties of the hash function.

So far, we studied all the cases where s(kA) = 0 and s(k′A) = 1 (and by change of variables
s(kA) 6= s(k′A)). All cases where s(kA) = s(k′A) is equivalent to one already seen in the proof
of Lemma 2.2 (it follows from the fact that we do not use the third key k′′A in the referred proof),
which ends the proof of Lemma 2.4.

2.4.4 Impossibility of Turning a Non-Linear Gate into a Linear Gate

In Section 2.3, we showed how to turn a non-linear gate into any other non-linear gate. We will
now prove that, since an adversarial generator is limited to Boolean circuits and cannot deviate
from the global offset, he cannot turn a non-linear gate into a linear gate. We focus on the case
of an AND gate.

Lemma 2.5. For any non-linear gate, if the two operands have two garbled keys and have the
same odd offset, then it cannot be turned into a linear gate.

Proof. All cases are already studied in other proofs:

65

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

• The case K1 = K2 = K3 = K4 (the gate that output True or False) is already shown to
be unsolvable from Lemma 2.1.

• The case K1 = K2 and K3 = K4 (the gate that always output the first operand a or always
its negation a) is proved to be impossible in the proof of Lemma 2.3.

• The case K1 = K3 and K2 = K4 (the gate that always output the second operand b or
always its negation b) is proved to be impossible in the proof of Lemma 2.3.

• The case K1 = K4 and K2 = K3 (the gate that computes a ⊕ b or a⊕ b) is proved to be
impossible in the proof of Lemma 2.3.

This ends the proofs of Lemma 2.5.

Two particular cases of this lemma clearly reduce the possibilities of a malicious generator.
First, an adversary cannot force the output of a non-linear gate, and thus cannot trivially force
the output of the entire garbled circuit. Moreover, the adversary cannot alter a gate so that it
always outputs the first input a (K1 = K2 and K3 = K4). This last example is interesting: it
actually means that the malicious generator cannot modify the circuit so that the evaluator’s
inputs go directly to the output through the circuit.

2.4.5 About Other Non-Linear Gates

We showed in Section 2.3 how to turn a gate that computes a ∧ b into ā ∧ b, a ∧ b̄ and a ∧ b.
It appears that these alterations and their combinations are identical to the honest ways of
garbling these respective gates, described in [ZRE15].

Then, an honest garbling of a ∧ b (or any other non-linear gate) can be obtained from a
corruption of a∧ b. Thus, there is no modification that can be made on a ∧ b and that cannot be
made on a ∧ b. Therefore, any non-linear gate can only be turned into another non-linear gate.

2.4.6 Fitting Everything Together

Assembling the lemmata previously proved, we obtain Theorem 2.1, which is the main contri-
bution of this chapter.

Theorem 2.1. If all the operands of the first non-linear garbled gates can take the two values
according to the evaluator’s inputs (while the generator’s inputs are fixed), and if there are
output commitments, then the adversarial generator is limited to turn any non-linear gates into
other non-linear gates.

66

2.4. Delimitation of the Corruption

This theorem means that if we can guarantee that the first garbled gates (the non-linear
gates that are the closest to the input wires) can take the two possible inputs, independently on
each wire, according to the evaluator’s choice, then all the garbled gates can only be altered
into any non-linear gates.

Proof. Using Lemma 2.1, if the input wires of the first garbled gates all have two possible
garbled keys, then there is no wire in the rest of the circuit that has only one possible key.
Combining Lemmata 2.2 and 2.4, if the input wires of the first garbled gates of the circuit all
have the same odd global offset and if the circuit has output commitments, then no wire of the
rest of the circuit has more than two possible garbled keys. Moreover, with the same conditions,
Lemma 2.3 shows that all wires share the same odd global offset. Then, Lemma 2.5 comes
last and shows that non-linear gates can only be turned into other non-linear gates, and that
this is the only possible corruption.

It remains to study the conditions so that the starting point of this theorem is satisfied: all
the inputs of the first non-linear gates have two possible garbled keys. How to guarantee some
wires to have two possible garbled keys, with the same global odd offset? We will show below
that it is possible to make sure that all the evaluator’s inputs are converted into garbled keys
with a common global odd offset. But there is no way to do the same for the generator’s inputs.
Indeed, the adversarial generator cannot be forced to choose his inputs after generating the
garbled circuit. On the other hand, XOR gates cannot be corrupted, and so a XOR gate with an
evaluator’s input will necessarily have two distinct outputs. Hence, here are some interesting
cases that will meet our above requirements:

• one wants to evaluate f(y), for a public function f , so that the evaluator chooses y, but
the generator will get the result;

• one evaluates f(x, y), and any input wires of the first non-linear gates is either a yj chosen
by the evaluator, or xi⊕yj , where xi is chosen by the generator. Indeed, in both cases, yj
or xi ⊕ yj , when xi is fixed, the inputs of the first gates can take the two possible values
according to yj .

The latter case applies to a large class of circuits, including the addition, the greater-than (as
defined in [KSS09]), the equality test, combination of those, or even more complex circuits,
such as AES.

The former case is known as privacy-free garbled circuits. As described in Section 2.1.7,
there are more efficient garbling schemes in this context. The work of [ZRE15] provides an
optimal solution for this purpose. Our results also hold with this garbling scheme, but only the
general solution is presented here.

67

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

r

ỹi yi

MUX

˜yi+1 yi+1

MUX

Figure 2.12: Overview of the sub-circuit

r

ỹi 1 yi

2

Figure 2.13: Implementation of the MUX

2.4.7 Ensuring the Correct Garbling of Input Wires

In this section, we describe a construction to guarantee that input wires of the evaluator E are
correctly garbled by the generator G (i.e. all input wires of E share the same odd offset). Whether
this can be solved using a modified version of correlated-OT (see Section 1.3.3) is an open
question that deserves some attention. Instead, we propose to modify the circuit representation
of the function to evaluate, by adding a sub-circuit in front of the original circuit4. This sub-circuit
is illustrated in Fig. 2.12. Fig. 2.13 gives details of the multiplexer, but is not required for the
correctness. As usual, we call x the input of G, and y the input of E.

Construction

The main idea is that rather than transmitting the input garbled keys of E through an oblivious
transfer, the inputs are now connected to the outputs of this sub-circuit. The sub-circuit has the
same number of inputs of E as the original circuit plus one: a bit r that is randomly chosen by
E. For each input yi of the original circuit, the sub-circuit has an input ỹi = yi ⊕ r and an output
yi. The new inputs are transmitted as usual through an oblivious transfer.

We also give restrictions on some permute bits: the permute bit of wR (the wire carrying
r) and wỸi (carrying ỹi) must be zero. Also the permute bit of wYi (the wire carrying yi) must
be public. This is to ensure that G does not force the inputs of E during the oblivious transfer
phase.

Because of r and of those permute bits, the protocol has to be slightly modified, as sug-
gested by the following sketch:

1. G garbles the concatenation of the two circuits using the usual garbling scheme and sends
it to E, along with his garbled input keys for x and the permute bit for wYi , for all i;

2. E randomly picks a bit r;

4We do not modify the garbling scheme itself.

68

2.4. Delimitation of the Corruption

3. E and G perform oblivious transfers in order E to obtain the garbled keys of ỹi and r, and
E checks that the select bits of these keys match the clear values or aborts. This ensures
two possible keys for the evaluator’s inputs;

4. E evaluates the sub-circuit and checks if the select bits of the keys for the input y match
the clear value, or aborts;

5. E evaluates the rest of the circuit and returns the result.

Note that the listed steps can be grouped so that only four communications are needed.
Since the functionality of the circuit is not changed by the sub-circuit (as long as the new input
ỹ is chosen according to r), the correctness is preserved.

Analysis

Our security goal is to ensure that all output wires of the sub-circuit (i.e. inputs of the rest of
the circuit) share the same odd global offset, or the protocol aborts for some specific inputs. To
prove it, we need two more lemmata.

Lemma 2.6. For any garbled gate, if the two operands have distinct but odd offsets, then the
offset of the first operand is propagated to the output wire.

Proof. The proof of this lemma is identical to the proof of Lemma 2.3. Indeed, in the proof of
Lemma 2.3, the offset of the second operand (k0

Bγ ⊕ k1
Bγ) never appears.

Lemma 2.7. For any XOR gate, if the offsets of the operands are different or if one of the
operands has more than two garbled keys, there are at least four distinct garbled keys at the
output.

Proof. The proof of this lemma is trivial since the output keys of a XOR gate are the input keys
XORed together.

Let us analyze the propagation of offsets in one of the multiplexers of the sub-circuit. Remark
that there cannot be only one possible garbled key for wYi . Indeed, since the permute bit of this
wire is known by the evaluator, then there must be at least two possible keys with opposite
select bits. We consider the multiplexer illustrated in Fig. 2.13. We stress that the order of the
operands matters. Let w1 and w2 refer to the output wires of the AND gates noted respectively
1 and 2. We also note ∆ the offset of wire wR carrying r and ∆Ỹi

the offset of the wire carrying
ỹi. We can enumerate the different corruption cases:

1. The offsets ∆ and ∆Ỹi
are different but odd.

2. ∆ is even and ∆Ỹi
is odd.

69

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

a

b
a ∧ b −→

a

b
a

Figure 2.14: Impossible corruption

3. ∆ is odd and ∆Ỹi
is even.

4. Both offsets are even (distinct or not).

Consider the first case. According to Lemma 2.6, the different offsets propagate so that w1 has
offset ∆Ỹi

and w2 has offset ∆, or one of them two wires have more than two keys. In either
case, using Lemma 2.7, the output of the XOR gate gives at least three different keys. Given
that these three (or more) keys engages the value of ∆, we can show that it cannot be reduced
back to two in the rest of the circuit, using the same method as for Lemma 2.4.

Consider the second case, if ∆ is even, then the garbled keys of wR have equal select bits.
In other words, the select bit of one of the garbled keys does not match the clear value of r.
Since r is known to evaluator and since the permute bit must be set to zero, this situation is
detected and leads the evaluator to abort. The exact same reasoning works for the third and
fourth cases.

We can now conclude that the output wires of the sub-circuit have exactly two possible
garbled keys with the same odd global offset, or the protocol aborts for some inputs of the
evaluator or some r.

2.5 Applications to Real Circuits

In the previous sections, we have defined precisely how a malicious generator can corrupt a
garbled circuit. Turning non-linear gates into other non-linear gates is equivalent at adding NOT
gates to the circuit. Then, we consider in this section that the adversary is able to add a NOT
gate to any wire of the circuit. An important consequence is that a circuit cannot be modified
so that the evaluator’s inputs go through the gates to the outputs of the circuit. More precisely,
the corruption of a gate as shown in Fig. 2.14 cannot be generated. Thus, the question “does
a corrupted circuit leak more information than the original circuit?” turns out to be trickier than
suggested in the previous works.

In this section, we don’t provide a general answer, but we see the impact of corruptions on
some real circuits. We measure this impact with the Shannon entropy of the evaluator’s input.
We call x and y the respective inputs of the generator and the evaluator. Let z = f(x, y) be
the function to evaluate and Cf a boolean circuit computing it. We note Cf the set of all circuits
that can be obtained by corrupting Cf (i.e. by adding NOT gates to Cf). In other words, there

70

2.5. Applications to Real Circuits

Algorithm 2.1: Finding the best corruption of a circuit
Input: A circuit Cf of N wires w1 to wN (arbitrary order).
Output: The corrupted circuit that leaks the most information.
Set an N -bits integer ω to zero.
Compute the initial entropy H = H(Y |X = x, f(x, y)).
while ω < 2N do

ω ← ω + 1
Cf ′ ← Cf
foreach ωi do

If ωi = 1, add a NOT gate to the wire wi of Cf ′ .
end
Compute the truth table of Cf ′ .
Compute the entropy H ′ = H(Y |X = x′, f ′(x′, y)).
if H ′ < H then

H ← H ′

Cf ′ becomes the best corrupted circuit so far.
end
return The best corrupted circuit found.

end

exists a corruption of Cf that leads to Cf ′ , that computes some other function f ′, if and only if
Cf ′ ∈ Cf . We formalize the problem as follows :

Problem 2.1. For a circuit Cf , does it exist a corrupted circuit Cf ′ ∈ Cf , such that the obtained
function f ′ leaks more information on the evaluator’s input :

H(Y |X = x, Z = f(x, y)) > H(Y |X = x′, Z = f ′(x′, y)) ?

Remark that in the entropy equation, the generator knows x since this is his input. In our
computations, we consider that the adversarial generator chooses his input in order to increase
the leakage: i.e. he picks x that minimizes H(Y |X = x, Z = f(x, y)). Similarly, for a corrupted
circuit, he also chooses x′.

To help us answer that question, we implemented a tool to exhaustively compute all corrup-
tions Cf ′ of a circuit Cf and check if one of them leaks more information. More details about
this tools are given in Algorithm 2.1.

2.5.1 The Greater-Than Function

Let us now see a practical example: the greater-than function, that returns a single bit (1 if
x > y, 0 otherwise). Assuming the adversary takes the middle of the set as input (which leaks
the most information), the original function leaks one bit of entropy. Since there is a single

71

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

output wire, whatever the modification made on the circuit, it does not leak more than one bit
of entropy on y. But it is interesting to see that the adversary is limited in the choice of that bit.
For example, if we consider the greater-than circuit defined in [KSS09], it cannot be modified to
output the parity bit of y. This can be proven exhaustively for the 3-bit greater-than circuit and
then recursively.

In the particular case of greater-than circuit, remark that the best strategy of an adversarial
generator G, willing to retrieve the input y, consists in not modifying the circuit. If y is `-bit long,
then it would require ` evaluations for G to find y, and it cannot be reduced by corrupting it. Thus,
in this context, using cut-&-choose based solutions does not enhance privacy (but ensures the
correctness).

2.5.2 The Addition Function

Let us study now the addition function f , the circuit Cf of which is defined and optimized in
[KSS09]. Consider that E has two inputs y, y′ ∈ F`2 and the generator none. This circuit com-
putes the addition of y and y′ in F`2 (the carry bit is not returned). The original function f does
not leak any information on y (or on y′). Up to ` = 10, we exhaustively demonstrated that no
modification leaks any information on y:

H(Y |Z = f ′(y, y′)) = H(Y |Z = f(y, y′)) = `

Since the construction of [KSS09] uses serial 1-bit adders, this result can be extended
recursively for larger values of `.

2.5.3 The Equality-Test Function

Unfortunately, it is not the case for all circuits. Consider now the equality-test function that
returns 1 if and only if x = y. The Boolean circuit we study for the 4-bit case is shown in
Fig. 2.15. Inputs are 4-bit long and after the evaluation of the original function, it remains 3.66
bits of entropy.

This circuit is vulnerable to the addition of NOT gates. Indeed, we demonstrated exhaus-
tively that the best corruption requires to add a single NOT gate, as shown in red in Fig. 2.15.
Now, the remaining entropy is H(Y |X = x′, Z = f ′(x′, y)) = 3.01 bits. Consequently, almost 1
bit is leaked by this function f ′. Actually, f ′ returns x3 ⊕ y3 if x0−2 and y0−2 are different (which
happens with probability 7/8) and 0 otherwise. Clearly, this same attack would work (even with
higher probability) for larger equality-test circuits.

But note that this attack is entirely based on the topological representation of the function.
If we inverted the direction of the cascade of AND gates, as shown in Fig. 2.16, the leaked bit

72

2.5. Applications to Real Circuits

x0
y0
x1
y1
x2
y2
x3
y3

z

Figure 2.15: Circuit for the 4-bit-equality test
and its best corrupted circuit in red

x0
y0
x1
y1

z

x2
y2
x3
y3

Figure 2.16: Another circuit for the 4-bit-
equality test

x0
y0
x1
y1
x2
y2 MUX

x3
y3

c

z

Figure 2.17: Improved circuit for the 4-bit-
equality test

x0
y0
x1
y1
x2
y2 MUX

x3
y3

c

z

Figure 2.18: Best corrupted circuit for the im-
proved 4-bit-equality test

would be x0 ⊕ y0.

Since the leakage is dependent on the topology, we started investigating whether there
exists a circuit (computing the same functionality) that has a reduced leakage in case of cor-
ruption. We discovered a generic construction of such circuits for any function f . Unfortunately,
this fix also requires to increase the size of the circuit. In order to reduce the leakage, we ac-
tually take advantage of the fact that it depends on the topology of the circuit. In the case of
the equality test (w.l.o.g.), we propose to evaluate two parallel sub-circuits with different topolo-
gies (for example the topologies of Fig. 2.15 and Fig. 2.16), and to output only one, randomly
chosen by the evaluator E. This approach is illustrated in Fig. 2.17. A dashed sub-circuit per-
forming differently the equality test is added to the previous one, and a multiplexer (described
in [KS08]) allows E to choose which of the two results is returned (let c represent this choice).
If the generator G is honest, the circuit remains correct : the sub-circuits have the same result
and the multiplexer has no influence on the correctness. Otherwise, G does not know which
one of the two sub-circuits has returned the result.

However, the attacker can still add NOT gates to this new circuit. Using the same method,
we computed that the best corruption requires six NOT gates to be added, as illustrated in

73

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Fig. 2.18. By studying the multiplexer of [KS08], we can show that there is no way for the
adversary to force the choice of c. Then, we do not detail the multiplexer in the figures. The
remaining entropy on the evaluator’s input after evaluating this corrupted circuit is H(Y |X =
x′, Z = f ′(x′, y)) = 3.35 bits. Then, we have considerably reduced the leakage of information.
Of course, one can reduce it even more by parallelizing more sub-circuits, but the size of the
global circuit would drastically increase.

This work opens the problem of finding circuits that resist to the addition of NOT gates.

2.5.4 Trade-Off with Cut-&-Choose

We showed that, for some classes of circuits, there exists corrupted circuits that leak more in-
formation than the original function. In such cases, a cut-&-choose solution remains necessary
if we want to avoid this leakage. Based on the fact that this leakage depends on the topology
of the circuit, our results still allow to improve for free any cut-&-choose based solutions since
[Lin13].

Since several garbled circuits are generated, we recommend to use different circuits of
the same function (with different topologies). Then, even if the adversary manages to guess
correctly which circuits are opened and which are evaluated, he is limited to corruptions that
can be obtained from all unopened circuits and their respective topologies. Indeed, if different
corrupted circuits do not compute the same (corrupted) function, then they may output different
results, which allows the evaluator to learn the adversarial inputs thanks to [Lin13, AMPR14].

For example, let us consider the two circuits of Fig. 2.15 and 2.16 of the same function. Say
that a cut-&-choose solution is used with half of the circuits with the first topology and the other
half with the second. Assume that at least one circuit of each is unopened. Then, we demon-
strated exhaustively that any corrupted function that can be obtained from both topologies does
not leak any information on the evaluator’s inputs more than the original function already does.

2.5.5 Garbled Circuits with Covert Adversaries

We showed that there exists circuits for which the addition of NOT does not advantage a ma-
licious generator. However, such an adversary is still able to make selective failure attacks if
he accepts the risk of getting caught. In this section, we design mechanisms to prevent from
selective failure attacks. Unlike cut-&-choose, our only protects against selective failure attacks,
but we believe it can lead to more efficient solutions.

In this part, we focus on a covert adversary with 1/2-deterrent (as defined in Section 1.2) but
the proposed solution could be adapted to any deterrence factor. Note that a deterrent factor
of 1/2 implies that an adversary is willing to cheat only if his probability of success is strictly

74

2.5. Applications to Real Circuits

higher than his probability of getting caught. We believe this setting applies to many real world
contexts.

Based on the observation that selective failure attack is very similar to the probing model in
side channel analysis, the proposed scheme is heavily inspired by 1-order masking schemes.
However, one cannot simply apply a masking scheme to garbled circuits. Indeed, one of the
main differences is the ability of the adversary to modify a circuit before executing it.

Adapting a 1-Order Masking Scheme

In order to simplify notations, the AND operation a ∧ b will just be noted ab for the rest of the
chapter.

The purpose of this section is to show how to modify a circuit, so that any sensitive value
is split in at least two wires, independently of the modifications (i.e. addition of NOT gates)
possibly made on the circuit by an adversarial generator.

We note x and y the respective l-bit inputs (w.l.o.g. they have the same length) of the
generator and the evaluator. They want to compute privately f(x, y) and agreed on some circuit
Cf computing this function. Let d = depth(Cf) be the non-linear depth of this circuit, defined as
follows:

Definition 2.4 (non-linear depth). The non-linear depth of a circuit is the number of non-linear
gates of the longest path from the inputs to the outputs of that circuit.

This definition is somewhat similar to the usual depth of a circuit, with the particularity that
this circuit would not have any linear gate. We also define a layer of a circuit as follows:

Definition 2.5 (layer of a circuit). The layer i of a circuit is the set of all non-linear gates, to
which the longest path from the inputs crosses i non-linear gates.

The evaluator E randomly chooses a d-bit mask r. We note ri the ith bit of r. The main
idea of our scheme is to mask every wire of layer i with ri and to replace every AND gate (or
similarly any other non-linear gate) by the following sub-circuit, also shown in Fig. 2.19:

ab⊕ ri+1 = (a⊕ ri)(b⊕ ri)⊕ ri(b⊕ ri)⊕ ri(a⊕ ri)⊕ ri+1 ⊕ ri

Similarly, a XOR gate is replaced by the following free sub-circuit:

a⊕ b⊕ ri+1 = (a⊕ ri)⊕ ri+1 ⊕ (b⊕ ri)

Note that if a wire carrying some bit c ⊕ ri is needed in layer j > i, one can easily update
the mask with the following free sub-circuit :

c⊕ rj = (c⊕ ri)⊕ rj ⊕ ri

75

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

1a⊕ ri

2b⊕ ri
ab⊕ ri+1

3ri

ri+1

Figure 2.19: 1-order masked AND gate for garbled circuits

It is interesting to see that at no point a value stays unmasked. However, unlike in side-
channel analysis, G is able to modify some gates of the circuit. Replacing one AND gate by
three AND gates allows G to add NOT gates to any of them. But thanks to the new mask ri+1

and the impossibility of corrupting a XOR gate, there is no way to obtain an unmasked result.
Thus, for the rest of this part, we consider that the only possible modifications of the previous
global AND gate are:

ab⊕ α0a⊕ α1b⊕ α2 ⊕ ri+1

with the bits α0, α1 and α2 of the generator’s choice. Written differently, this corresponds to
ab⊕ ri+1, ab⊕ ri+1, etc.. Thus, the modifications made on a global AND gate are no more than
what we studied on a regular AND gate.

In terms of efficiency, we have replaced a single AND gate by three new AND gates. Then,
one could expect the communication cost to be multiplied by 3. However, it can be reduced to
a multiplicative overhead of 2 or even less by using the privacy free garbling scheme studied
in Section 2.1.7. Indeed, ri is known to E and we can take advantage of this knowledge to
garble ri(a ⊕ ri) and ri(b ⊕ ri) (gates 2 and 3 of Fig. 2.19) with a single ciphertext. Then, the
multiplicative overhead over the semi-honest settings is only two: the garbling of a global AND
gate requires four ciphertexts.

Moreover, remark that these gates (2 and 3) can also be redundant with other gates of the
circuit. For example, if another global AND gate computes ac ⊕ ri+1 in the same layer i, the
gate labelled 2 is already defined. In that case, only seven ciphertexts are required to garble
two global AND gates (instead of four in the semi-honest settings). Similarly, if another global
AND gates computes bc⊕ ri+1, then gates 2 and 3 are redundant and only nine ciphertexts are
needed for three global AND, which represent a 1.5 multiplicative overhead, instead of 2 in the
corresponding cut-&-choose solution.

76

2.5. Applications to Real Circuits

r0 · · · ri · · · rd

x0

...

xl

f(x, y)
y0 ⊕ r0

...
yl ⊕ r0

1-order masked circuit1-order masked circuit

Figure 2.20: Inputs of an 1-order masked circuit

Garbling and Exchange of the Inputs

Before the inputs are exchanged, E randomly chooses a mask r of d bits. We note wXj the wire
carrying xj , wRi the wire carrying ri, wXj⊕Ri and so on. We stress that there is no wire carrying
yj unmasked.

Then, the inputs wire of the masked garbled circuits are wXj , wYj⊕R0 (for all 0 ≤ j ≤ l)
and wRi (for all 0 ≤ i ≤ d). We stress that wXj is connected to a single gate: a XOR gate that
outputs wXj⊕R0 .

We recommend the permute bit of wRi and wYi⊕R0 to be set to zero. In other words, for any
of these wires, the least significant bit (select bit) of a garbled key is the clear value itself. E gets
the garbled keys for these wires through a 1-out-of-2 oblivious transfer. He can then check that
the select bits of the received keys match the input and the chosen mask. If not, the adversarial
G was trying to make a selective failure attack, or an offset was even, and E can safely abort.
This ensures that the offsets are odd for these wires, or the adversary is caught with probability
one half. We remind that odd input offsets is a necessary condition to the global circuit security.

Still, it remains to ensure that an odd offset is used for wXj , the input of the generator.
Obviously, the permute bit of this wire must be chosen randomly by G, in order to preserve his
privacy. Because of this, the same trick cannot be applied. However, this wire is used in a single
gate: a XOR gate that takes as input wXi and wR0 . We just showed that an odd offset is used
for wR0 and we proved in Section 2.4 that the input wires of a XOR gate must have the same
offset.

The overall circuit is shown in Fig. 2.20. In dashed are the wires the permute bit of which is
set to zero (i.e. the least significant bit of a garbled key is the clear value itself).

77

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Comparison with Cut-&-Choose

With the best general case cut-&-choose solution, two circuits would be necessary to be secure
in the proposed setting. One of them would be opened and the other would be executed.

In comparison, our scheme requires a single circuit with three times more non-free gates
than in the semi-honest settings. However, we showed that the garbling only requires twice the
number of ciphertexts to transmit, compared to the semi-honest settings. Then, the communi-
cation cost is similar to the best cut-&-choose solution. Even better, when some gates share the
same input, we showed that one less ciphertext has to be sent, thus reducing the multiplicative
overhead below two.

On the other hand, our scheme requires a few more oblivious transfers, since the masking
bits are randomly chosen by the evaluator. We remind that dmasks are necessary for a circuit of
depth d. We believe these are negligible with the size of the circuit and the number of oblivious
transfers used for the inputs.

We remind that a covert adversary is still able to add NOT gates. This scheme only protects
against selective failure attacks. However, it shows that more specific solutions than the tradi-
tional overkill cut-&-choose can be designed. Hopefully, optimizations of our scheme allowing
to reduce the number of non-free gates would make our scheme much more competitive.

2.6 Conclusion

In the beginning of this chapter, a detailed introduction to garbled circuits, its major optimizations
and cut-&-choose was made. After three decades of works on this very competitive research
area, I believe it was necessary and I hope it will bring new people interested into the subject.

The main contribution of this chapter is to define precisely what alterations of a garbled
circuit a malicious generator can make. We have proved that for a large class of circuits, the
adversary is limited to turn non-linear gates into other non-linear gates and to make selective
failure attack. This is equivalent to say that he can only add NOT gates to the wires of his choice,
or to probe some wires with some probability of getting caught. This is drastically lower than
the previous state-of-the-art suggests. We believe this work can lead to some more optimized
secure solutions in the malicious setting, more efficient than the regular cut-&-choose schemes.

For circuits outside the class we define, what corruptions an adversary is able to make is
still an open question. Our preliminary studies suggest that this question is highly non-trivial
and may depend on the topology of the circuit being corrupted.

The second contribution is the analysis of the impact of NOT gates in real-life circuits. We
show that some circuits do not leak more information when NOT gates are added, and thus
cut-&-choose solutions are unnecessary to enhance the privacy security property. However, for

78

2.6. Conclusion

some other circuits, the addition of NOT gates can lead them to reveal more information, but in
that case we give recommendations to improve cut-&-choose solutions for free.

For circuits that are resistant to the addition of NOT gates, we design an alternative to cut-
&-choose to prevent selective failure attacks. Although it has roughly the same overcost than
cut-&-choose based solutions, we believe this direction can lead to more efficient solutions.

Finally, our contribution also opens an interesting problem: can we define an OT protocol,
such that the sender has n pairs of messages (mj,0,mj,1) with mj,1 = mj,0⊕∆ for all 1 ≤ j ≤ n
(or more generally mj,1 = f(mj,0) for an arbitrary function f)? The sender has n choices bj
and wishes to obtain mj,bj for all j, with the guarantee that mj,1 = mj,0 ⊕∆. Of course this can
be achieved by adding commitments and zero-knowledge proofs, but it would be interesting
to study if it can be solved with no overcost compared to the OT-extension protocol [IKNP03].
From a theoretical point of view, this could be achieved even more efficiently since all pairs of
messages share the same relation.

79

CHAPTER 3

LOCATION PROOF SYSTEM BASED ON

MULTI-PARTY COMPUTATIONS

In this chapter, we show how multi-party computations can help users to protect their privacy in
everyday life. More specifically, we study the case of location-based services that have become
quite popular (e.g. GPS, location-based advertising, augmented reality games). Their variety
and their numerous users show it clearly. However, these applications rely on the people’s
honesty to use their real location. If they are motivated to lie about their position, they can
easily do so. A location-proof system allows a prover to obtain proofs from nearby witnesses,
for being at a given location at a given time. Such a proof can be used to convince a verifier later
on. However, provers and witnesses may not want to broadcast their identity or their position
each time they generate location proofs.

Many solutions have been designed in the last decade, but none protects perfectly the
privacy of their participants. In this chapter, a solution is presented in which a malicious adver-
sary, acting as a prover, cannot cheat on his position. It relies on multi-party computations and
group-signature schemes to protect the private information of both the prover and the witnesses
against any semi-honest participant.

Additionally, this chapter gives a new secure multi-party maximum computation protocol for
the specific context of location-proof systems. This tool allows n users to know which one of
them has the greatest value without revealing their values. It requires O(n log(n)) computations
and communications, which greatly improves the previously known solutions havingO(n2) com-
plexities, but at the cost of some small leakage that we analyze. Although it is designed for our
location-proof system, it can be applied to any scenario in which a small information leakage is
acceptable.

81

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Contents
3.1 Introduction . 83

3.2 Preliminaries . 84

3.2.1 Group Signature Schemes . 84

3.2.2 Prior Location-Proof Systems . 85

3.2.3 Secure Two-Party Comparison Protocol 86

3.2.4 Secure Multi-Party Maximum Protocol 88

3.3 Problem Statement . 89

3.3.1 Location-Proof Generation Protocol Outline 90

3.3.2 Adversary Models . 91

3.4 Location-Proof Gathering and Verifying . 92

3.4.1 Location-Proof Gathering . 92

3.4.2 Security Properties of the Overall Process 93

3.4.3 Location-Proof Verifying . 94

3.5 Secure Multi-Party Maximum Protocol . 95

3.5.1 The Protocol Description . 95

3.5.2 The Protocol Security . 96

3.5.3 The Protocol Analysis . 97

3.6 Secure Iterative Two-Party Comparison Protocol 98

3.6.1 The Protocol Correctness . 98

3.6.2 The Protocol Security . 100

3.6.3 The Protocol Complexity . 102

3.6.4 The Maximum Transfer . 102

3.7 Complexity of the Overall System . 103

3.8 Conclusion . 104

82

3.1. Introduction

3.1 Introduction

Location-based services are now ubiquitous, mostly through our phones and vehicles. These
services generally rely on the people’s honesty to use their real location. Hence, they are limited
to situations in which the people do not have any motivation to lie. However, for some services
such as electronic voting, location-based access control, and law enforcement investigation,
this is not the case. These services must be based on a location-proof system that allows a
participant, called prover, to obtain proofs from nearby participants, called witnesses, asserting
that he has been at a given location at a given time. Such a proof can be used later on to
convince a service provider, called verifier.

Any location-proof system based on the interaction between a prover and his neighbours
has some privacy issues. The prover may not want to broadcast his identity every time he
needs location proofs. Similarly, witnesses may want to hide their identity and location. Hence,
private information must be kept secret from all the participants but not from an independent
trusted third party, called judge. Indeed, the judge must be allowed to retrieve the identities
of the participants, in order to detect malicious collusions among them. In this chapter, we
consider that an ideal location-proof system for such applications must then have the following
properties [GKRT14].

1. Correctness: location proofs generated honestly by a prover with the collaboration of
honest witnesses must always be accepted by the verifier.

2. Unforgeability : a prover cannot obtain/modify valid location proofs for a location where he
is not, or at a different time.

3. Non-transferability : location proofs are valid only for the prover who generated them. They
cannot be exchanged.

4. Traceability1: given a proof, the judge must be able to retrieve the identity of the witness
who signed it.

5. Location and identity privacy : the location and the identity of the witnesses and the prover
must be kept secret from other participants (except the judge).

6. Unlinkability : given two distinct location proofs, a participant cannot guess whether they
have been generated by the same witness, nor whether they concern the same prover.
This obviously does not stand for the judge.

7. Storage sovereignty : the prover is responsible for storing his own location proofs. No one
is able to access them without the prover’s agreement.

1The traceability property is new, it does not come from [GKRT14].

83

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

In this chapter, we propose the first privacy-aware location-proof system that fulfils all these
properties. It relies on two protocols: a location-proof gathering protocol (allowing a prover
to obtain proofs from witnesses) and a location-proof verifying protocol (allowing a verifier to
validate the correctness of a proof). The first one ensures that both the prover and the witnesses
keep their identity and their location secret. Once the location proofs have been obtained from
witnesses, a prover must keep them securely and may use them later on to convince verifiers.
For efficiency reasons, no centralized server is used during the gathering protocol.

The security of our solution is analyzed against malicious and semi-honest adversaries.
The former is a prover trying to obtain invalid location proofs, whereas the latter is any partic-
ipant (prover, witness or verifier) trying to obtain the private information on other participants.
Static collusions between a prover and some of the witnesses against other witnesses are also
considered.

3.2 Preliminaries

3.2.1 Group Signature Schemes

A group signature scheme is a technique introduced by Chaum and Van Heyst [Cv91] for al-
lowing a member of a group to anonymously sign a message. A verifier is then able to check
the validity of a signature but cannot determine which group member generated it. Every group
member is given a unique secret key from a group manager, that possesses the master secret
key. Therefore, the group manager is responsible for adding members to the group and revok-
ing signature anonymity. Many solutions have been designed and they all meet the following
requirements:

• Soundness and completeness: valid signatures by group members always verify correctly,
and invalid signatures always fail verification.

• Unforgeability : only group members can generate valid group signatures.

• Traceability : given a valid signature, the group manager must be able to lift the anonymity
of the signer.

• Anonymity : given a message and its signature, none should be able to determine the
identity of the signer (except the group manager).

• Unlinkability : given two messages and their signatures, none should be able to determine
whether they have been generated by the same group member.

Depending on the solutions, additional properties can be added. Particularly, the group man-
ager is often divided in two entities: a membership manager and a revocation manager, this

84

3.2. Preliminaries

allows to separate the two responsibilities. We do not consider this separation in the rest of the
chapter.

More recently, Franklin and Zhang [FZ12] introduced a new property that breaks the unlink-
ability property in the very particular case where the two messages are the same:

• Uniqueness: given a single message and two signatures of this message, one can tell
whether they have been generated by the same group member.

Such solutions are referred as unique group signature schemes.

3.2.2 Prior Location-Proof Systems

Several solutions that partially fulfil our objectives were proposed. Unfortunately, most of them
require that the participants broadcast their identity and/or location. Sastry et al. [SSW03] in-
troduced the notion of secure location verification. Their solution relies on the deployment of
impersonal local access points to locate participants in a given region, using distance-bounding
protocols. Furthermore, the identity and location of the prover have to be transmitted to allow
access points to grant access to nearby location-based services. In [SW09], Saroiu et al. intro-
duced the notion of location proofs. The prover can now ask access points to generate proofs
that he can store until he has to convince a verifier. However, it still requires an infrastructure to
be deployed and does not ensure privacy. Later, other approaches based on impersonal access
points (Luo et al. [LH10a, LH10b] and Pham et al. [PHB+15]) start answering the privacy issues
using hash functions and pseudonyms. Although the most recent of these schemes achieve a
high level of privacy, it is still limited to regions where access points are already deployed.

A complete different approach has been used by Singelee et al. [SP05]. Instead of de-
ploying impersonal devices, they have suggested to involve nearby users. These users, called
witnesses, can run distance-bounding protocols with the prover to certify his location. Unfor-
tunately, the scheme still does not provide any privacy property. The solution of Graham et
al. [GG09] is somehow similar, but the verifier has to choose himself the witnesses among
the nearby volunteers. It reduces the probability of collusion among the participants. Later,
Zhu et al. proposed a new solution APPLAUS [ZC11] that protects identities through a set of
pseudonyms. This allows the witnesses to generate location proofs without leaking their identity.
However, all proofs (including pseudonyms and locations) are stored in a centralized authority,
raising some privacy and efficiency issues. The protocol Link of Talasila et al. [TCB10] is also
based on centralized system.

Finally, Gambs et al. [GKRT14] proposed a solution to get rid of the central authority and
to ensure most privacy properties. Identities are protected with a group-signature scheme in-
stead of pseudonyms and the positions of the witnesses are not transmitted. Unfortunately, the

85

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

E
ch

o
[S

S
W

03
]

[S
P

05
]

S
LV

P
G

P
[G

G
09

]

[S
W

09
]

[L
H

10
a]

Ve
rip

la
ce

[L
H

10
b]

A
pp

la
us

[Z
C

11
]

Li
nk

[T
C

B
10

]

[D
C

F1
2]

P
ro

ps
[G

K
R

T1
4]

S
ec

ur
eR

un
[P

H
B

+
15

]

O
ur

w
or

k

Prover anonymity
P: pseudonyms
G: group signatures
H: hash function

H H G P G

Witness anonymity
P: pseudonyms
G: group signatures
NA: not applicable

NA NA NA NA P H G NA G

Prover location privacy X X X X ∼ X X

Witness location privacy NA NA NA NA X X NA X

Storage sovereignty X X X X
No infrastructure
requirement X X X X X X X

Traceability NA X NA NA NA X X X X X

Table 3.1: Comparison of existing protocols

location of the prover is still learned by the witnesses. A comparison of all these schemes is
provided in Tab. 3.1.

In comparison, our solution relies on multi-party computations and group signature schemes
to protect the identity and the location of all participants. It assumes that the participants have
phones/vehicles with directional antenna to locate their neighbours. Such a solution can com-
plement classical distance-bounding protocols [BGG+16].

3.2.3 Secure Two-Party Comparison Protocol

Since the millionaires’ problem was introduced by Yao [Yao82], it has attracted a lot of interest.
Although the original solution of Yao solves the problem, its efficiency becomes prohibitive for
large values (see Section 1.1). Generic solutions like garbled circuits or homomorphic secret
sharing could be used to answer the problem, but it appears that some custom protocols are
more efficient ([IG03, BK04, LT05] ...).

In this section, the technique of Lin and Tzeng [LT05] is detailed. We choose this one among
others for efficiency reasons and because it is highly customizable.

Their solution uses either a multiplicative homomorphic encryption scheme or an additive

86

3.2. Preliminaries

Protocol 3.1: Secure two-party comparison protocol of Lin and Tzeng [LT05].
Input: The l-bit private values a and b of A and B.
The encryption function EA(·) with key NA for an additive encryption scheme.
A hash function h(·).
Output: A determines whether a > b or a ≤ b.
Step 1: A does the following computations:

Compute T a1 .
Create the l-element vector γ, so that γi = h(T a1 [i]) if it exists, otherwise γi is a
random value.

Return (EA(γ1), · · · , EA(γl)) to B.
Step 2: B does the following steps:

Compute T b0 and pick a random permutation πB(·).
If T b0 [i] exists, homomorphically compute the l-element vector δ:

EA(δi) = EA(ki · (h(T a1 [i])− h(T b0 [i])))
= (EA(γi) · EA(−h(T b0 [i])))ki

where ki ∈R ZNA .
Otherwise, δi is a random non-zero value.
Send πB(EA(δ1), · · · , EA(δl)) to A.

Step 3: A does the following steps :
Decrypt the shuffled vector δ.
The vector δ contains 0 if and only if a > b.

homomorphic encryption scheme. We present the latter one in Protocol 3.1, since we will need
the additive property in our scheme.

Given an integer x, let us define the following sets: T x0 = {x1x2...xi−11|xi = 0} and T x1 =
{x1x2...xi|xi = 1}, where x1 is the most significant bit of x. Let T xj [i] denote the ith element of
T xj , if it exists. Lin and Tzeng’s protocol relies on the following observation:

a > b ⇐⇒ T a1 ∩ T b0 6= ∅

⇐⇒ ∃i, T a1 [i] = T b0 [i]

Note that T a1 ∩ T b0 contains at most one element. The two parties, having values a and b, lo-
cally compute these two sets and then privately determine the size of the intersection. This
intersection is done in Step 2 by computing homomorphically

δi = ki · (h(T a1 [i])− h(T b0 [i])) ,

which equals 0 if T a1 [i] = T b0 [i]. Observe that the index i∗ such that T a1 [i∗] = T b0 [i∗] leaks how
many most significant bits x and y have in common. Thus, the vector δ is shuffled in Step 2

87

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

before decryption in Step 3.

Our secure maximum computation protocol that is presented in Section 3.5 is based on a
modified version of Lin and Tzeng’s protocol.

3.2.4 Secure Multi-Party Maximum Protocol

This problem generalizes the millionaires’ problem to n users. Every participant Pi has a value
xi and we want to know who possesses the maximum max(xi|1 ≤ i ≤ n), without revealing
any of the n values including the maximum. An alternative goal would be to learn the maximal
value while keeping hidden the identity of its owner and the other values.

Generic solutions based on secret sharing could be used to answer that problem, but they
would imply a huge number of interactions between the participants in order to share the inputs
and then to obtain the result. For this reason, many custom protocols have been specifically
designed to answer it more efficiently.

Two different approaches have been studied. The first one consists in running a secure
two-party comparison protocol for every pair of participants. Obviously, the main difficulty of
this technique is to hide the results of these intermediate comparisons. The work of Zhang
and Makedon [ZM05] elegantly solves this issue with a system of vectors that hide the private
values of the participant. The main steps of this approach is given in Protocol 3.22. Very roughly
speaking, when comparing their value, the parties Pi and Pj cannot distinguish whether they
are comparing xi with xj or −xi with −xj . Only P1 (that has a specific role) knows but does not
have access to the result of the comparison. At the end of the n2 − n comparisons, P1 is able
to determine which participant has the maximal value without leaking any further information.
Thus, this family of solutions requires O(n2) comparisons.

Other solutions, like [HMMB13], aim at computing the maximum bit by bit privately. Such
solutions require O(l · n2) communications, where l is the bit size of the inputs, which is then
equivalent to the quadratic number of comparisons of the first approach.

As already mentioned, our scheme relies on a multi-party maximum protocol. Although any
existing protocol would be sufficient, we design a new multi-party maximum protocol in Sec-
tion 3.5 requiring O(n log(n)) computations and communications. All previously known results
have their complexity in O(n2). However, our construction is based on a trade-off between effi-
ciency and privacy, but can be generalized to any scenario where a small information leakage
is acceptable.

2The original solution of [ZM05] outputs the maximal value. For simplicity, the presented protocol has been
slightly modified to output the identity of the owner instead.

88

3.3. Problem Statement

Protocol 3.2: Overview of the secure multi-party maximum computation protocol of Zhang
and Makedon [ZM05]

Input: Every participant Pi (1 ≤ i ≤ n) has a distinct value xi and an additive encryption
function Ei(·).

Output: P1 obtains imax.
Step 1: forall i 6= 1 do

Pi generates a vector Vi = [xi,−xi, xi,−xi, ...] of size 2n, encrypts every element and
sends it to P1. We note Vi,k the kth element of Vi.

end
Step 2: P1 does the following steps:

Generate a permutation π(·) that randomly switches the 2jth and the (2j + 1)th

elements of a vector of size 2n.
Generate a random vector R of size 2n.
forall i 6= 1 compute homomorphically V ′i = π(Vi) +R and send it to Pi.

Step 3: forall i 6= 1 do
Pi decrypts V ′i and creates a vector Ti of size 2n.
forall 1 ≤ j ≤ n do

Pi and Pj run a secure comparison protocol between Vi,2j and Vj,2j , such that
only Pi learns the result.

If Vi,2j > Vj,2j , Pi sets Ti,2j = 1, else Ti,2j = 0.
Pi and Pj do the same for Vi,2j+1 and Vj,2j+1.

end
Pi sets Ti,2i = Ti,2i+1 = 0.

end
Step 4: P1 does the final step:

forall i 6= 1 do
Generate T ′i = [1, 0, 1, 0, ...] with T ′i,2i = T ′i,2i+1 = 0.
Note that π(T ′i) = Ti ⇐⇒ Pi has the maximal value.
P1 and Pi privately check if π(T ′i) = Ti, such that only P1 learns the result.

end

3.3 Problem Statement

Let us suppose the participants have devices (e.g. phone or vehicle) equipped with directional
antennas, allowing to locate a transmitting device in 90◦-quadrants with respect to their position
and orientation. Depending on his location and orientation, a witness would be able to locate a
prover in one of the four reference orthogonal half-planes (north, east, south, west), as shown
in Fig. 3.1.

Our location problem can therefore be stated as follows. Consider n witnesses having lo-
cated a prover P in half-planes with respect to their position. Looking for a location proof, P
wants to obtain an authenticated description of the intersection of these half-planes, as shown
in Fig. 3.2, while the witnesses want to protect their identity and private information. This can be

89

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

(b)(a)

Wi

Wi

Figure 3.1: Half-planes from 90◦-quadrants

W1

W2

W3

W5

W4

W7P

Figure 3.2: Intersecting half-planes

reduced to find the maximum (or minimum) of the private x− or y−coordinates of the witnesses.

3.3.1 Location-Proof Generation Protocol Outline

Our method relies on an additive homomorphic encryption scheme, such as Paillier’s cryptosys-
tem [Pai99], and a unique group-signature scheme [FZ12]. The uniqueness property prevents
that an accomplice of the prover P, or P himself, simulates the presence of multiple witnesses
(Sybil attack). In our scheme, groups can be dynamically managed and each participant U
has a signing key gskU . Let GS(gskU ,m) denote the private signature function of the message
m with gskU , and GV(gv,m, σ) the public verification function that allows anyone to verify the
signature σ of m with the public group key gv.

Our solution also relies on a multi-party maximum computation protocol, allowing P to learn
the encrypted maximum (or minimum for the north and east sides) of the private x−coordinate
(or y−coordinate for the north and south sides) of the closest witness under the key of the veri-
fier. We note EV(ximin), EV(ximax), EV(yimin) and EV(yimax) these results. Such a protocol can
be obtained with small modifications of the original work of [ZM05] or from any other solution
that uses an additive homomorphic encryption scheme. In later sections, we also design a new
secure multi-party computation protocol that can be used instead. In comparison, it is much
more efficient but has a small leakage. It consists of two sub-protocols, for which we give a
brief overview for future references:

• Protocol 3.5: it is a secure multi-party maximum computation protocol that allows P to
learn which witness is the closest to him, but not the encrypted coordinate.

• Protocol 3.7: if P knows which witness is the closest to him, this secure protocol allows P
to retrieve its encrypted coordinate without leaking any further information.

Protocol 3.3 presents the outline of our approach. After sharing among all participants the
ephemeral additive homomorphic public keys, and the directions in which the prover is located
for all witnesses (Step 1), the idea is to find the intersection of the witness-defined orthogonal
half-planes approximating the prover’s position using multi-party computation protocols (Step 2-
3), and generate a location proof from it (Step 4-5).

90

3.3. Problem Statement

Protocol 3.3: Location proof generation
Input: Each participant U knows his position (xi, yi) and his group signature key gskU .

The encryption function of the verifier EV(·) is public.
Output: P obtains an authenticated location proof from his neighbor witnesses.
Step 1: Initialization

P broadcasts a request: “I’d like location proofs at time τ ”.
forall accepting witness Wi do

Find the direction di of P (North, South, West or East).
Generate an ephemeral public key NWi .
Send back (di, NWi) to P.

end
P broadcasts to all witnesses µ = (τ,NP, (di, NWi)1≤i≤n) and GS(gskP, µ).
NP is his ephemeral public key.
forall accepting witness Wi do

Find his key NWi in the properly signed message. If not, abort.
Return the signature GS(gskWi , µ).

end
P broadcasts {GS(gskWi , µ)|1 ≤ i ≤ n}.
forall accepting witness Wi do

Find if all the signatures are valid and different. If not, abort.
end

Step 2: forall accepting witness Wi do
Run a min/max computation protocol with all witnesses (Either [ZM05] or
Protocol 3.5).

end
Step 3: P gets EV(ximin), EV(ximax), EV(yimin) and EV(yimax) (Either [ZM05] or
Protocol 3.7).

Step 4: P transfers these encrypted results to all witnesses.
Step 5: All Wi sign the proof, using gskWi , and send it to P (this will be detailed in
Protocol 3.4).

3.3.2 Adversary Models

In this chapter, we stress that there are two different motivations for the prover. First, the main
motivation of a malicious prover is to obtain a valid proof that he is at a given location at a
given time, when in fact he is somewhere else. In this case, the prover has to deviate from the
protocol, while remaining undetected. Otherwise, legitimate witnesses would abort and alert
the judge.

On the other hand, a curious prover may be interested in getting information about his
neighbours (identity or precise location). Since the identity of a witness relies on the security
of the group-signature scheme used, the potential risk is low. At best, the prover can expect to
get the location of an unknown participant.

The witnesses could be interested in discovering more information on their neighbours.

91

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

However, since a witness has far fewer possibilities than a prover, a malicious witness would
be better to act as a prover with his neighbours.

Similarly, the verifier does not participate in the gathering location protocol and thus can
only follow the semi-honest adversary model to try to get more information about the witnesses
and the prover.

Finally, notice that a prover can always obtain a valid but faked location proof from ac-
complices. The verifier and the judge can always determine the number of witnesses having
participated in the protocol. If they determine that this number is too low, they may reject the
valid proof anyway.

To sum up, our scheme is secure against the following adversaries :

• A malicious prover willing to obtain fake location proofs.

• A semi-honest prover, witness or verifier trying to violate other participants’ privacy.

In the rest of the chapter, Section 3.4 presents how to build encrypted location proofs
against a malicious adversary, and how to verify them. In Section 3.5, a new solution to the
secure multi-party maximum computation problem is described. It relies on a modified version
of a classical two-party comparison protocol presented in Section 3.6 and is optimized in the
context of our location-proof system.

3.4 Location-Proof Gathering and Verifying

Let us first assume that the prover P has obtained somehow the four encrypted optimum val-
ues EV(ximin), EV(ximax), EV(yimin) and EV(yimax) describing the rectangle in which he lies.
Section 3.5 presents how to obtain them from his neighbouring witnesses. Unfortunately, noth-
ing proves that he has not chosen these values himself and encrypted them with the verifier
public key. The goal of Step 4 and Step 5 of Protocol 3.3 is specifically to prevent this malicious
behaviour. In this section, we design a protocol allowing the witnesses to certify these optimum
values. In this section, we will focus only on one of these values, say EV(ximax).

3.4.1 Location-Proof Gathering

Let us assume w.l.o.g. that the public key NV of the verifier is 2048-bit long and that the wit-
nesses are at most at one kilometre from the prover. If the scale of the grid system is one metre,
the difference ximax − xi ≤ 210 uses at most lx = 10 bits. We define lk = |NV | − (lx + 1). Our
method for generating the location proofs is presented in Protocol 3.4. If a witness follows the

92

3.4. Location-Proof Gathering and Verifying

Protocol 3.4: Location-proof gathering protocol
Input: P knows EV(ximax). Each witness Wi has his value xi and his signature key

gskWi . Each witness knows the number of participants n, GS(gskP, µ), and the
verifier semi-homomorphic encryption function EV(·).

Output: P obtains a location proof from each witness.
Step 1: P broadcasts the randomized version of EV(ximax).
Step 2: forall witness Wi do

Choose randomly ki ∈R J2lx+1; 2lk − 1K and ri ∈R J−2lx + 1; 2lx − 1K.
Compute EV(ki(ximax − xi) + ri) = (EV(ximax) · EV(−xi))ki · EV(ri).
Send EV(ki(ximax − xi) + ri) to P.

end
Step 3: P broadcasts {EV(ki(ximax − xi) + ri)|1 ≤ i ≤ n}.
Step 4: forall witness Wi do

Check the presence of EV(ki(ximax − xi) + ri). If not, abort.
Define ν = ((EV(ki(ximax − xi) + ri))1≤i≤n, EV(ximax), n,GS(gskP, µ)).
Sign σi = GS(gskWi , ν) and send it to P.

end
Step 5: P stores ν, GS(gskP, ν) and all witness signatures σi.

protocol, the verifier would be able to retrieve the value ki(ximax − xi) + ri, which is such that:

ki(ximax − xi) + ri > 2lx iff xi < ximax (1)

−2lx <ki(ximax − xi) + ri < 2lx iff xi = ximax (2)

ki(ximax − xi) + ri < −2lx iff xi > ximax (3)

If all the participants follow the protocols, Case (2) must happen at least once and Case (3)
never. This can be confirmed by the verifier V. Thus, V can detect if a malicious prover deviates
in Step 1 and uses an invalid value. On the other hand, if a malicious prover deviates in Step 3
and drops (or alters) some values, at least one witness can abort the protocol and alert the
judge, by sending him any value signed by the prover (such as GS(gskP, µ) of Protocol 3.3),
which the judge can trace thanks to the properties of the group-signature scheme. Finally, the
prover cannot deviate in Step 5 due to the unique group-signature scheme.

3.4.2 Security Properties of the Overall Process

We have now to argue that the overall process to obtain the location proofs respects all the
security properties listed in the introduction.

Since the unique group signature scheme [FZ12] is unforgeable, the prover P cannot forge
new proofs, except with his own key. In Step 5 of Protocol 3.3, such an opportunity is impossi-

93

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

ble. P would have to generate two distinct signatures on the same message, contradicting the
uniqueness property of the signature scheme. In fact, the judge would identify any transgress-
ing participant in this step, due to the traceability property of the signature scheme. Thus, the
unforgeability and traceability properties of our location-proof protocol are ensured.

In Step 1 of Protocol 3.3, the prover broadcasts a message µ and its signature GS(gskP, µ).
This links the timestamp and the n ephemeral keys of the witnesses. Since this signature is
included in the final proofs signed by the witnesses, the location proof is valid only for the
participant able to produce the valid signature GS(gskP, µ), confirming the non-transferability
property of the protocol.

Due to the unlinkability property of the group signature scheme, the location proof associ-
ated to GS(gskP, µ) would not be linkable with another location proof associated to a different
signature GS(gskP, µ

′) done by the same prover. Similarly, the signatures of the witnesses in
Protocol 3.4 would also not be linkable. Thus, the unlinkability property of our location-proof
protocol is guaranteed.

The privacy of the identities follows from the property of group signature scheme. Similarly,
the privacy of the positions (xi, yi) relies on the semantic property of the encryption scheme
and the randomization process (see Section 3.6.2). Unfortunately, the last step of Protocol 3.4
leaks some information through EV(ki(ximax − xi) + ri). The verifier can guess some bits of xi.
However, we can show that the Shannon entropy H(X|Y = ki(ximax − xi) + ri) is still close to
H(X|X ≤ ximax). For the parameters we consider, we computed that

H(X|Y = ki(ximax − xi) + ri) ≥ 0.85 ·H(X|X ≤ ximax) .

The prover obtains his location proofs during Step 5. Then, he stores them until he needs
to convince the verifier, ensuring the storage sovereignty property.

3.4.3 Location-Proof Verifying

Finally, the correctness property has to be shown. The prover P wants to convince the verifier
V that EV(ximax) is indeed the maximum value. So, he sends:

• His position x, the message µ and his signature GS(gskP, µ). The message contains the
timestamp τ and the number of witnesses n (Protocol 3.3).

• The randomized value of maximum EV(ximax) (Either [ZM05] or Protocol 3.7).

• The n proofs EV(ki(ximax −xi) + ri) and the witness signatures σi of ν = ((EV(ki(ximax −
xi) + ri))1≤i≤n, EV(ximax), n,GS(gskP, µ)) (Protocol 3.4).

94

3.5. Secure Multi-Party Maximum Protocol

The verifier proceeds to several verifications. He first decrypts EV(ximax) and checks if
ximax < x. Then, he checks that the n proofs are generated by n distinct participants, dif-
ferent from P. This verification is based on the uniqueness property of the group signature
scheme. All the signatures of the message ν must be different. The verifier also asks the judge
to check that GS(gskP, µ) was generated using gskP, ensuring that P took place in the proof
generation protocol. The final step is to make sure that EV(ximax) is indeed the maximum value
of the witnesses. From the values of EV(ki(xmax − xi) + ri) in ν, the verifier can check that
there is an index j s.t. −2lx < kj(ximax − xj) + rj < 2lx , and that there is no index j s.t.
kj(ximax − xj) + rj < −2lx .

If all the verifications succeed, the verifier should be convinced that P was indeed at the
east of ximax at the given time. If any of these steps fails, it reveals a malicious action by either
the prover or a witness. But unlike the prover, witnesses do not have any incentive to cheat. If
some proofs are missing, the prover might have deleted them on purpose, or a witness may
have aborted because of a deviation of the prover.

3.5 Secure Multi-Party Maximum Protocol

In this section, we introduce a new approach for a secure multi-party maximum protocol. The
main purpose is to enable a third party (the prover in our context) to determine the owner of the
maximum value among a set of n participants (or witnesses). The prover is the only party who
gets a result from this protocol.

The basic idea is to use iteratively a dedicated secure two-party comparison protocol, that
(i) enables the prover P to know which one of the two witnesses owns the greater private value
without having to know this value, and (ii) guarantees that if one of the witnesses has already
lost a comparison against another witness, the prover would not get any further information.
We assume we have such a protocol. Indeed, we will give a construction in Section 3.6 (Proto-
col 3.6). Let “iterative two-party comparison protocol” refer to this tool.

3.5.1 The Protocol Description

Protocol 3.5 presents our approach for maximum computations. The prover gathers subsets of
witnesses in a binary tree. In each node, the witnesses of the associated subset are paired and
the secure iterative two-party comparison protocol is used. At the end of each round, the prover
gets the results of these comparisons and can eliminate half of the remaining witnesses. If a
witness does not participate in any further comparison, he can deduce that he was farther away
from the prover than his latest paired witness. Similarly, if one keeps participating in the protocol,
he knows he has won every previous comparison. Thus, the protocol should be adapted to

95

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Protocol 3.5: Secure maximum computation based on binary tree
Input: The witnesses S1 = {W1,W2, · · · ,Wn}. Each Wi has a private value xi.
Output: P determines imax = arg max{xi|1 ≤ i ≤ n}.
for i = 1 to dlog(n)e do

for j = 2i−1 to 2i − 1 do
Step 1: P does the following steps :
S = ∅
if |Sj | is odd then

Select Single ∈R Sj s.t. Single is not marked.
Mark the witness Single and add it to S.

end
Pair the elements of Sj \ S − pair the marked witnesses.

Step 2: Each pair of witnesses uses the iterative secure two-party comparison
protocol, and P obtains the index of the owner of the greater value.

Step 3: P selects k ∈R {0, 1} and computes the following sets:
S2j+k = S ∪ {the set of the losing witnesses}
S2j+k = S ∪ {the set of the winning witnesses}

end
end
Step 4: P determines the index Set imax of this witness.

ensure that witnesses keep participating in the protocol even if they have been eliminated.
However, the comparisons with eliminated witnesses must be randomized and meaningless for
the prover.

First assume that the number of witnesses is a power of 2. In the initial round, the prover
pairs the 2k witnesses all together. Each of these pairs runs the two-party comparison protocol.
At the end of the round, the winners and the losers are gathered independently. This process
is then applied recursively on each subset. Hence, two witnesses would never be paired twice
together. After i iterations, there would be 2i subsets of 2k−i witnesses. One of these subsets
would contain only winners and all the others would contain only losers.

Consider now the general case of n witnesses. The prover pairs the witnesses. If there is
an odd number of witnesses in a subset, one of them (called Single in Protocol 3.5) would be
doubled, and considered as both a winner and a loser.

Finally, notice that the witnesses do not communicate with each other directly. Otherwise, it
would be simple to find out which one is closer to the prover due to the directional antennas.
Thus, communications must go through P.

3.5.2 The Protocol Security

The security of our maximum computation protocol relies on these objectives: (1) the prover
cannot get any information from the two-party comparison protocol if at least one of the wit-

96

3.5. Secure Multi-Party Maximum Protocol

nesses has been already eliminated previously, (2) the prover cannot get any information on
the value of any witness, and (3) the witnesses cannot get any information from the comparison
protocol.

The prover does the pairing and acts as the intermediary for the two-party comparison
protocol. He can then observe all the messages exchanged between the witnesses. Thus,
Objectives (1) and (2) rely on the security of the two-party comparison protocol. This will be
addressed in Section 3.6.

Objective (3) relies on the indistinguishability of the subsets Sj in the round i of Protocol 3.5,
for 2i−1 ≤ j ≤ 2i − 1. If the two-party comparison protocol is secure, the only way for a semi-
honest witness to get any information on the comparisons is to find if he is in the subset of the
winners. Since the indices of the subset are chosen randomly, any of them can be the subset
of the winners.

3.5.3 The Protocol Analysis

The maximum computation problem has already been studied (e.g. [CFIK03, HBB12]). How-
ever, the computational and communication complexities of these solutions are in O(n2). Such
complexities are not suitable for portable or embedded devices. In comparison, our method only
requires O(n log(n)) two-party comparisons, at the cost of leaking n− 1 comparison results in-
volving winning witnesses. This follows directly from the underlying binary tree orchestrating
the comparisons. The leaked information is not sufficient to order the witnesses.

In order to determine the complexity of Protocol 3.5, few facts must be proven. Since some
witnesses may be doubled, they may be compared at least twice in any given round. We con-
sider that the comparisons of a marked witness are resolved sequentially. In that case, two
consecutive stages of comparisons are required for a round. The first step is to show that in
any subset of witnesses at any round, there are at most two marked witnesses. This can be
seen as an invariant of the protocol. Let us assume that a subset Sj contains at most two
marked witnesses at the beginning of the round. If |Sj | is even, the subsets S2j and S2j+1

may contain at most one marked element. Otherwise, if |Sj | is odd, one new witness would be
marked, and the subsets S2j and S2j+1 may contain at most two marked elements - the new
one and an old one. Hence, for any subset of odd cardinality in a non-final round, there are
at least one unmarked witness that can be marked and doubled if needed. Marking twice the
same witness is unnecessary. As a corollary of this analysis, we have the following lemma:

Lemma 3.1. Sets having two marked witnesses at the end of a round would contain one previ-
ously marked witness and a newly doubled witness.

The second step is to show that any combination of comparisons can always be split into at
most two stages in any given round. Consider the hypothetical cycle of comparisons between

97

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

marked witnesses in a given round.

{Wi1 ,Wi2}, {Wi2 ,Wi3}, · · · , {Wik ,Wi1}

Each of these pairs belongs to a different subset of witnesses. If k is even, these comparisons
can be split into two independent stages. This is optimal since a marked witness may have to
be compared with two other witnesses. Now, if k is odd, alternate witnesses would have been
just doubled in the round. By Lemma 3.1, this is impossible since the length of the cycle is odd.
Hence, no cycle of comparisons of odd length may exist. Two stages per round are enough to
orchestrate the comparisons. As a result, the total number of stages is greater than dlog(n)e
and lower than 2dlog(n)e.

One can actually prove that no cycle can exist at all, but it does not improve the complexity
further.

3.6 Secure Iterative Two-Party Comparison Protocol

In this section, we propose a specific two-party comparison protocol (Protocol 3.6) that enables
a third party (the prover P) to know which one of the two participants (the witnesses A and
B) owns the greater private value without having to know this value explicitly. This can be
used iteratively, so that if one of the participants has already lost a comparison against another
participant, he should not give any further information to the third party. Such a protocol can be
obtained by adapting the protocol of Lin and Tzeng [LT05], chosen for efficiency.

Given an integer x, let us define the following sets for our comparison protocol: T x0 =
{x1x2...xi−11|xi = 0} and T x1 = {x1x2...xi|xi = 1}. Let T xj [i] denote the ith element of T xj ,
if it exists. Lin and Tzeng’s protocol relies on this lemma:

Lemma 3.2. [LT05] For x, y ∈ N, x > y if and only if T x1 ∩ T
y
0 6= ∅.

Our comparison protocol has been developed to be used in our multi-party maximum pro-
tocol presented in the previous section. It relies heavily on a probabilistic additive encryption
scheme such as Paillier’s cryptosystem [Pai99]. The participants use their ephemeral encryp-
tion keys broadcast in Protocol 3.3. These keys are signed by the prover and verified by all the
nearby witnesses. This associates the keys to a particular session of the protocol. As mentioned
previously, there should be no direct communication between the participants.

3.6.1 The Protocol Correctness

Let us first assume that the private values sA and sB have been initialized to zero by A and B,
respectively. To simplify the notations, let us assume w.l.o.g. that the permutation functions are

98

3.6. Secure Iterative Two-Party Comparison Protocol

Protocol 3.6: Secure iterative two-party comparison protocol determining which partici-
pant has the greater private value.

Input: The l-bit private values a and b of A and B. The encryption functions EA(·), EB(·)
and EP(·), with keys NA, NB and NP. The private values EP(sA) and EP(sB) of A
and B, respectively. The hash function h(·).

Output: P determines whether a > b or a ≤ b.
Step 1: A does the following steps :

Compute T a1 and the l-element vector γ, so that γi = h(T a1 [i]) if it exists,
otherwise, γi is simply a random value.
Pick a random c ∈R ZNB .
Return (EA(γ1), · · · , EA(γl)) and EB(c) to B through P.

Step 2: B does the following steps after decrypting EB(c):
Compute T b0 and the l-element vector δ
EA(δi) = EA(ki(h(T a1 [i])− h(T b0 [i])) + rB)

= (EA(γi) · EA(−h(T b0 [i])))ki · EA(rB)
where ki, rB ∈R ZNA s.t. (ki, NA) = 1. Otherwise, δi is a random value.;
Pick randomly a permutation πB(·) and α, β ∈R ZNP s.t. (α,NP) = 1.
Return EP(sB − rB + c), EA(α), EA(β) and
(EA(δ∗1), · · · , EA(δ∗l)) = πB(EA(δ1), · · · , EA(δl)) to A through P.

Step 3: A does the following steps :
Decrypt the elements EA(δ∗i) and compute the vector µ homomorphically
EP(µi) = EP((δ∗i − rB + sB + sA + rA,i) · rA,i−1)

= (EP(δ∗i + rA,i) · EP(sA) · EP(sB − rB + c) · EP(−c))rA,i−1

where rA,i ∈R ZNP s.t. (rA,i, NP) = 1.
Return (EP(µ∗1), · · · , EP(µ∗l)) = πA(EP(µ1), · · · , EP(µl)),
where πA(·) is a random permutation, to P.

Step 4: P decrypts the cyphertexts EP(µ∗i).
If one of the elements of µ∗ is equal to 1, then a > b and P sets s′A = 0. Otherwise,
a ≤ b and P sets s′A = 1. P returns EP(s′A) to A.

Step 5: A does the following steps, once α and β have been retrieved :
Update EP(sA)← EP(sA + kA · s′A) using EP(sA) · EP(s′A)kA , where kA ∈R ZNP .
Return EP(αs′B + β) = (EP(1) · EP(s′A)−1)α · EP(β) to B through P,
since s′B = 1− s′A.

Step 6: B does the following steps :
Retrieve EP(s′B) = (EP(αs′B + β) · EP(−β))α−1

.
Update EP(sB)← EP(sB + kB · s′B) using EP (sB) · EP (s′B)kB , where kB ∈R ZNP .

the identity function. At the end of Step 2, there is an index i∗ such that δi∗ = rB, iff a > b. This
follows from Lemma 3.2 and the fact that the hash function is collision-free. Consequently, at the
end of Step 3, if sA and sB are both still equal to 0, there would be an element µi∗ = rAi∗ ·r

−1
Ai∗

=
1, if and only if a > b. Thus, P would know the result of the comparison. On the other hand,
if at least one of the participants has randomized his private value EP(s∗), due to a previous
comparison, no element of the vector µ would be equal to 1, except if δi − rB + sA + sB ≡ 0

99

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

mod ZNP . In any case, the result would be meaningless.

In Step 4, P obtains the result and defines s′A = 0 if A has won the comparison (a > b) or
s′A = 1 otherwise. In Step 5, A updates homomorphically his value sA ← sA + kA · s′A. Then it
is easy to verify that if A has won every past comparison and the current one, then sA remains
null. But if A has lost at least one comparison, then sA becomes or remains random. At the end
of Step 5 and in Step 6, B (with the help of A) obtains homomorphically s′B = s′A and updates
sB ← sB + kB · s′B. Remark that s′B = 0 if and only if B has won this comparison. Therefore, sB
remains zero if and only if B has not lost any comparison. This also implies that at the end of
the protocol, at least one of sA and sB is randomized.

3.6.2 The Protocol Security

To prove the security of Protocol 3.6 against semi-honest polynomially-bounded adversaries
trying to get more information on other participants, we have to show that these objectives are
achieved: (1) A does not learn anything about b, (2) B does not learn anything about a, (3) P
cannot find neither a nor b, (4) the result of the comparison is known only to P, (5) no one knows
the first index i∗ that differentiates a and b, (6) P eliminates A or B, (7) there is no information
leaking if A or B has been already discarded, and (8) P cannot simulate A or B and have a
coherent result.

Proof of Objective (1). At the beginning of Step 3, A learns πB(δ1, · · · , δl) with

δi = ki(h(T a1 [i])− h(T b0 [i])) + rB

Remember that h(T b0 [i]) can be seen as an encoding of b. Let us prove that the vector δ does
not leak any information about b.

W.l.o.g. assume that πB(·) is the permutation identity. Let us take any value b′ 6= b and show
that the same vector δ can be obtained from b′ and thus does not leak any information.

If a > b′, let i∗ be the index such that T a1 [i∗] = T b
′

0 [i∗] and take rB = δi∗ . On the other hand,
if a ≤ b′, we can choose arbitrarily rB. Now if we take:

ki = (δi − rB) · (h(T a1 [i])− h(T b′0 [i]))−1 ∀i 6= i∗

then we obtain the same vector δ.

This can be generalized to permutation πB(·). Hence, δ can be obtained from any value of
b′ with the same probability, and does not therefore leak any information about b.

It remains to prove that A does not learn the result of the comparison (part of Objective
(4)) which would leak partial information about b. The result of the comparison (either in the

100

3.6. Secure Iterative Two-Party Comparison Protocol

vector µ, the value sA or sB) is always encrypted under the public key of P. We assume the
cryptosystem is semantically secure, which ends the proof of Objective (1).

Proof of Objectif (2). Consider the information sent by A in Step 1. T a1 gives a bit-encoding of
a. Due to the semantic security of Paillier’s cryptosystem, P and B cannot get any information
on a (also part of Objective (3)).

Notice that the exact same γ (including random values) must be produced by A at any
iteration. Otherwise, a collusion of P and B can set EA(δi) = EA(γi) · EA(γ′i)−1 and have an
encoding of a. Either δi would be equal to 0, if ai = 1, or be a random value, if ai = 0.

The result of the comparison (either in the vector µ, the value sA or sB) is always encrypted
under the public key of P. We assume the cryptosystem is semantically secure, which ends the
proof of Objective (2).

Proof of Objective (3). At the beginning of Step 4, P learns πA(µ1, · · · , µl) where

µi = (δ∗i − rB + sB + sA + rA,i) · rA,i−1

and δ∗i = δπB(i). To simplify notations, assume that πA(·) and πB(·) are the identity permuta-
tion. If sA or sB is different from 0, this case is simple (Objective (7)): the vector µ follows an
independent uniform distribution of ZlNP

. Thus, we only study the case:

µi = (ki(h(T a1 [i])− h(T b0 [i])) + rA,i) · rA,i−1

Knowing that a > b, we will now show that for any couple (a′, b′) such that a′ > b′, we can
obtain the same vector µ with the same probability. In this case, let i∗ be the index such that
T a
′

1 [i∗] = T b
′

0 [i∗]. In this case, ki∗ can be chosen arbitrarily. For all other value i 6= i∗, rA,i can be
chosen arbitrarily, and ki can be defined as:

ki = (µi · rA,i − rA,i) · (h(T a′1 [i])− h(T b′0 [i]))−1.

Finally, if a ≤ b, this is simpler. In this case, the index i∗ is not defined, and the values of all
rA,i and ki are defined as above.

Thus, the same vector µ can be obtained. This can be done for any values of a′ and b′, as
long as the result remains unchanged, and for any permutation πA(·) and πB(·). Therefore, the
vector µ does not leak any information about a or b except whether a > b or not, which ends the
proof.

Proof of Objective (4). Objectives (1) and (2) implies Objective (4).

Proof of Objective (5). Due to the permutations, no information on the index i∗ differentiating a
and b can be inferred.

101

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Proof of Objective (6). In the last two steps, sA and sB are updated. Since P cannot infer the
values of α and β in Step 2, it cannot manipulate the value of s′B in Step 6 in such a way that
s′B = 0. At least one of the participants would then have his value s∗ 6= 0.

Proof of Objective (7). Notice that once sA or sB is a random number different than 0, µ∗ follows
an independent uniform distribution of ZlNP

. Hence, no conclusion follows from the value of µ∗

in Step 4.

Proof of Objective (8). Finally, note that δ and c are necessary to obtain the result and that
they are encrypted respectively with A’s and B’s public keys. Assuming that these keys have
been properly exchanged and have not been tampered with by P, a polynomially-bounded P
cannot simulate A or B successfully. In such a case, the result of the protocol would then be
meaningless.

Let us briefly consider the collusion between A and P against B. In such a case, A and P
accept to exchange all their private information. Due to πB(·), A and P cannot obtain the index
of the bit that differentiates a and b. Moreover, due to the multiplication of each element of µ by a
distinct ki, A and P cannot compute h(T a1 [i∗])−h(T b0 [i∗]), except if the hashes are equal, which
has been discarded anyhow. Thus, P does not discover more information with the help of A.
Similarly, B and P do not gain more information neither. The index of the bit that differentiates
a and b is hidden by the permutation πA(·), and it is impossible to compute δ∗ without knowing
the values rA,i generated by A.

3.6.3 The Protocol Complexity

Following the fact that communications are made through P, any message sent between A and
B is counted twice. The size of a public key N is denoted by |N |. Notice that ciphertexts are
2|N |-bit long in Paillier’s cryptosystem.

For any iteration, there are eight communications and (10l+ 22)|N | bits transferred. A max-
imum of 4l+ 6 cryptographic operations are computed by A, 2l+ 8 by B and only l+ 1 by P. By
cryptographic operations, we mean encryption, decryption and modular exponentiation. If ei-
ther A or B was eliminated, P does not have to decrypt the result in Step 4: only one encryption
is needed.

3.6.4 The Maximum Transfer

Using Protocols 3.5 and 3.6, the prover P knows the index imax of the witness that has the
maximum value. However, P needs to obtain EV(ximax), which corresponds to the maximum
value encrypted with the verifier’s public key. P does not want to inform which witness has

102

3.7. Complexity of the Overall System

Protocol 3.7: Maximum transfer protocol
Input: P knows imax. Each witness Wi has his values xi and EP(sWi). Public keys NP

and NV with functions EP(·) EV(·).
Output: P obtains EV(ximax).
Step 1: forall witness Wi do

Generate a random number αi ∈R ZNP .;
Compute EP(αi + sWi) = EP(αi) · EP(sWi) and return it to P.

end
Step 2: P does the following steps:

Compute αimax from EP(αimax + sWimax
) received from Wimax .

Broadcast to all witnesses EV(αimax).
Step 3: forall witness Wi receiving EV(αimax) do

Compute EV(αimax − αi + xi) = EV(αimax) · EV(−αi) · EV(xi).
and return it to P, only if it is the first request for that proof generation.

end
Step 4: P does the final steps:

Receive EV(ximax) from Wimax .
Randomize it EV(ximax)← EV(ximax) · rNV , for r ∈R Z∗NV

.

been selected, but the discarded witnesses do not want to provide their location uselessly.
Protocol 3.7 manages to reach both objectives. It relies on the fact that Wimax ends up with the
internal value EP(sWimax

) = EP(0) at the end of Protocol 3.6 (which correspond to sA or sB in
Protocol 3.6). The other witnesses have a random sWi .

The security of Protocol 3.7 is easy to show. The security of all encrypted messages relies
on the semantic security of the cryptosystem. In Step 1, P receives only random values from
the witnesses. In Step 2, he picks one of them and broadcasts it back to all witnesses encrypted
with the verifier’s public key. A witness would return a meaningful value in Step 3 if and only if his
internal random value αi is the additive inverse of the value sent by P. In this case, the witness
would return his encrypted position. Otherwise, he would return a random encrypted value.
Finally, EV(ximax) is randomized to conceal it from the witness Wimax . In terms of complexity, if
broadcasting generates only one communication, 2n+ 1 messages of 2|N | bits are exchanged
during the protocol.

This concludes our secure multi-party maximum protocol and allows to build our location-
proof system more efficiently than with previous existing works. The complexity of the full
location-proof system and of each sub-protocol is given in Section 3.7.

3.7 Complexity of the Overall System

We have detailed the computational and communication complexity in each sub-protocol, but
we are now interested in the complexity of the overall location-proof system (Protocol 3.3), de-

103

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Cryptographic operations Communication cost
Each witness Prover Communications Bits sent

Protocol 1 negl negl 2m+ 3 (2m+ 1)(|N |+ |S|)
(overall system) + Protocols 3.4, 3.5, 3.7 + 4× Protocols 3.4, 3.5, 3.7

Protocol 3.4 negl negl 2n+ 2 (4n+ 2)|N |+m|S|

Protocol 3.5
< 2dlogne ≈ n

2 dlogne × Protocol 3.6
×Protocol 3.6

Protocol 3.6 ≤ 4l + 6 l + 1 or 1 ≤ 8 ≤ (10l + 22)|N |
Protocol 3.7 negl negl 2n+ 1 (4n+ 2)|N |

Table 3.2: Complexity of the system

pending on the number of witnesses. For simplicity, let us assume there are m = 4n witnesses,
i.e. n in each direction. Let |N | denote the size of the keys (the size of a ciphertext is simply
2|N | with the Paillier’s cryptosystem) and |S| denote the size of group signatures. We consider
that the encryption, decryption functions and homomorphic operations are in O(1).

Tab. 3.2 presents the number of cryptographic operations processed by the prover and
by each witness, the number of communications and the bits exchanged during the different
protocols. We only deal with the worst-case scenario: a marked witness for the computational
complexity in Protocol 3.5, and only a witnessA in Protocol 3.6. This can obviously be optimized
by giving role B to marked witnesses as often as possible. The complexity of Protocol 3.5 is an
approximation of the total number of comparisons. An exact formula is given in Section 3.5.3.
In Protocol 3.6, it has been shown that P runs l + 1 operations in n − 1 comparisons, and
only 1 otherwise. Thus, the number of operations done by the prover in Protocol 3.5 and 3.6 is
approximately (n− 1)l + n

2 dlogne.
To summarize, the global complexity, both in terms of computations and communication,

is in O(n logn) for the prover and O(logn) for a witness. More specifically, each witness pro-
cesses less than dlogne(4l + 6) cryptographic computations and the prover makes less than
2ndlogne(l + 1). The overall system requires a total of n(16dlogne+ 24) + 15 communications.

In comparison, most previous location-based systems have a complexity for the prover in
O(n), and O(1) for a witness. This is due to the fact that witnesses do not need to interact with
each other. However, location privacy requires such interactions, and thus we do not reach the
same objectives.

3.8 Conclusion

We have presented a privacy-aware location-proof system, allowing a prover to generate lo-
cation proofs with the cooperation of nearby witnesses. Our solution is the first of its kind to
provide both identity and location privacy. Our scheme relies on secure multi-party computa-

104

3.8. Conclusion

tions, allowing the prover to learn which participant is the closest, and thus to approximate more
accurately the region in which he is. The proofs are then signed with a group signature scheme,
protecting the identity of the participants and allowing the detection of any adversary trying to
impersonate multiple witnesses. However, our scheme assumes that participants’ devices are
equipped with directional antennas. Although this is not a technological challenge, obtaining a
similar level of privacy without these antennas is still an open problem.

As a second contribution, we also designed a new multi-party maximum computation based
on a trade-off between efficiency and privacy. We showed that by leaking a few intermediate
values, we can reduce the asymptotic cost to O(n log(n)) instead of O(n2). Although it was
originally designed specifically for our location-proof system, it can be applied to any scenario
in which this leakage is acceptable.

105

CHAPTER 4

ON THE CONCRETE SECURITY OF

GOLDREICH’S PSEUDORANDOM

GENERATOR

Historically, the design of symmetric cryptographic primitives (such as block ciphers or pseudo-
random generators) has been motivated by efficiency considerations (e.g. memory consump-
tion, hardware compatibility). The field of multi-party computation, where parties want to jointly
evaluate a function on secret inputs, has led to the emergence of new considerations: the
efficiency of secure evaluations of primitives is strongly related to parameters such as the cir-
cuit depth of the primitive, and the number of its AND gates (as shown in Chapters 1 and 2).
This observation has motivated the design of MPC-friendly primitives in several recent works
(e.g. [ARS+15, CCF+16, MJSC16, GRR+16]), that aim for an efficient secure evaluation.

Local pseudorandom generators allow to expand a short random string into a long pseudo-
random string, such that each output bit depends on a constant number d of input bits. Due to
its extreme efficiency features, this intriguing primitive enjoys a wide variety of applications in
cryptography and complexity and makes very promising candidate MPC-friendly PRGs. In the
polynomial regime, where the seed is of size n and the output of size ns for s > 1, the only
known solution, commonly known as Goldreich’s PRG, proceeds by applying a simple d-ary
predicate to public random size-d subsets of the bits of the seed.

While the security of Goldreich’s PRG has been deeply investigated, with a variety of re-
sults deriving provable security guarantees against class of attacks in some parameter regimes
and necessary criteria to be satisfied by the underlying predicate, little is known about its con-
crete security and efficiency. Motivated by its numerous theoretical applications and the hope
of getting practical instantiations for some of them, we initiate a study of the concrete secu-
rity of Goldreich’s PRG. Along the way, we develop a new guess-and-determine-style attack,
and identify new criteria which refine existing criteria and capture the security guarantees of
candidate local PRGs in a more fine-grained way.

107

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

Contents
4.1 Introduction . 109

4.1.1 Goals and Results . 111

4.1.2 Organization of the Chapter . 112

4.2 Preliminaries . 112

4.2.1 Hypergraphs . 113

4.2.2 Predicates . 113

4.2.3 Pseudorandom Generators . 114

4.2.4 Implications of Polynomial-Stretch Local Pseudorandom Generators . . 117

4.2.5 On the Security of Goldreich’s PRG . 118

4.3 Guess & Determine Cryptanalysis of Goldreich’s PRG with P5 121

4.3.1 The Attack - Asymptotic Description . 121

4.3.2 Complexity Analysis . 122

4.3.3 Success Probability . 125

4.3.4 Seed Recovery . 126

4.3.5 Concrete Instantiation of the Attack . 128

4.3.6 Experiments . 132

4.4 Algebraic Cryptanalysis of Goldreich’s PRG with P5 134

4.4.1 A Polynomial Attack with Degree-Two Linearization 136

4.4.2 Gröbner Approach . 143

4.4.3 Conclusion . 145

4.5 About the Ordered Case . 146

4.5.1 Guess and Determine . 146

4.5.2 Algebraic Attack on the Ordered Case 147

4.6 Other Results . 148

4.7 Conclusion and Open Questions . 148

108

4.1. Introduction

4.1 Introduction

One of the most fundamental problems in cryptography is the question of what makes an effi-
ciently computable function hard to invert. The quest for the simplest design which leads to a
primitive resisting all known attacks is at the heart of both symmetric and asymmetric cryptog-
raphy: while we might be able to build seemingly secure primitives by relying on more and more
complex designs to thwart cryptanalysis attempts, such a “security by obscurity” approach is
unsatisfying. Instead, as advocated almost two decades ago by Goldreich [Gol00], we should
seek to construct the simplest possible function that we do not know how to invert efficiently.

Random Local Functions

In an attempt to tackle this fundamental problem, Goldreich suggested a very simple candi-
date one-way function as a promising target for cryptanalysis: let (n,m) be integers, and let
(σ1, . . . , σm) be a list of m subsets of [n], such that each subset is of small size: for any i ≤ m,
|σi| = d(n), where d(n) � n (in actual instantiations, d(n) can for example be logarithmic in
n, or even constant). Fix a simple predicate P : {0, 1}d(n) 7→ {0, 1}, and define the function
f : {0, 1}n 7→ {0, 1}m as follows: on input x ∈ {0, 1}n, for any subset σ of [n], let x[σ] denote the
subset of the bits of x indexed by σ:

σ = [i1, i2, i3] =⇒ x[σ] = [xi1 , xi2 , xi3]

Compute f(x) as P (x[σ1])|| · · · ||P (x[σm]) (that is, f(x) is computed by applying the pred-
icate P to all subsets of the bits of x indexed by the sets σ1, . . . , σm). We call random local
functions the functions obtained by instantiating this template.

In his initial proposal, Goldreich advocated instantiating the above methodology with m ≈
n and d(n) = O(log(n)), and conjectured that if the subsets (σ1, . . . , σm) form an expander
graph1, and for an appropriate choice of the predicate P , it should be infeasible to invert the
above function f in polynomial time. While setting d(n) to O(log(n)) offers stronger security
guarantees, the more extreme design choice d(n) = O(1) (also discussed in Goldreich’s paper)
enhances the above candidate with an appealing feature: it enjoys constant input locality (which
puts it into the complexity class NC0)2, hence it is highly parallelizable (it can be computed in
constant parallel time). It appeared in subsequent works that a stronger variant of Goldreich’s
conjecture, which considers m� n and claims that f is in fact a pseudorandom generator, was

1The subsets form an expander graph if for some k, every k subsets cover k+ Ω(n) elements of [n]. In practice,
it suffices to pick once for all the subsets (σ1, . . . , σm) at random to guarantee that they will be expanding except
with some small probability.

2Recall that NC0 is the class of functions that can be computed by constant-depth circuits with bounded fan-in.
In an NC0 function, each bit of the output depends on a constant number of input bits

109

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

of particular interest; we will elaborate on this later on.

Local Pseudorandom Generators

The question of whether cryptographic primitives can exist in weak complexity classes such
as NC0 has attracted a lot of attention in the cryptographic community. A primitive of particular
interest, which has been the focus of most works on the subject, is the notion of pseudorandom
generators (PRGs), which are functions G : {0, 1}n 7→ {0, 1}m extending a short random seed
into a longer, pseudorandom string. The existence of PRGs in NC0 was first considered by
Cryan and Miltersen in [CM01]. Remarkably, it was shown by Applebaum, Ishai, and Kushile-
vitz [AIK04, AIK08] that cryptographically secure pseudorandom generators (with linear stretch
m = O(n)) exist in a complexity class as low as NC0

4 (the class of constant depth, polysize
circuits where each output bit depends on at most 4 input bits), under widely believed stan-
dard assumption for the case of PRG with sublinear stretch (such as factorization, or discrete
logarithm), and under a specific intractability assumption related to the hardness of decoding
“sparsely generated” linear codes, for the case of PRG with linear stretch. While this essentially
settled the question of the existence of linear stretch PRGs in NC0, an intriguing open question
remained: could PRGs in NC0 have polynomial stretch, m = poly(n)?

Some early negative results were given by Cryan and Miltersen [CM01] (who ruled out the
existence of PRGs in NC0

3 with stretch m > 4n) and Mossel, Shpilka, and Trevisan [MST03]
(who ruled out the existence of PRGs in NC0

4 with stretch m > 24n). The authors of [CM01]
also conjectured that any candidate PRG with superlinear stretch in NC0 would be broken by
simple, linear distinguishing tests3; this conjecture was refuted in [MST03], who gave a concrete
candidate PRG in NC0, by instantiating a random local function with d = 5, and the predicate

P5 : (x1, x2, x3, x4, x5) 7→ x1 + x2 + x3 + x4x5 .

where the + denotes the addition in F2 (i.e. the xor).

They proved that this PRG fools linear tests, even when m is a (sufficiently small) polyno-
mial in n. By the previously mentioned negative result on PRGs in NC0

4, this candidate PRG,
which has locality 5, achieves the best possible locality. Recently, there has been a renewed
interest in the study of this local PRG, now commonly known as Goldreich’s PRG, and its gen-
eralizations [BQ09, App12, OW14, CEMT14, App15, ABR16, AL16, IPS08, LV17, BCG+17].

3A linear test attempts to distinguish a string from random by checking whether the xor of a subset of the bits of
the string is biased toward either 0 or 1.

110

4.1. Introduction

4.1.1 Goals and Results

In this work, we continue the study of the most common candidate local pseudorandom gener-
ators. However, we significantly depart from the approach of previous works, in that we wish to
analyze the concrete security of local PRGs. To our knowledge, all previous works were only
concerned about establishing asymptotic security guarantees for candidate local PRGs, with-
out providing any insight on, e.g. which parameters can be conjectured to lead to a primitive
with a given bit-security. Our motivations for conducting this study are twofold.

• Several recent results, which we briefly overview in Section 4.2.4, indicate that (poly-
stretch) local PRGs enjoy important theoretical applications. However, the possibility of
instantiating these applications with concrete PRG candidates remains unclear, as their
efficiency quickly deteriorates with the parameters of the underlying PRG. For example,
the iO scheme of [LT17], which requires low-degree multilinear maps and therefore might
be a viable approach to obtain efficiency improvements in iO constructions (as candidate
high-degree multilinear maps are prohibitively expensive); however, it has a cost cubic
in the seed size of a poly-stretch local PRG, which renders it practical only if we can
safely use local PRGs with reasonably small seeds. Overall, we believe that there is a
growing need for a better understanding of the exact efficiency of candidate local PRGs,
and providing concrete estimations can prove helpful for researchers willing to understand
which efficiency could potentially be obtained for local-PRG-based primitives.

• At a more theoretical level, previous works on (variants of) Goldreich’s PRG have identi-
fied criteria which characterize the predicates susceptible to lead to secure local PRGs.
Identifying such criteria is particularly relevant to the initial goal set up by Goldreich
in [Gol00], which is to understand what characteristics of a function is the source of its
cryptographic hardness, by designing the simplest possible candidate that resists all at-
tacks we know of. However, existing criteria only distinguish predicates leading to insecure
instances from those leading to instances for which no polynomial-time attack is known.
We believe that it is also of particular relevance to this fundamental question to find crite-
ria which capture in a more fine-grained way the cryptographic hardness of random local
functions.

Our Results

We provide new cryptanalytic insights on the security of Goldreich’s pseudorandom generator.

• A new subexponential attack on Goldreich’s PRG. We start by devising a new attack on
Goldreich’s PRG. Our attack relies on a guess-and-determine technique, in the spirit of
the recent attack [DLR16] on the FLIP family of stream ciphers [MJSC16]. The complexity

111

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

of our attack is 2O(n2−s) where s is the stretch and n is the seed size. This complements
O’Donnel and Witmer’s result [OW14] showing that Goldreich’s PRG is likely to be secure
for stretch up to 1.5, with a more fine-grained complexity estimation. We implemented
our attack4 and provide experimental results regarding its concrete efficiency, for various
seed size and stretch parameters.

• Linearization and Gröbner attack. We complement our study with an analysis of the ef-
ficiency of algebraic attacks à la Gröbner on Goldreich’s PRG. While it is known that
Goldreich’s PRG (and its variants) provably resists such attacks for appropriate choices
of (asymptotic) parameters [AL16], little is known about its exact security against such
attacks for concrete choices of parameters. We evaluated the concrete security of Gol-
dreich’s PRG against a degree-two linearization attack. The existence of such an attack
allows to derive bounds on Gröbner basis performance. Using an implemented proof of
concept, we introduce heuristic bounds for vulnerable parameters.

We also generalize these results to other predicates in [CDM+18], but we refer the reader
to this paper for more details.

4.1.2 Organization of the Chapter

Section 4.2 introduces necessary preliminaries on predicates and local pseudorandom gen-
erators and their applications in cryptography. Section 4.3 describes a guess-and-determine
attack on Goldreich’s PRG instantiated with the predicate P5 and analyzes it. Section 4.4 inves-
tigates algebraic cryptanalysis of Goldreich’s PRG with P5, presenting a degree 2 linearization
attack, and an attack using Gröbner basis approach. Finally, Section 4.5 considers the case of
using Goldreich’s PRG with ordered subset (as was initially advocated in [Gol00]) and provides
indications that this weakens its concrete security.

4.2 Preliminaries

Throughout this chapter, n denotes the size of the seed of the PRGs considered. A probabilistic
polynomial time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial in the
parameter n. A positive function f is negligible if for any polynomial p there exists a bound
B > 0 such that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on n occurs with
overwhelming probability when its probability is at least 1−negl(n) for a negligible function negl.
Given an integer k, we write [k] to denote the set {1, . . . , k}. Given a finite set S, the notation
X $← S means a uniformly random assignment of an element of S to the variable X. Given a

4Our proof of concept can be found at https://github.com/LuMopY/SecurityGoldreichPRG.

112

https://github.com/LuMopY/SecurityGoldreichPRG

4.2. Preliminaries

string x ∈ {0, 1}k for some k and a subset σ of [k], we let x[σ] denote the subsequence of the
bits of x whose index belongs to σ. Moreover, the i-th bit of x[σ] will be denoted by xσi .

4.2.1 Hypergraphs

Hypergraphs generalize the standard notion of graphs (which are defined by a set of nodes
and a set of edges, an edge being a pair of nodes) to a more general object defined by a set
of nodes and a set of hyperedges, each hyperedge being an arbitrary subset of the nodes. We
define an (n,m, d)-hypergraph G to be a hypergraph with n vertices and m hyperedges, each
hyperedge having cardinality d. The hyperedges are assumed to be ordered from 1 to m, and
each hyperedge {i1, i2, . . . , id} is ordered and satisfies ij 6= ik for all j ≤ d, k ≤ d, j 6= k. We
will consider hypergraphs satisfying some expansion property, defined below.

Definition 4.1 (Expander Graph). An (n,m, d)-hypergraph G, denoted (σ1, . . . , σm), is (α, β)-
expanding if for any S ⊂ [m] such that |S| ≤ α ·m, it holds that | ∪i∈S σi| ≥ β · |S| · d.

4.2.2 Predicates

The constructions of local pseudorandom generators that we will consider in this work rely on
predicates satisfying some specific properties. Formally, a predicate P of arity d is a function
P : {0, 1}d 7→ {0, 1}. We define below the two properties that were shown to be necessary for
instantiating local PRGs:

• Resiliency : a predicate P is k-resilient if it has no correlation with any linear combination
of up to k of its inputs. An example of predicate with maximal resiliency is the parity
predicate (i.e. the predicate which xors all its inputs). For exemple, the predicate P5

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5

is 2-resilient and cannot be 3-resilient since it is correlated with x1 + x2 + x3.

• Algebraic Immunity : a predicate P has algebraic immunity e, referred to as AI(P) = e,
if the minimal degree of a non-null function g (called annihilator) such that Pg = 0 (or
(P + 1)g = 0) on all its entries is e. For example, g(x) = 1 + x1 is an annihilator of
P (x) = x1x2x3x4 since:

(1 + x1)(x1x2x3x4) = x1x2x3x4 + x1x2x3x4 = 0

A local PRG built from an AI-e predicate cannot be pseudorandom with a stretch ne due
to algebraic attacks.

113

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

Note that the algebraic immunity (also referred as rational degree in [AL16]) implies a lower
bound on the degree and on the bit-fixing degree. Moreover, a high algebraic immunity implies
at least the same degree. Hence, for now on, those two criteria are considered as the relevant
criteria for evaluating the security of Goldreich’s PRG.

We define a particular family of predicates which have been considered as a potential in-
stantiation:

Definition 4.2 (XOR`Mk predicates). We call XOR`Mk predicate a predicate P of arity ` + k

such that M is a predicate of arity k and:

P (x1, . . . , x`, z1, . . . , zk) =
∑̀
i=1

xi +M(z1, . . . , zk) .

We also define a subfamily of XOR`Mk predicates, which have been considered in [AL16]:

Definition 4.3 (XOR`MAJk predicates). We call XOR`MAJk predicate a predicate P of arity `+k
such that P is a XOR`Mk predicate such that M is the majority function in k variables:

M(z1, . . . , zk) = 1⇔ wH(z1, . . . , zk) ≥
⌈
k

2

⌉
,

where wH denotes the Hamming weight.

4.2.3 Pseudorandom Generators

Definition

A pseudorandom generator is a deterministic process that expands a short random seed into a
longer sequence, so that no efficient adversary can distinguish this sequence from a uniformly
random string of the same length.

Definition 4.4 (Pseudorandom Generator). A m(n)-stretch pseudorandom generator, for a
polynomial m, is an efficient uniform deterministic algorithm PRG which, on input a seed x ∈
{0, 1}n, outputs a string y ∈ {0, 1}m(n). It satisfies the following security notion: for any proba-
bilistic polynomial-time adversary Adv,

Pr[y $← {0, 1}m(n) : Adv(pp, y) = 1]

≈Pr[x $← {0, 1}n, y ← PRG(x) : Adv(pp, y) = 1]

Here ≈ denotes that the absolute value of the difference of the two probabilities is negligible in
the security parameters, and pp stands for the public parameters of the PRG.

114

4.2. Preliminaries

Roughly said, a PRG should ensure that no probabilistic polynomial-time adversary should
be able to distinguish the output of the PRG from a uniformly random output of same size.

For any n ∈ N, we denote PRGn the function PRG restricted to n-bit inputs.

Definition 4.5 (Local Pseudorandom Generator). A pseudorandom generator PRG is d-local
(for a constant d) if for any n ∈ N, every output bit of PRGn depends on at most d input bits.

Goldreich’s Pseudorandom Generator

Goldreich’s candidate local PRGs form a family FG,P of local PRGs: PRGG,P : {0, 1}n 7→ {0, 1}m,
parametrized by an (n,m, d)-hypergraph G = (σ1, . . . , σm) (where m is polynomial in n), and
a predicate P : {0, 1}d 7→ {0, 1}, defined as follows: on input x ∈ {0, 1}n, PRGG,P returns the
m-bit string (P (xσ1

1
, . . . , xσ1

d
), . . . , P (xσm1 , . . . , xσmd)).

Conjecture 4.1 (Informal). If G is a sufficiently expanding (n,m, d) hypergraph and P is a
predicate with sufficiently high resiliency and high algebraic immunity, then the function PRGG,P
is a secure pseudorandom generator.

Note that picking an hypergraph G uniformly at random suffices to ensure that it will be
expanding with probability 1 − o(1). However, picking a random graph will always give a non-
negligible probability of having an insecure PRG. To see that, observe that when the locality d is
constant, a random hypergraph G will have two hyperedges containing the same vertices with
probability 1/poly(n); for any such graph G, the output of PRGG,P on a random input can be
trivially distinguished from random. Therefore, the security of random local functions is usually
formulated non-uniformly, by stating that for a 1− o(1) fraction of all hypergraphs G (and appro-
priate choice of P), no polytime adversary should be able to distinguish the output of PRGG,P
from random with non-negligible probability.

Fixed hypergraph versus random hypergraphs

Goldreich’s candidates local pseudorandom generators require to use a sufficiently expand-
ing hypergraph. Unfortunately, building concrete graphs satisfying the appropriate expansion
properties is a non-trivial task. Indeed, all known concrete constructions of expanding bipartite
hypergraphs fail to achieve parameters which would allow to construct a PRG with constant
locality. Therefore, to our knowledge, in all works using local PRG (see e.g. [IKOS08, App13,
Lin17, ADI+17a, BCG+17]), it is always assumed (implicitly or explicitly) that the hypergraph G
of the PRG is picked uniformly at random (which makes it sufficiently expanding with probability
1 − o(1), even in the constant-locality setting) in a one-time setup phase. Therefore, this is the
setting we assume for our cryptanalysis.

115

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

Notations

In the first part of this work, we focus on the predicate P5, assuming that the subsets σ1, ..., σm

are random subsets. The predicate P5 can be regarded as a Boolean function of five variables:

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5 .

The predicate P5 has algebraic degree 2 and an algebraic immunity of 2, and is 2-resilient.
Let n be the size of the input (i.e. the number of initial random bits). We define the stretch s
and denote the size m of the output as m = ns. Let x1, . . . , xn ∈ F2 be the input random bits
and y1, . . . , ym ∈ F2 be the output bits. The m public equations Ei for 1 ≤ i ≤ m are drawn as
follows:

• a subsequence of [n] of size 5 is chosen uniformly at random. Let us call it

σi = [σi1, σi2, σi3, σi4, σi5] .

• Ei is the quadratic equation of the form

xσi1
+ xσi2

+ xσi3
+ xσi4

xσi5
= yi .

The public system Σ that we consider is then defined with them equations, that is (Ei)1≤i≤m.

Ordered and unordered

There are two different cases to consider:

• The ordered case: σi is ordered, i.e. σi1 < σi2 < σi3 < σi4 < σi5.

• The unordered case: the order σi’s elements is arbitrary.

However, we consider the unordered case in this chapter, as we will provide evidence that the
vulnerabilities are even more important for the ordered case in Section 4.5.

Matrix inversion complexity

Our attacks of Section 4.3 require a sparse matrix inversion algorithm. We consider the Wiede-
mann’s algorithm [Wie86], the complexity of which is O(n2) in this context, since there are less
than d · n non-zero elements of our matrices. Other algorithms could be used, but the com-
plexity of our attacks would have to be modified accordingly. For other Sections, with arbitrary
matrices, we denote by ω the exponent for matrix inversion complexity O(nω).

116

4.2. Preliminaries

4.2.4 Implications of Polynomial-Stretch Local Pseudorandom Generators

The original motivation for the study of local pseudorandom generators was the intriguing possi-
bility of designing cryptographic primitives that can be evaluated in constant time, using polyno-
mially many cores. While this is already a strong motivation in itself, it was observed in several
works that the existence of (poly-stretch) local PRGs had a number of non-trivial implications,
and is at the heart of feasibility results for several high-end cryptographic primitives. Beside
being very good MPC-friendly candidates, local pseudorandom generators have impacts in the
following (non-exhaustive) primitives:

• Secure computation with constant computational overhead. In the recent work [IKOS08],
the authors explored the possibility of computing cryptographic primitives with essentially
optimal efficiency, namely, constant overhead over a naive insecure implementation of
the same task. One of their main results establishes the existence of constant-overhead
two-party computation protocols for any boolean circuit, assuming the existence of poly-
stretch local PRGs (and oblivious transfers). In a recent work [ADI+17b], this result was
extended to arithmetic circuits, using an arithmetic generalization of local PRGs.

• Indistinguishability obfuscation (iO). Introduced in the paper of Barak et al. [BGI+01],
iO is a primitive that has received a considerable attention in the past years, as a long
sequence of works starting with [SW14] has demonstrated that iO had tremendous the-
oretical implications, to the point that it is often referred to as being a “crypto-complete”
primitive. All known candidate constructions of iO rely, directly or indirectly, on a primi-
tive called k-linear map, for some degree k. Recently, a sequence of papers (culminating
with [LT17]) has attempted to find out the minimal k for which a k-linear map would imply
the existence of iO (with the ultimate goal of reaching k = 2, as bilinear maps are well
understood objects). These works have established a close relation between this value k
and the existence of pseudorandom generators with poly-stretch, and locality k.5

• Cryptographic capsules. In [BCG+17], Boyle et al. studied the homomorphic secret shar-
ing (HSS). An important implication of HSS is that, assuming the existence of a local
PRG with poly-stretch, one can obtain MPC protocols in the preprocessing model where
the amount of communication between the parties is considerably smaller than the cir-
cuit size of the function, by constructing a primitive called cryptographic capsule which,
informally, allows to compress correlated (pseudo-)random coins. MPC protocols with
low-communication preprocessing have numerous appealing applications. However, the
efficiency of the constructions of cryptographic capsule strongly depends on the locality

5The locality requirement can in fact be weakened to a related notion of block locality.

117

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

and seed size of the underlying local PRG (both should be as small as possible to get a
reasonably efficient instantiation).

4.2.5 On the Security of Goldreich’s PRG

In this section, we provide a brief overview of the state-of-the-art regarding the security of local
pseudorandom generators. For a more detailed and well-written overview dating from 2015, we
refer the reader to [App15].

Positive Results: Security against Class of Attacks

The seminal paper of Goldreich [Gol00] made some preliminary observations on necessary
properties for a local one-way function. The predicate P must satisfy some non-degeneracy
properties, such as being non-linear (otherwise, one could inverse the function using Gaussian
elimination). It also noted that to avoid a large class of natural “backtracking” attacks, which
make a guess on the values of bit inputs based on local observations and attempt to com-
bine many local solutions into a global solution, the subsets (S1, . . . , Sm) should be sufficiently
expanding: for some k, every k subsets should cover k + Ω(n) elements of [n]. The security
of Goldreich’s candidate one-way function against a large class of backtracking algorithm was
formally analyzed in [AHI05, CEMT14], where it was proven that two restricted types of back-
tracking algorithms (called “drunk” and “myopic” backtracking algorithms) take exponential time
to invert the function (with high probability). They also ran experiments to heuristically evalu-
ate its security against SAT solvers6 (and observed experimentally an exponential increase in
running time as a function of the input length).

The pseudorandomness of random local functions was originally analyzed in [MST03]. They
proved (among other results) that the random local function instantiated with the predicate P5

fools F2-linear distinguishers for a stretch up to m(n) = n1.25−ε (for an arbitrary small constant
ε). This result was later extended to a larger stretch n1.5−ε in [OW14]. In the same paper, the
authors proved that this candidate PRG is also secure against a powerful class of attacks, the
Lasserre/Parrilo semidefinite programming (SDP) hierarchy, up to the same stretch. Regard-
ing security against F2-linear attacks, a general dichotomy theorem was proven in [ABR12],
which identified a class of non-degenerate predicates and showed that for most graphs, a local
PRG instantiated with a non-degenerate predicate is secure against linear attacks, and for most
graphs, a local PRG instantiated with a degenerate predicate is insecure against linear distin-
guishers. In general, to fool F2-linear distinguishers, the predicate should have high algebraic
degree (in particular, a random local function instantiated with a degree-` predicate cannot be

6 The Boolean satisfiability problem (SAT) is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula. If this is the case, the formula is called satisfiable.

118

4.2. Preliminaries

pseudorandom for a stretch ` (m ≡ n`), as it is broken by a straightforward Gaussian elimination
attack).

Being pseudorandom seems to be a much stronger security property than being one-way.
Nevertheless, in the case of random local functions, it was shown in [App12] that the existence
of local pseudorandom generators follows from the existence of one-way random local functions
(with sufficiently large output size).

Negative Results

The result of O’Donnell and Witmer [OW14] regarding security against SDP attacks is almost
optimal, as attacks from this class are known to break the candidate for a stretch Θ(n1.5 logn).
More generally, optimizing SDP attacks leads to a polytime inversion algorithm for any predicate
P which is (even slightly) correlated with some number c of its inputs, as soon as the output size
exceeds m ∈ Ω(nc/2 + n logn) [OW14, App15]. Therefore, a good predicate should have high
resiliency (i.e. it should be k-wise independent, for a k as large as possible). This result shows,
in particular, that a random local function with a constant locality d and with an output size
m > poly(d) · n is insecure when instantiated with a uniformly random predicate P . Combining
this observation with the result of Siegenthaler [Sie84], which studied the correlation of d-ary
predicates, gives a polytime inversion algorithm for any random local function implemented with
a d-ary predicate, and with an output size m ∈ Ω(n1/2b2d/3c logn).

Bogdanov and Qiao [BQ09] studied the security of random local functions when the out-
put is sufficiently larger than the input (i.e., m ≥ Dn, for a large constant D). They proved
that for sufficiently large D, inverting a random local function could be reduced to finding an
approximate inverse (i.e. finding any x′ which is close to the inverse x in Hamming distance),
by showing how to invert the function with high probability given an advice x′ close to x. For
random local function with an output size polynomial in n, m = ns for some s, this leads to a
subexponential-time attack [App15]: fix a parameter ε, assign random values to the (1 − 2ε)n
first inputs, and create a list that enumerates over all possible 2εn assignments for the remain-
ing variables. Then the list is guaranteed to contain a value x′ that agree with the preimage
x on a (1/2 + ε)n fraction of the coordinates with good probability. By applying the reduction
of [BQ09], using each element of the list as an advice string, one recovers the preimage in
time poly(n) · 22εn provided that m = Ω(n/ε2d) (d is the arity of the predicate P). In the case of
the 5-ary predicate P5, this leads to an attack in subexponential-time 2O(n1−(s−1)/2d) (e.g. using
s = 1.45 gives an attack in time 2O(n0.955)).

By the previous observations, we know that the predicate of a random local function must
have high resiliency and high algebraic degree to lead to a pseudorandom function. A natural
question is whether this characterization is also sufficient; this question was answered neg-
atively in [AL16], who proved that a predicate must also have high bit-fixing degree to fool

119

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

linear attacks.7 In particular, this observation disproved a previous conjecture of Applebaum
that XOR-AND predicates (which are natural generalizations of the predicate P5) could lead to
local PRGs with stretch greater than 2 that fools all linear tests (see [AL16, Corollary 1.3]).

In the same work, Applebaum and Lovett considered the class of algebraic attacks on local
pseudorandom function, which are incomparable to linear attacks. An algebraic attack against a
function f : {0, 1}n 7→ {0, 1}m starts with an output y and uses it to initialize a system of polyno-
mial equations over the input variables x = (x1, . . . , xn). The system is further manipulated and
extended until a solution is found or until the system is refuted. Applebaum and Lovett proved
that a predicate must also have high rational degree to fool algebraic attacks (a predicate P has
rational degree e if it is the smallest integer for which there exist degree e polynomials Q and
R, not both zero, such that PQ = R). Indeed, if e < s then P is not s-pseudorandom against
algebraic attacks (see [AL16], Theorem 1.4).

In the symmetric cryptography community, the rational degree denotes the well-known al-
gebraic immunity criterion on Boolean function that underlies the so-called algebraic attacks
on stream ciphers [CM03, Cou03]. An algebraic immunity of e implies an r-bit fixing degree
greater than or equal to e − r ([DGM05], Proposition 1), giving that an high algebraic immu-
nity guarantees both high rational degree and high bit fixing degree. The algebraic degree is
equivalent to the 0-bit fixing degree, then it leads to the following characterization: a predicate
of a random local function must have high resiliency and high algebraic immunity. In light of
this characterization, the authors of [AL16] suggested the XOR-MAJ predicate as a promising
candidate for building high-stretch local PRGs, the majority function having optimal algebraic
immunity [DMS05].

Security against Subexponential Attacks

While there is a large body of work that studied the security of random local functions, leading to
a detailed characterization of the parameters and predicates that lead to insecure instantiations,
relatively little is known on the exact security of local PRGs instantiated with non-degenerated
parameters. In particular, most papers only prove that some classes of polytime attacks prov-
ably fail to break candidates local PRGs; however, these results do not preclude the possible
existence of non-trivial subexponential attacks (specifically, these polytime attacks do not “de-
grade gracefully” into subexponential attacks when appropriate parameters are chosen for the
PRG; instead, they do always and provably not succeed).

To our knowledge, the only results in this regard are the proof from [AHI05, CEMT14] that
many backtracking-type attacks require exponential time to invert a random local function, and
the subexponential-time attack arising from the work of Bogdanov and Qiao [BQ09]. How-

7A predicate P has r-bit fixing degree e if the minimal degree of the restriction of P obtained by fixing r inputs is
e

120

4.3. Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

ever, as we saw above, the latter attack only gives a slightly-subexponential algorithm, in time
2O(n1−(s−1)/2d) for a d-ary predicate, and an ns-stretch local PRG.

4.3 Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

4.3.1 The Attack - Asymptotic Description

We first describe a distinguishing attack, where our adversary outputs 1 when the challenged
bit-stream is considered as the PRG’s output and 0 when it is considered as a random string.

At a high level, the attack works by collecting a large number of linear equations, by guessing
well-chosen bits of the seed, seen as a vector x of n variables. When enough equations have
been collected, two cases can occur.

• Either sufficiently many equations are linearly independent (as much as the number of
variables). In this case, the attacker can invert a large subsystem of equations, obtain a
candidate seed, and check it against the PRG output (therefore finding out whether the
guesses were correct in the first place).

• Either most of the equations are linearly dependent. In this case, we show that this implies
that the PRG output must pass a large number of linear tests, which a random string would
be unlikely to all pass. We use this observation to mount a distinguishing attack.

We now proceed with the formal description of the attack. Our algorithm has the description
of the PRG hardcoded (namely, an (n,m, 5)-hypergraph G = (σ1, · · · , σm), where m = ns, and
each σi = (σi1, · · · , σi5) is a size-5 subset of [n]). It takes as input an m-bit string y = y1 · · · ym,
and must distinguish whether y is a random string, or whether it is in the image of PRGG,P5 . The
algorithm starts by considering the following list of quadratic equations for i = 1 to m:

P5(xσi1 , · · · , xσi5) = yi.

We denote Q this list. The algorithm will proceed by constructing O(m) linear equations from
Q.

Selection Phase

The algorithm dynamically determines a “selected” subset of the quadratic equations and a
subset Σ of [m], which it will use in the guessing phase. The sets are constructed using the
following greedy approach: set j ← 1 and mark all equations of Q as “unselected”. In the jth

step, find the variable that appears in the largest number of quadratic terms over all equations
in Q which are marked “unselected”. Mark all the equations in which this variable appears in

121

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

a quadratic term as “selected”, and add their indexes in Q to Σ, also add the linear equation
corresponding to the affectation of this variable and count it as a “selected” equation. If the
number s of equations marked as “selected” satisfies s ≥ n + j, set ` ← j, y′ ← y[Σ], and
proceed to the guessing phase. Otherwise, set j ← j + 1 and continue.

Guessing Phase

In the previous phase, the algorithm has identified a subset of ` variables which appear overall
in the quadratic term of s ≥ n + ` selected quadratic (and linear) equations. In this step, the
algorithm will enumerate over all 2` possible assignments for these variables, in some arbitrary
fixed order. In each step, for i = 1 to 2`, the algorithm obtains a system of s linear equations
by assigning a value in {0, 1} to each of the ` variables across all selected quadratic equations.
Let Ai denote the matrix of this system. We distinguish two cases:

• Case 1. rank(Ai) = n. In this case, there is an n × n invertible submatrix of Ai. The
algorithm extract this submatrix, let us denote it Ci. We also denote by y′i the subsequence
of y′ indexed by the position of the rows of Ci in Ai. . The algorithm computes a candidate
seed x′i ← C−1

i y′i, and checks whether PRGG,P5(x′i) = y. If it holds, it outputs 1 and halts.
Else, it sets i← i+ 1.

• Case 2. rank(Ai) < n. In this case, there exists at least ` + 1 linearly dependent rows
of Ai. Let Bi denote the row echelon form of Ai, obtained through Gaussian elimination,
and let Gi denote the (invertible) matrix of this transformation; that is, Bi = GiAi. Let
(vᵀ1 , . . . , v

ᵀ
`+1) denote the last `+ 1 rows of Gi. The algorithm checks whether vᵀky

′ = 0 for
k = 1 to `+ 1. If all checks pass, it outputs 1 and halts. Else, it sets i← i+ 1.

If the algorithm reaches i = 2` + 1, it outputs 0 and halts.

4.3.2 Complexity Analysis

We now analyze the complexity of the algorithm. We first estimate the average value of ` ob-
tained in the selection phase. We consider the list Q of all quadratic equations. For all i such
that 1 ≤ i ≤ n let denote N1

i the number of occurrences of xi in degree-two monomials.

Proposition 4.1 (Number of guesses). For any instance with n variables, m equations and c

collisions, an upper bound on the sufficient number of guesses required to build n − c linear
equations is:

` ≤
⌊
n2

2m + 1
⌋
. (4.1)

122

4.3. Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

Proof. Let us choose the variable with more occurrences, denoted w.l.o.g. x1, as there are m
equations,

∑n
i=1N

1
i = 2m, and therefore N1

1 ≥ 2mn . Fixing the value of x1 we get N1
1 linear

equations (plus the linear equation fixing the value of x1). Since the value of x1 is fixed, the
remaining quadratic system of equations consists of m − N1 equations in n − 1 unknowns
(x2, . . . , xn). We recursively use this strategy:

For all j (2 ≤ j ≤ n) we denote N j
i the number of occurrences of xi in a degree-two mono-

mial in the system of equations obtained after fixing the j − 1 first most appearing variables (as
previously described) w.l.o.g. x1, . . . , xj−1. Then, choosing the variable with higher N j

i , w.l.o.g.
xj , the remaining quadratic system of equations consists of m−N1

1 −N2
2 − · · · −N

j
j equations

in n− j unknowns. So for all 1 ≤ j ≤ n:

N j
j ≥ 2

m−N1
1 −N2

2 − · · · −N
j−1
j−1

n− j + 1 ≥ 2m
n
,

and we get N1
1 +N2

2 + · · ·+N j
j + j linear equations at this step with the value of x1, x2, . . . , xj

being fixed.

Take ` as the first value of j such that N1
1 + N2

2 + · · · + N j
j + j ≥ n + j (which is correctly

defined as we only consider cases where 2m ≥ n). Then,

N1
1 +N2

2 + · · ·+N `−1
`−1 + `− 1 < n+ `− 1 .

As for all 1 ≤ j ≤ `, we have N j
j ≥ 2m2 we get

2(`− 1)m
n
< n .

So, the number of variables to guess ` is at most:⌊
n2

2m + 1
⌋
.

Note that since we consider the regime of superlinear stretch (m = ns with s > 1), the above
implies that ` = o(n) (in fact, ` = O(n2−s)).

We show further in Section 4.3.6 that experimental results are much better. It is worth notic-
ing that the value obtained at Proposition 4.1 is the extreme case for the attacker and does
not reflect the average case. However, this frequency of appearance is linked to a well-known
problem of combinatorics in the context of balls-into-bins. At the second order, the maximum

123

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

load (i.e. the number of occurrences of the variable that appears the most) follows:

Θ

√m lnn
n

+ m

n

 ,

where m corresponds to the number of balls and n to the number of bins (e.g. [JK77, KSC78]),
which means we gain nothing asymptotically in average. This is related to us, but is not exactly
the same, as in one monomial, one variable cannot be taken twice. However, we can lower the
maximum that one variable appears with the classical setting of balls and bins by only consid-
ering the first variable, but also upper bound our exact probability distribution using twice the
maximum load. Eventually, we can say that in average, the number of guesses is asymptotically
the same as the worst case for the attacker.

Cost of the Selection Phase

The lemma below follows immediately:

Lemma 4.1. The selection phase has complexity O(` · m) which is O(n2) with Equation 4.1
estimation.

Cost of the Guessing Phase

For each i ∈ {1, . . . , 2`}, the algorithm executes either the procedure of Case 1 or the procedure
of Case 2; finding out which case to execute requires computing the rank of an s × n matrix,
with s ≈ n + `. The cost of Case 1 is dominated by the inversion of an n × n matrix (since
this cost is at least n2, it dominates the cost of evaluating PRGG,P5 , which is O(m)); the cost
of Case 2 is dominated by the Gaussian elimination step. Observe that by construction, the
matrix Ai (hence the submatrix Ci as well) is very sparse: each of its rows contains at most four
nonzero entries. Therefore, we can apply Wiedemann algorithm [Wie86] and compute the rank
of Ai, the inverse of Ci, or the row echelon form of Ai, in time O(n · (n+ `)) = O(n2) (since they
can all be computed by making a constant number of black-box calls to an algorithm solving a
sparse system of linear equations).

Combining the above calculations, the cost of the entire algorithm is dominated by

O(n2 · 2`) = 2O(n2−s).

Lemma 4.2. The asymptotic complexity of the attack is

O

(
n22

n2−s
2

)
.

124

4.3. Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

4.3.3 Success Probability

We now analyze the success probability of the algorithm. Let us first assume that y is in the
image of the PRG: there exists x such that y = PRGG,P5(x). In this case, during the guessing
phase, since the algorithm enumerates over all possible values for the ` selected variables,
there must be an index i such that the selected variables have been assigned the correct value.
Let i∗ denote this index.

• If rank(Ai∗) = n (Case 1), the algorithm exactly recovers the right seed x by inverting the
n × n subsystem, hence the check that PRGG,P5(x′i) = y necessarily passes, hence the
algorithm outputs 1 and halts with probability 1.

• If rank(Ai∗) < n (Case 2), observe that by construction, the last ` + 1 rows of Bi∗ are
identically zero (since the number of zero rows at the end of the row echelon form of the
matrix Ai∗ is equal to the co-rank of Ai∗ , which is at least `+ 1). By assumption y is in the
image of the PRG and i∗ is the right guess, hence we have

Gi∗y
′ = Gi∗(Ai∗x) = Bi∗x,

which implies that Gi∗y′ ends with at least `+1 zeroes (since the last `+1 rows of Bi∗ are
identically zero). Therefore, all checks of the algorithm necessarily pass, and it outputs 1
and halts with probability 1.

Hence, if y is in the image of the PRG, the algorithm always outputs 1. Let us now assume
that y is a uniformly random m-bit string. Let us fix an arbitrary i between 1 and 2`. We analyze
the probability that the algorithm outputs 1 on this i, where the probability is over the uniformly
random choice of y. As previously, two cases can happen.

• If rank(Ai) = n (Case 1), the algorithm extracts a candidate seed x′i. Note that this extrac-
tion is entirely independent of the choice of y. There are 2n possible values of x′i, hence 2n

possible values of PRGG,P5(x′i). The probability (over a random choice of the m-bit string
y) that y hits one of those values is equal to 2n/2m = 1/2m−n. Hence, the probability that
the algorithm outputs 1 at step i, conditioned on case 1 happening, is upper bounded by
1/2m−n.

• If rank(Ai) < n (Case 2), the algorithm obtains `+1 vectors (v1, . . . , v`+1). Note that since
the vi are rows of Gi, and Gi is invertible, the vi are all linearly independent. Now, the
probability that a uniformly random bit-vector y passes ` + 1 linearly independent linear
tests is at most 1/2`+1; therefore, the probability that the algorithm outputs 1 at step i,
conditioned on case 2 happening, is upper bounded by 1/2`+1.

125

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

Since `+ 1 = O(n2/m) = o(m− n), for a sufficiently large n we have

1
2`+1 >

1
2m−n ,

from which we get that for each i, the probability (over a random choice of y) that the algorithm
outputs 1 is at most 1/2`+1. Taking a union bound over all possible choices of i, we get that the
probability that there exists an index i for which the algorithm outputs 1 is at most 2` · 1/2`+1 =
1/2. Hence, with probability at least 1/2, the algorithm outputs 0.

Overall, the algorithm correctly distinguishes between y = PRGG,P5(x) and random y with
probability at least 1/2(1 + 1/2) = 3/4. Note that the success probability of the adversary can
be made as close to 1 as one wishes, by collecting n + ` + λ − 1 linear equations instead of
n + `, for a security parameter λ; it is easy to check that this does not change the asymptotic
complexity of the algorithm, and by the same analysis, the algorithm correctly outputs 0 when
y is random with overwhelming probability at least 1− 1/2λ.

4.3.4 Seed Recovery

The attack which we described above is a distinguishing attack: it breaks the pseudorandom-
ness of the PRG in subexponential time 2O(n2−s). Observe that when y = PRGG,P5(x) for some
x, if Case 1 happens at the step i∗ corresponding to the right guess, the attack gives something
stronger: it actually breaks the one-wayness of the PRG, by recovering the seed. Furthermore,
our experimental evaluations (which we will discuss in Section 4.3.6) show that this is actually
always the case: the algorithm systematically ends up in Case 1, and Case 2 never happens,
leading to a seed recovery attack. In this section, we provide some theoretical support for this
observation:

• we put forth a combinatorial assumption and prove that, under this assumption, there is
a seed recovery algorithm which is a slight variation of our algorithm (and has the same
complexity);

• we provide heuristic support for our combinatorial conjecture by relating it to existing
results in mathematics.

Combinatorial Conjecture

We consider the following conjecture: set β ← bn2/2m + 1c, and define, for i = 1 to 2β, Dn,i
to be the distribution over Fn×n2 obtained by sampling the hypergraph of Goldreich’s PRG at
random (with d = 5), selecting ` variables that appear in n + ` quadratic equations using the
selection phase algorithm (see Section 4.3.1), and outputting the n× n matrix Mn of the linear

126

4.3. Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

system obtained by setting all ` selected variables to the values indicated by the ` first bits of i
(note that our analysis guarantees that ` ≤ β). We truncate to n equations for simplicity.

Hypothesis 4.1. There exists a constant γ such that for every sufficiently large n ∈ N, for every
i ≤ 2β, the matrix Mi contains with overwhelming probability an invertible subsystem of γ · n
equations, where the probability is taken over the coins of Mi

$← Dn,i.

Note that the conjecture is tailored to our particular attack, and could be easily generalized
to more general PRG distributions and variable selection methods – indeed, we do consider
generalizations and variants of this conjecture in the following sections. We first show that if
Hypothesis 4.1 is verified, then there is a seed recovery attack on Goldreich’s PRG instantiated
with P5. The attack is a simple variation of our previous algorithm, where in the guessing phase
we do not consider case 2. Instead, the algorithm extracts a γn× γn invertible submatrix Ci of
Ai (whose existence is guaranteed by Hypothesis 4.1), and uses it to recover a subsequence
of γn bits of the seed x. Now, by applying the result of Bogdanov and Qiao [BQ09] on recov-
ering a preimage from an approximate preimage of Goldreich’s PRG, there exists a black-box
polynomial-time reduction from an algorithm that recovers (with no error) O(n(7−s)/8) � γ · n
bits of the seed to an algorithm that fully recovers the seed.

Supporting the Conjecture

Unfortunately, the distributions Dn,i are quite complex, and it seems relatively difficult (and out-
side the scope of this work) to prove our conjecture. However, we can provide some heuristic
support for the conjecture: variants of our conjecture with respect to simpler (and natural) dis-
tributions (which are close to the one we consider) follow from existing results in mathematics
and computer science. Note that the Dn,i are distributions of random very sparse matrices, with
at most 4 nonzero entries per row. We can consider two simpler natural distribution over very
sparse matrices:

• the distribution D obtained by setting each entry of the matrix to be 1 with probability 4/n,
and 0 with probability (n− 4)/n (the Bernouilli distribution);

• the distribution D′ obtained by sampling 4 random positions between 1 and n in each row,
setting the entries at these positions to be 1, and setting all other entries of the row to be
0.

For the distribution D, simply looking at the entries that contain exactly a single 1 will give with
high probability a γn × γn invertible submatrix (indeed, a permutation matrix),with γ ≈ 5 · e−5.
This gives a very loose lower bound on γ, but in fact, much stronger bounds are known for this
distribution, at least in the case of random sparse symmetric matrices [BL10].

127

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

For the distribution D′, the conjecture is very close to problems which have been studied in
computer science under the name of Random XOR-SAT. In particular, the recent work of [PS16]
gave a precise threshold value of c such that a random c·n×nmatrix contains an n×n invertible
matrix with probability 1; this result implies in particular a (loose) lower bound of γ = 1/c for our
conjecture.

4.3.5 Concrete Instantiation of the Attack

We formulated our attack in an asymptotic sense, to obtain provable asymptotic efficiency guar-
antees. However, it is possible to obtain a much better concrete efficiency than the one achieved
by our algorithm. A first observation is that even before the selection phase, we can collect sev-
eral linear equations “for free” by looking at all quadratic equations where the quadratic terms
are equal, and XORing them to cancel out the quadratic terms.

Finding All Collisions

We first define the notion of collisions between two quadratic equations.

Definition 4.6. A collision is a couple (i, j) ∈ [m]2 such that i 6= j and {σi4, σi5} = {σj4, σ
j
5}.

Observe that any collision leads to a linear equation “for free”: XORing the quadratic equa-
tions indexed by σi and σj , the terms xσi4

· xσi5 and x
σj4
· x

σj5
cancel out, leading to a linear

equation. The algorithm first finds all collisions, and derives the corresponding linear equa-
tions. Let c be the number of linear equations obtained with this step. While the asymptotic
number of such collisions is small, hence it does not change the asymptotic complexity, it turns
out that this simple step already strongly reduces the concrete cost of the attack. Let c denote
the number of linear equations obtained this way.

Note that finding all collisions can be reached with a tweaked sorting algorithm. The idea
is to sort the equations (Ei)1≤i≤m according to an order8 on the quadratic term xσi4

xσi5
. And,

each time an equality between two quadratic terms is found, one equation is removed and a
new linear equation Ei + Ej is derived. The complexity is dominated by the sorting complexity
O(m · log(m)).

Avoiding the Bogdanov and Qiao Algorithm

Furthermore, as we already mentioned, we observe experimentally that Case 2 never happens.
In all our experiments, the algorithm always ends up in Case 1, with a value of γ > 0.90. Note
also that applying the result of Bogdanov and Qiao to obtain the seed from the approximate

8The order does not matter since only equalities are necessary, one can take the lexicographic order for example.

128

4.3. Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

preimage is an overkill: this result actually only requires knowing an approximate preimage (but
not necessarily which of the bits of the preimage are correct), while our attack gives us also
the exact position of the correct bits of the preimage. Therefore, we can simply inject directly
these γn > 0.90n values in our list of quadratic equations, which will turn a large fraction of
them into linear equations, and hope to obtain the missing values directly from these linear
equations. Our experiments show that this is indeed the case: after recovering a large fraction
of the preimage, injecting the values in the quadratic equations always allows to recover the full
seed. Our experiments show that this is the case with a large confidence gap: injecting only a
small fraction γ > 0.20 of the preimage in the quadratic equations is sufficient to always recover
the full seed.

Collecting Less Equations

Lastly, since Case 2 never happens, we do not need to collect n + ` linear equations: we can
stop as soon as we collect n − c linear equations in the guessing phase (leading to a total
of n linear equations when adding the equations obtained through collisions – note that we
were already truncating the matrices Ai and ignoring the last ` equations when formulating
Hypothesis 4.1).

Assessing the Number of Collisions

For completeness, we analyze the asymptotic number of equations obtained through collisions.
As previously noticed, collisions can be used to build linear equations. For example, let us
assume we have the following two equations in Σ:

xσi1
+ xσi2

+ xσi3
+ xσi4

xσi5
= yi (E1)

x
σj1

+ x
σj2

+ x
σj3

+ xσi4
xσi5

= yj (E2)

then adding Equation (E1) and Equation (E2) gives us the following linear equation:

xσi1
+ xσi2

+ xσi3
+ x

σj1
+ x

σj2
+ x

σj3
= yi + yj

However, we stress that if we had a third colliding equation:

xσk1
+ xσk2

+ xσk3
+ xσi4

xσi5
= yk (E3)

then we could only produce a single other linear equation (w.l.o.g. (E1) + (E3)), since the other
combination ((E2) + (E3)) would be linearly equivalent to the two previous linear equations.

129

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

Hence, this problem can be seen as a balls-into-bins problem: m balls are randomly thrown
into

(n
2
)

bins and we want to know how many balls in average hit a bin that already contains at
least one ball. Indeed, this number will approximate the value c of the algorithm.

Proposition 4.2 (Average number of collisions). Let n be the number of variables, and m be
the number of equations, let C be the random variable counting the number of collisions on the
degree-two monomials in the whole system. Then, the average number of collisions is:

E(C) = m−
(
n

2

)
+
(
n

2

)((n
2
)
− 1(n

2
))m

∈ O(n2(s−1)) .

Proof. We first consider individually the
(n

2
)

degree-two possible monomials. For each equation,
the two variables of the degree-two monomial are taken uniformly from the n variables (with
replacement), therefore the probability that the monomial indexed by i, j is taken follows a
Bernouilli law with parameter p = 1

(n2)
.

The random variable counting how many times the monomial indexed by i, j is selected
follows a binomial law of parameters m and p. As a collision happens when the monomial has
already been taken, we consider the random variable Ci,j counting 0 if the monomial has been
taken 0 or 1 times, k − 1 otherwise. The expectation of Ci,j is therefore

E(Ci,j) =
m∑
k=2

P[B(m,p)=k] · (k − 1),

where P[B(m,p)=k] stands for the probability for a random variable following a binomial distribu-
tion of parameters m and p to take the value k. The total number of collisions is obtained by
summing the expectations of all the Ci,j .

130

4.3. Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

E(C) =
n∑
i=1

n∑
j=i+1

E(Ci,j) =
n∑
i=1

n∑
j=i+1

m∑
k=2

P[B(m,p)=k] · (k − 1)

=
(
n

2

)
m∑
k=2

P[B(m,p)=k] · (k − 1) =
(
n

2

)
m∑
k=2

(
m

k

)
pk(1− p)m−k · (k − 1)

=
[(
n

2

)
m∑
k=0

(
m

k

)
pk(1− p)m−k · (k − 1)

]
−
[(
n

2

) 1∑
k=0

(
m

k

)
pk(1− p)m−k · (k − 1)

]

=
[(
n

2

)
m∑
k=0

(
m

k

)
pk(1− p)m−k · (k − 1)

]
+
(
n

2

)
p0(1− p)m

=
[(
n

2

)
m∑
k=0

k

(
m

k

)
pk(1− p)m−k

]
−
(
n

2

)
+
(
n

2

)
(1− p)m

=

 m∑
k=0

k

(
m

k

)(
1(n
2
))k−1((n

2
)
− 1(n

2
))m−k− (n2

)
+
(
n

2

)
(1− p)m since p = 1(n

2
)

=

 m−1∑
k′=−1

(k′ + 1)
(

m

k′ + 1

)(
1(n
2
))k′ ((n2)− 1(n

2
))m−1−k′

− (n2
)

+
(
n

2

)
(1− p)m

=

m−1∑
k′=0

m

(
m− 1
k′

)(
1(n
2
))k′ ((n2)− 1(n

2
))m−1−k′

− (n2
)

+
(
n

2

)((n
2
)
− 1(n

2
))m

= m−
(
n

2

)
+
(
n

2

)((n
2
)
− 1(n

2
))m

.

Eventually this number can be estimated with a limited development:

E(C) = ns −
(
n

2

)
+
(
n

2

)
e
ln

(
1− 1

(n2)

)
ns

= ns −
(
n

2

)
+
(
n

2

)
e

(
− 1

(n2)
− 1

2(n2)2 +o
[

1

(n2)3

])
ns

= ns −
(
n

2

)
+
(
n

2

)
e

(
−n

1+s

(n2)
− n1+s

2(n2)2 +o
[

ns

(n2)3

])

= ns −
(
n

2

)
+
(
n

2

)(
1− ns(n

2
) − ns

2
(n

2
)2 + o

[
ns(n
2
)3
]

+ n2s

2
(n

2
)2 + o

[
n2s(n
2
)2
])

= ns −
(
n

2

)
+
(
n

2

)
− ns −

(n
2
)
ns

2
(n

2
)2 +

(n
2
)
n2s

2
(n

2
)2 + o

[(n
2
)
n2s(n

2
)2
]

= − ns

2
(n

2
) + n2s

2
(n

2
) + o

[
n2s

2
(n

2
)] = O(n2(s−1)) .

131

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

Tab. 4.1 gives the evaluation of this formula for some set of parameters. Our experimen-
tal results (see Section 4.3.6) corroborate these expectations and show that the number of
collisions is always very close to this expected average.

4.3.6 Experiments

Distribution of the number of collisions

The theoretical results of Table 4.1 are verified in practice, as shown in Fig. 4.1 for the particular
case of n = 1024 and s = 1.4. As expected with the analytical formula, the number of collisions
is very close to 254 in average. Moreover, our experimental results are very dense around the
average, suggesting that the distribution has a low variance.

200 250 300
0

20

40

60

Number of collisions

N
um

be
ro

ft
es

ts

Figure 4.1: Number of collisions for n = 1024
and s = 1.4 with 2000 tests

64 65 66 67 68 690

200

400

600

800

Number of guesses

N
um

be
ro

ft
es

ts

Figure 4.2: Number of guesses for n = 2048
and s = 1.3 with 2000 tests

Implementation of the attack

Since the original motivation of this work is to study the concrete security of Goldreich’s PRG,
it is important to practically check if the attack presented in Section 4.3.4 can be efficient when
implemented. For this purpose, we provide a proof of concept in Python9.

We first analyzed experimentally Hypothesis 4.1 and observed that we always obtain an
invertible subsystem of at least 0.90 · n equations, for all tested parameters (28 ≤ n ≤ 214 and
1 < s < 1.5). We also experimented that knowing only 20% of the seed allows to inject it in the
quadratic system and to recover the remaining 80%, showing a large gap of confidence in our
hypothesis.

9Our proof of concept can be found at https://github.com/LuMopY/SecurityGoldreichPRG

132

https://github.com/LuMopY/SecurityGoldreichPRG

4.3. Guess & Determine Cryptanalysis of Goldreich’s PRG with P5

One can note that the practical attack should be on average more efficient than assessed
theoretically. Indeed, the asymptotic complexity of Proposition 4.2 is estimated in the worst
case and pessimistic approximations were made on n − c and on the value of `. Hence, we
experimented this attack for different stretches and different values of n and we effectively
noticed that the complexity on average is much smaller than the expected complexity. Table 4.2
represents the theoretical number of guesses necessary to recover the seed and Table 4.3
represents the average number of guesses actually needed in the experiment. Moreover, we
also noticed that the number of guesses needed to invert the system has a very low variance,
as shown in Fig. 4.2.

Table 4.1: Theoretical number of collisions
(average case)

n 256 512 1024 2048 4096

s = 1.45 142 269 506 946 1771
s = 1.4 83 145 254 442 773
s = 1.3 28 42 64 97 147

Table 4.2: Theoretical number of guesses
(worst case)

n 256 512 1024 2048 4096

s = 1.45 4 7 11 18 27
s = 1.4 9 15 23 37 58
s = 1.3 20 34 56 94 156

Table 4.3: Experimental number of guesses
(average case)

n 256 512 1024 2048 4096

s = 1.45 4 6 9 14 21
s = 1.4 6 11 17 27 44
s = 1.3 13 23 39 66 110

Table 4.4: Challenge parameters for seed
recovery attacks. The first line contains the
parameter n and below are represented the
associated stretches s.

Operations 512 1024 2048 4096

< 280 1.120 1.215 1.296 1.361
< 2128 1.048 1.135 1.222 1.295

This experiment enables to estimate the practical security of Goldreich’s PRG against the
guess and determine approach with 80 bits of security. Indeed, for one instance of the PRG, the
complexity of the seed recovery can be easily derived from the number ` of guesses as 2`nω.
So to assess the 80 bits security, one can evaluate the average number of guesses necessary
for one choice of (n, s) and check if the complexity is lower than 280. For that, for 30 values of
n ∈ [27, 214], we delimited the smallest stretch for which the average number of guesses allows
a 80 bits attack. Each average has been done on 1000 measurements because the variance
was very small. Fig. 4.3 represents the limit on vulnerable (n, s) parameters. Above the line,
the parameters are on average insecure against the guess and determine attack.

133

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

29 210 211 212 213 214
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Size of the seed

S
tre

tc
h

of
th

e
P

R
G

above: < 80 bits security

Figure 4.3: Limit stretch for vulnerable instances. The grey zone above the curve denotes the
insecure choices of parameters.

Candidate Non-Vulnerable Parameters

We were able to estimate the practical range of parameters that appear to resist this attack.
To assess them, we estimated the number of guesses necessary and deduced the bit security.
With many measurements (1024 for each set of parameters), we could find the limit stretch for
parameters that are, not vulnerable to our attack. The couples (n, s) that possess the maximal
s with an expected security of 80 or 128 bits10 are conjectured to be the limit for non-vulnerable
parameters. These couples11 are represented by the two lines in Fig. 4.4.

We also introduce certain parameters in Table 4.4 as challenges for improving the crypt-
analysis of Goldreich’s PRG. These parameters correspond to choices of the seed size and
the stretch which cannot be broken in less than 280 (resp. 2128) operations with the attacks de-
scribed in this chapter. Further study is required to assess confidence in the security level given
by these parameters.

4.4 Algebraic Cryptanalysis of Goldreich’s PRG with P5

To complement the attacks of Section 4.3.1, we also provide an analysis of the efficiency of
algebraic attacks with Gröbner basis on Goldreich’s PRG. While it is known that Goldreich’s

10We actually took a margin of 10% to take into account the possible improvements of our implementation.
11This curve should not be extrapolated because outside of its range, Gröbner attacks seem more powerful, see

Fig. 4.10

134

4.4. Algebraic Cryptanalysis of Goldreich’s PRG with P5

29 210 211 212

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Size of the seed

S
tre

tc
h

of
th

e
P

R
G

below: conjectured > 80 bits security
below: conjectured > 128 bits security

Figure 4.4: Limit stretch for conjectured non-vulnerable instances.

PRG (and its variants) provably resists such attacks for appropriate choices of (asymptotic)
parameters ([AL16], Theorem 5.5), little is known about its exact security against such attacks
for concrete choices of parameters.

In this section, we study the existence of polynomial attacks for s < 1.5. In fact, with the
current literature, either s ≥ 1.5 and there is a polynomial inversion, or s < 1.5 and the only
known attack is subexponential. The idea of this section is to offer some granularity on the pa-
rameters (n, s) instead of this abrupt limit for polynomial inversion. For this, we opt for a different
algebraic approach without guess and determine. Instead of guessing values to transform the
public system into a linear system in the seed, one might want to generate enough equations
in order to linearize. This standard method has been introduced by Macaulay in [Mac64] and
Lazard in [laz81]. The idea behind linearization is the assignment of an unknown variable for
each of the monomials appearing in the system. For example, to each monomial xixj , a vari-
able Xi,j will be assigned. Thereby, a linear system of equations with more unknowns of type
Xi,j remains to be solved. This linearization method has been improved in Gröbner basis com-
putations due to Buchberger [Buc76] and later by Faugère with F4 [Fau99] and F5 [Fau02]
algorithms.

Performance of a Gröbner basis strategy is hard to assess for the specific case of Goldre-
ich’s PRG with the existing theory (see [BFSyY] for complexity bounds on Boolean random
quadratic systems). Indeed, Goldreich’s PRG is far from a Boolean random quadratic system,
it has a strong structure and is very sparse. These features should make Goldreich’s PRG an
easier target. In a first step, in order to give an intuition on how Gröbner basis algorithms would
behave on Goldreich’s PRG with predicate P5, we provide an easy-to-understand degree-two

135

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

linearization attack . This polynomial attack leads to a practical seed recovery for certain param-
eters (n, s) and we can derive a heuristic bound for vulnerable (n, s) for 80 bits of security12.
The existence of such an attack allows to estimate Gröbner basis algorithm complexity. In-
deed, Gröbner basis algorithms use an optimized method to generate polynomials. So, their
performance is at least as good as our linearization attack. Thus, from our linearization at-
tack performance and complexity, we derive a heuristic bound on vulnerable (n, s) parameters
against a Gröbner basis technique. This heuristic bound shows that a Gröbner basis approach
may attack more parameters than the guess-and-determine technique (of Section 4.3) for high
values of n.

4.4.1 A Polynomial Attack with Degree-Two Linearization

For a degree-two linearization, the number of variables will highly increase in comparison to the
Section 4.3 case. Indeed, the total variables will include linear terms of shape xi and quadratic
terms of shape xixj where i 6= j. Thus, the total number of variables is

Nvar(n) = n+
(
n

2

)
.

To get a chance to invert a system with so many linearized variables, one needs to generate
as many quadratic equations as possible. Fortunately, Goldreich’s PRG with P5 predicate has
such a structure that allows any attacker to create a large number of new equations from the
original system. Before showing how to generate these equations, let us introduce the principle
of the attack assuming that a certain number of equations is drawn.

An Attack and its Complexity

Suppose that a Goldreich’s PRG is drawn with parameters (n, s) and with c collisions. Suppose
also that one can create a set of quadratic equations that contains Nindep eqns linearly indepen-
dent ones. Only equations of degree exactly two are counted in Nindep eqns. We sketch a seed
recovery attack assuming that

0 ≤ Nvar(n)−Nindep eqns ≤ c

and assess its complexity.

Step 1 From the system of Nindep eqns, we create a linear system in matrix form.

12The case of 128 bits of security is harder to assess because a degree-three linearization must then be consid-
ered. This study is left for future work.

136

4.4. Algebraic Cryptanalysis of Goldreich’s PRG with P5

Step 2 We rewrite this system by separating the quadratic part and creating submatrices. Let
qi be the quadratic part of this new system and bi be its linear part and yi be its constant
term.

q1 + b1 = y1

...

qNindep eqns + bNindep eqns = yNindep eqns

The linearization consists in solving (qi+bi = yi)i∈[Nindep eqns] by replacing each monomial
with a variable and trying to invert a linear system of size Nindep eqns · Nvar(n). We then

rewrite the system in terms of matrices. Let Q ∈ FNindep eqns·(
n
2)

2 represent the coefficients
of the quadratic polynomials qi and B ∈ FNindep eqns·n2 represent the coefficients of the lin-
ear part bi. Due to its sparseness, B is full rank with high probability. Figure 4.5 represents
such matrices. The grey vector represents the list of quadratic variables of type (xixj),
the light-grey vector represents the linear and constant variables.

Step 3 We compute the rank of matrix Q.

• If Q is full rank after deleting its columns of zero, then we invert the system by ap-
plying Gaussian elimination on Q|B which is enough to recover the secret seed
x1, . . . , xn.

• Else Q is not full rank but the rank defect is bounded because of the condition
Nvar(n) − Nindep eqns ≤ c. Indeed, the previous condition can be reformulated as
Nvar(n) > rank(Q|B) ≥ Nvar(n) − c. With the addition of the c linear equations
obtained by collisions (that are linearly independant with high probability), the whole
quadratic system becomes invertible.

Remark 4.1. In this precise case, we actually refined the computation in order to gain
experimental complexity. For this, we rewrite the system differently as in Figure 4.6.
We derive a matrix Λ for left kernel of Q. We multiply the system in Figure 4.6 by Λ
and obtain a linear system as in Figure 4.7. With the addition of the c linear equations
obtained by collisions, the inversion of the remaining linear system in xi gives the
secret seed with high probability.

Since the costliest step in this attack is the inversion of a matrix of size
(n

2
)
, the complexity

is O(n2·ω). It then leads to the following proposition.

Proposition 4.3. Let Goldreich’s PRG be instantiated with n, s, and P5. Let c be the number
of collisions and Nindep eqns be the number of linearly independent quadratic polynomials gen-

137

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

BQ = y BQ = +y B
Λ

= y

Figure 4.5: Linearized sys-
tem

Figure 4.6: Rewritten system Figure 4.7: Linear system

erated with the previous generation. If 0 ≤ Nvar(n) − Nindep eqns ≤ c the previous algorithm
recovers the seed with high probability with time complexity O(n2·ω).

Creating and Counting Quadratic Equations

In order to satisfy Proposition 4.3’s hypothesis, one must draw Nindep eqns linearly independent
quadratic equations such that

Nindep eqns ≥ Nvar(n)− c .

In order to achieve it, in the following we introduce a (non exhaustive) list of ways to create new
quadratic polynomials. In each case, equations are grouped in a type. We denote by NTi the
number of equations following from Type i. Unfortunately, predicting the linear dependencies
with these new equations is a difficult task for a system with such a structure. For each type, we
will remove all redundant equations (also with other types) and assess the number. The linear
independence will only be conjectured from experiments.

Let us suppose that an instance of Goldreich’s PRG with (n, s) is drawn and gives m = ns

equations E1, . . . , Em evaluated in the secret seed x1, . . . , xn such that for i ∈ [m],

xσi1
+ xσi2

+ xσi3
+ xσi4

xσi5
= yi (Ei)

where y1, . . . , ym ∈ F2 is the output.

Type 0: the Original System

The first quadratic equations are the system itself composed of ns quadratic equations. If the
system has linear dependencies between equations, then a distinguisher is found and the PRG
is broken. We then consider that all equations are linearly independent. All the new quadratic
equations will come from this system. To avoid redundancy in the next constructions, we remove
one equation from each collision, thus NT0 = ns − c.

138

4.4. Algebraic Cryptanalysis of Goldreich’s PRG with P5

Type 1: Generated Individually

New quadratic polynomials can be derived directly from each equation Ei with i ∈ [m]. Let us
fix i ∈ [m]. In the field F2, the equation x2 = x gives

xσi1
+ xσi2

+ xσi3
+ xσi4

xσi5
= yi → xσi1

xσi5
+ xσi2

xσi5
+ xσi3

xσi5
+ xσi4

xσi5
= yixσi5

→ xσi1
xσi4

+ xσi2
xσi4

+ xσi3
xσi4

+ xσi4
xσi5

= yixσi4
.

Thus, the set of quadratic equations generated from Ei is

{zEi | ∀z ∈ {xσi4 , xσi5}} .

Then, considering all i in [m], 2 · NT0 = 2ns − 2c new equations can be created. A linear
dependence in these equations would also lead to a distinguisher, then we consider that all
these equations are linearly independent, thus NT1 = 2ns − 2c.

Remark 4.2. If we combine equations of Type 0 with equations of Type 1, a small number of
linear equations can follow. Indeed, take the following example

xσi1
+ xσi2

+ xσi3
+ xσi4

xσi5
= yi → xσi1

xσi5
+ xσi2

xσi5
+ xσi3

xσi5
+ xσi4

xσi5
= yixσi5

.

If the quadratic monomials xσi1xσi5 , xσi2xσi5 and xσi3
xσi5

also appear in Type 0 equations, then
each quadratic term can be replaced by the linear part. Thus, a new linear equation of weight
up to 13 is created. The expected number of such linear equations is

Nextra lin(n, s) = 2 · NT0 ·
(NT0

n
(n

2
))3
≈ 24 · n4s−6 .

This number is low, so these equations are added to the linear equations coming from collisions.
In other words, from now on, c← c+Nextra lin(n, s) ≈ c.

Type 2: from Collisions

According to Definition 4.6, a collision is a couple (i, j) such that the sum of Ei and Ej generates
a linear equation of shape xσi1 +xσi2

+xσi3
+x

σj1
+x

σj2
+x

σj3
= yi + yj . Thus, the set of quadratic

equations generated from a linear equation L is

{zL | ∀z ∈ {x1, . . . , xn}} .

Then, n · c quadratic equations can be created. A linear dependence in these equations would
lead to a distinguisher with success probability higher than 1/2, then we consider that all these

139

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

equations are linearly independent, thus NT2 = n · c.

Type 3: from Semi-Collisions

Let us first introduce the definition of a semi-collision.

Definition 4.7 (semi-collision). A semi-collision is a couple (i, j) ∈ [m]2 such that i 6= j, (i, j) is
not a collision and such that there exists a k ∈ [n] so that

k ∈ {σi4, σi5} and k ∈ {σj4, σ
j
5} .

For example, the following equations,

x1 + x2 + x3 + x7x10 = y1 (E1)

x4 + x5 + x6 + x7x8 = y2 (E2)

induces (1, 2) as a semi-collision because x7 appears in both degree-2 monomials.

Lemma 4.3. When a semi-collision (i, j) occurs, an extra quadratic equation of shape

x
σj5 or 4

Ei + xσi4 or 5
Ej

can be generated.

In the previous example, it is easy to see that one can generate a new quadratic equation.

x8x1 + x8x2 + x8x3 + x10x4 + x10x5 + x10x6 = x8 · y1 + x10 · y2 (x8 · E1 + x10 · E2)

Lemma 4.4. The total number of semi-collisions can be approximated by

Nsemi collisions = n

(
2n−1(ns − c)

2

)
.

Proof. Let p be the probability that a fixed variable xi appears in the quadratic term of a fixed
Type 0 quadratic equation. Thus, p = 2

n . For a variable xi, there are on average (m − c)p =
2n−1(ns − c) elements13 that have xi in their quadratic term. Inside this set of 2n−1(ns − c)
elements, there are

(2n−1(ns−c)
2

)
couples. To get all the semi-collisions and collisions, we multiply

the previous equation by n. This multiplication is accurate because this counting does not imply
simple intersections.

13This is a worst-case approximation.

140

4.4. Algebraic Cryptanalysis of Goldreich’s PRG with P5

Removing Redundant Zquations inside Type 3

If naively generated following Lemma 4.4’s proof, many equations are redundant. To compute
a correct assessment of the significant Type 3 equations, we will remove several redundant
equations. Let us study a phenomenon that is at the origin of many redundancies. Look at the
following example :

x1 + x2 + x3 + x10x11 = y1 (E1)

x4 + x5 + x6 + x11x12 = y2 (E2)

x7 + x8 + x9 + x10x12 = y3 (E3)

Among the three semi-collisions concerning x10, x11 and x12, one is exactly the sum of both
other. Then, when a “cycle” of size 3 appears in the quadratic terms, one semi-collision should
be ignored. This makes NT3 smaller than Nsemi collisions. Let Ncycles be the expected number of
these “cycles” of size three in a random instance Goldreich’s PRG .Ncycles can be approximated
by the following:

Ncycles ≈
1((n2)
3
) ·

(
n

3

)
·
(
m

3

)
∈ O(n3s−3) .

Then, the remaining number of linearly independent equations is upper bounded by

Nsemi collisions −Ncycles .

One equation per cycle is removed and all other equations are kept and counted in NT3 .

NT3 = Nsemi collisions −Ncycles

Proposition 4.4. The total number of linearly independent quadratic equations that can be
generated with the previous types of equations is upper-bounded by

Nindep eqns ≤ NT0 +NT1 +NT2 +NT3 := Neqn(n, s) ∈ O(n2s−1) .

Asymptotically, s < 1.5 =⇒ Neqn(n, s) < Nvar(n) which makes the linearization impossi-
ble. This result comes with no surprise since it is part of the asymptotic security assumptions.
However, for many instances (when n < 214), Neqn(n, s) ≈ Nvar(n). In the next section, we pro-
vide conditions on n and s such that a polynomial seed recovery is possible with non-negligible
probability.

141

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

100 120 140 160 180 200 220 2401.25

1.3

1.35

1.4

Size of the seed

S
tre

tc
h

of
th

e
P

R
G

Conjectured stretch limit
Experimental limit

Figure 4.8: Experiment

Conjectured Bound on Vulnerable Parameters

Proposition 4.3 condition (Nvar(n) − Nindep eqns ≤ c) does not easily give a bound in terms of
parameters. Indeed,Nindep eqns is hard to assess because the linear independence of equations
form types 0, 1, 2 and 3 is non-trivial to prove.
However, extensive experiments on small parameters support Neqn(n, s) ≈ Nindep eqns. That is
what allows us to make the following conjectured limit parameters for this polynomial attack:

Neqn(n, s) > Nvar(n)− c (Heuristical limit)

Experiment

We implemented this attack with a proof of concept using Magma CAS14. For each value
n ∈ {100, 110, 120, . . . , 240}, we found out that if (n, s) are such that Neqn(n, s) � Nvar(n) − c,
the attack succeeds with high probability which corroborates the theory. For a given n, we mea-
sured the limit stretch s for which the success probability goes under 50%. Indeed, in Fig. 4.8,
the dots represent the experiments, the line corresponds to the equalityNeqn(n, s) = Nvar(n)−c
(Heuristical limit) which was computed discretely in another Magma code. The estimation of
Heuristical limit was a worst-case assessment, so it is not surprising that some experimental
limits are actually slightly below the line.

14The Magma code can be found at https://github.com/LuMopY/SecurityGoldreichPRG

142

https://github.com/LuMopY/SecurityGoldreichPRG

4.4. Algebraic Cryptanalysis of Goldreich’s PRG with P5

28 29 210 211 212 213 214
1.3

1.35

1.4

1.45

Size of the seed

S
tre

tc
h

of
th

e
P

R
G

above : conjectured polynomialy broken

Figure 4.9: Extrapolation graph

Heuristic 4.1 (Extrapolation for greater size of seed). For any set of parameters (n, s) such
that Equation Heuristical limit is verified, we conjecture that there is a polynomial seed recovery
attack for Goldreich’s PRG with P5 with cost O(n2ω).

We can notice that if n < 214 then the complexity is lower than 280.
In Fig. 4.9, we represent the extrapolated heuristic bound on (n, s). Above the line, the sets

of parameters are conjectured to be vulnerable to this polynomial attack.

4.4.2 Gröbner Approach

An efficient alternative algebraic attack is using Gröbner basis algorithms such as Faugères F4
[Fau99] and F5 [Fau02]. It consists in a succession of linearization attempts where the degree
of the linearization is incremented at each step. For each linearization attempt, all polynomial
combinations are exhausted in a smart way in order to generate as many new equations as pos-
sible. However hard to assess (see Bardet, Faugère, Salvy and Yag’s work [BFSyY]), Gröbner
basis computation’s complexity is dominated by Gaussian elimination on the smallest invertible
Macaulay matrix. This Macaulay matrix contains coefficients associated with the monomials of
a fixed degree. We denote by degree of regularity or Dreg, the degree of the monomials asso-
ciated with the invertible Macaulay matrix. In [BFSyY], under certain hypotheses, the degree of
regularity for a random Boolean quadratic system is upper bounded by

−ns + n

2 + n

2

√
2n2s−2 − 10ns−1 − 1 + 2(ns−1 + 2)

√
ns−1(ns−1 + 2) .

143

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

This bound is too generic and does not represent what happens for practical (n, s). Goldreich’s
PRG structure allows to drastically reduce the degree of regularity. We conjecture an upper
bound on the degree of regularity for certain parameters based on Section 4.4.1 attack results
and that is observed to be true in our experiments.

Claim 4.1. If the attack of Section 4.4.1 recovers the seed for one instance of Goldreich’s PRG ,
the degree of regularity Dreg is 3 and drops to 2 for the resolution on this instance.

The performance of Faugères F4 or F5 algorithm on Goldreich’s PRG is strictly superior to
the attack presented in Section 4.4.1. Indeed, the three types of equations found in Step 1 form
a subset of the equations derived from Gröbner basis algorithm up to degree three. Then, if
the subsystem is invertible with a degree-two linearization, Gröbner basis algorithm will also be
able to invert it with a degree-two linearization. There is a subtlety because when computing
the Gröbner basis, the maximal degree of polynomials involved is actually three: for finding
semi-collisions, the quadratic polynomials need to be multiplied by a monomial. But then, once
enough semi-collisions are found, the Gröbner basis algorithm falls back into solving a degree-
two system. This phenomenon is called a degree fall.

Experimental Results

To experiment the performance, we used the Gröbner basis algorithms of Magma CAS. The
Magma code is then very simple as it consists in computing GroebnerBasis(System,3) which
calls a Boolean variant of Faugère F4 algorithm. For each computation, we checked that
the degree fall happened and the inversion was done with a degree two. For each value
n ∈ {100, 110, . . . , 240} and the conjectured limit stretch for 50% success, we ran 100 seed
recoveries and Gröbner basis algorithm was able to recover around than 90% of the seeds. We
finally conclude that according to the conducted experiments, Heuristic 4.1 is observed to be
true for small values of n.

Remark 4.3. We noticed that Gröbner basis performance was able to attack more parameters
with lower stretches (often below s = 1.25) with degree of regularity 2. So, some parameters
below the heuristic bound may also be vulnerable.

Increasing the Degree of Regularity

Since we consider 80 bits of security, we want the cost of a degree Dreg linearization to be
doable with at most 280 operations. A degree Dreg linearization corresponds to a Gaussian
elimination on a system with

(n
n−Dreg

)
variables. Then, Dreg should verify:

(
n

n−Dreg

)ω
< 280 .

144

4.4. Algebraic Cryptanalysis of Goldreich’s PRG with P5

29 210 211 212 213 214

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Size of the seed

S
tre

tc
h

of
th

e
P

R
G

Guess and determine
Degree-two linearization

Figure 4.10: Limit stretch for vulnerable parameters with 80 bits of security against both guess
and determine (Section 4.3) and degree-two linearization attacks (See Appendix 4.4). The grey
zone above the curves denotes the insecure choices of parameters.

This implies that Dreg cannot be higher than 2 for n > 512. For n ≤ 512, a degree-three
linearization might solve more (n, s) instances. We leave this study as future work.

4.4.3 Conclusion

We described in Section 4.3 a guess-and-determine attack against Goldreich’s PRG. In this
section, we complement this result with an analysis of the security of Goldreich’s PRG against
a degree-two linearization attack (à la Gröbner). We represent on Figure 4.10 the range of pa-
rameters for which Goldreich’s PRG is conjectured to have 80 bits of security against those two
attacks. As illustrated in the graph, the guess-and-determine approach targets more parame-
ters for low n while the linearization attack performs better for n > 4000.

Although Goldreich’s PRG is conjectured to be theoretically secure for a stretch approaching
1.5 by an arbitrary constant, our analysis shows that a very large seed must be used to achieve
at least 80 bits of security with such a stretch. In particular, if a stretch of 1.4 is needed, no seed
smaller than 5120 bits should be used. Similarly, for a stretch as small as 1.1, the seed must be
at least 512 bits long.

145

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

4.5 About the Ordered Case

In this section, we show that the additional structure given by an ordered Goldreich’s PRG with
the predicate P5 brings a lower security level than the unordered case.

4.5.1 Guess and Determine

Although the ordered case seems highly non-trivial to analyze from a theoretical point of view,
we give evidence that it brings a lower security level than the unordered case. Then, we also
give some experimental measures to support our studies. Each subset is of the form:

σi = [σi1, σi2, σi3, σi4, σi5], where σi1 < σi2 < σi3 < σi4 < σi5 ,

and the equations are of the form:

xσi1
+ xσi2

+ xσi3
+ xσi4

xσi5
= yi .

In this particular case, the average number of collisions is much higher than in the unordered
case, since the lasts bits of the seed are drawn with a higher probability.

More formally, the average number of collisions is given by the following proposition:

Proposition 4.5 (Average number of collisions in the ordered case). Let n be the number of
variables, and m be the number of equations, let C be the random variable counting the number
of collisions on the degree-two monomials in the whole system. Then, the average number of
collisions is:

E(C) =
n−1∑
i=1

(n− i) (−1 +mpi + (1− pi)m) ,

where pi = (i−1
3)

(n5)
.

Proof. We first consider individually the
(n

2
)

degree-two possible monomials. For each equation,
the two variables of the degree-two monomial are taken after the three degree-one monomials,
therefore the probability that the monomial indexed by i, j is taken follows a Bernouilli law with

parameter pi = (i−1
3)

(n5)
.

The random variable counting how many times the monomial indexed by i, j is selected
follows a binomial law of parameters m and pi. As a collision happens when the monomial has
already been taken, we consider the random variable Ci,j counting 0 if the monomial has been
taken 0 or 1 times, k − 1 otherwise. The expectation of Ci,j is therefore:

E(Ci,j) =
m∑
k=2

P[B(m,pi)=k] · (k − 1) ,

146

4.5. About the Ordered Case

where P[B(m,pi)=k] stands for the probability for a random variable following a binomial distribu-
tion of parameters m and pi to take the value k.

The total number of collisions is obtained by summing the expectations of all the Ci,j :

E(C) =
n−1∑
i=1

n∑
j=i+1

E(Ci,j) =
n−1∑
i=1

n∑
j=i+1

m∑
k=2

P[B(m,pi)=k] · (k − 1)

=
n−1∑
i=1

(n− i)
m∑
k=2

(
m

k

)
pki (1− pi)m−k · (k − 1)

=
n−1∑
i=1

(n− i)
[(

m∑
k=0

(
m

k

)
pki (1− pi)m−k · (k − 1)

)
+ (1− pi)m

]

=
n−1∑
i=1

(n− i)
[(

m∑
k=0

k

(
m

k

)
pki (1− pi)m−k

)
− 1 + (1− pi)m

]

=
n−1∑
i=1

(n− i)
[(

m∑
k=0

m

(
m− 1
k − 1

)
pki (1− pi)m−k

)
− 1 + (1− pi)m

]

=
n−1∑
i=1

(n− i)
[(
m

m−1∑
k′=0

(
m− 1
k′

)
pk
′+1
i (1− pi)m−1−k′

)
− 1 + (1− pi)m

]

=
n−1∑
i=1

(n− i) [mpi − 1 + (1− pi)m]

The penultimate line is obtained by fixing k′ = k − 1.

In this very particular case, the average number of collisions and the number of guesses
are hard to determine. Intuitively, we expect the last bits of the seed to be drawn more often in
the monomials of degree two. As a consequence, the number of collisions is likely to be much
higher. Also, the number of guesses should be greatly reduced , since we guess the bits of the
seed that appears the most.

Our experimental results, shown in Table 4.5 and Table 4.6, support this intuition. Even
better, for s = 1.45 we could not find a seed size n that forces the attacker to make at least one
guess.

4.5.2 Algebraic Attack on the Ordered Case

Algebraic attacks are also more efficient for the ordered case since there is an additional struc-
ture. One can figure that, in that case, the number of equations derived from the three types
method of Section 4.4.1 will find more collisions and semi-collisions. So, the limit stretch can
be lowered in comparison to the non ordered case.

147

Partie , Chapter 4 – On the Concrete Security of Goldreich’s Pseudorandom Generator

Table 4.5: Average number of collisions for
the ordered case

Table 4.6: Average number of guesses for
the ordered case

n 256 512 1024 2048 4096

s = 1.45 458 890 1703 3251 6162
s = 1.4 271 488 873 1539 2709
s = 1.3 95 145 221 341 520

n 256 512 1024 2048 4096

s = 1.45 0 0 0 0 0
s = 1.4 0 1 2 5 9
s = 1.3 6 10 17 30 50

4.6 Other Results

Additionally, our work [CDM+18] also has two important results that we do not detail in this
document:

• Generalization. We generalize the guess-and-determine attack to the class of XOR-M
predicates, which are divided into two parts, a linear part (the XOR part) and a non-linear
part (the M part), XORed together. This captures all known candidate generalizations
of Goldreich’s PRG. By guessing the variables in the non-linear part, our attack takes
subexponential time as soon as the stretch of the PRG is strictly above one. Importantly,
our attack does not depend on the locality of the predicate, but only on the number of
variables involved in the non-linear part. In a recent work [AL16], Applebaum and Lovett
put forth an explicit candidate local PRG (of the form XOR-MAJ), as a concrete target
for cryptanalytic effort. Our attack gives a new subexponential algorithm for attacking this
candidate.

• Extending the Applebaum-Lovett polynomial-time algebraic attack. Applebaum and Lovett
recently established that local pseudorandom generators can be broken in polynomial
time, as long as the stretch s of the PRG is greater than the rational degree e of its
predicate. We extend this result as follows: we show that the seed of a large class of
local PRGs (which include all existing candidates) can be recovered in polynomial time
whenever s ≥ e − logNe/ logn, where e is the rational degree, n is the seed size, and
Ne is the number of independent annihilators of the predicate (or of its conjugate) 15 of
degree at most e.

4.7 Conclusion and Open Questions

In this work, we described a guess-and-determine attack and a degree-two linearization attack
(à la Gröbner) against Goldreich’s PRG with predicate P5. Although Goldreich’s PRG is con-

15An annihilator of a predicate P is a non-zero polynomials Q such that Q ·P = 0, the conjugate of a predicate P
is the predicate P + 1

148

4.7. Conclusion and Open Questions

jectured to be theoretically secure for a stretch approaching 1.5 by an arbitrary constant, our
analysis shows that a very large seed must be used to achieve at least 80 bits of security with
such a stretch. In particular, if a stretch of 1.4 is needed, no seed smaller than 5120 bits should
be used. Similarly, for a stretch as small as 1.1, the seed must be at least 512 bits long. We also
proved and experimented that even larger keys have to be considered for the ordered case.

This work then gives more fine-grained security parameters to consider when instantiating
Goldreich’s PRG. Although large seeds have to be considered for high stretches, this PRG still
remains very efficient for small stretches closer to 1, thanks to its constant depth.

We also gave some challenge parameters in order to motivate the crypto community in
cryptanalyzing this interesting PRG. Despite the fact that SAT Solvers are known to run in
exponential time against such problems [CEMT14], it would be interesting to analyze how they
behave against small seed sizes such as 512 or 1024 bits.

149

CHAPTER 5

CONCLUSION

Contributions to various theoretical and practical aspects of multi-party computation are pre-
sented in this thesis. These contributions lead to some interesting open problem.

Garbled circuits against malicious adversaries. The first contribution focuses on defining
how a malicious adversary can corrupt a garbled circuit protocol. For a large class of circuits,
we have shown that this adversary is much less powerful than what we could have expected
from the previous state of the art. Formally, he is only able to add NOT gates and to make
selective failure attacks. Therefore, it also suggests that cut-&-choose based solutions might
be an overkill to achieve security in the malicious model and we may be able to design more
specific and more efficient solutions. We leave it as an open question.

For circuits outside this class, what corruptions an adversary is able to make is still an
open question. Our preliminary studies suggest that this question is highly non-trivial and may
depend on the topology of the circuit being corrupted. However, they also suggest that the
adversary is still very limited: only a few gates close to the generator’s inputs can be modified
more than with NOT gates.

Alternatively, it would also be very interesting to study whether any function can be repre-
sented by a circuit in the class we define, and with which overcost compared to an "intuitive"
circuit.

Finally, this work also opens an interesting problem: can we define an oblivious transfer
protocol, such that the sender has n pairs of messages (mj,0,mj,1) with mj,1 = mj,0 ⊕ ∆ for
all 1 ≤ j ≤ n (or more generally mj,1 = f(mj,0) for an arbitrary function f)? The sender has
n choices bj and wishes to obtain mj,bj for all j, with the guarantee that mj,1 = mj,0 ⊕ ∆.
Designing such a protocol with no overcost compared to the OT-extension protocol remains an
open problem.

MPC for location-based services. Our second contribution has both theoretical and prac-
tical impacts. It first shows that location-proof systems are a relevant field of applications for
secure multi-party computation. It indeed allows users to prove their location without broad-
casting it to everyone, enabling a wide variety of privacy-preserving location-based services.

151

However, it requires users devices to be equipped with directional antennas, it would be inter-
esting to study whether we can achieve similar results without this hardware requirement, for
example from distance bounding protocols.

We also provides a new secure maximum computation scheme that is asymptotically more
efficient, in terms of communications and computations, than all prior works or generic solu-
tions. However, this efficiency gain goes with a small leakage of information that we believe
in many real-life scenarios, such as location-based services. We also believe that this trade-off
between privacy and efficiency can be applied to many cryptographic primitives, such as private
set intersection.

Analysis of MPC-friendly primitives. Finally, the last contribution describes a guess-and-
determine attack and a degree-two linearization attack (à la Gröbner) against Goldreich’s PRG
with predicate P5, which is a very interesting MPC-friendly candidate due to its extreme simplic-
ity. Although Goldreich’s PRG is conjectured to be theoretically secure for a stretch approaching
1.5 by an arbitrary constant, we show that a very large seed must be used to achieve at least
80 bits of security with such a stretch. In particular, if a stretch of 1.4 is needed, no seed smaller
than 5120 bits should be used. Thus, Goldreich’s PRG with predicate P5 is limited to scenarios
where a small stretch is sufficient. For example, for a stretch as small as 1.1, the seed can be as
small as 512 bits. We then extended our study to other predicates with a particular interest for
XOR-MAJ predicates and improved the theorem of [AL16], by taking into account the number
of annihilators of the predicate.

In order to continue cryptanalyzing Goldreich’s PRG, a possible direction would be to study
the influence of the hamming weight of the seed on the predicates. For example, consider again
the predicate P5 that takes has input (xi1 , xi2 , xi3 , xi4 , xi5). Note that the choice of i1 impacts the
values of xi2 , xi3 , xi4 and xi5 since the positions ij cannot be equal. Then, the input of P5 has a
small bias (that depends on the seed length and its hamming weight) and it appears that P5 is
balanced only for a uniformly random input. This ends up with a very small bias at the output of
the predicate P5, but since all the subsets are taken from the same seed, it might be possible to
build a distinguisher from this observation. Our first studies on the question suggests that the
two attacks on P5 described in this document are much more efficient and allow to break more
parameters. However, we believe this direction is of particular interest for other predicates with
higher localities and higher stretches.

152

BIBLIOGRAPHY

[ABR12] B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy for local small-bias gen-
erators. In TCC 2012, LNCS 7194, pages 600–617. Springer, Heidelberg, March
2012.

[ABR16] B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy for local small-bias gen-
erators. Journal of Cryptology, 29(3):577–596, July 2016.

[ADI+17a] B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic
computation with constant computational overhead. In Crypto’17, pages 223–254,
2017.

[ADI+17b] B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic
computation with constant computational overhead. Cryptology ePrint Archive, Re-
port 2017/617, 2017. http://eprint.iacr.org/2017/617.

[AHI05] M. Alekhnovich, E. A. Hirsch, and D. Itsykson. Exponential lower bounds for the
running time of dpll algorithms on satisfiable formulas. Journal of Automated Rea-
soning, 35(1-3):51–72, 2005.

[AIK04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In 45th FOCS,
pages 166–175. IEEE Computer Society Press, October 2004.

[AIK08] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with
linear stretch in nc 0. Computational Complexity, 17(1):38–69, 2008.

[AL07] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In TCC 2007, LNCS 4392, pages 137–156. Springer, Hei-
delberg, February 2007.

[AL16] B. Applebaum and S. Lovett. Algebraic attacks against random local functions and
their countermeasures. In 48th ACM STOC, pages 1087–1100. ACM Press, June
2016.

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In ACM CCS 13, pages 535–548.
ACM Press, November 2013.

153

http://eprint.iacr.org/2017/617

[AMPR14] A. Afshar, P. Mohassel, B. Pinkas, and B. Riva. Non-interactive secure computation
based on cut-and-choose. In EUROCRYPT 2014, LNCS 8441, pages 387–404.
Springer, Heidelberg, May 2014.

[App12] B. Applebaum. Pseudorandom generators with long stretch and low locality from
random local one-way functions. In 44th ACM STOC, pages 805–816. ACM Press,
May 2012.

[App13] B. Applebaum. Pseudorandom generators with long stretch and low locality from
random local one-way functions. SIAM J. Comput., 42(5):2008–2037, 2013.

[App15] B. Applebaum. The cryptographic hardness of random local functions – survey.
Cryptology ePrint Archive, Report 2015/165, 2015. http://eprint.iacr.org/

2015/165.

[ARS+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. In EUROCRYPT 2015, Part I, LNCS 9056, pages 430–454.
Springer, Heidelberg, April 2015.

[BCD+09] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft.
Secure multiparty computation goes live. In FC 2009, LNCS 5628, pages 325–343.
Springer, Heidelberg, February 2009.

[BCG+17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret shar-
ing: Optimizations and applications. In ACM CCS 17, pages 2105–2122. ACM
Press, 2017.

[BCR87] G. Brassard, C. Crépeau, and J.-M. Robert. All-or-nothing disclosure of secrets. In
CRYPTO’86, LNCS 263, pages 234–238. Springer, Heidelberg, August 1987.

[Bea95] D. Beaver. Precomputing oblivious transfer. In CRYPTO’95, LNCS 963, pages
97–109. Springer, Heidelberg, August 1995.

[BFSyY] M. Bardet, J.-C. Faugere, B. Salvy, and B. y. Yang. Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In MEGA05, 2005. Eighth
International Symposium on Effective Methods in Algebraic Geometry.

[BGG+16] X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-M. Robert. A
prover-anonymous and terrorist-fraud resistant distance-bounding protocol. In
Proc. of WISec, pages 121–133. ACM, 2016.

154

http://eprint.iacr.org/2015/165
http://eprint.iacr.org/2015/165

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO 2001, LNCS
2139, pages 1–18. Springer, Heidelberg, August 2001.

[BHR12] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In ACM
CCS 12, pages 784–796. ACM Press, October 2012.

[BK04] I. F. Blake and V. Kolesnikov. Strong conditional oblivious transfer and computing on
intervals. In ASIACRYPT 2004, LNCS 3329, pages 515–529. Springer, Heidelberg,
December 2004.

[BKK+15] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste. Students
and taxes: a privacy-preserving social study using secure computation. Cryptology
ePrint Archive, Report 2015/1159, 2015. http://eprint.iacr.org/2015/1159.

[BL10] C. Bordenave and M. Lelarge. The rank of diluted random graphs. In Proceedings
of the twenty-first annual ACM-SIAM symposium on Discrete algorithms, pages
1389–1402. Society for Industrial and Applied Mathematics, 2010.

[BLW08] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast
privacy-preserving computations. In ESORICS 2008, LNCS 5283, pages 192–206.
Springer, Heidelberg, October 2008.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[BP11] J. Boyar and R. Peralta. A depth-16 circuit for the AES s-box. Cryptology ePrint
Archive, Report 2011/332, 2011. http://eprint.iacr.org/2011/332.

[BQ09] A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 392–405. Springer, 2009.

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bull., 10(3):19–29, August 1976.

[CCF+16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and
R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-ciphertext
compression. In FSE 2016, LNCS 9783, pages 313–333. Springer, Heidelberg,
March 2016.

[CDM+18] G. Couteau, A. Dupin, P. Méaux, M. Rossi, and Y. Rotella. On the concrete secu-
rity of Goldreich’s pseudorandom generator. In ASIACRYPT 2018, Part II, LNCS,
pages 96–124. Springer, Heidelberg, December 2018.

155

http://eprint.iacr.org/2015/1159
http://eprint.iacr.org/2011/332

[CEMT14] J. Cook, O. Etesami, R. Miller, and L. Trevisan. On the one-way function candidate
proposed by goldreich. ACM Transactions on Computation Theory (TOCT), 6(3):14,
2014.

[CFIK03] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation
over rings. In EUROCRYPT 2003, LNCS 2656, pages 596–613. Springer, Heidel-
berg, May 2003.

[CM01] M. Cryan and P. B. Miltersen. On pseudorandom generators in nc 0. In International
Symposium on Mathematical Foundations of Computer Science, pages 272–284.
Springer, 2001.

[CM03] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback.
In EUROCRYPT 2003, LNCS 2656, pages 345–359. Springer, Heidelberg, May
2003.

[Cou03] N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
CRYPTO 2003, LNCS 2729, pages 176–194. Springer, Heidelberg, August 2003.

[Cv91] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT’91, LNCS 547,
pages 257–265. Springer, Heidelberg, April 1991.

[DCF12] B. Davis, H. Chen, and M. K. Franklin. Privacy-preserving alibi systems. In ASI-
ACCS 12, pages 34–35. ACM Press, May 2012.

[DGM05] D. K. Dalai, K. C. Gupta, and S. Maitra. Cryptographically significant Boolean func-
tions: Construction and analysis in terms of algebraic immunity. In FSE 2005, LNCS
3557, pages 98–111. Springer, Heidelberg, February 2005.

[DLR16] S. Duval, V. Lallemand, and Y. Rotella. Cryptanalysis of the FLIP family of stream
ciphers. In CRYPTO 2016, Part I, LNCS 9814, pages 457–475. Springer, Heidel-
berg, August 2016.

[DMS05] D. K. Dalai, S. Maitra, and S. Sarkar. Basic theory in construction of Boolean func-
tions with maximum possible annihilator immunity. Cryptology ePrint Archive, Re-
port 2005/229, 2005. http://eprint.iacr.org/2005/229.

[DPB18] A. Dupin, D. Pointcheval, and C. Bidan. On the leakage of corrupted garbled cir-
cuits. In ProvSec 2018, LNCS, pages 3–21. Springer, Heidelberg, 2018.

[DPSZ12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO 2012, LNCS 7417, pages 643–
662. Springer, Heidelberg, August 2012.

156

http://eprint.iacr.org/2005/229

[DRB18] A. Dupin, J.-M. Robert, and C. Bidan. Location-proof system based on secure multi-
party computations. In ProvSec 2018, LNCS, pages 22–39. Springer, Heidelberg,
2018.

[EGL82] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
In CRYPTO’82, pages 205–210. Plenum Press, New York, USA, 1982.

[ElG84] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO’84, LNCS 196, pages 10–18. Springer, Heidelberg, August
1984.

[Fau99] J.-C. Faugere. A new efficient algorithm for computing grobner bases (f4). Journal
of Pure and Applied Algebra, 139(1):61 – 88, 1999.

[Fau02] J. C. Faugere. A new efficient algorithm for computing grobner bases without reduc-
tion to zero (f5). In Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’02, pages 75–83, New York, NY, USA, 2002.
ACM.

[FNO15] T. K. Frederiksen, J. B. Nielsen, and C. Orlandi. Privacy-free garbled circuits with
applications to efficient zero-knowledge. In EUROCRYPT 2015, Part II, LNCS
9057, pages 191–219. Springer, Heidelberg, April 2015.

[FZ12] M. K. Franklin and H. Zhang. Unique group signatures. In ESORICS 2012, LNCS
7459, pages 643–660. Springer, Heidelberg, September 2012.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009.

[GG09] M. Graham and D. Gray. Protecting privacy and securing the gathering of loca-
tion proofs–the secure location verification proof gathering protocol. In Proc. of
MobiSec, pages 160–171. Springer, 2009.

[GKRT14] S. Gambs, M.-O. Killijian, M. Roy, and M. Traoré. Props: A privacy-preserving loca-
tion proof system. In Proc. of SRDS, pages 1–10. IEEE, 2014.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[Gol00] O. Goldreich. Candidate one-way functions based on expander graphs. Cryptology
ePrint Archive, Report 2000/063, 2000. http://eprint.iacr.org/2000/063.

157

http://eprint.iacr.org/2000/063

[GRR+16] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. MPC-friendly
symmetric key primitives. In ACM CCS 16, pages 430–443. ACM Press, October
2016.

[HBB12] O. Hasan, L. Brunie, and E. Bertino. Preserving privacy of feedback providers in
decentralized reputation systems. pages 816–826. Elsevier Advanced Technology,
2012.

[HL10] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols - Techniques and
Constructions. ISC. Springer, Heidelberg, 2010.

[HMMB13] O. Hasan, J. Miao, S. B. Mokhtar, and L. Brunie. A privacy preserving prediction-
based routing protocol for mobile delay tolerant networks. In 2013 IEEE 27th Inter-
national Conference on Advanced Information Networking and Applications (AINA),
pages 546–553. IEEE, 2013.

[IG03] I. Ioannidis and A. Grama. An efficient protocol for yao’s millionaires’ problem.
In Proc. of the 36th Annual Hawaii International Conference on System Sciences,
pages 6–pp. IEEE, 2003.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently.
In CRYPTO 2003, LNCS 2729, pages 145–161. Springer, Heidelberg, August 2003.

[IKOS08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant
computational overhead. In 40th ACM STOC, pages 433–442. ACM Press, May
2008.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no
honest majority. Cryptology ePrint Archive, Report 2008/465, 2008.

[JK77] N. Johnson and S. Kotz. Urn models and their application: an approach to mod-
ern discrete probability theory. Wiley Series in Probability and Statistics: Applied
Probability and Statist ICS Sesction Series. Wiley, 1977.

[JKO13] M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In ACM CCS 13, pages 955–966.
ACM Press, November 2013.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In ICALP 2008, Part II, LNCS 5126, pages 486–498. Springer, Hei-
delberg, July 2008.

158

[KSC78] V. Kolchin, B. Sevastianov, and V. Chistiakov. Random allocations. Scripta series
in mathematics. V. H. Winston, 1978.

[KSS09] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building
blocks and applications to auctions and computing minima. In CANS 09, LNCS
5888, pages 1–20. Springer, Heidelberg, December 2009.

[laz81] D. lazard. Resolution des systemes d’equations algebriques. Theoretical Computer
Science, 15(1):77 – 110, 1981.

[LH10a] W. Luo and U. Hengartner. Proving your location without giving up your privacy. In
Proc. of the HotMobile, pages 7–12. ACM, 2010.

[LH10b] W. Luo and U. Hengartner. Veriplace: a privacy-aware location proof architecture.
In Proc. of SIGSPATIAL, pages 23–32. ACM, 2010.

[Lin13] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In CRYPTO 2013, Part II, LNCS 8043, pages 1–17. Springer, Heidelberg,
August 2013.

[Lin17] H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 599–629. Springer, Heidel-
berg, August 2017.

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In EUROCRYPT 2007, LNCS 4515, pages
52–78. Springer, Heidelberg, May 2007.

[LT05] H.-Y. Lin and W.-G. Tzeng. An efficient solution to the millionaires’ problem based
on homomorphic encryption. In ACNS 05, LNCS 3531, pages 456–466. Springer,
Heidelberg, June 2005.

[LT17] H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 630–660. Springer,
Heidelberg, August 2017.

[LV17] A. Lombardi and V. Vaikuntanathan. Limits on the locality of pseudorandom gen-
erators and applications to indistinguishability obfuscation. In TCC 2017, Part I,
LNCS, pages 119–137. Springer, Heidelberg, March 2017.

[LVB+16] A. Lapets, N. Volgushev, A. Bestavros, F. Jansen, and M. Varia. Secure multi-
party computation for analytics deployed as a lightweight web application. Technical
report, Computer Science Department, Boston University, 2016.

159

[Mac64] F. Macaulay. The Algebraic Theory of Modular Systems. Cambridge tracts in math-
ematics and mathematical physics. Stechert-Hafner Service Agency, 1964.

[MF06] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computa-
tion. In PKC 2006, LNCS 3958, pages 458–473. Springer, Heidelberg, April 2006.

[MJSC16] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet. Towards stream ciphers for
efficient FHE with low-noise ciphertexts. In EUROCRYPT 2016, Part I, LNCS 9665,
pages 311–343. Springer, Heidelberg, May 2016.

[MNP+04] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al. Fairplay-secure two-party computation
system. In USENIX Security Symposium, pages 287––302. USENIX, 2004.

[MR13] P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More efficient
and secure two-party computation. In CRYPTO 2013, Part II, LNCS 8043, pages
36–53. Springer, Heidelberg, August 2013.

[MST03] E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC0. In 44th
FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In Proceedings of the 1st ACM conference on Electronic commerce, pages
129–139. ACM, November 1999.

[OW14] R. ODonnell and D. Witmer. Goldreich’s prg: evidence for near-optimal polyno-
mial stretch. In Computational Complexity (CCC), 2014 IEEE 29th Conference on,
pages 1–12. IEEE, 2014.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, Heidelberg,
May 1999.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Annual International Cryptology Conference, pages 129–140. Springer,
1991.

[PHB+15] A. Pham, K. Huguenin, I. Bilogrevic, I. Dacosta, and J.-P. Hubaux. Securerun:
Cheat-proof and private summaries for location-based activities. In Proc. of TMC,
pages 2109–2123. IEEE, 2015.

[PS16] B. Pittel and G. B. Sorkin. The satisfiability threshold for k-xorsat. Combinatorics,
Probability and Computing, 25(2):236–268, 2016.

160

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signature
and public-key cryptosystems. Communications of the Association for Computing
Machinery, 21(2):120–126, 1978.

[Sch90] C.-P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO’89,
LNCS 435, pages 239–252. Springer, Heidelberg, August 1990.

[Sha79] A. Shamir. How to share a secret. Communications of the Association for Comput-
ing Machinery, 22(11):612–613, November 1979.

[Sie84] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-
tographic applications (corresp.). IEEE Transactions on Information theory,
30(5):776–780, 1984.

[SP05] D. Singelee and B. Preneel. Location verification using secure distance bounding
protocols. In Proc. of MASS, pages 7–14. IEEE, 2005.

[sS11] a. shelat and C.-H. Shen. Two-output secure computation with malicious adver-
saries. In EUROCRYPT 2011, LNCS 6632, pages 386–405. Springer, Heidelberg,
May 2011.

[sS13] a. shelat and C.-H. Shen. Fast two-party secure computation with minimal assump-
tions. In ACM CCS 13, pages 523–534. ACM Press, November 2013.

[SSW03] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims. In
Proc. of WISEC, pages 1–10. ACM, 2003.

[SW09] S. Saroiu and A. Wolman. Enabling new mobile applications with location proofs.
In Proc. of HotMobile, pages 1–6. ACM, 2009.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In 46th ACM STOC, pages 475–484. ACM Press, May / June
2014.

[TCB10] M. Talasila, R. Curtmola, and C. Borcea. Link: Location verification through imme-
diate neighbors knowledge. In Proc. of MobiSec, pages 210–223. Springer, 2010.

[Wie86] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE transactions
on information theory, 32(1):54–62, 1986.

[WMK17] X. Wang, A. J. Malozemoff, and J. Katz. Faster secure two-party computation in
the single-execution setting. In EUROCRYPT 2017, Part III, LNCS 10212, pages
399–424. Springer, Heidelberg, May 2017.

161

[Yao82] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[ZC11] Z. Zhu and G. Cao. Applaus: A privacy-preserving location proof updating system
for location-based services. In Proc. of INFOCOM, pages 1889–1897. IEEE, 2011.

[ZM05] S. Zhang and F. Makedon. Privacy preserving learning in negotiation. In Proc. of
SAC, pages 821–825. ACM, 2005.

[ZRE15] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In EUROCRYPT 2015, Part II, LNCS
9057, pages 220–250. Springer, Heidelberg, April 2015.

162

Producteurs

Christophe BIDAN David POINTCHEVAL

Coproducteurs

Renaud DUBOIS Éric GARRIDO Jean-Marc ROBERT

Postproducteurs

Sébastien CANARD Jean-Sébastien CORON Marine MINIER

Équipe de tournage

Costumes Anca NITULESCU

Cascades Georg FUCHSBAUER

Michele ORRU

Piano Geoffroy COUTEAU

Logistique Romain GAY

Balthazar BAUER

Traduction Michele MINELLI

Razvan ROŞIE

Quoc Huy VU

Scénario Pierrick MÉAUX

Chefs de production Didier LE MAITRE

Laurent FREREBEAU

Fournisseur de café Michel ABDALLA

Fournisseur de dlog
Edouard
DUFOUR SANS

Anonymous reviewer Brice MINAUD

Photographe
Emeline HUFSCHMITT

en second
Eleboniste Thomas PREST

Jeux de société Florian BOURSE

Antoine PLOUVIEZ

Ange MARTINELLI

Mélissa ROSSI

Thomas RICOSSET

Punchline Chloé HÉBANT

Houda team Dahmun GOUDARZI

Adrian THILLARD

Hackeurs Anne VIGUIÉ

administratifs Karine BERNARD

Lise-Marie BIVARD

Soutien émotif Megguy GUYON

Soutien culinaire PAPA et MAMAN

Figurants

Alexandre
ANZALA-YAMAJAKO

Sonia BELAID

Fabrice BENHAMOUDA

Olivier BERNARD

Céline CHEVALIER

Jérémy CHOTARD

Léo COLISSON

Rafael DEL PINO

Pierre-Alain DUPONT

Pooya FARSHIM

Houda FERRADI

Mickael GEFFRAULT

Matthieu GIRAUD

Junqing GONG

Julia HESSE

Louiza KHATI

Jean KIEFFER

Sylvain LACHARTRE

David LEFRANC

Simon MASSON

Thierry MEFENZA NOUNTU

Olivier ORCIÈRE

Philippe PAINCHAULT

Alain PASSELÈGUE

Julien PRAT

Théo RYFFEL

Quentin SANTOS

Damien VERGNAUD

Hoeteck WEE

Cette thèse est une oeuvre de fiction. Toute ressemblance avec la réalité serait
purement fortuite.

163

Titre: Calculs Multi-Parties et Vie Privée

Mot clés : Multi-party computation, vie privée, garbled circuits, preuve de localisation, Goldre-
ich’s PRG

Resumé : Les calculs multi-parties sécurisés
(MPC) sont une branche de la cryptographie
qui a pour objectif de concevoir des solutions
permettant à plusieurs parties de calculer en-
semble une fonction de leurs données, tout en
gardant ces données secrètes. Contrairement
à la cryptographie classique, où l’on cherche
à assurer la sécurité malgré la présence d’un
adversaire extérieur, le MPC garantit la sécu-
rité face à un adversaire interne contrôlant un
ou plusieurs participants.

Cette thèse apporte à la fois des contribu-

tions théoriques et pratiques dans le domaine
du MPC. D’un point de vue théorique, une
étude est réalisée sur la corruption des “gar-
bled circuits”, qui sont une solution générale
au problème à deux parties.

Sur un plan pratique, nous réalisons une
cryptanalyse de certaines primitives propres
au MPC, dans le but d’étudier leur efficacité
réelle. Enfin, nous montrons que les services
basés sur la position des utilisateurs peuvent
prendre avantage du MPC pour devenir plus
respectueux de la vie privée.

Title: Secure Multi-Party Computation and Privacy

Keywords : Multi-party computation, privacy, garbled circuits, location-proof, Goldreich’s PRG

Abstract: Secure multi-party computation
(MPC) is a subfield of cryptography that
aims at designing protocols for parties to co-
operatively compute a function over their in-
puts while keeping those inputs private. Unlike
traditional cryptographic tools (encryption, sig-
nature, ...), where cryptography ensures secu-
rity and integrity of communication or storage
against an external eavesdropping adversary,
MPC assures security against an internal ad-
versary, that controls one or more of the actual

participants.
Both theoretical and practical contributions

to MPC are made in this thesis. From a theo-
retical point of view, we study the possible cor-
ruptions of garbled circuits, which is a general
solution for the two-party case.

On a practical level, we cryptanalyze some
MPC-friendly primitives in order to assess their
concrete efficiency. Finally, we also show that
MPC can be used to build privacy-preserving
location-based services.

	Introduction
	Applications of Secure Multi-Party Computations
	Adversary Models
	Contributions
	Organization
	Personal Publications

	Preliminaries
	Yao's Millionaires' Problem
	Adversary Models
	Useful Tools for Multi-Party Computation
	Homomorphic Encryption Schemes
	Zero-Knowledge Proof
	Oblivious Transfer

	Garbled Circuits: a General Solution to the 2PC Problem
	Secret Sharing: a General Solution to the MPC Problem
	MPC-Friendly Primitives
	Regarding the Preprocessing Model

	On the Leakage of Corrupted Garbled Circuits
	Preliminaries
	Formal Definition
	Simplest Garbling Scheme
	The Point-and-Permute Trick
	The 25% Row-Reduction
	The Free-XOR Trick
	The Two-Half-Gate Technique
	Privacy-Free Garbled Circuits
	Corruption of Garbled Circuits
	The Cut-&-Choose Paradigm

	Motivation of Our Work
	Corruption of Optimized Garbled Circuits
	Delimitation of the Corruption
	Impossibility of Reducing the Number of Garbled Keys to One
	Impossibility of Three-Key Wires - Part 1
	Impossibility of Three-Key Wires - Part 2
	Impossibility of Turning a Non-Linear Gate into a Linear Gate
	About Other Non-Linear Gates
	Fitting Everything Together
	Ensuring the Correct Garbling of Input Wires

	Applications to Real Circuits
	The Greater-Than Function
	The Addition Function
	The Equality-Test Function
	Trade-Off with Cut-&-Choose
	Garbled Circuits with Covert Adversaries

	Conclusion

	Location Proof System based on Multi-Party Computations
	Introduction
	Preliminaries
	Group Signature Schemes
	Prior Location-Proof Systems
	Secure Two-Party Comparison Protocol
	Secure Multi-Party Maximum Protocol

	Problem Statement
	Location-Proof Generation Protocol Outline
	Adversary Models

	Location-Proof Gathering and Verifying
	Location-Proof Gathering
	Security Properties of the Overall Process
	Location-Proof Verifying

	Secure Multi-Party Maximum Protocol
	The Protocol Description
	The Protocol Security
	The Protocol Analysis

	Secure Iterative Two-Party Comparison Protocol
	The Protocol Correctness
	The Protocol Security
	The Protocol Complexity
	The Maximum Transfer

	Complexity of the Overall System
	Conclusion

	On the Concrete Security of Goldreich's Pseudorandom Generator
	Introduction
	Goals and Results
	Organization of the Chapter

	Preliminaries
	Hypergraphs
	Predicates
	Pseudorandom Generators
	Implications of Polynomial-Stretch Local Pseudorandom Generators
	On the Security of Goldreich's PRG

	Guess & Determine Cryptanalysis of Goldreich's PRG with P5
	The Attack - Asymptotic Description
	Complexity Analysis
	Success Probability
	Seed Recovery
	Concrete Instantiation of the Attack
	Experiments

	Algebraic Cryptanalysis of Goldreich's PRG with P5
	A Polynomial Attack with Degree-Two Linearization
	Gröbner Approach
	Conclusion

	About the Ordered Case
	Guess and Determine
	Algebraic Attack on the Ordered Case

	Other Results
	Conclusion and Open Questions

	Conclusion
	Bibliography

