
HAL Id: tel-02492281
https://theses.hal.science/tel-02492281

Submitted on 26 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simple and yet novel approach in flood assessment to
overcome data scarcity : high quality DEM and rainfall

proxies
Dong Eon Kim

To cite this version:
Dong Eon Kim. Simple and yet novel approach in flood assessment to overcome data scarcity : high
quality DEM and rainfall proxies. Risques. COMUE Université Côte d’Azur (2015 - 2019), 2019.
English. �NNT : 2019AZUR4029�. �tel-02492281�

https://theses.hal.science/tel-02492281
https://hal.archives-ouvertes.fr


 

Approche simple et novatrice pour 
l’évaluation des inondations dans un contexte 

pauvre en données: 
 

Solutions alternatives aux MNT haute résolution et aux 
données locales de précicipitation 

 

Dong Eon KIM 
Polytech Lab 

 

Présentée en vue de l’obtention  
du grade de docteur en discipline 

d’Université Côte d’Azur 

Dirigée par : Philippe GOURBESVILLE 

Co-encadrée par : Shie-Yui LIONG 

Soutenue le : 10 Juin 2019 

 

 

Devant le jury, composé de :  

Reinhard HINKELMANN, Pr., TU Berlin, Allemagne 
Manuel GOMEZ VALENTIN, Pr., Université Politecnica de Catalunya, 
Espagne 
Shie-Yui LIONG, Pr., Université Nationale de Singapour, 
Singapour 
Philippe AUDRA, Pr., Université Nice Sophia Antipolis 
Philippe GOURBESVILLE, Pr., Université Nice Sophia Antipolis 
Ludovic ANDRES, Métropole Nice Côte d'Azur 

 

THÈSE DE DOCTORAT 

silici
Texte tapé à la machine

silici
Texte tapé à la machine

silici
Texte tapé à la machine

silici
Texte tapé à la machine

silici
Texte tapé à la machine

silici
Texte tapé à la machine

silici
Texte tapé à la machine

silici
Texte tapé à la machine

silici
Texte tapé à la machine



ii 

 

ACKNOWLEDGEMENT 

Pursuing a PhD program is both enjoyable and painful experience in my life journey. At the beginning 

of my study, I was very confident about what to do and what will have to be done. However, it was 

not as straightforward as I initially thought. I met obstacles even on the first step and had difficulty 

to solve the problems. When the issues were settled after various twists and turns, I regained the 

confidence that I could settle anything in the future. However, these up and down cycles repeated 

until the end of this PhD study. The experience gained from this PhD program surely prepare me to 

face challenges in both my future carrier and personal life.  

Whenever I was steeped in anxiety, there were always people around me who comforted and 

strengthened me. I would like to express my deepest appreciation to all these people. First and 

foremost, I would like to express my sincere thanks to my supervisors, Professor Philippe 

Gourbesville and Professor Shie-Yui Liong, for their contributions in providing suggestions, 

feedbacks and many other countless supports. Without their support, I would never have completed 

my PhD program. 

Special thanks are also extended to my colleagues since I started my PhD: Dr. Jiandong Liu, Dr. 

Srivatsan Vijayaraghavan, Dr. Yabin Sun, Dr. Dadiyorto Wendi, Dr. Chi Dung Doan, Dr. Qiang Ma 

and Dr. Lian Guey Ler. They, aside from being my good friends, helped me in providing the necessary 

data and ideas leading to the present quality of my study. I had excellent time with them; I surely 

treasure our friendship. 

I also wish to extend my appreciation to all those organizations and persons who made their 

invaluable data available to me: (1) Dr. Ludovic Andres of Nice Côte d'Azur Metropolis for providing 

the extremely high resolution DEM of Nice; (2) German Aerospace Center (DLR) for TanDEM-X; 

(3) National Aeronautics and Space Administration (NASA) for SRTM; and (4) European Space 

Agency (ESA) for Sentinel-2 

Last, but not least, I am greatly indebted to my wife, Soo Yeon, and my kids, Do Yeon and Min Geon. 

They are absolutely the source of my happiness. Their love and support have encouraged me to fully 

focus on and complete this PhD program with excellent results. Thank you. 

 

  



iii 

 

ABSTRACT 

Simple-and-yet-novel approach in flood assessment to overcome data scarcity: High quality 

DEM and rainfall proxies 

Many urban cities in Southeast Asia witness severe flooding associated to increasing rainfall intensity 

and rapid urbanization often due to poor urban planning. Two important inputs required in flood 

hazard assessment are: (1) high accuracy Digital Elevation Model (DEM), and (2) long rainfall 

record. High accuracy DEM is both expensive and time consuming to acquire. Long rainfall records 

for areas of interest are often not available or not sufficiently long to determine the probable extremes. 

This thesis presents a notably cost-effective and efficient approach to estimate high-resolution and 

accuracy DEM, and suggests proxies for long rainfall data. 

DEM data from a publicly accessible satellite, Shuttle Radar Topography Mission (SRTM), and 

Sentinel 2 multispectral imagery are selected and used to train the Artificial Neural Network (ANN) 

to improve the quality of the DEM. In the training of ANN, high quality observed DEM is the key 

leading to a well-trained ANN. The trained ANN will then be ready to efficiently and effectively 

generate high quality DEM, at low cost, for places where DEM data is not available. 

The performance of the DEM improvement scheme is evaluated in places of various landuse types 

(e.g. dense urban areas, forested areas), and in different countries (Nice, France; Singapore; Jakarta, 

Indonesia) through various criteria, e.g. whenever possible visual clarity, scatter plots, Root Mean 

Square Error (RMSE) and drainage networks. The DEM resulting from the latest version of improved 

SRTM (iSRTM_v2 DEM) performs (1) significantly better than the original SRTM DEM, a 34 % to 

57 % RMSE reduction; (2) the visual clarity is so much better; and (3) much closer drainage network 

with the actual. The much improved DEM allows flood modelling to proceed with high confidence. 

Rainfall data resulting from a high spatial resolution Regional Climate Model (RCM), Weather 

Research and Forecasting driven by ERA-Interim (WRF/ERAI) dataset, is extracted, analyzed, and 

compared with high quality observed rainfall data of Singapore with regard to accuracy. The 

comparisons are performed, among others, on their Intensity-Duration-Frequency (IDF) curves, the 

essential design curves for flood risk assessment; they matched quite well. The rainfall data (from the 

RCM) are then used as proxies for Greater Jakarta (Indonesia), where no rainfall data were available, 

to derive the IDF curves required for the flood analysis. 

MIKE 21 Flow Model Flexible Mesh (MIKE 21 FM) is applied to Greater Jakarta, with input data 

from the above mentioned much improved DEM and precipitation proxy data, for flood simulations 
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of 2 return periods (50- and 100-years). Qualitative agreement of model results and observation of 

the 2013 Jakarta flood were obtained. This demonstrates the applications of the 

approaches/methodologies, proposed in this thesis, on catchments where most essential data for flood 

risk assessment (high resolution and high accuracy DEM and long and high accuracy rainfall data) 

are not available. 

This thesis should be of interest to readers of the areas of remote sensing, artificial intelligence and 

flood management, possibly also for the policy makers in proposing relevant flood mitigation 

measures under climate change with increasing devastating flood damages and casualties. 
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RESUME 

De nombreuses villes d’Asie du Sud-Est subissent de graves inondations liées d’une part à l’intensité 

croissante des précipitations et part d’autre à une urbanisation rapide souvent due à une planification 

urbaine non maitrisée. L'évaluation quantitative des risques d'inondation nécessite deux éléments 

essentiels: (1) un modèle numérique de terrain (MNT) haute définition, et (2) une chronologie de 

précipitations la plus longue possible. Un MNT haute définition est à la fois coûteux et long à 

acquérir. Les chronologies de précipitations longues sont fréquemment indisponibles dans de 

nombreux sites et ne présentent pas toujours une durée suffisante pour une définition pertinente des 

valeurs extrêmes. Cette thèse présente une approche opérationnelle pour générer des MNT haute 

définition et suggère une stratégie pour définir des pluies extrêmes en dehors de chronologies de 

précipitations longues.  

Des données pour la production des MNT issues de capteurs satellitaires - mission SRTM (Shuttle 

Radar Topography Mission) et images multi spectrales Sentinel 2 - ont été utilisées et mises en œuvre. 

Un réseau de neurones artificiels (ANN) est utilisé afin d'améliorer la qualité du MNT. Dans la phase 

d’apprentissage du réseau de neurones, la qualité des MNE utilisés comme référence est essentielle 

et conditionne la performance de l’outil dans son application ultérieure. A la suite de cet 

apprentissage, le réseau de neurones peut être mis en œuvre pour générer, à faible coût, des MNT 

haute résolution dans des secteurs où les données sont partiellement indisponibles. 

Les performances de la méthode d’amélioration du MNT sont évaluées dans des différents secteurs 

caractérisés par des occupations du sol variées (secteur urbain dense, secteurs boisés par exemple) et 

dans différents pays (Nice, France; Singapour; Jakarta, Indonésie). La qualité des résultats est 

analysées avec différents indicateurs tels que les diagrammes de dispersion, la clarté visuelle, l’erreur 

quadratique moyenne (RMSE) et l’adéquation avec les réseaux de drainage réels. Le MNT issu des 

données SRTM améliorées (iSRTM_v2 DEM) montre (1) une qualité nettement supérieure au MNT 

initial puisque le RMSE passe de 34 % à 57 % du RMSE; (2) la clarté visuelle est largement 

améliorée; et (3) le réseau de drainage calculé correspond davantage au réseau réel. La production de 

ce MNT amélioré permet une meilleure modélisation des processus d’inondation et augmente la 

qualité des résultats des simulations hydrauliques.  

Des données de précipitation issues d'un Modèle Climatologique Régional (RCM) haute résolution 

spatiale ainsi que des prévisions issues de données ERA-Interim (WRF / ERAI) ont été extraites, 

analysées et comparées avec les observations haute résolution enregistrées à Singapour. Les 

comparaisons ont également été effectuées avec les courbes Intensité-Durée-Fréquence (IDF) qui 
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sont utilisées pour l'évaluation des risques d'inondation. Les résultats sont très satisfaisants et valident 

les données produites par le modèle régional. Cette validation permet d’utiliser les données 

pluviométriques issues du modèle régional pour le site de la métropole de Jakarta (Indonésie) où les 

enregistrements pluviométriques ne sont pas disponibles pour la production des courbes IDF. 

Un modèle hydraulique détaillé a été construit avec le système de modélisation MIKE 21 (MIKE 21 

FM) pour toute la métropole de Jakarta à partir d’un MNT amélioré et des précipitations associées à 

des périodes de retour de 50 et 100 ans. Des cartes d’inondation ont été générées et sont utilisées par 

les services gestionnaires. Cet exemple démontre que les nouvelles méthodes et approches proposées 

dans cette thèse sont pertinentes pour produire une évaluation des risques d’inondation pertinente 

lorsque des données locales (MNT haute résolution et données pluviométriques sur une période 

longue) sont insuffisantes ou indisponibles. 

Les résultats de ce travail de recherche devraient intéresser les lecteurs oeuvrant dans les domaines 

de la télédétection, de l'intelligence artificielle et de la gestion des inondations. La méthodologie 

proposée est destinée à permettre aux décideurs et gestionnaires de proposer des mesures appropriées 

afin de réduire les conséquences des inondations sur les biens et les personnes dans le contexte du 

changement climatique.  
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1 Introduction 

1.1 Background 

Flooding is known as one of the most devastating and costliest global phenomena that can seriously 

disrupt transport and communication, severely damage properties, and cause devastated economic 

and human losses. Flooding is likely to be even further worsened in the future with changing 

climate. With clearly increasing global temperature, extreme weather events have been recorded; 

in Southeast Asia alone in recent years, these extreme events range from typhoon Haiyan (the 

highest category 5) in 2013, heavy rainfalls (and hence flooding in Jakarta 2007, Hanoi 2008, 

Bangkok 2011) to resulting landslides. Rainfall events with both higher intensity and frequency 

have been observed and are likely to continue. A warmer atmosphere is expected to accelerate the 

hydrological cycle due to the higher humidity content.  

In late June through mid-July 2018, heavy downpours in Japan, a country highly ranked in disaster 

preparedness, resulted in severe floods and landslides. 225 people were confirmed dead in the 

affected areas, and economic losses reached an estimated US$ 3.66 billion [Sim, 2018]. Despite 

the efforts of many international organizations and countries, these catastrophes continue to occur 

at alarming rate. In Southeast Asia this is due to the rapid urbanization (hence, increasing migration 

into the urban areas for economic reasons), poor urban planning and enforcement of storm drainage 

network designs and maintenance works.  

Insurance Information Institute (https://www.iii.org/fact-statistics/facts-statistics-global-

catastrophes) showed insightful statistics on various world natural catastrophes by type of events 

in 2017, and by continent as shown in Figure 1.1 (a) and (b) respectively. Figure 1.1 (a) showed 

the number of events, fatalities and insured losses mainly caused by meteorological and 

hydrological events (about 80 % combined) while Figure 1.1 (b) clearly showed how vulnerable 

Asian continent is in the number of events (44 %), fatalities (65 %) and insured losses (2 %). The 

message is very alarming for Asia as the vulnerability is high and yet the insured losses are 

extremely low compared to their North American counterparts. Insurance Information Institute 

gave further breakdown on world weather-related catastrophes by type of events in 2017, and by 

continent as shown in Figure 1.2 (a) and (b) respectively. Figure 1.2 (a) showed the number of 
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events (51 %) and fatalities (75 %) caused by hydrological events (flood, mass movement) 

dominated; the corresponding insured losses, however, was just 1 %. The statistics for Asia was 

again most alarmingly vulnerable: the number of events was 41 %, fatalities 66 %, and yet the 

insured losses only 2 %; note that most likely the main portion of the insured losses is in more 

developed countries such as Japan, Korea, and Singapore. Southeast Asian countries are indeed 

very vulnerable. 

 

Figure 1.1 World natural catastrophes by (a) type of event and (b) continent in 2017 [III, 

2018] 
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Figure 1.2 World weather-related catastrophes by (a) type of event and (b) continent in 

2017 [III, 2018] 

Southeast Asia comprises of 11 nations - Indonesia, Malaysia, Singapore, Vietnam, Brunei, Laos, 

Myanmar, Philippine, Thailand, Cambodia and Timor Leste. This region covers an area of about 

4.5 million km2 which is 3 % of the earth’s land area. Its population is more than 641 million which 

is about the 8.5 % of world’s population. The economic growth rate of Southeast Asia is the fastest 

growth in the world since 1990. With abundant resources and high population growth, the overseas 

investments concentrate in rapidly developing coastal megacities. However, Southeast Asia is 

geographically located in one of the most disaster-prone regions of the world; many countries in 

the region have a history of devastating disasters that have caused colossal economic and human 

losses. According to ASEAN (Association of South East Asian Nations) Disaster Risk 

Management Initiative, flood is the most reported disaster in ASEAN countries between 1970 and 
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2009, as listed Table 1-1. Out of all reported disasters, 36 percent were floods, 32 percent were 

cyclonic storms [UNISDR, 2010].  

Indonesia, one of the most vulnerable countries to natural disasters, experienced in year 2018 

almost 2,000 natural disasters (tsunami, earthquake and flooding) which claimed nearly 4,000 lives 

and displaced around 3 million people. As recent as in December 2018, Sunda Strait tsunami, 

triggered by a volcanic activity on the island of Anak Krakatoa, caused 429 deaths and 1,485 

injured [Renaldi and Shelton, 2018].  

The damage of natural disasters is expected to become more severe in the future due to rapid 

developments and population growth over the study region compounded with climate change. 

Challenges faced by ASEAN are huge. ASEAN needs to incorporate future potential risks into 

disaster risk reduction. 

Table 1-1 Statistic of reported disaster between 1970 and 2009 [UNISDR, 2010] 

Disaster type 
No. of 

disasters
/year 

Total no. 
of deaths 

Deaths/
year 

Relative vulnerability 
(deaths/year/million) 

Average annual 
economic loss    

($ million) 

Flood 10.85 17,800 445.0 0.75 312.1 

Storm 9.65 184,063 4,601.6 7.76 339.4 

Epidemic 2.28 7,294 182.4 0.31 - 

Landslide 2.05 5,058 126.5 0.21 4.4 

Forest Fire 0.45 310 7.8 0.01 511.9 

Drought 0.98 1,337 33.4 0.06 45.8 

Tsunami 0.15 92,021 2,300.5 3.88 214.2 

Volcano 1.33 1,380 34.5 0.06 32.1 

Earthquake 2.58 105,735 2,643.4 4.46 243.9 

 

Focusing further on Southeast Asia, a study of Yusuf and Francisco [2009], relevant to present 

conditions, highlighted the climate hazards over domain using a multi climate index; the study 

conducted a vulnerability mapping based on tropical cyclones, floods, landslides, droughts, and 

sea level rise. Figure 1.3 and Figure 1.4 focus on the overall climate hazard and the annual flood 

frequency maps for Southeast Asia. Figure 1.3 showed, for example, how vulnerable the 

Philippines is; its vulnerability is mainly caused by destructive typhoons which hit the Philippines 

about 5 times annually. Figure 1.4 showed, for example, the vulnerability of the city of Jakarta (on 

Java island of Indonesia) to floods. 
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Figure 1.3 Multiple climate hazard map of Southeast Asia [Yusuf and Francisco, 2009] 

 

Figure 1.4 Annual flood frequency map of Southeast Asia [Yusuf and Francisco, 2009] 

To briefly highlight the severity of floods in Southeast Asia in recent years, two countries, Thailand 

and Indonesia, are singled out here. In July – Dec 2011, Central and Northern Thailand received 

300 to 500 mm (that is about 3 times) more rainfall than the normal condition as the Asian monsoon 
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started early with an extraordinary heavy rainfall [Bevere et al., 2012], as shown in Figure 1.5. 

Duration of flooding was 175 consecutive days. It resulted in 815 deaths and affected more than 

13.6 million people. With many industrial areas severely affected, [Bhoochaoom and Dixon, 2012] 

estimated the total damage and economic losses of about Thai Baht (THB) 1.43 trillion (US$ 46.5 

billion).  

 

Figure 1.5 Thailand Flood in July to December 2011 [Bangkokpost, 2012] 

In January – February 2007 torrential rains pounded Jakarta, the capital city of Indonesia. This 

caused floods that buried 36 % of the city under as much as 5 m in some areas, affected 2.6 million 

people, and forced 340,000 people to flee their home, as shown in Figure 1.6. Over 70 people died 

and outbreaks of disease affected over 200,000 people, with losses estimated at US$ 900 million. 

Jakarta’s notorious subsidence, estimated at 7.5 cm/year, worsens the flooding during heavy 

rainfall combined with high tide. This will be even of greater concern with climate change which 

projected increasing rainfall intensity and rising sea level. 
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Figure 1.6 Jakarta Flood in January 2007 [Floodlist, 2008] 

1.2 Gaps in Flood Analysis 

Developed countries apply, for example, sophisticated rainfall nowcasting and forecasting, well 

calibrated and validated flood models, and flood early warning systems to disseminate anticipated 

water levels in the river/stream networks and low lying areas, and thus, to minimize 

damages/losses caused by floods. However, developing countries may not have enough 

information to solve the aforementioned issues due to its economic and technical constraints. 

Effective preventive and mitigation measures can only be undertaken when good quality data (e.g. 

Digital Elevation Model (DEM) and rainfall records) are available for flood model.  

There are several well established numerical flood models, such as SWMM [Rossman, 2010], 

SOBEK [Deltares, 2019] and MIKE Flood [DHI, 2017]. In principle, the governing equations of 

these models are the same, St. Venant and Navier-Stokes equations, coupled to various sub-

components (infiltration, evapotranspiration, etc.), and solved by different numerical schemes. 

Challenges in developing countries are, among others, limited project funding to acquire the 
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aforementioned good quality, high temporal resolution and long rainfall record, and high spatial 

resolution and high accuracy DEM; their availabilities are often even doubtful.   

In recent years, there is a neologism, called ‘the flood of Big Data’, which means huge data 

publicly accessible so people can develop immense opportunities in various ways. Remote sensing, 

as an example, is the process of detecting and monitoring the physical characteristics of an area by 

measuring its reflected and emitted radiation at a distance from the targeted area. This technology 

has been used, for example, in taking images on the earth’s surface, tracking clouds to predict the 

weather, tracking the growth of an area and changes in landuses etc.  

This study focuses on two important input data required in flood modelling and analysis. They are 

high accuracy DEM and a long rainfall record. Remote sensing data and an artificial intelligence 

technique, Artificial Neural Network (ANN) are proposed to significantly improve the original 

remote sensing DEM data, for areas where high spatial resolution and high accuracy DEM is not 

available. For areas where observed rainfall data are either not available or not sufficiently long, 

the study proposes rainfall proxy products from various gridded observation data such as Climate 

Hazards Group InfraRed Precipitation with Station (CHIRPS), Climate Research Unit (CRU), 

Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation 

(APHRODITE) or rainfall outputs from a Regional Climate Model (RCM). The question remains 

how to assess flood risk in the region of interest where the aforementioned data are not available 

or sufficient. This study will offer (1) a methodology to derive improved DEM from publicly 

accessible remote sensing data, and (2) an approach to select a highly accurate rainfall proxy, from 

a RCM, required to construct the much needed Intensity-Duration-Frequency (IDF) curves for 

flood model and analysis. 
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1.3 Study Region – Greater Jakarta, Indonesia 

As shown in Figure 1.4 and Figure 1.6, Java Island is vulnerable to flooding in Southeast Asia. 

Java Island is one of the large islands and most densely populated. More than half of Indonesia’s 

226 million populations live in Java (141 million in 2014 Census). The island also hosts major 

industrial complexes.  

Jakarta, a capital city of Indonesia, is located on the northwest coast of Java Island, at the mouth 

of the Ciliwung River on Jakarta Bay. Jakarta has a land area of about 660 km2 with population 

over 10 million [JakartaOpenData, 2015]. There are 13 main rivers flowing through the city and 

its vicinity. The longest river is the Ciliwung River. The climate of Jakarta is tropical wet and dry; 

the rainy season in Jakarta starts in December and ends in March. The rainfall intensity often 

reaches its peak in January or February (Table 1-2). Jakarta suffers from massive flooding almost 

yearly mainly due to high rainfall intensities, low lying areas and poorly managed drainages. In 

2007, approximately 70 % of Jakarta’s area was flooded with water depths up to 4 meters. Area of 

the catchment contributing water to Jakarta Bay is about 2,976 km2 (hereafter referred as Greater 

Jakarta). 

Table 1-2 Climate information of Jakarta [Sun et al., 2014] 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Average 
High 
(C°) 

31.5 32.3 32.5 33.5 33.5 34.3 33.3 33.0 32.0 31.7 31.3 32.0 32.6 

Average 
Low 
(C°) 

24.2 24.3 25.2 25.1 25.4 24.9 25.1 24.9 25.5 25.5 24.9 24.9 24.8 

Humidity 
(%) 

85 85 83 82 82 81 78 76 76 77 81 82 81 

Rainfall 
(mm) 

389.7 309.8 100.3 257.8 139.4 83.1 30.8 34.2 30.0 33.1 175.0 123.0 1706.2 

 

Although there are many steep mountains in the upstream of Greater Jakarta, most of areas near to 

the coastal areas are quite flat and less than 10 m above Mean Sea Level (MSL), Figure 1.7 showed 

(a) map of Indonesia; (b) map of Java Island; and (c) Greater Jakarta with low lying areas along 

the coast. Figure 1.7 (c) showed also a longitudinal profile from the upstream point A and 

downstream point B; it shows drastic elevation changes from mountainous (A) to low lying coastal 

areas (B). This clearly implies that the low lying areas are prone to floods. Despites considerable 

flood risk management system introduced in the past decades, the flood impacts have worsened; 
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the main reasons are (1) rapid urbanization with not much of urban planning; (2) poor law 

enforcement on drainage maintenance (e.g. garbage dumping in rivers/canals). This study provides 

a baseline of flood risk mapping over Greater Jakarta with innovative cost-effective technology. 

 

Figure 1.7 (a) Map of Indonesia; (b) map of Java Island; and (c) Greater Jakarta 

catchment with low-lying areas shown in blue, less than 10 m above MSL 

1.4 Research Motivations  

To implement flood adaptation measures, it is imperative to couple topographical, hydrological 

and hydraulic understanding with model analysis. High spatial resolution and high accuracy DEM, 

and high temporal resolution and long rainfall records are important in flood hazard assessment 

using numerical model. Challenges in developing countries, such as Indonesia, are obtaining: (1) 

high accuracy DEM which is very costly and time consuming to acquire; and (2) good quality and 

long rainfall record required to derive Intensity-Duration-Frequency curves, design curves for 

drainage.  

Figure 1.8 showed the schematic diagram of the process how the most relevant data for the flood 

simulations and analysis are cost effectively obtained. The research motivations and processes are 

summarized as follows. 
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1. DEM data from a publicly accessible remote sensing satellite will be selected and used to 

train an ANN to improve the quality of the remote sensing DEM. In the training of ANN, 

high quality observed DEM is the key leading to a well-trained ANN. The trained ANN 

will then be ready to efficiently and effectively generate high quality DEM, at low cost, for 

places where DEM data is not available. 

2. Rainfall data, resulting from a high spatial resolution Regional Climate Model, RCM, will 

first be extracted, analyzed, and compared with regard to accuracy with good quality 

observed rainfall data of gauged catchments. The comparisons are performed, among 

others, on their IDF curves which are the essential design curves for storm drainage. After 

checking its high accuracy, the rainfall data (from the RCM) for an ungauged catchment 

will be extracted and readily used as proxies to derive the IDF curves for that ungauged 

catchment. 

3. Data from the aforementioned two steps are then used as input to a widely used numerical 

flood model to generate flood data and the much needed flood map of various return 

periods. Policy makers will then be well informed about anticipated flood prone areas and 

flood extents to come up with best flood preventive and mitigation measures.   

 

 

Figure 1.8 Schematic diagram of the research 
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1.5 Structure of Thesis 

This thesis consists of six chapters. A brief description of each chapter is as follows: 

 Chapter 1 presents the background of the study, gaps, study areas, research motivations, 

and structure of thesis. 

 Chapter 2 presents a series of literature reviews relevant to (1) Digital Elevation Model 

(DEM): satellite data and multispectral imagery, and artificial neural networks with which 

cost effective DEM are derived; (2) Proxy for high temporal resolution and long rainfall 

data record: Regional Climate Model data (rainfall data in particular), and regional 

frequency analysis with which proxy rainfall data are then used to derive Intensity-

Duration-Frequency curves; and (3) Numerical models: which assesse flood prone areas 

and flood extents. 

 Chapter 3 presents (1) the proposed methodology to improve publicly accessible DEM; 

and (2) the approach to select proxy rainfall data from downscaled climate model; 

suitability of data from various grid points will be checked using regional frequency 

analysis for derivation of the IDF curves which are relevant to storm drainage designs and 

flood analysis. 

 Chapter 4 demonstrates proof of concepts laid out in Chapter 3. It first shows the 

performance of the improved DEM through comparisons with their observed counterparts 

(in Nice, France, and in Singapore). It then presents the accuracy of derived high temporal 

and long rainfall proxy data using IDF curves comparison between model output and 

rainfall station data.  

 Chapter 5 presents the application of the aforementioned methodologies on Greater 

Jakarta (Indonesia) where both high resolution DEM and rainfall data are not available or 

not easily obtained. Flood map of two return periods (50- and 100-Years) are presented 

and compared with 2013 Jakarta flood footprint. 

 Chapter 6 summarizes and highlights the main results for each objective of the study; 

concludes the findings; and makes recommendations for future studies. 
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2 Literature Review 

2.1 Introduction 

This chapter reviews literatures relevant to remote sensing technology, artificial neural network, 

climate models and numerical flood modelling. To assess flood hazards, a series of 

data/information, such as digital elevation model and rainfall data, are required. In many countries, 

the developing ones in particular, these data are not readily available because (1) the high cost of 

the measurement and proper related tasks, or (2) no data record or data confidentiality. Hence 

publicly accessible remote sensing data, e.g. digital elevation model, are often the only option. 

However, the quality of remote sensing data, in some cases, requires further enhancement. This 

study considers Artificial Neural Network (ANN), a part of artificial intelligence technology or 

machine learning, to improve the accuracy of remote sensing data. Rainfall data in many 

developing countries, aside from data quality, are often of short record duration or not in existence. 

In areas of interest such as Greater Jakarta, Indonesia, this poses difficulty to engineers to arrive 

at appropriate design curves for drainages. As mentioned in Chapter 1, for Greater Jakarta, this 

study considers rainfall data, derived from a Regional Climate Model (RCM) driven by reanalysis 

data, as proxies. This information is parts of the essential input data for numerical flood model.  

2.2 Remote Sensing Technologies 

Remote sensing is the process of collecting information about an object area or phenomenon 

without physical contact [Navalgund et al., 2007]. It has two aspects which are intimately linked 

with each other: the technology of obtaining the data through a device whose location is at a 

distance from the object, and analysis of the data for the interpretation of the physical objects 

[Gupta, 2018]. Going by the aforementioned definition various techniques of collecting the data 

where the object and sensor are not in contact with each other can be classified as remote sensing, 

for example photography, infrared, radiometers, radar (i.e. an object-detection system that uses 

radio waves to determine the range, angle, or velocity of objects) and Laser Imaging Detection and 

Ranging (LiDAR) (i.e. a surveying method that measures the illuminating target with pulsed laser 

light and the reflection of pulses with a sensor). Remote sensing can also be used as the technique 
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of sensing the earth’s surface from space by making use of the properties of electromagnetic wave 

emitted, reflected or diffracted by sensed objects, for the purpose of improving natural resource 

management, landuse and the protection of the environment. 

Remote sensing has mainly evolved from the various methods of aerial photography and 

interpretation of the photos. It is a comparatively young discipline of science which has 

significantly grown over the past five decades. It has effectively improved human’s ability to 

explore resources, map and monitor the Earth’s environment globally and locally [Lillesand et al., 

2015; Rencz et al., 1996; Thenkabail, 2015]. Earth observation is the main application of remote 

sensing. Various types of earth observations are listed below [Entwistle et al., 2018; Gupta, 2018; 

Kugler, 2012]. 

 Weather forecasting 

 Measuring land surface and mapping 

 Tracking of biodiversity and wildlife trends 

 Tracking of landuse changes (such as deforestation) 

 Monitoring and responding to natural disasters, including forest/bush fires, floods, 

earthquakes and tsunamis 

 Managing natural resources, such as energy, freshwater and agriculture 

 Addressing emerging diseases and other health risks 

 Predicting, adapting to and mitigating climate change. 

Systematic and concise timelines of key developments in platforms and sensors for earth 

observations are well summarized in Green and Jackson [2009]. The first photo of the earth from 

the space was transmitted by Explorer-6 in 1959. It provided an orbital photography with the help 

of an unmanned camera. The Gemini mission of 1965 gave a number of vertical, stereo, oblique 

photographs of good quality. This demonstrated the potential of remote sensing techniques in the 

exploration of the resources on the earth. Later on, the experiments of the Apollo program included 

the coverage of the earth by multispectral 70-mm format photography and stereo vertical 

photography. The series of experiments on the photography led to the development of unmanned 

space orbital sensors. 
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2.2.1 Digital Elevation Models 

Spaceborne radar or airborne laser scanning are widely applied to retrieve data on topography that 

is used to develop the Digital Elevation Model (DEM) [Mirosław-Świątek et al., 2016; Rodriguez 

et al., 2006; Zhang and Montgomery, 1994]. A DEM can be used to depict the terrain of the earth 

and is an organised array of the numbers which represent the elevations of spatial distributions 

above an arbitrary datum. The primary principle of a DEM is to describe the elevations of various 

points in a given area in digital format. The term DEM is usually applied to land surface 

topography, but it is a general term which is used to depict the spatial patterns of various surfaces 

e.g. surface water, ground surface, canopy, etc. Digital Surface Model (DSM) and Digital Terrain 

Model (DTM) are the two other terms which are frequently used for the ground terrain. DTM is 

referred as to the Earth terrain i.e. bare ground while DSM includes objects on ground like the 

buildings and trees, Figure 2.1. 

 

Figure 2.1 Digital surface model and digital terrain model [Asharyanto et al., 2015] 

A DEM can be obtained from various types of data sources. Traditionally, the ground survey data 

is most accurate but is also most expensive depending on the sampling density [Bartosh, 2012]. 

Recently the airborne laser scanning seems to be the most accurate method with the highest 

sampling density. It can record both object on surface and ground surface so that the elevation data 

is considered as the DSM [Asharyanto et al., 2015; Mirosław-Świątek et al., 2016]. Spaceborne 

interferometric radar system is a cost-effective technique to obtain the land cover and terrain data. 

A DEM can also be derived from radar satellite such as Shuttle Radar Topography Mission (SRTM 

DEM) [Hensley et al., 2000; Jacobs et al., 2001; Kim et al., 2019; Rosen et al., 2001], Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [Reuter et al., 2009; 

Tachikawa et al., 2011], and TanDEM-X DEM [Hajnsek et al., 2010].  
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SRTM DEM is an international joint project to collect three-dimensional digital mapping of over 

80 % of the Earth’s surface (between 60° N and 56° S) and it is available at no cost [USGS, 2000]. 

3 arc-second resolution is available since 2005 and 1 arc-second resolution for globe is available 

after 2015. The performance requirements for the SRTM DEM data are such that the linear vertical 

absolute height error shall be less than 16 m and the relative height error shall be less than 10 m, 

for 90 % of the data [Rodriguez et al., 2006]. It should be noted, however, that its accuracy is 

limited to Root Mean Square Error (RMSE) of approximately 14 m over Singapore’s forest areas 

due to C-band wavelengths (λ ≈ 5.6 cm) that does not adequately penetrate the vegetation canopy 

[Wendi et al., 2016]. Thus, the elevation in vegetation area presents an intermediate height between 

top of canopy and the bare surface. Also, due to its coarse resolution (~ 30 m since 2015; ~ 92 m 

prior to 2015), it does not present precise urban characteristics.  

The Global DEM (GDEM) is obtained from ASTER data, a product of Japan’s Ministry of 

Economy, Trade, and Industry (METI) and USA’s National Aeronautics and Space Administration 

(NASA) [Tachikawa et al., 2011]. The ASTER GDEM produces a high resolution global digital 

elevation model, with 30 m spacing (1 arc second). Several literatures compared DEMs originated 

from SRTM DEM and ASTER DEM. Guth [2010] compared the data at 52 locations in Europe 

and North America and found that ASTER data was similar to SRTM DEM but about 20 % of 

ASTER data have anomalies that degrade its use for most applications. Li et al. [2012] conducted 

the evaluation of ASTER DEM, using GPS (Global Positioning System) as benchmarks, and 

SRTM DEM in China and concluded that ASTER DEM data requires further improvements as it 

appeared to overestimate the SRTM DEM data of the study area.  

Graf et al. [2018] assessed the DTM for hydrogeomorphological modelling in small Mediterranean 

catchments, including SRTM DEM, ASTER DEM and LiDAR datasets. The RMSE results of the 

vertical accuracy show that SRTM DEM and ASTER DEM have differences of 6.98 m and 16.10 

m respectively over the study areas due to systematic distortions and coarse horizontal resolution. 

The authors concluded that these limitations should be carefully considered when applying the 

data for numerical modelling. 

Abily et al. [2015] developed a runoff model using very high resolution DSM. Two types of DSM 

data were used as topography data in the model and compared to LiDAR data only, and the 

combination of photogrammetric and LiDAR. Both data were able to capture the main buildings; 

but small buildings were not captured by LiDAR data. This resulted in significant differences in 
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the flood map outputs. The authors recommended that fine-tuning topographic data is necessary 

for high resolution flood modelling.  

The German Aerospace Center (DLR) has been operating Germany’s first twin Synthetic Aperture 

Radar (SAR) satellites, TerraSAR-X and TanDEM-X DEM, to generate an updated global DEM 

shich has a spatial resolution of 0.4 arc-second (≈ 12 m) with 2 - 4 m in relative vertical accuracy 

[Wessel et al., 2016]. Gruber et al. [2012] compared TanDEM-X DEM data against ground control 

points in Germany and US; they found that the absolute height errors are between 1 and 2 m. The 

elevation of TanDEM-X DEM is much more accurate than SRTM DEM; but TanDEM-X DEM 

data is not free (https://tandemx-science.dlr.de/). More detailed comparisons are given in Chapter 

3.  

In this study, SRTM DEM is selected to develop the DEM improvement scheme. Very high 

accuracy surveyed DEM is also used, in the DEM improvement scheme, for the Artificial Neural 

Network (ANN) to learn the patterns.   

2.2.2 Multispectral Imagery 

Multispectral imagery is produced by the sensors which measure the reflected energy within 

several specific bands/sections of the electromagnetic spectrum. It can be defined as “acquisition 

of images in hundreds of contiguous, registered, spectral bands such that for each pixel a radiance 

spectrum can be derived” [Goetz et al., 1985]. The multispectral sensors have 3 to 10 different 

measurements of the band in each pixel of the images. Various earth observation satellites are 

being used to capture the images of the earth. Such satellites are called imaging satellites which 

are normally operated by commercial companies and governments around the world [Nelli et al., 

2018]. Over the years many countries have launched different satellites to acquire the images of 

the earth.   

LANDSAT program is a network of the remote sensing satellites supported by NASA which 

provides repetitive acquisition of moderate-resolution multispectral data of the earth's surface on 

a global basis. The older satellites were gradually replaced by the more advanced and modern 

satellites. Presently, Landsat-7, launched in 1999, and Landsat-8, launched in 2013, are in 

operation. The information obtained from Landsat images meet the diverse needs of business, 

education, science, national security and the government. The data from the Landsat spacecraft 
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represents the longest record of the earth's continental surfaces observed from space. It is a file 

unmatched in quality, detail, coverage, and value. Landsat is the only source of global, calibrated, 

moderate spatial resolution measurements of the earth's surface that are preserved in a national 

archive and freely available to the public [Wulder et al., 2016]. The main objectives of Landsat 8 

is to succeed the mission of Landsat 4, 5, 6 and 7 and to build, periodically refresh a global archive 

of sunlit, substantially cloud-free land images. Landsat 8 offers the features of data continuity, free 

standard data products, global survey mission, radiometric and geometric calibration, and 

responsive delivery.  

Sentinel 2 is also an earth observation mission which was developed by the European Space 

Agency (ESA) as a part of Copernicus Programme to perform terrestrial observations in support 

of services such as forest monitoring, land cover changes detection, and natural disaster 

management [Drusch et al., 2012]. It consists of twin polar orbiting satellites in the same orbit 

with a phase difference of 180 degrees with each other. The satellites were built by Airbus Defence 

Space, Sentinel-2A and Sentinel-2B, with two additional satellites being constructed by Thales 

Alenia Space. The Sentinel-2A multispectral instrument (MSI) obtains the reflective wavelength 

of the multispectral observations with directional effects caused because of the reflectance 

anisotropy of the surface [Roy et al., 2017]. Roy et al. [2017] examined the magnitude of Sentinel-

2A view zenith bidirectional reflectance distribution function (BRDF) effects observed for a large 

amount of data acquired over two 10-day periods across southern Africa acquired in the solar 

principal and orthogonal planes. An empirical c-factor approach was published that provides 

consistent Landsat view angle corrections to provide Nadir BRDF Adjusted Reflectance (NBAR) 

[Roy et al., 2016]. Future Sentinel-2 and Landsat satellites may provide sufficient cloud-free 

observations to enable reliable local parameterization of the surface reflectance anisotropy over 

Sentinel-2 observation conditions. 

The multispectral imagery can be used for land use classification, for seasonal monitoring, 

agricultural and environmental application [Andres et al., 1994; Ashish et al., 2009; Moody et al., 

2014; Pande et al., 2018]. Using different reflectance values from different land use types, the area 

can be classified by clustering and machine leaning methods. Kim et al. [2018] analyzed the 

different reflectance of Sentinel 2 with different land uses. The reflectance of Short Wave Infrared 

(SWIR) bands (Bands 6-8) in forest areas is higher than that in urban areas; on the other hand, the 

reflectance of Near Infrared (NIR) bands (Bands 2-5) in urban areas is higher than that in forest 
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areas. These different characteristics at each band help to classify land use in ANN as input nodes. 

These characteristics have been fully utilized for this study to generate the improved SRTM DEM 

using both multispectral imagery and ANN. 

2.2.3 Artificial Intelligence 

Artificial Intelligence (AI) is the recreation of human intelligence processes by machines, 

especially computer systems. These processes include learning (the acquisition of information and 

rules for using the information), reasoning (using the rules to reach approximate or definite 

conclusions), and self-correction [Axelberg, 2007].  

In 1955, John MaCarthy, considered as the founder of AI, was the first person to introduce the 

term AI as to develop the machines that behave as though they were intelligent. Perception, 

learning, reasoning, problem-solving and language-understanding are the main components of AI 

[Andresen, 2002; McCarthy, 1956]. Some specialized areas of AI are game playing, expert 

systems, natural language processing, neural networks, and robotics etc. The advantages of AI, 

among others, are:   

 It can take on stressful and complex work that humans may struggle/cannot do.  

 It can complete a task faster than humans can.  

 It can be used for discovering unexplored things. 

 It yields less number of errors and, thus, less defects. 

 It is more versatile when compared to humans. 

ANN is one of the machine learning systems to achieve AI. ANNs apply mathematical learning 

algorithms which are simulated by properties of the biological neural networks. ANNs are loosely 

based on biological neural networks in such a way that they are implemented as a system of 

interconnected processing elements, sometimes called nodes, which are functionally analogous to 

biological neurons. The connections between distinct nodes have numerical values, called weights, 

and systematic altering of these values will give the ability to approximate the desired function 

[Gurney, 2014]. The characteristics of ANNs [Kumar and Iyer, 2010; Sarve et al., 2015] are: 

 It can map the input patterns to their associated output patterns. 
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 It can learn from the examples so that the ANN architectures can be trained with established 

examples of a problem before they are tested for their inference abilities for unknown 

instances of the problem. This helps in the identification of new objects which are not 

trained previously. 

 It has generalization ability which helps predict the new outcomes based on the previous 

outcomes.  

 The system can extract important features from incomplete, partial or noisy patterns. 

The ANN is formed in three layers: input layer, hidden layer and output layer. The input layer has 

input neurons that transfer information via synapses to the hidden layer, and similarly the hidden 

layer transfers this information to the output layer via additional synapses. The synapses store 

values referred to as weights that help them to control the input and output to different layers. 

Figure 2.2 showed the schematic diagram of ANN. 

 

Figure 2.2 Schematic diagram of ANN layers [Haykin, 1994] 

Each node within the network takes several inputs from alternative nodes and determines one 

output based mostly on the inputs and also the association weights. The network is able to converge 

to the optimal target function by the alteration in the weights systematically. Initially random 

values are assigned to weights and the network has to be trained to find the optimal weights. To 

achieve this the first output of the neural network has to be compared to the desired output, error 

is first determined; using this error the weights of the network are adjusted proportional to their 
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contribution to the error in the output using back-propagation algorithm [Rosenblatt, 1961; Widrow 

and Hoff, 1962]  

Together with the aforementioned characteristic of ANN, it has now been applied to system 

identification and control, quantum chemistry, game playing and decision making, pattern and 

sequence recognition, medical diagnosis and data mining. There are some applications of ANN in 

pattern recognition of remote sensing data. 

The classification of images based on ANN uses a non-parametric path making it easy for the 

incorporation of the supplementary data while classifying so that the accuracy of the classification 

process is improved [Abburu and Golla, 2015]. In the training phase the ANN gains the 

information about the regularities which is present in the training data and then it will construct 

the rules which can be extended to the unknown data [Foody, 1999]. The main advantage of using 

ANN is that it can learn and generalize from inputs to produce a meaningful solution even when 

the input data contain errors or is incomplete. In the case of complex classification processes ANN 

algorithms are highly efficient [Luk et al., 2000].  

Kawabata and Bandibas [2009] utilized the ANN to generate the landslide susceptibility map 

using landslide data from an event of earthquake and a DEM derived from ASTER images. The 

ANN was trained using six geomorphic and geologic factors to produce the landslide hazard index 

map. The ANN was able to model the relationship between landslide occurrence and the factors.  

Sun et al. [2016] applied the ANN to predict the ground water table in a freshwater swamp forest 

of Singapore. Unlike the physical modelling, the ANN-based approach did not require explicit 

characterization of the physical properties, or accurate representation of the physical parameters; 

it simply determined the system patterns based on the relationships between inputs and outputs 

mapped in the training process. The surrounding reservoir levels and rainfall information up to the 

immediate past 7 days were used as input in ANN. The forecast of the ground water table showed 

higher accuracy, as expected, for 1 lead-day than for 7 lead-days. The performance of longer lead-

days results might be further improved if more variables, such as evapotranspiration, can be made 

available in the training of ANN process.  

This study makes use of the strength of ANN in pattern recognition and classification to derive 

more accurate DEM. The ANN is able to classify the areas based on their reflectance values and 

identify the general error pattern, and reduce the errors between elevations of SRTM’s DEM and 

reference DEM for different land uses from training process.  
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2.3 Downscaled Climate Model  

Downscaling is the process of deriving the climate projections to scales which the decision makers 

require. The spatial scale, for dynamical downscaling particularly (discussed later in Section 

2.4.1), depends very much on the computational resources made available as dynamical 

downscaling is computationally highly demanding [Liu, 2017]. There are various methods of 

downscaling with their own merits and demerits. International organizations or national 

governments currently provide no official guidance that assists researchers, practitioners, and 

decision makers in determining climate projection parameters, downscaling methods, and data 

sources that best meet their needs [Daniels et al., 2012]. However, a large number of downscaling 

works have been carried out and shared in literatures which allow one to embark on the work easier 

now. Downscaling methods translate the large-scale coarse atmospheric fields (~100 - 300 km), 

used by GCMs (Global Climate Models), into regional- or local-scale information of climate 

variables (~5 - 50 km) required by climate change impact studies [Feser et al., 2011]. Some of the 

applications benefits from downscaling of large scale information are: 

 simulations of the spatial structure of near-surface temperature and precipitation over 

complex orographic terrain  

 land use distributions  

 regional and local atmospheric circulations that include jet cores, mesoscale convective 

systems 

There are three fundamental approaches that exist for downscaling of large scale information to a 

regional or a local scale. 

2.3.1 Dynamical Downscaling  

The dynamical downscaling technique uses both physical and numerical models of the climate 

system by the mathematical formulation of the physical atmospheric processes, referred to as 

“parameterization schemes”. Through this approach direct modelling of physical processes which 

characterize the climate of the region of interest. This method uses a Regional Climate Model 

(RCM) which is driven over a chosen limited area of the globe at high spatial resolution and hence 
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also known as a limited area model [Feser et al., 2011; Giorgi, 1990]. The main merit of this 

approach is that information provided by the RCM for the variables of the climate which are 

derived from the mesoscale atmospheric processes is of much higher spatial resolution compared 

to the GCM. 

Soares et al. [2012] conducted a research on dynamically downscaled climatology of Portugal, 

and produced a high resolution (9 km) WRF (Weather Research and Forecast) simulation, driven 

by 20 years of ERA-Interim reanalysis (1989-2008). Model outputs were compared against all 

available stations including 32 daily temperature and 208 daily precipitation records. The results 

showed good representation of the annual cycles in each region. It should be noted that the model 

output was able to capture the occurrence of extreme, but rare, precipitation events with above 200 

mm per day. 

Liu [2017], using RCM WRF, downscaled present and future climate over Southeast Asia domain 

(80E – 125E; 15S – 26N) at a spatial resolution of 20 km; WRF was driven respectively by 

reanalysis data (ERA-Interim) and a series of GCMs. The present-day (1986 - 2005) model output 

was compared against stations data, gridded observations such as Climate Research Unit (CRU) 

and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). The comparisons 

served as a benchmark of model performance; and the comparison matched reasonably well. 

Figure 2.3, Figure 2.4 and Figure 2.5 showed the comparison, between WRF/ERAI (WRF driven 

by ERA-Interim) and some gridded observations, of winds, temperature and precipitation 

respectively. The well calibrated WRF model was then driven by the GCMs datasets of present 

climate and various future climate scenarios. The present-day WRF results, driven by GCMs, were 

first simulated and compared against gridded observations; the match was reasonably well. This 

gave a credible projection of the WRF results for the future climate data. The author analyzed the 

future climate for temperature and precipitation driven by three GCMs (Australian Community 

Climate and Earth-System Simulator (ACCESS1.3), European Centre HAMburg Model 

(ECHAM6) and Model for Interdisciplinary Research on Climate (MIROC5)) under two emission 

scenarios, Representative Concentration Pathway (RCP) 4.5 and RCP8.5 [Allen et al., 2014]. It 

should be noted that this current study extracted only the output of WRF/ERAI of Liu [2017] to 

derive the IDF curves, of present days, over the study area.  
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Figure 2.3 Mean seasonal surface winds (m/s) during Northeast Monsoon (top), and 
Southwest Monsoon (bottom), 1986-2005 

(a), (a’) ERAI, (b), (b’) WRF/ERAI (Extracted from Liu [2017]) 

 

Figure 2.4 Climatological annual mean surface air temperature (°C), 1986-2005 

 (a) CRU (b) WRF/ERAI (Extracted from Liu [2017]) 
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Figure 2.5 Climatological annual mean precipitation (mm/day), 1986-2005  

(a) CRU (b) CHIRPS (c) WRF/ERAI (Extracted from Liu [2017]) 

2.3.2 Statistical Downscaling  

This method establishes a statistical or empirical relationship between large scale and local scale 

atmospheric variables. This method usually requires three primary assumptions as listed below 

[Benestad et al., 2008; Giorgi, 1990; Hewitson and Crane, 1996; Robert et al., 2004]: 

 High quality historical large scale atmospheric and local climate variables are available for 

a sufficiently long time period to establish robust relationships of the present climate. 

 The statistical relationships derived under the present climate conditions remain time-

invariant for different forcing conditions of possible future climates. 

 The selected predictors are able to capture the climate change signal 
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Some difficulties of statistical downscaling techniques are: 1) Calibration requires sufficiently long 

and reliable observed data. 2) Poor reproduction of extremes, e.g. downscaling of heavy 

precipitation [Haylock et al., 2006]. These drawbacks come from the fact that the calibration 

routines cannot address extreme data, and because the extremes are hardly well reproduced by the 

low-resolution GCM data [Robert et al., 2004]. There are three statistical downscaling methods 

available, i.e. change factors, regression models and weather type approaches. Review and 

comparison of these statistical downscaling methods have been well described in various 

literatures (e.g., [Fowler et al., 2007; Hundecha et al., 2016; Maraun et al., 2010; Wilby and 

Dawson, 2013]) 

2.3.3 Stochastic Downscaling  

Stochastic downscaling is known as “Weather Generators” which generate synthetic time series of 

weather variables statistically similar to the ones of observed weather using statistical models. This 

method specifically links the variables of the local and large scale atmosphere with a statistical 

relation which is time invariant in current as well as future climates. The stochastic downscaling 

is better than statistical downscaling with respect to two main factors [Burlando and Rosso, 2002]. 

First, the technique of stochastic downscaling has the ability to generate efficient ensembles of 

synthetic time series through Monte Carlo simulations. Second, this method has a strong space 

time variability, which makes it useful tool for the evaluation of uncertainties. The main limitation 

of this technique is the requirement of a relatively long records and high quality data for calibrating 

the models. The simulated local scenarios are often sensitive to the parameter perturbation 

procedure, and thus a proper re-parameterization procedure of stochastic models is often very 

challenging and time-consuming. Moreover, some stochastic downscaling methods tend to 

underestimate inter-annual variability [Maraun et al., 2010] and difficulties in reproducing low 

frequency climate variability [Fatichi et al., 2011]. 
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2.4 Rainfall Intensity Duration Frequency Curves and Regional 

Frequency Analysis 

2.4.1 Rainfall Intensity Duration Frequency Curves 

Intensity-Duration-Frequency (IDF) curves give a description of the relation among the intensity, 

duration of rainfall, and the return period (probability of exceedance). These curves are usually 

used for designing the hydrologic, hydraulic, and water resource systems. The IDF relationship 

was first established in 1930s [Bernard, 1932; Sherman, 1931] to capture the statistics of 

precipitation extremes, for the region of interest. The following three steps are followed for 

constructing an empirical IDF curve. Figure 2.6 illustrates derivation of IDF curve. 

I. The Probability Density Function (PDF) or Cumulative Distribution Function (CDF) has 

to be fitted to each of the maximum annual rainfall data of a particular duration (e.g. 5, 10, 

15, 60 minutes and 1 day). 

II. For every recurrence interval or return period and duration, the intensity of the rainfall is 

calculated using the CDF selected in the previous step. 

III. For every recurrence interval, the empirical IDF formula is considered to be a smooth 

function of the intensity of the rainfall with respect to the time duration obtained in the 

previous step. Least square method is used for the estimation of the IDF formula 

parameters.      
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Figure 2.6 Illustration of derivation of IDF curve [Nhat et al., 2006] 

Koutsoyiannis et al. [1998] provided a detailed procedure and examples for constructing empirical 

IDF. Among the three steps of IDF curves construction, fitting the extreme values to the probability 

distribution function is very significant. The fitting procedure is referred as to “Extreme Value 

Theory” or “Frequency Analysis” [Coles, 2001; Elsebaie, 2012]. Cunnane [1978] reviewed a 

frequency analysis using a graphical method with different empirical plotting position formula. 

The ordered series of annual maximum rainfall intensities, ranking from the largest to smallest, is 

plotted against the return periods estimated by the empirical plotting position formulae (e.g. 

Gringorten plotting position formula) [Gringorten, 1963] on a specific probability distribution 

graph paper and a straight line is drawn to fit these points. 

2.4.2 Regional Frequency Analysis 

The Regional Frequency Analysis (RFA) utilises the data of several observation sites for 

estimating the distribution of the frequency for the data that is observed at each site. The IDF 

relationships primarily rely on the quality and length of the rainfall records. The two key steps 

related to RFA are regionalization (identifying the homogeneous region) and selecting the extreme 

value distribution of the region. Reliable frequency analysis of extreme rainfall events requires 

sufficiently long data records at that rain gauge station. For analysing the frequency of the single 
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station, the length of the record for a single rain gauge needs to be more than 50 years for estimating 

the 100-year flood [Das and Cunnane, 2012]. But many regions around the world, primarily the 

developing countries, face the challenge of data scarcity and uncertainty. This is the main reason 

for the wide implementation of RFA. Some of the studies proved that RFA is more powerful when 

compared to the at-site frequency analysis, mainly when only short record lengths are available 

[Ngongondo et al., 2011]. RFA leads to more accurate estimates than the traditional at-site 

analysis. Weiss and Bernardara [2013] compared four scaling factors, the at-site mean, the at-site 

median, an estimate of the location parameter of the parent distribution obtained by method of L-

moments, and the trimmed mean. The at-site mean is the most accurate scaling factor in the 

presence of a slight regional heterogeneity or inter-site correlation; all scaling factors are equally 

good for a homogeneous region with correlated sites in terms of relative RMSE. 

2.5 Numerical Modelling for Flood Analysis 

Numerical modelling technique is a useful tool which is used to determine the dynamic behaviour, 

the causes and the effects of flooding. With the improvement in the computing technologies, many 

one dimensional (1D), two dimensional (2D), coupled 1D/2D and 3D numerical models have been 

developed. Dimitriadis et al. [2016] proposed the use of 1D and 2D models for assessing the 

uncertainty in the modelling of hydrological floodplain. Bladé Castellet et al. [2012] studied the 

conservation of mass and momentum by coupling 1D and 2D models for river channels and 

floodplain respectively. The use of mixed approach of 1D and 2D numerical models increases the 

quality of results and also saves time and computer memory which can be limiting factors for the 

application of 2D models [Bladé Castellet et al., 2012]. Results of these models also are affected 

by the complexity and quality of topographic and input data. 

Flood modelling can be divided into a number of approaches, characterised by their dimensionality 

or the way they combine approaches of different dimensionalities. Table 2.1 showed the 

classification of flood models (Adapted and modified from [Neelz and Pender, 2009; Pender, 

2006] 
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Table 2.1 Classification of Flood models [Neelz and Pender, 2009; Pender, 2006] 

Type Description Application 
Typical 

computational 
time 

Outputs 
Example of 

models 

1D Solution of the 
one-dimensional 
St-Venant 
equations. 

Design scale 
modelling which 
can be of the order 
of 10s to 100s of 
km depending on 
catchment size 

Minutes Water depth, Cross-
section averaged velocity 
and discharge at each 
cross-section. 

Inundation extent if 
floodplains are part of 
1D model, or through 
horizontal projection of 
water level 

MIKE 11; 

Hec-Ras; 

ISIS; 

InfoWorks; 

RS 

2D Solution of the 
two-dimensional 
shallow water 
equations. 

Design scale 
modelling of the 
order of 10s of km. 
May have the 
potential for use in 
broad scale 
modelling if 
applied with very 
coarse grids. 

Hours or days Inundation extent 

Water depths 

Depth-averaged 
velocities 

TUFLOW; 

MIKE 21; 

TELEMAC; 

SOBEK; 

InfoWorks 2D 

 

Neelz and Pender [2009] summarized the flood model classification in their research. One-

dimensional models are based on some forms of the one-dimensional St-Venant or shallow water 

flow equations (Barré de St-Venant 1871), which can be derived by integrating the Navier-Stokes 

equations over the cross-sectional surface of the flow. The assumptions used in the derivation of 

the St-Venant equations limit their use to where the direction of water movement is aligned to the 

centre line of the river channel. Over the years their use has been extended to the modelling of 

flow in compound channels, that is, river channels with floodplains. In this case, floodplain flow 

is part of the one-dimensional channel flow and simulation of inundation is an integral part of the 

solution of the St-Venant equations. The technique has at least two disadvantages, namely that (1) 

floodplain flow is assumed to be in one direction parallel to the main channel, which is often not 

the case, and (2) the cross-sectional averaged velocity predicted by the St-Venant has a less 

tangible physical meaning in a situation where large variations in velocity magnitude exist across 

the floodplain. The approach has been enhanced in recent years for significant advances in 

parameterisation through the development of the conveyance estimation system [McGahey and 

Samuels, 2004]. 
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Hydrodynamic models based on the two-dimensional shallow water equations are classified here 

as 2D approaches. The 2D shallow water equations (also referred to as 2D St-Venant equations, 

by extension to 2D of the use of this terminology, see [Hervouet, 2007]) can be derived by 

integrating the Reynolds-averaged Navier-Stokes equations over the flow depth. In this integration 

process, a hydrostatic pressure distribution is assumed (see [Hervouet, 2007]). A solution to these 

equations can be obtained from a variety of numerical methods (such as finite difference, finite 

element or finite volume) and use different numerical grids (such as Cartesian or boundary fitted, 

structured or unstructured) all of which have advantages and disadvantages in the context of 

floodplain modelling. The detailed information of Navier-Stokes equations can be found in 

Chapter 3.3.1.  

The MIKE 21 Flow Model is a comprehensive modelling system for two-dimensional water 

modelling developed by DHI Water and Environment [DHI, 2017]. MIKE 21 Flow Model is 

applicable to the simulation of hydraulic and environmental phenomena in lakes, estuaries, bays, 

coastal areas and seas. Also modelling of tidal hydraulics, wind and wave generated currents, storm 

surges are some of the model applications. 

Neal et al. [2010] addressed the issue of 2D hydraulic models that are time intensive to run due to 

their computational requirements. The authors recommended to run the model in parallel over 

multiple cores and it can reduce the computational time. Mackay et al. [2015] conducted 2D flood 

modelling using the approach of flexible mesh for large scale of catchment. The flexible mesh is 

more stable in the simulation than fixed grid as the terrain changes are smoothed. Also the user 

can define the different mesh size depending on the importance of the area. With CPU computation 

flexible mesh is slower than fixed grid; however, with GPU parallelization, the speed can be 

increased up to 8 times [DHI, 2014]. 

The effect of the input data’s quality in the flood model is very significant [Casas et al., 2006; 

Duong and Gourbesville, 2016; Gourbesville et al., 2015]. Prinadiastari and Bahri [2018] 

assessed the flash flood events in North Sumatra, Indonesia, using 2D flow simulation. The flash 

flood occurred as a result of natural dam break which is triggered by heavy rainfall with long 

duration and change of land use on the upstream area. The model results were compared with field 

survey data for flood depth and there were some discrepancies. The author found that the 

discrepancies were mainly due to the rough resolution of DEM and lack of actual discharge data 

as these are the main sources of the data for computational simulations. 
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2.6 Summary 

The literature reviews conducted focussed on remote sensing technology, artificial intelligence, 

downscaling of climate models, development of IDF curves, Regional Frequency Analysis (RFA), 

and numerical flood modelling. The following is a summary of the literature reviews: 

 The assessment of freely available DEMs (from satellite remote sensing) showed that the 

original DEM dataset contains its abnormality, systematic errors and sensor limitations 

which result in low accuracy in their applications, for example, in flood modelling. These 

data have to be reprocessed. This study proposed a novel method to reprocess them using 

multispectral imagery and ANN to significantly improve their accuracy levels. 

 Regional Climate Model driven by reanalysis data showed also its worthiness for its 

downscaled precipitation data used as proxies for ungauged sites and/or sites with short 

rainfall record. With these proxy data, the rainfall Intensity-Durational-Frequency (IDF) 

curves, essential for drainage designs, can be derived. For a large scale catchment, the study 

also review the procedure to identify the homogeneity of the rainfall zone; Regional 

Frequency Analysis is recommended to perform this homogeneity identification task. 

 Different types of numerical model are available to address the flooding issues. This study 

adopts the 2D flood model with flexible mesh method to simulate the large scale catchment. 

In this study the GPU parallelization technique is adopted to speed up the computation 

time.   

The following chapters aim to present the detailed data, methodologies and models used for the 

study and discuss results related to some of the key issues raised in this chapter. 
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3 Methodology and Data 

3.1 Overview 

To overcome data scarcities on flood hazard simulations and assessments, this study introduces 

the following:  

 A methodology to derive improved DEM, with high accuracy, using publicly accessible 

multispectral imagery (SRTM DEM and Sentinel 2) and Artificial Neural Networks 

technique (ANN).  

 Selecting proxies for rainfall data from high resolution regional climate model (Weather 

Research and Forecast, WRF, 20 x 20 km) driven by perfect climate model reanalysis data 

(ERA-Interim), WRF/ERAI. Several key parameters resulting from WRF/ERAI are 

validated against observation data. After checking its accuracy level, these proxies are 

significantly valuable particularly for ungauged catchments or gauged catchments with 

short rainfall record. These data are then used to derive the drainage design curves, the 

Intensity-Duration-Frequency (IDF) curves, for the catchment of interest. 

 A numerical model, MIKE21FM, is used to generate flood data of Greater Jakarta, 

Indonesia, using the aforementioned DEM data from improved DEM, and design storms 

originating from the IDF curves. 

3.2 Derivation of High-Accuracy DEM 

As mentioned in Chapter 2, the freely accessible DEM data often contains its abnormality, 

systematic errors and sensor limitation, which cause the DEM data to be less accurate. Therefore, 

in the areas where high-accuracy surveyed DEM is not available, additional studies are required 

to obtain reliable topography and to overcome the uncertainty introduced by the measurement 

protocol. As shown in Figure 3.1 SRTM DEM has two main limitations: (1) as sensors do not 

penetrate the vegetation area, the top of the canopy level represents the elevation in forest area; (2) 

with its coarse resolution, it does not allow to present the precise urban characteristics, i.e. 

averaged elevation between (low lying) road and high rise buildings. The impacts of these 
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limitations are quite serious particularly for flood assessment as road levels become unrealistically 

high. 

 

 

Figure 3.1 Limitations of SRTM DEM on the scanning of surface [Radiomobile, 

2018] 

Different DEMs from different sources have been compared in an urban area of Nice, France, as 

shown in Figure 3.2 and Figure 3.3. Figure 3.2 (a) is the satellite image of the area showing the 

land characteristics. Figure 3.2 (b) is a high accuracy surveyed DEM with 1 m resolution from 

Nice Côte d'Azur Metropolis (France), an urban area. It can be seen that the 1 x 1 m resolution 

DEM gives much clearer views of land and building shapes than their counterparts from TanDEM-

X DEM (12 m resolution; Figure 3.2 (c)) or SRTM DEM(30 m resolution; Figure 3.2 (d)). This 1 

x 1 m resolution DEM will be used in this study as the reference DEM. Note that TanDEM-X 

DEM can better capture the roads and buildings than SRTM DEM where the land shapes are 

smudged due to its coarse resolution and the limitation of the sensor. Figure 3.3 showed the 

performance of SRTM DEM and TanDEM-X DEM compared to surveyed 1 x 1 m resolution 

DEM. The Root Mean Square Error (RMSE), used to evaluate the performance of SRTM DEM 

and TanDEM-X DEM, showed 8.36 m and 7.24 m respectively.  

Figure 3.4 and Figure 3.5 showed similar comparative study but for forest (vegetated) area. Land 

shapes are similar to each other but SRTM DEM showed less clear shape due to its coarse 

resolution. In term RMSE, SRTM DEM and TanDEM-X DEM showed 14.37 m and 2.05 m 

respectively. Thus, the performance accuracy of TanDEM-X DEM is much higher than SRTM 

DEM as it uses a unique Interferometric Synthetic Aperture Radar (InSAR) [Krieger et al., 2011; 

Martone et al., 2018]. 

Although SRTM DEM showed less clear land shape, it can still be the only option for some places 

where high-accuracy or surveyed DEM is not available. 
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Figure 3.2 Different DEMs from different sources; urban area in Nice, France; (a) satellite 

imagery, (b) surveyed DEM (1 m resolution), (c) TanDEM-X DEM (12 m resolution), (d) 

SRTM DEM (30 m resolution; publicly accessible satellite data) 

 

Figure 3.3 Performance of (a) SRTM DEM and (b) TanDEM-X DEM compared to 

surveyed/reference DEM over an urban area in Nice, France 
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Figure 3.4 Different DEMs from different sources; forested area in Nice, France; (a) 

satellite imagery, (b) surveyed DEM (1 m resolution), (c) TanDEM-X DEM (12 m 

resolution), (d) SRTM DEM (30 m resolution; publicly accessible satellite data) 
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Figure 3.5 Performance of (a) SRTM DEM and (b) TanDEM-X DEM compared to 

surveyed/reference DEM over forested area in Nice, France 

The improved DEM scheme is developed using remote sensing data and ANN technique, as 

mentioned in Chapter 2. Figure 3.6 demonstrates the schematic diagram of DEM improvement 

methodology. Generally it requires 3 types of data; multispectral imagery, the DEM to be 

improved (SRTM DEM in this study), and a reference DEM (high accuracy elevation). These data 

are input for the ANN for training, and later for validation. Once the performance of the trained 

ANN is acceptable, it can be applied to areas where their SRTM DEMs are to be improved.  

 

Figure 3.6 Schematic diagram of DEM improvement methodology 
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3.2.1 Data Pre-Processing 

Since all of the remote sensing data have different resolutions (i.e. SRTM DEM 30 m; Sentinel 2 

10 - 60 m; surveyed DEM 1 m), all input layers need to be standardized to a common resolution 

through resampling method as shown in Figure 3.7. In this study, 10 m resolution is chosen for the 

assessment of the developed methodology.  

Figure 3.8 showed the required data and study areas for the development of DEM improvement 

scheme. High resolution and high accuracy DEM (surveyed) is available in Nice, France. The data 

has been provided by Geographic Information Service, Metropolitan of Nice Côte d'Azur 

Metropolis. The 1 m reference DEM is used as a reference DEM to train and validate the ANN. 

The reference DEM of Singapore has been used for both ANN training and validation. SRTM 

DEM and Sentinel 2 data are used as common input for all areas. Further details of the data are 

discussed here. 

 

Figure 3.7 Different resolutions of different remote sensing data from Sentinel 2, SRTM 

DEM, TanDEM-X DEM and Surveyed DEM 
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Figure 3.8 Areas used for ANN’s training (Nice, France), validation (Singapore) and 

application (Greater Jakarta, Indonesia) of DEM improvement scheme 

3.2.1.1 SRTM DEM Data Pre-Processing 

As mentioned in Chapter 2, SRTM DEM is widely used for mapping and geography application 

as it is publicly accessible. The data is available from USGS Earthexplorer website 

(https://earthexplorer.usgs.gov/). Figure 3.9 showed the global data coverage of SRTM DEM. 
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Figure 3.9 Data coverage of SRTM DEM (https://www2.jpl.nasa.gov/srtm/index.html) 

One of the significant limitations of SRTM DEM is the original data; they may not represent the 

actual topography due to its systematic distortions and coarse horizontal resolution [Graf et al., 

2018; Rodriguez et al., 2006; Wendi et al., 2016]. Figure 3.10 showed the example of differences 

between SRTM DEM and high resolution DEM. The land shapes are much clearer in the high 

resolution DEM (i.e. streams, valleys and mountains) so it is highly recommended to reprocess the 

original SRTM DEM data before its usage.  

 

Figure 3.10 Sharpness comparison between (a) SRTM DEM and (b) high-resolution DEM 

Additionally, SRTM DEM has its own issues when it is used in topographical applications. 

Although USGS updated the data with filled void (missing data), it still can be captured in some 

areas due to geometric artifacts, specular reflection of water, phase unwrapping artifacts and voids 

due to complex dielectric constant [François, 2001; Reuter et al., 2007]. This is the reason why 

the SRTM DEM data requires significant levels of pre-processing to fill the missing or no data. In 

this study, the neighbouring interpolation method was used. The neighbouring interpolation is a 

simple method of interpolation and it provides a smoother approximation on the unknown values 

using neighbouring values [Sibson, 1981]. As shown in Figure 3.11 (a) the area is classified as the 
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mountain with steep slopes and no data areas are captured (Figure 3.11 (b)). Using the 

aforementioned method the void areas were calculated and filled (Figure 3.11 (c)).    

 

Figure 3.11 SRTM DEM void filling with interpolation method; (a) satellite imagery, (b) 

void hole in SRTM DEM data, (c) void hole filled after interpolation using data from 

neighboring cells 

3.2.1.2 TanDEM-X DEM Data Pre-Processing 

The German Aerospace Center (DLR) has been operating Germany’s first two formations flying 

Synthetic Aperture Radar (SAR) satellites, TerraSAR-X and TanDEM-X DEM, with the objective 

to generate an updated global DEM. The DEM has a spatial resolution of 0.4 arc-second (≈ 12 m) 

with 2-4 m in relative vertical accuracy [Wessel et al., 2016]. The data are also available with a 
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larger spacing of 1 arc-second (≈ 30 m) and 3 arc-second (≈ 90 m). The vertical datum of TanDEM-

X DEM is WGS84-G1150 ellipsoidal heights and it has changed to geoid system to standardize 

the datum system with SRTM DEM. Table 3.1 showed the specification of the TanDEM-X DEM 

product. 

Table 3.1 TanDEM-X DEM product overview [Wessel et al., 2016] 

Independent Pixel 
Spacing of TanDEM-

X DEM 

Absolute 
Horizontal 
Accuracy 

Absolute 
Vertical 

Accuracy 

Relative Vertical 
Accuracy 

Coverage 

~ 12 m 

(0.4 arc-second at equator) 
< 10 m < 10 m 

2 m (slope ≤ 20 %) 

4 m (slope > 20 %) 
Global 

~ 30 m 

(1 arc-second at equator) 
< 10 m < 10 m Not specified Global 

~ 90 m 

(3 arc-second at equator) 
< 10 m < 10 m Not specified Global 

 Absolute horizontal accuracy is defined as the uncertainty in the horizontal position of a pixel with 
respect to a reference datum, caused by random and uncorrected systematic errors. The value is 
expressed as a circular error at 90 % confidence level. 

 Absolute vertical accuracy is the uncertainty in the height of a pixel with respect to a reference 
height caused by random and uncorrected systematic errors. The value is expressed as a linear error 
at 90 % confidence level. 

 Relative vertical accuracy is specified in terms of the uncertainty in height between two points 
(DEM pixels) caused by random errors. The corresponding values are expressed as linear errors at 
90 % confidence level. The reference area for two height estimates is a 1° x 1° area, corresponding 
to approximately 111 km x 111 km at the equator. 

The data can be obtained from https://tandemx-science.dlr.de/. Figure 3.12 showed the global data 

coverage of TanDEM-X DEM. Note that the 90 m resolution of TanDEM-X DEM is publicly 

accessible since September 2018. 



 

43 

 

Figure 3.12 Data coverage of TanDEM-X DEM (status as of August 2016) 

Additional pre-processing of TanDEM-X DEM is required prior its usage. The very noisy 

appearance of water bodies in the DEM can be observed due to the temporal de-correlation and 

low backscattering. Consequently, the corresponding elevation values derived from the 

interferogram are random and produce meaningless values [Wendleder et al., 2013]. TanDEM-X 

DEM provides the water indication mask product to detect the disturbed surface of water bodies.  

In this study the water body areas are replaced by SRTM DEM values. SRTM DEM water body 

was portrayed as a series of ‘stepped down’ elevations to maintain proper water to land relationship 

[USGS, 2003]. Figure 3.13 showed a comparison of the values on the water body in TanDEM-X 

DEM, SRTM DEM and surveyed high accuracy DEM.  
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Figure 3.13 Limitation of TanDEM-X DEM on water body; (a) TanDEM-X DEM, (b) 
SRTM DEM, (c) surveyed DEM 

3.2.1.3 Sentinel 2 Multispectral Imagery Pre-Processing 

Sentinel 2 Mission is an European earth polar-orbiting satellite (Sentinel-2A and 2B) designed to 

feed the Global Monitoring for Environment and Security (GMES) system with continuous and 

operational high-resolution imagery for the global sustained monitoring of earth surface and 

coastal areas [Gatti and Bertolini, 2018]. The Sentinel 2 system is based on the concurrent 

operations of two identical satellites flying on a single orbit plane but phased at 180º, each hosting 



 

45 

a Multi-Spectral Instrument (MSI) covering from the visible to the shortwave infrared spectral 

range and delivering high spatial resolution imagery at a global scale and with a high revisit 

frequency. The MSI aims at measuring the earth reflected radiance through the atmosphere in 13 

spectral bands spanning from the Visible and Near Infra-Red (VNIR) to the Short Wave Infra-Red 

(SWIR): 

(1) 4 bands at 10 m: blue (490 nm (nano meter)), green (560 nm), red (665 nm) and near 

infrared (842 nm). 

(2) 6 bands at 20 m: 4 narrow bands for vegetation characterisation (705 nm, 740 nm, 783 nm 

and 865 nm) and 2 larger SWIR bands (1610 nm and 2190 nm) for applications such as 

snow/ice/cloud detection or vegetation moisture stress assessment. 

(3) 3 bands at 60 m mainly for cloud screening and atmospheric corrections (443 nm for 

aerosols, 945 for water vapour and 1375 nm for cirrus detection). 

It provides a 5-day revisit frequency of a dual spacecraft operations. Figure 3.14 and Table 3.2 

showed the MSI spectral bands and their wavelength, bandwidth and resolution. 

 

Figure 3.14 MSI spectral bands versus spatial resolution [Gatti and Bertolini, 2018] 

Table 3.2. Sentinel 2 spectral bands [Gatti and Bertolini, 2018] 

Bands 
Central wavelength 

(nm) 

Band width 

(nm) 

Pixel resolution 

(m) 

Band 1 – Coastal aerosol 443 20 60 
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Band 2 – Blue 490 65 10 

Band 3 – Green 560 35 10 

Band 4 – Red 665 30 10 

Band 5 – Vegetation Red Edge 705 15 20 

Band 6 – Vegetation Red Edge 740 15 20 

Band 7 – Vegetation Red Edge 783 20 20 

Band 8 – NIR 842 115 10 

Band 8A – Narrow NIR 865 20 20 

Band 9 – Water vapour 945 20 60 

Band 10 – SWIR – Cirrus 1380 20 60 

Band 11 – SWIR 1610 90 20 

Band 12 – SWIR 2190 180 20 

The data is available from Copernicus Open Access Hub (https://scihub.copernicus.eu/) or USGS 

Earthexplorer website (https://earthexplorer.usgs.gov/). The products are available for users with 

different processing levels as shown in Table 3.3. When users download the data, they can choose 

several criteria for each data set (i.e. cloud coverage, orbit direction, platforms). In this research, 

Top-Of-Atmosphere (TOA) from Level-1C products were used with less than 10 % of cloud 

coverage. 

Table 3.3 Sentinel 2 product processing levels 

Processing Level Description Remark 

Level-0 
Compressed raw data and contains all the 
information required to generate upper 
levels 

Not available to users 

Level-1A 
Uncompressed raw data with spectral bands 
coarsely coregistered and ancillary data 
appended 

Not available to users 

Level-1B 
The physical geometric model is refined 
using available ground control points and 
appended to the product, but not applied 

Not available to users 

Level-1C 

Provides orthorectified Top-Of-Atmosphere 
(TOA) reflectance, with sub-pixel 
multispectral registration. Cloud and 
land/water masks are included in the product 

Online available 

Level-2A 

Provides orthorectified Bottom-Of-
Atmosphere (BOA) reflectance, with sub-
pixel multispectral registration. A Scene 
Classification map (cloud, cloud shadows, 
vegetation, soils/deserts, water, snow, etc.) 
is included in the product 

Available in Euro-
Mediterranean region since 

March 2018 

Globally available since 
December 2018  
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The bands 2, 3, 4 and 8 are used for land cover classification and the bands 5, 6, 7 and 8A are 

mainly dedicated to vegetation area. Bands 1, 9, 10, 11 and 12 are used for atmospheric correction 

and cloud screening. In this study, 8 bands (2, 3, 4, 5, 6, 7, 8 and 8A) are used for the ANN nodes 

with standardized resolution. Figure 3.15 (a) showed the different reflectance values based on 

various land use over Nice, France. The reflectance in forest area is higher than urban area at SWIR 

bands (Bands 6-8) while urban area is higher than forest area at NIR bands (Bands 2-5). Generally 

the forest area has higher values in standard deviation than the urban and the water body areas 

(Figure 3.15 (b)). These different characteristics at each band help to classify land use in ANN as 

input nodes. Table 3.4 showed the average of reflectance values from each band with different 

landuses.  

 

Figure 3.15 Different reflectance of Sentinel 2 in different landuses; (a)-average values of 
reflectance from each band for different landuses, (b) standard deviation of different 

landuses 

Table 3.4. Average of reflectance values with different landuses 

Landuse B01 B02 B03 B04 B05 B06 B07 B08 B8A B09 B10 B11 B12 

Forest 0.137 0.106 0.092 0.063 0.086 0.190 0.246 0.230 0.277 0.035 0.005 0.130 0.053 

Urban 0.156 0.129 0.116 0.107 0.121 0.179 0.214 0.195 0.232 0.031 0.006 0.194 0.135 

Water 0.125 0.093 0.059 0.040 0.037 0.035 0.033 0.030 0.029 0.016 0.001 0.018 0.015 
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3.2.1.4 Preparation for ANN Input, Target Layers 

As mentioned in Session 3.2.1, all of the remote sensing data with different resolutions are 

standardized to common resolution through resampling method as shown in Figure 3.16. In this 

study, 10 m standardized resolution was used for performance evaluation of the methodology and 

30 m resolution was used for assessing Greater Jakarta flood maps.   

 

Figure 3.16 Standardization of different resolutions from different sources 

All remote sensing data were processed using ArcGIS desktop software developed by 

Environmental System Research Institute (ESRI). ArcGIS is a Geographic Information System 

(GIS) for working with maps and geographic information. It is used for compiling geographic data, 

analysing mapped information, and managing geographic information in a database [ESRI, 2018]. 

All raster layers from its original data set were standardised into common resolution and matched 

cell alignment (extent and origin of each cell). The raster format of data was extracted by point 

type of shapefile and the attribute table of the shapefile can generate the table which is numeric 

inputs to the ANN. The extracted information from the table is then used to ANN as input and 

target layers as shown in Table 3.5. The detailed ANN setup is discussed in the following session. 
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Table 3.5 Artificial Neural Network layers 

Input Layer Target Layer Output Layer 

Reflectance values of Sentinel 2, 
multispectral imagery 

SRTM DEM elevation 

Surveyed DEM 
elevation 

Improved (Rectified) 
elevation 

3.2.2 Artificial Neural Network Setup 

Matlab Neural Network Toolbox was used for developing DEM improvement scheme in this 

study. It provides a neural network to generalize nonlinear relationships between inputs and 

outputs using feedforward backpropagation networks. The feedforward neural network is the first 

and simplest type of ANN devised [Schmidhuber, 2015]. It contains multiple neurons (nodes) 

arranged in layers and all these have the connections. It consists of four types of nodes:  

(1) Input Layer: The input layer of a neural network consists of artificial input neurons, and 

carries the initial data into the system for further processing by subsequent layers of 

artificial neurons. No computation is performed in any of input nodes; it just passes the 

information to the hidden nodes.  

(2) Target Layer: Target is the desired output for the given input. 

(3) Hidden Layer: A hidden layer is the layer between input and output layers, where artificial 

neurons take in a set of weighted inputs and produce an output through an activation 

function. 

(4) Output Layer: The output layer in an artificial neural network is the last layer of neurons 

that produce given outputs for the program. They are responsible for computations and 

transferring information from the network to the outside.  

The ANN algorithm is divided into 3 steps: 

(1) Training/Learning: The network processes the input and compares its resulting outputs 

against the target layer. The errors are then propagated back through the system to adjust 

the weights. 

(2) Validation: This is used to measure the performance of the network generalization, and to 

halt training when generalization stops improving. 
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(3) Testing: This has no effect on training and thus provides an independent measure of 

network performance after the training. 

The network is trained with Levenberg-Marquardt (LM) backpropagation algorithm [Levenberg, 

1944; Marquardt, 1963]. This method is a standard technique for solving nonlinear least squares 

problems to fit a curve by minimizing the sum of the square of the errors between input and output 

nodes. The training is continued until the validation error ceased to decrease; the trained ANN is 

then applied to test data set. In this study the data set was randomly divided into 70 % for training, 

15 % to validate the network to stop training before the overfitting and 15 % for independent 

testing of network generalization. Table 3.6 showed the example of input, target and output layers 

in ANN.  

Table 3.6 Input, Target and Output Layers in Artificial Neural Network (example) 

Input Layer 
Target 
Layer 

Output 
Layer 

B02 B03 B04 B05 B06 B07 B08 B8A 
SRTM 
DEM 
(m) 

Reference 
DEM (m) 

Improved 
DEM (m) 

0.0898 0.0884 0.0604 0.0922 0.2329 0.3059 0.2901 0.3296 26 23.95 

To be 
calculated 

0.089 0.0865 0.0608 0.0928 0.2408 0.3137 0.2787 0.3416 27 24.32 

0.0835 0.0749 0.0454 0.0866 0.2321 0.2976 0.2733 0.325 27 30.24 

0.0933 0.0927 0.0715 0.0892 0.2442 0.3112 0.2762 0.3503 27 25.55 

0.0879 0.0797 0.0517 0.0676 0.2178 0.272 0.2666 0.308 26 25.08 

0.0856 0.0761 0.0496 0.0834 0.2172 0.2736 0.2367 0.3096 25 29.17 

0.0944 0.0901 0.0695 0.0976 0.2332 0.2924 0.2684 0.3247 26 23.39 

0.0884 0.0856 0.0515 0.0915 0.2488 0.3174 0.2898 0.3507 28 22.93 
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3.3 Rainfall Data from Regional Climate Model (RCM) used as Rainfall 

Proxies 

This section discusses the selection of rainfall proxies, of the present climate, for the development 

of Intensity-Duration-Frequency (IDF) curves for sites with either short or no rainfall record at all. 

For present climate, dynamical downscaling of reanalysis data must first be performed to obtain 

high-resolution climate outputs from Regional Climate Model (RCM), Weather Research and 

Forecasting (WRF). Reanalysis data used in here to drive WRF was ERA-Interim (denoted 

henceforth as WRF/ERAI) over Southeast Asia Domain (Figure 3.17). The data was validated with 

gridded observation data. Upon satisfactory validation, the simulated rainfall data for Java Island, 

Indonesia, are then extracted from WRF/ERAI and used to construct the IDF curves for Java. 

 

Figure 3.17 Domain of Regional Climate Model, WRF (20 km resolution): 

90°E - 135°E, 15°S - 28°N 
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3.3.1 Climate Data from Downscaled Model 

As mentioned in Section 2.4.1 (Limitation of GCMs), downscaling method translates the coarse 

spatial resolution atmospheric fields into regional or local scale information of climate variables 

to provide detailed information with finer spatial and temporal resolutions. To do this, RCMs need 

to be driven by large scale fields such as reanalysis or GCMs. Here, the study of Liu [2017], who 

conducted the dynamical downscaling method using WRF/ERAI, is chosen. ERAI is one of the 

latest global atmospheric reanalysis, produced by the European Centre for Medium-Range 

Weather Forecasts (ECMWF), and widely used by the scientific community. ERAI has two 

strengths compared to its counterpart: (1) a more advanced data assimilation model in the 

representation of hydrological cycle, the quality of the stratospheric circulation, and the 

consistency in time of reanalysed geophysical fields; (2) more robust technical aspects of 

reanalysis such as data selection, quality control, bias correction and performance monitoring [Dee 

et al., 2011]. The spatial resolution of ERA-Interim is approximately 80 km on 60 vertical levels 

from the surface up to 0.1 hPa. The dataset is available at 6-hourly interval since 1979 and 

continuously updated in real time. Further information of the data set can be found at 

http://apps.ecmwf.int/datasets/ and documented by Dee et al. [2011].  

WRF/ERAI provides high spatial resolution information (20 km) of climate variables which are 

much finer than the original data in ERAI. Table 3.7 showed the comparison of the different data 

sets of ERAI and WRF/ERAI.  

Table 3.7 Basic characteristic of ERAI and WRF/ERAI data 

Source Scale Resolution (km) Frequency (Hourly) 

ERAI Global ~ 80 6 

WRF/ERAI 

(Southeast Asia) 
Regional 20 6 

3.3.2 Validation of Rainfall Proxies from WRF/ERAI 

The downscaled precipitation data from the WRF/ERAI, i.e. WRF driven by ERAI, was first 

extracted from Liu [2017]. Its performance was compared with one of their counterparts from the 
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widely used gridded observation precipitation data such as CHIRPS (Climate Hazards Group 

InfraRed Precipitation with Station; [Funk et al., 2015]).  

CHIRPS data is more than a 30 year quasi-global rainfall dataset, developed by Earth Resources 

Observation and Science (EROS) Center at USGS, Climate Hazards Group at University of 

California at Santa Barbara and Earth Systems Research Laboratory at National Oceanic and 

Atmospheric Administration (NOAA). This daily precipitation product covers 50°S - 50°N and is 

available from 1981 to near-present. CHIRPS incorporates 0.05° resolution satellite imagery with 

in-situ station data to create gridded rainfall time series for trend analysis and seasonal drought 

monitoring [Funk et al., 2015]. As of February 12th, 2015, version 2.0 of CHIRPS is complete and 

freely accessible to the public. There are two spatial resolutions available, 0.25° and 0.05°. In Liu’s 

study (2017), the product from 0.25° was used. Detailed information on CHIRPS can be found at 

http://chg.geog.ucsb.edu/data/chirps/ and Funk et al. [2015]). The dataset was used to evaluate 

WRF/ERAI performances on representation of precipitation climatology and extremes. 

The WRF/ERAI model simulated 6-hourly precipitation data from 1986-2005. Their daily mean 

precipitation, Simple Day Intensity Index (SDII, reflecting the mean precipitation for the wet day), 

and the 95th percentile of precipitation (P95p) were compared with their counterparts from 

CHIRPS as shown in Figure 3.33 to Figure 3.35. Both SDII and P95p represent the precipitation 

extremes. Detailed information can be found in Liu [2017]. 

 

Figure 3.18 Comparison of climatological daily mean precipitation (mm/day; 1986-2005) 

(a) CHIRPS, (b) WRF/ERAI (extracted from Liu [2017]) 
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Figure 3.19 Comparison of climatological daily Simple Day Intensity Index of precipitation 

(SDII; mm/day; 1986-2005) (a) CHIRPS, (b) WRF/ERAI (extracted from Liu [2017]) 

 

Figure 3.20 Comparison of climatological annual 95th percentile of precipitation (P95p; 

mm/day; 1986-2005) (a) CHIRPS, (b) WRF/ERAI (extracted from Liu [2017]) 
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3.3.3 Regional Frequency Analysis (RFA) 

Hosking and Wallis [1997] developed a complete algorithm for the regional frequency analysis 

method based on the approach of L-moments by pooling the sites with similar statistical 

characteristics in a homogeneous region instead of a single site in the at-site frequency analysis. 

In conducting the regional frequency analysis, the heterogeneity measure is the primary indicator 

for accepting or rejecting a proposed region (grouping of sites). The discordancy measures for the 

various sites provide a secondary indicator to consider whether a discordant site should be moved 

to another region [Nunez et al., 2011]. 

To generate the flood maps of study area, Greater Jakarta, with the rainfall proxies extracted from 

WRF/ERAI, RFA method was again first applied and validated in Singapore with observation 

data. In this method, Annual Maximum Rainfall (AMR) of 6-hourly rainfall for 36 years (1981 – 

2016) was considered.  

3.3.3.1 Initial Data Screening by Discordancy Measure 

A discordancy measure is useful to identify sites with gross errors in their data or those that are 

grossly discordant with the region as a whole. In practice, discordancy measure suggested by 

Hosking and Wallis [1993] is widely used by hydrologists. To estimate discordancy values for 

sites in a region, the sites are considered as points in three-dimensional space of sample L-moment 

ratios (L-CV (L-Coefficient of Variation), L-Skewness and L-Kurtosis). Centroid of the region is 

regarded as a point depicting average of sample L-moment ratios of the sites in the region. Any 

point that is far from the centroid of the region is flagged as discordant. 

The main aim of discordancy measure filters out the outlier sites from the pooling area. The 

discordancy measure at site i, Di among N sites, introduced by Hosking and Wallis [1993], is 

expressed by 

	    (3-1) 

Where  is a vector containing sample L-CV, L-skewness and L-kurtosis, denoted by 

, the procedure to calculate L-CV, L-skewness and L-kurtosis; vector  is the 
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average of , ∑ / ; matrix  is sum of square of cross-product of error, 

∑ . 

Hosking and Wallis [1993] suggested matrix  as the critical value for the discordancy statistic for 

regions containing any number of sites. Later it was found that the critical value of Di for a region 

depends on its size.  

Hosking and Wallis [1993] provides critical values of Di for regions of various sizes, which are 

presented in the Table 3.8. In many instances the site discordancy may arise out of sampling 

variability. Therefore, the data at all sites with large values Di should be carefully scrutinized 

before deciding whether the sites are discordant. 

Table 3.8 Critical values for the discordancy statistic Di [Hosking and Wallis, 1997] 

 Critical value of Di 

5 1.333 

6 1.648 

7 1.917 

8 2.140 

9 2.329 

10 2.491 

11 2.632 

12 2.757 

13 2.869 

14 2.971 

≥ 15 3.000 
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3.3.3.2 Identification of Homogeneous Region by Heterogeneity 

Measure 

The heterogeneity measure tests whether the pool can be considered as a homogeneous region, 

which is calculated based on only L-CV for the whole region. The heterogeneity measure 

introduced by Hosking and Wallis [1993] is expressed by 

	    (3-2) 

where the dispersion  is the weighted standard deviation of at-site sample L-CVs, denoted by 

∑

∑

/

   (3-3) 

And ∑ /∑ , is the regional average L-CV;  and  are the mean and standard 

deviation of , which are obtained from a large number (  = 500 or 1000) of Monte Carlo 

simulations. The procedure for each Monte Carlo simulation was described in Liu [2017]. Hosking 

and Wallis [1997] suggested a region to be considered as “acceptably homogeneous” if 1; 

“possibly heterogeneous” if 1 ≤ H < 2; “definitely heterogeneous” if H ≥ 2. 

3.3.3.3 Probability Distribution Fitting by Method of L-moment  

The Generalized Extreme Value (GEV) distribution function is recommended by Hosking and 

Wallis [1997] in RFA method as it is a three-parameter distribution function that has the flexibility 

to fit to the pool. The Cumulative Distributed Function (CDF) of GEV distribution is expressed 

by 

	
	 ∙ / 				

	 				
   (3-4) 

where  is the location parameter,  is the scale parameter and  is the shape parameter. 

The three parameters of GEV distribution were estimated by the method of L-moments. The 

estimators of the three parameters are expressed by 

. . ,   (3-5) 

Ґ
  (3-6) 
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Ґ /   (3-7) 

where  is the L-skewness; Ґ denotes the gamma function Ґ x ;  and  are 

the first and second L-moments. 

3.3.3.4 Goodness of Fit Measure  

To find the best distribution candidate or test performance of fitted distribution, the goodness-of-

fit of the distribution candidate is measured by the standardized difference of L-kurtosis of the 

distribution candidate and the regional average L-kurtosis of observed data with the bias of 

measurements, i.e. 

/    (3-8) 

where  is the regional average L-kurtosis value based on observed data;  is the bias of L-

kurtosis value , denoted by ∑ ,  is the regional average L-kurtosis 

from the th Monte Carlo simulation with kappa distribution;  is number of simulations. 

is the L-kurtosis value computed from a fitted distribution candidate,  of GEV is 

denoted by 5 1 4 10 1 3 6 1 2 / 1 2 ; 

1 ∑
/

, is standard deviation of L-kurtosis 

values  derived from  Monte Carlo simulations with kappa distribution to the regional 

average L-moment ratios 1, ,  and . The procedure of Monte Carlo simulation of the 

goodness-of-fit measure is the same as heterogeneity measure. 

The distribution is accepted if it satisfies the criteria of | | 1.64, which corresponds to the 

acceptance of the hypothesized distribution at the confidence level of 90 %. 
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3.3.4 Derivation of Intensity-Duration-Frequency (IDF) Curves and 

Design Storms 

3.3.4.1 Derivation of IDF Curves 

The IDF curves represent the relationships among rainfall intensity, duration and return period of 

the event by empirical mathematical equations. The IDF curves are expressed by a generalized 

from a basic empirical equation as follow [Koutsoyiannis et al., 1998]: 

   (3-9) 

where I is the rain intensity in mm/hour, td is the duration in minute, and a, b, and c are coefficient 

obtained by fitting to an IDF curve for a given return period (T) using least squares method. Talbot 

equation with c = 1 is applied in the study. More information on constructing IDF curves can be 

found in Koutsoyiannis et al. [1998]. 

3.3.4.2 Chicago Design Storm  

Keifer and Chu [1957] developed the Chicago method which has since been extensively applied 

and used in the hydrology. Initially, its intended application was the sizing of sewers for design 

storm durations of three hours, although the method does not limit its applications to different 

purposes. 

The hyetograph equation of Chicago design storm for specific return period ( ) is expressed by 

∙ 		 	

∙ 		 	

    (3-10) 

where  is the time at which maximum rainfall intensity  occurs;  (0 1) is a ratio of 

time to storm peak ( ) to storm duration ( ), which describes the asymmetry of hyetograph. In 

this study, a value of  0.5 is assumed, relating to an equal distribution of rainfall on either side 

of the peak. 
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The derived design storms using the above equations with the assumption of four hour storm 

durations and  0.5 (equal distribution on either side of peak rainfall) is presented in Figure 3.21 

 

Figure 3.21 A sample of design storm time series for 5, 10, 50 and 100 year return periods 
and a total duration of 4 hours 
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3.3.4.3 Derivation of IDF Curves and Design Storms over Study Area 

This study investigates the frequency and magnitudes of extreme rainfall events from WRF/ERAI 

for Greater Jakarta, Indonesia. The study area is located in the west side of Java Island. Figure 3.22 

showed the catchment area with grid points from WRF/ERAI. The derived IDF curves and rainfall 

intensity can be found in Chapter 5.3. 

 

Figure 3.22 Map showing twenty-five (25) grid points of WRF/ERAI model; the color 

represents DEM 
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3.4 Numerical Flood Modelling 

3.4.1 MIKE 21 Flow Model (MIKE 21FM) 

MIKE 21 Flow Model FM (MIKE21FM) is a two-dimensional flow modelling system developed 

by DHI Water & Environment [DHI, 2017]. The ‘FM’ refers to the type of model grid with 

Flexible Mesh. The model has been developed for oceanographic environments and inland surface 

water simulations, e.g. overland flooding and reservoirs.  

MIKE21FM is based on the numerical solution of the two-dimensional incompressible Reynolds 

averaged Navier-Stokes equation for shallow water flow condition. The equation adopts the 

following assumptions:  

(1) Water is incompressible (hydrostatic pressure) and homogeneous 

(2) Horizontal length scale is much greater than vertical length scale (thus the vertical velocity 

is considered negligible small compared to the horizontal velocity) 

The two-dimensional shallow water equations derived from Navier-Stokes equation can be 

expressed as follows: 

	 	 	     (3-11) 

where, x and y represent the two spatial dimensions and the four vectors , , ,  are defined as 

follows: 

, 	 , ,  (3-12) 

The depth-averaged velocities (m/s) in the x- and y- directions are marked by the u and v, 

respectively. S0x and S0y represent the bed slopes in the x- and y- directions and g is the acceleration 

due to gravity (m/s2). Sf is the friction slope, which can be expressed in the x and y directions as 

follows, where h is the depth (m) and n is the Manning coefficient (s/m1/3): 

, 	   (3-13) 
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The equation (3-11) is a simplification of the full 2D shallow water equations, which also include 

viscosity, Coriolis, wind shear stress, inflow volume and momentum. 

In MIKE21FM the spatial discretization of the equation is carried out through the use of a cell-

centred finite volume method. In the two-dimensional case, the elements can be arbitrarily shaped 

polygons like triangles and quadrilateral elements but here in this study only triangles are 

considered. The primitive variables representing the total water depth and the velocity components 

(h, u, and v) are recorded in the cell centres. The volume fluxes are then calculated perpendicular 

to the three faces of the elements as shown in Figure 3.23. 

 

Figure 3.23 Volume fluxes perpendicular to element faces [DHI, 2017] 

The time integration of the shallow water equations are performed using an explicit upwinding 

scheme. This scheme limits the time step to satisfy a specified Courant-Friedrich-Lewy (CFL) 

number less than 1; this is to avoid the model instability and miscalculations. The CFL number is 

defined as: 

| | ∆

∆
| | ∆

∆
   (3-14) 

where g is the gravitational acceleration, h is the total water depth, u and v are the velocity 

components in the x- and y-directions respectively, Δt is the time step interval, and Δx and Δy are 

a characteristic length scale in the x- and y-directions. Δx and Δy are approximated by the 

minimum edge length for each element, i.e. the shortest element face. h, u and v are evaluated, as 

mentioned before, at the centre of the element. 

The computation time is subject to the spatial factors included in the CFL number definition. In 

order to minimize the computation time, it is recommended to avoid too small elements and angles 
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in the elements as this will generate short lengths on the edges. For example, when the lengths are 

short, the time step must be decreased significantly so that the required CFL number can be 

satisfied; this, at the same time, may significantly increase the computation time. Hence, it is 

important to find the balance of the cell size and the purpose of the flood modelling. DHI has 

developed the computational engine of MIKE21FM using Graphical Processing Units (GPU) to 

speed up the simulation time [DHI, 2014]. This study used dynamic time step up to 1 second and 

it limits the critical CFL number up to 0.8.   

3.4.2 MIKE21FM Model Inputs 

Various input data are required for MIKE21FM to produce the flood information. The input data 

can be divided into hydraulic and hydrological categories. The hydraulic parameters are, for 

examples, bathymetry, initial water surface level, and water level or discharge for boundary 

conditions which are related to land surface information. The hydrology parameters are, for 

examples, precipitation and evapotranspiration which are related to the climate conditions.  

3.4.2.1 Domain and Bathymetry 

In this study, the Improved SRTM DEM (henceforth referred as iSRTM DEM) is used as the 

topography of Java Island in the model as it shows much clearer land shape than the original SRTM 

DEM. The catchments were divided based on hydrological catchment delineation (USGS 

watershed boundary). 30 m resolution of grid was imported as scatter points in MIKE Zero Mesh 

Generator. From the scatter points, the mesh structures interpolated values to the final bathymetry 

meshes by applying a natural neighbour interpolation method. Different maximum mesh sizes are 

applied based on the landuses. For the city and industrial areas, a mesh size of 900 m2, the 

maximum size, was applied which is relevant to the grid resolution of 30 m. For the other areas 

such as mountain and plain areas, a mesh size of 8,100 m2 was used. A minimum angle of 26° 

was applied for this study. Figure 3.24 describes the different mesh sizes in the model.  
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Figure 3.24 Sample of different mesh sizes in MIKE Zero Mesh Generator 

3.4.2.2 Precipitation 

As the precipitation is the main driving force in flood model, the rainfall data used is very 

important. As mentioned in the Section 3.2, the Intensity-Duration-Frequency (IDF) curves, 

derived from the rainfall data resulting from WRF/ERAI, are extracted to calculate the design 

storms using Chicago method. The Time of Concentration (TC) was calculated for each 

subcatchment to measure the response of a watershed to a given rain event. This is done so to give 

a conservative flood risk assessment. Passini method was applied to calculate the TC of large 

catchment. The Passini equation is defined as follows: 

. . .    (3-15) 

where A is the basin area (km2), L is a length of main channel (km), and S is the average slope of 

the basin (m/m). 

Figure 3.21 showed the sample of the design storm using Chicago method with return periods of 

5, 10, 50 and 100-year return periods and a total rainfall duration of 4 hours. The calculation of 

TC for the study area is discussed in Chapter 5.4.  

3.4.2.3 Tide Level for Boundary Condition 

As the study catchment ends at the coasts, tide level data are required and used as the downstream 

boundary condition. The tide level was generated and obtained from the Global Tide Model (GTM) 
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which is developed by DTU Space (The National Space Institute (NSI) at the Technical University 

of Denmark). The GTM is available on a 0.125° x 0.125° resolution grid for the globe. The model 

is utilising the latest 17 years’ multi-mission measurements from satellite altimetry for sea level 

residuals analysis [Andersen et al., 1995]. MIKE Zero tool box can extract the time series for any 

period and any position on the globe [DHI, 2017]. 

This study extracted the one point of tide level. This was then applied to MIKE21FM; the 

respective highest tide level, for the year 2015, was set at 75 % of total rainfall duration as shown 

in Fig. 3.45. Note the aforementioned set-up between the peaks of rainfall and the tide was done 

so for most conservative scenario.  

 

Figure 3.25 Tide level setup with rainfall intensity time series 
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3.5 Summary 

This chapter presented the methodology and data for derivation of improved DEM, construction 

of IDF curves from downscaled climate model and setup of numerical flood model. The following 

is a summary: 

 A methodology to derive improved DEM, with high accuracy, using publicly accessible 

multispectral imagery (SRTM DEM and Sentinel 2) and Artificial Neural Networks 

technique (ANN) was presented. 

 Proxies for rainfall data, resulting from downscaled WRF/ERAI, was extracted, analyzed 

and compared with observed rainfall data. The performance of ERAI/WRF is reasonably 

well and used as rainfall proxies to derive IDF curves for ungauged catchment, Greater 

Jakarta.  

 Derived improved SRTM DEM and IDF curves will then be used in MIKE21FM Flexible 

Mesh, in Chapters 4 and 5, to generate flood data and flood maps of various return periods.  
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4 Proof of Concepts  

4.1 Overview 

This chapter serves as the platform for proof of concept of the methodologies and approaches 

presented in Chapter 3. The concepts under consideration are:  

 The improved DEMs: They are validated with high-resolution and high accuracy reference 

DEMs. A series of scenarios (urban/forested areas) are taken into consideration. A 

convincing/reasonable match between the improved DEM and the reference DEM will 

provide confidence for the usage of the developed DEM improvement scheme in other 

catchments where no observation DEM is available.  

 The derived Intensity-Duration-Frequency curves: IDF curves derived from rainfall 

proxies, originated from the WRF/ERAI, are validated with IDF curves resulting from high 

quality observed data (in Singapore). This will later give a credibility of the usage of IDF 

curves, derived in the same manner, at other catchments where rainfall data are not 

available and/or rainfall records are not long enough to construct credible IDF curves. Note 

that high quality IDF curves are essential for flood analysis and flood mitigation measures.   

4.2 Assessment of Derived DEM 

This section evaluates the performance of derived DEMs using the method developed in this study 

as described in Section 3.2 of Chapter 3. DEMs in Nice (France) and Singapore are taken into 

consideration. Various scenarios of test cases are introduced in urban and forested areas: (1) ANN 

model trained and validated in Nice, France; (2) ANN model trained and validated in Singapore; 

(3) ANN model trained in Nice and validated in Singapore. The third case is essential as we need 

to ascertain the applicability of ANN model, trained in Nice, at other places where no high quality 

DEM, except satellite data, is available. 

The improved DEMs will be compared with the high-resolution (1 m) and high accuracy (40 cm) 

DEM from Nice Côte d’Azur Metropolis (France) and Building and Construction Authority (BCA, 
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Singapore) to evaluate their performances. Also, the drainage networks from different DEMs are 

compared.  

Note that the resolutions of all remote sensing products are standardized at 10 m.  

4.2.1 Scenario 1: ANN Model Trained and Validated in Nice 

(France) 

Scenario 1 considers 2 separate cases: forested areas and urban areas.  

For the case of forested areas, the ANN model is both trained and validated in two separate forested 

areas in Nice, France. The forested area used for ANN training has an area of 16 km2 while the 

test area 8 km2. Figure 4.1 showed the satellite image of the training (box with blue comb pattern) 

and test (box with red comb pattern) areas. The area mainly consists of vegetated mountains with 

valleys, steep slopes with elevations ranging from 200 to 1,200 m. 

 

Figure 4.1 Training and test areas in Nice, France: forested areas  
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The ANN is trained in an area with the 1 m reference DEM data used in the target layer of ANN; 

the trained ANN is then applied to the test area. The performance is evaluated in the test area with 

1 m reference DEM data as well. Figure 4.2 showed the comparison of elevation maps of various 

DEMs. Figure 4.2 (a) is a satellite image of the test area to depict the land shapes; Figure 4.2 (b) 

is the 1 m reference DEM; Figure 4.2 (c) is the DEM from the original SRTM DEM with 30 m 

resolution; and Figure 4.2 (d) is the DEM from improved SRTM DEM (iSRTM DEM) with 10 m 

resolution.  

 

Figure 4.2 Comparisons of (a) satellite image, (b) 1 m reference DEM, (c) SRTM DEM and 

(d) iSRTM DEM in forested area in Nice, France 
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The 1m reference DEM showed most clear land shapes (i.e. particularly in the valley areas); 

iSRTM DEM showed improved clarity in the valley areas than its counterpart from the original 

SRTM DEM. The significant improvements can be captured in the scatter plots and their Root 

Mean Squared Error (RMSE) shown in Figure 4.3. The RMSE of iSRTM DEM is reduced to 7.84 

m from SRTM DEM’s RMSE 14.37 m, a 45.4 % reduction. Figure 4.4 showed the comparison of 

errors between reference DEM with SRTM DEM, and between the reference DEM and iSRTM 

DEM. The errors greater than the absolute error value of 8 m are reduced in iSRTM DEM.    

 

Figure 4.3 Scatter plots and RMSE comparisons between (a) SRTM DEM and (b) iSRTM 

DEM in forested area in Nice, France 

 

Figure 4.4 Absolute errors (a) between reference DEM and SRTM DEM; and (b) between 

reference DEM and iSRTM DEM in forested area in Nice, France 
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For the case of urban areas: the ANN model is both trained and validated in dense urban areas in 

Nice (France). Two versions of ANN training for dense urban areas are presented: (1) One single 

ANN training for the entire urban area (Version 1; henceforth referred as iSRTM_v1 DEM), and 

(2) Two separate ANN trainings, one for buildings only while the other for entire area without 

building heights (Version 2; henceforth referred as iSRTM_v2 DEM). Buildings are classified 

with building footprints from Open Street Map (OSM). 

The training area has an area of 12.0 km2 while the test area 5.2 km2. Figure 4.5 showed the satellite 

image of the training (box with blue comb pattern) and test (box with red comb pattern) areas. The 

areas are mainly urbanized with buildings, mild slopes with elevation ranging from 0 m to 200 m. 

 

Figure 4.5 Training and test areas in Nice, France: dense urban areas  

The ANN is trained in the training area with 1 m reference DEM data used in the target layer for 

iSRTM_v1 DEM. The iSRTM_v2 DEM is obtained from two ANN trainings, one with and one 

without building heights. The trained ANNs are then applied to the test area and the performances 

are evaluated using the reference DEM. Figure 4.6 showed the comparison of elevation maps of 

various DEMs.  
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Figure 4.6 Comparisons of (a) satellite image, (b) 1 m reference DEM, (c) SRTM DEM, (d) 

iSRTM_v1 DEM, and iSRTM_v2 DEM in dense urban areas in Nice, France 

Figure 4.6 (a) is a satellite image of test area depicting the land shapes; Figure 4.6 (b) is the area 

from 1 m reference DEM; Figure 4.6 (c) is the area from the original SRTM DEM with 30 m 

resolution; Figure 4.6 (d) is the area resulting from iSRTM_v1 DEM; Figure 4.6 I is the area 

resulting from iSRTM_v2 DEM. Both iSRTM DEM’s resolutions are 10 m. 
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The reference DEM showed most clear land shapes (i.e. buildings and roads); iSRTM_v1 DEM 

and iSRTM_v2 DEM showed clearer land shapes in the developed areas than the original SRTM 

DEM; iSRTM_v2 DEM matches the reference DEM categorically much more.  

Significant improvements are reflected in the scatter plots and the RMSE (Figure 4.7) as well. The 

RMSE of iSRTM_v1 DEM reduces to 7.82 m from 8.36 m (6.5 % reduction) while RMSE of 

iSRTM_v2 DEM reduces to 5.18 m (38.0 % reduction). Figure 4.8 showed the comparison of 

errors between reference DEM and SRTM DEM, between the reference DEM and iSRTM_v1 

DEM, and between the reference DEM and iSRTM_v2 DEM. The errors greater than the absolute 

value of 5 m are reduced in both iSRTM DEMs. As the iSRTM_v2 DEM showed much better 

performance, this approach is selected for further validation and application. Table 4.1 showed the 

summary of the performance of iSRTM DEM in Nice for forested and urban areas.  

 

Figure 4.7 Scatter plots and RMSE comparisons between (a) SRTM DEM, (b) iSRTM_v1 
DEM and iSRTM_v2 DEM in dense urban area in Nice, France  
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Figure 4.8 Absolute errors between (a) reference DEM and SRTM DEM; (b) reference 
DEM and iSRTM_v1 DEM; and (c) reference DEM and iSRTM_v2 DEM in dense urban 

area in Nice, France 

Table 4.1 Summary table of the performances of iSRTM DEM in Nice, France 

Description 
Training 

areas 
(km2) 

Test 
areas 
(km2) 

RMSE (m) 

SRTM 
DEM 

iSRTM DEM 

Forested area in Nice, France 16 8 14.37 7.84 (45.4 % ↓) 

Dense urban area in Nice, 
France 

Version 1 12 5.2 8.36 7.82 (6.5 % ↓) 

Version 2 12 5.2 8.36 5.18 (38.0 % ↓) 
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4.2.2 Scenario 2: ANN Model Trained and Validated in Singapore 

Scenario 2 also considers 2 separate cases: forested areas and dense urban areas.  

For the case of forested areas, the ANN model is both trained and validated in two separate forested 

areas in Singapore. The training area is an area of 1.84 km2 while the test area 1.54 km2. Figure 

4.9 showed the satellite image of the training (box with blue comb pattern) and test (box with red 

comb pattern) areas. The area mainly consists of forest, mild slopes with elevations ranging from 

0 to 80 m. 

 

Figure 4.9 Training and test areas in Singapore: forested areas 

The ANN is trained in an area with a reference DEM data of 1 m resolution used in the target layer 

of ANN. The trained ANN is then applied to the test area. The performance is evaluated in the test 

area with, again, a reference DEM data of 1 m resolution. Figure 4.10 showed the comparison of 

elevation maps of various DEMs. Figure 4.10 (a) is a satellite image of the test area depicting the 

land shapes; Figure 4.10 (b) is the DEM from 1 m reference DEM; Figure 4.10 (c) is the DEM 

from the original SRTM DEM with 30 m resolution; and Figure 4.10 (d) is the DEM from 
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improved SRTM DEM (iSRTM DEM) with 10 m resolution. As the area is densely covered by 

trees, the land shape cannot be identified clearly on the satellite image. iSRTM DEM showed more 

similarity to reference DEM than the original SRTM DEM. Significant improvements are reflected 

in the plots of correlation and RMSE (Figure 4.11). The RMSE of iSRTM DEM reduces to 6.01 

m from 14.13 m (57.4 % reduction). Figure 4.12 showed the comparison of absolute errors between 

the reference DEM and SRTM DEM, and between the reference DEM and iSRTM DEM. The 

errors greater than absolute value of 6 m are reduced in iSRTM DEM. 

 

Figure 4.10 Comparisons of (a) satellite image, (b) 1 m reference DEM, (c) SRTM DEM 

and (d) iSRTM DEM in forested area in Singapore 
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Figure 4.11 Scatter plots and RMSE comparisons between (a) SRTM DEM and (b) iSRTM 
DEM in forested area in Singapore 

 

Figure 4.12 Absolute errors between (a) reference DEM and SRTM DEM, and (b) 
reference DEM and iSRTM DEM in forested area in Singapore 

The performance of iSRTM DEM is now evaluated in a dense urban area in Singapore. The area 

of training area is 2.08 km2 and test area is 1.62 km2. Figure 4.13 showed the satellite image of the 

training (box with blue comb pattern) and test (box with red comb pattern) areas. The areas are 

very dense urban areas with high buildings (Bukit Timah area, Singapore). The elevation ranges 

from 0 to 100 m. 



 

79 

 

Figure 4.13 Training and test areas in Singapore: dense urban areas 

The ANN is trained in the urban area with 1 m reference DEM data used in the target layer of 

ANN. The performance of the trained ANN is then validated in the test area (1 m reference DEM). 

Figure 4.14 showed the comparison of elevation maps of various DEMs. Figure 4.14 (a) is a 

satellite image of test area depicting the land shapes; Figure 4.14 (b) showed 1 m reference DEM; 

Figure 4.14 (c) showed the original SRTM DEM with 30 m resolution; and Figure 4.14 (d) showed 

the iSRTM DEM with 10 m resolution. The reference DEM showed most clear land shapes (i.e. 

buildings and roads); iSRTM DEM captures the characteristic of the buildings much better than 

the original SRTM DEM. Significant improvements are reflected in the scatter plots and RMSE 

(Figure 4.15) as well. The RMSE is reduced in iSRTM DEM from 10.70 to 6.60 m (a 38.3 % 

reduction). Figure 4.16 showed the comparison of absolute errors between reference DEM with 

SRTM DEM and between reference DEM and iSRTM DEM. The absolute errors greater than 7 m 

are reduced in iSRTM DEM. Table 4.2 showed the summary of the performance of iSRTM DEM 

in Singapore for forested and urban areas.  
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Figure 4.14 Comparisons of (a) satellite image, (b) 1 m reference DEM, (c) SRTM DEM 
and (d) improved SRTM_v2 DEM in dense urban area in Bukit Timah, Singapore 

 

Figure 4.15 Scatter plots and RMSE comparisons between SRTM DEM and iSRTM_v2 
DEM in Urban in Bukit Timah, Singapore 
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Figure 4.16 Absolute errors between (a) reference DEM and SRTM DEM, and (b) 
reference DEM and iSRTM_v2 DEM in dense urban area in Bukit Timah, Singapore  

Table 4.2 Summary table of the performances of iSRTM DEM in Singapore 

Description 
Training 

areas 
(km2) 

Test 
areas 
(km2) 

RMSE (m) 

SRTM 
DEM 

iSRTM_v2 DEM 

Forested area in Singapore 1.84 1.54 14.13 6.01 (57.5 % ↓) 

Dense urban area in Singapore 2.08 1.62 10.70 6.60 (38.3 % ↓) 
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4.2.3 Scenario 3: ANN Model Trained in Nice (France) and 

Validated in Singapore 

In Scenario 3 the interest is to investigate the quality of DEM generated by an ANN, trained in an 

area with mixed/variety of patterns (e.g. flat and open surfaces, dense urban areas with low and 

high rise buildings, mountains, and forests), when it is applied in a faraway mixed areas within the 

aforementioned patterns learnt. This is important to know any one has no other choice but to totally 

rely on SRTM DEM. Nice city in France is chosen for this experiment with training data sets 

consisting of dense urban and forested areas as presented in Section 4.2.1 (Scenario 1); the 

iSRTM_v2 DEM approach is used here. The trained ANNs are then validated in Singapore. The 

area of training is 42.2 km2 while the test area of forested is 1.54 km2 and test area of dense urban 

area is 1.62 km2. These are same test areas presented in Section 4.2.2 (Scenario 2). 

Figure 4.17 showed the comparison of elevation maps of various DEMs. Figure 4.17 (a) showed 

the 1 m reference DEM; Figure 4.17 (b) showed the original SRTM DEM with 30 m resolution; 

Figure 4.17 (c) showed the iSRTM DEM trained in Singapore with 10 m resolution; and Figure 

4.17 (d) showed the iSRTM DEM trained in Nice with 10 m resolution. Although the ANN was 

trained in Nice and applied to Singapore’s forested area, the iSRTM DEM matches closer the 1 m 

reference DEM than the original SRTM DEM. The improvements are reflected in the scatter plots 

and RMSE (Figure 4.18) as well. The RMSE of iSRTM DEM trained in Nice is reduced from 

14.13 to 9.24 m (34.6 % reduction). The finding from this experiment also showed that iSRTM 

DEM trained in Singapore performs better than the iSRTM DEM trained in Nice as the pattern of 

terrain shapes and tree heights learnt in Singapore are obviously more similar to the test forested 

areas. Lesson in this case is the SRTM DEM can still be significantly improved with ANN trained 

in a faraway forested area where high quality ground truth data are available.  
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Figure 4.17 Performance comparisons of (a) 1 m reference DEM, (b) SRTM DEM, (c) 
iSRTM DEM trained in Singapore and (d) iSRTM DEM trained in Nice, France: forested 

area 
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Figure 4.18 Scatter plots and RMSE comparison between (a) SRTM DEM, (b) iSRTM_v2 
DEM trained in Singapore and (c) iSRTM_v2 DEM trained in Nice, France: forested area 

A similar experiment is conducted for dense urban area. It uses the same ANN in Nice and test it 

in Singapore. 

Figure 4.19 showed the comparison of elevation maps of various DEMs. Figure 4.19 (a) showed 

the 1 m reference DEM; Figure 4.19 (b) showed the original SRTM DEM with 30 m resolution; 

Figure 4.19 (c) showed the iSRTM DEM trained in Singapore with 10 m resolution; and Figure 

4.19 (d) showed the iSRTM DEM trained in Nice with 10 m resolution. Although the ANN trained 

in Nice and applied to Singapore’s dense urban area, the iSRTM DEM matches the 1 m reference 

DEM closer than the original SRTM DEM. The improvements are reflected in the scatter plots 

and RMSE (Figure 4.20) as well. The RMSE of iSRTM DEM trained in Nice is reduced from 
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10.70 to 6.93 m (35.2 % reduction). Similar to the forested area, for dense urban cities the 

performance of iSRTM DEM trained in Singapore performs better than iSRTM DEM trained in 

Nice. Again, lesson learnt is: the SRTM DEM can still be significantly improved with ANN trained 

in a faraway dense urban area where high quality ground truth data are available. Table 4.3 showed 

the summary of the performance of iSRTM DEM trained in Nice and validated in Singapore for 

forested and urban areas. 

 

Figure 4.19 Performance comparisons of (a) 1 m reference DEM, (b) SRTM DEM, (c) 
iSRTM_v2 DEM trained in Singapore and (d) iSRTM_v2 DEM trained in Nice, France: 

dense urban area 
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Figure 4.20 Scatter plots and RMSE comparison between SRTM DEM, iSRTM DEM 

trained from Singapore and iSRTM DEM trained from Nice, France: dense urban area 

Table 4.3 Summary table of performances of iSRTM DEMs trained in Nice, France and 

trained in Singapore and applied to test areas in Singapore 

Description 

RMSE (m) 

SRTM DEM 
iSRTM DEM 

Trained in Singapore Trained in Nice 

Forested area in Singapore 14.13 6.01 (57.5 % ↓) 9.24 (34.6 % ↓) 

Dense urban area in Singapore 10.70 6.60 (38.3 % ↓) 6.93 (35.2 % ↓) 
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With lessons learnt from Scenario 3, in Chapter 5 SRTM DEM of Greater Jakarta, Indonesia, 

where we do not have high quality resolution DEM, the iSRTM_v2 DEM trained in Nice is applied  

4.2.4 DEM Comparison between TanDEM-X DEM and iSRTM DEM 

In this Section, the improved SRTM DEM is compared with the German Aerospace Center’s 

DEM, TanDEM-X DEM (DLR’s DEM), mentioned in Section 3.2.1.2 of Chapter 3. TanDEM-X 

DEM has 12 m resolution at the cost of € 30 per km2. To note, particularly for dense urban area, 

is: even with 12 m resolution in TanDEM-X DEM, many tiles, in TanDEM-X DEM, each captured 

street and the neighboring tall buildings in one tile and an averaged elevation value for that tile is 

given. Averaging tall building with street elevations will surely result in significant discrepancy 

with the actual street elevation; this is quite alarming as an accurate street elevation is of great 

importance for flood study. The dense urban areas of Scenarios 1 and 2 are used below for 

comparisons.  

Figure 4.21 showed the DEM comparison between TanDEM-X DEM and iSRTM_v2 DEM in 

dense urban area of Scenario 1 (Nice, France). iSRTM_v2 DEM showed clearer land shapes (i.e. 

buildings and roads) than the TanDEM-X DEM. The better performance is reflected in the scatter 

plots and the RMSE as shown in Figure 4.22. The RMSE of iSRTM_v2 DEM (5.18 m) is lower 

than that of TanDEM-X DEM (7.24 m) and it performs 28.5 % better than TanDEM-X DEM.  
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Figure 4.21 DEM comparisons of (a) 1 m reference DEM, (b) TanDEM-X DEM and (c) 

iSRTM_v2 DEM in Nice, France 

 

Figure 4.22 Scatter Plots and RMSE comparisons between (a) TanDEM-X DEM and (b) 

iSRTM_v2 DEM trained in Nice, France 



 

89 

Figure 4.23 showed the DEM comparison between TanDEM-X DEM and iSRTM_v2 DEM in 

dense urban area of Scenario 2 (Singapore). iSRTM_v2 DEM again showed clearer land shapes 

(i.e. buildings, roads and streams) than the TanDEM-X DEM. Significant performance is reflected 

also in the scatter plots and the RMSE as shown in Figure 4.24. The RMSE of iSRTM_v2 DEM 

(6.97 m) is lower than TanDEM-X DEM (8.69 m) and it performs 19.8 % better than TanDEM-X 

DEM. 

 

Figure 4.23 DEM comparisons of (a) 1 m reference DEM, (b) TanDEM-X DEM and (c) 

iSRTM_v2 DEM in Singapore 
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Figure 4.24 Scatter plots and RMSE comparisons between (a) TanDEM-X DEM and (b) 

iSRTM_v2 DEM in Singapore  
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4.2.5 Drainage Networks Derivation from the DEMs 

In flood simulation, the drainage networks are of great importance. This Section presents 

comparisons of drainage networks derived from the 1 m reference DEM, TanDEM-X DEM, 

SRTM DEM and iSRTM_v2 DEM; this is another matrix to evaluate the performance of various 

DEMs. The derivation of drainage networks from DEMs is basically determined by the flow 

direction, flow accumulation grid, variation of elevation and spatial resolution may influence the 

integrity of the resulting networks [Thomas and Prasannakumar, 2015]. The areas of Scenarios 1 

and 2 in dense urban cites are considered. 

Figure 4.25 (a) is the drainage network derived from the 1m reference DEM in Nice and this is 

used as the benchmark for comparison with networks resulting from other DEMs; Figure 4.25 (b) 

is the drainage network resulting from TanDEM-X DEM with 12 m resolution; Figure 4.25 (c) is 

the one from the original SRTM DEM with 30 m resolution; Figure 4.25 (d) is the one resulting 

from iSRTM_v2 DEM with 10 m resolution. In general, the streamlines are in a qualititive match 

but some parts in middle - left area, none follow the drainage line from that of the 1 m reference 

DEM. The drainage network derived from iSRTM_v2 DEM showed closest and good agreement 

with that of the 1m reference DEM drainage.  

Figure 4.26 (a) is the drainage network derived from 1 m reference DEM in Singapore and this is 

the bench mark to be compared with other networks; Figure 4.26 (b) is the drainage network from 

TanDEM-X DEM with 12 m resolution; Figure 4.26 (c) is the one from the original SRTM DEM 

with 30 m resolution; Figure 4.26 (d) is the one resulting from iSRTM_v2 DEM with 10 m 

resolution. In general, the streamlines are in a good correspondence with drainage lines from 1 m 

reference DEM. The drainage network derived from and iSRTM_v2 DEM showed the best 

agreement with the one from 1 m reference DEM. 
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Figure 4.25 Comparisons of drainage networks derived from (a) 1 m reference DEM, (b) 

TanDEM-X DEM, (c) SRTM DEM and iSRTM_v2 DEM: Nice, France 

 

Figure 4.26 Comparisons of drainage networks derived from (a) 1 m reference DEM, (b) 

TanDEM-X DEM, (c) SRTM DEM and iSRTM_v2 DEM: Singapore 
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4.2.6 Summary  

The performance of iSRTM DEM has been evaluated with various scenarios in 2 countries, France 

and Singapore. First the landuse type is the same for both training and test areas (i.e. dense urban 

areas; forested areas). The ANN for dense urban area considered two different approaches. Single 

training of the ANN (iSRTM_v1 DEM) and two separate ANN trainings of the ANN (iSRTM_v2 

DEM, with buildings and no building) for dense urban areas; their performances were compared. 

iSRTM_v2 DEM which was trained from with buildings and no building heights separately, 

performed much better than the iSRTM_v1 DEM in which ANN was trained from the entire dense 

urban area without separating buildings from the rest.  

It is of great interest to test the DEM quality of ANN, trained with various landuse patterns and 

characteristics, when it is applied in a faraway country within the range of the same landuse pattern 

and characteristics. The test performance showed its applicability with SRTM DEM improved 

significantly.  

Table 4.4 Summary of performances of various scenarios 

Scenarios Description 
Training 

(km2) 
Test 

(km2) 

RMSE (m) 

SRTM 
DEM 

iSRTM DEM 

1 

Trained and validated in Nice, France 
(landuse type: forested area) 

16 8 14.37 7.84 (45.4 % ↓) 

Trained and validated in 
Nice, France (dense 

urban area) 

Version 1 12 5.2 8.36 7.82 (6.5 % ↓) 

Version 2 12 5.2 8.36 5.18 (38.0 % ↓) 

2 

Trained and validated in Singapore 
(forested area) 

1.84 1.54 14.13 6.01 (57.5 % ↓) 

Trained and validated in Singapore 
(dense urban area) 

2.08 1.62 10.70 6.60 (38.3 % ↓) 

3 

Trained in Nice and validated in 
Singapore (forested area) 

42.2 1.54 14.13 9.24 (34.6 % ↓) 

Trained in Nice and validated in 
Singapore (dense urban area) 

42.2 1.62 10.70 6.93 (35.2 % ↓) 
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The iSRTM_v2 DEM was then compared with the German Aerospace Center’s TanDEM-X DEM 

which has high-resolution (12 m) and high accuracy (10 m). The comparison showed that 

iSRTM_v2 DEM matches with the 1 m reference DEM closer than that of TanDEM-X DEM.  

The drainage networks, another matrix to evaluate the performance of DEM, resulting from 

iSRTM_v2 DEM showed best agreement with the streamlines of the reference DEM. Table 4.4 

summarizes the performances of the various scenarios. 
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4.3 IDF Curves Resulting from WRF/ERAI, CHIRPS and COP35 

The rainfall data from WRF/ERAI and CHIRPS, for Singapore domain, are separately used to 

construct their respective IDF curves. They are then compared with their counterpart IDF curves 

constructed from rainfall data collected by Singapore’s national water agency, Public Utilities 

Board [PUB, 2012]. 

Precipitation data extracted from WRF/ERAI and CHIRPS are separately checked on their 

homogeneity using the Regional Frequency Analysis (RFA). Then they are used to derive their 

respective IDF curves. Note that PUB has published IDF curves [PUB, 2012], with rainfall data 

from 35 rainfall stations, in Code of Practice (COP) on Surface Water Drainage (hereafter referred 

as COP35). COP35’s IDF curves, shown in Figure 4.27, can be found in following link: 

https://www.pub.gov.sg/Lists/AppendicesDrawings/Attachments/5/app2.pdf. 

 

Figure 4.27 Singapore’s IDF curves with rainfall record up to 2009 (extracted from PUB, 

2012) 

Figure 4.28 and Table 4.5 showed the comparisons between IDF curves resulting from 

WRF/ERAI, CHIRPS and COP35 at rainfall durations of 6, 12, 18 and 24 hours. It should be noted 

that COP35 provides the IDF curves only up to 12 hours; WRF/ERAI yields only data at 6, 12, 18 

and 24 hours; CHIRPS provides only one data daily, thus at 24th hour. The IDF data of WRF/ERAI 

reasonably match their counterparts from COP35 albeit a slight overestimation (16.6 - 19.6 %). 
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CHIRPS’ IDF data, however, can only be compared with its counterpart, WRF/ERAI, at 24th hour; 

CHIRPS significantly underestimated WRF/ERAI by 50.9 %. Although CHIRPS cannot directly 

be compared with COP35, Figure 4.28 showed CHIRPS would significantly underestimate the 

IDF curves of COP35.  

 

Figure 4.28 Comparisons of IDF curves resulting from WRF/ERAI, CHIRPS and COP35 

Table 4.5 Extreme rainfall intensities resulting from WRF/ERAI, CHIRPS and COP35  

Data source 
Rainfall intensity (mm/hr) at different rainfall durations 

6 hour 12 hour 18 hour 24 hour 

WRF/ERAI 43.88 26.15 17.49 13.34 

CHIRPS - - - 6.55 

COP35 35.29 21.81 - - 
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4.4 Summary 

This chapter evaluated the performances of the DEM improvement scheme and IDF curves from 

downscaled climate model. The following is a salient summary of this chapter: 

 SRTM DEM, a publicly accessible elevation data, was significantly improved using a 

trained ANN with Sentinel 2 multispectral imagery and the high accuracy 1 m reference 

DEM. The performances were evaluated through various matrices: visual clarity, scatter 

plots, RMSE and drainage networks. Also, the improved SRTM DEM performs better than 

the high-resolution (12 m) German Aerospace Center’s DEM, TanDEM-X DEM, in all 

performance matrices. The derived DEM from iSRTM_v2 DEM will then be used, in 

Chapter 5, as the input data of a numerical flood model. 

 The performance of IDF curves from WRF/ERAI has been compared with the existing IDF 

curves in Singapore (COP35) derived from observation station data, and gridded 

observation CHIRPs data. IDF curves from WRF/ERAI match the IDF curves of COP35 

reasonably well. Thus, IDF curves, for areas considered in Chapter 5, will be derived from 

WRF/ERAI to conduct the flood modelling.   
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5 Application of Proposed Approaches: Flood Simulation 
and Mapping of Greater Jakarta, Indonesia 

5.1 Overview 

This chapter serves as an application of the aforementioned proposed approaches to places where 

data scarcity could be a serious issue. Greater Jakarta, Indonesia, has been selected to generate the 

flood map with the following input data and model: 

 DEM derived from the improved SRTM DEM, iSRTM_v2 DEM: the ANN was trained 

in Nice, France, and validated in Singapore, both with high spatial resolution and high 

accuracy reference DEMs. The visual comparison is conducted with the satellite imagery. 

The DEM resulting from iSRTM_v2 DEM is then used as the bathymetry data in the flood 

model. 

 IDF Curves derived from rainfall proxies resulting from WRF/ERAI: Regional 

Frequency Analysis (RFA) is first applied on rainfall data, from WRF/ERAI, at various 

grids in and surrounding Greater Jakarta; heterogeneity and the discordancy tests are 

conducted. The IDF curves are then derived and distributed using the Chicago design storm 

method. The data is then used as the precipitation data of precipitation in the flood model. 

 Numerical model setup: MIKE 21 Flow Model FM is used with input data from the above 

mentioned DEM and precipitation data. The simulation duration in this study is set at the 

Time Concentration (TC) as of the main interest is the maximum flood depths in the study 

domain. TC is calculated using the Passini method. Two return periods of 50- and 100-

years are applied to the model and flood maps are then generated. 

As presented in Section 1.3 and delineated in Figure 1.8, Greater Jakarta, the capital city of 

Indonesia, has an area of approximately 2,976 km2 and is the most densely populated and 

urbanised city in Indonesia. Overall the catchment is sloping towards the northern Jakarta Bay. 

The upper part of catchment consists of mountains with rather steep slopes while the lower 

part the slope is very mild. Two different Times of Concentration (TCs) are considered based 

on the catchment characteristics. These will be further elaborated later in Section 5.4.  
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5.2 DEM Derivation 

This section applies the developed methodology of improved SRTM (iSRTM_v2 DEM) to the 

study area, the Greater Jakarta, Indonesia. The ANN, applied to the Greater Jakarta, was trained 

in Nice, France, and validated in Singapore as presented in Section 4.2. As the study area does not 

have high accuracy DEM to be compared with, only visual comparisons are conducted with 

Google satellite imagery. Table 4.1 showed the data required for development of iSRTM_v2 DEM. 

The data are freely accessible by the publics through the listed websites. The SRTM DEM can be 

downloaded from USGS Earth Explorer and two tiles cover the Greater Jakarta. Sentinel 2 also 

can be downloaded from the same website of SRTM DEM and four tiles cover the Greater Jakarta. 

These data are merged in ArcGIS into one tile and the spatial resolutions are standardized at 30 m. 

Building footprints are available at OpenStreetMap website and it is used to filter the building 

areas in the DEM.  

Table 5.1 Summary table of the data obtained for study area 

Data Source Description 

SRTM 
DEM 

USGS Earth Explorer 
(https://earthexplorer.usgs.gov/) 

ID: SRTM1S07E106V3 

      SRTM1S07E107V3 

Acquisition date: 11 Feb 2000 

Resolution: 1 arc (≈ 30 m) 

Sentinel 2 
USGS Earth Explorer 

(https://earthexplorer.usgs.gov/) 

ID: L1C_T48MYT_A015616_20180619T031538 

      L1C_T48MYU_A014901_20180430T031909 

      L1C_T48MXU_A015616_20180619T031538 

      L1C_T48MXT_A015044_20180510T030910 

Platform: Sentinel 2A 

Resolution: 10, 20, 60 m  

Building 
footprint 

OpenStreetMap 
(https://www.openstreetmap.org/ex

port) 
Building footprint shape file 
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The trained ANN, trained in Nice, France and validated in Singapore, is then applied to Greater 

Jakarta with data, for the input nodes, from SRTM DEM and Sentinel 2. Figure 4.1 showed the 

satellite imagery of 4 areas of Jakarta Metropolitan; they are used for visual comparisons. Figure 

5.2 to Figure 5.6 showed the comparison between satellite imagery, SRTM DEM and iSRTM_v2 

DEM for each of the 4 areas. 

 

Figure 5.1 (a) Satellite imagery of study area; (b) Jakarta Metropolitan with four areas 

chosen for comparisons 

Figure 5.2 showed the industrial area in the western side of Jakarta. The iSRTM_v2 DEM showed 

much clearer topography shapes than SRTM DEM, especially the river networks, buildings and 

roads. The elevations of buildings are higher than the roads and rivers in iSRTM_v2 DEM. These 

land surface characteristics can surely affect the water flow; thus, it produces more reliable 

simulated flood data in the area. 
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Figure 5.2 Comparisons between (a) satellite imagery, (b) SRTM DEM and (c) iSRTM_v2 

DEM: area 1 
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Figure 5.3 Comparisons between (a) satellite imagery, (b) SRTM DEM and (c) iSRTM_v2 

DEM: area 2 

Figure 5.3 showed the central area of Jakarta near National Monument Park. The high buildings 

and the roads are much clearer in iSRTM_v2 DEM; the circled area consists mainly of vegetation 

and flat area as shown in Figure 5.4. In the SRTM DEM, it has scattered high elevations from the 

trees. These canopies are removed in the iSRTM_v2 DEM and it is flat and has lower elevation 
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than the surrounding areas. This may affect the flood map with underestimated flood extent in the 

vegetated area. 

 

Figure 5.4 Google street (a) view of circle 1 and (b) view of circle 2 in Figure 5.3 

Figure 5.5 and Figure 5.6 showed the industrial area in the northern side of Jakarta and residential 

area in the eastern side of Jakarta respectively. The buildings, roads and canals are much clearer 
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in the iSRTM_v2 DEM. Also, the vegetated areas are having lower elevations than surrounding 

areas in the iSRTM_v2 DEM due to the removal of the canopy. 

 

Figure 5.5 Comparisons between (a) satellite imagery, (b) SRTM DEM and (c) iSRTM_v2 

DEM: area 3 
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Figure 5.6 Comparisons between (a) satellite imagery, (b) SRTM DEM and (c) iSRTM_v2 

DEM: area 4 

The drainage networks derived from SRTM and iSRTM_v2 DEM are compared with the drainage 

networks of satellite imagery. Figure 5.7 showed the drainage networks of each DEM. The mint 

green colour is from SRTM DEM while yellow is from iSRTM_v2 DEM. These networks are 

compared with their counterparts in the satellite imagery. The drainage network resulting from 
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iSRTM_v2 DEM showed the closest agreement with the drainage network in the satellite image. 

Again, the accuracy of the drainage networks would certainly affect the flood map significantly.  

The derived iSRTM_v2 DEM is later used in the flood model as the bathymetry. 

 

Figure 5.7 Drainage network comparisons between SRTM (mint green) and iSRTM_v2 

DEM (yellow) in (a) area 1 and (b) area 2  
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5.3 IDF Curve Derivation 

5.3.1 Regional Frequency Analysis 

This section investigates the frequency and magnitudes of extreme rainfall events resulting from 

WRF/ERAI for greater Jakarta, as mentioned in Section 3.3.4.3. Nine grid points, circled in Figure 

5.8, are the rainfall stations which met the discordancy and heterogeneity tests of the Regional 

Frequency Analysis (RFA). The RFA is conducted for up to 7 days.  

 

Figure 5.8 WRF/ERAI grid points considered for RFA 

The criteria established by Hosking and Wallis [1997] are the discordancy (Di) and heterogeneity 

(H) measures as described in the equation (3-1) and (3-2). The critical values of Di for regions of 

various sizes, presented in the Table 3.8, and the data at all sites with large values Di should be 

carefully scrutinized before deciding whether the sites are discordant. The heterogeneity tests 
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check the value of H, with H < 1 considered as acceptably homogeneous region, 1 ≤ H < 2 possibly 

heterogeneous region, and H ≥ 2 definitely heterogeneous region.   

Based on the discordancy measures in Table 5.2, grid point number 23 (see Figure 5.8) is excluded. 

Table 5.2 Discordancy (Di) measure of study area 

 Grid Point P7 P8 P9 P12 P13 P14 P17 P18 P23 

1 day 1.48 1.89 1.27 0.63 0.56 0.77 0.07 0.01 2.33 

2 days 0.71 1.89 1.59 0.19 0.66 0.69 0.19 1.3 1.78 

3 days 0.99 1.67 0.15 0.54 0.64 0.98 1.31 0.82 1.9 

4 days 1.11 1.46 0.11 0.5 0.75 1.29 1.43 0.3 2.05 

5 days 1.29 1.95 0.09 0.53 0.61 1.14 1.15 0.22 2.01 

6 days 1.55 2.06 0.46 0.44 0.69 0.61 0.95 0.28 1.97 

7 days 1.54 1.85 0.6 0.5 0.68 0.37 1.06 0.4 2 

 

Table 5.3 Heterogeneity (H) measure of study area 

Rainfall duration 1 day 2 days 3 days 4 days 5 days 6 days 7 days 

1.11 1.41 1.41 1.06 1.2 1.16 1.13 
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5.3.2 IDF Curves and Design Storms 

Using RFA method, the rain gauges are statistically resembling the rainfall characteristics into a 

single homogeneous region; they are then used to estimate the various representative regional IDF 

curves. The general procedure of IDF curve derivation is described below. 

Step 1: Derive Annual Maximum Rainfall (AMR) series from the output of RFA over Greater 

Jakarta 

Step 2: Fit a Cumulative Distributed Function (CDF) to the data of Step 1 with a specific rainfall 

duration (1-, 2-, 3-, 4-, 5-, 6- or 7-days) for each return period (50- or 100-years) 

Step 3: Calculate the rainfall intensity from the fitted CDF of different rainfall durations derived 

from Step 1 and Step 2. 

Step 4: Repeat Step 3 for all return periods to construct IDF curves. 

As described in Section 3.3.4.2, Chicago Design Storm method is used to derive the design storms. 

Figure 5.9 and Table 5.4 showed the IDF curves and their fitted parameters for Greater Jakarta. 

Table 5.5 showed the rainfall intensities for different durations and different return periods. 

 

Figure 5.9 WRF/ERAI derived IDF curves for Greater Jakarta: duration of 1 to 7 days, 

return periods of 50- and 100-years 
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Table 5.4 Chicago Design Storm method fitted equations for Greater Jakarta IDF curves 

Parameter 
Fitted Equation (I = A/(td + B)) 

50 year 100 year 

A 53,712 40,979 

B 2,271.2 2,650.1 

 

Table 5.5 Rainfall intensity (mm/hr) derived from WEF/ERAI for different return periods 

of 1 to 7 days storm durations 

Return 

Period 

(Year) 

Duration (days) 

1 day 2 days 3 days 4 days 5 days 6 days 7 days 

50 8.59 6.41 5.12 4.26 3.65 3.19 2.83 

100 10.02 7.41 5.88 4.87 4.16 3.63 3.22 
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5.4 Flood Model Setup 

Time of Concertation (TC) is important in defining the required precipitation duration in flood 

modelling. When TC of an upstream subcatchment is relatively short while the entire catchment 

length is long, the high designed rainfall intensity of upstream subcatchment may not have 

insignificant or no impact on the downstream subcatchment. On the other hand, when TC is 

relatively long, the low rainfall intensity will may have impacts on the downstream subcatchment 

with underestimated maximum flood depths. 

To calculate the TC, using the Passini method, for the study area the catchment is divided into 

upstream and downstream subcatchments based on its topography. The Passini equation was 

described in Section 3.4.2.2. Based on the TC calculation the upstream subcatchment has relatively 

short duration due to its steep slope, while the downstream subcatchment has relatively long 

rainfall duration due to its flat topography as shown in Figure 5.10. In this study, the peaks of the 

two design storms are placed at the same time in the middle of rainfall durations, Figure 5.11, to 

generate the most conservative flood depth scenario. Table 5.6 showed the parameters for the 

calculation of TC. 

 

Figure 5.10 (a) Different elevation ranges over Greater Jakarta and (b) longitudinal profile 

from point A to point B 
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Figure 5.11 Rainfall design storms for Greater Jakarta upstream and downstream 

catchments 

Table 5.6 Parameters to calculate the Time of Concentration (TC) 

Catchment 
Elevation 

Range (m) 

Highest 

(m) 

Lowest 

(m) 

Length 

(m) 

Slope 

(m/m) 

Area 

(km2) 

Time of 

Concentration 

TC (min) 

Upstream 128 – 2,856 2,856 128 44,605 0.061 1,785.6 1,123 

Downstream 0 – 128 128 0 36,196 0.004 1,190.4 3,806 

 

As mentioned in Section 3.4.2.1, different computational mesh sizes are applied to the catchment. 

For the city and industrial areas, a fine mesh size of 900 m2 is applied which is equivalent to the 

grid resolution of 30 m (maximum). For the other areas such as mountains and plain areas, a course 

mesh size of 8,100 m2 (the equivalent of 90 m grid resolution) is used. Figure 5.12 showed the 

model domain with the fine and course mesh zones.  
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Figure 5.12 Areas with fine and coarse meshes 

Table 5.7 summarizes the flood model setup of MIKE 21 FM. The computational area of the model 

is 4,807 km2 including sea area. The simulation time is set at 63.4 hours based on the calculated 

TC. The model time step is dynamic varying between 0.02 second to 1 second. The hourly tide 

level is adopted from Global Tide Model as mentioned in Section 3.4.2.3. The variation of tide 

level is from -0.33 m to 0.44 m. Two design storms (50- and 100-year return periods) are simulated 

from the IDF curves derived from WRF/ERAI for the study area. Improved SRTM_v2 DEM is 

used as the bathymetry. Each scenario simulation takes about 28 hour computational time. The 

generated flood maps are presented in next section. 

Table 5.7 MIKE 21 FM model setup 

Input type Remarks 

Computation area 4,807 km2 (Inclusive the sea area) 

Simulation time 63.4 hours 

Time step Dynamic time step: 0.02 - 1 sec 

Tide Hourly tidal level extracted from Global Tide Model 
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Rainfall IDF Design Storms with 50- and 100-year return periods 

DEM 
30 x 30 m resolution 

Improved SRTM_v2 DEM 

Mesh information 
Number of meshes: 5,961,648 

Number of nodes: 2,985,072  

Computational time 28 hours per simulation 
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5.5 Flood Maps of Different Scenarios 

Flood maps of 2 return periods of 50- and 100-years are generated. For the 100-year return period, 

two flood maps, one with SRTM DEM while the other with iSRTM_v2 DEM, are compared. In 

the final process of flood mapping, water bodies are masked using river data from OpenStreetMap 

and NDWI (Normalised Difference Water Index) derived from Sentinel 2. The OpenStreetMap 

provides water body polygons for lakes, rivers and canals with shapefile format. It is converted to 

raster format with 30 m resolution. Note that no raster is generated for places with river width of 

less than 30 m.  

NDWI is calculated based on two remote sensing indexes related to liquid water [Gao, 1996]. The 

Green spectrum (band 3 of Sentinel 2) and Near Infra-Red spectrum (NIR; band 8 of Sentinel 2) 

are used in the calculation as shown in following equation: 

	   (5-1) 

 

Figure 5.13 Water bodies in Greater Jakarta, Indonesia 
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The reason for using the two data for water body masking is because OpenStreetMap does not 

capture the fisheries and artificial ponds while NDWI does. Figure 5.13 showed the water body of 

the study area. The area of waterbody is removed in the final flood map. 

Figure 5.14 showed the maximum flood depths (m) in Greater Jakarta with 50- and 100-year return 

periods resulting from iSRTM_v2 DEM and 100-year return period resulting from SRTM DEM. 

In Figure 5.14 (a) and (b), the inundation depths and areas increase with increasing return period 

increases – for the case with iSRTM_v2 DEM. It should be noted that for the case with the flood 

map of SRTM.DEM, Figure 5.14 (c), its inundated area is less than that of its counterpart with 

iSRTM_v2 DEM. This is expected as, in comparison to iSRTM_v2 DEM (1) the longitudinal 

slopes in SRTM DEM are slightly steeper towards the open sea; and (2) many more depression 

storages in SRTM DEM. 
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Figure 5.14 Maximum flood depths (m) of Greater Jakarta with (a) 50- and (b) 100-year return period from iSRTM_v2 DEM and 

(c) 100-year return period from SRTM DEM 
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The statistics of the inundated areas based on different water depths are shown in Table 5.8. It can 

be seen that total inundated areas increases with increasing return period. The inundation area of 

0.1 - 1 m flood depth is decreasing with higher return period, while the areas with greater than 1 

m are increasing. In the flood extent resulting from iSRTM_v2 DEM, 34.3 % of the catchment is 

inundated with 50-year return period and 36.3 % of the area is inundated with 100-year return 

period. While the flood map of 100-year return period from SRTM DEM has 27.1 % of the 

inundated area which is less than the flood maps from iSRTM_v2 DEM. The flooded area, in the 

range between 0.1 m to 2 m, of 100-year return period from SRTM DEM showed less areas than 

iSRTM_v2 DEM’s flood maps. However, the flood depth of greater than 2 m, flood map from 

SRTM DEM has more areas than flood map of iSRTM_v2 DEM. This implies that the presence 

of canopy level in DEM produces less flooded area but has greater water depths due to lack of 

connectivity in the DEM.  

Table 5.8 Inundation statistics of different scenarios  

Return 

periods 

Inundated area (km2) at different flood depths (m) 

0.1 – 0.3 0.3 – 0.5 0.5 – 1 1 – 2 > 2 Total 

km2 % km2 % km2 % km2 % km2 % km2 % 

50-yr 

(iSRTM) 
209.1 7.0 137.5 4.6 296.5 10.0 271.6 9.1 106.6  3.6  1,021.27 34.3 

100-yr 

(iSRTM) 
200.0 6.7 130.8 4.4 288.0 9.7 318.5 10.7 142.4  4.8  1,079.65 36.3 

100-yr 

(SRTM) 
94.2 3.2 133.9 4.5 155.9 5.2 228.3 7.7 194.2  6.5  806.57 27.1 

 

Figure 5.15 (a) showed the flood footprints of Jakarta flooding in 2013 [InaSafe, 2015]; no return 

period was, however, mentioned. The main purpose of presenting it is to check whether the flood 

prone areas of flood map with iSRTM_v2 DEM (Figure 5.15 (b)) agree more with the flood 

footprints of Jakarta flooding than its counterpart with SRTM DEM (Figure 5.15 (c)). Generally, 

more flood extent and higher flood depths (the three boxed areas) are observed in the flood maps 

of iSRTM_v2 DEM; which are the case shown in Figure 5.15(a). This again demonstrates the 

higher accuracy of iSRTM_v2 DEM over SRTM DEM. More flood map comparisons can be found 

in the appendix.
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Figure 5.15 Comparison of (a) flood footprints of 2013 Jakarta flooding; 100-year return period of flood maps from (b) iSRTM_v2 

DEM; and (c) SRTM DEM 
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5.6 Summary 

This chapter applied the developed methods, the improved SRTM_v2 DEM and IDF curved using 

rainfall proxies from WRF/ERAI, to generate the flood maps of the Greater Jakarta, Indonesia. The 

following are the salient points of this chapter: 

 Improved SRTM_v2 DEM, trained in Nice, France and validated in Singapore, significantly 

improved the original SRTM DEM of the study area where no high accuracy DEM was 

available. Visual comparisons of satellite imagery, SRTM DEM and iSRTM_v2 DEM clearly 

categorically showed much clearer bathymetry in iSRTM_v2 DEM. Similarly, comparison of 

drainage networks resulting from SRTM DEM and iSRTM_v2 DEM was conducted with, 

again, a much better drainage network resulting from iSRTM_v2 DEM. Thus, iSRTM_v2 

DEM is strongly recommended as the bathymetry input for the flood model. 

 IDF curves were derived, from WRF/ERAI rainfall data, after going through the various test 

criteria of Regional Frequency Analysis. Chicago Design Storm method was chosen to derive 

the design storms (of 50- and 100-year return periods). The different durations of design 

storms were applied in the upstream and downstream subcatchments with their respective 

Time of Concentrations, calculated from the Passini equation. The data was then used as the 

rainfall input in the flood model. 

 The maximum flood depths were generated for different scenarios. For 100-year return period 

, the flood map with SRTM DEM and one with iSRTM_v2 DEM were compared with the 

flood footprints from 2013 Jakarta flooding. The flood map from iSRTM_v2 DEM was able 

to capture the better qualitative agreement with flood footprints and reasonable flood extent. 
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6 Summary, Conclusions and Recommendations 

6.1 Introduction 

The main objective of this research is to provide high accuracy flood simulation assessments, to 

policy makers, of areas challenged by the scarcity or low quality of physical data (e.g. Digital 

Elevation Model) and climatic data (rainfall). Collating high-resolution and accuracy DEM is not 

only costly, but also time consuming. Rainfall data are often not available and/or not sufficiently long 

to yield rainfall design curves (Intensity-Duration-Frequency (IDF) curves) of high accuracy required 

for urban storm drainage designs.   

To resolve the aforementioned challenges on DEM and rainfall data, the study considers a publicly 

accessible satellite DEM (SRTM DEM) and rainfall proxy resulting from a high-resolution regional 

climate model (RCM) downscaling. Section 6.2 summarizes the DEM improvement scheme 

developed in this study and its performance evaluations. Section 6.3 summarizes the accuracy of 

rainfall proxies from RCM from which IDF curves are derived. Section 6.4 showed how useful the 

proposed approaches are through demonstration of its application on Jakarta, the densely populated 

and urbanized capital city of Indonesia. Recommendations is presented in Section 6.5. 

6.2 Development of DEM Improvement Scheme 

The DEM improvement scheme was developed using ANN with SRTM DEM, together with Sentinel 

2 multispectral imagery, as input nodes and high-resolution and high accuracy surveyed DEM (the 

reference DEM) as the target layer. The trained ANN was able to classify the landuses and land covers 

with the assistance of 8 bands of Sentinel 2. Based on the various land characteristics, different weight 

were calculated to reduce the error between the elevation of SRTM DEM and reference DEM. 

A series of scenarios was taken into consideration for calibration and of validation: (1) forested areas 

(Nice, France and Singapore), and (2) dense urban areas (Nice, France and Singapore). The 

performance of improved SRTM (iSRTM DEM) was shown to be significantly better, in all scenarios, 

than the original SRTM DEM. In forested areas the performance of iSRTM DEM showed 45.4 % 

and 57.5 % RMSE reduction in Nice, France and Singapore, respectively. In dense urban areas, the 

RMSE reduction of the iSRTM DEM is about 38 % for both Nice, France and Singapore. It is 

interesting to note that for dense urban areas the improvement of SRTM DEM showed also: (1) much 
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clearer view of landshapes, buildings and roads; (2) closer agreement with the drainage networks of 

reference DEM.  

As one of the interests in the study was to improve the SRTM DEM of faraway countries where no 

high quality DEM (like those DEMs in Nice and Singapore, in this study) is available to train ANN, 

the study looked into whether the ANN trained in Nice can provide reasonably high quality DEM in 

Singapore which was used for testing. The test performance showed significant improvement with 

RMSE reduction of 34.6 % and 35.2 % in forested and dense urban areas respectively. Upon 

successful experiment, the ANN trained in Nice was then used with high confidence to improve 

SRTM DEM elsewhere, the Greater Jakarta in this study. 

In the study, the iSRTM DEM was also compared with German Aerospace Center’s TanDEM-X, a 

high-resolution and accuracy DEM (12 m resolution; 10 m accuracy vertically; at a cost of €30/km2 

and a minimum purchase of 500 km2). Comparisons, done in both cities (Nice, France and Singapore) 

showed that iSRTM DEM is in better agreement with the reference DEM than TanDEM-X DEM. 

The main conclusion is: even a high-resolution DEM from satellite, ANN’s DEM improvement 

scheme has been convincingly demonstrated that it can still significantly improve the high-resolution 

satellite’s raw DEM; high-resolution and high-quality surveyed DEM must be a part of the DEM 

improvement training scheme.  

6.3 Derivation of IDF Curves from Regional Climate Model 

The high-resolution Regional Climate Model (RCM; 20 Km resolution) WRF driven by reanalysis 

climate data, ERAI (WRF/ERAI), yields 6-hourly precipitation data from 1986-2005 over Southeast 

Asia domain (80E-125E, 15S-26N). The rainfall data has been compared reasonably well with 

gridded observation data, e.g. CHIRPS. The precipitation data extracted from WRF/ERAI and 

CHIRPS were separately checked on their homogeneity using the Regional Frequency Analysis 

(RFA). They were then compared with the IDF curves of Singapore (COP35). The IDF data of 

WRF/ERAI reasonably match their counterparts from COP35 albeit a slight overestimation (16.6 - 

19.6 %). CHIRPS’ IDF data, however, significantly underestimated COP35’s IDF by 50.9 %. Thus, 

the main conclusion is: when high quality rainfall data, both temporal and spatial resolutions, are not 

available, one possible data source to extract rainfall proxies is dynamically downscaled regional 

climate model driven by reanalysis data such as ERA-Interim, NCEP-RA.  

Upon successful testing of the applicability of WRF/ERAI data in Singapore, the IDF curves for 

Greater Jakarta were derived for later usage in flood modelling. Rainfall data from 8 grid points of 



 

123 

 

WRF/ERAI, after testing the various measures of Regional Frequency Analysis, were then used to 

derive the IDF curves. Chicago Design Storm method was then applied to derive the design storms 

of 50- and 100-year return periods.  

6.4 Flood Analysis and Mapping over Greater Jakarta, Indonesia 

With improved SRTM DEM and designed storms, MIKE 21 FM model was set up for Greater Jakarta. 

Passini method was used to compute the Time of Concentration (TC) of the upstream and downstream 

subcatchments; these TC values determine the design storms. Different durations of design storms 

were considered. Different mesh sizes were applied to the model domain for its efficient 

computational demands.  

Flood maps of 2 return periods (50- and 100-years), for demonstration purposes, were generated and 

were compared with the flood footprints from 2013 Jakarta flooding. These flood maps give the 

necessary information on the flood extents and flood depths in the catchment. This information will 

then be able to use to take necessary and appropriate flood mitigation measures.  

6.5 Recommendations for Future Study 

 Application of ANN DEM improvement scheme: Conduct more tests on other satellite data 

of higher resolutions and accuracy, such as AW3D (Advanced World 3D map; 0.5 – 2 m 

resolution; 0.5 – 2m accuracy vertically; USD 95 – 190/km2; minimum purchase of 25 km2) 

whether the proposed ANN DEM improvement scheme can further improve their raw 

products. When significant improvement is noted, one clear benefit is that the trained ANN 

can be used to produce high accuracy DEM elsewhere at relatively very low cost.  

 Application of downscaled climate data with Regional Climate Model: Conduct more 

tests of IDF curves derived from WRF/ERAI how well they compare with other areas’ IDF 

curves obtained from high quality rain gauge station data. With rapid urbanization taking 

place in Southeast Asia, finding reliable rainfall proxies is of great importance. The 

downscaled rainfall data resulting from WRF/ERAI could be considered as reliable rainfall 

proxies. 

  



 

124 

 

Bibliography 

[1] Abburu, S., and S. Golla (2015), Satellite Image Classification Methods and Techniques: 
A Review, International Journal of Computer Applications, 119, 20-25. 

[2] Abily, M., O. Delestre, L. Amossé, N. Bertrand, Y. Richet, C.-M. Duluc, P. Gourbesville, 
and P. Navaro (2015), Uncertainty related to high resolution topographic data use for flood 
event modeling over urban areas: toward a sensitivity analysis approach, ESAIM: 
Proceedings and Surveys, 48, 385-399. 

[3] Allen, M. R., V. R. Barros, J. Broome, W. Cramer, R. Christ, J. A. Church, L. Clarke, Q. 
Dahe, P. Dasgupta, and N. K. Dubash (2014), IPCC fifth assessment synthesis report-
climate change 2014 synthesis report. 

[4] Andersen, O. B., P. L. Woodworth, and R. A. Flather (1995), Intercomparison of recent 
ocean tide models, Journal of Geophysical Research: Oceans, 100(C12), 25261-25282. 

[5] Andres, L., W. A. Salas, and D. Skole (1994), Fourier analysis of multi-temporal AVHRR 
data applied to a land cover classification, Remote Sensing, 15(5), 1115-1121. 

[6] Andresen, S. L. (2002), John McCarthy: father of AI, IEEE Intelligent Systems, 17(5), 84-
85. 

[7] Asharyanto, H., B. Soeksmantono, and K. Wikantika. (2015). Three Dimensional City 
Building Modelling With Lidar Data (Case Study: Ciwaruga, Bandung), . Paper presented 
at the INA-Rxiv. 
https://www.researchgate.net/publication/326135657_THREE_DIMENSIONAL_CITY_
BUILDING_MODELLINGWITH_LIDAR_DATA_CASE_STUDY_CIWARUGA_BA
NDUNG 

[8] Ashish, D., R. W. McClendon, and G. Hoogenboom (2009), Land‐use classification of 
multispectral aerial images using artificial neural networks, International Journal of 
Remote Sensing, 30(8), 1989-2004. 

[9] Axelberg, P. (2007), On tracing flicker sources and classification of voltage disturbances, 
Department of Signals and Systems, Chalmers University of Technology. 

[10] Bangkokpost (2012), edited, https://www.bangkokpost.com/. 

[11] Bartosh, C. D. (2012), Integrating Land Survey Data into Measurement-Based GIS: An 
Assessment of Challenges snd Practical Solutions for Surveyors in Texas, University of 
Southern California. 

[12] Benestad, R. E., I. Hanssen-Bauer, and D. Chen (2008), Empirical-Statistical 
Downscaling, 228 pp., WORLD SCIENTIFIC, https://doi.org/10.1142/6908. 

[13] Bernard, M. M. (1932), Formulas For Rainfall Intensities of Long Duration, Transactions 
of the American Society of Civil Engineers, 96(1), 592-606. 



 

125 

 

[14] Bevere, L., R. Enz, J. Mehlhorn, and T. Tamura (2012), Natural catastrophes and man-
made disasters in 2011: historic losses surface from record earthquakes and floods, Swiss 
Reinsurance Company Ltd. 

[15] Bhoochaoom, A., and A. Dixon (2012), Thai flood 2011: rapid assessment for resilient 
recovery and reconstruction planning, Washington, DC, World Bank. 

[16] Bladé Castellet, E., M. Valentin, Dolz, J. Aragón-Hernández, G. Corestein Poupeau, and 
M. Juny (2012), Integration of 1D and 2D finite volume schemes for computations of water 
flow in natural channels. 

[17] Burlando, P., and R. Rosso (2002), Effects of transient climate change on basin hydrology. 
1. Precipitation scenarios for the Arno River, central Italy, Hydrological Processes, 16(6), 
1151-1175. 

[18] Casas, A., G. Benito, V. R. Thorndycraft, and M. Rico (2006), The topographic data source 
of digital terrain models as a key element in the accuracy of hydraulic flood modelling, 
Earth Surface Processes and Landforms, 31(4), 444-456. 

[19] Coles, S. (2001), An introduction to statistical modeling of extreme values, , Springer, 
10.1007/978-1-4471-3675-0 doi. 

[20] Cunnane, C. (1978), Unbiased plotting positions — A review, Journal of Hydrology, 37(3), 
205-222. 

[21] Daniels, A. E., J. F. Morrison, L. A. Joyce, N. L. Crookston, S. C. Chen, and S. G. McNulty 
(2012), Climate projections FAQ, 32 pp, U.S. Department of Agriculture, 
https://doi.org/10.2737/RMRS-GTR-277. 

[22] Das, S., and C. Cunnane (2012), Performance of flood frequency pooling analysis in a low 
CV context, Hydrological Sciences Journal, 57(3), 433-444. 

[23] Dee, D., d. Rosnay P, Uppala, Simmons, Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. 
Balmaseda, G. Balsamo, Bauer, Bechtold, Beljaars, v. de Berg, J. Bidlot, N. Bormann, 
Delsol, R. Dragani, M. Fuentes, and F. Vitart (2011), The ERA-Interim reanalysis: 
Configuration and performance of the data assimilation system, Quarterly Journal of the 
Royal Meteorological Society, 137, 553–597. 

[24] Deltares (2019), SOBEK Hydrodynamics, Rainfall Runoff and Real Time Control. 

[25] DHI (2014), MIKE 21 Flow Model FM Parallelisation using GPU. 

[26] DHI (2017), MIKE FLOOD. 

[27] Dimitriadis, P., A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. 
Koutsoyiannis, and A. Efstratiadis (2016), Comparative evaluation of 1D and quasi-2D 
hydraulic models based on benchmark and real-world applications for uncertainty 
assessment in flood mapping, Journal of Hydrology, 534, 478-492. 

[28] Drusch, M., U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. 
Isola, P. Laberinti, and P. Martimort (2012), Sentinel-2: ESA's optical high-resolution 
mission for GMES operational services, Remote sensing of Environment, 120, 25-36. 



 

126 

 

[29] Duong, V. N., and P. Gourbesville (2016), Model Uncertainty in Flood Modelling. Case 
Study at Vu Gia Thu Bon Catchment - Vietnam, Procedia Engineering, 154, 450-458. 

[30] Elsebaie, I. H. (2012), Developing rainfall intensity–duration–frequency relationship for 
two regions in Saudi Arabia, Journal of King Saud University - Engineering Sciences, 
24(2), 131-140. 

[31] Entwistle, N., G. Heritage, and D. Milan (2018), Recent remote sensing applications for 
hydro and morphodynamic monitoring and modelling, Earth Surface Processes and 
Landforms, 43(10), 2283-2291. 

[32] ESRI (2018), Environmental Systems Research Institute. 

[33] Fatichi, S., V. Y. Ivanov, and E. Caporali (2011), Simulation of future climate scenarios 
with a weather generator, Advances in Water Resources, 34(4), 448-467. 

[34] Feser, F., B. Rockel, H. v. Storch, J. Winterfeldt, and M. Zahn (2011), Regional Climate 
Models Add Value to Global Model Data: A Review and Selected Examples, Bulletin of 
the American Meteorological Society, 92(9), 1181-1192. 

[35] Floodlist. (2008).  

[36] Foody, G. M. (1999), The significance of border training patterns in classification by a 
feedforward neural network using back propagation learning, International Journal of 
Remote Sensing, 20(18), 3549-3562. 

[37] Fowler, H. J., S. Blenkinsop, and C. Tebaldi (2007), Linking climate change modelling to 
impacts studies: recent advances in downscaling techniques for hydrological modelling, 
International Journal of Climatology, 27(12), 1547-1578. 

[38] François, K. (2001), Modelling topography with SAR interferometry: Illustrations of a 
favourable and less favourable environment, 1039-1050 pp. 

[39] Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, G. Husak, J. 
Rowland, L. Harrison, A. Hoell, and J. Michaelsen (2015), The climate hazards infrared 
precipitation with stations—a new environmental record for monitoring extremes, 
Scientific Data, 2, 150066. 

[40] Gao, B.-c. (1996), NDWI—A normalized difference water index for remote sensing of 
vegetation liquid water from space, Remote Sensing of Environment, 58(3), 257-266. 

[41] Gatti, A., and A. Bertolini (2018), Sentinel-2 products specification document, 
https://earth.esa.int/documents/247904/685211/Sentinel-
2+Products+Specification+Document.(2-PDGS-TAS-DI-PSD). 

[42] Giorgi, F. (1990), Simulation of Regional Climate Using a Limited Area Model Nested in 
a General Circulation Model, Journal of Climate, 3(9), 941-963. 

[43] Goetz, A. F., G. Vane, J. E. Solomon, and B. N. Rock (1985), Imaging spectrometry for 
earth remote sensing, science, 228(4704), 1147-1153. 

[44] Gourbesville, P., M. Abily, O. Delestre, L. Amossé, N. Bertrand, Y. Richet, C.-M. Duluc, 
and P. Navaro (2015), Uncertainty related to high resolution topographic data use for flood 



 

127 

 

event modeling over urban areas: toward a sensitivity analysis approach, ESAIM 
Proceedings. 

[45] Graf, L., M. Moreno-de-las-Heras, M. Ruiz, A. Calsamiglia, J. García-Comendador, J. 
Fortesa, J. López-Tarazón, and J. Estrany (2018), Accuracy Assessment of Digital Terrain 
Model Dataset Sources for Hydrogeomorphological Modelling in Small Mediterranean 
Catchments, Remote Sensing, 10(12), 2014. 

[46] Green, K., and M. Jackson (2009), Timeline of key developments in platforms and sensors 
for Earth observations, American Society for Photogrammetry and Remote Sensing 
(ASPRS), 1.1, 1-44. 

[47] Gringorten, I. I. (1963), A plotting rule for extreme probability paper, Journal of 
Geophysical Research (1896-1977), 68(3), 813-814. 

[48] Gruber, A., B. Wessel, M. Huber, and A. Roth (2012), Operational TanDEM-X DEM 
calibration and first validation results, Photogrammetric Engineering & Remote Sensing, 
73, 39-49. 

[49] Gupta, R. P. (2018), Remote Sensing Geology, Springer, Berlin, Heidelberg. 

[50] Gurney, K. (2014), An introduction to neural networks, CRC press, 
https://www.inf.ed.ac.uk/teaching/courses/nlu/assets/reading/Gurney_et_al.pdf. 

[51] Guth, P. (2010), Geomorphometric comparison of ASTER GDEM and SRTM, paper 
presented at A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
in conjunction with ASPRS/CaGIS. 

[52] Hajnsek, I., T. Busche, H. Fiedler, G. Krieger, S. Buckreuss, M. Zink, A. Moreira, B. 
Wessel, A. Roth, and T. Fritz (2010), TanDEM-X Ground Segment TD-PD-PL-0069 
TanDEM-X Science Plan, DLR. 

[53] Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, 768 pp., Prentice Hall 
PTR. 

[54] Haylock, M. R., T. C. Peterson, L. M. Alves, T. Ambrizzi, Y. M. T. Anunciação, J. Baez, 
V. R. Barros, M. A. Berlato, M. Bidegain, G. Coronel, V. Corradi, V. J. Garcia, A. M. 
Grimm, D. Karoly, J. A. Marengo, M. B. Marino, D. F. Moncunill, D. Nechet, J. Quintana, 
E. Rebello, M. Rusticucci, J. L. Santos, I. Trebejo, and L. A. Vincent (2006), Trends in 
Total and Extreme South American Rainfall in 1960–2000 and Links with Sea Surface 
Temperature, Journal of Climate, 19(8), 1490-1512. 

[55] Hensley, S., P. Rosen, and E. Gurrola (2000), The SRTM topographic mapping processor, 
paper presented at IGARSS 2000. IEEE 2000 International Geoscience and Remote 
Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in 
Managing the Environment. Proceedings (Cat. No.00CH37120), 24-28 July 2000. 

[56] Hervouet, J. (2007), Applications, Hydrodynamics of Free Surface Flows. 

[57] Hewitson, B. C., and R. G. Crane (1996), Climate downscaling: techniques and application, 
Climate Research, 07(2), 85-95. 



 

128 

 

[58] Hosking, J. R. M., and J. R. Wallis (1993), Some statistics useful in regional frequency 
analysis, Water Resources Research, 29(2)(271-281). 

[59] Hosking, J. R. M., and J. R. Wallis (1997), Regional Frequency Analysis: An Approach 
Based on L-Moments, Cambridge University Press, Cambridge. 

[60] Hundecha, Y., B. Arheimer, C. Donnelly, and I. Pechlivanidis (2016), A regional parameter 
estimation scheme for a pan-European multi-basin model, Journal of Hydrology: Regional 
Studies, 6, 90-111. 

[61] III. (2018). Facts + Statistics: Global catastrophes. Retrieved from https://www.iii.org/fact-
statistic/facts-statistics-global-catastrophes 

[62] InaSafe. (2015). A flood in Jakarta like 2013, http://inasafe.org/. Retrieved from 
http://inasafe.org 

[63] Jacobs, S. A., S. D. Taverna, Y. Zhang, S. D. Briggs, J. Li, J. C. Eissenberg, C. D. Allis, 
and S. Khorasanizadeh (2001), Specificity of the HP1 chromo domain for the methylated 
N-terminus of histone H3, The EMBO Journal, 20(18), 5232-5241. 

[64] JakartaOpenData (2015), Data Jumlah Penduduk DKI Jakarta, edited, Pemerintah Provinsi 
DKI Jakarta, https://twitter.com/jakartaopendata?lang=en. 

[65] Kawabata, D., and J. Bandibas (2009), Landslide susceptibility mapping using geological 
data, a DEM from ASTER images and an Artificial Neural Network (ANN), 
Geomorphology, 113(1), 97-109. 

[66] Keifer, C. J., and H. H. Chu (1957), Synthetic storm pattern for drainage design, Journal 
of the hydraulics division, 83(4), 1-25. 

[67] Kim, D., P. Gourbesville, and S.-Y. Liong (2019), Overcoming data scarcity in flood 
hazard assessment using remote sensing and artificial neural network, Smart Water, 4(1), 
2. 

[68] Kim, D., Y. Sun, D. Wendi, Z. Jiang, S.-Y. Liong, and P. Gourbesville (2018), Flood 
modelling framework for Kuching City, Malaysia: overcoming the lack of data, in 
Advances in Hydroinformatics, edited, pp. 559-568, Springer. 

[69] Koutsoyiannis, D., D. Kozonis, and A. Manetas (1998), A mathematical framework for 
studying rainfall intensity-duration-frequency relationships, Journal of Hydrology, 206(1), 
118-135. 

[70] Krieger, G., I. Hajnsek, P. Lopez Dekker, S. Baumgartner, M. Rodriguez-Cassola, F. De 
Zan, P. Prats-Iraola, K. Papathanassiou, M. Zink, and A. Moreira (2011), TanDEM-X 
Scientific Results and Future Formation Flying SAR Missions, 1-10 pp. 

[71] Kugler, Z. (2012), Remote sensing for natural hazard mitigation and climate change impact 
assessment, Quarterly Journal of the Hungarian Meteorological Service, 116, 21-38. 

[72] Kumar, G., and P. U. Iyer (2010), Management of perioperative low cardiac output state 
without extracorporeal life support: What is feasible?, Annals of pediatric cardiology, 3(2), 
147-158. 



 

129 

 

[73] Levenberg, K. (1944), A Method for the Solution of Certain Non-Linear Problems in Least 
Squares, Quarterly of Applied Mathematics, 2(2), 164-168. 

[74] Li, P., C. Shi, Z. Li, J. P. Muller, J. Drummond, X. Li, T. Li, Y. Li, and J. Liu (2012), 
Evaluation of ASTER GEM Ver2 using GPS measurements and SRTM Ver4.1 in China, 
181-186 pp. 

[75] Lillesand, T., R. W. Kiefer, and J. Chipman (2015), Remote Sensing and Image 
Interpretation, 7th Edition ed., Wiley. 

[76] Liu, J. (2017), Flood Projection and Analysis Through Stochastic Downscaling, PhD 
thesis, National University of Singapore, Singapore. 

[77] Luk, K. C., J. E. Ball, and A. Sharma (2000), A study of optimal model lag and spatial 
inputs to artificial neural network for rainfall forecasting, Journal of Hydrology, 227(1), 
56-65. 

[78] Mackay, C., S. Suter, N. Albert, S. Morton, and K. Yamagata. (2015). Large scale flexible 
mesh 2D modelling of the Lower Namoi Valley. Paper presented at the Floodplain 
Conference.  

[79] Maraun, D., F. Wetterhall, A. M. Ireson, R. E. Chandler, E. J. Kendon, M. Widmann, S. 
Brienen, H. W. Rust, T. Sauter, M. Themeßl, V. K. C. Venema, K. P. Chun, C. M. Goodess, 
R. G. Jones, C. Onof, M. Vrac, and I. Thiele-Eich (2010), Precipitation downscaling under 
climate change: Recent developments to bridge the gap between dynamical models and the 
end user, Reviews of Geophysics, 48(3). 

[80] Marquardt, D. W. (1963), An Algorithm for Least-Squares Estimation of Nonlinear 
Parameters, Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. 

[81] Martone, M., P. Rizzoli, C. Wecklich, C. González, J.-L. Bueso-Bello, P. Valdo, D. 
Schulze, M. Zink, G. Krieger, and A. Moreira (2018), The global forest/non-forest map 
from TanDEM-X interferometric SAR data, Remote Sensing of Environment, 205, 352-
373. 

[82] McCarthy, J. (1956), The inversion of functions defined by Turing machines, Automata 
studies, 177-181. 

[83] McGahey, C., and P. Samuels. (2004). A Practical Approach to Uncertainty in Conveyance 
Estimation. Paper presented at the 39th DEFRA Flood and Coastal Management 
Conference, London.  

[84] Mirosław-Świątek, D., S. Szporak-Wasilewska, R. Michałowski, I. Kardel, and M. 
Grygoruk (2016), Developing an algorithm for enhancement of a digital terrain model for 
a densely vegetated floodplain wetland, 1-16, 16 pp., SPIE. 

[85] Moody, D. I., S. P. Brumby, J. C. Rowland, and G. L. Altmann (2014), Land cover 
classification in multispectral imagery using clustering of sparse approximations over 
learned feature dictionaries, 1-19, 19 pp., SPIE. 

[86] Navalgund, R. R., V. Jayaraman, and P. S. Roy (2007), Remote sensing applications: an 
overview, Current Science, 93 (12), 1747-1766. 



 

130 

 

[87] Neal, J. C., T. J. Fewtrell, P. D. Bates, and N. G. Wright (2010), A comparison of three 
parallelisation methods for 2D flood inundation models, Environmental Modelling & 
Software, 25(4), 398-411. 

[88] Neelz, S., and G. Pender (2009), Grid resolution dependency in inundation modelling, 
edited, pp. 109-117, Tayler & Francis Group. 

[89] Nelli, N. R., V. R. Madineni, B. Ghouse, and R. Varaha (2018), Cloud vertical structure 
over a tropical station obtained using long-term high-resolution radiosonde measurements, 
Atmospheric Chemistry and Physics, 18(16), 11709-11727. 

[90] Ngongondo, C. S., C.-Y. Xu, L. M. Tallaksen, B. Alemaw, and T. Chirwa (2011), Regional 
frequency analysis of rainfall extremes in Southern Malawi using the index rainfall and L-
moments approaches, Stochastic Environmental Research and Risk Assessment, 25(7), 
939-955. 

[91] Nhat, L. M., Y. Tachikawa, and K. Takara. (2006). Establishment of Intensity-Duration-
Frequency Curves for Precipitation in the Monsoon Area of Vietnam. Paper presented at 
the Annuals of Disaster.  

[92] Nunez, J., K. Verbist, J. R Wallis, M. Schaefer, L. Morales-Salinas, and W. Cornelis 
(2011), Regional frequency analysis for mapping drought events in north-central Chile, 
Journal of Hydrology, 405, 352-366. 

[93] Pande, D. C., D. K. Moharir, and S. Khadri (2018), Study of land use classification in an 
arid region using multispectral satellite images, 1-11 pp., Applied Water Science. 

[94] Pender, G. (2006), Briefing: Introducing the Flood Risk Management Research 
Consortium, Proceedings of the Institution of Civil Engineers - Water Management, 
159(1), 3-8. 

[95] Prinadiastari, I., and P. Bahri (2018), Quick Assessment of Padangsidimpuan's Flash 
Flood, North Sumatera, Indonesia Using 2D Debris Flow Simulation SIMLAR v2.1. 

[96] PUB (2012), Code of Practice 35, Public Utility Board. 

[97] Radiomobile. (2018). Background on DEM.  

[98] Renaldi, E., and T. Shelton (2018), Thousands killed as Indonesia devastated by nearly 
2,000 natural disasters in 2018, in ABC, https://www.abc.net.au/news/2018-12-28/the-five-
most-deadly-natural-disasters-in-indonesia-this-year/10668480, edited. 

[99] Rencz, A. N., C. Bowie, and B. C. Ward (1996), Application of thermal imagery from 
LANDSAT data to locate kimberlites, Lac de Gras area, district of Mackenzie, N.W.T., 
Geological Survey of Canada, 3228, 255-257. 

[100] Reuter, H. I., A. Nelson, and A. Jarvis (2007), An evaluation of void‐filling interpolation 
methods for SRTM data, International Journal of Geographical Information Science, 
21(9), 983-1008. 

[101] Reuter, H. I., A. Neison, P. Strobl, W. Mehl, and A. Jarvis (2009), A first assessment of 
Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters, paper 



 

131 

 

presented at 2009 IEEE International Geoscience and Remote Sensing Symposium, 12-17 
July 2009. 

[102] Robert, W., S. Charles, E. Zorita, B. Timbal, P. Whetton, and L. Mearns (2004), Guidelines 
For Use of Climate Scenarios Developed From Statistical Downscaling Methods. 

[103] Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM 
performance, Photogrammetric Engineering & Remote Sensing, 72(3), 249-260. 

[104] Rosen, P. A., S. Hensley, E. Gurrola, F. Rogez, S. Chan, J. Martin, and E. Rodriguez 
(2001), SRTM C-band topographic data: quality assessments and calibration activities, 
paper presented at IGARSS 2001. Scanning the Present and Resolving the Future. 
Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. 
No. 01CH37217), IEEE. 

[105] Rosenblatt, F. (1961), Principles of neurodynamics. perceptrons and the theory of brain 
mechanisms, Cornell Aeronautical Lab Inc Buffalo NY, VG-1196-G-8. 

[106] Rossman, L. A. (2010), Storm Water Management Model User’s Manual Version 5.0, EPA 
(United States Environmental Protection Agency). 

[107] Roy, D. P., J. Li, H. K. Zhang, and L. Yan (2016), Best practices for the reprojection and 
resampling of Sentinel-2 Multi Spectral Instrument Level 1C data, Remote sensing letters, 
7(11), 1023-1032. 

[108] Roy, D. P., J. Li, H. K. Zhang, L. Yan, H. Huang, and Z. Li (2017), Examination of 
Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a 
general method to normalize MSI reflectance to nadir BRDF adjusted reflectance, Remote 
Sensing of Environment, 199, 25-38. 

[109] Sarve, A. N., M. N. Varma, and S. S. Sonawane (2015), Response surface optimization 
and artificial neural network modeling of biodiesel production from crude mahua 
(Madhuca indica) oil under supercritical ethanol conditions using CO2 as co-solvent, RSC 
Advances, 5(85), 69702-69713. 

[110] Schmidhuber, J. (2015), Deep learning in neural networks: An overview, Neural Networks, 
61, 85-117. 

[111] Sherman, C. W. (1931), Frequency and Intensity of Excessive Rainfalls at Boston, 
Transactions of the American Society of Civil Engineers, 95(1), 951-960. 

[112] Sibson, R. (1981), A Brief Description of Natural Neighbor Interpolation, Interpreting 
Multivariate Data, In: Barnett, V., Ed, 21-36. 

[113] Sim, W. (2018), Earthquakes, rains, heatwave, typhoon: Japan's brutal summer of 2018, in 
The Straitstimes, edited. 

[114] Soares, P. M. M., R. M. Cardoso, P. M. A. Miranda, P. Viterbo, and M. Belo-Pereira 
(2012), Assessment of the ENSEMBLES regional climate models in the representation of 
precipitation variability and extremes over Portugal, Journal of Geophysical Research: 
Atmospheres, 117(D7). 



 

132 

 

[115] Sun, Y., D. Wendi, D. E. Kim, and S.-Y. Liong (2016), Technical note: Application of 
artificial neural networks in groundwater table forecasting-a case study in a Singapore 
swamp forest, Hydrology and Earth System Sciences, 20, 1405-1412. 

[116] Sun, Y., C. D. Doan, A. T. Dao, J. Liu, and S.-Y. Liong (2014), Improving numerical 
forecast accuracy with ensemble Kalman filter and chaos theory: Case study on Ciliwung 
river model, Journal of Hydrology, 512, 540-548. 

[117] Tachikawa, T., M. Hato, M. Kaku, and A. Iwasaki (2011), Characteristics of ASTER 
GDEM version 2, paper presented at 2011 IEEE International Geoscience and Remote 
Sensing Symposium, 24-29 July 2011. 

[118] Thenkabail, P. S. (2015), Remote Sensing Handbook - Three Volume Set, CRC Press  

[119] Thomas, J., and V. Prasannakumar (2015), Comparison of basin morphometry derived 
from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India, 
Geocarto International, 30(3), 346-364. 

[120] UNISDR (2010), Synthesis report on ten ASEAN countries disaster risk assessment, 
United Nations Office for Disaster Risk Reduction, Geneva. 

[121] USGS. (2000). United States Geological Survey.  

[122] USGS (2003), SRTM Water Body Data Product Specific Guidance. 

[123] Weiss, J., and P. Bernardara (2013), Comparison of local indices for regional frequency 
analysis with an application to extreme skew surges, Water Resources Research, 49(5), 
2940-2951. 

[124] Wendi, D., S.-Y. Liong, Y. Sun, and C. D. Doan (2016), An innovative approach to 
improve SRTM DEM using multispectral imagery and artificial neural network, Journal 
of Advances in Modeling Earth Systems, 8(2), 691-702. 

[125] Wendleder, A., B. Wessel, A. Roth, M. Breunig, K. Martin, and S. Wagenbrenner (2013), 
TanDEM-X Water Indication Mask: Generation and First Evaluation Results, IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1), 171-
179. 

[126] Wessel, B., T. Fritz, T. Busche, P. Rizzoli, and G. Krieger (2016), TanDEM-X Ground 
Segment DEM Products Specification Document, DLR. 

[127] Widrow, B., and M. E. Hoff (1962), Associative Storage and Retrieval of Digital 
Information in Networks of Adaptive “Neurons”, in Biological Prototypes and Synthetic 
Systems: Volume 1 Proceedings of the Second Annual Bionics Symposium sponsored by 
Cornell University and the General Electric Company, Advanced Electronics Center, held 
at Cornell University, August 30–September 1, 1961, edited by E. E. Bernard and M. R. 
Kare, pp. 160-160, Springer US, Boston, MA. 

[128] Wilby, R. L., and C. W. Dawson (2013), The Statistical DownScaling Model: insights from 
one decade of application, International Journal of Climatology, 33(7), 1707-1719. 



 

133 

 

[129] Wulder, M. A., J. C. White, T. R. Loveland, C. E. Woodcock, A. S. Belward, W. B. Cohen, 
E. A. Fosnight, J. Shaw, J. G. Masek, and D. P. Roy (2016), The global Landsat archive: 
Status, consolidation, and direction, Remote Sensing of Environment, 185, 271-283. 

[130] Yusuf, A., and H. Francisco (2009), Climate Change Vulnerability Mapping for Southeast 
Asia, Economy and Environment Program for Southeast Asia (EEPSEA). 

[131] Zhang, W., and D. R. Montgomery (1994), Digital elevation model grid size, landscape 
representation, and hydrologic simulations, Water Resources Research, 30(4), 1019-1028. 

 

  



 

134 

 

Appendix 

(1) Flooding at Cengkareng, West Jakarta (Apr 2019) 

 

(2) Flooding at Cawang Soetoyo, East Jakarta (Apr 2019) 

 

 




