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Summary
3D human action recognition is a challenging task due to the complexity of human movements

and to the variety on poses and actions performed by distinct subjects. Recent technologies based

on depth sensors can provide 3D human skeletons with low computational cost, which is an use-

ful information for action recognition. However, such low cost sensors are restricted to controlled

environment and frequently output noisy data. Meanwhile, convolutional neural networks (CNN)

have shown significant improvements on both action recognition and 3D human pose estimation

from RGB images. Despite being closely related problems, the two tasks are frequently handled

separated in the literature. In this work, we analyze the problem of 3D human action recognition

in two scenarios: first, we explore spatial and temporal features from human skeletons, which are

aggregated by a shallow metric learning approach. In the second scenario, we not only show that

precise 3D poses are beneficial to action recognition, but also that both tasks can be efficiently per-

formed by a single deep neural network and still achieves state-of-the-art results. Additionally, we

demonstrate that optimization from end-to-end using poses as an intermediate constraint leads

to significantly higher accuracy on the action task than separated learning. Finally, we propose a

new scalable architecture for real-time 3D pose estimation and action recognition simultaneously,

which offers a range of performance vs speed trade-off with a single multimodal and multitask

training procedure.
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Résumé
La reconnaissance d’actions humaines en 3D est une tâche difficile en raison de la complexité

de mouvements humains et de la variété des poses et des actions accomplies par différents sujets.

Les technologies récentes basées sur des capteurs de profondeur peuvent fournir les représenta-

tions squelettiques à faible coût de calcul, ce qui est une information utile pour la reconnaissance

d’actions. Cependant, ce type de capteurs se limite à des environnements contrôlés et génère

fréquemment des données bruitées. Parallèlement à ces avancées technologiques, les réseaux de

neurones convolutifs (CNN) ont montré des améliorations significatives pour la reconnaissance

d’actions et pour l’estimation de la pose humaine en 3D à partir des images couleurs. Même

si ces problèmes sont étroitement liés, les deux tâches sont souvent traitées séparément dans

la littérature. Dans ce travail, nous analysons le problème de la reconnaissance d’actions hu-

maines dans deux scénarios: premièrement, nous explorons les caractéristiques spatiales et tem-

porelles à partir de représentations de squelettes humains, et qui sont agrégées par une méth-

ode d’apprentissage de métrique. Dans le deuxième scénario, nous montrons non seulement

l’importance de la précision de la pose en 3D pour la reconnaissance d’actions, mais aussi que les

deux tâches peuvent être efficacement effectuées par un seul réseau de neurones profond capable

d’obtenir des résultats du niveau de l’état de l’art. De plus, nous démontrons que l’optimisation

de bout en bout en utilisant la pose comme contrainte intermédiaire conduit à une précision plus

élevée sur la tâche de reconnaissance d’action que l’apprentissage séparé de ces tâches. Enfin,

nous proposons une nouvelle architecture adaptable pour l’estimation de la pose en 3D et la re-

connaissance de l’actions simultanément et en temps réel. Cette architecture offre une gamme

de compromis performances vs vitesse avec une seule procédure d’entraînement multitâche et

multimodale.
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Introduction
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1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context and Motivation

As a natural result of evolution, humans are very efficient in recognizing other humans and their

behavior. The way that human beings perceive other humans is strongly based on visual obser-

vation and interpretation. Consequently, making machines understand human behavior is one

of the greatest challenges in computer science. The field of computer science aiming, but not re-

stricted, to enable computer to achieve such a high-level understanding of visual content is called

computer vision. Among several different areas of research, two tasks related to computer vision

are estimating human poses and recognizing human actions. Nowadays, automating human pose

estimation and action recognition has become an essential step towards many other important

applications, such as automatic surveillance systems, human-computer interfaces, sports per-

formance analysis, augmented reality, 3D scene understanding, content-based video and image

indexation, among many others.

Despite the considerable progress of computer vision algorithms from the last two or three

decades, computers are still not effective in solving some tasks which involve complex and high-

level semantics. To tackle such problems, machine learning is frequently used to create statistical

models from training data manually annotated by humans. As a consequence, building machine

learning algorithms capable of solving complex computer vision problems is recently one of the

biggest challenges in the domain.

In this thesis, we target the problems of human action recognition and human pose estima-

tion from the machine learning perspective. Both problems are strongly related, not only because

understanding the human body is a common key aspect for the two tasks, but also because the

human pose information is of great relevance for action recognition. This observation leads to

two premises. First, the human action recognition task benefits from the human pose informa-

tion, and second, since the two problems are strongly related, they could be handled jointly in a

better way than separately.

With the recent progress of machine learning and specially deep learning algorithms, complex

problems have been successively addressed by end-to-end optimization [53, 46, 47]. We believe

1



CHAPTER 1. INTRODUCTION

that it is not different for action recognition, and from this emerges our third premise: optimizing

one complex task from end-to-end is better than dividing the problem into subtasks with individ-

ual optimization.

Based on the three premises stated before, our goal is to handle the high-level problem of

human action recognition as a human pose dependent problem. To this end, reliable pose esti-

mation is essential. The human poses or skeletal representation give the spatial coordinates of

body parts, which is a highly discriminant information to recognize certain actions dependent on

position and movements of the human body, but also provide a relevant information about where

to focus to extract visual information, which could be useful to identify action-related objects and

interactions between the person performing an action and its environment.

To avoid the complex task of estimating the human pose from monocular images, depth sen-

sors can be used to produce depth maps, which are invariant to color and texture aspects and

facilitate the segmentation of 3D space. The human pose can be estimated from depth maps, but

the reliability of estimations depends on the pose itself and on the interaction with objects in the

scene, since no visual aspects are available. As a result, cases of failure are common, as depicted

in Figure 1.1.

Figure 1.1 – Failure cases of human skeleton estimation from Microsoft’s Kinect.

Another possibility is the more difficult task of estimating human poses from monocular im-

ages. However, when considering optimization from end-to-end, the current most reliable meth-

ods for monocular pose estimation are not fully differentiable, since they cast pose estimation as

a per-pixel body-part classification problem by predicting heat maps instead of body joint loca-

tions. This prevents such approaches from being used as a building block for action, considering

our third premise. This can be possibly one of the reasons that such methods are not frequently

extended in the literature to perform action recognition.

Considering the exposed ideas and limitations, we present the key contributions of this thesis

in the following section.

1.2 Key Contributions

As our first contribution, we propose a new framework for human action recognition by exploring

human skeleton sequences captured by the Kinect sensor. From the skeleton sequences, we pro-

pose to extract localized features, considering position and motion, which are then aggregated to

form a global feature representation. By using a shallow metric learning approach, we are able to

learn a combination of features with the objective to better distinguish between different actions.

The promising results show that the skeletal or pose representation is very relevant to recognize

some actions, supporting our first premise that action recognition benefits from pose.
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Considering the limitations of depth based skeleton estimation and the partial differentiability

of current state-of-the-art monocular pose estimation methods, we propose a new human pose re-

gression approach from RGB images that is fully differentiable and achieves state-of-the-art results

on 3D human pose estimation and comparable results on 2D scenarios. The proposed method is

trainable from end-to-end and predicts human poses in body joints coordinates. As a byproduct,

our method also provides body joint probability maps, corresponding to the regions in the image

containing the human body parts.

We also investigate different network architectures and 3D pose regression variants, resulting

in a new convolutional neural network (CNN) architecture able to perform precise and fast human

pose inferences. Additionally, we investigate the problem of predicting human poses in absolute

coordinates, which could be specially useful when performing predictions with multiple cameras.

Based on our differentiable approach for human pose estimation from RGB images, we build

on top of it a human action recognition method, considering our three premises: First, our method

is based on reliable and robust 3D human pose estimation. Second, the two tasks, pose estimation

and action recognition, can be performed simultaneously in a multitask fashion; and third, the

multitask method can be optimized from end-to-end. Finally, we demonstrate by our method and

by our results each of our premises.

1.3 Structure of the Thesis

This thesis is divided in six chapters. In chapter 2, we present the bibliographic review, consider-

ing the recent methods most related to our work. In chapter 3, we propose a new framework for

human action recognition from skeleton sequences obtained from depth sensors. This chapter is

based on the following publication:

• D. C. Luvizon, H. Tabia, D. Picard. Learning features combination for human action recog-

nition from skeleton sequences. Pattern Recognition Letters, volume 99, pages 13-20, 2017.

The proposed approach for human pose regression from RGB images, its extensions to 3D sce-

narios, and the proposed network architecture for 3D pose estimation are presented in chapter 4,

which is based on the following articles:

• D. C. Luvizon, H. Tabia, D. Picard. Human Pose Regression by Combining Indirect Part

Detection and Contextual Information. CoRR, abs/1710.0232, pre-print, 2017.

• D. C. Luvizon, D. Picard, H. Tabia. 2D/3D Pose Estimation and Action Recognition using

Multitask Deep Learning. The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5137-5146, 2018.

• D. C. Luvizon, H. Tabia, D. Picard. SSP-Net: Scalable Sequential Pyramid Networks for

Real-Time 3D Human Pose Regression. Submitted to Pattern Recognition, November 2018.

In chapter 5, we present a fully differentiable, multitask approach, for human action recognition

based on predicted poses, considering two scenarios: separated learning and joint multitask opti-

mization. This part is partially based on the previous CVPR’18 paper, in addition to the following

articles:

• D. C. Luvizon, D. Picard, H. Tabia. Multimodal Deep Neural Networks for Pose Estimation

and Action Recognition, Congrès Reconnaissance des Formes, Image, Apprentissage et Per-

ception (RFIAP), 2018.
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• D. C. Luvizon, D. Picard, H. Tabia. Multitask Deep Learning for Real-Time 3D Human Pose

Estimation and Action Recognition. Submitted to TPAMI, January 2019.

Finally, in chapter 6, we conclude this thesis and give ours perspectives for future researches.

4



Chapter 2

Related Work

Contents

2.1 Human Skeleton and Human Pose Estimation . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Human Skeleton Prediction using Depth Sensors . . . . . . . . . . . . . . . . 6

2.1.2 2D Human Pose Estimation from RGB Images . . . . . . . . . . . . . . . . . . 7

2.1.3 Monocular 3D Human Pose Estimation . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Multi-stage Architectures for Human Pose Estimation . . . . . . . . . . . . . 10

2.1.5 Multi-person Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Human Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Action Recognition from Skeleton Sequences and Depth Maps . . . . . . . . 11

2.2.2 Action Recognition from RGB Image Sequences . . . . . . . . . . . . . . . . . 12

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Prologue

Context:

In this chapter, we contextualize our work by presenting a non exhaustive review of the related

work. Recent methods related to human pose estimation are presented in section 2.1, and pre-

vious works on action recognition are discussed in section 2.2. We also discuss the limitations of

current approaches and highlight our contributions to each domain.

In the literature, both terms “human skeleton” and “human pose” are used to designate a high

level representation of the human body. Frequently, “human skeleton” is used to refer to a 3D

human body representation estimated from depth maps by using depth sensors, such as the Mi-

crosoft’s Kinect. On the other hand, “human pose” is a more generic term used for both 2D man-

ually annotated keypoints (or landmarks), as well as for 3D representations computed by motion

capture (MoCap) systems. In order to clarify the different sources of information in this work, we

use these two terms accordingly to this frequently used standard from previous work.
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2.1 Human Skeleton and Human Pose Estimation

In this section, we review some of the methods for human skeleton and human pose estimation

most related to our work, which we divide into five sections:

• Human Skeleton Prediction using Depth Sensors, we present some techniques and limita-

tions about human skeleton estimation from depth maps.

• 2D Human Pose Estimation from RGB Images. Here we present some methods for 2D pose

estimation from RGB images using classical and deep architectures.

• Monocular 3D Human Pose Estimation, we present the state-of-the-art methods for 3D pose

prediction and their limitations.

• Multi-stage Architectures for Human Pose Estimation, we detail some aspects of current multi-

stage CNN architectures for pose estimation.

• Multi-person Pose Estimation, we present the few methods targeting 3D multi-person pose

estimation.

For a complete and detailed bibliographic review, we encourage the readers to refer to the 3D

human pose estimation survey [121].

2.1.1 Human Skeleton Prediction using Depth Sensors

In the last decade, the rising of consumer depth sensors such as the Microsoft’s Kinect [91] and

the Asus’ Xtion [5] have benefited many applications from depth and color data [45, 169]. These

sensors are based on an infrared (IR) projector, an IR camera, and a color camera, resulting in a

capturing system able to record both RGB and depth data (RGB-D). Among different applications

in computer vision, depth sensors motivated the development of algorithms which estimate the

human skeleton in real-time from depth maps [126, 41, 125, 150, 6], specially due to the invariance

of depth maps to color and texture aspects. For example, as illustrated in Figure 2.1, Shotton et

al. [125] proposed an algorithm based on deep randomized decision forest to discriminate body

parts, which are then used to predict 3D body joint locations. The algorithm runs at real-time on

the Xbox 360 GPU and is used as the standard tool for skeleton estimation from Kinect data.

Figure 2.1 – Human skeleton estimation from depth maps using detected body parts. Adapted from Shotton
et al. [125].

Despite providing additional information, depth sensors have some disadvantages compared

to standard monocular cameras:

• Depth sensors are limited to controlled and indoor environment, since they rely on IR sens-

ing.
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• Compared to RGB images, RGB-D frames frequently have lower resolution, since depth sen-

sors are more computationally expensive.

• In cost-effective depth sensors, the color and depth channels are frequently not synchro-

nized and/or do not have a pixel-wise correspondence, which hinders the optimal use of

both channels together.

• RGB videos are widely available on the Internet (e.g., YouTube and Flickr), while RGB-D

videos are mostly limited to a few academic datasets.

The above mentioned limitations and the breakthrough of deep learning and convolutional neural

networks motivated us to study human pose estimation from traditional color images, as detailed

in the following sections.

2.1.2 2D Human Pose Estimation from RGB Images

The problem of 2D human pose estimation from RGB images has been intensively studied during

the last 10 years, from Pictorial Structures [4, 31, 103] to more recent CNN approaches [95, 77,

105, 54, 111, 149, 10, 137, 139, 102, 101]. From the literature, we can distinguish two families of

methods for pose estimation: detection based and regression based methods. The former family

of methods tries to detect body joints separately, which are further combined, resulting in the final

predicted pose from aggregated parts. In the latter, the methods are able to map directly input

images to body joints coordinates, usually by using a non-linear regression function. We provide

some examples from each family of methods in the two following sections.

2.1.2.1 Detection based Approaches

Pischulin et al. [105] proposed DeepCut, a graph cutting algorithm that relies on body parts de-

tected by DeepPose. This method has been improved in [54] by replacing the previous CNN by a

deep Residual Network (ResNet) [48], resulting in very competitive accuracy results, specially on

multi-person detection.

More recent detection based methods handle pose estimation as a heat map prediction prob-

lem, where each pixel in a heat map represents the detection score of a corresponding joint [111,

10, 13, 93, 29]. Specifically, such methods employ a deep CNN to predict one heat map per body

joint, which are learned to reproduce Gaussian ground truth heat maps, as illustrated in Figure 2.2.

Based on this approach, Bulat et al. [13] proposed a two-stages CNN for coarse and fine heat

Input image

Loss
CNN

Target

……

Heat maps

Figure 2.2 – Overview of recent detection based approaches for heat maps regression and pose estimation.

map regression using pre-trained models. Gkioxari et al. [42] presented a structured prediction
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method, where the prediction of each joint depends on the intermediate feature maps and the

distribution probability of the previously predicted joints.

Following the tendency of deeper models with residual connections, Newell et al. [93] pro-

posed the Stacked Hourglass (SH) networks with convolutions in multi-level features, allowing

reevaluation of previous estimations due to a stacked block architecture with many intermediate

supervisions. The part-based learning process can benefit from intermediate supervision because

it acts as constraints on the lower level layers. As a result, the feature maps on higher levels tend to

be cleaner.

Since the release of the SH networks, methods in the state of the art are proposing complex

variations of this architecture. For example, Chu et al. [29] proposed an attention model based

on Conditional Random Field (CRF) and Yang et al. [155] replaced the residual unit from [93]

by the Pyramid Residual Module (PRM). With the emergence of Generative Adversarial Networks

(GANs) [43], Chou et al. [27] proposed to use a discriminative network to distinguish between

estimated and target heat maps. This process could increase the quality of predictions, since the

generator is stimulated to produce more plausible predictions. Another application of GANs in

that sense is to enforce the structural representation of the human body [23].

All the previous methods that are based on detection need additional steps on training to pro-

duce artificial ground truth from joint positions, which represent an additional processing stage

and additional hyper parameters, since the ground truth heat maps have to be defined by hand,

usually as a 2D Gaussian distribution centered on ground truth locations. On evaluation, the in-

verse operation is required, i.e., heat maps have to be converted to joint positions, generally using

the argument of the maximum a posteriori probability (MAP), called argmax. Consequently, in or-

der to achieve good precision, predicted heat maps need reasonable spatial resolution (i.e., num-

ber of pixels encoded in one activation), which increases quadratically the computational cost

and memory usage. On the other hand, as detailed in the following section, regression based ap-

proaches output poses in (x, y) for 2D or (x, y, z) for 3D coordinates, preventing from requiring

discretization, artificially generated ground truth, and post-processing stages.

2.1.2.2 Regression based Approaches

Some methods tackle pose estimation as a keypoint regression problem, where a nonlinear func-

tion is used to map input images directly to joint coordinates. One of the first regression ap-

proaches was proposed by Toshev and Szegedy [139] as a holistic solution based on cascade re-

gression for body part detection, where individual joint positions are recursively improved, taking

a full frame as input. Pfister et al. [102] proposed the Temporal Pose ConvNet to track upper body

parts, and Carreira et al. [16] proposed the Iterative Error Feedback by injecting the prediction

error back to the input space, improving estimations recursively. More recently, Sun et al. [130]

proposed a structured bone based representation for human pose, which is statistically less vari-

ant than absolute joint positions and can be indistinctly used for both 2D and 3D representations.

However, the method requires converting pose data to the relative bone based format. Moreover,

those results are all outperformed by detection based methods, mainly because traditional re-

gression approaches are sub-optimized for the highly complex task of pose estimation. This is an

evidence that regressing coordinates is a difficult problem.

In order to tackle this weakness, we propose a different strategy by replacing the argmax from

recent part-based methods by the soft-argmax, allowing sub-pixel accuracy while being fully dif-

ferentiable. The main advantage of a differentiable method is that the output of the pose estima-
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tion can be used in further processing and the whole system can be fine-tuned.

2.1.3 Monocular 3D Human Pose Estimation

Estimating the human body joints in 3D coordinates from monocular RGB images is a very chal-

lenging problem with a vast bibliography available in the literature [56, 107, 38, 134, 74, 73, 55, 172].

Despite the majority of 2D pose estimation methods being detection based approaches [93, 52],

3D pose estimation is mostly handled as a regression problem [83, 88, 1, 171, 131, 94]. One of the

reasons is due to the additional third dimension, which significantly increases the complexity of

classification based solutions.

A common approach for 3D human pose estimation is to lift 3D predictions from 2D poses

estimated with keypoint detectors [108, 70, 114, 158]. For example, Martinez et al. [87] proposed

a baseline architecture for learning 3D representations from 2D poses. Chen and Ramanan [19]

proposed a two stage method: first 2D poses are estimated in the camera space, then the pre-

dicted 2D points are used to match a non parametric shape model, from which 3D predictions

are obtained. Structural constraints have also been exploited to penalize invalid angles and seg-

ments [30], resulting in more realistic predictions. Despite being more robust to visual variations,

lifting 3D poses from 2D points is an ill-defined problem, which frequently results in ambiguity.

Deep CNN architectures have been used to learn precise 3D representations from RGB im-

ages [173, 136, 87, 135, 88] thanks to the availability of high precise 3D annotated data [57]. Many

methods are now surpassing methods which use depth-sensors [90]. Mehta et al. [88] proposed

an improved supervision scheme with one auxiliary task for 2D heat maps prediction and a sec-

ond order kinematic relation, resulting in a multimodal approach for normalized 3D human pose

estimation. This method was extended to VNect [90], a real-time 3D human pose estimation sys-

tem from monocular images, by replacing the fully-connected layer for 3D pose by location maps

that encode the relative (x, y, z) coordinates for each joint. Additionally, the person’s bounding box

is tracked based on the 2D predictions, and a temporal filtering is applied to stabilize predictions.

In their method, the authors assume that all persons have the same scale and the same height, so

given the camera calibration, the estimated 2D pose (in image coordinates), and the relative 3D

pose centered on the root joint, the global pose can be estimated in the camera coordinate system.

Pavlakos et al. [99] proposed the volumetric stacked hourglass architecture, but the method

suffers from the significant increase in the number of parameters and in the required memory to

store all the gradients. More recently, Yang et al. [158] proposed to use an adversarial network to

distinguish between generated and ground truth poses, resulting in improvements on predictions

on uncontrolled environments. Compared to [99], we show in our work that (i) smaller volumet-

ric heat maps can be used with soft-argmax and still improve results, since soft-argmax is a con-

tinuous regression function, and (ii), the volumetric representation can be fully replaced by pre-

dicting 2D depth maps, that encode the depth related to each body joint, resulting in even lower

computational complexity and better results. Sun et al. [132] proposed a similar approach to the

soft-argmax, called integral regression. Their work was developed concurrently and independently

form ours. However, the method proposed in [132] still depends on artificial heat maps generation

for intermediate supervision and on a costly voxilized representation for 3D predictions.

Another challenge related to 3D pose estimation is the lack of rich visual data. Since precise 3D

annotation depends on expensive and complex Motion Capture (MoCap) systems, public datasets

are usually collected in controlled environments with static and clean background, despite having

few subjects. To alleviate this limitation, Mehta et al. [88] proposed to first train a 2D model on
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data collected “in-the-wild” with manual 2D annotations, and then to use transfer learning to

build a 3D network that predicts 3D joint positions. More recently, synthetic data augmentation

have been proposed to alleviate the lack of “in-the-wild” images with 3D pose annotations [116],

e.g., the SURREAL dataset [142] and the MuPoTS-3D dataset [89]. However, such solutions are

still not optimal, since it is very difficult to place an avatar over natural images while keeping the

context realistic, as can be observed in Figure 2.3.

Figure 2.3 – Samples of synthetic data from the SURREAL dataset. Adapted from Varol et al. [142].

Differently, in our approach we merge images from 3D datasets with precise annotations but

still background and images “in-the-wild” with manually 2D annotations in a single training pro-

cedure. This is possible because in our method we do not backpropagate the error relative to the

z coordinate for 2D input data. Additionally, we propose 3D structural constraints on predicted

poses, which can be applied to any input image, independently on the available labels.

2.1.4 Multi-stage Architectures for Human Pose Estimation

Multi-stage architectures have been widely used for human pose estimation, specially for the more

established problem of 2D pose [10, 42, 29, 149]. The main reason for the success of such architec-

tures is the successive improvements provided by intermediate supervision. A common practice

in previous methods is to regress heat maps representations, which correspond to a score map for

a given keypoint being present at a given location. The refinement of such heat maps is crucial for

achieving good precision, as noted in [13] and extended in the SH network [93], where a sequence

of U-nets with multi-scale processing is used to refine a set of predicted heat maps. On 3D sce-

narios, Zhou et al. [170] benefits from 2D heat maps to guide a 3D pose regressor, introducing a

weakly-supervised approach for lifting 3D predictions from 2D data.

As observed in [93], intermediate supervisions are beneficial for good precision, since they al-

low the network to refine predictions successively. However, traditional detection based methods

cannot easily benefit from multi-scale intermediate supervision, since such methods are not scale

invariant. On the other hand, the proposed regression approach is invariant to the scale of feature

maps (as shown in section 4.5), allowing multi-scale supervision in a straightforward way.

2.1.5 Multi-person Pose Estimation

Several methods for 2D multi-person pose estimation have been proposed in the literature [52,

105, 54, 92, 15, 60, 71]. A simple solution is to first localize the persons, then estimate the pose

on each localisation [106, 58, 98]. However, these methods not only depend on the robustness of

the person detector, but also introduce redundant computations. A more efficient approach is to

detect body keypoints with a CNN classifier [105, 54]. Even though such methods require a post-

processing stage, it is often computationally less expensive than feeding multiple bounding boxes

to a single pose estimator.

To the best of our knowledge, only three methods have been proposed to tackle multi-person

3D pose estimation [117, 165, 89]. The pioneer work is the LCR-Net [117] architecture, on which
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the classification output from an R-CNN [115] is replaced by a pose classification task. Pose pro-

posals are then fed to a regression module for further refinement. However, the method is limited

to predictions relative to the root joint (no absolute z for each person) and by the number of pre-

defined anchor-poses, resulting in lower precision on single person when compared to regression

methods [131]. Zanfir et al. [165] proposed to reconstruct 3D pose and shape by integrating physi-

cal scene constrains and temporal coherence, and Mehta et al. [89] proposed a regression method

based on the Occlusion-Robuts Pose-Maps (ORPMs).

One of the reasons for the scarcity of works on multi-person 3D pose estimation is the lack of

abundant and natural 3D data with multiple person (except for synthetic data as in [89]), which is

a requirement for many recent data-driven approaches.

2.2 Human Action Recognition

In this section, we present some of the methods for human action recognition most related to our

work, which are structured as:

• Action Recognition from Skeleton Sequences and Depth Maps, on which we focus on action

recognition methods using depth sensors.

• Action Recognition from RGB Image Sequences. In this part we present the methods related

to our work that use RGB image sequences as input.

For a general literature review on the subject, considering both skeleton and RGB based methods,

we encourage the readers to refer to the surveys [49, 110, 109].

2.2.1 Action Recognition from Skeleton Sequences and Depth Maps

Recent methods for human action recognition using depth sensors are mostly based on depth

maps, skeleton joint sequences, or both [76, 100]. Skeleton sequences are frequently used for ac-

tion recognition because they encode high level information, both on spatial and temporal do-

mains, with very few feature values, despite being invariant to the visual aspects of the subject.

Depth sensors have also some advantages over color cameras, like their invariance to lightning

and color conditions and their capability to provide a 3D structure of the scene, which makes the

segmentation step easier. Some methods use solely depth maps for action recognition [75, 81, 96,

112, 159]. However, these methods suffer from noisy depth maps and occlusions. To deal with

multichannel RGB-D frames, Tran and Ly [140] proposed a latter feature combination scheme, al-

though it can be costly if several features are used, since their method needs one classifier and

one weight coefficient per features individually. Using both depth maps and skeleton joints, Wang

et al. [148] proposed the actionlet ensemble model. The actionlet features combine the relative

3D position of subgroups of skeleton joints and the local occupancy pattern (LOP) descriptor. To

capture the temporal structure of actions, the authors employ the short time Fourier transform on

concatenated features to compose a final feature vector.

Based only on skeletons extracted from depth maps, Xia et al. [153] proposed a representation

of human pose by the histogram of 3D joints (HOJ3D). They project the sequence of histograms

using LDA and label each posture using the k-means algorithm. Each posture label from a se-

quence is fed into a discrete hidden Markov model (HMM) that gives the matching probability for

each action. Their approach showed low accuracy in cross subject tests due to the high intra-class

variance observed in the evaluated datasets. In order to reduce the effect of intra-class variance,
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several techniques have been applied on feature space, such as sparse dictionary learning [82]

and metric learning on Riemannian [33] and Grassmann [128] manifolds. Other methods try to

explicitly model the skeleton sequences accordingly to their 3D geometric constraints [144] or by

applying specialized graph-based models on the skeleton joints structure [72], which try to explore

the geometric relations between joints and to detect more relevant patterns related to actions. Fi-

nally, Zanfir et al. [166] showed that speed and acceleration of skeleton joints are also important

for action classification by proposing the non parametric moving pose (MP) descriptor. In our first

approach for action recognition based on skeleton data (chapter 3), we try to extract relevant pose

features by combining joints into subgroups, and by explicitly exploring body movement (speed)

from displacement vectors.

With the success of Recurrent Neural Networks (RNNs) in the text and speech domains, some

RNN based methods for action recognition from skeleton sequences were also proposed [143,

174]. However, the low range and low resolution of cost-effective depth sensor frequently result

in noisy skeletons, which, combined with the limited size of some datasets, makes the learning

task difficult. To cope with this noisy data, Spatio-Temporal LSTM networks have been proposed

by applying a gating mechanism [78] to learn the reliability of skeleton sequences or by using at-

tention mechanisms [79, 129]. In addition to the skeleton data, multimodal approaches can also

benefit from visual cues [124]. In that direction, Baradel et al. [8] proposed the Pose-conditioned

Spatio-Temporal attention mechanism by using the skeleton sequences for both spatial and tem-

poral attention mechanisms, while action classification is based on pose and appearance features

extracted from image patches around the hand regions. Although the majority of recent methods

based on deep neural networks employ LSTM units to model the temporal aspect of actions, they

are limited to 20 frames when reporting experiments. This short amount of samples can be easily

encoded by sufficiently deep convolutional networks. Since our deep architecture predicts high

precision 3D skeleton from the input RGB frames, we do not have to cope with the noisy skeletons

from Kinect. Moreover, we show in the experiments that, despite being based on temporal convo-

lution instead of the more common LSTM, our system is able to reach state of the art performance

on 3D action recognition.

From the above mentioned works we can conclude two important facts. First, both spatial and

temporal information are relevant for action recognition, as well as visual cues. However, since

they have different nature, it is not trivial to combine them. Second, certain joints are more dis-

criminant for specific actions. In the first part of this thesis, we demonstrate that spatial and tem-

poral features can be used together if they are combined correctly [85]. Furthermore, the proposed

approach based on skeleton data relies on an aggregation method that preserves fundamental in-

formation from individual joints, allowing further efficient metric learning. In the proposed deep

architecture, we are able to combine temporal, spatial and visual information in a seamless way,

making the best of the input data.

2.2.2 Action Recognition from RGB Image Sequences

Action recognition from videos or RGB image sequences is considered a difficult problem because

it involves high level abstraction, high intra-class variations, background clutter, and the temporal

dimension is not easily handled. However, contrarily to depth maps, color images are widely avail-

able, are not restricted to controlled environments, and provide rich visual information, which is

of great relevance to recognize actions contextualized by human-object interactions.

A common approach in the literature to address the task of action recognition is by exploring
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localized features in space and time [154, 63, 69, 64, 34]. A good technique to aggregate motion and

visual features is by conditioning both information using the human pose to guide features extrac-

tion, as demonstrated by [24]. The local motion information is also of great relevance for action

recognition, classically described as Dense Trajectories (DT) [146] and Improved Dense Trajecto-

ries (IDT) [147]. In all those approaches, the long-term temporal information is usually not taken

into account, since localized features are aggregated by a bag-of-features encoding technique for

final action classification.

With the advent of deep convolutional neural networks, the temporal dimension can be better

incorporated by means of temporal convolutions, which in practice are 3D convolutions in space

and time. Such techniques have recently been stated as the option that gives the highest classifica-

tion scores [14, 17, 7] in large scale datasets, specially when taking into account long-term depen-

dencies [141]. However, 3D convolutions involve a high number of parameters, which require an

elevated amount of memory for training, and cannot efficiently benefit from the abundant still im-

ages for training, since the input necessarily has to be a video clip. Another option to integrate the

temporal aspect is by analysing motion, usually using the optical flow computed from the frame

sequence [24, 35]. Unconstrained temporal and spatial analysis is also a promising approach to

tackle action recognition, since it is very likely that, in a sequence of several frames, some very

specific regions in a few frames are much more relevant than the remaining parts. Inspired on this

observation, Baradel et al. [9] proposed an attention model called Glipse Clouds, which learns to

focus on relevant image patches in space and time, aggregating the patterns and soft-assigning

each feature to workers that contribute to the final action decision. Multi-view videos can also

provide additional information, specially in the cases of occlusion, as demonstrated by [145].

We can notice that many 2D action recognition methods use localized information in space

and time to perform action decision. However, the human body joints, when available, are used

only as an attention mechanism for features extraction, and not for motion analysis. Moreover, the

few methods that directly explore the body joints do not generate it, therefore they are limited to

datasets that provide skeletal data. We proposed an approach that alleviates these limitations by

performing pose estimation simultaneously with action recognition, exploiting the best capabili-

ties of human poses, to extract visual features and to recover the relative motion information. As

a result, our model only needs the input RGB frames while still performing discriminative visual

recognition guided by estimated body joints.

2.3 Conclusion

In this chapter, we presented some of the state-of-the-art methods which are most related to our

work. We divided these methods into two main groups: human pose estimation and action recog-

nition. For both groups, we discussed some characteristics with respect to the source of informa-

tion i.e., depth sensors or monocular cameras, and the considered scenario as 2D or 3D spaces.

From previous methods for action recognition based on depth maps and skeleton sequences

we can observe that a few subsets of joints are more relevant to specific actions, and that both body

position and motion information are important to the final action decision. Moreover, current

methods have shown difficulties to handle intra-class variations among similar pairs of actions,

specially on small datasets composed of few samples per class, and several methods proposing

geometrically constrained manifolds for a better data representation. We tackle these limitations

by proposing a shallow framework based on skeleton data only, which differs from the previous

work by a robust local features aggregation scheme, which combines small groups of joints for
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both position and motion analysis, allowing efficient metric learning intended to select the best

features combination for action recognition.

Nonetheless, depth sensors are very limited in terms of conditions of use and availability, mak-

ing human skeleton prediction from depth maps prohibitive under certain conditions. Alterna-

tively, recent advances in deep learning and on convolutional neural networks have allowed pre-

cise human pose estimation from color images. However, the most accurate methods are based

on detection and are not differentiable. Therefore, they cannot be easily integrated to build on

other tasks such as action recognition in a fully differentiable way. We alleviate this limitation by

proposing a new human pose regression approach that has several differences compared to pre-

vious works. First, our method departs from requiring artificial heat maps generation for training,

non-differentiable quantization for evaluation, and volumetric representations for 3D by predict-

ing pairs of heat maps and depth maps, which are then directly transformed to joint coordinates

by the proposed regression approach. This solution allows our method to be trained simultane-

ously with 2D and 3D annotated data, resulting in more robust predictions. Second, differently

from previous architectures, our method has intermediate supervisions at different scales, pro-

viding different levels of semantic and resolution, which are all aggregated for better predictions

refinement. Third, after a single training procedure, our scalable network can be cut at different

positions, providing a vast trade-off for precision vs speed. Finally, the proposed approach is also

capable of predicting 3D poses in absolute world coordinates with any assumption about persons

scale. All these characteristics allow our method to provide high precise 3D pose estimations in a

fully differentiable way, using only RGB frames as input.

Despite providing discriminant information for action recognition, the human poses sequence

is frequently not enough to distinguish between actions involving similar movements but different

visual context, such as “reading” and “playing with tablet”. From the previous work, we can notice

the importance of localized visual features extraction, which are essential to identify the context.

However, previous action recognition methods based on color images are not able to extract or

does not exploit the human pose information efficiently. We show in our approach that a single

model can be used to (i) extract the human pose information and to (ii) recognize human actions,

using the human pose both as a high discriminant information and as a prior for deep visual fea-

tures extraction. We also show that optimization from end-to-end for pose estimation and action

recognition leverages accuracy on both tasks, since they are related tasks and can benefit from

each other. Finally, contrarily to all previous methods, we are able to train a single model using

multimodal data such as single frame 2D “in-the-wild”, highly precise 3D poses, and video clips

for action, simultaneously and with multitask optimization, while reaching an efficient trade-off

for precision vs speed with a single training procedure.
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Prologue

Related Article:

• D. C. Luvizon, H. Tabia, D. Picard. Learning features combination for human action recog-

nition from skeleton sequences. Pattern Recognition Letters, volume 99, pages 13-20, 2017.

Context:

Human action recognition is a challenging task due to the complexity of human movements

and to the variety among the same actions performed by distinct subjects. Recent technologies

provide the skeletal representation of human body extracted from depth maps, which is a high dis-

criminant information for efficient action recognition. In this chapter, we present a new method

for human action recognition from skeleton sequences extracted from RGB-D images. We propose

extracting sets of spatial and temporal local features from subgroups of joints, which are aggre-

gated by a robust method based on the Vector of Locally Aggregated Descriptor (VLAD) algorithm

and a pool of clusters. Several feature vectors are then combined by a metric learning method

inspired by the Large Margin Nearest Neighbor (LMNN) algorithm with the objective to improve

the classification accuracy using the nonparametric k-NN classifier. We evaluated our method on
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three public datasets, including the MSR-Action3D, the UTKinect-Action3D, and the Florence 3D

Actions dataset. As a result, the proposed framework performance overcomes the methods in the

state of the art on all the experiments. Additionally, we provide valuable insights about the key

aspects of the proposed method, based on our experimental evaluation.
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3.1 Introduction

Despite many efforts in the last years, automatic recognition of human actions is still a challeng-

ing task. Action recognition is broadly related to human behavior and to machine learning tech-

niques, whereas its applications include improved human-computer interfaces, human-robot in-

teraction and surveillance systems, among others. Activities involving temporal interactions be-

tween humans and objects could be handled by graphical models as described in [40]. In this

work, we address specifically human actions, which are described as a well defined sequence of

movements. Moreover, action recognition methods may be used as intermediate stages in sys-

tems capable of providing more complex interpretations such as human behaviour analysis and

task recognition [86]. In action recognition frameworks, we can identify three major parts: action

segmentation from video streams, modeling and representation of spatial and temporal structure

of actions, and action classification. The first two parts are highly dependent on the quality of sen-

sory data, while the classification stage has been proved difficult due to the variety and complexity

of human body movements.

Many approaches for human action recognition are based on 2D video streams [152]. How-

ever, 2D color images are hard to be segmented and lack depth information. As an alternative to

color cameras, depth sensors have been popularized by their low-cost and accessibility. Examples

of affordable depth sensors are Microsoft’s Kinect and Asus’ Xtion, which allows to capture both

RGB images and depth maps. The human poses, composed of skeleton joints, can be extracted

from depth maps in real-time [125]. Skeleton joints are a high discriminant representation that

allows efficient extraction of relevant information for action classification. Samples of RGB im-

ages with associated depth maps and skeleton joints from captured human actions are shown in

Figure 3.1.

(a) (b)

Figure 3.1 – Samples of RGB images, depth maps, and their respective skeleton joints from the public
UTKinect-Action3D dataset [153]. The images correspond to the actions throw (a) and wave hands (b).

As presented in chapter 2, human action recognition methods are still including some draw-

backs, specially when representing the structure of actions. Many authors have proposed to ex-

tract spatial features from skeleton joints [144, 153], while others extract temporal information

from sequences alignment [82] or by frequency analysis [148] of spatial features. It is known that

both spatial and temporal information are fundamental for action recognition, however, an early

combination of distinct features may not effectively improve results [140]. Some authors have no-
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ticed that the relevance of each skeleton joint varies from one action to another. Wang et al. [148]

empirically demonstrated the benefit of grouping certain joints into subgroups to construct more

discriminant features. Also, human actions are often performed in very different durations, which

demands a robust method to represent the variety of lengths of the input sequences.

Considering the introduced difficulties, we present the three main contributions of this chap-

ter as follows. First, we bring traditional methods from the image classification domain to human

action recognition, constructing a new framework able to combine distinct features in a straight-

forward pipeline. Second, we propose simple yet efficient spatial and temporal local features from

subgroups of joints, aggregated into global representations, allowing further learning to extract rel-

evant information for classification. Third, we demonstrate the individual improvements of each

step of the proposed framework by extensive experiments, showing that all parts are important to

the final results. With these contributions we are able to provide state-of-the-art performance at

very high speed on three well know datasets. In addition, the source code of this work is publicly

available 1.

The rest of this chapter is organized as follows. In section 3.2, we present the proposed frame-

work. The experimental evaluation of our method is presented in section 3.3 and our conclusions

are presented in section 3.4.

3.2 Proposed Framework
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Figure 3.2 – Overview of the proposed framework for human action recognition from skeleton sequences.

The proposed approach for human action recognition rely on sequences of skeleton joints

extracted from depth maps and can be divided into four stages, as outlined in Figure 3.2. In the

first stage we extract local features, which are then aggregated into global representations in the

second stage. In the third stage, all the resulting features are concatenated. Finally, the learning

method extract the relevant information for the k-NN classification.

3.2.1 Local Features Extraction

The local features are extracted directly from sequences of skeleton joints and can be divided into

two types, according to their physical interpretation. The first are the displacement vectors of

joints, which represent the motion of specific body parts. Displacement vectors are 3D vectors

taken from single joints with respect to the sequence of skeletons at time t = {1,2, . . . ,τ}, defined

1The Matlabr source code is publicly available at https://github.com/dluvizon/harskel
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as follows:

υt
i =

p t+1
i −p t−1

i

∆T
| 1 < t < τ, (3.1)

where p t
i is the coordinate (x, y, z) of the i th joint in the sequence at time t , ∆T is the time interval

between two skeletons at time t +1 and t −1, and τ is the maximum number of skeletons (frames)

in a given sequence. The second type of local features are formed by relative position of joints,

which is a relevant information that describes the body position and has been successfully used

by other authors [148, 82]. The relative position between two joints in the skeleton sequence at

time t is a 3D vector defined by the equation bellow:

ωt
i ,k = p t

i −p t
k | i 6= k, (3.2)

where p t
i and p t

k are the coordinates (x, y, z) of different joints (indexed by i and k) from the same

skeleton.

The skeletal representation of human body is usually composed by a fixed number of joints.

Two different layouts of human body representation are shown in Figure 3.3. The basic layout is

composed by 15 joints: right hand, r. elbow, r. shoulder, head, neck, left shoulder, l. elbow, l. hand,

spine, r. hip, r. knee, r. foot, l. hip, l. knee, and l. foot. Another representation commonly used in

some datasets includes the r. wrist, l. wrist, center hip, r. ankle, and l. ankle, resulting in 20 joints.

In order to build the proposed local features, we concatenate displacement vectors (from Equa-
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Figure 3.3 – Human body representation by 20 (a) and 15 (b) skeleton joints considering the datasets MSR-
Action3D, UTKinect-Action3D, and Florence 3D Actions.

tion 3.1) or relative positions (from Equation 3.2) taking subgroups of joints. Three features are

composed by combination of displacement vectors and four features are composed by combina-

tion of relative positions, respectively detailed by Table 3.1 and Table 3.2. Specifically, the features

f1, f2, and f3 are composed by concatenation of displacement vectors of five joints. Similarly, the

features f4, f5, f6, and f7 result from distinct relative positions concatenated together.

The major objective of dividing skeletons into subgroups of joints is to provide smaller features

to the clustering stage. When compared to all joints composing one single feature, we expect

two improvements. First, smaller features tend to be better clustered, and second, it is preferable

to use smaller but complementary groups of joints than reducing the feature space (by PCA, for

example). This assumption is verified by our experiments, as presented in section 3.3. Another

important point is how the subgroups are chosen. In our method it is not practical to evaluate all
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Table 3.1 – Features fn composed by subgroups of displacement vectors.

Feature Subgroup of joints (i )
f1 Head, r. hand, l. hand, r. foot, and l. foot
f2 Neck, r. elbow, l. elbow, r. knee, and l. knee
f3 Spine, r. shoulder, l. shoulder, r. hip, and l. hip

Table 3.2 – Features fn composed by subgroups of relative positions

Feature Subgroup of joints (i ) Relative to (k)
f4 Head, l. hand, and r. hand Spine
f5 Head, l, hand, and l. foot R. hip
f6 Head, r. hand, and r. foot L. hip
f7 L. hand and r. hand Head

the possible combinations of different joints into smaller groups. Therefore, we intuitively divided

the joints of displacement vectors from the center to the extremities of the human body. Similarly,

the relative positions were selected to represent the position of hands, feet and head with respect

to the rest of the body. This approach was empirically validated as a satisfactory solution by our

experiments.

3.2.2 Features Aggregation

For each video frame, a set of local features are extracted by the local feature extraction method.

Namely, the sequence of local features is represented by fn,t where n = {1,2, . . . ,7} and t = {1,2, . . . ,τ}.

The objective of the aggregation stage is to build fixed-size features for each sequence of local fea-

tures, as depicted in Figure 3.4.

⋯
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local features

⋮

Aggregated 

features

(fixed-size)fn,1 fn,1 fn,τ
k-means C

k-means 1

k-means 2

C
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st
er
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D

⋮
Fn,C

Fn,2

Fn,1

⋮

Figure 3.4 – Diagram of the feature aggregation stage.

The feature aggregation method can be divided into three steps. In the first step, for each sub-

group n we compute C different k-means using different initializations. For each subgroup we

then obtain C sets of K clusters represented by {µn,c,m}, where m = {1, . . . ,K} and c = {1, . . . ,C}. The

next step consists in applying PCA to local features individually in each cluster. In this step, we

apply PCA keeping all the components. Finally, in the third step, we use the vector of locally aggre-

gated descriptors (VLAD), which is the non probabilistic version of the Fisher Vectors, proposed

by [61]. Let

Sn,c,m =
{

fn,t

∣∣∣∣∣m = argmin
p

‖ fn,t −µn,c,p‖
}

(3.3)

be the set of local features of subgroup n from the initialization c in cluster m. Then the VLAD

component m with respect to the initialization c is:

vn,c,m = ∑
fn,t∈Sn,c,m

( fn,t −µn,c,m). (3.4)

The VLAD representation of subgroup n and k-means c is simply the concatenation of all compo-
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nents vn,c,m , as follows:

Fn,c = [vn,c,1, . . . , vn,c,K]. (3.5)

As proposed by [62], we apply power law normalization keeping the sign of each component x

of the VLAD representation by doing x ← si g n(x)
p|x|. The PCA inside clusters followed by the

power law normalization can be seen as a kind of “whitening” [32]. As noted by [119], whitening

vectors is equivalent to replacing the Euclidean distance by the Mahalanobis distance.

Each feature Fn,c is a vector which size depends only on the corresponding local feature size

and the number of centers in the clustering algorithm. We do a flat concatenation of all features

Fn,c into a final feature vector here represented by ~x. The key factor in the aggregation method

is that the fundamental structure of local features are preserved while using multiple clustering

representations. That fact allows the next stage to learn the best combination of features and

clustering representations.

3.2.3 Learning Features Combination

As a result from the previews two stages, we have a feature vector~x formed by aggregated features

that depends on the number of local feature subgroups (n) and the number C of unique k-means

initializations. The goal of the feature combination stage is to extract discriminant information

that improves the action recognition accuracy, considering the nonparametric k nearest neighbor

(k-NN) classifier. In this regard, we employ two stages of metric learning, resulting in a reduced

final feature vector, which is used for classification.

The metric learning approach is inspired by the large margin nearest neighbor (LMNN) al-

gorithm proposed by Weinberger and Saul [151]. For simplicity, we define the squared distance

(squared l2-norm) between two feature vectors, ~xi and ~x j , in function of the linear transformation

L:

DL(~xi , ~x j ) = ‖L(~xi − ~x j )‖2 (3.6)

3.2.3.1 Loss Function

Considering the k-NN classifier, the loss function is a measurement of violations made by impostor

samples and distancing among target neighbors. Specifically, given a feature vector ~xi , the target

neighbors, here represented by ~x j , are those that we want to be closest to ~xi . On the other hand,

the impostors, represented by ~xl , are those that are closer to ~xi without being targets. This concept

was previously introduced by [151]. The function loss can be represented by two forces: the pull

and push components, trying to respectively pull the targets while pushing the impostors, defined

as follows:

εpul l (L) = ∑
j→i

DL(~xi , ~x j ) (3.7)

εpush(L) = ∑
i , j→i

∑
i ,l 6→i

bξ+DL(~xi , ~x j )−DL(~xi ,~xl )c (3.8)

where ξ is the desired separation margin between targets and impostors. The notations j → i and

l 6→ i mean that j is the index of targets of sample i while l is the index of impostors of sample i .

As many of the datasets for human action recognition have a relatively small number of sam-

ples from each action, learning algorithms can be very prone to overfitting on such data. To cope

with this, we added a regularization in the linear transformation L, as presented in the global loss
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function:

ε(L) = (1−µ)εpul l (L)+µεpush(L)+γ‖LTL− I‖2 (3.9)

whereµ is the ratio between “push” and “pull” components, γ is the regularization coefficient, and

I is the identity matrix. The regularization term enforces that the equivalent metric LTL should

remain close to the identity matrix.

3.2.3.2 Global Optimization

The optimal transformation L∗ that minimizes Equation 3.9 can be found by solving the global

optimization problem:

L∗ = argmin
L

ε(L) (3.10)

In order to solve Equation 3.10 using the gradient descent approach, we compute the deriva-

tive term of ε in L, as follows:

1

2

∂ε

∂L
= (1−µ)L

∑
i , j→i

(~xi − ~x j )(~xi − ~x j )T + µL
∑

i , j→i

∑
i ,l 6→i

[(~xi − ~x j )(~xi − ~x j )T

−(~xi −~xl )(~xi −~xl )T]+2γL(LTL− I)

(3.11)

Since the number of operations required to solve Equation 3.11 can be significantly large even

for small training datasets, we employ a minimization algorithm based on stochastic gradient de-

scent (SGD) [12]. Let us define D as the training dataset. In the SGD optimization, for each it-

eration, we randomly select a small subset from D defined as S. Iterating over the samples in S,

i.e., the index i is restricted to samples in S, we solve Equation 3.11 taking targets and impostors

from the whole dataset D. A good initialization of L can be done by taking the eigenvectors of the

covariance matrix of D, which means to initialize L with the PCA on D. This is a good initializa-

tion since we reduce the feature size in the metric learning stages and PCA is known to be a good

dimension reduction technique. The optimization is performed until the maximum number of

epochs (MaxEpoch) is reached or the gradient vanishes according to the threshold ϑ. The global

SGD optimization is presented in 1.

Algorithm 1 Global SGD optimization.

Require: Training dataset D, MaxEpoch, vanishing value ϑ
1: Do PCA on D to initialize L
2: Epoch ← 0
3: repeat
4: S← Randomly select samples from D

5: G ← Solve Equation 3.11 for the subset S
6: L ← L−ηG
7: Epoch ← Epoch + si zeo f (S)/si zeo f (D)
8: until (‖G‖ ≥ ϑ) and (Epoch < MaxEpoch)
9: return L

As shown in Figure 3.2, two stages of metric learning are used in our method. The first one

aim to reduce the feature size while performing a first separation between targets and impostors

by learning the transformation L1. In this regard, we set µ = 0.9 and MaxEpoch = 2. The second

stage works on smaller features and learns the transformation L2 with µ = 0.5 and MaxEpoch =
50. Each metric learning stage is individually optimized following the Algorithm 1, replacing L by

L1 and L2, respectively at each etage. Namely, we first learn L1, which takes ~x as input, then in
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the second stage we learn L2 which input is L1~x. This approach allows a fast learning process in

addition to avoiding overfitting, since the feature size is reduced in a few iterations and the more

intensive learning stage is performed over fewer parameters. Finally, since all transformations are

linear, in the testing evaluation we can use L = L2L1 to represent the full learned transformation.

3.3 Experiments

We evaluated the accuracy of our method on three publicly available datasets. The MSR-Action3D

[75] is the most common dataset for 3D human action recognition according to [167] and is com-

posed by 10 subjects performing 20 actions chosen in the context of gaming, which include: high

wave, horizontal wave, hammer, hand catch, high throw, draw X, draw tick, draw circle, hand

clamp, two hand clamp, two hand wave, side boxing, bend, forward kick, side kick, jogging, ten-

nis swing, tennis serve, golf swing, and pick-up throw. This dataset is challenging due to some very

similar pairs of actions, for example: hand catch and draw tick, or pick-up throw and bend. The

UTKinect-Action3D dataset [153] is composed by 10 subjects, of which nine are males and one is

female including one left-handed, performing 10 actions: walk, sit down, stand up, pick up, carry,

throw, push, pull, wave, and clap hands. Each subject perform actions in various views and the

length of videos vary from 5 to 120 frames, resulting in significant variation among the recordings.

The Florence 3D Actions dataset [122] is composed by 10 subjects performing 9 actions recorded

in distinct environment conditions, which include: wave, drink from a bottle, answer phone, clap,

tight lace, sit down, stand up, read watch, and bow. Since our feature extraction method requires

only 15 skeleton joints, we averaged the joints from hands and wrist into a single joint hand for the

datasets MSR-Action3D and UTKinect-Action3D, in which skeletons are composed by 20 joints.

We apply the same process to foot and ankle, and to spine and center hip.

For all datasets, we use the already computed skeleton joints data and the same parameters

in all the performed tests. We optimized the hyperparameters of our method using only the MSR-

Action3D dataset split as proposed by [148]. Seven local feature subgroups were extracted as de-

scribed in section 3.2.1. In the feature aggregation stage, we use a pool of five unique k-means

(C = 5), each one computing K = 23 clusters. After the feature concatenation stage, the resulting

feature vectors are of size 8970. In both metric learning stages, we set γ = 0.1 and ξ = 0.1. In the

SGD optimization, we solve the Equation 3.11 by taking batches of 32 training samples. In the

first metric learning stage we set the output dimension to 512, followed by the second stage with

output dimension equals to 256, which is the final feature size. The final classification is a seven

nearest neighbors voting.

3.3.1 Comparison with the State of the Art

We compared our results with several methods in the state of the art on three distinct datasets, as

presented in Table 3.3.

3.3.1.1 MSR-Action3D Dataset

The MSR-Action3D dataset has been used by several works in many disparate ways. In our tests,

we selected the two most relevant evaluation approaches on this dataset. The first approach we

used is the cross-subject splitting proposed by [148], where subjects 1,3,5,7,9 are used for train-

ing and subjects 2,4,6,8,10 are used for testing. In that case, the accuracy of our method is 97.1%,

which is the best result on this data as far as we know. Comparable results are shown in Table 3.3.
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Table 3.3 – Accuracy evaluation of our method compared to the state-of-the-art methods on three public
datasets. Columns two and three present results on the MSR-Action3D dataset using the protocols proposed
by [148] and [96], respectively. Columns four and five respectively show results on UTKinect-Action3D and
Florence 3D Actions datasets.

Dataset / Method
MSR-Action3D

protocol of
[148]

MSR-Action3D
protocol of

[96]
UTKinect-Action3D

Florence
3D Actions

Wang et al. [148] 88.2% — — —
Xia et al. [153] — — 90.92% ± 1.74% —
Luo et al. [82] 96.7% — — —
Oreifej and Liu [96] 88.36% 82.15% ± 4.18% — —
Seidenari et al. [122] — — — 82.0%
Tran and Ly [140] 88.89% — — —
Devanne et al. [33] 92.1% 87.28% ± 2.41% 91.5% 87.04%
Lu et al. [81] 95.62% — — —
Vemulapalli et al. [144] 89.48% — 97.08% 90.88%
Yand and Tian [159] 93.09% — — —
Slama et al. [128] 91.21% — 88.5% —
Veeriah et al. [143] 92.03% — — —
Li and Leung [72] 92.2% — — —
Rahmani et al. [112] — 86.5% — —

Our method 97.1% 90.36% ± 2.45% 98.00% ± 3.49% 94.39%

As can be seen in the confusion matrix (see Figure 3.5) resulting from our method, several actions

were classified without any mistake and only two actions presented classification accuracy lower

than 93%. The second approach for evaluation we used was proposed by [96], where we report

the average result among all possible 5-5 subject splits. We consider this approach the most rel-

evant, since it reduces the possibility of effects from particular combinations. By this approach,

our method achieved an average accuracy of 90.36% and a standard deviation of 2.45%, which is

an improvement of 3.08% over the best method so far [33]. We reinforce that in both approaches

results are reported in the cross-subject scenario. The results from other methods using the same

assessment are reported in the third column of Table 3.3.

3.3.1.2 UTKinect-Action3D Dataset

On this dataset, the authors [153] proposed to use the leave one actor out cross validation (LOOCV)

scheme. Specifically, one actor is removed from training and used as testing. This process is re-

peated for all actors and the final result is the average accuracy of all runs. On our tests, we followed

the same procedure and our method achieved on average 98.00% of accuracy with a standard de-

viation of 3.49%, as reported in the fourth column of Table 3.3. We consider the LOOCV scheme

statistically more stable than the single cross-validation assessment employed by [175] and [72].

Therefore, our results are not comparable on this dataset.

3.3.1.3 Florence 3D Actions Dataset

Similarly to the previews experiment, we evaluate the performance of our method on the Florence

3D Actins dataset using the LOOCV approach, as suggested by the authors [122]. On average,

our method classified 94.39% of actions correctly. Our method exceeded the state-of-the-art ap-

proaches by a significant margin, as presented in the fifth column of Table 3.3.
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Figure 3.5 – Confusion matrix for action classification on the MSR-Action3D dataset resulted from the pro-
posed method.

3.3.2 Contribution of each Method’s Stage

In this section, we discuss the influence of each part of our method, as tested on the MSR-Action3D

dataset.

• First, using all joints together instead of our proposed subgroups leads to a performance

decrease of 5.5%.

• If only displacement vectors or only relative positions are used, the classification accuracy

drops by 4.1% and 17.2%, respectively.

• In the feature aggregation stage, if the PCA or the power law normalization is turned off, the

performance decreases by 4.4% and 4.8%, respectively.

• Similarly, aggregating features with a single clustering initialization, i.e., setting C = 1, drops

the performance by 2.5%.

• Replacing the proposed two stages of metric learning by features reduction with PCA, it

means using PCA to reduce the feature size from 8970 to 512 and then using a single metric

learning stage, the best performance decreases by 0.8%.

• Removing the regularization coefficient from Equation 3.9 reduces the best performance by

0.4% and led to faster overfitting.

• Finally, replacing the k-NN classifier by SVM or neural network (MLP) drops the perfor-

mance by 1.5% in the best case (see Table 3.4).

The conception of the proposed framework was reasoned that each part is optimally designed

regarding the next stage in the pipeline. For instance, the local features extraction provides small
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features that can be clustered well, while avoiding early combination of distinct information. In

the clustering stage, we use multiple initializations to increase the chances to have a better repre-

sentation, which can be learned in the next stage. Similarly, the metric learning algorithm (LMNN)

is optimal to increase the nearest neighborhood (k-NN) classifier accuracy.

The multiple clustering initialization is an important step in the feature aggregation method

and goes beyond the improvement on classification accuracy of the proposed framework. As

shown in Figure 3.6, the probability of reaching better accuracy drastically increases after metric

learning when using C = 5. This effect can also be observed by the standard deviation decreasing

from 1.34% to 0.71%, respectively using C = 1 and C = 5. This fact is expected, since the metric

learning can extract complementary information from different clustering representations. Addi-

tionally, the metric learning stage can be seen as the point of convergence where all the particular

improvements are intensified, resulting in a final improvement of 12% as shown in Figure 3.7,

while drastically reducing the feature size.
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on testing samples.

We evaluate the influence of the last stages by replacing the k-NN classifier by two well known

classifiers, before and after the metric learning (LMNN) stage. First, we compared with a standard

SVM [18] using the sigmoid kernel setting the parameters gamma and C respectively to 1 and 10.

Second, we compared with a neural network (MLP) with two fully-connected layers, the first using

ReLu activation and the second using softmax for classification. Table 3.4 shows that the k-NN
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classifier on learned features by the metric learning stage gives the best result, even though both

SVM and neural network present results comparable to the state of the art, which demonstrates the

robustness of the proposed features representation. These are expected results, since the objective

function of the metric learning stage was specially designed to increase the k-NN classification

accuracy.

Table 3.4 – Classification accuracy of the proposed metric learning and classifier stages compared to SVM
and neural network approaches. We evaluate the classifiers taking as input the aggregated features (~x) and
the learned features after LMNN.

Classifier Aggregated features
Learned

features (LMNN)

SVM 93.4% 95.6%
Neural net. 93.8% 95.6%
k-NN 83.2% 97.1%

3.3.3 Computation Time

The average testing runtime of the proposed method is presented in Table 3.5, which is faster

than the computation time reported by [128]. The testing sequences were processed in a laptop

machine with Intelr CoreTM i7-4710MQ processor, after training. One of the reasons which led to

low computing time for action recognition is that the most complex part of our method is the met-

ric learning feature combination. Once the training stage is finished, recognizing new sequences

is a fast and straightforward process.

Table 3.5 – Average testing runtime of the proposed method on three datasets. The given computation time
in milliseconds refers to one testing sequence.

Dataset / Stage
MSR-

Action3D
UTKinect
Action3D

Florence
3D Actions

Local features
extraction (ms)

2.34 2.00 1.52

Features
aggregation (ms)

4.59 4.92 4.14

Features
combination (ms)

0.14 0.18 0.15

Classification
k-NN (ms)

1.38 0.97 1.06

Average testing
time (ms)

8.45 8.07 6.87

3.4 Conclusion

In this chapter, we presented a new framework for human action recognition using only skele-

ton joints extracted from depth maps. We proposed extracting sets of spatial and temporal local

features from subgroups of joints. Local features are aggregated into several feature vectors by

a robust method using the VLAD algorithm and a pool of clusters, providing a good representa-

tion for long and short actions. All the feature vectors are then efficiently combined by a metric
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learning method inspired by the LMNN algorithm, which is used to extract the most discriminant

information from features with the objective to improve the accuracy of the k-NN classifier.

Extensive experiments with the proposed framework show that all the proposed steps con-

tribute significantly to improve classification accuracy. We conclude that spatial and temporal

information, as well as the multiple clustering representations, could be efficiently combined by

the metric learning approach, resulting in a significant increase of performance. Moreover, the

proposed method relies on a few external parameters and our experiments show that the method

generalizes well, since its performance overcame all the results in the state of the art on three im-

portant datasets, using the same parameters in all evaluations.
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Context:

In chapter 3, we presented a new framework for action recognition from skeleton sequences.

A common way to predict human poses or skeletons is by analysing depth images captured by

commodity depth sensors, such as the Microsoft’s Kinect. However, such devices are limited to

controlled environment, have a low range of operation, and drastically suffer from occlusions, re-

sulting in very noisy skeleton predictions when exposed to non-optimal conditions. These limita-

tions associated to the recent breakthrough of deep learning is a strong motivation to study human

pose estimation from RGB images, since nowadays such images are widely available, including in

unconstrained environments, on which recent deep learning algorithms have demonstrated sat-

isfactory results even in challenging scenarios.

In this chapter, we present a study about the problem of human pose estimation from still RGB

images, which is divided in three parts, detailed as follows.

In the first part, we present a regression approach, trainable from end-to-end, for 2D key-

points regression based on the soft-argmax function. In the proposed regression method, fea-

ture maps are directly converted to joint coordinates, resulting in a fully differentiable framework.

Our method is able to learn heat map representations indirectly, without additional steps of arti-

ficial ground truth generation. Consequently, contextual information can be included to the pose

predictions in a seamless way. We also demonstrate the generalization if this method to 3D pre-

dictions by learning volumetric heat map representations. Our method is evaluated on two very

challenging datasets, the Leeds Sports Poses (LSP) and the MPII Human Pose datasets, reaching

the best performance among all the existing regression methods and comparable results to the

state-of-the-art detection based approaches.

In the second part, we present a new highly scalable network architecture for real-time 3D hu-

man pose regression from RGB images. This new architecture, called Scalable Sequential Pyramid

Networks (SSP-Net), predicts human poses directly in 3D coordinates and is trained with dense

supervision at multiple scales. The SSP-Net is capable of producing its best predictions at 120 fps,

or acceptable predictions at more than 200 fps, while requiring a single training procedure. We

also propose a new 3D pose regression attention mechanism based on regressed 2D depth maps,

departing from the expensive volumetric heat map representations. The proposed regression ap-

proach is invariant to the size of feature maps, allowing our method to perform multi-resolution

intermediate supervisions and reaching results comparable to the state-of-the-art with very low

resolution feature maps. We demonstrate the accuracy and the effectiveness of our method by pro-

viding extensive experiments on two of the most important publicly available datasets for 3D pose

estimation (Human3.6M and MPI-INF-3DHP). Additionally, we provide relevant insights about
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our decisions on the network architecture and show its flexibility to meet the best precision-speed

compromise.

Finally, in the third part, we extend our regression method to absolute 3D human pose estima-

tion in real world coordinates. Our approach predicts several 3D pose proposals and estimates the

absolute depth of each root joint. We also propose new skeleton template composed of 34 body

joints, which integrates several recent human pose datasets with no ambiguity for specific joint

positions. Our method consistently improves the state of the art on well known 3D pose bench-

marks, reducing prediction error by more than 25% in some cases. For the first time, we report

results on 3D pose estimation on absolute world coordinates, showing comparable results to root

joint centered metrics.

31



CHAPTER 4. HUMAN POSE ESTIMATION FROM RGB IMAGES

4.1 Introduction

Predicting human poses from still RGB images is a hard task since the human body is strongly ar-

ticulated, some parts may not be visible due to occlusions or low image quality. Furthermore, the

3D world information is partially missing due to the image plane projection, and the visual ap-

pearance of body parts can change significantly from one person to another. Meanwhile, both 2D

and 3D pose estimation problems have been intensely studied in the last years, mostly because of

their promising applications, such as 3D scene understanding, sports performance analysis, style

transfer, 3D model fitting, human behavior analysis, human action recognition, among others.

The human pose estimation problem can be cast into three different categories:

• Pose estimation in the image plane, or simply 2D pose estimation, where 2D keypoints are

represented in the format (x, y) and correspond to image pixel coordinates.

• Relative 3D pose estimation, or simply 3D pose estimation, where each body joint is repre-

sented by its 3D coordinates (x, y, z) in millimeters relative to the root joint, which is usually

taken as the hip joint. In this category, the coordinate system is centered in the target per-

son.

• Absolute 3D pose estimation, on which predictions are also in millimeters, but differently

from the case of relative prediction, the coordinate system is fixed in the world, which makes

the problem much more challenging.

Classical methods for 2D pose estimation use keypoint detectors to extract local information,

which are combined to build pictorial structures [38]. To handle difficult cases of occlusion or

partial visualization, contextual information is usually needed to provide visual cues that can be

extracted from a broad region around the part location [37] or by interaction among detected

parts [160]. In general, 2D human pose estimation can be seen from two different perspectives,

namely as a correlated part detection problem or as a regression problem. Detection based ap-

proaches commonly try to detect keypoints individually, which are aggregated in post-processing

stages to form one pose prediction. In contrast, methods based on regression use a function to

map directly input images to body joint coordinates.

In the last few years, pose estimation have gained special attention with the breakthrough of

deep Convolutional Neural Networks (CNN) [139] alongside consistent computational power in-

crease. This can be seen as the shift from classical approaches [104, 68] to deep architectures [90,

19]. In many recent works from different domains, CNN based methods have overcome classical

approaches by a large margin [47, 127]. A key benefit from CNN is that the full pipeline is dif-

ferentiable, allowing end-to-end learning. However, recent detection based methods for both 2D

and 3D pose estimation [156, 22, 99] are based on heat maps prediction, which are then converted

to coordinates by applying the maximum a posteriori (MAP) estimation, usually called argmax.

Since the argmax is a non-differentiable operation, such methods are not trainable from end-to-

end. This technique is used to cast pose estimation as a classification problem. Additionally to the

non-differentiability, the precision of predicted body joints is proportional to that of the heat map

resolution, which leads such approaches to high memory consumption and high computational

requirements, specially in the case of 3D predictions.

An alternative to detection based approaches is to perform coordinates regression directly

from images [139]. However, due to the high variance in both images and in the high articu-

lated body skeleton, simple regression approaches such as fully connected layers are usually sub-

optimized, generally resulting in lower precision if compared to detection approaches. A solution
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to this problem is to replace the non differentiable argmax by the expectancy of normalized heat

maps, which in the literature is called soft-argmax [84] or integral regression [132]. This approach

has also another advantage compared to predicting heat maps, which is the easy combination of

3D and 2D annotated data just by not propagating the error on z in the last case. As demonstrated

in our experiments (see section 4.4), this has been proved a very efficient data augmentation tech-

nique, improving precision on 3D predictions by a significant margin.

Despite the recent progress on 3D human pose estimation, current methods still depend on

the expensive 3D heat maps [132]. Moreover, the popular hourglass networks [93], very common

on pose estimation methods, are not designed to consider predictions at multiple scales, mainly

because detection based approaches require high resolution heat maps. We tackle these limita-

tions by proposing a new 3D regression approach based on 2D depth map prediction and a new

multiscale network architecture, as detailed in section 4.5.

Furthermore, predicting the absolute 3D body joints in world coordinates from monocular

RGB images is still an open problem. Precise 3D human pose estimation in world coordinates

is still dependent on expensive Motion Capture (MoCap) systems, which require complex cali-

bration procedures making it prohibitive in several uncontrolled environments. State-of-the-art

methods for relative 3D pose estimation are incapable of predicting the body joints position in

real world coordinates, because they are designed for handling the much easier root joint cen-

tered coordinate system. However, the absolute position can be very useful in many applications,

where disambiguating the relative depth of multiple people is essential. Additionally, predicting

pose coordinates in the world reference also provides an advantage on multi-view scenarios, since

predictions from different views could be easily combined.

Inspired by the exposed limitations of current methods for human pose estimation, we present

the main contributions of this chapter as follows.

• First, we present a new human pose regression approach from still images based on the soft-

argmax function, resulting in a method trainable from end-to-end which does not require

artificial heat maps generation and can be trained with an insightful regression loss function

by directly linking the error distance between predicted and ground truth joint positions.

• Second, we propose to learn depth map representations for 3D pose regression, departing

from the required and expensive 3D heat maps and achieving state-of-the-art results on 3D

human pose estimation while reducing computations.

• Third, we propose the Scalable Sequential Pyramid Networks, which is a new, fast, and ef-

ficient CNN architecture, producing high precise 3D human pose predictions at more than

100 FPS, while being easily scalable to perform faster predictions up to 300 FPS with a single

training procedure.

• Fourth, we propose a method for 3D human pose estimation on absolute world coordinates

and we are the first to report results on absolute error comparable to root joint centered

errors, when considering multi-view scenario.

• Fifth, thanks to a new skeleton layout and to the ability of our method to combine multiple-

camera predictions, we are able to improve 3D human pose estimation by more than 25% in

a very challenging dataset.

The remaining of this chapter is divided as follows. In section 4.2, we present the proposed

keypoints regression approach based on the soft-argmax operation. In section 4.3, we present a
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study on 2D pose estimation. The more complex case of 3D relative pose prediction is detailed

in section 4.4. In section 4.5, we proposed an improved 3D pose regression approach based on

learned depth maps and a scalable network architecture for more precise and efficient estima-

tions. The challenging problem of absolute pose prediction is addressed in section 4.6. Finally, in

section 4.7 we present our conclusions for this chapter.

4.2 Differentiable Keypoints Regression

As presented in section 4.1, traditional regression based methods use fully connected layers on

feature maps to learn the regression mapping to pose coordinates. However, this approach usu-

ally gives sub-optimal solutions. While state-of-the-art methods on 2D pose estimation are over-

whelmingly based on part detection, approaches based on regression have the advantage of pro-

viding directly pose prediction as joint coordinates without additional steps or post-processing.

In order to provide an alternative to detection based methods, we propose an efficient and fully

differentiable way to convert heat maps to (x, y) coordinates, which is called soft-argmax. The idea

was previously used for features extraction [163], but, to the best of our knowledge, we are the first

to propose soft-argmax for human pose estimation, as detailed in our previous work [84].

Given an input signal, the main idea is to consider that the argument of the maximum can be

approximated by the expectation of the input signal after being normalized to have the proper-

ties of a distribution. Indeed, for a sufficiently pointy (leptokurtic) distribution, the expectation

should be close to the maximum a posteriori (MAP) estimation. As detailed in section 4.2.1, the

normalized exponential function (softmax) is used, since it alleviates the undesirable influences

of values bellow the maximum and increases the “pointiness” of the resulting distribution. For a

2D heat map as input, the normalized signal can be interpreted as the probability map of a joint

being at position (x, y), and the expected value for the joint position is given by the expectation of

the normalized signal, as detailed in section 4.2.2.

4.2.1 Spatial Softmax

Let us redefine the softmax operation on a single heat map h ∈RH×W as:

Φ(h) = eh∑H
l=1

∑W
c=1 ehl ,c

, (4.1)

where hl ,c is the value of h at location (l ,c) and H×W is the heat map size. Contrarily to the more

common cross-channel softmax, we use here a spatial softmax to ensure that each heat map h

is normalized (positive and unitary sum), additionally working as a non-maximum suppression.

The normalized heat map is called joint probability map and is defined by:

h′ =Φ(h) (4.2)

4.2.2 Soft-argmax for 2D Regression

Considering the probability map h′ as input, the soft-argmax for 2D regression is defined as fol-

lows:

Ψd (h′) =
H∑

i=1

W∑
j=1

Wd ,i , j h′
i , j , (4.3)
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where d is a dimension component x or y, and W is a 2×H×W weight matrix for both compo-

nents (x, y). The matrix W can be expressed by its components Wx and Wy , which are 2D discrete

normalized ramps, defined as follows:

Wx,i , j = 2 j −1

2W
,Wy,i , j = 2i −1

2H
. (4.4)

Finally, given a heat map h, the regressed position in 2D coordinates of the predicted joint is given

by:

p̂2d = (
Ψx (h),Ψy (h)

)T. (4.5)

The soft-argmax operation can be seen as the 2D expectation of the normalized heat map, which

is a good approximation of the argmax function, considering that the exponential normalization

results in a pointy distribution.

In order to integrate the soft-argmax into a deep neural network layer, we need its derivative

with respect to h:

∂Ψd (h)

∂hi , j
= Wd ,i , jΦ(h)i , j (1−Φ(h)i , j )−

H∑
l=1

W∑
c=1

Wd ,l ,cΦ(h)i , jΦ(h)l ,c

∣∣∣∣∣
l 6=i ;c 6= j

(4.6)

The soft-argmax function can thus be integrated with a trainable framework by using back prop-

agation and the chain rule on Equation 4.6. Moreover, similarly to what happens on softmax, the

gradient is exponentially increasing for higher values, resulting in very discriminative response at

the joint position.

An intuitive graphical explanation of the soft-argmax is shown in Figure 4.1. Unlike traditional

argmax, soft-argmax provides sub-pixel accuracy, allowing good precision even with very low res-

olution. Our approach allows learning very discriminative heat maps directly from the (x, y) joint

coordinates without explicitly computing artificial ground truth. In our experiments, we show

samples of heat maps indirectly learned by our method.

 
Input 2D signal

(heat map)
Probability

map

X-Y expectation

Softmax

×

× y

x∑

∑

Figure 4.1 – Graphical representation of the soft-argmax operation for 2D input signals (heat maps). The
outputs are the coordinates x and y that approximates the maximum in the input signal.

4.2.3 Confidence Score

As a complement to joint locations, we can compute the estimated joint probability b̂n and the

joint confidence scores ĉn for the nth body joint. The first corresponds to the probability of the

joint being visible (or present, even if occluded) in the image and is defined by:

b̂ = 1

1+e−hmax
, (4.7)
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where hmax is the maximum value in the heat map h. In other words, the joint probability b̂ is

the sigmoid activation on the maximum response from the heat map. Since a heat map can have

multiple “peaks”, resulting in high joint probability score but wrong pose prediction, we define a

second score to represent the confidence that the regressed position corresponds to the region

with the maximum response in the heat map, as defined by:

ĉ = max
( i+1∑

l=i

j+1∑
c= j

h′
l ,c

)∣∣∣∣∣
i={1,...,H−1}; j={1,...,W−1}

, (4.8)

Specifically, given a joint probability map, any window with 2 × 2 pixels is enough to regress a

coordinate value with sub-pixel accuracy in a smaller squared region defined by the centers of the

2×2 pixels, as depicted in Figure 4.2. Therefore, we apply a summation with a 2×2 sliding window

on the probability map with stride 1, and take the maximum response as the confidence score. If

the probability map is very pointy, the score is close to 1. On the other hand, if the probability map

is smooth or has more than one region with high response, the confidence score drops.

1

1

32

3

2

Figure 4.2 – Estimation of joint confidence scores. The blue squares represent the pixels in the joint prob-
ability map with its center marked as a red dot. The red square is the region on which a coordinate can be
regressed, considering responses only on the 2×2 window from pixels (1, 1) to (2, 2).

Despite giving an additional information, the joint probability and confidence scores do not

depend on additional parameters and are computationally negligible, compared to the cost of

the convolutional layers. Additionally, by supervising these values, we can enforce the network

to learn pointy responses for available body parts, which works as a constraint to the indirectly

learned heat maps.

4.3 2D Human Pose Regression from RGB Images

In this section we present a 2D human pose estimation method from RGB images based on the

regression approach introduced in section 4.2. Our implementation of the proposed method using

the open source Keras library [26] is publicly available.1

The proposed approach is an end-to-end trainable network which takes as input RGB images

and outputs two vectors: the probability b̂n of joint n being in the image and the regressed joint

coordinates p̂n = (xn,yn), where n = {1,2, . . . ,NJ} is the index of each joint and NJ is the number of

joints in the human body layout. Thanks to the our regression approach based on the soft-argmax,

we can learn two types of heat maps. The first, which we call part-based heat map, is specialized

to respond specifically to each body joint. The second type is called contextual feature map and

is considered in the final prediction based on its probability score, which means that if a specific

contextual feature map does not respond to a given image, its influence in the final prediction will

be attenuated.

1The Python source is publicly available for research purposes at https://github.com/dluvizon/

pose-regression.
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In what follows, we first present the global architecture of our method, and then detail its most

important parts.

4.3.1 Network Architecture

An overview of the proposed method is presented in Figure 4.3. Our approach is based on a con-

volutional neural network essentially composed of three parts: the entry flow (stem), block-A and

block-B. The role of the stem is to provide basic features extraction, while block-A provides refined

features and block-B provides body-part and contextual activation maps. One sequence of block-A

and block-B is used to build one prediction block, which output is used as intermediate supervi-

sion during training. The full network is composed by the stem and a sequence of K prediction

blocks. The final prediction is the output of the Kth prediction block. To predict the pose at each

prediction block, we aggregate the 2D coordinates generated by applying soft-argmax to the part-

based and contextual maps that are output by block-B. Similarly to recent approaches [93, 29], we

produce one estimation on each prediction block. This prediction is used as intermediate super-

vision, providing better accuracy and more stability to the learning process. As a convention, we

use the generic term “heat map” to refer both to part-based and contextual feature maps, since

these feature maps converge to heat maps like representations.

256×256×3

SAM

Stem Block-A1
+

Input

32×32×576

Hd,1

CNN

Block-B1
+ +...

Part-based
maps

Context
maps

...

Hc,1

SAM

Aggregation

Hd,K

...

Hc,K

...

32×32×Mc

Pose +
probability SAM SAM

AggregationPrediction
block 1

Prediction
block K

Pose +
probability

Block-AK
+ Block-BK

Supervision Supervision

frame

Feature
maps

32×32×Md

Figure 4.3 – Overview of the proposed method for 2D human pose regression. SAM: soft-argmax.

The proposed CNN model is partially based on Inception-v4 [133] and inspired by the Stacked

Hourglass [93] networks. We also get some inspiration from the “extreme” inception (Xception) [25]

networks, which relies on the premise that convolutions can be separated into spatial convolu-

tions (individual for each channel) followed by a 1×1 convolution for cross-channel projection,

resulting in a significant reduction on the number of parameters and on computations. This idea is

called depthwise separable convolution (SepConv) and an optimized implementation is available

on TensorFlow.

The “Stem” network is based on Inception-v4’s stem followed by a SepConv layer in parallel

with a shortcut layer, as presented in Figure 4.4a. The architecture of block-A is similar to an hour-

glass block, as proposed in [93], except that we replaced the residual blocks by a residual depthwise

separable convolution (Res-SepConv), as depicted in Figure 4.4b, and reduced the number of in-

ternal scales from five to three, using feature maps from 32×32 to 8×8 instead of 64×64 to 4×4.

The architectural details about these blocks can be consulted in Appendix A.

The architecture of block-B and the regression stage is shown in Figure 4.5. At each prediction

stage, block-B is used to transform input feature maps into Md part-based detection maps (Hd )

and Mc context maps (Hc ), resulting in M = Md +Mc heat maps. For the problem of human pose
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+

Input (256×256×3)

Output (32×32×576)

Shortcut
Conv

(576,1×1)

SepConv
(576,3×3)

Inception-v4
"Stem"

(a)

+

Input (W×H×Nfin)

Output (W×H×Nfout)

Shortcut
Conv

(Nfout,1×1)

SepConv
(Nfout,5×5)

(b)

Figure 4.4 – In the proposed network architecture, the Stem (a) is based on Inception-v4’s stem [133] fol-
lowed by a separable convolution in parallel to a shortcut connection. In (b), we present the residual sepa-
rable convolution (Res-SepConv), used to replace the residual block in the Stacked Hourglass [93] model. If
N f i n is equal to N f out , the shortcut convolution is replaced by the identity mapping.

estimation, Md corresponds to the number of joints NJ, and Mc = Nc NJ, where Nc is the number

of context maps per joint. The produced heat maps are projected back to the feature space and

reintroduced to the network flow by a 1× 1 convolution. Similar techniques have been used by

many previous works [13, 93, 29], resulting in significant gain of accuracy. From the generated

heat maps, our method computes the predicted joint locations and joint probability scores in the

regression block, which has no trainable parameters.

Block-B

Predicted
pose

Heat
maps

Input (32×32×Nf)

Output (32×32×Nf)

SepConv
(Nf,5×5)

Conv
(M,1×1)

Conv
(Nf,1×1)

+
+

Joint
regression

MaxPooling
+ Activation 

Regression
stage

Supervision

Supervision

Joint
probability

Figure 4.5 – Network architecture of block-B and an overview of the regression stage. The input is projected
into M heat maps (Md +Mc ) which are then used for pose regression.

4.3.1.1 Detection and Context Aggregation

Even if the correlation between some joints can be learned in the hidden convolutional layers, the

joint regression approach is designed to locate body parts individually, resulting in low flexibility

to learn from the context. For example, the same filters that give high response to images of a clean

head, also must react positively to a hat or a pair of sunglasses. In order to provide multi-source

information to the final prediction, we include in our framework specialized part-based heat maps

and context heat maps, which are defined as Hd = [hd
1 , . . . ,hd

NJ
] and Hc = [hc

1,1, . . . ,hc
Nc ,NJ

], respec-

tively. Additionally, we define the joint probability related to each context map as b̂c
i ,n , where

i = {1, . . . ,Nc } and n = {1, . . . ,NJ}.

Finally, the nth joint position from detection and contextual information aggregated is given
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by:

p̂n = αp̂d
n + (1−α)

∑Nc

i=1 b̂c
i ,np̂c

i ,n∑Nc

i=1 b̂c
i ,n

, (4.9)

where p̂d
n = soft-argmax(h′d

n ) is the predicted location from the nth part-based heat map, p̂c
i ,n =

so f t − ar g max(h′c
i ,n) and b̂c

i ,n are respectively the location and the probability for the i th con-

text map for joint n, and α is a hyper-parameter that controls the ratio between specialized and

contextual information.

From Equation 4.9, we can see that the final prediction is a combination of one specialized pre-

diction and Nc contextual predictions pondered by their probabilities. The contextual weighted

contribution brings flexibility, allowing specific filters to be more responsive to particular patterns.

This aggregation scheme within the learning stage is only possible because we have the joint prob-

ability and position directly available inside the network in a differentiable way.

4.3.2 Experiments

We evaluate the proposed method on the very challenging MPII Human Pose [2] and Leeds Sports

Poses (LSP) [65] datasets. Some qualitative results of our method, considering indirectly learned

heat maps and regressed poses, are shown in Figure 4.6. The details about the datases, the used

metrics, the training process and implementation details are given as follows. The results reported

are published in [84].

4.3.2.1 Datasets

MPII. The MPII Human Pose dataset is composed of about 25K images of which 15K are train-

ing samples, 3K are validation samples and 7K are testing samples (which labels are withheld by

the authors). The images are taken from YouTube videos covering 410 different human activities,

the manually annotated poses have 16 body joints, some of them are not present and others are

occluded but can be predicted by the context.

LSP. The Leeds Sports Poses dataset is composed by 2000 annotated poses with up to 14 joint loca-

tions. The images were gathered from Flickr with sports people. Two different sets of annotations

are provided: Observer-Centric (OC) and Person-Centric (PC).

4.3.2.2 Metrics

For 2D pose estimation, there are three widely used metrics reported in the literature. The first

is the Percentage of Correct estimated body Parts (PCP) [39]. In the PCP metric, an estimated

joint is considered correct if its distance to the ground truth lie within a fraction of the ground

truth segment length. Usually, this fraction is 0.5. The second metric is the Percentage of Correct

Keypoints (PCK) [120, 161], which considers that a predicted joint is correct if its distance to the

ground truth is smaller or equal to a fraction of the torso length, usually used as 0.2. The third

metric, propose by [3], is similar to the PCK metric, but uses the head segment instead of the

torso length as the reference. This metric is called PCKh in allusion to the head reference, and the

threshold usually used to report results is 0.5. Specifically, the PCK metric for the nth body joint is

given by:

PCKn(r ) = 1

Ns

Ns∑
i=1

1

(
‖p̂i

n −pi
n‖2

‖pi
lhi p −pi

r sho‖2
≤ r

)
, (4.10)

39



CHAPTER 4. HUMAN POSE ESTIMATION FROM RGB IMAGES

(a) Input image (b) Part-based maps (c) Regressed poses

Figure 4.6 – Test samples from the Leeds Sports Poses (LSP) dataset. Input image (a), the predicted part-
based maps encoded as RGB image for visualizasion (b), and the regressed pose (c). Corresponding human
limbs have the same colors in all images. This figure is better seen in color.
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where Ns is the number of samples in the evaluation dataset and r is the threshold fraction. For

PCKh, the reference length from the left hip to the right shoulder is replaced by the head size.

4.3.2.3 Implementation Details

The soft-argmax layer can be easily implemented in recent frameworks by concatenating a spatial

softmax layer followed by one non-trainable convolutional layer with 2 filters of size H×W, with

fixed parameters according to Equation 4.4.

The network model was defined according to Figure 4.3 and composed of eight prediction

blocks (K = 8). We trained the network to regress 16 body joints with 2 context maps for each joint

(NJ = 16, Nc = 2). In the aggregation stage, we use α= 0.8.

4.3.2.4 Training

The proposed network was trained simultaneously on pose regression and joint probabilities. For

pose regression, we use the elastic net loss function (L1 + L2) [176]:

Lp = 1

NJ

NJ∑
n=1

‖pn − p̂n‖1 +‖pn − p̂n‖2
2, (4.11)

where pn and p̂n are respectively the ground truth and the predicted nth joint coordinates. In

this case, we use directly the joint coordinates normalized to the interval [0,1], where the top-left

image corner corresponds to (0,0), and the bottom-right image corner corresponds to (1,1).

For joint probability estimation, we use the binary cross entropy loss function on the estimated

joint probabilities b̂:

Lb = 1

NJ

NJ∑
n=1

[(bn −1) log (1− b̂n)−bn l og b̂n], (4.12)

where bn and b̂n are respectively the ground truth and the predicted joint probabilities.

We optimize the network using back propagation and the RMSProp optimizer, with batch size

of 16 samples. For the MPII dataset, we train the network for 120 epochs. The learning rate begins

at 10−3 and decreases by a factor of 0.4 when accuracy on validation plateaus. We use the same

validation split as proposed in [137]. On the LSP dataset, we start from the model trained on MPII

and fine-tuned it for more 70 epochs, beginning with a learning rate of 2 ·10−5 and using the same

decrease procedure. The full training of our network takes three days on the relatively outdated

NVIDIA GPU Tesla K20 with 5GB of memory.

We used standard data augmentation on both MPII and LSP datasets. Input RGB images were

cropped and centered on the main subject with a squared bounding box, keeping the people scale

(when provided), then resized to 256×256 pixels. We perform random rotations (±40◦) and ran-

dom rescaling from 0.7 to 1.3 on MPII and from 0.85 to 1.25 on LSP to make the model more robust

to image variations.

4.3.2.5 Results

LSP dataset. We evaluate our method on the LSP dataset using two metrics, the “Percentage of

Correct Parts” (PCP) and the “Probability of Correct Keypoint” (PCK) measures, as well as two dif-

ferent evaluation protocols, “Observer-Centric“ (OC) and “Person-Centric“ (PC), resulting in four

different evaluation settings. Our results compared to the state-of-the-art on the LSP dataset using
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Table 4.1 – Results on LSP test samples using the PCK measure at 0.2 with OC annotations.

Method Head Sho. Elb. Wri. Hip Knee Ank. Avg. PCK
Detection based methods

Chu et al. [28] 93.7 87.2 78.2 73.8 88.2 83.0 80.9 83.6
Pishchulin et al. [105] 97.4 92.0 83.8 79.0 93.1 88.3 83.7 88.2

Regression based method
Our method 97.4 93.8 86.8 82.3 93.7 90.9 88.3 90.5

Table 4.2 – Results on LSP test samples using the PCP measure with OC annotations.

Method Torso Upper Lower Upper Fore- Head PCP
leg leg arm arm

Detection based methods
Chu et al. [28] 95.4 87.6 83.2 76.9 65.2 89.6 81.1
Pishchulin et al. [105] 96.0 91.0 83.5 82.8 71.8 96.2 85.0

Regression based method
Our method 98.2 93.8 89.8 85.8 75.5 96.0 88.4

OC annotations are presented in Table 4.1 (PCK measure) and Table 4.2 (PCP measure). Complete

tables including older results from related methods can be consulted in Appendix B. In both cases,

we overcome the best scores by a significant margin, specially with respect to the lower leg and the

ankles, on which we increase the results of Pishchulin et al. [105] by 6.3% and 4.6%, respectively.

Using the PC annotations on LSP, we achieve the best results among regression based ap-

proaches and the second general score, as presented in Table 4.3 and Table 4.4. On the PCK mea-

sure, we outperform the results reported by Carreira et al. [16] (CVPR 2016), which is the only

regression method reported on this setup, by 18.0%.

MPII dataset. On the MPII dataset, we evaluate our method using the “Single person” challenge [2].

The scores were computed by the providers of the dataset, since the test labels are not publicly

available. As shown in Table 4.5, we reach a test score of 91.2%, which is only 0.7% lower then the

best result using detection based method, and 4.8% higher than the second score using regression.

Taking into account the competitiveness of the MPII Human Pose challenge2, our score rep-

resents a very significant improvement over regression based approaches and a promising result

compared to detection based methods. Moreover, our method requires less computations than

the stacked hourglass network from Newell et al. [93] or its extension from Chu et al. [29], since

we perform predictions from features at resolution 32×32 instead of 64×64. Due to limited mem-

ory resources, we were not able to train these two models in our hardware. Despite that, we reach

comparable results with a model that fits in much smaller GPUs.

2MPII Leader Board: http://human-pose.mpi-inf.mpg.de

Table 4.3 – Results on LSP test samples using the PCK measure at 0.2 with PC annotations.

Method Head Sho. Elb. Wri. Hip Knee Ank. PCK
Detection based methods

Bulat and Tzimi. [13] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al. [29] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

Regression based methods
Carreira et al. [16] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1
Our method 97.5 93.3 87.6 84.6 92.8 92.0 90.0 91.1

42

http://human-pose.mpi-inf.mpg.de


CHAPTER 4. HUMAN POSE ESTIMATION FROM RGB IMAGES

Table 4.4 – Results on LSP test samples using the PCP measure with PC annotations.

Method Torso Upper Lower Upper Fore- Head PCP
leg leg arm arm

Detection based methods
Bulat and Tzimi. [13] 97.7 92.4 89.3 86.7 79.7 95.2 88.9
Chu et al. [29] 98.4 95.0 92.8 88.5 81.2 95.7 90.9

Regression based methods
Carreira et al. [16] 95.3 81.8 73.3 66.7 51.0 84.4 72.5
Our method 98.2 93.6 91.0 86.6 78.2 96.8 89.4

Table 4.5 – Comparison results with state-of-the-art methods on the MPII dataset on testing, using PCKh
measure with threshold as 0.5 of the head segment length. Detection based methods are shown on top and
regression based methods on bottom.

Method Head Shouler Elbow Wrist Hip Knee Ankle Total
Detection based methods

Newell et al. [93] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Chu et al. [29] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chou et al. [27] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Chen et al. [22] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9

Regression based methods
Rogez et al. [117] – – – – – – – 74.2
Carreira et al. [16] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Sun et al. [130] 97.5 94.3 87.0 81.2 86.5 78.5 75.4 86.4
Our method 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2

4.3.3 Discussion

As suggested in section 4.2.2, the proposed soft-argmax function acts as a constraint on the regres-

sion approach, driving the network to learn part-based detectors indirectly. This effect provides

the flexibility of regression based methods, which can be easily integrated to provide 2D pose es-

timation to other applications such as 3D pose estimation or action recognition, while preserv-

ing the performance of detection based methods. Some examples of part-based maps indirectly

learned by our method are show in Figure 4.7. As we can see, the responses are very well localized

on the true location of the joints without explicitly requiring so.

Additionally to the part-based maps, the contextual maps give extra information to refine the

predicted pose. In some cases, the contextual maps provide strong responses to regions around

the joint location. In such cases, the aggregation scheme is able to refine the predicted joint po-

sition. On the other hand, if the contextual map response is weak, the context reflects in very few

changes on the pose. Some examples of predicted poses and visual contributions from contextual

aggregation are shown in Figure 4.8. The contextual maps are able to increase the precision of the

predictions by providing complementary information, as we can see for the right elbows of the

poses in Figure 4.8.
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Figure 4.7 – Indirectly learned part-based heat maps from our method. All the joints encoded to RGB are
shown in the first image (top-left corner) and the final pose is shown in the last image (bottom-right corner).
On each column, the intermediate images correspond to the predicted heat maps before (left) and after
(right) the spatial softmax normalization. The presented heat maps correspond to right ankle, right hip,
right wrist, right shoulder, upper neck, head top, left knee, and left wrist.

(a) (b) (c) (d) (e) (f)

Figure 4.8 – Samples of context maps aggregated to refine predicted pose. Input image (a), part-based de-
tection maps (b), predicted pose without context (c), two different context maps (d) and (e), and the final
pose with aggregated predictions (f).
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4.4 Volumetric Heat Maps for 3D Predictions

In this section, we extend the method introduced in section 4.3 to handle 2D and 3D pose regres-

sion in a unified way. The details of our approach are explained as follows.

4.4.1 Unified 2D/3D Pose Estimation

We extended the 2D pose regression to 3D scenarios by expanding 2D heat maps to volumetric

representations. We define Nd stacked 2D heat maps, corresponding to the depth resolution. The

prediction in (x, y) coordinates is performed by applying the soft-argmax operation on the aver-

aged heat map, and the z component is regressed by applying a one-dimensional soft-argmax on

the volumetric representation averaged in both x and y dimensions, as illustrated in Figure 4.9.

The advantage of splitting the pose prediction into two parts, (x, y) and z, is that we maintain the

2D heat maps as a byproduct, which is useful for extracting appearance features for action regoc-

nition, as explained in chapter 5.

Average on Z

Average on X-Y

Volumetric
heat maps

Z
X

Y

2D Soft-argmax

1D Soft-argmax

(x,y)

(z)

Figure 4.9 – Unified 2D/3D pose estimation by using volumetric heat maps.

With the proposed unified approach, we can train the network with mixed 2D and 3D data.

For the first case, only the gradients corresponding to (x, y) are backpropagated. As a result, the

network can be jointly trained with high precise 3D data from motion capture systems and very

challenging still images collected in unconstrained environments, which are usually manually an-

notated with 2D labels.

4.4.2 Experiments

In this section we present the experimental evaluation of our method considering 2D and 3D hu-

man pose estimation. The results are published in [83].

4.4.2.1 Datasets

We evaluate our method on two different datasets: on MPII [3] and on Human3.6M [57] for respec-

tively 2D and 3D pose estimation. The first dataset was previously introduced in section 4.3.2.1.

The second one is detailed as follows.

Human3.6M. The Human3.6M dataset [57] is composed by videos with 11 subjects performing 17

different activities and 4 cameras with different points of view, resulting in 3.6M frames. For each

person, the dataset provides 32 body joints, from which only 17 are used to compute scores.

4.4.2.2 Metrics

For 2D human pose estimation i.e., for MPII, we use the PCKh metric, as detailed in section 4.3.2.2,

and the Area Under the Curve (AUC), varying the reference coefficient from 0.0 until 0.5, with step

0.01. For 3D predictions, we use the standard mean per joint position error (MPJPE) metric, which
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Figure 4.10 – Predicted 3D poses from Human3.6M (top row) and MPII (bottom row) datasets.

measures the average joint error after centering both predictions and ground truth poses to the

origin. The MPJPE metric is defined by:

EMPJPE(po , p̂o) = 1

Ns

Ns∑
i=1

‖pi
o − p̂i

o‖2, (4.13)

where Ns is the number of samples, po and p̂o are respectively the ground truth and estimated

poses after reconstruction and centered in the origin.

4.4.2.3 Implementation Details

We train the network using the elastic net loss function (Equation 4.11) on predicted poses, with

the difference that here we do not back propagate the error on z for 2D data. For training, we crop

bounding boxes centered on the target person by using the ground truth annotations or the per-

sons location, when applicable. If a given body joint falls outside the cropped bounding box on

training, we set the ground truth probability flag to zero, otherwise we set it to one. The ground

truth joint visibility information is used to supervise the predicted joint probability vector b̂ with

the binary cross entropy loss (Equation 4.12). We optimize the network with the RMSprop opti-

mizer with initial learning rate of 0.001, which is reduced by a factor of 0.2 when validation score

plateaus, and batches of 24 images. We augment the training data by performing random rotations

from −45◦ to +45◦, scaling from 0.7 to 1.3, and random horizontal flipping.

In order to merge different datasets, we convert the poses to a common layout, with a fixed

number of joints equal to the dataset with more joints. For example, when merging the datasets

Human3.6M and MPII, we use all the 17 joints in the first dataset and include one joint on MPII,

which is not considered in the loss function for this case.

When evaluating the pose estimation task, we show the results for single-crop and multi-crop.

In the first case, one centered image is used for prediction, and on the second case, multiple im-

ages are cropped with small displacements and horizontal flips and the final pose is the average

prediction.

4.4.2.4 Evaluation on 2D Pose Estimation

We perform quantitative evaluations of the 2D pose estimation using the probability of correct

keypoints measure with respect to the head size (PCKh), as shown in Table 4.6. These results are

similar to the ones shown in Table 4.5, but here we also present the AUC metric and the PCKh with

0.2 of the head size. From the results we can see that the regression method based on soft-argmax

achieves results very close to the state of the art, specially when considered the accumulated pre-

cision given by the area under the curve (AUC), and by far the most accurate approach among fully
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differentiable methods.

4.4.2.5 Evaluation on 3D Pose Estimation

On Human3.6M, we evaluate the proposed 3D pose regression method by measuring the mean

per joint position error (MPJPE), which is the most challenging and the most common metric for

this dataset. We followed the common evaluation protocol [131, 99, 88, 19] by taking five subjects

for training (S1, S5, S6, S7, S8) and evaluating on two subjects (S9, S11) on one every 64 frames. For

training, we use the data equally balanced as 50%/50% from MPII and Human3.6M. For the multi-

crop predictions we use five cropped regions and their corresponding flipped images. Our results

compared to the previous approaches are presented in Table 4.7 and show that our method is able

to outperform the state of the art by a fair margin. Qualitative results are shown in Figure 4.10,

for both Human3.6M and MPII datasets, which also demonstrate the capability of our method to

generalize 3D pose predictions from data with only 2D annotated poses.

In order to show the contribution of multiple datasets in training, we show in Table 4.8 addi-

tional results on 3D pose estimation using Human3.6M only and Human3.6M + MPII datasets for

training. When considering multimodal training (mixed data) and single crop, we gain 12.2 mm in

precision, which is a very significant improvement for this dataset.

4.4.3 Discussion

In section 4.4.1 we show that the proposed regression method for pose estimation can be easily

extended to perform 3D predictions by including one additional dimension in the predicted heat

maps. In practice, we extend the idea of contextual maps to learn the additional information re-

lated to depth. One of the advantages of this approach is that both 2D and 3D data can be mixed

together during training, since we back propagate or not the prediction error, based on the type of

input data. This technique allows us to improve precision on 3D predictions substantially, thanks

to the multimodal training.
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Table 4.6 – Comparison results on MPII for single person 2D pose estimation using the PCKh measure with
respect to 0.2 and 0.5 of the head size. For older results, please refer to the MPII Leader Board at http:
//human-pose.mpi-inf.mpg.de.

Methods Year
PCKh
@0.2

AUC
@0.2

PCKh
@0.5

AUC
@0.5

Detection methods
Stacked Hourglass [93] 2016 66.5 33.4 90.9 62.9
Fractal NN [95] 2017 – – 91.2 63.6
Multi-Context Att. [29] 2017 67.8 34.1 91.5 63.8
Self Adversarial [27] 2017 68.0 34.0 91.8 63.9
Adversarial PoseNet[22] 2017 – – 91.9 61.6
Pyramid Res. Module[155] 2017 – – 92.0 64.2

Regression methods
LCR-Net [117] 2017 – – 74.2 –
Compositional Reg.[131] 2017 – – 86.4 –
2D Soft-argmax 67.7 34.9 91.2 63.9

Table 4.7 – Comparison with previous work on Human3.6M evaluated on the averaged joint error (in mil-
limeters) on reconstructed poses.

Methods Direction Discuss Eat Greet Phone Posing Purchase Sitting

Pavlakos et al. CVPR’17 67.4 71.9 66.7 69.1 71.9 65.0 68.3 83.7
Sun et al. ICCV’17 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7
Ours (single-crop) 51.5 53.4 49.0 52.5 53.9 50.3 54.4 63.6
Ours (multi-crop + h.flip) 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5
Methods Sit Down Smoke Photo Wait Walk Walk Dog Walk Pair Average

Pavlakos et al. CVPR’17 96.5 71.4 76.9 65.8 59.1 74.9 63.2 71.9
Sun et al. ICCV’17 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Ours (single-crop) 73.5 55.3 61.9 50.1 46.0 60.2 51.0 55.1
Ours (multi-crop + h.flip) 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2

Table 4.8 – Our results on averaged joint error on reconstructed poses for 3D pose estimation on Human3.6
considering single dataset training (Human3.6M only) and mixed data (Human3.6M + MPII). SC: Single-
crop, MC: Multi-crop.

Methods Direction Discuss Eat Greet Phone Posing Purchase Sitting

Human3.6 only - SC 64.1 66.3 59.4 61.9 64.4 59.6 66.1 78.4
Human3.6 only - MC 61.7 63.5 56.1 60.1 60.0 57.6 64.6 75.1
Human3.6 + MPII - SC 51.5 53.4 49.0 52.5 53.9 50.3 54.4 63.6
Human3.6 + MPII - MC 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5
Methods Sit Down Smoke Photo Wait Walk Walk Dog Walk Pair Average

Human3.6 only - SC 102.1 67.4 77.8 59.3 51.5 69.7 60.1 67.3
Human3.6 only - MC 95.4 63.4 73.3 57.0 48.2 66.8 55.1 63.8
Human3.6 + MPII - SC 73.5 55.3 61.9 50.1 46.0 60.2 51.0 55.1
Human3.6 + MPII - MC 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2
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4.5 Scalable Sequential Pyramid Networks

In this section, we present a new neural network architecture called Scalable Sequential Pyramid

Networks (SSP-Net), which main characteristics are its scalability a posteriori i.e., after training,

and its dense multi-level supervision with re-injection. We also propose a new 3D pose regression

approach, departing from requiring the expensive volumetric heat maps. The details about the

proposed network is presented in the following.

4.5.1 Network architecture
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Figure 4.11 – Global architecture of SSP-Net. The entry-flow extracts a preliminary feature map from the
input image. These features are then fed through a sequence of CNNs composed of prediction blocks (PB)
connected by alternating downscaling and upscaling units (DU and UU). Each PB outputs a supervised pose
prediction that is refined by further blocks and units. See Figure 4.12 and Figure 4.13 for the architectural
details of DU, UU, and PB.

The global architecture of the proposed network is presented in Figure 4.11, which is a combi-

nation of four modules: entry-flow, downscaling and upscaling units, and prediction blocks. The

role of the entry-flow (detailed in Table 4.9) is to provide deep convolutional features extraction.

These features are successively downscaled and upscaled, respectively by downscaling and up-

scaling pyramids. Each downscaling or upscaling pyramid is composed of a sequence of down-

scaling or upscaling units (DU or UU), interleaved with prediction blocks (PB) at each level. Pre-

diction blocks are indexed by the pyramid index p ∈ {1,2, . . . ,Np }, where Np is the number of pyra-

mids, and by the level l ∈ {0,1, . . . ,Nl }, where Nl denotes the number of downscaling/upscaling

steps performed. Note that in this arrangement, an odd p index corresponds to a downscaling

pyramid and an even p index corresponds to an upscaling pyramid.

The architectural details of DU and UU are shown in Figure 4.12. The basic building block

Table 4.9 – Entry-flow network.

Layer Filters Size/strides Output
Input 3 256×256
Convolution 64 7×7/2 128×128
Convolution 64 1×1
Convolution 128 3×3
Residual 128×128
MaxPooling 3×3/2 64×64

2×
Convolution 128 1×1
Convolution 256 3×3
Residual 64×64
MaxPooling 2×2/2 32×32

2×
Convolution 192 1×1
Convolution 384 3×3
Residual 32×32
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of the pyramid networks is the separable residual block (Figure 5.8a), which consists of a depth

wise separable convolution [25] with a residual connection. Our choice for depth wise separable

convolutions is mainly due to its benefits in efficiency [50]. One important advantage from our

approach is the combination of features from different pyramids and levels. This is performed

in both DU/UU, since they combine features from lower/higher levels, as well as features from

previous pyramids.

Details of the prediction block (PB) are shown in Fig. 4.13. It takes as input a feature map X l
p ,

considering pyramid p and level l , and produces a set of heat maps hl
p and depth maps dl

p , which

are used for 3D pose regression. Heat maps and depth maps generation is defined in the following

equations:

Y l
p = ReLU(BN(SC(X l

p ))), (4.14)

hl
p = Wp,l

h ∗Y l
p , (4.15)

dl
p = Wp,l

d ∗Y l
p , (4.16)

where Y l
p is an intermediate feature representation, SC is a separable convolution, Wp,l

h and Wp,l
d

are weight matrices with shape RN f ×N, respectively for heat maps and depth maps projection, and

∗ is the convolution operation. Additionally, each prediction block also produces a new feature

map F l
p , which combines the input features with predicted heat maps and depth maps, and is

used by next blocks and units for further improvements. This step is defined in equation 4.17:

F l
p =X l

p +Y l
p +Wp,l

r ∗hl
p +Wp,l

s ∗dl
p , (4.17)

where Wp,l
r and Wp,l

s are called re-injection matrices.

+
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(Hs×Ws× Nfout )

Input: 
(Hs×Ws×Nfin )

SC k×k, Nf 

(a) Sep. residual block

+

Output:
(Hs /2×Ws /2×Nfout )

Input:
(Hs×Ws×Nfin )

R 5×5, Nfout

MaxPooling
2×2

R 5×5, Nfout

(b) Downscaling unit

+

R 5×5, Nfout

UpSampling
2×2

R 5×5, Nfout

Input:
(Hs /2×Ws /2×Nfin )

Output:
(Hs×Ws×Nfout )

(c) Upscaling unit

Figure 4.12 – Elementary blocks of the proposed network. In (a), the separable residual block is used as the
basic building block. In (b-c), the downscaling unit (DU) and upscaling unit (UU) take as secondary input
the feature maps F l

p−1 issued from the previous piramid. SC: separable convolution; R: separable residual
block; Hs ×Ws : features size; N f i n/ f out : number of input/output features.

Differently from the Stacked Hourglass [93, 99] architectures, where only the higher resolution

features are supervised, we use intermediate supervision at every level of the pyramids. Adding

more supervisions does not significantly increase the computational cost of our method, since

contrarily to the Stacked Hourglass we do not need to generate artificial ground truth heat maps.

On the other hand, with intermediate supervisions in multiple levels we enforce the robustness

of our method to variations in the scale of feature maps, while efficiently increasing the receptive

field of the global network. Furthermore, our architecture injects the predictions from these in-

termediate supervisions back into the network by merging them with the current features. This

allows the subsequent blocks to perform refining operations instead of full predictions.
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Figure 4.13 – Network architecture of prediction block. Input features X l
p (for pyramid p and level l ) are

used to produce heat maps hl
p and depth maps dl

p , from which 3D pose and confidence scores are esti-

mated. Output features F l
p are a combination of input features and re-injected predictions. C: convolution;

SC: separable convolution; Hs ×Ws : features size; N f : number of features; N: number of body joints.

4.5.2 Joint Based Attention for Depth Estimation

In our approach, we propose to regress 3D joint coordinates from two different mappings: heat

maps for (x, y) coordinates and depth maps for z. As a natural choice, we split the problem as 2D

regression and depth estimation. For 2D regression, we use the approach already introduced in

section 4.2 to recover the (x, y) coordinates. For depth estimation, we propose a new attention

mechanism guided by 2D joint estimation. Our method does not require any parameter and is

fully differentiable.

For each body joint, we estimate its relative depth ẑ with respect to the root joint, which is usu-

ally designated by the pelvis. Specifically, we define an attention mechanism for predicted depth

maps based on the appearance information encoded in heat maps. Considering one probability

map h′ and the respective depth map d, both with size RH×W , the estimated relative depth is given

by:

ẑ =
∑H

i=1

∑W
j=1 di , j h′

i , j∑H
i=1

∑W
j=1 h′

i , j
, (4.18)

which can be interpreted as a selection of relevant regions from d based on the response from h′.
In our implementation, values in depth maps are normalized in the interval [0,1], corresponding

to a range of depth prediction, end the probability map h′ is positive and normalized.

The 3D poses estimated by our approach are composed by the (x, y) coordinates in pixels

(Equation 4.5) and by the z coordinate relative to the root joint. In order to recover the absolute

3D pose in world coordinates, we require the absolute depth of the root joint and the camera cal-

ibration parameters to convert pixels into millimeters. As we show later, estimating the absolute

3D pose directly in world coordinates is not the most relevant problem, since the camera calibra-

tion can affect such a prediction drastically. On the other hand, the relative position of joints with

respect to the root is of high relevance, and usually is the only measure used to compare differ-

ent methods. We show in the experiments that absolute depth of the root joint can be estimated

without major impact on accuracy.

4.5.3 Experiments

We evaluate the proposed SSP-Net quantitatively on two challenging datasets for 3D human pose

estimation: Human3.6M [57] and MPI-INF-3DHP [88]. We also use the manually annotated MPII
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Human Pose dataset (2D only) [2] to improve the quality of low level visual features of our network

by mixing it with the other two datasets in a 50%/50% ratio on each training batch, as our con-

clusion of section 4.4. We show in Figure 4.14 some samples of indirected learned heat maps in

different pyramid scales and 3D poses estimated by our approach.

4.5.3.1 Datasets

MPI-INF-3DHP. MPI-INF-3DHP [88] is a recent dataset for 3D human pose estimation. It was

recorded with a markerless MoCap system, which allows videos to be recorded in outdoor envi-

ronment e.g., TS5 and TS6 from testing. A total of 8 actors were recorded performing 8 activities

sets each. The activities involve some complex exercising poses, which makes this dataset more

challenging than Human3.6M.

4.5.3.2 Metrics

For Human3.6M, we use the already introduced MPJPE metric (Equation 4.13) between predicted

and ground truth poses. For MPI-INF-3DHP, the authors proposed three evaluation metrics: the

mean per joint position error (MPJPE), in millimeters, the 3D Percentage of Correct Keypoints

(PCK3d ), and the Area Under the Curve (AUC) for different threshold on PCK3d . The PCK3d is sim-

ilar to the one from Equation 4.10, but the 3D coordinates in millimiters are used and the standard

threshold factor is 150mm. Differently from previous works, we use the real 3D poses to compute

the error instead of the normalized 3D poses, since the last one cannot be easily computed from

the image plane.

4.5.3.3 Implementation Details

Similarly to the previous sections, we train the network using the elastic net loss function (Equa-

tion 4.11) on predicted poses, considering both 2D and 3D data. For the joint confidence scores,

we use the binary cross entropy loss where cn and ĉn are respectively the ground truth and the

predicted confidence scores. We use cn = 1 if the nth joint is present in the image and cn = 0 oth-

erwise. For the depth (z coordinate), the root joint is assumed to have z = 0.5, and a range of 2

meters is used to represent the remaining joints, which means that z = 0 corresponds to a depth

of −1 meter with respect to the root.

The network architecture used in our experiments is implemented according to Fig. 4.11 and

is composed of 8 pyramids, divided as 4 downscaling and 4 upscaling pyramids, each one with 4

scales (Np = 8 and Nl = 3). We optimize the network using back propagation and RMSprop with

batches of 24 images and initial learning rate of 0.001, which is divided by 10 when validation

score plateaus. We used standard data augmentation on all datasets, including: random rotations

(±45◦), random bounding box rescaling with a factor from 0.7 to 1.3, and random brightness gain

on color channels from 0.9 to 1.1.

4.5.3.4 Results on 3D Pose Estimation

Human3.6M. Table 4.7 shows our results compared to recent methods, where we achieve 50.2

mm average MPJPE considering multi-crop and 51.6 mm single-crop at 120 fps. Our approach

achieves results comparable to the state-of-the-art overall, and improves individual activities up

to 12.4% on “Photo” and 7.7% on “Sit down”, which is the most challenging case. In general, our
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Figure 4.14 – Input image samples (a), and their respective heat maps for selected joints at different pyramid
scales (b, c, d, e), and the final predicted 3D pose (f) with all the body joints.
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method improves state-of-the-art on individual activities even on single-crop at full speed, run-

ning on a desktop GeForce GTX 1080Ti GPU, which is, to the best of our knowledge, better than

any previous method. Additionally, with the proposed architecture, our approach can be even

faster with a small decrease in performance, as shown in the ablation study.

Table 4.10 – Comparison results with previous work on Human3.6M using the MPJPE (millimeters errors)
evaluation on reconstructed poses. To reconstruct poses, we use the absolute z of the root joint. MC: multi-
crop, using 5 different bounding boxes with horizontal flip.

Methods Dir. Disc. Eat Greet Phone Posing Purch. Sit

Volumetric heat maps 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5
SSP-Net 120 fps 46.1 50.2 50.2 47.5 52.0 45.9 48.5 62.3
SSP-Net +multi-crop 45.1 49.1 49.0 46.5 50.6 44.8 47.7 60.6
Methods SitD. Smoke Photo Wait Walk WalkD. WalkP. Avg

Volumetric heat maps 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2
SSP-Net 120fps 66.8 53.4 54.7 45.2 41.9 54.7 45.5 51.4
SSP-Net +multi-crop 65.4 52.0 52.8 44.2 40.6 54.1 44.4 50.2

MPI-INF-3DHP. Our results on this dataset is presented in Table 4.11. We reached the best average

score, with an increasing of 6.6% on PCK3d and reducing the average joint error by more than 20

millimeters, what is a very significant improvement, considering that this dataset involves more

realistic activities and has two videos recorded in outdoor environment unseen on training.

Table 4.11 – Comparison results with previous work on MPI-INF-3DHP using the PCK and AUC metrics
(higher is better) and the MPJPE metric (lower is better), on reconstructed poses. The absolute z of the root
joint was used to reconstruct 3D poses.

Methods
Std.
Walk

Exer.
Sit
Chair

Croush
Reach

OnThe
Floor

Sport Misc. Avg

PCK PCK PCK PCK PCK PCK PCK PCK AUC MPJPE

Zhou et al. [170] - - - - - - - 69.2 32.5 -
Mehta et al. [88] 86.6 75.3 74.8 73.7 52.2 82.1 77.5 75.7 39.3 117.6
Mehta et al. [90] 87.7 77.4 74.7 72.9 51.3 83.3 80.1 76.6 40.4 124.7
Ours 87.1 85.4 85.9 81.6 68.5 88.2 83.0 83.2 44.3 96.8

4.5.3.5 Ablation Study

Here we provide some additional experiments that show the behaviour of our method with respect

to the proposed network architecture. In Figure 4.15a, we consider each intermediate supervision

of the network as a valid output by cutting the network at that stage, and we show the improvement

on accuracy (error decreasing) with respect to the number of pyramids in the network. Addition-

ally, the error with respect to each pyramid scale is also shown. We can clearly see that all the

scales are improved by the sequence of pyramids, in such a way that in the last pyramid all scales

present very similar error. This evolution can be better seen in Table 4.13, where the error of all

intermediate predictions are shown. Note that the precision of our regression method is invariant

to the scale of the feature maps, since we reached excellent results with heat maps of 4×4 pixels.

The same is not true for detection based approach, like in [99], since the predictions are quantized

by the argmax function. The error introduced by this quantization can be observed in Table 4.12,

where we compare our regression approach with ground truth volumetric heat maps and argmax.

One important characteristic of our network is that it offers an excellent trade off between

performance and speed. In Figure 4.15b we show the per joint error for four pyramids with their

respective scales compared to the inference speed. Note that we are able to reach 55.5 millimeters
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Table 4.12 – Results on Human3.6M (millimeters error, 2D only), comparing predictions using ground truth
heat maps and argmax vs. our regression approach.

Method / resolution s = 4 s = 8 s = 16 s = 32

Volumetric GT heat maps (s × s × s) + argmax 233.9 128.6 59.9 31.0
Our regression approach (soft-argmax, Table 3) 53.0 51.8 51.4 51.6

Table 4.13 – Mean per joint position error (MPJPE) in millimeters for all intermediate supervisions of the
SSP-Net on the Human3.6M dataset. Odd pyramid numbers correspond to Downscaling Pyramids, and
even numbers correspond to Upscaling Pyramids.

Scale Features res. Pyramid number / MPJPE
1 2 3 4 5 6 7 8

L0 32×32 - 64.1 - 55.3 - 52.4 - 51.6
L1 16×16 85.5 65.5 60.1 55.5 55.3 52.1 51.8 51.4
L2 8×8 71.7 67.1 58.5 57.1 53.1 53.0 52.1 51.8
L3 4×4 68.7 - 58.9 - 54.2 - 53.0 -

error, which is still a good result on Human3.6M, at a very fast inference rate of 200 FPS.

Finally, we demonstrate on Figure 4.15c the influence of bad prediction of the absolute root

depth by adding a Gaussian noise on the ground truth reference. By adding a noise of 100 mil-

limeters (about the same magnitude of the precision of our method on MPI-INF-3DHP), we have

an increase in total error inferior to 2 millimeters. This clearly reinforces our idea that the error on

relative joint positions is much more relevant than the absolute offset of the root joint.
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Figure 4.15 – Ablation study of our method. In (a), we shown the error performed by each intermediate
supervision. The trade off between precision (related to the number of pyramids) and speed is shown in (b),
for all the pyramid levels. In (c) we present the increase in reconstruction error with respect to a Gaussian
noise injected on absolute root joint position.

4.5.4 Discussion

In this section, we have presented a new neural network architecture able to explore the idea of

dense supervisions with re-injection at multiple scales. The method is based on the proposed

Scalable Sequential Pyramid Networks, which is a highly scalable network that can be very precise

at a small computational cost and extremely fast with a small decrease in accuracy, with a single

training procedure. This is possible because the resulting model can be cut after the training pro-

cedure. The dense multiscale supervision is possible thanks to our regression approach, which is

based on the soft-argmax operation and is invariant to the resolution of feature maps. Addition-
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ally, we proposed a new approach to estimate the z coordinate, based on regressed depth maps

specialized for each body joint. In this way, we depart from requiring the expensive volumetric

heat maps, reducing the network complexity while still reaching state-of-the-art results. We also

provided some intuitions about the behaviour of our method in our ablation study, which demon-

strates its effectiveness specially for efficient predictions.

4.6 Absolute 3D Human Pose Estimation

In section 4.4 and section 4.5 we presented two different approaches for 3D human pose estima-

tion from RGB images. Differently from the previous methods, where estimated poses are relative

to the person center (usually the root joint), in this section we target the problem of predicting

body joints in the absolute world coordinates. Despite being a much more challenging task, it has

some advantages over relative prediction. For example, absolute prediction eases multiple person

separation in scene, and predictions from multiple views can be easily combined in world coor-

dinates, resulting in more precise predictions thanks to the complementarily information from

different view-points.

Another problem related to 3D pose estimation is the generalization on unconstrained images,

since the majority of 3D datasets have low visual variability due to very constrained acquisition

conditions. To circumvent this problem, images “in-the-wild” with 2D annotations or even syn-

thesized images [20, 118] are frequently used as data augmentation. We propose to alleviate this

problem by proposing a set of structural constraints on predicted poses, enforcing plausible pre-

dictions even for 2D annotated data. Additionally, methods that benefit from multiple datasets

for training are restrained to a subset of body joints, which corresponds to the intersection of all

datasets. Frequently, even the intersection of labeled body joints is not fully compatible. This lim-

itation could be avoided by using the union among all possible layouts. The downsides are the

sparsity of target labels and the increment in complexity, specially for methods relying on costly

3D heat maps for each body joint. We handle this problem by proposing a new skeleton layout,

which is the intersection between many popular human pose datasets, resulting in 34 body joints

with no ambiguity for joints semantically similar. For each training batch, the additional unla-

belled joints are weakly-supervised by the structural constraints.

An overview of the propose method is shown in Figure 4.16. Given an RGB image I ∈ RH×W×3,

we define the problem of absolute 3D pose estimation as the prediction of {p̂, ĉ, ẑ} from I, where

p̂ ∈ RNJ×3 is a predicted pose normalized in the image space and composed of NJ body joints, ĉ ∈
RNJ×1 is an array of confidence scores, one per body joint, ẑ ∈R1×1 is a vector with the normalized

absolute depth for the root joint, corresponding to the z coordinate orthogonal to the image plane.

Our method can be summarized in a straightforward pipeline, considering two different stages:

training and inference. In the training stage, a pose in real world coordinates (designated by pw ) is

projected to the image I, resulting in a pose in image space, composed of pixel coordinates (U-V)

and absolute depth for each joint. This projection is designated by puvd . Then, the pose in the

image space is normalized such as its coordinates lie in the interval [0,1], resulting in p. The re-

gression function f , implemented as a CNN, is trained to predict p̂ and the absolute depth of the

root joint from the input image I. At inference time, given an input image, the regression function

predicts a normalized pose p̂ ≈ p with its respective joint confidence scores and absolute root joint

depth, which are used to recover p̂uvd . Finally, the inverse projection is applied to p̂uvd , resulting

in the estimated pose p̂w in absolute world coordinates.
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Figure 4.16 – Overview of the proposed method for absolute 3D pose estimation. Given an RGB image, we
estimate relative 3D pose centered on the root joint and absolute depth, which are combined to project
estimations into the world absolute coordinate.

4.6.1 Absolute Depth Regression

For each predicted pose, an associated value corresponding to the absolute depth with respect to

the camera is also estimated. Specifically, given an image patch represented in the feature space

by the region Ω, two sources of information are defined: the relative position and size of Ω with

respect to the full input image, designated by PΩ, and deep convolutional features FΩ. The last

one is extracted by an average pooling from features with kernel size corresponding to the size of

Ω. The relative position is defined as PΩ = [xΩ, yΩ, wΩ,hΩ]T, with (x, y) and (w,h) corresponding

to the center and size of the image patch with respect to the full frame. Both extracted features

are then feed to a fully-connected network with 256 neurons at each level and a single neuron as

output. Figure 4.17 illustrates the features extraction process described above and the network

architecture.

Avg.
Pooling

FC

FC + FC Abs. Z
loss

Figure 4.17 – Features and network architecture for absolute depth regression.

4.6.2 Human Pose Layouts

Pose estimation datasets not only have disparate number of body joints, but also the semantically

equivalent joints can have deviations from one dataset to another. For example, the joint “head”

from Human3.6M is not at the same position as the joint “head” from 2D datasets. Consider-

ing that recent works have demonstrated a significant gain in performance by merging different

datasets for pose estimation [131, 11], a decision on how to combine different annotations is re-

quired. In this work, we decide to use the union of available data by proposing a new Extended

Skeleton Template (EST) compose of 34 body joints, as illustrated in Figure 4.18. We show in sec-

tion 4.6.4.4 results comparing the intersection of body joints, referred as Basic Skeleton Template,

with the proposed layout, which evidences the advantage of our approach.
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Figure 4.18 – Disposition of body keypoints on pose layouts. From left to right: (a) full layout from Hu-
man3.6M, (b) full layout from MPI-INF-3DHP, (c) available keypoint on common 2D datasets, and (d) the
proposed Extended Skeleton Template with 34 joints.

4.6.3 Structural Regularization

The downside of having an overdefined skeleton layout is that each training sample has partial

ground truth depending on the dataset it comes from. This effect can make specific joints over-

fit on their own dataset and produce abnormal predictions from other datasets. To mitigate that

problem, we include a structural regularization on predicted poses. Since our method relies on a

fully-differentiable function, adding a set of constraints on coordinate predictions is a straightfor-

ward process. The proposed structural loss is based on length comparisons between individual

skeleton segments in the 3D space, resulting in a loss completely invariant to scale, position and

rotation.

Considering a predicted pose p̂ ∈ RNJ×3 and its corresponding per joint confidence score ĉ ∈
RNJ×1, we define an elementary structural loss as:

Ls(i , j ,ρ) = ĉi ĉ j
(‖p̂i − p̂ j‖2 −ρ

)2, (4.19)

where i and j are indexes of body joints and ρ is a reference length, that could be either another

body segment or a reference size normalized to the predicted pose size. By multiplying the squared

error between segments by the confidence scores, we ensure that low confidence joints (usually

not visible) will not be excessively penalized. The final structural loss is the sum of all elementary

losses, which in our method include body symmetry (right-left) and rules of segment reference

size. The reference sizes were estimated from millions of available 3D poses from Human3.6M.

4.6.4 Experiments

In this section we demonstrate the effectiveness of our method through a sequence of ablation

studies. As detailed next, we evaluate our approach quantitatively on two well known 3D human

pose datasets.

4.6.4.1 Datasets

We evaluate the proposed method on Human3.6M [57] and on MPI-INF-3DHP [88], as previously

detailed in section 4.5.3.1.
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4.6.4.2 Evaluation Protocols and Metrics

For 3D pose estimation on Human3.6M, three evaluation protocols are widely used. In protocol 1,

six subjects (S1, S5, S6, S7, S8, S9) are used for training and S11 is used for evaluation. Videos for

evaluation are sub-sampled every 64th frames, and predictions are aligned to ground truth poses

by a Procrustes Alignment before applying the error metric. In protocol 2, five subjects (S1, S5, S6,

S7, S8) are dedicated for training and S9 and S11 for evaluation. Similarly, evaluation videos are

sub-sampled every 64th frames, but no rigid alignment is used. The third protocol is the official

test set (S2, S3, S4), of which ground truth poses are withheld by the authors and evaluation is

performed over all test frames (almost 1 million images) through a server. In our experiments, we

consider protocol 2 for the ablation study in addition to reported results on the test set. Protocol

1 is not used in this work since the rigid alignment makes the task much easier and therefore less

meaningful to evaluate absolute 3D prediction.

The standard metric for Human3.6M is the mean per joint position error (MPJPE), which mea-

sures the average joint error after centering both predictions and ground truth poses to the origin.

Since that loss does now allow to measure the error in absolute world coordinates, we propose a

new metric called mean per joint absolute position error (MPJAPE), which is computed in world

coordinates as:

EMPJAPE(pw , p̂w ) = 1

Ns

Ns∑
i=1

‖pi
w − p̂i

w‖2, (4.20)

where pw and p̂w are respectively ground truth and estimated poses.

In the MPI-INF-3DHP dataset, evaluation is performed on a test set composed of 6 videos/subjects,

of which 2 are recorded in outdoor scenes, resulting in almost 25K frames. The authors of [88]

proposed three evaluation metrics: the mean per joint position error, in millimeters, the 3D Per-

centage of Correct Keypoints (PCK), and the Area Under the Curve (AUC) for different threshold

on PCK. The standard threshold for PCK is 150mm. Differently from previous work, we use the real

3D poses to compute the error instead of the normalized 3D poses, since the last cannot respect a

constant camera inverse projection.

4.6.4.3 Implementation Details

For the backbone network, we use a pre-trained ResNet cut at block 4. To recover features resolu-

tion, we use a head network composed of one transposed convolution with kernel size 2×2 and

strides 2, Followed by a depth-wise convolution with kernel size 3×3. We include a refinement net-

work composed of two U-blocks with 4 levels each. Batch normalization and RMSprop are used

for training, with starting learning rate of 0.001, decreased by 0.2 after 150K and 170K iterations.

Batches of 24 images are used.

The elementary U-block used in the refinement network is detailed in Figure 4.19, considering

input feature maps of size 32×32×512. Depthwise residual blocks are similar to standard residual

blocks, but use the less costly depthwise convolutions.

During training, the ground truth pose, confidence scores and absolute depth of the root joint

are provided for each anchor, normalized based on the anchor size and position. We augmented

training data with frequently used techniques, such as random rotations (±45◦), re-scaling (from

0.7 to 1.3), horizontal flipping, color gains (from 0.9 to 1.1), and artificial occlusions with rectan-

gular black boxes (for indoor datasets only). Additionally, we used popular 2D pose datasets for

augmenting training data, which follows our conclusions from section 4.4.
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Legend:

Depthwise Residual Block

MaxPooling 2×2

UpScaling 2×2

+

+

+

Input
32×32×512

Output
32×32×512

Figure 4.19 – Elementary architecture of U-blocks used in the refinement network.

Table 4.14 – Evaluation of the network architecture, considering the backbone only (ResNet) and the refine-
ment network (ResU-Net), for two skeleton layouts. The number of trainable parameters and prediction
error (Human3.6M validation set) are given for comparison.

Pose layout ResNet ResU-Net
MPJPE Param. MPJPE Param.

BST17 j 62.2 10.5M 53.0 23.3M
EST34 j 61.9 10.5M 51.1 23.4M

4.6.4.4 Ablation Study

Network Architecture and Pose Layout. We conducted experiments with two different network

architectures and two pose layouts, as shown in Table 4.14. An off-the-shelf ResNet pre-trained

on Imagenet with the head network (referred simply as ResNet) performed 62.2 mm error using

the Basic Skeleton Template (BST). When adding the refinement network (referred as ResU-Net),

we gain from 9.2 to 10.7 mm, depending on the skeleton layout. We can see in the refinement

network an improvement of 1.9 mm just by replacing the skeleton layout by the Extended Skeleton

Template (EST). From this, we can see that precision increases by adding complementary joints,

which helps to avoid ambiguity and gives additional information despite marginally increasing

the number of parameters. All these results were obtained by mixing 3D and 2D data in the same

ratio. When not taking into account 2D data and using only 3D training data from Human3.6M,

the average error increases from 53.0 to 64.4 mm.

Absolute Depth Estimation As previously detailed, we use two sources of information for the ab-

solute depth estimation (see Fig.4.17). In order to evaluate how important each of these features

are, we evaluated the absolute position error considering (i) only pose and size features PΩ, (ii)

only deep visual features FΩ, and (iii) combined features. Results in absolute mm are presented

in Table 4.15, and show that both features are highly complementary.

The Effect of Multiple Camera Views

In this part, we evaluate the effect on prediction from multiple camera views. Since our method

predicts 3D poses in world coordinates, we can use multiple cameras to predict the same pose at

inference time. In that case, we simply average predicted poses in world coordinates from differ-
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Table 4.15 – Absolute position error in mm based on different features combinations for the absolute depth
estimation.

Features Position P Deep features F Combined
MPJAPE 539 100.1 91.2

Table 4.16 – Comparison with results from related methods on Human3.6M test set using MPJPE (millime-
ters error) evaluation.

Methods Dir. Disc. Eat Greet Phone Posing Purch. Sit
Ionescu et al. [57] 152 153 125 171 135 180 162 168
Grinciunaite et al. [44] 91 89 94 102 105 99 112 151
Popa et al. [108] 60 56 68 64 78 67 68 106
Zanfir et al. [165] 54 54 63 59 72 61 68 101
Ours multi-camera 34 44 59 45 64 41 55 83

Methods SitD. Smoke Photo Wait Walk WalkD. WalkP. Avg
Ionescu et al. [57] 221 160 241 176 157 201 187 171
Grinciunaite et al. [44] 239 109 151 106 101 141 106 119
Popa et al. [108] 119 77 85 64 57 78 62 73
Zanfir et al. [165] 109 74 81 62 55 75 60 69
Ours multi-camera 104 56 61 40 83 66 67 60

ent views in order the get a single world prediction, then we compute the error with respect to the

ground truth. Figure 4.20 illustrates an example of improvement based on multiple camera views.

This scenario was evaluated on Human3.6M (see the cameras layout in Fig. 4.21) and our results

of relative and absolute error are shown in Table 4.17. As we can see, each camera lowers the error

by about 5mm, which is significant on Human3.6M.

4.6.4.5 Comparison with the State of the Art

Human3.6M In Table 4.16, we show our results on the test set from Human3.6M, which is also

available in the official leader board H36M_NOS10 track3.

Since recent approaches frequently only release results on protocol 2 using validation data, we

also compared our method in this scenario, as shown in Table 4.18. Our method obtains state-

of-the-art results in single camera, and significantly improves these measures in the 4 cameras

setup. We believe these results are close to the best of what can be achieved given the precision

of the annotations. Note that we also included our results considering absolute world prediction

(MPJAPE) at the bottom of Table 4.18, despite all compared methods being unable to make such

prediction and reporting results only on relative MPJPE. This sets a very strong first result for this

new challenging task.

3Human3.6M leader board: http://vision.imar.ro/human3.6m/ranking.php

Table 4.17 – Results of our method on root joint relative and absolute prediction error (MPJPE / MPJAPE)
considering single and multi-camera with different combinations.

Method MPJPE MPJAPE
Single camera 51.1 91.2
Single camera + h. flip 49.2 89.5
Cameras 1,2 45.9 78.8
Cameras 1,4 46.6 84.2
Cameras 1,2,3 41.8 62.7
Cameras 1,2,3,4 36.9 54.7
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Figure 4.20 – On top, the prediction in world coordinates from camera 1 is projected to camera 2. In the
bottom, the averaged predictions from cameras 1, 3, and 4 is projected to camera 2.

World space

Camera 1 Camera 2

Camera 3 Camera 4

Figure 4.21 – Disposition of cameras on Human3.6M.

MPI-INF-3DHP Our results on MPI-INF-3DHP are shown in Table 4.19. We do not report results

considering multiple views in this dataset, since the testing samples were captured by a single

camera. As we can see, our method achieves state of the art performances on average and on

almost all actions apart from standing.
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Table 4.18 – Comparison with results from related methods on Human3.6M validation set, protocol 2. We
report our scores using two metrics, MPJPE and MPJAPE, on single and multi-camera. Note that all previous
methods reported scores only on MPJPE.

Methods Dir. Disc. Eat Greet Phone Posing Purch. Sit
Sun et al. [131] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7
Luvizon et al. [83] 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5
Sun et al. [132] – – – – – – – –
OursMPJPE single-camera 43.3 48.3 44.9 45.2 51.5 42.7 46.0 62.8
OursMPJPE multi-camera 31.0 33.7 33.8 33.4 38.6 32.2 36.3 48.2
OursMPJAPE single-camera 82.8 86.7 82.4 103.0 86.2 72.4 72.0 96.8
OursMPJAPE multi-camera 43.4 48.2 47.8 68.8 50.6 39.2 46.1 65.6

Methods SitD. Smoke Photo Wait Walk WalkD. WalkP. Avg
Sun et al. [131] 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Luvizon et al. [83] 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2
Sun et al. [132] – – – – – – – 49.6
OursMPJPE single-camera 69.1 51.4 52.1 43.8 37.4 50.1 42.0 49.2
OursMPJPE multi-camera 51.5 39.2 38.8 32.4 29.6 38.9 33.2 36.9
OursMPJAPE single-camera 128.2 89.3 86.8 103.3 76.5 84.6 79.6 89.5
OursMPJAPE multi-camera 96.4 53.4 51.8 68.8 40.7 51.1 44.1 54.7

Table 4.19 – Results on MPI-INF-3DHP compared to the state-of-the-art.

Method
Stand Exercise Sit Crouch On the Floor Sports Misc. Total
PCK PCK PCK PCK PCK PCK PCK PCK AUC MPJPE

Rogez et al. [117] 70.5 56.3 58.5 69.4 39.6 57.7 57.6 59.7 27.6 158.4
Zhou et al. [170] 85.4 71.0 60.7 71.4 37.8 70.9 74.4 69.2 32.5 137.1
Mehta et al. [88] 86.6 75.3 74.8 73.7 52.2 82.1 77.5 75.7 39.3 117.6
Ours 83.8 79.6 79.4 78.2 73.0 88.5 81.6 80.6 42.1 112.1

4.7 Conclusion

In this chapter, we study the problem of human pose regression from RGB images. In a first part,

we define the soft-argmax operation as an alternative to detection based approach, resulting in a

differentiable method for directly 2D joint coordinates regression, easily integrated with CNNs.

Additionally, we demonstrate that contextual information can be seamless integrated into our

framework by using additional context maps and joint probabilities. The proposed method re-

sults in a significant improvement over the state-of-the-art scores from regression methods and

very competitive results compared to detection based approaches.

In a second part, we propose to extend the concept of contextual maps to volumetric heat

maps, resulting in a unified approach for 2D and 3D pose estimation. Thus, different datasets,

containing 3D or only 2D annotations could be used simultaneously for training, boosting the

accuracy for 3D pose estimation.

The previous achievements were then combined with a new network architecture and a new

3D regression strategy, where instead of predicting volumetric heat maps, body depth maps are

used to encode the third dimension. As a result, we propose a scalable solution, with multi-level

intermediate supervisions, capable of producing state-of-the-art 3D pose predictions at 120 fps,

or even faster predictions with lower accuracy.

Finally, we propose to estimate 3D human poses in absolute world coordinates instead of root

joint centered. Despite being more challenging, this approach allows to combine predictions from

multiple views, resulting in a substantial improvement in accuracy. Furthermore, we propose

a new pose layout that merges recent 2D and 3D datasets with no ambiguities, combined with

a structural regularization that helps the network to predict plausible 3D poses even on uncon-

strained environments.
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Context:

Human pose estimation and action recognition are related tasks, since both problems are

strongly dependent on the human body understanding. Despite that, most recent methods in the

literature handle the two problems separately. In this chapter, we present a multitask framework

for human pose estimation and action recognition. To this end, we build on top of the human

pose regression approach, previously detailed in chapter 4, by defining two important types of

features: pose and appearance. Given a sequence of color images, our method is able to perform

action recognition based on extracted pose and appearance features, resulting in a fully train-

able pipeline internally constrained by the predicted human body joints. The proposed method

benefits from high sharing of parameters and computations between the two tasks by unifying

single frame and video clip processing in a single architecture. Additionally, we provide important

insights about the challenges related to multitasking by presenting two scenarios: the first case

based on sequential learning, i.e., first training only pose estimation and then training only action

recognition; and a second scenario considering multitask learning by optimizing a single model to

predict both poses and actions simultaneously, which leads to higher accuracy overall. For the full

multitask scenario, we also extend the SSP-Net to action recognition, resulting in a scalable net-

work for both pose and action predictions. The proposed method can be trained with data from

different categories simultaneously and achieves state-of-the-art results on both tasks.
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5.1 Introduction

Human action recognition has been intensively studied in the last years, specially because it is

a very challenging problem, but also due to the several applications which could benefit from

it. Similarly, human pose estimation has also rapidly progressed with the emergency of powerful

methods based on convolutional neural networks (CNN) and deep learning. Despite the fact that

action recognition benefits from precise body poses, the two problems are usually handled as dis-

tinct tasks in the literature [24], or action recognition is used as a prior for pose estimation [162, 59].

However, human pose estimation and action recognition are closely related tasks, since both

depend on recognizing and understanding humans in all its complexity of movements and their

interactions with the world by only observing the visual data, which very often contains aspects

not related to the pose or action itself, like clutter background or clothing.

We have shown in chapter 3 that skeleton or pose sequences can be very informative to rec-

ognize certain actions like “tennis serve” and “wave hands”, for example. However, more subtle

and contextual actions become hard to be distinguished only by the pose information, e.g., “use a

fan” and “playing with phone”, since these actions could be performed very similarly in terms of

movements. In these cases, visual clues could be decisive to provide a more reliable decision.

One of the major advantages of deep learning is its capability to perform end-to-end optimiza-

tion. As suggested by Kokkinos [67], this is all the more true for multitask problems, where related

tasks can benefit from one another. Recent methods based on deep convolutional neural networks

(CNNs) have achieved impressive results on both 2D and 3D pose estimation tasks thanks to the

rise of new architectures and the availability of large amounts of data [93, 99]. Similarly, action

recognition has recently been improved by using deep neural networks relying on human pose [8]

to extract localized features. We believe both tasks have not yet been stitched together to perform

a beneficial joint optimization because most pose estimation methods perform heat map predic-

tion. These detection based approaches require the non-differentiable argmax function to recover

the joint coordinates as a post processing stage, which breaks the backpropagation chain needed

for end-to-end learning.

We proposed to solve this problem by extending the differentiable soft-argmax, as previously

detailed in chapter 4, for joint 2D and 3D pose estimation. This allows us to stack action recogni-

tion on top of pose estimation, resulting in a multitask framework trainable from end-to-end. The

main contributions from this chapter are presented as follows. First, we show that human pose

estimation and action recognition can be handled by a unique multitask architecture, strengthen-

ing the sharing of parameters and computations, and allowing related tasks to benefit one from

another. Second, we demonstrate that end-to-end optimization results in better action recogni-

tion accuracy when compared to separate and sequential pose and action learning. Third, the

proposed methods can be trained with multimodal data in a seamless way, e.g., 2D images “in-

the-wild”, 3D highly precise poses, and video clips for action, resulting in robust learned features

that benefits the related tasks. Fourth, thanks to the human pose estimation stage, which could be

seen as an internal constraint, the action recognition task benefits from 3D pose data, even con-

sidering that only RGB frames are required as input. Moreover, the predicted poses are also useful

to extract localized visual information, which has been proven in the literature as a good practice

for action recognition. Sixth, the proposed multitask network is scalable without any additional

training procedure, which allows us to choose the right trade-off between speed and accuracy a

posteriori, for both tasks. Finally, we show that the hard problem of multitasking pose estimation

and action recognition can be tackled efficiently by a single and carefully designed architecture,
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handling both problems together and in a better way than separately. As a result, our method pro-

vides acceptable pose and action predictions at more than 180 fps, while achieving its best and

state-of-the-art scores at 90 fps on a customer GPU.

The remaining of this chapter is organized as follows. In section 5.2, we present a baseline

approach by extending the proposed method for 2D/3D human pose estimation to action recog-

nition, considering sequential learning and fine tuning for action recognition only. In section 5.3

we extend the SSP-Net, previously introduced in section 4.5, to action recognition by improving

the multitasking aspect with a joint learning procedure. The experimental evaluation of both sce-

narios, sequential and joint learning, is presented in section 5.4, followed by our conclusions for

this chapter in section 5.5.

5.2 Sequential Pose Estimation and Action Recognition

In this section, we extend the previously proposed framework for 2D and 3D human pose estima-

tion from section 4.4 for action recognition. As shown in Figure 5.1, the proposed method can be

divided into three parts. The first is a multitask CNN that provides 2D/3D human pose estima-

tions, deep convolutional (visual) features, and body part probability maps. The other two parts

are dedicated to action recognition, one based on a sequence of body joints coordinates, which

we call pose-based recognition, and the other based on a sequence of visual features, which we call

appearance-based recognition. Finally, the results of each part are combined to estimate the final

action label.

Multitask CNN
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Figure 5.1 – The proposed multitask approach for pose estimation and action recognition based on sequen-
tial learning. In this approach we are able to estimate 2D/3D poses from single images and action from
frame sequences. Pose and visual information are used to predict actions in a unified framework.

5.2.1 Network Architecture

The multitask CNN is similar to the architecture presented in Figure 4.3. Briefly, it has its en-

try flow based on Inception-V4 [133], which provides basic features extraction. Eight prediction
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blocks are used for pose estimation, and 3D poses are predicted based on volumetric heat maps

regression (see section 4.4). As a byproduct, we also have access to low-level visual features and

to the intermediate joint probability maps that are indirectly learned thanks to the soft-argmax

layer. In our method for action recognition, both visual features and joint probability maps are

used to produce appearance features, as detailed in section 5.2.3. A global representation of the

pose regression network and the visual features extraction is shown in Figure 5.2.

Input image Prediction
block K

Incep. V4
entry flow

Prediction
block 1

Soft-argmax

Visual features

Probability
maps

p'1
(pose loss)

p'K
(pose loss)

Figure 5.2 – Human pose regression approach from a single RGB frame, used as a base model for action
recognition. The input image is fed through a CNN composed by one entry flow and K prediction blocks.
Predictions are refined at each prediction block.

One of the most important advantages in our proposed method is the ability to integrate high

level pose information with low level visual features in a multitask framework. This characteristic

allows us to share the network entry flow for both pose estimation and visual features extraction.

Additionally, the visual features are trained using both action sequences and still images captured

“in-the-wild”, which have been proven as a very efficient way to learn robust visual representa-

tions. In the following, we give a detailed explanation about each action recognition branch, as

well as how we extend single frame pose estimation to extract temporal information from a se-

quence of frames.

5.2.2 Pose-based Recognition

In order to explore the high level information encoded with body joint positions, we convert a

sequence of T poses with NJ joints each into an image-like representation. We choose to encode

the temporal dimension as the vertical axis, the joints as the horizontal axis, and the coordinates

of each point ((x, y) for 2D, (x, y, z) for 3D) as the channels. A similar scheme was proposed by

Baradel et al. [8] in a parallel work with ours. With this approach, we can use classical 2D convo-

lutions to extract patterns directly from a temporal sequence of body joints. Since the pose esti-

mation method is based on still images, we use a time distributed abstraction to process a video

clip, which is a straightforward technique to handle both single images and video sequences. The

predicted coordinates of each body joints are pondered by their confidence score, thus points that

are not present in the image (and consequently cannot be correctly predicted) have less influence

on action recognition. A graphical representation of pose features is presented in Figure 5.3.

We propose a fully convolutional neural network to extract features from input poses and

to produce action heat maps, as illustrated in Figure 5.4. The idea is that for actions depending

only on few body joints, such as “shaking hands”, fully-connected layers will require zeroing non-

related joints, which is a very difficult learning problem. On the contrary, 2D convolutions enforce

this sparse structure without manually choosing joints and are thus easier to learn. Furthermore,
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Figure 5.3 – Disposition of pose features for action recognition. Differently from [8], we encode the three
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different joints have very different coordinates variations and a filter matching hand patterns will

not respond to foot patterns equally. Such patterns are then combined in subsequent layers in

order to produce more discriminative activations until we obtain action maps with a depth equals

to the number of actions.

To produce the output probability of each action for a video clip, a pooling operation on the

action maps has to be performed. In order to be more sensitive to the strongest responses for each

action, we use the max plus min pooling [36] followed by a softmax activation. Additionally, in-

spired by the human pose regression method, we refine predictions by using a stacked architecture

with intermediate supervision in K prediction blocks. The action heat maps from each prediction

block are then re-injected into the next action recognition block.

z0
0 z0

2z0
1 z0

Nj

z1
0 z1

2z1
1 z1

Nj

zT
0 zT

2zT
1 zT

Nj

z2
0 z2

2z2
1 z2

Nj

...

..
. ...

y0
0 y0

2y0
1 y0

Nj

y1
0 y1

2y1
1 y1

Nj

yT
0 yT

2yT
1 yT

Nj

y2
0 y2

2y2
1 y2

Nj

...

..
. ...

x0
0 x0

2x0
1 x0

Nj

x1
0 x1

2x1
1 x1

Nj

xT
0 xT

2xT
1 xT

Nj

x2
0 x2

2x2
1 x2

Nj

...

..
. ...

CNN

+

joints

ti
m

e

D

max+min
pooling

+
softmax

max+min
pooling

+
softmax

action loss 1 action loss 2

+ ...

action
heat maps

Figure 5.4 – Representation of the architecture for action recognition from a sequence of T frames of NJ

body joints. The z coordinates are used for 3D action recognition only. The same architecture is used for
appearance-based recognition, except that the input are the appearance features instead of body joints.

5.2.3 Appearance-based Recognition

The extraction of appearance features is a similar process to the one of pose features, with the

difference that the first relies on local visual information instead of joint coordinates. In order

to extract localized appearance features, we multiply each channel from the tensor of multitask

features Z
p,l
t ∈ RH f ×W f ×N f by each channel from the probability maps h′

t ∈ RH f ×W f ×N j , which is

learned as a byproduct of the pose estimation process. Then, the spatial dimensions are collapsed

by a sum, resulting in the appearance features for time t of size RN j×N f . For a sequence of frames,

we concatenate each appearance feature map for t = {1,2, . . . ,T} resulting in the video clip appear-

ance features V ∈RT×N j×N f . To clarify this process, a graphical representation is shown in Fig. 5.5.

The appearance features are fed into an action recognition network similar to the pose-based

action recognition block presented on Figure 5.4 with visual features replacing the coordinates of

the body joints. They are similarly arranged in a 2D array stacked vertically for time and horizon-
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Figure 5.5 – Appearance features extraction from low level visual features and body parts probability maps
for a single frame. For a sequence of T frames, the appearance features are stacked vertically producing a
tensor where each line corresponds to one input frame.

tally for the body joints .

We argue that our multitask framework has two benefits for the appearance based part: First,

it is computationally very efficient since most part of the computations are shared. Second, the

extracted visual features are more robust since they are trained simultaneously for different but

related tasks and on different datasets.

5.2.4 Action Aggregation

Some actions are hard to be distinguished from others only by the high level pose representation.

For example, the actions “drink water” and “make a phone call” are very similar if we take into

account only the body joints, but are easily separated if we have the visual information corre-

sponding to the objects cup and phone. On the other hand, other actions are not directly related

to visual information but with body movements, like “salute” and “touch chest”, and in that case

the pose information can provide complementary information.

In order to explore the contribution from both pose and appearance models, we combine the

respective predictions using a fully-connected layer with softmax activation, which gives the final

prediction of our model. Despite being a simple aggregation strategy, it allows an easy evaluation

of each branch’s contribution to the final action prediction.

5.3 Joint Learing Human Poses and Actions

In this section, we present a scalable network architecture for joint human pose estimation and ac-

tion recognition based on the SSP-Net for pose estimation (from section 4.5). Differently from the

previous section, where first we perform pose estimation then action recognition, here we present

a new network architecture where pose and action are predicted (and supervised) at different fea-

ture map resolutions. Each prediction is re-injected into the network for further refinement. The

improvements proposed in this section allow pose estimation and action recognition to be per-

formed in a parallel structure, strengthening the multitask aspect of the network. An overview of

the method is shown in Figure 5.6.

For convenience, we define the input of our method as either a still RGB image I ∈ RH×W×3

or a video clip (sequence of images) V ∈ RT×H×W×3, where T is the number of frames in a video

clip and H×W is the frame size. The outputs of our method for each frame are: predicted human

pose p̂ ∈ RNJ×3 and per body joint confidence score ĉ ∈ RNJ×1, where NJ is the number of body

joints. When taking a video clip as input, the method also outputs a vector of action probabilities

71



CHAPTER 5. MULTITASK FRAMEWORK FOR POSE ESTIMATION AND ACTION RECOGNITION

2D/3D estimated poses

...

2D/3D estimated poses

...

Predicted action

.65 .25 .02 .05 .01... .02

"Baseball pitch"

Predicted action

.35 .40 .05 .10 .05... .05

"Baseball swing"

Input RGB frames

t=T

...

t=1

t=2

 

Multitask CNN
Multitask CNN

(refinement)

Prediction block 1 Prediction block K

Figure 5.6 – The proposed multitask approach for joint human pose estimation and action recognition. Our
method provides 2D/3D pose estimation from single images or frame sequences. Pose and visual infor-
mation are used to predict actions in a unified framework. Pose and action predictions are refined by K
prediction blocks.

â ∈ RNa×1, where Na is the number of action classes. To simplify notation, in this section we omit

batch normalization layers and ReLU activations, which are used in between convolutional layers

as a common practice in deep neural networks.

5.3.1 Network Architecture

The global architecture of the proposed method is presented in Figure 5.7. Input images are

fed through the entry-flow, which extracts low level visual features. The extracted features are

then processed by a sequence of downscaling and upscaling pyramids indexed by p ∈ {1,2, . . . ,P},

which are respectively composed of downscaling and upscaling units (DU and UU), and predic-

tion blocks (PB), indexed by l ∈ {1,2, . . . ,L}. Each PB is supervised on pose and action predictions,

which are then re-injected into the network, producing a new feature map that is refined by further

downscaling and upscaling pyramids. Downscaling or upscaling units are respectively composed

by maxpooling or upsampling layers followed by a residual unit that is a standard or a depthwise

separable convolution [25] with skip connection. These units are detailed in Figure 5.8. Note that,

differently from section 4.5, here both DU and UU have only one convolution. The missing convo-

lution was moved to the prediction block to simplify the visualization of the global architecture. In

practice, the architecture for pose estimation remains simillar to the previously introduced SSP-

Net.

The network can operate in two distinct modes: (i) single frame processing or (ii) video clip

processing. In the first operational mode, only layers related to pose estimation are active, from

which connections correspond to the blue arrows in Figure 5.7. In the second operational mode,

both pose estimation and action recognition layers are active. In this case, layers in the single

frame processing part handle each video frame as a single sample in the batch. Independently

on the operational mode, pose estimation is always performed on single frames, which prevents

the method from depending on the temporal information for this task. For video clip processing,

the information flow from single frame processing (pose estimation) and from video clip process-

ing (action recognition) are independently propagated from one prediction block to another, as

demonstrated in Figure 5.7 respectively by blue and red arrows.
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Figure 5.9 – Network architecture of prediction blocks (PB) for a downscaling pyramid. With the exception of

the PB in the first pyramid, all PB get as input features from the previous pyramid in the same level (X p−1,l
t ,

Y p−1,l ), and features from lower or higher levels (X p,l∓1
t , Y p,l∓1), depending if it composes a downscaling

or an upscaling pyramid, respectively.
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5.3.1.1 Multitask Prediction Block

The architecture of the prediction block is detailed in Fig. 5.9. In the PB, pose and action are si-

multaneously predicted and re-injected into the network for further refinement. In the global ar-

chitecture, each PB is indexed by pyramid p and level l , and produces the following three feature

maps:

X
p,l
t ∈RH f ×W f ×N f (5.1)

Z
p,l
t ∈RH f ×W f ×N f (5.2)

Y p,l ∈RT×N j×Nv . (5.3)

Namely, X
p,l
t is a tensor of single frame features, which is propagated from one PB to another,

Z
p,l
t is a tensor of multitask (single frame) features, used for both pose and action, Y p,l is a tensor

of video clip features, exclusively used for action predictions and also propagated from one PB to

another, t = {1, . . . ,T} is the index of single frames in a video clip, and N f and Nv are respectively

the size of single frame features and video clip features.

For pose estimation, prediction blocks take as input the single frame features X
p−1,l
t from the

previous pyramid and the features X
p,l∓1
t from lower or higher levels, respectively for downscaling

and upscaling pyramids. A similar propagation of previous features (Y p−1,l and Y p,l∓1) happens

for action. Note that both X
p,l
t and Y p,l feature maps are three-dimensional tensors (2D maps

plus channels) that can be easily handled by 2D convolutions.

The tensor of multitask features is defined by:

Z
′p,l
t = RU(X p−1,l

t +DU(X p,l−1
t )) (5.4)

Z
p,l
t = Wp,l

z ∗Z
′p,l
t , (5.5)

where DU is the downscaling unit (replaced by UU for upscaling pyramids), RU is the residual

unit, ∗ is a convolution, and Wp,l
z is a weight matrix. Then, Z

p,l
t is used to produce body joint

probability maps:

h′p,l
t =Φ(Wp,l

h ∗Z
p,l
t ), (5.6)

and body joint depth maps:

dp,l
t = Si g moi d(Wp,l

d ∗Z
p,l
t ), (5.7)

where Φ is the spatial softmax [84], and Wp,l
h and Wp,l

d are weight matrices. Probability and body

joint depth maps encode, respectively, the probability of a body joint being at a given location and

the depth with respect to the root joint, normalized in the interval [0,1]. Both h′p,l
t and dp,l

t have

shape RH f ×W f ×N j .

5.3.2 Action Features Aggregation and Re-injection

Similarly to the previously discussed approach for sequential learning (section 5.2), in this joint

learning version we use the same pose and appearance features as described in subsection 5.2.2

and subsection 5.2.3, respectively. The main difference from the previous version is in the aggrega-

tion method. In this approach, a latter aggregation scheme would result in a double flow of action

features in the global architecture, one for pose and another for appearance features. To avoid

this, we perform an early aggregation of both types of features by concatenating them (jointly with

previous action features), as illustrated in the action prediction part from Figure 5.9. We observed
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slightly better results on action recognition when using early features aggregation.

Similarly to the pose features re-injection mechanism for single frames, as previously dis-

cussed in section 4.5, our approach also allows action features re-injection, as illustrated in the

action prediction part in Figure 5.9. We demonstrate in the experiments (section 5.4) that this

technique also improves action recognition results with no additional parameters.

5.3.3 Decoupled Action Poses

Since the multitask architecture is trained simultaneously on pose estimation and on action recog-

nition, we can have an effect of competing gradients from pose and action, specially in the pre-

dicted poses, which is used as the output for the first task and as the input for the second task. To

mitigate that influence, we propose to decouple estimated poses (used to compute pose scores)

from action poses (used by the action recognition part) as illustrated in Figure 5.10.

Multitask
features (Z)

Pose regression
+ pose loss

Action recognition
+ action loss

Wh

W'h

h'h

Figure 5.10 – Decoupled poses for action prediction. The weight matrix W′
h is initialized with a copy of Wh

after an initialization on pose estimation only. The same process is applied to depth maps (Wd and d).

Specifically, we first train the single frame processing pipeline on pose estimation for a few

epochs, then we replicate only the last layers that project the multitask feature map Z to heat

maps and depth maps (parameters Wh and Wd ), resulting in a “copy” of probability maps h′ and

depth maps d′. Note that this replica corresponds to a simple 1×1 convolution from the feature

space to the number of joints, which is almost insignificant in terms of parameters and computa-

tions. Finally, the video clip processing pipeline for action recognition is based on the replicated

poses and continue the training procedure of the full network. This process allows the original

pose predictions to stay specialized on the first task, while the replicated poses absorb partially

the action gradients and are optimized accordingly to the action recognition task. Despite the

replicated poses not being directly supervised in the final training stage (which corresponds to a

few epochs), we show in our experiments that they still remain coherent with supervised estimated

poses.

5.4 Experiments

In this section, we present quantitative and qualitative results by evaluating the two proposed

methods on two different tasks and on two different modalities: human pose estimation and hu-

man action recognition on 2D and 3D scenarios. The results here presented are partially published

in [83]. We report results on four publicly available datasets, detailed as follows.

5.4.1 Datasets and Evaluation Metrics

For 2D human pose estimation, we evaluate the proposed methods on the MPII human Pose

Dataset [2], as previously detailed in section 4.3.2.1. For this task, we use the Percentage of Cor-

rect Keypoints based on the head size (PCKh). For 3D pose estimation, we use the Human3.6M

dataset [57], as introduced in section 4.4.2.1, and the mean per joint position error (MPJPE) metric
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on reconstructed 3D poses. For human action recognition, we report results considering 2D and

3D scenarios, respectively on Penn Action and on NTU RGB+D, which are detailed as follows.

Penn Action. The Penn Action dataset [168] is composed by 2,326 videos with sports people per-

forming 15 different actions, among those “baseball pitch”, “bench press”, “strum guitar”, etc. The

challenge on this dataset is due to several missing body parts in many actions and to the disparate

image scales from one sample to another.

NTU RGB+D. The NTU dataset [123] is a large scale 3D action recognition dataset composed by

56K videos in Full HD with 60 actions performed by 40 different actors and recorded by 3 cameras

in 17 different configurations. Each color video has an associated depth map video and 3D Kinect

poses.

For action recognition, we report results using the percentage of correct action classification

score. We use the standard evaluation protocol for Penn Action [154], splitting the data as 50%/50%

for training/testing, and the most challenging and more realistic cross-subject scenario for NTU,

on which 20 subjects are used for training, and the remaining are used for testing. Our method is

evaluated on single-clip and/or multi-clip. In the first case, we crop a single clip with T frames in

the middle of the video. In the second case, we crop multiple video clips temporally spaced of T/2

frames one from another, and the final predicted action is the one that maximizes the product of

the prediction probabilities for all video clips. For cropping bounding boxes, we use our method

for pose estimation considering the full image frame, then the region around the estimated pose

is expanded by 50% on width and height, resulting in the estimated person bounding box.

In our experimental evaluation we consider two scenarios. First, we evaluate a sequential

learning process based on the architecture explained in section 5.2. In the second scenario, we

evaluate the joint learning process based on the method described in section 5.3. Both scenarios

are detailed respectively in section 5.4.2 and section 5.4.3.

5.4.2 Evaluation on Sequential Learning

5.4.2.1 Training Details

For the sequential learning experiments, we first train the human pose estimation part as previ-

ously explained in section 4.4.2. Then, we fixed all the layers corresponding to pose estimation

and trained the stacked action recognition part until validation score plateaus. Finally, we train

the full network, which we call the fine tuning process, for a few more epochs.

For the action recognition task, we train the network using the categorical cross entropy loss,

defined as:

La =−
Na∑
i=1

ai l og (âi ), (5.8)

where a and â are respectively the one-hot ground truth vector and the predicted action probabil-

ities for one sample. For training, we randomly select fixed-size clips with T frames from a training

video sample.

5.4.2.2 2D Action Recognition

We evaluate the proposed action recognition approach on 2D scenario on the Penn Action dataset.

For training the pose estimation part, we use mixed data from MPII (75%) and Penn Action (25%),

using 16 body joints. The action recognition part is trained using video clips composed of T =
16 frames. Considering the related literature until the date of our publication [83], our method
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achieves state-of-the-art results for action classification among methods using RGB and estimated

poses. Results are shown in Table 5.1. We reduced the prediction error from 4.7% [14] to 2.6%

when using predicted poses, which shows the effectiveness of our method when optimized for

both pose and action estimations. We also evaluated our method not considering the influence of

estimated poses by using the manually annotated body joints. In this case, our method improves

the state of the art by 0.5%, which indicates that the proposed CNN and pose/appearance features

are appropriate for the action recognition task.

Table 5.1 – Comparison results on Penn Action for 2D action recognition. Results are given as the percentage
of correctly classified actions.

Methods
Annot.

poses
RGB

Optical

Flow
Estimated

poses
Acc.

Iqbal et al. [59]
- - - X 79.0
- X X X 92.9

Cao et al. [14]
X X - - 98.1
- X - X 95.3

Ours
X X - - 98.6
- X - X? 97.4

? Using mixed data from PennAction and MPII.

Table 5.2 – Comparison results on the NTU for 3D action recognition. Results given as the percentage of
correctly classified actions

Methods
Kinect

poses
RGB

Estimated

poses
Acc. cross

subject
Liu et al. [79] X - - 74.4
Shahroudy et al. [124] X X - 74.9

Baradel et al. [8]
X - - 77.1
? X - 75.6
X X - 84.8

Ours
- X - 84.6
- X X 85.5

? GT poses were used on test to select visual features.

5.4.2.3 3D Action Recognition

For 3D action recognition, we consider the pose datasets MPII and Human3.6M, and the action

dataset NTU. Since skeletal data from NTU is frequently noisy, we train the pose estimation part

with only 10% of data from NTU, 45% from MPII, and 45% from Human3.6M, using 20 body joints

and video clips of T = 20 frames. Our method improves the state of the art on NTU using only RGB

frames and 3D predicted poses, as reported in Table 5.2. If we consider only RGB frames as input,

our method improves over [8] by 9.9%. To the best of our knowledge, all the previous methods use

provided poses given by Kinect-v2, which are known to be very noisy in some cases. Although we

do not use LSTM like other methods, the temporal information is well taken into account using

convolution. Our results suggest this approach is sufficient for small video clips as found in NTU.

5.4.2.4 Ablation Study

We performed varied experiments on NTU to show the contributions of each component of our

method. As can be seen on Table 5.3, our estimated poses increase the accuracy by 2.9% over
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Table 5.3 – Results of our method on NTU considering different approaches. FT: Fine tuning, MC: Multi-clip.

Experiments Pose
Appearance

(RGB)
Aggregation

Kinect poses 63.3 76.4 78.2
Estimated poses 64.5 80.1 81.1
Est. poses + FT 71.7 83.2 84.4
Est. poses + FT + MC 74.3 84.6 85.5

Kinect poses. Moreover, the full optimization also improves by 3.3%, which justify the importance

of a fully differentiable approach. And finally, by averaging results from multiple video clips we

gain 1.1% more. We also compared the proposed approach of sequential learning followed by fine

tuning (Table 5.1) with joint learning pose and action on PennAction, what result in 97.3%, only

0.1% lower than in the previews case.

The effectiveness of our method relies on three main characteristics: First, the multiple pre-

diction blocks provide a continuous improvement on action accuracy, as can be seen on Fig-

ure 5.11. Second, thanks to our fully differentiable architecture, we can fine tune the model from

RGB frames to predicted actions, which brings a significant gain in accuracy. And third, as shown

on Figure 5.12, the proposed approach also benefits from complementary appearance and pose

information which lead to better classification accuracy once aggregated.
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Figure 5.11 – Action recognition accuracy on NTU from pose and appearance models in four prediction
blocks, and with aggregated features, for both separated training and full network optimization (fine tun-
ing).
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Figure 5.12 – Action recognition accuracy on NTU for different action types from pose, and appearance
models and with aggregated results.

5.4.3 Evaluation on Joint Learning

In this section, we evaluate the second proposed method (joint learning), using the same datasets

and metrics as in the sequential learning scenario. The differences are mostly related to the archi-
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tecture and multitask training details, explained as follows.

5.4.3.1 Network Architecture

Since the pose estimation part is the most computationally expensive, we chose to use separable

convolutions with kernel size equals to 5×5 for single frame layers and standard convolutions with

kernel size equals to 3×3 for video clip processing layers (action recognition layers). We performed

experiments with the network architecture using 4 levels and up to 8 pyramids (L = 4 and P =
8). No further significant improvement was noticed on pose estimation by using more then 8

pyramids. On action recognition, that limit was observed at 4 pyramids. For that reason, when

using the full model with 8 pyramids, the action recognition part starts only at the 5th pyramid,

reducing the computational load. In our experiments, we used normalized RGB images of size

256×256×3 as input, which are reduced to a feature map of size 32×32×288 by the entry flow

network, corresponding to level l = 1. At each level, the spatial resolution is reduced by a factor of 2

and the size of features is arithmetically increased by 96. For action recognition, we used Nv = 160

and Nv = 192 features for 2D and 3D scenarios, respectively.

5.4.3.2 Multitask Training

For all the experiments, we first initialize the network by training pose estimation only, for about

32k iterations with mini batches of 32 images (equivalent to 40 epochs on MPII). Then, all the

weights related to pose estimation are fixed and only the action recognition part is trained for 2

and 50 epochs, respectively for Penn Action and NTU datasets. Finally, the full network is trained

in a multitask scenario, simultaneously for pose estimation and action recognition, until the vali-

dation scores plateaus. Training the network on pose estimation for a few epochs provides a good

general initialization and a better convergence of the action recognition part. The intermediate

training stage of action recognition has two objectives: first, it is useful to allow a good initializa-

tion of the action part, since it is built on top of the pre-initialized pose estimator; and second, it is

about 3 times faster than performing multitask training directly while resulting in similar scores.

This process is specially useful for NTU, due to the large amount of training data. The training

procedure takes about one day for the pose estimation initialization, then more two/three days

for the remaining process for Penn Action/NTU, using a desktop GeForce GTX 1080Ti GPU.

For initialization on pose estimation, the network was optimized with RMSprop and initial

learning rate of 0.001. For action and multitask training, we use RMSprop for Penn Action with

learning rate reduced by a factor of 0.1 after 15 and 25 epochs, and a vanilla SGD for NTU with

Nesterov momentum of 0.9 and initial learning rate of 0.01, reduced by a factor of 0.1 after 50 and

55 epochs. We weight the loss on body joint confidence scores and action estimations by a factor

of 0.01, since the gradients from the crossentropy loss are much stronger then the gradients from

the elastic net loss on pose estimation. Each iteration is performed on four batches of 8 frames,

composed of random images for pose estimation and video clips for action. We train the model

by alternating one batch containing pose estimation samples only and another containing action

samples only. This strategy resulted in slightly better results compared to batches composed of

mixed pose and action samples. We augment training data by performing random rotations from

−40◦ to+40◦, scaling from 0.7 to 1.3, video subsampling by a factor from 3 to 10, random horizontal

flipping, and random color shifting. On evaluation, we also subsampled Penn Action/NTU videos

by a factor of 6/8, respectively.

79



CHAPTER 5. MULTITASK FRAMEWORK FOR POSE ESTIMATION AND ACTION RECOGNITION

5.4.3.3 Evaluation on 3D Pose Estimation

Our results compared to previous approaches are shown in Table 5.4. Our method achieved the

state-of-the-art average prediction error of 48.6 millimeters on Human3.6M for 3D pose estima-

tion, improving our baseline (sequential learning with volumetric heat maps) by 4.6 mm. Consid-

ering only the pose estimation task, our average error is 49.5 mm, 0.9 mm higher than the mul-

titasking result, which shows the benefit of multitask training for 3D pose estimation. For the

activity “Sit down”, which is the most challenging case, we improve previous methods (e.g., Yang

et al. [158]) by 21 mm. The generalization of our method is demonstrated by qualitative results of

3D pose estimation for all datasets in Figure 5.13. Note that a single model and a single training

procedure was used to produce all those images and scores, including 3D pose estimation and 3D

action recognition, discussed as follows.

Table 5.4 – Comparison with previous work on Human3.6M evaluated using the mean per joint position
error (MPJPE, in millimeters) metric on reconstructed poses.

Methods Direction Discuss Eat Greet Phone Posing Purchase Sitting

Sun et al. [131] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7
Yang et al. [158] 51.5 58.9 50.4 57.0 62.1 49.8 52.7 69.2
Sun et al. [132] – – – – – – – –
3D heat maps (ours [83]) 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5
Ours (pose only) 43.7 48.8 45.6 46.2 49.3 43.5 46.0 56.8
Ours (multitask) 43.2 48.6 44.1 45.9 48.2 43.5 45.5 57.1
Methods Sit Down Smoke Photo Wait Walk Walk Dog Walk Pair Average

Sun et al. [131] 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Yang et al. [158] 85.2 57.4 65.4 58.4 60.1 43.6 47.7 58.6
Sun et al. [132] – – – – – – – 49.6
3D heat maps (ours [83]) 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2
Ours (pose only) 67.8 50.5 57.9 43.4 40.5 53.2 45.6 49.5
Ours (multitask) 64.2 50.6 53.8 44.2 40.0 51.1 44.0 48.6
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Figure 5.13 – Predicted 3D poses from RGB images for both 2D and 3D datasets.

80



CHAPTER 5. MULTITASK FRAMEWORK FOR POSE ESTIMATION AND ACTION RECOGNITION

5.4.3.4 Evaluation on Action Recognition

For action recognition, we evaluate our method considering both 2D and 3D scenarios. For the

first, a single model was trained using MPII for single frames (pose estimation) and Penn Action

for video clips. In the second scenario, we use Human3.6M for 3D pose supervision, MPII for data

augmentation, and NTU video clips for action. Similarly, a single model was trained for all the

reported 3D pose and action results.

For 2D, the pose estimation was trained using mixed data from MPII (80%) and Penn Action

(20%), using 16 body joints. Results are shown in Table 5.5. We reached the state-of-the-art ac-

tion classification score of 98.7% on Penn Action, improving our baseline by 1.3%. Our method

outperformed all previous methods, including the ones using ground truth (manually annotated)

poses.

Table 5.5 – Results for action recognition on Penn Action. Results are given as the percentage of correctly
classified actions.

Methods
Annot.

poses
RGB

Optical

Flow
Estimated

poses
Acc.

Cao et al. [14]
X X - - 98.1
- X - X 95.3

Du et al. [35]? - X X X 97.4

Liu et al. [80]
† X X - - 98.2

- X - X 91.4

Baseline (ours [83])
X X - - 98.6
- X - X 97.4

Ours (single-clip) - X - X 98.2
Ours (multi-clip) - X - X 98.7

? Including UCF101 data; † using add. deep features.

For 3D, we trained our multitask network using mixed data from Human3.6M (50%), MPII

(37.5%) and NTU (12.5%) for pose estimation and NTU video clips for action recognition. Our

results compared to previous methods are presented in Table 5.6. Our approach reached 89.3%

of correctly classified actions on NTU, which is a promising result considering the hard task of

classifying among 60 different actions in the cross-subject split. Our method improves previous

results by at least 2.7% and our baseline by 3.8%, which shows the effectiveness of the proposed

joint learning approach.

Table 5.6 – Comparison results on NTU cross-subject for 3D action recognition. Results given as the per-
centage of correctly classified actions.

Methods
Kinect

poses
RGB

Estimated

poses
Acc. cross

subject
Liu et al. [80] - X X 78.8

Baradel et al. [8]
X - - 77.1
? X - 75.6
X X - 84.8

Baradel et al. [9] - X - 86.6
Baseline (ours [83]) - X X 85.5
Ours - X X 89.3
? Ground truth poses used on test to select visual features.
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5.4.4 Ablation Study on Pose and Action Joint Learning

5.4.4.1 Network Design

We performed several experiments on the proposed network architecture in order to identify its

best arrangement for solving both tasks with the best performance vs computational cost trade-

off. In Table 5.7, we show the results on 2D pose estimation and on action recognition considering

different network layouts. For example, in the first line, a single PB is used at pyramid 1 and level

2. In the second line, a pair of full downscaling and upscaling pyramids are used, but performing

predictions only on the last PB. This results in 97.5% of accuracy on action recognition and 84.2%

on PCKh for pose estimation. An equivalent network is used in the third line, but then with super-

vision on all PB blocks, which brings an improvement of 0.9% on pose and 0.6% on action, with

the same number of parameters. Finally, the last line shows results with the full network, reaching

88.3% on MPII and 98.2% on Penn Action, with a single multitask model.

Table 5.7 – The influence of the network architecture on pose estimation and on action recognition, eval-
uated respectively on MPII validation set (PCKh@0.5, single-crop) and on Penn Action (classification ac-
curacy, single-clip). Single-PB are indexed by pyramid p and level l , and P and L represent the number of
pyramids and levels on Multi-PB scheme.

Network Param. No. PB PCKh Action acc.
Single-PB (p = 1, l = 2) 2M 1 74.3 97.2
Single-PB (p = 2, l = 1) 10M 1 84.2 97.5
Multi-PB (P = 2,L = 4) 10M 6 85.1 98.1
Multi-PB (P = 8,L = 4) 26M 24 88.3 98.2

5.4.4.2 Pose and Appearance Features

The proposed method benefits from both pose and appearance features, which are complemen-

tary to the action recognition task. Additionally, the confidence scores ĉ are also complementary

to pose itself and lead to marginal action recognition gains if used to weight pose predictions, as

shown in Figure 5.9. In Table 5.8, we present results on pose estimation and on action recognition

for different feature strategies. Considering pose features or appearance features alone, the results

on Penn Action are respectively 97.4% and 97.9%, respectively 0.7% and 0.2% lower than combined

features. We also show in the last row the influence of decoupled action poses, resulting in a small

gain of 0.1% on action scores and 0.3% on pose estimation, which shows that decoupling action

poses brings aditional improvements on both tasks. When not considering decoupled poses, note

that the best score on pose estimation happens when poses are not directly used for action, which

also supports the evidence of competing losses.

Table 5.8 – Results with pose and appearance features alone, combined pose and appearance features, and
decoupled poses. Experiments with a Multi-PB network with P = 2 and L = 4.

Action features MPII val. PCKh PennAction Acc.
Pose features only 84.9 97.7
Appearance features only 85.2 97.9
Combined 85.1 98.1
Combined + decoupled poses 85.4 98.2

Additionally, we can observe that decoupled action poses remain coherent with supervised

poses, as shown in Figure 5.14, which suggests that the initial pose supervision is a good initial-
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Figure 5.14 – Two sequences of RGB images (top), predicted supervised poses (middle), and decoupled
action poses (bottom).

ization overall. Nonetheless, in some cases, decoupled probability maps can drift to regions in

the image more relevant for action recognition, as illustrated in Figure 5.15. For example, feet

heat maps can drift to objects in the hands, since the last is more informative with respect to the

performed action.

Figure 5.15 – Drift of decoupled probability maps from their original positions (head, hands and feet) used
as an attention mechanism for appearance features extraction. Bounding boxes are draw here only to high-
light the regions with high responses.

5.4.4.3 Inference Speed

Once the network is trained, it can be easily cut to perform faster inferences. For instance, the full

model with 8 pyramids can be cut at the 4th or 2nd pyramids, which generally degrades the per-

formance, but allows faster predictions. To show the trade-off between precision and speed, we

cut the trained multitask model at different prediction blocks and estimate the speed inference in

frames per second (FPS), evaluating pose estimation precision and action recognition classifica-

tion accuracy. We consider mini batches with 16 images. The results are shown in Figure 5.16. For

both 2D and 3D scenarios, the best predictions are at more than 90 FPS. For the 3D scenario, pose

estimation on Human3.6M can be performed at more than 180 FPS and still reach a competitive

result of 57.3 millimeters error, while for action recognition on NTU, at the same speed, we still
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Figure 5.16 – Inference speed of the proposed method considering 2D (a) and 3D (b,c) scenarios. A sin-
gle multitask model was trained for each scenario. The trained models were cut a posterior for inference
analysis.

obtain state of the art results with 87.7% of correctly classified actions, or even comparable results

with recent approaches at more than 240 FPS. Finally, we show our results for both 2D and 3D

scenarios compared to previous methods in Table 5.9, considering different inference speed. Note

that our method is the only to perform both pose and action estimation in a single prediction,

while achieving state-of-the-art results at a very high speed.

Table 5.9 – Results on all tasks with the proposed multitask model compared to recent approached using
RGB images and/or estimated poses on MPII PCKh validation set (higher is better), Human3.6M MPJPE
(lower is better), Penn Action and NTU RGB+D action classification accuracy (higher is better).

Methods Year
MPII
PCKh

H36M
MPJPE

PennAction

half/half
NTU RGB+D

Cross-sub.
Pavlakos et al. [99] 2017 - 71.9 - -
Yang et al. [158] 2018 88.6 58.6 - -
Cao et al. [14] 2017 - - 95.3 -
Du et al. [35] 2017 - - 97.4 -
Shahroudy et al. [124] 2017 - - - 74.9
Baradel et al. [9] 2018 - - - 86.6
Ours 2D @ 240 fps 2019 85.5 - 97.5 -
Ours 2D @ 120 fps 2019 88.3 - 98.7 -
Ours 3D @ 240 fps 2019 80.7 63.9 - 86.6
Ours 3D @ 180 fps 2019 83.8 57.3 - 87.7
Ours 3D @ 90 fps 2019 87.0 48.6 - 89.3

5.5 Conclusion

In this chapter, we have presented two multitasks deep architectures to perform 2D and 3D pose

estimation jointly with action recognition. In the first part, we have presented a sequential learn-

ing scheme by first training the pose estimation network, then the action recognition part, and

finally fine tuning the full network, from input image sequences to action predictions. The model

predicts the 2D and 3D location of body joints from raw RGB frames. These locations are then

used to predict the action performed in the video in two different ways: using semantic informa-

tion by leveraging the temporal evolution of body joint coordinates and using visual information

by performing an attention pooling based on human body parts. We also have proposed an ac-

tion recognition architecture based on multiple prediction blocks, allowing intermediate super-

vision and prediction re-injection, similarly to common architectures dedicated for pose estima-
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tion, resulting in successive incremental improvements. We have demonstrated that fine tuning

the model leads to significant improvements on action, for both pose and appearance features.

In the second part, we have presented a joint learning approach by extending the SSP-Net ar-

chitecture to video clip processing. This architecture benefits from multiple scale processing and

multiple scale supervisions, for both pose estimation and action recognition. In this extended ar-

chitecture, we also initialize pose and action parts individually, but after the initialization stage,

the full network is trained simultaneously for pose and action prediction. Similarly, action recog-

nition is performed based on body joint locations and on appearance features extracted in the

region of body parts. Despite handling two related but distinct tasks at the same time and with a

single model, in this approach we have improved the previous state-of-the-art results significantly

on both tasks, while running at more than 90 FPS. Another aspect of the presented multitask ap-

proach is its flexibility for on demand requirements for speed. With a single training procedure,

our approach offers a wide range of precision vs inference speed.

For highly semantic tasks such as action recognition, it is difficult to converge to an optimal

solution with limited training data and without any structural constraints, specially because the

input video clips frequently have an enormous amount of data not related to the target action,

both on space and time dimensions. By constraining the visual features extraction using the body

parts position, the input space is reduced significantly, facilitating the learning process. Moreover,

by learning deep visual features with two objectives, pose and action, these features tend to be

more robust to visual variations and to encode better representations. This is specially true for the

second part of this section, on with single frame and video datasets can be used simultaneously. In

this way, not only 3D pose estimation benefits from “in-the-wild” images, as per our conclusions

in section 4.4, but also action recognition.
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Chapter 6

Conclusion and Perspectives

In this thesis, we have addressed the problems of human action recognition and human pose es-

timation, considering the use of 3D information. The thesis is divided into three main parts. Each

part and its contributions are discussed in the following.

6.1 Main Contributions

6.1.1 Human Action Recognition from Skeleton Sequences

In the first part, we have presented a shallow framework for human action recognition from skele-

ton sequences estimated from depth maps. In this framework, we proposed to extract local fea-

tures by forming groups of body parts, composed of 3 to 5 body joints each. Position and motion

features are extracted and aggregated using a pool of clusters and the Vector of Locally Aggregated

Descriptors (VLAD), resulting in multiple global features that encode the full action sequence.

The global features are then combined by a metric learning stage based on the Large Margin Near-

est Neighbor (LMNN) algorithm with a structural regularization to reduce overfitting. The learned

representations are finally used for action recognition by means of a k-NN classifier. The proposed

method achieved state-of-the-art results on three well know skeleton datasets.

The key aspects for the effectiveness of the proposed framework rely on three important points.

First, the proposed localized position and motion features encode relevant and complementarily

information for action recognition. Second, the randomness associated to the clustering scheme

used in the local features aggregation can be effectively reduced by multiple clustering representa-

tions, which also offer complementarily information to the global features. Third, the information

encoded in the final feature vector can be compressed into a much smaller and more discriminant

representation by a metric learning method, even considering that the departing features possibly

have redundant information due to the multiple clustering. Finally, by designing each part of the

framework to best fit the others, the proposed method consistently achieved effective results on

skeleton action recognition.

The limitations of the proposed approach are mainly due to the single source of information

used for classification i.e., skeleton sequences. As discussed in chapter 2, predicting skeletons

from consumer depth sensors is not feasible under certain unconstrained conditions, in addition

to the difficulties imposed by such sensors to combine skeletons and the important visual infor-

mation accessible through RGB images.

87



CHAPTER 6. CONCLUSION AND PERSPECTIVES

6.1.2 Human Pose Estimation from RGB Images

In the second part of this thesis, we have considered the hard problem of human pose estima-

tion from monocular images. This part was mainly motivated by two observations: first, as noted

in chapter 3, precise 3D human poses can be very effective to perform action recognition. How-

ever, depth sensors are limited in terms of applicability to real and unconstrained problems, and

estimating highly precise 3D poses from RGB images is a difficult task. The second observation

comes from the fact that most recent methods for human pose estimation from monocular im-

ages are based on detection and use the non differentiable argmax to recover joint coordinates. As

a consequence, such methods cannot be easily used for action recognition in a fully differentiable

way.

The work developed in this part resulted in a series of important conclusions. We have shown

that the proposed soft-argmax for pose regression provides results comparable to the state-of-

the-art methods on 2D pose estimation while being fully differentiable and not requiring artifi-

cial ground truth generation during training. As a by-product, heat map like representations are

learned indirectly by the network. Additionally, with the proposed regression approach, we have

demonstrated the consistent improvements on 3D pose estimation by performing multimodal

training i.e., by training 3D pose estimation with mixed 3D data and “in-the-wild” images with

2D annotated labels. In the proposed approach, this has become a straightforward training pro-

cess. We have also proposed a carefully designed network architecture to exploit the most from

multi-resolution supervisions, as well as a depth estimation method to predict 3D human poses

more efficiently. This new architecture departs from requiring costly volumetric heat maps and

provides a range of precision vs inference speed with a single training procedure. Finally, we have

shown that the proposed approach can be further extended to predict human poses in absolute

coordinates, which has several positive consequences. For example, the absolute position could

be used to better distinguish multiple people in a 3D scene, and multiple cameras could be ex-

plored to perform more reliable and more precise predictions by merging the absolute estimation

from cameras with different view-points.

6.1.3 Multitask Framework for Pose Estimation and Action Recognition

In the last part, we have proposed a multitask approach for human pose estimation and action

recognition. We have shown that the proposed human pose estimation method based on the soft-

argmax can be used as a building block for action recognition, resulting in a fully differentiable

pipeline. For the action recognition part, we have defined two sources of information that can

be extract from single frame analysis: human pose, in 2D or 3D body joint coordinates, and ap-

pearance features, which are deep CNN features extracted at very specific regions of the input

frame, guided by the joint coordinates of estimated poses. The two proposed features are com-

plementarily to each other, and result in robust and effective action recognition when correctly

combined. We also have demonstrated that the optimization from end-to-end results in further

improvements compared to separated training. This is only possible due to the differentiable pose

estimation method.

Not surprisingly, another relevant contribution in the proposed method is its capability to be

trained with multimodal data in a seamlessly way, similarly to what is observed in the proposed 3D

human pose estimation approach. Specifically, for training the action recognition model, we can

benefit from both “in-the-wild” images with 2D annotations and very precise 3D data in controlled

environments, as well as video clips for action. This allows the shared layers of the network to
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learn robust visual features from distinct modalities of data: single frames and video clips, which

respectively contain a rich diversity of visual aspects for learning robust features and the important

temporal information for action classification.

Finally, we have extended our efficient multi-resolution SSP-Net architecture for pose estima-

tion and action recognition in a multitask framework. Based upon the two premises that (i) multi-

modal training is beneficial for action recognition and (ii) learning to solve two related tasks can be

beneficial to both of them in a multitasking scenario, we carefully designed a deep neural network

to address both problems in a joint way. By consequence, thanks to the joint training procedure,

the multitask approach outperformed single tasking. This result was not trivially achieved, but it

is intuitive that related tasks could benefit one from another in a deep learning scenario.

6.2 Perspectives and Future Work

The future perspectives for this work are well diversified, depending on the target objectives. Three

of the most relevant perspectives are discussed in the following.

6.2.1 Pose Estimation in Absolute Coordinates

Predicting the 3D human pose in absolute world coordinates from monocular images is a very

hard problem, but at the same time it has several implications in the way that 3D poses could

be used. For example, multiple cameras with different view points could be explored to provide

self-constrained predictions in the world coordinates, resulting in more robust predictions against

occlusions or clutter background. Additionally, predictions in absolute coordinates could help to

distinguish different people with respect to their position in the scene, which is ambiguous with

person-centered predictions, since all predictions are at the same absolute depth.

However, the absolute 3D pose prediction from monocular images is a ill-defined problem if

no assumptions are made. The height of the predicted persons and the camera calibration could

be used as a prior to facilitate the problem. In our method presented in section 4.6, we assume

only that the camera calibration is known, but our validation was performed on datasets with

controlled environment, on which the absolute depth can be satisfactorily estimated based only

on the visual aspects and on the coordinates of the cropped bounding box.

We believe that the proposed method for absolute 3D pose estimation could be extended

to a multi-view semi-supervised manner, on which predicted poses in world coordinates from

different view-points could be enforced to converge, using the error between two predictions

from different viewpoints as an additional supervision. In this scenario, the system would rely

on multi-view for the additional supervision, and the absolute predictions would still be possible

with single-view, despite of the expected lower precision. Additionally, since the proposed 3D pose

regression is fully differentiable, even the camera calibration parameters could be learned for each

view-point.

6.2.2 Multi-person 3D Pose Estimation

Multi-person 3D pose estimation is still an open problem with few related methods [117, 165, 89],

mainly due to the lack of large-scale multi-person 3D datasets, but also because most of the recent

methods for 3D pose estimation are person-centric approaches, which become not a practical

solution in the case of multiple persons in the image.
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The lack of methods capable of performing pose predictions in absolute coordinates is prob-

ably one limiting factor for multi-person 3D pose estimation. By addressing the task as absolute

3D pose estimation, the extension to multi-person becomes naturally easier. To solve the ambigu-

ous problem of absolute depth estimation, deep convolutional neural networks could be exploited

to estimate the depth information based on the visual content, possibly enforcing both tasks, 3D

pose and depth estimation, in a multitask framework. Additionally, despite resulting in state-of-

the-art results on single-person, the soft-argmax is not easily extended to the multi-person sce-

nario, mainly because the spatial softmax normalization is mutually exclusive for multiple body

joints in the image patch. A more robust strategy, such as region proposal extractors, associated

with the soft-argmax could be investigated in this direction.

6.2.3 Multitask Learning for Action Aspects Disentanglement

The proposed multitask learning method for human pose estimation and action recognition leaves

room for other related approaches, specially when considering data with different modalities, as

have been proposed for single frame and video clip analysis. Disentangling pose and visual as-

pects related to actions in videos is a promising direction, since it could be useful for more robust

action recognition considering high intra-class variations or even for synthetic video clips gener-

ation from the disentangled components. For example, given a video clip, one question which

could be answered is: what are the fundamental regions in each frame in order to recognize the

performed action? This question could be also formulated with respect to the pose, considering

that for some actions, few body joints are relevant.

The challenge in such scenario is how to enforce the disentanglement of the many compo-

nents related to complex actions, while being able to reconstruct the original input information,

in the case of synthetic video generation. For approaches based on global features extraction,

e.g., methods using 3D convolutions, it would be a strenuous process, since the high level features

encode at once the full aspects of pose, movements, foreground, and background.

On the other hand, in the proposed multitask framework, pose and visual information are al-

ready disentangled for each frame. In this case, further extraction of pose aspects related and

unrelated to action recognition could be performed with less effort, considering that some joints

are much more relevant to some actions than the others. Similarly, the appearance features could

also be extended to action related and action unrelated, in such a way that both would be required

to reconstruct the video clip frames, but only the first would be required to perform action recog-

nition.
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Appendix A

Deep Network Architecture Details

A.1 Implementation Details for the Sequential Pose and Action Model

In this section, we present some additional implementation details related to the 3D pose estima-

tion method based on volumetric heat maps, detailed in section 4.4, and to the sequential learning

method for pose and action, decribed in section 5.2.

In our implementation of the proposed approach, we divided the network architecture into

four parts: the multitask stem, the pose estimation model, the pose recognition model, and the ap-

pearance recognition model. We use depth-wise separable convolutions as depicted in Figure A.1,

batch normalization and ReLu activation. The architecture of the multitask stem is detailed in

Figure A.2. Each pose estimation prediction block is implemented as a multi-resolution CNN, as

presented in Figure A.3. We use Nd = 16 heat maps for depth predictions. The CNN architecture

for action recognition is detailed in Figure A.4.

+

Output: W×H×Nfout

Input: W×H×Nfin

SC S×S, NfoutC 1×1, Nfout

+

Output: W×H×Nfout

Input: W×H×Nfin

SC S×S, Nfout
Residual

connection

Figure A.1 – Separable residual module (SR) based on depth-wise separable convolutions (SC) for N f i n 6=
N f out (left), and N f i n = N f out (right), where N f i n and N f out are the input and output features size, W×H is
the feature map resolution, and S×S is the size of the filters, usually 3×3 or 5×5. C: Simple 2D convolution.

Additionally, we use an alternated human pose layout, similar to the layout from the Penn

Action dataset, which experimentally lead to better scores on action recognition.

For the action recognition task, we train both pose and appearance models simultaneously

using a pre-trained pose estimation model with weights initially frozen. In that case, we use a

classical SGD optimizer with Nesterov momentum of 0.98 and initial learning rate of 0.0002, re-

duced by a factor of 0.2 when validation plateaus, and batches of 2 video clips. When validation

accuracy stagnates, we divide the final learning rate by 10 and fine tune the full network for more

5 epochs. When reporting only pose estimation scores, we use eight prediction blocks (K = 8), and

for action recognition, we use four prediction blocks (K = 4). For all experiments, we use cropped

RGB images of size 256×256. We augment the training data by performing random rotations from

−45◦ to +45◦, scaling from 0.7 to 1.3, vertical and horizontal translations respectively from −40 to

+40 pixels, video subsampling by a factor from 1 to 3, and random horizontal flipping.
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Figure A.2 – Shared network (entry flow) based on Inception-V4. C: Convolution, SR: Separable residual
module.
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Figure A.3 – Prediction block for pose estimation, where Nd is the number of depth heat maps per joint and
NJ is the number of body joints. C: Convolution, SR: Separable residual module.
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Figure A.4 – Network architecture for action recognition. The action prediction blocks can be repeated
K times. The same architecture is used for pose and appearance recognition, except that for pose, each
convolution uses half the number of features showed here. T corresponds the number of frames and Na is
the number of actions.
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Appendix B

Additional Results and Experiments

B.1 Feature Space for Skeleton Action Recognition

Considering the metric learning algorithm from section 3.2.3, in Figure B.1 we show a projection

using t-SNE of the feature space before and after the linear transformation L, considering the MSR-

Action3D dataset for action recognition.
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Figure B.1 – t-SNE features projection for skeleton action recognition for MSR-Action3D.
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Table B.1 – Results on LSP test samples using the PCK measure at 0.2 with OC annotations.

Method Head Sho. Elb. Wri. Hip Knee Ank. Avg. PCK
Detection based methods

Kiefel and Gehler [66] 83.5 73.7 55.9 36.2 73.7 70.5 66.9 65.8
Ramakrishna et al. [113] 84.9 77.8 61.4 47.2 73.6 69.1 68.8 69.0
Pishchulin et al. [104] 87.5 77.6 61.4 47.6 79.0 75.2 68.4 71.0
Ouyang et al. [97] 86.5 78.2 61.7 49.3 76.9 70.0 67.6 70.0
Chen and Yuille [21] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 77.5
Yang et al. [157] 90.6 89.1 80.3 73.5 85.5 82.8 68.8 81.5
Chu et al. [28] 93.7 87.2 78.2 73.8 88.2 83.0 80.9 83.6
Pishchulin et al. [105] 97.4 92.0 83.8 79.0 93.1 88.3 83.7 88.2

Regression based method
Our method 97.4 93.8 86.8 82.3 93.7 90.9 88.3 90.5

Table B.2 – Results on LSP test samples using the PCP measure with OC annotations.

Method Torso Upper Lower Upper Fore- Head PCP
leg leg arm arm

Detection based methods
Kiefel and Gehler [66] 84.3 74.5 67.6 54.1 28.3 78.3 61.2
Pishchulin et al. [103] 87.4 75.7 68.0 54.4 33.7 77.4 62.8
Ramakrishna et al. [113] 88.1 79.0 73.6 62.8 39.5 80.4 67.8
Ouyang et al. [97] 88.6 77.8 71.9 61.9 45.4 84.3 68.7
Pishchulin et al. [104] 88.7 78.9 73.2 61.8 45.0 85.1 69.2
Chen and Yuille [21] 92.7 82.9 77.0 69.2 55.4 87.8 75.0
Yang et al. [157] 96.5 88.7 81.7 78.8 66.7 83.1 81.1
Chu et al. [28] 95.4 87.6 83.2 76.9 65.2 89.6 81.1
Pishchulin et al. [105] 96.0 91.0 83.5 82.8 71.8 96.2 85.0

Regression based method
Our method 98.2 93.8 89.8 85.8 75.5 96.0 88.4

B.2 Additional Results on Human Pose Estimation

Additional results for section 4.3.2, considering previous methods and older results, are given as

follows. Results on LSP using PCK/OC metric are shown in Table B.1. Results on LSP using PCP/OC

metric are shown in Table B.2. Results on the same metric considering PC annotations are pro-

vided in Table B.3 and Table B.4. Results on MPII using the PCKh metric are shown in Table B.5.

In Table B.6, we present a full comparison with previous results from related methods on Hu-

man3.6M, considering the validation set.
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Table B.3 – Results on LSP test samples using the PCK measure at 0.2 with PC annotations.

Method Head Sho. Elb. Wri. Hip Knee Ank. PCK
Detection based methods

Pishchulin et al. [104] 87.2 56.7 46.7 38.0 61.0 57.5 52.7 57.1
Chen and Yuille [21] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4
Fan et al. [37] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0
Tompson et al. [138] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3
Yang et al. [157] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6
Rafi et al. [111] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8
Yu et al. [164] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3
Belag. and Ziss. [11] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2
Lifshitz et al. [77] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al. [105] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al. [54] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al. [149] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Bulat and Tzimi. [13] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al. [29] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

Regression based methods
Carreira et al. [16] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1
Our method 97.5 93.3 87.6 84.6 92.8 92.0 90.0 91.1

Table B.4 – Results on LSP test samples using the PCP measure with PC annotations.

Method Torso Upper Lower Upper Fore- Head PCP
leg leg arm arm

Detection based methods
Pishchulin et al. [104] 88.7 63.6 58.4 46.0 35.2 85.1 58.0
Tompson et al. [138] 90.3 70.4 61.1 63.0 51.2 83.7 66.6
Fan et al. [37] 95.4 77.7 69.8 62.8 49.1 86.6 70.1
Chen and Yuille [21] 96.0 77.2 72.2 69.7 58.1 85.6 73.6
Yang et al. [157] 95.6 78.5 71.8 72.2 61.8 83.9 74.8
Rafi et al. [111] 97.6 87.3 80.2 76.8 66.2 93.3 81.2
Belag. and Ziss. [11] 96.0 86.7 82.2 79.4 69.4 89.4 82.1
Yu et al. [164] 98.0 93.1 88.1 82.9 72.6 83.0 85.4
Lifshitz et al. [77] 97.3 88.8 84.4 80.6 71.4 94.8 84.3
Pishchulin et al. [105] 97.0 88.8 82.0 82.4 71.8 95.8 84.3
Insafutdinov et al. [54] 97.0 90.6 86.9 86.1 79.5 95.4 87.8
Wei et al. [149] 98.0 92.2 89.1 85.8 77.9 95.0 88.3
Bulat and Tzimi. [13] 97.7 92.4 89.3 86.7 79.7 95.2 88.9
Chu et al. [29] 98.4 95.0 92.8 88.5 81.2 95.7 90.9

Regression based methods
Carreira et al. [16] 95.3 81.8 73.3 66.7 51.0 84.4 72.5
Our method 98.2 93.6 91.0 86.6 78.2 96.8 89.4
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Table B.5 – Comparison results with state-of-the-art methods on the MPII dataset on testing, using PCKh
measure with threshold as 0.5 of the head segment length. Detection based methods are shown on top and
regression based methods on bottom.

Method Head Shouler Elbow Wrist Hip Knee Ankle Total
Detection based methods

Pishchulin et al. [104] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1
Tompson et al. [138] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
Tompson et al. [137] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Hu and Ramanan [51] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
Pishchulin et al. [105] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Lifshitz et al. [77] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Gkioxary et al. [42] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Rafi et al. [111] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Belagiannis and Ziss. [11] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1
Insafutdinov et al. [54] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al. [149] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat and Tzimiropoulos [13] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al. [93] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Chu et al. [29] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chou et al. [27] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Chen et al. [22] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9

Regression based methods
Rogez et al. [117] – – – – – – – 74.2
Carreira et al. [16] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Sun et al. [130] 97.5 94.3 87.0 81.2 86.5 78.5 75.4 86.4
Our method 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2
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Table B.6 – Comparison with previous work on Human3.6M evaluated on the averaged joint error (in mil-
limeters) on reconstructed poses.

Methods Direction Discuss Eat Greet Phone Posing Purchase Sitting

Chen and Ramanan [19] 89.8 97.5 89.9 107.8 107.3 93.5 136.0 133.1
Tekin et al. [135] 85.0 108.8 84.4 8.9 119.4 98.5 93.8 73.8
Tome et al. [136] 65.0 73.5 76.8 86.4 86.3 68.9 74.8 110.2
Zhou et al. [173] 68.7 74.8 67.8 76.4 76.3 84.0 70.2 88.0
Pavlakos et al. [99] 67.4 71.9 66.7 69.1 71.9 65.0 68.3 83.7
Mehta et al. [88]? 52.5 63.8 55.4 62.3 71.8 52.6 72.2 86.2
Martinez et al. [87] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0
Sun et al. [131] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7
Ours (single-crop) 51.5 53.4 49.0 52.5 53.9 50.3 54.4 63.6
Ours (multi-crop + h.flip) 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5
Methods Sit Down Smoke Photo Wait Walk Walk Dog Walk Pair Average

Chen and Ramanan [19] 240.1 106.6 139.1 106.2 87.0 114.0 90.5 114.1
Tekin et al. [135] 170.4 85.1 95.7 116.9 62.1 113.7 94.8 100.1
Tome et al. [136] 173.9 85.0 110.7 85.8 71.4 86.3 73.1 88.4
Zhou et al. [173] 113.8 78.0 98.4 90.1 62.6 75.1 73.6 79.9
Pavlakos et al. [99] 96.5 71.4 76.9 65.8 59.1 74.9 63.2 71.9
Mehta et al. [88]? 120.0 66.0 79.8 63.9 48.9 76.8 53.7 68.6
Martinez et al. [87] 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9
Sun et al. [131] 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Ours (single-crop) 73.5 55.3 61.9 50.1 46.0 60.2 51.0 55.1
Ours (multi-crop + h.flip) 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2

? Method not using ground-truth bounding boxes.
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