
HAL Id: tel-02492795
https://theses.hal.science/tel-02492795v1
Submitted on 27 Feb 2020 (v1), last revised 17 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object detection and characterization from faint signals
in images: applications in astronomy and microscopy

Olivier Flasseur

To cite this version:
Olivier Flasseur. Object detection and characterization from faint signals in images: applications in
astronomy and microscopy. Signal and Image Processing. Université de Lyon, 2019. English. �NNT :
2019LYSES042�. �tel-02492795v1�

https://theses.hal.science/tel-02492795v1
https://hal.archives-ouvertes.fr


Numéro d’ordre (NNT) : 2019LYSES042

Thèse préparée pour l’obtention du grade de
Docteur de l’Université de Lyon

opérée au sein de l’Université Jean Monnet

Spécialité : Image, Vision
École Doctorale 488, Science Ingénierie Santé

Object Detection and Characterization
from Faint Signals in Images:

Applications in Astronomy and Microscopy

Détection et Caractérisation d’Objets à partir de Signaux Faibles dans des Images :
Applications en Astronomie et Microscopie

par :

Olivier Flasseur
Univ. Lyon, UJM Saint-Etienne, CNRS, Institut d’Optique Graduate School,

Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Étienne, France

Soutenue publiquement le 19 novembre 2019 devant le jury composé de :

Jérôme Idier Directeur de Recherche CNRS LS2N Rapporteur
Antoine Roueff Maître de Conférences Institut Fresnel Rapporteur
Julie Delon Professeure Univ. Paris Descartes Présidente
Anne-Marie Lagrange Directrice de Recherche CNRS IPAG Examinatrice
Michael Muma Research Fellow Univ. Darmstadt Examiner
Laurent Mugnier Maître de Recherche ONERA Examinateur
Corinne Fournier Maître de Conférences Univ. Jean Monnet Directrice
Loïc Denis Maître de Conférences Univ. Jean Monnet Co-Directeur
Éric Thiébaut Astronome CRAL Co-Encadrant
Maud Langlois Directrice de Recherche CNRS CRAL Co-Encadrante





Acknowledgements & Remerciements

First, I would like to express my sincere thanks to the Members of the Committee. The
opportunity to exchange with them about this work was a real honor for me. I thank
Julie Delon for accepting the presidency of the Committee and for the kind insights she
brought to my work during the defense. I am very grateful to Jérôme Idier and Antoine
Roueff for their careful reading of my manuscript; their numerous remarks, suggestions,
and questions have significantly improved the quality of this document. I also thank
Anne-Marie Lagrange, Michael Muma, and Laurent Mugnier for examining my work. I
particularly appreciated the diversity of their questions and their suggestions for future
works.

Parce que ce travail de recherche est très loin d’être un travail solitaire, les remerciements
qui suivent sont adressés aux personnes qui y ont contribué, souvent de très près, et à qui
je dois bien plus qu’une fière chandelle.

Tout d’abord, mes remerciements se tournent vers Loïc Denis. Que le Lecteur de ce ma-
nuscrit en soit averti ; je lui dois toute ma reconnaissance car il est à l’origine (et bien
plus) de la quasi-totalité des approches méthodologiques développées dans ce présent ma-
nuscrit. Je souhaiterais également le remercier pour sa grande implication dans les tâches
de rédaction et de relecture des différents articles dont le corps de texte est largement
repris dans ce manuscrit. Je mesure réellement la chance que j’ai eu de pouvoir bénéficier
de son expertise, de son encadrement particulièrement pédagogue et de son implication
au cours de ces trois années. Outre ces aspects, je souhaiterais également le remercier
vivement pour son soutien, ses encouragements, sa confiance, sa grande disponibilité et
l’enthousiasme sans faille qu’il a témoignés à l’égard de ces travaux ; tout cela a aussi
largement participé au bon déroulement de ce travail. Quoique l’usage du terme mentor
dans un contexte scientifique ait parfois pu me faire sourire par le passé, je crois qu’il est
tout à fait adapté pour décrire l’admiration que je porte envers ses connaissances et ses
qualités d’enseignant et de chercheur !

De manière similaire, je souhaiterais vivement remercier Corinne Fournier qui a dirigé
ces travaux et à qui je dois également toute ma reconnaissance pour son implication dans ce
travail de recherche. De nombreuses approches sur les aspects microscopie holographique,
en particulier celles développées en début de thèse, lui sont en grande partie dues. J’ai
également pu bénéficier de son investissement sans faille dans les différentes étapes de la
chaîne d’analyse en holographie ; depuis la réalisation des acquisitions, en passant par leur
traitement et jusqu’à l’interprétation des résultats. Travailler au sein de l’équipe qu’elle
coordonne a été pour moi un véritable plaisir. Je souhaiterais également la remercier pour
la grande confiance qu’elle m’a témoignée, et cela même avant le commencement officiel
de cette thèse alors que j’étais en quête DU sujet et DE l’encadrement qui pourraient me
correspondre. Je peux réellement dire que le contrat a été rempli !

Cette thèse, initialement centrée sur le développement de méthodes de traitement pour
la microscopie a pu être étendue à l’astronomie grâce à de nombreux échanges avec le

II



Acknowledgements & Remerciements

Centre de Recherche Astrophysique de Lyon.
En particulier, j’adresse de profonds remerciements à Éric Thiébaut pour son suivi et

son investissement constants tout au long de ces trois années. Je lui dois de très nom-
breux développements méthodologiques qui ont réellement débloqués ces travaux lorsque
les algorithmes se frottaient à la dur réalité des données. Je retiens en particulier nos
nombreuses journées d’échanges au CRAL qui ont été de véritables bols d’air frais pour
l’avancée de ces travaux. Je souhaiterais également le remercier pour son implication dans
les activités de rédaction et de relecture (articles, thèse) ainsi que pour le regard toujours
vigilant et bienveillant qu’il y a porté. Je n’ai qu’un seul regret : n’avoir pu explorer, par
manque de temps, que le millième des pistes méthodologiques qu’il m’a soufflées !

J’aimerais également adresser de sincères remerciements à Maud Langlois pour l’éner-
gie considérable qu’elle a déployée aux traitements comparatifs des données avec les algo-
rithmes de l’état de l’art. Je souhaiterais également la remercier de m’avoir fait découvrir
le domaine de l’imagerie directe qui m’était totalement inconnu. Grâce à son implication,
je dois bien reconnaître que j’ai attrapé le virus ! Outre ces aspects, j’ai particulièrement
apprécié d’avoir été mis au coeur des problématiques applicatives propres à ce sujet. Dans
ce sens, son intérêt pour les algorithmes développés ainsi que leur utilisation pour traiter
de nouveaux jeux de données sont pour moi de belles reconnaissances envers le travail
accompli.

Ce quatuor a été au coeur des développements de cette thèse et j’aimerais, une fois de
plus, leur témoigner le véritable plaisir que j’ai eu de travailler à leurs côtés au cours de
ces trois années. J’espère sincèrement que nous aurons de nouvelles occasions d’échanger
et de travailler ensemble, malgré la fin imminente de cette aventure.

Je n’en oublie pas moins les personnes avec qui j’ai pu travailler de façon plus ponctuelle
et qui ont également contribué à ce travail de recherche.

Ainsi, j’adresse mes remerciements aux autres membres présents ou passés de l’équipe
Optical Design and Image Reconstruction : Thomas Olivier, Fabien Momey, Anthony
Berdeu, Frédéric Jolivet, Alexey Brodoline et Dylan Brault. Merci également à Thierry
Fournel et à Thierry Lépine pour les échanges ponctuels que nous avons pu avoir.

Je remercie aussi Anthony Cazier pour sa précieuse aide lors du réglage du montage
holographique. Je souhaiterais également remercier Nicolas Verrier pour sa très grande
réactivité lors de nos échanges à distance sur les approches holographie multi-spectrale
qu’il a initiées dans l’équipe juste avant mon arrivée, et dont j’ai largement pu bénéficier.
De même, je remercie Loïc Méès pour l’éclairage qu’il m’a apporté en physique de la
diffraction. Merci également à Marc Sebban pour sa participation à mes comités de suivi
de thèse successifs.

Plus généralement, je souhaiterais remercier les différents membres du Laboratoire
Hubert Curien ; chercheurs, personnels techniques et administratifs, post-doctorants, doc-
torants et stagiaires pour leur accueil et les différents échanges que nous avons pu avoir
et l’aide qu’ils m’ont procurée.

Au cours de ces trois années, j’ai également eu l’opportunité de participer aux enseigne-
ments de l’école d’ingénieur Télécom Saint-Etienne. Cette expérience a été extrêmement
enrichissante pour moi. Je souhaiterais ainsi remercier Olivier Alata, Christophe Ducottet
et Corinne Fournier qui m’ont supervisé dans cette initiation. Je les remercie en particulier
pour tous les conseils avisés qu’ils m’ont prodigués. Merci également aux étudiants ainsi
qu’au personnel administratif de cette école.

III





Contents

Acknowledgements & Remerciements II

Contents IV

Summary of each chapter (in french) XVII

Main acronyms and notations XXII

Scientific context XXVII

I Introduction 3

1 Signal processing challenges for object detection and characterization
in astronomy and microscopy 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Detection and characterization of exoplanets . . . . . . . . . . . . . . . 8

1.2.1 Indirect detection methods . . . . . . . . . . . . . . . . . . . . . 8
1.2.1.1 Radial velocities . . . . . . . . . . . . . . . . . . . . . 8
1.2.1.2 Photometry . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1.3 Microlensing . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1.4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1.5 Astrometry . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Direct imaging as a method of choice . . . . . . . . . . . . . . . 13
1.2.2.1 General principle and characteristics . . . . . . . . . . 13
1.2.2.2 Challenges of direct imaging . . . . . . . . . . . . . . . 14

1.2.2.2.1 Reaching high angular resolution with adaptive
optics . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2.2.2 Reaching high contrast with coronagraphy . . 16
1.2.2.2.3 Observing strategies . . . . . . . . . . . . . . 16
1.2.2.2.4 Dedicated facilities . . . . . . . . . . . . . . . 18

1.2.2.3 Processing pipeline and related signal processing issues 21
1.3 Detection and characterization of microscopic objects . . . . . . . . . . 26

1.3.1 Optical microscopy modalities . . . . . . . . . . . . . . . . . . . 26

V



CONTENTS

1.3.1.1 Bright field . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.1.2 Dark field . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1.3 Phase contrast . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1.4 Polarization . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1.5 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.2 In-line holographic microscopy as a method of choice . . . . . . 30
1.3.2.1 General principle and characteristics . . . . . . . . . . 30
1.3.2.2 Challenges of holographic microscopy . . . . . . . . . . 31

1.3.2.2.1 Extracting relevant information by numerical
reconstruction . . . . . . . . . . . . . . . . . . 32

1.3.2.2.2 Experimental setups . . . . . . . . . . . . . . 37
1.3.2.3 Processing pipeline and related signal processing issues 37

1.4 Methodological angles and thesis organization . . . . . . . . . . . . . . 41
1.4.1 First angle: Background fluctuations modeling . . . . . . . . . . 41
1.4.2 Second angle: Robustness to outliers . . . . . . . . . . . . . . . 42
1.4.3 Third angle: Spectral diversity exploitation . . . . . . . . . . . . 44

1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Background fluctuations modeling 49

2 Application of background fluctuations modeling in astronomy: de-
tection and characterization of exoplanets 51
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 State-of-the-art processing methods for

exoplanet detection by direct imaging . . . . . . . . . . . . . . . . . . . 52
2.2.1 Methods based on image combinations . . . . . . . . . . . . . . 52

2.2.1.1 Classical–ADI algorithms . . . . . . . . . . . . . . . . 52
2.2.1.2 LOCI type algorithms . . . . . . . . . . . . . . . . . . 53

2.2.2 Methods based on mode subtractions . . . . . . . . . . . . . . . 54
2.2.3 Methods based on a statistical approach . . . . . . . . . . . . . 54
2.2.4 Methods based on machine learning techniques . . . . . . . . . 55
2.2.5 Comparison and desirable properties . . . . . . . . . . . . . . . 56

2.3 PACO: exoplanet detection based on PAtch COvariances . . . . . . . . . 58
2.3.1 Statistical model for source detection and characterization . . . 59
2.3.2 Statistical learning of the background . . . . . . . . . . . . . . . 62
2.3.3 Unbiased estimation of the background statistics . . . . . . . . . 69
2.3.4 Estimation of the flux of an exoplanet . . . . . . . . . . . . . . 71
2.3.5 Detection of exoplanets . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.6 Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3.6.1 Distribution of the detection criterion . . . . . . . . . 73
2.3.6.2 Probabilities of false alarm and of true detection . . . 74
2.3.6.3 Astrometric accuracy . . . . . . . . . . . . . . . . . . . 74

2.4 Implementation details of PACO . . . . . . . . . . . . . . . . . . . . . . 78
2.4.1 Optimal patch size . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.4.2 Taking into account missing data . . . . . . . . . . . . . . . . . 79
2.4.3 The PACO algorithm: algorithmic considerations . . . . . . . . . 80

VI



Contents

2.4.4 A fast and approximate version of PACO for large surveys . . . . 82
2.4.5 Sampling of possible exoplanet locations . . . . . . . . . . . . . 83
2.4.6 Unsupervised detection and characterization . . . . . . . . . . . 86

2.5 Performance evaluation with on-sky data . . . . . . . . . . . . . . . . . 87
2.5.1 Datasets and algorithms description . . . . . . . . . . . . . . . . 87
2.5.2 Detection maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5.2.1 Comparison with state-of-art algorithms . . . . . . . . 89
2.5.2.2 Detection maps with fast PACO . . . . . . . . . . . . 95
2.5.2.3 PACO: a general framework . . . . . . . . . . . . . . . . 96

2.5.3 Contrast curves and detection statistics . . . . . . . . . . . . . . 98
2.5.3.1 Predicted best-achievable-contrast . . . . . . . . . . . 98
2.5.3.2 Actual best-achievable-contrast . . . . . . . . . . . . . 99

2.5.4 Photometry accuracy . . . . . . . . . . . . . . . . . . . . . . . . 102
2.6 Conclusion on PACO’s capabilities . . . . . . . . . . . . . . . . . . . . . 105

3 Application of background fluctuations modeling in holographic mi-
croscopy: detection of diffraction patterns 109
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2 Statistical modeling of the background fluctuations . . . . . . . . . . . 110
3.3 EXPACO: detection of EXtended known patterns based on PAtch COvari-

ances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4 Fast computation of detection maps with EXPACO . . . . . . . . . . . . 119

3.4.1 Evaluation of the algorithmic complexity . . . . . . . . . . . . . 119
3.4.2 Fast computation of b(x0, y0) for all pixel shifts . . . . . . . . . 120
3.4.3 Fast computation of a(x0, y0) for all pixel shifts . . . . . . . . . 120

3.5 Performance evaluation on holograms . . . . . . . . . . . . . . . . . . . 122
3.5.1 Accuracy of the EXPACO approximation . . . . . . . . . . . . . . 123
3.5.2 Detection maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.5.2.1 Influence of the number K of pixels in the patches . . 126
3.5.2.2 Influence of the spatial extension K̃ of the patches . . 130

3.5.3 False alarm rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.6 Conclusion on EXPACO’s capabilities . . . . . . . . . . . . . . . . . . . . 134

III Robust processing 137

4 Robustness to bad frames in direct imaging 139
4.1 The need for robust estimators in

direct imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2 Local modeling of spatio-temporal fluctuations . . . . . . . . . . . . . . 142

4.2.1 Robust covariance estimation in SAR imaging . . . . . . . . . . 142
4.2.2 Local modeling of spatio-temporal fluctuations with

robust PACO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3 Adaptation of the PACO algorithm . . . . . . . . . . . . . . . . . . . . . 146

4.3.1 Estimation of the statistics of the background . . . . . . . . . . 146
4.3.2 Robust computation of a detection map . . . . . . . . . . . . . 150
4.3.3 Robust estimation of photometry and astrometry . . . . . . . . 153

VII



CONTENTS

4.3.4 Sketch of proof of the robustness . . . . . . . . . . . . . . . . . 154
4.4 Characterization of detection, astrometric and photometric performances 156

4.4.1 Improved detection sensitivity . . . . . . . . . . . . . . . . . . . 156
4.4.2 Assessing the quality of the observations . . . . . . . . . . . . . 161
4.4.3 Improved astrometric and photometric accuracies . . . . . . . . 162

4.5 Conclusion on robust PACO’s capabilities . . . . . . . . . . . . . . . . . 164

5 Robustness to unwanted objects in holographic microscopy 167
5.1 The need for robust estimators in holographic microscopy . . . . . . . . 167
5.2 Improved robustness by weighted least squares . . . . . . . . . . . . . . 170

5.2.1 The least squares solution . . . . . . . . . . . . . . . . . . . . . 170
5.2.2 The reweighted least squares solution . . . . . . . . . . . . . . . 170

5.3 Distinguishing inliers and outliers . . . . . . . . . . . . . . . . . . . . . 176
5.3.1 A bias/variance tradeoff . . . . . . . . . . . . . . . . . . . . . . 176
5.3.2 Classical approaches . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.3 Proposed criterion for a bias/variance tradeoff . . . . . . . . . . 177

5.4 Application to lensless microscopy videos . . . . . . . . . . . . . . . . . 180
5.4.1 Holographic video of an object of constant size . . . . . . . . . . 181

5.4.1.1 Dataset and algorithm description . . . . . . . . . . . 181
5.4.1.2 Results analysis . . . . . . . . . . . . . . . . . . . . . . 182

5.4.2 Holographic video of evaporating droplets . . . . . . . . . . . . 184
5.4.2.1 Dataset and algorithm description . . . . . . . . . . . 184
5.4.2.2 Results analysis . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

IV Multi-spectral processing 189

6 Exoplanet detection and characterization with integral field spectro-
graphs 191
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2 Statistical modeling of background fluctuations . . . . . . . . . . . . . 195

6.2.1 Local multivariate Gaussian model . . . . . . . . . . . . . . . . 195
6.2.2 Local learning of the parameters . . . . . . . . . . . . . . . . . . 196

6.3 Detection maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.3.1 Detection at a single wavelength . . . . . . . . . . . . . . . . . . 204
6.3.2 Combining multiple detection maps . . . . . . . . . . . . . . . . 207

6.3.2.1 Combination assuming spectral independence . . . . . 207
6.3.2.2 Accounting for spectral correlations . . . . . . . . . . . 209
6.3.2.3 Improving the detection based on a prior spectrum model213
6.3.2.4 Robust estimation of the spectral correlations . . . . . 213
6.3.2.5 Optimality of the detection criterion wS/N . . . . . . . 214
6.3.2.6 Combination of S/N maps with spectral whitening . . 216
6.3.2.7 Comparison between wGLRT and wS/N . . . . . . . . 216

6.4 Source characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.4.1 Astrometric estimation . . . . . . . . . . . . . . . . . . . . . . . 220
6.4.2 Estimation of the spectral energy distribution . . . . . . . . . . 221

VIII



Contents

6.4.2.1 Unsupervised setting of the smoothing parameter µ for
SED estimation . . . . . . . . . . . . . . . . . . . . . . 222

6.5 Implementation details of PACO–ASDI . . . . . . . . . . . . . . . . . . . 225
6.6 Performance evaluation with on-sky data . . . . . . . . . . . . . . . . . 228

6.6.1 Datasets and algorithms description . . . . . . . . . . . . . . . . 228
6.6.2 Detection performance . . . . . . . . . . . . . . . . . . . . . . . 234

6.6.2.1 Detection results . . . . . . . . . . . . . . . . . . . . . 234
6.6.2.2 Achievable contrast . . . . . . . . . . . . . . . . . . . . 235

6.6.3 SED estimation performance . . . . . . . . . . . . . . . . . . . . 236
6.7 Conclusion on PACO–ASDI’s capabilities . . . . . . . . . . . . . . . . . . 245

7 Improved characterization of microscopic objects with multi-spectral
holography 249
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.2 Calibration issues of holographic color microscopy . . . . . . . . . . . . 253

7.2.1 Calibration issues related to the wavelengths of the sources . . . 253
7.2.2 Calibration issues related to the CMOS color sensor . . . . . . . 255

7.2.2.1 Spectral crosstalk . . . . . . . . . . . . . . . . . . . . . 255
7.2.2.2 Optical crosstalk . . . . . . . . . . . . . . . . . . . . . 257
7.2.2.3 Electronic crosstalk . . . . . . . . . . . . . . . . . . . . 258
7.2.2.4 Summary of crosstalk effects . . . . . . . . . . . . . . . 258

7.3 Reconstruction using a parameter-based inverse problem approach . . . 259
7.4 Self-calibration of a color microscope . . . . . . . . . . . . . . . . . . . 262

7.4.1 Estimation of the wavelength of the sources . . . . . . . . . . . 262
7.4.1.1 Wavelength calibration in color holography with a parameter-

based inverse approach . . . . . . . . . . . . . . . . . . 262
7.4.1.2 Experimental results and discussion . . . . . . . . . . . 263
7.4.1.3 Estimation of the reference wavelength . . . . . . . . . 265

7.4.2 Calibration of the crosstalk phenomenon affecting the sensor . . 266
7.4.2.1 Principle of crosstalk estimation using the parameter-

based inverse approach . . . . . . . . . . . . . . . . . . 266
7.4.2.2 Experimental results and discussion . . . . . . . . . . . 268

7.5 Improving object reconstruction with self-calibration . . . . . . . . . . 269
7.5.1 Accounting for self-calibration in physics-based models . . . . . 269
7.5.2 Self-calibration applied to the reconstruction of parametric objects270

7.5.2.1 Reconstruction of parametric opaque objects . . . . . . 270
7.5.2.2 Theoretical limits of precision . . . . . . . . . . . . . . 272

7.5.3 Self-calibration applied to the reconstruction of images in color
holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.5.3.1 Color hologram reconstruction method . . . . . . . . . 274
7.5.3.2 Reconstruction of non-parametric opaque objects . . . 276

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

IX



CONTENTS

V Conclusion 279

8 Conclusion, ongoing and future works 281
8.1 Summary of the main contributions . . . . . . . . . . . . . . . . . . . . 281
8.2 Ongoing and future works for astronomy . . . . . . . . . . . . . . . . . 283

8.2.1 On the applicative side . . . . . . . . . . . . . . . . . . . . . . . 283
8.2.1.1 Automatic processing pipeline . . . . . . . . . . . . . . 283
8.2.1.2 Exploitation of PACO for astronomy applications . . . . 286

8.2.1.2.1 Determination of mass limits . . . . . . . . . 286
8.2.1.2.2 Analyzing an IFS sequence around β Pictoris 288

8.2.2 On the methodological side . . . . . . . . . . . . . . . . . . . . 288
8.2.2.1 Statistical model of the background . . . . . . . . . . . 290
8.2.2.2 Detection and reconstruction of extended objects . . . 290
8.2.2.3 Automatic adaptation of the detection threshold . . . 295

8.3 Ongoing and future works for microscopy . . . . . . . . . . . . . . . . . 301
8.3.1 On the applicative side . . . . . . . . . . . . . . . . . . . . . . . 301
8.3.2 On the methodological side . . . . . . . . . . . . . . . . . . . . 301

8.3.2.1 Detection of extended patterns with a transform-based
approach . . . . . . . . . . . . . . . . . . . . . . . . . 301

8.3.2.2 Image reconstructions accounting for the correlated back-
ground . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Appendices 306

A Estimation of covariance matrices by shrinkage 307
A.1 The oracle estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
A.2 The Oracle-Approximating Shrinkage (OAS) estimator . . . . . . . . . 309

B Unsupervised regularization of the estimated SEDs 310
B.1 SED regularization with the GML approach . . . . . . . . . . . . . . . 310
B.2 SED regularization with the GML, GCV, and SURE approaches: addi-

tional numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

C Modeling background fluctuations of ASDI datasets 320
C.1 Estimation of the means . . . . . . . . . . . . . . . . . . . . . . . . . . 320
C.2 Estimation of the scaling factors . . . . . . . . . . . . . . . . . . . . . . 321
C.3 Estimation of the covariances . . . . . . . . . . . . . . . . . . . . . . . 322

D Example of an automatic report generated by PACO 324

Bibliography 336

List of publications 367

X



Table des matières

Remerciements & Acknowledgements II

Table des matières IV

Résumé par chapitre XVII

Notations et acronymes principaux XXII

Contexte scientifique XXVII

I Introduction 3

1 Défis du traitement du signal pour la détection et la caractérisation
d’objets en astronomie et en microscopie 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Détection et caractérisation des exoplanètes . . . . . . . . . . . . . . . 8

1.2.1 Méthodes de détection indirectes . . . . . . . . . . . . . . . . . 8
1.2.1.1 Vitesses radiales . . . . . . . . . . . . . . . . . . . . . 8
1.2.1.2 Photométrie . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1.3 Microlentille . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1.4 Chronométrie . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1.5 Astrométrie . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 L’imagerie directe : une méthode de choix . . . . . . . . . . . . 13
1.2.2.1 Principe général et caractéristiques . . . . . . . . . . . 13
1.2.2.2 Défis associés à l’imagerie directe . . . . . . . . . . . . 14

1.2.2.2.1 Atteindre une haute résolution angulaire avec
l’optique adaptative . . . . . . . . . . . . . . 15

1.2.2.2.2 Atteindre un haut-contraste avec la coronogra-
phie . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.2.3 Stratégies d’observation . . . . . . . . . . . . 16
1.2.2.2.4 Instruments dédiés . . . . . . . . . . . . . . . 18

1.2.2.3 Chaîne de traitement et problématiques associées . . . 21
1.3 Détection et caractérisation d’objets microscopiques . . . . . . . . . . . 26

XI



TABLE DES MATIÈRES

1.3.1 Modalités de microscopie optique . . . . . . . . . . . . . . . . . 26
1.3.1.1 Microscopie en champ clair . . . . . . . . . . . . . . . 26
1.3.1.2 Microscopie en champ sombre . . . . . . . . . . . . . . 28
1.3.1.3 Contraste de phase . . . . . . . . . . . . . . . . . . . . 28
1.3.1.4 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1.5 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.2 La microscopie holographique en ligne : une méthode de choix . 30
1.3.2.1 Principe général et caractéristiques . . . . . . . . . . . 30
1.3.2.2 Défis associés à la microscopie holographique . . . . . 31

1.3.2.2.1 Extraction d’informations d’intérêt par recons-
truction numérique . . . . . . . . . . . . . . . 32

1.3.2.2.2 Configurations expérimentales . . . . . . . . . 37
1.3.2.3 Chaîne de traitement et problématiques associées . . . 37

1.4 Angles d’attaque méthodologiques et organisation de la thèse . . . . . . 41
1.4.1 Premier angle : Modélisation des fluctuations du fond . . . . . . 41
1.4.2 Second angle : Robustesse aux données aberrantes . . . . . . . . 42
1.4.3 Troisième angle : Exploitation de la diversité spectrale . . . . . 44

1.5 Organisation de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Modélisation des fluctuations du fond 49

2 Application de la modélisation des fluctuations du fond en astrono-
mie : détection et caractérisation des exoplanètes 51
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Méthodes de traitement de l’état de l’art pour

la détection d’exoplanètes par imagerie directe . . . . . . . . . . . . . . 52
2.2.1 Méthodes basées sur la combinaison d’images . . . . . . . . . . 52

2.2.1.1 Algorithmes du type ADI classique . . . . . . . . . . . 52
2.2.1.2 Algorithmes du type LOCI . . . . . . . . . . . . . . . 53

2.2.2 Méthodes basées sur la soustraction de modes . . . . . . . . . . 54
2.2.3 Méthodes basées sur une approche statistique . . . . . . . . . . 54
2.2.4 Méthodes basées sur les techniques d’apprentissage automatique 55
2.2.5 Comparaison et propriétés souhaitées . . . . . . . . . . . . . . . 56

2.3 PACO : détection d’exoplanètes basée par les COvariances de PAtchs . . 58
2.3.1 Modèle statistique pour la détection et la caractérisation de sources 59
2.3.2 Apprentissage statistique du fond . . . . . . . . . . . . . . . . . 62
2.3.3 Estimation non biaisée des statistiques du fond . . . . . . . . . 69
2.3.4 Estimation du flux d’une exoplanète . . . . . . . . . . . . . . . 71
2.3.5 Détection des exoplanètes . . . . . . . . . . . . . . . . . . . . . 72
2.3.6 Propriétés statistiques . . . . . . . . . . . . . . . . . . . . . . . 73

2.3.6.1 Distribution du critère de détection . . . . . . . . . . . 73
2.3.6.2 Probabilités de fausse alarme et de détection . . . . . . 74
2.3.6.3 Précision astrométrique . . . . . . . . . . . . . . . . . 74

2.4 Implémentation détaillée de PACO . . . . . . . . . . . . . . . . . . . . . 78
2.4.1 Taille optimale de patch . . . . . . . . . . . . . . . . . . . . . . 78
2.4.2 Prise en compte des données manquantes . . . . . . . . . . . . . 79

XII



Table des matières

2.4.3 L’algorithme PACO : considérations algorithmiques . . . . . . . . 80
2.4.4 Une version rapide et approximée de PACO pour le traitement de

vastes données . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.4.5 Échantillonnage spatiale des exoplanètes . . . . . . . . . . . . . 83
2.4.6 Détection et caractérisation non supervisées . . . . . . . . . . . 86

2.5 Évaluation des performances sur des observations du ciel . . . . . . . . 87
2.5.1 Jeux de données et description des algorithmes . . . . . . . . . . 87
2.5.2 Cartes de détection . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5.2.1 Comparaison avec les algorithmes de l’état de l’art . . 89
2.5.2.2 Cartes de détection avec fast PACO . . . . . . . . . . 95
2.5.2.3 PACO : un cadre général . . . . . . . . . . . . . . . . . 96

2.5.3 Courbes de contraste et détection statistique . . . . . . . . . . . 98
2.5.3.1 Estimation du meilleur contraste atteignable . . . . . . 98
2.5.3.2 Estimation du contraste atteint . . . . . . . . . . . . . 99

2.5.4 Précision photométrique . . . . . . . . . . . . . . . . . . . . . . 102
2.6 Conclusion sur les capacités de PACO . . . . . . . . . . . . . . . . . . . 105

3 Application de la modélisation des fluctuations du fond en microscopie
holographique : détection de motifs de diffraction 109
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2 Modélisation statistique des fluctuations du fond . . . . . . . . . . . . . 110
3.3 EXPACO : détection de motifs connus et spatialement étendus basée sur

les Covariances de PAtchs . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4 Calcul rapide de cartes de détection avec EXPACO . . . . . . . . . . . . . 119

3.4.1 Évaluation de la complexité algorithmique . . . . . . . . . . . . 119
3.4.2 Calcul rapide de b(x0, y0) pour tous les décalages pixéliques . . . 120
3.4.3 Calcul rapide de a(x0, y0) pour tous les décalages pixéliques . . . 120

3.5 Évaluation des performances sur des hologrammes . . . . . . . . . . . . 122
3.5.1 Précision de l’approximation d’EXPACO . . . . . . . . . . . . . . 123
3.5.2 Cartes de détection . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.5.2.1 Influence du nombre K de pixels des patchs . . . . . . 126
3.5.2.2 Influence de l’extension spatiale K̃ des patchs . . . . . 130

3.5.3 Taux de fausse alarme . . . . . . . . . . . . . . . . . . . . . . . 130
3.6 Conclusion sur les capacités d’EXPACO . . . . . . . . . . . . . . . . . . . 134

III Traitement robuste 137

4 Robustesse aux images aberrantes en imagerie directe 139
4.1 Le besoin d’estimateurs robustes en imagerie directe . . . . . . . . . . . 139
4.2 Modélisation locale des fluctuations spatio-temporelles . . . . . . . . . 142

4.2.1 Estimation robuste de covariances en imagerie SAR . . . . . . . 142
4.2.2 Modélisation locale des fluctuations spatio-temporelles avec

robust PACO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3 Adaptation de l’algorithme PACO . . . . . . . . . . . . . . . . . . . . . . 146

4.3.1 Estimation des statistiques du fond . . . . . . . . . . . . . . . . 146
4.3.2 Calcul robuste d’une carte de détection . . . . . . . . . . . . . . 150

XIII



TABLE DES MATIÈRES

4.3.3 Estimation robuste de la photométrie et de l’astrométrie . . . . 153
4.3.4 Éléments de preuve de la robustesse . . . . . . . . . . . . . . . . 154

4.4 Caractérisation des performances de détection et d’estimation astromé-
trique & photométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.4.1 Amélioration de la sensibilité de détection . . . . . . . . . . . . 156
4.4.2 Évaluation de la qualité des observations . . . . . . . . . . . . . 161
4.4.3 Amélioration des précisions astrométrique et photométrique . . 162

4.5 Conclusion sur les capacités de robust PACO . . . . . . . . . . . . . . . 164

5 Robustesse aux objets indésirables en microscopie holographique 167
5.1 Le besoin d’estimateurs robustes en microscopie holographique . . . . . 167
5.2 Amélioration de la robustesse par les moindres carrés pondérés . . . . . 170

5.2.1 La solution des moindres carrés . . . . . . . . . . . . . . . . . . 170
5.2.2 La solution des moindres carrés pondérés . . . . . . . . . . . . . 170

5.3 Distinguer les données utiles et les données aberrantes . . . . . . . . . . 176
5.3.1 Un compromis biais/variance . . . . . . . . . . . . . . . . . . . 176
5.3.2 Approches classiques . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.3 Critère proposé basé sur un compromis biais/variance . . . . . . 177

5.4 Application à des séquences vidéo en microscopie sans lentille . . . . . 180
5.4.1 Vidéo holographique d’un object de taille constante . . . . . . . 181

5.4.1.1 Jeu de données et description de l’algorithme . . . . . 181
5.4.1.2 Analyse des résultats . . . . . . . . . . . . . . . . . . . 182

5.4.2 Vidéo holographique de gouttes évaporantes . . . . . . . . . . . 184
5.4.2.1 Jeu de données et description de l’algorithme . . . . . 184
5.4.2.2 Analyse des résultats . . . . . . . . . . . . . . . . . . . 184

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

IV Traitement multi-spectral 189

6 Détection et caractérisation des exoplanètes avec un spectrographe
intégral de champ 191
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2 Modélisation statistique des fluctuations du fond . . . . . . . . . . . . . 195

6.2.1 Modèle local multivarié gaussien . . . . . . . . . . . . . . . . . . 195
6.2.2 Apprentissage local des paramètres . . . . . . . . . . . . . . . . 196

6.3 Cartes de détection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.3.1 Détection à une seule longueur d’onde . . . . . . . . . . . . . . 204
6.3.2 Combinaison de plusieurs cartes de détection . . . . . . . . . . . 207

6.3.2.1 Combinaison supposant une indépendance spectrale . . 207
6.3.2.2 Prise en compte des corrélations spectrales . . . . . . . 209
6.3.2.3 Amélioration de la détection basée sur un modèle de

spectre a priori . . . . . . . . . . . . . . . . . . . . . . 213
6.3.2.4 Estimation robuste des corrélations spectrales . . . . . 213
6.3.2.5 Optimalité du critère de détection wS/N . . . . . . . . 214
6.3.2.6 Combinaison de cartes de S/N avec un blanchiment spec-

tral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

XIV



Table des matières

6.3.2.7 Comparaison entre les critères wGLRT et wS/N . . . . 216
6.4 Caractérisation des sources . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.4.1 Estimation de l’astrométrie . . . . . . . . . . . . . . . . . . . . 220
6.4.2 Estimation de la distribution spectrale d’énergie . . . . . . . . . 221

6.4.2.1 Réglage non supervisé du paramètre µ de lissage des
SEDs estimés . . . . . . . . . . . . . . . . . . . . . . . 222

6.5 Implémentation détaillée de PACO–ASDI . . . . . . . . . . . . . . . . . . 225
6.6 Évaluation des performances sur des observations du ciel . . . . . . . . 228

6.6.1 Jeux de données et description des algorithmes . . . . . . . . . . 228
6.6.2 Performances de détection . . . . . . . . . . . . . . . . . . . . . 234

6.6.2.1 Résultats de détection . . . . . . . . . . . . . . . . . . 234
6.6.2.2 Contraste atteignable . . . . . . . . . . . . . . . . . . 235

6.6.3 Performance d’estimation de SEDs . . . . . . . . . . . . . . . . 236
6.7 Conclusion sur les capacités de PACO–ASDI . . . . . . . . . . . . . . . . 245

7 Amélioration de la caractérisation d’objets microscopiques par holo-
graphie multi-spectrale 249
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.2 Problématiques de calibration en microscopie holographique couleur . . 253

7.2.1 Problématiques d’étalonnage liées aux longueurs d’onde des sources253
7.2.2 Problématique d’étalonnage liées aux capteur couleur CMOS . . 255

7.2.2.1 Diaphonie spectrale . . . . . . . . . . . . . . . . . . . 255
7.2.2.2 Diaphonie optique . . . . . . . . . . . . . . . . . . . . 257
7.2.2.3 Diaphonie électronique . . . . . . . . . . . . . . . . . . 258
7.2.2.4 Résumé des effets de diaphonie . . . . . . . . . . . . . 258

7.3 Reconstruction par une approche problèmes inverses paramétrique . . . 259
7.4 Auto-calibration d’un microscope couleur . . . . . . . . . . . . . . . . . 262

7.4.1 Estimation de la longueur d’onde des sources . . . . . . . . . . . 262
7.4.1.1 Calibration de la longueur d’onde en holographie cou-

leur avec une approche problèmes inverses paramétrique 262
7.4.1.2 Résultats expérimentaux et discussion . . . . . . . . . 263
7.4.1.3 Estimation de la longueur d’onde de référence . . . . . 265

7.4.2 Calibration du phénomène de diaphonie affectant le capteur . . 266
7.4.2.1 Principe de l’estimation de la diaphonie par une ap-

proche problèmes inverses paramétrique . . . . . . . . 266
7.4.2.2 Résultats expérimentaux et discussion . . . . . . . . . 268

7.5 Amélioration de la reconstruction d’objets par auto-calibration . . . . . 269
7.5.1 Prise en compte de l’auto-calibration dans les modèles physiques 269
7.5.2 Auto-calibration appliquée à la reconstruction d’objets paramé-

triques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.5.2.1 Reconstruction d’objets paramétriques opaques . . . . 270
7.5.2.2 Limites théoriques de précision . . . . . . . . . . . . . 272

7.5.3 Auto-calibration appliquée à la reconstruction d’images en holo-
graphie couleur . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.5.3.1 Méthode de reconstruction d’hologrammes couleurs . . 274
7.5.3.2 Reconstruction d’objets opaques non-paramétriques . . 276

XV



TABLE DES MATIÈRES

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

V Conclusion 279

8 Conclusion, travaux en cours et perspectives 281
8.1 Résumé des principales contributions . . . . . . . . . . . . . . . . . . . 281
8.2 Travaux en cours et perspectives pour l’astronomie . . . . . . . . . . . 283

8.2.1 Sur le volet applicatif . . . . . . . . . . . . . . . . . . . . . . . . 283
8.2.1.1 Chaîne de traitement automatique . . . . . . . . . . . 283
8.2.1.2 Exploitation de PACO pour des applications en astronomie286

8.2.1.2.1 Détermination de limites de masse . . . . . . 286
8.2.1.2.2 Analyse d’une séquence IFS autour de β Pictoris288

8.2.2 Sur le volet méthodologique . . . . . . . . . . . . . . . . . . . . 288
8.2.2.1 Modèle statistique du fond . . . . . . . . . . . . . . . . 290
8.2.2.2 Détection et reconstruction d’objets étendus . . . . . . 290
8.2.2.3 Adaptation automatique du seuil de détection . . . . . 295

8.3 Travaux en cours et perspectives pour la microscopie . . . . . . . . . . 301
8.3.1 Sur le volet applicatif . . . . . . . . . . . . . . . . . . . . . . . . 301
8.3.2 Sur le volet méthodologique . . . . . . . . . . . . . . . . . . . . 301

8.3.2.1 Détection de motifs étendus avec une approche par trans-
formées . . . . . . . . . . . . . . . . . . . . . . . . . . 301

8.3.2.2 Reconstruction d’images avec prise en compte des cor-
rélations du fond . . . . . . . . . . . . . . . . . . . . . 304

Annexes 306

A Estimation de matrices de covariances par shrinkage 307
A.1 L’estimateur oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
A.2 L’estimateur shrinkage oracle approximé . . . . . . . . . . . . . . . . . 309

B Régularisation non supervisée des SEDs estimés 310
B.1 Régularisation de SED par une approche GML . . . . . . . . . . . . . . 310
B.2 Régularisation de SED par les approches GML, GCV et SURE : résultats

numériques complémentaires . . . . . . . . . . . . . . . . . . . . . . . . 311

C Modélisation des fluctuations du fond des jeux de données ASDI 320
C.1 Estimation des moyennes . . . . . . . . . . . . . . . . . . . . . . . . . . 320
C.2 Estimation des facteurs d’échelle . . . . . . . . . . . . . . . . . . . . . . 321
C.3 Estimation des covariances . . . . . . . . . . . . . . . . . . . . . . . . . 322

D Exemple de rapport automatique généré par PACO 324

Bibliographie 336

Liste des publications 367

XVI



Résumé par chapitre

Cette partie est un résumé en langue française des différents chapitres de ce document,
incluant l’introduction et la conclusion.

I. Introduction

1. Défis du traitement du signal pour la détection et la carac-
térisation d’objets en astronomie et en microscopie

L’astronomie et la microscopie sont des domaines d’étude qui nécessitent souvent de
détecter et de caractériser des objets à partir de signaux faibles issus d’images. Ces
images sont généralement dominées par un fond fort, non-stationnaire et spatialement
corrélé.

Dans cette thèse, nous considérons la détection et la caractérisation d’exoplanètes
par imagerie directe ainsi que d’objets microscopiques répartis dans un volume par mi-
croscopie holographique. Pour ces deux applications, les performances des détecteurs ne
dépendent pas seulement de la conception instrumentale, mais également des méthodes
de traitement du signal & de l’image utilisées. Cette thèse propose plusieurs algo-
rithmes de traitement dédiés à l’astronomie et à la microscopie, basés sur trois angles
méthodologiques principaux :

• une modélisation statistique des fluctuations du fond des images enregistrées à
une échelle locale à l’aide d’approches par patchs,

• la mise en place de stratégies de pondération afin d’améliorer la robustesse des
méthodes face à la présence de données aberrantes,

• une exploitation de la diversité spectrale des données afin d’améliorer la sensibilité
de détection et la précision de la caractérisation des objets.

II. Modélisation des fluctuations du fond

2. Application de la modélisation des fluctuations du fond en
astronomie : détection et caractérisation des exoplanètes

Malgré le couplage d’un système d’optique adaptative extrême et d’un coronographe,
la détection d’exoplanètes par imagerie directe reste difficile en raison du contraste très
élevé entre l’étoile hôte et les exoplanètes. Ce chapitre présente une nouvelle méthode,
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appelée PACO, dédiée à la détection de points sources à partir de données d’imagerie
différentielle angulaire. Nous illustrons le potentiel d’une méthode de traitement qui
apprend un modèle statistique du fond directement à partir des données. Contrairement
aux approches existantes, la méthode proposée tient compte des corrélations spatiales
des données. Ces corrélations et la composante moyenne des tavelures stellaires sont ap-
prises localement et conjointement à l’estimation du flux des exoplanètes (potentielles).
De par l’absence de soustractions explicites entre les différentes images, la photométrie
est intrinsèquement préservée.

PACO offre des caractéristiques attrayantes : l’algorithme est totalement libre de
paramètre et sans biais photométrique significatif. De plus, les performances attendues
en termes de capacité de détection, de précision photométrique et d’astrométrie peuvent
être directement évaluées sans recours à des simulations systématiques du type Monte-
Carlo. Une version rapide et approximée de la méthode est également décrite et peut
être utilisée pour traiter de grandes quantités de données provenant, par exemple, de
larges campagnes d’acquisitions dédiées à la quête d’exoplanètes.

3. Application de la modélisation des fluctuations du fond en
microscopie holographique : détection de motifs de diffraction

La microscopie holographique est un autre domaine applicatif qui nécessite de détecter
des signaux faibles superposés sur un fond fort. En raison des fluctuations temporelles
des séquences d’images enregistrées, le fond ne peut pas être complètement supprimé
par de simples soustractions. La détection du motif d’intérêt nécessite alors une modéli-
sation statistique du fond. En raison des difficultés liées à l’estimation des corrélations
spatiales du fond et à l’application d’un détecteur optimal tenant compte de ces cor-
rélations, il est de pratique courante de les négliger.

Dans ce chapitre, les corrélations spatiales sont estimées localement, à l’échelle de
patchs de quelques dizaines de pixels, à partir de plusieurs images de fond. Ce chapitre
présente une nouvelle méthode, appelée EXPACO, dédiée à la détection de motifs connus
et spatialement étendus, tels que les motifs de diffraction rencontrés en microscopie
holographique. Un algorithme rapide pour le calcul des cartes de détection est égale-
ment dérivé. L’approche est évaluée sur des images obtenues à partir d’un microscope
holographique.

III. Traitement robuste

4. Robustesse aux images aberrantes en imagerie directe

En raison de l’évolution des conditions d’observation et de la correction de l’optique
adaptative, la qualité des observations directes peut varier de manière significative au
sein d’une même séquence. Il est de pratique courante de rejeter les images de moins
bonne qualité, comparativement aux autres.

Plutôt que d’écarter l’intégralité de ces images, nous étudions les fluctuations locales
du signal dans chaque image et en tirons des cartes de pondération. Les poids dérivés
des variances temporelles peuvent être utilisés dans l’algorithme PACO pour améliorer
la robustesse de l’étape de détection ainsi que pour réduire les erreurs d’estimation sur
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l’astrométrie et la photométrie des sources détectées. L’impact des images de mauvaise
qualité peut être analysé en caractérisant les performances théoriques de détection et
d’estimation.

5. Robustesse aux objets indésirables en microscopie holo-
graphique

La microscopie sans lentille est utilisée dans divers domaines, notamment en microflu-
idique et en imagerie biomédicale, pour l’estimation quantitative de propriétés physiques
caractérisant les objets observés. En particulier, pour l’estimation de la taille et de la
localisation 3D d’objets microscopiques à partir d’hologrammes, il a été montré dans la
littérature que les méthodes du maximum de vraisemblance surpassaient les approches
traditionnelles basées sur la reconstruction d’images 3D suivie d’une analyse du volume
reconstruit. Cependant, la présence dans les hologrammes de franges de diffraction
dues à des objets autres que les objets d’intérêt peut fausser (biaiser) les estimations
issues du maximum de vraisemblance.

À l’aide de vidéos d’hologrammes expérimentaux, nous montrons que la combinaison
d’une procédure d’estimation robuste au maximum de vraisemblance réduit ce biais.
Nous proposons un critère basé sur l’intersection d’intervalles de confiance pour définir
automatiquement le niveau de distinction entre les données d’intérêts et les données
aberrantes. Cette méthodologie est générale et peut s’adapter à différents problèmes
d’estimation en présence de valeurs aberrantes spatialement non-stationnaires. Nous
montrons de manière empirique que ce critère atteint un compromis biais/variance.
Nous illustrons également que l’analyse conjointe de différents hologrammes d’une même
séquence d’acquisition à l’aide de la procédure robuste proposée améliore davantage
encore la précision de l’estimation.

IV. Traitement multi-spectral
6. Détection et caractérisation des exoplanètes avec un spec-
trographe intégral de champ

L’imagerie différentielle angulaire et spectrale combine des observations enregistrées à
différents temps et plusieurs longueurs d’onde afin de faciliter la séparation du signal
résiduel de l’étoile hôte du signal d’intérêt issu des exoplanètes. La détection n’est ren-
due possible qu’avec une modélisation précise de ces deux composantes, en particulier
du bruit de fond dû aux fuites stellaires de l’étoile hôte masquée par le coronographe.
Au-delà de la détection de sources ponctuelles dans le champ de vue, il est égale-
ment essentiel de caractériser les sources détectées en termes de signification statistique,
d’astrométrie et d’estimer leur distribution spectrale d’énergie.

Nous étendons les algorithmes PACO (voir Chapitre 2) et robust PACO (voir Chapitre
4) afin de capturer les fluctuations spectrales et temporelles des corrélations spatiales
du fond. À partir de cette modélisation statistique, nous construisons un algorithme de
détection et une méthode d’estimation de distribution spectrale d’énergie : PACO–ASDI.
La modélisation des corrélations spectrales s’avère à la fois utile pour réduire les arte-
facts de détection ainsi que pour obtenir des garanties statistiques précises (seuils de
détection et intervalles de confiance sur les distributions spectrales d’énergie estimées).
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7. Amélioration de la caractérisation d’objets microscopiques
par holographie multi-spectrale

Les principaux avantages de la microscopie holographique sont liés à la simplicité, com-
pacité et faible sensibilité du dispositif expérimental aux vibrations, ainsi qu’à la possi-
bilité de caractériser avec précision les objets étudiés. Le coût du dispositif peut davan-
tage encore être réduit en utilisant de simples diodes laser comme sources cohérentes
de lumière et des capteurs couleurs du type CMOS équipés de filtres chromatiques
de Bayer. Cependant, la longueur d’onde centrale délivrée par ce type de laser n’est
généralement connue qu’avec une précision limitée et peut évoluer du fait de sa dépen-
dance à la température et à la tension d’alimentation. En outre, les filtres du type Bayer
surmontant les capteurs couleurs conventionnels souffrent d’une faible sélectivité chro-
matique ce qui entraîne un mélange (spectral) des signaux provenant de chaque source
(phénomène de diaphonie). Ignorer ces phénomènes conduit à des erreurs significatives
dans les reconstructions holographiques.

Nous proposons une méthode d’estimation au sens du maximum de vraisemblance
afin de réaliser une auto-calibration des principales propriétés du dispositif : longueur
d’onde centrale des sources laser et mélange spectral dû aux filtres de Bayer. Pour
cela, nous proposons d’utiliser des objets sphériques naturellement présents dans le
champ de vue ou ajoutés en tant qu’objets étalons. Cette méthode d’étalonnage fournit
une estimation des longueurs d’onde des sources et de la diaphonie spectrale, avec une
précision comparable à celle d’un spectromètre haute-résolution. Nous montrons sur
des hologrammes expérimentaux que l’auto-étalonnage de la configuration conduit à
une amélioration des reconstructions holographiques.

V. Conclusion

8. Conclusion, travaux en cours et perspectives

Dans cette thèse, nous avons proposé plusieurs algorithmes dédiés à la détection et
à la caractérisation d’objets à partir de signaux faibles issus de série d’images. En
particulier, les méthodes développées ont été appliquées dans deux contextes applicatifs
différents : (i) la recherche d’exoplanètes par imagerie directe en astronomie et (ii) la
métrologie optique par microscopie holographique. Les algorithmes présentés dans cette
thèse ont été développés en suivant trois angles méthodologiques afin de répondre à des
défis communs du traitement du signal :

• Les séries d’images acquises à la fois en astronomie à haut contraste et en mi-
croscopie holographique présentent un fond spatialement texturé qui domine
fortement les motifs à détecter. Nous avons proposé de modéliser localement
le fond corrélé spatialement non-stationnaire des séries d’images en utilisant des
approches statistiques par patchs. Le modèle du fond conduit à une méthode de
détection par application de la théorie de la détection statistique. Nous avons
décrit dans la Partie II deux algorithmes dédiés à la détection de motifs connus
dans le régime à faible rapport signal sur bruit. Les deux algorithmes proposés
diffèrent par l’étendue spatiale des motifs à détecter.
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• Malgré le soin apporté au processus d’acquisition, les séries d’images des deux
applications ciblées présentent de nombreuses données aberrantes. Dans cette
thèse, nous avons proposé des algorithmes tenant compte de ces valeurs aber-
rantes. Dans la partie III, nous avons décrit deux algorithmes robustes dédiés à
la détection et à la caractérisation de motifs, en présence de valeurs aberrantes.

• En astronomie comme en microscopie, il est possible d’enregistrer des données
présentant une diversité multi-spectrale en plus de l’étendue temporelle naturelle
des séries d’images considérées. Dans cette thèse, nous avons proposé de pren-
dre en compte les spécificités des données multi-spectrales des deux applications
ciblées. La Partie IV décrit deux algorithmes traitant de la diversité spectrale
des jeux de données acquis.
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Main acronyms and notations

Acronyms
Instrumentation

ADI Angular Differential Imaging
SDI Spectral Differential Imaging
ASDI Angular and Spectral Differential Imaging

(x)AO (Extreme) Adaptive Optics
CMOS Complementary Metal Oxide Semi-conductor
ESO European Southern Observatory
GPI Gemini Planet Imager
IFS Integral Field Spectrograph
IRDIS InfraRed Dual-band Imager and Spectrograph
NaCo abbreviation of NAOS-CONICA; Nasmyth Adaptive Op-

tics System with COudé Near Infrared CAmera
SPHERE Spectro Polarimetric High contrast Exoplanet REsearch
VLT Very Large Telescope

Algorithms

PACO PAtch COvariances (exoplanet hunter algorithm for ADI)
PACO–ASDI adaptation of PACO for ASDI
EXPACO adaptation of PACO for (holographic) EXtended patterns
PACO characterization characterization step of PACO

PACO detection detection step of PACO

PACO oracle oracle version of PACO

fast PACO fast version of PACO

fast PACO-ASDI fast version of PACO–ASDI

robust PACO robust version of PACO

ANDROMEDA ANgular DiffeRential OptiMal Exoplanet Detection Al-
gorithm

cADI classical–ADI
KLIP Karhunen-Loève Image Projection
LLSG Local, Low-rank, Sparse, and Gaussian noise decomposi-

tion
LOCI Locally Optimized Combination of Images
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PCA Principal Component Analysis
SVD Singular Value Decomposition
TLOCI Template–LOCI

Other methods and quantities

AU Astronomical Unit
CRLB Cramér-Rao Lower Bound
FWHM Full Width at Half Maximum
FPS Faint Point Source
GCV Generalized Cross-Validation
GLRT Generalized Likelihood Ratio Test
GML Generalized Maximum Likelihood
GSM Gaussian Scale Mixtures
ICI Intersection of Confidence Intervals
IRLS Iteratively Reweighted Least Squares
MAD Median Absolute Deviation
ML Maximum Likelihood
MSE Mean Squared Error
PD Probability of Detection
PDF Probability Density Function
PFA Probability of False Alarm
PSF Point Spread Function
RGB Red, Green, Blue
RMSE Root Mean Square Error
ROC Receiver Operating Characteristic
SED Spectral Energy Distribution
S/N Signal-to-Noise ratio
S/Nℓ Signal-to-Noise ratio at wavelength ℓ
SURE Stein’s Unbiased Risk Estimator
TPR True Positive Rate
wGLRT whitened Generalized Likelihood Ratio Test
wS/N whitened Signal-to-Noise ratio
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Main acronyms and notations

Notations
Conventions of notation

x a scalar
x a vector (including vectorized patch values)
X a matrix

Statistics

·̂ estimator
χ2
k chi-square distribution with k degrees of freedom

C ( · ) least squares cost function
Cov( · ) covariance
E( · ) expectation
H0,H1 binary hypotheses
L likelihood
p( · ) probability density function
P( · ) probability
Var( · ) variance

δ Cramér-Rao lower bounds vector
m̂ estimated sample mean vector

Σ any covariance matrix
Ĉ estimated (shrinked) covariance matrix
F̂ estimated variance matrix
Ŝ estimated sample covariance matrix
IF Fisher information matrix
N
(
m̂, Ĉ

)
probability density function of a multivariate Gaussian of
mean m̂ and covariance Ĉ

Other mathematical functions and notations

∗ convolution product
⋆ correlation product
·̄ zero-mean quantity, in general
( · )+ or ( · )+ positive part
arg maxx ( · ) values of x such that the max is reached
arg minx ( · ) values of x such that the min is reached
det( · ) matrix determinant
J1c( · ) cardinal Bessel function of first order
∇x( · ) gradient with respect to x
O( · ) Bachmann–Landau asymptotic notation
max( · ) maximum function
min( · ) minimum function
·

⊤
transpose operator

XXIV



Main acronyms and notations

Re( · ) real part
tr( · ) matrix trace

||· ||1 ℓ1-norm
||· ||2 ℓ2-norm
||· ||F Frobenius norm

I identity matrix

Quantities common to astronomy and microscopy applications

α amplitude of a pattern / source
a denominator of the signal-to-noise expression
b numerator of the signal-to-noise expression
λ wavelength value
ℓ wavelength index
µ any regularization parameter
n pixel index
σ any standard-deviation
t time value
t time index
τ detection threshold

C number of columns in an image
K number of pixels in a patch
L number of spectral frames
N number of pixels in an image
R number of rows in an image
T number of temporal frames

d data
f background contribution
h (off-axis) PSF
r measured intensity

Quantities specific to astronomy applications

5σ̂α 5-sigma achievable contrast
arcsec arcsecond
∆par total amount of parallactic rotation of the field of view
MJ Jovian mass (about 318 times the Earth mass)
φ0 2-D angular location on a reference frame (t0, ℓ0)
Fℓ,t(φ0) angular location of a point source (due to apparent field

of view motion) at time t and wavelength ℓ, given its
initial location φ0 at time t0 and wavelength ℓ0

φℓ,t 2-D angular location at wavelength ℓ and time t with
φℓ,t = Fℓ,t(φ0)

⌊φℓ,t⌉ closest on-grid location to φℓ,t
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Main acronyms and notations

T̃ equivalent number of temporal patches
P̃ equivalent number of temporo-spectral patches

β expected S/Nℓ values
γ spectral energy distribution of a point source
hn,ℓ(φℓ,t) zoomed-in off-axis PSF centered at the subpixel location

φℓ,t of the source at the ℓ-th wavelength and t-th frame,
and sampled on central pixel n

rn,ℓ,t vectorized patch of intensity extracted around pixel n, at
wavelength ℓ, and time t

L Cholesky’s factor such as Σ−1 = LL
⊤

S whitened vector of S/Nℓ values

Quantities specific to microscopy applications

np complex refractive index on an object p

qG
R crosstalk contribution produced by a Red source on the

Green channel of the sensor
rp radius of a spherical object p
{xp, yp, zp} 3-D location of an object p

K̃ spatial extent of a patch

θ parameter vector
mθ analytical model parametrized by θ

ϑ opacity

Q crosstalk mixing matrix
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Scientific context

Figure 1 – Visual identity of the project RESSOURCES. The leftmost picture is taken
from Thalmann et al. (2016), and the rightmost picture is taken from Zhang et al.
(2015). Credit: Loïc Denis.

This thesis has been prepared at the Hubert Curien Laboratory (LabHC), Saint-
Etienne, France, and funded by a grant from the Science, Engineering, Health Doctoral
School (EDSIS). The LabHC is a joint research unit of the Jean Monnet University
(UJM), the French National Centre for Scientific Research (CNRS), and the Institut
d’Optique Graduate School (IOGS) with a total staff of about 240, including 130 stu-
dents. The research activities are split into two departments: Optics, Photonics and
Microwave, and Computer Science, Telecom and Image. In particular, the laboratory
research covers the whole imaging process, from light-matter interactions and optical
design to high-level understanding and analysis of the images.
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I was involved in the Optical Design and Image Reconstruction team led by Corinne
Fournier, at the interface between optics and signal & image processing. Holographic
microscopy has been one of the main research topics of the team since more than 15
years. In parallel, other activities centered on remote sensing and astronomy are con-
ducted under the supervision of Loïc Denis. All these application fields are mainly
addressed, from a methodological point of view, within an inverse problem frame-
work. These different themes also benefit from long-term collaborations with other
laboratories. Among those, we can cite, for regional cooperations, the Astrophysics
Research Centre of Lyon (CRAL), Saint-Genis-Laval, France, and the Fluid Mechanics
and Acoustics Laboratory (LMFA), Ecully, France. In particular, there are frequent ex-
changes on both theoretical and instrumental aspects with Éric Thiébaut, astronomer at
the CRAL and expert in signal & image processing, with Maud Langlois, researcher at
the CRAL and expert in high contrast instrumentation, and with Loïc Méès, researcher
at the LMFA and expert in the physics of light scattering.

Within this context, two research projects supported by the CNRS and led by
Loïc Denis were at the heart of this thesis work; Source Detection for Astronomy and
Lensless Microscopy: Optimal Processing and Ultimate Limit in Multi-Varied Imaging
(DETECTION, 2015-2016), and Reconstruction of Complex Sources for Astronomy and
Microscopy (RESSOURCES, 2017-2018). These two projects aimed to build bridges
both from an application and methodological point of view between astronomy and
microscopy, as illustrated by the visual identity of the project RESSOURCES given in
Figure 1. A large part of these two projects are still being supported and investigated
with the recent launch of the project DIAGHOLO (2019-2024) funded by the Region
Auvergne Rhône-Alpes (AURA), aiming to develop new image reconstruction methods
both for microscopy and astronomy. Through these projects, several exchanges with
researchers and other students created a very stimulating scientific environment for my
thesis work.

In particular, they gave me the opportunity to participate at several conferences and
to attend three summer schools covering both application and methodological aspects
considered in my thesis:

• First, at the very beginning of my thesis in October 2016, I participated in
the Robust Signal Processing Summer School, Rüdesheim am Rhein, Germany,
jointly organized by the IEEE Signal Processing Society (SPS) and the EURopean
Association for SIgnal Processing (EURASIP). During this week, I learned some
concepts about robust processing. I was completely novice in this field and this
summer school impulsed some ideas for my thesis; two chapters of this manuscript
are related to robust processing.

• In 2018, I attended the Detection and Instrumentation Summer School organized
by the Focal Plane Array for Universe Sensing (FOCUS) research group at the
Observatory of Haute-Provence (OHP), France. This week alternating both theo-
retical courses and observations on 1 m class telescopes gave me the opportunity
to learn some concepts related to the instrumentation in astronomy, a field in
which I was also completely novice. In September 2019, I also took part to a
run of observations of the high contrast instrument SPHERE at the Very Large
Telescope (VLT, Chile); a unique chance to discover the observation pipeline of
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the type of data that I used throughout my thesis.

• Also in 2018, I attended the Summer School organized by the French Group
of Research for Signal and Image Processing (GRETSI) whose 2018s edition
entitled Data Science, Signal, and Image was dedicated to the processing of large
amount of data by machine-learning, deep-learning, and graphs methods. In the
same spirit, I recently attended the lectures of the Deep Learning for Medical
Imaging school organized by the Physics, Radiobiology, Imaging and Simulation
(PRIMES) research group. While such methods were not addressed during my
thesis, they gave me several ideas for future works.

This thesis work was directed by Corinne Fournier, and I was closely supervised
by Loïc Denis. I was also regularly co-supervised by Éric Thiébaut for methodological
issues, and Maud Langlois for instrumental and data issues.
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Chapter 1
Signal processing challenges for object

detection and characterization in astronomy

and microscopy

Abstract

Astronomy and microscopy are fields of study that require the detection and the
characterization of faint signals from images dominated by a strong, nonstation-
ary, and spatially correlated background. In particular, we consider the detection
and characterization of exoplanets by direct imaging, and the imaging of micro-
scopic objects spread in a volume by holographic microscopy. The performance
does not depend solely on the instrumental design but also on the methods applied
to process the recorded images. This thesis proposes several algorithms dedicated
to astronomy and microscopy that are based on three methological angles: (i) a
statistical modeling of the fluctuations of the background of the recorded images at
a local scale using patch-based approaches; (ii) weighting-based strategies to im-
prove the robustness of the methods to the presence of outliers; (iii) exploiting the
spectral diversity in the algorithms to improve the detection sensitivity and the
estimation accuracy.

1.1 Introduction

Detecting and characterizing objects in images in the low signal-to-noise ratio (S/N)
regime is a critical issue in many areas such as astronomy or microscopy.

Astronomy is a field of study in which optical progress makes it possible to design
new generations of instruments always more efficient and dedicated to specific tasks.
In particular, the detection of exoplanets, i.e. planets 1 orbiting a star outside the
Solar System, and their characterization by direct imaging from the Earth is a hot
research topic. A target star and its close environment (hosting potential exoplanets)

1. An object with a mass larger than ≈ 13− 17 MJ is not strictly considered as a planet since it is
above the fusion limit of deuterium. In this case, the standard denomination is brown dwarf.
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Signal processing challenges for object detection and
characterization in astronomy and microscopy

are observed on short temporal exposures and on several spectral channels.
Similarly, recent advances in microscopy in terms of resolution and sensitivity have

opened the door to new medical diagnoses. However, this technology remains expensive
due to the requirement for high-grade optical and mechanical components. Therefore,
holographic microscopy appears to be a cost-effective method of choice for characterizing
microscopic objects. Based on the recording of a hologram, it allows a digital focusing
in any plane of the imaged 3-D volume.

In these two application fields, the detection and characterization problem is made
difficult by the possibly large difference of amplitude between the objects of interest
and the strong background of the recorded images.

This thesis attempts to provide answers to the current need for detection and character-
ization methods both in direct imaging for astronomy and in holographic microscopy.
There are several methodological bridges between these two targeted applications. The
main focus is put on the use of statistical and/or physical based approaches to detect
and to derive reliable estimates characterizing the imaged objects. Another common
methodological component is the development of robust detection methods to improve
their systematic deployment on data that are sometimes impacted by aberrant val-
ues. Finally, information redundancies and complementarities present in the recorded
data are also exploited. Among these, temporal and/or multi-spectral redundancies are
considered.

This chapter provides an introduction to the principle, characteristics, advantages,
and limitations of direct imaging and holographic microscopy and discusses the signal
processing challenges that they raise. For clarity, theoretical and/or mathematical
considerations, as well as a more complete description of state-of-the-art processing
methods, are not given in this chapter, but rather discussed throughout the following
more technical chapters.

Section 1.2 of this chapter presents the main issues related to the detection and
characterization of exoplanets in astronomy. Following the same structure than Sec-
tion 1.2, Section 1.3 presents some issues related to the detection and characterization
of microscopic objects spread in a volume. Finally, Section 1.4 emphasizes common
methodological guidelines exploited in the contributions of this thesis work and presents
the organization of this manuscript.
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7



Signal processing challenges for object detection and
characterization in astronomy and microscopy

1.2 Detection and characterization of exoplanets

In this section, we first briefly discuss the main indirect detection methods, focus-
ing on their general principle, advantages, and drawbacks. Then, we focus on direct
imaging, which is the detection technique investigated in this thesis. Only a short in-
troduction to the subject is given in this section. The interested Reader will find a
more complete presentation in the The Exoplanet Handbook (Perryman, 2018), a re-
cent reference book dedicated to the detection and study of exoplanets, or in other
references.

Throughout this section, the Reader can refer to Figure 1.1 giving an overview
of the different detection techniques and variants described hereafter, to Figure 1.2
showing their respective principle, to Figure 1.3 presenting over the years the number
of discoveries obtained with each method, and to Figure 1.4 giving the mass of the
known exoplanets as a function of their semi-major axis. In each of these four figures
comparing exoplanet detection techniques, the same color code (one color per method)
is used for quicker identification.

1.2.1 Indirect detection methods

The indirect detection and characterization of exoplanets rely on the study of their
influence on the host star. In other words, with these methods, no direct light of the
exoplanets is exploited in the science data. We give hereafter the general principle of the
main indirect detection methods based on radial velocities, photometry, microlensing,
timing, and astrometry analysis.

1.2.1.1 Radial velocities

Since a two-mass system moves around its center of gravity, the radial velocities
method aims to measure the variations of the radial displacement (i.e., the radial veloc-
ities along the line of sight) of a star due to the gravitational influence of the exoplanets
it hosts, see Figure 1.2(a). More precisely, the radial velocities are measured by Doppler
spectroscopy through the displacement of the spectral lines of the host star due to
Doppler effect. The radial velocities method preferentially detects massive exoplanets
orbiting near low-mass stars since the induced displacement of the stellar lines is more
important, thus easier to detect. In terms of characterization, this method gives access
to a lower bound of the companion mass and almost all its orbital parameters.

We have chosen to present this technique first since it has achieved two significant
breakthroughs. (i) The first extrasolar planet was discovered thanks to this technique
(Latham et al., 1989). (ii) The first exoplanet orbiting a star of the main sequence 2

was also discovered thanks to this technique a few years later (Mayor and Queloz,
1995), at the Observatory of Haute-Provence. M. Mayor and D. Queloz were awarded
the Physics Nobel Prize in 2019 for this breakthrough. Very recently (19-08-2019), a
second exoplanet (β Pictoris c) has been discovered (Lagrange et al., 2019b) by radial
velocities around β Pictoris, a well known and widely studied star in direct imaging, see

2. The life of a star is divided in several periods. A star of the main sequence, fuses its hydrogen
atoms to form helium atoms in its core, like the Sun.

8
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Figure 1.2 – Illustration of the principle of the main exoplanet detection methods:
(a) radial velocities; (b) photometry; (c) microlensing; (d) timing; (e) astrometry; (f)
imaging. Adapted from NASA animations (last access: 2019-08-23).
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Figure 1.3 – Demography of the discovered exoplanets over years with the main detec-
tion techniques. The raw data were extracted the 2019-07-25 from the online Extrasolar
Planets Encyclopaedia (Schneider et al., 2011).

Sections 1.2.2.2.4, 2.5.2.3, 6.6, and 8.2.1.2.2. Radial velocities is also the second best
method in terms of number of discoveries: about 21% of the known exoplanets were
detected with this method, see Figure 1.3. Several facilities are currently dedicated
to the quest of exoplanets using this technique, including the High Accuracy Radial
velocity Planet Searcher (HARPS) operating at the La Silla Observatory, or the next
generation instrument Echelle SPectrograph for Rocky Exoplanets and Stable Spectro-
scopic Observations (ESPRESSO) operating since 2018 on an 8.2 m diameter telescope
at the VLT.

This method is limited by the star/exoplanet configuration since it requires that
the system be close to an edge-on configuration. This technique also produces some
false alarms, due to the stellar activity producing a displacement of stellar lines similar
to that induced by the exoplanets. Thus, it is often necessary to combine it with a
complementary method such as photometry (see Section 1.2.1.2), or direct imaging
(see Section 1.2.2) to confirm the presence of a candidate companion and estimate its
actual mass.

1.2.1.2 Photometry

Photometry methods are based on the analysis of the evolution of starlight intensity
over time. Among these techniques, the transit method is the most used. It is based
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http://exoplanet.eu/
http://exoplanet.eu/


1.2. Detection and characterization of exoplanets

on the detection of the decrease of a star intensity (so-called photometry) when an
exoplanet transits in front of it, see Figure 1.2(b). A study of the brightness dip (transit
depth, duration, ingress and egress duration) gives information about the size of the
exoplanet. The transit method is more suitable to detect giant exoplanets orbiting near
low-mass stars since the induced brightness dip is greater and thus easier to detect.
When it is used jointly with a complementary method such as radial velocities (see
Section 1.2.1.1), or imaging (see Section 1.2.2), almost all the companion characteristics
(orbital parameters, mass, surface temperature, and atmosphere) can be estimated.

Since the first discovery by Charbonneau et al. (1999), the transit method is of a
particular interest since about 72% of the exoplanet discoveries were obtained thanks
to this technique, see Figure 1.3. In particular, the space-based telescope Kepler of
the American National Aeronautics and Space Administration (NASA) lead between
2009 and 2018 to the transit detection of about 2600 exoplanets (over the 4102 known
ones) including 8 potential exoEarths. This success is largely explained by the ability of
such instruments to image thousands of stellar systems simultaneously. Specific efforts
were also put on the processing of the large quantity of data, including the involvement
of giant firms of the Internet and the participation of citizen scientists. In spite of
the end of the Kepler mission, it is expected that the number of discoveries due to
transit analysis will increase even more in the next few years thanks to new missions.
Among these, we can cite the Transiting Exoplanet Survey Satellite (TESS) launched
in April 2018, the future PLATO (PLAnetary Transits and Oscillations of stars, launch
scheduled for 2026) space telescope or the future James Webb Space Telescope (JWST,
launch scheduled for March 2021) that will embed a 6.5 m diameter telescope, the largest
space-based telescope ever built.

This technique is mainly limited by the system configuration that should be close to
an edge-on alignment and by its very high false alarm rates, generally reaching about
10% to 40% (Santerne et al., 2012; Morton et al., 2016). As a result, combining the
transit method with a complementary method is often mandatory.

1.2.1.3 Microlensing

The microlensing method is based on the Shapiro effect stating that light rays are
deviated when passing close to a massive object. Thus, a foreground star can induce
such a deviation of the light rays from a more distant background star aligned along
a common line of sight. In this configuration, the foreground star acts as a microlens,
deviating and magnifying the light rays from the background star. If an exoplanet orbits
the foreground star, the magnification of the light of the background star is disturbed
and takes the form of a typical short-lived spike, see Figure 1.2(c). The detection of
this spike signs the presence of a potential companion. The microlensing technique
preferentially detects small exoplanets at wide orbits around low-mass stars, since the
microlensing effect is more important in this configuration. In terms of characterization,
only the mass of the companion relative to the star and part of the orbital parameters
can be deduced from microlensing observations.

Since the first discovery with this technique (Bond et al., 2004), about 2% of the
known exoplanets have been detected by microlensing, see Figure 1.3. One of the most
advanced and ambitious projects (partially) dedicated to the detection of exoplanets
with this technique is the Wide Field InfraRed Survey Telescope (WFIRST), which
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could be launched around 2025.

The main limitation of the microlensing method is its lack of reproducibility. Indeed,
the probability of realignment of the foreground star with the same background star
is null, and the chance of follow-up alignment with another background star is very
unlikely. A second drawback is related to the limited number of characteristics that
can be inferred for the detected companions.

1.2.1.4 Timing

They are several sub-methods based on the analysis of time-periodic signals from
the host star (see Figure 1.1), and one of the most used is pulsar timing. A pulsar is a
neutron star spinning very fast around its revolution axis at a very regular frequency.
During its rotation, it emits time-periodic pulses creating two radio beams from its
poles, see Figure 1.2(d). The detection is based on the time-frequency analysis of the
pulses whose regularity is slightly disturbed in the presence of exoplanets. The mass and
orbital parameters of the detected exoplanets can also be estimated with this technique.

Since the first discovery (Wolszczan and Frail, 1992), less than 1% of the known
exoplanets were discovered with this technique, see Figure 1.3.

This method is limited to the detection of exoplanets orbiting pulsars, which are
significantly rarer than conventional stars of the main sequence.

1.2.1.5 Astrometry

Finally, the astrometry method is also based on the study of the gravitational effect
that an exoplanet has on its host star. While the radial velocities technique aims to
detect a star displacement via Doppler spectrometry, the astrometry method detects a
star motion via an accurate measurement of its location (so-called astrometry) relative
to reference background stars, see Figure 1.2(e). As for the radial velocities method, the
astrometry technique preferentially detects massive exoplanets orbiting near low-mass
stars. This method gives access to some orbital parameters of the detected companions
and can help to constrain the mass estimation from other methods such as the radial
velocities, see Section 1.2.1.1.

Although it is the oldest method of detection from a theoretical definition point
of view, the first detection was obtained only recently (Muterspaugh et al., 2010).
Since then, 9 other exoplanets have been detected with astrometry measurements, see
Figure 1.3. This number is expected to increase significantly in the next few years, in
particular thanks to the ongoing mission of the satellite Gaia dedicated to astrometric
measurements.

The main limitation of the astrometry method is related to the difficulty to derive
accurate measurements of the typical small displacement of stars under the gravitational
influence of exoplanets. Especially, ground-based accurate astrometry measurements
are difficult to obtain due to distortions in the field of view caused by atmospheric
turbulence.

12
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Figure 1.4 – Mass of the known exoplanets and brown dwarfs as a function of their
semi-major axis for the different detection methods. All the 4102 known exoplanets
are not represented in this graphic since all are not characterized in terms of mass
and/or semi-major axis (in particular the ones detected by radial velocities, see Section
1.2.1.1). The raw data were extracted on 2019-07-25 from the online Extrasolar Planets
Encyclopaedia (Schneider et al., 2011).

1.2.2 Direct imaging as a method of choice

As a starting point, we consider Figure 1.4 presenting the exoplanet discoveries for
each method of detection in the so-called parameters space, i.e. a graph showing the
estimated mass of the exoplanets as a function of their semi-major axis. It empha-
sizes that direct imaging is the only method unveiling giant planets orbiting at various
distances from their host star. This is one example (among others) showing the com-
plementarity of direct imaging to the indirect methods presented in Section 1.2.1. In
this section, we describe its principle, paying particular attention to its specificities in
terms of instrumentation, related challenges, and data analysis.

1.2.2.1 General principle and characteristics

Direct imaging could be summarized as the taking of a direct picture of an exoplanet
by imaging its host star and its close environment, see Figure 1.2(f).

As illustrated by Figure 1.4, direct imaging preferentially detects high-mass exoplan-
ets, typically between 1 MJ and 100 MJ. While there is also a theoretical preference for
wide-orbiting exoplanets (since both the angular resolution and contrast are improved
in this configuration), direct imaging proves to be able to detect exoplanets at various
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distances 3 from their host stars (with a semi-major axis typically between 10 AU and
10,000 AU). It is also more adapted to detect hot exoplanets (i.e., exoplanets emitting
intensively in the infrared band), orbiting relatively young 4 (typically less than 0.5 Gy)
and low-mass stars since the contrast is more favorable in this case.

Direct imaging presents several advantages and peculiarities comparatively to the
indirect detection methods. First, it is significantly less sensitive to the configuration
of the imaged system than indirect methods. Indeed, while face-on-orbit configurations
are preferred, direct imaging can also detect exoplanets in edge-on-orbit configurations.
Besides, direct observations can be conducted in a relatively short time (typically a few
hours), while it is often necessary to combine several months or years of observations
with indirect methods, in particular for the photometry and microlensing techniques.
Thus, observations can be easily repeated a few months later to possibly rule out the
presence of a candidate companion with a physically non-plausible motion. Probably,
the main advantage of direct imaging is its ability to derive a large panel of physi-
cal properties about the detected candidate companions. The estimated astrometry
(i.e., the projected distance between the candidate companions and the star) on sev-
eral observations allows to recover the 6 parameters defining the orbit of the candidate
companions. The estimated photometry (i.e., the flux of the candidate companions at a
single wavelength or their spectral energy distribution (SED) at several wavelengths in a
given spectral band) gives access through physics-based models to their age, mass, sur-
face gravity, metallicity, composition, effective temperature, and evolution, see Claudi
et al. (2019); Cheetham et al. (2019) for examples of case studies. This information is
obtained by fitting orbit models as well as exoplanet formation and evolution models
on the estimated astrometry and photometry (Burrows et al., 1997; Chabrier et al.,
2000; Allard et al., 2003; Baraffe et al., 2003; Allard et al., 2007; Saumon and Marley,
2008; Vigan et al., 2010; Baudino et al., 2015). Based on the results of this step, we
can conclude on the actual presence of a candidate companion and its status: exoplanet
gravitationally bounded to the host star, brown dwarf not necessarily bounded to the
host star, or background star imaged in the projected field of view. The accuracy of
these estimated quantities can be improved by combining direct imaging with other
detection methods such as radial velocities (Ruffio et al., 2018; Mawet et al., 2019).

1.2.2.2 Challenges of direct imaging

Despite the numerous advantages of direct imaging and its promising future, only
a dozen exoplanets (see Figure 1.3) have been successfully detected to date using this
technique (Bonavita et al., 2014; Macintosh et al., 2015; Chauvin et al., 2017). Indeed,
the direct detection of exoplanets from the ground is a very challenging task and made
possible only in the last decade thanks to the joint progress in optics, instrumental
design, and processing methods, see Pueyo (2018) for a review. In particular, two
major points must be addressed to make the direct detection of exoplanets possible.
First, a high angular resolution is mandatory to image such close point-like sources
located at several light-years, leading to small angular separations with the host stars
(typically between 0.1 and a few arcseconds). The second point is related to the very

3. The astronomical unit (AU) is the distance from Earth to the Sun, i.e., 1 AU ≃ 150× 106 km.
4. For comparison, the age of our Solar system is about 4.6 Gy.
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high contrast, i.e. the very weak ratio between the intensity of the exoplanet and the
intensity of the host star (typically less than 10−5 in infrared), making the detection
very challenging. In the following sections, we briefly discuss experimental solutions
included in the exoplanet hunter instruments to handle these two difficulties.

1.2.2.2.1 Reaching high angular resolution with adaptive optics

From a diffraction point of view, the resolution achieved by a telescope is in-
versely proportional to the diameter of its primary mirror. Increasing its size should
then be sufficient to achieve the targeted resolution. In practice, this theoretical
resolution is not reached due to atmospheric turbulence resulting from wind changes,
pressure, temperature, and humidity inhomogeneities (Aime et al., 2003). Thus,
light rays from the star and its potential exoplanets are deviated from their initial
trajectories and undergo, at each location of the pupil, a time-varying phase shift. This
results in a non-smooth background in the science images, taking the form of spatially
correlated blobs (Fitzgerald and Graham, 2006).

To handle the wavefront distortion, one of the most powerful state-of-the-art solu-
tions consists in the use of an (extreme) adaptive optics (x)AO (first concept: Babcock
(1953), first on-sky demonstration: Rousset et al. (1990), see also Davies and Kasper
(2012); Milli et al. (2016) for reviews). With such a device, the wavefront is dynamically
corrected for distortions in a 3 steps procedure:

1. The deformation of the wavefront is analyzed by a wavefront sensor like a Shack-
Hartmann (Shack, 1971) device. A Shack-Hartmann wavefront sensor is made
of a lenslet matrix focusing the light on a secondary camera. If the wavefront is
perfectly plane and orthogonal to the optical axis, each lenslet produces a spot
aligned on the optical axis of the lenslet. When the wavefront is distorted, the
spot produced by each lenslet is spatially shifted according to the local slope of
the wavefront in the pupil of the lenslet.

2. The second step consists in measuring the shift of each spot of light, and recon-
structing in real-time the wavefront to compute the correction to apply locally
(i.e., a phase delay/advance).

3. The last step consists of applying the correction by sending a command to a
deformable mirror. A deformable mirror is split into sub-mirrors (41 × 41 for
SAXO, the xAO of VLT/SPHERE, Beuzit et al. (2019)), each one can indepen-
dently move a few micrometers with respect to its rest state thanks to numerically
controlled actuators.

This procedure is repeated in a closed-loop mode, at a high-frequency rate (1.2 kHz for
SAXO, Beuzit et al. (2019)).

On state-of-the-art instruments such as VLT/SPHERE or GEMINI/GPI, the xAO
reaches the excellent performance of a Strehl ratio about 0.90 in the H Johnson’s band
(Beuzit et al., 2019), i.e. 90% of the maximal intensity of the aberration-free on-axis
point spread function (PSF) is recovered.
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1.2.2.2.2 Reaching high contrast with coronagraphy

The second aspect that should be addressed is namely the contrast, i.e. the
very large difference between the amount of light received from the star and that
received from the exoplanets (Oppenheimer and Hinkley, 2009).

Coronagraphic masks are used to cancel at best the starlight while preserving the
signal from the exoplanets. The design of coronagraphic masks is a very active field in
optics and several solutions can be adopted (first concept: Lyot (1939), first demonstra-
tion for direct imaging: Sivaramakrishnan et al. (2001), see also Guyon et al. (2006);
Mawet et al. (2012) for reviews). The simplest one is to place a classical Lyot corona-
graph (i.e., a mask in the image focal plane), thus discarding part of the on-axis PSF.
It is generally combined with a Lyot stop (i.e., a mask which transmits the light only
on an annulus-shaped area) placed in the following pupil plane to attenuate spurious
diffraction patterns created by the focal mask whilst most of the light from surround-
ing sources of interest going up to the camera. State-of-the-art instruments such as
VLT/SPHERE are equipped with more advanced devices optimized to reach a high
contrast even at small angular separations. Among these devices, the APLC corona-
graph (Carbillet et al., 2011) combines a pupil plane apodizer, a focal plane mask, and
a Lyot coronographic stop. Such systems are designed to work in a specific spectral
band so that several coronagraphic masks are generally embedded in exoplanet finder
instruments. Moreover, coronagraphic systems are coupled with a tip/tilt measurement
system to accurately stabilize the star throughput at the center of the coronagraph.

With such devices, it is possible to reach considerably better contrasts between
the host star and the exoplanets. Tested on a reference star, the achievable raw con-
trast (before processing) of VLT/SPHERE is in the range [5× 10−3; 5× 10−4] at 0.2
arcsec, and in the range [3× 10−4; 5× 10−5] at 1 arcsec, depending on the considered
wavelength in the Y-K Johnson’s band (Beuzit et al., 2019).

1.2.2.2.3 Observing strategies

In order to enhance the achievable contrast, several observation strategies have
been developed to exploit (mainly) temporal and/or spectral diversity by recording
several frames at different times and/or wavelengths. Hereafter, we present the general
principle of the main strategies. More details are given, when needed, throughout the
manuscript.

• Angular differential imaging (ADI, Marois et al. (2006)) is the most popular ob-
servation mode. It consists of tracking the observed target over time following
a particular strategy: the telescope derotator is tuned to maintain the telescope
pupil stable while the field of view rotates. Consequently, in the resulting 3-D
datasets (2-D + time), candidate companions (off-axis sources) follow an appar-
ent motion (due to the rotation of the Earth during the few hours of observation)
along a predictible circular trajectory around the host star while the telescope
pupil (including the spider arms that maintain the secondary mirror) remains
static.

• Spectral differential imaging (SDI, Racine et al. (1999); Marois et al. (2000))
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consists of recording images simultaneously in several spectral channels using for
instance an Integral Field Spectrograph (IFS). It produces, after a pre-reduction
step (see Section 1.2.2.3), 3-D datasets (2-D + spectral) in which the stellar
speckles due to diffraction are very similar from one wavelength to the other, up
to a chromatic scaling (Pueyo and Kasdin, 2007). After compensating for this
scaling, speckles are aligned while the candidate companions (originally aligned
in the multi-spectral cube) then follow a radial motion from one spectral channel
to another (Sparks and Ford, 2002).

• Angular and spectral differential imaging (ASDI, Sparks and Ford (2002)) is a
natural extension of ADI and SDI consisting of using those two complementary
modes of observation simultaneously. This hybrid observation mode produces
(after a pre-reduction step, see Section 1.2.2.2.4) 4-D datasets (2-D + time +
spectral), combining the separate motion of off-axis objects with respect to the
background signal obtained with ADI and SDI. After compensation of the chro-
matic scaling (as for SDI), the candidate companions describe a circular motion
over time and a radial motion along spectral channels. Using ASDI instead of
simple ADI brings a spectral diversity. The discrimination between the signal
from off-axis sources and the background signal due to stellar leakages is thus
improved. Also, ASDI datasets allow both the detection and the spectral char-
acterization of the exoplanets.

Several adaptations of these strategies exist and mainly differ on the way to capture
the diversity of information. Among these, the reference differential imaging (RDI;
Rameau et al. (2012)) consists of recording, in addition to frames from the target
star, frames from another star (with no known exoplanet) sharing close astrophysical
properties (i.e., age, temperature, brightness). This strategy is mainly used when no
pupil tracking mode is available on the planet finder instrument. Besides, this mode of
observation can be useful to investigate the area near the star since the processing of
the data does not lead to self-subtraction of the exoplanet signal (see Section 2.2). The
polarimetric differential imaging (PDI; Kuhn et al. (2001)) consists of measuring the
polarization state of light. This mode is mainly used for the study of extended objects
such as stellar disks since it is expected that such objects are polarized in a particular
direction (Langlois et al., 2018).

In the datasets produced by these different observation strategies, the (circular and/or
radial) apparent motion of the point sources with respect to the background is the
key to their detection. Speckles resulting from instrumental aberrations are strongly
correlated from one frame to the other. The images can thus be combined to cancel most
of the speckles while preserving part of the signal from the off-axis sources. Therefore,
the detectability of the exoplanets relies on the combined ability of the instrument and
the numerical processing to suppress the light from the host star and extract the signal
from the exoplanets from the remaining stellar speckles.

In the next section, we briefly present the most advanced high contrast instruments
used to record direct imaging sequences.
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1.2.2.2.4 Dedicated facilities

Observations can be performed both from the ground or from the space; each
strategy has its own specificities. In this thesis, we focus on ground-based observations
which are currently the gold-standard for the detection of faint exoplanets by direct
imaging due to the difficulty to embed large telescopes on space-based satellites 5.

Currently, two ground-based exoplanet finders are optimized with cutting-edge instru-
mental techniques for direct imaging observations: (i) the Spectro-Polarimetry High-
contrast Exoplanet REsearch (SPHERE, Beuzit et al. (2008, 2019)) mounted on one of
the four 8.2 m diameter telescope of the Very Large Telescope (VLT, Chile) operated
by the European Southern Observatory (ESO), (ii) the Gemini Planet Imager (GPI,
Macintosh et al. (2014); Greenbaum et al. (2018)) mounted on an 8.1 m diameter tele-
scope of the GEMINI Observatory (Chile) operated by a North and South American
countries consortium for astronomy. In particular, these two instruments offer spectro-
scopic observation capability in the near-infrared. SPHERE saw its first light in the
middle 2014, GPI at the end of 2013, both were opened to the scientific community in
2015.

The algorithms dedicated to exoplanet detection and characterization developed
during this thesis are tested 6 on datasets from the VLT/SPHERE instrument. Thus,
we briefly discuss its main characteristics. SPHERE is made of a common path instru-
mental unit (CPI) including the adaptive optics and the coronagraphic system, as well
as three science instruments, see Figure 1.5:

• The InfraRed Dual-band Imager and Spectrograph (IRDIS) is the main imager of
SPHERE dedicated to the detection of faint exoplanets. It produces 3-D (2-D
+ time) datasets for ADI observations (see Section 1.2.2.2.3). It benefits from
a large workable field of view (11 × 11 arcsec sampled on 1024 × 1024 pixel
images at a resolution about 0.01250 arcsec/pixel) and can be used to detect
close-by as well as farther away exoplanets (i.e., exoplanets with small or larger
angular separation with respect to the host star). It is equipped with a variety of
chromatic filters for observations in the Y-J-H-K Johnson’s bands (i.e., between
0.95µm and 2.35µm). In its standard mode, IRDIS conducts observations in a
dual-band imaging (DBI) mode, i.e. it records datasets on two close wavelengths
(dual ADI or ASDI at two wavelengths). The wavelengths are selected so that
the exoplanet signal be negligible at one of the two wavelengths (so that only the
background is captured at that wavelength, which can simplify the detection by
image subtraction). In practice, only the spectral channel in which the exoplanet
signal is expected to be maximum is considered, generally 7. Similarly to the DBI

5. Direct imaging from the space presents technical drawbacks but offers other advantages like the
absence of atmospheric turbulence. Space-based direct imaging facilities include the Hubble Space
Telescope (HST), the Spitzer telescope, and the forthcoming James Webb Space Telescope (JWST).

6. It is expected that these algorithms are general and can also work with datasets from differ-
ent direct imaging instruments. We have for example successfully tested them on datasets from the
VLT/NaCo instrument.

7. Joint processing requires to correct for the chromatic factor between the two spectral channels by
interpolations. We have observed that signal degradations caused by interpolations generally exceed
the gain brought by the consideration of only one additional spectral channel.
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Figure 1.5 – The exoplanet finder VLT/SPHERE. (a) view of an 8.2 m diameter unit
telescope of the VLT; (b) view of the SPHERE instrument, a man is on the bottom for
the scale; (c) schematic representation of the instrument: the infrared (IRDIS and IFS)
and the visible (ZIMPOL) imagers around the common path instrument (CPI) unit,
adaptive optics elements such as the atmospheric dispersion correctors (IR ADC for the
infrared channels, and VIS ADC for the visible channel), wavefront sensor (WFS), and
the deformable mirror (DM) are highlighted in purple, coronagraph systems (one per
instrument channel) are in dark blue, optical elements such as the derotator, the pupil
stabilization mirror (PSM), the differential tip/tilt mirror (DTTM), sensor (DTTS), and
plate (DTTP) are in orange, the different focal planes of the instrument are marked in
dark green, finally the incoming light from the telescope is marked in yellow. Credits:
(a) top part is adapted from ESO/F. Kamphues picture; (a) bottom part is adapted
from ESO/G. Hüdepohl picture; (b) is adapted from ESO/J. Girard picture; (c) is
adapted from Beuzit et al. (2019).
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mode, IRDIS can work in a dual polarimetry imaging (DPI) mode, mainly used
for morphology studies of stellar disks (Garufi et al., 2017). IRDIS also has a
long-slit spectroscopy (LSS) mode, mainly used to derive the SED estimations of
detected exoplanets having a modest level of contrast (Vigan et al., 2008). Finally,
IRDIS can be used in a classical imaging (CI) mode (i.e., without coronagraph)
for multi-purpose imaging.

• The Integral Field Spectrograph (IFS) is the second imager of SPHERE dedicated
both to the detection (especially at small angular separations) and characteriza-
tion of faint exoplanets. It is based on the use of a lenslet array and dispersing
elements (forming the integral field unit), placed in a focal plane of the instru-
ment. Light passing through each lenslet is dispersed to form a spectrum on the
science camera. This principle allows recording multi-spectral information on a
2-D sensor. A pre-reduction step is then performed by mapping raw observations
of the IFS camera into a multi-spectral cube (Pavlov et al., 2008). After such a
pre-preprocessing, a 4-D (2-D + time + spectral) dataset is obtained from the
ASDI observations (see Section 1.2.2.2.3). The IFS instrument benefits from a
smaller workable field of view than IRDIS (1.5×1.5 arcsec sampled on 290×290
pixels images with a pixel size of 0.00746 arcsec) but offers a spectral diversity
since the resulting ASDI datasets are made of L = 39 spectral channels in the Y-J
(i.e., between 0.96µm and 1.34µm) or Y-H (i.e., between 0.97µm and 1.66µm)
Johnson’s band. This spectral diversity is crucial to characterize the detected
candidate companions by analysis of their SED.

• The Zurich IMaging POLarimeter (ZIMPOL) is the visible imager of SPHERE.
It covers wavelengths between 0.51µm and 0.90µm and can work both in ADI,
SDI, and ASDI observations strategies within DBI, DPI, and CI modes. It is
mainly used for morphology study of both stellar disks (preferentially in DBI
and DPI modes, see van Boekel et al. (2017) for a study case example) or other
extended objects such as asteroids (preferentially in CI mode, see Fétick et al.
(2019) for a study case example).

In this thesis, we deal with both ADI datasets from the SPHERE-IRDIS imager working
on a DBI mode for the detection of exoplanets, and ASDI datasets from the SPHERE-
IFS imager for the detection and characterization of exoplanets.

There are several secondary facilities dedicated to the detection and characterization
of exoplanets by direct imaging. Among these, we can cite the Subaru Coronagraphic
Extreme Adaptive Optics (SCExAO, Jovanovic et al. (2015); Currie et al. (2017)) in-
strument at the SUBARU telescope (Hawaii) operated by the National Astronomical
Observatory of Japan, and the L/M band InfraRed camera (LMIRcam, Leisenring et al.
(2012); Rodigas et al. (2012)) system at the Large Binocular Telescope Interferometer
(USA) operated by the NASA. Other facilities include the Magellan Adaptive Optics
(MagAO, Morzinski et al. (2014); Wagner et al. (2018)) instrument at the Las Campanas
Observatory (Chile), the Near Infrared Camera-2 (NIRC2, Howard et al. (2010); Mawet
et al. (2019)) instrument at the Keck Observatory (USA), and the Project 1640 (P1640,
(Oppenheimer et al., 2012; Nilsson et al., 2017)) at Palomar Observatory (USA), all
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operated by consortia of North American universities. Finally, the multi-purpose Nas-
myth Adaptive Optics System with COudé Near Infrared CAmera (NAOS-CONICA,
so-called NaCo, Lenzen et al. (2003); Currie et al. (2013)) was the main exoplanet
hunter instrument of the ESO before SPHERE opened to the European community in
2015. NaCo was equipped with the previous generation of adaptive optics systems and
was operating on an 8.2 m diameter telescope at the VLT until the end of 2019.

These dedicated instruments lead to several major discoveries, some of which are il-
lustrated in Figure 1.6. Among these, we can cite the discovery in 2004 with the
VLT/NaCo instrument of 2M1207 b (estimated mass between 3 MJ and 10 MJ), the
first directly observed exoplanet orbiting a brown dwarf (Chauvin et al., 2004). A few
years later, the first directly imaged planetary system was unveiled: 3 exoplanets (HR
8799 b, c, d) orbiting the HR 8799 star were discovered from observations of the Keck
and Gemini Observatories (Marois et al., 2008). Two years later, a fourth exoplanet
(HR8799 e) was detected at a closer angular separation (about 0.37 arcsec) in this
stellar system (Marois et al., 2010).

More recently, we can cite the unprecedent VLT re-detection of the exoplanet β
Pictoris b at a very small angular separation (about 0.14 arcsec) on the northeast part
of its orbit 8 after its conjunction with its host star, a two years period during which it
was no longer detectable (Lagrange et al., 2019a). We can also cite the first discovery
of an exoplanet (PDS 70 b) in formation inside a protoplanetary disk 9 (Müller et al.,
2018). A few weeks ago, a second exoplanet in formation inside the PDS 70 accretion
disk has been found at the VLT by a joint analysis of data from the MUSE 10, SPHERE,
and NaCo instruments (Haffert et al., 2019).

1.2.2.3 Processing pipeline and related signal processing issues

In this section, we summarize with Figure 1.7 the typical direct imaging pipeline. It
starts with the direct imaging of an astrophysical scene (box 1 ) with a high contrast
imager mounted on a telescope conducting observations (box 2 ) of the scene. The raw
datasets (box 3 ) produced with ADI and/or ASDI mode(s) should be calibrated. A
so-called cosmetic calibrations step (box 4 ) performs several corrections: bad pixels
identification and interpolation 11, thermal background subtraction, flat-field correc-
tion, anamorphism correction, true-North alignment, frame centering, compensation
for spectral transmission, frame selection, and flux normalization. Such calibrations
are done by processing chains dedicated to a specific instrument (e.g., see Maire et al.
(2016) for SPHERE). Since ASDI observations are obtained with an IFS (see Sections
1.2.2.2.3 and 1.2.2.2.4) that uses a 2-D sensor to capture a spatial and spectral infor-

8. β Pictoris b was initially detected by direct imaging with NaCo (Lagrange et al., 2009, 2010).
Between 2009 and September 2018 it was systematically imaged on the southwestern part of its orbit.

9. A protoplanetary disk (or circumstellar disk) is a rotating stellar disk made of gas and/or dust
surrounding young stars. Exoplanets can form inside these disks by, for example, accretion effect of
the matter (in this case, the denomination accretion disk is also used).

10. MUSE if a spectroscopic instrument dedicated to the investigation of the deep sky, see Section
1.4.3.

11. In practice, some bad pixels displaying large fluctuations only on a few frames remain after
this processing. These can be attributed to either too conservative selection criteria, the temporally
evolving behavior of the detector bad pixels or cosmic rays.
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Figure 1.6 – Examples (after processing) of direct imaging discoveries: (a) composite
image of the first directly imaged exoplanet 2M1207 b (adapted from Chauvin et al.
(2004)); (b) the first directly imaged stellar system HR 8799, the bottom panel is a
composite image (adapted from Marois et al. (2008)); (c) the exoplanet β Pictoris b
before and after conjunction with its host star (adapted from Lagrange et al. (2019a));
(d) the exoplanets PDS 70 b and c embedded in the accretion disk surrounding their
host star (adapted from Haffert et al. (2019)).
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Figure 1.7 – Schematic representation of the typical direct imaging pipeline. The red
frame emphasizes the part of the pipeline that is addressed by this thesis.
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Figure 1.8 – Examples of frames from a calibrated ASDI datasets obtained with the
VLT/SPHERE-IFS instrument on the HR 8799 star. The star symbol is for the star
center, the solid straight circle close to the image center is for the coronagraphic mask
(no source can be detected below this limit), and the gray dashed lines represent the
trajectories of three known exoplanets (HR 8799 c, d, e). The data intensity is encoded
with false colors for the selected wavelengths.
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mation, a pre-reduction step (box 5 ) maps raw observations of the IFS camera into
multi-spectral cubes. At the end of this step, the datasets (box 6 ) are formed by tem-
poral (or temporo-spectral for ASDI) sequences of calibrated coronagraphic images. In
this thesis, we consider both ADI and ASDI calibrated datasets. The following step
consists of the reduction (red box 7 ), i.e. the processing of these datasets with ded-
icated algorithms aiming to detect and characterize the potential exoplanets orbiting
the imaged star. Four key outputs should be retrieved from the reduction step: a list of
detections with the confidence associated to each one, the achievable contrast; i.e. the
minimum flux of an exoplanet to be detected at a given confidence level, the astrometry
and photometry; i.e. the subpixel location and the unbiased flux or spectral energy
distribution (SED) for ASDI observations of each detected candidate companions. This
thesis is dedicated to the development of such algorithms. Finally, as detailed in Sec-
tion 1.2.2.1, several physical properties (box 8 ) of the detected candidate companions
can be estimated. In practice, this process is generally repeated for at least two dif-
ferent observations separated by several months to increase the confidence about the
conclusions on the status of the detected source.

Before closing this part, we want to emphasize the processing issues related to
the detection and characterization of exoplanets (red box 7 of Figure 1.7) from direct
imaging datasets. Figure 1.8 gives examples of calibrated ASDI frames (box 6 of Figure
1.7) from a dataset obtained with the VLT/SPHERE-IFS instrument on the HR 8799
star (see Table 6.2 for the observation logs). The trajectories of three exoplanets whose
detection are reported in the literature (Marois et al., 2008, 2010) are symbolized by gray
dashed lines. In spite of the optical corrections of exoplanet-hunter instruments and to
the care given in the conduction of the observations, the data remain largely dominated
by a strong and spatially correlated and speckled background due to light from the
host star (stellar leakages). Thus, the exoplanets are hardly detectable (not visible
by visual inspection of the data). This issue is even more acute when the exoplanets
are located closer to the host star and/or when the parallactic rotation of the field
of view over time is limited. Elaborate processing methods combining multi-temporal
and/or multi-spectral data play a central role to reach the ultimate detection limit
achievable by direct imaging instruments. This thesis attempts to propose detection
and characterization methods for optimal processing of the datasets from exoplanet
hunter instruments.

• The detection and characterization of exoplanets by direct imaging is based
on the observation of a star and its close environment by dedicated instru-
ments.

• In spite of the optical corrections (adaptive optics and coronagraph) and the
care taken in the conduction of the observations, the recorded datasets are
dominated by a nonstationary and spatially correlated background mainly
due to stellar leakages.

⇒ The processing of the datasets by dedicated algorithms is mandatory. These
algorithms exploit the predictable motion of the (potential) exoplanets in the

temporal or temporo-spectral series of images.

Direct imaging issues

25



Signal processing challenges for object detection and
characterization in astronomy and microscopy

1.3 Detection and characterization of microscopic
objects

In this section, we first briefly discuss the main microscopy methods conventionally
used for the observation and study of microscopic objects, focusing on their general
principle, advantages, and drawbacks. Then, we give a particular emphasis on the
holographic microscopy technique, which is the microscopy modality investigated in
this thesis. Like in Section 1.2, only a short introduction to the subject is given in this
part. The interested Reader will find a more complete presentation in reference books
and reviews such as Murphy (2002); Stephens and Allan (2003); Black (2008), or in
other references.

1.3.1 Optical microscopy modalities

Since Galileo Galilei’s (attributed) claim that he was able to focus his telescope
to observe small objects close up, several modalities of microscopy imaging have been
invented, motivated in particular by the study of biological samples. Microscopy tech-
niques can be split into three categories: (i) light-microscopy that observes samples via
the illumination with visible, ultraviolet or infrared light and the collection of reflected,
refracted or diffracted light, (ii) electron-microscopy that replaces the light beam by an
electron beam, and (iii) scanning-probe microscopy that scrutinizes the surface of the
samples with a mechanical probe. There are plenty of techniques derived from these
three general families, and in the following, we focus on light-microscopy techniques.
We briefly describe the general principles of the main light-microscopy methods: bright
field, dark field, phase contrast, polarization, and fluorescence microscopy.

1.3.1.1 Bright field

Bright field is the most simple microscopy technique. It consists of illuminating
samples by a light (white or in a spectral band in the visible, ultraviolet or infrared
range), and to record the optical attenuation of the light passing through the dense
parts of samples, see Figure 1.9(a). The resulting image takes the form of dark shapes
(corresponding to the image of the samples) on a bright background field (corresponding
to the directly transmitted light). Adjustable optical elements such as a condenser and
groups of lenses are incorporated in the setup for beam forming, as well as amplifying,
magnifying and focusing the image of the samples on the sensor.

The simplicity of the setup is the main advantage of this technique. However, it offers
only a limited contrast (i.e., a low output signal-to-noise ratio between the image of
the samples and the background) and resolution due to the out of focus objects located
on other planes than the focused objects that blur the image. Besides, transparent or
translucent parts of the objects, like the ones encountered in the internal structures of
cells, should be stained (e.g., with methylene blue) to be visible, a chemical process
that can alter the samples.
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Figure 1.9 – Illustration of the principle of the main optical light microscopy techniques:
(a) bright field; (b) dark field; (c) phase contrast; (d) polarization; (e) fluorescence; (f)
(lensless) holography. (a)-(e) are adapted from animations supported by the French
CNRS (last access: 2019-08-23).
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1.3.1.2 Dark field

Dark field microscopy is an improvement over the bright field method. It consists of
adding a phase ring, namely a patch stop following the same spirit than the Lyot stop
used in coronagraphy (see Section 1.2.2.2.2), between the light source and the samples
to deviate the part of the incoming light that is directly transmitted in bright field
microscopy, see Figure 1.9(b). In other words, the unscattered beam is discarded and
does not take part in the final image. The resulting image takes the form of bright
shapes (corresponding to the light passing through the samples) on a dark background
field (since directly transmitted light is reduced).

Observations conducted with dark field microscopy benefit from a significantly better
contrast than bright field at the cost of more powerful illumination. Besides, transparent
or translucent parts of the objects of interest can be visible without staining, allowing
the direct study of biological materials. However, this technique does not improve the
resolution of bright field microscopy.

1.3.1.3 Phase contrast

With phase contrast, a ring-shaped light beam is created by a patch stop, like in
dark field microscopy. The light then passes inside optical elements to focus on the
samples. Part of the incoming light is scattered by the samples while the majority of
the light is transmitted. Phase contrast mainly differs from the dark field microscopy by
the addition of a phase plate between the samples and the sensor, see Figure 1.9(c). The
scattered light crosses a thicker part of the phase plate than the unscattered background
light, thus shifting its phase compared to the directly transmitted light. Due to this
phase shift, the two beams (of different amplitudes) interfere constructively and create
a brightness change, namely a phase contrast on the sensor. This method was invented
by F. Zernike for which he was awarded by the Physics Nobel Prize in 1953.

Phase contrast microscopy offers significantly better contrast than dark field mi-
croscopy, so that the internal structures of living cells can be studied without staining.
However, the resolution remains limited.

1.3.1.4 Polarization

Polarization microscopy is based on a similar setup than bright field microscopy.
Two additional polarizers are placed respectively between the source and the sample as
well as between the sample and the sensor. The first polarizer selects a polarization,
i.e. a particular orientation among all orientations of the incoming wavefront. This
polarized light is then focused on the sample by optical elements. The light scattered by
the sample encounters the second polarizer, namely the analyzer, having an orthogonal
polarization orientation compared to the first one (i.e., no light passes through the
analyzer in the absence of samples). Only scattered light whose polarization has been
modified by the samples passes through the analyzer and participates to the image
formation on the sensor, see Figure 1.9(d).

Since the recorded intensity depends on the sample orientation, polarization mi-
croscopy can be used to derive morphology information (e.g., thickness) about unstained
specimens with an improved resolution compared to bright field microscopy. However,
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this technique can only be used with birefringent samples, i.e. samples for which the di-
rection of the light inside the samples (directly related to the refractive index) depends
on the polarization of the incoming light.

1.3.1.5 Fluorescence

Fluorescence microscopy is one of the gold-standard methods for the observation,
detection, and characterization of microscopic biological samples. It is based on the
recording of fluorescent light emitted by the samples of interest. Fluorescence is a
physical property of some molecules (so-called fluorophores) capable of emitting light
at a specific wavelength λem when they are excited by an incident light at a different
wavelength λin. This fluorescence can be a natural property of the samples, but the
natural presence of fluorophores is generally rare. Thus, fluorescence should be en-
forced by complex biochemical processes; typically by fixation of fluorescent antibodies
on targeted proteins of the samples. Another solution is to induce the fluorescence of
a specific part of the (biological) samples by genetic manipulation. The basic fluores-
cent microscopy setup consists of illuminating the sample by a monochromatic light
at λem (wavelength selection performed with an input filter), and recording the emit-
ted light induced by the fluorescence of the fluorophores, see Figure 1.9(e). A set of
optical elements (chromatic output filter and dichroic filter) is used to discard the re-
flected and directly transmitted beam from the light path before the sensor. In practice,
the samples are generally marked with different fluorophores, each one targeting spe-
cific components of the samples and reacting/emitting at specific wavelengths. The
input/output filters are selected in accordance with the considered fluorophores. By
multiplying the recording at different wavelengths (by changing the input/output fil-
ters), it is possible to produce, after image concatenation, (false) colored images in
which each color signs the presence of a specific type of components inside the samples.

Fluorescence microscopy offers good contrast and one of the best resolution (typi-
cally ≤ 1µm) achievable with optical lighting microscopy techniques. It is particularly
used in biology since it is adapted to the observation and detection of targets at dif-
ferent scales; from multi-cells arrangements to single components of a single cell. The
main drawback of this technique is related to the toxicity due to both the biochemical
marking and the emitted fluorescence light (generally in the ultraviolet) that degrades
the functions of living cells. Thus, they are studied on typically short periods of times,
making difficult the observations of their growth or evolution, for example in an incu-
bator.

Several adaptations of this general principle have been considered to handle some of
these drawbacks:

• Confocal microscopy consists of adding two pinholes, respectively located after
the light and before the sensor (in the focal plane). The first pinhole focuses the
light beam on a small sub-part of the samples while the second pinhole selects
only the light coming from the imaged sub-part of the samples. The entire 3-D
samples are scanned by shifting either the samples or the optical/lighting parts of
the setup. After numerical processing, a fluorescence map of the whole samples
is obtained. The contrast is generally further improved with this technique since
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each sub-part of the samples benefits from the entire lightening power. However,
for the same reason, the photo-toxicity increases, also.

• With light-sheet microscopy, the point-by-point scanning is replaced by a line-by-
line scanning, perpendicularly to the direction of observation. This modification
reduced the photo-damage compared to confocal microscopy, while the contrast
and resolution remain almost unchanged.

1.3.2 In-line holographic microscopy as a method of choice

A common point of the light microscopy techniques presented in Section 1.3.1 is the
recording of in-focus images of the samples to be observed, detected and characterized.
The focusing is reached by the use of multiple optical elements such as lenses, as depicted
by Figure 1.9(a)-(e). Holographic microscopy differs significantly by recording out of
focus images containing information about the phase of the objects, which are not
directly interpretable. The detection and characterization of the objects are possible
only after a processing step. In this section, we describe the holographic microscopy
principle, paying particular attention to its specificities in terms of instrumentation,
related challenges, and data analysis.

1.3.2.1 General principle and characteristics

In-line holographic microscopy consists of recording out of focus images of the sam-
ples illuminated by a (quasi) coherent and plane 12 wave which is diffracted by the
samples, see Figure 1.9(f). The diffracted wave can be seen as the sum of all the spheri-
cal waves emitted by all the sub-parts of the samples, with a complex-valued amplitude
depending on the local transmission of the samples and the complex-valued amplitude
of the incident wave, as classically described by the Huygens-Fresnel principle (Good-
man, 2005). After free-space propagation over the distance zp, the diffraction pattern
produced by the samples is recorded: the hologram, see Figure 1.9(f).

This method was invented by D. Gabor (Gabor, 1948) for which he was awarded the
Physics Nobel Prize in 1971, 23 years after its initial statement. It can be noted that in
1948, the coherence of available light sources was extremely limited so that holography
remained only a theoretical concept. Besides, the holograms were “recorded” or taken
on photographic plates. With the development of the laser sources in the 60-70s, the
first applications of holography became possible, in particular for velocimetry studies
of small droplets spread in a volume (Goodman and Lawrence, 1967; Royer, 1974). In
the following, we discuss only methods based on the analysis of digital holograms, i.e.
holograms recorded by a digital camera.

This so-called in-line holographic configuration presents several advantages com-
pared to the other microscopy modalities presented in Section 1.3:

• From a technical point of view, the main advantages are probably the simplic-
ity, compactness, and robustness of the setup. Indeed, no mechanical part (such
as accurate microscope stage numerically commanded to focus the image), or

12. In practice, the incident wave is not strictly planar but slightly divergent, thus magnifying the
samples.
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optical part (such as lenses magnifying the samples) are required. The cost-
effectiveness of the setup can be further improved by using (quasi)-coherent laser
diodes instead of conventional lasers as well as classical complementary metal
oxide semi-conductor (CMOS) based sensors widespread in common multimedia
devices instead of finer calibrated cameras (Garcia-Sucerquia, 2016; Rawat et al.,
2017). Such a design leads to a very affordable and versatile setup, capable of
imaging a large variety of samples in different experimental conditions. For ex-
ample, it proves to be well suited to follow the growth and evolution of unstained
cells in an incubator (Dolega et al., 2013; Kesavan et al., 2014), a very tricky task
with other microscopy modalities.

• From a signal processing point of view, a single 2-D hologram gives access to
information about the whole imaged volume. The 3-D location and the physical
properties of the samples of interest are encoded in a modulated signal (i.e., the
interferences fringes) spread over the whole field of view. The spatial spread of
the information confers intrinsic robustness to this method, e.g. against aberrant
local data.

Based on the general holographic principle, several setup configurations have been pro-
posed (Rastogi and Sharma, 2003; Kreis, 2006). They mainly differ in the course of the
object and reference waves as well as in the angle between the two incident waves on the
sensor. For example, in the so-called off-axis configuration (Leith and Upatnieks, 1962),
a reference beam and an object beam follow different paths and are recombined before
the sensor, like in a Mach-Zehnder type interferometer. The interferences between the
reference wave and the wave diffracted by the samples are recorded on the sensor.

This configuration is of particular interest since it gives access, after demodulation
of the interferences, to the complex-valued amplitude (i.e., amplitude and phase) of
the diffracted wave. This information is of primary interest for two reasons: (i) the
interpretation of the recorded hologram is easier (see Section 1.3.2.2.1), (ii) it gives
access to the optical thickness of the samples. However, this setup requires careful
calibrations of the length of the light paths and is quite sensitive to micro-vibrations
that cause large fluctuations of the intensity of the holograms. Also, it is less compact
and cost-effective than the in-line setup due to the optical components (e.g., beam
splitters and mirrors) that compose it.

In this thesis, we focus on the detection and characterization of small objects for op-
tical metrology applications with cost-effective and robust methods. For these reasons,
in the following, we use the in-line holographic configuration exclusively.

1.3.2.2 Challenges of holographic microscopy

As discussed in the previous section, the recorded holograms are not directly inter-
pretable images of the samples since they are out-of-focus. The challenge of holographic
microscopy lies in the processing, namely the reconstruction of the holograms, i.e. the
inference of physical properties about the objects from the holograms. In the following,
we illustrate from an application point of view the main methodological points that are
used in the following of the manuscript. More technical details are given when needed
throughout the manuscript.
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Figure 1.10 – Hologram reconstructions based on light back-propagation. The left-
most part is a hologram of a circular deposit of chromium located at zp ≃ 0.3 m
from the sensor plane. The rightmost part gives reconstructions at distances z ∈
{0.1 m, 0.2 m, 0.3 m} from the sensor. The red frames are zooms around the object
of interest.

1.3.2.2.1 Extracting relevant information by numerical reconstruction

The conventional approach to reconstruct a hologram is based on simulations of
the reverse propagation (so-called back-propagation) of the light, starting from the
hologram recorded on the sensor plane towards the object plane located at a distance
zp from the sensor plane (Schnars and Jüptner, 2002; Goodman, 2005). Figure 1.10
gives an example of hologram reconstructions based on the light back-propagation
method. It shows that the circular object of interest is progressively focusing when
the distance z in the light back-propagation approaches the distance zp of the object
plane. Hologram back-propagation is a “numerical focusing” method. It can be used
to reconstruct plane by plane the imaged 3-D volume. Then, the 3-D volume can
be characterized, i.e. the objects of interest are segmented, located, and sized with
conventional image processing methods, like segmentation techniques (Kreis, 2006).
While being simple, the accuracy of such an approach is generally limited due to
artifacts like spatial distortions close to the image borders and spurious diffraction
patterns known as twin images impacting the reconstructed holograms (Kreis, 2006),
see Figure 1.10. These artifacts are caused by the loss of the phase information
during the acquisition 13. More elaborated processing methods should be used to infer
accurate detection and characterization of the imaged objects, in particular for the

13. Digital sensors record only intensity information, not the complex-valued amplitude of the wave-
front. Besides, with an in-line configuration, the absence of a reference arm (like the one in an off-axis
configuration) prevents the recovery of the complex-valued amplitude by interferences demodulation.
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Figure 1.11 – Parameter-based hologram reconstructions of spherical beads. (a) A holo-
gram of calibrated polystyrene beads (Thermo Fisher Scientific™, 5.0 ± 0.2µm
radius) in immersion in oil (Cargile™, A) between a microscope slide and cover-slip
at approximatively zp = 0.02 m from the sensor. The magenta frames are zooms around
a selected region of interest (ROI) of the hologram and the residual hologram after sub-
traction of the fitted image model (only the six beads of maximal intensity in the ROI
are modeled here). The white crosses represent the estimated center of the detected
beads. (b) View of the reconstructed 3-D volume; {xp, yp, zp} stand for the 3-D coor-
dinates, the size of the blue bubbles is proportional to the estimated radius rp of the
detected objects. (c) Real part of the estimated complex-valued refractive index of 9
polystyrene beads segmented from oil and/or air bubbles based on the estimated radius.
The three graphs correspond to different illuminations, respectively red (Thorlabs™,
CPS635R, λnom

R = 635 nm), green (Thorlabs™, CPS532, λnom
G = 532 nm), and blue

(Thorlabs™, CPS405, λnom
B = 405 nm). The horizontal magenta lines stand for the

ground-truth refractive index values provided by the manufacturer.

Figure 1.12 – Inferring estimation accuracy with the parameter-based method. Ac-
curacy scores (inversely proportional to the CRLBs) as a function of the distance zp
between the object plane and the sensor for two parameters of interest of the Lorenz-
Mie model: the radius rp of the beads and the real part Re(nR

p ) of their complex-valued
refractive index nR

p . Here, the polystyrene beads (Thermo Fisher Scientific™) are
calibrated at 4.20 ± 0.21µm of radius illuminated by a red laser diode (Coherent™,
OBIS 660LX/FP, λnom

R = 661 nm). Adapted from Olivier et al. (2018).
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Figure 1.13 – Image-based hologram reconstructions. (a) hologram of a planar target;
(b) reconstruction based on inverse-problem; (c) reconstruction based on light back-
propagation. Adapted from Denis et al. (2009).

Figure 1.14 – Hybrid parameter-based and image-based reconstructions of evaporating
diethyl ether droplets. The intensity on the sensor plane given in (a) is the combination
of the contribution of the spherical core of the droplets given in (b) and the contribution
of the vapor plumes given in (c). Same decomposition for the phase on the sensor plane
in panels (d) to (f). Adapted from Berdeu et al. (2019).
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targeted optical metrology applications.
Maximum likelihood methods are very powerful to derive accurate reconstructions

of the holograms. They consist of maximizing, with an inverse problem approach, the
likelihood of the recorded data (i.e., the hologram) with respect to an image formation
model 14. This general method can be used with different reconstruction frameworks,
depending on the nature of the objects and the targeted applications:

• In a parameter-based framework, the model is a physics-based model of the
diffraction pattern produced by an object of a given shape. In this case, the
model depends only on a few parameters to be estimated. In particular, mod-
els describing the intensity and/or the complex-valued amplitude of a wavefront
diffracted by spherical objects are of primary interest since they correspond to a
large variety of studied samples like beads and bubbles in fluid flow mechanics or
cocci-type cells in biomedical imaging. Among these, we can cite the Thompson
model (Tyler and Thompson, 1976) adapted to model the diffraction patterns
of opaque 15 spherical objects, or the more general Lorenz-Mie model (Gouesbet
and Gréhan, 2011) adapted to opaque, transparent, and absorbent/phase spheri-
cal objects. This methodological framework firstly introduced in the holographic
community by Soulez et al. (2007a,b) is very accurate to characterize the size
and the 3-D locations of beads for fluid-flow applications. The implementation
is based on two steps: first, the objects are detected with a discrete matching-
pursuit procedure; secondly, the parameters characterizing the detected objects
are refined in a continuous local optimization procedure. Since then, several adap-
tations and improvements have been considered, such as the optimal processing
of multiple detections (Gire, 2009) or acceleration based on a multi-resolution
decomposition (Seifi et al., 2012). Such approaches are already used in several
fields (see Mudanyali et al. (2010); Greenbaum et al. (2012) for some trends)
where the accurate estimation of 3-D location and size over time is crucial, such
as in the study of fluid flows (Sentis et al., 2018; Middleton et al., 2019; Go et al.,
2019) or biomedical imaging (Rostykus et al., 2018; Allier et al., 2019; Kemper
et al., 2019).

Figure 1.11 gives an example of hologram reconstructions 16 following this
parameter-based approach. Calibrated polystyrene beads are imaged, detected,
and characterized in terms of 3-D location, size, and complex-valued refractive
index 17. In particular, we observe that the estimations of the refractive index of
the beads are in good match with the calibrated values delivered by the manu-
facturer. After subtraction to the hologram of the fitted model, the hologram is

14. The optical model can depend on a few parameters (like in an estimation framework) or on
millions of parameters (like in a reconstruction framework).

15. In practice, the Thompson model can also be used to describe diffraction patterns of transparent
or absorbent spheres behaving as opaque when sufficiently far from the sensor plane.

16. I realized the experiments and processing of case study examples depicted in Figure 1.11. I took
part in the data processing of the experiments shown in Figure 1.12, see Olivier et al. (2018).

17. The optical refractive properties of a medium can be defined by its complex-valued refractive
index np, where the real part is related to its refractive property, and the imaginary part is related to
its absorbance. For dispersive medium (e.g., polystyrene), the index np depends on the wavelength of
the incident light.
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dominated by the residual background structures, which is a qualitative sign of
the good match between the estimated model and the data.

Parameter-based methods can also be used to derive the minimal theoretical
variance of the estimators of each parameter via the Cramér-Rao lower bounds
(CRLBs, Kendall et al. (1948)). For holographic microscopy applications too,
the CRLBs are efficient tools to derive lower-bounds of the achievable accuracy
(Fournier et al., 2010). Conversely, CLRBs can predict, in a theoretical study
preceding the experimentation, the estimation accuracy resulting from a partic-
ular configuration of the setup (e.g., distance zp of the samples to the camera,
choice of the sources). The configuration minimizing the CRLBs is generally
chosen. Figure 1.12 gives a case study example consisting of determining, before
experimentation, the best axial distance zp of the object plane to maximize the
accuracy on the estimated radius and refractive index of polystyrene calibrated
beads of known size. This study shows that the accuracy on these two param-
eters is simultaneously maximized when the samples are placed in the range
[45µm; 100µm] from the sensor plane, a non-intuitively result.

When the imaged objects are of more complex shape, the recorded interference
patterns cannot be easily described by a parameterized model and alternative
reconstruction frameworks should be considered.

• In an image-based framework, a whole image of the object is reconstructed at
a chosen plane by numerical inversion of the hologram formation model in a
Bayesian framework (Denis et al., 2009; Brady et al., 2009; Marim et al., 2010).
The resulting minimization problem is generally ill-posed and ill-conditioned.
Physical priors (e.g., object sparsity, object sharpness, non-emitting object,
smooth background) can be added in the form of regularization terms or bound
constraints to promote a better solution. Figure 1.13(a) gives an illustration of
the reconstructed opacity distribution in the object plane with this type of ap-
proach compared to a classical reconstruction based on light back-propagation.
The inverse-problem-based reconstruction is of significantly better quality than
the reconstruction based on light back-propagation. Methods based on this
framework are now intensively used in holographic microscopy, in particular to re-
construct transmittance, and/or phase plane(s) of microscopic biological samples
(Hervé et al., 2018; Jolivet et al., 2018; Allier et al., 2019).

• A recent work done at the Hubert Curien Laboratory 18 shows that both the
parameter-based and the image-based frameworks can be combined to reconstruct
the phase of hybrid-shaped objects such as evaporating diethyl ether droplets.
The contribution of the spherical core of the droplets is reconstructed with a
parameter-based framework based on the Lorenz-Mie model, while the contribu-
tion of the surrounding vapor plumes is reconstructed with a regularized image-
based framework, see Figure 1.14.

Finally, new methods based on machine-learning (Bishop, 2006) or deep-learning
(LeCun et al., 2015) techniques are regularly emerging to detect and classify micro-

18. I took part on the acceleration of the parameter-based part of the reconstruction method, see
Berdeu et al. (2019).
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scopic samples, in particular, cells according to their type or healthy state for new ways
of diagnosis (Chen et al., 2016; Hejna et al., 2017; Kim et al., 2018; Liu et al., 2019),
or colloidal particles according to their refractive index and/or size for fluid flow study
(Grier et al., 2017; Hannel et al., 2018). They are applied to reconstructions of holo-
grams previously obtained, for example, from maximum likelihood methods, or directly
to the recorded holograms. In both cases, the generation of the learning base generally
requires complex experimentations to cover diverse setup configurations and samples
specificities.

In this thesis, we focus on processing methods that improve the sensitivity and accuracy
of parameter-based maximum likelihood approaches in the context of optical metrology.
We also propose some calibration methods that can be used to improve the accuracy
of image-based reconstructions.

1.3.2.2.2 Experimental setups

In this thesis, we mainly consider datasets recorded with a lensless in-line holo-
graphic setup. This means that no optical devices (such as lenses) are inserted in
the light path, as described in Section 1.3.2. Figure 1.15 gives an illustration of
the experimental lensless setup built at the Hubert Curien Laboratory before my
thesis started, and that we use to produce experimental datasets. It is composed
of three laser diodes (red, green and blue) that can be switched on alternatively or
simultaneously. When several laser diodes are used simultaneously, their intensities
are measured with a portable spectrometer and adjusted before experimentation with
density filters. The light produced by each source is combined in a common light path
by means of beam splitters before entering a mono-mode light fiber illuminating the
object of interest. After free-space propagation of the diffracted wave, the diffraction
pattern produced by the object is recorded by a CMOS sensor. Two CMOS sensors
(monochromatic and color) can be mounted on the setup so that both monochromatic
and color holograms can be recorded with this setup. Besides, the distance between
the object and the sensor can be (roughly) adjusted with a manual translation stage.
The main advantages of this setup are related to its simplicity and cost-effectiveness:
the laser sources are standard laser diodes (about 130e per laser diode), and the sensor
is a basic CMOS sensor (about 30e) not mounted in an optical box. The total cost of
the setup, including the arms and supports, is about 800e 19.

In specific parts of this thesis, we also consider datasets recorded with an in-line
holographic setup equipped with a microscope objective. Including a microscope objec-
tive significantly improves the resolution and makes it possible to study micron-sized
objects. We give more details about this configuration when needed throughout this
thesis.

1.3.2.3 Processing pipeline and related signal processing issues

19. For comparison, the cost of a commercial bright field numerical microscope equipped with an
electronic stage control is generally higher than 10,000e .
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Figure 1.15 – Illustration of the lensless holographic setup used in this thesis. It is
made of three laser diodes; one red (Thorlabs™, CPS635R, 1.5 mW), one green
(Thorlabs™, CPS532, 4.5 mW) and one blue (Thorlabs™, CPS405, 4.5 mW); and
a 12-bit CMOS sensor (Basler™, daA2500-14um monochromatic sensor, daA2500-
14uc color sensor) with A × B = 1944 × 2592 pixels with a 2.2 µm pitch. The right
part gives a schematic representation of the setup presented in the left part.
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Figure 1.16 – Schematic representation of the typical holographic microscopy pipeline.
The red frame emphasizes the part of the pipeline that is addressed by this thesis.

Figure 1.17 – Examples of holographic frames. The object of interest (see inset) is a
polystyrene bead in suspension in water, following a Brownian motion over time. False
colors (red, green, blue) emphasize that multi-spectral data can be eventually recorded.
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In this section, we summarize with Figure 1.16 the typical holographic microscopy
pipeline. It starts with the observation of a microscopy scene (box 1 ) with a
holographic setup (box 2 ). The raw datasets (box 3 ) can be optionally calibrated
(box 4 ) with dark, flat and bias corrections. At the end of this step, the datasets are
formed by temporal (or temporo-spectral) sequences of holograms. The following step
consists of the reconstruction step (red box 5 ), i.e. the processing of the holograms
with dedicated algorithms aiming to detect and characterize the imaged samples.
Contrary to the direct imaging pipeline presented in Figure 1.7, in holographic
microscopy, the estimation of the physical properties of the samples is performed by
the reconstruction step itself. In practice, additional information can be retrieved
from the estimated quantities. For example, the velocity of beads in a fluid flow is
deduced from their estimated 3-D locations over time, giving information about the
physical properties of the fluid, like its viscosity. These subsequent interpretations are
performed by experts and are out of the scope of this thesis.

Before closing this part, we want to emphasize the processing issues related to
the detection and characterization of microscopic objects from holographic microscopy
datasets. Figure 1.17 gives examples of holograms of one polystyrene bead (see inset) in
suspension in water. It follows a Brownian motion over time in the presence of several
unwanted water/air bubbles and dust moving over time. In spite of the care given in
the conduction of the experiment, the data remain largely dominated by a strong and
spatially correlated background due to laser instability, and by diffraction fringes due to
the unwanted objects. Thus, the bead of interest is hardly discernible, and the charac-
terization accuracy could be limited by the unfavorable contrast. Elaborate processing
methods combining multi-temporal and/or multi-spectral data play a central role to
derive accurate object characterization from holographic data. This thesis proposes
detection and characterization methods for optimal processing of holographic data for
optical metrology.

• The detection and characterization of microscopic objects spread in a vol-
ume by holographic microscopy is based on the recording of holograms under
a coherent illumination.

• The holograms take the form of diffraction patterns that are not directly
interpretable but that can be described by an optical model.

• In spite of the care taken in the conduction of the experiments, the recorded
datasets of microscopic objects are often dominated by a nonstationary and
spatially correlated background.

⇒ The processing of the datasets by dedicated algorithms is mandatory. It can
benefit from the temporo-spectral diversity of the data for an improved detection

sensitivity and characterization accuracy of the samples.

Holographic microscopy issues
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1.4 Methodological angles and thesis organization

This section presents the main methodological angles followed during this thesis
work, before diving into a more detailed description in Chapters 2 to 7. In addition
to these common methodological guidelines, particular attention is paid to the setting
of hyper-parameters throughout this thesis. Indeed, all the developed algorithms are
totally unsupervised: weighting and/or regularization parameters are estimated in a
data-driven fashion.

1.4.1 First angle: Background fluctuations modeling

As illustrated in Sections 1.2.2 and 1.3.2, the image series from the two considered
application fields present a spatially textured background that strongly dominates the
patterns to be detected.

The detection of a pattern in noisy images is one of the widely studied subjects of the
signal processing literature (Kay, 1998a; Van Trees, 2004; Poor, 2013). A large variety
of techniques is based on the use of linear or nonlinear correlation filters (Mahalanobis
et al., 1987; Réfrégier, 1990; Turon et al., 1994). Among them, the matched filter is
optimal for maximizing the S/N of detection in the presence of an additive, white,
and Gaussian noise (Réfrégier and Goudail, 2013). However, this hypothesis is often a
crude assumption to describe real images. More sophisticated image models should be
considered. Among them, the SIR (Statistically Independent Regions) approach models
the noise as a background component that does not overlap with the target pattern;
each component behaving differently from a statistical point of view (Javidi and Wang,
1992; Goudail et al., 1995). Appropriate statistical descriptions of the nature of the
background component can be additionally considered. Among the large variety of
noise statistics, the exponential family is of particular interest since it covers different
types of noise encountered in several image modalities. For example, it encompasses
the Poisson statistics adapted to describe noise arising in the low photon regime from
astronomical images (Ferguson, 1962), the Gamma distribution can be used to describe
the intensity of the speckle field in SAR imaging (Dainty, 2013), and the Rayleigh
statistics is adapted to describe the noise of sonar images (Bioucas-Dias and Leitao,
1996). As stated in Réfrégier and Goudail (2013), the challenge of image processors is
to choose a noise model able to describe correctly and accurately the observed noise
while staying simple enough to be computationally feasible.

In addition, the background and/or target component is not necessarily a white
noise but rather a spatially correlated field. A common technique is to use a whitening
process before applying classical detection methods. The clutter whitening can be
performed via filtering in the Fourier’s domain the whole image (under a stationarity
hypothesis) or on sub-parts of the image (Réfrégier et al., 1999). The Markov fields
are also intensively-used methods to model spatial correlations in images (Réfrégier
et al., 1996). While they are very efficient in terms of parameter estimation, they infer
texture characterizations at a relatively short spatial scale of only a few pixels. More
recently, methods based on the analysis of images on small windows encompassing a
few tens to a few hundreds of pixels (so-called patches 20) shown to be very efficient

20. The patches can be extracted from the images following different strategies: sliding window,
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tools for several applications, in particular in image denoising (Buades et al., 2005a,b;
Zoran and Weiss, 2011; Lebrun et al., 2013). Since the image series in our two targeted
applications present a background with spatial correlations over an area a few tens to
a few hundreds of pixels and the correlation structure is nonstationary, we consider
patch-based approaches to infer a model of the background structures. We will show
that it leads to a good tradeoff between the number of estimated parameters and the
range of the correlations that are captured.

In summary, we propose in this thesis to model locally the correlated and nonstation-
ary background of the image series using patch-based approaches. The subsequent
estimations of the background fluctuations are accounted for in a statistical detection
framework. We describe in Part II two algorithms dedicated to detect the presence of
a known pattern in the low S/N regime. The two proposed algorithms differ in the
considered spatial extent of the patterns to be detected:

• Chapter 2 presents a totally unsupervised algorithm (PACO) dedicated to the de-
tection and characterization of point sources like exoplanets from ADI series.
The underlying statistical model of the background fluctuations, although ap-
proximative, achieves a good compromise between the computational burden
and the fidelity to the data, leading to an efficient algorithm that demonstrates
better detection performance than state-of-the-art exoplanet hunter methods.

• Chapter 3 presents an extension (EXPACO) of the previous algorithm. EXPACO is
dedicated to the detection of spatially extended patterns such as the ones encoun-
tered in holographic microscopy. Chapter 3 focuses on the necessary adaptation
of the PACO algorithm from a methodological point of view. The evaluation of
the performance of this approach on image series obtained with a holographic
microscope shows an interesting detection capability.

1.4.2 Second angle: Robustness to outliers

The image series from the two targeted applications present several aberrant data
(so-called outliers by opposition of the data of interest called inliers) in spite of the
care taken during the image acquisition process. These outliers have different natures
and causes. In direct imaging, they take mainly the form of large fluctuations due
to sudden alteration of the quality of the adaptive optics correction. Moreover, many
defective pixels 21 are present in the data due to the high sensitivity of the cooled
infrared sensors used. These defective pixels lead to artifacts on a wider scale than one
pixel in the science images due to the conventional pre-processing steps, see Section
1.2.2. In holographic microscopy, unwanted objects such as dust or other objects than
the object(s) of interest imaged in the field of view produce diffraction fringes acting
as outliers since they mix with the diffraction patterns of the objects of interest. This
results in a decrease in the accuracy of the characterization of the microscopic objects.

similarities between patches, and so on.
21. These defective pixels are cold pixels that remain at low values, hot pixels that are stuck to large

values, or aberrant pixels with seemingly random values unrelated to the actual image intensity at
that pixel.
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In the signal processing literature, several methods deal with the presence of outliers
encountered in real-world data.

A first category of approaches is based on a non-Gaussian model of the (large)
fluctuations of the clutter. The number of reported works related to this technique is
considerable since the chosen statistical model is directly dependent on the considered
application. Among these, we can cite the Spherically Invariant Random Vector model
(SIRV, Bausson et al. (2007); Vasile et al. (2009)) commonly used in Synthetic Aperture
Radar (SAR, Yamaguchi et al. (2005)) imaging. Within this framework, the scattering
vector is modeled as the product of a positive random variable accounting for the
randomness of the clutter induced by variations in the backscattering power, and of
an independent and zero-mean complex Gaussian vector (see Section 4.2.1 for more
details). The large fluctuations of the clutter are thus intrinsically captured by the
random variable.

A second category of approaches is based on the use of robust estimators (see
Zoubir et al. (2018) for a detailed overview) limiting the penalization of large devia-
tions between the data and the image formation model (these large deviations generally
correspond to the outliers). Among these methods, M-estimators and other variants
(Yohai, 1987; Hubert et al., 2008; Huber, 2011) consist of replacing the conventional
least squares with an objective function that increases more slowly in order to reduce
the impact of large deviations. Robust estimators are used in diverse application fields
such as array processing in the presence of brief sensor failures (Muma et al., 2012),
fast varying frequency estimation (Sharif et al., 2013), electrocardiographic monitoring
(Muma and Zoubir, 2016), multi-speaker voice activity detection (Hamaidi et al., 2017),
and others.

Some works combine both an adequate statistical model of the clutter with a robust
estimation procedure. For example, this is the case for the detection of anomalies from
hyper-spectral data (Frontera-Pons et al., 2014, 2015). Anomalies (Chang and Chiang,
2002) are events that differ from the general behavior of the clutter (e.g., a sick tree in
a forest) that should be detected without any prior information (e.g., template spectra
of sick trees). The elliptical family of distributions is considered to model the impulsive
background (Matteoli et al., 2014) and M-estimators are used to estimate robustly the
statistical properties (e.g., mean and covariance) of the non-Gaussian clutter in the
presence of strong scatters.

In a nutshell, we propose in this thesis to account for the aberrant data arising in the
image series from our two targeted applications. We thus describe in Part III two robust
algorithms dedicated to the detection and characterization of model patterns, in the
presence of outliers:

• Chapter 4 presents the robust PACO algorithm, which is an extension of the PACO

method described in Chapter 2. To improve the robustness of PACO, we modify
the statistical model of the background fluctuations by spatially weighting each
frame in a data-driven fashion, based on its relative degree of fluctuations. We
show that the achievable contrast and the detection performance are particularly
improved at small separations, where the stellar residuals dominate.

• Chapter 5 presents an algorithm dedicated to the detection and characterization
of microscopic objects in the presence of numerous outliers. It is based on M-
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estimators, iterative residuals weighting, and on a new method to set the level
automatically to distinguish outliers from inliers. We show on holographic mi-
croscopy series that this approach achieves a bias/variance tradeoff improving
the overall performance of the conventional least squares method.

1.4.3 Third angle: Spectral diversity exploitation

For the two targeted applications, it is possible to record multi-spectral data in ad-
dition to the natural time extent of the image series. In direct imaging, 4-D datasets
(spatial + time + spectral) are captured by IFS instruments, after a mapping step of
the raw observations of the IFS cameras into multi-spectral cubes (Pavlov et al., 2008).
As discussed in Section 1.2.2, the spectral diversity is of particular interest both to
push back the detection limits, and to characterize the detected point-sources via the
analysis of their estimated SEDs (Vigan et al., 2010). In holographic microscopy, two
approaches allow recording multi-spectral data: (i) multiple recordings of monochro-
matic holograms produced sequentially with different coherent light sources, (ii) the
joint illumination of the objects of interest with multiple coherent light sources and
the recording of a single one hologram with a color camera. While the first approach
captures richer information, it requires that the objects of interest remain (quasi) static
during the acquisition of the hologram series. For this reason, the second approach is
generally preferred. Whatever the chosen approach, the spectral diversity brought by
this type of configuration is of primary interest to derive an accurate characterization
of the microscopic objects.

Taking advantage of multi-spectral (not contiguous wavelengths) and/or hyper-
spectral (contiguous wavelengths) imaging through dedicated processing methods is also
a standard strategy encountered in several and diverse application fields. In astronomy,
the panoramic integral field spectrograph MUSE (Multi Unit Spectroscopic Explorer)
operating at the VLT produces 3-D (spatial + 3600 spectral channels) datasets for
spectroscopic investigation of the deep sky (Bacon et al., 2010). Methods based on a
Bayesian framework shown to be very efficient to detect the spectral signature of faint
galaxies from large volumes of data (Chatelain et al., 2011; Meillier et al., 2015, 2016).
Complementary detection methods based on sparse representations can be used to ac-
count for the possible hyper-spectral variability of the targets (Bacher et al., 2017).
In remote sensing, hyper-spectral imaging is a widely-studied modality (Keshava and
Mustard, 2002). It enables material identification and quantification via spectroscopic
analysis on a hundred to a thousand spectral channels, possibly covering the visible,
near-infrared, and shortwave infrared spectral bands (Bioucas-Dias et al., 2012). The
spectral unmixing of the signatures of the various materials within the spatial extent of
the field of view is performed by dedicated processing algorithms mainly based on statis-
tical and sparse regression methods (Plaza et al., 2009; Bioucas-Dias et al., 2012). The
application fields addressed by this technique are vast, including environment (Adams
et al., 1986) or Earth monitoring (Goetz, 2009), military surveillance (Xu and Wang,
2007), but also food (Kim et al., 2001) or drug quality checking (Rodionova et al., 2005),
face recognition (Di et al., 2010), and others. In particular, microscopy techniques also
benefit from the advantages of hyper-spectral imaging for anatomy, physiology, bio-
chemistry, and pathology analysis of biomedical samples (Schultz et al., 2001; Li et al.,
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2013). Closer from our targeted applications, lensless tomography combined with multi-
spectral imaging proved to be a successful technique to study the growth of biological
materials over time (Berdeu et al. (2018b), see Section 7.1 for further details).

In short, we propose in this thesis to account for the specificities of the multi-spectral
data in our two targeted applications. We thus describe in Part IV two algorithms
dealing with the spectral diversity of the acquired datasets:

• Chapter 6 presents the PACO–ASDI algorithm dedicated to the detection and char-
acterization (SED estimation) of point-sources (like exoplanets) from ASDI series.
Based on the PACO algorithm, PACO–ASDI also presents several methodological
adaptations to deal with the specificities of ASDI observations such as the strong
spectral correlations of the data. The underlying statistical model of the back-
ground fluctuations achieves a good compromise between the model complexity,
the difficulty to estimate model parameters, and the relevance of the statistical
model with respect to the data. It leads to an efficient algorithm that demon-
strates better detection and characterization performance than state-of-the-art
exoplanet hunter methods.

• Chapter 7 shows that an inaccurate knowledge of the parameters related to the
sources and sensor in color holographic setups leads to an inaccurate characteri-
zation of the imaged microscopic objects. This issue is critical since the induced
errors can outweigh the theoretical gain of a joint multi-spectral processing. We
describe a new method based on an inverse problem approach to perform the self-
calibration of the setup, i.e., to estimate automatically the parameters related
to the sources and sensor of color holographic microscopes. We show on real
holograms that the accuracy of the reconstructions is improved by the proposed
approach.
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In this thesis work, the developed algorithms are based on three methodological
angles addressing common issues in the two targeted application fields:

• The background of the images is nonstationary, spatially correlated, and
much stronger than the objects of interest.

⇒ The proposed algorithms will model the spatial fluctuations of the
background through patch-based approaches.

• The images are impacted by outliers taking the form of unwanted aberrant
data and/or large fluctuations.

⇒ The robustness of the proposed algorithms will be improved by
weighting-based strategies, decreasing the influence of the outliers.

• It is possible to record multi-spectral data in addition to the natural time
extent of the image series.

⇒ The proposed algorithms will be adapted to benefit from the spectral
diversity and improve the detection sensitivity and the characterization accuracy.

Besides, all the developed algorithms are totally unsupervised: weighting and/or
regularization parameters are estimated in a data-driven fashion.

Methodological angles

1.5 Organization of the thesis

The main methodological contributions of this thesis are split into six chapters
divided into three parts according to the three methodological angles that we listed in
Section 1.4. Part II proposes algorithms dedicated to the detection and characterization
of faint patterns in nonstationary and correlated background image series. Part III
improves the robustness of the processing in the presence of numerous aberrant data
in the recorded data. Part IV extends the proposed detection and characterization
algorithms to deal with multi-spectral data.

Following this organization, each part is made of two chapters that mirror each
other: first a methodological development devoted to astronomy, then an approach for
holographic microscopy. Each pair of chapters shares a common guiding thread but
also leads to specific developments. Our presentation choice is motivated by giving a
coherent methodological presentation. Chapters are not ordered chronologically. The
publication dates of the papers related to each chapter indicate, for example, that the
last methodological chapter corresponds to the first study considered in the thesis.
Figure 1.18 gives a visual overview of the organization of this manuscript emphasizing
the methodological bridges (magenta bubbles) between astronomy (red frames) and
microscopy (blue frames) applications.

The thesis ends with Part V which summarizes the main contributions of this work,
presents additional applications of the proposed algorithms, and indicates some ongoing
and future work directions.
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Figure 1.18 – Illustration of the main contributions both for astronomy (red frames) and microscopy applications (blue frames).
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Chapter 2
Application of background fluctuations

modeling in astronomy: detection and

characterization of exoplanets

Abstract

Even with the coupling of an extreme adaptive-optics system and a coronagraph,
the detection of exoplanets by direct imaging remains challenging due to the very
high contrast between the host star and the exoplanets. This chapter introduces
a method named PACO, dedicated to source detection from angular differential
imaging data. Given the complexity of the fluctuations of the background in the
datasets, involving spatially-variant correlations, we show the potential of a pro-
cessing method that learns a statistical model of the background directly from the
data. In contrast to existing approaches, the proposed method accounts for spatial
correlations in the data. Those correlations and the average stellar speckles are
learned locally and jointly to the estimation of the flux of the (potential) exoplan-
ets. By preventing from subtracting an estimate of the stellar speckles residuals,
the photometry is intrinsically preserved. PACO offers appealing characteristics:
it is parameter-free and photometrically unbiased. The statistical performance
in terms of detection capability, photometric and astrometric accuracies can be
straightforwardly assessed. A fast approximate version of the method is also de-
scribed that can be used to process large amounts of data from exoplanets search
surveys.

2.1 Introduction

In this chapter, we introduce our exoplanet detection and characterization algorithm
based on the local learning of the background fluctuations by means of PAtches COvari-
ances (hence the name PACO). We consider ADI series (3-D datasets: spatial + time) in
which the potential companions describe an apparent motion along a predictable circu-
lar trajectory around their host star while the speckles background remains quasi-static.
Starting from pre-reduced and calibrated ADI datasets, we aim to produce statistically-
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grounded detections maps as well as reliable astrometry and photometry estimates. Due
to the high contrast and slow time evolution of speckles, elaborate processing methods
are mandatory to disentangle the exoplanets signal. In Section 2.2, we give a synthetic
overview of state-of-the-art detection methods focusing on their main advantages and
drawbacks. We present the PACO principle in Section 2.3 and its implementation in
Section 2.4. Finally, Section 2.5 illustrates its performance compared to cutting-edge
methods. This chapter is based on the journal paper (Flasseur et al., 2018a) and the
conference paper (Flasseur et al., 2018b).

2.2 State-of-the-art processing methods for
exoplanet detection by direct imaging

Recent instrumental progress has spurred the development of dedicated processing
methods. New detection algorithms are regularly proposed in the literature. The pro-
cessing step plays a central role in the direct imaging pipeline. Indeed, the achievable
contrast depends both on the instrument design (contrast gain up to 10.000) and the de-
tection algorithm (additional contrast gain higher than 100). Regarding their principle,
processing methods can be split into four categories: methods based on image combi-
nations or mode subtractions, methods following a statistical approach or using recent
machine learning techniques. Hereafter, we discuss the main properties of each one.
Throughout the text, the Reader can refer to Figure 2.1 giving a schematic summary
of the principle of the main state-of-the-art detection methods.

2.2.1 Methods based on image combinations

Several methods have been developed to combine images taken at consecutive times.
The key idea is to build a reference stellar PSF image and subtract it from the ADI
stack to cancel at best the speckles background.

2.2.1.1 Classical–ADI algorithms

An intuitive solution consists in subtracting the temporal median (“robust mean”)
to each frame of the ADI stack. The residual images are then aligned to the true-North
(using the parallactic angles) so that the exoplanetary signals are co-aligned in the
different images. The aligned residual frames are finally combined following a simple
strategy (mean or median). It is the principle of the classical–ADI (cADI) method
(Marois et al., 2006) designed to process the first ADI direct observations from giant
ground-based telescopes.

Like several other algorithms, this technique is very sensitive to the self-subtraction
phenomenon. Since the reference PSF is built from observations (containing the poten-
tial companions), partial cancellation of the exoplanetary signal is expected simultane-
ously to speckles attenuation. This problem is more acute at the vicinity of the host
star since displacements due to the rotation of the field of view are the smallest there.
Marois et al. (2006) and Lagrange et al. (2010) propose some tricks based on frames
selection. The so-called smart–ADI (sADI) builds a different reference PSF for each
frame of the ADI stack by selecting only images whose rotation is higher than a few
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elements of resolution (λ/D). The radial–ADI (rADI) variant adapts the limit amount
of rotation with the angular separation so that small separations benefit from better
protection against self-subtraction. Ren et al. (2012) propose to exploit the symmetry
of the speckles field by rotating the reference PSF by 180° before subtraction. While
this preserves from self-subtraction, the speckles attenuation is generally of poor quality
due to the only approximative symmetry of the speckle field (due to optical aberrations,
stellar leakages, sensor noise, outliers introduced during the pre-processing step etc.).

2.2.1.2 LOCI type algorithms

Direct imaging was significantly boosted by the development of the next generation
of processing algorithms based on the Locally Optimized Combination of Images (LOCI)
principle (Lafrenière et al., 2007). The reference stellar PSF to be subtracted to the data
is created by a linear combination of images selected in a library of data acquired under
experimental conditions similar to those of the observation of interest. The optimization
of this combination is performed by minimizing, in the least squares sense, the residual
noise inside multiple subareas of the image. To ensure a more efficient suppression of
stellar leakages, the reference stellar PSF is generally estimated from data in which the
exoplanets are to be detected. While attenuating at best the stellar speckles, severe
exoplanet self-subtraction also occurs when the rotation of the field of view is small.

Many variants have been developed to partially alleviate this problem. In the
Adaptive–LOCI (ALOCI) algorithm (Currie et al., 2012a,b), the data are divided into
annuli and processed independently, thereby allowing different linear combinations at
different angular separations in the definition of the stellar PSF. The Damped–LOCI
(DLOCI) algorithm (Pueyo et al., 2012) solves the LOCI optimization problem under
positivity constraint (the reference stellar PSF is obtained by a positive linear combi-
nation) and maximizes the estimated flux in a given aperture around the location of a
detected source. In other words, candidate exoplanets are first detected using LOCI,
and DLOCI is launched locally to refine the contrast estimation. The Matched–LOCI
(MLOCI) algorithm (Wahhaj et al., 2015) injects fake point sources and maximizes their
S/N, which also improves the S/N of the sources present in the data. A more elaborate
version of LOCI called Template–LOCI (TLOCI) (Marois et al., 2013, 2014) is currently
considered as one of the cutting-edge standards for the detection and characterization
of exoplanets by direct imaging. The main variation compared to the standard LOCI
algorithm is related to the construction of the reference stellar PSF. Instead of only
minimizing the noise (i.e., the norm of the residuals), TLOCI also maximizes the exo-
planet S/N in the residuals. In other words, the influence of a specific choice of linear
combination on the reduction of the flux of the candidate companion is also consid-
ered. The TLOCI algorithm is often calibrated for exoplanet signal self-subtraction by
injecting fake faint point sources into the data to determine the algorithm throughput
at each position in the field of view after speckles removal. For each injection, the ratio
of the point source flux in the resulting image to its initial flux is estimated to produce
the 1-D throughput as a function of the angular separation, i.e., a debiasing correction
to be applied a posteriori.
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2.2.2 Methods based on mode subtractions

Several other image subtraction algorithms are based on the Principal Component
Analysis (PCA). PCA is a widely used tool in data science and especially in image
processing to extract relevant features from multi-dimensional data (Pearson, 1901;
Hotelling, 1933; Jolliffe, 2011). One of the most popular applications is face recognition
in computer vision. PCA is applied to extract dominant image modes (the so-called
eigenfaces) from a set of images. Each image is then represented as a linear combination
of eigenfaces (Sirovich and Kirby, 1987; Turk and Pentland, 1991). The recognition task
is then performed by projecting a test image onto the subspace spanned by the eigen-
faces, and classification is then done by distance minimization (Paul and Al Sumam,
2012).

Exoplanet-hunter algorithms based on PCA consider that the fluctuations of the
stellar speckles span a small-dimensional subspace. Exoplanets are thus detected on the
subspace orthogonal to the one capturing fluctuations of the stellar speckles. This is the
principle of the Karhunen-Loève Image Projection (KLIP) algorithm (Soummer et al.,
2012) which builds a basis of the subspace capturing the stellar PSF by performing a
Karhunen-Loève transform of the images from the reference library. To obtain a model
of the stellar PSF, the science data is projected onto a predetermined number of modes.
Even if the general principle is close to the LOCI type algorithms, KLIP is much faster
thanks to the truncation. The smart–KLIP (sKLIP) (Absil et al., 2013) algorithm
partially prevents self-subtraction by building the reference library only from images
where the candidate exoplanets underwent a sufficient rotation. More recently, Pueyo
(2016) proposes to combine KLIP with a perturbation/propagation-based approach to
estimate the self-subtraction amount.

The LLSG algorithm (Gomez Gonzalez et al., 2016) is also related to subspace
methods. It locally decomposes a temporal series of images into low-rank, sparse and
Gaussian components. It is experimentally shown that the exoplanets signal mostly
remains in the sparse term allowing an improved detection. However, it is expected
that this method is sensitive to outliers in the data (like bad or hot pixels) that are also
recovered in the sparse component together with the candidate exoplanets.

2.2.3 Methods based on a statistical approach

After facing the difficulty of canceling speckles background, the evaluation of the
confidence of each detection progressively became a critical issue. Then, various
statistically-based methods have emerged.

MOODS (MOving Objects Detection optimized for SPHERE) algorithm (Smith
et al., 2009) differs significantly from other methods. It estimates the exoplanet con-
trast jointly to the stellar PSF (considered constant for all observations of a temporal
dataset). While it presents very interesting properties, its application on large data
surveys remains problematic.

Mawet et al. (2014); Ruane et al. (2017) propose to adjust the detection threshold
to the angular separations to balance the increase of the false alarm rate near the host
star.

Other methods adopt a statistical framework to perform the detection task on
the residual image obtained by a speckle cancellation algorithm (such as LOCI or
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PCA types). The ANgular DiffeRential OptiMal Exoplanet Detection Algorithm (AN-
DROMEDA, Mugnier et al. (2009); Eggenberger et al. (2010); Cornia (2010); Can-
talloube et al. (2015)) forms differences of temporal images to suppress stellar speckles
and performs the detection of differential off-axis PSFs (i.e., the signature of an exo-
planet in the difference images). A generalized likelihood ratio test is then evaluated
under a white Gaussian hypothesis. Two output images are produced by the algorithm:
(i) a detection map obtained by forming the signal-to-noise ratio, i.e. the ratio between
the estimated flux and the standard deviation of the flux, and (ii) a flux map that indi-
cates the estimated flux at each pixel should a source be present at that location. Due
to space constraints, only the detection map is represented in Figure 2.1. A matched
filter approach can also be used on the KLIP residuals (Ruffio et al., 2017). Since the
techniques discussed so far are based on image differences, their performance is directly
related to the efficiency of the speckle attenuation.

2.2.4 Methods based on machine learning techniques

With the increasing volume of available digital data, machine learning (Bishop, 2006)
and deep learning (LeCun et al., 2015) are widely investigated and applied to a large
variety of application fields. They infer decisions from the data themselves thanks to a
training step in which a task-specific model is learned in a supervised or unsupervised
fashion. Automatic object detection and recognition task is one of the breakthroughs
achieved by these approaches, now reaching excellent results (Zhao et al., 2019).

The application of this methodological framework was also considered in direct
imaging to detect weak signals from exoplanets. SODIRF and SODINN methods
(Gomez Gonzalez et al., 2018) use respectively a Random Forest (RF) classifier or
a Convolutional Neural Network (CNN). The training step is performed by means of
numerical injections of fake exoplanets on pre-processed images in which signals from
real exoplanets are suppressed as best as possible using a space decomposition. It
demonstrates promising results, but the inference of reliable detection confidence mea-
surement is problematic (since such approaches do not model it intrinsically). A recent
work (Yip et al., 2019) implements a Generative Adversarial Network (GAN) generat-
ing pure background images (no exoplanet in the field of view) used for a CNN-based
training step. The performance is evaluated on images from Hubble’s space-based di-
rect observations. It succeeds in detecting synthetic sources at modest levels of contrast
(identifiable by visual inspection of the data) from a single image.

The limited number of works related to machine learning techniques applied in di-
rect imaging is directly related to the difficulty of the task, which differs significantly
from the object recognition problem encountered in conventional images. The back-
ground fluctuations of direct imaging data vary significantly from one observation to
the other. A major difficulty for machine learning based approaches is to infer the back-
ground structures from a learning dataset that can differ significantly from the testing
dataset (template based approaches as TLOCI or KLIP proved to be more effective
when estimating the stellar PSF from the current observation rather than different ob-
servations). Another difficulty is linked to the nonstationarity of the background which
prevents from applying shift-invariant methods like CNNs. Finally, these approaches
suffer from the absence of ground-truth (labeled images as pure background or presence
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Figure 2.1 – Simplified principle of the main state-of-the-art detection algorithms based
on LOCI, KLIP, ANDROMEDA and machine learning.

of an exoplanet). This is a critical point for machine-learning based techniques. Then,
the performance is almost upper-bounded by the performance of other state-of-the-art
algorithms used to form an exoplanet-free training set before testing.

2.2.5 Comparison and desirable properties

The state-of-the-art detection algorithms are subject to different limitations. Most
of them are not fully-automatic so that the tuning of several hyper-parameters is often
mandatory to reach the best performance of the methods. Such tuning is very time
consuming and should ideally be repeated for each dataset since it depends on the
dataset properties (considered spectral channel, number of temporal frames, quality of
the observations, amount of parallactic rotation, etc.). In addition, many of them are
subject to the exoplanet self-subtraction. By combining information (either by image
subtraction as in the LOCI type methods, or by mode subtractions as in the PCA
type methods) at different times to attenuate the speckles background, the signal of
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the exoplanets is also attenuated. Consequently, the photometry is not intrinsically
preserved so that resorting to a calibration step via Monte-Carlo injections is manda-
tory to compensate for the exoplanet self-subtraction (i.e., to correct for this bias a
posteriori). Finally, the main limitation of existing approaches is the lack of control
of the probability of false alarm on the detection maps. Existing statistical methods
generally perform better but also suffer from the lack of reliable detection confidence
(since they are applied mainly on speckle-free residual images of other algorithms and
do not model the data statistics themselves). It is common for state-of-the-art methods
to produce detection maps with many more false alarms than theoretically expected so
that the detection is made by visual inspection of the algorithm results, a very time
consuming and non-trivial task.

Based on an analysis of the limitations of existing algorithms for ADI data process-
ing and of the needs of astronomers that use planet finder instruments, the following
desirable specifications for an exoplanet detection algorithm may be listed:

1. high detection sensitivity,

2. unsupervised source detection,

3. statistical guarantees (i.e., control of the probability of false alarm),

4. characterization of the sources detected: subpixel astrometry and unbiased pho-
tometry estimations,

5. robustness and versatility to compensate for evolving aberrations,

6. characterization of the detection sensitivity: computation of a map reporting the
contrast required for a source to be detected at a given detection threshold.

Table 2.1 – Qualitative comparison of the main exoplanet-hunter algorithms.

1. 2. 3. 4. 5. 6.

cADI ⊖⊖ ⊖⊖ ⊖⊖ ⊖ ⊖⊖ ⊖⊖
LOCI ⊖ ⊖ ⊖⊖ ⊖ ⊖⊖ ⊖⊖

{A,D,M}LOCI ⊖ ⊖ ⊖⊖ ⊖ ⊖⊖ ⊖⊖
TLOCI ⊖/⊕ ⊖ ⊖⊖ ⊖ ⊖⊖ ⊖
(s)KLIP ⊖/⊕ ⊖ ⊖⊖ ⊖ ⊖⊖ ⊖

LLSG ⊖/⊕ ⊖ ⊖ ⊕ ⊖ ⊖
ANDROMEDA ⊖/⊕ ⊕ ⊕ ⊕ ⊖/⊕ ⊕

Based on our strictly personal experience with state-of-the-art algorithms, we com-
pare in Table 2.1 the main exoplanet-hunter algorithms according to the six desirable
properties mentioned hereabove. TLOCI and KLIP algorithms reach the highest sen-
sitivity (best achievable contrast), at the cost of a large number of false alarms. They
are currently considered as gold-standard methods to process direct observations. They
were applied in almost all direct detections reported in the literature (Bonavita et al.,
2014; Macintosh et al., 2015; Chauvin et al., 2017) and they are still used intensively
to conduct astronomy analysis of new datasets (Lagrange et al., 2019a; Mesa et al.,
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Figure 2.2 – A sample from a VLT/SPHERE-IRDIS dataset (HIP 72192 dataset at
λ1 = 2.110µm). Two spatio-temporal slices cut along the solid and dashed lines are
displayed on the right of the figure, emphasizing the spatial variations of the structure
of the signal. Red circles indicate the location of two point sources. The off-axis PSF h

is the typical signature of the point-like sources to be detected in the recorded intensity
images. For visualization purpose, the scale between the off-axis PSF and the data is
not the same.

2019a; Gratton et al., 2019; Gibbs et al., 2019; Maire et al., 2019). For these reasons,
in Section 2.5 we compare the PACO performance mainly to these methods. LLSG and
ANDROMEDA present very interesting complementary properties, but they are still
marginally used by the community. We also confront our results with these methods
on some datasets.

In the following, we attempt to address the listed desirable properties by deriving an
algorithm from a data-driven statistical modeling of ADI observations. The proposed
approach differs significantly from state-of-art methods by its local learning of the
speckle background statistics.

2.3 PACO: exoplanet detection based on PAtch CO-
variances

Figure 2.2 shows an example of science frames derived from VLT/SPHERE-IRDIS
data and a view of two spatio-temporal slices extracted at two different locations (along
the solid line: far from the host star, along the dashed line: near the host star). Within
the central region (angular separations below 1 arcsec at the wavelength λ1 = 2.110µm),
the signal is dominated by stellar speckles due to the diffraction in presence of aber-
rations. At farther angular separations, the noise comes mainly from a combination
of photon noise from thermal background flux and detector readout. Observation of
the temporal fluctuations in the spatio-temporal cuts reveals spatial variations of the
variance of the fluctuations but also an evolution of their spatial correlations. Beyond
accounting for the average intensity of stellar speckles, we base our exoplanet detection
method on nonstationary modeling of short-range spatial covariances. To ease the sta-
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tistical learning of these covariances directly from the data and to obtain a detection
method based on local processing, we consider a decomposition of the field of view into
small patches whose size covers the core of the off-axis PSF. Our detection method
accounts for the spatial covariance of these patches.

2.3.1 Statistical model for source detection and characteriza-
tion

Science images obtained by high-contrast imaging with ADI have two components:
(i) the signal of interest, due to the presence of exoplanets or background sources 1 in
the field of view, and (ii) a very strong background, produced by the stellar speckles
and other sources of noise, that displays temporal fluctuations. The motion of the
sources due to the rotation of the field of view is precisely known. An exoplanet at
some bi-dimensional angular location φ0 at a chosen initial time t0 is seen at location
φt = Ft(φ0) at time t, where Ft is the geometrical transform (e.g., a rotation) modeling
the apparent motion of the field of view between the observation configurations at time
t0 and time t.

Since very few sources are within the field of view and these sources are faint, we
model locally the observed data as the superimposition of a background (stellar speckles
and noise) and at most one other source, unresolved and located in the immediate
vicinity (no overlapping of several faint sources).

The observed intensity rn,t at the pixel location n and time t can then be decomposed
into the two components:

rn,t = αhn(φt) + fn,t , (2.1)

with α ≥ 0 the flux of the unresolved source to be estimated (α = 0 in the absence of
such source), hn(φt) the known off-axis PSF, centered on the known location φt of the
source at time t and sampled at pixel n, and fn,t the background at pixel n and time t
accounting for stellar speckles and noise which must be statistically modeled. Figures
2.2 and 2.3 summarize the notations introduced hereabove.

The major difficulty of the detection of exoplanets lies in the fact that the amplitude
of the background fn,t is much larger than the exoplanet contribution αhn(φt) and that
it fluctuates from one time t to another. It is necessary to follow a statistical approach
to account for these fluctuations. The collection of all observations {rn,t}n=1:N, t=1:T in
the presence of an exoplanet initially located at φ0 with a flux α is then described as a
random realization with a distribution given by the probability density function pf of
the background:

pr({rn,t}n=1:N, t=1:T |α, φt) = pf ({rn,t − αhn(φt)}n=1:N, t=1:T ) . (2.2)

1. Background sources are point objects behaving (from a signal processing point of view) as exo-
planets in direct imaging data. Background faint point sources are often brown dwarfs not bounded
to the host star (no stable orbit). Differentiating background sources from exoplanets is out of the
scope of this thesis. As discussed in Section 1.2.2.3, this specific task is addressed by experts based on
the outputs of detection and characterization algorithms. It requires to confront the estimated SEDs
(like the ones we extract in Chaper 6) to exoplanet formation models and/or to study the motion of
the sources between observations separated by several months. In the following, we do not make a
difference between exoplanets and background sources in the methodological explanations.
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Based on this model and under the hypothesis that there are few sources within the
field of view (so that each source can be considered separately), an unbiased estimation
of the flux α, for a given initial angular location φ0 is provided by the maximum
likelihood estimator:

α̂ = arg max
α

pf ({rn,t − αhn(Ft(φ0))}n=1:N, t=1:T ) . (2.3)

Note that α̂ implicitly depends on the assumed position φ0 of the source. The detection
of a point source at a given location φ0 can be formalized as an hypothesis test:





H0 : {rn,t}n=1:N, t=1:T = {fn,t}n=1:N, t=1:T

H1 : {rn,t}n=1:N, t=1:T = α {hn(φt)}n=1:N, t=1:T + {fn,t}n=1:N, t=1:T .

(2.4)

In words, under hypothesis H0 the collection of all observations corresponds to pure
background (stellar speckles and noise) while under hypothesis H1 it is the superimpo-
sition of the off-axis PSF with a flux α and some background.

By replacing α in H1 with the maximum likelihood estimate α̂ obtained from (2.3)
for an assumed initial position φ0, the (generalized) likelihood of each hypothesis can
be compared to form the generalized likelihood ratio test (GLRT, see for example Kay,
1998a):

2 log
pf ({rn,t − α̂ hn(φt)}n=1:N, t=1:T )

pf ({rn,t}n=1:N, t=1:T )

H1

≷
H0

η . (2.5)

In order to apply Equations (2.3) and (2.5) to the detection and photomet-
ric/astrometric estimations, it is necessary to specify the statistical model of the back-
ground. In most of the existing methods for exoplanet detection by ADI, some data
pre-processing is applied in order to reduce the amplitude of the background term and
whiten it (i.e., lessen its spatial correlations). Such pre-processing takes the form of
(weighted) temporal differences in ADI, TLOCI and ANDROMEDA, a high-pass filter-
ing, or the projection onto the subspace orthogonal to the dominant modes identified by
a PCA in KLIP and its variations. Note that ANDROMEDA is based on a quite similar
statistical framework: Equations (2.3) and (2.5) are applied under the assumption of
uncorrelated Gaussian noise to detect and characterize sources in residual differential
images (see Section 2.2.3). Rather than transforming the data so that a simple statis-
tical model can be assumed (uncorrelated observations), we perform no pre-processing
but account for the spatial correlations in our model. Given that more than a few
tens of photons are collected at each detector pixel, the Poisson detection statistics can
be approximated by a Gaussian distribution. The other contributions for the tempo-
ral fluctuations (thermal background noise, evolution of the speckle patterns due to
evolving phase aberrations or the decentering of the star on the coronagraph) will be
considered, in the absence of a more precise model, to be Gaussian distributed. This
Gaussian approximation gives closed-form expressions that have a practical interest for
the implementation. The spatial structure of the background is mainly due to that
of the speckles (related to the angular resolution) and the interpolation steps in the
data reduction pipeline. Most of these correlations are at small scale. Moreover, the
off-axis PSF h(φ) has a core (also defined by the angular resolution) that is only a few
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Figure 2.3 – Apparent motion of an exoplanet in an ADI stack of frames. Green patches
contain, in each frame, the exoplanet (i.e., the off-axis PSF) superimposed with the
background. The statistical model of a background patch is built locally based on
observed patches at the same location but at different times (set of red patches).

pixels wide. Hence, in Equations (2.3) and (2.5), only pixels of the dataset such that
hn(φt) is non negligible have an impact on the estimation or detection. These pixels
are represented in green in Figure 2.3.

We denote the set of theK spatial pixels that form an extended spatial neighborhood
centered at pixel n, at time t, as the patch 2 rn,t ∈ R

K . In the following, patches are
sets of pixels with the shape of a discrete disk. If the radius of this disk is chosen
large enough to encompass the core of the off-axis PSF, the collection of all pixel values
{rn,t}n=1:N, t=1:T used in Equations (2.5) and (2.3) to detect or estimate the flux of an
exoplanet located at φ0 can be reduced to the collection of patches {r⌊φt⌉,t}t=1:T that
contains the exoplanet (where ⌊φt⌉ is the closest pixel to the subpixel location φt). Only
the joint distribution of these observations need be modeled. Since the background is
different in each patch (and possibly varies according to time), we use a different model
for each patch (local adaptivity of the model), see Figure 2.3.

The reduced number T of available background patches at a given spatial location
(typically, from a few tens to a hundred temporal frames) limits the correlations that
can be accounted for. In this chapter, we account only for spatial correlations 3 and
use a multivariate Gaussian model to describe the distribution of each background
patch. Patches at different times are considered statistically independent. Rather than
defining the distribution pf of all background pixels, we then model only the distribution
of background pixels in the patches of interest. This distribution pf ({f ⌊φt⌉,t}t=1:T ) is
modeled as a product of Gaussian distributions defined over each patch that would

2. Bold fonts are used to denote patches while normal fonts are reserved to scalars and angular
positions.

3. Taking into account of spatio-temporal (or spatio-temporo-spectral for ASDI datasets) nonsta-
tionarities requires specific adaptations which are described in Chapters 4 and 6 respectively.
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contain an exoplanet if that exoplanet was initially located at φ0:

pf ({f ⌊φt⌉,t}t=1:T ) =
T∏

t=1

N
(
f ⌊φt⌉,t

∣∣∣m⌊φt⌉,C⌊φt⌉

)
, (2.6)

with N
(

·
∣∣∣m⌊φt⌉,C⌊φt⌉

)
the probability density function of the multivariate Gaussian

(mean m and covariance C) that describes background patches centered at pixel ⌊φt⌉.

Based on the observation that the background of ADI series present fluctuations
involving spatially-variant correlations, we derive the basis of our exoplanet de-
tection and characterization method:

• the observed intensity is modeled as the superimposition of the background
contribution and the exoplanet signature,

• a nonstationary multi-variate Gaussian model of the background is learned,
capturing together the average speckles and the spatial correlations,

• the decision in favor of the presence or the absence of an exoplanet is per-
formed by a binary hypothesis test.

This methodological approach differs from state-of-the-art algorithms by:

• the absence of explicit image or mode subtractions,

• the learning from the data themselves of the statistics of the background.

PAtch COvariances modeling

2.3.2 Statistical learning of the background

In our model, we consider a common mean mn and covariance Cn for all T back-
ground patches {fn,t}t=1:T centered at a given pixel n. Several estimators of the covari-
ance can be considered to characterize the multivariate Gaussian model of a background
patch. A natural solution is to use the sample mean m̂n and covariance Ŝn estimators
which are the maximum likelihood estimators 4:

m̂n =
1
T

T∑

t=1

rn,t and Ŝn =
1
T

T∑

t=1

(
rn,t − m̂n

)
·
(
rn,t − m̂n

)⊤
. (2.7)

However, it should be kept in mind that there are few observations (typically between
a few tens and a hundred) compared to the number of parameters to estimate in the
covariance matrix (K(K + 1)/2 ∼ 103 parameters, with K ∼ 50 the number of pixels
in a patch). The limited number T of temporal frames makes a direct estimation of Cn

4. The unbiased estimator of the covariance leads to the factor T −1 while the maximum likelihood
estimator leads to the factor T in the denominator of Ŝn. However, since the number of observations T
is typically between a few tens and a hundred, the difference between the two formula can be neglected.
In the following, we kept the normalization by the factor T since our formulation of the estimator as
a minimizer in Equation (2.38) leads to the T factor too.
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Figure 2.4 – Illustration of the covariance shrinkage approach.

by the sample covariance either rank deficient (if T < K) or too noisy. Some form of
regularization must thus be enforced. In this section, we discuss and compare several
alternatives to address this issue.

The lack of observations on which to base the estimation of the covariance, requires
the use of estimators with controlled variance. Indeed, the sample covariance estimator
Ŝn defined in (2.7) has a variance that is too large. When the number of time frames
T is smaller than the number K of pixels in a patch, Ŝn is moreover rank-deficient
and cannot be inverted to compute the detection criterion or to estimate the flux of
an exoplanet. This problem can be overcome by introducing a regularization or by
combining two estimators.

A classical regularization consists of adding a fraction of identity matrix I to ensure
that the covariance matrix is invertible:

Ĉn = Ŝn + ǫ I , (2.8)

where ǫ should be set small enough to introduce a negligible bias.
Another family of estimators is formed by shrinkage estimators that combine two

(or more) estimators to balance their properties. A typical choice consists of a first
estimator that is unbiased but that suffers from a large variance, and a second estimator
with much smaller variance but larger bias (reduced degrees of freedom). Following the
work of Ledoit and Wolf (2004) and Chen et al. (2010), we consider the combination
of the sample covariance matrix Ŝn and the diagonal matrix F̂n whose diagonal entries
are the empirical variances:

[
F̂n

]
ii

=
1
T

T∑

t=1

[
rn,t − m̂n

]2
ii

=
[
Ŝn
]
ii

and
[
F̂n

]
ij

= 0 if i 6= j . (2.9)

The shrinkage estimator is then defined by the convex combination:

Ĉn = (1− ρ̂) Ŝn + ρ̂ F̂n . (2.10)

As illustrated by Figure 2.4, diagonal elements of the shrinkage estimator Ĉn then
correspond to the empirical variance while off-diagonal elements (i.e., covariance terms)
are shrunk towards 0 by a factor 1− ρ̂, hence the name. In the following, we base our
study on the work of Chen et al. (2010), and we extend their results giving the closed-
form expression of the shrinkage factor ρ̂ to our estimator F̂n with non-constant diagonal
values.
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If the samples on which the estimators 5 Ŝ and F̂ are computed are distributed
according to a multivariate distribution with covariance Σ, then the optimal value ρ⋆

that minimizes the expected risk E[‖Ĉ−Σ‖2
F] is given (see Appendix A for the proof)

by:

ρO =
E

(
tr
((

Σ− Ŝ
)

·
(
F̂− Ŝ

)))

E

(∥∥∥Ŝ− F̂
∥∥∥

2

F

) =

∑
i,j Var

([
Ŝ
]
ij

)
−∑i,j Cov

([
Ŝ
]
ij
,
[
F̂
]
ij

)

E

(∥∥∥Ŝ− F̂
∥∥∥

2

F

) , (2.11)

where
∥∥∥.
∥∥∥

F
is the Frobenius norm and the subscript O in ρO is used to emphasize

that this value of ρ can be computed only provided that an oracle has access to the
underlying covariance Σ. The specific form of the estimators Ŝ and F̂ and the Gaussian
assumption lead to the simplified form for ρO (see Appendix A for the proof):

ρO =
tr(Σ2) + tr2(Σ)− 2

∑K
i=1[Σ]2ii

(T + 1) tr(Σ2) + tr2(Σ)− (T + 2)
∑K
i=1[Σ]2ii

, (2.12)

which is an extension of the result given in Chen et al. (2010) to our estimator F̂ with
non-constant diagonal values. However, this expression cannot be applied in practice.
An approximate value ρ̂ is obtained by replacing the unknown covariance matrix Σ by
a previous estimate. This is the principle of the oracle-approximating shrinkage (OAS)
estimator of Chen et al. (2010). The following recursion can be applied:




ρ̂j+1 = ρO(Σ̂j) =

tr(Σ̂j Ŝ)+tr2(Σ̂j)−2
∑K

i=1
[Σ̂j ]ii [Ŝ]ii

(T+1) tr(Σ̂j Ŝ)+tr2(Σ̂j)−(T+2)
∑K

i=1
[Σ̂j ]ii [Ŝ]ii

Σ̂j+1 = (1− ρ̂j+1) Ŝ + ρ̂j+1 F̂
(2.13)

This sequence converges to a fixed point that is either ρ̂ = 1 or the more useful value
(see Appendix A for the proof):

ρ̂ =
tr(Ŝ2) + tr2(Ŝ)− 2

∑K
i=1[Ŝ]2ii

(T + 1)(tr(Ŝ2)−∑K
i=1[Ŝ]2ii)

, (2.14)

which is an extension of the result given in Chen et al. (2010) to our estimator F̂ with
non-constant diagonal values.

Top and middle parts of Figure 2.5 compare signal-to-noise ratio (S/N, see Equa-
tion (2.26) for the definition) detection maps computed with PACO considering the two
regularization schemes mentioned above. Thirty fake sources are numerically injected
in a dataset from the VLT/SPHERE-IRDIS instrument around the HIP 72192 star ob-
served at λ1 = 2.110µm. This dataset also contains two real point-sources (see Section
2.5 for more details about the dataset, injection method and results). It shows that the
shrinkage estimation of the covariance matrices achieves better performance (since the
30+2 sources are detected with a higher S/N of detection) than a simple regularization
by adding a fraction of identity matrix. This may be due to the local and automatic
adaptation of the strength of the regularization to the data.

5. For compactness purpose, we now drop the pixel index n for the mean (mn →m) and covariance
(Cn → C) until the end of this section.
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Figure 2.5 – S/N detection maps computed with the PACO algorithm. Top: covariance
matrices are regularized by adding the hand-tuned fraction ǫ = 10−6 of identity matrix
(see Equation 2.8). Middle: covariance matrices are estimated using the unsupervised
shrinkage technique (see Equations 2.10 and 2.14). Bottom: same than middle but the
background statistics are estimated jointly with the source flux (see Equations 2.15).
The first 32 detections are marked on the maps using square patterns. The 60 first
detections are plotted as bar charts next S/N maps, ordered by decreasing S/N values,
with true detections in pink (true background sources) or blue (injected fake sources),
and false detections in red. Circles indicate the location of all faint point sources.
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Figure 2.6 – S/N detection maps computed with the PACO algorithm. Top: covariance
matrices are estimated using the Ledoit-Wolf shrinkage estimator. Bottom: covariance
matrices are estimated using the Rao-Blackwell-Ledoit-Wolf shrinkage estimator. The
first 32 detections are marked on the maps using square patterns. The 60 first detections
are plotted as bar charts next S/N maps, ordered by decreasing S/N values, with true
detections in pink (true background sources) or blue (injected fake sources), and false
detections in red. Circles indicate the location of all faint point sources.
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Figure 2.7 – Examples of shrunk covariance matrices Ĉn estimated at different locations
n of the field of view for different angular separations (ρ ∈ {0.40; 1.58; 2.76; 3.93; 5.12}").
The results are obtained on the SPHERE-IRDIS dataset of HIP 72192 at λ1 = 2.110µm.
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Finally, we report that for a fixed patch size at K = 50 pixels, the mean estimated
weight ρ̂ is about 0.10 for a dataset containing about T = 100 frames and it reaches
up to 0.40 when the number of frames T is comparable with the number K of pixels
in a patch. This shows that when the number of observations T is limited, the weight
ρ̂ applied to the high bias/low variance matrices F̂ is large, thereby compensating the
expected high variance of the sample covariance matrices Ŝ. Even for non-favorable
cases (when T ≃ K), the weight given to the sample covariance matrices Ŝ remains
predominant, so that Σ̂ actually captures the spatial covariances of the data.

Besides, we investigate shrinkage estimators other than OAS. We test the Ledoit-
Wolf estimator (LW, obtained by replacing in the rightmost expression of (2.11) the
expectation, variance and covariance by sample means, see Ledoit and Wolf (2004);
Chen et al. (2010)) and the Rao-Blackwell-Ledoit-Wolf estimator (RBLW, obtained by
computing the conditional expectation of the Ledoit-Wolf estimator conditionally to
the sufficient statistic Ŝ, see Ledoit and Wolf (2004); Chen et al. (2010)). Figure 2.6
gives the obtained S/N maps on the same dataset than the one used in Figure 2.5.
Comparison with middle part of Figure 2.5 shows that the two tested strategies lead to
very similar results to that of the OAS estimator.

Each temporal collection of background patches centered at pixel n is described
by a multivariate Gaussian model of mean mn and covariance Cn. The mean mn

is estimated by the sample mean. Due to the limited number of observations, the
sample covariance is noisy or rank-deficient.

⇒ A regularization should be enforced.

• Following the shrinkage approach of Ledoit and Wolf (2004) and Chen et al.
(2010), the estimated PACO covariance matrix Ĉn is formed by the convex
combination between the sample covariance matrix Ŝn (low bias/high vari-
ance) and the diagonal matrix F̂n (high bias/low variance) whose diagonal
entries are the empirical variances: Ĉn = (1− ρ̂) Ŝn + ρ̂ F̂n .

• The weight ρ̂ balancing locally the bias/variance tradeoff is estimated in a
data-driven fashion to minimize the expected risk. We derive its closed-form
expression under the specific form of estimators Ŝn and F̂n as well as our
Gaussian assumption, thus extending the result given in Chen et al. (2010)
to our estimator F̂n.

• This approach proves to be adapted to our problem due to its local adap-
tivity, leading to better detection performance than the other regularization
strategies considered.

Estimation of the background statistics

Based on this study, we retained the unsupervised oracle-approximating shrinkage
approach as an unsupervised regularization of the PACO covariances matrices. Figure
2.7 gives some examples of covariance matrices obtained at different locations of the
field of view with our shrinkage approach. It emphasizes the presence of strong spatial
correlations at moderate angular separations. Far from the host star, the spatial cor-
relations are less important. Still, they remain not negligible, and they account for the
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presence of outliers in the data series, like in example 2 at ρ = 3.93” given in Figure
2.7.

2.3.3 Unbiased estimation of the background statistics

Although we have derived in the previous section estimators robust to the lack of
observations, it should be kept in mind that background patches are not directly avail-
able. Only observed patches {rn,t}t=1:T can be used to estimate the mean mn and
covariance Cn. Should the contribution of the exoplanet not be subtracted prior to
computing the statistics of the background, the mean would contain a fraction of the
PSF of the exoplanet (1/T -th of the flux of the exoplanet if the exoplanet is visible
only in one of the patches centered on pixel n). Then, the mean would be biased by
the exoplanet contribution, and the covariance would encode that there are significant
variations in the background in the form of an appearing/disappearing PSF. The sub-
sequent estimation of the source flux would be penalized (biased) by these errors on the
mean and covariance of the background.

The problem of the superimposition of background and exoplanet signals can be
handled by several ways, given that, because of the apparent motion of the field of
view, an exoplanet is not visible at the same location throughout the temporal stack:

1. by discarding patches where a hypothetical exoplanet located at φ0 would be
visible,

2. by discarding patches that are the most correlated with the off-axis PSF (i.e.,
patches that most likely contain an exoplanet),

3. by using robust estimators (the exoplanet signal being considered as an outlier,
as in LLSG (Gomez Gonzalez et al., 2016)),

4. by jointly estimating the flux of the exoplanet and the statistics of the back-
ground.

All these methods have been compared and we found the last approach to be the most
successful. Approach 1 has a significant drawback: by excluding (during the learning of
background statistics) all patches that are later considered in the exoplanet detection
test, the test becomes much noisier. Approach 2 is more satisfactory in this respect,
but does not completely solve the problem: estimation of the flux of an exoplanet is
biased due to the errors in the estimation of parameters m̂n and Ĉn. Approach 3 can be
implemented in several ways. We considered replacing the sample mean by the median
and a two-step estimation of the covariance, where, in the second step, patches rn

leading to large Mahalanobis distances
(
rn−m̂n

)⊤
· Ĉ−1

n ·
(
rn−m̂n

)
were discarded

in the computation of the covariance matrix. Only the joint estimation led to truly
unbiased estimates of the photometry in our numerical experiments (see Section 2.5 for
results about unbiased photometry estimation).

We implement Approch 4 by alternating flux estimation and background statistics
estimation, starting from an initial guess of pure background. At the q-th iteration, after
a flux α̂(q) has been estimated for the exoplanet assuming background statistics Ĉ(q)
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(as explained in Section 2.3.4), the background statistics can be improved by removing
the contribution of the exoplanet:





m̂(q+1)
n = 1

T

∑T
t=1

(
rn,t − α̂(q)hn(φt)

)

Ŝ(q+1)
n = 1

T

∑T
t=1

(
rn,t − α̂(q)hn(φt)− m̂(q+1)

n

)
·
(
rn,t − α̂(q)hn(φt)− m̂(q+1)

n

)⊤

[
F̂(q+1)
n

]
ii

=
[
Ŝ(q+1)
n

]
ii

ρ̂(q+1) = ρ̂
(
Ŝ(q+1)
n

)

Ĉ(q+1)
n = (1− ρ̂(q+1)) Ŝ(q+1)

n + ρ̂(q+1) F̂(q+1)
n .

(2.15)

A few iterations of (2.15) and exoplanet flux re-estimations corrects the statistics of
the background and prevents from biasing the estimation of the photometry by an
erroneous statistical model of the background.

• In the presence of an exoplanet, pure background patches are not available
to estimate the statistics of the background. The subsequent estimation of
the source flux is biased by resulting errors on the mean and covariance of
the background.

• We propose to estimate alternatively (i) the background statistics on patches
in which the source is subtracted, and (ii) the source flux, to correct the
statistics of the background and prevent from biasing the estimation of the
photometry.

• While this leads to unbiased photometry characterization, we experimen-
tally show that this approach is not beneficial for detection since it changes
the distribution of the detection test in the absence of exoplanet. We thus
split our algorithm into two phases:

1. a detection step based on the computation of biased background statis-
tics, leading to a grounded detection test but biased exoplanet photom-
etry,

2. a characterization step is then launched locally around detected sources
based on an iterative estimation of the exoplanet flux and background
statistics, leading to the unbiased photometry.

Unbiased background statistics

The bottom part of Figure 2.5 gives the resulting detection map when the back-
ground statistics are estimated jointly with the source flux. This map can be compared
to the map in the middle row of the same figure. One can notice that the unbiased
estimation of the flux of the exoplanet is not beneficial in the exoplanet detection phase.
Indeed, it improves the signal of the exoplanets, but it also changes the distribution of
the detection test (see Equation (2.26) for the definition) in the absence of exoplanet,
which makes more difficult the setting of a detection threshold. Even a hand-tuned
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threshold does not improve the limit detection contrast, the increase of the probability
of false alarm exceeding the improvement of the detection probability.

Therefore, we split our exoplanet detection and characterization algorithm into two
steps. We start with a detection step in which we compute the background statistics
m̂n and Ĉn based on Equations (2.7), (2.9), (2.10) and (2.14) to derive a detection map
(see Section 2.3.5). A characterization step is then launched by alternating Equations
(2.15) with a re-estimation of the flux for the photometric and astrometric estimations
only for the detected sources (see Sections 2.3.4 and 2.3.6).

2.3.4 Estimation of the flux of an exoplanet

Under our multivariate Gaussian model of the background, the maximum likeli-
hood estimator given in Equation (2.3) for an assumed initial location φ0 has a simple
expression (see for example Kay, 1998b):

α̂ =
∑T
t=1 bt∑T
t=1 at

, (2.16)

with

at = h⌊φt⌉(φt)
⊤ · Ĉ−1

⌊φt⌉
· h⌊φt⌉(φt) (2.17)

and

bt = h⌊φt⌉(φt)
⊤ · Ĉ−1

⌊φt⌉
·
(
r⌊φt⌉,t − m̂⌊φt⌉

)
, (2.18)

where we recall that h⌊φt⌉(φt) denotes the off-axis PSF for a source at (subpixel) location
φt sampled over a patch of K pixels and whose center is ⌊φt⌉, the nearest pixel to φt.
Note that the term bt can be interpreted as a correlation between the whitened off-axis
PSF and the whitened (zero-mean) measurements while the term at corresponds to the
auto-correlation of the whitened off-axis PSF.

The maximum likelihood estimator α̂ given in Equation (2.16) depends linearly on the
data, hence its variance can be easily derived. Noting that α̂ = a/b with a =

∑T
t=1 at

and b =
∑T
t=1 bt, we obtain:

Var{α̂} ≈ Var{b}/a2 , (2.19)

where the approximation becomes an equality if a is considered deterministic 6. The
variance of b is the sum of the variances of the bt terms since they are mutually inde-
pendent (corresponding to different temporal frames). From its expression in Equation
(2.18), the variance of bt is given by:

Var{bt} ≈ h⌊φt⌉(φt)
⊤ · Ĉ−1

⌊φt⌉
· Cov{r⌊φt⌉,t − m̂⌊φt⌉}· Ĉ−1

⌊φt⌉
· h⌊φt⌉(φt) . (2.20)

Our assumptions amount to approximating the distribution of the term r⌊φt⌉,t − m̂⌊φt⌉

by a centered Gaussian of covariance Ĉ⌊φt⌉. The variance of bt therefore simplifies to:

Var{bt} ≈ h⌊φt⌉(φt)
⊤ · Ĉ−1

⌊φt⌉
· h⌊φt⌉(φt) = at. (2.21)

6. The approximation neglects the dependence of the term a with respect to the estimated quantity
Ĉ

−1 (which is not deterministic since it depends on the observations). The variance of Ĉ
−1 can be

neglected in front of the variance of the intensity patches r since Ĉ is estimated from a relatively large
number of samples.
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Thus an approximate estimator of the variance of b =
∑T
t=1 bt is

∑T
t=1 at = a and the

standard deviation of α̂ = b/a can be estimated by:

σ̂α ≈ 1/
√
a . (2.22)

Obviously, the flux of the source is necessarily positive, we denote by α̂+ the flux
obtained under a positivity constraint 7 (see Thiébaut and Mugnier (2005); Mugnier
et al. (2009)):

α̂+ def= arg max
α≥0

pf ({rn,t − αhn(Ft(φ0))}n=1:N, t=1:T )

= max(α̂, 0) =
max

(∑T
t=1 bt, 0

)

∑T
t=1 at

. (2.23)

2.3.5 Detection of exoplanets

Under our multivariate Gaussian model of the background, the generalized likelihood
ratio test (2.5) takes the simplified form:

(GLRT)

(∑T
t=1 bt

)2

∑T
t=1 at

H1

≷
H0

η , (2.24)

with at and bt defined according to Equations (2.17) and (2.18).
As discussed in Thiébaut and Mugnier (2005); Smith et al. (2009); Mugnier et al.

(2009), it is beneficial to enforce a positivity constraint on the flux α in the detection
test, i.e., to use the estimate α̂+ to derive the GLRT expression, leading to:

(GLRT+)

(
max

(∑T
t=1 bt, 0

))2

∑T
t=1 at

H1

≷
H0

η . (2.25)

As noted in Mugnier et al. (2009), the test (2.25) is equivalent to the test:

(S/Ntest)
∑T
t=1 bt√∑T
t=1 at

≈ α̂

σ̂α

H1

≷
H0

τ (2.26)

when η ≥ 0, with τ =
√
η. This test can be interpreted as the signal-to-noise ratio

(S/N) α̂/σ̂α of the estimation of the (unconstrained) flux of the source α. Note that
with our definition, the S/N is a signed quantity that is negative whenever α̂ < 0.

The test (S/Ntest) in Equation (2.26) is attractive because the test value α̂/σ̂α
linearly depends on the data. Under our Gaussian model for the data, the S/N α̂/σ̂α is
thus also approximately Gaussian distributed (with unit variance) which simplifies the
statistical analysis of the test in terms of false alarm rate or detection probability. This
analysis is carried out in the following.

In the hypothesis test (2.4), we considered a hypothetical initial location of the
source φ0. To detect all sources within the field of view and locate their positions, the
test (S/Ntest) should be evaluated at locations φ0 sampled over the whole field of view.
By refining the sampling of the field of view, the off-axis PSFs h⌊φt⌉(φt) better matches
the data and the estimate α̂ is more accurate, at the cost of a larger computational
effort. Sampling of the field of view is discussed in Section 2.4.5.

7. The neg-log-likelihood is a quadratic function of α, the minimum under positivity constraint is
thus obtained by simple thresholding.
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Figure 2.8 – S/N map in absence of object (the two real known faint point sources
denoted FPS1 and FPS2 are masked) and its corresponding empirical distribution using
the HIP 72192 dataset described in Section 2.5 at λ2 = 2.251µm.

2.3.6 Statistical properties

2.3.6.1 Distribution of the detection criterion

Figure 2.8 illustrates a S/N map α̂/σ̂α computed using the PACO method on the same
VLT/SPHERE-IRDIS dataset around HIP 72192 star as previously at λ2 = 2.251µm
(more details are given in Section 2.5), with the two real point-sources masked. Visual
inspection of the S/N map (left part of Figure 2.8) indicates that the detection criterion
is approximately stationary over the field of view 8, even close to the coronagraphic
mask. The empirical distribution of the S/N values (right part of Figure 2.8) shows that
the S/N distribution can be considered as a Gaussian that is centered (the empirical
mean is 0.01) and approximately reduced (the empirical standard deviation is 0.93).
This distribution passes successfully the Lilliefors normality test (Lilliefors, 1967) at the
5% significance level. The relatively good agreement between the empirical distribution
of the S/N test and a centered Gaussian distribution of unit variance also supports
the assumptions made in Equations (2.19) to (2.26) that neglect the variance of the
estimated covariance Ĉ. The small discrepancy with theoretical model may be due
to temporal fluctuations that will be better modeled in Chapter 4. The hypothesis
that the variance of the S/N under H0 is equal to 1 is conservative in the sense that
the probability of false alarm is slightly overestimated. Owing to the homogeneous
distribution of the S/N criterion across the field of view, this small shift of the detection
threshold could be easily fixed by rescaling the S/N by a single factor empirically
estimated. No such correction was performed in the following results, though.

Under the hypothesis H0, the S/N follows a centered and reduced Gaussian law

8. The stationarity of the PACO detection maps in the absence of source can be appreciated by
comparison with the detection maps presented in Section 2.5.2.1 (in particular in Figures 2.16, 2.17,
and 2.22) that are obtained with several state-of-art detection methods.
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whatever the angular separation. It is thus possible to apply a unique threshold τ to
the S/N maps and obtain a consistent detection performance at all angular separations
(i.e., a constant false alarm rate). The good fit between the S/N empirical distribu-
tion and a Gaussian distribution makes it possible to directly assess the false alarm
rate, probability of detection, photometric and astrometric accuracies without post-
processing and/or resorting to Monte-Carlo methods (injection of fake exoplanets in
the data) in contrast to several state-of-the-art methods, as discussed in Section 2.2.5.

2.3.6.2 Probabilities of false alarm and of true detection

The probability of false alarm (PFA) is the probability that the test (2.26) yields H1

while H0 is actually true, under the assumption that the S/N test (2.26) is Gaussian
distributed:

PFA(τ) = Pr(α̂/σ̂α > τ | H0) =
∫ +∞

τ

1√
2π

exp

(
−x

2

2

)
dx = 1− Φ(τ), (2.27)

where Φ is the cumulative distribution function of the standard normal distribution. It
is common practice in direct imaging to set the detection threshold τ at 5 (5σ detection
threshold), thus ensuring a probability of false alarm equal to PFA(5) = 2.87× 10−7.

The probability of detection (PD) is the probability that the test (2.26) correctly
decides for a detection:

PD(τ, α) = Pr(α̂/σ̂α > τ | H1) =
∫ +∞

τ

1√
2π

exp

(
− [x− α/σ̂α]2

2

)
dx

= 1− Φ(τ − α/σ̂α) . (2.28)

least equal to some prescribed value PD when the detection threshold τ is set ac-
cording to a given PFA level can be computed by inverting and combining Equations
(2.27) and (2.28):

α =
(
Φ−1(1− PFA)− Φ−1(1− PD)

)
× σ̂α . (2.29)

For example, at τ = 5, a probability of detection of 50% is achieved for α = 5 σ̂α
and a probability of detection of 80% for α = 5.84 σ̂α. Figure 2.9 illustrates the S/N
distribution under the two hypothesis as well as the probabilities of false alarm and of
detection.

2.3.6.3 Astrometric accuracy

An (asymptotically) unbiased estimator of the position of the source is provided by
the maximum likelihood position which is the solution of a non-convex optimization
problem. In practice, this problem can be solved by exhaustive search at a finite
resolution refined by a local optimization as for example proposed by Soulez et al.
(2007a) in digital lensless microscopy for the detection of parametric objects spread
in a volume (see Section 1.3.2.2). The astrometric accuracy, i.e. the accuracy on the
angular location of the detected objects can be statistically predicted using the Cramér-
Rao lower bounds (CRLBs) which represents the minimal variance of any unbiased
estimator (Kendall et al., 1948).
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Figure 2.9 – S/N distribution under H0 (in blue) and H1 (in red). The hatched area
is equal to the probability of false alarm (PFA) while the filled area is equal to the
probability of detection (PD).

Using a parametric model of the off-axis PSF h and noting again that the collection
of patches {rn,t}t=1:T located at the angular position n is described by a multi-variate
Gaussian process N ( · |mn,Cn), it is possible to derive the CRLBs from the observed
intensity model given in Equation (2.1). In the following, Ω = {α, x0, y0} (with φ0 =
{x0, y0} the angular position of an exoplanet at time t0) denotes the vector of parameters
from which the CRLBs are computed. For a given angular position n, the Fisher
information matrix IF

n can be expressed as (Kendall et al., 1948):

[
IF
n(Ω)

]
i,j

=
∂αhn(Ω)
∂Ωi

⊤

· C−1
n ·

∂αhn(Ω)
∂Ωj

, (2.30)

in which the term αhn represents the off-axis PSF (an isotropic Gaussian can typically
be used as a continuous model to compute the derivatives). It follows that the standard
deviation δn on the estimation of the parameter vector Ω is given by:

[δn]i =
√

[IF
n(Ω)−1]i,i (2.31)

A CRLBs map (all the pixels n of the field of view) for the parameters Ω =
{α, x0, y0}, can be efficiently computed using closed-form expressions of the inverse
of Fisher information matrix:

IF =



IF
α,α IF

α,x0
IF
α,y0

IF
x0,α

IF
x0,x0

IF
x0,y0

IF
y0,α

IF
y0,x0

IF
y0,y0


 . (2.32)

This leads, for the estimated vector Ω = {α, x0, y0}, to the respective CRLBs:

σ2
α =

IF
x0,x0

IF
y0,y0
−
(
IF
x0,y0

)2

D
, σ2

x0
=
IF
α,αI

F
y0,y0
−
(
IF
α,y0

)2

D
, σ2

y0
=
IF
α,αI

F
x0,x0
−
(
IF
α,y0

)2

D
,

(2.33)
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Figure 2.10 – Upper line: Minimal standard deviation (estimated Cramér-Rao lower
bounds) δ = {δα, δx0

, δy0
} on the estimated parameters Ω = {α, x0, y0}. δx0

and δy0
are

multiplied by the flux α of the exoplanet (expressed in pixels × flux). For these two
latter quantities, the values should be divided by the flux of the source before being
interpreted in terms of confidence intervals on the astrometry. Middle line: Zoom near
the host star. Lower line: Coefficients of correlation ρ = {ραx0

, ραy0
, ρx0y0

} between
the estimated parameters Ω = {α, x0, y0}. The computation is performed on the HIP
72192 dataset at λ1 = 2.110µm. The positions of the two real faint point sources in
the dataset are represented by a circle (not visible otherwise on these maps because the
accuracy at their location is similar to the accuracy in the surrounding area).

where

D = IF
α,αI

F
x0,x0

IF
y0,y0

+ 2 IF
α,x0

IF
α,y0

IF
x0,y0
− IF

α,α

(
IF
x0,y0

)2 − IF
y0,y0

(
IF
α,x0

)2 − IF
x0,x0

(
IF
α,y0

)2

(2.34)
is the determinant of IF.

The minimal standard deviations are given by δ = {σα, σx0
, σy0
}. The correlation
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coefficients between parameters are obtained by:

ρα,x0
=

IF
α,y0

IF
x0,y0
− IF

α,x0
IF
y0,y0√(

IF
x0,x0

IF
y0,y0
−
(
IF
x0,y0

)2
)(

IF
α,αI

F
y0,y0
−
(
IF
α,y0

)2
) , (2.35)

ρα,y0
=

IF
α,x0

IF
x0,y0
− IF

α,y0
IF
x0,x0√(

IF
x0,x0

IF
y0,y0
−
(
IF
x0,y0

)2
)(

IF
α,αI

F
x0,x0
−
(
IF
α,x0

)2
) , (2.36)

ρx0,y0
=

IF
α,y0

IF
α,x0
− IF

α,αI
F
x0,y0√(

IF
α,αI

F
y0,y0
−
(
IF
α,y0

)2
)(

IF
α,αI

F
x0,x0
−
(
IF
α,x0

)2
) . (2.37)

Since {Ix0,x0
, Iy0,y0

} are proportional to α2, {Iα,x0
, Iα,y0

} to α, and Iα,α is not dependent
on α; D is proportional to α4. Hence, δα is not dependent on α while {δx0

, δy0
} are

proportional to α−1.

Based on our multivariate Gaussian model of the background, we derive the max-
imum likelihood estimator of the exoplanet flux, a detection test, and subsequent
statistical properties.

• The detection test can be interpreted as a signal-to-noise ratio and follows
in good approximation, and in the absence of exoplanet, a centered and
reduced Gaussian distribution. This key component of the PACO algorithm
allows to directly interpret detection maps in terms of false alarm rate and
probability of detection.

• Astrometric and photometric accuracies are also statistically characterized
from the Cramér-Rao lower bounds.

Detection test & statistical properties

For simplicity, we denote by δ = {δα, δx0
, δy0
} the spatial maps representing the

accuracy on the parameters Ω = {α, x0, y0}. It can be noted that the CRLB δα on the
source flux differs from the estimator σ̂α since δα also accounts for the imprecision on the
estimation of the astrometry of the sources. Figure 2.10 gives a view of δα, δx0

and δy0

as well as the correlation coefficients ραx0
, ραy0

and ρx0y0
between estimated parameters

obtained on the HIP 72192 dataset at λ1 = 2.110µm. As expected, the estimation
error of Ω = {α, x0, y0} increases near the host star. The figure also emphasizes that
the Cramér-Rao bounds {δα, δx0

, δy0
} decrease quickly with the angular separation.

Moreover, a small estimation error on one of the three parameters has little impact on
the estimation of the other two parameters (low absolute correlation coefficients) except
for some localized areas of the field of view. The resulting Cramér-Rao bounds can be
usefully considered to evaluate the error on the estimated parameters. For example,
for the two real faint point sources located around the HIP 72192 star (their positions
are symbolized by a circle in Figure 2.10, the products α· δx0

and α· δy0
are close to

0.7×10−5 pixel. This means that at a contrast (i.e., amplitude of the source normalized
by the amplitude of the star) α = 10−5, the sources can be located with an accuracy of
about 0.7 pixel.
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Figure 2.11 – Influence of the patch size: ROC curves for K = {13, 49, 113} pixels
in each patch. The ROC curves are obtained by inserting fake exoplanets at a flux
α ∈ [10−6; 10−5] on the HIP 72192 dataset at λ1 = 2.110µm.

2.4 Implementation details of PACO

This section is devoted to the description of the implementation of the PACO algo-
rithm presented in Section 2.3. A simplified and faster version for the detection step is
also described. This fast version can be useful to conduct pre-analyzes in large surveys.

2.4.1 Optimal patch size

The patches considered in the PACO algorithm define the area in which the statistics
of the background fluctuations are modeled. Since the core of the off-axis PSF is close
to circular symmetry, circular patches are used. Their size obeys a tradeoff: on the one
hand, the larger the patches, the more energy from the source is contained in the patches
which improve the signal-to-noise ratio; on the other hand, learning the covariance of
larger patches requires more samples (i.e., more temporal frames).

In practice, since the sources to be detected are faint compared to the level of stellar
speckles and their temporal fluctuations, only the core of the off-axis PSF is necessary
to perform the detection and a patch size corresponding to twice the off-axis PSF full
width at half maximum (FWHM) appears to be a good tradeoff. A more precise (and
automatic) determination of the optimal size of the patches with respect to the number
of time frames and the structure of the background correlations can be carried out by
Monte-Carlo simulations. False exoplanets are randomly injected into the data and
receiver operating characteristic (ROC) curves representing the detection probabilities
as a function of the false alarm rate are constructed for different patch sizes. The patch
size maximizing the area under the ROC curve is then adopted. Figure 2.11 gives ROC
curves for three patch sizes and shows that the choice K = 49 pixels per patch, i.e. a
patch of 4 pixels of radius, maximizes the area under the curve and is, therefore, the
best tradeoff for performing the detection on the HIP 7192 dataset (with 4.5 pixels
FWHM) for fake exoplanets injected at a flux α in the range [10−6; 10−5]. The number
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Figure 2.12 – Taking into account missing data: from left to right, a data frame from
the VLT/SPHERE-IRDIS instrument, the hand-defined mask discarding aberrant data
and the resulting total field of view due to the rotation.

of pixels per patch K needs to be determined only once for a given instrument since
the FWHM of the off-axis PSF varies only marginally from one observation to another.

2.4.2 Taking into account missing data

Two aspects are linked to the problem of missing data.
The first one is related to aberrant values occurring on the borders of the field of

view of the data. With the VLT/SPHERE-IRDIS instrument, active CCD pixels of
the camera do not completely pave the field of view. In addition, the circular aperture
of the telescope mask out some other pixels. It results in strong aberrant data on the
border of the field of view. Thus, we hand-define a binary mask (only once for a given
instrument) to discard these areas.

The second aspect is that, because of the rotation of the field of view, the spatial
size of the PACO maps from which the detection is performed can exceed the size of the
data frames. Denoting R × C the spatial size of the data frames, the PACO maps are
of size ⌊

√
2R⌉ × ⌊

√
2C⌉. In words, it is theoretically enough that an exoplanet (with a

sufficient level of contrast) lies in the field of view at a single date to be detected. This
field of view extension is illustrated in Figure 2.12 on a VLT/SPHERE-IRDIS frame
at λ1 = 2.110µm. Figure 2.1 also illustrates this effect for state-of-the-art algorithms
since the size of the combined maps is larger than the data frames thanks to the true-
North alignment step. Consequently, the detection tests (2.24) to (2.26) and other PACO

outputs should be adapted by considering in the summation only terms t for which the
expected location φt of the exoplanet lies in within the mask defining the field of view.

Note that this missing data issue is even more acute for SDI or ASDI processing.
Indeed, the recorded images at wavelength λ are scaled by a factor λref/λ so that the
on-axis PSF and the speckle field are approximately aligned throughout the ASDI stack.
Due to the difference between the scaling factors applied respectively to the shortest
and the longest wavelengths, only a central area of the field of view is covered by all
rescaled images, see Chapter 6.
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Algorithm 2.1: PACO detection– Computation of the S/N values at initial 2-D
angular positions G of an unresolved source.

Input: Set G of initial 2-D angular positions.
Input: Spatio-temporal dataset {rn,t}n=1:N, t=1:T .
Output: S/N map at all initial positions in G.

forall φ0 ∈ G do
a← 0
b← 0
for t = 1 : T do

⊲ Step 1. Extract the relevant patches:
φt = Ft(φ0)
Pt ←

{
r⌊φt⌉,t′

}
t′=1:T

⊲ Step 2. Learn the background statistics from the patches in Pt:{
m̂⌊φt⌉, Ĉ⌊φt⌉

}
(Equations 2.7, 2.9, 2.10 and 2.14)

⊲ Step 3. Update a and b:
w ← Ĉ−1

⌊φt⌉
· h⌊φt⌉(φt)

a← a+ w⊤ · h⌊φt⌉(φt) (Equation 2.17)
b← b+ w⊤ ·

(
r⌊φt⌉,t − m̂⌊φt⌉

)
(Equation 2.18)

S/N(φ0)← b/
√
a (Equation 2.26)

2.4.3 The PACO algorithm: algorithmic considerations

As explained in Section 2.3.3 , within the PACO pipeline, the detection and char-
acterization steps are performed by two very similar schemes. First, the detection is
performed on the whole field of view using the PACO detection procedure. This step
produces a S/N map which is statistically grounded and which can be directly thresh-
olded at a controlled false alarm rate. The estimated flux is however biased by the
presence of the exoplanet in the collection of patches used to model the background
fluctuations. Thus, a different procedure named PACO characterization is launched
in a second step on each detected source in order to refine the flux estimation. This lat-
ter procedure provides unbiased flux estimates (i.e., no a posteriori Monte-Carlo based
bias correction is necessary).

Algorithm 2.1 summarizes the PACO detection procedure as described more for-
mally in Section 2.3. Step 1 consists of forming the collection of patches Pt on which
the statistics of the background must be learned. These patches are all centered at
the same position φt where the source would be at time t, assuming it was initially
at position φ0. In Step 2, the background statistics, i.e. the empirical mean m̂ and
the regularized covariance Ĉ, are computed based on Equations (2.7), (2.9), (2.10) and
(2.14). Step 3 then forms the numerator and denominator of the test statistics by
accumulating values at and bt defined by equations (2.17) and (2.18). In Algorithm 2.1,
the background statistics are computed assuming no exoplanet is present (i.e., hypoth-
esis H0) and are thus biased in the presence of a source. This is especially notable when
the apparent motion of the exoplanet over time is limited, and the source flux is large.

Once the detection step is performed by Algorithm 2.1, the potential detections
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Algorithm 2.2: PACO characterization– Unbiased estimation of the flux α̂+ of
an unresolved source at initial 2-D angular position φ0.

Input: 2-D angular position φ0 of source at t = 0.
Input: Spatio-temporal dataset {rn,t}n=1:N, t=1:T .
Input: Optional initial estimate α̂+ ≥ 0, α̂+ = 0 by default.
Input: Relative precision ǫ ∈ (0, 1).
Output: Estimated flux α̂+ of the source.

⊲ Alternated estimation of α̂+, m̂(α̂+) and Ĉ(α̂+):
α̂+

old ← +∞
while

∣∣∣α̂+ − α̂+
old

∣∣∣ > ǫ α̂+ do
a← 0
b← 0
for t = 1 : T do

⊲ Step 1 Build the collection of patches:
φt = Ft(φ0)
P ←

{
r⌊φt⌉,t′ − α̂+ p⌊φt⌉(φt′)

}
t′=1:T

⊲ Step 2 Learn the background statistics:{
m̂⌊φt⌉(α̂

+), Ĉ⌊φt⌉(α̂
+)
}

(Equations 2.15)

⊲ Step 3 Update the flux terms α̂+:
w ← Ĉ−1

⌊φt⌉
(α̂+) · h⌊φt⌉(φt)

a← a+ w⊤ · h⌊φt⌉(φt)
b← b+ w⊤ ·

(
r⌊φt⌉,t − m̂⌊φt⌉(α̂

+)
)

α̂+
old ← α̂+

α̂+ ← max(b, 0)/a (Equation 2.16)

obtained by thresholding the S/N map at level τ should be photometrically character-
ized using the statistically unbiased PACO characterization procedure summarized in
Algorithm 2.2. As discussed in Section 2.3.3, this can be done by alternating between
an estimation of the flux of the exoplanet and the statistics of the background. Joint
estimation of the flux of the exoplanet and the background statistics could also be per-
formed by hierarchical optimization. The resulting estimate α̂ for a source located at
φt = Ft(φ0) on the frame t (t = 1 : T ) corresponds to the minimum of the following
cost function:

C (α) =
T∑

t=1

{
T log

(
det

(
Ĉφt

(α)
))

+ tr

(
Ĉ−1
φt

(α) ·

(
W⊙

T∑

t′=1

uφt,t′(α) · u⊤
φt,t′(α)

))}
,

(2.38)
where Wi,j = 1 if i = j, Wi,j = 1− ρ̂ elsewhere, {i, j} ∈ J1;KK2, ⊙ stands for entrywise
multiplication (i.e. Hadamard product), and un,t(α) = rn,t−α· hn,t−m̂n(α). The ex-
pression of C (α) in Equation (2.38) comes from the neg-log-likelihood under a Gaussian
assumption, where matrix W is introduced to shrink the covariance estimate towards a
diagonal covariance (i.e., to replace the maximum likelihood covariance estimate given

81



Application of background fluctuations modeling in astronomy:
detection and characterization of exoplanets

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.13 – Normalized cost function C obtained with Equation (2.38) for fake ex-
oplanets with different fluxes αGT . The dashed lines indicate the values found by the
proposed alternate scheme in Equations (2.15).

by the sample covariance with the shrinkage estimator described in Section 2.3.2).
Figure 2.13 illustrates the cost function C (α) that is minimized by our alternating

estimation scheme. This cost function is unimodal in the tested range of contrasts (from
5 × 10−6 to 10−1) indicating that PACO estimation procedure would also correctly
characterize exoplanets having a rather high flux. The minimum of the cost function
is located near the correct value (α̂/αGT = 1) with a discrepancy in agreement with
the standard deviation σ̂α. Minimizing C (α) therefore yields an unbiased estimator
of the flux. In practice, to minimize C (α), we followed the alternating scheme in
Equations (2.15) which is easily implementable and converges within a few iterations
(see Section 2.5.4). Our method for unbiased estimation of the flux is summarized in
Algorithm 2.2.

2.4.4 A fast and approximate version of PACO for large surveys

Since the data analysis of large surveys is a crucial issue in astronomy, we also
propose a simplified and faster version of the PACO detection procedure, which is
summarized by Algorithm 2.3. Compared to applying Algorithm 2.1 to a given set of
assumed initial source positions to compute a map of the detection criterion, the fast
version has a computational burden reduced by a factor at least equal to the number
T of temporal frames.

The acceleration relies on the pre-computation of terms that appear multiple times
in the sums of Equations (2.17) and (2.18) when considering all possible source loca-
tions. Computations of the background statistics are thus recycled. The S/N map is
obtained in a second step by interpolating the precomputed terms denoted by c and
d in Algorithm 2.3, to align the field of view at all times according to the transform
Ft which is, in general, a rotation. Such interpolations result in a low-pass filtering
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Algorithm 2.3: fast PACO detection– Fast computation of the S/N values at
initial 2-D angular positions G of an unresolved source.

Input: Uniform grid G of 2-D angular positions.
Input: Spatio-temporal dataset {rn,t}n=1:N, t=1:T .
Output: S/N map at all initial positions in G.

⊲ Step 1. Pre-compute terms:
forall φ0 ∈ G do

⊲ Step 1a. Build the collection of patches centered at φ0:
P ← {r⌊φ0⌉,t}t=1:T

⊲ Step 1b. Learn the corresponding background statistics and pre-compute
terms:{
m̂⌊φ0⌉, Ĉ⌊φ0⌉

}
(Equations 2.7, 2.9, 2.10 and 2.14)

w⌊φ0⌉ ← Ĉ−1
⌊φ0⌉

· h⌊φ0⌉(φ0)
c⌊φ0⌉ ← w⊤

⌊φ0⌉
· h⌊φ0⌉(φ0)

for t = 1 : T do
d⌊φ0⌉,t ← w⊤

⌊φ0⌉
·
(
r⌊φ0⌉,t − m̂⌊φ0⌉

)

⊲ Step 2. Compute the S/N values:
forall φ0 ∈ G do

a← 0
b← 0
for t = 1 : T do

φt = Ft(φ0)
a← a+ c⌊φt⌉(φt) (interpolation of c)
b← b+ d⌊φt⌉,t(φt) (interpolation of d)

S/N(φ0)← b/
√
a (Equation 2.26)

of the criterion map which slightly degrades the detection performance of PACO (see
Section 2.5). The complexity of the fast version given in Algorithm 2.3 is dominated
by the pre-calculation step (Step 1). Denoting by N the number of angular positions
φ0 to process, this step requires N × T products of vectors with K elements as well
as the resolution of N linear systems of size K × K. For example, the application of
this fast algorithm requires approximately 2 minutes to process a dataset made of 96
temporal frames of size 1024 × 1024 pixels versus approximately 3 hours for the com-
plete algorithm using a basic parallelization done in Matlab™ on 24 cores (processor
Intel™ Xeon E5–46170 at 2.90 GHz and K = 49 pixels per patch).

2.4.5 Sampling of possible exoplanet locations

The physical position φ of an unresolved source may not exactly correspond to a
sample of the data, i.e., a pixel n. To deal with this, we consider patches centered at
the nearest pixel ⌊φt⌉ of the source position φt = Ft(φ0) in frame t when it is assumed
to be initially at φ0. This means that patches are not exactly centered at the source

83



Application of background fluctuations modeling in astronomy:
detection and characterization of exoplanets

Figure 2.14 – Effect of the sampling grid on S/N: ratio
E(S/N(Gs(φ0) |φ0))/E(S/N(φ0 |φ0)) for s ∈ {1/4, 1/2, 1, 2, 4} computed on the
HIP 72192 dataset at λ1 = 2.110µm. It informs about the maximum expected
reduction in S/N if the exoplanet is not exactly centered on a pixel of the sampling
grid.

position φt with a potential loss of optimality. However, we expect that this loss be
small because the pixel size is usually chosen to be much smaller than the diffraction
limit (Beuzit et al., 2008, 2019).

There is another issue related to the sampling because the detection is carried out
on maps with necessarily a finite resolution for the assumed initial position φ0. One can
expect a negative bias for the S/N: the further the detected position in the criterion map
to the actual source position, the worse the value of the criterion. The faintest sources
may be undetected because of this bias. Fortunately, the direct model in Equation (2.1)
assumed by PACO does not impose any finite precision for the source position φt in each
frame, so detection maps can be computed at a resolution small enough to avoid the
problem. To limit the computational burden, one would however like to use a somewhat
coarse sampling for the detection map. There is a tradeoff to find and, in this section,
we attempt to evaluate the S/N loss caused by a given sampling of the detection map.
We assumed that the detection map is computed for initial positions on a uniformly
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Table 2.2 – Influence of the sampling factor s on the S/N and on the computation time.
The computation time as well as the maximum expected reduction in the S/N are given
for values of s ∈ {1/4, 1/2, 1, 2, 4}. The experiments are conducted on the HIP 72192
dataset at λ1 = 2.110µm with the PACO detection Algorithm 2.1. The computation
time (last column) is given relatively to the time required to process the considered
dataset with the original sampling grid (i.e., for s = 1) which, in our experiments, is
approximately three hours (see Section 2.4.3).

Sampling factor s Max. S/N reduction Time

1/4 80 % 1/16
1/2 30 % 1/4
1 9 % 1
2 3 % 4
4 ≤ 1 % 16

sampled grid Gs defined by:

Gs =

{
φ =

∆
s

(i1, i2)

∣∣∣∣∣ (i1, i2) ∈ Z
2, φ ∈ Θ

}
, (2.39)

where (i1, i2) stand for the two components of 2-D angular positions, ∆ is the pixel
size in the data, s is a chosen sub-sampling factor and Θ is the angular area where to
perform the detection. The inset of Figure 2.14 summarizes this notation for the case
s = 2.

The ratio E(S/N(Gs(φ0) | φ0))/E(S/N(φ0 | φ0)) informs about the fraction of S/N
lost due to the sampling grid Gs under consideration, with Gs(φ0) = arg minφ∈Gs

‖φ −
φ0‖2. The expected value of the S/N under the H1 hypothesis at any angular position
φ = Gs(φ0), knowing that the exoplanet is initially located at φ0, is:

E(S/N(φ |φ0)) = α

∑T
t=1 h⌊φt⌉(φt)

⊤ · Ĉ−1
⌊φt⌉

· h⌊φt⌉ (Ft(φ0))√∑T
t=1 h⌊φt⌉(φt)⊤ · Ĉ−1

⌊φt⌉
· h⌊φt⌉(φt)

. (2.40)

In practice, this expectation ratio is evaluated in the most unfavorable case for the con-
sidered grid, that is to say when the exoplanet is exactly located between two adjacent
grid nodes.

Figure 2.14 gives a map of the ratio E(S/N(Gs(φ0) |φ0))/E(S/N(φ0 |φ0)) for a uni-
form grid with sampling size ∆/s for s ∈ {1/4, 1/2, 1, 2, 4} and ∆ the pixel size of
the data. We note that values of s smaller than one correspond to a down-sampling
of the data pixels, while values greater than one correspond to an up-sampling of the
pixels. Figure 2.14 emphasizes that the choice s = 1 (corresponding to a calcula-
tion of the detection criteria in each pixel of the data) generates values of the ratio
E(S/N(Gs(φ0) |φ0))/E(S/N(φ0 |φ0)) between 0.91 and 0.97. The maximum loss is less
than 10% on the S/N values when the exoplanet is exactly located between two pixels.
The choice s = 4 ensures a maximum loss on the value of the S/N lower than 0.7%
at any point of the field of view at the price of a computational cost of the algorithm
multiplied by a factor 16. On the opposite, the choice s = 1/2, reduces the computa-
tional cost of the algorithm by a factor of four at the price of a maximum potential loss
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Figure 2.15 – Synopsis of PACO algorithm.

between 10 and 30% (depending on the position in the field of view) on the S/N values if
the exoplanet is located exactly between two pixels defined by the sampling grid under
consideration. Table 2.2 summarizes the impact of the choice of the sampling factor s
on the maximum expected S/N reduction and the computation time.

2.4.6 Unsupervised detection and characterization

Based on these methodological (Section 2.3) and practical (Section 2.4) develop-
ments, we derive a processing framework summarizes by Figure 2.15. In step , the
local patch mean and patch covariances are computed. Then, a detection map is ob-
tained by computing the S/N α̂/σ̂α at each possible location φ0 within the field of view.
Step checks whether the largest value in the detection map is above the detection
threshold. If not, the algorithm stops, otherwise, an exoplanet is detected at the loca-
tion of the maximum of the detection map. Step then refines the location to subpixel
accuracy and improves the estimation of the flux α of the detected exoplanet by jointly
estimating α and the background means and covariances. If two overlapping sources
are detected, their flux is jointly estimated like in a conventional orthogonal matching
pursuit procedure (Pati et al., 1993). This joint estimation procedure prevents from any
signal self-subtraction. The convergence criterion is based on the computed Cramér-
Rao lower bounds (see Section 2.3.6.3) on localization and flux accuracies such that the
numerical accuracy is better than the estimator standard deviation. Once this local
optimization step is finished, step removes the signal of the detected exoplanet from
the data as in a conventional CLEAN procedure (Högbom, 1974). Step is then re-
peated on the residual signal, and the subsequent steps, until the condition in step
indicates that no more statistically significant detections can be made.
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The method is totally unsupervised: no parameter tuning is necessary, the regular-
ization of the covariance matrices is based on automatic shrinkage (see Section 2.3.2);
the patch size is set based on a Monte-Carlo study and is constant for a given instru-
ment (see Section 2.4.1); the threshold τ is set according to a prescribed false alarm
rate. We present in Chapter 8 a short description of the PACO pipeline built with the
aim to be totally automatic from the data extraction to the pre-analyzis of the results.

• We propose a fast and approximate version of our exoplanet detection
method to conduct efficiently data analysis of large surveys (see Section
2.4.4).

• The detection criterion can be evaluated at any given resolution, thus pre-
venting from a loss of the detection sensitivity due to the grid of the detec-
tion map. We also derive a criterion giving the loss due to a given grid (see
Section 2.4.5).

• We derive a detection and characterization framework for the PACO algo-
rithm. It is based on a computation of a detection criterion map and to
its iterative update following a CLEAN/matching pursuit approach (see
Section 2.4.6). This framework is totally unsupervised:

• the regularization of the covariance matrices is based on automatic
shrinkage (see Section 2.3.2),

• the detection threshold τ is set according to a prescribed and controlled
false alarm rate (see Section 2.3.6.2),

• the patch size is set based on a Monte-Carlo study and is constant for a
given instrument, (see Section 2.4.1),

• the astrometric and photometric refinement ends based on the Cramér-
Rao lower bounds (see Section 2.3.6.3), such that the residual bias is
negligible in front of the minimal variance,

• the algorithm ends when no source is above the detection confidence
threshold τ set.

PACO: algorithmic considerations

2.5 Performance evaluation with on-sky data

In this section, we assess the performance of PACO on several ADI datasets acquired
at the VLT by the SPHERE-IRDIS instrument using the dual-band filters K1 (λ1 =
2.110µm) and K2 (λ2 = 2.251µm).

2.5.1 Datasets and algorithms description

The selected datasets are recorded in various conditions of observation leading to
different degrees of difficulty for the detection task. They are obtained around reference
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Table 2.3 – Observation logs of the considered ADI datasets. ∆par is for the total
amount of rotation of the field of view and the reported conditions of observation are
based on seeing value.

Target ESO ID Obs. date T ∆par Obs. conditions

HD 131399 095.C-0389 2015-05-12 92 36.7° average
HD 131399 262.C-5036 (DDT) 2016-05-07 56 39.5° good
HIP 72192 095.C-0389 2015-06-11 96 17.3° average

targets hosting well-known faint point sources (exoplanets or background sources such
as brown dwarfs). We present additional examples of the astronomical exploitation of
PACO results on recent datasets in Chapter 8. Hereafter, we give the main characteristics
of each dataset considered in this section.

Two datasets are derived from observations of the HD 131399 system located in the
Upper Centaurus Lupus association (De Zeeuw et al., 1999; Rizzuto et al., 2011; Pecaut
and Mamajek, 2013). The young center star of A1V-type forms a triple system with
two other K- and G-type stars located at a projected distance of about 3 arcsec from the
central star (Dommanget and Nys, 2002; Houk and Smith-Moore, 1988). An exoplanet
candidate has been recently detected at a projected distance of about 0.83 arcsec from
the central star (Wagner et al., 2016). However, more recent observations made it
possible to refine the reconstruction of the SED of the candidate companion and its
astrometry. This new information proved to be incompatible with the bound-exoplanet
hypothesis. It has been discussed to be more likely a background brown dwarf (Nielsen
et al., 2017). Both datasets provide observations up to about 5.5 arcsec. To illustrate
the performance of the PACO algorithm, we display a region approximately 1.7 arcsec of
radius, centered around the star A of the triple system, in order to limit the impact of
the other two stars of the system.

To also illustrate the performance of the PACO algorithm on the whole field of view
offered by the VLT/SHPERE-IRDIS instrument, we consider a dataset from the ob-
servation of the A0-type star HIP 72192 located in the Lupus constellation (De Zeeuw
et al., 1999; Schmitt et al., 1993). It hosts two confirmed faint point sources (brown
dwarfs).

Table 2.3 summarizes the observations logs of these three datasets.

The performances of the PACO algorithm are compared in terms of detection maps
and contrast curves obtained with the two current cutting-edge algorithms TLOCI,
and KLIP implemented in the SPHERE/SpeCal reduction tool (Galicher et al., 2018).
The SpeCal pipeline also offers the possibility to apply an unsharp filter after the
speckle removal algorithm to improve the visual quality of the reduction map, reduce
the pollution of the stellar leakages and artificially increase the S/N of the detected
point source objects. We note that it is expected that this post-processing partially
deteriorates the statistical properties of the resulting detection maps. The performances
of PACO are compared to the standard algorithms TLOCI and KLIP both with and
without unsharp filtering. With PACO, no post-processing is applied to the data nor
on the reduction maps other than the conventional data pre-reduction provided by the
SPHERE data center pipeline (Delorme et al., 2017). Comparative results from TLOCI
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Figure 2.16 – S/N maps computed with the PACO, TLOCI and KLIP algorithms on
the HD 131399 (2015) dataset at λ1 = 2.110µm. A common threshold at S/N = 5 is
applied to defined the detections. A known faint source is present in the field of view.
It is identified by a pink circle.

and KLIP algorithms have been obtained by Maud Langlois. The parameters of the
different algorithms used are manually tuned to provide the best results.

We also compare PACO in terms of detection capabilities with the recent and emerg-
ing algorithms LLSG and ANDROMEDA. The LLSG reductions are performed with
the VIP reduction pipeline (Gomez Gonzalez et al., 2017) and the ANDROMEDA
results are kindly provided by Faustine Cantalloube (January 2020 version of the AN-
DROMEDA package).

2.5.2 Detection maps

2.5.2.1 Comparison with state-of-art algorithms

We start by comparing PACO with the two current cutting-edge methods TLOCI and
KLIP. Figure 2.16 shows S/N maps computed with these three algorithms on the HD
131399 (2015) dataset at λ1 = 2.110µm. When setting a threshold of S/N ≥ 5 on PACO

detection map, only one detection is obtained, and this detection corresponds to the
faint point source already detected by the other authors. Setting the same threshold on
the S/N detection maps produced by TLOCI and KLIP algorithms lead to several false
detections. In the case of TLOCI, there are seven S/N values larger than that of the
real source, leading to seven false detections. An eighth false detection is obtained due
to a local maximum above the threshold S/N = 5. With the KLIP algorithm, there are
two detections corresponding to local maxima above the threshold S/N = 5, but these
are all false detections located close to the coronographic mask. The faint point source
is not detected with an S/N larger than five and would be detected only by lowering
the threshold below S/N = 4.3. By limiting the amount of signal subtraction, PACO

achieves the largest S/N value for the real faint point source (S/N = 8.6, to compare
with TLOCI: S/N = 6.5 and KLIP: S/N = 4.3). The second local maxima derived
from the PACO S/N is at S/N = 3.6, which illustrates the ability of PACO to distinguish
without ambiguity the faint point source. Moreover, in the absence of sources, the S/N
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Table 2.4 – Angular separation and contrast of the injected fake sources on the HIP
72192 dataset for the three considered levels of injection at λ1 = 2.110µm. Fluxes have
been chosen so that the difficulty of detecting each source be approximately the same
at all angular separations.

Separation (”) Mean[α] Min[α] Max[α]

Level 1
0.40 3.9× 10−5 2.5× 10−5 6.1× 10−5

1.58 2.8× 10−6 1.8× 10−6 4.3× 10−6

2.75 2.7× 10−6 2.1× 10−6 4.4× 10−6

3.93 2.6× 10−6 1.9× 10−6 3.7× 10−6

5.12 2.5× 10−6 1.6× 10−6 3.9× 10−6

Level 2
0.40 5.8× 10−5 3.6× 10−5 8.4× 10−5

1.58 4.2× 10−6 3.1× 10−6 5.8× 10−6

2.75 3.8× 10−6 3.0× 10−6 5.5× 10−6

3.93 3.5× 10−6 2.7× 10−6 4.5× 10−6

5.12 3.4× 10−6 2.4× 10−6 5.1× 10−6

Level 3
0.40 8.6× 10−5 5.2× 10−5 1.3× 10−4

1.58 5.6× 10−6 4.1× 10−6 7.4× 10−6

2.75 4.8× 10−6 4.0× 10−6 6.7× 10−6

3.93 4.4× 10−6 3.6× 10−6 5.3× 10−6

5.12 4.3× 10−6 3.3× 10−6 6.3× 10−6

map is stationary and false alarms are well controlled: the PFA when the S/N threshold
τ is set at five is close to the theoretical value of 2.87× 10−7: no false alarm is obtained
at this threshold in the region of interest. It can be observed that both TLOCI and
KLIP have nonstationary detection maps in the absence of source and the probability
of false alarms at the S/N threshold of five is much larger than the theoretical value of
2.87 × 10−7. Hence, the detection threshold must be set manually on these detection
maps to prevent false detections, or the numerous false detections must be discarded
by analyzing follow-up observations.

To better evaluate the performance of PACO, we also turned to the injection of fake
exoplanets on the HIP 72192 dataset at different angular separations. In addition to
the two known faint point-sources hosting by the star, we injected 30 fake companions
spread on five angular separations at three different levels of contrast, as summarized in
Table 2.4. The considered level 1 of injection approximately corresponds to a detection
at mean S/N = 5 using PACO detection Algorithm 2.1 while brighter sources are
injected within levels 2 and 3. Figure 2.17 shows S/N maps computed with the PACO,
TLOCI, KLIP, LLSG, and ANDROMEDA algorithms for the level 1 of contrast. For
TLOCI and KLIP, post-processing by unsharp filtering is also considered. For LLSG,
since the resulting S/N depends on the threshold used during the decomposition, the
S/N is not statistically grounded. As a result, we have multiplied the signed S/N by a
factor 25 to be in a range comparable to the other methods. For this algorithm, we have
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Figure 2.17 – S/N maps computed with the PACO, TLOCI, KLIP, LLSG, and AN-
DROMEDA algorithms considering the level 1 of injection. For TLOCI and KLIP, an
unsharp filtering applied to S/N maps as post-processing is also considered. For LLSG,
the resulting signed S/N is multiplied by a factor of 25 to fall within a comparable
range than the other methods. For this latest algorithm, detection is also performed
by discarding a central circular area of 1 arcsec in radius. The first 32 detections are
marked on each S/N map using square patterns. The 60 first detections are plotted as
bar charts below each S/N map, ordered by decreasing S/N values, with true detections
in pink (true background sources) or blue (injected fake sources), and false detections
in red. Circles indicate the location of the real and injected faint point sources. PACO is
the only algorithm capable of detecting correctly all sources without any false detection.

91



Application of background fluctuations modeling in astronomy:
detection and characterization of exoplanets

0

5

10

0

50

100

0

50

100

0 10 20 30 40 50 60
0

5

10

0 10 20 30 40 50 60

0

5

10

0

1.5

3

0 10 20 30 40 50 60
0

0.25

0.5

0 10 20 30 40 50 60

0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50 60

Figure 2.18 – S/N maps computed with the PACO, TLOCI, KLIP, and LLSG algorithms
considering the level 2 of injection. For TLOCI and KLIP, an unsharp filtering applied
to S/N maps as post-processing is also considered. For LLSG, the resulting signed
S/N is multiplied by a factor of 25 to fall within a comparable range than the other
methods. For this latest algorithm, detection is also performed by discarding a central
circular area of 1 arcsec in radius. The first 32 detections are marked on each S/N map
using square patterns. The 60 first detections are plotted as bar charts below each S/N
map, ordered by decreasing S/N values, with true detections in pink (true background
sources) or blue (injected fake sources), and false detections in red. Circles indicate the
location of the real and injected faint point sources. PACO is the only algorithm capable
of detecting correctly all sources without any false detection.
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Figure 2.19 – S/N maps computed with the PACO, TLOCI, KLIP, and LLSG algorithms
considering the level 3 of injection. For TLOCI and KLIP, an unsharp filtering applied
to S/N maps as post-processing is also considered. For LLSG, the resulting signed
S/N is multiplied by a factor of 25 to fall within a comparable range than the other
methods. For this latest algorithm, detection is also performed by discarding a central
circular area of 1 arcsec in radius. The first 32 detections are marked on each S/N map
using square patterns. The 60 first detections are plotted as bar charts below each S/N
map, ordered by decreasing S/N values, with true detections in pink (true background
sources) or blue (injected fake sources), and false detections in red. Circles indicate the
location of the real and injected faint point sources. PACO is the only algorithm capable
of detecting correctly all sources without any false detection.
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2.3 2.3

Figure 2.20 – ROC curves showing the true positive rate (fraction of sources correctly
detected) as a function of the number of false alarms (i.e., false detections) for the
three levels of contrast considered. Values displayed on each curve correspond to the
detection threshold used.

also performed the detection by discarding a central circular area of 1 arcsec of radius
since the detection seems to be very difficult near the host star. For each reduction map,
the S/N of the 60 largest local maxima is given in decreasing order on the same figure.
As expected, the S/N maps from PACO are stationary, robust to defective pixels (which
have led to aberrant data on a wider scale than one pixel in the science images) and to
strong stellar leakages on some frames due to a small decentering of the coronagraph.

The S/N maps derived from PACO are statistically grounded, allowing them to be
directly interpreted in terms of PFA without resorting to injections of fake companions
via Monte-Carlo simulations. It is clearly not the case for TLOCI which seems very sen-
sitive to defective pixels and large stellar leakages. KLIP performs better than TLOCI,
but it also produces nonstationary detection maps, particularly on the southeastern
area (see orange dashed area). Interestingly, this area has been identified with PACO as
an area where the detection of exoplanets is more difficult (see also the orange dashed
area on the contrast map; last row, first column in Figure 2.24). Since PACO locally
learns the background fluctuations, the aberrant data or the larger stellar leakages can
also be learned locally as typical background fluctuations and are not interpreted in the
detection stage as the signature of an exoplanet. The unsharp filtering applied on the
detection maps from TLOCI and KLIP improves their visual quality since areas with
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large S/N values due to the stellar leakages are largely attenuated, but the detection
performance of these algorithms are not significantly improved by this post-processing.
LLSG outperforms KLIP far from the host star but the detection maps from LLSG
are clearly not statistically grounded since the LLSG decomposition is also coupled
with entry-wise thresholding. As a result, the S/N derived from LLSG depends on the
choice of the threshold used during the decomposition. A high threshold eliminates a
large part of the noise (with the risk of also eliminating faint signals from exoplanets)
and artificially increases the S/N of the detected objects. Moreover, the detection of
exoplanets near the host star seems to be very difficult based on the LLSG results
since the signatures from fake exoplanets are visible but are at the level of false alarms
and cannot be easily retrieved by a visual inspection. ANDROMEDA demonstrates
appealing characteristics since the S/N map seems almost statistically grounded in the
sense that only a few false alarms are detected at S/N ≥ 5. This property is due to the
statistical detection step carried out on the residual images after speckles attenuation.
However, its detection sensitivity is significantly lower compared to PACO. Indeed, only
12 sources (out of 32) are detected at S/N ≥ 5 with ANDROMEDA and it seems to
us very difficult to detect the other ones by a visual inspection since the shape of their
(potential) detection peaks (blobs spatially correlated on a few pixels) are very similar
to the speckles ones. While it performs statistical detection, ANDROMEDA seems to
be suffering from its speckles attenuation step (by images subtraction) limiting its de-
tection capability. Finally, only PACO achieves the detection of the 32 sources without
any false alarm. In particular, only PACO detects the faintest real point source (pink
circle on the top left) at S/N ≥ 5.

Figures 2.18 and 2.19 gives the results obtained where fake exoplanets with a higher
flux α (levels 2 and 3 of contrast) are injected in the data at the same locations. These
complementary results illustrate that, with larger fluxes, all algorithms detect more
sources. At these larger fluxes, PACO detects the fake planets with significantly larger
S/N values than the other algorithms and the gap between the last true detection and
the first false alarm is increased.

Figure 2.20 summarizes the performance of the tested algorithms on the HIP 72192
dataset via receiver operating characteristics (ROC). ROC curves represent the true
positive rate (TPR) as a function of the false detection rate. Since the false detection
rate cannot be easily assessed, the TPR is represented as a function of the number of
false detections (represented in log scale). As discussed in Gomez Gonzalez et al. (2017);
Jensen-Clem et al. (2017), this type of representation is very useful to evaluate and
compare the performance of exoplanet hunter algorithms. This figure highlights that
PACO is the only tested algorithm able to detect both the faintest injected fake exoplanets
(level 1 ) and the real faint sources without false alarm, thereby outperforming TLOCI,
KLIP, LLSG, and ANDROMEDA algorithms.

2.5.2.2 Detection maps with fast PACO

As detailed in Section 2.4.4, detection maps and other related quantities can also be
computed by fast PACO, our fast implementation of PACO. Figure 2.21 gives the S/N
maps computed with fast PACO on the HD 131399 (2015) and HIP 72192 datasets at
λ1 = 2.110µm without injected fake exoplanet. It can be noted that the PACO Algo-
rithm 2.1 and fast PACO Algorithm 2.3 lead to very similar detection maps. A low-pass
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Figure 2.21 – S/N maps computed with fast PACO on the HD 131399 (2015) and HIP
72196 dataset at λ1 = 2.110µm. Detections over the S/N threshold of five are shown,
they correspond to known background faint point sources.

effect is observed on maps derived from fast PACO due to the approximations made.
Although the real faint point sources present in the data are detected with slightly
lower values of S/N (reduction in S/N less than 5%) with the fast PACO algorithm,
they remain detectable without ambiguity for a conventional detection threshold of
τ = 5.

This algorithm can be used routinely to process large data surveys. It is currently
used to process with state-of-the-art algorithms more than 300 ADI datasets from the
SHINE survey (Sphere High-contrast INfrared imaging for Exoplanets, Langlois et al.,
in prep.). The processing is then refined using PACO for the datasets revealing potential
faint point sources. These candidate sources are finally characterized (astrometry and
photometry), see Chapter 8 for our automated pipeline and application of PACO for
astronomy purpose on recent datasets.

2.5.2.3 PACO: a general framework

The PACO framework is general and can be applied to ADI datasets from different
high contrast instruments. Of course, the gain brought by PACO depends on the quality
of the dataset and therefore the quality of the optical corrections of the instrument.
To illustrate the versatility of PACO, we consider an additional dataset recorded by
the NaCo instrument equipped with the previous-generation AO system. NaCo is
still operating at the VLT. This dataset is delivered as a testing dataset with the VIP
processing pipeline (Gomez Gonzalez et al., 2017). It was recorded around the β Pictoris
star. This A6V-type star is located in the Pictor constellation and hosts two known
exoplanets (β Pictoris b and c). β Pictoris b was discovered (Lagrange et al., 2009) and
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Figure 2.22 – S/N maps computed with PACO, cADI, KLIP, and LLSG algorithms on
the β Pictoris dataset at λ1 = 3.800µm. Top: without injection of fake faint point
source (the location of the exoplanet β Pictoris is identified by a pink circle). Bottom:
with injection of fake faint point sources (their locations are identified by blue circles).
A common threshold at S/N = 5 is applied to defined the detections.

confirmed (Lagrange et al., 2010) by direct imaging. β Pictoris c was discovered very
recently by the radial velocities method (Lagrange et al., 2019b). In the following, we
dot no consider the presence of β Pictoris c any more 9. While the achievable contrast
with NaCo is generally lower than with SPHERE, the considered dataset benefits from
a favorable total amount of rotation of the field of view (∆par = 81°, T = 61). Moreover,
β Pictoris b is expected to be not too close to its host star in this dataset (see Chapter
8 for more challenging conditions of observation).

Figure 2.22 gives the S/N maps obtained with cADI, KLIP, and LLSG algorithms
implemented in the VIP package 10, to be compared with PACO. The results are given
without injection of fake faint point sources (only β Pictoris b is expected to be detected)
and with the injection of 12 fakes faint point sources whose levels of contrast are reported
in Table 2.5. The same conclusions can be drawn as those presented in the previous

9. β Pictoris c has a very small angular separation with its host star (0.10-0.15 arcsec at its maximal
elongation). For comparison, the limit of the classical coronagraphs of SPHERE-IRDIS masking the
host star and its close environment is 0.125 arcsec. Besides, β Pictoris c has a very low flux given its
separation (about 1× 10−4 in the H Johnson’s band). For these two reasons, it could be detected by
direct imaging when it is at its maximal elongation only, given the current instrumental and processing
capabilities, see Lagrange et al. (2019b).

10. We use here this implementation since the state-of-the-art algorithm’s parameters where already
tuned by the VIP’s authors for this dataset.
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Table 2.5 – Angular separation and contrast of the injected fake sources on the β Pictoris
dataset at λ1 = 3.800µm. Fluxes have been chosen so that the difficulty of detecting
each source be approximately the same at all angular separations.

Separation (”) Mean[α] Min[α] Max[α]

0.27 9.3× 10−5 6.2× 10−5 1.2× 10−4

0.76 7.6× 10−6 7.2× 10−6 8.2× 10−6

1.17 3.0× 10−6 2.9× 10−6 3.2× 10−6

section based on the processing of SPHERE data. LLSG outperforms other state-of-
the-art algorithms. However, due to its entry-wise thresholding, its S/N maps are not
statistically grounded so that they cannot be interpreted in terms of PFA nor in terms of
PD. Only PACO can detect without ambiguity the known exoplanet and the 12 injected
fake point sources.

2.5.3 Contrast curves and detection statistics

This section is devoted to the quantitative evaluation of the performance of PACO via
contrast curves and contrast maps. For a given probability of false alarm PFA (hence,
a given detection threshold τ), the contrast represents the minimum flux (normalized
to the host star flux) that a source must have to be detected by the algorithm with
a probability of detection PD. Throughout this section, we consider a target PFA of
2.87× 10−7 reached when thresholding the S/N detection maps at τ = 5. The resulting
contrast is conventionally referred to “contrast at 5σ” in the literature. Since the
statistical distribution of the S/N is well controlled with PACO (see discussion in Section
2.3.6.1), the PFA and PD can be predicted at each location φ0 based on the local
statistics m̂ and Ĉ using Equation (2.29). The resulting contrast is, however, a lower
bound since it would only be achievable with exact knowledge of the local statistics m̂

and Ĉ. Given that these local mean and covariance must be estimated in the presence
of a source, the actual achievable contrast is higher (i.e., worse). Hence, theoretical
curves/maps are referred to as “PACO oracle” (achievable should an oracle provide the
background statistics m̂ and Ĉ, even in the presence of a source). To assess the actual
detection performance of the algorithm, we compute, based on Monte-Carlo simulations,
the contrast required to detect sources with PD = 0.5 when applying a threshold at
τ = 5. These contrasts are referred to simply as “PACO” in the curves displayed in the
following figures.

2.5.3.1 Predicted best-achievable-contrast

We first illustrate that the lower bound on the achievable contrast (as reached
by PACO oracle) obtained using Equation (2.29) is correct. Figure 2.23 displays the
contrast curve as a function of the angular separation on the HD 131399 (2015) dataset
at λ2 = 2.251µm. The theoretical contrast map for PACO oracle as obtained from
Equation (2.29) is radially averaged to obtain a curve of contrast as a function of
the angular separation between the source and the host star. Two curves are drawn
corresponding to PD = 0.5 and PD = 0.8. Superimposed to these curves, Monte-Carlo
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Figure 2.23 – Contrast curves obtained with PACO: comparison between predicted con-
trast map from PACO derived from Equation (2.29) denoted as “PACO oracle” radially
averaged and Monte-Carlo simulations (denoted as “PACO oracle (Monte-Carlo)”) by
injection of 20 fake faint point sources at each tested separation on the HD 131399
(2015) dataset at λ2 = 2.251µm. The two cases are considered with absence of faint
point sources during the learning of the statistics of the background (oracle mode).

simulation results show the contrast necessary to achieve the targeted PD value in
oracle mode, that is to say when the statistics of the background are computed on data
with no injected source. These contrasts are in good match with the theoretical curves
which validate the use of (2.29) to compute this contrast lower-bound.

Figure 2.24 gives the maps of contrast for a probability of detection PD = 0.5
obtained with PACO oracle on the HD 131399 (2015), HD 131399 (2016) and HIP 72192
datasets, at λ1 = 2.110µm and λ2 = 2.251µm. As expected, this contrast improves
when the angular separation increases since the stellar leakages decrease farther from
the star. Interestingly, Figure 2.24 emphasizes that some local areas are less favorable
than others for the detection of low-flux exoplanets, because the spatial structures of
the background fluctuations may be misinterpreted as low-flux sources. For example,
the contrast is locally higher in the southwestern area of the HIP 72192 dataset (see
orange dashed area) at λ1 = 2.110µm. This can explain the difficulties of state-of-the-
art algorithms in this area as emphasized in Section 2.5.2 (see orange dashed areas in
Figures 2.17, 2.18, and 2.19). While other algorithms suffer from an increased false
detection rate in these areas (due to a lack of local adaptivity of the methods), PACO

has a constant false alarm rate. Only the probability of detection is decreased in these
more difficult regions, as expected.

2.5.3.2 Actual best-achievable-contrast

We now investigate the actual performance of PACO (i.e., without oracle knowledge
of the background statistics). The statistics of the background are impacted by the
presence of the exoplanet, which decreases the S/N (and hence increases the required
contrast to achieve the same probability of detection than in oracle mode).
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Figure 2.24 – Contrast maps for a probability of detection PD = 0.5 obtained with
PACO oracle for HD 131399 (2015), HD 131399 (2016) and HIP 72192 datasets at
λ1 = 2.110µm and λ2 = 2.251µm.

100



2.5. Performance evaluation with on-sky data

Figure 2.25 – Contrast curves derived from PACO, TLOCI, and KLIP for a probability
of detection PD ∈ {0.5; 0.8} at λ1 = 2.110µm and λ2 = 2.251µm for the HD 131399
(2015), HD 131399 (2016), and HIP 72192 datasets respectively. Contrast curves as
provided by KLIP and TLOCI do not correspond to a 5σ false alarm rate contrarily
to the contrast curves of PACO. The achievable contrasts are thus significantly over-
optimistic for KLIP and TLOCI, see discussion in Section 2.5.3.2.

Figure 2.25 shows contrast curves derived from PACO oracle (i.e., using Equation
(2.29)) and PACO (as obtained by Monte-Carlo, i.e., actual contrasts). It emphasizes
that PACO oracle gives a reliable approximation of the achievable contrast far from the
host star (at angular separations larger than 2 arcsec). At smaller angular separations,
PACO oracle over-estimates the achievable contrast because it neglects the impact of
the source signal when computing background statistics. At these small angular sepa-
rations, the motion of the source is limited, which makes background contamination by
the source non-negligible. In these cases, resorting to Monte-Carlo simulations is thus
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Table 2.6 – Photometric accuracy evaluated by Monte-Carlo simulation with 50 in-
jections of fake sources for each angular separation, on the HIP 72192 dataset at
λ1 = 2.110µm. Column 2: Mean estimated flux and 1σ confidence range. Column
3: Bias. Column 4: Relative error.

Separation (”) 〈α̂〉 ± σ
∣∣∣〈α̂〉 − α

∣∣∣ σ/α

Level 1
0.40 (3.9± 0.6)× 10−5 0.0× 10−5 15%
1.58 (2.8± 0.6)× 10−6 0.0× 10−6 21%
2.75 (2.7± 0.5)× 10−6 0.0× 10−6 18%
3.93 (2.6± 0.4)× 10−6 0.0× 10−6 15%
5.12 (2.5± 0.4)× 10−6 0.0× 10−6 16%

Level 2
0.40 (5.8± 0.6)× 10−5 0.0× 10−5 10%
1.58 (4.2± 0.6)× 10−6 0.0× 10−6 14%
2.75 (3.8± 0.5)× 10−6 0.0× 10−6 13%
3.93 (3.5± 0.4)× 10−6 0.0× 10−6 11%
5.12 (3.4± 0.4)× 10−6 0.0× 10−6 12%

Level 3
0.40 (8.6± 0.6)× 10−5 0.0× 10−5 7%
1.58 (5.6± 0.6)× 10−6 0.0× 10−6 11%
2.75 (4.8± 0.5)× 10−6 0.0× 10−6 10%
3.93 (4.4± 0.4)× 10−6 0.0× 10−6 9%
5.12 (4.3± 0.4)× 10−6 0.0× 10−6 9%

necessary to obtain an accurate estimation of the achievable contrast.
Superimposed to these curves, we give the contrast curves provided by TLOCI and

KLIP algorithms. These latter curves must, however, be analyzed with care. S/N
maps computed on the dataset in which we injected fake sources (Figures 2.17, 2.18,
and 2.19) indeed illustrated that thresholding at S/N = 5 the detection maps of TLOCI
and KLIP leads to numerous false alarms (many more than expected if the detection
maps were distributed according to a standard Gaussian distribution in the absence of
source). The contrast curves provided therefore correspond to a much higher probability
of false alarm that is not constant in the field of view, and that is very favorable to
these algorithms. Therefore, these curves cannot be directly compared to those drawn
for PACO. The actual difference between the minimal contrast for source detection with
PACO and TLOCI or KLIP would be much larger should the same false alarm rate be
considered.

2.5.4 Photometry accuracy

This section is devoted to the analysis of the capability of PACO to correctly estimate
the flux α of a detected source. As explained in Sections 2.3.2 and 2.4.3, the PACO

characterization scheme is very similar to the PACO detection procedure. The
main difference lies in the joint estimation of the flux of the source and the background
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Figure 2.26 – Estimated flux as the function of the number of iterations of PACO

characterization Algorithm 2.2 for the three known faint point sources (FPS) of
the HIP 72192 and HD 131399 (2015) datasets.

statistics to prevent from under-estimating the flux of the source.
To evaluate the photometric performance of PACO characterization at different

angular separations, we performed the following numerical experiment: we injected
fake faint point sources with contrast decreasing with the angular separation at the
three levels of contrast considered previously (see Table 2.4). For each angular sepa-
ration, 50 different injections (at different known locations in the field of view) were
performed, and each time the flux was estimated at those known locations using PACO

characterization Algorithm 2.2. Table 2.6 reports the mean estimated flux 〈α̂〉, the
bias, and the photometric standard deviation relative to the source flux. It shows that
the bias is negligible compared to the standard deviation, at all angular separations. It
also illustrates that the standard deviation depends on the source location (some areas
are more favorable than others) but not on the source amplitude, as expected from the
theoretical study, see Equation (2.22) which is recalled hereafter:

σ̂α ≈ 1/
√
a .

. PACO characterization also provides a statistical unbiased photometric estimation
even for high levels of flux, i.e., even in cases where the point source contaminates
strongly the collection of patches used for the computation of the background statistics.
As the standard deviation of the estimated flux does not depend on the flux of the point
source, the relative error of the flux improves when the flux of the point source increases.

Figure 2.26 gives the estimated flux α̂ as the function of the number of iterations
with the PACO characterization Algorithm 2.2 for the three known point sources close
to HD 131399 and HIP 72192 stars. They show that the iterative estimation scheme
converges within a few iterations. Figure 2.27 gives the local maps of the estimated
flux at λ1 = 2.110µm for these three point sources. The estimated flux is compared
to the estimated flux obtained without performing an alternate estimation between the
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Figure 2.27 – Local S/N maps and estimated flux at λ1 = 2.110µm around the known
real faint point sources (FPS1 and FPS2) located around the HIP 72192 star and the
known real faint point source (FPS3) located around the HD 131399 system. (a):
S/N of detection derived from PACO detection Algorithm 2.1. (b): Estimated flux
derived from PACO detection Algorithm 2.1. (c): Estimated flux derived from PACO

characterization Algorithm 2.2 alternating between the estimation of the flux and
the computation of the background statistics. (e-d-f): Respectively correspond to (a-b-
c) computed on a subpixel grid with a sampling factor s = 4. The superimposed white
grid represents the original sampling grid (sampling factor s = 1).
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flux and the statistics of the background. For the two considered cases, the estimation
is performed with a sampling corresponding to the data pixel grid (i.e., sampling factor
s = 1) and with a subpixel sampling (sampling factor s = 4). The flux of the objects
(and the S/N values) are also significantly under-estimated if the estimation of the flux
is not alternated with the estimation of the background statistics. This shows that both
(i) the location refinement and (ii) the joint estimation of the source flux and of the
background statistics are required to obtain an accurate estimate of fluxes.

Based on the analysis of several ADI datasets, PACO shows several appealing char-
acteristics:

• it produces stationary and statistically grounded detection maps that can
be directly interpreted in terms of probability of false alarm and probability
of detection,

• it demonstrates significantly better detection sensitivity than other state-
of-the-art methods,

• it produces a 2-D contrast map, and the resulting contrast is in good agree-
ment with the actual achievable contrast at a moderate distance from the
host star,

• it provides unbiased photometry estimation without resorting to Monte-
Carlo methods.

PACO characteristics

2.6 Conclusion on PACO’s capabilities

This chapter presents a new method (PACO) dedicated to exoplanet detection in an-
gular differential imaging. PACO differs from the existing methods in its local modeling
of the background statistics that captures both the average speckles and the spatial
correlations. The decision in favor of the presence or absence of an exoplanet is made
by a binary hypothesis test. Since no image subtraction is performed, the photometry
is well preserved by the method. PACO is completely parameter-free, from the com-
putation of a detection map to its thresholding to extract meaningful detections and
the estimation of fluxes of the detected sources. We believe that this is a significant
advantage to obtain consistent performances and deploy the method on large exoplanet
surveys.

PACO is statistically grounded so that the false alarm rate, the probability of de-
tection and the contrast can be assessed without necessarily resorting to Monte-Carlo
methods. Since the performance of the detection and estimation method is theoretically
well understood, it paves the way to the co-design of the next generation of instruments
for exoplanet detection, the instrumental design and/or observation planning being eas-
ily related to detection performances through the predicted contrast and photometric
or astrometric accuracies (see Chapter 4).
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We showed using datasets from the VLT/SPHERE-IRDIS instrument that the pro-
posed method achieves significantly better detection performance than current cutting-
edge algorithms. The detection maps obtained using PACO also have a stationary be-
havior even in the vicinity of the host star. Robust processing or joint processing of
data from different wavelengths can further improve the detection maps and push down
the detection limit. The resulting adaptations of the PACO algorithm are presented in
Chapters 4 and 6, respectively.
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Chapter 3
Application of background fluctuations

modeling in holographic microscopy:

detection of diffraction patterns

Abstract

Holographic microscopy is another application field which requires the detection of
a weak signal superimposed over a background. Because of temporal fluctuations,
the background cannot be completely suppressed by subtraction. The detection of
the pattern then requires statistical modeling of the background. Due to difficul-
ties related to the estimation of the spatial correlations of the background and the
application of an optimal detector that accounts for these correlations, it is com-
mon practice to neglect them. In this chapter, spatial correlations at the scale of
an image patch are locally estimated based on several background images. This
chapter introduces a method named EXPACO, dedicated to the detection of spatially
extended known patterns such as diffraction patterns in holographic microscopy.
A fast algorithm for the computation of detection maps is derived. The approach
is evaluated on images obtained from a holographic microscope.

3.1 Introduction

As discussed in Section 1.3.2, the detection and localization of a faint pattern mod-
eled by a few parameters is an essential processing task in holographic microscopy. In
particular, small spherical objects such as cocci bacteria, bubbles or droplets can be
imaged over time to derive, after detection, physical properties (e.g., size and refractive
index) characterizing them (Wang et al., 2016; Philips et al., 2017; Sentis et al., 2018).
The resulting holograms are often impacted by a strong background, as illustrated by
Figure 3.1, due to optical aberrations and the presence of unwanted objects (e.g., dust)
in the field of view. Moreover, that background fluctuates over time (see Figure 3.7 and
Section 3.5). Fluctuations in the background are due to small variations of the opti-
cal path lengths between optical surfaces (because of mechanical vibrations or thermal
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inhomogeneities of the air) and are difficult to model fully.
The detection and localization tasks become very difficult when the amplitude of

the pattern of interest is small compared to the background fluctuations, and under
the presence of nonstationary and correlated background structures. A crude solution
is to simply ignore these correlations; the noise is then considered as additive, white,
and Gaussian (Verrier et al., 2015; Marié et al., 2017). Several finer strategies can
be considered to overcome these difficulties. As in the TLOCI-type algorithms used
for exoplanet detection (see Section 2.2), a template image of the background can be
formed from a collection of background images. For this purpose, the mean (median) or
a linear combination of the backgrounds most correlated to the image of interest can be
computed (Krishnatreya et al., 2014; Vandewiele et al., 2017). The resulting template
background is then subtracted to the hologram of interest. However, these approaches
remain limited when the background fluctuations are large. Another solution, for slowly
evolving backgrounds, is to separate the background and the object contributions using
a regularized inverse problem approach (Berdeu et al., in prep.). Such a method is
based on the use of different holograms recorded at different defocus and different
transversal shifts so that the backgound and the signal of interest can be unmixed.
Yet another possibility is to consider the background contribution as outliers while the
diffraction fringes created by the objects of interest act as inliers. In this context,
robust approaches based on the iterative re-weighting of the residuals of estimation can
be helpful. In Chapter 5, we present such a strategy. In this chapter, we propose an
alternative approach: we follow the same statistical framework as in Chapter 2 and we
derive an algorithm (EXPACO) dedicated to the detection and localization of spatially
EXtended known patterns under a nonstationary and correlated background through
the modeling of PAtch COvariances.

This chapter is structured as follows. Section 3.2 describes the statistical modeling
of background fluctuations with EXPACO. Section 3.3 presents the statistical framework
used for the detection of an extended known pattern based on patch covariances. It
gives a particular emphasis on the algorithm complexity and shows that its straight-
forward implementation leads to a prohibitive computational cost. Section 3.4 derives
an efficient algorithm based on fast Fourier transforms to approximate the detection
map. Finally, Section 3.6 concludes the chapter with several experiments showing the
efficiency of the proposed detection approach. This chapter is based on the conference
paper Flasseur et al. (2019).

3.2 Statistical modeling of the background fluctua-
tions

As in Chapter 2, we focus on the case where several images of the background
are recorded. While it is not possible to learn the background statistics from pure
background realizations in direct imaging (an exoplanet, if present, always contributes
to the observed signal, see Chapter 2), here we learn the background statistics in the
absence of the objects of interest, before performing the detection tasks. From an
experimental point of view, the glass slide containing the objects of interest is shifted
to an area where only the surrounding medium is present.
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Figure 3.1 – (a) Hologram of a 0.5µm radius latex bead in suspension in permuted
water. (b) The model of the diffraction pattern of the bead that best fits the data in
the least-squares sense (see Section 1.3.2.2.1). Adapted from Verrier et al. (2015).

Because of the temporal fluctuations of the background, subtracting an average
background or even a linear combination of the background images is not sufficient to
efficiently remove the background from the image: spatially-structured residuals remain
and degrade the detection performance (see Section 3.5 and Figure 3.7). To overcome
this limitation, a statistical modeling of the background fluctuations can be built to
better decide at detection time which part of the signal may be ascribed to the pattern
to detect and which part is more likely due to a typical temporal fluctuation of the
background.

In holographic microscopy, background fluctuations are generally nonstationary and
spatially correlated. Capturing those fluctuations at the scale of an N -pixels image
from only a few tens up to a few hundreds of background images is very difficult: the
covariance matrix has O(N2) 1 terms. Either some structure has to be assumed for the
covariance matrix or a more local modeling is necessary.

Assuming the spatial stationarity of the covariance matrix constrains the covariance
matrix to be Toeplitz-bloc-Toeplitz. Under this hypothesis, the maximum correlation
detection method can be adapted by applying a pre-processing step to whiten the ob-
servations and the model by shift-invariant linear filtering, see Réfrégier and Goudail
(2013). Such an approach is however inapplicable to cases with non-stationary back-
grounds like in holographic microscopy. We therefore resort to a local modeling of
covariance matrices.

In this section, we follow the same statistical modeling based on PAtches Covari-
ances than for exoplanet detection by direct imaging. The PACO algorithm described
in Chapter 2 is adapted to detect spatially EXtended known patterns (hence the name
EXPACO). Figure 3.2 illustrates the main differences between PACO and EXPACO. First,
with PACO, the background statistics are learned in the presence of the (potential) exo-
planets to be detected while with EXPACO they are learned in the absence of the objects
of interest (by shifting the sample out of the field of view), see column . Secondly,

1. O( · ) corresponds to Bachmann–Landau asymptotic notation.

111



Application of background fluctuations modeling in holographic
microscopy: detection of diffraction patterns

Figure 3.2 – Comparison between the PACO and the EXPACO algorithms.

with PACO, the detection problem is spatially localized (exoplanets behaving as point
sources) and multi-temporal (exoplanets having an apparent motion along time) while
the problem now consists of detecting a spatially extended pattern (due to the diffrac-
tion) at a unique frame (date) with EXPACO, see column .

Like in the previous chapter, the background component f ∈ R
N is decomposed into

patches. The patch fn ∈ R
K extracted around pixel n is modeled by a multivariate

Gaussian: fn ∼ N (mn,Cn), where both the mean mn and the covariance matrix Cn

are estimated locally from the set of background images.
The mean mn is estimated by the sample mean:

m̂n =
1
T

T∑

t=1

fn,t , (3.1)

where the notation fn,t indicates the K-pixels patch centered at pixel n, in the t-th
background image.

To estimate the covariance matrix of size K × K from T background images, the
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Figure 3.3 – Illustration of the local model for background patches: (a) sample 11× 11
patches from experimental backgrounds, extracted at three different locations noted n1,
n2, and n3; (b) patches generated from a multivariate Gaussian model (locally learned
from 60 background samples).

sample covariance matrix can be used when T ≫ K:

Ŝn =
1
T

T∑

t=1

(fn,t − m̂n)(fn,t − m̂n)⊤ . (3.2)

When T ≈ K, Ŝn has a large variance and when T < K, Ŝn becomes rank-deficient. As
discussed in Section 2.3.2, Ledoit and Wolf (2004) and Chen et al. (2010) improve the
sample covariance matrix by shrinkage towards a matrix proportional to the identity. In
Section 2.3.2, we extended the formula defining the shrinkage estimator as the convex
combination of Ŝn and a diagonal covariance matrix F̂n defined by [F̂n]a,b = 0 if a 6= b,
and [F̂n]a,b = [Ŝn]a,b (see Figure 2.4):

Ĉn = (1− ρ̂)Ŝn + ρ̂F̂n , (3.3)

where the shrinkage coefficient ρ̂ is obtained by clipping to the [0, 1] range the value
(see Section 2.3.2 and Appendix A):

ρ̂ =
tr(Ŝ2

n) + tr2(Ŝn)− 2
∑K
k=1[Ŝn]2kk

(T + 1)(tr(Ŝ2
n)−∑K

k=1[Ŝn]2kk)
. (3.4)

Figure 3.3(a) shows some patches extracted at different locations of background
images acquired with a holographic microscope (see Section 3.5 and Figure 3.6 for
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more details). In Figure 3.3(b), some random realizations drawn according to the
local Gaussian model N (m̂n, Ĉn) learned from 60 background patches are displayed.
Patches from three different locations n1, n2, and n3 are shown on two different rows.
Fluctuations around the mean background differ according to the location. Generated
patches are quite similar to the patches extracted from the background images at the
corresponding location.

3.3 EXPACO: detection of EXtended known patterns
based on PAtch COvariances

The joint detection/localization problem of a known pattern h(x0, y0) centered at
the 2-D location (x0, y0) in an observed image r corrupted by a background f can be
formulated as in Chapter 2 by a binary hypothesis test:





H0 : r = f

(background only)

H1 : r = f + αh(x0, y0) ,

(background+pattern)

(3.5)

with α > 0 the amplitude of the pattern.
The estimation of the 2-D location (x0, y0) of the known pattern and its amplitude α

is necessary to decide between the two hypotheses. The neg-log-likelihood of parameters
α, x0 and y0 underH1, with our patch-based modeling and an independence assumption
between patches, is:

− log p(r|H1, α, x0, y0) = 1
2

∑
n

g⊤
nC−1

n gn + c, (3.6)

where the residual patch gn is obtained by removing the average background mn and the
contribution of the pattern hn to the observed patch rn: gn = rn−mn− αhn(x0, y0),
and where c is a constant that depends only on the sum of the log of the covariance
determinants.

At a given location (x0, y0), the maximum likelihood estimate of the amplitude of
the pattern is given by:

α̂(x0, y0) =
max(b(x0, y0), 0)

a(x0, y0)
=

[b(x0, y0)]+
a(x0, y0)

, (3.7)

with 



a(x0, y0) =
∑
n

hn(x0, y0)⊤Ĉ−1
n hn(x0, y0)

b(x0, y0) =
∑
n

(rn − m̂n)⊤Ĉ−1
n hn(x0, y0) .

Like in the PACO algorithm, the term b can be interpreted as a correlation between
the whitened model and the whitened (and centered) measurements while the term a
corresponds to the auto-correlation of the whitened model, see Section 2.3.4.
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To decide in favor of hypothesis H0 or H1, for a fixed location (x0, y0), the generalized
likelihood test (GLRT) is:

(GLRT(x0, y0)) log
p(r|H1, α̂, x0, y0)

p(r|H0)
=

[b(x0, y0)]
2
+

a(x0, y0)

H1

≷
H0

η ,

which can be recast for η ≥ 0 as a test on the signal-to-noise ratio of the pattern h

(S/Ntest), which follows N (0, 1) under H0, see Section 2.3.5:

(S/Ntest(x0, y0))
α̂(x0, y0)
σα(x0,y0)

=
b(x0, y0)√
a(x0, y0)

H1

≷
H0

√
η = τ . (3.8)

The maximum likelihood location of the pattern is obtained by maximization of the
S/Ntest over all possible locations.

Figure 3.4 illustrates the computation of the detection criterion (S/Ntest) with
EXPACO at different locations of the field of view. The background statistics are com-
puted only once at each patch location (see leftmost green frames) while the model
h of the known pattern to detect is shifted at each location (x0, y0) where the detec-
tion criterion should be evaluated (see rightmost blue frames). The major difference
with PACO comes from the number of patches involved when performing the hypothesis
test at a tentative location (x0, y0): because point-like sources are spatially localized,
PACO considered only one patch per frame (a total of T patches) while EXPACO requires
considering all patches of the image (possibly millions of patches).

So far, in our modeling only a single pattern has been considered. If several patterns
are superimposed, each centered on a different 2-D location, a greedy approach similar
to the matching pursuit can be applied: patterns are detected one at a time by forming
the S/Ntest, and after each detection the detected pattern is subtracted from the data
so that the next pattern can be detected by applying the S/Ntest on the residuals.
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Figure 3.4 – Illustration of the computation of the detection criterion (S/Ntest) with EXPACO.
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3.3. EXPACO: detection of EXtended known patterns based on PAtch
COvariances

• Based on the observation that the background of holographic time series
present fluctuations involving spatially-variant correlations, we derive the
basis of an algorithm (EXPACO) dedicated to the detection of extended known
patterns in the presence of a strong and structured background. It uses the
same statistical framework than the PACO algorithm dedicated to exoplanet
detection (see Chapter 2):

• The observed intensity is modeled as the superimposition of the back-
ground contribution and the known pattern signature.

• A nonstationary multi-variate Gaussian model of the background is
learned, capturing together the average fluctuations and the spatial cor-
relations. In particular, the EXPACO covariance matrices are estimated
following a shrinkage approach based on a data-driven convex combi-
nation between a low bias/high variance and a high bias/low variance
estimators.

• The decision in favor of the presence or the absence of a pattern is per-
formed by a binary hypothesis test.

• Since the holographic patterns to be detected are spatially extended, EXPACO

differs from the PACO algorithm by considering many more patches in the
detection criterion.

• This methodological approach differs from state-of-the-art approaches by:

• the absence of explicit background subtraction,

• the learning from the data themselves of the statistics of the background.

EXtended PAtch COvariances modeling
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Figure 3.5 – Fast computation of the terms b(x0, y0) and a(x0, y0) for all pixel shifts with EXPACO.
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3.4. Fast computation of detection maps with EXPACO

3.4 Fast computation of detection maps with EXPACO

3.4.1 Evaluation of the algorithmic complexity

Localization of a pattern requires to maximize the S/Ntest. Since the S/Ntest is a
non-convex function of the 2-D location (x0, y0), with many local maxima observed in
practice, it is necessary to systematically evaluate the S/Ntest over a grid to identify
the global maximum. If the pattern 2 h is extended, patches hn extracted from the
reference pattern are all non-zero and the sums in Equation (3.8) involve N terms if
patches overlap, or N/K if patches do not overlap (the pattern is not contained in a
single patch but must be decomposed into a tiling of many patches). In the following
discussion, we consider that patches overlap, the case of non-overlapping patches is
obtained by dividing the complexity by a factor K.

Evaluating the S/Ntest defined in Equation (3.8) for a given location requires
O(NK2) scalar operations if the inverse matrices Ĉ−1

i are precomputed (which re-
quires O(NK3) operations). Therefore, to produce a S/Ntest map, i.e. to compute the
S/Ntest for N locations (x0, y0) spanning the whole pixel grid, O(N2K2) operations
are required. Since the number K of pixels in a patch is much smaller than the total
number N of pixels in an image, precomputing the inverse of covariance matrices in
O(NK3) is negligible compared to producing the map in O(N2K2) and is a K-fold im-
provement compared to inverting linear systems at each location, which would lead to
a total complexity of O(N2K3). This high computational complexity prevents a direct
application of the S/Ntest based on the background modeling described in Section 3.2
with patch covariances.

Several strategies can be considered to overcome this difficulty. Estimating the
optimal location (x̂0, ŷ0) and the amplitude α̂ of the pattern can be done by iterative
minimization based on gradients. Such a strategy requires O(NK2) operations (for a
fixed number of iterations of the minimization algorithm). A multi-resolution strategy
(Seifi et al., 2012) can be applied: an exhaustive search is performed on a strongly
down-sampled version of the image and of the model. Then, a sequence of location
estimation is performed by iterative minimization using images with an increasing size
(and improved resolution). This can reduce the computational complexity by several
orders of magnitude.

In this section, we describe another approach. We derive a fast algorithm to compute
S/N detection maps in the case of shift-invariant models h. The algorithm is based on
a reformulation of Equation (3.8) that involves discrete correlations. These correlations
are computed using fast Fourier transforms. We describe in turn how the numerator and
the denominator of (3.8) can be efficiently computed. Throughout Sections 3.4.2 and
3.4.3, the Reader can refer to Figure 3.5 summarizing the main steps of the computation
of the terms b(x0, y0) and a(x0, y0) for all pixel shifts.

2. For compactness, we drop in this paragraph the spatial location (x0, y0) in the notation h(x0, y0).
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3.4.2 Fast computation of b(x0, y0) for all pixel shifts

When the model is shifted, restrictions of the model to each patch hn are modified

while patches un ≡ Ĉ−1
n (rn − m̂n) remain unchanged. Let U =



| |

u1 · · · uN

| |


 be

the K × N matrix collecting all transformed patches un. By application of a singular
value decomposition (SVD), matrix U can be decomposed into a sum of K rank-one
matrices:

U =
K∑

k=1



|

vk
|



(
−βk−

)
, (3.9)

where {vk}k=1..K are the left singular vectors (i.e. modes) and [βk]n is the coefficient of
each patch un related to mode vk (obtained as the product of the k-th singular value
and of the n-th entry of the k-th right singular vector).

The computation of scalar products h⊤
nvk for all the patches hn that can be extracted

from model h is readily obtained by a 2-D correlation 3:

h⊤
nvk = [h ⋆ vk]n , (3.10)

where the notation ⋆ denotes a 2-D discrete correlation.
Since the transformed patch un can be expanded as un =

∑K
k=1[βk]n vk, we obtain:

u⊤
nhn = h⊤

n

K∑

k=1

[βk]n vk =
K∑

k=1

[βk]nh⊤
nvk =

K∑

k=1

[βk]n[h ⋆ vk]n . (3.11)

Translating the model h leaves the weights βk unchanged (they depend only on the
un) but shifts the term h ⋆ vk. When computing the sum over all positions n of the
product [βk]n[h ⋆ vk]n for all shifts, a correlation is performed:

b(x0, y0) =
K∑

k=1

[βk ⋆ (h(0, 0) ⋆ vk)]x0,y0
. (3.12)

With this formulation, the computational complexity is reduced to that of the compu-
tation of the vectors un (O(NK2) operations if matrix inverses are precomputed), of
the SVD of a N×K matrix (O(NK2) operations) and of 2K discrete correlations (that
can be computed with FFTs in O(N logN) each). The total complexity (including the
precomputation of matrix inverses) is then O(NK(K2+c logN)), where c is a constant,
which is much better than the original complexity: O(N2K2).

3.4.3 Fast computation of a(x0, y0) for all pixel shifts

Computation of this term is more challenging because the hn terms are shifted with
respect to the location of the covariance matrices Ĉn. It is not possible to derive a

3. In the 2-D correlation, h has the size of an image while vk has the size of a patch, the resulting
correlation at a pixel n thus involves only the patches hn and vk.
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3.4. Fast computation of detection maps with EXPACO

linear expansion and identify discrete correlations. We resort to an approximation in
order to compute efficiently this term for all shifts.

Let H be the K × N matrix that collects all patches extracted from the centered
model h(0, 0):

H =




| |
h1(0, 0) · · · hN(0, 0)
| |


 . (3.13)

To reduce the complexity, we approximate each patch hn by a scaled version of an
element taken from a K × P codebook W:

H ≈



| |

w1 · · · wP

| |




︸ ︷︷ ︸
codebook W (K×P )




0
...

... · · · ...
...

...
...

... 0 · · · ... 0 0

0
... q(3) · · · ... q(N − 1) q(N)

q(1) 0 0 · · · 0 0 0

0 q(2)
... · · · q(N − 2)

...
...

... 0
... · · · 0

...
...

0
... 0 · · · ... 0 0




︸ ︷︷ ︸
code Q⊤ (P×N)

≈WQ⊤ , (3.14)

where the code Q is a N×P matrix such that for all row, only a single entry is non-zero.
If q(n) is the value of the non-zero entry of the n-th row of Q and p(n) is the column
number corresponding to that entry, then the patch hn is approximated by q(n)wp(n).

Construction of the codebook can be performed using a modified version of the
k-means clustering algorithm where distances to cluster centers are evaluated by nor-
malized correlation and the update of a cluster center corresponds to a truncated SVD
where only the left and right singular vectors corresponding to the largest singular value
are kept. This corresponds to a particular case of K-SVD sparse coding algorithm (Elad
and Aharon, 2006) where the sparsity is equal to 1. Note that the approximation can
be made exact by setting P = N , but in practice P will be chosen to be several orders
of magnitude smaller than N .

Next, we build P maps e1 to eP such that [ek]n = w⊤
kĈ

−1
n wk. The k-th column qk

of the code Q indicates which vectors hn are best represented by wk. If we replace each
vector hn in the sum

∑
n h⊤

nĈ−1
n hn by its closest vector in the codebook, we obtain the

approximation:
N∑

n=1

h⊤
nĈ−1

n hn ≈
P∑

k=1

(q2
k)

⊤ek , (3.15)

where the square is applied element-wise on the vector qk. When the model h is shifted,
the maps qk indicating the location of patches hn best represented by wk are shifted
accordingly. Values of the denominator of the S/Ntest for any pixel shift of the model
can then be obtained by discrete correlations:

a(x0, y0) ≈
[
P∑

k=1

q2
k ⋆ ek

]

x0,y0

. (3.16)
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The complexity of the procedure is the following: application of the k-means algorithm
for a fixed number of iterations is performed in O(PN), computation of the maps
{ek}k=1..P requires O(PNK2) operations, computation of the P correlations is per-
formed in O(PN logN) with FFTs. The total complexity is thus O(PN(c logN+K2)),
where c is a constant. This corresponds to a strong improvement compared to the
original complexity (in O(N2K2)) if we choose a codebook size P ≪ N . Once the
(approximate) location of the pattern has been identified, a local optimization based
on the exact evaluation of (3.8) can be performed (i.e., no bias is incurred, only the
location of the pattern may be missed if the approximation is too coarse and the local
optimization then leads to the wrong local optimum).

• With the EXPACO framework, the localization of a known pattern requires
to maximize a S/Ntest.

• However, if the spatial extent of the known pattern is large, the computa-
tional complexity of the algorithm is too high for using a straightforward
implementation.

⇒ A fast method should be used to evaluate efficiently the detection criterion.

• We derive a fast (and approximate) algorithm to compute the S/N detection
map in the case of a shift-invariant pattern model.

• The algorithm is based on a reformulation of the detection criterion that in-
volves discrete correlations, which are computed efficiently using fast Fourier
transforms.

• The proposed strategy leads to a significantly reduced algorithm complexity.

Fast computation of a detection map

3.5 Performance evaluation on holograms

In this section, we assess both the accuracy and the detection performance of
EXPACO. For this purpose, we use experimental background images recorded with the
holographic microscope presented in Figure 3.6. It results from the adaptation of the
original in-line Gabor configuration (presented in Section 1.15 and used in Chapters
5 & 7) to a traditional microscope. While lensless configurations lead to simple and
effective setups, including a microscope objective significantly improves the resolution
and makes it possible to study micron-sized objects.

Four background images (recorded in absence of object by shifting the glass slide
in an area where only the surrounding medium is present) out of the 61 that we col-
lected are shown in Figure 3.7(a)-(b). Fluctuations in the background are due to small
variations of the optical path lengths between optical surfaces (because of mechanical
vibrations or thermal inhomogeneities of the air) and are difficult to fully model. The
diffraction pattern created by a spherical bead is displayed in Figure 3.7(c-d). The bead
size and the refractive index contrast between the bead and the surrounding medium
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3.5. Performance evaluation on holograms

Figure 3.6 – The holographic microscope used in our experiments: picture of the setup
(left) and its optical scheme (right). FO, F

′

O, FLT, F
′

LT are respectively the front and
rear focal points of the microscope objective. The right part of the figure is adapted
from Olivier et al. (2018).

(approximately 0.08 here) is sufficient to obtain quite contrasted diffraction fringes.
Identification of the diffraction pattern becomes critical when this index contrast or the
object size drops, as illustrated by Figure 3.1 where the bead is four times smaller and
the fringes are thus less contrasted.

To evaluate the performance of EXPACO, we performed numerical experiments in
which we added the simulated diffraction pattern of a microscopic bead to some ex-
perimental background images, the other background images were kept to estimate the
background statistics m̂n and Ĉn.

3.5.1 Accuracy of the EXPACO approximation

Figure 3.8 evaluates the accuracy of the approximation presented in Section 3.4 to
compute efficiently S/N maps. Square patches of size 7 × 7 pixels are used. Since
the evaluation of the S/N by direct application of Equation (3.8) has a prohibitive
complexity, we compare values of the S/N on only 2000 different locations (x0, y0).
Application of (3.8) takes 12 hours to compute these 2000 locations on 20 CPU cores
(processing done with Matlab™, processor Intel™ Xeon E5–46170 at 2.90 GHz),
while our fast approximation produces the S/N map for one million different locations
in about 2 minutes (computation of the codebook which must be done only once for a
given pattern h takes another 2 minutes). As expected, Figure 3.8(a) shows a reduction
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0

Figure 3.7 – Examples of data recorded by our holographic microscope: (a) some of
background images in the absence of object of interest; (b) same than (a) after sub-
traction of the temporal mean; (c) example of a diffraction pattern (generated with the
Thompson model, see Sections 1.3.2.2.1 and 5.4) to be detected in the images; (d) a
hologram of a polystyrene microscopic bead of 2.1µm radius.

of the approximation error of the S/N when the size of the codebook P increases. With
P ≈ 200 elements, the codebook W is large enough to capture most of the geometrical
structures (see Figure 3.8(c)) of the pattern and to obtain an approximation error
below 5%. Since this approximation error depends only on the covariance Ĉ when the
number of background images and the number of codebook atoms are fixed, we did not
evaluate it systematically for all the different patch configurations that we investigate
in the following sections.

The impact of the number of background images in the estimation of the background
statistics (m̂n and Ĉn) is assessed by comparing values of the S/N obtained when m̂n

and Ĉn are estimated from an increasing number of backgrounds (the reference S/N
is obtained when 60 backgrounds are used). With 7 × 7 patches, covariance matrices
are 49 × 49. With less than 50 background samples, the obtained S/N map differs
significantly from the S/N map obtained with all backgrounds, see Figure 3.8(b).

In the following experiments, we set T = 60, P = 1024, and add a pattern with a
very low amplitude on the remaining 61st background image.
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3.5. Performance evaluation on holograms

Figure 3.8 – Accuracy evaluation of the EXPACO approximation: (a)-(b) evolution of the
relative error induced by the fast approximation as a function of the number P of atoms
in the codebook W, and of the number T of background images available to estimate
{m̂n}n=1..N and {Ĉn}n=1..N ; (c) examples of codebook atoms for different sizes P of
the codebook W.
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3.5.2 Detection maps

In the following two parts, we investigate the influence of the patch shape used
to compute the statistics of the background. In particular, we focus on the number
K of pixels encompassed in patches as well as the spatial extension of the patches,
respectively. To compare the EXPACO results, we consider a background model with
a diagonal covariance matrix as a baseline. This corresponds to setting ρ̂ = 1 for all
pixels n in Equation (3.4). Only the structures that are in the mean background m

and a per-pixel variance are taken into account in this baseline method: the mean
background is subtracted and regions with larger fluctuations have smaller weights in
the computation of the detection criterion. No spatial correlations are accounted for,
though.

3.5.2.1 Influence of the number K of pixels in the patches

Figures 3.9(c) and 3.10(c) give S/N maps obtained on two regions of interest of 1, 000×
1, 000 pixels (see boxes (a)) extracted from the background series shown in Figure 3.7.
For EXPACO, the results are given (along columns of the two figures) for different numbers
of pixels in a patch (K ∈ {9, 17, 25, 33, 41, 49, 57}, see boxes (b)). The active pixels of
patches are arranged in order to capture spatial correlations in different directions of
the field of view. For each case, we test two schemes differing on the paving of the
field of view; we consider both overlapping and non-overlapping patches. In the case
of non-overlapping patches, Equations (3.12) and (3.16) are adapted by taking into
account only pixel locations that do not overlap (by enforcing a null weight to the βk

and ek terms at the other locations). S/N maps obtained with the considered baseline
(diagonal covariance) are also given for the two regions of interest. In each S/N map,
a single peak is expected at the location circled in pink, corresponding to the position
(x0, y0) of the pattern that has been added to the background image. The contrast
between the background and the pattern is about 140. This peak is not visible with the
baseline but only with EXPACO. Moreover, with more pixels in a patch, the S/N displays
much fewer undesirable fluctuations: typical background structures are better modeled
and are thus less likely to be mistaken for the pattern. A visual analysis of the S/N maps
also shows that the choice of the paving (overlap or no overlap) of the field of view have a
limited influence on the peak in the detection map. Based on the results of this analysis
and on the fact that the computation time of the EXPACO procedure remains acceptable
when patches overlap, we chose to conduct experiments with overlapping patches in the
following sections. The effect of the choice of overlapping or non-overlapping patches,
in particular on the distribution of the detection criterion in the absence of object of
interest, is left for future works.

Figures 3.9(d) and 3.10(d) give the maps of shrinkage factor ρ̂ for the different
patches tested. These maps show that patches with more pixels lead to covariance
matrices of larger size, which requires a stronger shrinkage of off-diagonal terms. Still,
even for a relatively large number of pixels in a patch (K = 57, i.e. same order of
magnitude than the number of samples: T = 60), the shrinkage weight ρ̂ only reaches
the value 0.2. In other words, the sample covariance matrix Ŝn remains predominant
compared to the diagonal matrix F̂n. As a result, the shrunk covariance matrix Ĉn

effectively accounts for the spatial covariances of the background (i.e., it does not only
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3.5. Performance evaluation on holograms

Figure 3.9 – Detection of a pattern in a structured background for different patch shapes.
(a) considered region of interest; (b) considered patches; (c) S/N maps from EXPACO

(with overlapping and non-overlapping patches) compared to the baseline (diagonal
covariance); (d) maps of the estimated amount ρ̂ of covariance shrinkage. The detection
map obtained with the baseline does not depend on the considered patche sizes and is
thus replicated throughout the columns for easier side-by-side comparison with EXPACO

results.
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Figure 3.10 – Same illustration than Figure 3.9, for a different region of interest.
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3.5. Performance evaluation on holograms

Figure 3.11 – ROC curves of the baseline detector (diagonal covariance) and of EXPACO

for various patch shapes. (a) illustration of the considered background images; (b-c)
ROC curves for contrasts between the background and the pattern of 110 and 140,
respectively.
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account for the variances).
The influence of the number of pixels within a patch can be more systematically

studied through receiver operating curves (ROC). Patterns are injected one at a time at
different locations and on various backgrounds, as illustrated by Figure 3.11(a). Figure
3.11(b-c) reports the evolution of the ROC curves with the number of pixels K in the
patch, for two levels of contrast between the background and the pattern (contrasts 110
and 140). The tested patches are represented in Figures 3.9(b) and 3.10(b). A clear
improvement is observed with respect to a detector based on a diagonal covariance
assumption. In these simulations, using K ≥ 17 pixels when the pattern is 110 times
fainter than the background, and K ≥ 33 pixels when the pattern is 140 times fainter
than the background leads to the detection of 100% of the patterns without false alarms.
In contrast, the considered baseline detector reaches only 25% and 15% of detections
without false alarms, respectively.

3.5.2.2 Influence of the spatial extension K̃ of the patches

To better analyze the influence of the spatial extension and the number of pixels of
patches, in this section, we compare patches with different spatial extension but with
a constant number of pixels. In Figure 3.12, we compare S/N maps obtained with the
baseline and with EXPACO for the four different patch shapes shown at the top of the
figure and for three numbers of pixels K ∈ {9, 25, 49} inside the patches. For example,
when K = 25, each of the four considered patches has 25 pixels: the first patch is a 5×5
full patch, the remaining three patches are patches with holes: a 19×19 patch, a 29×29
patch and a 39×39 patch. The rationale in increasing the size of the patch while keeping
the same number of pixels is to capture longer-range correlations without increasing the
size of the covariance matrices Ĉn. In each S/N map, a single peak is expected at the
location circled in pink, corresponding to the position (x0, y0) of the pattern that has
been added to the background image. The contrast between the background and the
pattern is about 140. Figure 3.13 completes this study by reporting the evolution of
the ROC curve with the number of pixels K in the patch and with the spatial extent K̃
of the patch. Based on the results of this study and of Section 3.5.2.2, we observe that
the detection performance of EXPACO improves when larger patches and more pixels are
taken into account, since this allows to capture longer-range correlations.

However, the number of pixels K and the spatial extension K̃ should not be too
large: a largeK leads to a large covariance matrix which can not be accurately estimated
from a limited number of background images (the shrinkage step strongly bias the
covariance towards a diagonal covariance matrix if K ≫ T ); if K̃ is too large, shorter-
range correlations are lost, and the model is less local (hence less adapted to highly
nonstationary backgrounds). We found in our experiments that the choices K ≥ 110
(pixels) ≃ 2T and K̃ ≥ 50 (patch width in pixels) both lead to a degradation of EXPACO

performance.

3.5.3 False alarm rate

A desirable property for detectors is to lead to a constant false alarm rate. In
the case of nonstationary backgrounds, this requires robustness to the differences in
the structures found in the background. Figure 3.14 shows maps of the false alarm
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Figure 3.12 – Detection of a pattern in a structured background for different patch
shapes at fixed number of pixels in patches: (a) K = 9; (b) K = 25; (c) K = 49. S/N
maps from EXPACO are compared to the baseline (diagonal covariance) results.
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Figure 3.13 – ROC curves of the baseline detector (diagonal covariance) and of EXPACO

for different spatial extents K̃ of patches and a fixed number K of pixels inside each
patch. Part (b) is a close-up view of (a) for PD ∈ [0.8; 1.0].
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Figure 3.14 – False alarm rates of the baseline detector (diagonal covariance) and of
EXPACO for 4 different thresholds τ .

rate reached by the considered baseline (diagonal covariance) estimator and by EXPACO.
These maps are built by reporting the fraction of positive S/Ntest in the absence of
patterns (i.e., under H0 hypothesis), for different background images (1 background is
selected and the 60 remaining are used to estimate the m̂n and Ĉn, in a leave-one-out
rotation). Contrary to the diagonal covariance detector, the false alarm rate of EXPACO

is almost stationary.

In our numerical simulations, EXPACO showed several appealing characteristics:

• Detection maps are produced in a reasonable computation time (≤ 5 min)
on million-pixels images, with a controlled error (≤ 5%) required by the
EXPACO detection criterion approximation.

• Significantly better detection sensitivity is obtained compared to a baseline
method that considers diagonal covariance matrices, i.e. that accounts only
for the average background and for the per-pixel variances to discard large
variance areas.

• A constant false rate is achieved in the whole field of view.

EXPACO characteristics
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3.6 Conclusion on EXPACO’s capabilities

In this chapter, we introduced EXPACO, a fast algorithm dedicated to the detection of
extended patterns in nonstationary and correlated backgrounds. This is an adaptation
of the PACO algorithm presented in Chapter 2 and dedicated to the detection of point-
like sources. As in PACO, a local model of the spatial correlations is learned from a
few tens of background images. By accounting for these correlations, the detection
performance is improved compared to a standard detector. Patches with holes are
shown to lead to a good tradeoff between the size of the covariance matrices to estimate
and the range of the correlations that are captured. As for PACO, EXPACO is not strictly
dedicated to a particular application field and can be used in other areas where the
detection/localization of faint known patterns embedded in strong and nonstationary
backgrounds is encountered. In the following two parts (Chapters {4, 5} and Chapters
{6, 7}), we show how the detection can be further improved by accounting for the
numerous outliers present in the data, and then by combining information from different
spectral channels.
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Chapter 4
Robustness to bad frames in direct imaging

Abstract
Due to the evolution of the observation conditions and the AO correction, the
quality of direct observations may vary significantly during an observing sequence.
It is common practice to reject images with comparatively worse quality. Rather
than discarding a full image, we study the local fluctuations of the signal at each
frame and derive weighting maps for each frame. The weights derived from the
temporal variances can be used in the PACO algorithm to improve the robustness
of the detection step and to reduce estimation errors of both the astrometry and
photometry. The impact of bad frames can be analyzed by characterizing the the-
oretical detection and estimation performances.

4.1 The need for robust estimators in
direct imaging

As discussed in Chapters 1 and 2, direct imaging from the Earth is a method of
choice for the detection and characterization of exoplanets (Traub and Oppenheimer,
2010). Confronting numerical models of the estimated astrometry and photometry
parameters (Vigan et al., 2010), gives access to quantitative physical properties on the
detected sources such as age, mass, and effective temperature (Chabrier et al., 2000;
Allard et al., 2003, 2007).

As in Chapter 2, we consider ADI observations obtained by tracking the observation
target over time (the telescope pupil remaining stable while the whole field of view
rotates). We recall that the companions describe a predictable motion in time while
the speckle background remains quasi-static in the time sequences. The recorded ADI
images are then combined in a post-processing step to disentangle the signature of the
exoplanets from the speckles by dedicated algorithms (see Chapter 2). The statistical
modeling of the data plays a central role in these processing algorithms to control the
probability of false alarm and prevent spurious detections (Mawet et al., 2014).

The main constraint of direct imaging is due to the very high contrast between the
target star and the exoplanets (≥ 105 in infrared). In addition, the detection perfor-
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Robustness to bad frames in direct imaging

Figure 4.1 – Illustration of the strong temporal fluctuation in the central region of
SPHERE-IRDIS images of HIP 72192: (a) measured intensity for 5 selected frames
showing the strong temporal fluctuations; (b) map of the estimated temporal scaling
parameters σ̂n,t for the matching frames: t1, t3, t8, t13, and t14.
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mance and the achievable contrast are strongly dependent on both the total parallactic
rotation of the field of view and the quality of the observations. Even in the absence of
sources in the field of view (other than the star masked out by the coronagraph), there
are fluctuations in images from an ADI sequence. There are several factors that in-
duce these fluctuations, in particular: (i) evolution of the PSF due to alterations of the
quality of the adaptive optics correction; (ii) photon and thermal noise on the camera
as well as the erratic response of some uncorrected bad pixels; (iii) partial decentering
of the coronagraph; (iv) evolving non-common-path aberrations (uncorrected by the
AO). These artifacts can be spatially localized (e.g., in case of defective pixels) or can
impact a larger fraction of the field of view in the form of large fluctuations when a
decentering of the coronagraph or a sudden degradation of the AO correction occurs
(e.g., a low-wind effect, Sauvage et al. (2015); Milli et al. (2018)). The latter two effects
are especially problematic since exoplanets generally have a small angular separation
to their host star: they must be detected in the area close to the center of the field of
view that is most affected by this type of fluctuations.

In Figure 4.1(a), we illustrate the temporal evolution of the intensity measured
with SPHERE-IRDIS instrument around HIP 72192 (the considered dataset is also
studied in Section 2.5, see Table 2.3 for the observation logs). We select some frames
(out of T = 96) that display particularly strong fluctuations due to difficult observing
conditions. Since these fluctuations are mostly located around the coronagraph, we also
show a zoom on the central region of the images corresponding to a field with a radius
of 1.4 arcsec. The fluctuations are spatially structured and their magnitude varies from
one image to the other in the ADI sequence.

To the best of our knowledge, there is no particular strategy implemented in the
state-of-the-art post-processing algorithms to deal with the evolution of the local quality
of the acquired frames. Images presenting large fluctuations compared to the others are
simply flagged as “bad frames” and discarded from the ADI stack, even if some areas
of these images contain useful information.

In this chapter, we introduce an extension of our exoplanet detection and char-
acterization method that accounts for the patch covariances of the background (PACO

algorithm, see Chapter 2). The improvement is based on the modeling of the temporal
variations of the amplitude of the background fluctuations jointly to the spatial covari-
ances. To improve the robustness of the method, we spatially weight each temporal
frame in a data-driven fashion, based on its relative degree of fluctuations.

Section 4.2 describes our local modeling of the spatio-temporal fluctuations and
Section 4.3 details the extension of the PACO algorithm. In Section 4.4, we illustrate
on VLT/SPHERE-IRDIS datasets the performance of the proposed method in terms
of detection capability, achievable contrast and astrometry accuracy comparatively to
two state-of-the-art algorithms routinely used on ADI datasets: TLOCI and KLIP (see
Section 2.2 for their general principle). We show that, by preventing the suppression
of bad frames, the automatic local weighting of the images improves the achievable
contrast on the whole field of view. Finally, Section 4.5 concludes the chapter. This
chapter is based on the submitted journal paper Flasseur et al. (2020b), currently under
revision.
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• ADI datasets are impacted by several types of artifacts, including large
fluctuations due to a partial decentering of the coronagraph or a sudden
degradation of the AO correction,

• these artifacts limit the achievable contrast in the contaminated areas and
impacts detection algorithms.

⇒ A robust approach able to deal with the diversity of the quality of the
observations should be used.

Robustness issues in direct imaging

4.2 Local modeling of spatio-temporal fluctuations

In Chapter 2, we modeled the statistical distribution of the patch rn,t: the small
window made of a few tens of pixels, centered at pixel n, in the t-th frame. This patch
with K pixels is described as the possible superimposition of the signal of a point-
source (if present) and a background patch fn,t, considered as a random realization
of a multivariate Gaussian N (mn,Cn), with spatially-variant mean mn ∈ R

K and
covariance Cn ∈ R

K×K . At any given pixel n, the background fluctuations captured
through the covariance matrix Cn are considered stationary (i.e., not evolving with
time). We now improve the modeling by accounting for the nonstationary temporal
variance that was observed, for example, in Figure 4.1(a).

4.2.1 Robust covariance estimation in SAR imaging

The problem of designing a covariance estimator that is robust to the presence of
large deviations has been studied in other domains, particularly in Synthetic Aper-
ture Radar (SAR) imaging (Yamaguchi et al., 2005). Polarimetric SAR (PolSAR)
systems give access to the power back-scattered from an imaged scene along different
polarization modes. More formally, after synthesis of the PolSAR image, each pixel is
formed by a complex-valued scattering vector k ∈ C

3. The covariance matrix of the
scattering vectors 1

E[kkH] characterizes the scattering mechanisms (surface scattering,
double/triple bounces, volume scattering). Because of speckle phenomenon, estimating
this covariance matrix requires averaging several tens of scattering vectors.

Figure 4.2(b) illustrates the presence of spikes in SAR images, i.e., the frequent
presence of very strong echos from man-made structures (e.g., poles, cars, fences) in
otherwise homogeneous areas. This large difference in backscattering power makes
it difficult to reliably estimate polarimetric covariance matrices by analyzing a small
window around each pixel. Assuming that scattering vectors k follow the circular
complex Gaussian model of fully-developed speckle (Goodman, 1976) is not correct
in the presence of strong scatterers: these spikes act as outliers that strongly disturb
the estimation, see Figure 4.2(c) where the scattering vector of the spike dominates
the polarimetric estimator on the whole window (point-like scatterers are spread and
become 7× 7 squares).

1. In this paragraph, the notation H stands for the complex conjugate transpose.
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Figure 4.2 – Illustration of the problem of covariance matrix estimation in polarimetric
SAR imagery: (a) optical image (area near Brétigny, France); (b) polarimetric SAR
image obtained by the RAMSES airborne system of the French Aerospace Laboratory
(ONERA): the components of the scattering vector k are encoded in false colors at
each pixel, the yellow arrows indicate point-like scatterers (spikes); (c)-(d) false-color
representation of the diagonal of the polarimetric coherence matrix, estimated at each
pixel. Images (c) and (d) are a close-up view of the region of interest drawn in red in (a)
and (b). The polarimetric coherence matrices in (c)-(d) are computed on 7× 7 square
windows, assuming either (c) a Gaussian clutter, or (d) a spherically invariant random
vector (SIRV) model. In the SIRV model, the backscattering power is not supposed
constant within the window. Adapted from Vasile et al. (2009).

To circumvent this problem, several works suggest a better statistical model for the
scattering vectors: the Spherically Invariant Random Vector model (SIRV), see Bausson
et al. (2007); Vasile et al. (2009). The scattering vector k is modeled as the product of a
positive random variable

√
τ (representing the so-called texture, i.e. randomness of the

clutter induced by variations in the radar backscattering power) and of an independent
and zero-mean complex Gaussian vector x ∈ C

3 (whose covariance matrix defines the
polarimetric behavior): k =

√
τx, where C = E

[
kkH

]
is the so-called coherency matrix.

Within a small window, the coherence C is supposed constant while the texture τ can
vary (τ is very large at the location of spikes). Several algorithms have been studied to
estimate jointly τ and C in PolSAR imaging (Gini and Greco, 2002; Wang et al., 2006;
Pascal et al., 2008).

Beyond SAR imaging, product models in the form “texture parameter”×“Gaussian
random variable” have been studied in image processing, under the name Gaussian
scale mixture (GSM, Wainwright and Simoncelli (2000)) or compound-Gaussian model
(Conte et al., 1995). GSMs cover a wide range of distributions, in particular, heavy-
tailed distributions like gamma distribution, Student’s distribution or the generalized
Laplacian. They can account for the presence of outliers in the data, i.e. large de-
viations. They have in particular been introduced in image denoising to model the
distribution of wavelet coefficients (Portilla et al., 2003). In the following section, we
describe how this model can be used to account for temporal nonstationarities in direct
imaging.
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4.2.2 Local modeling of spatio-temporal fluctuations with
robust PACO

To account for the presence of “bad” frames with stronger background fluctuations
than the other frames, we also consider that the background patch fn,t is a random
realization of a GSM:

fn,t = mn + σn,t un,t , (4.1)

where σn,t > 0 is a scalar (random or deterministic) variable that acts as a scaling
parameter and the vectors un,t ∼ N (0,Cn) are independent centered Gaussian random
vectors.

Rather than directly handling the GSM distribution, we will estimate the scale
parameter σn,t for the patch centered on the pixel n that is extracted from frame t,
and consider that fn,t is distributed according to N (mn, σ

2
n,tCn). This corresponds

to considering parameter σn,t as a deterministic nuisance parameter, see Pascal et al.
(2008).

Figure 4.1(b) displays maps of the estimated scaling factors σ̂n,t for the 5 frames
shown in 4.1(a). In these maps, large values of the scaling factors match the areas in
which the intensities are much larger than the average. The variations observed within
the field of view indicate that temporal fluctuations are spatially nonstationary: larger
than usual fluctuations occur only in some areas and cannot be compensated for by a
factor common to the whole image. By closer visual inspection, it can be noticed that
the scaling factors vary over very small distances. This indicates why methods based on
linear combinations of template on-axis PSFs (TLOCI) or modes (KLIP) fail to capture
such small scale variations, even when a local fitting based on annuli or angular sectors
is performed.

An analysis of the empirical distribution of intensities in a patch, in absence of
source, is carried out in Figure 4.3. Three cases are compared: (i) patches extracted
at a pixel n close to the coronagraph, selected in order to highlight temporal fluctua-
tions (first two rows of the figure); (ii) patches extracted at a pixel n farther from the
coronagraph, showing only moderate temporal fluctuations (following two rows); (iii)
patches extracted all over the field of view (last row). The temporal collection of patches
{rn,t}t=1:T is considered in each case. The empirical distribution of the intensities of
the centered patches {rn,t−m̂n}t=1:T is displayed on the left column. Then, based on a
local estimate Ĉn of the spatial covariance matrix, the distribution of spatially whitened
and centered patches is displayed on the central column. The Cholesky factor 2

L̂n (i.e.,
the lower-triangular matrix such that L̂nL̂

⊤
n = Ĉ−1

n ) is used to obtain the collection of
spatially whitened patches {L̂⊤

n(rn,t − m̂n)}t=1:T . The empirical distribution of that
collection is plotted. The right column displays the distribution of patch intensities
when both a spatial whitening and a time-specific scaling is performed. The empirical
distribution of the collection { 1

σ̂n,t
L̂

⊤
n(rn,t − m̂n)}t=1:T is plotted in that latter case.

Simply removing the temporal mean does not lead to independent and identically
distributed normal residuals, as can be observed in the left column of Figure 4.3. The
variance of the residuals is much larger near the coronagraph than farther away, a be-
havior that is generally addressed by introducing a radial scaling of the residuals (Mawet

2. Note that, in practice, it is more efficient first to compute a Cholesky factorization and then to
invert the Cholesky factor using a dedicated routine for triangular matrix inversion, if available.
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4.2. Local modeling of spatio-temporal fluctuations

Figure 4.3 – Temporal evolution and empirical distribution of the intensities within a
patch: (a)-(b) in patches extracted at a pixel n close to the coronagraph; (c)-(d) in
patches extracted at a pixel n farther from the coronagraph; (e) in all the patches from
the field of view. Rows (a) and (c) give the values within the patches for 10 specific
frames: t1, t3, t8, t13, t14, t25, t40, t54, t63 and t69. Rows (b), (d) and (e) display the
empirical histograms computed over all frames t1 to t69 and, in dashed line, a standard
Gaussian. The first column corresponds to centered patches {rn,t − m̂n}t=1:T . The
second column corresponds to centered patches, after whitening the spatial correlations.
The last column corresponds to centered patches that have been both whitened for the
spatial correlations and equalized with the temporal scaling factors.
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et al., 2014). Locally modeling the spatial correlations provides a good approximation
of the distribution of the patches in most pixels n, but fails in regions with large tem-
poral heterogeneity: the distribution in that case is then better described by a GSM,
see Figure 4.3(b), central column. The presence of frames with larger fluctuations leads
to an over-estimation of the variances in Ĉn, which in turn leads to whitened samples
with a variance that is less than one (Figure 4.3(e)). When both a local modeling of the
spatial covariance and a time-specific local scaling factor are considered, the empirical
distributions are well modeled: after whitening, they match very well a standard Gaus-
sian in all cases (near the coronagraph, farther from the coronagraph, and on average
over the whole field of view).

The modeling introduced in this chapter and the local patch-whitening transform
that derives can be seen as an extension of the radial-scaling strategy that is refined in
several ways: (i) locality (vs identical processing of an annulus), (ii) modeling of spatial
correlations (vs uncorrelated noise assumption), (iii) modeling of time fluctuations (vs
constant correction).

• Inspired by the robust covariance estimators used in SAR imaging, we pro-
pose to weight each ADI patch to account for the temporal nonstationarities
of the background.

• The collection of background patches at a given location is modeled by a
Gaussian scale mixture, accounting for the mean background, the spatial
correlations (as in PACO, see Chapter 2), and the temporal inhomogeneities.

• Within this statistical framework, the empirical intensity distributions of
background patches are well modeled: after whitening, they match very
well a standard Gaussian at every point of the field of view.

Modeling of spatio-temporal fluctuations

4.3 Adaptation of the PACO algorithm

4.3.1 Estimation of the statistics of the background

Estimating, at each spatial location, the mean background m, the spatial covariance
C and the scale parameters σ1 to σT is very close to the problem of covariance structure
estimation in radar under a compound-Gaussian clutter model (Pascal et al., 2008).
There are two differences: (i) in radar the signal and covariance matrices are complex-
valued, and (ii) the mean value is zero.

In the following, we derive the expression of the maximum likelihood estimators
m̂n, σ̂2

n,t and Ŝn of the mean mn, the time-specific scaling σ2
n,t and spatial covariance

Cn, respectively.

Let {rn,t}t=1:T be a collection of 2-D patches centered at pixel n. Under our model,
the t-th patch of the collection is distributed under H0 according to a normal distribu-
tion with mean mn and spatial covariance Cn,t = σ2

n,tCn. The notation Ĉn is kept to
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denote the shrinkage estimator obtained by reducing the value of off-diagonal elements
of the maximum likelihood estimator Ŝn.

Under the assumption that each patch is an independent realization of our model
of the background, the neg-log-likelihood L of the collection is given by:

L = − log p
(
{rn,t}t=1:T

∣∣∣mn, {σ2
n,t}t=1:T , Cn

)

∝
T∑

t=1

log det
(
σ2
n,tCn

)
+

T∑

t=1

1
σ2
n,t

r̄⊤
n,tC

−1
n r̄n,t + const (4.2)

with r̄n,t = rn,t −mn. The maximum likelihood estimators correspond to the location
of the minimum of (4.2), where the gradient of the neg-log-likelihood equals zero.

• From the condition ∂L

∂σ2
n,t

∣∣∣∣
σ2

n,t=σ̂2
n,t

= 0, it comes:

K

σ̂2
n,t

− 1
σ̂4
n,t

r̄⊤
n,tC

−1
n r̄n,t = 0 ,

which leads to:

σ̂2
n,t =

1
K

r̄⊤
n,tC

−1
n r̄n,t . (4.3)

The variance at time t around pixel k is thus estimated by computing the sample
variance of a spatially whitened version of the t-th patch.

• From the condition ∇mn
L |mn=m̂n

= 0, we get:

−2
T∑

t=1

1
σ2
n,t

C−1
n (rn,t − m̂n) = 0 .

Since C−1
n is not singular, we obtain:

m̂n =

∑T
t=1

1
σ2

n,t
rn,t

∑T
t=1

1
σ2

n,t

. (4.4)

The mean background in patches around the n-th pixel corresponds to a weighted
average where a patch at time t with large variance is given a small weight.

• From the condition ∇Cn
L |

Cn=Ŝn
= 0, we derive:

T · Ŝ−1
n − Ŝ−1

n

(
T∑

t=1

1
σ2
n,t

r̄n,tr̄
⊤
n,t

)
Ŝ−1
n = 0 ,

which gives:

Ŝn =
1
T

T∑

t=1

1
σ2
n,t

r̄n,tr̄
⊤
n,t . (4.5)

The spatial covariance estimator corresponds to the sample covariance upon a proper
rescaling by a factor 1/σn,t of residual patches r̄n,t.
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Algorithm 4.1: Local background statistics estimation
Input: {r1, . . . , rT} (stack of T spatial patches, each patch has K pixels)
Output: m̂ (mean patch)
Output: Ĉ (K ×K spatial covariance)
Output: {σ̂1, . . . , σ̂T} (scale parameters)

Ĉ← I (initialize at identity matrix)
for t← 1 to T do

ŵt ← 1/T (initialize with uniform weights)

m̂← ∑T
t=1 ŵt · rt (sample mean)

do
⊲ Step 1: Estimate scale parameters
{σ̂1, . . . , σ̂T} ← Algorithm 4.2({r1, . . . , rT}, m̂, Ĉ)

⊲ Step 2: Update temporal weights
for t← 1 to T do

ŵ
(old)
t ← ŵt

ŵt ← 1/σ̂2
t∑T

t′=1
1/σ̂2

t′

⊲ Step 3: Update the mean patch
m̂← ∑T

t=1 ŵt · rt (weighted mean)

⊲ Step 4: Update the covariance
Ŝ← 1

T

∑T
t=1

1
σ̂2

t
(rt − m̂)(rt − m̂)⊤ (sample cov.)

T̃ ← 1/
∑T
t=1 ŵ

2
t (effective number of frames)

Ĉ←Algorithm 4.3(Ŝ, T̃ ) (shrinkage covariance estimator)
while maxt

∣∣∣ŵt − ŵ(old)
t

∣∣∣ ≥ ǫ;

The expression of each estimator depends on the others so that a fixed point is sought to
obtain the joint estimator of the local background statistics. Based on the alternating
application of formulas (4.3), (4.4) and (4.5), an iterative algorithm is obtained. The
algorithm is detailed in boxes 4.1 and 4.2.

It can be noted that, up to the centering to account for the non-zero mean, the
obtained fixed-point algorithm matches the estimator derived in Conte et al. (2002) in
the context of clutter with a deterministic texture, and also the approximate maximum
likelihood estimator derived in Gini and Greco (2002) under a stochastic model of
texture. The convergence of the fixed-point algorithm has been established in Pascal
et al. (2008) in the real-valued case as well as in the complex-valued case.

Since our estimates are computed in the regime of small sample sizes, we in-
clude a shrinkage procedure similar to that described in Section 2.3.2 . To ac-
count for the weighting of the samples, we compute an effective number of frames
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Algorithm 4.2: Estimate scale parameters
Input: {r1, . . . , rT} (stack of T spatial patches)
Input: m̂ (estimated mean patch)
Input: Ĉ (K ×K estimated spatial covariance)
Output: {σ̂1, . . . , σ̂T} (scale parameters)

L̂← chol(Ĉ−1) (Cholesky factorization)
for t← 1 to T do

r̆t ← L̂
⊤(rt − m̂) (whitened patch)

µ̂← 1
K

∑K
i=1[r̆t]i (mean value)

σ̂2
t ← 1

K

∑K
i=1([r̆t]i − µ̂)2 (scale parameter)

Algorithm 4.3: Shrinkage covariance estimator

Input: Ŝ (K ×K sample covariance matrix)
Input: T̃ (effective number of frames)
Output: Ĉ (covariance matrix estimate)

ρ̂← tr(Ŝ2)+tr2(Ŝ)−2
∑K

i=1
[Ŝ]2

ii

(T̃+1)

(
tr(Ŝ2)−

∑K

i=1
[Ŝ]2

ii

) (shrinkage factor)

for i← 1 to K do
[Ĉ]i,i ← [Ŝ]i,i (copy diagonal)
for j ← i+ 1 to K do

[Ĉ]i,j ← (1− ρ̂)[Ŝ]i,j (shrink off-diagonal)
[Ĉ]j,i ← (1− ρ̂)[Ŝ]j,i (shrink off-diagonal)

T̃ = (
∑
t 1/σ̂

2
t )

2
/ (
∑
t 1/σ̂

4
t ) that corresponds 3 to the variance reduction reached when

performing a weighted mean with the weights 1/σ̂2
t . This effective number of frames is

used to compute the shrinkage factor in Algorithm 4.3. This shrinkage operation can
either be applied at each iteration (during step 4 of Algorithm 4.1) or after the alter-
nating updates converged. We tested both approaches and found that they converged
to solutions leading to similar detection performances. Applying the shrinkage at each
iteration ensures that matrix Ĉ never becomes singular or ill-conditioned.

Figure 4.4 illustrates the fast convergence of the alternating scheme. Each plot
corresponds to a different pixel n in the field of view, depicted by a red dot. From

3. The effective number of frames T̃ corresponds to the number of samples if all weights are equal
and is smaller when some weights differ. Let us assume that {rt}t=1..T is a collection of T independent

and identically distributed random variables. The weighted mean m̂ =
∑T

t=1
wt rt, where wt ≥ 0

are normalized weights (wt = (1/σ2
t )/(

∑T

t=1
1/σ2

t )), is an unbiased estimator of E[r] with a variance

Var[m̂] =
∑T

t=1
Var[wt rt] (by independence of the rt), which leads to Var[m̂] = Var[r]/T̃ , with T̃ =

1/
∑T

t=1
w2

t = (
∑T

t=1
1/σ2

t )2/(
∑T

t=1
1/σ4

t ) the effective number of samples. If all weights are equal,

T̃ = T : the effective number of samples is equal to the total number of samples. If all weights but
one are zero, T̃ = 1. In practice, the samples {rt}t=1..T are not identically distributed (their variances

differ), but T̃ still indicates if the mean is reliable.
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Figure 4.4 – Illustration of the convergence of Algorithm 3: 1,000 random initializations
of the weights {ŵt}t=1:T converge to the same solution as that obtained by initializing
with constant weights. Convergence at 3 pixel locations n depicted on the field of view
is shown, covering 3 different cases: small dispersion of the value of scaling parameters
(left), medium dispersion (center) and large dispersion close to the coronagraph (right).
The blue cross represents the star center.

left to right, they correspond respectively to a region with good temporal stationarity,
medium temporal stationarity, and low temporal stationarity (close to the coronagraph).
The convergence of Algorithm 4.1 is assessed based on 1,000 random initializations
of the weights ŵt (following, before normalization, a uniform distribution on [0, 1]).
The vector of weights at convergence when starting from a constant vector of weights
(∀t, ŵt = 1/T ) is used as a reference. At each iteration, the Euclidean distance to
the reference vector of weights is reported, with normalization by the largest distance
of all the random draws. Very fast convergence is observed to a unique solution, in
all random trials. This empirical evidence indicates that the algorithm also converges
when the shrinkage step is included at each iteration.

4.3.2 Robust computation of a detection map

We recall that the PACO algorithm, introduced in Chapter 2, produces a detection
map based on a hypothesis test evaluated at each pixel of the field of view. The
ADI sequence of images is processed at the scale of image patches. The size of the
patches is selected to capture the core of the off-axis point spread function (PSF), e.g.
a disk of K = 49 pixels for SPHERE-IRDIS in K1-K2 observing mode, see Section
2.4.1. If a point source object is located at angular position φ0 in some reference frame,
then its angular location φt in the image at time t can be deduced from the telescope
pointing information, by accounting for the rotation of the whole field of view during
ADI acquisitions. Source detection is based on the analysis of the collection {r⌊φt⌉,t}t=1:T

of the T patches formed by tracking the source through its apparent motion: each patch
is extracted at the expected location, rounded to the closest pixel ⌊φt⌉, of the point
source with reference coordinate φ0, see Figure 2.3.

As in Chapter 2, during the detection step, we assume that the observations are
dominated by the background signal due to stellar leakages and by the noise so that
background statistics can be computed directly from the data (off-axis point sources are
considered negligible at that step). The local statistics of the background (including the
spatio-temporal modeling of its fluctuations) are then computed with Algorithm 4.1, for
each location ⌊φt⌉, based on the collections {r⌊φt⌉,t}t=1:T of observed patches all centered
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at that same location ⌊φt⌉. Once the mean m̂⌊φt⌉, spatial covariance Ĉ⌊φt⌉ and scaling
factor 4 σ̂⌊φt⌉,t are estimated for all locations ⌊φt⌉ corresponding to the trajectory of a
hypothetical point source with reference location φ0, the likelihood of two hypotheses
can be compared as in Equation (2.4):




H0 : {r⌊φt⌉,t}t=1:T = {f ⌊φt⌉,t}t=1:T (background only)

H1 : {r⌊φt⌉,t}t=1:T = α {h⌊φt⌉(φt)}t=1:T + {f ⌊φt⌉,t}t=1:T (background + source) ,
(4.6)

where α is the flux of the point source and h⌊φt⌉(φt) is a patch of the off-axis PSF
extracted around the integer location ⌊φt⌉, for a point source located at the subpixel
location φt.

Under the assumption that each of the T background patches of the collection
{f ⌊φt⌉,t}t=1:T is an independent realization, each distributed according to its local GSM
model, the neg-log-likelihood of the data under hypothesis H0 is

− log p({r⌊φt⌉,t}t=1:T |H0) = TK
2

log 2π +
T∑

t=1

1
2

log det(σ̂2
⌊φt⌉,tĈ⌊φt⌉)

+
T∑

t=1

1
2

(
r⌊φt⌉,t − m̂⌊φt⌉

)⊤
(σ̂2

⌊φt⌉,tĈ⌊φt⌉)
−1
(
r⌊φt⌉,ℓ − m̂⌊φt⌉

)
. (4.7)

The neg-log-likelihood of the data under hypothesis H1 cannot be directly evaluated
since the flux α of the point source is not known beforehand. It can, however, be
estimated in the maximum likelihood sense, as in Equation (2.16):

α̂ = arg min
α
− log p({r⌊φt⌉,t}t=1:T |H1, α) =

∑T
t=1 bt∑T
t=1 at

, (4.8)

with

at =
1

σ̂2
⌊φt⌉,t

h⌊φt⌉(φt)
⊤ · Ĉ−1

⌊φt⌉
· h⌊φt⌉(φt) (4.9)

and

bt =
1

σ̂2
⌊φt⌉,t

h⌊φt⌉(φt)
⊤ · Ĉ−1

⌊φt⌉
·
(
r⌊φt⌉,t − m̂⌊φt⌉

)
. (4.10)

Note that these formulas are very similar to Equations (2.16), (2.17) and (2.18); the
differing terms accounting for the temporal fluctuations are highlighted in blue.

The neg-log-likelihood of the data under hypothesis H1, for a source flux α̂, is then:

log p({r⌊φt⌉,t}t=1:T |H1, α̂) = TK
2

log 2π +
T∑

t=1

1
2

log det(σ̂2
⌊φt⌉,tĈ⌊φt⌉)

+
T∑

t=1

1
2
u⊤

⌊φt⌉,t(σ̂
2
⌊φt⌉,tĈ⌊φt⌉)

−1u⌊φt⌉,t , (4.11)

4. Only the scaling factor at time t is necessary for the detection.
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with u⌊φt⌉,ℓ = r⌊φt⌉,t − α̂h⌊φt⌉(φt)− m̂⌊φt⌉.
As in Section 2.3.4, the generalized likelihood ratio test (GLRT) is (see Equation

(2.24)):

2 log
p({r⌊φt⌉,t}t=1:T |H1, α̂)

p({r⌊φt⌉,t}t=1:T |H0)
=

(∑T
t=1 bt

)2

∑T
t=1 at

H1

≷
H0

η . (4.12)

Only a positive flux α makes sense for a source. The estimate α̂ should then be replaced
by the estimate α̂+ = max(α̂, 0) obtained under a positivity constraint. As in Section
2.3.5 (see Equation (2.26)), the GLRT can then be recast, for η ≥ 0, into the form:

S/N test:
∑T
t=1 bt√∑T
t=1 at

=
α̂

σ̂α

H1

≷
H0

τ , (4.13)

with τ =
√
η, which corresponds to comparing the signal-to-noise ratio (S/N) of the

flux estimate to a threshold.
Under our GSM model, and thanks to the normalization by the scaling factors σ̂⌊φt⌉,t,

the ratio α̂/σ̂α is thus distributed according to a standard normal distribution. This
simplifies the setting of a detection threshold τ : τ = 5 leads to a probability of false
alarm equal to 2.87 × 10−7, i.e., the probability that a Gaussian random variable be
greater than 5 standard deviations.

Figure 4.5 illustrates that the ratio α̂/σ̂α is indeed distributed like a standard normal
distribution. Two detection maps are shown for the star HIP 72192. The left part of
the figure corresponds to the results of PACO algorithm, as presented in Chapter 2 (see
Figure 2.8). The corresponding detection map is approximatively stationary. When
representing the empirical distribution of signal-to-noise ratio values in the field of view
(after excluding the two areas corresponding to two sources), a relatively good match
with a Gaussian distribution is obtained, albeit with a standard deviation slightly below
1. The right part of the figure gives the detection map produced by the extension
of PACO accounting for the spatio-temporal fluctuations of the background (denoted
robust PACO in the following). While both maps are quite similar, it can be noted
that time-dependent scaling factors lead to a slightly improved spatial stationarity 5

of the detection map, in the sense that the standard deviation of its distribution is
closer to 1 in all the areas of the field of view. An improved match to the standard
Gaussian distribution is thus observed. The impact of producing maps with a variance
less than one in the absence of source, with the standard PACO algorithm, is to be
overly conservative: some detections may be missed at a given false alarm rate while
they would be correctly detected with robust PACO. We illustrate such behavior in
Section 4.4.

The detection map is produced by computing the signal-to-noise ratio for each refer-
ence location φ0 on a grid. The computational complexity can be significantly reduced
by pre-computing terms that can then be shared to evaluate the signal-to-noise ratio at
several locations. Such an approach, referred as fast PACO in Section 2.4.4 , can also

5. The stationarity of the PACO detection maps in the absence of source should be appreciated by
comparison with the detection maps presented in Section 2.5.2.1 and 4.4.1 (in particular in Figures
2.16, 2.17, 2.22, and 4.9) that are obtained with several state-of-art detection methods.
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Figure 4.5 – Detection map computed on a SPHERE-IRDIS ADI dataset of HIP 72192.
The two faint point sources in the field of view, FPS1 and FPS2 are marked by black
dots. There are no other detectable sources in the field of view. The left column
corresponds to the standard PACO algorithm, the right column to robust PACO. The
bottom row gives in solid line the empirical distribution of the signal-to-noise values of
the detection maps, excluding areas FPS1 and FPS2. The dashed line corresponds to
a standard normal distribution.

be adapted to our GSM model, provided that the background statistics are computed
using the algorithm outlined in Section 4.3.1 and that the formulas are updated to in-
clude the scaling factors σ̂k,ℓ, according to equations (4.9), (4.10) and (4.13). Compared
to the original fast PACO algorithm, these changes lead to an increase of the computa-
tion time by an order of magnitude, corresponding to the typical number of iterations
to reach a fixed point in the step that estimates the local background statistics (about
10 iterations).

4.3.3 Robust estimation of photometry and astrometry

Similarly to the approach described in Section 2.3.3, when characterizing a source
(found above the detection threshold in the detection map), the source flux is to be re-
estimated jointly with the background statistics in order to prevent any self-subtraction
that would bias the estimation. In practice, this joint estimation is performed by
alternating (i) a re-estimation of the local background statistics using the residuals
{r⌊φt⌉,t − α̂h⌊φt⌉(φt)}t=1:T , where α̂ is the current flux estimate, and (ii) a re-estimation
of the source flux with the updated background statistics by applying Equation (4.8).

The accurate astrometric estimation of the source is obtained by evaluating the
signal-to-noise ratio, with the unbiased flux estimate, over a refined subpixel grid around
the detected location.
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Once a source has been characterized both in terms of astrometry and photometry,
its contribution to the data can be subtracted and the detection map updated accord-
ingly, similarly to source extraction with the CLEAN algorithm, as described in Section
2.4.6.

4.3.4 Sketch of proof of the robustness

In this section, we show that our estimators are robust in the sense that, should
the patch rn,t⋆ be replaced by a scaled version r′

n,t⋆ = η· rn,t⋆ with an arbitrarily
large factor η, at a given frame t⋆, the estimators of the background statistics m̂′

n and
Ŝ′
n as well as the flux estimator α̂′ computed on the collection with the scaled patch

remain bounded 6. In fact, when η grows to infinity, we show that the patch r′
n,t⋆ gets

completely discarded in the estimation of the flux. This contrasts with other data
processing methods in ADI that generally lead to incorrect detection confidence and
flux estimates if bad frames with large values are present in the dataset 7.

Since the estimators m̂n, Ĉn and σ̂2
n,t are defined implicitly through a fixed-point pro-

cedure, directly proving the robustness is difficult. Instead, we show that when η
approaches infinity, the following estimates correspond to a fixed point:





σ̂2
n,t

′ = σ̃2
n,t when t 6= t⋆

σ̂2
n,t⋆

′ →∞
m̂′

n = m̃n

Ŝ′
n = T−1

T
S̃n + K

T

rn,t⋆ r⊤
n,t⋆

r⊤
n,t⋆ (Ŝ′

n)−1rn,t⋆
,

(4.14)

where σ̃2
n,t, m̃n and S̃n correspond to the estimators computed on the collection

{rn,t}t6=t⋆ of the patches with the t⋆-th frame removed.
Starting with the initial values given in (4.14), the application of Equation (4.3)

leaves the estimated variances σ̂2
n,t

′ unchanged for all t different from t⋆. For t⋆, σ̂2
n,t

′ ∼
η→∞

η2σ̂2
n,t which tends to infinity when η approaches infinity.
From Equation (4.4), we see that the patch r′

n,t⋆ with associated infinite variance
σ̂2
n,t

′ has negligible contribution in the weighted mean: 1
σ̂2

n,t⋆
′ r

′
n,t⋆ ∼

η→∞

1
η σ̂2

n,t
rn,t⋆ , so that

lim
η→∞

1
σ̂2

k,t⋆
′ r

′
n,t⋆ = 0. The mean patch then corresponds to that obtained on the collection

of patches with the t⋆-th patch excluded.
The approximations σ̂2

n,t⋆
′ ∼
η→∞

η2

K
r⊤
n,t⋆(Ŝ′

n)−1rn,t⋆ and r̄′
n,t⋆ ∼η→∞

η rn,t⋆ together with

the update of the sample covariance estimate (4.5) lead to Ŝ′
n = T−1

T
S̃n+K

T

rn,t⋆ r⊤
n,t⋆

r⊤
n,t⋆ (Ŝ′

n)−1rn,t⋆
.

In conclusion, the set of parameters defined in (4.14) is a fixed-point. Moreover, neither
the mean background patch m̂′

n nor the spatial covariance Ŝ′
n depend on η (i.e., they

6. Note that multiplying the patch by η differs from our modeling since this changes both the mean
and covariance while we assumed that only the covariance may be scaled.

7. TLOCI computes medians rather than averages at some steps to improve the robustness. How-
ever, such a strategy is generally not sufficient to overcome the presence of large fluctuations on several
time frames since some steps include a linear processing of the data.
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both remain bounded when η → ∞). It remains to show the robustness of the flux
estimator α̂ of a source.

If the scaled patch is not in the collection of all patches that contain the PSF of
the source, then its influence is limited since we have just shown that the background
statistics are robustly estimated. In the case of the superimposition of a scaled back-
ground and of the source of interest (as is the case when a poor correction of the AO
leads to large stellar leakages at some locations of the field of view), the estimated flux
becomes:

α̂(φt) =

T∑
t=1

1
σ̂2

n,t
′ h⌊φt⌉(φt)

⊤ · Ĉ−1
⌊φt⌉

·
(
r′

⌊φt⌉,t
− m̂⌊φt⌉

)

T∑
t=1

1
σ̂2

n,t
′ h⌊φt⌉(φt)

⊤ · Ĉ−1
⌊φt⌉

· h⌊φt⌉(φt)
. (4.15)

Therefore, when η becomes large, the term
(
r′

⌊φt⋆⌉,t⋆ − m̂⌊φt⋆⌉

)
/σ̂2

n,t⋆
′ tends to zero and

we obtain:

α̂(φt) ≈

∑
t6=t⋆

1
σ̂2

n,t
′ h⌊φt⌉(φt)

⊤ · Ĉ−1
⌊φt⌉

·
(
r′

⌊φt⌉,t
− m̂⌊φt⌉

)

∑
t6=t⋆

1
σ̂2

n,t
′ h⌊φt⌉(φt)

⊤ · Ĉ−1
⌊φt⌉

· h⌊φt⌉(φt)
(4.16)

≈

∑
t6=t⋆

1
σ̂2

n,t
h⌊φt⌉(φt)

⊤ · Ĉ−1
⌊φt⌉

·
(
r⌊φt⌉,t − m̂⌊φt⌉

)

∑
t6=t⋆

1
σ̂2

n,t
h⌊φt⌉(φt)

⊤ · Ĉ−1
⌊φt⌉

· h⌊φt⌉(φt)
, (4.17)

which indicates that the scaled frame r′
⌊φt⋆⌉,t⋆ tends to be completely discarded when

the scaling factor η is large. Estimation of the photometry and of the astrometry is
therefore robust to the presence of a frame with an arbitrarily large background.

• Under our Gaussian scale mixture model, the estimator of the background
statistics and the estimator of the source flux are both very similar to the
ones derived in Chapter 2 under a multivariate Gaussian model of the back-
ground fluctuations.

• They differ only by weighting factors related to the estimated temporal
scaling factors (inversely proportional to the variance at each time).

• They are robust since they remain bounded in the presence of a frame
with arbitrarily large magnitude. The impact of bad frames is limited and
becomes negligible for the largest deviations.

• We illustrated on SPHERE/IRDIS data that the time-dependent scaling
factors lead to detection maps that are slightly more spatially stationary,
in the sense that the standard deviation of their distribution is closer to 1
in all the areas of the field of view. An improved match to the standard
Gaussian distribution is thus observed.

Estimators accounting for the temporal fluctuations
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Robustness to bad frames in direct imaging

Figure 4.6 – Contrast curves at 5σ for TLOCI, KLIP, PACO and robust PACO, around
HIP 72192 (SPHERE-IRDIS, λ1 = 2.110µm). The 5 triangles and 5 squares correspond
to Monte-Carlo injections.

4.4 Characterization of detection, astrometric and
photometric performances

4.4.1 Improved detection sensitivity

The maximum achievable contrast between the host star and an off-axis point source
is an important information to characterize the overall performance of the instrument,
including the data processing. We showed in Section 2.5.3.2 that contrast curves pro-
duced by reference algorithms like TLOCI and KLIP were over-optimistic due to a
coarse statistical model of the residues. Contrast curves predicted with PACO are closer
to the actual performance assessed by Monte-Carlo. However, based on the analysis of
Figure 2.25, we pointed out that the predicted contrast only provides a lower bound
that is not reached in practice. The reason for this discrepancy is that the statistics
of the background are learned, in the detection step, on patches that contain both the
background and the source(s).

In Figure 4.6, we give contrast curves computed on a SPHERE-IRDIS ADI dataset
at λ1 = 2.110µm of HIP 72192 (same dataset than the one used in Chapter 2). Four
contrast curves are reported, corresponding to TLOCI, KLIP, PACO and robust PACO.
As stated in Section 2.5.3.1, contrast curves of TLOCI and KLIP should be analyzed
with caution because they were computed based on a threshold at 5σ that does not
correspond to a probability of false alarm of 2.87×10−7 since the residuals are not Gaus-
sian distributed. A modeling of the heavy tail of the distribution of the residuals would
be necessary in order to compute a more adequate threshold (providing the residuals
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Figure 4.7 – Comparison of contrast maps for HIP 72192 (SPHERE-IRDIS) at λ1 =
2.110µm. The top row indicates the largest contrast between the host star and a point
source that would lead, theoretically, to a probability of detection greater or equal to
0.5 at the detection threshold τ = 5. Three methods are compared: the standard PACO

algorithm applied on the whole ADI stack (left), PACO applied to the subset of the ADI
stack obtained by removing the 8 frames with the largest fluctuations (center), and the
robust PACO applied on the whole stack (right). The bottom row gives the gain in
contrast with respect to PACO algorithm.
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Figure 4.8 – Comparison of PACO (left) and the robust PACO on a SPHERE-IRDIS ADI
dataset around HIP 72192 (at λ1 = 2.110µm) with 30 fake point sources injected in
addition to the 2 known faint point sources (same level of contrast as presented in Table
2.4). The detection maps are given together with the signal-to-noise ratio values of the
60 first detections. The 6 fake sources closest to the host star are denoted by digits 1O
to 6O. The two real sources are indicated in pink. The increase in signal-to-noise ratio
brought by the robust approach is given in percentage on the detection map.
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have stationary distribution). That threshold would be significantly larger than the 5σ
value, which would shift the contrast curves up to worse contrasts. For PACO and robust

PACO, we give both the theoretical contrast curve and the results of Monte-Carlo sim-
ulations computed for 5 different angular separations (triangles for PACO, squares for
robust PACO). The theoretical contrast curves, corresponding to fluxes α such that
P(α̂/σ̂α ≥ 5) = 0.5, are obtained by computing 5σ̂α, i.e., 5/

√∑
t at, at each point of the

field of view, with intensities expressed relatively to the intensity of the host star.
PACO and robust PACO achieve better contrasts than TLOCI and KLIP. The dis-

crepancy between the theoretical contrast and the Monte-Carlo simulations is reduced
with robust PACO compared to PACO. This is because the influence of the source is
reduced when robustly estimating the statistics of the background. Moreover, the con-
trast is clearly improved at small separations.

Figure 4.7 gives the 2-D contrast maps for 3 detection methods, on the same ADI
dataset as that studied in Figure 4.6. From left to right are displayed contrast maps of
the standard PACO algorithm, PACO algorithm after manually removing the 8 frames that
display the largest fluctuations of the series, and robust PACO (without manual removal
of frames). The gains in contrast obtained with respect to standard PACO are given on
the bottom row of the figure. Manually removing the bad frames has two effects: (i)
an improvement of the contrast in the area impacted by the large fluctuations of the
bad frames, and (ii) a slight degradation of the contrast in the rest of the field of view
due to the reduction of the size of the ADI dataset. By locally estimating the scaling
factors, robust PACO improves the contrast everywhere. Even in regions that are not
affected by strong temporal heterogeneity, it is beneficial to account for fluctuations
of the scaling factors. As expected, the gain is the largest in the area affected by the
strongest fluctuations. There, the gain in contrast reaches 80%.

Standard PACO and robust PACO are also compared on this SPHERE-IRDIS dataset
through injections of faint point sources at the same three levels of contrast than in
Chapter 2 (see Table 2.4 for the corresponding levels of contrast). The 30 fake point
sources were injected in addition to the 2 known faint point sources, at contrasts such
that they could all be detected without a false alarm. Figure 4.8 gives the detection
maps produced by PACO and robust PACO. The corresponding detection maps obtained
by TLOCI and KLIP are given in Figures 2.17, 2.18 and 2.19. By including time-specific
scaling factors, PACO improves the S/N of all sources. The largest increase occurs close
to the host star where the S/N is improved by more than 100% for two point sources
(sources 3O and 4O). These observations can be related to the weighting maps shown
in Figure 4.1; sources 3O and 4O are the most impacted by strong temporal fluctuations
of the speckles (due to stellar leakages). Then, almost null weights 1/σ̂2 are assigned
to the patches of this area at the corresponding defective poses, thus attenuating the
influence of these outliers in the modeling of the background.

Figure 4.9 compares TLOCI, KLIP, standard PACO and robust PACO algorithms
on an ADI stack of HD 95086 (T = 52 temporal frames acquired under the 2015-05-
05 – 095.C-0298(A) ESO program with a total apparent rotation of the field of view
∆par = 18.2°). The HD 95086 hosts a 5–Jovian mass exoplanet (HD 95086 b) discovered
(Rameau et al., 2013a) and confirmed (Rameau et al., 2013b) by direct imaging with the
SPHERE instrument. In addition, 6 known background point sources are in the field
of view. Figure 4.9 shows that both the PACO and the robust PACO methods achieve
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Figure 4.9 – S/N maps from TLOCI, KLIP, PACO and robust PACO on an ADI dataset
of HD 95086. 7 circular insets show a zoom of the S/N maps around the known point
sources. The S/N maps of these insets are evaluated on a subpixel grid (4 nodes per
pixel) for PACO and robust PACO. True detections are marked by straight circles, the
missed detections (S/N < 5) are marked by dashed circles and false alarms are identified
by red squares.
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Figure 4.10 – Left: contrast that would be obtained for HIP 72192 under ideal ob-
servation conditions (i.e., as good as that of the best image, during the entire ADI
acquisition). Right: gain in contrast compared to the actual contrast, computed by
accounting for temporal fluctuations of the scale of the residuals.

better detection performance than reference algorithms. In particular, the S/N values
of the sources is larger for all sources (except for the background star 2 which poses no
detection problem in itself: it is so bright that it is visible directly in a single image of
the ADI dataset). With PACO and robust PACO, it is possible to detect without any false
alarm the 7 known sources by thresholding the S/N maps at τ = 5. In comparison, S/N
maps from TLOCI and KLIP present several artifacts due to the presence of outliers in
the datasets, preventing an automatic analysis of these maps. robust PACO increases
the detection confidence of all sources present in the field of view, especially for the
ones with the smallest angular separations such as the exoplanet HD 95086 b (S/N =
6.1 with PACO vs. 8.5 with robust PACO).

4.4.2 Assessing the quality of the observations

The presence of frames of worse quality in an ADI stack degrades the detection
performance with respect to an ADI stack of constant quality. It may be useful to the
astronomers who planned the observations to compare the contrast achieved given the
actual conditions of observation to the contrast that would have been reached should the
conditions have been as good as that of the best frames. Such a difference in contrast
can be assessed by computing a best case contrast where σ̂2

⌊φt⌉,t
in the computation of

at in Equation (4.9) is replaced by mint′ σ̂
2
⌊φt⌉,t′

(i.e., the smallest scaling factor at that
location ⌊φt⌉). Figure 4.10 shows the best case contrast for HIP 72192. Compared
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to the actual contrast predicted based on the estimated time-specific scaling factors,
the best case contrast is about 25% better in most of the field of view, and close to
70%-80% in the region most impacted by large temporal fluctuations. If the aim of the
observations was to characterize a faint point source that falls in that area, it might
be worth considering re-observing in the hope of experiencing better conditions and
getting closer to the best case contrast.

4.4.3 Improved astrometric and photometric accuracies

As in Section 2.3.6.3, the astrometric and photometric accuracies can be character-
ized over the whole field of view by computing the Cramér-Rao lower bounds (CRLBs).
By keeping the notation, Ω = {α, x0, y0} denoting the vector of parameters from which
the CRLBs are computed, for a given angular position n, the Fisher information matrix
IF
n accounting for the temporal fluctuations can be expressed as (Kendall et al., 1948):

[
IF
n(Ω)

]
i,j

=
T∑

t=1

1

σ2
n,t

∂αhn(Ω)

∂Ωi

⊤

· C−1
n ·

∂αhn(Ω)

∂Ωj

. (4.18)

Figures 4.11 and 4.12 give the astrometric Cramér-Rao lower bounds on the whole
field of view obtained with PACO and robust PACO. They show that the patch weighting
included in robust PACO improves the estimation accuracies on the whole field of view,
especially in the presence of high stellar leakages (more than 50% improvement near the
coronagraph). In practice, the PACO CRLBs are too pessimistic since the covariances are
over-estimated due to the presence of outliers in the data; thus robust PACO improves
the fidelity of the CRLBs.

• robust PACO achieves better contrast levels than TLOCI, KLIP and the
PACO algorithm described in Chapter 2.

• The contrast and the detection performance are particularly improved at
small separations, where the stellar residuals dominate.

• The robust PACO algorithm also outperforms PACO in every point of the
field of view (even if no significant fluctuations can be identified in the
data).

• Compared to PACO, with robust PACO the predicted contrast more closely
matches the actual contrast computed by Monte-Carlo simulation.

• To better analyze the observations conditions, robust PACO can also esti-
mate the contrast that would have been reached if the AO correction had
been as good as the best correction in the ADI time series.

robust PACO’s capabilities
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Figure 4.11 – Theoretical accuracy (minimal standard deviation given by the Cramér-
Rao lower bounds) δx0

on the estimated astrometric location x0 from PACO and robust

PACO around the HIP 72192 star. δx0
maps are multiplied by the flux α of the exoplanet

(expressed in arcsec×flux). The gain (in percents) brought by robust PACO compared
to PACO is given on the right. The 6 fake sources closest to the host star are denoted
by digits 1O to 6O.
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Figure 4.12 – Same illustration than Figure 4.11 for the parameter y0 instead of x0.
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4.5 Conclusion on robust PACO’s capabilities

Most data processing techniques for point source detection and characterization in
ADI datasets are not robust: the presence of images with poor AO correction can con-
siderably degrade their performance. It is, therefore, necessary to detect and eliminate
these frames in a preprocessing step.

The approach described in this chapter (robust PACO) completes that of Chapter 2
(PACO) by modeling the temporal nonstationarities of the amplitude of the background
fluctuations jointly to the spatial correlations with a Gaussian scale mixture model.
When these fluctuations are accounted for, the estimations are robust to large fluctua-
tions. Rather than discarding full frames, we use a local modeling in order to spatially
adapt the processing and give a very small statistical weight only to the areas subject
to large fluctuations. That way, robust PACO makes the most of the available data.

The robust PACO algorithm leads to improved detection performances (in particu-
lar at close separations where the stellar residuals dominate). Interestingly, it is also
possible to estimate the achievable contrast not only by taking into account the actual
image quality of the ADI dataset, but also the contrast that would have been reached
if the AO correction had been as good as the best correction in the ADI time series.
This information can be highly valuable in order to plan subsequent re-observations.

Coronagraphic observations obtained with integral field spectrographs could also
benefit from a modeling of the spatial and temporal fluctuations. We investigate this
point in Chapter 6 to include a modeling of the spectral correlations for these instru-
ments.

In the following chapter, we also consider weighting based approaches to improve the
robustness of the detection and characterization of samples by holographic microscopy.
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Chapter 5
Robustness to unwanted objects in

holographic microscopy

Abstract

Lensless microscopy is used in various fields, including microfluidics and biomedi-
cal imaging to derive quantitative information characterizing the observed objects.
In particular, to estimate the size and 3-D location of microscopic objects from
holograms, maximum likelihood methods have been shown to outperform tradi-
tional approaches based on 3-D image reconstruction followed by 3-D image anal-
ysis. However, the presence in the hologram of fringes due to objects other than
the object of interest may bias maximum likelihood estimates. Using experimental
videos of holograms, we show that replacing the maximum likelihood with a robust
estimation procedure reduces this bias. We propose a criterion based on the in-
tersection of confidence intervals to set the level that distinguishes between inliers
and outliers automatically. This methodology is general and can address differ-
ent estimation problems in presence of nonstationary outliers. We show that this
criterion achieves a bias/variance tradeoff. We also show that joint analysis of a
sequence of holograms using the robust procedure further improves the estimation
accuracy.

5.1 The need for robust estimators in holographic
microscopy

As discussed in Section 1.3.2, thanks to the massive development of low-cost imag-
ing sensors and the simultaneous increase in computational capabilities, holographic
microscopy is emerging as a method of choice for time-resolved analysis of microscopic
objects. It is already used in several fields (see Mudanyali et al. (2010); Greenbaum
et al. (2012) for some trends) where the accurate estimation of 3-D location and size
over time is crucial, such as in the study of fluid flows (Sentis et al., 2018; Middleton
et al., 2019; Go et al., 2019) or biomedical imaging (Rostykus et al., 2018; Allier et al.,
2019; Kemper et al., 2019).
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Figure 5.1 – Illustration of holograms corrupted by spurious fringes in holographic
microscopy videos. Series #1: a circular chromium deposit (inlier) is shifted over time
near a human hair (outlier). Series #2: a polystyrene bead (inlier) in suspension follows
a Brownian motion over time in the presence of several moving dust (outliers) and
background fringes due to spurious reflections on optical surfaces of the setup. Series
#3: an evaporating diethyl ether droplet (inlier) is injected into a turbulent flow in the
presence of moving dust (outliers). The vapor plume resulting from the evaporation of
the droplet of interest and other evaporating droplets located at a different depths also
act as outliers. Series #1 and #2 were recorded by Nicolas Verrier and Corinne Fournier
at the Hubert Curien Laboratory, Saint-Etienne, France. Series #3 was recorded by
Nathalie Grosjean and Loïc Méès at the Fluid Mechanics and Acoustics Laboratory,
Ecully, France.

Analysis of digital holograms is traditionally performed by first reconstructing the 3-
D volume by light back-propagation, then analyzing this 3-D volume to segment, locate,
and size objects (Kreis, 2006). However, this approach suffers from artifacts due to the
imperfect reconstruction step, in particular to spatial distortions close to the image
borders and spurious diffraction patterns known as twin images in holography (Kreis,
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2006). As presented in Section 1.3.2.2, location and size estimates can be significantly
improved by using a maximum likelihood estimator, i.e., by fitting a model of the
diffraction pattern generated by the object of interest directly on the hologram rather
than by reconstructing the image volume (Gire et al., 2008). This method is very
successful for the study of isolated objects in optical metrology (Verrier et al., 2015;
Wang et al., 2016; Philips et al., 2017).

However, an estimation bias appears when the hologram is corrupted by interference
fringes due to other objects or components of the setup. These objects may have
complex or unknown shapes, and their influence on the hologram may be difficult
to explicitly model and account for. Figure 5.1 illustrates some hologram corruptions
typically encountered in holographic microscopy. Among these, we can focus on the time
series #3 given in Figure 5.1: a diethyl ether droplet is injected into a nearly isotropic
turbulence generated by a set of loudspeakers. The recorded holographic video shows
the diffraction pattern produced by the droplet of interest (inliers) mixed with other
unwanted fringes (outliers) such as the vapor plume resulting from the evaporation of
the droplet over time, or the diffraction patterns of dust particles. The objects acting
as outliers that are very similar to the objects of interest can be identified by putting
bound constraints, for example on the estimated size or depth, during the detection
and characterization steps. However, their signal still bias the characterization of the
objects of interest.

• Holographic microscopy is a 3-D imaging technique widely used for the
characterization of microscopic objects.

• Hologram analysis by a maximum likelihood approach leads to accurate es-
timations of the object’s physical properties that are useful for metrological
applications.

• However, a bias of estimation can arise when unwanted fringes alter the
hologram.

Robustness issues in holographic microscopy

In this chapter, we aim to address this robustness issue. Like elsewhere in this thesis,
we pay a particular attention to the automatic setting of tuning parameters. We suggest
replacing the maximum likelihood estimator with a robust estimator so that any notable
discrepancy between the model of the pattern of interest and the data due to unwanted
fringes has little influence on the final estimate. Section 5.2 describes the proposed
robust estimation procedure to characterize microscopic objects. Section 5.3 introduces
a new method to set automatically the level to distinguish between inliers and outliers.
Section 5.4 illustrates the performance of the proposed method on holographic videos.
Finally, Section 5.5 concludes this chapter. This chapter is based on the conference
paper Flasseur et al. (2017a).
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Figure 5.2 – Holographic microscopy setup and object fitting in presence of outliers.

5.2 Improved robustness by weighted least squares

5.2.1 The least squares solution

We recall the basic configuration used in digital holography to study a spherical
object p. A coherent illumination is used: the incident wave is monochromatic (with
wavelength λ) and plane. After free-space propagation over distance zp, a hologram
d is recorded by a monochromatic image sensor, see Figure 5.2. Based on diffraction
theory, it is possible to model the diffraction pattern mθ created on the hologram plane
by the object of interest. The spherical particle is fully characterized by the vector of
parameters θ (3-D location, size, and eventually optical index).

Maximum likelihood (ML) estimation of the parameters θ, under the hypothesis of
additive white Gaussian noise, amounts to solving a nonlinear least squares problem
(Soulez et al., 2007a,b):

θ̂
(ML)

= arg min
θ

A∑

a=1

B∑

b=1

w(a, b) · [mθ(a, b)− d(a, b)]2, (5.1)

where d(a, b) is the recorded data at pixel location (a, b), w(a, b) ∝ 1/ǫ(a, b)2 is a weight
that is set to zero for defective pixels and that can account for a nonstationary noise
variance 1 ǫ(a, b)2, and A and B are the height and width of the sensor, in pixels. In
this formulation, large deviations between the model and the data (i.e. the outliers) are
highly penalized, which can have a large impact on the estimated vector of parameters
θ.

5.2.2 The reweighted least squares solution

To reduce the impact of outliers on the estimation, Huber introduced the so-called
M-estimators (Huber, 2011) by replacing the least squares by another objective function
ρ. By adequately choosing function ρ, the penalization of the large deviations between

1. Chapter 3 presents a method accounting for the nonstationarity of the noise arising in holographic
microscopy series of images (see Figure 5.1) within a microscopic object detection and characterization
framework.
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Table 5.1 – Examples of robust objective, score and weight functions classify according
to their properties (hard-, soft- or monotone-descenders. The constants A, B, T , C, W ,
L, F , and H appearing in each of them are tabulated values to guaranty a controlled
efficiency level of the estimator (typically 95% with the values reported in Table 5.2
under an additive white Gaussian noise).

Objective Score Weight Cond.
ρ(r) ψ(r) = ∂ρ(r)

∂r
w(r) = ψ(r)

r
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Andrews

{
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[
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2
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sign(r)H
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Table 5.2 – Constant values appearing in the definitions of the robust objective, score,
and weight functions to guaranty 95% efficiency of the estimators under an additive
white Gaussian noise.

A B T C W H F L

1.339 4.685 2.795 2.385 2.985 1.345 1.205 1.400

the model and the data (i.e., their influence) can be reduced. Minimization problem
(5.1) is then replaced by:

θ̂
(M)

= arg min
θ

A∑

a=1

B∑

b=1

w(a, b) · ρ

(
mθ(a, b)− d(a, b)

s

)

︸ ︷︷ ︸
C (θ)

, (5.2)

where ρ is a non-negative, continuous and symmetric function with a minimum equal
to 0 at 0, and s is a parameter that scales the residuals by setting the level that
distinguishes between inliers and outliers (more details are given in Section 5.3).
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Figure 5.3 – Three examples of robust objective (ρ), score (ψ), and weight (w) functions:
Talwar’s (hard-descender), Cauchy’s (soft-descender), and Hueber’s (hard-descender)
functions.

Depending on the choice of the function ρ, the minimization problem (5.2) can
be difficult to solve. A simple algorithmic strategy leading to a local minimizer con-
sists in solving a sequence of least squares problems of the form (5.1): the Iteratively
Reweighted Least Squares (IRLS, Holland and Welsch (1977); Hill and Holland (1977),
see also Sigl (2016) for a recent review). In this scheme, the estimate θ̂k+1 at iteration
k + 1 is obtained by reweighting the squares with weights wk(a, b) derived from the
residuals of iteration k:

θ̂k+1 := arg min
θ

A∑

a=1

B∑

b=1

wk(a, b) · [mθ(a, b)− d(a, b)]2 , (5.3)

where the weights wk(a, b) are computed from the residuals at iteration k, rk(a, b) =
mθk

(a, b)− d(a, b), according to an update rule that depends on the objective function
ρ:

wk(a, b) = w(a, b) ·
s

rk(a, b)
·
∂ρ(u)

∂u︸ ︷︷ ︸
ψ(u)

∣∣∣∣∣∣∣∣∣
u=rk(a,b)/s

. (5.4)

In holographic microscopy, the image formation model mθ is often nonlinear with
respect to the parameters θ. As a result, the minimization problem (5.1) and each IRLS
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iteration in (5.3) is solved using a few iterations of Levenberg-Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963).

A variety of objective functions ρ, score function ψ and resulting IRLS weights w
have been proposed and widely studied in the literature (see Fox and Weisberg (2018)
for a review) to perform robust estimations. Table 5.1 gives examples of the most used
(Beaton and Tukey, 1974; Bickel, 1975; Dennis Jr and Welsch, 1978; Dutter and Huber,
1981; Wolke and Schwetlick, 1988; Mbamalu and El-Hawary, 1993; Pires et al., 1999).

Interestingly, robust estimation can be compared with joint estimation of the object
parameters θ and outliers contribution e under sparsity constraint. The minimization
problem:

{θ̂, ê}= arg min
θ , e

A∑

a=1

B∑

b=1

[mθ(a, b)− d(a, b)− e(a, b)]2 + µ |e(a, b)|
︸ ︷︷ ︸

Csparse(θ,e)

, (5.5)

where µ is a regularization parameter, can be solved by alternating between the estima-
tion of θ and e. At fixed estimate ê = arg mine Csparse(θ, e), the minimization problem
(5.5) corresponds to the robust minimization problem (5.2) where the descender ρ is
the Huber function (Fuchs, 1999; Kekatos and Giannakis, 2011).

The robust functions can be classified in three categories according to their proper-
ties:

• hard-descenders are functions ρ that are constant above a given threshold, thereby
leading to zero weights for data points that display a misfit larger than the chosen
threshold.

• soft-descenders are functions ρ whose limit at infinity is finite, thus asymptotically
producing zero weights for large residual values.

• monotone-descenders are specific cases of soft-descenders functions for which the
score function (derivative of the objective function ρ) is constant above a given
threshold, thereby leading to a constant increase of the penalization of outliers
by the ρ function.

Figure 5.3 gives an example of objective (ρ), score (ψ) and weight (w) functions for
each of the categories mentioned above.

Robust estimation has been widely used in the literature and is still studied to address
issues such as the detection of outliers data in biomedical for cardiac and brain monitor-
ing (Schäck et al., 2017) as well as in astronomy for direct imaging (Berdeu et al., 2020).
To the best of our knowledge, the use of robust estimation for objects characterization in
holographic microscopy videos is not referenced in the literature. We thus suggest that
it could also benefit for holographic microscopy applications as illustrated in Figure 5.4
on a toy example. In this numerical experiment, we consider a static spherical opaque
bead of radius rp = 10µm located at zp = 0.02 m from the sensor plane and centered
on the object plane (i.e. xp = 0 m and yp = 0 m, see Figure 5.2 for the notation).
We consider another spherical opaque bead with the same radius but located 0.01 m
closer than the previous bead from the sensor plane. This second bead is moving along
the time series and crosses the length of the field of view. The resulting holograms
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Figure 5.4 – Illustration of the benefit of a robust approach for the characterization of
spherical objects with holograms altered by outliers. Left: the trajectory of a moving
opaque sphere crosses another opaque sphere at the center of the field of view. Right:
estimation bias along the sequence on the 3-D location {xp, yp, zp} and radius rp of the
static sphere.

are simulated with the Thompson model (see Sections 1.3.2.2.1 and 5.4) considering a
monochromatic source at λ = 532µm and a pixel pitch of ∆pix = 2.2µm. A white and
Gaussian noise (S/N = 10) is also added. The second bead acts as an outlier since its
diffraction pattern mixes with the diffraction pattern of the bead of interest (see Figure
5.4, left). The estimation bias is reported (Figure 5.4, right) for the four estimated
parameters of the static bead (its 3-D location {xp, yp, zp} and its radius rp) for the
standard least squares (5.1) and the robust approach (5.2) using a Cauchy descender.
For the robust approach, the value of s appearing in Equation (5.2) is estimated with
the conventional MAD estimator, see Section 5.3.2 and Equation (5.6). It shows that
a robust least squares estimation reduces the estimation bias by a factor about 2, and
more when the outlier bead is close to the bead of interest.

The estimation bias due to the interference fringes created by a spurious object
close to the object of interest can be reduced using a robust estimation scheme.
This implies:

• replacing least squares by another objective function limiting the penaliza-
tion of the largest deviations between the model and the data.

• solving the resulting (possibly non-convex) minimization problem with an
Iteratively Reweighted Least Squares (IRLS) sequence leading to a local
minimizer.

Bias reduction
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Figure 5.5 – Illustration of the bias/variance tradeoff arising with robust estimation. (a)
the considered hologram is formed by a spherical bead (inlier) near another deeper par-
ticle (outlier); (b) cost functions C = f(rp) for different values of the hyper-parameter
s. (c) evolution of the bias and the predicted standard deviation (CRLB) as a function
of the hyper-parameter s; (d): robust weight maps for different values of the tuning
parameter s.
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5.3 Distinguishing inliers and outliers

5.3.1 A bias/variance tradeoff

The tuning parameter s appearing in Equations (5.2) to (5.4) plays a central role
in robust estimation and should be estimated with care (Rousseeuw and Leroy, 2005).

On the one hand, if s is too low, most residuals rk(a, b) will be (much) larger than
s and the weight of the corresponding data points will be small in the subsequent
iterations, thereby discarding most of the signal of interest. In this case, this will result
in an increase of the variance of estimation. On the other hand, if s is too large (much
larger than the typical discrepancy of outliers), the M-estimator tends to the least
squares estimator and loses its robustness properties. In this case, reduction in the bias
caused by outliers is no longer obtained. In summary, the hyper-parameter s controls
a bias/variance tradeoff.

Figure 5.5 illustrates this bias/variance tradeoff on the frame #48 presented in
Figure 5.4, in which an outlier bead is located near a bead of interest. We consider
the parameters {xp, yp, zp} known, and Figure 5.5(b) presents the evolution of the cost
function C as a function of the single parameter rp, for different values of the tuning
parameter s. In each case, the bias and the predicted standard deviation (derived from
the Cramér-Rao lower bounds, see Section 5.3.3) are reported in Figure 5.5(c). The
curves show that the estimation bias on the parameter rp can be reduced by decreasing
the value of s, i.e., by decreasing the weight w given to outliers in the estimation (see
Figure 5.5(d)). However, some inliers are also discarded when s decreases. This results
in an increase of the variance of estimation (see Figure 5.5(c)), reflecting the reduction
of the curvature of the cost functions plotted in Figure 5.5(a). Finally, examples of
robust weighting maps w are shown in Figure 5.5(d). They illustrate that weights
are close to a segmentation of the pixels impacted by the unwanted object such that
diffraction rings characterizing the bead of interest are well preserved when s achieves
a bias/variance tradeoff (i.e. medium values of s).

Moreover, based on the analysis of Figure 5.5(c), soft-descenders such as the Cauchy
function, seem to be the most adapted penalization for our application since it achieves a
good compromise between bias reduction and loss of efficiency of the estimator. We have
compared in more details the different robust functions listed in 5.1 (the comparisons
between each function are not reported here since they led to close results) and decided
to use in the following the Cauchy descender.

5.3.2 Classical approaches

A common method to estimate the scale parameter s in the case of independent
and identically distributed noise is based on the median absolute deviation (MAD)
estimator, which provides a robust estimate of the residuals standard deviation (Huber,
2011):

ŝ(MAD) = 1.48 · median [ |r −median(r)| ] , (5.6)

where r denotes the collection of all residuals values r(a, b) for a ∈ [1, A] and b ∈ [1, B].

MM-estimators have been proposed to achieve high robustness to the presence of
outliers while conserving high efficiency in the absence of outliers (Yohai, 1987). These
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Figure 5.6 – Proposed principle for estimating the hyper-parameter s based on ICI rule.

estimators consist of two steps: (i) an estimation of the scale of the residuals s using an
M-estimator defined by a descender ρ1; and (ii) the actual estimation of the parameters
of interest θ with a more efficient penalty function ρ2.

One drawback of MAD and MM-estimators for setting parameter s is that they do
not account for the actual impact of the outliers on the estimation. When considering
unwanted objects within the field of view, the location of the objects with respect to
the object of interest may or may not lead to biases. In other words, while ŝ(MAD) is
suitable in cases where the outliers are uniformly distributed in the measured signal,
a more appropriate choice of s could be made in cases of non-uniform distributions of
outliers such as fringes located in a particular area of the sensor.

5.3.3 Proposed criterion for a bias/variance tradeoff

We propose to estimate parameter s using a data-driven method that accounts for
the actual impact of the outliers on the estimation. Starting from the value ŝ(MAD),
which may be over-conservative, we apply the intersection of confidence intervals (ICI)
rule to decide up to what point parameter s can be increased for variance reduction
before being subject to bias due to outliers. The ICI rule has been successfully applied
in image denoising to locally select the largest neighborhoods on which to perform
denoising by a local polynomial approximation (Katkovnik et al., 2002). Its application
only requires knowledge of the estimate and its standard deviation.

The vector of parameters θ is estimated using the robust IRLS estimation scheme

(5.3) by progressively increasing parameter s until the new estimate θ̂
(M)

s obtained

with parameter s leads to a confidence interval [θ̂
(M)

s − δs, θ̂
(M)

s + δs] with an empty
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intersection with the preceding confidence intervals:

ŝ(ICI) = max

{
s ∈

[
ŝ(MAD), ∞

) ∣∣∣∣∣∃θ, ∀s0 ∈
[
ŝ(MAD), s

]
, θ ∈

[
θ̂

(M)

s0
− δs0

, θ̂
(M)

s0
+ δs0

]}
.

(5.7)
This principle is illustrated in Figure 5.6 considering a single parameter θ.

To build the confidence intervals, we used the Cramér-Rao Lower Bounds (CRLBs,
Kendall et al. (1948)). As stated in Section 1.3.2.2, the CRLB δ(i) represents the
minimum standard deviation for any unbiased estimator of the parameter θ(i). Under
additive white Gaussian noise, the least squares estimator (5.1) asymptotically reaches
the CRLB given by:

[δ]i =
√[

IF(θ)−1
]
i,i
, (5.8)

where Fisher information matrix IF is defined by:

[IF(θ)]i,j =
A∑

a=1

B∑

b=1

w(a, b)
∂mθ(a, b)

∂θ(i)

∂mθ(a, b)

∂θ(j)
. (5.9)

In the presence of outliers, we approximate the confidence intervals by computing the
CRLB with the weights obtained by the IRLS procedure.

To reduce the computational cost of estimating parameter s according to the ICI
rule (5.7), we consider a non-uniform discretization of the set

[
ŝ(MAD), ∞

)
such that

two successive s values lead to a given decrease in the CRLBs. In practice, each s value
is obtained by bisection to achieve the prescribed CRLBs reduction.

We now illustrate the proposed tuning of parameter s based on the ICI rule (5.7)
on a simple 1-D problem: estimating the xp location of a Gaussian-shaped pattern m.
We simulate 100 noisy realizations d by adding to the model a Gaussian white noise
(with a peak S/N of 10) and a constant outlier formed by a rectangular function with
3 samples in width (with a peak S/N of 1), see Figure 5.7(a).

The ICI rule leads to values of s that are about 5 times larger than ŝ(MAD) when
the outlier is too far to introduce a significant bias (see Figure 5.7(a)), and to values of
s close to that of ŝ(MAD) when the outlier affects the estimation (see Figure 5.7(b-c)).
When ŝ(ICI) is higher than ŝ(MAD) (resulting in a weaker penalization of the residuals),
the mean square error (MSE) on the location of the pattern is reduced by a factor
between 2 and 4. In practice, the empirical standard deviation reaches the CLRB when
the outlier has little impact on the estimate. A difference of a few tens of percent is
observed when the constant outlier has an impact on the estimate since the estimator
is no longer asymptotically unbiased. Determination of s with an ICI rule based on
CRLBs is still possible. Another solution could be to compute an empirical estimation
of the confidence intervals instead of a theoretical estimation using bootstrap methods,
see e.g. Davison and Hinkley (1997) for a review. In conclusion, choosing the parameter
s with the ICI rule improves the mean square error compared to a MAD estimator.
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Figure 5.7 – Estimation of the position of a pattern by a robust approach using the
MAD and the proposed ICI rule. Evolution of ŝ and MSE are respectively in dash and
solid lines.
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The robust weighting of the residuals implies a bias/variance tradeoff:

• outliers data should be penalized to reduce the bias they induce on the
estimation,

• part of inliers data are also penalized, which increases the estimation vari-
ance.

⇒ The penalization strength of the residuals should be chosen with care:

• usual approaches are based on a robust estimation of the residuals standard
deviation which does not account for the real impact of outliers in the
estimation,

• we propose a criterion based on the intersection of confidence intervals to
automatically set the level that distinguishes between inliers and outliers.

• Starting from a conservative guess of the penalization strength of the
residuals using a classical method, the penalization is progressively re-
laxed until the estimation variance is similar to the estimation bias.

• We show on numerical experiments that the proposed criterion takes in-
trinsically into account the actual impact of outliers on the estimation
thus achieving a better bias/variance tradeoff than the usual MAD esti-
mator.

A bias/variance tradeoff

5.4 Application to lensless microscopy videos

In this section, the performance of the proposed robust estimation scheme is evalu-
ated on two holographic microscopy videos recorded in different conditions. The goal
is to accurately characterize the spherical opaque objects imaged in the presence of
several outliers. Since the objects to be characterized are spherical and opaque, we
model their diffraction patterns with Thompson’s model (Tyler and Thompson, 1976).
This physical model, valid when the transversal distance zp between the object and the

sensor is such that zp ≫ 4π.r2
p

λ
(this condition is satisfied in the following experiments),

describes the diffraction pattern of an opaque sphere located at (xp, yp, zp), with a ra-
dius rp, by (Tyler and Thompson (1976), see also Section 1.3.2.2.1 for more background
on diffraction models):

mp(x, y) =
π r2

p

λ zp
J1c

(
2π rp ρp
λ zp

)
sin

(
π ρ2

p

λ zp

)
, (5.10)

where ρp =
√

(x− xp)2 + (y − yp)2 is the transversal distance to the center of the sphere
and J1c(u) = J1(u)/u is the cardinal Bessel function of first order. A vector of parame-
ters θ = {xp, yp, zp, rp} fully characterizes the diffraction pattern of a spherical object.

180



5.4. Application to lensless microscopy videos

Figure 5.8 – Calibrated circular object near an outlier. (a) example of a time frame; (b)
hand-drawn binary mask roughly discarding the outlier; (c) estimated hologram model
from the robust minimization problem (5.3); (d) residuals (subtraction between (a) and
(c)); (e) resulting IRLS weights at the final iteration.

5.4.1 Holographic video of an object of constant size

5.4.1.1 Dataset and algorithm description

We consider a 200 frames video of a slightly moving particle located near an un-
wanted object. The object of interest is a circular chromium deposit on a glass plate,
with a calibrated radius of 50µm (Optimask™, diameter ± 1µm, roundness error
± 0.25µm). This object is manually moved with a subpixel shift between each image
(by slightly translating the microscope stage). The unwanted object is a human hair
fixed near the circular object. This series of images is presented in Figure 5.1, series
#1. It shows that the outlier produces diffraction fringes mixing with the diffraction
rings of the inlier object. The time sequence was recorded and previously analyzed by
Verrier and Fournier (2015), using the non-robust least squares estimators (5.1). Our
goal is to compare radius estimates from the non-robust (5.1) and robust (5.2) least
squares optimization problems. Note that the optical magnification of the setup was
calibrated with care in Verrier and Fournier (2015). The results presented hereafter
are corrected for this value so that the radius estimates of the object can be directly
compared with the expected value of 50µm.

Since the outlier remains static throughout the video, it is possible to roughly remove
outlier pixels by applying a static binary weighting mask w(a, b) = 0 if pixel (a, b) is
in the masked region, w(a, b) = 1 otherwise. Figure 5.8,(a-b) shows a frame from the
video and the manual removal of the outlier by masking. Due to the mask w, part of
the signal due to the particle of interest (diffraction rings) is not accounted for.

Moreover, since the radius rp of the particle remains constant during acquisition,
it is possible to jointly estimate this parameter in several consecutive frames. This
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Figure 5.9 – Estimated radius as a function of the number of IRLS iterations.

digital super-resolution approach has already been successfully applied in holographic
microscopy (Verrier and Fournier, 2015) considering the non-robust least squares esti-
mator (5.1). We propose to combine this digital super-resolution approach with a robust
estimation scheme (minimization problem (5.3)) considering 40 stacks of 5 successive
frames.

5.4.1.2 Results analysis

Figure 5.8(c) is an example of an estimated hologram model, and (d) gives the
resulting residuals after subtracting the estimated model to the hologram (a). Figure
5.8(d) gives the weights obtained from the residuals (d) used in the last IRLS iteration.
The weights are close to a segmentation of the pixels impacted by the unwanted object.
The diffraction rings characterizing the particle of interest are well preserved (weights
close to 1).

Figure 5.9 shows the evolution of the estimated radius during the IRLS iterations
for the first 5 frames of the video. This shows that the algorithm converges in a few
iterations and that the joint estimate of the radius carried out by super-resolution is
very close to the ground-truth (radius of 50µm given by the manufacturer).

Figure 5.10 presents the estimated radius r̂p for the considered time series. The
estimation is performed (i) on each frame independently, and (ii) jointly on stacks of 5
frames (digital super-resolution). Table 5.3 completes this study by listing the mean es-
timated radius 〈r̂(M)

p 〉, the corresponding standard deviation σ and the CRLB δ obtained
for each method tested. The manual removal of the outliers by a binary mask appears
to reduce the estimation bias. The bias is further reduced when a robust weighting of
residuals by IRLS is applied since it preferentially eliminates the outliers while retaining
the signal of interest. As a result, the estimation using a robust approach leads to a
very small increase in CLRB which is negligible compared to the reduction of the bias.
The combination of a robust estimation method with a super-resolution scheme (joint
– robust) exploiting the information redundancy between different frames significantly
reduce the estimation standard deviation. In agreement with statistical results (Robin-
son and Milanfar, 2006), we observe a decrease in the standard deviation by a factor at
least equal to

√
5. This joint robust estimation approach enables accurate (i.e., low bias

and low standard deviation) estimates of the radius of the holographic objects and thus
improves the overall performance of a conventional least squares estimation process.
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Figure 5.10 – Estimated radius r̂p for the time series. Top: the estimation is performed
independently on each frame. Bottom: the estimation is performed jointly on stacks
of 5 images (digital super-resolution). For each case, the results are obtained with
non-robust least squares estimation (without mask), with a non-robust least squares
estimation combined with a rough manually removal of the outliers by a binary mask
(with mask), and with a robust least squares estimation (robust). The horizontal
straight lines represent the mean estimate over the image series.

Table 5.3 – Mean estimated radius, standard deviation σ and CRLB δ for the different
methods tested (see caption of Figure 5.10).

Method: 〈r̂(M)
p 〉 (µm) σ (µm) δ (µm)

Single frame
single – without mask 49.71 0.31 0.014

single – with mask 49.78 0.25 0.016
single – robust 49.91 0.26 0.015

Stack of 5 frames(super-resolution)

joint – without mask 49.71 0.13 0.014 /
√

5

joint – with mask 49.78 0.08 0.016 /
√

5

joint – robust 49.93 0.09 0.015 /
√

5
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Figure 5.11 – Estimated radius over time of the evaporating droplet with the different
methods tested.

5.4.2 Holographic video of evaporating droplets

5.4.2.1 Dataset and algorithm description

We use a 160 frames video of an evaporating diethyl ether droplet dispersed in a
homogeneous and nearly isotropic turbulence that is tracked over time. This series of
images is presented in Figure 5.1, series #3. As the particle evaporates, it produces a
plume of vapor that diffuses around it. The vapor plume creates outliers since its signal
mixes with the signal produced by the particle of interest. Other evaporating particles
and dust particles passing close to the particle of interest also act as outliers. This
time sequence was recorded and previously analyzed by Marié et al. (2017), using the
standard least squares estimator (5.1). Based on their study and their previous works
(Seifi et al., 2013; Marié et al., 2014), the authors show that the evaporation rate of
this type of droplets is proportional to its area, in agreement to the theory.

5.4.2.2 Results analysis

Figure 5.12(a) shows the evolution of the tuning parameter s obtained with a MAD
estimator and with the proposed ICI rule as well as the IRLS weights for two different
frames. Figure 5.12(c) illustrates the evolution of confidence intervals for increasing
values of s. Figure 5.12(d) shows the weights obtained at the end of the IRLS procedure
for ŝ(MAD) (first row) and ŝ(ICI) (second row). On frame 60, ŝ(ICI) is significantly larger
than ŝ(MAD), leading to larger weights, while on frame 97 ŝ(MAD) = ŝ(ICI) and the weights
are identical. The ICI rule leads to a larger value of s than MAD but without notably
modifying the estimation of the radius rp (see Figure 5.11). This is the case when
outliers do not disturb significantly the estimate like in frame 60 (see Figure 5.12, left
column) since the particle of interest is isolated and the plume of vapor is rather small.
In contrast, ŝ(MAD) and ŝ(ICI) are very close when the particle of interest is strongly
disturbed by outliers. This is illustrated by frame 97 (see Figure 5.12, right column)
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Figure 5.12 – Robust detection and tracking of an evaporating droplet. (a) evolution of
ŝ(MAD) and ŝ(ICI); (b), (c) and (d) respectively give the holograms, confidence interval
diagrams, and robust weighting maps for two video frames. For the example given in
the left part of the figure, the intersection of confidence intervals is never empty since
the current estimator reaches more than 99% of efficiency (compared to a non-robust
approach), given the current weighting map. Thus, there is no significant variance
reduction to expect by increasing further the value of s.
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Figure 5.13 – Robust detection and tracking of an evaporating droplet: evolution of
ŝ(MAD) and ŝ(ICI) over time, and the corresponding robust weighting maps. This video
is visible in the PDF with Adobe Acrobat Reader™.

Figure 5.14 – Robust detection and tracking of an evaporating droplet: hologram, fitted
model, residuals and estimated spatial 3-D location of the droplet. This video is visible
in the PDF with Adobe Acrobat Reader™.
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5.5. Conclusion

where another evaporating particle is close to the particle of interest and disturbs its
signal. These observations underline the fact that the MAD estimator only accounts
for the presence of outliers strongly deviating from the model but does not account for
their spatial localization and hence, their actual impact on the estimate. Figures 5.13
and 5.14 are videos showing the IRLS weighting maps obtained from the MAD and ICI
criteria. The estimated model of the droplet and its estimated 3-D location over time
are also presented.

Finally, Figure 5.11 shows the evolution of the estimated radius over time with
the three methods of estimation tested. The robust estimation scheme leads to an
average increase of 0.4µm in the estimated radius. We also observed that it reduces
the estimation standard deviation. These experimental results are explained by the
fact that the moving outliers (vapor plume plus other particles) cause a nonstationary
disturbance of the signal of interest over time. The robust approach considering a MAD
or ICI rule to set the parameter s lead to close results in this application. This is due to
the fact that the weighting matrix obtained with ŝ(MAD) already guarantees a high level
of efficiency (around 90% of the maximum efficiency obtained without reweighting).

We show that the robust estimation procedure and the proposed criterion for set-
ting the tuning parameter s can be useful for object characterization in holographic
microscopy videos:

• the estimation bias is reduced thanks to the robustness,

• the variance is controlled thanks to the proposed ICI criterion taking into
account the effective impact of the outliers on the estimation,

• the combination of a robust estimation procedure using our ICI criterion
with a digital super-resolution estimation leads to accurate characteriza-
tion of microscopic objects, thus improving the overall performance of the
conventional least squares estimation process.

Application on holographic microscopy videos

5.5 Conclusion

We have shown that the use of a robust approach to estimate the 3-D position and
size of objects in holographic microscopy videos reduces the estimation bias caused by
unwanted objects. We proposed a simple method to estimate the scale parameter that
discriminates inliers and outliers in the robust estimation scheme. This method is based
on a confidence interval intersection rule and achieves a better bias / variance tradeoff
than the usual MAD rule. Finally, we have shown that the combination of the proposed
robust approach with a joint estimation scheme also reduces the standard deviation of
the estimation and consequently improves the overall performance of the method. In
the following chapters, we illustrate that multi-spectral diversity is a complementary
means of deriving accurate estimations both for astronomy and microscopy applications
thanks to the introduced information redundancy.
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Part IV

Multi-spectral processing
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Chapter 6
Exoplanet detection and characterization

with integral field spectrographs

Abstract

Angular and spectral differential imaging (ASDI) combines observations at differ-
ent times and several wavelengths to separate the residual signal from the host star
and the signal of interest corresponding to off-axis sources. Successful detection is
only possible with accurate modeling of those two components, in particular of the
background due to stellar leakages of the host star masked out by the coronagraph.
Beyond the detection of point-like sources in the field of view, it is also essen-
tial to characterize the detection in terms of statistical significance, astrometry
and to estimate the spectral energy distribution (SED). We extend the PACO (see
Chapter 2) and robust PACO (see Chapter 4) algorithms to capture the spectral
and temporal fluctuations of the background spatial correlations. From this sta-
tistical modeling, we build a detection algorithm and a SED estimation method:
PACO–ASDI. The modeling of spectral correlations proves useful both to reduce de-
tection artifacts and to obtain accurate statistical guarantees (detection thresholds
and SED confidence intervals).

6.1 Introduction

As discussed in Section 1.2.2.2.3, several observation strategies can be used for direct
imaging, such as ADI, SDI, and ASDI. We recall that ADI produces 3-D datasets (2-D
+ time) in which the speckles are quasi-static, while the signature of the companions
describes an apparent motion along a circular trajectory around the host star. Spectral
differential imaging (SDI) consists of recording images in different spectral channels
using an integral field spectrograph (IFS). Reduced 3-D datasets (2-D + spectral) are
obtained by mapping raw observations of the IFS cameras into a multi-spectral cube
(Pavlov et al., 2008). In the reduced datasets, the stellar speckles due to diffraction are
very similar from one wavelength to the other, up to a chromatic scaling (Perrin et al.,
2003). After compensating for this scaling, speckles are aligned and can be combined
in order to cancel and thus reveal the presence of off-axis sources whose positions are
achromatic. A natural extension is then to use simultaneously these two complementary
modes of observation: angular differential imaging and spectral differential imaging.
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This hybrid observation mode called angular and spectral differential imaging (ASDI)
produces 4-D datasets (2-D + time + spectral) and combines the properties of both ADI
and SDI. Using ASDI datasets such as the ones obtained with the VLT/SPHERE-IFS
or GEMINI/GPI instruments brings a spectral diversity compared to simple ADI. The
discrimination between the signal from off-axis sources and the background signal due
to stellar leakages is thus improved. In addition, ASDI datasets allow both the detection
and the characterization of the exoplanets (Beuzit et al., 2019). The characterization
is performed by fitting orbit models, exoplanet formation models, and by estimating
the astrometry and photometry (Vigan et al., 2010). Physical information such as age,
effective temperature, composition or surface gravity can be derived for the detected
exoplanets (Müller et al., 2018; Cheetham et al., 2019; Mawet et al., 2019; Claudi et al.,
2019).

Whatever the observation mode, the recorded images should be combined by a process-
ing method to cancel as much as possible the stellar leakages (speckles) which largely
dominate the exoplanet signal. Current state-of-the-art detection algorithms applied in
direct imaging can be split into two families: algorithms specifically designed to work
in SDI mode, and algorithms initially designed to work in ADI mode which were later
adapted to also work in ASDI mode.

There are few methods specific to SDI. They are mainly based on physical modeling
of the stellar PSF. The Planet eXtractor (PeX) algorithm (Thiébaut et al., 2016; De-
vaney and Thiébaut, 2017) derives a model of the chromatic dependence of the speckles
based on diffraction theory. The Multispectral Exoplanet Detection Using Simulta-
neous Aberration Estimation (MEDUSAE) method (Ygouf, 2012; Cantalloube, 2016;
Cantalloube et al., 2018) uses an analytic model of the coronagraphic PSF and performs
speckle modeling by an inverse problem approach that estimates phase aberrations from
the measurements. It also includes an object restoration step via a deconvolution pro-
cedure combined with suitable regularization penalties.

There is a much larger variety of ADI processing methods. The main ones are
described in Section 2.2. Generally, they are adapted to work in ASDI mode by taking
into account the specific motion of sources in this type of datasets (see the following
paragraph).

Algorithms able to process ASDI datasets are generally subject to different limitations.
Most of them are not fully-unsupervised so that the tuning of several hyperparameters
is often mandatory to reach the best performance of the methods. Such tuning is very
time consuming and should ideally be repeated for each dataset since it depends on the
dataset properties (considered spectral bands, number of temporal and spectral frames,
quality of the observations, amount of parallactic rotation, etc.). For both SDI and
ASDI processing, the recorded images at wavelength λ are scaled by a factor λref/λ,
where λref is a reference wavelength, so that the on-axis PSF and the speckle field
are approximately aligned throughout the ASDI stack (reduced chromatic variations).
Due to the difference between the scaling factor applied respectively to the shortest
and the longest wavelengths, only a central area of the field of view is covered by all
rescaled images. Some source detection techniques process only that area common to
all wavelengths. This leads to a drastic reduction of the field of view (typically 25% to
50%), which limits the ability to detect sources. In addition, as for ADI algorithms,
ASDI processing methods are subject to the self-subtraction phenomenon. By com-
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bining information (either by image subtraction as in the TLOCI type methods, or by
modes subtraction as in the PCA type methods) at different times and/or wavelengths
to attenuate the speckle background, the signal of the exoplanets is also attenuated.
Consequently, the photometry is not intrinsically preserved so that resorting to a cali-
bration step via Monte-Carlo injections is mandatory to compensate for the exoplanet
self-subtraction. Finally, the main limitation of existing approaches is the lack of control
of the probability of false alarm on the detection maps and contrast curves (see Section
6.6 for a discussion). It is common for state-of-the-art methods to produce detection
maps with many more false alarms than theoretically expected.

Based on an analysis of the limitations of existing algorithms for ASDI data process-
ing and of the needs of astronomers that use planet finder instruments, the following
desirable specifications for an exoplanet detection algorithm may be listed:

• unsupervised source detection with statistical guarantees (i.e., control of the prob-
ability of false alarm),

• characterization of the sources detected: subpixel astrometry and unbiased esti-
mation of the spectral energy distribution (SED), with reliable confidence inter-
vals,

• ability to process the whole field of view covered by the instrument without
artifacts,

• computation of a map reporting the contrast required for a source to be detected
at a given detection threshold.

In this chapter, we attempt to address these different points by deriving an algo-
rithm from a data-driven statistical modeling of ASDI observations. The proposed
algorithm, named PACO–ASDI, is an extension of our ADI exoplanet detection method
PACO introduced in Chapter 2. The main methodological adaptations are the following:

• modeling of local covariances based both on temporal and spectral information
(see Section 6.2),

• adaptation to the time-specific and wavelength-specific magnitude of the back-
ground fluctuations (see Section 6.2),

• an approach to combine detection maps at different wavelengths that accounts
for spectral correlations (see Section 6.3.2),

• estimation of the SED of sources including an unsupervised spectral smoothing
(see Section 6.4.2).

Figure 6.1 gives the general scheme of PACO–ASDI to which we will refer throughout
this Chapter. It illustrates the four main steps of the algorithm:

• learning of a model of the background that accounts for the patch spatial covari-
ance (step 1 , detailed in Section 6.2),

• single-wavelength detection, by application of detection theory to our statistical
model of the background (step 2 , detailed in Section 6.3.1),
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1 1.2 1.4 1.6

Figure 6.1 – Scheme of the PACO–ASDI algorithm.
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• multi-wavelength detection, by combining the single-wavelength detection maps;
this is achieved by learning the spectral correlations between single-wavelength
detection maps (steps 3 to 6 ) and introducing a (coarse) prior information on
the SED of the source (detailed in Section 6.3.2),

• once a source has been detected, its astrometry and photometry are characterized
(step 7 , described in Section 6.4), by iteratively refining the source parameters
(angular location, SED and total flux) and the statistical model of the background
(spatial and spectral correlations).

Statistical modeling of the spatial, temporal, and spectral fluctuations of ASDI datasets
is a guiding thread throughout this chapter for grounding the detection and estimation
method and to obtain reliable indications on the probability of false alarm and on
the astrometric and photometric confidence intervals. Those statistical guarantees are
essential to the astronomers to automate the analysis of ASDI datasets, for the scientific
exploitation of the results, but also to characterize the performance of the instrument
(detection limits and photometric accuracy depending on the observation strategy, the
observation conditions and the performance of the adaptive optics + coronagraph).

This chapter is organized as follows. We describe in Section 6.2 our statistical mod-
eling of the background fluctuations for ASDI datasets. In Section 6.3, we detail how
to obtain single wavelength and combined detection maps at a controlled probability
of false alarm. Section 6.4 details our unsupervised and regularized SED estimation
procedure applied to the detected sources. Section 6.5 discusses the implementation
details of the proposed algorithm. In Section 6.6, we illustrate on VLT/SPHERE-IFS
datasets the performance of the proposed PACO–ASDI algorithm in terms of detection
maps, achievable contrast, and SED estimation. This chapter is based on the journal
paper submission Flasseur et al. (2020a) and on our conference paper Flasseur et al.
(2018c).

6.2 Statistical modeling of background fluctuations

After speckle alignment by spectral zooming, background structures (i.e., speckles
due to stellar leakages) are approximately constant (up to a multiplication by a chro-
matic factor accounting for the star SED) through time and the wavelengths. A closer
observation reveals some temporal and spectral fluctuations. These fluctuations are
spatially structured. It is essential to model these fluctuations in order to discriminate
between an insignificant change of the background and the apparition of a point source.
We describe in this section a statistical model of the background fluctuations. The
detection and source characterization algorithm PACO–ASDI is grounded on this model.

6.2.1 Local multivariate Gaussian model

As discussed in Chapter 2, our modeling of the spatial covariances in ADI datasets
with PACO algorithm led to two conclusions: (i) to account for the nonstationarity
of the background, local modeling is necessary; and (ii) given the limited number of
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samples available at any given location, a tradeoff must be found between the size of
the covariance matrices and the estimation variance.

To extend the modeling from ADI datasets to the 4-D spatio-temporo-spectral
datasets of ASDI, we keep a local Gaussian modeling: parameters of the Gaussians
are estimated by analyzing patches extracted at a given location. For the n-th pixel of
the field of view (identified by its 2-D angular location θn), we extract T ·L patches
(where T is the number of temporal frames and L is the number of spectral channels),
each made of K pixels. As discussed in Section 2.4.1, the patch size is constant for
a given instrument. We fix it with the same empirical rule than the one derived in
the PACO algorithm: it should be chosen so that twice the FWHM of the off-axis PSF
is encompassed by the patches. Those patches rn,ℓ,t are all centered on the same sky
location θn but correspond to different frames and spectral channels leading to the lo-
cal collection {rn,ℓ,t}ℓ=1..L, t=1..T , where ℓ indicates the spectral channel and t the frame
index. If this collection contains no off-axis point source, we model each patch rn,ℓ,t
as a random realization of the K-dimensional Gaussian N (mn,ℓ, σ

2
n,ℓ,tCn). The mean

patch mn,ℓ is the same for all t but is chromatic. The K × K covariance matrix is
modeled as a product of two factors: a time and wavelength-dependent scaling σ2

n,ℓ,t

and a spatial covariance matrix Cn that are constant for a given patch collection ex-
tracted around pixel n. This modeling follows the two guidelines: (i) local adaptivity to
account for background nonstationarities, in particular, the model is specific to a given
spatial location and captures different fluctuation magnitudes for different wavelengths
or different temporal frames; and (ii) a limitation of the number of parameters that
have to be estimated from the collection of patches by neglecting temporal and spectral
correlations. Several variants of this modeling have been evaluated in experiments, not
reported here, that led to worse detection performances. Appendix C gives a view of
the main alternative strategies considered. The effectiveness of introducing a temporal
scaling factor in ADI was illustrated in Chapter 4. Neglecting the spectral correlations
of the background may seem a crude approximation. There are indeed some strong
correlations, but these correlations are difficult to capture at the scale of patches given
our limited number of samples. In Section 6.3.2, we describe how to account for spectral
correlations at a later stage of the algorithm, with satisfying results.

6.2.2 Local learning of the parameters

Since a different multivariate Gaussian model is defined for each angular location θn,
the estimation of the parameters mn,ℓ, σ2

n,ℓ,t and Cn can be performed independently on
each collection {rn,ℓ,t}ℓ=1..L, t=1..T of 2-D patches centered on a given location θn. Under
our assumptions of negligible temporal and spectral correlations, the neg-log-likelihood
Ln of the collection can be written:

Ln = − log p
(
{rn,ℓ,t}ℓ=1..L, t=1..T

∣∣∣ {mn,ℓ}ℓ=1..L, {σ2
n,ℓ,t}ℓ=1..L,t=1..T , Cn

)
=
LTK

2
log 2π

+
∑

ℓ=1..L
t=1..T

1
2

log det(σ2
n,ℓ,tCn) +

∑

ℓ=1..L
t=1..T

1
2

(
rn,ℓ,t −mn,ℓ

)⊤(
σ2
n,ℓ,tCn

)−1(
rn,ℓ,t −mn,ℓ

)
. (6.1)

In the following, we derive the maximum likelihood estimator of the Gaussian param-
eters. The expression of this estimator is obtained by minimizing the neg-log-likelihood
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Ln defined in Equation (6.1). The first-order optimality condition ∇Ln = 0 leads to
equations defining each parameter.

• The condition ∂Ln

∂mn,ℓ

∣∣∣
mn,ℓ=m̂n,ℓ

= 0 gives:

C−1
n

∑

t=1..T

1

σ2
n,ℓ,t

(
m̂n,ℓ − rn,ℓ,t

)
= 0 .

Since C−1
n is necessarily non-singular, we obtain the expression of the wavelength-

specific average patch:

m̂n,ℓ =
1

∑
t=1..T

1/σ2
n,ℓ,t

·
∑

t=1..T

1

σ2
n,ℓ,t

rn,ℓ,t , (6.2)

which corresponds to a weighted average of the spatial patches, computed over time
indexes 1 to T , with weights 1/σ2

n,ℓ,t that reduce the impact of frames and spectral
channels displaying a large variance σ2

n,ℓ,t.

• The condition ∂Ln

∂σ2
n,ℓ,t

∣∣∣∣
σ2

n,ℓ,t
=σ̂2

n,ℓ,t

= 0 leads to:

K

2σ̂2
n,ℓ,t

− 1

2σ̂4
n,ℓ,t

r̄⊤
n,ℓ,tC

−1
n r̄n,ℓ,t = 0 ,

with r̄n,ℓ,t = rn,ℓ,t −mn,ℓ the residual patches. This gives:

σ̂2
n,ℓ,t =

1

K
r̄⊤
n,ℓ,tC

−1
n r̄n,ℓ,t . (6.3)

The time and wavelength-specific scaling factors σn,ℓ,t are thus obtained by computing
the variance of each spatially whitened patch.

• Finally, the condition ∇Cn
L |

Cn=Ŝn
= 0 gives:

TL

2
Ŝ−1
k − Ŝ−1

k



∑

ℓ=1..L
t=1..T

1

2σ2
n,ℓ,t

r̄n,ℓ,tr̄
⊤
n,ℓ,t


 Ŝ−1

k = 0 ,

leading to:

Ŝk =
1

TL

∑

ℓ=1..L
t=1..T

1

σ2
n,ℓ,t

r̄n,ℓ,tr̄
⊤
n,ℓ,t , (6.4)

which is the sample covariance matrix of the spatial patches, each rescaled by the
corresponding time and wavelength-specific factor.

In summary, the maximum likelihood estimates for the Gaussian parameters are the
solutions to the following system of non-linear equations:





m̂n,ℓ = 1∑
t=1..T

1/σ̂2
n,ℓ,t

·
∑

t=1..T

1
σ̂2

n,ℓ,t

rn,ℓ,t

σ̂2
n,ℓ,t = 1

K

(
rn,ℓ,t − m̂n,ℓ

)⊤
S−1
n

(
rn,ℓ,t − m̂n,ℓ

)

Ŝn = 1
TL

∑
ℓ=1..L
t=1..T

1
σ̂2

n,ℓ,t

(
rn,ℓ,t − m̂n,ℓ

)(
rn,ℓ,t − m̂n,ℓ

)⊤
,

(6.5)
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Algorithm 6.1: Local background statistics estimation
Input: {rn,1,1, .., rn,L,T} (stack of LT patches, each patch has K pixels)
Output: {m̂n,ℓ}ℓ=1..L (mean patches)
Output: Ĉn (K ×K spatial covariance)
Output: {σ̂n,1,1, .., σ̂n,L,T} (scaling factors)

Ĉn ← I (initialization at identity matrix)
∀ℓ, ∀t, σ̂(old)

n,ℓ,t ← 1

for ℓ← 1 to L do
m̂n,ℓ ← 1

T

∑T
t=1 rn,ℓ,t (sample mean)

do
Ĉn ← K

tr(Ĉn)
Ĉn (normalization)

⊲ Step 1: Estimate scaling parameters
for ℓ← 1 to L do

for t← 1 to T do

σ̂2
n,ℓ,t ← 1

K

(
rn,ℓ,t − m̂n,ℓ

)⊤
Ĉ−1
n

(
rn,ℓ,t − m̂n,ℓ

)

⊲ Step 2: Update the mean patches
for ℓ← 1 to L do

s← ∑T
t=1 1/σ̂2

n,ℓ,t (normalization factor)
m̂n,ℓ ← 1

s

∑T
t=1

1
σ̂2

n,ℓ,t

rn,ℓ,t (weighted mean)

⊲ Step 3: Update the spatial covariance

Ŝn ←
∑

ℓ=1..L
t=1..T

1/(TL)
σ̂2

n,ℓ,t

(
rn,ℓ,t − m̂n,ℓ

)(
rn,ℓ,t − m̂n,ℓ

)⊤

P̃ ←
(∑

ℓ,t 1/σ̂
2
n,ℓ,t

)2/(∑
ℓ,t 1/σ̂

4
n,ℓ,t

)
(equivalent number of patches)

Ĉn ←Alg2(Ŝn, P̃ ) (shrinkage estimator)
while maxℓ,t

∣∣∣σ̂n,ℓ,t − σ̂(old)
n,ℓ,t

∣∣∣ ≥ ǫ;

Algorithm 6.2: Shrinkage covariance estimator

Input: Ŝn (K ×K sample covariance matrix)
Input: P̃ (equivalent number of patches)
Output: Ĉn (covariance matrix estimate)

ρ̂← tr(Ŝ2
n)+tr2(Ŝn)−2

∑K

i=1
[Ŝn]2

ii

(P̃+1)

(
tr(Ŝ2

n)−
∑K

i=1
[Ŝn]2

ii

) (shrinkage factor)

for i← 1 to K do
[Ĉn]i,i ← [Ŝn]i,i (copy diagonal)
for j ← i+ 1 to K do

[Ĉn]i,j ← (1− ρ̂)[Ŝn]i,j (shrink off-diagonal)
[Ĉn]j,i ← (1− ρ̂)[Ŝn]j,i (shrink off-diagonal)
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Figure 6.2 – Accounting for temporal and spectral fluctuations with time and
wavelength-specific scaling factors: (a) observed intensities, for some selected frames
(4 wavelengths × 4 exposures); (b) corresponding spatial distribution of scaling factors.
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where the maximum likelihood estimate of the covariance Ŝn is not directly used as
an estimate of the covariance Ĉn, but is replaced by an estimator with a smaller risk,
as described in the following paragraphs. We solve the system (6.5) by the method of
fixed-point iteration, i.e., by alternatively updating each unknown until convergence.
This leads to Algorithm 6.1, where we chose the arbitrary normalization tr(Ĉn) = K for
matrix Ĉn (some form of normalization is necessary to remove the scaling degeneracy
in the product σ̂2

n,ℓ,tĈn).
For locations θn outside of the central region of the field of view, some patches rn,ℓ,t

fall outside of the measured area for the largest wavelengths. In that case, the sum
for the computation of Sn in the system (6.5) and in Algorithm 6.1 is restricted to the
wavelengths ℓ for which the patch is measured and the normalization factor 1/TL is
corrected to match the actual number of terms in the sum. Given the severe reduction
in the number of patches actually used close to the borders of the field of view, it is
important to regularize the sample covariance to reduce the estimation variance and
to prevent obtaining singular or ill-conditioned matrices. As in Chapters 2, 3, and 4
we use a shrinkage estimator, implemented according to Algorithm 6.2. Because of the
weighting by factors 1/σ̂2

n,ℓ,t, some patches have more importance than others and an
equivalent number of patches P̃ is used in the shrinkage formula, step 3 of Algorithm
6.1, see also Section 4.3.1. The rationale behind this equivalent number of patches
comes from the variance reduction when performing the weighted mean 1.

Figure 6.2(a) depicts the observed intensities in some frames of an ASDI dataset.
Fluctuations can be noted both through time and through the wavelengths. In Figure
6.2(b), maps of the time and wavelength-specific scaling factors σ̂2

n,ℓ,t are displayed for
16 pairs (ℓ, t). At a given location n, large values of this scaling factor compared to
other frames t or other wavelengths ℓ indicate that the corresponding patches have a
moderate or negligible weight when estimating the mean background and the spatial
covariance matrix. In the source detection and characterization steps described in the
following sections, patches with comparatively larger scaling factors σ̂2

n,ℓ,t also play a
minor role. The method is thus robust to the presence of outliers in the data, see
Chapter 4. A close inspection of the maps in Figure 6.2(b) reveals the presence of
outliers: when an outlier affects a patch, the whole patch is discarded, outliers are thus
visible as a disk-shaped area of large σ̂2

n,ℓ,t values (corresponding to all spatial locations
n that contain the outlier, i.e., the disk shape of our patches).

The convergence of Algorithm 6.1 is illustrated in Figure 6.3. Three different lo-
cations in the field of view, depicted by a red dot in the insert, are selected: a small
angular separation in Figure 6.3(a), an intermediate separation in (b) and a large sepa-

1. The equivalent number of patches P̃ corresponds to the number of samples if all weights are
equal and is smaller when some weights differ. Let us assume that {rt}t=1..T be a collection of

T independent and identically distributed random variables. The weighted mean m̂ =
∑T

t=1
w′

t rt,

where w′

t ≥ 0 are normalized weights (w′

t = wt/
∑T

t=1
wt), is an unbiased estimator of E[r] with a

variance Var[m̂] =
∑T

t=1
Var[w′

t rt] (by independence of the rt), which leads to Var[m̂] = Var[r]/P̃ ,

with P̃ = 1/
∑T

t=1
w′2

t = (
∑T

t=1
wt)

2/(
∑T

t=1
w2

t ) the effective number of samples. If all weights are

equal, P̃ = T : the effective number of samples is equal to the total number of samples. If all weights
but one are zero, P̃ = 1. In our case, the weights wt correspond to 1/σ̂2

n,ℓ,t, which leads to the

formula to compute P̃ in Algorithm 6.1, step 3. In practice, the samples {rt}t=1..T are not identically

distributed (their variances differ), but P̃ still indicates if the mean is reliable.
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Figure 6.3 – Convergence of the scaling factors, starting from many random initializa-
tions. In the inserts, the location in the field of view is indicated as well as the evolution
of the weights until the convergence criterion is reached.

ration in (c). In each case, 1,000 different random draws were used as an initialization.
The graphs report the normalized distance to the solution found with a constant initial-
ization after a large number of iterations. Convergence to the same solution is observed
experimentally in all cases. An insert also gives the evolution of each scaling factor σ̂2

n,ℓ,t

with the iterations, until the convergence criterion is reached. A satisfactory conver-
gence is reached in about 10 iterations. At large angular separations, as in (c), only the
shortest wavelengths are available after the speckles are aligned by spectral zooming.
The convergence is even faster in this case.

Figure 6.4 evaluates the statistical accuracy of our modeling of the background
on HR 8799 ASDI dataset (see Table 6.2 for the observation logs). The left col-
umn gives the values and empirical distributions of the collection of centered patches
{rn,ℓ,t −mn,ℓ}ℓ=1:L, t=1:T , at a location n near the coronagraph (rows (a) and (b)), at a
location farther from the coronagraph (rows (c) and (d)), and for all patches from the
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field of view (row (e)). Since only the modeling of the background is considered here, all
patches around and at the location of the three known point-like sources were excluded.
Simply removing an average background per wavelength is not satisfactory: values are
not distributed according to a Gaussian distribution, there are numerous large devi-
ations. The central column of Figure 6.4 gives the intensity values and the empirical
distributions when only a spatial whitening is applied, using the same spatial covariance
matrix for all frames and all wavelengths. The distribution of whitened intensities is
closer to a Gaussian distribution. The right column considers the case of whitening
by a covariance matrix scaled by the time and wavelength-specific factors σ̂n,ℓ,t. The
empirical distributions follow more closely a standard Gaussian, yet the match is not
perfect close to the coronagraph. Accounting for the spectral or temporal correlations
would probably further improve the statistical modeling of the background. Such mod-
eling, however, seems difficult to carry out given the limited number of samples and is
left to further studies. It is shown in the following sections that the proposed modeling
already provides consistent results.

We extend the (robust) modeling of ADI datasets described in Chapters 2 and 4
to the 4-D spatio-temporo-spectral datasets of ASDI.

⇒ Each background patch centered on pixel n is modeled as a random
realization of the K−dimensional Gaussian N

(
mn,ℓ, σ

2
n,ℓ,tCn

)
:

• the mean patch mn,ℓ is the same for all t but is chromatic (i.e., specific to
each wavelength),

• the spatial covariance matrix Cn is common to the collection of patches
extracted at pixel n,

• parameters σ2
n,ℓ,t are time and wavelength-dependent scaling factors distin-

guishing inliers and outliers and accounting for different variances at each
wavelength.

Within this statistical framework, the empirical intensity distributions of back-
ground patches matches a standard Gaussian, in a first approximation. In areas
close to the coronagraph, this match is not perfect.

While accounting for the spectral correlations of the data would probably
improve our statistical modeling, we defer the consideration of these correlations
to a latter stage of the algorithm (where a sufficient number of samples can be
identified to appropriately estimate the spectral correlations).

PACO–ASDI’s statistical modeling of the background
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Figure 6.4 – Distribution of the centered patches: (left) without whitening; (center) after
spatial whitening; (right) after spatial whitening and correction by the wavelength and
time-specific scaling factors. Rows (a) and (b) correspond to a location selected at a
small angular separation; rows (c) and (d) correspond to a location at a larger angular
separation; row (e) gives the empirical distribution computed over the whole field of
view. Patches represented in this figure contain no point-source. The rainbow false
colors stand for the different wavelengths.
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6.3 Detection maps

The statistical model of the background in ASDI datasets introduced in the previous
section is essential to derive the detection and characterization method. Backgrounds
at all wavelengths are combined to estimate the parameters of this model. We first
describe how this multi-wavelength background model can be applied to produce a
detection map at a single wavelength. We then discuss the combination of detection
maps at several wavelengths.

6.3.1 Detection at a single wavelength

Let φ0 be the hypothetical location of a point source in some reference frame. If a point
source is present at that location, with a flux αℓ in the ℓ-th band of the spectrum, then
the signal of that source corresponds, at time t and in the n-th patch, to αℓhn,ℓ(φℓ,t),
with hn,ℓ(φℓ,t) the zoomed-in off-axis PSF centered at the subpixel location φℓ,t of the
source at the ℓ-th wavelength and t-th frame. Given the scarcity of sources in the field
of view, it is safe to suppose that, within a small patch of a few tens of pixels, only a
single source may be present. Detecting a point source at location φ0 then amounts to
deciding for one of two hypotheses:





H0 : {r⌊φℓ,t⌉,ℓ,t}t=1:T = {f ⌊φℓ,t⌉,ℓ,t
}t=1:T

(background only)

H1 : {r⌊φℓ,t⌉,ℓ,t}t=1:T = αℓ {h⌊φℓ,t⌉,ℓ(φℓ,t)}t=1:T + {f ⌊φℓ,t⌉,ℓ,t
}t=1:T ,

(background+source) ,

(6.6)

where f is the notation for patches that contain pure background. The collection of
patches considered in this hypothesis test corresponds to all patches that would contain
the source if it was present: patches centered at pixel locations ⌊φℓ,t⌉ that match the
location of the source at time t and wavelength ℓ due to the rotation of the field of
view and the zoom applied to align the speckles at all wavelengths, see Figure 6.5.
Under hypothesis H0, the collection of patches corresponds to pure background: no
source is present at location φ0. Under hypothesis H1, the patches result from the
superimposition of an off-axis PSF and of the background.

Under our statistical model of the background given in Equation (6.1), the likelihood
of each hypothesis can be compared for a given flux αℓ:

2 log
p({r⌊φℓ,t⌉,ℓ,t}|H1, αℓ)

p({r⌊φℓ,t⌉,ℓ,t}|H0)
= αℓ

T∑

t=1

u⊤
⌊φℓ,t⌉,ℓ,t

Ĉ−1
⌊φℓ,t⌉

h⌊φℓ,t⌉,ℓ(φℓ,t) (6.7)

with

un,ℓ,t =
1

σ̂2
n,ℓ,t

(
rn,ℓ,t − m̂n,ℓ − αℓhn,ℓ(φℓ,t)

)
. (6.8)

Since the flux αℓ is generally not known beforehand, it has to be estimated from the
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Figure 6.5 – Evolution of the 2-D location φℓ,t of a source in a speckle-aligned ASDI
dataset: φ0 defines the 2-D angular location of a point source in a reference frame;
the apparent location of the point source in the t-th observation and the ℓ-th spectral
band is indicated by a black disk; the apparent locations of a point source at other
observation times and spectral bands are indicated by gray circles. The location φℓ,t
describes a radial motion with the wavelength and a rotation about the optical axis
over time.

data. The maximum likelihood estimator, under our model of the background, is:

α̂ℓ =

T∑
t=1

bℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

T∑
t=1

aℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

, (6.9)

with

aℓ,t = h⌊φℓ,t⌉,ℓ(φℓ,t)
⊤Ĉ−1

⌊φℓ,t⌉
h⌊φℓ,t⌉,ℓ(φℓ,t) (6.10)

and

bℓ,t = h⌊φℓ,t⌉,ℓ(φℓ,t)
⊤Ĉ−1

⌊φℓ⌉

(
r⌊φℓ⌉,ℓ,t − m̂⌊φℓ,t⌉,ℓ

)
. (6.11)

Substituting αℓ with its estimate α̂ℓ in Equation (6.7) leads to the generalized like-
lihood ratio test:

GLRTℓ :

(
T∑
t=1

bℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

)2

T∑
t=1

aℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

H1

≷
H0

η . (6.12)
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Figure 6.6 – PACO vs PACO–ASDI: impact of learning background structures at a single
wavelength (PACO, first row) or jointly from all the wavelengths (PACO–ASDI, second
row). Single-wavelength detection maps S/Nℓ are shown for PACO–ASDI. The differences
between the two rows are related to the estimation of the covariance matrices C and
of the scaling parameters σ. The combination of those maps leads to a single detection
map, not shown here, with improved sensitivity (see text and Figure 6.11).

Only positive flux estimates are physically meaningful for point sources. The test
can then be improved by discarding locations leading to negative flux estimates α̂ℓ (see
also Chapter 2):

S/Nℓ :

T∑
t=1

bℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

√
T∑
t=1

aℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

H1

≷
H0

τ , (6.13)

which matches GLRTℓ when τ =
√
η and α̂ℓ ≥ 0. As noted by Mugnier et al. (2009),

the ratio in (6.13) corresponds to a signal-to-noise ratio. It is obtained by linearly trans-
forming the data and accounts for the local, time and wavelength-specific covariance of
the background. The variance of the estimator α̂ℓ, hereafter noted vℓ, is:

Var[α̂ℓ]︸ ︷︷ ︸
vℓ

=

(
T∑

t=1

aℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

)−1

. (6.14)

The S/Nℓ therefore corresponds to the ratio α̂ℓ/
√
vℓ, i.e., the signal-to-noise ratio of

the flux estimate, and is distributed as a standard normal variate under H0 (Mugnier
et al., 2009).

Figure 6.6 compares the detection maps S/Nℓ computed with Equation (6.13) and
detection maps obtained by PACO on ADI subsets (i.e., by processing the data one
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wavelength at a time, as defined in Chapter 2). The major difference between the two
approaches is that PACO–ASDI combines information from all wavelengths to learn the
background model, more specifically its covariance. Therefore, a more accurate model
is obtained and point-sources are better discriminated against the background: the
signal-to-noise ratio of the sources is improved at all wavelengths while the fluctuations
in the absence of sources are comparable.

Beyond the improvement of the detection map at a given wavelength, PACO–ASDI

also benefits from combining detection maps at different wavelengths to better detect
sources, as described in the next section.

6.3.2 Combining multiple detection maps

6.3.2.1 Combination assuming spectral independence

The detection of point sources can be largely improved by combining information
from different wavelengths. The most straightforward approach consists of the extension
of the hypothesis test in Equation (6.6) in order to include the patches at all times and
all wavelengths (all locations depicted in Figure 6.5 rather than a single row). Under
the assumption that spectral channels are independent, the likelihood can be factored
as a product over all channels and fluxes αℓ can be separately estimated. Deciding for
the presence of a source at location φ0 based on the generalized likelihood ratio amounts
to:

GLRT :
L∑

ℓ=1

(
T∑
t=1

bℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

)2

T∑
t=1

aℓ,t/σ̂
2
⌊φℓ,t⌉,ℓ,t

=
L∑

ℓ=1

α̂2
ℓ

vℓ

H1

≷
H0

η . (6.15)

To account for the non-negativity of source fluxes, the test can be slightly modified:

GLRT+ :
L∑

ℓ=1

[α̂ℓ]
2
+

vℓ

H1

≷
H0

η , (6.16)

where [x]+ = max(x, 0) is the positive part of x.

The GLRT+ is defined as the sum
∑L
ℓ=1

[α̂ℓ]2+
vℓ

=
∑L
ℓ=1 sℓ with sℓ = [α̂ℓ]

2
+/vℓ. In

the absence of source and under the simplifying assumption of an absence of spectral
correlation of the backgrounds (i.e., under H0 and within our Gaussian model with
statistically independent channels – a hypothesis that will be rejected in the following
paragraphs –) the terms sℓ are independent and identically distributed. Due to the
thresholding of negative values, the distribution of each sℓ corresponds to a mixture of
a χ2 random variable and a Dirac mass at 0:

p
(
sℓ
∣∣∣H0

)
=

1

2
δ0(sℓ) +

1

2
χ2

1 (sℓ) , (6.17)

where the Dirac mass δ0 centered in 0 accounts for the probability 1/2 that S/Nℓ be
negative and the Chi-square distribution with one degree of freedom χ2

1 corresponds to
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400 80

400 80

Figure 6.7 – Combined detection maps computed on HR 8799 ASDI dataset: (a) GLRT+

criterion and its distribution in the absence of sources; (b) wGLRT criterion, including
a spectral whitening operation, and its distribution. The three sources are excluded for
the computation of the empirical distributions. The blue histograms represent empirical
distributions, and the red curves are the corresponding theoretical distributions. The
black curve represents the best fit of the theoretical GLRT+ distribution (see Equa-
tion (6.18)) to the empirical distribution. It is obtained for an effective number of
wavelengths equal to 19.

the distribution of the square of a standard Gaussian variable. By independence of the
sℓ, the distribution of their sum, i.e., GLRT+, is given by the convolution product:

p
(
GLRT+

∣∣∣H0

)
=
(
p
(
s1

∣∣∣H0

)
∗ · · · ∗ p

(
sL
∣∣∣H0

))

︸ ︷︷ ︸
L times

(GLRT+)

=
1

2L
δ0(GLRT+) +

L−1∑

ℓ=0

L!

2Lℓ!(L− ℓ)!χ
2
L−ℓ

(
GLRT+

)
, (6.18)

by application of the binomial expansion and the property χ2
a ∗ χ2

b = χ2
a+b (the sum of

two independent χ2 random variables with respective degrees of freedom a and b is a
χ2-distributed random variable with a+ b degrees of freedom).

Figure 6.7(a) displays the GLRT+ obtained with Equation (6.16) on an ASDI dataset
of HR 8799 obtained with SPHERE-IFS. Three point-sources can be detected in this
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dataset, at the locations marked c, d and e. To perform an automated detection, it is
necessary to set a threshold corresponding to a fixed probability of false alarm. The
empirical distribution of GLRT+ values, excluding the 3 regions that contain the point-
sources, is shown at the right of the detection map of Figure 6.7(a). This empirical
distribution is compared to the theoretical distribution of GLRT+ under H0, drawn in
dashed line. A strong mismatch is observed. Due to this discrepancy, it is not possible
to derive a detection threshold from the model of Equation (6.18). The empirical
distribution is shifted to left as if the number of wavelengths was smaller than L.
An effective number of wavelengths could be derived by fitting the parameter L in
Equation (6.18) to the empirical distribution, see Figure 6.7(a). This effective number of
wavelengths accounts for the correlations of S/N values between adjacent wavelengths,
but the resulting fit with the empirical distribution is quite bad. To limit the number
of false alarms, the detection threshold is typically set in order to reach probabilities
as low as 10−7. A miss-modeling of the right tail of the distribution may have a large
impact on the value of the threshold. Rather than estimating an effective number of
wavelengths to adjust the model (6.18), we model the distribution of the S/Nℓ values.

6.3.2.2 Accounting for spectral correlations

Signal-to-noise ratio values S/Nℓ defined in Equation (6.13) are Gaussian dis-
tributed. However, they are not independent of one another because the background
patches, in a given frame, are very similar for adjacent wavelengths. Before combining
detection maps, it is necessary to learn the spectral correlations between the maps S/Nℓ.
With this strategy, the spectral correlations of the data are not directly accounted for
within the statistical model of the data but deferred until a latter stage of the algorithm
(during the combination of the S/Nℓ maps). We justify this choice by the difficulty that
we have encountered in our tests to accurately model the spatio-temporo-spectral fluc-
tuations of the background from a finite set of samples, see Appendix C.

The vector x of S/Nℓ values is a sufficient statistic for the fluxes α̂ℓ of a point source.
The detection of a point source can thus be defined directly on the vector x:




H0 : x = ǫ (no source)

H1 : x = ǫ + β , (a point source is present)
(6.19)

where β ∈ R
L is the vector of expected S/N values at each of the L wavelengths:

βℓ = αℓ/
√
vℓ, and ǫ is a random vector accounting for the fluctuations of S/Nℓ values.

According to our model of spectral correlations, ǫ follows the Gaussian distribution
N (0,Σ). Replacing the unknown vector β by its maximum likelihood estimate β̂ = x

leads to the following GLR test:

wGLRT : ‖L̂⊤x‖2
2

H1

≷
H0

η , (6.20)

where L̂ is the L × L whitening matrix obtained by Cholesky factorization, i.e., such
that L̂L̂⊤ = Σ̂−1. Matrix L̂ is such that L̂⊤x be distributed according to N (0, I) under
H0: it whitens vectors of S/Nℓ values. In Section 6.3.2.4 , we discuss two strategies to
estimate the matrix L̂.
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In the absence of spectral correlations (Σ = I), L = I and the wGLRT equals the
GLRT defined in Equation (6.15). Under H0, the wGLRT follows a χ2 distribution
with L degrees of freedom.

Figure 6.7(b) displays the wGLRT detection map and, by masking out the 3 sources,
the distribution of wGLRT under H0. The comparison with GLRT+ shows that the
spectral whitening reduces artifacts in the absence of sources (periodic structures ob-
served in Figure 6.7(a) are no longer visible in Figure 6.7(b)). The empirical distribu-
tion of wGLRT is much closer to the expected distribution, however, the match is not
perfect, which motivates considering another approach for combining detection maps.
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Figure 6.8 – Influence of the size R (given in pixels and displayed as a disk at the scale
of the field of view) of the region over which the spectral covariances Σ̂ are estimated.
The S/Nℓ maps are combined assuming the SED shown in (g), for whitening matrices
L̂ obtained from each estimate of the spectral covariance. From (a) to (f), combined
maps wS/N and the empirical distribution of wS/N under H0 are shown side by side.

211



Exoplanet detection and characterization with integral field
spectrographs

-5 0 5
10

-6

10
-4

10
-2

Figure 6.9 – Comparison of three spectral whitening strategies: (a) no whitening; (b)
spectral whitening based on a robust estimate of the covariance computed over a large
area (R = 5000 pixels, shown at the bottom); (c) spectral whitening based on a local
estimate of the covariance computed over a smaller area (R = 300 pixels, shown at the
bottom) by masking out regions of high wS/N given by the method (b).

Figure 6.10 – Combination of S/N maps with our spectral whitening strategy: (a) simple
spectral averaging of TLOCI and KLIP S/N maps, (b-c) combination with spectral
whitening and the SED shown in Figure 6.8(g).
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6.3.2.3 Improving the detection based on a prior spectrum model

If a coarse model of the SED of the point source under study is available prior to
the detection, this model can be used to improve the detection performance by giving
more weight to spectral bands where larger values are expected. Let γ be the SED of
a point source. Given that SED, the hypothesis test (6.19) takes the simplified form:





H0 : x = ǫ

(no source)

H1 : x = ǫ + αint ·




|
γℓ/
√
vℓ

|




︸ ︷︷ ︸
β′

,

(a point source is present)

(6.21)

where αint is the spectrally integrated flux, i.e., the flux such that αℓ = αint γℓ, for all
ℓ. In contrast to the hypothesis test (6.19), this new test requires estimating a single
scalar parameter: αint. The maximum likelihood estimator for the integrated flux αint

is:

α̂int =
x⊤

L̂L̂
⊤β′

β′⊤L̂L̂⊤β′
, (6.22)

where β′ is the vector of R
L whose ℓ-th element is equal to γℓ/

√
vℓ (the expected

S/Nℓ value if αℓ was equal to γℓ, i.e. αint = 1). The variance of the estimator α̂int is
(β′⊤

L̂L̂
⊤β′)−1. By substituting αint with its estimate α̂int, another GLRT is obtained:

2 log
p(x|H1, α̂

int)

p(x|H0)
=

(
x⊤

L̂L̂
⊤β′

)2

β′⊤L̂L̂⊤β′
. (6.23)

Since only positive integrated fluxes αint make sense, vectors x such that x⊤
L̂L̂

⊤β′ < 0
can be discarded. The square root of the GLRT then leads to the test:

wS/N :
x⊤

L̂L̂
⊤β′

√
β′⊤L̂L̂⊤β′

=
L∑

ℓ=1

wℓ·
[
L̂

⊤x
]
ℓ

H1

≷
H0

τ , (6.24)

which takes the form of a linear combination of the whitened vector of S/Nℓ values,

with weights wℓ defined by wℓ = [L̂⊤β′]ℓ/
√

β′⊤L̂L̂⊤β′. Like in our previous derivation

of S/Nℓ, wS/N can be interpreted as a signal-to-noise ratio: wS/N = α̂int/
√

Var[α̂int].

6.3.2.4 Robust estimation of the spectral correlations

In the two previous sections, we discuss how modeling the covariance between the
detection maps S/Nℓ at each wavelength could be used to combine the spectral infor-
mation. In this section, we discuss how to learn the spectral correlation between the
maps S/Nℓ.
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When estimating covariance matrices Σ, we face two difficulties: (i) the estimation
cannot be performed in the presence of sources (since the spectral correlations would
then also depend on the SED of the source and on the values of vℓ), and (ii) the
estimation must be local in order to capture the nonstationarities of those correlations.

Since there might be a point source within the region, it is necessary to use a robust
estimator Σ̂ of the spectral covariance (otherwise, spectral whitening would suppress
the source). There are several robust estimators for the covariance, see for example
the review in Hubert et al. (2008). The minimum covariance determinant (MCD)
method identifies a subset of observations of a fixed size whose covariance matrix has
the lowest determinant. To identify this subset quickly, we use the algorithm FAST-
MCD introduced in Rousseeuw and Driessen (1999). The region over which an estimate
Σ̂ is computed must be large enough to guarantee that the area of large S/Nℓ values
corresponding to a point source be considered as an outlier.

Figure 6.8(a)-(f) displays the combined detection maps wS/N obtained on HR 8799
when assuming the SED plotted in (g). The size of the region over which the robust
estimation of Σ is performed is given both in terms of pixels and by a disk at the same
scale as the detection map. If the spectral covariances are learned in a region that is
too small, as in Figure 6.8(a), the detection map is flattened even at the location of
the sources. By increasing the size of the region, the robust estimator of the spectral
covariance correctly captures the correlations in the absence of sources. However, when
the region gets too large, the whitening operation slightly lacks locality.

It can be observed in Figure 6.8 that the empirical distribution in the absence of
source correctly matches the expected standard Gaussian model. From a detection map
like Figure 6.8(e), it is then possible to detect point sources by thresholding at τ = 5,
and a binary mask can be obtained in order to mask the point sources. In a second step,
the spectral covariance matrices Σ can be re-estimated on much smaller windows by
excluding all pixels that fall in the binary mask. Figure 6.9 compares the detection map
obtained (a) without spectral whitening, (b) with spectral whitening performed after
estimating the spectral covariances over a large area with a robust estimator, and (c)
with spectral whitening performed on small areas by computing the sample covariance
after discarding of the pixels around the point sources. This last strategy can be applied
to small areas (R = 300 pixels), and thus, better eliminate spurious structures in the
background. However, it requires a two-step processing: first the computation of the
whitened detection map (b) with the robust covariance estimator, then the formation of
the exclusion map, the re-estimation of the covariance matrices and the re-computation
of a new detection map.

6.3.2.5 Optimality of the detection criterion wS/N

Interestingly, wS/N corresponds to the optimal linear combination of the S/Nℓ val-
ues, in the sense that the probability of detection is maximized for all false alarm rates.

The general form of a test based on a linear combination of (whitened) S/Nℓ values
takes the form:

wS/N :
L∑

ℓ=1

wℓ·
[
L̂

⊤x
]
ℓ

H1

≷
H0

τ , (6.25)

where wℓ are weights whose value is to be determined.
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Figure 6.11 – Combined detection map with SED priors: in the absence of sources the
empirical distribution matches very closely a Gaussian distribution (red parabola in the
log-scale representations).
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Under hypothesis H1, the value of wS/N is to be maximized, while the variance of
wS/N under H0 remains equal to one, so that under H0 wS/N is a standard Gaussian
variate and a detection threshold can be straightforwardly set.

Since the vector L̂
⊤x follows N (0, I) under H0, the variance of wS/N under H0

equals
∑L
ℓ=1 w

2
ℓ . The constraint that wS/N has unit variance leads to the condition∑L

ℓ=1 w
2
ℓ = ‖w‖2

2 = 1.

Under H1, the expected value of wS/N is:

EH1
[wS/N] =

L∑

ℓ=1

wℓ·
[
L̂

⊤
EH1

[x]
]
ℓ
, (6.26)

where [EH1
[x]]ℓ = αintβ′

ℓ. Equation (6.26) is a scalar product between the vector of
weights wℓ and the whitened expected S/Nℓ values. Given the normalization constraint
‖w‖ = 1, Equation (6.26) is maximized for a vector of weights that has unit Euclidean
norm and is collinear to L̂

⊤
EH1

[x]. This leads to the following definition of optimal
weights:

w =
L̂

⊤β′

‖L̂⊤β′‖
, (6.27)

which corresponds to the values of the weights obtained in Equation (6.24).

6.3.2.6 Combination of S/N maps with spectral whitening

Our approach to combine detection maps computed at different wavelengths is gen-
eral and can also be applied to the output of other algorithms, as illustrated in Figure
6.10. We process the signal-to-noise ratio maps produced by TLOCI and KLIP algo-
rithms. In (a), we show the combined signal-to-noise ratio obtained by simple averaging,
in (b) and (c) we apply a spectral whitening and the prior SED of Figure 6.8(g) ac-
cording to the definition of wS/N (we have set vℓ = 1 for both TLOCI and KLIP). In
(b), the whitening matrix L̂ is computed from the robust covariance estimator applied
on a large area, in (c) the two-step approach with masking of the point sources in
the second step is applied. The detection maps are clearly improved by our spectral
whitening scheme. Compared to PACO–ASDI, the combined detection maps display a
lower value for the 3 sources of the field of view as well as some border artifacts, which
indicates that modeling the nonstationary spatial covariance also plays an important
role in PACO–ASDI.

6.3.2.7 Comparison between wGLRT and wS/N

In order to select a detection criterion between wGLRT and wS/N, several aspects
must be considered: (i) does the criterion follow the expected distribution under H0,
i.e., can detection thresholds be set for prescribed false alarm rates? (ii) how large is
the gain obtained when the SED of the source is available? (iii) how does wS/N degrade
if the assumed SED differs from the true SED?

UnderH0, wGLRT is expected to follow a χ2 distribution with L degrees of freedom,
while wS/N is expected to follow a standard Gaussian distribution. The analysis of
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Figure 6.7(b) led to the conclusion that the fit with a χ2 distribution with L degrees
of freedom was not accurate. Figure 6.11 illustrates the empirical distribution of wS/N
for several prior SEDs. For all the SED considered, the empirical distribution is in very
good fit with a centered standard Gaussian. A possible explanation for this better fit
of wS/N with the theoretical distribution under H0 is that the weights wℓ give more
importance to spectral channels of good quality (i.e., with a low variance vℓ) and that
these channels follow more closely our Gaussian model. The good fit of wS/N under
H0 with the expected distribution makes it possible to reliably set detection thresholds
for a prescribed false alarm rate.

In order to assess the gain in detection performance brought by the prior knowledge
of the SED of the source, we compare the contrasts achievable at a 5σ false alarm rate.
We derive the theoretical contrast values based on our statistical modeling even if, in
practice, a deviation is observed between the theoretical distribution and the empirical
distribution of wGLRT. Under H0, wGLRT is expected to follow a χ2 distribution with
L degrees of freedom. The probability of false alarm is thus: PFA = P(χ2

L > η).
The probability of detection of a source of flux αintγ, PD = P(wGLRT > η|H1),
corresponds to the probability that a noncentral χ2 distribution with L degrees of
freedom and noncentrality parameter (αint)2β′⊤

L̂L̂
⊤β′ exceeds the detection threshold η.

This probability corresponds to QL/2(α
int(β′⊤

L̂L̂
⊤β′)1/2,

√
η), where QM(a, b) is Marcum

Q-function (Simon, 2007). Hence, the theoretical 5σ contrast reached by wGLRT can be
computed by first solving the equation 1

Γ(L/2)
γ(L/2, η/2) = Φ(5) for η (where γ is here

the lower incomplete gamma function and Φ is the cumulative distribution function of
the standard normal distribution), and then solving QL/2(α

int(β′⊤
L̂L̂

⊤β′)1/2,
√
η) = 1/2

for αint. For example, when L = 39 (as is the case of SPHERE-IFS), we find η ≈ 100
and αint ≈ 7.87(β′⊤

L̂L̂
⊤β′)−1/2.

Since the expectation E[wS/N|H1] is equal to αint(β′⊤
L̂L̂

⊤β′)1/2, the 5σ contrast
reached by wS/N is readily obtained: αint = 5(β′⊤

L̂L̂
⊤β′)−1/2. Including the prior

knowledge of the source SED, therefore, improves the contrast by a factor 1.57 (wS/N
reaches a theoretical contrast that is 1.57 times better than wGLRT).

Rather than expressing the contrast in terms of the value of the integrated flux
αint required in order to achieve the detection, it can also be expressed as the flux of
the source, at a given wavelength, so that the detection using jointly all wavelengths
is possible. This wavelength-specific contrast corresponds to the values αℓ = αintγℓ.
For example, the achievable contrast using only a single detection map S/Nℓ is 5

√
vℓ.

When the multi-wavelength criterion wS/N is applied, if L̂ = I and if the prior actually
matches the true SED of the source, then the achievable contrast corresponds to a flux
5γℓ/

√∑
ℓ γ

2
ℓ /vℓ in the ℓ-th channel. Therefore, with respect to the single-wavelength

map, the contrast is improved by a factor:
√√√√√1 +

L∑

ℓ′ 6=ℓ

(γℓ′/γℓ)2

vℓ′/vℓ
. (6.28)

This factor is strictly greater than one (i.e., the contrast is strictly improved) provided
that there is at least one wavelength ℓ′, different from ℓ, such that the SED is non zero
(γℓ′ 6= 0) and the variance is finite (vℓ′ <∞). Obviously, if these two conditions are not
met, either the source emits no light at the additional wavelengths or no meaningful
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Table 6.1 – Degradation of the achievable contrast when the prior SED differs from the
true SED (contrast ratio with respect to a detection with the true SED, closer to 1 is
better).

measurement is available so that the performance cannot be improved compared to
when using a single wavelength detection map. In all other cases, there is a gain,
i.e., the combined detection map leads to a better sensitivity than even the detection
map S/Nℓ at the wavelength providing the best contrast. In particular, if the SED
is flat (∀ℓ, γℓ = 1/L) and the variances vℓ are all equal, the contrast is improved by
a factor

√
L, which is to be expected when combining L measurements of identical

statistical weight. This factor should, however, be considered as an upper bound that
cannot be reached in practice for several reasons: (i) the whitening matrix L̂ differs
from the identity because of the correlations between channels, the effective number of
(independent) channels is, in fact, smaller than L, (ii) the estimation of matrix L̂ is
performed in two steps and relies, in the second step, on a thresholding strategy that
requires a detection to prevent the attenuation of point-like sources, (iii) neither the
SED nor the variance are constant with respect to the wavelength, (iv) the true SED
of the source may differ from the prior SED used in wS/N.

Finally, the impact of a mismatch between the assumed SED in wS/N and the true
SED of the source needs to be assessed. This impact can be evaluated by comparing
the contrast that is reached when the actual SED is used with respect to the contrast
when an incorrect prior SED is used in wS/N. Let γ⋆ be the true SED and β′

⋆ the
vector such that β′

⋆ℓ = γ⋆ℓ/
√
vℓ for all ℓ. The achievable contrast under the true SED

prior is 5(β′
⋆
⊤
L̂L̂

⊤β′
⋆)

−1/2. Under the incorrect prior γ, wS/N is distributed, under H1,
according to the Gaussian N (αint(β′

⋆
⊤
L̂L̂

⊤β′)(β′⊤
L̂L̂

⊤β′)−1/2, 1). The contrast that is
achieved is thus equal to 5(β′⊤

L̂L̂
⊤β′)1/2/(β′

⋆
⊤
L̂L̂

⊤β′). With respect to the ideal case
where the true SED γ⋆ is used as a prior, the achievable contrast is degraded by a
factor:

√
β′⊤L̂L̂⊤β′

√
β′
⋆
⊤L̂L̂⊤β′

⋆

β′
⋆
⊤L̂L̂⊤β′

, (6.29)

which corresponds to the inverse of the normalized correlation between the whitened
true SED and the whitened assumed SED.

Table 6.1 reports the factors by which the achievable contrast is degraded when the
prior SED differs from the true SED. Due to the symmetry in Equation (6.29), the
role of the prior SED and the true SED can be interchanged. These factors have been
computed for 1,681 whitening filters computed on a SPHERE-IFS dataset around HR
8799. The mean factor and its standard deviation are reported in the table. When
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the true SED and the prior SED are very close (third true SED and first prior, in the
table) the contrast degradation is negligible (the factor is not significantly greater than
1). Even when the SED differs significantly (last true SED and first or last prior), the
contrast degradation remains modest (at most a factor 1.48 in this case) and smaller
than that observed when replacing wS/N by wGLRT (a factor 1.57 was predicted in
the previous paragraph).

These comparisons between wGLRT and wS/N lead to a clear conclusion: wS/N is
to be preferred since (i) its distribution under H0 is more accurately modeled (so that
detection thresholds can be automatically set to reach prescribed false alarm rates), (ii)
the detection performance is higher when the SED of the source is known in advance,
(iii) even if the prior SED used in wS/N differs significantly from the true SED of the
source, the detection performance of wS/N is higher than that of wGLRT.

Based on the PACO–ASDI statistical modeling of the background fluctuations, the
final detection maps of PACO–ASDI are obtained in a two steps approach:

1. As described in Chapter 2 for ADI datasets, we derive for ASDI datasets
the maximum likelihood estimator of the exoplanet flux at each wavelength,
a detection test, and subsequent statistical guarantees:

⇒ The detection test can be interpreted as a signal-to-noise ratio (S/Nℓ)
for each spectral channel ℓ and follows, in the absence of exoplanet, a

centered and reduced Gaussian distribution.

2. The detection can be improved by combining information from different
wavelengths. However, we show that the strong spectral correlations of
the S/Nℓ values prevent the setting of a detection threshold at a controlled
probability of false alarm on the combined detection quantities.

⇒ The spectral correlations of the S/Nℓ are learned before combination.

The resulting combined detection criterion (wS/N) also includes a weighting strat-
egy of the S/Nℓ values based on photometric confidence and (eventually) a SED
prior on the exoplanets to be detected. wS/N maps have the following properties:

• they can be thresholded at a controlled probability of false alarm,

• they demonstrate superior detection sensitivity compared to individual S/Nℓ

maps,

• the optional SED prior (if known) further improves the detection perfor-
mance.

Exoplanet detection with PACO–ASDI
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6.4 Source characterization

So far, we introduced two modelings of the data: (i) the background model intro-
duced in Section 6.2, accounting for spatial covariances as well as wavelength-specific
and time-specific scaling factors, and (ii) the model of the spectral covariances of vec-
tors x of S/Nℓ values. The second model, based on the intermediate detection maps
S/Nℓ, includes both the patch covariances (through the computation of S/Nℓ values)
and the spectral covariances. Rather than performing the astrometric and photometric
characterizations of a detected point source based on the neg-log-likelihood Ln intro-
duced in Equation (6.1), which does not account for spectral correlations, we define the
neg-log-likelihood C on the vectors of S/Nℓ values:

C (φ0,α) = − log p( x |φ0,α, {vℓ}ℓ=1..L,L ) = 1
2

∥∥∥∥∥∥∥∥∥
L

⊤




|
xℓ −

αℓ√
vℓ

|




∥∥∥∥∥∥∥∥∥

2

2

+ const., (6.30)

where the vector x of S/Nℓ values is extracted at the integer location ⌊φ0⌉ of the field
of view, and variance values vℓ depend on the level of background fluctuations in the
patches extracted from spectral channel ℓ. The constant term depends only on L and
on the determinant of the whitening matrix L.

Similarly to PACO algorithm (see Chapter 2), when characterizing a point source found
in the detection map, the background statistics are re-estimated jointly with the de-
termination of the subpixel location and flux of the source. This prevents any bias
that may occur due to self-subtraction (computation of the mean patches m̂n,ℓ without
accounting for the presence of the source). An alternating estimation strategy is carried
out by iteratively applying the following steps, see also Figure 6.1:

• Algorithm 6.1 is applied to the residual patches {r⌊φℓ,t⌉,ℓ,t − αℓ h⌊φℓ,t⌉,ℓ(φℓ,t)}ℓ,t,
with α initially set to 0, to learn the local background statistics,

• S/Nℓ values xℓ and variances vℓ are computed for each wavelength,

• the spectral covariance Σ under H0 is estimated based on the vectors of values
xℓ − αℓ/

√
vℓ in a local area centered at ⌊φ0⌉; the whitening matrix L is then

derived by Cholesky factorization of the inverse of Σ,

• the subpixel location φ0 and the flux values αℓ are estimated, then all the steps are
repeated to improve the background modeling and progressively separate source
and background.

The last step, corresponding to the astrometric and photometric estimations, is
detailed in the following two subsections.

6.4.1 Astrometric estimation

The estimation of the location φ0, with subpixel accuracy, can be performed by
maximizing one of the combined-wavelengths detection criteria. In practice, we maxi-
mize wS/N over a refined grid of locations φ0 with the current flux estimates as a prior
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SED: γ = α/(
∑
ℓ αℓ). By definition of the GLR, this corresponds to jointly maximizing

C (φ0,0) − C (φ0, α
intγ) with respect to the location φ0 and the integrated source flux

α.

6.4.2 Estimation of the spectral energy distribution

At a given source location φ0, estimating the vector of source fluxes α by minimizing
C leads to the following maximum likelihood estimates, for each wavelength:

α̂ℓ = xℓ
√
vℓ , (6.31)

i.e., the same flux estimates as obtained when computing the S/Nℓ values channel
by channel with Equation (6.9). It can be noted that accounting for the spectral
correlations does not lead to a different estimator, because L̂ is non-singular. The
estimator covariance, on the other hand, reflects that flux variations are correlated:

[Cov[α̂]]i,j =
√
vi vj [Σ]i,j . (6.32)

When using instruments with many contiguous spectral bands, a spectral smooth-
ness can also be enforced by favoring fluxes with small variations from one spectral
band to the other, as captured by the following regularization term:

R(α) = 1
2
‖Dα‖2

2 , (6.33)

with D the matrix of the finite differences.
If a large library of spectra is available, an a priori covariance Γ of the spectrum

can be learned, providing a richer modeling than the simple smoothness prior. In the
definition of R, the matrix D is then replaced by D = Γ−1/2, i.e., R(α) = − log p(α)+
const = 1

2
(α− sα)⊤Γ−1(α− sα) = 1

2
‖Γ−1/2(α− sα)‖2

2, where the prior distribution p(α) is
a multivariate Gaussian with mean vector sα and covariance matrix Γ, see for example
Tarantola (2005).

When a regularization term is considered, the estimation of the fluxes α corresponds
to a maximum a posteriori (MAP):

α̂(MAP) = arg min
α

C (φ0,α) + µR(α) , (6.34)

where µ is a hyperparameter that controls the amount of smoothing introduced by the
regularization term. Since both C and R are quadratic in α, the MAP estimate can be
obtained in closed form and corresponds to the following linear transform of the vector
x of S/Nℓ values:

α̂(MAP) =
(
VΣ̂−1V + µD⊤D

)−1
VL̂

︸ ︷︷ ︸
M(µ)

Ŝ , (6.35)

where Ŝ = L̂
⊤x is the whitened vector of spectral S/Nℓ values (with L̂L̂

⊤ = Σ̂−1), V is
a diagonal matrix with diagonal entry [V]ℓ,ℓ = 1/

√
vℓ and M(µ) is the matrix defining

the linear estimator α̂(MAP), parameterized by the smoothing parameter µ.
Setting the value of the hyperparameter µ requires some adaptation to both the

SED smoothness and the integrated flux. In order to obtain a detection and character-
ization method that is fully unsupervised, we investigated several strategies to select
automatically the value of µ. In the following, we report the different regularization
schemes explored.

221



Exoplanet detection and characterization with integral field
spectrographs

6.4.2.1 Unsupervised setting of the smoothing parameter µ for SED esti-
mation

We chose to investigate three well-known regularization strategies: (i) the gener-
alized maximum likelihood also known as the evidence method (GML, Wahba et al.
(1985); MacKay (1992)), (ii) the generalized cross-validation (GCV, Craven and Wahba
(1978); Golub et al. (1979)), and (iii) the Stein’s unbiased risk estimator (SURE, Stein
(1981)).

The GML estimator first marginalizes the joint distribution p(Ŝ,α|µ, φ0) with respect to
the unknown spectrum α, then maximizes the so-called generalized likelihood p(Ŝ|µ, φ0)
with respect to µ. The resulting optimal parameter µ̂(GML) is given by (see Appendix
B for a sketch of proof):

µ̂(GML) = arg min
µ

log det Λ(µ) + Ŝ
⊤Λ−1(µ)Ŝ , (6.36)

where Λ(µ) is expressed as:

Λ(µ) =


I− L̂

⊤VM(µ)
︸ ︷︷ ︸

A(µ)




−1

. (6.37)

The GCV estimator approximates the error obtained by a leave-one-out validation
strategy and is agnostic of the noise variance. The resulting optimal parameter µ̂(GCV)

is then (Craven and Wahba, 1978):

µ̂(GCV) = arg min
µ

L
‖ (I−A(µ)) Ŝ‖2

2

tr2 (I−A(µ))
. (6.38)

Since the vector Ŝ of whitened S/Nℓ values is distributed according to a centered
Gaussian distribution, the unbiased risk 2 estimate provided by SURE is then (Thomp-
son et al., 1991):

r̂isk = 1
L
‖(I−A(µ))Ŝ‖2

2 + 2
L

tr(A(µ))− 1 . (6.39)

Therefore, the parameter µ̂(SURE) that minimizes the risk estimate is given by:

µ̂(SURE) = arg min
µ
‖(I−A(µ))Ŝ‖2

2 + 2tr(A(µ)) . (6.40)

Estimating µ̂(GML), µ̂(GCV) or µ̂(SURE) from Equations (6.36), (6.38) and (6.40) re-
quires solving a mono-dimensional minimization problem, which can be performed, for
instance, by a golden section search (Brent, 2013). Whatever the chosen strategy, once
µ̂ is obtained, the vector of fluxes is computed by:

α̂(MAP) = M(µ̂)Ŝ . (6.41)

The expected gain when regularizing the SEDs by one of the above strategies is a
reduction of the MSE (MSE = 〈‖α̂ − α‖2〉) of the estimation, in particular when the

2. The risk is defined by: risk = E
[
‖α̂−α‖2

]
.
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Figure 6.12 – Comparison of the GCV, GML, and SURE regularization strategies on
30 Monte-Carlo injections / SED estimations for sources #2, #5, #10, and #12. (a)
ground truth spectra; (b) ground truth angular separations; (c) gain in terms of MSE
reduction comparing with the absence of spectral regularization (values higher than one
indicates a decrease of the MSE); (d) comparison between the empirical 1σ confidence
intervals predicted by PACO–ASDI and the empirical ones (values higher than one indi-
cate that predicted confidence intervals are smaller than the empirical ones so that the
algorithm estimation is too optimistic).

source contrast is very weak. In the following, we numerically compare these three types
of regularization. For this purpose, we perform 30 Monte-Carlo injections and SED
estimations on four sources (#2, #5, #10, #12) on a dataset of HD 172555 free from
known faint point sources, see Section 6.6.3 for more details about the dataset and the
considered injections. For each of the four sources, the injections and SED estimations
are done on a circular annulus at a fixed angular separation, see Figure 6.12(a) and (b).
Figure 6.12(c) and (d) compare the GCV, GML, and SURE regularization strategies
in terms of MSE and agreement between the estimates and empirical 1σ confidence
intervals. The performance is also given when the regularization hyperparameter µ
is set in an oracle mode, i.e., by selecting µ that minimizes the MSE between the
SED estimate and the SED ground truth. These experiments illustrate that the GML
and SURE approaches lead to very similar results with a slight improvement brought
by SURE with respect to GML. In comparison, the GCV leads to significantly worst
results. This can be explained by the fact the GCV is generally used when the noise
variance is unknown. Regularizing the SED estimation with GML or SURE is beneficial
since it reduces the MSE. As expected, the gain brought by the regularization is larger
when the contrast of the source is weak and for sources located near the host star, i.e.,
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when the estimated SED is very noisy. For example, the MSE is reduced by about 37%
for the source #2 (brightest one of the four considered) while it is reduced up to 67%
for the source #10 which is the faintest one. In addition, the results obtained with the
unsupervised setting of the hyperparameter µ by GML or SURE are not very far from
the optimal results achieved by the oracle. Finally, as shown by Figure 6.12 (c) and
(d), the estimated confidence intervals are in good match with the empirical ones (a
factor between 0.94 and 1.21 is observed in our experiments) when the regularization is
performed with the SURE approach. More detailed results can be found in Appendix
B. In particular, we investigate the influence on the estimate SEDs of the size of the
area on which the spectral covariance matrix Σ̂ is computed.

In conclusion, estimating µ with SURE leads to the best overall performance in
our simulations, with a slight improvement over GML and a clear gain with respect to
GCV. Thus, based on this study, the hyperparameter µ is estimated in an unsupervised
fashion with the SURE approach in the following.

The SEDs of detected exoplanets from ASDI datasets can be estimated in a similar
way to the photometry estimation described in Chapter 2 for ADI datasets: the
background statistics, the exoplanet astrometry and photometry are estimated
jointly to prevent photometric bias. The proposed procedure differs on two points:

• We account for the spectral correlations of the S/Nℓ values.

• A spectral smoothness is enforced by favoring fluxes with small variations
from one spectral channel to the next. The amount of smoothing is esti-
mated in a data-driven fashion based on the SURE approach.

This framework allows to obtain:

• estimates of the SED of the detected exoplanets that have an optimal
bias/variance tradeoff,

• reliable confidence intervals,

• a low risk (close to the minimal achievable one with our estimator) thanks
to the automatic spectral regularization.

Exoplanet characterization with PACO–ASDI
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6.5 Implementation details of PACO–ASDI

The same implementation considerations than the ones derived in Section 2.4 for
PACO can be considered with PACO–ASDI:

• optimal patch size – We apply the empirical rule derived in Section 2.4.1: we chose
the patch size as twice the off-axis PSF FWHM. The relevance of this criterion
is illustrated by Figure 6.13(a). Two GLRT+ maps on a dataset around HR 8799
are obtained by PACO–ASDI using two different patch sizes: K = 49 pixels which
corresponds to the patch size derived for the SPHERE-IRDIS data in K1-K2
spectral band (i.e, λ ∈ [2.11µm; 2.25µm]), andK = 113 pixels which corresponds
to the patch size derived for the considered SPHERE-IFS data in Y-H spectral
band (i.e, λ ∈ [0.96µm; 1.64µm]). While the mean level of the background
structures is not significantly different in the two examples, we observe that the
source throughput is lower when the patch size is not adapted to the spatial
spread of the off-axis PSF. Note that since each spectral channel at wavelength
λ of the raw ASDI data is zoomed before processing by the factor λref/λ to
spectrally co-aligned the speckles, the signature of the sources takes the form of
the off-axis PSF at the wavelength λref on the different spectral channels. In all
the experiments of this Chapter, we fixed λref at λL, i.e. at the largest wavelength.

• taking into account missing data – We apply the trick described in Section 2.4.2.
Aberrant data arising on the borders of the field of view and the missing data due
to the different zooming factors applied to each spectral channel of ASDI data are
taken into account by binary masks. Denoting R× C the spatial size of the raw
ASDI data frames (before spectral zooming), the PACO–ASDI results are of size
⌊
√

2R⌉ × ⌊
√

2C⌉. As for PACO, it is theoretically enough that an exoplanet (with
a sufficient level of contrast) be seen in the field of view at a single wavelength
or a single time in the zoomed data to be possibly detected. Consequently,
PACO–ASDI outputs should be adapted by considering in the summation only
terms at wavelength(s) ℓ and time(s) t for which the expected location φℓ,t of
the exoplanet lies in the masks defining the valid field of view. Figure 6.13(b)
illustrates this principle and emphasizes that only a central area of the field of
view (≃ 34% of the whole field of view) is covered by all rescaled images for
SPHERE-IFS data in Y-H spectral band. We show in Section 6.6.2.1 that taking
into account both the aberrant and missing data is important to detect sources
that are not located in this central area.

• fast and approximate version of PACO–ASDI for large surveys – We derive a fast

PACO–ASDI algorithm as described in Section 2.4.4 for fast PACO. The acceler-
ation relies on the pre-computation of terms that appear multiple times in the
sums of Equations (6.10) and (6.11) when considering all possible source loca-
tions. Computations of the background statistics are thus recycled. The S/N
map and other outputs are obtained in a second step by interpolating the pre-
computed terms. For the reasons discussed in Section 2.4.4, the fast version has
a computational burden reduced by a factor at least equal to the number T L of
temporal and spectral frames. For example, the application of this fast algorithm
requires approximately 15 minutes to process (until S/Nℓ combination) a dataset
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made of T = 56 temporal frames and L = 39 spectral channels of size 496× 496
(after chromatic zooming). The computation time required for the S/Nℓ combi-
nation including the robust estimation of the spectral correlations depends only
on the number of spectral channels and takes approximately 15 more minutes for
L = 39 spectral channels. In comparison, the non-fast and complete algorithm
requires approximately 500 hours to process a similar dataset using a basic par-
allelization done in Matlab™ on 24 cores (processor Intel™ Xeon E5–46170
at 2.90 GHz and K = 113 pixels per patch). Since this time is prohibitive, we
use only the fast PACO–ASDI framework to produce the detection results defined
in Section 6.3. The use of the non-fast PACO–ASDI is reserved to the character-
ization step that extracts unbiased astrometry and photometry information on
small areas around detected sources, as described in Section 6.4.

• sampling of possible exoplanet locations – As described in Section 2.4.5 for PACO,
the direct model of PACO–ASDI does not impose any finite precision for the
source position φℓ,t in each frame, so detection maps and other quantities de-
fined in Section 6.3 can be computed at a resolution small enough to avoid
the possible negative bias due to the finite sampling of the data. The ratio
E(S/N(Gs(φ0) | φ0))/E(S/N(φ0 | φ0)) defined in Equation (2.40) informing about
the fraction of S/N lost due to the sampling grid Gs under consideration (where s
is the number of nodes per pixel), can be adapted to the quantities S/Nℓ produced
by PACO–ASDI with the ratio E(S/Nℓ(Gs(φ0) | φ0))/E(S/Nℓ(φ0 | φ0)) where:

E(S/Nℓ(φ |φ0)) = αℓ

∑T
t=1 h⌊φℓ,t⌉(φℓ,t)

⊤ · Ĉ−1
⌊φℓ,t⌉

· h⌊φℓ,t⌉ (Fℓ,t(φ0))
√∑T

t=1 h⌊φℓ,t⌉(φℓ,t)
⊤ · Ĉ−1

⌊φℓ,t⌉
· h⌊φℓ,t⌉(φℓ,t)

. (6.42)

Figure 6.13(c) gives examples of S/Nℓ maps at λ39 = 1.64µm computed with
s = 1 and s = 4. It emphasizes that the choice s = 4 (oversampling of the data
with 4 nodes per pixel) leads to a negative bias on S/Nℓ lower than 1%.

• unsupervised detection and characterization – Like PACO, the PACO–ASDI algo-
rithm is totally unsupervised, no tuning parameter is necessary. The regulariza-
tion of the covariance matrices is based on automatic shrinkage, the patch size
K is constant for a given instrument, the size R of the areas used to compute
robustly the spectral correlations of S/Nℓ values is fixed since it depends only on
the spatial spread of the source signature which is almost constant for a given
instrument, the detection threshold τ is set according to a prescribed false alarm
rate, and the regularization of the estimated SEDs is performed automatically
with SURE.
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Figure 6.13 – Implementation details of PACO–ASDI. (a) optimal patch size – two different
patch-size adapted to two off-axis PSF (left) and the resulting GLRT+ maps (right).
(b) missing data – the raw data are spectrally zoomed to co-align the speckles; aberrant
data (circled in red) that are on the borders of the field of view are discarded by binary
masks; the resulting total field of view accounts for the parallactic rotation. Magenta
dashed circles indicate speckles around the correction limit of the coronagraph which
are not aligned before chromatic zooming. (c) sampling – S/Nℓ at λ39 = 1.64µm
and sampling ratio E(S/N(Gs(φ0) |φ0))/E(S/N(φ0 |φ0)) for two values of the sampling
factor: s = 1 (1 node per pixel), and s = 4 (oversampling, 4 nodes per pixel).
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Table 6.2 – Observation logs of the considered ASDI datasets. ∆par is for the total
amount of rotation of the field of view and the seeing value was reported at the beginning
of the observations. (∗): The recorded dataset around HD 172555 was made of 62
temporal frames but we selected T = 31 frames by discarding one of them over two,
preserving the amount of the parallactic rotation ∆par to slightly increase the difficulty
of the SED estimation task.

Target ESO ID Obs. date T ∆par Seeing

HR 8799 095.C-0298 2015-07-04 46 16.4° 1.43
β Pictoris 097.C-0865 2016-09-16 116 38.5° 0.45
HD 131399 095.C-0389 2015-06-12 49 37.2° 1.30
HD 172555 095.C-0192 2015-07-11 31∗ 12.9° 1.20

6.6 Performance evaluation with on-sky data

In this section, we assess the performance of the proposed PACO–ASDI algorithm
both in terms of source detection and SED estimation.

6.6.1 Datasets and algorithms description

The PACO–ASDI results are compared to two standard algorithms: TLOCI and KLIP
(see Section 2.2 for a description). These two algorithms are currently used for the
exploitation of the SPHERE science data (Lagrange et al., 2019a; Mesa et al., 2019a;
Gratton et al., 2019; Gibbs et al., 2019; Maire et al., 2019). In the following, they are
applied both in ADI and ASDI mode. In ADI mode, each spectral channel is processed
independently. A combined detection map is obtained by a simple summation of the
detection maps from the different spectral channels. The SED estimation is obtained
by a photometry estimation per wavelength. The reason we considered the ADI mode
is that it is a common practice to process independently each spectral channel of an
ASDI series. We used the SpeCal (Galicher et al., 2018) implementation of TLOCI-
A(S)DI and KLIP-A(S)DI algorithms of the SPHERE data center (Delorme et al.,
2017). There are several variants of this implementation, especially for the KLIP-
ASDI method. However, these custom routines are not necessarily public and the
corresponding description of the implementation is not always published too. We have
performed some tests with these alternative implementations that are not reported in
this document. In spite of the peculiarities of these alternative routines, we reached the
same general conclusions. Comparative results from state-of-the-art algorithms are
kindly provided by Maud Langlois.

For the comparisons, we selected four datasets from the SPHERE-IFS instrument
obtained in various conditions of observation leading to different degrees of difficulty for
the detection and estimation tasks. Three of these datasets are dedicated to the evalu-
ation of the detection performance on fields reported in the literature to contain point
sources. The fourth one is used for the evaluation of the SED recovery performance.
We numerically injected fake point sources at low fluxes to perform this evaluation.
The four datasets considered were recorded around the following reference targets:

• HR 8799 (HIP 114189) which is a A5V type star located in the Pegasus constella-
tion. It hosts four confirmed exoplanets, only three of them (HR 8799 c, d and e)
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are within the SPHERE-IFS field of view (the last one, HR 8799 b, is visible with
the larger field of SPHERE-IRDIS). All of them were discovered (Marois et al.,
2008), confirmed (Marois et al., 2010) and widely studied (Bowler et al., 2010;
Currie et al., 2011; Marley et al., 2012) by direct imaging. In the following, this
dataset is used as a baseline to compare the overall performance of the detection
algorithms on sources at a standard level of contrast (between 10−6 and 10−5) in
the considered spectral band.

• β Pictoris (HIP 27321) which is a A6V type star located in the Pictor constel-
lation. It hosts two known exoplanets (β Pictoris b and c) as well as a proto-
planetary disk made of gas and dust (too sparse to be visible within the field of
view of the SPHERE-IFS imager). β Pictoris b was discovered (Lagrange et al.,
2009) and confirmed (Lagrange et al., 2010) by direct imaging. β Pictoris c was
discovered very recently by the radial velocities method (Lagrange et al., 2019b).
In the following, we do not consider the presence of β Pictoris c any more 3. New
datasets around this star are currently under analysis to complete the orbit of
β Pictoris b and to refine its photometry (Lagrange et al., 2019a). In the fol-
lowing, we use a dataset at a challenging epoch since the angular separation of
the exoplanet is smaller than 0.15 arcsec, which corresponds to 9 pixels after the
coronagraph mask.

• HD 131399 (HIP 72940) which is a A1V type star located in the Centaurus
constellation. It forms a triple system with two other stars (HD 131399 B and
C) located about 349 AU from the brightest star HD 131399 A (De Zeeuw et al.,
1999; Dommanget and Nys, 2002; Pecaut and Mamajek, 2013). This system also
hosts a faint point source (HD 131399 Ab) discovered by direct imaging (Wagner
et al., 2016), at first supposed to be a bounded exoplanet. However, further joint
analysis of GEMINI/GPI and VLT/SPHERE datasets to refine the astrometry
and the SED estimation of the candidate companion led to the conclusion that
HD 131399 Ab is more likely to be a background brown dwarf (Nielsen et al.,
2017). In the following, this dataset is used to compare the behavior of detection
algorithms in the case of a faint point source falling close to the limit of the
instrument’s field of view.

• HD 172555 (HIP 92024) which is a A5V type star located in the Pavo constellation
(Schütz et al., 2005; Lisse et al., 2009). The analysis of directly imaged (A)(S)DI
series was conducted in several surveys but, to the best of our knowledge, no
point source was ever detected (Nielsen et al., 2008; Nielsen and Close, 2010).
We use this dataset to conduct the SED estimation of numerically injected fake
point sources.

Table 6.2 summarizes the main observation parameters of these datasets.

3. β Pictoris c has a very small angular separation with its host star (0.10-0.15 arcsec at its maximal
elongation). For comparison, the limit of the classical coronagraphs of SPHERE-IRDIS masking the
host star and its close environment is 0.125 arcsec. Besides, β Pictoris c has a very low contrast given
its separation (about 1×10−4 in the H Johnson’s band). For these two reasons, it could be detected by
direct imaging when it is at its maximal elongation only, given the current instrumental and processing
capabilities, see Lagrange et al. (2019b).
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Figure 6.14 – Detection maps (wS/N for PACO–ASDI and combined–S/N for the other
algorithms) around HR 8799, β Pictoris and HD 131399 obtained with TLOCI-ADI,
KLIP-ADI (50 modes), TLOCI-ASDI, KLIP-ASDI (10, 50, 100 and 150 modes) and
the proposed PACO–ASDI algorithm. The color bars are common for all methods and are
set between -5 and the highest true detection peak provided by PACO–ASDI (excepted
for HR 8799 for which the color bar is set between -5 and 42.7 corresponding to the
wS/N value of HR 8799 e with PACO–ASDI). The detection threshold is set at τ = 5
and the values above this threshold are classified as true detections (yellow circles) and
false detections (red squares and polygons). Missed detections are indicated by pink
triangles. The value of the largest false alarm is also indicated in red on each map.
Black arrows point at areas with constant values.
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Figure 6.15 – Same caption than Figure 6.14. The color bars are adapted to each
method and are set between -5 and the detection peak associated with one of the real
sources to be detected (respectively HR 8799 e which is the closest to the host star, β
Pictoris b, and HD 131399 Ab).
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1 1.2 1.4 1.6

Figure 6.16 – Achievable 5σ contrast curves on HR 8799 and β Pictoris obtained with
TLOCI-ADI, KLIP-ADI, TLOCI-ASDI, KLIP-ASDI, and PACO–ASDI. All curves corre-
spond to the mean contrast along spectral channels. For PACO–ASDI, the solid red line
is for the spectral mean S/Nℓ estimated contrast while the dashed pink line is for the
combined wS/N contrast estimated assuming the SED given at the bottom as prior.
Contrast curves as provided by KLIP and TLOCI do not correspond to a 5σ false alarm
rate contrarily to the contrast curves of PACO–ASDI. The achievable contrasts are thus
significantly over-optimistic for KLIP and TLOCI, see discussion in the text (Section
6.6.2.2).
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Figure 6.17 – Examples of 2-D S/Nℓ contrast maps estimated by PACO–ASDI for four spectral channels: λ1 = 0.96µm, λ13 = 1.16µm,
λ25 = 1.39µm, and λ37 = 1.61µm on HR 8799 and β Pictoris. The superimposed white circles represent the locations of the known
exoplanets (HR 8799 c, d, e, and β Pictoris b).
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6.6.2 Detection performance

6.6.2.1 Detection results

In the following, the detection is done using wS/N map with PACO–ASDI since it
offers interesting properties in terms of detection sensitivity and controlled false alarm
rate when thresholding at 5σ (see Section 6.3.2.3). In our comparison to the state-
of-the-art algorithms, we use the final signal-to-noise map (denoted combined S/N )
provided by the different pipelines. The combined S/N map is generally obtained with
a simple weighted mean of the signal-to-noise ratio computed in each channel. This
combination is generally followed by a post-processing step via so-called unsharp fil-
tering (high pass filtering) to improve the visual quality of the combined S/N map by
attenuating some spurious background artifacts. In PACO–ASDI, the spatial whitening
and spectral whitening operations can be seen as data-driven and locally-adaptive fil-
ters. No additional filtering is required to enhance the detection maps produced by
PACO or PACO–ASDI.

Figures 6.14 and 6.15 show the combined detection maps around HR 8799, β Pic-
toris, and HD 131399 obtained with TLOCI-ADI, KLIP-ADI, TLOCI-ASDI, KLIP-
ASDI, and PACO–ASDI for two sets of color bars. The detection is performed by thresh-
olding the maps at τ = 5 (corresponding to a PFA = 2.87 × 10−7), as classically done
in direct imaging. Several observations can be made:

State-of-the-art algorithms lead to strong background structures due to a miss-
modeling of the spatial and spectral correlations. In addition, the detection seems very
difficult in the regions close to the borders of the instrument’s field of view due to
strong artifacts, in particular with TLOCI-ADI and KLIP-ADI, possibly due to a miss-
modeling of the aberrant data occurring on the borders. For example, distinguishing
the signature of the exoplanet HR 8799 c (top-left corner of the field of view) from the
artifacts seems almost impossible with TLOCI-ADI and KLIP-ADI. In ASDI mode,
the quality of the detection maps is generally not significantly better in these areas due
to artifacts (in particular with TLOCI-ASDI) or regions with zeros or constant values
obtained with KLIP-ASDI (indicated by arrows in the figures), possibly caused by the
absence of explicit modelization of areas with missing data for the longest wavelengths.
All these sources of artifacts cause a severe limitation of the workable field of view
in which an exoplanet can be actually detected. The unusable portion of the field of
view increases with the parallactic rotation and with the ratio λmax/λmin. It reaches
more than 20% for TLOCI-ASDI on the β Pictoris and HR 8799 datasets. PACO–ASDI

provides stationary detection maps on the whole field of view (including at the vicinity
of the host star and close to the borders of the field of view) so that a unique detection
threshold can be set. The stationarity is explained both by the local statistical modeling
of spatio-spectral correlations of the background and the explicit consideration of the
missing and/or aberrant data which are flagged as outliers.

Regarding the detection accuracy of the algorithms, only PACO–ASDI ensures a
statistically-grounded control of the PFA in the sense that no false alarm is gener-
ally observed at the 5σ threshold. Unlike PACO–ASDI, all other algorithms considered
lead to several false detections in the field of view (many more than expected at 5σ).
In practice, astronomers are familiar with the “false alarms issue” and generally try
to differentiate candidate companions from the false alarms by visual inspection of the
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data and of the reduction results, a very time-consuming task.
Regarding the detection sensitivity of the tested algorithms, only PACO–ASDI leads

to detection peaks significantly higher than the conventional detection threshold (τ = 5)
for all the known point sources, even when they are close to the host star (as β Pictoris
b) or close to the borders of the field of view (as HD 131399 Ab). For example, for
HR 8799, only one source can be unambiguously detected at 5σ with state-of-the-art
algorithms. The other sources can be distinguished by visual inspection of the detection
maps but require to lower the detection confidence at about 3.5 for the exoplanet HR
8799 e and at 4.3 for the exoplanet HR 8799 d. The best results with existing methods
are obtained with KLIP-ADI, leading to the detection of HR 8799 c (top-left corner of
the field of view) at a combined signal-to-noise ratio equal to 66.9. On the same dataset,
the three known exoplanets are detected with PACO–ASDI and the wS/N reaches 188.2
for HR 8799 c. For β Pictoris and HD 131399, only PACO–ASDI can detect the known
sources without any false alarm in the field of view. Lowering the detection threshold
with TLOCI-A(S)DI and KLIP-A(S)DI leads to several false alarms in the field of view
thus preventing their automatic detection. Moreover, our experiments tend to show
that in certain cases it is not so easy to distinguish true detections from false alarms via
visual inspection: on the considered β Pictoris dataset processed with TLOCI-A(S)DI
and KLIP-A(S)DI algorithms, it seems difficult to us to visually discriminate β Pictoris
b (combined S/N ∈ [1.9; 3.3]) and HD 131399 Ab (combined S/N ∈ [0.2; 2.0]) from false
alarms since the shape of the detection peaks (blobs spatially correlated on a few pixels)
are very similar.

6.6.2.2 Achievable contrast

In this section, we compare the minimal contrast required to achieve a detection with
PACO–ASDI to the contrasts of TLOCI and KLIP. As is done in the literature, we derive
the so-called 5σ contrast curves representing the minimum contrast of a source to still be
detected with a probability of detection PD = 0.5 when the detection threshold is set to
obtain a probability of false alarm PFA = 2.87× 10−7. This achievable contrast can be
computed for the single-wavelength detection maps. As detailed in Section 6.3.2.3, the
5σ contrast in channel ℓ is 5

√
vℓ (the minimum contrast αℓ of the source in the spectral

channel ℓ so that P(S/Nℓ > τ) = 0.5). As detailed in Section 6.3.2.3, the combination
of the S/Nℓ maps improves the achievable contrast. When the combined detection map
wS/N is used, the achievable contrast in spectral channel ℓ is 5(β′

⋆
⊤
L̂L̂

⊤β′
⋆)

−1/2 if the
prior SED perfectly matches the source SED.

Figure 6.16 gives the achievable 5σ contrast curves obtained with TLOCI-ADI,
KLIP-ADI, TLOCI-ASDI, KLIP-ASDI, and PACO–ASDI on HR 8799 and β Pictoris. For
PACO–ASDI, both the S/Nℓ contrast and the combined wS/N contrast are represented.

• Considering the S/Nℓ contrast curves of PACO–ASDI, a clear gain is observed at
small angular separations (≤ 0.7 arcsec) comparatively to the state-of-the-art
algorithms. At larger separations, this gain is maintained except for KLIP-ASDI
which can reach better contrasts. However, as already observed and discussed in
Section 2.5.3.2 on ADI series, contrast curves produced by state-of-the-art algo-
rithms are often overly optimistic both in terms of PD and PFA. These previous
observations also verify here in ASDI mode: all detection maps of state-of-the-
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arts algorithms present many more false alarms than what would be expected at
5σ. According to Figure 6.16, far from the β Pictoris star, the best achievable
contrast is reached when using KLIP-ASDI with 150 modes and PACO–ASDI that
approximately converge towards the same detection limit. However, Figures 6.14
and 6.15 show that KLIP-ASDI produces several false alarms in the field of view
and a lower signal-to-noise ratio for the exoplanet β Pictoris b compared to
PACO–ASDI. With KLIP-ASDI, the largest value of a false alarm is significantly
higher than 5, while it should be very unlikely to have a background value larger
than 4.0. This illustrates that the 5σ contrast of state-of-the-art algorithms does
not correspond to the expected level of PFA and can thus only be used to perform
relative comparisons.

• Considering the wS/N contrast curves of PACO–ASDI, obtained when single-
wavelength detection maps are combined, a gain slightly less than one order
of magnitude is expected due to the combination, according to Figure 6.16. As
discussed in Section 6.3.2.3, the combined (wS/N) contrast is only a theoreti-
cal lower bound that can not be exactly reach because at the detection stage the
S/Nℓ values are underestimated, the background statistics being estimated in the
presence of the source, like with PACO. When comparing the S/Nℓ values of the
point sources in the single-detection maps of HR 8799 shown in Figure 6.6 (values
in the range 1.5 to 5.2) to the values in the combined detection maps of Figures
6.14, 6.15 (wS/N = 42.7), the improvement is in relatively good agreement with
the contrast curves of Figure 6.16. From our experience, values of the contrast
achieved for single-wavelength detections are typically reached in practice with
S/Nℓ and can thus be used as a safe value of the achievable contrast.

As detailed in Chapter 2 for PACO, the PACO–ASDI contrast can be computed at every
point of the field of view. Figure 6.17 gives examples of 2-D contrast maps obtained
with PACO–ASDI for some selected spectral channels. They show that the detection is
more favorable on certain spectral channels than others. For example, the achievable
contrast on spectral channel ℓ25 = 1.39µm is about twice worst than the one obtained
on spectral channel ℓ13 = 1.16µm for the HR 8799 dataset. This can be explained by
the presence of large spectral variations of the intensity fluctuations and/or additional
noise probably caused by the pre-reduction pipeline (see our discussion in Section 6.1)
and/or the low atmospheric transmission. Interestingly, these maps indicate that the
achievable contrast varies significantly along an annulus of fixed angular separation. It
is particularly the case near the host star since the residual central halo is not isotropic.
Thus, the 2-D contrast information can be useful to derive an accurate estimation of
the achievable contrast given the 2-D angular location of a detected source.

6.6.3 SED estimation performance

In this section, we evaluate the performance of the SED estimation of point sources.
We first use numerical injections of fake point sources for the quantitative charac-
terization of PACO–ASDI. For this purpose, we use a dataset around HD 172555 (see
Section 6.6.1) with no detectable source. Figure 6.18 gives the wS/N map obtained
with PACO–ASDI and the combined signal-to-noise ratio maps obtained with other algo-
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Figure 6.18 – Detection maps (wS/N for PACO–ASDI and combined-S/N for the other
algorithms) around HD 172555 in the absence of fake point sources.

Table 6.3 – Angular separation, minimum, maximum, and mean contrast of the 12
fake point sources injected in the fourth dataset around HD 17255. The four sources
(#2, #5, #10, and #12) on which we perform additional Monte-Carlo estimations are
emphasized in bold font.

ID separation min[αℓ] max[αℓ] mean[αℓ]

#1 0.220" 2.3× 10−5 8.0× 10−5 5.0× 10−5

#2 0.306" 1.2× 10−5 5.0× 10−5 2.8× 10−5

#3 0.264" 1.3× 10−5 2.0× 10−5 1.8× 10−5

#4 0.399" 6.2× 10−8 3.0× 10−5 1.1× 10−5

#5 0.454" 3.3× 10−6 1.0× 10−5 6.6× 10−6

#6 0.682" 1.9× 10−7 9.0× 10−5 3.3× 10−5

#7 0.166" 1.8× 10−6 6.6× 10−6 3.8× 10−6

#8 0.187" 3.6× 10−6 1.5× 10−5 8.5× 10−6

#9 0.219" 4.1× 10−9 2.0× 10−6 7.5× 10−7

#10 0.318" 2.6× 10−6 4.0× 10−6 3.6× 10−6

#11 0.504" 3.3× 10−7 1.0× 10−6 6.6× 10−7

#12 0.618" 2.1× 10−6 7.0× 10−6 4.4× 10−6

rithms on this dataset, before injecting the fake point sources. While state-of-the-art
algorithms reveal several areas above the detection threshold at τ = 5, experts did not
identify consistent detection peaks by closer inspection. In addition, PACO–ASDI does
not identify any significant detection peak at 5σ. We inject 12 fake point sources in
the field of view with a variety of mean contrast and true SED. Table 6.3 gives astro-
metric and photometric information about fake point sources. Sources #1 to #6 have
a mean contrast lower or equal to 5× 10−5 while sources #7 to #12 have a mean con-
trast lower or equal to 8.5× 10−6. Figure 6.19 presents the wS/N maps obtained with
PACO–ASDI around HD 172555 with fake point sources #1 to #6 (left) and #7 to #12
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(right) simultaneously injected. Figure 6.20 gives contrast curves at 5σ obtained on
the considered dataset with PACO–ASDI comparatively to TLOCI-ADI. Contrast curves
indicate that sources #1 to #6, #8, #10, and #12 can be detected at 5σ by PACO–ASDI

while the sources #7, #9 and #11 are too faint to be detected from the S/Nℓ maps at
the considered angular separations.

Figure 6.21 shows the SED estimation for the 9 detectable fake sources obtained
by PACO–ASDI, TLOCI-ADI, and TLOCI-ASDI. These results show that the SED esti-
mations provided by PACO–ASDI are in good agreement with the ground truth since no
systematic photometric bias can be observed. We note only one significant discrepancy
between the estimated SED by PACO–ASDI and the ground truth occurring for source
#8 between 1.07 µm and 1.22 µm. This discrepancy can be explained both by the very
faint source contrast in this spectral band (lower than 5 × 10−6), the proximity with
the host star (angular separation equals to 0.187 arcsec), and the presence of a “dark”
speckle near the injection leading to a negative estimated source flux (thresholded at
0) at the corresponding wavelengths. The predicted SED confidence intervals also seem
coherent with the empirical standard deviation of estimation. The SED estimates ob-
tained by PACO–ASDI are qualitatively much better than those obtained with TLOCI.
To complete this statistical study, we consider 3 sources from the 12 previous ones
(sources #5, #10, and #12) for which we perform 30 Monte-Carlo injections / SED
estimations over a circular annulus (i.e., at constant angular separations). Figure 6.22
gives the 30 estimated SEDs obtained with TLOCI-ADI, KLIP-ADI, TLOCI-ASDI,
and PACO–ASDI and the mean estimations. The confidence intervals provided by the
different algorithms can be compared to the empirical 1σ confidence intervals. Table 6.4
complements this figure with statistical results in terms of photometric bias, agreement
between the predicted and the empirical confidence intervals, and root mean square
error (RMSE). These results show that PACO–ASDI is photometrically unbiased in the
sense that the photometric bias is negligible (about ±1% of the mean contrast of the
sources) without resorting to Monte-Carlo methods to estimate and compensate the
potential source self-subtraction phenomenon, as is common practice with most of the
state-of-the-art algorithms. In comparison, this relative photometric bias reaches in
most of the cases 4% of the mean contrast of the sources with other methods (excepted
for source #12 with TLOCI-ADI). The results of state-of-the-art methods are gener-
ally not better in ASDI than in ADI mode. This could be explained by the stronger
source self-subtraction that occurs when several spectral channels are processed jointly.
This observation illustrates why experts tend to apply preferentially ADI reduction
algorithms even on ASDI datasets by processing each spectral channel independently.
The empirical confidence intervals are also smaller with PACO–ASDI. The RMSE of the
estimated SEDs is reduced by a factor at least two by PACO–ASDI with respect to other
algorithms (on average, by a factor 3.6 for the three sources analyzed in Table 6.4).
Moreover, the confidence intervals provided by the method are in good match with
the observed standard deviations of the Monte-Carlo simulation: the ratio between the
predicted standard deviation and the empirical standard deviation is between 0.94 and
1.21 for PACO–ASDI, which is closer to one than for other methods (i.e., PACO–ASDI

confidence intervals are more reliable).

We also illustrate astrometric and SED estimations on the real point sources in
the first three datasets. Table 6.5 presents the estimated astrometry, and Figure 6.23
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gives the estimated SEDs with PACO–ASDI of the exoplanets HR 8799 c-d-e, β Pictoris
b and the background source HD 131399 Ab. The datasets are processed in a totally
unsupervised fashion as described in Section 2.4.6 for ADI datasets. A joint refinement
of the astrometry and photometry estimations of the source with the highest wS/N is
performed. Its estimated flux contribution is then subtracted to the data and the wS/N
map is updated using a conventional CLEAN approach (see Figure 6.23 for residual
wS/N examples). This procedure is repeated until no source at a significant level of
signal-to-noise ratio is detected in the wS/N map. These results are not corrected for the
SED of the host star. The estimated SEDs are quite smooth and coherent between one
spectral channel to the other with reliable confidence intervals. The spectrum extraction
is especially challenging for HD 131399 Ab since it is located near the borders of the
SPHERE-IFS field of view (see Figures 6.14 and 6.15), and the observing conditions of
the considered dataset were not particularly good (seeing about 1.30, see Table 6.2).
Nielsen et al. (2017) use photometric and astrometric estimations from VLT/SPHERE
and GEMINI/GPI to show that HD 131399 Ab is more likely a background brown dwarf.
This result was a revision of the previous status of HD 131399 Ab firstly considered as
an exoplanet just after its discovery and confirmation on the basis of (noisy) extracted
astrometry and photometry (Wagner et al., 2016). The difficulty to ascertain that HD
131399 Ab was an exoplanet based on the first observations illustrates the importance of
algorithms that can provide reliable astrometric and spectrum estimations. We expect
PACO–ASDI to help refining the estimated orbit and the spectral characterization of
future candidate companions.
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Figure 6.19 – wS/N maps obtained with PACO–ASDI around HD 172555 with injected
fake point sources #1 to #6 (left) and #7 to #12 (right).

Figure 6.20 – Contrast curves at 5σ obtained with PACO–ASDI comparatively to TLOCI-
ADI. The mean contrast of the fake faint point sources #1 to #12 is marked by orange
points.
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Figure 6.21 – Estimated SED of the detectable fake faint point sources (#1 to #6 plus #8, #10, and #12) obtained with PACO–ASDI

(green), TLOCI-ADI (blue), and TLOCI-ASDI (orange). The SED ground truths of the different fake faint point sources are marked
by black lines. The given 1σ confidence intervals are those predicted by the considered algorithms. A zoom around the ground truth
is added for sources #10 and #12.

241



Exoplanet detection and characterization with integral field
spectrographs

Figure 6.22 – Monte-Carlo estimated SED for fake point sources #5, #10, and #12
obtained with TLOCI-ADI, KLIP-ADI (5 PCA modes), TLOCI-ASDI, and PACO–ASDI.
For each of the 3 considered sources, the 30 Monte-Carlo SED estimations are given in
gray line. Red and blue lines compare the 1σ predicted confidence intervals to the em-
pirical ones centered on the mean estimated SED over the 30 Monte-Carlo estimations.
The SED ground truth of the considered sources is in black.
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Table 6.4 – Monte-Carlo validation of SED estimation methods. Best results are highlighted in blue while the worst results are in
red.

TLOCI-ADI KLIP-ADI TLOCI-ASDI PACO–ASDI

Source #5 : 〈αℓ〉ℓ = 6.6× 10−6

bias:
〈

〈α̂ℓ−αℓ〉
〈αℓ〉ℓ

〉
ℓ

-9.2% -7.4% +1.3% -0.7%
predicted std: 〈σ̂αℓ

〉ℓ 1.1× 10−6 1.0× 10−6 1.3× 10−6 6.2× 10−7

empirical std: 〈σαℓ
〉ℓ 1.8× 10−6 5.4× 10−6 1.5× 10−6 6.0× 10−7

ratio 〈σαℓ
〉ℓ
/
〈σ̂αℓ
〉ℓ 1.65 5.24 1.13 0.97

RMSE:
√
〈‖α̂−α‖2〉 1.9× 10−6 5.7× 10−6 1.6× 10−6 6.1× 10−7

Source #10 : 〈αℓ〉ℓ = 3.6× 10−6

bias:
〈

〈α̂ℓ−αℓ〉
〈αℓ〉ℓ

〉
ℓ

-4.2% +5.8% -4.7% -0.1%
predicted std: 〈σ̂αℓ

〉ℓ 1.3× 10−6 1.0× 10−6 1.3× 10−6 5.5× 10−7

empirical std: 〈σαℓ
〉ℓ 2.0× 10−6 1.9× 10−6 2.3× 10−6 6.7× 10−7

ratio 〈σαℓ
〉ℓ
/
〈σ̂αℓ
〉ℓ 1.54 1.90 1.78 1.21

RMSE:
√
〈‖α̂−α‖2〉 2.0× 10−6 1.9× 10−6 2.4× 10−6 6.9× 10−7

Source #12 : 〈αℓ〉ℓ = 4.4× 10−6

bias:
〈

〈α̂ℓ−αℓ〉
〈αℓ〉ℓ

〉
ℓ

-0.3% -38.5% +10.0% +1.1%
predicted std: 〈σ̂αℓ

〉ℓ 9.4× 10−7 6.0× 10−7 1.1× 10−7 6.0× 10−7

empirical std: 〈σαℓ
〉ℓ 1.5× 10−6 9.2× 10−7 1.5× 10−6 5.7× 10−7

ratio 〈σαℓ
〉ℓ
/
〈σ̂αℓ
〉ℓ 1.66 1.53 1.29 0.94

RMSE:
√
〈‖α̂−α‖2〉 1.6× 10−6 2.0× 10−6 1.7× 10−6 6.2× 10−7
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Figure 6.23 – Estimated SED using PACO–ASDI of the known real faint point sources of
the considered datasets (top: HR 8799 c-d-e, middle: β Pictoris b, bottom: HD 131399
Ab). The inserts (whose frame color is related to the color of the corresponding SED
curve) show a residual wS/N map after “cleaning” the contribution of the SED of the
detected source. Synthetic subpixel views (4 nodes per pixels) show with false colors
the aggregated flux of the detected sources along the different spectral channels (blue
for λ1 = 0.96µm and red for λ39 = 1.64µm).
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Table 6.5 – Estimated astrometry (separation and true-north aligned angle) of the real
faint point sources known in the used datasets with PACO–ASDI. The confidence intervals
are given at 1σ.

source est. sep. (arcsec) est. angle (°)

HR 8799 c 0.9425± 0.0031 328.31± 0.19
HR 8799 d 0.6636± 0.0065 218.94± 0.51
HR 8799 e 0.3834± 0.0068 274.80± 1.09
β Pictoris b 0.1423± 0.0063 216.25± 1.70

HD 131399 Ab 0.8412± 0.0065 194.74± 0.59

Based on the analysis of several ASDI datasets, PACO–ASDI shows several appealing
characteristics:

• It produces stationary and statistically grounded detection maps on the
whole field of view offered by the IFS. These maps can be directly interpreted
in terms of probability of false alarm and probability of detection.

• It demonstrates better detection sensitivity than other state-of-the-art
methods.

• It produces statistically-grounded 2-D contrast maps.

• It provides unbiased and automatically regularized SED estimation with
reliable confidence intervals.

PACO–ASDI main characteristics

6.7 Conclusion on PACO–ASDI’s capabilities

ASDI observations provide very rich data for the detection and characterization of
point sources such as exoplanets. Despite the large instrumental efforts in the design of
coronagraphic imaging, the separation of the signal of interest (off-axis sources) from
the background signal of the on-axis star has to be performed under adverse conditions:
strong temporal and spectral fluctuations, presence of spatially-structured evolutions
and contamination by outliers.

We have shown in this chapter that data-driven statistical modeling paved the way
to reliable source detection and source characterization methods. PACO–ASDI, the data
processing algorithm introduced in this chapter, produces detection maps with improved
sensitivity compared to existing methods. An important practical feature is the control
of the probability of false alarm: detection maps can be reliably thresholded. Using
the conventional 5σ threshold generally produces no false alarm in an IFS field. This
contrasts with detection maps obtained with other methods for which many false alarms
are observed, in particular at very small angular separations and close to the borders
of the field of view. Full exploitation of the field of view seems to be a feature of
PACO–ASDI that is shared by few other methods.
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The elaborate statistical model of PACO–ASDI, accounting for spatial, spectral, and
temporal fluctuations is also used to characterize the astrometry and photometry of the
detected point sources. By refining the model of the background jointly with the esti-
mation of the source SED and flux, the bias due to source self-subtraction is prevented.
The SED is estimated using an unsupervised spectral regularization. Our numerical
experiments show reduced estimation errors compared to standard methods.

Beyond the direct analysis of ASDI datasets, as PACO presented in Chapter 2,
PACO–ASDI also provides information on the achievable contrast as well as on the pho-
tometric and astrometric accuracies that are reached for given instrumental and obser-
vational conditions. The impact of different observation scenarios (spectral coverage,
parallactic rotation) can then be assessed using a data-driven model whose prediction
accuracy has been validated on real data.
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Chapter 7
Improved characterization of microscopic

objects with multi-spectral holography

Abstract

The main advantages of holographic microscopy are related to its simplicity, com-
pactness, low sensitivity of the setup to vibrations and the possibility to accurately
characterize objects. The cost-effectiveness of the method can be further increased
using low-end laser diodes as coherent sources and CMOS color sensors equipped
with a Bayer filter array. However, the central wavelength delivered by this type of
laser is generally known only with limited precision and can evolve because of its
dependence on temperature and power supply voltage. Besides, Bayer-type filters
of conventional color sensors are not very selective, resulting in spectral mixing
of signals from each color channel (crosstalk phenomenon). Ignoring this phe-
nomenon leads to significant errors in holographic reconstructions. We propose a
maximum likelihood estimation method to calibrate the setup (central wavelength
of the laser sources and spectral mixing due to the Bayer filters) using spheri-
cal objects naturally present in the field of view, or added as calibration objects.
This calibration method provides accurate estimates of the wavelengths and the
crosstalk, with an uncertainty comparable to that of a high-resolution spectrome-
ter. We show on experimental holograms that the self-calibration of the setup leads
to an improvement of the subsequent reconstructions.

This chapter, devoted to calibration algorithms for color holography, corresponds
chronologically to the first subject studied in this thesis.

7.1 Introduction

As discussed in Section 1.3.2, holographic microscopy is an established method to
characterize microscopic objects spread in a volume. The combination of this technique
with multiple sources of illumination (at different wavelengths) brings a diversity of
information useful to derive quantitative physical properties, i.e., to characterize the
samples of interest with an improved resolution and accuracy. Figure 7.1 illustrates

249



Improved characterization of microscopic objects with multi-spectral
holography

some current trends related to multi-spectral holography imaging applied in diverse ap-
plication fields. Among them, we can cite the imaging of human tissues for pathology
diagnosis (see Figure 7.1(a)) or the analysis with a holographic cytometer of samples
put into a fluid flow (see Figure 7.1(b)). Multi-spectral holographic microscopy can
also turn into a tomographic mode in which the samples are illuminated over time by
several coherent light sources under various angles of view giving access to the 3-D
time-evolving structures of the microscopic samples (see Figure 7.1(c)). In all these
applications, specific care is given to the design of setups ever more compact (see first
column of Figure 7.1). Their simplicity is generally counter-balanced by elaborate pro-
cessing of the recorded holograms. The cost-effectiveness of the setups can be further
improved by using consumer materials which are initially not designed to be used for
microscopy applications. For example, Rawat et al. (2017); Javidi et al. (2018) demon-
strate the possibility to conduct malaria disease diagnostic with an on-chip printed
shearing holographic microscope made of a mobile-phone’s CMOS camera and a DVD
player’s laser diode.

Whatever the application and the reconstruction strategy of the recorded holograms,
the quality of the reconstructions is potentially limited by additional sources of error
due to the imprecise knowledge of the setup parameters specific to multi-spectral holog-
raphy, in particular, those related to the sources and sensor. This is especially the case
in a cost-effective perspective in which conventional lasers are replaced by laser diodes
and the CMOS color sensor is equipped with a Bayer filter array to record the color
information in one shot with a single photodetector layer. In this chapter, we aim to
illustrate, estimate, and account for these limitations in the hologram reconstruction
methods. More specifically, we attempt to perform a self-calibration of the setup, i.e. to
estimate the source and sensor parameters directly from the recorded holograms with no
additional (expensive) element or calibration process required. Our approach is based
on the analysis of diffraction patterns that encode, in the form of signal modulation,
information about the setup parameters.

For this purpose, we consider the lensless color holographic setup presented in Figure
1.15 of Section 1.3.2.2.2. The three laser diodes are switched on simultaneously, and
the camera is a CMOS color sensor. Figure 7.2 reminds the configuration of this setup
and summarizes the main notations used throughout this chapter.

Section 7.2 addresses the possible sources of errors due to the incorrect calibration of
the color setup. Based on Section 1.3.2.2, Section 7.3 briefly recalls the general principle
of object reconstruction with a parameter-based inverse problem approach adapted to
color holograms. Section 7.4 describes a simple, fast, and accurate method to perform
the self-calibration of a color holographic setup; i.e. estimating the central wavelength
of the sources and characterizing the signal mixing taking place on Bayer-type color
sensors from the recorded holograms themselves. Section 7.5 describes how to account
for the self-calibration of the setup during the reconstruction step. We show that the
accuracy of both parameter-based and image-based reconstructions are improved when
the setup is correctly calibrated. Finally, Section 7.6 concludes this chapter. This
chapter is based on the journal paper Flasseur et al. (2017b) and the conference paper
Flasseur et al. (2018d). The starting point for this work was a study of color holography
conducted by Corinne Fournier and Nicolas Verrier.
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Figure 7.1 – Examples of applications of multi-spectral hologaphy. (a) pathology slides are imaged by a lensless holographic
microscope for clinical diagnoses, adapted from Zhang et al. (2019); (b) flowing water samples are imaged by a holographic microscope,
phase-contrast color images are reconstructed, adapted from Göröcs et al. (2018); (c) growing cells are imaged over time by a lensless
tomographic microscopy, 3-D + time views of the samples are reconstructed, adapted from Berdeu et al. (2018a,b).
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Figure 7.2 – Illustration of the considered color holographic setup. It is made of three laser diodes; one red (Thorlabs™, CPS635R,
1.5 mW), one green (Thorlabs™, CPS532, 4.5 mW) and one blue (Thorlabs™, CPS405, 4.5 mW); and a 12-bit CMOS color
sensor (Basler™, daA2500-14uc) with A × B = 1944 × 2592 pixels with a 2.2 µm pitch. The right part gives a schematic
representation of the setup presented in the left part.
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Figure 7.3 – Illustration of the laser diodes instability. Left: evolution of the mean
intensity received on our camera over time. Right: evolution of the central wavelengths
delivered by our laser diodes over time.

Table 7.1 – Ranges of wavelengths of the laser diodes used, as provided by the manufac-
turer. The central wavelength can evolve between λmin and λmax. λnom is the expected
nominal value at 20°C.

λmin (nm) λnom (nm) λmax (nm) temp. (°C) power (mW)
red source 630 635 645 -10 / 50 1.0 / 1.4

green source 531 532 533 10 / 40 4.0 / 5.0
blue source 400 405 410 -10 / 40 4.0 / 5.0

7.2 Calibration issues of holographic color mi-
croscopy

To ensure the compactness and cost-effectiveness of the setup, the sources used are
often laser diodes. For the same reason, the color sensor is often a single-channel color
sensor equipped with a Bayer filter. In this section, we describe the possible sources of
error during the reconstruction step in holographic color microscopy if no calibration
procedure is applied. It can be noted that the consequences of the lack of calibration
are similar when the reconstruction is performed with a conventional approach (light
backpropagation simulation) or with an inverse problem approach (see Section 1.3.2.2).

7.2.1 Calibration issues related to the wavelengths of the
sources

To perform reconstruction from color holograms, accurate knowledge of the wavelengths
of the laser sources is mandatory. Indeed, whatever the reconstruction approach; the
propagation kernel used in the classical reconstruction approach and the model describ-
ing the image formation both depend on the wavelength. In monochromatic holography,
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an error on the wavelength leads to an error on the depth of the reconstruction. In color
holography, errors on the wavelengths lead to a non-unique focus plane.

The present study is also justified by the development and the massive use of in-
expensive laser sources, which represent a good compromise between cost and perfor-
mance, compared to the high-end lasers commonly used in lensless microscopy. Unfortu-
nately, cost-effective lasers do not always deliver light at a wavelength that matches the
nominal value announced by the manufacturer (Garcia-Sucerquia, 2016). Wavelengths
can also evolve during the experiment due to the heating of the lasers or fluctuations
of the power level (unless they are stabilized by control loops). This phenomenon is
illustrated in Figure 7.3 representing the evolution of the mean intensity (average of
pixel values) received on our camera over time as well as the evolution of the central
wavelengths delivered by our laser diodes measured with a high-resolution spectrome-
ter (OceanOptics™, QE65000). Table 7.1 gives the ranges of wavelengths provided
by the manufacturer for the three laser diodes that we use, for the temperature and
power operating ranges given by the manufacturer. The measured evolution of the
central wavelength of the laser diodes is in agreement with the values given by the
manufacturer.

In the following, the row vector λ = (λR, λG, λB) designates the set of the wave-
lengths of the three sources. The optional exponent indicates the set of wavelengths
considered, e.g., λnom = (λnom

R , λnom
G , λnom

B ).
Conventionally, when estimating the object depth zp (i.e., the distance from the

object to the sensor), the source wavelength λ is kept fixed. However, under Fres-
nel assumption, Fresnel free-space propagator h (x, y) depends on the product λ zp:
h (x, y) ∝ exp [jπ (x2 + y2) /(λ zp)], see Goodman (2005). As a result, the imprecision
∆zp

on the estimated value zp is related to the imprecision ∆λ on the wavelength λ of
the source through:

∆λ

λ
=

∆zp

zp
. (7.1)

According to Equation (7.1) and the uncertainties on the wavelengths listed in Ta-
ble 7.1, the maximum bias ∆max

zp
on the estimated parameter zp can reach 1 mm for

an object located 7 cm from the sensor plane. This error appears to be prohibitive
for the optical metrology applications that we consider (in particular, for 3-D measure-
ments in fluids mechanics). In the case of a discrepancy between the real wavelengths
λreal =

(
λreal

R , λreal
G , λreal

B

)
and the wavelengths considered in the diffraction model, inde-

pendent reconstructions of the holograms recorded in each color channel lead to three
different depths for a given object p. These three independently estimated distances
{zest

R , zest
G , zest

B } differ from the actual distance of the object zp according to the following
system of equations:





λnom
R zest

R = λreal
R zp ,

λnom
G zest

G = λreal
G zp ,

λnom
B zest

B = λreal
B zp .

(7.2)

Rather than using the nominal values given by the manufacturer, these wavelengths
should be calibrated, either using a spectrometer during a calibration step or a self-
calibration approach, as described in Section 7.4.2.
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Figure 7.4 – Spectral responses of Bayer filters of our color CMOS camera. The nominal
wavelengths (λnom

R , λnom
G , λnom

B ) provided by the manufacturer of our laser diodes are also
indicated.

7.2.2 Calibration issues related to the CMOS color sensor

In a cost-effective perspective, color sensors using CMOS technology and a Bayer
filter are a preferred choice. In this part, we describe the different crosstalk phenomena
which occur on this type of sensors as well as their possible consequences during the
holographic reconstruction.

The term crosstalk refers to the undesirable effects that occur when a signal trans-
mitted on a channel modifies or impacts signals transmitted on the other channels.
This global phenomenon leads to a reduction in sensitivity, poor separation of colors,
and degradation of spatial and frequency resolution. The main crosstalk phenomena
appearing on color sensors are spectral, optical, and electronic (Li et al., 2002; Getman
et al., 2007; Blockstein and Yadid-Pecht, 2010). In the following sections, we give a
brief description of each of them, focusing on how to quantify and reduce them.

7.2.2.1 Spectral crosstalk

CMOS sensors classically used in color holographic microscopy generally do not cap-
ture a trichromatic information at each photodetector (Hubel et al., 2004; Tankam et al.,
2010). Photodetector sites are rather covered by a matrix of chromatic filters called a
Bayer color filter array (Bayer, 1976), which filters the incident light by transmitting
only one of the three primary components at each pixel. This so-called mosaicking
step is mandatory to record color images with this type of sensor since the photodetec-
tors used are sensitive to incident wave intensity over a wide spectral range. Spectral
crosstalk is due to the Bayer filter covering the photodetector layer of the CMOS color
sensors: their spectral responses are not ideal bandpass (Göröcs et al., 2010). Figure
7.4 shows the spectral responses as a function of the wavelength for the filters of our
CMOS color sensor. A significant overlap between the different spectral responses can
be noted. As a consequence, a signal mixing occurs on the different sensor channels of
our color CMOS camera. Figure 7.5 illustrates this signal mixing by showing that a
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Figure 7.5 – Recorded intensity on each of the three planes of our color CMOS camera
under (quasi) monochromatic illuminations provided by our three laser diodes. The
imaged object is a circular chromium deposit. The superimposed values corresponds
to the mean intensities measured on each channel of the camera under monochromatic
illumination.

non-zero signal is received on the different channels of the color sensor when a hologram
is generated by a (quasi) monochromatic illumination.

Yamaguchi et al. (2002) have presented one of the first use of digital sensors equipped
with a Bayer filter for a color holography application. The spectral crosstalk was men-
tioned in the sensor spectral responses, but its characterization was not addressed. A
simple average of the light intensity received on each channel during a monochromatic
exposure does not provide a sufficiently accurate estimate of the spectral crosstalk. For
example, some time-varying fringes can be observed on the background of the holograms
recorded with cost-effective cameras, see Figure 7.5. These fringes may be produced by
a parallelism defect of the fine glass slides that protect the detector and/or by inhomo-
geneities of the optical index near these slides due to the heating of the sensor. This
phenomenon makes it difficult to characterize the spectral crosstalk since the number
of dark fringes does not remain constant during the recording, whereas the spectral
crosstalk phenomenon remains constant. Actually, we show in Section 7.4.2.2 that ac-
curate estimations of the crosstalk contributions present a significant discrepancy with
mean intensities measured on each channel of the camera under monochromatic illumi-
nation (see Figure 7.5). As a consequence, the gold standard method for quantitatively
studying the spectral crosstalk phenomenon remains the measurement of the spectral
responses of the Bayer filters. For example, Ozcan’s group at UCLA has recently pro-
posed to use a setup composed of a broadband laser source coupled to an acousto-optical
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7.2. Calibration issues of holographic color microscopy

Figure 7.6 – Illustration of the different types of crosstalk occurring on a color CMOS
sensor: (a) spectral crosstalk; (b) optical crosstalk; (c) electronic crosstalk.

filter that can be adjusted in wavelength around a fine bandwidth to accurately measure
the spectral response of the filters (Wu et al., 2016).

To reduce the influence of spectral crosstalk, it is possible to use more selective
pigments to stain Bayer filters such as those developed by Micron Technologies™,
Aptina. It is also possible to reduce the visual degradation induced by spectral crosstalk
with additional numerical processing and/or with a configuration of the color filter
array different from that proposed by Bayer (Hirakawa and Wolfe, 2007; Anzagira
and Fossum, 2015). However, in digital holography, the low-pass filtering induced by
demosaicking attenuates the high frequencies and blurs the reconstruction, which makes
this solution unsatisfactory. Note that, it has been recently proposed to replace the
traditional color filter array by a plasmonic color filter directly lithographed close to the
photodetectors (Chen and Cumming, 2010; Yokogawa et al., 2012; Yu et al., 2015). This
method has the advantage of simultaneously reducing the spectral and optical crosstalk
while increasing the transmission of the filters. This method is not yet applicable in a
low-cost scheme, though.

Rather than trying to reduce this phenomenon, we show in Sections 7.4 and 7.5 a
method to model and estimate the signal mixing induced by this crosstalk phenomenon
and to take it into account in the hologram processing algorithms for applications in
color holographic microscopy.

7.2.2.2 Optical crosstalk

Optical crosstalk occurs when the incident angle becomes too large for the mi-
crolenses array to focus light on the photodetector immediately below. In this case, a
portion of the signal of interest may be lost in the gap that separates two adjacent pho-
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todetectors or, worse, may impact a neighboring photodetector. Figure 7.6 illustrates
this phenomenon. No optical crosstalk occurs at null or weak incidence angles (cases
(b) 1 and (b) 2 ). At higher incidence angles (case (b) 3 ), optical crosstalk can occur.

Since it is difficult to study this effect without taking into account the influence of
other crosstalk phenomena, its importance is mainly determined by numerical simula-
tions (Agranov et al., 2001). Since the incidence angle of the light beams striking the
pixels located at the edge of the sensor is naturally higher than for pixels in the central
part of the sensor, it is possible to optimize the placement of the microlenses with re-
spect to the Bayer filters (by slightly shifting their center), to favor the convergence of
the rays on the photodetectors of interest and thus reduce the optical crosstalk (Agra-
nov et al., 2003). It is also possible to apply surface treatments (e.g., anti-reflective) to
the surface of photodetectors (Furumiya et al., 2001).

In holographic microscopy, local optical crosstalk can be disregarded since the laser
is collimated and thus the incidence angles of the light on the sensor are small (less
than 2°).

7.2.2.3 Electronic crosstalk

Electronic crosstalk is due to an interaction between signals received at two neigh-
boring photodetectors. Some electrons created as a result of the detection of light in
the depletion zone are diffused to adjacent photodetectors. This results in an additional
error in the signal of interest, as illustrated in Figure 7.6 (case (c)).

This phenomenon is commonly quantified by the use of an S-cube system to illu-
minate a single pixel (at normal incidence) and thus measure the proportion of signal
leaking to the neighboring pixels due to the electronic crosstalk effect (Blockstein and
Yadid-Pecht, 2010).

Since the advent of CMOS sensors, many improvements and optimizations of the
architecture have been made by foundries to limit the effects of electronic crosstalk. It
can be considerably reduced by adding an insulating cage around neighboring photode-
tectors which acts as a waveguide (Furumiya et al., 2001; Hsu et al., 2004; Estribeau
and Magnan, 2005; Koo et al., 2007). This technique also reduces the optical crosstalk
(Hsu et al., 2004). It is also possible to increase the depth of the substrate (Furumiya
et al., 2001).

While this effect is generally negligible compared to spectral crosstalk for wave-
lengths lower than 650 nm (Estribeau and Magnan, 2005), its possible effects are also
taken into account in the overall crosstalk estimation scheme presented in Section 7.4.

7.2.2.4 Summary of crosstalk effects

Table 7.2 summarizes the causes and the conventional means of estimating and
correcting the various crosstalk phenomena.

Section 7.4 demonstrates that inaccuracy on wavelengths of cost-effective laser
diodes, as well as the crosstalk phenomena, can significantly degrade the performance of
the holographic reconstruction. We detail in Section 7.4 a simple, fast and cost-effective
experimental method to reduce the uncertainty on the wavelength of the sources and
to characterize the crosstalk phenomenon.
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Table 7.2 – Main characteristics of spectral, optical and electronic crosstalk phenomena.

spectral optical electronic

cause Bayer filters microlenses electrons leakage

classical method Bayer filters numerical S-cube system
of quantification responses simulations

classical methods filters improvement, microlenses position, waveguide,
of reduction processing photodetector treatment deep substrate

• The diversity of information brought by a color holographic setup can im-
prove the accuracy of the hologram reconstructions thanks to the modula-
tion of the recorded signal on different color channels.

• However, from a cost-effective perspective, the camera is generally a CMOS
sensor equipped with a Bayer filter array, and the sources are generally
low-end laser diodes. These two elements are subject to several limitations:

• the central wavelength of laser diodes is known inaccurately due to their
temperature and power supply dependence,

• a signal mixing (crosstalk phenomenon) occurs on the different channels
of the CMOS sensor due to Bayer filters.

• These limitations are the cause of errors during the reconstruction step
limiting the performance of holographic microscopy for optical metrology
applications if these effects are not estimated and taken into account.

⇒ An accurate and cost-effective calibration of the setup is needed.

Low-cost color holographic setup: the need for calibration

7.3 Reconstruction using a parameter-based in-
verse problem approach

As detailed in Section 1.3.2.2, based on an adequate image formation model,
parameter-based inverse problem approaches provide accurate reconstructions that are
“optimal” in a signal processing point of view, under an additive white Gaussian noise
hypothesis. They have been successfully used for optical metrology applications (Lee
et al., 2007; Soulez et al., 2007a; Seifi et al., 2013; Verrier et al., 2016) and appear to
be the best methods to calibrate a monochromatic holographic setup (Verrier et al.,
2014). We propose to use such an approach to reconstruct a spherical opaque object
naturally present in the field of view or added as calibration object and thus obtain
an accurate (i.e., low bias and standard deviation) self-calibration of the setup. The
proposed method can be considered cost-effective as it only requires a spherical object
in addition to the holographic color microscope. Hereafter, we give some basics and
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Figure 7.7 – Illustration of the Bayer filters and associated weighting matrices wc for
each color channel.

mathematical formulation of the parameter-based reconstruction method presented in
Section 1.3.2.2, which is here adapted to the reconstruction of color holograms.

We consider an opaque sphere characterized by the parameter vector θ =
{xp, yp, zp, rp} in which {xp, yp} represent the longitudinal coordinates in the object
plane, zp is the depth coordinate, and rp is the radius of the object, see Figure 7.2.

The intensity diffracted by the object and recorded at the {x, y} position in the
sensor plane on channel c (c ∈ {R,G,B}) is:

mc
θ(x, y) = mc

0 − αcλ(c).gλ(c),θ(x, y) , (7.3)

in which mc
0 is an offset representing the intensity of the illumination wave, αcλ(c) is

the amplitude factor of the interference pattern and gλ(c),θ represents the analytical
model of the diffraction pattern for the object characterized by the parameters set θ

and illuminated by a plane wave at wavelength λ(c).
Since the opaque sphere is illuminated by a collimated coherent source and zp is

chosen so that zp ≫ 4π r2
p

minc λ(c)
, gλ(c),θ can be described by a simplified Thompson’s model

(Tyler and Thompson (1976), see Section 1.3.2.2) in which the second order interference
terms are neglected:

gλ,θ(x, y) =
π r2

p

λ zp
J1c

(
2π rp ρp
λ zp

)
sin

(
π ρ2

p

λ zp

)
, (7.4)

where ρp =
√

(x− xp)2 + (x− yp)2 is the transversal distance to the center of the sphere
and J1c = J1(u)/u is the cardinal Bessel function of the first order.

Therefore, the color hologram model mθ(x, y) at position (x, y) on the sensor plane
is the vector given in Equation (7.5) in which each component is associated with one
of the three sensor channels c ∈ {R,G,B}:
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Figure 7.8 – Illustration of the effect of demosaicking on simulations of color holograms
recorded with a CMOS camera covered by a Bayer filter array. The simulated object is
a bead of rp = 20µm radius centered on the field of view, and located at zp = 0.01 m
from the sensor plane. The bias on the estimation of the 2-D location of a spherical and
opaque bead is given for different levels of S/N. Reference: the simulated holograms
are formed of three full channels (no Bayer filters, i.e. no missing data) as it would be
recorded by a full-frame trichromatic color sensor. Bayer: no demosaicking is applied
on the simulated holograms, missing data are taken into account via the weights matrix
wc. Bayer + copy, Bayer + bilinear, Bayer + Malvar: the simulated color holograms
are demosaicked with neighbor pixel copy, bilinear or Malvar (Malvar et al., 2004)
interpolations, respectively. The Malvar method is based on a bilinear interpolation
and accounts for the presence of edges in the images.

mθ(x, y) =




mR
θ (x, y)

mG
θ (x, y)

mB
θ (x, y)


 . (7.5)

The inverse approach consists of finding the best set of parameters θ from the
recorded color hologram d, i.e., the set θ that minimizes, in the least-squares sense, the
distance to the data:

C (θ) =
∑

c∈{R,G,B}

A∑

a=1

B∑

b=1

wc(a, b). (dc(a, b)−mc
θ(a, b))2 , (7.6)

in which wc is a binary weighting matrix of size A × B describing the Bayer mask
(wc is equal to zero for 75% of the red and blue channels and for 50% of the green
channel as shown in Figure 7.7) and possibly any defective pixel on channel c. More
generally, wc(a, b) stands for the inverse of the noise variance at pixel (a, b) on channel
c (Fournier et al., 2014), as also discussed in Section 5.2.1. The estimation process
is performed jointly on the three channels. Figure 7.8 illustrates the importance of
taking into account missing data with the wc matrices for accurate estimation of object
properties from color holograms recorded by a sensor equipped a Bayer filter array. It
emphasizes that a demosaicking of each color channel of the hologram (i.e., replacement
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of missing data by interpolated values from neighboring data) leads to larger bias than
the absence of a demosaicking step, whatever the interpolation technique used. It can
be explained by the low-pass filtering (i.e., blurring of the hologram fringes) induced by
the demosaicking step. This figure also illustrates that the choice of the interpolation
method can severely impact the quality of the demosaicking. For example, the method
consisting of replicating the nearest data of missing pixels (denoted “Bayer + copy” in
Figure 7.8) is generally the worst of the tested strategies (see upper curves in left part
of Figure 7.8).

7.4 Self-calibration of a color microscope

The self-calibration process described hereafter has several advantages. First of
all, it can be considered as a cost-effective method as it only requires a spherical and
calibrated opaque object. It is also simple to implement and fast. The overall process
takes less than 4 minutes to obtain an estimate of the wavelengths and 5 minutes to
obtain an estimate of the crosstalk phenomenon (Matlab™ code launched on 1 core,
processor Intel™ i7-4800MQ at 2.70 GHz) which seems reasonable in comparison with
experimental measurement of these parameters with high-end devices.

To study the proposed calibration method, we used a chrome deposited opaque
object behaving as an opaque sphere. Its radius is 15µm (Optimask™, diameter
± 1µm, roundness error ± 0.25µm). It should be noted that, in practice, any spherical
opaque object can be used.

7.4.1 Estimation of the wavelength of the sources

From Equation (7.2), it is clear that it is impossible to jointly estimate the three
wavelengths values as well as the zp parameter (three equations for four unknown). It is
thus necessary to select one of the wavelengths as a reference that will not be estimated.
In practice, the laser source with the smallest uncertainty is chosen. As a result, in the
following it is assumed that λreal

G is equal to λnom
G , since the green laser wavelength

used has the smallest manufacturer uncertainty (± 1 nm, see Table 7.1). We briefly
discuss in Section 7.4.1.3, how this problem could be circumvented to estimate also the
reference wavelength with a more expensive setup.

7.4.1.1 Wavelength calibration in color holography with a parameter-based
inverse approach

Step 1 : Acquisition of three monochromatic holograms at the wavelengths λreal.
Step 2 : Independent reconstruction of each hologram using the inverse parameter-
based approach with nominal wavelength values λnom. At the end of this step, estimated
parameters {xest

{R,G,B}, y
est
{R,G,B}, z

est
{R,G,B}, r

est
{R,G,B}} are obtained.

Step 3 : Coarse estimation of the wavelengths of the sources. It can be deduced
from the hypothesis that λreal

G equals λnom
G that zest

G and rest
G are respectively the best

estimation of zp and rp in the current step. From Equations (7.1) and (7.2), a first
estimated wavelength of the red and blue sources is given by:
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λest1

R = λnom
R + ∆λR

≈ λnom
R + λnom

R .
zest

G
−zest

R

zest
G

λest1

B = λnom
B + ∆λB

≈ λnom
B + λnom

B .
zest

G
−zest

B

zest
G

.
(7.7)

Step 4 : Refinement of the red and blue wavelengths. This estimation is carried out
using an inverse problem approach in which the parameters zp and rp are jointly esti-
mated. The transversal coordinates (xp, yp) and the red and blue wavelengths are also
estimated. The estimation process is initialized to the most accurate parameter values
available at this step: {xest

{R,G,B}, y
est
{R,G,B}, z

est
G , rest

G } and
(
λest1

R , λnom
G , λest1

B

)
. At the end of

this step, a second estimated wavelength
(
λest2

R , λnom
G , λest2

B

)
of the sources is obtained.

It is important to note that Step 3 is a first estimate to be refined in Step 4 . By
initializing Step 4 to estimated parameters closer to the real parameters than those
available in Step 2 , the computation time of Step 4 is reduced. It also reduces the
risk of converging to a local minimum of the cost function given in Equation (7.6).

7.4.1.2 Experimental results and discussion

This method is applied to a set of 65 experimental holograms (zp ≃ 7 cm, rp = 15µm
transversely shifted by a few pixels from each other). The obtained results are compared
with measured wavelengths using a high-resolution spectrometer (OceanOptics™,
QE65000). Before running our experiments, we have calibrated it with care by measur-
ing the spectral rays of a mercury lamp (Philips™, 93136E). Second-order polynomial
interpolation is also applied to reduce measurement inaccuracy of the spectrometer from
0.8 nm to 0.3 nm on the central wavelength of the laser. Table 7.3 lists the mean value
and standard deviation of estimated wavelengths {λest2

R , λest2

B } (line 1 and 3) as well as
the measured wavelengths (line 2). Line 1 gives the estimates if the green wavelength is
set at its nominal value λnom

G (no use of the spectrometer) and line 3 gives the estimates
if the green wavelength is set at the wavelength λmes

G measured using the spectrometer.

Table 7.3 – Estimated and measured wavelengths of the sources.

λR (nm) λG (nm) λB (nm)

estimation
(
λref

G = λnom
G

)
638.3 ± 0.2 532 (ref.) 403.3 ± 0.2

high-resolution spectrometer 637.8 ± 0.3 531.4 ± 0.3 402.9 ± 0.3
estimation

(
λref

G = λmes
G

)
637.6 ± 0.2 531.4 (ref.) 402.8 ± 0.2

Within our experimental framework, it appears that the hypothesis assimilating
the real green wavelength to its nominal value results in an overestimation of 0.6 nm.
By considering the Equation (7.1) and a unique z for the three wavelengths, this bias
generates a theoretical overestimation of 0.7 nm for the red wavelength as well as a
theoretical overestimation of 0.5 nm for the blue wavelength. This is in agreement with
the measured wavelengths of the sources obtained experimentally.

This method is constrained by the hypothesis that one of the three nominal wave-
lengths can be considered correct. The uncertainty on the estimated wavelengths (for
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Figure 7.9 – Illustration of the effect of the spectral width of a laser source at λnom =
435 nm of 0.4 nm FWHM. Top: impact illustrated on the Fresnel propagation kernel.
Bottom: resulting impact on a hologram simulation.

the two other sources) increases with the manufacturer uncertainty range for the wave-
length chosen as reference. In this experiment, this hypothesis generates an uncer-
tainty of ± 1 nm on the wavelength value of this source. This leads to an uncertainty of
± 1.2 nm on the estimated red wavelength λest2

R and uncertainty of ± 0.8 nm on the esti-
mated blue wavelength λest2

B . Thus, using this estimation procedure reduces the uncer-
tainty on the range of wavelength from 15 nm (manufacturer value) to 1.2× 2 = 2.4 nm
for the red source. Similarly, the uncertainty on the range of wavelength has been re-
duced from 10 nm (manufacturer value) to 0.8 × 2 = 1.6 nm for the blue source. It is
thus shown in Table 7.3 line 3, that using the value measured with an high-resolution
spectrometer for λreal

G leads to a very accurate estimation of the other two wavelengths.
Moreover, beyond the relative precision of the estimation, it should also be noted

that the deviations between the different estimated wavelengths are equal to the devi-
ations between the different measured wavelengths. This point again emphasizes the
interest of this method to improve the quality of the reconstructions. The limit of the
method is reached when the uncertainties on the range of wavelength associated with
each source provided by the manufacturer are similar. In that case, there is no gain in
applying this method for absolute wavelength estimation. It is still beneficiary to refine
the wavelengths in order to obtain the same focus distance at each wavelength when
performing a joint multi-spectral reconstruction.

The proposed method is limited to estimating the central wavelength of the sources,
while in practice laser diodes deliver a quasi-monochromatic light, only. In our setup,
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according to the datasheets of our laser diodes, a temperature variation may also result
in a slight change in the shape of the laser emission spectrum. In the literature, the
effects of the spectral width of the light source on the hologram formation have been
studied. It is shown that a non-monochromatic source generates an apodization of the
propagation impulse response by a super-Gaussian function depending on the spectral
width of the source (Nicolas et al., 2006, 2007). Thus, it could be possible to estimate
this effect as an additional parameter in our hologram formation model (7.4). How-
ever, it appears that the spectral width of the sources is less crucial than their central
wavelength. Indeed, Figure 7.9 gives an example of hologram simulations taking into
account or not the typical FWHM of the spectral responses of our laser diodes which is
about 0.4 nm. It shows that only the amplitude of the diffraction pattern is (slightly)
impacted by the apodization induced by the width of the spectral responses of our lasers
while the localization of the interference fringes is preserved. Indeed, not taking into
account the spectral width in the image formation model (Equations (7.3) and (7.4))
results only in a small impact on the minimization of (7.6): the model mismatch is
small given the signal-to-noise ratio of the holograms.

7.4.1.3 Estimation of the reference wavelength

As discussed in the previous section, our wavelength calibration procedure requires
a prior on one wavelength value, which is kept fixed and not estimated. In this section,
we briefly describe how the reference wavelength could be estimated jointly with the
others using a more expensive setup (with an accurate translation stage).

The setting of a reference wavelength is due to the impossibility to jointly estimate
the three wavelengths as well as the zp parameter from Equation (7.2) with a single color
hologram. The system underdetermination can be alleviated by recording several color
holograms obtained with the same object at different known defocus. For example, the
recording of two holograms resulting from the illumination of a spherical object at zp
and zp + zshift, where zshift is a known axial displacement of the object between the two
acquisitions, leads to the following systems of equations:





λnom
R zest

R = λreal
R zp ,

λnom
G zest

G = λreal
G zp ,

λnom
B zest

B = λreal
B zp ,

and





λnom
R z′ est

R = λreal
R (zp + zshift) ,

λnom
G z′ est

G = λreal
G (zp + zshift) ,

λnom
B z′ est

B = λreal
B (zp + zshift) ,

(7.8)

which is no longer underdetermined (six equations for four unknown parameters
{zp, λreal

R , λreal
G , λreal

B } to be estimated).
For the same object parameters as the ones used in Section 7.4.1.2 (i.e. zp ≃

7 cm, rp = 15µm), our numerical Monte-Carlo hologram simulations (with an additive
white Gaussian noise at S/N = 5) lead to a mean bias of about 0.1 nm on the three
estimated wavelengths when zshift is perfectly known. When zshift is known within
5µm, the mean bias on the three estimated wavelengths is up to 0.2 nm, which stays
below the systematic error due to the hypothesis of a reference wavelength, see Section
7.4.1.2. However, these simulations emphasize that the axial shift zshift of the object
should be known with relatively good precision to achieve a low estimation bias on the
wavelengths. In practice, such precision on the object displacement may be obtained
only with a precision translation stage, which was not part of our cost-effective setup.

265



Improved characterization of microscopic objects with multi-spectral
holography

Figure 7.10 – Parameter-based estimation principle of channel mixing coefficients in-
duced by crosstalk phenomenon.

7.4.2 Calibration of the crosstalk phenomenon affecting the
sensor

As detailed in Section 7.2, the optical crosstalk which is spatially dependent can be
neglected in holographic microscopy. In the following, we do not attempt to separate
the contribution of the spectral crosstalk and the electronic crosstalk, but rather obtain
an estimate of the overall crosstalk that can be included in the hologram formation
model to improve the quality of the holographic reconstructions.

As a result, the proposed self-calibration method consists in determining a unique
set of coefficients modeling the mixture of the signals received on each channel due to
both the spectral and the electronic crosstalks.

7.4.2.1 Principle of crosstalk estimation using the parameter-based inverse
approach

Once the central wavelengths of the lasers are calibrated, it remains to estimate the
crosstalk phenomenon. In this section, we propose a simple experimental method based
on an inverse parameter-based approach to determine the mixing coefficients between
the different color channels, for a trichromatic illumination (the calibrated ones resulting
from the procedure described in Section 7.4.1). In the presence of crosstalk, Equation
(7.3) modeling the intensity diffracted on channel c should be changed to take into
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Figure 7.11 – Estimated crosstalk contributions q of the crosstalk matrix Qexp1
from

65 sets of three color holograms recorded by the color CMOS sensor #1. From left to
right, crosstalk contributions induced by the red, green, and blue laser diodes.

account the mixture of signals coming from the different channels:

mc
θ(x, y) = mc∗

0 −
3∑

ℓ=1

αcλ(ℓ).gλ(ℓ),θ(x, y) , (7.9)

where αcλ(ℓ) represents the multiplicative factor between the holographic data recorded
on channel c ∈ {R,G,B} and the model generated at the wavelength λ(ℓ), mc∗

0 is the
offset that results from mixing offsets mR

0 , mG
0 and mB

0 .
The signal ratio qcλ(ℓ) produced by illumination at wavelength λ(ℓ) and which is ac-

tually recorded on sensor channel c due to the spectral crosstalk effect can be estimated
by:

qcλ(ℓ) =
αcλ(ℓ)∑

c∈{R,G,B}
αcλ(ℓ)

⇒ Q =



qR

R qG
R qB

R

qR
G qG

G qB
G

qR
B qG

B qB
B


 . (7.10)

Thus, the mixing matrix Q characterizes the crosstalk effect. Its nine mixing co-
efficients qcλ(ℓ) are obtained by recording the three color holograms produced by the
illumination of an opaque disk at the three available wavelengths. For each of these
three holograms, reconstructions have to be carried out for each of the three channels
using a parametric model for each wavelength. The multiplicative factors αcλ(ℓ) corre-
spond to the correlation coefficient between data recorded on channel c illuminated by
wavelength λ(ℓ) and the model at this same wavelength. The principle of the crosstalk
calibration method is illustrated in Figure 7.10 for wavelength λR.

As detailed in Section 7.2, the crosstalk phenomenon cannot be accurately esti-
mated by an average of the intensities received on each channel due to the nonuniform
background varying over time. The proposed calibration method takes advantage of
the modulation of the recorded signal induced by the holographic object to accurately
estimate this phenomenon.
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Table 7.4 – Estimated crosstalk mixing matrices Qexp1
and Qexp2

(in percent) for two
different color CMOS sensor as well as manufacturer’s spectral crosstalk mixing matrix
Qm (in percent), roughly deduced from the sensor datasheet (see Figure 7.4).

red channel green channel blue channel

Qexp1
: Estimated crosstalk matrix on sensor #1

red laser 74.9 ± 0.1 15.4 ± 0.1 9.7 ± 0.1
green laser 11.7 ± 0.1 72.4 ± 0.2 15.9 ± 0.2
blue laser 14.0 ± 0.1 11.1 ± 0.1 74.9 ± 0.1

Qexp2
: Estimated crosstalk matrix on sensor #2

red laser 75.6 ± 0.1 14.9 ± 0.1 9.5 ± 0.1
green laser 11.5 ± 0.1 72.3 ± 0.2 16.2 ± 0.2
blue laser 13.9 ± 0.1 11.2 ± 0.1 75.0 ± 0.2

Qm: Manufacturer’s crosstalk matrix
red laser 74 16 10

green laser 12 70 18
blue laser 14 14 72

7.4.2.2 Experimental results and discussion

Table 7.4 gives the estimated mean and standard deviation (related to the standard
deviation of the estimated parameters θ) of the crosstalk mixing matrices Qexp1

and
Qexp2

obtained from 2 batches of 65 sets of three color holograms recorded on two differ-
ent color CMOS sensors (#1 and #2) of the same make at the respective wavelengths
{λreal

R , λreal
G , λreal

B }. Figure 7.11 presents each crosstalk estimation characterizing sensor
#1. Table 7.4 also gives the Qm mixing matrix extracted from the sensor datasheet,
see Figure 7.4.

Using this self-calibration scheme, it appears that the mixing coefficients estimated
are close to those deduced from the manufacturer spectral responses of the Bayer fil-
ters. This indicates that the crosstalk effect of our camera is mainly due to the spectral
crosstalk (the electronic crosstalk effect being negligible). Thus, it appears that for each
channel, approximately 25% of the signal of interest is transferred to the two other chan-
nels due to the crosstalk effect. This observation suggests that it is important to take
this phenomenon into account in the holographic model used during the reconstruction
step. Note that, in practice, only one set of holograms is needed to obtain a spectral
crosstalk estimation (whose standard deviation is given in Table 7.4). The application
of this method to another camera of the same make leads to a similar crosstalk matrix.
Minor variations can be attributed to the camera’s variability (e.g., homogeneity of the
filters, local orientation of the microlenses, etc.).

In the following paragraph, it will be shown that it is beneficial to estimate more ac-
curate mixing matrix than the ones of the datasheet of the sensor. Indeed, a significant
discrepancy can be observed for the blue light intensity distribution on the different
channels between the estimated values and the values derived from the manufacturer
datasheets.
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• We propose an experimental, simple and fast method to calibrate color
holographic setups, i.e.:

• estimate the central wavelength of the sources,

• estimate the mixing contributions of the crosstalk phenomenon.

• The estimation method is based on the reconstruction of holograms of spher-
ical absorbing objects (naturally present in the field of view or added as
calibration object) using an inverse problem approach.

• We show on experimental holograms that this method leads to accurate
estimations comparable to that obtained using a high-resolution spectrom-
eter.

Self-calibration of color holographic setups

Figure 7.12 – Principle of crosstalk correction.

7.5 Improving object reconstruction with self-
calibration

Once the central wavelength of the sources and the crosstalk phenomenon occur-
ring on CMOS color sensors are both calibrated, they can be accounted for in the
hologram formation model to improve the quality of the reconstructions whatever the
strategy used. In the following, we explain how to account for the calibration in the
reconstruction process and show that the proposed approach is beneficial.

7.5.1 Accounting for self-calibration in physics-based models

Accounting for the calibration of the sources is straightforward since the set of
wavelengths λ is replaced by the estimated one λest in the hologram formation mod-
els. Accounting for the crosstalk phenomenon is also simple since the color hologram
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Table 7.5 – Bias and standard deviation on estimated parameters zp and rp without
crosstalk correction (1st line), with crosstalk correction using Qm (2nd line) and with
crosstalk correction using Qexp1

(3rd line) for a centered object whose radius is rp =
15µm located at zp = 7 cm from the sensor plane.

bias on zp (nm) std. dev. on zp (nm)

without correction 52 316.3
with crosstalk correction (Qm) 15 315.5

with crosstalk correction (Qexp1
) 9.9 315.5

bias on rp (nm) std. dev. on rp (nm)

without correction 21 5.0
with crosstalk correction (Qm) 0.50 4.8

with crosstalk correction (Qexp1
) 0.28 4.8

models can be modified to account for the signal mixing on the different channels of
the sensor. For that purpose, the vector g containing the holographic models on the
different channels c is replaced by g∗ according to:

g∗(x, y) =



g∗R

λ,θ(x, y)
g∗G

λ,θ(x, y)
g∗B

λ,θ(x, y)


 = Q⊤



gλR,θ(x, y)
gλG,θ(x, y)
gλB,θ(x, y)


 = Q⊤ g(x, y) . (7.11)

This equation thus expresses the mixture of signals from the different sources on each
channel c. Rather than separating the signals received on each sensor channel (by
unmixing), this method mixes the hologram formation model in the same way as the
recorded data. Figure 7.12 illustrates this principle.

7.5.2 Self-calibration applied to the reconstruction of para-
metric objects

7.5.2.1 Reconstruction of parametric opaque objects

To study the benefits of the calibration procedure described in Section 7.4, we turn
to simulations of color holograms impacted by the crosstalk phenomenon according to
estimated crosstalk matrix Qexp1

, see Table 7.4. The object of interest is a spherical
bead located in the center of the field of view. Simulations are carried out for different
sets of parameters zp (zp ∈ [7 cm; 12 cm]) and rp (rp ∈ [15µm; 50µm]). For each pair of
values {zp, rp}, 100 color holograms are generated (using the direct model (7.9)) with
an additive white Gaussian noise at S/N = 2.5.

Figure 7.13 shows the reconstruction bias on the estimated parameters zp and rp
when the crosstalk phenomenon is not taken into account in the reconstruction step
and taken into account by replacing the model g in Equation (7.3) by g∗ from Equation
(7.11). When the crosstalk mixing is accounted for in the reconstruction step, we use
both Qexp1

and Qm mixing matrices. Table 7.5 gives the corresponding results for
one of the configurations illustrated in Figure 7.13. Table 7.5 shows that taking the
crosstalk into account in the hologram formation model reduces the estimation bias
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Figure 7.13 – Bias on estimated rp (left) and zp (right) without crosstalk correction
(1st line), with crosstalk correction using Qm (2nd line) and with crosstalk correction
using Qexp1

(3rd line) for a centered object whose radius is rp ∈ [15µm; 50µm] located
at zp ∈ [7 cm; 12 cm] from the plane of the sensor.

by a factor between 3 (using Qm) and 5 (using Qexp1
) for the estimated zp parameter

and by a factor between 40 (using Qm) and 70 (using Qexp1
) for the estimated rp

parameter for an object whose radius is 15µm and located at 7 cm from the sensor
plane. Correction by an approximate crosstalk matrix enables a significant reduction of
the estimation bias. This bias is further reduced when the crosstalk matrix used in the
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Table 7.6 – CRLBs on the 3-D location and radius of a bead.
δx (nm) δy (nm) δz (nm) δr (nm)

λR 0.56 0.49 31 0.37
λG 0.59 0.55 35 0.40
λB 0.70 0.63 41 0.46

λR,G,B 0.32 0.35 20 0.13
λR,G,B + Bayer 0.53 0.50 31 0.22

λR,G,B + Bayer + ct 0.70 0.80 40 0.30

7 8 9 10 11 12
0.1

0.2

0.3

0.4

0.5

Figure 7.14 – CRLBs on bead radius for different distances between the sensor and
object.

reconstruction step is closer to that generating the channels mixing. This justifies the
use of an accurate estimation of spectral crosstalk. It should be noted that the empirical
standard deviation is not reduced by taking the spectral crosstalk into account. Indeed,
it is dependent on the S/N and the estimation method. Also, since a change of the zp and
rp parameters causes a frequencies modification in the hologram signal, the crosstalk
phenomenon can generate a more or less important frequency mixing according to
the experimental parameters. As a result, the estimation of these parameters without
crosstalk correction generates a bias depending on the importance of the frequency
mixing (especially important when zp and rp increase simultaneously, as shown by
Figure 7.13). This shows that reconstructions without accounting for crosstalk cannot
be easily compensated for the bias since the bias is not constant.

7.5.2.2 Theoretical limits of precision

In this section, we discuss the theoretical limits of precision achievable on the estimated
parameters θ = {xp, yp, zp, rp} in a monochromatic or a color holography framework.
The aim is to investigate whether the consideration of a mosaicked color hologram which
can be impacted by the crosstalk phenomenon provides at least equal performance to
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those obtained with a monochromatic hologram, in the case of a spherical object.
As discussed in Section 1.3.2.2, the best resolution on the estimated parameters can

be statistically evaluated using the Cramér-Rao Lower Bounds (CRLBs). The variance
of any unbiased estimator is bounded from below by the CRLBs, which are obtained
from the diagonal of the inverse Fisher information matrix (Kendall et al., 1948). As a
result, these limits represent the minimum estimation variance theoretically achievable
when the noise is additive white and Gaussian. CRLBs constitute a theoretical tool
useful for relative comparison between different experimental configurations. By de-
scribing the light intensity recorded on the sensor by the direct model (Equation (7.4))
and by performing a statistical analysis on the estimated parameters for a given noise
variance, it is possible to obtain the theoretical standard deviation δp for each estimated
parameter p ∈ θ. This method, which was applied to digital holography in Fournier
et al. (2010), is applied here to color holograms by taking into account the possible
mixture of the color signals due to a crosstalk phenomenon. Equation (7.12), gives the
Fisher information matrix IF depending on the model gradients, the amplitude factor
of the model α and the variance σ2

b of the noise. Equation (7.13) gives the link between
the CRLBs and the matrix IF. When signal mixing occurs due to crosstalk, the color
model vector g is replaced by g∗ according to Equation (7.11).

[IF(θ)]i,j =
α2

σ2
b

.
A∑

a=1

B∑

b=1


∂g∗

θ(a, b).
√

w(a, b)

∂θ(i)




∂g∗

θ(a, b).
√

w(a, b)

∂θ(j)


 , (7.12)

[δ]i =
√[

IF(θ)−1
]
i,i
. (7.13)

The theoretical limits of precision are obtained by considering a hologram model of a
spherical opaque object whose radius is rp = 15µm, located at the distance zp = 7 cm
with a S/N equal to 2.5. Table 7.6 gives the theoretical resolutions achievable for each
parameter p ∈ θ. This study is performed in the following six cases:

• a monochromatic hologram obtained with only one source and recorded by a
monochromatic sensor (cases 1 to 3, respectively denoted λR, λG and λB in Table
7.6 and Figure 7.14),

• a trichromatic hologram artificially formed by the concatenation of three holo-
grams recorded by a monochromatic sensor without mosaicking, as in Demoli
et al. (2003); Zhao et al. (2008), (case 4 denoted λR,G,B),

• a mosaicked color hologram recorded by a Bayer color sensor not affected by the
crosstalk phenomenon (case 5 denoted λR,G,B + Bayer),

• a mosaicked color hologram recorded by a Bayer color sensor affected by the
crosstalk phenomenon defined by the mixing matrix Qexp1

estimated from the
experimental holograms (case 6 denoted λR,G,B + Bayer + ct).

The mean results may vary slightly depending on the position of the bead in the
sensor field. Figure 7.14 completes this study by showing the evolution of the achievable
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precision limits for a distance between the sensor and the object varying from 7 to 12
cm in the same cases as those listed in Table 7.6.

It appears that color holograms that undergo mosaicking during the acquisition step
suffer from an increase in CRLBs (and hence degradation in the reconstruction) com-
pared to a color hologram artificially formed by the concatenation of three monochro-
matic holograms (obtained with the three available wavelengths in our experimental
setup). This is explained by the fact that the mosaicking step results in a reduction by
a factor of 3 in the number of pixels recorded, resulting in a loss of information. It also
appears that holograms not tainted by a crosstalk phenomenon lead to finer resolutions
than holograms tainted by this effect. This can be explained by the blurring of high
frequencies due to the mixing of the color signals when spectral crosstalk occurs. This
observation justifies why the spectral crosstalk phenomenon that occurs with most color
sensors equipped with a Bayer filter influences optical metrology applications using an
in-line holographic setup. Finally, we observed that it is possible to obtain a finer preci-
sion of the rp parameter by considering a color hologram, due to additional information
provided by wavelength diversity.

7.5.3 Self-calibration applied to the reconstruction of images
in color holography

In this section, we illustrate the benefits of the self-calibration procedure described
in Section 7.4 for the reconstruction of images from color holograms with an image-
based inverse problem. For this purpose, we use a regularized inversion approach.
Physical priors are thus introduced in the form of regularization terms (sparsity plus
edge-preserving constraints) to better enforce problem conditioning. The approach
used in this part was developed with Frédéric Jolivet during his PhD thesis at the
Hubert Curien Laboratory (Jolivet, 2018). Hereafter, we give the key elements of the
reconstruction algorithm. More details about the inverse problem and the regularization
strategies can be found in Fournier et al. (2017); Jolivet et al. (2018).

7.5.3.1 Color hologram reconstruction method

The recorded intensity of the hologram of a plane object located at distance z can
be modeled by the 2-D convolution between the transmittance t of the plane object and
a free-space propagator kernel hλz (e.g., the Fresnel propagator, see Goodman (2005)):

Iλ ∝ |t ∗ hλz |2. (7.14)

For opaque, sparse and small (i.e., πr2

4λ z
≪ 1) objects, the recorded intensity can be

expressed as the linear approximation (Denis et al., 2009):

Iλ = m0 − 2.Re
(
hλz
)
∗ ϑ , (7.15)

where ϑ represents the opacity (ϑ = 1 − t), m0 is a constant to be estimated, z is
the object to sensor distance and Re

(
hλz
)

is the real part of the Fresnel free-space
propagator:

Re
(
hλz (x, y)

)
=

1

λ z
sin

(
π(x2 + y2)

λ z

)
. (7.16)
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In the following, Hλ denotes the linear operator (i.e., an AB × AB matrix) corre-
sponding to the discrete convolution with the kernel Re

(
hλz
)

and ϑ is the column
vector representing the discretized object opacity. In this discretized space, the inten-
sity dλ ∈ R

(AB×1) of a hologram recorded at wavelength λ is given, up to the noise, by
the affine relationship:

dλ ≈ m01−Hλϑ , (7.17)

where 1 ∈ R
(AB×1) stands for a column vector full of ones. The maximum likelihood

estimation of the constant m0 can be obtained in closed form (Denis et al., 2009),
leading to the simplified linear model:

sd
λ ≈ Hλϑ , (7.18)

where Hλ is a modified propagation operator (Hλ = −Hλ+1
1T

1T1
Hλ) and the hologram

sd
λ

is centered (i.e., its mean value is subtracted).

In the absence of spectral crosstalk (i.e., no signal mixing on the different channels of
the CMOS color sensor), the joint reconstruction of the opacity ϑ from a color hologram
sdRGB is obtained by solving the following minimization problem:

ϑ̂ ∈ arg min
0≤ϑ≤1

∑

c∈{R,G,B}

∥∥∥Hλc
ϑ− sdRGB

∥∥∥
2

wc
+ τ1‖ϑ‖1 + τ2T Vǫ (ϑ) , (7.19)

where wc is the weights taking into account the Bayer mask (wc is equal to 0 for 75%
of the red and blue channels and for 50% of the green channel, see Figure 7.7). T Vǫ (ϑ)
is a regularization term (so-called total-variation, see for example Rudin et al. (1992);
Chambolle et al. (2010)) in the form of an edge-preserving function defined by:

T Vǫ(u) =
AB∑

m=1

√
(Dhorz

m u)2 + (Dvert
m u)2 + ǫ2 , (7.20)

where ǫ > 0, Dhorz
m and Dvert

m stand for the finite differences operators along the horizon-
tal and vertical directions: (Dhorz

m u, Dvert
m u) is the (discrete) spatial gradient at pixel

m.
A finer image formation model is obtained by taking into account the color signal

mixing on the different channels of the CMOS color sensor as illustrated by Figure 7.12:
∑

ℓ∈{R,G,B}

qcℓHλ(ℓ)ϑ. (7.21)

Following the notations introduced in Equation (7.10), we can express the image for-
mation model that accounts for the spectral crosstalk according to the mixing principle
illustrated in Figure 7.10:

ϑ̂ ∈ arg min
0≤ϑ≤1

∑

c∈{R,G,B}

∥∥∥
(
qcRHλR

+ qcGHλG
+ qcBHλB

)
ϑ− sdRGB

∥∥∥
2

wc
+

τ1‖ϑ‖1 + τ2T Vǫ (ϑ) , (7.22)

where τ1 and τ2 are two parameters controlling the strength of the regularizations. This
optimization problem is solved using a limited memory quasi-Newton algorithm with
bound constraints (Thiébaut, 2002).
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Figure 7.15 – Illustration of the regularized reconstruction of a color hologram from an
opaque USAF target without or with a preliminary self-calibration of the holographic
color microscope.

7.5.3.2 Reconstruction of non-parametric opaque objects

In Figure 7.15, we illustrate the reconstruction of non-parametric objects with the
method described in the previous section combined with a self-calibration of the setup
as described in Section 7.4. The reconstructions were performed by Frédéric Jolivet.
The considered object is an opaque 1951-R1DS1P USAF Thorlabs™ target. We
compare the reconstruction of a color hologram without or with self-calibration of the
setup. When no self-calibration is performed, the wavelengths of the sources are set
at the typical values provided by the manufacturer (see Table 7.1) and the crosstalk
matrix Q is roughly estimated from the manufacturer datasheet (see Qm in Table 7.4).
One observes that structures larger than 20µm are well reconstructed by the inversion
method thanks to the regularization terms enforcing sharp objects and smooth back-
ground. The reconstruction of finer structures (about 5µm) is significantly improved by
performing beforehand the self-calibration of the setup, thereby illustrating its benefits
for color hologram reconstructions.

• The calibration of holographic color setups (i.e., wavelengths and crosstalk
estimations) can be taken into account in the hologram reconstructions.

• We show that it improves the accuracy of the reconstructions of parametric
objects and the resolution of the reconstructions of non-parametric objects.

Improving reconstructions by self-calibration
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7.6 Conclusion

In this chapter, we have illustrated two potential sources of errors in the recon-
struction of a color hologram recorded by a cost-effective holographic color microscope
(based on low-end laser diodes and a Bayer-type color sensor). They arise from (i) an
inaccurate knowledge of the central wavelengths of the sources and (ii) a color signal
mixing (crosstalk phenomenon) on Bayer-type CMOS color sensors. We have proposed
a simple and fast experimental method based on the reconstruction of holograms of
spherical objects (naturally present in the field of view or added as calibration ob-
ject) using an inverse problem approach. This method leads to accurate estimations of
the wavelengths of the sources and of the crosstalk mixing matrix comparable to that
obtained using a high-resolution spectrometer. Including this self-calibration in the
hologram reconstruction step improves the quality of the reconstructions. As discussed
in Section 1.5, this chapter corresponds to the first study considered in the thesis. Thus,
the methods discussed in this Chapter could be combined with a statistical modeling
of the background as described in Chapter 3, and robust approaches as described in
Chapter 5 to further improve the hologram reconstructions, see Section 8.3.
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Chapter 8
Conclusion, ongoing and future works

8.1 Summary of the main contributions

In this thesis, we have proposed several algorithms dedicated to object detection
and characterization from faint signals in image series. In particular, the methods
developed have been applied in two different applicative contexts: (i) the quest for
exoplanets by direct imaging in astronomy, and (ii) the optical metrology of samples by
holographic microscopy. The resulting algorithms follow three methodological angles
in order to address common signal processing challenges:

First angle – Background fluctuations modeling
The image series in high contrast astronomy and holographic microscopy present a
spatially textured background that strongly dominates the patterns to be detected. We
proposed to model locally the correlated and nonstationary background of the image
series using patch-based statistical approaches. The model of the background leads to
a detection method by application of the statistical detection theory. We described in
Part II two algorithms dedicated to the detection of known patterns within the low
S/N regime. The two proposed algorithms differ in the spatial extent of the patterns
to be detected:

• In Chapter 2, we presented a totally unsupervised algorithm (PACO) dedicated
to the detection and characterization of point-source-like exoplanets from ADI
series. The underlying statistical model of the background fluctuations, although
only approximate, achieves a good compromise between the computational bur-
den and the fidelity to the data. It leads to an efficient algorithm that demon-
strates better detection performance than state-of-the-art exoplanet hunter meth-
ods. Beyond the improved sensibility, a major feature of our algorithm is the abil-
ity to reliably control the false alarm rate and thus, to obtain a fully unsupervised
method.

• In Chapter 3, we presented an extension (EXPACO) of the previous algorithm.
EXPACO is dedicated to the detection of spatially extended patterns such as the
diffraction patterns in holographic microscopy. Specific algorithmic developments
were necessary to obtain a method that could be applied to experimental data in
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a reasonable time. The evaluation of the performance of this approach on image
series obtained with a holographic microscope shows an interesting detection
capability compared to a standard maximum correlation approach.

Second angle – Robustness to outliers
Image series in astronomy and in microscopy present several aberrant values in spite
of the care taken during the image acquisition process. We proposed in this thesis
to account for these aberrant values. In Part III, we described two robust algorithms
dedicated to the detection and characterization of model patterns, in the presence of
outliers:

• In Chapter 4, we presented the robust PACO algorithm; an extension of the PACO

method introduced in Chapter 2. To improve the robustness of PACO, we adapted
the statistical model of the background fluctuations by replacing our Gaussian
model by a Gaussian scale mixture model. This led to spatially weighting each
frame in a data-driven fashion, based on its relative degree of fluctuations. We
have shown that the achievable contrast and the detection performance were
particularly improved at small separations, where the stellar residuals dominate.

• In Chapter 5, we presented an algorithm dedicated to the detection and char-
acterization of microscopic objects in the presence of numerous outliers. It is
based on M-estimators, iterative residuals weighting, and on a new criterion to
distinguish outliers from inliers. In contrast to existing strategies consisting in
setting the threshold that distinguishes inliers from outliers and considering only
the distribution of the data, our approach evaluates the impact on the estimation
task and is therefore adaptive. We have shown on series of holograms that this
approach achieves a bias/variance tradeoff improving the overall performance of
the conventional least squares method and of standard robust estimators.

Third angle – Spectral diversity exploitation
In astronomy as well as in microscopy, it is possible to record multi-spectral data in
addition to the natural time extent of the image series. In this thesis, we proposed to
account for the specificities of the multi-spectral data. Part IV described two algorithms
dealing with the spectral diversity of the acquired datasets:

• In Chapter 6, we presented the PACO–ASDI algorithm dedicated to the detection
and characterization of point-sources (like exoplanets) from ASDI series. Based
on the PACO algorithm, PACO–ASDI also presents several methodological adap-
tations to deal with the specificities of ASDI observations such as the strong
spectral correlations of the data. The underlying statistical model of the back-
ground fluctuations achieves a good compromise between the model complexity,
the difficulty to estimate model parameters, and the relevance of the statistical
model with respect to the data. We have shown that it leads to an efficient
algorithm that demonstrates better detection and characterization performance
than state-of-the-art exoplanet hunter methods.

• In Chapter 7, we have shown that an inaccurate knowledge of the experimen-
tal parameters related to the sources and sensor in color holography leads to
an inaccurate characterization of the imaged microscopic objects. This issue is
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critical since the induced errors can outweigh the theoretical gain brought by
a joint multi-spectral processing. We described a new self-calibration method
based on an inverse problem approach. We have shown on real holograms that
the accuracy of the estimations and of the image reconstructions is improved by
the proposed calibration approach.

Throughout the thesis, special care has been paid on developing algorithms that
are totally unsupervised: weighting and/or regularization parameters are estimated in
a data-driven fashion.

In the following Sections 8.2 and 8.3, we discuss some ongoing and possible future works,
both from an applicative and methodological point of view. Beyond the particular
examples that follow, the developed algorithms are general and could be applied to
other application fields in which the detection/characterization of faint point-like or
extended patterns from image series is encountered.

8.2 Ongoing and future works for astronomy

8.2.1 On the applicative side

In this section, we discuss some ongoing and possible future works related to the
exploitation of the PACO-based algorithms for astronomy applications.

8.2.1.1 Automatic processing pipeline

As discussed in Chapters 2, 4, and 6, the astronomers who use the exoplanet hunter
algorithms are in need of automatic processing engines to conduct the analysis of large
amounts of data. This point is all the more critical as the detection task is, to date,
mostly performed by visual inspection of the results obtained by the different algo-
rithms. Such a manual validation is still necessary due to the lack of control of the false
alarm rate, see discussions in Sections 2.5.2, 4.4.1, and 6.6.2.

Throughout this thesis, we have paid particular care to derive totally unsupervised
algorithms; weighting and/or regularization parameters are estimated in a data-driven
fashion, see Sections 2.4.3 and 6.5. Based on these methodological developments, we
developed an automatic processing pipeline whose schematic representation is given in
Figure 8.1. It is inspired by the ANDROMEDA processing pipeline (Cantalloube et al.,
2015; Cantalloube, 2016) aiming to provide a user-friendly interface for the analysis of
ADI and ASDI datasets. The PACO pipeline is split into three main steps:

• a reduction step consisting in the reduction of the science data, mainly producing
detection and achievable contrast results.

• a detection step analyzing the detection maps automatically to identify the de-
tections of interest and the possible extended objects like protoplanetary disks.
For each point-like detection, it also derives the expected shape of the pattern
signing the presence of a source at the location of a given detection (see Equa-
tions (2.17), (4.9), and (6.10)). The normalized correlation coefficient between
the observed and expected pattern is also computed.
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• a characterization step deriving subpixel astrometry and an unbiased photome-
try estimation of the detected sources of interest. It also refines the additional
quantities computed during the reduction step.

Each step can be run independently based on the results obtained and saved from
the previous steps, see input doors and output doors in Figure 8.1.

One of the peculiarities of the PACO pipeline is related to the automatic generation
of a Portable Document Format report summarizing the main results obtained from the
processing of each dataset 1 for a quicker visualization of the key information. Appendix
D shows selected excerpts from a PACO report generated automatically after processing
a dataset of HD 95086.

The PACO pipeline takes the form of a console compiled application coded in Matlab™,
accompanied by a detailed technical user guide. It has been delivered to Maud Langlois
for a testing phase on a large amount of data (more than 300 datasets) from the SHINE
survey (Langlois et al., in prep.) of the SPHERE instrument. The pipeline is regularly
updated with new functionalities coming from new methodological developments.

While it gives a first implementation of the PACO-type algorithms, this pipeline can
be significantly improved on several points. The main issue is probably related to the
choice of the programming language. We have chosen the Matlab™ language for its
simplicity and the large variety of precoded functions, including signal processing and
numerical optimization routines. However, the PACO pipeline would benefit from being
cleaned and coded in a more effective compiled language like C++. This task was the
subject of a two months internship during spring 2018, and a preliminary architecture
was obtained, but the code has significantly evolved since this date.

1. At the time we write, the generation of the automatic report is possible only for ADI datasets.
We plan to extend this tool for ASDI datasets soon.
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Figure 8.1 – Schematic representation of the PACO processing pipeline.
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8.2.1.2 Exploitation of PACO for astronomy applications

In this section, we illustrate with two case studies the potential benefit of the PACO

algorithm, in combination with other state-of-the-art algorithms, to conduct the anal-
ysis of ADI and ASDI datasets.

8.2.1.2.1 Determination of mass limits

As discussed in Section 1.2.2.1, one of the main advantages of direct imaging is
the possibility to derive a large panel of physical properties characterizing the detected
sources. Besides, even if no source is detected in a dataset, the achievable contrast
(i.e., the minimal exoplanet flux that is possible to detect at a given PFA) can be
used to derive constraints on the presence of stellar companions. In other words, an
upper bound on the mass of (potential) exoplanets can be inferred from the achievable
contrast and exoplanet formation / evolution models. We illustrate hereafter an
example of such a derivation on a dataset recorded by the VLT/SPHERE-IRDIS and
IFS imagers around the HD 163296 star. HD 163296 is a Herbig Ae/Be star 2 hosting
a protoplanetary disk with a ringed structure. The morphology of the disk (including
inner and outer gaps) and its relatively old age could be in favor of the presence of
(partially-formed) stellar companions like the exoplanets PDS 70 b and c in formation
inside the accretion disk of the star PDS 70, see Section 1.2.2.2.4.

PACO was used 3 together with the KLIP algorithm to analyze recent datasets ac-
quired at two different epochs, see Mesa et al. (2019b). For this star, the detection
of faint point sources is particularly challenging since it is located very near the VLT
latitude, thus preventing observations during the passage of the star at the meridian.
This leads to a severe limitation of the field of view: the total amount of parallactic
rotation over time is about only 1.3° for the IRDIS dataset. Figure 8.2(a) gives the
GLRT+ map obtained from the IRDIS dataset. The inner ring of the protoplanetary
disk can be seen in the vicinity of the host star. Figure 8.2(b) presents the 5σ con-
trast curves obtained with PACO and KLIP-ADI for the considered IRDIS dataset as
well as PACO–ASDI and KLIP-ASDI for the IFS dataset. It shows that PACO leads to
a better achievable contrast than KLIP, especially on the IRDIS dataset at small an-
gular separations. These contrast limits are converted in Figure 8.2(c-d) into limits
on the mass of potential companions hosted by HD 163296. The conversion procedure
is based on the AMES-COND (Allard et al., 2003) and AMES-DUSTY (Allard et al.,
2001) evolutionary models. Besides, several works reported in the literature have pro-
posed different exoplanet formation scenario to explain the observed morphology of the
protoplanetary disk (Liu et al., 2018; Teague et al., 2018; Pinte et al., 2018; Guidi et al.,
2018). The separations/masses of the hypothetic exoplanets predicted by these models
are superimposed to the mass limit curves.

While no point source was discovered at the different (hypothetic) locations pre-
dicted by the evolutionary models, this study put strong constraints on the presence of
potential companions orbiting HD 163696. First, the (potential) exoplanets may have a
mass below 3-7 MJ at projected separations between 30-80 AU based on the analysis of

2. A Herbig Ae/Be star is a star of the sequence preceding the main sequence.
3. I took part in the reduction of the considered datasets with PACO, see Mesa et al. (2019b).
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Figure 8.2 – Determining mass limits around HD 163296. (a) GLRT+ map obtained
with PACO on the considered IRDIS dataset; (b) 5σ contrast curves obtained with PACO

and KLIP-ADI for the considered IRDIS dataset as well as PACO–ASDI and KLIP-ASDI
for the IFS dataset; (c-d) conversion of the 5σ contrast curves into companion mass
limits based on the AMES-COND (c) and AMES-DUSTY (d) evolutionary models.
The light cyan areas represent the estimated positions of the disk gaps around the star
(Isella et al., 2018). The dashed lines and markers represent the positions and masses of
the exoplanets proposed by Liu et al. (2018) (dark blue), Teague et al. (2018) (brown),
Pinte et al. (2018) (yellow), and Guidi et al. (2018) (pink). For the latter case, the
exoplanet initially proposed by Guidi et al. (2018) is identified by a pink square and a
revision of its mass (based on a revision of the mass of the star) is identified by a pink
triangle. Adapted from Mesa et al. (2019b).
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the considered IFS dataset, and below 2-4 MJ at projected separations larger than 200
AU based on the analysis of the considered IRDIS dataset. Besides, this analysis seems
to show (with some caveats) that the presence of multiple companions is more likely
than that of a single companion (which was assumed up to now in direct imaging).
Finally, 166 additional point sources have been identified at different locations of the
field of view, see Figure 8.2(a). These detections are studied through astrometry com-
parisons for the sources already reported by other works, and through their photometry
for the detections not reported in the literature. This study shows that 163 of these
166 detections are background sources (not gravitationally bounded to the host star, or
with an estimated photometry not compatible with exoplanet physics-based models).
It is not possible to conclude yet for the three remaining sources.

8.2.1.2.2 Analyzing an IFS sequence around β Pictoris

As discussed in Section 1.2.2.2.4, one of the recent breakthroughs obtained with
the SPHERE instrument is the re-detection of the exoplanet β Pictoris b in the north-
east part of its orbit in September 2018 (Lagrange et al., 2019a). Since its discovery
(Lagrange et al., 2009, 2010) and until November 2016, β Pictoris b was systematically
imaged in the southwestern part of its orbit, and was no longer detectable between
November 2016 and September 2018 due to its too small angular separation with the
host star (β Pictoris b was hidden by the coronagraph of the instrument during this
period). The re-detection of β Pictoris b on an unexplored part of its orbit allows
to refine and put tighter constraints on the estimation of its orbital parameters, see
Lagrange et al. (2019a).

Datasets of this star are of particular interest since no other exoplanet has ever been
imaged at such small separations to a star: for the smallest projected distance, β
Pictoris b was about 0.125 arcsec to its star (i.e., at 10.2 pixels from the center of the
IRDIS field of view). Lagrange et al. (2019a) also report the detection maps obtained
with the KLIP algorithm on 12 ADI datasets recorded by the SPHERE-IRDIS imager
between 2014 and 2018.

We have used PACO–ASDI to process a similar sequence of 14 ASDI datasets 4 of
β Pictoris recorded by the SPHERE-IFS imager between December 2014 and March
2019. This short study aims to evaluate the ability of PACO–ASDI at detecting point-like
sources at very small angular separations. Figure 8.3 gives the statistically grounded
wS/N detection maps that we have obtained. It shows that the exoplanet β Pictoris b
can be detected without ambiguity at all epochs, including the ones in which its pro-
jected separation is extremely limited. This study confirms that PACO–ASDI is capable
to detect point-like sources orbiting at a large variety of angular separations. Ongo-
ing tests of PACO–ASDI concern the estimation of the astrometry and photometry of β
Pictoris b as well as the achievable contrast from these different ASDI datasets.

8.2.2 On the methodological side

In this section, we discuss some ongoing and possible future improve-
ments/extensions of the PACO-based algorithms from a methodological point of view.

4. We thank Anne-Marie Lagrange and Maud Langlois who provided us the datasets.

288



8.2. Ongoing and future works for astronomy

-5 20-5 20

Figure 8.3 – wS/N detection maps obtained with PACO–ASDI on 14 ASDI datasets
recorded between December 2014 and March 2019 by the SPHERE-IFS imager around
β Pictoris.

289



Conclusion, ongoing and future works

8.2.2.1 Statistical model of the background

While PACO proves to produce satisfactory results on several datasets, its underly-
ing statistical model of the background is only approximative, in particular for ASDI
datasets, see discussion in Section 6.2. Since the performance of the method is directly
related to the agreement between the statistical model and the actual distribution of
the data, future works should first focus on this point, in our opinion.

In particular, as discussed in Section 6.2, the strong spectral correlations of ASDI
datasets are not directly modeled but taken into account in a later stage of the algo-
rithm (during the combination of the individual S/Nℓ maps from the different spectral
channels). We have justified this choice by the difficulty that we have encountered
in our tests to fully model the spatio-temporo-spectral fluctuations of the background
from a finite set of samples, see Appendix C.

However, these tests do not include spectral or temporal weighting factors as the ones
provided by a GSM model (since we investigated this methodological framework later
in the thesis). Then, the numerous outliers arising in ASDI data were not correctly
taken into account in our tests that led to reject a full modeling of spatio-temporo-
spectral correlations. From our point of view, it would be interesting to investigate
the combination of a spatio-spectral modeling of the background with temporo-spectral
weights as in our GSM model (see Section 6.2.1).

8.2.2.2 Detection and reconstruction of extended objects

Since the first direct imaging of an exoplanet in formation inside a protoplanetary
disk (Keppler et al., 2018; Müller et al., 2018), it is the golden age of the study of such
extended objects through high contrast imaging. A protoplanetary disk (or circumstel-
lar disk) is a rotating stellar disk made of gas and/or dust surrounding young stars.
Exoplanets can form inside these disks by, for example, accretion effect of the matter.
The morphological structure of the disks (e.g., multiple rings, presence of inner and/or
outer gaps) are of primary interest since they are directly related to the formation pro-
cess of (potential) exoplanets. When they are observed in ADI, SDI, or PDI 5, they are
generally detected by conventional processing of the datasets with state-of-the-art ex-
oplanet hunter algorithms such as TLOCI or KLIP, see (Gratton et al., 2019; D’Orazi
et al., 2019; Boccaletti et al., 2019) for recent case studies. However, the estimated
structure of the disks is generally approximative due to the presence of high stellar
leakages at the proximity of the disks in the final reduction maps obtained with these
algorithms.

PACO is not designed to detect extended objects (it is based on the assumption of
point-like objects, i.e., objects seen as an off-axis PSF). However, experiments tend
to show that extended objects such as protoplanetary disks can also be detected with
PACO as a succession of point-like sources, as illustrated in Figure 8.4 6. The detection
benefits from the statistical modeling of the background, making it easier to distinguish
between the background and the disk structures. However, such detections are not
optimal and suffer from several artifacts. In particular, the faintest parts and flat areas

5. Polarimetric differential imaging, see Section 1.2.2.2.3.
6. The name of the stars and the observation logs are voluntarily not reported since these results

are not yet published.
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Figure 8.4 – Illustration of S/N maps obtained with PACO on ADI datasets recorded by
the SPHERE-IRDIS imager around stars hosting a known protoplanetary disk. The
processing was made by Maud Langlois with the first (suboptimal) version of the PACO

pipeline (May 2018). The appearance of the disks (e.g., jets, ellipses, annulus) depends
both on the morphology of the disk and the configuration of the stellar system during
the observation (e.g., edge-on or face-on).
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of the extended structures are not detected or appear with spatial discontinuities on
the PACO’s S/N maps.

It can sometimes be useful to produce flux maps at each point of the field of view.
This is particularly the case when PACO is (wrongfully) applied to detect extended
objects since images of the flux estimated at every location of the field of view are
easier to interpret than S/N detection maps. However, a significant drawback of those
flux images is that the estimation variance fluctuates largely within the field of view,
especially near the host star, see Section 2.5.3.1 and Figure 8.5(a). To reduce the flux
errors, we consider a simple shrinkage estimator (which also corresponds to a MAP
estimator with a zero-mean white Gaussian prior):

α̂(shrink) = κ α̂ , (8.1)

where κ ∈ [0, 1] is the shrinkage coefficient.
The original flux estimator α̂ defined in Equation (2.16) is distributed according to

a Gaussian distribution with mean ᾱ 7 and variance σ2
α. The shrinkage estimator has

an expectation κ ᾱ and variance κ2 σ2
α. To adaptively reduce the flux variances, we

consider selecting κ in order to minimize the expected square loss with respect to ᾱ:

E

[
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]
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]
− 2ᾱE

[
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]
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]
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]
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[
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]
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α + κ2 ᾱ2 − 2κ ᾱ+ ᾱ2

= κ2 σ2
α + ᾱ2(κ− 1)2 . (8.2)

The value of κ that minimizes this expected square loss is:

κ =
ᾱ2

σ2
α + ᾱ2

=
E[S/N]2

1 + E[S/N]2
. (8.3)

Only a noisy S/N map is available, yet the formula (8.3) can be used by replacing
E[S/N] by the noisy S/N values (sub-optimal shrinkage).

When the S/N equals 5 (typical detection limit), the bias introduced on the flux
is about 4%. This increases to 10% when the S/N equals 3, or more than 50% when
S/N≤ 1. On the other hand, if the source detection S/N is equal to 10, less than 1%
bias is produced by this shrinkage strategy. Figure 8.5(b) shows close-up views of the
shrunk flux α̂(shrink) estimated near the host star for three datasets: we have injected 12
fake sources in the dataset 1 , the dataset 2 contains one known exoplanet near the
host star, and dataset 3 contains a known protoplanetary disk. A comparison with
flux maps before shrinkage is given in Figure 8.5(a). Figure 8.5(c) shows the resulting
amount of shrinkage κ over the field of view. They emphasize that this simple strategy
(slightly) improves the stationarity of the flux maps: the large fluctuations occurring
near the host star are attenuated while the throughput of the objects of interest (point
sources or disk) is preserved.

A more satisfactory solution could be to use the synthetic S/N and flux maps in
which detected point-like sources are re-injected at an unbiased level of S/N and flux on

7. Note that ᾱ corresponds to the flux of the source only in oracle mode, i.e., when the statistics of
the background are estimated in the absence of source.
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Figure 8.5 – Illustration of the shrinkage of the flux maps on three datasets. (a) flux
maps; (b) shrunk flux maps; (c) shrinkage weights (κ). (d), (e), and (f) correspond
respectively to (a), (b), and (c) when flux and S/N maps used to compute the shrinkage
weight are replaced by the synthetic flux and S/N maps obtained after subtraction/re-
injection of the unbiased contributions of the point-like sources, see text.
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Figure 8.6 – Illustration of the parametric model of a protoplanetary disk. (a) schematic
of the parametrized model; (b) physics-based intensity of the disk; (c) model of the
observed intensity of the disk resulting from the convolution of (b) with the off-axis
PSF. Adapted from Milli et al. (2017).

the residual S/N and flux maps obtained after subtraction of the contributions of the
detected point-like sources in the data, see Appendix D. Boxes (d),(e), and (f) of Figure
8.5 give respectively the flux α̂, the shrunk flux α̂(shrink), and the weight κ obtained over
the field of view with this strategy. The attenuation of the large fluctuations of the flux
is improved but the comparison is not completely fair since such a strategy creates a
gap in the strength of the shrinkage between the background and the sources. Besides,
this alternative strategy is limited to point-like sources and cannot work with extended
objects such as disks since their contributions cannot be easily modeled and subtracted
from the data in the current state of the PACO algorithm.

Since the solution discussed above is not very satisfactory, further methodological de-
velopments should be done in the aim to detect/reconstruct extended objects such as
disks with PACO-based algorithms.

One of the possible solutions could be to combine the local statistical modeling of
the background of PACO with a parametric model of the disks. There is a large literature
addressing the physical modeling of gas/dust protoplanetary disks by few parameters,
see for example Augereau et al. (1999); Stark et al. (2014); Milli et al. (2017). Figure
8.6 gives an example of a physics-based parametric model of the disk shown in the
bottom left corner of Figure 8.4 and box 3 of Figure 8.5. From a signal processing
point of view, the resulting algorithm could alternate between (i) the estimation of the
background statistics, flux, and detection criterion of PACO, and (ii) the update of the
parametric model of the disk and estimation of its flux. Such an approach could have
several advantages. First, it could make it possible to disentangle the contribution of
point-like sources from the contribution of extended objects, making easier the detection
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of exoplanets embedded inside protoplanetary disks. Second, since the model is well
constrained, such an approach could be adapted to detect accurately very faint disks
such as the ones shown in the middle panels of Figure 8.4.

Another solution could be to combine the local statistical modeling of the back-
ground of PACO with an image-based reconstruction approach of the disk. Such an ap-
proach would benefit from the displacement of the disk (that follows a similar displace-
ment than point-like sources and other background objects) in the A(S)DI sequences to
disentangle their signature from the background of speckles. Additional regularization
terms should be considered in the resulting inverse problem, such as sparsity constraints
or an edge-preserving regularization, to constrain the solution.

8.2.2.3 Automatic adaptation of the detection threshold

In this section, we suggest that the detection threshold τ conventionally fixed at
τ = 5 in direct imaging (corresponding to PFA = 2.87× 10−7) could be adapted auto-
matically to the content of the observed scene. Indeed, while this highly conservative
threshold theoretically prevents numerous false alarms (for statistically grounded detec-
tion maps), it can also lead to numerous missed detections. This could be particularly
problematic for datasets containing a lot of faint point-like sources. The presence of
hundreds of point-like sources is not rare in direct imaging datasets as illustrated by
Figure 8.7 8. Most of the sources are generally sources or bright stars of the back-
ground which are imaged in the projected field of view. However, the target stars could
also host (potential) exoplanets whose detection should not be missed because of a too
conservative threshold.
There is a large signal processing literature related to this subject which was boosted,
in particular, by the development of massive genomics tests in the middle of the 90s.
By multiplying the number of tests (depending on distinct variables), there was a non-
negligible probability to observe false positives which are normally rare.

In our context, we can rephrase this issue as: how to set the detection threshold to
achieve a tradeoff between the false alarm rate (i.e., the proportion of false alarms in
the peaks above the detection threshold), and the detection rate (i.e., the proportion
of sources to be detected actually detected). One of the most successful approaches
addressing the automatic control of the number of false discoveries (false alarms) is the
false discovery rate (FDR) procedure of Benjamini and Hochberg (1995). Its mathe-
matical formulation has a simple geometric interpretation. It consists of plotting in a
graph the p-values 9 associated with each detection in increasing order (i.e., detections
of highest confidence first). The tangent at the origin of the curves defined by the
ordered p-values is then drawn. All detections whose p-values are above the tangent
are assigned to the null hypothesis while the others are assigned to the alternative
hypothesis, see Figure 8.8.

In the following, we illustrate that the adaptation of this type of approaches could also
be suitable in our high-contrast imaging application.

8. The name of the stars and the observation logs are voluntarily not reported since these results
are not yet published.

9. In statistical hypothesis testing, the p-value (for probability-value) is, for a given statistical model
and under the null hypothesis (H0), the probability of observing a deviation greater or equal to the
deviation actually observed.
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Figure 8.7 – Illustration of S/N maps obtained on three ADI datasets containing more
than 100, 250, and 700 point-like sources. The processing was made by Maud Langlois
with the first (suboptimal) version of the PACO pipeline (May 2018).
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Figure 8.8 – Illustration of the control of the False Discovery Rate by the Benjamini-
Hochberg procedure.

We have performed massive injections of point sources in an ADI dataset of HIP
72192 (see Table 2.3 for the observations logs) at five levels of contrasts (level 1 for
the faintest case, and level 5 for the brightest case). We have varied the number of
sources (3, 6, 60, 120, and 240), and we have processed the resulting datasets with PACO.
Figures 8.9 and 8.10 give the S/N of the 300 first detections 10 converted into p-values,
and represented in ascending order. Figure 8.11 summarizes these results and gives the
resulting detection and false alarm rates for these different cases.

It shows that there is no gain to decrease the detection threshold when the sources
are rare and bright since the detection rate will not be significantly improved while
the false alarm rate will drastically increase. By opposition, when the datasets contain
several faint sources, it could be beneficial to decrease the detection threshold to improve
the detection rate without significant degradation of the false alarm rate. For example,
the detection rate goes from about 5% to 55% when the detection threshold is set to
3.5 instead of 5 when 240 very faint sources (level 1 of contrast) are in the field of view.
In the same time, the increase of the false alarm rate is more limited since it goes from
0% to 10%.

10. Since the detection peaks of PACO are spatially correlated on several pixels, for each detection, the
contribution of the source is estimated, subtracted to the data, and the S/N map is locally recomputed
before looking for the next highest peak, see Section 2.4.6.
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1

Figure 8.9 – p-values of the 300 first S/N detections ranked in increasing order for
levels 1, 2, and 3 of contrast of the injected sources. For each case, 3, 6, 60, 120,
and 240 sources are injected in the field of view. Colored crosses indicate the true
detections while red circles are for the false detections. The horizontal lines represent
three detection thresholds: τ ∈ {2, 3.5, 5}.
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1

Figure 8.10 – Same representation than Figure 8.9 for levels of contrast 4 and 5.
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Figure 8.11 – Detection and false alarm rates for the different cases represented in
Figures 8.9 and 8.10. Each graph corresponds to a different detection threshold (τ ∈
{2, 3.5, 5}) that are represented as horizontal black lines in Figures 8.9 and 8.10.
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8.3 Ongoing and future works for microscopy

8.3.1 On the applicative side

During this thesis, we have developed several methods improving both the detection
sensitivity and the characterization accuracy of microscopic objects spread in a volume.

Here, we suggest combining these different methodological approaches to benefit
from the peculiarities of each one. One of the targeted applications could be the study
of cells by fluid flow cytometry. With this technique, the samples are put into a fluid
flow micro-channel so that each object is imaged several times and under several ori-
entations. The nonstationary and fluctuating background of the recorded images could
be modeled with a EXPACO-based method. This approach could be particularly useful
to detect faint diffraction patterns when the refractive index of the samples is close to
that of the medium (since the contrast is weak in this case, see Chapter 3). Multi-
ple illuminations at different wavelengths and the robustness against unwanted objects
could both improve the detection and the characterization performance. The processing
could also benefit from the natural motion of the samples inside the micro-channel to
further improve the estimation and/or to reconstruct the objects in 3-D.

8.3.2 On the methodological side

In this section, we discuss some ongoing and possible future improve-
ments/extensions from a methodological point of view of the algorithms developed
in this thesis for microscopy applications.

8.3.2.1 Detection of extended patterns with a transform-based approach

Chapter 3 has illustrated the benefit of the local modeling of the background fluctu-
ations arising in hologram series. In particular, we have shown that patches with holes
lead to a good tradeoff between the size of the covariance matrices to estimate and the
range of the correlations that are captured. However, the number of active pixels in a
patch should not be too high due to the difficulty to estimate the covariances from a
limited number of samples.

Based on this observation, we discuss here an alternative strategy to capture the
relatively large scale correlations of this type of data with a limited number of samples.
Instead of learning the correlations directly from the data, we suggest learning those
correlations from linear transformations of the data. Such an approach is inspired by
signal processing works showing that the covariance of the coefficients of transformations
of the data (e.g., based on wavelets decomposition, or more generally, any multi-scaled
oriented decomposition) can be learned to assess statistical properties of the noise and
of the signal (Portilla et al., 2003; Chaux et al., 2007).

In our context, we suggest to convolve each of the T background images by S impulse
responses from a bank filters. Each filter aims to produce a smoothed and spatially
shifted version of each background image. From this procedure, it results T collections
of S filtered background images. The mean m̂n (of size S × 1) and the covariance Ĉn

(of size S × S) are learned from the T collections of S filtered images at each pixel n
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Figure 8.12 – Alternative version of the EXPACO algorithm. The statistics of the back-
ground are learned from linear transformations of the data.

of the field of view. Next, the detection of the (potential) holographic patterns follows
the EXPACO approach described in Chapter 3. Figure 8.12 is a schematic representation
of this procedure. In words, with this alternative version of EXPACO, the local learning
of the background fluctuations by means of patches is replaced by the learning of the
covariances of the vector of values formed by extracting values, at a pixel of interest, of
linear transformed versions of the data.

Figure 8.13(b) shows examples of detection maps obtained with this approach for
different numbers of filters S in the filter bank. The corresponding impulse responses
are shown in Figure 8.13(a) (each of the S filters has a flat response color-coded with
a different hue). For the experiments, we have considered the same time series of back-
ground images than in Section 3.5, and we have injected a synthetic holographic pattern
(140 times fainter than the background) on a test image, see Section 3.5. The detection
peak (circled in magenta) corresponding to the center location of the holographic pat-
tern has the highest S/N value when the covariances of the background are captured
with S ≥ 7 filters. Both the stationarity of the detection maps and the detection sensi-
tivity degrade when S is larger than the number T of available samples (as in Section
3.5, T = 60 here). Figure 8.13(c) compares an example of a detection map obtained
with the alternative version of EXPACO and of the standard EXPACO. In the two cases,
the dimension of the covariance matrices is almost the same: 7 × 7 (corresponding to
S = 7 filters) for the alternative version of EXPACO, and 9× 9 (corresponding to K = 9
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Figure 8.13 – Alternative version of the EXPACO algorithm. (a) view of the impulse
responses of the filters for different numbers S of filters; (b) resulting detection maps;
(c) comparison between detection maps obtained with the alternative version of EXPACO

(left) and standard EXPACO (right). Zooms are shown when needed in the attached
insets.
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pixels in a patch) for EXPACO. It emphasizes that even with a limited size of covariance
matrices, the alternative version of EXPACO achieves better detection performance than
EXPACO. This may be due to its ability to capture longer-range correlations than EXPACO

for a given size of the covariance matrices.
This preliminary study should be completed by analyzing, for example, the influence

of the shape, size, and orientation of the impulse responses of the considered filters.

8.3.2.2 Image reconstructions accounting for the correlated background

The local statistical modeling of the background fluctuations embedded in the PACO

and EXPACO algorithms proved to be adapted to the nonstationarity of the typical images
resulting from direct imaging and holographic microscopy observations. Here we suggest
that the PACO-based modeling could also be used for object-based reconstructions in
holographic microscopy, as similarly suggested in Section 8.2.2.2 for protoplanetary
disks. As discussed in Section 8.2.2.2, regularization strategies and physical priors
adapted to the imaged objects should also be considered to stabilize the inversion.
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Appendix A
Estimation of covariance matrices by

shrinkage

In this Appendix, we derive the proofs of Equations (2.11 ), (2.12) and (2.14) con-
sidering the problem of the covariance matrix estimation from a few samples, in the
general case of non-stationary Gaussian noise.

Let x ∈ R
p be a Gaussian random vector with E[x] = 0 and E[xx⊤] = Σ. Given a

collection of n samples {xk}k=1..n, we try to estimate the covariance matrix Σ by the
convex combination:

Σ̂ = (1− ρ̂)Ŝ + ρ̂F̂ , (A.1)

where Ŝ is the sample covariance matrix: Ŝ = 1
n

∑
k xkx

⊤
k , F̂ is the diagonal matrix

defined by [F̂]ii = 1
n

∑
k[xk]

2
i and ρ̂ is a shrinkage parameter. Ŝ is the maximum

likelihood estimate of Σ, a matrix with p(p + 1)/2 degrees of freedom while F̂ has
only p non-zero values (it is a biased estimate of Σ). The parameter ρ̂ tunes the
tradeoff between the low-bias/high-variance estimate Ŝ and the low-variance/high-bias
estimate F̂.

A.1 The oracle estimator

The value ρO that minimizes the risk (i.e., the expectation of the squared Frobenius
norm ‖Σ̂ − Σ‖2

F) is given in the general case by (see Chen et al. (2010), theorem 1,
Equation (6)):

ρO =
E

[
tr
(
(Σ− Ŝ)(F̂− Ŝ)

)]

E

[∥∥∥Ŝ− F̂
∥∥∥

2

F

] =

∑
i,j Var([Ŝ]ij)−

∑
i,j Cov([Ŝ]ij, [F̂]ij)

E

[∥∥∥Ŝ− F̂
∥∥∥

2

F

] (A.2)

Proof. By definition of Σ̂, ‖Σ̂ − Σ‖2
F can be expanded into ‖(1 − ρ̂)Ŝ + ρ̂F̂ − Σ‖2

F ≡
tr
(
[(1− ρ̂)Ŝ + ρ̂F̂−Σ]2

)
. The expansion of this term gives a second degree polynomial

in ρ̂:
‖Σ̂−Σ‖2

F = ρ̂2‖F̂− Ŝ‖2
F + ‖Ŝ− F̂‖2

F + 2ρ̂ tr
(
(F̂− Ŝ)(Ŝ− Σ̂)

)
. (A.3)
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Hence, the condition ∇ρ̂

[
E

[
‖Σ̂−Σ‖2

F

]]∣∣∣∣∣
ρ̂=ρ0

= 0 leads straightforwardly to the left-

most part of Equation (A.2). The last part of Equation (A.2) comes by expanding the
numerator and using the fact that Ŝ is unbiased: E[Ŝ] = Σ.

Under our assumed form for estimators Ŝ and F̂ and our Gaussian hypothesis, ρO

is given by:

ρO =
tr(Σ2) + tr2(Σ)− 2

∑p
i=1[Σ]2ii

(n+ 1) tr(Σ2) + tr2(Σ)− (n+ 2)
∑p
i=1[Σ]2ii

. (A.4)

Proof. The numerator of Equation (A.2) can be expanded as:

E

[
tr
(
(Σ− Ŝ)(F̂− Ŝ)

)]
= E

[
tr
(
ΣF̂

)]
− E

[
tr
(
ΣŜ

)]
− E

[
tr
(
ŜF̂

)]
+ E

[
tr
(
Ŝ2
)]

(A.5)

=
p∑

i=1

[Σ]2ii − tr
(
Σ2
)
−

p∑

i=1

E

[
[Ŝ]2ii

]
+ E

[
tr
(
Ŝ2
)]
. (A.6)

The variance of the sample variance Var
[
[Ŝ]2ii

]
of Gaussian random variables is equal to

2[Σ]2ii/n, and its expectation is [Σ]ii, thus the expectation of the square of the sample
variance E

[
[Ŝ]2ii

]
is equal to 2[Σ]2ii/n+ [Σ]2ii = n+2

n
[Σ]2ii. The expectation E

[
tr
(
Ŝ2
)]

is

given in Chen et al. (2010) E

[
tr
(
Ŝ2
)]

= n+1
n

tr(Σ2) + 1
n

tr2(Σ). The numerator then
becomes:

E

[
tr
(
(Σ− Ŝ)(F̂− Ŝ)

)]
=

p∑

i=1

[Σ]2ii − tr
(
Σ2
)
− n+ 2

n

p∑

i=1

[Σ]2ii +
n+ 1

n
tr(Σ2) +

1

n
tr2(Σ)

(A.7)

=
1

n
tr2(Σ) +

1

n
tr(Σ2)− 2

n

p∑

i=1

[Σ]2ii . (A.8)

Next, the denominator can be expanded:

E

[∥∥∥Ŝ− F̂
∥∥∥

2

F

]
= E

[
tr
(
(Ŝ− F̂)2

)]
(A.9)

= E

[
tr(Ŝ2)

]
− 2E

[
tr(ŜF̂)

]
+ E

[
tr(F̂2)

]
(A.10)

=
n+ 1

n
tr(Σ2) +

1

n
tr2(Σ)− 2

n+ 2

n

p∑

i=1

[Σ]2ii +
n+ 2

n

p∑

i=1

[Σ]2ii (A.11)

=
n+ 1

n
tr(Σ2) +

1

n
tr2(Σ)− n+ 2

n

p∑

i=1

[Σ]2ii (A.12)

The optimal weight ρO is then given by (A.4).
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A.2 The Oracle-Approximating Shrinkage (OAS)
estimator

If we plug a previous estimate of Σ in Equation (A.4), an improved value of ρO is
obtained. Re-iterating this process leads to the OAS estimator:

ρ̂ =
tr(Ŝ2) + tr2(Ŝ)− 2

∑p
i=1[Ŝ]2ii

(n+ 1)(tr(Ŝ2)−∑p
i=1[Ŝ]2ii)

. (A.13)

Proof. Like in Chen et al. (2010), we define the recursion:




ρ̂j+1 =
tr(Σ̂jŜ) + tr2(Σ̂j)− 2

∑p
i=1[Σ̂j]ii[Ŝ]ii

(n+ 1) tr(Σ̂jŜ) + tr2(Σ̂j)− (n+ 2)
∑p
i=1[Σ̂j]ii[Ŝ]ii

Σ̂j+1 = (1− ρ̂j+1)Ŝ + ρ̂j+1F̂
(A.14)

Replacing Σ̂j by its definition leads to:

tr(Σ̂jŜ) = (1− ρ̂j) tr(Ŝ2) + ρ̂j tr(F̂Ŝ) , (A.15)

tr2(Σ̂j) =
[
(1− ρ̂j) tr(Ŝ) + ρ̂j tr(F̂)

]2
= tr2(Ŝ) (since tr(F̂) = tr(Ŝ)) , (A.16)

[Σ̂j]ii[Ŝ]ii = [Ŝ]2ii ⇒
∑

i

[Σ̂j]ii[Ŝ]ii = tr(F̂Ŝ) =
∑

i

[Ŝ]2ii . (A.17)

The recursion over parameter ρ̂j is thus given by:

ρ̂j+1 =
(1− ρ̂j) tr(Ŝ2) + (ρ̂j − 2)

∑p
i=1[Ŝ]2ii + tr2(Ŝ)

(n+ 1)(1− ρ̂j) tr(Ŝ2) + [(n+ 1)ρ̂j − (n+ 2)]
∑p
i=1[Ŝ]2ii + tr2(Ŝ)

(A.18)

=
a ρ̂j + b

c ρ̂j + d
, (A.19)

where a =
p∑

i=1

[Ŝ]2ii−tr(Ŝ2), b = tr(Ŝ2)+tr2(Ŝ)−2
p∑

i=1

[Ŝ]2ii, c = (n+1)

( p∑

i=1

[Ŝ]2ii − tr(Ŝ2)

)

and d = (n+ 1) tr(Ŝ2)− (n+ 2)
p∑

i=1

[Ŝ]2ii + tr2(Ŝ) are 4 constants (independent of j). If

the recursion converges, it converges to one of the fixed-points ρ̂ = 1 or

ρ̂ =
tr(Ŝ2) + tr2(Ŝ)− 2

∑p
i=1[Ŝ]2ii

(n+ 1)(tr(Ŝ2)−∑p
i=1[Ŝ]2ii)

, (A.20)

which is obtained after simplication of the roots of the equation in ρ̂: ρ̂ (c ρ̂+d) = a ρ̂+b.
This closed-form expression is an extension of the results given in Chen et al. (2010) to
our estimator F̂ with non-constant diagonal values.
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Appendix B

Unsupervised regularization of the

estimated SEDs

In Section B.1 of this appendix, we derive a sketch of proof of Equations (6.36)
and (6.37) considering the problem of the unsupervised regularization of the estimated
SEDs of detected sources with the generalized maximum likelihood (GML) approach.
In Section B.2, we complete the numerical experiments presented in Section 6.4.2.1
comparing the GML, GCV, and SURE regularization strategies.

B.1 SED regularization with the GML approach

This section derives the expression of the GML estimation of the spectral smooth-
ness µ. The whitened vector Ŝ of the S/Nℓ values extracted at a given location φ0

of the field of view is assumed to be distributed according to a Gaussian distribution:
Ŝ ∼ N (L̂⊤Vα, I), such that L̂L̂

⊤ = Σ̂−1. To estimate µ(GML), we need to derive the
expression of the density p(Ŝ|µ, φ0) =

∫
p(Ŝ,α|µ, φ0) dα =

∫
p(Ŝ|α, φ0)p(α|µ, φ0) dα.

We have:

p(Ŝ|α, φ0) = (2π)−L/2 exp
[
−1

2

(
Ŝ− L̂

⊤Vα
)⊤(

Ŝ− L̂
⊤Vα

)]
, (B.1)

and,

p(α|µ, φ0) = (2π)−L/2
∣∣∣µD⊤D

∣∣∣
1/2

+
exp

[
−µ

2
α⊤D⊤Dα

]
, (B.2)
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with |· |+ the product of all non-zero singular values (see Trouvé (2012)). The density
p(Ŝ,α|µ, φ0) is thus equal to:

p(Ŝ,α|µ, φ0) = (2π)−L
∣∣∣µD⊤D

∣∣∣
1/2

+
exp

[
−1

2

(
Ŝ− L̂

⊤Vα
)⊤(

Ŝ− L̂
⊤Vα

)
− µ

2
α⊤D⊤Dα

]

(B.3)

= (2π)−L
∣∣∣µD⊤D

∣∣∣
1/2

+
exp

[
−1

2

(
α− α̂(reg)

)⊤(
VL̂L̂

⊤V + µD⊤D
) (

α− α̂(reg)
)

− 1
2
Ŝ

⊤
(

I− L̂
⊤V

(
VL̂L̂

⊤V + µD⊤D
)−1

VL̂

)
Ŝ

]
(B.4)

= (2π)−L/2

∣∣∣µD⊤D
∣∣∣
1/2

+∣∣∣VL̂L̂⊤V + µD⊤D
∣∣∣
1/2

+

× G(α ; m = α̂(reg), Λ(µ) =
(
VL̂L̂

⊤V + µD⊤D
)−1

)

× exp
[
−1

2
Ŝ

⊤
(

I− L̂
⊤V

(
VL̂L̂

⊤V + µD⊤D
)−1

VL̂

)
Ŝ

]
, (B.5)

where G( · ; m = · ,Λ(µ) = · ) corresponds to the PDF of a Gaussian distribution
of mean m and covariance Λ(µ).

By integrating with respect to α, this Gaussian PDF integrates to 1 and it remains
the evidence (i.e., likelihood of µ):

p(Ŝ|µ, φ0) = G
(
Ŝ ; m = 0, Λ =

(
I− L̂

⊤VM(µ)
)−1

)
, (B.6)

with M(µ) =
(
VL̂L̂

⊤V + µD⊤D
)−1

VL̂ =
(
VΣ̂−1V + µD⊤D

)−1
VL̂.

Hence, parameter µ can be estimated by solving the 1-D optimization problem:

µ̂(GML) = arg min
µ

log det Λ(µ) + Ŝ
⊤Λ−1(µ)Ŝ , (B.7)

with Λ(µ) the covariance matrix defined in Equation (B.6), which corresponds to the
Equations (6.36) and (6.37).

B.2 SED regularization with the GML, GCV, and
SURE approaches: additional numerical re-
sults

In this section, we detail and complete the results given in Section 6.4.2.1 compar-
ing the GML, GCV, and SURE approaches for the unsupervised regularization of the
estimated SEDs. Figures B.2, B.3, B.4, and B.5 give the estimated spectra of the 30
Monte-Carlo injections of sources #2, #5, #10, #12, respectively. The mean estimates,
the empirical and the predicted (derived from the PACO–ASDI modeling) confidence in-
tervals are also given. A comparison is also given with the results obtained when the
regularization hyperparameter µ is set in an oracle mode, i.e., by selecting µ that min-
imizes the MSE between the SED estimate and the SED ground truth. For each tested
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regularization strategy (GML, GCV, SURE, and oracle), we consider 5 sub-cases which
are presented along the columns of Figures B.2, B.3, B.4, and B.5:

• no spectral whitening; the spectral whitening filter L̂
⊤ = I, such as the spectral

covariances of the S/Nℓ values are not taken into account for the SED estimation
in Equations (6.41) to (6.41).

• spectral whitening covariance (not local); the spectral whitening filter L̂ is ob-
tained from the Cholesky factorization of the covariance matrix Σ̂ which is com-
puted from a large set (5,000 samples) of S/Nℓ vectors extracted around each
pixel.

• spectral whitening covariance (local); the spectral whitening filter L̂ is obtained
from the Cholesky factorization of the covariance matrix Σ̂ which is computed
from a small set (300 samples) of S/Nℓ vectors extracted locally around each
pixel.

• spectral whitening correlation (not local); the spectral whitening filter L̂ is ob-
tained from the Cholesky factorization of the correlation matrix Σ̂ which is com-
puted from a large set (5,000 samples) of S/Nℓ vectors extracted around each
pixel.

• spectral whitening correlation (local); the spectral whitening filter L̂ is obtained
from the Cholesky factorization of the correlation matrix Σ̂ which is computed
from a small set (300 samples) of S/Nℓ vectors extracted locally around each
pixel.

Figures B.6 and B.7 complete this study by comparing the different strategies tested in
terms of MSE and agreement between the estimated with the empirical 1σ confidence
intervals.

The same overall conclusions than in Section 6.4.2.1 can be made, i.e. GML and SURE
approaches lead to very similar results while the GCV approach leads to significantly
worse results. As expected, the gain brought by the regularization is larger when the
contrast of the source is weak and for sources located near the host star, i.e., when the
estimated SED is very noisy. A more complete discussion is carried out on these two
points in Section 6.4.2.1.

Based on these detailed results, we also make additional observations. The gain in
terms of MSE reduction is higher when the spectral whitening filter L̂

⊤ is computed
locally. This is because the covariance structure varies on moderate spatial scales (it
is nonstationary). When the spectral whitening filter L̂

⊤ is computed from a correla-
tion matrix (i.e., Σ̂ is a correlation matrix), the MSE reduction is slightly improved
compared to that obtained with the whitening computed from the covariance matrix.
However, as illustrated by Figure B.1, accounting only for the spectral correlations of
the S/Nℓ values is not beneficial in the reduction step. Indeed, some spatial structures
remain on the combined wS/N maps produced by PACO–ASDI when Σ̂ is a correlation
matrix probably due to its reduced degrees of freedom. When the spectral whitening fil-
ter is computed from a covariance matrix, the predicted photometric standard-deviation
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-5

0

5

Figure B.1 – Combined wS/N maps from PACO–ASDI when the covariances (left) or the
correlations of the S/Nℓ values are taken into account.

is in good agreement with the empirical photometric standard-deviation (ratio between
1.0 and 1.2).

Based on this study, we chose to regularize the estimated SEDs by the SURE ap-
proach. As detail in Section 6.4.2.1, we account for the spectral covariances of the
S/Nℓ values during this process by deriving the whitening filter L̂

⊤ corresponding to a
spectral covariance matrix computed from a reduced number of samples (about 300)
extracted locally around each pixel of the field of view.
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Figure B.2 – Monte-Carlo estimated spectra for the source #2 for different spectral regularization strategies (absence of regularization,
regularizations GML, SURE, and oracle) and different spectral whitening strategies (no spectral whitening, non-local and local
whitening) from the correlations and covariances matrices. For purpose of compactness, the detailed GCV results (which are
significantly worst, see text) are not reported.
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Figure B.3 – Same presentation than Figure B.2 for the source #5.
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Figure B.4 – Same presentation than Figure B.2 for the source #10.
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Figure B.5 – Same presentation than Figure B.2 for the source #12.
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Figure B.6 – Comparison of the GCV, GML, and SURE regularization strategies on 30 Monte-Carlo injections / SED estimations
for sources #2, #5, #10, and #12. The reported values are gain in terms of MSE reduction comparing with the absence of spectral
regularization. Values higher than one indicate a decrease of the MSE.
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Figure B.7 – Comparison of the GCV, GML, and SURE regularization strategies on 30 Monte-Carlo injections / SED estimations
for sources #2, #5, #10, and #12. The reported values are ratio between the 1σ empirical and predicted (by the PACO–ASDI model)
confidence intervals. Values higher than one indicate that predicted confidence intervals are smaller than the empirical ones so that
the algorithm estimation is too optimistic.
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Appendix C
Modeling background fluctuations of ASDI

datasets

In Section 6.2.1, we present the PACO–ASDI statistical modeling of the background.
In the absence of source, we model each patch rn,ℓ,t as a random realization of the
K-dimensional Gaussian N (mn,ℓ, σ

2
n,ℓ,tCn). At a given location, the mean patch mn,ℓ

is the same for all t but varies with the wavelength. The K ×K covariance matrix is
modeled as a product of two factors: a time and wavelength-dependent scaling σ2

n,ℓ,t

and a spatial covariance matrix Cn that is constant for a given patch collection. Several
variants of this modeling have been considered and tested, but they were not selected
because they led to worse detection performances.

This appendix aims to give a quick summary of some alternative strategies that
were considered. The mathematical development (such as estimators) are not reported
here.

C.1 Estimation of the means

We have compared temporal and spectral means. Besides, we have considered spec-
tral means weighted by spectral factors common for the entire mean patches. We found
that temporal means were better suited since the mean intensity varies more signifi-
cantly along the spectral channels than temporal frames in ASDI datasets. While this
result may seem surprising, the spectral variability may be due to the pre-reduction
step producing the 4-D datasets used by detection algorithms (see Section 1.2.2.3).
Typically, signals from the first and last channels of the IFS spectral band are generally
badly interpolated, leading to a lower mean intensity. The use of additional spectral
factors weighting each spectral mean was more satisfactory in this respect but did not
completely solve the problem due to its poor ability to counterbalance short spatial
range fluctuations (inside the typical patch size) of the mean intensity.

Figure C.1 compares the use of temporal means versus spectral means weighted
by spectral scaling factors. The spectral means and the spectral scaling factors are
estimated jointly by a truncated rank-one SVD of the collection of L spatio-temporal
patches extracted at a given pixel n of the field of view. Figure C.1(a) gives examples of
residual patches after mean subtraction for different times and wavelengths. It appears
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C.2. Estimation of the scaling factors

Figure C.1 – Comparison between the use of temporal and spectral means on the ASDI
modeling of the background fluctuations. The dataset considered is centered on HR
8799. Only two exoplanets marked by magenta circles are expected to be detected since
the third one falls outside of the field of view. (a) examples of residual patches after
mean subtraction (left: temporal mean, right: spectral mean + spectral weights); (b)
GLRT+ maps (left: temporal mean, right: spectral mean + spectral weights).

that the mean residual intensity is lower when temporal means are used, as in our model
described in Section 6.2.1. Finally, Figure C.1(b) illustrates GLRT+ maps (the spectral
correlations are not taken into account, see Equation (6.16)) computed by considering
temporal or spectral means. While the mean level of the background structures is not
significantly different in the two examples, we observe that the source throughput is
lower (especially for the exoplanet closer to the host star) when a spectral mean is
considered. For this reason, we defined our model of the background fluctuations based
on a temporal mean per wavelength.

C.2 Estimation of the scaling factors

We have tested several variants of the temporo-spectral GSM model (see Section
6.2.1). Among them, we considered weights that depend only on time or only on
the spectral channel, but each of these two variants showed to be less adapted to our
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Modeling background fluctuations of ASDI datasets

problem. In particular, these two approaches failed to capture both the spectral and
temporal outliers arising in ASDI datasets.

C.3 Estimation of the covariances

As described in Section 6.2.1, instead of modeling the spectral correlations of ASDI
datasets, we model and take into account the spectral correlations between S/Nℓ values.
We have considered accounting for both the spatial and spectral correlations directly in
our model of the background fluctuations. Hereafter, we briefly describe this resulting
background modeling and discuss why we did not chose this approach.

Let f full
n,t = (−fn,ℓ1,t− −fn,ℓ2,t−· · ·−fn,ℓL,t

−)⊤ be the vector obtained by concatenating
the patches of background for all wavelengths, at a given pixel n of the field of view
and at a given date t.

We suppose that f full
n,t is a realization of a Gaussian random vector of mean mfull

n =
(−mn,ℓ1− −mn,ℓ2−· · ·−mn,ℓL−)⊤ (i.e., a mean patch per wavelength) and of spatio-
spectral covariance matrix Cfull

n . Since the dimension of the covariance matrix Cfull
n

(K ·L) is much greater than the number of available dates, we cannot estimate it
directly (besides, it would be costly to manipulate).

Therefore, we assume that this matrix is structured and that it corresponds to a
separable generative model:

Cfull
n = Ffull Ffull⊤ , (C.1)

with Ffull a linear and separable operator:

Ffull = Ffull
spectralF

full
spatial , (C.2)

i.e., a random vector f full
n,t (multi-spectral collection of background patches) is obtained

by the product Ffullǫ with ǫ ∼ N (0, IK·L) a white and Gaussian noise. Matrices
Ffull

spectral and Ffull
spatial can be estimated alternatively by a fixed-point method.

Figure C.2 compares GLRT+ maps obtained when spatial or spatio-spectral (under
the separable model described above) are considered. It shows that some periodic
background structures are attenuated when the spatio-spectral correlations of the data
are accounted for. However, other artifacts appear and the source throughputs are
weaker and noisier. Several elements may explain these observations. On the one
hand, including a modeling of the spatio-spectral correlations gives a finer description
of the observed background fluctuations of the ASDI data. In particular, the spectral
correlations are accounted for. On the other hand, we face the difficulty to estimate
these correlations accurately with the limited number of samples. Besides, another
issue should be considered: these preliminary experiments do not include spectral or
temporal weighting factors as the ones provided by a GSM model (since we investigated
this methodological framework later in the thesis). Then, the numerous outliers arising
in ASDI data are not taken into account. The resulting estimated parameters may
be biased by this lack of modeling. From our point of view, it would be interesting
to investigate the combination of a spatio-spectral modeling of the background with
temporal plus spectral weights as in our GSM model (see Section 6.2.1). The different
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C.3. Estimation of the covariances

Figure C.2 – Comparison of GLRT+ maps obtained by modeling the spatial (left) and
spatio-spectral (right) correlations of ASDI data. The dataset considered is centered on
HR 8799. Only two exoplanets marked by magenta circles are expected to be detected
since the third one falls outside of the field of view.

parameters (the temporal mean mn,ℓ, the two terms of the spatio-spectral separable
covariance Cfull

n , and the temporo-spectral weighting factors σ2
n,ℓ,t) could be estimated

alternatively by a fixed-point method.
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Appendix D
Example of an automatic report generated

by PACO

In this appendix, we illustrate the automatic report generation of the PACO pipeline.
The selected example summarizes the main results obtained from the processing of a
dataset of HD 95086 hosting several point sources including one exoplanet (HD 95086
b) orbiting at about 0.62 arcsec from its host star, see Section 4.4. The following pages
give excerpts of the resulting report and we refer to the page number indicated in the
top right corners for the description. The information of the reduction, detection, and
characterization steps are organized as follows:

• reduction step

• Pages 1 and 2 give information about the processed dataset and the selected
processing options.

• Page 3 gives the S/N detection map, and page 4 is the (biased) flux map.

• Pages 19 and 21 give the achievable 5σ contrast.

• Pages 22 and 24 give respectively the photometry and astrometry accuracy
maps.

• detection step

• Page 35 summarizes the main notation used throughout the following pages
of the report.

• Page 36 identifies the sources of interest; the typically very bright and/or
spatially extended sources are flagged as of poor interest (as groups !G3 and
!G4) since they are generally background stars. By default, these sources are
not characterized during the characterization step to limit the computation
time.

• Page 40 gives a close-up view of the selected detections of interest.

• For each detection, a table summarizing the main roughly estimated quantities
is built. Page 43 is an example of such table for the source #1 appearing in
page 36. These quantities should be refined by the characterization step.
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• Page 54 gives a view of the sources identified as of poor interest (typically too
bright or spatially extended). The user can overrule the automatic classifica-
tion of the pipeline by enforcing the characterization of such sources.

• characterization step

• Pages 88 and 89 summarize the main notation used throughout the following
pages of the report.

• Page 95 presents a view of the refined (subpixel and unbiased) quantities
characterizing the source #1. The results are given on small patches around
the source of interest, with four nodes per pixel in this example.

• Page 109 gives a table summarizing the refined (subpixel and unbiased) quan-
tities characterizing the source #1.

• Page 116 gives a view of the trajectory of the characterized sources in the
processed ADI dataset.

• Page 118 shows the residual S/N map obtained after subtraction of the esti-
mated contribution of the characterized sources in the ADI dataset (applica-
tion of a CLEAN approach, see Section 2.4.6).

• Finally, page 122 is a composite image in which the computed (expected)
signature of the characterized sources are re-injected at an unbiased level of
S/N on the residual S/N map. This purely qualitative map can be useful for
a quick visualization of the results.
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PACO report: dataset HIP 53524 acquired on 2015/05/05 processed on
2019/05/20

Automatically generated report by PACO, 20/05/2019.

Table of contents:

1 GENERAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dataset and algorithm information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Links color chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 ADI–REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 ADI–reduction at λ00 = 2.1100µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 ADI–DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 ADI–detection at λ00 = 2.1100µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 ADI–CHARACTERIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 ADI–characterization at λ00 = 2.1100µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

1 GENERAL INFORMATION

1.1 Dataset and algorithm information

Figure 1 summarizes information about the number of available dates (Tavailable) & wavelengths (Lavailable) and the

number of used dates (T ) & wavelengths (L). The used dates and wavelengths are speficied by the user within the

respective input fields selected_frames and processed_channel_indexes (all dates and wavelengths are used

by default is they are not filled).
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preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/5_info_paco/adi_results/HIP_53524_fast_paco1_

dates_wavelengths_od20150505_0151326746_cd200519_143456.pdf

Figure 1: Available vs kept dates and wavelenghts.

Table 1 gives general information about the dataset and the used algorithm schemes.

1

2 PACO report: dataset HIP 53524

Table 1: General information about the dataset and the processing algorithms.

Fields Values

CUBE NAME & DATES

cube name HIP 53524

observation date 2015/05/05

processing date 2019/05/20

report date 2019/05/20

INSTRUMENT

instrument name SPHERE/IRDIS

direction of rotation positive

effective (corrected) pixel size in arcsec 0.012212

DATASET

R: number of rows in images 1024

C : number of columns in images 1024

Rexpanded: number of rows in expanded images 1448

Cexpanded: number of columns in expanded images 1448

Tavailable: number of available temporal frames 52

T : number of kept temporal frames 52

Lavailable: number of available wavelengths 2

L: number of kept wavelengths 1

USED PACO SCHEMES

ADI–reduction fast-PACO1

ADI–reduction Monte-Carlo constrast PACO1

ADI–detection PACO1

ADI–characterization alt-PACO1

ASDI–reduction was not processed

ASDI–detection was not processed

ASDI–characterization was not processed

1.2 Links color chart

Table 2 gives the color chart of the links displayed below figures or tables according to their type. The links return

to the corresponding files saved in the main results folder.

Table 2: Color chart for the links to source files, preview files and user files.

File types Colors

source files .fits or .fits (when several source files for the same item)

preview files .pdf or .pdf (when several preview files for the same item)

user files .txt or .txt (when several user files for the same item)

Remark: Bonly the source files (in fits format) should be used for the final interpretation of the results since the

preview files are compressed so that the detection blobs are usually distorted.

2 ADI–REDUCTION

The ADI–reduction step was performed with the fast-PACO1 algorithm. We recall that the available algorithms for

the ADI–reduction step were fast-PACO1, PACO1, fast-PACO1+Temp.Rob. and PACO1+Temp.Rob.. Monte Carlo

contrast curve was computed with the PACO1 algorithm. We recall that the avaible algorithms for the computation

of a Monte Carlo contrast curve during the ADI–reduction step were PACO1 and PACO1+Temp.Rob..



2. ADI–REDUCTION 3

2.1 ADI–reduction at λ00 = 2.1100µm

2.1.1 Signal-to-noise ratio

• Mathematical notation: SNR.

• Filename notation: snr.

• Description: signal-to-noise ratio.

• Properties: statistically-grounded (i.e can be thresholded at a controlled PFA). Suboptimal (i.e biased in pres-

ence of a source) during the ADI–reduction step.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/snr/HIP_53524_

fast_paco1_snr_lam00_od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/snr/HIP_53524_

fast_paco1_snr_lam00_od20150505_0151326746_cd200519_143456_preview_compressed.pdf

Figure 2: SNR map at λ00 = 2.1100µm (default field of view alignment).

2. ADI–REDUCTION 9

2.1.4 Constrained flux

• Mathematical notation: α+.

• Filename notation: alpha.

• Description: constrained (positive) flux.

• Properties: suboptimal (i.e biased in presence of a source) during the ADI–reduction step.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/alpha/HIP_

53524_fast_paco1_alpha_lam00_od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/alpha/HIP_

53524_fast_paco1_alpha_lam00_od20150505_0151326746_cd200519_143456_preview_compressed.pdf

Figure 8: α+ map at λ00 = 2.1100µm (default field of view alignment).
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2.1.9 Oracle contrast at 5σα

• Mathematical notation: 5σα.

• Filename notation: local_5sigma_oracle_contrast.

• Description: oracle contrast at 5σα. Even if this value can be biased (very slightly overoptimist) due to poten-

tial source(s) disturbing the estimation of the background statistics, this quantity is a good approximation

of the real achievable contrast. Moreover, is the temporal robustness is applied, the difference between this

quantity and the real achievable contrast is very weak (even near the host star).

• Properties: statistically-grounded. Suboptimal (i.e biased in presence of a source) during the ADI–reduction

step.
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source file:

../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/local_5sigma_oracle_

contrast/HIP_53524_fast_paco1_local_5sigma_oracle_contrast_lam00_od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/local_5sigma_

oracle_contrast/HIP_53524_fast_paco1_local_5sigma_oracle_contrast_lam00_od20150505_0151326746_cd200519_143456_

preview_compressed.pdf

Figure 18: 5σα map at λ00 = 2.1100µm (default field of view alignment).
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2.1.10 Oracle and Monte-Carlo contrast curves at 5σα

• Mathematical notation: curve–5σα–oracle and curve–5σα–monte–carlo.

• Filename notation: curve_5sigma_oracle_contrast and curve_5sigma_monte_carlo_contrast.

• Description: oracle and Monte-Carlo contrast curves at 5σα. Even if the oracle contrast can be biased

(slightly overoptimist) due to potential source(s) disturbing the estimation of the background statistics, the

oracle contrast is a good approximation of the Monte-Carlo (really achievable) contrast. Moreover, is the

temporal robustness is applied, the difference between the oracle and the Monte-Carlo contrast is further

reduced (even near the host star). The Monte-Carlo contrast curve was also computed and it is superim-

posed to the oracle contrast curve.

• Properties: statistically-grounded. The temporal robustness scheme WAS NOT applied.
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source oracle file:

../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/curve_5sigma_oracle_

contrast/HIP_53524_fast_paco1_curve_5sigma_oracle_contrast_lam00_od20150505_0151326746_cd200519_143456.fits

source Monte-Carlo file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/

curve_5sigma_monte_carlo_contrast/HIP_53524_fast_paco1_curve_5sigma_monte_carlo_contrast_lam00_od20150505_

0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/curve_5sigma_

monte_carlo_contrast/HIP_53524_fast_paco1_curve_5sigma_monte_carlo_contrast_lam00_od20150505_0151326746_

cd200519_143456_preview_compressed.pdf

Figure 20: curve–5σα–oracle and curve–5σα–monte–carlo at λ00 = 2.1100µm.
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2.1.11 Cramér-Rao lower bound on α

• Mathematical notation: δα.

• Filename notation: crlb_alpha.

• Description: Cramér-Rao lower bound (CRLB) on the flux giving a lower theoretical bound of the standard-

deviation of estimation on the estimated flux. This quantity is expressed in contrast unit.

• Properties: statistically-grounded. Suboptimal (i.e biased in presence of a source) during the ADI–reduction

step.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/crlb_alpha/HIP_

53524_fast_paco1_crlb_alpha_lam00_od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/crlb_alpha/

HIP_53524_fast_paco1_crlb_alpha_lam00_od20150505_0151326746_cd200519_143456_preview_compressed.pdf

Figure 21: δα map at λ00 = 2.1100µm (default field of view alignment).
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2.1.12 Cramér-Rao lower bound on the x–location

• Mathematical notation: δx .

• Filename notation: crlb_x.

• Description: Cramér-Rao lower bound (CRLB) on the x–location giving a lower theoretical bound of the

standard-deviation of estimation on the estimated x–location. δx depends on the source flux: the higher the

source flux the lower the Cramér-Rao on the x–location is (i.e the lower the standard-deviation of estimation

on the x–location is). Here, this quantity is expressed in pixel × contrast, so that, at a given location, δx

should be divided by the expected contrast to fall into pixel unit.

• Properties: statistically-grounded. Suboptimal (i.e biased in presence of a source) during the ADI–reduction

step.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/crlb_x/HIP_

53524_fast_paco1_crlb_x_lam00_od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/crlb_x/HIP_

53524_fast_paco1_crlb_x_lam00_od20150505_0151326746_cd200519_143456_preview_compressed.pdf

Figure 23: δx map at λ00 = 2.1100µm (default field of view alignment).
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3 ADI–DETECTION

The ADI–detection step was performed with the PACO1 algorithm. We recall that the available algorithms for

the ADI–detection step were PACO1 and PACO1+Temp.Rob.. The table 3 gives the ad hoc parameters used dur-

ing the ADI–detection step. We recall that these parameters have NO influence on the PACO method. They just

control ad hoc rules avoiding to characterize sources of poor interest (such as very bright sources). The input

detection_threshold stands for the value τ used to threshold the statistically grounded SNR map at a con-

trolled probability of false alarms. The input detection_borders_min_corr_coeff controls the discarding

rule of detections very close to the borders of the field of view (for which the number of temporal frames can

be significantly lower than T due to the field of view rotation). A detection close to the borders of the field of

view is kept if the normalized correlation coefficient c between the expected pattern of detection and the ob-

served pattern is higher than the value pointed by the field detection_borders_min_corr_coeff. The input

detection_proximity_pixels controls the size in pixels of the detected conglomerates (corresponding to very

bright sources) for which the program proposes the user not to characterize them during the ADI–characterization

step. The input report_sigma_photo_astro_intervals gives the degree of confidence on the astrometry and

photometry. The astrometry is expressed as {x, y}–location–(aligned)±k δ{x,y} and the photometry by α+
±k σα

where σα is the oracle standard-deviation on the flux and δ{x,y} are the CRLBs on the photometry. k is the factor

indicated by the input report_sigma_photo_astro_intervals (it is generally common to use k = 1,2 or 3).

Table 3: Ad hoc parameters used during the ADI–detection step.

Inputs name Values

detection_threshold 5

detection_proximity_pixels 10

detection_borders_min_corr_coeff 0.8

report_sigma_photo_astro_intervals 1

We recall that the ADI–detection procedure attributes flags to certain detections according to their degree of inter-

est. The considered flags are:

• flag_warning_high_density set to 1 for spread detections (e.g very bright soures).

• flag_warning_single_pixel set to 1 when a detection is made of only one pixel above the detection

threshold (can arise on the borders of the field of view is the instrument mask doest not take into account

correctly the aberrant data).

• flag_warning_proximity_between_detections set to 1 in case of multiple detections around the same

object (e.g. near a bright source). In this case, they are grouped in a unique entity.

• flag_warning_near_fov_borders set to 1 in case of proximity with the initial field of view (as defined by

the Wbw_expanded binary mask).

• flag_warning_near_extended_fov_borders set to 1 in case of proximity with the field of view of interest

taking into account the rotation along time (as defined by the Wbw_expanded_rotation binary mask).

In order to prepare the ADI–characterization step and avoid useless characterizations, the ADI-detection step clas-

sifies detections in 3 groups: “standard detections", “grouped detections" and “ill-fitted detections". We recall

hereafter the ad hoc rules used for this classification:

• standard detections (symbol “#xx"): (all flags set to 0) or (flag_warning_near_fov_borders=1

& pattern_correlation_coefficient ≥ detection_borders_min_corr_coeff) or

(flag_warning_near_extended_fov_borders=1 & pattern_correlation_coefficient ≥

detection_borders_min_corr_coeff).

• grouped detections (symbol “!xx member of group !Gxx"): flag_warning_proximity_between_detections=1.

• ill-fitted detections (symbol “!xx"): any other combinations of flags.

By default, only the standard detections are characterized (flag_charactetization set to 1), but the user can

change the status of a detection or add manually additional sources (below the detection threshold) in the text

detection_file to be characterized.
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3.1 ADI–detection at λ00 = 2.1100µm

3.1.1 Detection annoted signal-to-noise ratio

• Mathematical notation: detection–annoted–SNR.

• Filename notation: detection_snr_full_map.

• Description: signal-to-noise ratio from the ADI–reduction step annoted with the ADI–detection informa-

tion. The color of the squares encodes for the (biased) estimate of the flux derived from the ADI–reduction

step.

• Properties: statistically-grounded (i.e can be thresholded at a controlled PFA). Suboptimal (i.e biased in pres-

ence of a source) during the ADI–detection step.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/1_reduction_paco/adi_results/lam00/snr/HIP_53524_

fast_paco1_snr_lam00_od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00//detection_

full_map/HIP_53524_fast_paco1_detection_snr_full_map_lam00_od20150505_0151326746_cd200519_143456.pdf

Figure 33: detection–annoted–SNR map at λ00 = 2.1100µm (default field of view alignment).
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3.1.3 Detection: zoom on standard detections

• Mathematical notation: zoomed–standard–detections–SNR.

• Filename notation: detection_snr_zoom_detections.

• Description: zoom on the SNR of the ADI–reduction step around the detections classified as standard de-

tections by the ADI–detection step. The color of the squares encodes for the (biased) estimate of the flux

derived from the ADI–reduction step.

• Properties: statistically-grounded (i.e can be thresholded at a controlled PFA). Suboptimal (i.e biased in pres-

ence of a source) during the ADI–detection step.
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Figure 37: zoomed–standard–detections–SNR: detections #1, #2, #3, #4, #5, #6 and #7 at λ00 = 2.1100µm (default

field of view alignment).

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00/detection_snr_

zoom_detections/HIP_53524_fast_paco1_detection_snr_zoom_detections_index_1_to_7_lam00_od20150505_0151326746_

cd200519_143456.pdf

source files for detection #1:

(source file: SNR patch)

../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00/detection_snr_patch_and_

expected_pattern/HIP_53524_fast_paco1_snr_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

(source file: expected pattern patch) ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/

lam00/detection_snr_patch_and_expected_pattern/HIP_53524_fast_paco1_expected_pattern_file_index_1_lam00_

od20150505_0151326746_cd200519_143456.fits

source files for detection #2:

(source file: SNR patch)

../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00/detection_snr_patch_and_

expected_pattern/HIP_53524_fast_paco1_snr_patch_file_index_2_lam00_od20150505_0151326746_cd200519_143456.fits

(source file: expected pattern patch) ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/

lam00/detection_snr_patch_and_expected_pattern/HIP_53524_fast_paco1_expected_pattern_file_index_2_lam00_

od20150505_0151326746_cd200519_143456.fits
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Table 4: ADI–detection: information about the standard detection #1.

Fields Notation Ind.fits Ind.txt Values

IDENTIFICATION

index i [1] (1),{1} #1

group g [2] (2),{2} -

flag_characterization F–c [3] (3) 1

ASTROMETRY (PIXELS)

x-location (pixels) x–location (pix) [4] (4) 1151±0.38

y-location (pixels) y–location (pix) [5] (5) 997±0.35

x-location_aligned (pixels) x–loc.–aligned (pix) [6] (6) 593±0.38

y-location_aligned (pixels) y–loc.–aligned (pix) [7] (7) 236±0.35

ASTROMETRY (ARCSECONDS)

x-location (arcseconds) x–location (as) [8] (8) 5.2084±0.0047

y-location (arcseconds) y–location (as) [9] (9) 3.3278±0.0043

rho-location (arcseconds) ρ–location (as) [10] (10) 6.1808±0.0043

theta-location (degrees) θ–location (deg) [11] (11) 327.42±0.04

x-location_aligned (arcseconds) x–loc.–aligned (as) [12] (12) -1.6059±0.0047

y-location_aligned (arcseconds) y–loc.–aligned (as) [13] (13) -5.9656±0.0043

rho-location_aligned (arcseconds) ρ–loc.–aligned (as) [14] (14) 6.1779±0.0043

theta-location_aligned (degrees) θ–loc.–aligned (deg) [15] (15) 105.07±0.04

DETECTION CONFIDENCE

snr SNR [16] (16) 28.8

PHOTOMETRY

alpha (contrast) α+ [17] (17) (1.34±0.05)×10−5

alpha (magnitude) mag{α+} [18] (18) 12.22≥12.18≥12.15

CLASSIFICATION DETAILS

pattern_correlation_coefficient c [19] (19) 0.92

flag_warning_high_density FW–hd [20] (20) 0

flag_warning_single_pixel FW–sp [21] (21) 0

flag_warning_prox._between_detections FW–pbd [22] (22) 0

flag_warning_near_extended_fov_borders FW–nefb [23] (23) 0

flag_warning_near_fov_borders FW-nfb [24] (24) 0

ADDITIONAL RESULTS

glr GLR [25] {3} 831

alpha_unc_std_dev σα [26] {4} 4.65×10−7

local_5sigma_oracle_contrast 5σα [27] {5} 2.32×10−6

crlb_alpha δα [28] {6} 3.10×10−6

{crlb_x,crlb_y} (arcseconds) {δx ,δy } [29],[30] {7},{8} {0.0047,0.0043}

{crlb_rho,crlb_theta} (as,deg) {δρ ,δθ} [31],[32] {9},{10} {0.0043,0.04}

e_ratio_max_sampling_error E(.) [33] {11} -

denom
∑T

ℓ=1
aℓ [34] {12} 4.6×1012

[source (detection) file]: ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00/detection_files/HIP_53524_fast_paco1_

detection_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits.

(user (detection) file): ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/all_detection_main_files/HIP_53524_fast_paco1_

detection_file_lam00_od20150505_0151326746_cd200519_143456.txt.

{user (detection) additional file}: ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/all_detection_main_files/HIP_53524_fast_

paco1_detection_file_additional_results_lam00_od20150505_0151326746_cd200519_143456.txt.
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3.1.5 Detection: zoom on grouped detections

• Mathematical notation: zoomed–grouped–detections–SNR.

• Filename notation: detection_snr_zoom_grouped_detections.

• Description: zoom on the SNR of the ADI–reduction step around the detections classified as grouped de-

tections by the ADI–detection step. The color of the squares encodes for the (biased) estimate of the flux

derived from the ADI–reduction step.

• Properties: statistically-grounded (i.e can be thresholded at a controlled PFA). Suboptimal (i.e biased in pres-

ence of a source) during the ADI–detection step.
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Figure 41: zoomed–grouped–detections–SNR: detection group !G1 composed of detections !8, !9, and !10, detec-

tion group !G2 composed of detections !11, and !12, detection group !G3 composed of detections !13, !14, !15, !16,

!17, !18, !19, !20, !21, !22, !23, !24, !25, !26, !27, !28, !29, and !30 at λ00 = 2.1100µm (default field of view alignment).

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00/detection_snr_

zoom_grouped_detections/HIP_53524_fast_paco1_detection_snr_zoom_grouped_detections_index_1_to_3_lam00_

od20150505_0151326746_cd200519_143456.pdf

source files for detection !8 (member of !G1):

(source file: SNR patch)

../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00/detection_snr_patch_and_

expected_pattern/HIP_53524_fast_paco1_snr_patch_file_index_8_lam00_od20150505_0151326746_cd200519_143456.fits

(source file: expected pattern patch) ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/

lam00/detection_snr_patch_and_expected_pattern/HIP_53524_fast_paco1_expected_pattern_file_index_8_lam00_

od20150505_0151326746_cd200519_143456.fits

source files for detection !9 (member of !G1):

(source file: SNR patch)

../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/lam00/detection_snr_patch_and_

expected_pattern/HIP_53524_fast_paco1_snr_patch_file_index_9_lam00_od20150505_0151326746_cd200519_143456.fits

(source file: expected pattern patch) ../../HIP_53524_od20150505_0151326746_paco_outputs/2_detection_paco/adi_results/
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4 ADI–CHARACTERIZATION

The ADI–characterization step was performed with the alt-PACO1 algorithm. We recall that the available algo-

rithms for the ADI–characterization step were (unbiased) alt-PACO1 and (unbiased) alt-PACO1+Temp.Rob.. The

table 38 gives the ad hoc parameters used during the ADI–characterization step. We recall that these parameters

have NO influence on the PACO method. They just control ad hoc rules depending on the used characterization

schemes.

Numerical optimization or subpixel grid (ADI–characterization schemes): The characterization step provides

subpixel astrometry and unbiased photometry plus a refinement of all quantities evaluated during the ADI–

reduction and ADI–detection steps. Two schemes can be used during this step: a numerical optimization (if

characterization_numerical_optimization is explicitly set to 1) alternating between an unbiased flux es-

timation and an unbiased photometry estimation. In this case, the quantities are refined but no zoom (at a sub-

pixel scale) of the different quantities around the source are available. The other available scheme is based on

the evaluation of the different quantities at a subpixel scale on a finite resolution grid. This scheme is launch

by default (or if characterization_subpixel_grid is manually set to 1) since it provided very visual infor-

mation, especially about the shape and the spatial spreading of the source. However, since the quantities are

evaluated at several subpixel locations, the computation burden is higher than using the numerical optimiza-

tion scheme. If the characterization is performed by a subpixel grid, an oversampling factor can be filled in

the characterization_subpixel_grid_subsampling_factor field (which is equal to 4 by default leading to

4 nodes by pixel). The half size of the local zoomed map produced around each source to be characterized can be

set with the characterization_subpixel_grid_subsampling_zoom_size field (equal to 3 pixels by default).

Whatever the chosen strategy, the unbiased flux is obtained by alternating the estimation of the flux and the esti-

mation of the background statistics. The maximum number of iterations of this scheme is indicated by the field

characterization_iterations.

Cleaning scheme: A cleaning procedure allows to characterize the sources (and eventually to point new dectec-

tions revealed by the cleaning of a previously detected source) in an unsupervised fashion. The field cleaning

rules the cleaning strategy. If set to 0, no cleaning procedure is applied in the sens that the current source under

characterization is simply substracted to the data (with negative fake injection method) to remove its contribu-

tion into the data but the SNR and flux maps are not updated: the detection blobs are just masked to move to

the next detection. If it is set to 1, after subtraction into the data, the SNR and flux map are updated by a re-

computation of the whole trajectory impacted by the source. If it is set to 2, the recomputation of the impacted

trajectory is extended (in the case of a very bright source) to its close neighborhood since it can have an im-

pact on the SNR and flux maps outside its trajectory. In this case, the environment of the very bright sources

defined during the detection step is updated. This is the followed cleaning strategy by default since this is the

most rigorous. For a rough characterization of the detected sources it is possible to decrease the level of the

cleaning procedure. It is also possible to set cleaning_update_only_patch to 1 to ignore the whole trajec-

tory of the sources. In this case, only a blob around the detection is updated by cleaning. Moreover, by default

cleaning_authorized_additional_detections is set to 0 meaning that only detected sources in the previous

step and pointed as to be characterized (flag_characterization set to 1 in the detection_file) are effec-

tively characterized. Additional detections eventually revealed by cleaning are ignored. If it is set to 1, the program

also characterizes additional detections revealed by cleaning. When there is no source higher than the detection

threshold, the procedure stops and a cleaned SNR and flux maps are available. An unbiased estimation of the SNR

and of the flux are also obtained as well as a view of the expected detection pattern (theoretical pattern depending

on the location in the field of view). It is thus possible to produce a synthetic SNR and flux maps in which the theo-

retical patterns are reinjected at the unbiased levels of SNR and flux estimated by the characterization step on the

cleaned map (in which the contributions of the sources are removed). These maps can be interpreted as the maps

that will be produced by PACO in an oracle mode (as if the background statistics would be estimated in absence of

source) which can not be produced directly due to the impact of the sources on the estimation of the background

statistics. These synthetic maps are produced if cleaning_synthetic_snr_map is set to one (by default).

Synthetic regularized flux map: Since the SNR maps are stationary and the confidence on flux estimation largely

fluctuates within the field of view (it can be large close to the host star), the flux map are necessary not stationary.

In order to slightly decrease the noise near the host star, they are regularized. The regularization can be applied

directly on the flux map produced by the ADI–reduction step but also on the synthetic detection map produced
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by the ADI–characterization step. We note that in case of an extended object such as a protoplanetary disk, only

the regularization of the flux map produced by the ADI–reduction step has a real meaning since the production

of a regularized synthetic flux map requires to clean the detection (wich is not possible for an extended object). A

synthetic regularized flux map is produced if characterization_synthetic_regularized_flux_map is set to

1.

Table 38: Ad hoc parameters used during the ADI–characterization step.

Inputs name Values

SCHEME 1: NUMERICAL OPTIMIZATION

characterization_numerical_optimization 0

SCHEME 2: SUBPIXEL GRID

characterization_subpixel_grid 1

characterization_subpixel_grid_subsampling_factor 4

characterization_subpixel_grid_subsampling_zoom_size 4

COMMON PARAMETERS

characterization_iterations 99

report_sigma_photo_astro_intervals 1

CLEANING SCHEME

cleaning 2

cleaning_update_only_patch 0

cleaning_authorized_additional_detections 0

cleaning_synthetic_snr_map 1

REGULARIZED FLUX MAP

characterization_synthetic_regularized_flux_map 1

The input report_sigma_photo_astro_intervals gives the degree of confidence on the astrometry and pho-

tometry. The astrometry is expressed as {x, y}–location–(aligned)±k δ{x,y} and the photometry by α+
±k σα where

σα is the oracle standard-deviation on the flux and δ{x,y} are the CRLBs on the photometry. k is the factor indicated

by the input report_sigma_photo_astro_intervals (it is generally common to use k = 1,2 or 3).

Each source having its flag_characterization set to 1 is characterized and is associated to an index (same

index than in the ADI–detection step if it was seen during this step) plus to a symbol coding for its type:

• “#xx": standard detection

• “!xx member of !Gxx": grouped detection

• “!xx": ill-fitted detection

• “$xx": detection below the detection threshold added manually by the user in the text detection_file at

the end of the ADI–detection step

• “$xx member of $Gxx": grouped detection below the detection threshold added manually by the user in the

text detection_file at the end of the ADI–detection step

• “+xx": detection not seen during the ADI–detection and revealed by the cleaning of another source (only if

cleaning_authorized_additional_detections is explicitly set to 1).

• “+xx member of +Gxx": grouped detection not seen during the ADI–detection and revealed by the cleaning

of another source (only if cleaning_authorized_additional_detections is explicitly set to 1)

We recall that by default, only the standard detections pointed during ADI–detection step were characterized

(flag_charactetization set to 1), but the user can change the status of a detection or add manually additional

sources (below the detection threshold) to be characterized.
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Figure 49: zoomed–characterizations: characterization #1 at λ00 = 2.1100µm (default field of view alignment).

source file α+ (magnitude): ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_

characterizations/alpha/HIP_53524_paco1_alt_characterization_alpha_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file α+ (magnitude):

../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/alpha_

magnitude/HIP_53524_paco1_alt_characterization_alpha_magnitude_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file SNR: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/

snr/HIP_53524_paco1_alt_characterization_snr_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file GLR: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/

glr/HIP_53524_paco1_alt_characterization_glr_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file σα : ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/

alpha_unc_std_dev/HIP_53524_paco1_alt_characterization_alpha_unc_std_dev_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file 5σα : ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/

local_5sigma_oracle_contrast/HIP_53524_paco1_alt_characterization_local_5sigma_oracle_contrast_patch_file_index_1_lam00_od20150505_0151326746_

cd200519_143456.fits

source file δα : ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/

crlb_alpha/HIP_53524_paco1_alt_characterization_crlb_alpha_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file δx : ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/

crlb_x/HIP_53524_paco1_alt_characterization_crlb_x_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file δy : ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/

crlb_y/HIP_53524_paco1_alt_characterization_crlb_y_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file E
(

SNR(Gs=1(φ0)
∣

∣φ0)
)

/E
(

SNR(φ0
∣

∣φ0)
)

:

../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/e_ratio_max_

sampling_error/HIP_53524_paco1_alt_characterization_e_ratio_max_sampling_error_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file iterations: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_

characterizations/characterization_iterations/HIP_53524_paco1_alt_characterization_characterization_iterations_patch_file_index_1_lam00_od20150505_

0151326746_cd200519_143456.fits

source file mask:

../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/bw_mask_

expand_rotation/HIP_53524_paco1_alt_characterization_bw_mask_expand_rotation_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

source file {x, y}–vectors (arcsec):

../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_patch_characterizations/vectors_

location/HIP_53524_paco1_alt_characterization_vectors_location_real_unit_patch_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_zoom_characterizations/HIP_

53524_paco1_alt_characterization_zoom_characterizations_index_1_lam00_od20150505_0151326746_cd200519_143456.pdf
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Table 39: ADI–characterization: information about the characterization #1.

Fields Notation Ind.fits Ind.txt Values

IDENTIFICATION

index i [1] (1),{1} #1

group g [2] (2),{2} -

flag_characterization F–c [3] (3) 1

ASTROMETRY (PIXELS)

x-location (pixels) x–location (pix) [4] (4) 1151.00±0.11

y-location (pixels) y–location (pix) [5] (5) 996.75±0.13

x-location_aligned (pixels) x–loc.–aligned (pix) [6] (6) 593.15±0.11

y-location_aligned (pixels) y–loc.–aligned (pix) [7] (7) 235.86±0.13

ASTROMETRY (ARCSECONDS)

x-location (arcseconds) x–location (as) [8] (8) 5.2084±0.0013

y-location (arcseconds) y–location (as) [9] (9) 3.3247±0.0016

rho-location (arcseconds) ρ–location (as) [10] (10) 6.1791±0.0014

theta-location (degrees) θ–location (deg) [11] (11) 327.45±0.01

x-location_aligned (arcseconds) x–loc.–aligned (as) [12] (12) -1.6041±0.0013

y-location_aligned (arcseconds) y–loc.–aligned (as) [13] (13) -5.9673±0.0016

rho-location_aligned (arcseconds) ρ–loc.–aligned (as) [14] (14) 6.1791±0.0014

theta-location_aligned (degrees) θ–loc.–aligned (deg) [15] (15) 105.05±0.01

DETECTION CONFIDENCE

snr SNR [16] (16) 128.6

PHOTOMETRY

alpha (contrast) α+ [17] (17) (3.24±0.02)×10−5

alpha (magnitude) mag{α+} [18] (18) 11.23≥11.22≥11.21

CLASSIFICATION DETAILS

pattern_correlation_coefficient c [19] (19) 0.92

flag_warning_high_density FW–hd [20] (20) 0

flag_warning_single_pixel FW–sp [21] (21) 0

flag_warning_prox._between_detections FW–pbd [22] (22) 0

flag_warning_near_extended_fov_borders FW–nefb [23] (23) 0

flag_warning_near_fov_borders FW-nfb [24] (24) 0

ADDITIONAL RESULTS

glr GLR [25] {3} 16526

alpha_unc_std_dev σα [26] {4} 2.52×10−7

local_5sigma_oracle_contrast 5σα [27] {5} 1.26×10−6

crlb_alpha δα [28] {6} 1.30×10−6

{crlb_x,crlb_y} (arcseconds) {δx ,δy } [29],[30] {7},{8} {0.0013,0.0016}

{crlb_rho,crlb_theta} (as,deg) {δρ ,δθ} [31],[32] {9},{10} {0.0014,0.01}

e_ratio_max_sampling_error E(.) [33] {11} 0.99

denom
∑T

ℓ=1
aℓ [34] {12} 4.5×1012

characterization_iterations k [42] - 15

[fits detection file]: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/characterization_files/HIP_53524_paco1_

alt_characterization_file_index_1_lam00_od20150505_0151326746_cd200519_143456.fits.

(txt detection file): ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/all_characterization_main_files/HIP_53524_

paco1_alt_characterization_file_lam00_od20150505_0151326746_cd200519_143456.txt.

{txt detection file additional}: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/all_characterization_main_files/HIP_

53524_paco1_alt_characterization_file_additional_results_lam00_od20150505_0151326746_cd200519_143456.txt.
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4.1.4 Characterization cleaning: recomputed cleaned trajectories

• Mathematical notation: characterization–cleaning–recomputed–trajectory.

• Filename notation: characterization_cleaning_recomputed_trajectory.

• Description: trajectories on which the SNR is recomputed by the cleaning procedure after negative sub-

traction of each characterization. The color of the squares encodes for the (unbiased) estimate of the flux

derived from the ADI–characterization step.

• Properties: depending on the cleaning level specified within the cleaning input, the recomputed trajecto-

ries can be more or less fine.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/

/characterization_cleaning/HIP_53524_paco1_alt_characterization_cleaning_recomputed_trajectory_full_map_lam00_

od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/

/characterization_cleaning/HIP_53524_paco1_alt_characterization_cleaning_recomputed_trajectory_full_map_lam00_

od20150505_0151326746_cd200519_143456.pdf

Figure 63: characterization–cleaning–recomputed–trajectory map at λ00 = 2.1100µm (default field of view align-

ment).
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4.1.5 Characterization cleaning: SNR

• Mathematical notation: characterization–cleaning–SNR.

• Filename notation: characterization_cleaning_snr_full_map.

• Description: signal-to-noise ratio from the ADI–reduction step in which the contributions of the charac-

terized sources have been removed by the cleaning procedure. The color of the squares encodes for the

(unbiased) estimate of the flux derived from the ADI–characterization step.

• Properties: statistically-grounded. Depending on the cleaning level specified within the cleaning input,

the recomputed trajectories can be more or less fine.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/

/characterization_cleaning/HIP_53524_paco1_alt_characterization_cleaning_snr_full_map_lam00_od20150505_

0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/

/characterization_cleaning/HIP_53524_paco1_alt_characterization_cleaning_snr_full_map_lam00_od20150505_

0151326746_cd200519_143456.pdf

Figure 65: characterization–cleaning–SNR map at λ00 = 2.1100µm (default field of view alignment).
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4.1.7 Characterization: synthetic SNR

• Mathematical notation: characterization–synthetic–SNR.

• Filename notation: characterization_synthetic_snr_full_map.

• Description: cleaned signal-to-noise ratio from the cleaning procedure of the ADI–characterization step in

which the contributions of the characterized sources have been reinjected with unbiased estimated pho-

tometry and astrometry. The color of the squares encodes for the (unbiased) estimate of the flux derived

from the ADI–characterization step.

• Properties: statistically-grounded and unbiased.
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source file: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/

/characterization_synthetic_full_map/HIP_53524_paco1_alt_characterization_synthetic_snr_full_map_lam00_

od20150505_0151326746_cd200519_143456.fits

preview file: ../../HIP_53524_od20150505_0151326746_paco_outputs/3_characterization_paco/adi_results/lam00/

/characterization_synthetic_full_map/HIP_53524_paco1_alt_characterization_synthetic_snr_full_map_lam00_

od20150505_0151326746_cd200519_143456.pdf

Figure 69: characterization–synthetic–SNR map at λ00 = 2.1100µm (default field of view alignment).
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– Abstract –
Detecting and characterizing objects in images in the low signal-to-noise ratio regime is a critical
issue in many areas such as astronomy or microscopy. In astronomy, the detection of exoplanets
and their characterization by direct imaging from the Earth is a hot topic. A target star and its
close environment (hosting potential exoplanets) are observed on short exposures. In microscopy,
in-line holography is a cost-effective method for characterizing microscopic objects. Based on the
recording of a hologram, it allows a digital focusing in any plane of the imaged 3-D volume. In these
two fields, the object detection problem is made difficult by the low contrast between the objects
and the nonstationary background of the recorded images.

In this thesis, we propose an unsupervised exoplanet detection and characterization algorithm
based on the statistical modeling of background fluctuations. The method, based on a modeling of
the statistical distribution of patches, captures their spatial covariances. It reaches a performance
superior to state-of-the-art techniques on several datasets of the European high-contrast imager
SPHERE operating at the Very Large Telescope. It produces statistically grounded and spatially-
stationary detection maps in which detections can be performed at a constant probability of false
alarm. It also produces photometrically unbiased spectral energy distributions of the detected
sources. The use of a statistical model of the data leads to reliable photometric and astrometric
accuracies. This methodological framework can be adapted to the detection of spatially-extended
patterns in strong structured background, such as the diffraction patterns in holographic microscopy.
We also propose robust approaches based on weighting strategies to reduce the influence of the nu-
merous outliers present in real data. We show on holographic videos that the proposed weighting
approach achieves a bias/variance tradeoff. In astronomy, the robustness improves the performance
of our detection method in particular at close separations where the stellar residuals dominate. Our
algorithms are adapted to benefit from the possible spectral diversity of the data, which improves
the detection and characterization performance. All the algorithms developed are unsupervised:
weighting and/or regularization parameters are estimated in a data-driven fashion. Beyond the ap-
plications in astronomy and microscopy, the signal processing methodologies introduced are general
and could be applied to other detection and estimation problems.

– Résumé –
La détection et la caractérisation d’objets dans des images à faible rapport signal sur bruit est
un problème courant dans de nombreux domaines tels que l’astronomie ou la microscopie. En
astronomie, la détection des exoplanètes et leur caractérisation par imagerie directe depuis la Terre
sont des sujets de recherche très actifs. Une étoile cible et son environnement proche (abritant
potentiellement des exoplanètes) sont observés sur de courtes poses. En microscopie, l’holographie
en ligne est une méthode de choix pour caractériser à faibles coûts les objets microscopiques. Basée
sur l’enregistrement d’un hologramme, elle permet une mise au point numérique dans n’importe
quel plan du volume 3-D imagé. Dans ces deux applications cibles, le problème est rendu difficile
par le faible contraste entre les objets et le fond non stationnaire des images enregistrées.

Dans cette thèse, nous proposons un algorithme non-supervisé dédié à la détection et à la car-
actérisation d’exoplanètes par une modélisation statistique des fluctuations du fond. Cette méthode
est basée sur une modélisation de la distribution statistique des données à une échelle locale de
patchs, capturant ainsi leur covariances spatiales. Testé sur plusieurs jeux de données de l’imageur
haut-contraste SPHERE opérant au Très Grand Télescope Européen, cet algorithme atteint de
meilleures performances que les méthodes de l’état de l’art. En particulier, les cartes de détection
produites sont stationnaires et statistiquement fondées. La détection des exoplanètes peut ainsi être
effectuée à probabilité de fausse alarme contrôlée. L’estimation de la distribution d’énergie spectrale
des sources détectées est également non biaisée. L’utilisation d’un modèle statistique permet égale-
ment de déduire des précisions photométriques et astrométriques fiables. Ce cadre méthodologique
est ensuite adapté pour la détection de motifs spatialement étendus tels que les motifs de diffraction
rencontrés en microscopie holographique qui sont également dominés par un fond non-stationnaire.
Nous proposons aussi des approches robustes basées sur des stratégies de pondération afin de réduire
l’influence des nombreuses valeurs aberrantes présentes sur les données réelles. Nous montrons sur
des vidéos holographiques que les méthodes de pondération proposées permettent d’atteindre un
compromis biais/variance. En astronomie, la robustesse améliore les performances de détection,
en particulier à courtes séparations angulaires, où les fuites stellaires dominent. Les algorithmes
développés sont également adaptés pour tirer parti de la diversité spectrale des données en plus de
leur diversité temporelle, améliorant ainsi leurs performances de détection et de caractérisation. Tous
les algorithmes développés sont totalement non-supervisés: les paramètres de pondération et/ou de
régularisation sont estimés directement à partir des données. Au-delà des applications considérées
en astronomie et en microscopie, les méthodes de traitement du signal introduites dans cette thèse
sont générales et pourraient être appliquées à d’autres problèmes de détection et d’estimation.
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