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Introduction (version française)

Le développement rapide des modèles informatiques et les performances croissantes des

ressources de calcul ont mené à l'apparition d'un nombre croissant d'études numériques.

De plus, cela a permis à certaines industries de remplacer des campagnes expérimentales

coûteuses par des simulations numériques (avec toutes les questions que cela soulève, voir

par exemple [1]). Ces modèles, qui décrivent la réalité, dépendent souvent de nombreux

paramètres d'entrée (nous dirons qu'ils sont en grande dimension) et sont coûteux à évaluer

(en termes de mémoire et/ou de puissance de calcul).

Habituellement, les paramètres d'entrée de ces modèles ne sont pas déterministes : ces

incertitudes peuvent avoir de nombreuses origines, comme par exemple des écarts dus aux

processus de fabrication ou une variabilité due au manque de connaissances de la physique du

problème considéré. On peut donc souhaiter quanti�er ces incertitudes sur les paramètres

d'entrée, ou les propager dans le modèle ; en d'autres termes, faire de la quanti�cation

d'incertitudes [2].

La quanti�cation d'incertitudes nécessite classiquement l'évaluation du modèle pour de nom-

breuses réalisations des paramètres d'entrée aléatoires a�n d'obtenir des statistiques signi-

�catives, comme des probabilités d'événements rares, des quantiles, etc. Cela implique

l'utilisation de méthodes robustes étant capables d'apprendre avec précision un modèle de

substitution�une approximation�pouvant être évaluée de manière e�cace.

En particulier, l'industrie maritime repose grandement sur l'utilisation de modèles informa-

tiques complexes pour décrire le comportement de structures (voir par exemple la review

[3]), et a donc un intérêt à développer des méthodes de réduction de modèle a�n de faire de

la quanti�cation d'incertitudes (voir par exemple [4, 5, 6]). Naval Group, un grand groupe

industriel français spécialisé dans le naval de défense, s'est associé à Centrale Nantes et

l'université de Nantes pour former le Joint Laboratory of Marine Technology (JLMT), qui

a pour objectif � d'accélérer les développements technologiques du Groupe dans trois do-

maines clés : la fabrication additive, l'hydrodynamique navale et la simulation numérique

multi-physique. �1 Cette thèse fait partie du projet Eval-π, dans le contexte du JLMT, et

a pour objectif d'apporter des solutions dans le dernier domaine clé.

Dans cette thèse, nous considérons le problème de l'approximation d'une fonction en utilisant

un échantillon d'apprentissage constitué de données. Cela inclut l'apprentissage supervisé

qui a pour but d'approximer la relation entre une variable aléatoire de sortie Y et des

variables aléatoires d'entrée X = (X1, . . . , Xd), en utilisant des échantillons {(xk, yk)}nk=1 de

1Récupéré sur www.naval-group.com/. Accédé le 5 septembre 2019.
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(X,Y ) (voir par exemple [7]), et l'apprentissage non supervisé, où l'on cherche à approximer

la distribution de probabilité d'un vecteur aléatoire d'entrée X = (X1, . . . , Xd) en utilisant

un échantillon {xk}nk=1 deX. Nous supposons que les échantillons sont donnés, indépendants

et identiquement distribués, qui est un cadre classique en apprentissage statistique [8, 9].

L'approximation recherchée est typiquement obtenue par minimisation d'une fonctionnelle

de risque

R(g) = E(γ(g, Z)),

avec E(·) l'espérance mathématique, Z = (X,Y ) pour l'apprentissage supervisé et Z = X

pour l'apprentissage non supervisé, et γ une fonction de contraste qui est telle que γ(g, z)

mesure l'erreur due à l'utilisation de l'approximation g pour un échantillon z de Z. La

fonction f minimisant le risque est appelée fonction cible (ou oracle).

En pratique, étant donné un échantillon d'apprentissage {zk}nk=1 de Z, une approximation

gnM de la fonction cible est obtenue par minimisation du risque empirique

Rn(g) =
1

n

n∑
k=1

γ(g, zk)

sur un ensemble de fonctions M , appelé classe (ou ensemble d'hypothèse). Lorsque la

dimension d de X est grande ou que la taille de l'échantillon d'apprentissage n est petite,

les classes de fonctions dans lesquelles l'approximation est recherchée doivent exploiter des

structures de faible dimension de la fonction cible f à approximer. Des classes de fonctions

typiques pour aborder les problèmes d'approximation en grande dimension incluent :

• des expansions
∑

λ∈Λ cλψλ(x) sur un ensemble de fonctions {ψλ}λ∈Λ, éventuellement

choisies dans un dictionnaire de fonctions (dans lequel une approximation parci-

monieuse est recherchée, voir la review [10], et [11] pour les polynômes et [12, 13]

pour les ondelettes) ;

• des modèles additifs g1(x1) + · · · + gd(xd), ou plus généralement des modèles avec

des interactions de faible ordre
∑

α∈T gα(xα), avec T une collection de petits sous-

ensembles α de {1, . . . , d} et gα des fonctions des groupes de variables xα ;

• des modèles multiplicatifs g1(x1) · · · gd(xd) ou des sommes de modèles multiplicatifs∑r
i=1 g

i
1(x1) · · · gid(xd) ;

• des modèles multiplicatifs généralisés2
∏
α∈T gα(xα), avec T une collection de sous-

ensembles α de {1, . . . , d} et gα des fonctions des groupes de variables xα ;

• des modèles ridge v(Ax) [15], où A est une application linéaire de Rd vers Rm, et où
v appartient à une classe de fonctions de m variables ;

• des modèles projection pursuit3 g1(wᵀ
1x) + · · · + gm(wᵀ

mx), où wi ∈ Rd, i = 1, . . . ,m,

2Ceux-ci incluent les réseaux bayésiens ou plus généralement les modèles graphiques pour l'apprentissage
non supervisé, voir [14].

3Ceux-ci correspondent à un modèle ridge avec une fonction g choisie dans la classe des modèles additifs.
Pour le cas particulier de la régression, voir [16].
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un cas particulier étant les réseaux de neurones à une couche cachée c1σ(wᵀ
1x+ b1) +

· · ·+ cmσ(wᵀ
mx+ bm), avec σ une fonction d'activation ;

• des compositions de fonctions plus générales v ◦ h1 ◦ · · · ◦ hL(x), où les fonctions hi,

i = 1, . . . , L, sont à valeurs vectorielles et dont les composantes sont choisies dans

des classes de fonctions classiques. Les réseaux de neurones profonds en sont un cas

particulier, pour lesquels les hi sont des fonctions ridge de la forme hi(t) = σ(Ait+bi),

i = 1, . . . , L (avec les matrices Ai éventuellement parcimonieuses, comme pour les

réseaux à convolution ou récurrents).

Dans cette thèse, nous considérons des classes de fonctions structurées par rangs, largement

utilisées en traitement des données, du signal et des images, ainsi qu'en analyse numérique

[17, 18]. Nous nous focalisons sur des fonctions qui peuvent s'écrire

g(x) =

rα∑
iα=1

gαiα(xα)gαiαc (xαc) ∀α ∈ T,

avec T une collection de sous-ensembles de D = {1, . . . , d}, et αc = D \α le complémentaire

de α ∈ D. Nous appelons α-rang le plus petit entier rα tel que la fonction g admet la

représentation ci-dessus. En particulier, nous considérons des collections T qui sont des

arbres de dimension, quelques exemples étant montrés sur la Figure 1. Nous appelons le

tuple r = (rα)α∈T le rang d'arbre.

{1, 2, 3, 4}

{1} {2} {3} {4}

(a) Un arbre trivial.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

(b) Un arbre binaire équilibré.

{1, 2, 3, 4}

{1}

{2, 3, 4}

{2}

{3, 4}

{3} {4}

(c) Un arbre binaire linéaire.

Figure 1: Exemples d'arbres de dimension de D = {1, . . . , 4}.
.

La classe de fonctions correspondante est l'ensemble des fonctions au format de tenseurs

basés sur des arbres [19], noté T Tr (H), où H = H1 ⊗ · · · ⊗ Hd est un espacé produit de

fonctions (e.g. L2
µ(Rd) avec µ une mesure de probabilité produit). C'est un cas particulier

des réseaux de tenseurs [20]. Elle inclut le format Tucker pour un arbre trivial (Figure 1a),

le format de tenseurs hiérarchiques [21] pour un arbre binaire équilibré (Figure 1b), et le

format tensor-train [22] pour un arbre linéaire (Figure 1c).

Considérer pour T des arbres de dimension donne de bonnes propriétés topologiques et

géométriques à l'ensemble T Tr (H) [23, 19, 24, 25, 26, 27, 28], et ses éléments admettent des

représentations explicites et numériquement stables. De plus, la complexité des fonctions
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au format de tenseurs basés sur des arbres est linéaire en la dimension d et polynomiale en

les rangs, rendant cette classe de fonctions adaptée à l'apprentissage en grande dimension.

L'ensemble T Tr (H) peut être interprété comme une classe de fonctions qui sont des compo-

sitions de fonctions multilinéaires, la structure des compositions étant donnée par l'arbre.

Cela mène à une interprétation des formats de tenseurs basés sur des arbres comme un cas

particulier de réseaux de neurones profonds avec une connectivité parcimonieuse et sans

parameter sharing. La structure parcimonieuse du réseau est donnée par l'arbre de dimen-

sion du tenseur, sa profondeur par la profondeur de l'arbre, et sa largeur à un niveau l

par la somme des α-rangs associés aux n÷uds α de niveau l dans l'arbre. Les fonctions

d'activation dans de tels réseaux ne sont pas celles habituellement utilisées en apprentis-

sage profond (sigmoïde, tangente hyperbolique, recti�er linear unit, etc.) mais des fonctions

multilinéaires. Dans ce contexte, les tenseurs au format canonique, qui sont associés à un

arbre trivial (Figure 1a) où le tenseur de la racine est diagonal, correspondent à des réseaux

fully connected à une couche cachée, de largeur le rang canonique. Des tenseurs basés sur

des arbres linéaires (Figure 1c) correspondent à des réseaux récurrents, avec une profondeur

égale à la dimension d et une largeur au niveau l égale à la somme des α-rangs associés aux

n÷uds de niveau l dans l'arbre [29]. Finalement, des tenseurs basés sur des arbres équilibrés

(Figure 1b) correspondent à des réseaux à convolution, avec log2(d) couches cachées�la

profondeur de l'arbre�et une largeur au niveau l égale à la somme des α-rangs associés aux

n÷uds de niveau l dans l'arbre [30].

L'apprentissage dans des classes de fonctions non-linéaires telles que les réseaux de neu-

rones profonds impliquent de nombreuses di�cultés [31, Chapitre 8], parmi elles, un grand

nombre de paramètres à apprendre et l'existence de minima locaux du risque à minimiser.

L'algorithme du gradient stochastique est largement utilisé pour résoudre le problème de

minimisation du risque empirique : cette méthode, en calculant le gradient grâce à un

sous-échantillon choisi aléatoirement, donne de bons résultats même avec des réseaux très

complexes nécessitant un grand échantillon d'apprentissage.

Un des objectifs principaux de cette thèse est de fournir des algorithmes d'apprentissage ro-

bustes avec des classes de fonctions au format de tenseurs basés sur des arbres, en exploitant

fortement notre connaissance de ce format.

Nous proposons tout d'abord des algorithmes stables d'apprentissage dans T Tr (H) en util-

isant la multilinéarité de la paramétrisation pour transformer le problème non-linéaire de

minimisation du risque empirique en une série de problèmes d'apprentissage linéaires. Des

conditions d'orthogonalité de la représentation (obtenues grâce à la décomposition en valeurs

singulières d'ordre supérieur [32, Section 11.4.2] combinée à l'utilisation de bases orthonor-

més de Hν , ν = 1, . . . , d) donnent de bonnes propriétés aux problèmes à résoudre pour

construire une approximation dans T Tr (H) dans un contexte de minimisation au sens des

moindres carrés. Cela permet l'utilisation de méthodes d'optimisation classiques ainsi que

d'obtenir des estimateurs du risque de type fast cross-validation, utiles à la fois pour la vali-

dation et pour la sélection de modèle. Les algorithmes proposés sont capables d'exploiter la



5

parcimonie dans les paramètres, ce qui peut être utile pour réduire encore plus la complexité

des représentations considérées.

Une propriété intéressante est que toute fonction dans un espace produit de dimension �nie

H peut être représentée dans T Tr (H) pour n'importe quel arbre T , à condition de choisir

des rangs r assez élevés. Cependant, la complexité de la représentation d'une fonction au

format de tenseurs basés sur les arbres (son nombre de paramètres) dépendant de manière

polynomiale des rangs, il est désirable que ceux-ci soient les plus petits possible. Nous

proposons des algorithmes adaptatifs ayant pour but d'obtenir une bonne convergence de

l'erreur par rapport aux rangs, en augmentant de manière séquentielle uniquement un sous-

ensemble d'α-rangs rα associés aux plus hautes erreurs de troncation. Dans le contexte

de la minimisation au sens des moindres carrés, ces erreurs sont estimées en utilisant la

décomposition en valeurs singulières d'ordre supérieur de fonctions au format de tenseurs

basés sur des arbres.

Même si n'importe quelle fonction de H peut être représentée dans T Tr (H), choisir un arbre

de dimension adapté est en pratique d'une importance capitale. En e�et, les rangs néces-

saires pour l'approximation d'une fonction à un niveau d'erreur donné peuvent fortement

dépendre du choix de l'arbre de dimension. Cela peut avoir, une fois de plus, un fort impact

sur la complexité de l'approximation, et peut être un réel problème en grande dimension.

Cette problématique est liée au choix d'une structure parcimonieuse particulière pour les

réseaux de neurones profonds (par exemples les réseaux à convolution ou récurrents, avec

un ordre des variables dépendant de l'application). Trouver l'arbre de dimension optimal

(au sens de la complexité à une précision donnée) est un problème combinatoire, insoluble

en pratique. Nous proposons un algorithme stochastique qui explore l'ensemble des arbres

de dimension à arité donnée (le nombre maximal d'enfants que n'importe quel n÷ud de

l'arbre possède) en appliquant des changements de l'arbre choisis aléatoirement (en suivant

une règle heuristique) et retournant celui donnant la plus faible complexité. Pour faire le

lien avec les réseaux de neurones profonds, cette procédure permet la modi�cation de la

structure du réseau, permettant par exemple la transition d'un réseau récurrent à un réseau

à convolution. Cet algorithme d'adaptation d'arbre peut être utilisé seul, par exemple pour

réaliser de la compression de tenseurs.

Ces algorithmes d'adaptation des rangs et de l'arbre de dimension sont inclus dans un algo-

rithme adaptatif global d'apprentissage avec des classes de fonctions au format de tenseurs

basés sur des arbres. Ce travail a fait l'objet de deux articles pour l'apprentissage avec

des classes de fonctions au format de tenseurs basés sur des arbres, pour l'apprentissage

supervisé dans [33], et pour l'estimation de densité dans [34].

Certaines fonctions ne peuvent montrer de structure de faible rang qu'après un changement

de variables adapté. Dans ce travail, nous proposons une généralisation des formats précé-

dents en considérant des approximations de la forme g = v ◦h, avec h une application de Rd

dans Rm et v fonction à m variables au format de tenseurs basés sur des arbres. Cela corre-

spond à un format de tenseurs basés sur des arbres après un changement de variables obtenu
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par l'application à valeurs vectorielles h(x) = (h1(x), . . . , hm(x)). Avec h = id (l'identité

de Rd dans Rd), nous retrouvons le format de tenseurs basés sur des arbres standard. Avec

h une application linéaire, cela correspond à une approximation ridge g(x) = v(Ax), avec

A une matrice et v une fonction au format de tenseurs basés sur des arbres. Avec v un

modèle additif et h linéaire, v ◦ h correspond à un modèle projection pursuit (voir [16]). Un

modèle additif étant représenté au format de tenseurs basés sur des arbres avec des α-rangs

bornés par 2, le format ici proposé est donc capable de représenter un modèle projection

pursuit avec une complexité similaire Nous proposons ici des algorithmes adaptatifs pour

la construction de telles approximations, avec une dimension m croissante. Ces algorithmes

sont inspirés des algorithmes gloutons pour la projection pursuit regression [16].

Les algorithmes proposés peuvent être appliqués à l'approximation de fonctions univariées.

L'idée est la suivante : considérons, sans perte de généralité, une fonction univariée F

dé�nie sur [0, 1[. Un élément x ∈ [0, 1[ peut être identi�é avec un tuple (i1, . . . , id, y), tel

que x = tb,d(i1, . . . , id, y) =
∑d

k=1 ikb
−k + b−dy, avec ik ∈ Ib = {0, . . . , b − 1}, k = 1, . . . , d,

et y = bdx − bbdxc ∈ [0, 1[. Cela donne une identi�cation entre une fonction univariée

F (tb,d(i1, . . . , id, y)) et une fonction multivariée f(i1, . . . , id, y) dé�nie sur {0, . . . , b− 1}d ×
[0, 1[. Les algorithmes proposés peuvent ainsi être appliqués à l'apprentissage de f au

format de tenseurs basés sur des arbres. Cette identi�cation est appelée tensorisation (ou

quantisation quand b = 2 [35]).

Dans le contexte du projet Eval-π et du Joint Laboratory of Marine Technology, le problème

à aborder est celui de la quanti�cation d'incertitude de la fonction de réponse en fréquence

de la puissance acoustique rayonnée produite par une structure immergée en vibration. La

puissance acoustique rayonnée est une quantité scalaire qui mesure le bruit que produit une

structure donnée. Cette quantité est déduite d'une modélisation �uide-structure éléments

�nis fournie par Naval Group, qui décrit la réponse vibratoire d'un carlingage lié à un

tronçon de coque immergé (représenté sur la Figure 2b), auquel une force est appliquée

(voir la Figure 2a). Pour plus d'informations sur l'interaction �uide-structure et le couplage

éléments �nis, voir [6].

•
F

Force

Liaison

Pression acoustique

Coque

(a) Représentation d'une source sonore. (b) Géométrie du cas d'étude (source Naval
Group).

Figure 2: Cas d'étude : carlingage lié à un tronçon de coque immergé. Une force oscillante
est appliquée au carlingage et son énergie est transmise à l'eau via la coque.
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En réalité, de nombreuses incertitudes sont présentes : les propriétés mécaniques des matéri-

aux, les propriétés de l'eau, l'amplitude, la position et l'orientation de la force, etc. (voir

l'exemple d'étude des incertitudes dans ce domaine [36]). Dans cette étude, nous consid-

érons uniquement comme aléatoires les propriétés mécaniques des matériaux constituant le

véhicule. Notre objectif est de proposer une méthodologie pour construire une approxima-

tion de la fonction de réponse en fréquence de la puissance acoustique rayonnée sur une large

bande de fréquences, comme fonction de paramètres d'entrée incertains, ainsi que de deux

quantités issues de celle-ci : sa fonction de réponse en fréquence intégrée sur des bandes

de tiers d'octave et sa courbe enveloppe, chacune répondant à des objectifs di�érents d'un

point de vue industriel. La méthodologie proposée fait intervenir une procédure spéci�que

au problème qui aligne certains pics de résonance pour toutes les valeurs des paramètres

d'entrée, et utilise les algorithmes proposés précédemment pour l'apprentissage avec des

classes de fonctions au format de tenseurs basés sur des arbres. Nous tirons aussi avan-

tage de la tensorisation des fonctions univariées pour représenter la fonction de réponse

en fréquence en bande �ne de la puissance acoustique rayonnée au format de tenseurs à

structure d'arbre.

Tous les algorithmes proposés dans cette thèse ont été implémentés dans la toolbox open-

source ApproximationToolbox, qui sera rendue publique prochainement.

Le plan de cette thèse est comme suit.

Le Chapitre 1 présente les classes de fonctions au format de tenseurs basés sur des arbres,

leurs liens avec d'autres classes de fonctions, di�érentes représentations utiles ainsi qu'un

algorithme de troncation (s'appuyant sur la décomposition en valeurs singulières d'ordre

supérieur) et un algorithme innovant d'adaptation de l'arbre de dimension.

Dans le Chapitre 2, nous développons des algorithmes d'apprentissage avec des classes de

fonctions au format de tenseurs basés sur des arbres, avec adaptation de l'arbre de dimension

et des rangs, en utilisant un algorithme heuristique basé sur l'estimation des erreurs de

troncation pour ce dernier. Ces algorithmes sont décrits dans un cadre d'apprentissage

général, et spéci�és pour deux applications typiques : la régression au sens des moindres

carrés, un type d'apprentissage supervisé, et l'estimation de densité au sens des moindres

carrés, un type d'apprentissage non supervisé. Nous montrons les performances de ces

algorithmes avec plusieurs expérimentations numériques.

Le Chapitre 3 est dévoué au développement d'algorithmes d'apprentissage combinant for-

mats de tenseurs basés sur des arbres et changements de variables. Ces algorithmes four-

nissent une séquence d'approximations avec dimension e�ective croissante, et font intervenir

la résolution de problèmes d'apprentissage linéaires et non-linéaires. Les performances de

ces algorithmes sont présentées sur des cas tests montrant qu'ils sont capables de trouver,

lorsqu'ils existent, des changements de variables capables de réduire la dimension e�ective

et de découvrir des structures de faible rang dans la fonction à approximer.

Dans le Chapitre 4, nous appliquons les algorithmes proposés au problème proposé par Naval

Group : la quanti�cation d'incertitudes de la réponse en fréquence de la puissance acoustique
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rayonnée d'une structure immergée. Des quantités d'intérêt spéci�ques à ce problème sont

déduites de la puissance acoustique rayonnée, et une procédure d'alignement des pics de

résonance est développée, pour proposer des méthodologies e�caces qui pourraient être

utilisées dans un contexte industriel.

Le Chapitre exploratoire 5 décrit la tensorisation de fonctions univariées, introduite ci-

dessus, ainsi que quelques exemples d'approximation d'une fonction univariée au format de

tenseurs basés sur des arbres.

L'Annexe A présente di�érents types de représentation de distributions de probabilités en

utilisant les formats de tenseurs basés sur des arbres, fournit quelques résultats sur les

relations entre les rangs de ces représentations et donne des exemples de représentations de

modèles probabilistes standards au format de tenseurs basés sur des arbres.

En�n, dans l'Annexe B, nous décrivons comment obtenir des bases de polynômes orthonor-

més par rapport à une mesure de probabilité donnée, qui est soit connue soit estimée depuis

un échantillon.



9

Introduction

The fast development of computational models and the growing performances of hardware

resources led to an increased number of numerical studies. Moreover, it allowed some

industries to replace expensive experimental work with computer simulations (with all the

questions this raises, see for example [1]). These models, describing reality, often involve

many input parameters (we will say that they are high-dimensional) and are costly to

evaluate (in terms of memory usage and/or computational power).

Usually, the input parameters of these models are not deterministic: these so-called uncer-

tainties can have many origins, for instance discrepancies due to manufacturing processes or

variability induced by a lack of knowledge of the underlying physics of a problem. One may

then wish to quantify these input parameters uncertainties, or to propagate them through

the model; in other words, to perform uncertainty quanti�cation [2].

Uncertainty quanti�cation typically requires the evaluation of the model for many real-

izations of the random input parameters in order to obtain meaningful statistics, such as

probabilities of rare events, quantiles, etc. It then calls for robust methods able to learn an

accurate surrogate model�an approximation�that can be e�ciently evaluated.

Notably, the maritime industry heavily relies on the use of complex numerical models to

describe the behavior of marine structures (see for instance the review [3]), and then has

an interest in developing model reduction methods to perform uncertainty quanti�cation

(see for example [4, 5, 6]). Naval Group, a major French industrial group specialized in

naval defense, partnered with Centrale Nantes and Université de Nantes to form the Joint

Laboratory of Marine Technology (JLMT), which aims at �accelerating the group's tech-

nological developments in three key areas: additive manufacturing, naval hydrodynamics

and multi-physical numerical simulation.�4 This thesis is part of the Eval-π project, in the

context of the JLMT, and aims at bringing solutions to the latter key area.

In this thesis, we consider the problem of approximating a function based on a training set of

data. This includes supervised learning which aims at approximating the relation between an

output random variable Y and input random variables X = (X1, . . . , Xd) based on samples

{(xk, yk)}nk=1 of (X,Y ) (see for instance [7]), and unsupervised learning where one seeks

to approximate the probability distribution of the input random vector X = (X1, . . . , Xd)

based on samples {xk}nk=1 of X. We assume that the samples are given, independent and

identically distributed, which is a classical setting in statistical learning [8, 9].

4Retrieved from www.naval-group.com/. Accessed on September 5th, 2019.
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The sought approximation is typically obtained by minimizing a risk functional

R(g) = E(γ(g, Z)),

with E(·) the mathematical expectation, Z = (X,Y ) for supervised learning and Z = X for

unsupervised learning, and γ a contrast function such that γ(g, z) measures the error due

to the use of the approximation g for a sample z of Z. The function f that minimizes the

risk is called the target (or oracle) function.

In practice, given a training set of samples {zk}nk=1 of Z, an approximation gnM of the target

function is obtained by minimizing the empirical risk

Rn(g) =
1

n

n∑
k=1

γ(g, zk)

over a set of functionsM , called a model class (or hypothesis set). When the dimension d of

X is high or when the sample size n is small, the model classes in which the approximation

is sought must exploit low-dimensional structures of the target function f to approximate.

Typical model classes for tackling high-dimensional approximation problems include:

• expansions
∑

λ∈Λ cλψλ(x) on a set of functions {ψλ}λ∈Λ, possibly chosen from a dic-

tionary of functions (in which a sparse approximation is sought, see the review [10],

and [11] for polynomials and [12, 13] for wavelets);

• additive models g1(x1) + · · · + gd(xd), or more general models with low-order inter-

actions
∑

α∈T gα(xα), with T a collection of small subsets α of {1, . . . , d} and gα

functions of the groups of variables xα;

• multiplicative models g1(x1) · · · gd(xd) or a sum of such models
∑r

i=1 g
i
1(x1) · · · gid(xd);

• generalized multiplicative models5
∏
α∈T gα(xα), with T a collection of subsets α of

{1, . . . , d} and gα functions of the groups of variables xα;

• ridge models v(Ax) [15], where A is a linear map from Rd to Rm, and where v belongs

to a model class of functions of m variables;

• projection pursuit models6 g1(wᵀ
1x) + · · · + gm(wᵀ

mx), where wi ∈ Rd, i = 1, . . . ,m,

a particular case being neural networks with one hidden layer c1σ(wᵀ
1x + b1) + · · · +

cmσ(wᵀ
mx+ bm), with σ the activation function;

• more general compositions of functions v ◦ h1 ◦ · · · ◦ hL(x), where the functions hi,

i = 1, . . . , L, are vector-valued functions whose components are taken in some standard

model classes. A particular case is deep neural networks for which the hi are ridge

functions of the form hi(t) = σ(Ait + bi), i = 1, . . . , L (with Ai possibly sparse, such

as for convolutional or recurrent networks).

5These include bayesian networks or more general graphical models for unsupervised learning, see [14].
6These correspond to a ridge model with a function g taken in the class of additive models. For the

particular case of regression, see [16].
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In this thesis, we consider model classes of rank-structured functions, widely used in data

analysis, signal and image processing, and numerical analysis [17, 18]. We focus on functions

that can be written

g(x) =

rα∑
iα=1

gαiα(xα)gαiαc (xαc) ∀α ∈ T,

with T a collection of subsets of D = {1, . . . , d}, and αc = D \α the complementary subset

of α ∈ D. We call α-rank the smallest integer rα such that the function g admits the above

representation. In particular, we consider collections T that are dimension trees, some

examples being displayed in Figure 3. We then call the tuple r = (rα)α∈T the tree-based

rank.

{1, 2, 3, 4}

{1} {2} {3} {4}

(a) A trivial tree.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

(b) A balanced binary tree.

{1, 2, 3, 4}

{1}

{2, 3, 4}

{2}

{3, 4}

{3} {4}

(c) A linear binary tree.

Figure 3: Examples of dimension trees over D = {1, . . . , 4}.
.

The corresponding model class is the set of functions in tree-based tensor format [19],

denoted by T Tr (H), where H = H1⊗· · ·⊗Hd is some tensor space of functions (e.g. L2
µ(Rd)

with µ a product probability measure). It is a particular class of tensor networks [20]. It

includes the Tucker format for a trivial tree (Figure 3a), the hierarchical tensor format [21]

for a balanced binary tree (Figure 3b), and the tensor-train format [22] for a linear tree

(Figure 3c).

Considering dimension trees for T gives nice topological and geometrical properties to the

model class T Tr (H) [23, 19, 24, 25, 26, 27, 28], and its elements admit explicit and numeri-

cally stable representations. Furthermore, the complexity of functions in tree-based tensor

format is linear in the dimension d and polynomial in the ranks, making this model class

suitable for high-dimensional approximation.

The model class T Tr (H) can be interpreted as a class of functions that are compositions of

multilinear functions, the structure of compositions being given by the tree. This yields an

interpretation of tree-based tensor formats as a particular class of deep neural networks with

a sparse connectivity and without parameter sharing. The sparse structure of the network

is given by the dimension tree of the tensor, its depth by the depth of the tree, and its width

at level l by the sum of the α-ranks associated with the nodes α of the tree at level l. The

activation functions involved in such networks are not the ones usually used in deep learning

(logistic sigmoid, hyperbolic tangent, recti�er linear unit, etc.) but multilinear functions.
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In this context, canonical tensors, which are associated with a trivial tree (Figure 3a) where

the root tensor is diagonal, correspond to fully connected networks with one hidden layer

(shallow networks) of width the canonical rank. Tree-based tensors with linear trees (Figure

3c) correspond to recurrent networks, with a depth equal to the dimension d and a width

at level l equal to the sum of the α-ranks associated with the nodes at level l of the tree

[29]. Finally, tree-based tensors with balanced trees (Figure 3b) correspond to convolutional

networks, with log2(d) hidden layers�the depth of the tree�and a width at level l equal

to the sum of the α-ranks associated with the nodes at level l of the tree [30].

Learning with nonlinear model classes such as deep neural networks involves many di�culties

[31, Chapter 8], among them, a high number of parameters to learn and the existence of

local minima of the risk function to minimize. Stochastic gradient descent is widely used

to solve the empirical risk minimization problem: this method, by computing the gradient

using a randomly selected subset of the training sample, has proved to be e�ective even

with highly complex networks requiring a large training set.

One of the main objectives of this thesis is to provide robust algorithms for learning with

model classes of functions in tree-based tensor format, by extensively exploiting our knowl-

edge of this format.

We �rst propose stable learning algorithms in T Tr (H) by using the multilinearity of the

parametrization to recast the nonlinear empirical risk minimization problem into a series of

learning problems with linear model classes. Orthogonality conditions of the representation

(obtained using higher-order singular value decompositions [32, Section 11.4.2] combined

with the use of orthonormal bases of Hν , ν = 1, . . . , d) give good properties to the problems

to be solved to learn an approximation in T Tr (H) in a least-squares setting. This enables us

to use classical optimization methods and to derive fast cross-validation estimators of the

risk, useful both for validation and for model selection. The proposed algorithms are able

to exploit sparsity in the parameters, which can be useful to further reduce the complexity

of the considered representations.

An attractive property is that any function in a �nite dimensional tensor space H can be

represented in T Tr (H) for any tree T , provided that the ranks r are chosen high enough.

However, the complexity of the representation of a function in tree-based tensor format

(its number of parameters) depending polynomially on the ranks, it is desirable that they

remain as small as possible. We propose an adaptive algorithm that aims at obtaining a

good convergence of the error with respect to the ranks, by sequentially increasing only a

subset of α-ranks rα associated with the highest truncation errors. In the least-squares case,

these errors are estimated using the higher-order singular value decompositions of functions

in tree-based tensor format.

Although any function in H can be represented in the format T Tr (H), choosing a suitable

dimension tree is in practice of utmost importance. Indeed, the ranks required for approxi-

mating a function with a speci�ed error may strongly depend on the choice of the dimension
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tree. This may have, once again, a signi�cant impact on the complexity of the approxima-

tion, and can be a real issue for high-dimensional learning problems. This matter has to

be related to the choice of a particular sparse architecture for deep neural networks (e.g.

convolutional or recurrent networks, with an ordering of the variables which is application-

dependent). Finding the optimal dimension tree (in the sense of the complexity at a given

accuracy) is a combinatorial problem, intractable in practice. We propose a stochastic al-

gorithm that explores the set of all dimension trees of a given arity (the maximal number

of children any node of a tree has) by applying randomly drawn changes in the tree (follow-

ing a heuristic rule) and returning the one yielding the smallest complexity. Remembering

the links between tree-based tensors and deep neural networks, this procedure enables the

modi�cation of the structure of the network, enabling for example the transition from a

recurrent to a convolutional network. This tree adaptation algorithm is a standalone that

can also be used, for instance, to perform compression of tensors.

These tree-based rank and dimension tree adaptation algorithms are embedded in a global

adaptive learning algorithm with model classes of functions in tree-based tensor format.

This work is the subject of two articles for the learning with model classes of functions in

tree-based tensor format, for supervised learning in [33], and for density estimation in [34].

Some functions might only exhibit a low-rank structure after a suitable change of variables.

In this work, we propose a generalization of the previous format by considering approxi-

mations of the form g = v ◦ h, with h a mapping from Rd to Rm and v a m-dimensional

function in tree-based tensor format. This corresponds to a tree-based tensor format after

a change of variables induced by the vector-valued map h(x) = (h1(x), . . . , hm(x)). With

h = id (the identity from Rd to Rd), we retrieve the standard tree-based tensor format.

With h a linear map, this corresponds to a ridge approximation g(x) = v(Ax), with A

a matrix and v a function in tree-based tensor format. With v an additive model and h

linear, v ◦ h corresponds to a projection pursuit model (see [16]). An additive model being

represented in tree-based tensor format with α-ranks bounded by 2, the proposed format

is then able to represent a projection pursuit model with a similar complexity. Here, we

propose adaptive algorithms for the construction of such approximations, with increasing

dimension m. These algorithms are inspired by greedy algorithms for projection pursuit

regression [16].

The proposed algorithms can be applied to the approximation of univariate functions. The

idea is as follows: let us consider, without loss of generality, a univariate function F that

takes values in the interval [0, 1[. An element x ∈ [0, 1[ can be identi�ed with a tuple

(i1, . . . , id, y), such that x = tb,d(i1, . . . , id, y) =
∑d

k=1 ikb
−k+b−dy, with ik ∈ Ib = {0, . . . , b−

1}, k = 1, . . . , d, and y = bdx − bbdxc ∈ [0, 1[. This gives an identi�cation between the

univariate function F (tb,d(i1, . . . , id, y)) and the multivariate function f(i1, . . . , id, y) de�ned

on {0, . . . , b− 1}d × [0, 1[. The proposed algorithms can then be applied to the learning of

f in tree-based tensor format. This identi�cation is called tensorization (or quantization

when b = 2 [35]).
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In the context of the Eval-π project and the Joint Laboratory of Marine Technology, the

problem to tackle is the uncertainty quanti�cation of the frequency response function of

the sound power level produced by a vibrating underwater structure. The sound power

level is a scalar quantity measuring, broadly speaking, how much sound a given structure

produces. This quantity is derived from a �uid-structure �nite element model provided by

Naval Group, which describes the vibration response of a keelson attached to a section of

a hull, submerged in water (represented in Figure 4b), and to which a force is applied (see

Figure 4a). For more information on �uid-structure interaction and �nite element coupling,

see [6].

•
F

Force

Linkage

Sound pressure

Hull

(a) Representation of a noise source. (b) Geometry of the study case (source Naval
Group).

Figure 4: Study case: a keelson attached to a section of a hull submerged in water. An
oscillating force is applied to the keelson and its energy is transmitted to the water through
the hull.

In reality, many uncertainties are present: mechanical properties of the materials, proper-

ties of the water, magnitude, position and orientation of the force, etc. (see an example

of uncertainties study in this domain [36]). In this study, we only consider as random the

mechanical properties of the materials constituting the structure. We aim to provide a

methodology to compute an approximation of the frequency response function of the sound

power level on a large frequency domain as a function of the uncertain input parameters,

as well as of two quantities derived from it: its one-third octave band frequency response

function and its envelope curve, each serving di�erent purposes from an industrial point

of view. The proposed methodology involves a problem-speci�c procedure that aligns the

signed resonance peaks for all values of the input parameters, and uses the proposed algo-

rithms introduced above for learning with model classes of functions in tree-based tensor

format. We also take advantage of the tensorization of univariate functions to represent

the narrow-band frequency response function of the sound power level in tree-based tensor

format.

All the algorithms proposed in this thesis were implemented in the in-house open-source

toolbox ApproximationToolbox, that will be made publicly available soon.

The outline of this thesis is as follows.
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Chapter 1 presents the model classes of functions in tree-based tensor format, their links

with other model classes, di�erent useful representations as well as an algorithm to perform

truncation (based on higher-order singular value decompositions) and a novel algorithm to

perform dimension tree adaptation.

In Chapter 2, we develop learning algorithms with model classes of functions in tree-based

tensor format, with the adaptation of both the dimension tree and the tree-based rank,

using a heuristic algorithm based on an estimation of the truncation errors for the latter.

The algorithms are described in a general learning framework, and speci�ed for two typical

settings: least-squares regression for supervised learning, and least-squares density estima-

tion, which is a type of unsupervised learning. We demonstrate the performances of the

proposed algorithms with several numerical experiments.

Chapter 3 is devoted to the development of learning algorithms that combine tree-based

tensor formats and changes of variables. These algorithms return a sequence of approxi-

mations with increasing e�ective dimension and involve solving both linear and nonlinear

optimization problems. The performances of these algorithms are presented on test cases

showing that they can �nd, when they exist, changes of variables able to reduce the e�ective

dimension and discover low-rank structures in the function to approximate.

In Chapter 4, we apply the proposed algorithms to the problem proposed by Naval Group:

the uncertainty quanti�cation of the frequency response function of the sound power level of

an underwater structure. Problem-speci�c quantities of interest are derived from the sound

power level, and a signed resonance peaks alignment procedure is developed, to propose

e�cient methodologies that might be used in an industrial framework.

The exploratory Chapter 5 describes the tensorization of univariate functions, introduced

above, as well as some examples of approximations of a univariate function in tree-based

tensor format.

Appendix A presents di�erent types of representation of probability distributions using

tree-based formats, provides some results on the relations between the ranks of these repre-

sentations and gives some examples of representation in tree-based tensor format of standard

probabilistic models.

Lastly, in Appendix B, we describe how to obtain polynomial bases orthonormal with respect

to some given probability measure, which is either known or estimated from data.
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1.1 Introduction

This chapter is devoted to the presentation of model classes of rank-structured functions,

with a focus on the tree-based tensor formats. After an introduction to tensor spaces of

multivariate functions in Section 1.2, we present in Sections 1.3, 1.4 and 1.5 the tree-based

tensor formats and di�erent representations useful for learning, described in Chapter 2.
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Then, we remind in Section 1.6 the handy notion of higher order singular value decomposi-

tion of tensors, used to perform truncation, and we present in Section 1.7 how to introduce

sparsity in the parameters of the tree-based tensors. Finally, we propose in Section 1.8

a novel algorithm to perform dimension tree adaptation, in order to reduce the storage

complexity of the representation in tree-based tensor format of a given function.

This chapter is partly based on two articles [33, 34] for the learning with model classes of

functions in tree-based tensor format.

1.2 Tensor spaces of multivariate functions

Let (X1, . . . , Xd) be a set of independent random variables, where Xν is with values in Xν
and with probability law µν , 1 ≤ ν ≤ d. Typically, Xν is a subset of R but the case where

Xν ⊂ Rdν , dν > 1, can be considered as well. We denote by X = (X1, . . . , Xd) the random

variable with values in X = X1 × · · · × Xd and with probability law µ = µ1 ⊗ · · · ⊗ µd, and
by E(·) the mathematical expectation.

Let Hν be a Hilbert space of functions de�ned on Xν , 1 ≤ ν ≤ d, equipped with the inner

product (·, ·)ν and associated norm ‖ · ‖ν . The elementary tensor product f1 ⊗ · · · ⊗ fd
of functions fν ∈ Hν , 1 ≤ ν ≤ d, is identi�ed with a function de�ned on X such that

for x = (x1, . . . , xd) ∈ X , (f1 ⊗ · · · ⊗ fd)(x1, . . . , xd) = f1(x1) · · · fd(xd). The algebraic

tensor space H = H1 ⊗ · · · ⊗ Hd is then identi�ed with the set of functions f which can

be written as a �nite linear combination of elementary tensors. The tensor space H is

equipped with the canonical inner product (·, ·), �rst de�ned for elementary tensors by

(f1 ⊗ · · · ⊗ fd, g1 ⊗ · · · ⊗ gd) = (f1, g1)1 · · · (fd, gd)d, and then extended by linearity to the

whole space H. We denote by ‖ · ‖ the canonical norm associated with (·, ·).
Remark 1.2.1. If the Hν are in�nite dimensional spaces, the tensor space H is a pre-Hilbert

space. A tensor Hilbert space H‖·‖ is obtained by the completion of H (in the topology induced

by the norm ‖·‖). In particular, L2
µ(X ) can be identi�ed with the completion of the algebraic

tensor space L2
µ1(X1)⊗ · · · ⊗ L2

µd
(Xd).

Hereafter, we consider that Hν is a �nite dimensional subspace of L2
µν (Xν), equipped with

the norm ‖fν‖2ν = E(fν(Xν)2). Then, H is a subspace of L2
µ(X ), equipped with the canon-

ical norm ‖f‖2 = E(f(X)2). Let {φνi : i ∈ Iν} be an orthonormal basis of Hν , and
Nν = dim(Hν) = #Iν . For a multi-index i = (i1, . . . , id) ∈ I1 × · · · × Id := I, we let

φi = φ1
i1
⊗ · · · ⊗ φdid . The set of functions {φi : i ∈ I} constitutes an orthonormal basis

of H. A function f ∈ H can be written f(x) =
∑

i∈I fiφi(x), where the set of coe�cients

(fi)i∈I ∈ RI is identi�ed with a tensor f ∈ RI1 ⊗ · · · ⊗ RId , and

‖f‖2 =
∑
i∈I

f2
i =

∑
i1∈I1

· · ·
∑
id∈Id

f2
i1,...,id
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coincides with the canonical norm of f , also denoted by ‖f‖. Introducing

Φν(xν) = (φνi (xν))i∈Iν ∈ RI
ν

and

Φ(x) = Φ1(x1)⊗ · · · ⊗Φd(xd) ∈ RI
1 ⊗ · · · ⊗ RI

d
,

we have f(x) = 〈Φ(x),f〉, where 〈·, ·〉 is the canonical inner product on RI1 ⊗ · · · ⊗ RId .
The linear map

F : f 7→ 〈Φ(·),f〉

de�nes a linear isometry from RI1 ⊗ · · · ⊗ RId to H, such that ‖F (f)‖ = ‖f‖.
Remark 1.2.2 (Discrete set X ). If X = X1 × · · · × Xd is a �nite or countable set and µ =∑

x∈X δx = µ1 ⊗ · · · ⊗ µd with µν =
∑

xν∈Xν δxν , then the space Hν = L2
µν (Xν) is identi�ed

with `2(Xν). If Xν = {xiνν : iν ∈ Iν}, the canonical basis φνiν (xjνν ) = 1iν=jν (which is equal

to 1 if iν = jν and 0 otherwise) is orthonormal in Hν . A function f(x) =
∑

i∈I fiφi(x) is

then isometrically identi�ed with the set of coe�cients fi1,...,id = f(xi11 , . . . , x
id
d ).

The canonical rank of a tensor f ∈ H is the minimal integer r such that f can be written

in the form

f(x1, . . . , xd) =
r∑
i=1

f1
i (x1) · · · fdi (xd),

for some fνi ∈ Hν and r ∈ N. The set of tensors in H with canonical rank bounded by r

is denoted by Rr(H). An approximation in Rr(H) is called an approximation in canonical

tensor format. For an order-two tensor (d = 2), the canonical rank coincides with the

classical and unique notion of rank. For higher-order tensors (d ≥ 3), di�erent notions of

rank can be introduced.

1.3 Tree-based ranks and corresponding tree-based formats

For a non-empty subset α in {1, . . . , d} := D and its complementary subset αc = D \ α, a
tensor f ∈ H can be identi�ed with an element Mα(f) of the space of order-two tensors

Hα ⊗ Hαc , where Hα =
⊗

ν∈αHν . This is equivalent to identifying f(x) with a bivariate

function of the complementary groups of variables xα = (xν)ν∈α and xαc = (xν)ν∈αc in

x. The operator Mα is called the α-matricization operator. The α-rank of f , denoted

by rankα(f), is the dimension of the minimal subspace Umin
α (f), which is the smallest

subspace of functions of the variables xα such thatMα(f) ∈ Umin
α (f)⊗Hαc . By convention,

Umin
D (f) = span{f} and rankD(f) = 1 if f 6= 0 and 0 if f = 0. If rankα(f) = rα, then f

admits the representation

f(x) =

rα∑
i=1

fαi (xα)fα
c

i (xαc),

for some functions fαi ∈ Hα and fα
c

i ∈ Hαc , and Umin
α (f) = span{fαi }rαi=1.

From the de�nition of the α-rank, we deduce the following properties.
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Proposition 1.3.1. If α =
⋃
i∈I βi with {βi : i ∈ I} a collection of disjoint subsets of D,

then for any function f ,

rankα(f) ≤
∏
i∈I

rankβi(f).

Proposition 1.3.2. For two functions f and g, and for any α ⊂ D,

• rankα(f + g) ≤ rankα(f) + rankα(g),

• rankα(fg) ≤ rankα(f)rankα(g).

Example 1.3.3.

• f(x) = f1(x1) · · · fd(xd) can be written f(x) = fα(xα)fα
c
(xαc), with fα(xα) =∏

ν∈α f
ν(xν). Therefore rankα(f) ≤ 1 for all α ⊂ D.

• f(x) =
∑r

k=1 f
1
k (x1) · · · fdk (xd) can be written

∑r
k=1 f

α
k (xα)fα

c

k (xαc) with fαk (xα) =∏
ν∈α f

ν
k (xν). Therefore, rankα(f) ≤ r for all α ⊂ D.

• f(x) = f1(x1) + · · ·+ fd(xd) can be written f(x) = fα(xα) + fα
c
(xαc), with f

α(xα) =∑
ν∈α f

ν(xν). Therefore, rankα(f) ≤ 2 for all α ⊂ D.

• f(x) =
∏
α∈A f

α(xα) with A a collection of disjoint subsets is such that rankα(f) = 1

for all α ∈ A, and rankγ(f) ≤∏α∈A,α∩γ 6=∅ rankα∩γ(fα) for all γ.

The set of tensors f in H with α-rank bounded by rα is denoted by

T {α}rα (H) = {f ∈ H : rankα(f) ≤ rα} .

For a collection T of non-empty subsets of D, we de�ne the T -rank of f as the tuple

rankT (f) = {rankα(f) : α ∈ T}. Then, we de�ne the set of tensors T Tr (H) with T -rank

bounded by r = (rα)α∈T by

T Tr (H) = {f ∈ H : rankT (f) ≤ r} =
⋂
α∈T
T {α}r (H).

A dimension partition tree T is a tree such that (i) all nodes α ∈ T are non-empty subsets

of D, (ii) D is the root of T , (iii) every node α ∈ T with #α ≥ 2 has at least two children

and the set of children of α, denoted by S(α), is a non-trivial partition of α, and (iv) every

node α with #α = 1 has no child and is called a leaf (see for example Figure 1.1).

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Figure 1.1: Example of dimension partition tree over D = {1, . . . , 4}.
.
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When T is a dimension partition tree, T Tr (H) is the set of tensors with tree-based rank

bounded by r, and an approximation in T Tr (H) is called an approximation in tree-based

(or hierarchical) tensor format [21, 26]. A tree-based rank r is said admissible if the set

T T=r(H) = {f : rankα(f) = rα, α ∈ T} of tensors with T -rank r is non empty. Necessary

conditions of admissibility can be found in [26, Section 2.3]. In particular, rD has to be less

than or equal to 1 for T T=r to be non empty, and T T=r is reduced to {0} if rD = 0.

For a dimension partition tree T and a node α ∈ T , we denote by P (α) and A(α) the

parent and ascendants of α, respectively. The level of a node α is denoted by level(α). The

levels are de�ned such that level(D) = 0 and level(β) = level(α) + 1 for β ∈ S(α). We let

depth(T ) = maxα∈T level(α) be the depth of T , and L(T ) be the set of leaves of T , which

are such that S(α) = ∅ for all α ∈ L(T ).

1.3.1 Representation of tensors in tree-based format

Let f ∈ T Tr (H) having a tree-based rank r = (rα)α∈T . By de�nition of the minimal

subspaces, we have that f ∈ ⊗α∈S(D) U
min
α (f), and Umin

α (f) ⊂ ⊗β∈S(α) U
min
β (f) for any

α ∈ T \ L(T ) (see [23]). For any α ∈ T , let {fαkα}
rα
kα=1 be a basis of the minimal subspace

Umin
α (f). For each α ∈ T \ L(T ), we let Iα =×β∈S(α){1, . . . , rβ} and

φαiα(xα) =
∏

β∈S(α)

fβkβ (xβ), iα = (kβ)β∈S(α) ∈ Iα, (1.1)

be a basis of
⊗

β∈S(α) U
min
β (f) ⊂ Hα. Therefore, f admits the following representation:

f(x) =
∑
iD∈ID

CDiD,1φ
D
iD

(x)

where CD ∈ RID×{1} = RID is a tensor of order #S(D), and for any α ∈ T \ {D}, the
functions {fαkα}

rα
kα=1 admit the following representation

fαkα(xα) =
∑
iα∈Iα

Cαiα,kαφ
α
iα(xα), 1 ≤ kα ≤ rα,

where Cα ∈ RKα
, Kα := Iα ×{1, . . . , rα}. The function f can �nally be written f = F (f),

with F : RI → H the linear isometry introduced in Section 1.2, and f ∈ T Tr (RI) the tensor
whose components are given by

fi1,...,id =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

Cα(kβ)β∈S(α),kα

∏
α∈L(T )

Cαiα,kα . (1.2)

Remark 1.3.4. Note that a function f ∈ H in a tensor format is associated with a tensor

f = F−1(f) in RI in the same tensor format. In particular, f is in T Tr (H) if and only if

f = F−1(f) is in T Tr (RI).
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1.3.2 Interpretation as compositions of multilinear functions

For a node α ∈ T \ L(T ), a tensor Cα ∈ RIα×{1,...,rα} = R(×β∈S(α){1,...,rβ})×{1,...,rα} can

be identi�ed with a Rrα-valued multilinear function hα :×β∈S(α) R
rβ → Rrα . Also, for

a leaf node α ∈ L(T ), Cα ∈ RIα×{1,...,rα} can be identi�ed with a linear function hα :

R#Iα → Rrα . Denoting by fα the Rrα-valued function de�ned for xα ∈ Xα by fα(xα) =

(fα1 (xα), . . . , fαrα(xα)), we have

fα(xα) = hα(Φα(xα)) for α ∈ L(T ),

fα(xα) = hα((fβ(xβ))β∈S(α)) for α ∈ T \ L(T ),

where

Φα(xα) = (φαiα(xα))iα∈Iα ∈ RI
α

with φαiα de�ned by (1.1) for α ∈ T \ L(T ), and �nally

f(x) = fD(x) = hD((fα(xα))α∈S(D)).

For example, in the case of Figure 1.2a, the tensor f admits the representation

f(x) = hD(h{1,2}(h{1}(Φ1(x1)), h{2}(Φ2(x2))), h{3,4}(h{3}(Φ3(x3)), h{4}(Φ4(x4)))),

and in the case of Figure 1.2b, it admits the representation

f(x) = hD(h{1}(Φ1(x1)), h{2,3,4}(h{2}(Φ2(x2)), h{3,4}(h{3}(Φ3(x3)), h{4}(Φ4(x4))))).

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

(a) A balanced binary tree.

{1, 2, 3, 4}

{1}

{2, 3, 4}

{2}

{3, 4}

{3} {4}

(b) A linear binary tree.

Figure 1.2: Examples of dimension partition trees over D = {1, . . . , 4}.
.

1.4 Tree-based tensor formats as multilinear models

Let us de�ne the multilinear map G :×α∈T RKα → RI such that for a given set of tensors

(Cα)α∈T , the tensor f = G(Cα)α∈T is given by (1.2). A function f ∈ T Tr (H) therefore
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admits the following parametrization

f = F ◦G((Cα)α∈T ),

where F ◦ G is a multilinear map. We denote by Ψ(x) :×α∈T RKα → R the multilinear

map such that

f(x) = Ψ(x)((Cα)α∈T ) (1.3)

provides the evaluation at x of f = F ◦G((Cα)α∈T ), and de�ned by

Ψ(x)((Cα)α∈T ) =
∑
iν∈Iν
ν∈L(T )

∑
1≤kβ≤rβ

β∈T

∏
α∈T\L(T )

Cα(kβ)β∈S(α),kα

∏
α∈L(T )

Cαiα,kαφ
α
iα(xα).

For α ∈ T and �xed tensors (Cβ)β∈T\{α}, the partial map Ψα(x) : Cα 7→ Ψ(x)((Cβ)β∈T ) is

a linear map from RKα
to R, which is such that

f(x) = Ψα(x)(Cα)

=
∑

1≤kα≤rα
fαkα(xα)f̃αkα(xαc)

=
∑

1≤kα≤rα

∑
iα∈Iα

Cαiα,kαφ
α
iα(xα)f̃αkα(xαc),

(1.4)

where fD1 = f and f̃D1 = 1 when α = D, and

f̃αkα(xαc) =
∑

1≤kδ≤rδ
δ∈S(γ)\{α}

∑
1≤kγ≤rγ

Cγ(kβ)β∈S(γ),kγ

∏
β∈S(γ)\{α}

fβkβ (xβ)f̃γkγ (xγc),

with γ = P (α), when α 6= D. The functions φαiα depend on the tensors {Cβ : β ∈ D(α)},
with D(α) = {β ∈ T : α ∈ A(β)} the set of descendants of α, while the functions f̃αkα
depend on the tensors {Cβ : β ∈ T \ (D(α) ∪ {α})}.

Denoting by 〈·, ·〉α the canonical inner product on RKα
, Ψα(x) can be identi�ed with a

tensor Ψα(x) in RKα
such that

Ψα(x)(Cα) = 〈Ψα(x), Cα〉α. (1.5)

We can write Ψα(x) = Φα(xα) for α = D and Ψα(x) = Φα(xα)⊗ f̃α(xαc) otherwise, with

f̃α(xαc) = (f̃αi (xαc))
rα
i=1 ∈ Rrα .

1.5 Representation in tree-based tensor format with orthogo-

nality conditions

The parametrization of a function f = F ◦G((Cα)α∈T ) in tree-based tensor format T Tr (H)

is not unique. In other terms, the map G is not injective. For a given α, orthogonality
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conditions can be imposed on the parameters Cβ , for all β 6= α. More precisely, one can

impose orthogonality conditions on matricizations of the tensors Cβ so that one obtains a

representation (1.4) where the set of functions

Ψα(x) =
(
φαiα(xα)f̃αkα(xαc)

)
iα∈Iα,1≤kα≤rα

in (1.5) forms an orthonormal system in H. Algorithms 1 and 2 present the procedure

for such an orthogonalization of the representation. They use β-matricizationsMβ(Cα) of

tensors Cα, de�ned in Section 1.3 (see also [32, Section 5.2]), and the notations

sα =

#S(α) for α ∈ T \ L(T )

1 for α ∈ L(T )

and iγα, for α ∈ T \ {D} and γ = P (α), such that α is the iγα-th child of γ. Note that

in Algorithm 2, the matrix Gα in Step 11 is the gramian matrix of the set of functions

{f̃αkα}
rα
kα=1.

Algorithm 1 Orthogonalization of the representation of a function f = F ◦G((Cα)α∈T ) in
tree-based tensor format.

Inputs: parametrization of f = F ◦G((Cα)α∈T )

Outputs: new parametrization of f with orthonormal sets of functions {fαkα}
rα
kα=1 for all

α ∈ T \ {D}
1: for α ∈ T \ {D} by decreasing level do

2: set γ = P (α)

3: M{sα+1}(Cα)T = QR (QR factorization)

4: M{sα+1}(Cα)← QT

5: M{iγα}(Cγ)← RM{iγα}(Cγ)

6: end for

1.6 Higher order singular values of tensors and tensor trun-

cation

As seen in Section 1.3, for a non-empty subset α of D, a tensor f ∈ H can be identi�ed

with an order-two tensor Mα(f) in Hα ⊗ Hαc , with rank rα = rank(Mα(f)) = rankα(f).

Such an order-two tensor admits a singular value decomposition (SVD)

f(x) =

rα∑
i=1

σαi u
α
i (xα)vα

c

i (xαc),

where the σαi are the singular values and uαi and vα
c

i are the corresponding left and right

singular functions respectively, and where the sets of functions {uαi }rαi=1 and {vαci }rαi=1 form

orthonormal systems in Hα and Hαc respectively. The set of singular values of Mα(f) is
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Algorithm 2 α-orthogonalization of a function f = F ◦ G((Cα)α∈T ) in tree-based tensor
format.

Inputs: parametrization of f = F ◦G((Cα)α∈T )

Outputs: new parametrization of f with orthonormal functions {fαkα}
rα
kα=1 and {f̃αkα}

rα
kα=1

for a certain α ∈ T \ {D}
1: apply Algorithm 1 to obtain a parametrization of f with orthonormal sets of functions

{fαkα}
rα
kα=1 for all α ∈ T \ {D}

2: for β ∈ (A(α) \ {D}) ∪ {α} by increasing level do

3: set γ = P (β)

4: B ← Cγ

5: if γ 6= D then

6: M{sγ+1}(B)← GγM{sγ+1}(B)

7: end if

8: Gβ ←M{iγβ}(C
γ)M{iγβ}(B)T

9: end for

10: set γ = P (α)

11: Gα = UDUT (spectral decomposition of the gramian matrix of the set {f̃αkα}
rα
kα=1)

12: L← U
√
D

13: M{iγα}(Cγ)← L−1M{iγα}(Cγ)

14: M{sα+1}(Cα)← LTM{sα+1}(Cα)

denoted by Σα(f) = {σαi }rαi=1, and they are called α-singular values of the tensor f . Singular

values are assumed to be sorted in decreasing order, i.e. σα1 ≥ · · · ≥ σαrα .

An element fα,mα of best approximation of f in the set T {α}mα (H) of tensors with α-rank

bounded by mα (with mα ≤ rα), such that

‖f − fα,mα‖ = min
g∈T {α}mα (H)

‖f − g‖,

is obtained by truncating the SVD ofMα(f) at rank mα,

fα,mα(x) =

mα∑
i=1

σαi u
α
i (xα)vα

c

i (xαc),

and satis�es

‖f − fα,mα‖2 =

rα∑
i=mα+1

(σαi )2.

Denoting by Uαmα the subspace of Hα spanned by the left singular functions {uαi }mαi=1 of

Mα(f), and by P(α)
Uαmα

=M−1
α ◦

(
P

(α)
Uαmα
⊗ idαc

)
◦Mα the orthogonal projection from H onto

the subspace
{
g =M−1

α (f) : f ∈ Uαmα ⊗Hαc
}
, we have that fα,mα = P(α)

Uαmα
(f).



26 Chapter 1. Tree-based tensor formats

When T is a dimension partition tree over D, an approximation fm of a tensor f in the set

of tensors T Tm (H) with T -rank bounded by m = (mα)α∈T can be de�ned by

fm = P(L) · · · P(1)(f), P(`) =
∏
α∈T

level(α)=`

P(α)
Uαmα

, (1.6)

with 1 ≤ ` ≤ L = depth(T ). The approximation fm de�ned by (1.6) is one possible variant

of a truncated higher-order singular value decomposition (HOSVD) (see [32, Section 11.4.2],

or [37] for active learning algorithms based on higher-order SVD). For a tensor f in the same

tree-based tensor format (i.e. f ∈ T Tr (H) for some r ≥ m), the approximation fm can be

computed e�ciently using standard SVD algorithms. In the following, for a tensor f with

T -rank r and for a certain m ≤ r, we denote by fm = Truncate(f ;T,m) the truncated

HOSVD approximation with T -rank m.

The approximation fm obtained by the truncated HOSVD is a quasi-best approximation of

f in T Tm (H) satisfying

‖f − fm‖2 ≤
∑

α∈T\{D}
‖f − P(α)

Uαmα
(f)‖2 ≤ (#T − 1) min

g∈T Tm (H)
‖f − g‖2.

If for all α, the truncation rankmα is chosen such that ‖f−P(α)
Uαmα

(f)‖2 ≤ ε2(#T − 1)−1‖f‖2,
which means

rα∑
i=mα+1

(σαi )2 ≤ ε2

#T − 1

rα∑
i=1

(σαi )2, (1.7)

then fm provides an approximation of f with relative precision ε, i.e.

‖f − fm‖ ≤ ε‖f‖. (1.8)

In the following, for a tensor f and a certain ε < 1, we denote by fm(ε) = Truncate(f ;T, ε)

the truncated HOSVD approximation of f with T -rank m(ε) chosen as the highest tu-

ple satisfying (1.7), which ensures (1.8). Algorithm 3 presents the procedure for applying

Truncate(f ;T, ε). It is similar to Algorithm 2, with additional truncation steps.

1.7 Sparse representations in tree-based tensor format

A function f has a sparse representation in a certain tree-based tensor format if it admits

a parametrization (1.3) where parameters Cα contain zero entries. When the parame-

ter Cα is an array containing the coe�cients of functions on a given basis of functions

Φα(xα) = (φαi (xα))i∈Iα (see Section 1.4), sparsity in Cα means sparsity of the correspond-

ing functions relatively to the basis Φα(xα). The choice of the bases is crucial for the

existence of a sparse representation of a tensor (or of an accurate approximation with a

sparse representation). For leaf nodes α ∈ L(T ), typical choices of bases Φα include polyno-

mials, wavelets or other bases for multiresolution analysis, where the set of basis functions
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Algorithm 3 Algorithm of the function Truncate(f ;T, ε).

Inputs: parameters (Cα)α∈T of a function f ∈ T Tr (H)

Outputs: approximation fm ∈ T Tm (H) satisfying (1.8)

1: use Algorithm 1 to obtain orthonormal sets of functions {fαkα}
rα
kα=1, α ∈ T \ {D}

2: for α ∈ T \ {D} by increasing level do

3: set γ = P (α)

4: B ← Cγ

5: if γ 6= D then

6: M{sγ+1}(B)← GγM{sγ+1}(B)

7: end if

8: Gα ←M{iγα}(Cγ)M{iγα}(B)T with eigenvalues ((σαi )2)rαi=1

9: end for

10: for α ∈ T \ {D} by decreasing level do

11: Gα ≈ UDUT such that (1.7) is ensured (truncated spectral decomposition of the

gramian matrix of the set of functions {f̃αkα}
rα
kα=1 at rank mα)

12: M{iγα}(Cγ)← UTM{iγα}(Cγ)

13: M{sα+1}(Cα)← UTM{sα+1}(Cα)

14: end for

can be partitioned into subsets of basis functions with di�erent levels (or resolutions). For

interior nodes α ∈ T \ L(T ), bases Φα introducing sparsity for the representation of a

function f can be obtained by using for the bases {fβkβ} of minimal subspaces Umin
β (f) the

principal components of α-matricizations of f obtained with singular value decompositions

(ordered by decreasing singular values). Algorithm 3 with ε = 0 yields such a representation

with a natural hierarchy in the bases {fβ1 , . . . , fβrβ}, which induces a natural hierarchy in the

bases Φα of interior nodes that are obtained through tensorization of bases {fβ1 , . . . , fβrβ},
β ∈ S(α).

For such bases with a natural hierarchy of the basis functions, we introduce a nested sequence

Iα0 ⊂ · · · ⊂ Iαp of subsets in Iα, with Iαp = Iα, such that {φαi (xα)}i∈Iαλ is a basis of a subspace

of functions Hλα ⊂ Hα, with level λ. This de�nes a sequence of nested spaces

H0
α ⊂ · · · ⊂ Hpα ⊂ Hα.

Example 1.7.1 (Hierarchical bases for the leaves α ∈ L(T )).

• For a univariate polynomial basis, where φαi is a polynomial of degree i− 1, we simply

take Iαλ = {1, . . . , λ+ 1}, so that Hλα = Pλ(Xα) is the space of polynomials with degree

λ.

• For a multivariate polynomial basis on Xα ⊂ Rdα , Hλα can be chosen as the space of

polynomials with partial (or total) degree λ.
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• For a univariate wavelet (or multiresolution) basis, Hλα can be taken as the space of

functions with resolution λ.

For a tensor f in tree-based tensor format and a node α ∈ T , where Cα ∈ RKα
collects the

coe�cients of the functions {fαk (xα)}rαk=1 on a basis Φα(xα), we de�ne

Kα
λ = Iαλ × {1, . . . , rα},

so that Kα
0 ⊂ · · · ⊂ Kα

p form a nested sequence of subsets in Kα = Iα × {1, . . . , rα}, with
Kα
p = Kα. Therefore, if Cα = (Cαk )k∈Kα is such that Cαk = 0 for all k /∈ Kα

λ , then all

functions fαk (xα) are in the space Hλα, and f ∈ Hλα ⊗Hαc .

The proposed sequence of candidate patterns Kα
0 ⊂ · · · ⊂ Kα

p for the parameter Cα can

be used in learning algorithms using working set strategies for sparse approximation (see

Section 2.5).

1.8 Dimension tree optimization

The complexity of the representation of a function in tree-based tensor format strongly

depends on the selection of the dimension tree. The number of possible dimension trees

being exponential in the dimension d, the selection of an optimal tree is intractable in

high dimension. We here propose a heuristic stochastic algorithm for the optimization of

the tree, within a class of trees having the same arity. The proposed approach consists in

comparing trees obtained by successive permutations of nodes drawn randomly according

to a suitable probability distribution. Starting from a given tree, the proposed strategy

allows the exploration of a very large class of trees obtained by an arbitrary number of

permutations of nodes. In particular, starting from a binary tree, the strategy is able to

explore the whole set of binary trees over D (including all balanced and linear trees). For

example, a single permutation of nodes allows to go from the tree T of Figure 1.3a to the

tree T ′ of Figure 1.3b, with the same topology, but also to the tree T ′′ of Figure 1.3c with

a di�erent topology.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

(a) Tree T .

{1, 2, 3, 4}

{1, 3}

{1} {3}

{2, 4}

{2} {4}

(b) Tree T ′.

{1, 2, 3, 4}

{2, 3, 4}

{3, 4}

{3} {4}

{2}

{1}

(c) Tree T ′′.

Figure 1.3: Dimension tree T over D = {1, 2, 3, 4}, tree T ′ obtained by permuting the nodes
{2} and {3} of T , tree T ′′ obtained by permuting the nodes {1} and {3, 4} of T .
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{4}
{8} {2}

{10}
{3} {6}

{9}
{7} {1}

{5}

(a) Dimension tree.
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125

5

25

5 5

5

(b) Representation ranks.

Figure 1.4: Representation in tree-based format with an initial random tree. The storage
complexity is 10595875.

1.8.1 Motivating example

We consider, in dimension d = 10, discrete random variables Xν taking N = 5 possible

instances, so that f(x) is identi�ed with a tensor of size Nd = 510 = 9765625 (see Remark

1.2.2). We assume f(x) has the form

f(x) = g1,2,3,7(x1, x2, x3, x7)g3,4,5,6(x3, x4, x5, x6)g4,8(x4, x8)g8,9,10(x8, x9, x10).

The values taken by the di�erent functions gα are drawn randomly in [0, 1], and are nor-

malized such that
∑

i∈I f(xi) = 1.

We �rst consider the random binary tree of Figure 1.4 and compute a representation of

f in the corresponding tree-based format, using a truncation algorithm at precision 10−13

(as described in Section 1.6). We observe a storage complexity of 10595875, higher than

the storage complexity of the full tensor. After the tree optimization (with Algorithm 5,

presented below), we obtain the tree in Figure 1.5 with a storage complexity of 3275. We

see that this latter tree yields a representation with a storage complexity much smaller than

with the former, and contains nodes that correspond to the groups of variables involved in

the di�erent functions gα appearing in the de�nition of f .

This example shows the major in�uence of the choice of the tree on the storage complexity

of the representation of a function in tree-based tensor format. Furthermore, the dimension

tree yielding the smallest complexity can carry information about the represented function,

for instance about the dependence structure of a probabilistic model, as we shall see in

Chapter 2 when learning functions with tree-based tensor formats. These observations

motivate the development of the proposed algorithm to perform tree optimization.
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{10} {9}
{8}

{2} {1}
{7}
{3}
{6}
{5}
{4}

(a) Dimension tree.
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5

5

25
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5

25

5 5

5

5

5

5

5

(b) Representation ranks.

Figure 1.5: Representation in tree-based format after tree optimization. The storage com-
plexity is 3275.

1.8.2 Tree optimization for the representation of a given function

Let T be a given partition tree and consider a given function f ∈ H. Letting r = rankT (f),

we have that f ∈ T Tr (H) admits a representation

f(x) =
∑

1≤iν≤Nν
ν∈L(T )

∑
1≤kβ≤rβ

β∈T

∏
α∈T\L(T )

Cα(kβ)β∈S(α),kα

∏
α∈L(T )

Cαiα,kαφ
α
iα(xα), (1.9)

with storage complexity1

C(T, r) =
∑

α∈T\L(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

Nαrα.

If rα = O(R) and dim(Hα) = O(N), then since #T = O(d), C(T, r) = O(dNR + (#T −
d− 1)Rs+1 +Rs), where s = maxα∈T\L(T ) #S(α) is the arity of the tree. For a binary tree,

s = 2 and #T = 2d− 1, so that C(T, r) = O(dNR+ (d− 2)R3 +R2).

Then, we would like to �nd a tree solution of

min
T
C(T, rankT (f)), (1.10)

which minimizes over a set of dimension trees the storage complexity for the function f .

In practice, when f is an approximation of a target function, we may be only interested in

obtaining an approximation of f with a certain precision (e.g. related to an estimation of

the generalization error of f) and with minimal storage complexity. Then problem (1.10)

can be replaced by

min
T
C(T, rankεT (f)), (1.11)

1Note that the possible sparsity of the representation in a given tensor format is not (but could be) taken
into account for de�ning an e�ective storage complexity.
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with rankεT (f) = (rankεα(f))α∈T , where the ε-rank rankεα(f) is de�ned as the minimal integer

rεα such that there exists an approximation f ε with rankα(f ε) = rεα and such that ‖f−f ε‖ ≤
ε‖f‖.

For solving (1.10), we propose a stochastic algorithm which successively compares the cur-

rent tree T with a new tree T̃ drawn from a suitable probability distribution over the set

of trees, obtained by successive random permutations of nodes, and accepts the tree T̃ if it

yields a lower storage complexity for f (at relative precision ε). The probability distribution,

de�ned below, gives a higher probability to trees T̃ presenting the highest potential reduc-

tion of storage complexity (by preferably permuting nodes α whose parents have the highest

ranks rP (α)) but the lowest computational complexity for changing the representation of f

from T to T̃ .

Before presenting the stochastic algorithm and how to draw randomly a new tree T̃ , we �rst

detail how to change the representation of a function by a permutation of two nodes in a

current tree T . This will allow us to introduce a notion of computational complexity for the

changes of representations.

1.8.3 Changing the representation by permutations of two nodes

For two nodes ν and µ in a tree T such that ν ∩ µ = ∅ (i.e. one node is not the ascendant
of the other), we denote by σν,µ the map such that σν,µ(T ) is the tree obtained from T by a

permutation of nodes ν and µ. Let P (α;T ), S(α;T ), A(α;T ) and level(α;T ) be the parent,

children, ascendants and level of α in T , respectively. In the tree σν,µ(T ), we have that

P (ν;σν,µ(T )) = (P (µ;T ) \ µ)∪ ν and P (µ;σν,µ(T )) = (P (ν;T ) \ ν)∪ µ. The map σν,µ only

modi�es the nodes of T in (A(µ;T ) ∪A(ν;T )) \ (A(µ;T ) ∩A(ν;T )), which is the set of all

ascendants of ν or µ that are not common ascendants of these two nodes. In particular, we

have that σν,µ(T ) = T if P (µ;T ) = P (ν;T ). Let

γ := argmax
β∈A(ν;T )∩A(µ;T )

level(β;T ) (1.12)

denote the highest-level common ascendant of ν and µ in T and let

T ν,µ = (A(ν;T ) ∪A(µ;T )) \ ({γ} ∪A(γ;T )) (1.13)

be the subset of T containing all the ascendants of ν and µ up to γ, except γ. The tree

T̃ = σν,µ(T ) is such that T̃ = (T \ T ν,µ) ∪ T̃ ν,µ.

The representation (1.4) of f can be written

f(x) =
∑

1≤kδ≤rδ
δ∈S(T ν,µ)

∑
1≤kγ≤rγ

Mγ
(kβ)β∈S(Tν,µ),kγ

∏
β∈S(T ν,µ)

fβkβ (xβ)f̃γkγ (xγc)
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with S(T ν,µ) = {α ∈ T \ T ν,µ : α ∈ S(β;T ), β ∈ T ν,µ}, and where

Mγ
(kβ)β∈S(Tν,µ),kγ

=
∑

1≤kδ≤rδ
δ∈T ν,µ

∏
α∈T ν,µ∪{γ}

Cα(kη)η∈S(α;T ),kα
(1.14)

are the components of a tensor Mγ of order #S(T ν,µ) + 1. Assuming that f has a γ-

orthogonal representation (1.9), the functions ∏
β∈S(T ν,µ)

fβkβ (xβ)


1≤kβ≤rβ
β∈S(T ν,µ)

and
{
f̃γkγ (xγc)

}
1≤kγ≤rγ

are orthonormal in Hγ and Hγc respectively, and we have ‖Mγ‖ = ‖f‖. Up to a change in

the ordering of the children of each node, the expression (1.14) can be rewritten, introducing

the parents γν = P (ν;T ) and γµ = P (µ;T ) of ν and µ in T , as

Mγ
(kβ)β∈S(Tν,µ),kγ

=
∑

1≤kδ≤rδ
δ∈T ν,µ

Cγ
ν

(kη)η∈S(γν ;T )\{ν},kν ,kγν
Cγ

µ

(kη)η∈S(γµ;T )\{µ},kµ,kγµ

∏
α∈{γ}∪(T ν,µ\{γν ,γµ})

Cα(kη)η∈S(α;T ),kα
.

Also, the tensor Mγ can be identi�ed with

Mγ
(kβ)

β∈S(Tν,µ
σ̃

)
,kγ

=
∑

1≤kδ≤r̃δ
δ∈T ν,µ

C̃γ
ν

(kη)η∈S(γν ;T )\{ν},kµ,kγν
C̃γ

µ

(kη)η∈S(γµ;T )\{µ},kν ,kγµ

∏
α∈{γ}∪(T ν,µ\{γν ,γµ})

C̃α(kη)η∈S(α;T ),kα
, (1.15)

where C̃γ
ν
now has an index kµ, and C̃

γµ an index kν . The representation (1.15) of Mγ

corresponds to a representation of f in T T̃r̃ (H) with T̃ = σν,µ(T ) and r̃β = rβ for all

β ∈ T \ T ν,µ.

Algorithm 4 presents the permutation procedure, showing how to practically obtain an

approximation in T T̃r̃ (H) of f ∈ T Tr (H) with relative precision ε. At Step 10, the singular

value decomposition of a matricization of Mγ
(kβ)β∈Sγ ,kγ

is computed:

Mγ
(kβ)β∈Sγ ,kγ

=

r̃η∑
kη=1

σ̃kη ã(kβ)
β∈Sγ\S(η;T̃ )

,kη ,kγ b̃(kβ)
β∈S(η;T̃ )

,kη , (1.16)

with singular values {σ̃kη}
r̃η
kη=1. We de�ne r̃ε

′
η as the minimal integer ensuring

r̃η∑
kη=r̃ε′η +1

σ̃2
kη ≤ ε′

2
r̃η∑

kη=1

σ̃2
kη (1.17)
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with ε′2 = ε2/#T ν,µ, where #T ν,µ is the number of singular value decompositions required

for changing the representation of a function from tree T to tree σν,µ(T ). The integers

(r̃ε
′
α )

α∈T̃ correspond to the ε′-ranks of f in the format associated with the tree σν,µ(T ). By

truncating (1.16) at rank r̃ε
′
η , we obtain an approximation of f with relative precision ε′,

ultimately leading to an approximation of f with relative precision ε once the #T ν,µ singular

value decompositions are performed.

Algorithm 4 Change of representation of a tree-based tensor f ∈ T Tr (H) by a permutation
of two nodes ν and µ in T at precision ε.

Inputs: initial T , representation of the tensor f ∈ T Tr (H) with T -rank r, nodes ν and µ to

be permuted, such that ν ∩ µ = ∅, relative precision ε.
Outputs: approximation of the tensor f in T T̃r̃ (H) with T̃ = σν,µ(T ) and T̃ -rank r̃

1: compute γ de�ned by (1.12) and T ν,µ de�ned by (1.13)

2: perform a γ-orthogonalization of the representation of f using Algorithm 2

3: Mγ ← Cγ , Sγ ← S(γ;T )

4: for η ∈ T ν,µ by increasing level do

5: Mγ
(kβ)β∈Sγ\{η},(kβ)β∈S(η;T ),kγ

←
rη∑

kη=1

Mγ
(kβ)β∈Sγ ,kγ

Cη(kβ)β∈S(η;T ),kη

6: Sγ ← (Sγ \ {η}) ∪ S(η;T )

7: end for

8: T̃ ← σν,µ(T )

9: for η ∈ T̃ ν,µ by decreasing level do

10: compute the SVD (1.16) of the matricizationM{iγβ}β∈S(η;T̃ )
(Mγ)T of Mγ

11: truncate the SVD at rank r̃ε
′
η , the minimal integer satisfying (1.17)

12: M̃γ
(kβ)

β∈Sγ\S(η;T̃ )
,kη ,kγ

← σ̃kη ã(kβ)
β∈Sγ\S(η;T̃ )

,kη ,kγ , kη = 1, . . . , r̃ε
′
η

13: C̃η(kβ)
β∈S(η;T̃ )

,kη
← b̃(kβ)

β∈S(η;T̃ )
,kη , kη = 1, . . . , r̃ε

′
η

14: r̃η ← r̃ε
′
η

15: Mγ ← M̃γ

16: Sγ ← (Sγ ∪ {η}) \ S(η; T̃ )

17: end for

18: C̃γ ←Mγ , r̃γ ← rγ , C̃
β ← Cβ, r̃β ← rβ, ∀β ∈ T̃ \ T̃ ν,µ with β 6= γ

19: return the approximation of the tensor f in T T̃r̃ (H) given by∑
1≤kβ≤r̃β

β∈T̃

∏
α∈T̃\L(T̃ )

C̃α(kβ)
β∈S(α;T̃ )

,kα

∏
α∈L(T̃ )

fαkα(xα).

1.8.4 Stochastic algorithm for the tree optimization

To describe the stochastic algorithm for tree optimization, it remains to detail how to draw

a new tree T̃ given a current tree T . The tree T̃ is de�ned as T̃ = σm ◦ · · · ◦ σ1(T ), where
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the map σi = σνi,µi permutes two nodes of the tree Ti−1 = σi−1 ◦ · · · ◦ σ1(T ), with T0 := T.

The number of permutations m is �rst drawn according to the distribution

P(m = k) ∝ k−γ1 , k ∈ N∗, (1.18)

with γ1 > 0, which gives a higher probability to low numbers of permutations. Then, given

Ti, σi+1 = σνi+1,µi+1 is de�ned by �rst drawing randomly the node νi+1 in Ti\{D} according
to the distribution

P(νi+1 = α|Ti) ∝ rankP (α;Ti)(f)γ2 , α ∈ Ti \ {D}, (1.19)

with P (α;Ti) the parent of α in Ti and γ2 > 0. This gives a higher probability to select

a node νi+1 with a high parent's rank (note that P (νi+1;Ti) will not be in the next tree

Ti+1). Then, given the �rst node νi+1, we draw the second node µi+1 in Ti according to the

distribution

P(µi+1 = α|Ti, νi+1) ∝

dTi(νi+1, α)−γ3 if α ∩ νi+1 = ∅
0 otherwise

, (1.20)

where γ3 > 0 and

dTi(ν, µ) = rγ
∏

β∈S(T ν,µi )

rβ

is the storage complexity of the full tensor Mγ of order #S(T ν,µi ) + 1 (de�ned in equation

(1.14) with T replaced by Ti) which is computed when changing the representation of the

function f from the tree Ti to the tree σν,µ(Ti). This choice of probability distribution

therefore gives a higher probability to modi�cations of the tree with low computational

complexity. The stochastic algorithm for solving (1.11) is �nally given in Algorithm 5.

Remark 1.8.1. The parameters γ1, γ2, γ3 of the above probability distributions have an

impact on the computational complexity and the ability to try large modi�cations of the

current tree. In practice, we choose γ1 = γ2 = γ3 = 2 in the numerical experiments but the

choice of these parameters should deserve a deeper analysis.

1.9 Conclusion

We presented in this chapter the model class of functions in tree-based tensor format, and

related notions used in Chapter 2 to propose learning algorithms with this format.

The main contribution of this chapter is Algorithm 5 to perform dimension tree adaptation.

This adaptive algorithm is able, by performing random changes in the tree, to reduce the

storage complexity in tree-based tensor format of a given function.

We showed in a motivating example in Section 1.8.1 that this algorithm can have a signi�cant

impact on the complexity of the representation in tree-based tensor format of a function at
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a given accuracy. We also noticed that the tree yielding the smallest storage complexity

can give some information about the structure of the function to represent. As we shall see

with the numerical experiments in Chapter 2, this means that the trees associated with the

obtained approximations in tree-based tensor format can give insights into some structures

of the functions to learn (e.g. block independence in the context of density estimation).

The probability to �nd an optimal tree could be further improved by proposing better prob-

ability distributions over the set of possible trees, possibly based on other de�nitions of the

complexity. Also, a more general algorithm for tree adaptation should allow modi�cations

of the arity of the tree. In particular, it could make possible the transition from a binary

tree to a trivial tree, and by exploiting sparsity in tensor representations, it could create a

bridge between sparse and low-rank tensor approximations.
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Algorithm 5 Tree optimization algorithm for the representation of a given tensor f at
precision ε.

Inputs: initial tree T , representation of the tensor f ∈ T Tr (H) with T -rank r and storage

complexity C(T, r), precision ε, number of random trials N

Outputs: new tree T ? and approximation f? of f in T T ?r? (H) with new T ?-rank r? and

storage complexity C(T ?, r?) ≤ C(T, r)

1: C? ← C(T, r), T ? ← T , f? ← f , T̃ ← T , r̃ ← r, m← 0

2: Σ← ∅, newtree = false

3: for k = 1, . . . , N do

4: mold ← m

5: draw randomly m drawn according to (1.18)

6: if m > mold or newtree then

7: compute an approximation f0 of f by applying successively all permutations in Σ

using Algorithm 4 with precision ε/(m+ #Σ)

8: T0 ← T ?

9: end if

10: for i = 0, . . . ,m do

11: draw σi+1 = σνi+1,µi+1 according to (1.19) and (1.20) (with T replaced by Ti)

12: Ti+1 ← σi+1(Ti)

13: compute an approximation fi+1 of fi by applying the permutation σi+1 using Al-

gorithm 4 with precision ε/(m+ #Σ)

14: end for

15: T̃ ← Tm, f̃ ← fm, r̃ ← rank
T̃

(f̃)

16: if C(T̃ , r̃) < C? then

17: newtree = true

18: T ? ← T̃ , C? ← C(T̃ , r̃), f? ← f̃

19: Σ← Σ ∪ {σ1, . . . , σm} (ordered set)

20: else

21: newtree = false

22: end if

23: end for
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2.1 Introduction

In this chapter, we propose adaptive algorithms for learning with functions in tree-based

tensor format. We begin by introducing the notions of contrast and risk in Section 2.2, then

we propose in Section 2.3 an algorithm to solve the empirical risk minimization problem

with model classes of functions in tree-based tensor format, with given dimension tree and

tree-based rank. Section 2.4 describes the used tools to evaluate the performances of the

approximations and to perform model selection, that can be used when introducing sparsity

in the coe�cients of the representation, as presented in Section 2.5. We then present in

Section 2.6 the main contributions of this chapter: adaptive learning algorithms with tree-

based tensor formats. These algorithms are able to compute, given a training sample, an

approximation in tree-based tensor format T Tr (H) of a function, where both the dimension

tree T and the tree-based rank r are adapted. The performances of the proposed algorithms

are illustrated in Section 2.7 on numerical experiments in two classical contexts: least-

squares regression (supervised learning) and least-squares density estimation (unsupervised

learning).

This chapter is partly based on two articles [33, 34] for the learning with model classes of

functions in tree-based tensor format.

2.2 Contrast function and risk

We introduce a contrast function γ : L0
µ(X )×Z → R, which is so that γ(g, z) measures the

error due to the use of the approximation g for a sample z.

We denote by S = {zi}ni=1 the training sample, consisting of realizations of a random variable

Z with values in Z, de�ned below in the cases of supervised learning and density estimation.

An approximation can be obtained by minimizing the empirical risk R : L0
µ(X ) → R that

writes

Rn(g) =
1

n

n∑
z=1

γ(g, zi)

over a certain subset of functions g (hypothesis set), here the class of functions in tree-based

tensor format. The empirical risk is a statistical estimate of the risk R : L0
µ(X )→ R de�ned

by

R(g) = E(γ(g, Z)).
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In the context of supervised learning, Z = (X,Y ), Z = X × Y, and the aim is to construct

an approximation of Y as a function of X (predictive model), from a set S = {zi}ni=1 of n

realizations of (X,Y ). In least-squares regression, the contrast is taken as

γ(g, (x, y)) = (y − g(x))2, (2.1)

and

R(g) = E((Y − f(X))2) + E((f(X)− g(X))2) = R(f) + ‖f − g‖2,

where ‖ · ‖ is the L2
µ-norm (with µ the probability law of X) and f(X) = E(Y |X) is the

best approximation of Y by a measurable function of X, so that the minimization of the

risk corresponds to the minimization of the approximation error ‖f − g‖2. Other contrast
functions could be considered for other purposes in supervised learning (such as hinge loss

or logistic loss for classi�cation).

In the context of density estimation, Z = X is a random variable that is assumed to have

a density f with respect to some measure µ over X (possibly discrete) that we want to

approximate, Z = X and S = {zi}ni=1 is a set of n realizations of X. Choosing the contrast

function as

γ(g, x) = ‖g‖2 − 2g(x) (2.2)

yields

R(g) = R(f) + ‖f − g‖2,

so that the minimization of R(g) is equivalent to the minimization of the distance (in L2
µ

norm) between g and the density f . Choosing γ(g, z) = − log(g(z)) leads to

R(g) = R(f) +DKL(f‖g),

with DKL(f‖g) the Kullback-Leibler divergence between f and g, and the empirical risk

minimization corresponds to a maximum likelihood estimation.

2.3 Empirical risk minimization

An approximation of f in a tensor format can be obtained by minimizing the empirical risk

Rn(g) over the set of functions

g(x) = Ψ(x)((Cα)α∈T ),

where the (Cα)α∈T ∈×α∈T RKα
are the parameters of the representation of g and Ψ(x) :

×α∈T RKα → R is a multilinear map depending on the chosen tensor format (see Section

1.4). This yields the optimization problem

min
(Cα)α∈T

1

n

n∑
i=1

γ(Ψ(·)((Cα)α∈T ), zi) (2.3)
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over the set of parameters.

For the solution of the optimization problem (2.3), we use an alternating minimization

algorithm which consists in successively solving

min
Cα∈RKα

1

n

n∑
i=1

γ(Ψ(·)((Cβ)β∈T ), zi)

for �xed parameters Cβ , β 6= α. Letting Ψα be the (linear) partial map de�ned by (1.4)

yields the optimization problem

min
Cα∈RKα

1

n

n∑
i=1

γ(Ψα(·)(Cα), zi). (2.4)

The problem is then reduced to a succession of learning problems with linear models. For

standard contrast functions, a closed form solution of (2.4) often exists: for instance, with the

contrast function (2.2), the solution writes, using the orthonormality of the representation

(see Section 1.5):

Cα =
1

n

n∑
i=1

Ψα(xi),

with Ψα de�ned by (1.5). The learning algorithm is described in Algorithm 6, where Step

3 consists in solving (2.4).

Algorithm 6 Learning algorithm for an approximation in a given subset of low-rank tensors.

Inputs: sample S = {zi}ni=1, contrast function γ, tensor format with a multilinear

parametrization Ψ(·)((Cα)α∈T ) and initial values for the parameters {Cα}α∈T
Outputs: approximation g(·) = Ψ(·)((Cα)α∈T )

1: while not converged do

2: for α ∈ T do

3: estimate Cα for �xed parameters Cβ , β 6= α (learning problem with a linear model)

4: end for

5: end while

Regularization (or penalization). The optimization problem (2.3) may be replaced by

min
(Cα)α∈T

1

n

n∑
i=1

γ(Ψ(·)((Cα)α∈T ), zi) +
∑
α∈T

λαΩα(Cα), (2.5)

where λαΩα(Cα) is a regularization (or penalization) term promoting some properties for

the parameter Cα (e.g. sparsity or smoothness of functions associated with the parameter

Cα). Regularization may be required for stability when only a few training samples are

available or for exploiting a prior information on the parameters (with a bayesian point of

view).
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Example 2.3.1. Usual regularization functions Ωα(Cα) for promoting sparsity include the

`0-norm ‖Cα‖0, which is the number of non-zero coe�cients in Cα, or its convex regular-

ization provided by the `1-norm ‖Cα‖1 (see [10]).

When using an alternating minimization algorithm to solve (2.5) (Algorithm 6), the problem

is reduced to the solution of successive learning problems with linear models (Step 3 of the

algorithm)

min
Cα∈RKα

1

n

n∑
i=1

γ(Ψα(·)(Cα), zi) + λαΩα(Cα), (2.6)

for which e�cient algorithms are usually available (for standard contrast functions and

regularization functionals). Also, standard statistical methods such as cross-validation (see

Section 2.4) can be used for the selection of the regularization parameter λα and of the

regularization functional Ωα (possibly depending on other parameters).

2.4 Validation and model selection

We �rst recall the principle of validation methods for the estimation of the risk R(gS) for

a function gS estimated from the sample S = {zi}ni=1 (see e.g. [38]). If V is a sample

independent of S, then

RV (gS) =
1

#V

∑
z∈V

γ(gS , z)

provides an unbiased estimator of the risk R(gS). If S is the only available information,

the risk can be estimated by the hold-out estimator RV (gS\V ), where V ⊂ S is a validation

sample contained in the sample S, and gS\V is the model estimated from the sample S \ V .
Also, by introducing a partition of S into L validation samples V1, . . . , VL, we de�ne the

cross-validation estimator of the risk R(gS) by

RCV (gS) =
1

L

L∑
i=1

RVi(gS\Vi).

The case where L = n, with Vi = {zi}, corresponds to the leave-one-out estimator

Rloo(gS) =
1

n

n∑
i=1

γ(g−i, zi),

with g−i = gS\{zi}. In some cases, cross-validation estimators can be computed e�ciently,

without computing the models gS\Vi for all i.

Example 2.4.1 (Leave-one-out estimator for ordinary least-squares regression). Consider

the case of least-squares regression, with the contrast function (2.1), and consider a linear

model gS(x) = Ψ(x)TaS, with a given Ψ(x) ∈ Rm, and coe�cients aS ∈ Rm obtained

by ordinary least-squares regression, i.e. by minimizing the empirical risk RS(Ψ(·)Ta) =
1
n‖y−Aa‖22 over a ∈ Rm, where y = (yi)

n
i=1 ∈ Rn and A ∈ Rn×m is the matrix whose i-th
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row is Ψ(xi)
T . In this case, the leave-one-out estimator of the risk is

Rloo(gS) =
1

n

n∑
i=1

(
yi − gS(xi)

1− hi

)2

,

where hi is the diagonal term Hii of the matrix H = A(ATA)−1AT . This estimator only

depends on gS and not on the functions g−i, 1 ≤ i ≤ n.
Remark 2.4.2 (Corrected estimators for ordinary least-squares regression). When the sam-

ple size n is small compared to the number of parameters m, several corrected estimators

have been proposed. For the case of ordinary least-squares regression with linear models

described in Example 2.4.1, a corrected estimator has been proposed by [39] in the form

R̃loo(gS) = Rloo(gS)
(

1− m

n

)−1
(

1 +
1

n
trace(G−1Ḡ)

)
,

where Ḡ is the Gram matrix E(Ψ(X)Ψ(X)T ) of Ψ(X) and G = 1
n

∑n
i=1 Ψ(xi)Ψ(xi)

T =
1
nA

TA is the empirical Gram matrix. When n→∞, G converges (almost surely) to Ḡ, so

that trace(G−1Ḡ) converges to m and the correction factor converges to 1.

Example 2.4.3 (Leave-one-out estimator for L2 density estimation). Consider the contrast

function (2.2) and a linear model gS(x) = Ψ(x)TaS, with a given orthonormal basis Ψ(x) ∈
Rm, and coe�cients aS ∈ Rm obtained by risk minimization. The leave-one-out estimator

of the risk can be expressed as

Rloo(gS) =
−n2

(n− 1)2
‖aS‖2 +

2n− 1

n(n− 1)2

n∑
i=1

∑
k∈Kλ

Ψk(xi)
2

=
1

n(n− 1)

m∑
k∈Kλ

 n∑
i=1

Ψi(xi)
2 − n

n− 1

∑
i 6=k

Ψi(xi)Ψi(xk)

 ,
with Kλ the sparsity pattern such that (aS)k = 0 for all k /∈ Kλ (see Sections 1.7 and 2.5).

This is a special case for p = 1 of the result of [40, Prop. 2.1] for the leave-p-out estimator.

Cross-validation estimators can be used for model selection. Suppose that di�erent functions

gλS , λ ∈ Λ, have been estimated from the sample S (e.g. low-rank models with di�erent

bases, di�erent ranks or di�erent trees, see Section 2.6). Denoting byRCV (gλS) the estimator

of the risk for the model gλS , the optimal model with respect to this estimation of the risk

is gλSS with λS such that

RCV (gλSS ) = min
λ∈Λ
RCV (gλS).

2.5 Sparsity exploitation

We here present possible strategies for exploiting sparsity in the parameters Cα of a function

in tree-based format, where Cα = (Cαk )k∈Kα ∈ RKα
, with Kα a �nite set of indices. We

de�ne the support, or pattern, of Cα as support(Cα) = {k ∈ Kα : Cαk 6= 0}. We will �rst
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describe how to select a pattern among a set of candidate patterns for Cα. Then, we will

describe how to determine a set of candidate patterns.

2.5.1 Selection of a pattern from a set of candidate patterns

Let us suppose that we have a collection of candidate patterns Kα
λ , λ ∈ Λ, for the parameter

Cα. At step α of the alternating minimization procedure for the empirical risk minimization

(Step 3 of Algorithm 6), instead of solving (2.4), we compute for all λ ∈ Λ the solution Cα,λ

of

min
Cα∈RKα

1

n

n∑
i=1

γ(Ψα(·)(Cα), zi) subject to support(Cα) ⊂ Kα
λ , (2.7)

which provides a collection of approximations gλ(·) = Ψα(·)(Cα,λ), λ ∈ Λ. Then, cross-

validation methods can be used in order to select a particular solution Cα = Cα,λ̂, with λ̂

minimizing over λ ∈ Λ a certain cross-validation estimator of the risk R(gλ) (see Section

2.4). Usually, the pattern of Cα,λ will coincide with Kα
λ but it may be strictly contained in

Kα
λ .

Remark 2.5.1. An equivalent form of the problem (2.7) is given by

min
Cα

1

n

n∑
i=1

γ(Ψα(·)(Cα), zi) + Ωλ
α(Cα),

where Ωλ
α is the characteristic function of the subset of elements Cα whose support is con-

tained in Kα
λ , i.e. Ωλ

α(Cα) = 0 if support(Cα) ⊂ Kα
λ and Ωλ

α(Cα) = +∞ if support(Cα) 6⊂
Kα
λ . This formulation can be seen as a regularized version of the empirical risk minimization

problem, where λ plays the role of the regularization parameter which can be estimated using

cross-validation methods.

2.5.2 Determination of the set of candidate patterns

Let us now discuss how to propose the set of candidate patternsKα
λ , λ ∈ Λ. In the case where

Cα collects the coe�cients of functions on a hierarchical (or multilevel) basis Φα(xα), the

patterns can be determined by hand as a nested sequence of patterns Kα
0 ⊂ · · · ⊂ Kα

p = Kα,

where Kα
λ is associated with a basis of level λ (e.g. for a polynomial approximation, λ may

be the degree of the polynomial space); see Example 1.7.1. The set of candidate patterns can

also be determined automatically by using a greedy algorithm, such as a matching pursuit

algorithm [41], which provides a sequence of nested patterns Kα
0 , . . . ,K

α
#Kα−1. Another

approach consists in solving (2.6) with a sparsity-inducing penalization for several values of

λ = λα, therefore leading to a collection of solutions gλ. The solutions gλ may be directly

considered as the set of candidate approximations. However, in practice, we extract the

patterns Kα
λ of the di�erent approximations and re-estimate the coe�cients by solving the
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problem (2.7) without regularization. This usually provides estimates with better statisti-

cal properties and allows the use of fast procedures for the estimation of cross-validation

estimators [42].

Example 2.5.2. In supervised learning, when using a square loss and a `1-norm regular-

ization, and assuming (up to a vectorization) that Cα ∈ Rmα, with mα = #Kα, (2.6) is

a LASSO problem for which e�cient algorithms are available, such as the LARS algorithm

[43], which directly provides a set of solutions associated with di�erent patterns (the so-called

regularization path).

2.6 Adaptive approximation in tree-based tensor format

In this section, we present adaptive learning algorithms for the approximation of functions

in tree-based tensor format. First, we present an algorithm with tree-based rank adaptation

for the approximation in tree-based tensor format with a given dimension tree. Then, we

present a strategy combining the tree-based rank adaptation with dimension tree optimiza-

tion (presented in Section 1.8).

2.6.1 Tree-based rank adaptation

Here, we propose a learning algorithm for the approximation in tree-based tensor format

with rank adaptation. The tree T is supposed to be given. This algorithm provides a

sequence of approximations gm ∈ T Trm(H) with increasing T -rank rm = (rmα )α∈T (relatively

to the partial ordering on Nd). The sequence is de�ned as follows. We start by computing

an approximation g1 with T -rank r1 = (1, . . . , 1) using Algorithm 6. At iteration m, given

an approximation gm with T -rank rm, we �rst de�ne the T -rank rm+1 of the next iterate

by

rm+1
α =

rmα + 1 if α ∈ T θm,
rmα if α /∈ T θm,

(2.8)

where T θm is a suitably chosen subset of nodes (see below), and we use Algorithm 6 to

obtain an approximation gm+1 in the set T Trm+1(H) of tensors with �xed tree-based rank

rm+1. Algorithm 7 presents this learning algorithm in a given tree-based tensor format with

rank adaptation, which returns an element of the generated sequence of approximations

selected using an estimation of the generalization error.

The crucial ingredient of Algorithm 7 is the selection of the subset of nodes T θm at Step 3.

A natural idea is to select the nodes α ∈ T associated with the highest truncation errors

min
rankα(g)≤rmα

R(g)−R(f) := ηα(f, rmα )2,

where f is the oracle function. When R(g) − R(f) is the square of the distance in L2
µ-

norm between g and f (for least-squares regression or density estimation in L2
µ), then the
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Algorithm 7 Learning algorithm in a given tree-based tensor format with rank adaptation.

Inputs: sample S = {zi}ni=1, contrast function, dimension tree T and maximal number of

iterations M

Outputs: approximation g in T Tr (H) with T -rank r

1: compute an approximation g1 with T -rank r1 = (1, . . . , 1) using Algorithm 6

2: for m = 1, . . . ,M − 1 do

3: compute T θm with Algorithm 8 and rm+1 de�ned by (2.8)

4: compute an approximation gm+1 in T Trm+1(H) using Algorithm 6

5: end for

6: select m? = arg min1≤m≤M RV (gm), where V is a validation set independent of S, and

return g = gm
?
, with r = rm

?

truncation errors become

ηα(f, rmα )2 = min
rankα(g)≤rmα

‖g − f‖2 =
∑
k>rmα

(σαk (f))2,

where σαk (f) are the α-singular values of f . In practice, these truncation errors are estimated

by η2
α(g̃; rmα ) where g̃ is an approximation obtained by a correction of gm. Algorithm 8

presents the procedure of selection of T θm, and proceeds as follows. We �rst compute an

approximation g̃ with a rank r such that rmα ≤ rα ≤ rmα + 1 for all α ∈ T 1. In practice,

it is done by �rst computing a rank-one correction c of gm, which yields an approximation

gm+ c with T -rank r ≥ rm, and then by using Algorithm 6, with gm+ c as an initialization,

to compute an approximation g̃ with rank r. Then, we compute the α-singular values

Σα(g̃) = {σαi }rαi=1 of g̃ for all α ∈ T \ {D} (see Section 1.6), and de�ne a subset T̂ of

candidate nodes for increasing the ranks as follows:

T̂ = T \ ({D} ∪ {α ∈ L(T ) : rα = #Iα} ∪ {α ∈ T \ {D} : ηα(g̃; rmα ) ≤ ε‖g̃‖}) , (2.9)

which contains all the nodes of T except the root, the leaf nodes α for which rα = #Iα = Nα

(necessary condition for the tree-based rank to be admissible, see [26, Section 2.3]) and

the nodes for which ηα(g̃; rmα ) is smaller than a constant ε (typically machine precision)

multiplied by ‖g̃‖. We then de�ne

T θm = {α ∈ T̂ : ηα(g̃; rmα ) ≥ θmax
β∈T̂

ηβ(g̃; rmβ )}, (2.10)

where θ ∈ [0, 1] is a parameter controlling the number of nodes to be selected.

Note that since rα = rmα + 1 for all α ∈ T̂ , ηα(g̃; rmα ) = σαrα , the minimal α-singular value

of g̃. When θ = 0, T θm = T̂ , which means that the α-rank is increased for every α ∈ T̂ ,

so possibly for every α ∈ T \ {D}, which is not a desired adaptive strategy. When θ = 1,

1An approximation g̃ with higher rank could be computed in order to improve the estimation of the
truncation errors.
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we increase only the ranks associated with nodes α such that σαrα = maxβ∈T̂ σ
β
rβ (usually

a single node). This choice results in a slow increase of the ranks and possibly to non

admissible ranks. To ensure that rm+1 satis�es the necessary conditions of admissibility,

we select θ automatically as the highest value in [0, θ?] such that rm+1 is admissible, where

θ? ∈ [0, 1] is a user-de�ned parameter selected in order to increase su�ciently many ranks

at each iteration. In the following numerical experiments, θ? is chosen equal to 0.8.

Algorithm 8 Computation of the subset of nodes T θm whose rank is increased.

Inputs: sample S = {zi}ni=1, approximation gm ∈ T Trm(H), parameter θ?

Outputs: subset T θm

1: use Algorithm 6 to compute an approximation g̃ with ranks rα ∈ {rmα , rmα + 1}, α ∈ T
2: compute the set of α-singular values Σα(g̃) = {σαi }rαi=1 of g̃ for all α ∈ T
3: compute the subset of candidate nodes T̂ de�ned by (2.9)

4: compute the subset T θm de�ned by (2.10) and the corresponding rank rm+1 de�ned by

(2.8), with θ the highest value in [0, θ?] such that rm+1 satis�es the necessary conditions

of admissibility [26, Section 2.3]

Remark 2.6.1. A correction c in tree-based tensor format of gm ∈ T Trm(H) is obtained by

solving the problem

min
c∈T Tr̃ (H)

Rn(gm + c).

In supervised learning, Algorithm 6 can be directly used to compute c, replacing yk by yk −
gm(xk), k = 1, . . . , n, in the training sample S.

However, this not the case when performing density estimation. The empirical risk mini-

mization problem writes

min
c∈T Tr̃ (H)

‖c‖2 − 2

n

n∑
i=1

c(xi) + 2

∫
X
c(x)gm(x)dµ(x).

It is solved using an alternating minimization algorithm which consists in minimizing al-

ternatively on each parameter C̃α, α ∈ T . For a given α, using the representation c(x) =

〈Ψα(x), C̃α〉α with orthonormal functions {Ψα(x)} depending on the �xed parameters C̃β,

β ∈ T \ {α}, the minimization problem writes

min
C̃α∈RK̃α

‖C̃α‖2α −
2

n

n∑
i=1

〈Ψα(xi), C̃
α〉α + 2

∫
X
〈Ψα(x), C̃α〉αgm(x)dµ(x). (2.11)

The solution of (2.11) is

C̃α =
1

n

n∑
i=1

Ψα(xi)− Sα,

with Sα such that

〈Sα, C̃α〉α =

∫
X
〈Ψα(x), C̃α〉αgm(x)dµ(x),
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that is

Sα =
∑
iν∈Iν
ν∈L(T )

∑
1≤kδ≤r̃mδ
δ/∈S(α)∪{α}

∑
1≤lγ≤rmγ
γ∈T

∏
β/∈L(T )∪{α}

C̃β(kν)ν∈S(β),kβ

∏
β/∈L(T )

Cβ(lν)ν∈S(β),lβ

∏
β∈L(T )

C̃βiβ ,kβC
β
iβ ,lβ

if α ∈ T \ L(T ), and

Sα =
∑
iν∈Iν

ν∈L(T )\{α}

∑
1≤kδ≤r̃mδ
δ∈T\{α}

∑
1≤lγ≤rmγ
γ∈T

∏
β/∈L(T )

C̃β(kν)ν∈S(β),kβ
Cβ(lν)ν∈S(β),lβ

∏
β∈L(T )\{α}

C̃βiβ ,kβC
β
iβ ,lβ

Cαiα,lα

if α ∈ L(T ). In the above expressions, a summation over β /∈ J means over β ∈ T \ J .
In the numerical experiments, we will only consider a rank-one correction c, which means

r̃α = 1 for all α and C̃β = 1 for all β /∈ L(T ).

Remark 2.6.2. In practice, we observe that it is important to provide a good initialization

for the learning algorithm 6 used at Step 4 of Algorithm 7 for the computation of gm+1. We

take as an initialization the truncation Truncate(g̃;T, rm+1) at rank rm+1 of the approxi-

mation g̃ computed at Step 1 of Algorithm 8.

2.6.2 Learning scheme with tree-based rank and dimension tree adapta-

tion

Algorithm 9 describes a global algorithm for the approximation in tree-based tensor format.

It is similar to Algorithm 7, with an additional step of tree adaptation using Algorithm 5

of Chapter 1. The algorithm stops when reaching a maximum number of iterations M , or

when at least one of the following stopping criteria is met:

RV (gm) ≤ εgoalRV (0),

RV (gm) ≥ τover�t min
1≤i≤m−1

RV (gi)

where V is a validation set independent of S. For the recovery of functions in the noiseless

case, εgoal is taken of the order of the machine precision. The second criterion is met once

over�tting occurs.

Remark 2.6.3 (Choice of τover�t). The coe�cient τoverfit should be taken greater or equal

than 1 if the empirical risk min1≤i≤m−1RV (gi) is positive, and less or equal than 1 if it is

negative. Indeed, we want to ensure that the stopping criterion is such that

RV (gm) ≥ τoverfit min
1≤i≤m−1

RV (gi) ≥ min
1≤i≤m−1

RV (gi),

with the parameter τoverfit specifying how much the risk RV (gm) has to be greater than

min1≤i≤m−1RV (gi).

In the following experiments, we choose τover�t = 102 for supervised learning (where the

empirical risk is positive), and τover�t = 10−2 for density estimation (where the empirical

risk can take negative values).
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Algorithm 9 Learning scheme with rank and tree adaptation.

Inputs: sample {zi}ni=1, contrast function, initial tree T

Outputs: new tree T and approximation g in T Tr (H) with T -rank r

1: compute an approximation g1 with T -rank r1 = (1, . . . , 1) using Algorithm 6

2: m← 1

3: while the stopping criteria are not met do

4: compute T θm with Algorithm 8 and corresponding rank rm+1 de�ned by (2.8)

5: compute an approximation gm+1 in T Trm+1(H) using Algorithm 6

6: using Algorithm 5, search for a new tree T̃ to obtain an approximation g̃ in T T̃r̃m+1(H)

of gm+1 with reduced storage complexity

7: if C(T̃ , r̃m+1) < C(T, rm+1) then

8: gm+1 ← g̃

9: compute an approximation ĝ in T T̃r̃m+1(H) of g using Algorithm 6 with initialization

gm+1

10: T ← T̃ , gm+2 ← ĝ, rm+2 ← r̃m+1

11: m← m+ 1

12: end if

13: m← m+ 1

14: end while

15: select mopt = arg min1≤j≤mRV (gj), where V is a validation set independent of S, and

return g = gmopt

2.7 Numerical experiments

This section presents numerical experiments in a statistical learning setting where, for given

samples S = {(zi)}ni=1 of Z, we try to �nd an approximation g of a function f using

tree-based tensor formats. Two frameworks are considered: least-squares regression, where

Z = (X,Y ), and L2 density estimation, where Z = X.

We use Algorithm 9 for the approximation in tree-based tensor format T Tr (H) with adap-

tation of both the T -rank r and the dimension tree T over D = {1, . . . , d}. We exploit

sparsity for the representation of one-dimensional functions in the bases {φνiν}iν∈Iν , ν ∈ D,

or equivalently, in the tensors Cα ∈ RIα×{1,...,rα}, α ∈ L(T ). For the estimation of sparse

approximations, we use the strategy described in Section 2.5, which consists in estimating

a succession of approximations with nested sparsity patterns, and then in selecting the op-

timal approximation based on an estimation of the risk using (possibly corrected) leave-one

out estimators (see Example 2.4.1, Remarks 2.4.2 and 2.4.3).
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2.7.1 Supervised learning

In this section, we illustrate the performance of the proposed algorithms in a supervised

learning framework.

Assumption on Z and contrast function. We assume that Y = f(X) + ε, where

X = (X1, . . . , Xd) has a known probability law µ over X = Rd, where f ∈ L2
µ(X ), and

where the noise ε is a random variable, independent of X, with �nite variance. In all

examples, we consider a least-squares regression setting by choosing a contrast function

γ(g, (x, y)) = (g(x)− y)2.

Approximation spaces. For the spacesHν (ν ∈ D), we choose polynomial spaces Pp(X ν)

of degree p and we use orthonormal polynomial bases {φνiν}iν∈Iν in L2
µν (Xµ), with Iν =

{0, . . . , p}. We exploit sparsity in the leaf tensors (Cα)α∈L(T ) by using a working set strategy.

We use the natural sequence of candidate patterns associated with spaces of polynomials

with increasing degree.

Tensor formats. When using Algorithm 9 with tree-based rank and dimension tree adap-

tation, the starting dimension tree is drawn randomly in the set of trees with a given arity,

chosen equal to 2 (binary trees). We set N = 100 in Algorithm 5, and the leave-one out

estimator of the risk, divided by the empirical second moment of Y (to de�ne a relative

error in the noiseless case), is used as the tolerance ε. We also let the maximum number of

iterations in Algorithm 9 be su�ciently high.

Error measures. We estimate the generalization (L2) error using a test sample Stest of

size 10000, independent of S. The relative test error ε(Stest, g) associated with the function

g and test sample Stest is de�ned as

ε(Stest, g)2 =

∑
(x,y)∈Stest(y − g(x))2∑

(x,y)∈Stest y
2

.

Robustness study. For studying the robustness of the proposed algorithms, we run it

10 times for each example, each run using a di�erent training sample S and a di�erent

test sample Stest, and starting from a tree drawn randomly in the set of trees with a given

arity. This allows us to provide ranges for the obtained quantities of interest (errors and

complexities). We also present an estimation P̂(T is optimal) of the probability of obtaining

an approximation in T Tr (H) with a dimension tree T optimal in a sense speci�ed in each



50 Chapter 2. Learning with tree-based tensor formats

example, obtained by counting, out of the 10 runs, how many times the algorithm returned

an optimal tree.2

2.7.1.1 Anisotropic multivariate function

We consider the following function in dimension d = 6:

f(X) =
1

(10 + 2X1 +X3 + 2X4 −X5)2
(I.i)

where the random variables X = (X1, . . . , X6) are uniform on [−1, 1], and we consider a

noise ε = 0. We choose polynomial spaces Hν = P10(Xν). We use Algorithm 9 to obtain an

approximation of Function (I.i) in T Tr (H), with adapted tree T and tree-based rank r.

The tree T is selected in the family of trees of arity 2, starting from two di�erent families

of trees T 1
σ = {σ(α) : α ∈ T 1} and T 2

σ = {σ(α) : α ∈ T 2}, with σ a permutation of D and

where the trees T 1 and T 2 are represented in Figures 2.1a and 2.1b respectively.

{1} {2}

{3} {4} {5} {6}

(a) Tree T 1.

{1}

{2}

{3}

{4}

{5} {6}

(b) Tree T 2.

Figure 2.1: Two particular dimension trees over D = {1, . . . , 6} yielding two di�erent
families of trees obtained by permutations.

Table 2.1 summarizes the results. We observe that we obtain with high probability a very

accurate approximation with only a small training sample, and a fast decrease of the error

with the training sample size n. We also notice that with very high probability, the algorithm

�nds a tree T containing the node {1, 3, 4, 5} (associated with the only variables on which

Y depends) and almost only increases the ranks associated with the nodes involving the

dimensions 1, 3, 4 and 5. We also notice that, when the training sample size is large

enough, the cross-validation error is a good estimator of the generalization error, enabling

model selection in Step 6 of Algorithm 7 and Step 15 of Algorithm 9, without the need of

an independent test sample.

2Knowing that the number of times the algorithm returns an optimal tree out of 10 trials follows a
binomial distribution of parameters a probability p and the number of trials 10, we can propose a lower
bound of p with con�dence level 1−α by using the Clopper-Pearson con�dence interval. For example, with
a level 1 − α = 0.95, P̂(T is optimal) = 0.9 leads to P(p ≥ 0.55) = 0.95, and P̂(T is optimal) = 1 leads to
P(p ≥ 0.69) = 0.95.
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Tσ n P̂({1, 3, 4, 5} ∈ T ) ε(Stest, g) CV error C(T, r)

T 1
σ

102 90% [2.32 ·10−3, 8.36 ·10−3] [1.08 ·10−4, 1.34 ·10−3] [132, 255]
103 100% [6.93 ·10−6, 4.21 ·10−5] [3.11 ·10−8, 8.49 ·10−7] [407, 1338]
104 100% [3.13 ·10−8, 4.47 ·10−6] [3.64 ·10−9, 1.64 ·10−6] [376, 881]

T 2
σ

102 90% [1.18 ·10−3, 8.23 ·10−3] [3.67 ·10−5, 5.54 ·10−4] [132, 266]
103 90% [2.23 ·10−6, 3.73 ·10−5] [2.24 ·10−8, 8.74 ·10−7] [374, 1182]
104 100% [2.06 ·10−8, 2.06 ·10−6] [1.76 ·10−9, 1.82 ·10−6] [344, 1403]

Table 2.1: Results for Function (I.i) starting from two families of trees T 1
σ and T 2

σ : training
sample size n, estimation of the probability of having {1, 3, 4, 5} ∈ T , and ranges (over
the 10 trials) for the test error, the cross-validation (CV) error estimator and the storage
complexity.

Figure 2.2 presents examples of trees and associated tree-based ranks obtained by the algo-

rithm, starting from a tree of one or the other family of trees. We observe that the algorithm

modi�ed the structure of the starting tree in order to reduce the storage complexity of the

representation by isolating the dimensions 2 and 6 from the other dimensions. Furthermore,

by studying Function (I.i), we notice that the variables X1 and X4 have the same in�uence

on the output of the function, which explains why they appear grouped in the shown trees.

A similar conclusion can be drawn for the variables X3 and X5.

1

1

1

5

5

{1}
5

{4}
5

{3}
5

{5}
5

{6}
1

{2}
1

(a) Starting from T 1
σ .

1

1

1

5

6

{1}
6

{4}
6

{3}
5

{5}
5

{2}
1

{6}
1

(b) Starting from T 2
σ .

Figure 2.2: Examples of trees T obtained using Algorithm 9 on the same training sample of
size 104, starting from a tree of the �rst family (a) or the second family (b). The obtained
α-ranks are indicated at each node and the dimensions associated with the leaf nodes are
displayed in brackets.

Illustration of the behavior of Algorithm 9. Table 2.2 illustrates the behavior of a

single run of Algorithm 9 for the construction of an approximation of Function (I.i) using

a training sample of size n = 10000 and starting from the tree 2.3a. The trees returned by

the algorithm at each iteration are displayed in Figure 2.3. We observe that the algorithm

presents a fast convergence and yields a very accurate approximation after 21 iterations

(and 9 adaptations of the tree).



52 Chapter 2. Learning with tree-based tensor formats

m Tree T Tree-based rank rm ε(Stest, g) C(T, rm)

1 Fig. 2.3a (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4.88 · 10−2 71

2
Fig. 2.3b

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4.88 · 10−2 71
3 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4.88 · 10−2 71

4
Fig. 2.3c

(1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1) 3.81 · 10−2 96
5 (1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1) 3.81 · 10−2 96

6
Fig. 2.3d

(1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1) 1.95 · 10−3 132
7 (1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1) 1.95 · 10−3 132

8
Fig. 2.3e

(1, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1) 8.50 · 10−4 174
9 (1, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1) 8.49 · 10−4 174
10 (1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1) 6.53 · 10−5 219

11
Fig. 2.3f

(1, 3, 3, 3, 1, 3, 3, 1, 3, 3, 1) 5.88 · 10−5 227
12 (1, 3, 3, 3, 1, 3, 3, 1, 3, 3, 1) 6.08 · 10−5 227

13
Fig. 2.3g

(1, 4, 1, 1, 4, 3, 4, 1, 4, 3, 1) 1.86 · 10−5 290
14 (1, 4, 1, 1, 4, 3, 4, 1, 4, 3, 1) 1.86 · 10−5 290
15 (1, 4, 1, 1, 4, 4, 4, 1, 4, 4, 1) 2.05 · 10−6 344

16
Fig. 2.3h

(1, 5, 1, 1, 4, 4, 4, 1, 4, 4, 1) 1.56 · 10−6 376
17 (1, 5, 1, 1, 4, 4, 4, 1, 4, 4, 1) 1.54 · 10−6 376

18
Fig. 2.3i

(1, 5, 1, 1, 4, 4, 5, 1, 5, 4, 1) 5.03 · 10−7 438
19 (1, 5, 1, 1, 4, 4, 5, 1, 5, 4, 1) 4.59 · 10−7 438
20 (1, 5, 1, 1, 5, 5, 5, 1, 5, 5, 1) 6.71 · 10−8 519

21 Fig. 2.3j (1, 5, 1, 1, 5, 5, 5, 1, 5, 5, 1) 4.88 · 10−8 519

Table 2.2: Behavior of Algorithm 9 for the approximation of Function (I.i), with n = 10000
and starting from the dimension tree T 1

σ of Figure 2.3a. The node numbers can be seen for
each tree in Figure 2.3.

2.7.1.2 Sum of bivariate functions

We here consider a sum of bivariate functions

f(X) = h(X1, X2) + h(X3, X4) + · · ·+ h(Xd−1, Xd), (I.ii)

with h(Xν−1, Xν) =
∑m

i=0X
i
ν−1X

i
ν and where the random variables Xν are independent and

uniform on [−1, 1]. The problem addressed here is the recovery of the function using few

samples and using Algorithm 9 with rank and tree adaptation. We choose d = 10 andm = 3

and we consider H =
⊗d

ν=1 P5(X ν), so that f ∈ H (no discretization errors). Figures 2.4a

and 2.4b present the tree-based ranks and storage complexity for the exact representation

of the function using two di�erent dimension trees T 1 (balanced tree) and T 2 (linear tree).

We observe that the function can be represented in both formats with a moderate storage

complexity. When running the algorithm with tree adaptation, the tree T is selected in the

family of trees of arity 2, starting from two di�erent families of trees T 1
σ = {σ(α) : α ∈ T 1}

and T 2
σ = {σ(α) : α ∈ T 2}, with σ a permutation of D.
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(j) m = 21.

Figure 2.3: Dimension trees associated with the iteration number m in Table 2.2, with each
node numbered. The singletons {1}, {2}, {3}, {4}, {5}, {6} correspond to the leaf nodes
numbered 7, 11, 10, 9, 6, 8 respectively.

Given the structure of the function (I.ii), a tree T will be said to be optimal if {k, k+1} ∈ T
for all odd k ∈ {1, . . . , d− 1}. As we will see below, this optimal tree is recovered with high

probability by the proposed algorithm when large enough training sets are used.

Illustration in the noiseless case. Table 2.3 summarizes the obtained results in the

noiseless case ε = 0. We �rst observe that with a training sample large enough, with

high probability, the algorithm is able to recover the function f at machine precision with

an optimal tree, this probability being higher when we use the family of balanced trees

rather than the family of linear trees. For n = 104, all the obtained approximations use an

optimal tree, which can be shown to lead to the smallest storage complexity for an exact

representation of the function f .

We also notice the importance of the tree adaptation: the highest obtained errors correspond

to non-optimal trees, whereas the machine precision errors are obtained with optimal trees.
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(a) Tree T 1, storage complexity of 428.
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(b) Tree T 2, storage complexity of 560.

Figure 2.4: Exact representations of Function (I.ii) using two di�erent dimension trees.
The dimensions associated with the leaf nodes are displayed in brackets and the α-ranks
are indicated at each node.

Tσ n P̂(T is optimal) ε(Stest, g) CV error C(T, r)

T 1
σ

5 · 102 50% [4.23 ·10−15, 1.80 ·10−1] [7.75 ·10−16, 1.64 ·10−1] [ 84, 921]
103 100% [6.64·10−16, 9.60·10−15] [5.91·10−16, 1.84·10−15] [428, 673]
104 100% [5.34·10−16, 1.18·10−15] [5.24·10−16, 1.18·10−15] [428, 428]

T 2
σ

5 · 102 70% [5.83 ·10−15, 1.94 ·10−1] [8.87 ·10−16, 1.88 ·10−1] [69, 1114]
103 90% [7.72 ·10−16, 2.43 ·10−2] [6.61 ·10−16, 1.87 ·10−2] [357, 515]
104 100% [5.59·10−16, 1.74·10−15] [5.55·10−16, 1.75·10−15] [428, 428]

Table 2.3: Results for Function (I.ii): training sample size n, starting from two families of
trees T 1

σ and T 2
σ , estimation of the probability of obtaining an optimal tree and ranges (over

the 10 trials) for the test error, the cross-validation (CV) error estimator and the storage
complexity.

Table 2.4 shows the in�uence of the tree adaptation for a training sample size of n = 1000.

We notice that the tree adaptation enables the recovery of Function (I.ii), whereas without

tree adaptation, the obtained error is high, not going below 10−3. Even if there exists an

exact representation of the function f whatever the chosen tree, this example shows that

the tree adaptation is essential when only a few samples are available.

Illustration in the noisy case. We now consider a noisy case Y = f(X) + ε where ε ∼
N (0, ζ2) is independent of X, and a training sample S = {(xi, yi)}ni=1 with yi = f(xi) + εi,

where the εi are i.i.d. realizations of ε.

Table 2.5 shows the obtained results for di�erent training sample sizes and standard devia-

tions of the noise. We observe that, except with the smallest sample size and largest noise

standard deviation, the algorithm is able to recover with high probability an optimal tree
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Tσ Tree adaptation ε(Stest, g) CV error C(T, r)

T 1
σ

Yes [6.64·10−16, 9.60·10−15] [5.91·10−16, 1.84·10−15] [428, 673]
No [9.31 · 10−3, 1.25 · 10−1] [4.68 · 10−3, 1.13 · 10−1] [184, 786]

T 2
σ

Yes [7.72 ·10−16, 2.43 ·10−2] [6.61 ·10−16, 1.87 ·10−2] [357, 515]
No [9.89 · 10−3, 9.69 · 10−2] [4.77 · 10−3, 8.55 · 10−2] [221, 728]

Table 2.4: Results for Function (I.ii) with n = 1000, with and without tree adaptation and
starting from the tree T 1

σ or T 2
σ with a random initial permutation σ: ranges (over the 10

trials) for the test error, the cross-validation (CV) error and the storage complexity.

grouping consecutive input variables. We also notice that the cross-validation error is not

always a good estimator of the generalization error for noisy observations. This can be an

issue for model selection: at the last step of Algorithm 9, the selected model is the one lead-

ing to the smallest risk, estimated using a validation set V independent of the training set

S. In many practical cases, one does not have access to a validation set, and must then rely

on other estimators of the generalization error, such as a cross-validation estimator. Hence,

the model selected using a cross-validation estimator might not be the one minimizing the

generalization error.

n ζ P̂(T is optimal) ε(Stest, g) CV error C(T, r)

5 · 102
10−1 50% [3.26·10−2, 9.78·10−2] [2.30·10−2, 9.06·10−2] [142, 271]
10−2 80% [3.64·10−3, 1.35·10−2] [1.35·10−3, 6.25·10−3] [298, 518]
10−3 80% [1.27·10−4, 1.52·10−1] [1.34·10−4, 1.16·10−1] [114, 515]

103
10−1 30% [1.00·10−2, 1.23·10−1] [1.65·10−2, 9.43·10−2] [117, 399]
10−2 80% [7.52·10−4, 6.19·10−3] [1.55·10−3, 3.75·10−3] [428, 546]
10−3 100% [7.63·10−5, 1.04·10−4] [1.62·10−4, 1.73·10−4] [428, 468]

104
10−1 90% [2.17·10−3, 1.65·10−2] [1.70·10−2, 1.90·10−2] [282, 631]
10−2 90% [2.08·10−4, 2.31·10−4] [1.71·10−3, 1.79·10−3] [428, 527]
10−3 100% [2.09·10−5, 2.40·10−5] [1.71·10−4, 1.79·10−4] [428, 528]

Table 2.5: Results for Function (I.ii) in the noisy case: training sample size n, standard
deviation of the noise, estimation of the probability of obtaining an optimal tree and ranges
(over the 10 trials) for the test error, the cross-validation (CV) error estimator and the
storage complexity.

We recall that the risk writes R(g) = R(f) + ‖f − g‖2, with R(f) = E((Y − f(X))2) =

E(ε2) = ζ2. Then R(g) is the sum of the squared approximation error ‖f − g‖2 and of

the variance of the noise. Table 2.6 presents, for di�erent values of n and ζ, the ranges

(over the 10 trials) for the estimated squared approximation error de�ned by ‖f − g‖2Stest =
1

#Stest

∑
(x,y)∈Stest(f(x) − g(x))2, with a sample Stest independent of S. We note that the

algorithm is robust with respect to noise and yields (with high probability) an approxi-

mation error which is below the noise level, and we clearly observe (as expected) that the

approximation error decreases with n, whatever the noise level.
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n ζ2 ‖f − g‖2Stest

5 · 102
10−2 [3.40 · 10−2, 3.09 · 10−1]
10−4 [4.29 · 10−4, 5.93 · 10−3]
10−6 [5.23 · 10−7, 7.44 · 10−1]

103
10−2 [3.23 · 10−3, 4.89 · 10−1]
10−4 [1.81 · 10−5, 1.23 · 10−3]
10−6 [1.87 · 10−7, 3.50 · 10−7]

104
10−2 [1.52 · 10−4, 8.77 · 10−3]
10−4 [1.38 · 10−6, 1.72 · 10−6]
10−6 [1.42 · 10−8, 1.85 · 10−8]

Table 2.6: Results for Function (I.ii) in the noisy case: training sample size n, variance of
the noise and ranges (over the 10 trials) for the estimated squared approximation error.

2.7.1.3 Function of a sum of bivariate functions

We here consider the approximation of the function

f(X) = log
(

1 + (h(X1, X2) + · · ·+ h(Xd−1, Xd))
2
)

(I.iii)

where d = 10, the Xi are independent and uniform on [−1, 1], we consider the noiseless

case ε = 0 and the function h is de�ned in Section 2.7.1.2. We use approximation spaces

Hν = P10(X ν) and Algorithm 9, with an adaptive selection of the tree T in the family of

trees of arity 2, each run starting from two di�erent families of trees T 1
σ = {σ(α) : α ∈ T 1}

and T 2
σ = {σ(α) : α ∈ T 2}, with σ a permutation of D and where T 1 and T 2 are visible in

Figure 2.4.

Table 2.7 shows that with high probability, the algorithm yields a very accurate approxima-

tion with a small sample size and that the accuracy increases with the sample size. Also, we

observe that the algorithm yields the expected optimal tree (as de�ned in Section 2.7.1.2)

with high probability. Decreasing further the error would require an increase of the sample

size and of the degree of the polynomial spaces.

Tσ n P̂(T is optimal) ε(Stest, v) CV error C(T, r)

T 1
σ

5 · 102 80% [4.19·10−3, 5.57·10−2] [2.15·10−3, 5.00·10−2] [219, 573]
103 100% [8.77·10−5, 2.04·10−2] [8.79·10−6, 1.53·10−2] [277, 1417]
104 90% [1.11·10−5, 1.99·10−2] [6.50·10−6, 1.68·10−2] [277, 1834]

T 2
σ

5 · 102 70% [1.01·10−3, 7.09·10−2] [1.00·10−4, 5.02·10−2] [211, 1289]
103 90% [8.34·10−5, 5.29·10−2] [1.23·10−5, 4.87·10−2] [277, 1566]
104 100% [1.15·10−5, 1.98·10−2] [8.65·10−6, 1.64·10−2] [277, 1290]

Table 2.7: Results for Function (I.iii): training sample size n, estimation of the probability
of obtaining an optimal tree and ranges (over the 10 trials) for the test error, the cross-
validation (CV) error estimator and the storage complexity.
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2.7.1.4 Another sum of bivariate functions

We consider another sum of bivariate functions

f(X) = h(X1, X2) + h(X2, X3) + h(X3, X4) + · · ·+ h(Xd−1, Xd), (I.iv)

where d = 16, ε = 0, the Xi are independent and uniform on [−1, 1] and the function h is

de�ned in Section 2.7.1.2. We consider H =
⊗d

ν=1 P5(X ν) so that f ∈ H (no discretization

errors). For such a function, the linear tree T 1 = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d}} seems

to be a natural choice, although it is not obvious that it is the optimal one. The algorithm 9

is run several times starting from T 1 or random permutations T 1
σ of T 1. Table 2.8 shows the

obtained results with a training sample size n = 104, with or without tree adaptation. It �rst

illustrates that, without tree adaptation, choosing a linear tree T 1 leads to a recovery of the

function whereas choosing a tree T 1
σ with σ randomly drawn leads to a poor approximation

of the function. However, with tree adaptation, the algorithm recovers the function at

machine precision, whatever the starting permutation σ (over the 10 trials).

Figure 2.5 shows examples of �nal trees obtained when running Algorithm 9, starting from

two di�erent random permutations of T 1. We notice that the algorithm returns non obvious

trees, selected in the family of trees of arity 2, whose nodes contain consecutive variables.

Tσ Tree adaptation ε(Stest, v) CV error C(T, r)

T 1
id

false [2.28 · 10−15, 1.98 · 10−14] [1.67 · 10−15, 9.87 · 10−15] [1760, 3131]
true [3.79 · 10−15, 2.09 · 10−14] [2.30 · 10−15, 1.26 · 10−14] [1800, 2974]

T 1
σ

false [4.48 · 10−03, 5.06 · 10−03] [2.49 · 10−03, 3.14 · 10−03] [4779, 5490]
true [4.81 · 10−15, 3.35 · 10−14] [2.88 · 10−15, 1.59 · 10−14] [1791, 2428]

Table 2.8: Results for Function (I.iv) for a training sample size n = 104, with and without
tree adaptation, and starting from T 1 = T 1

id or random permutations T 1
σ of T 1: ranges (over

the 10 trials) for the test error, the cross-validation (CV) error estimator and the storage
complexity.

2.7.1.5 Compositions of functions

We consider the approximation of

f(X) = h(h(h(X1, X2), h(X3, X4)), h(h(X5, X6), h(X7, X8))), (I.v)

where h is a bivariate function and where the d = 8 random variables X1, . . . , X8 are

independent and uniform on [−1, 1]. The noise level is set to ε = 0. The function f is

obtained by tree-structured compositions of the function h, illustrated in Figure 2.6, where

each interior node of the tree corresponds to the application of h to the outputs of its

children nodes.
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Figure 2.5: Examples of �nal trees obtained when running Algorithm 9 with a training
sample size n = 104, starting from two di�erent random permutations of T 1.

Here we choose h(t, s) = 9−1(2 + ts)2. Therefore, f is a polynomial function of degree 8.

Then, we use approximation spaces Hν = P8(Xν), so that f belongs to H and could (in

principle) be recovered exactly for any choice of tree with a su�ciently high rank.

h

h

h

X1 X2

h

X3 X4

h

h

X5 X6

h

X7 X8

Figure 2.6: Schematic representation of Function (I.v).

There is a natural dimension tree T 1 associated with this function, illustrated in Figure

2.7a. Using this tree T 1, the function can be exactly represented in the format T T 1

r (H)

with a tree-based rank r = (rα)α∈T 1 such that rα = 1 + 2level(α) for α 6= D, and a storage

complexity of 2427. Although the function can be exactly represented with any choice

of tree, the ranks could be dramatically high for bad choices of tree. For example, when

considering the tree T 1
σ obtained by applying the permutation σ = (8, 1, 6, 4, 7, 2, 3, 5) to T 1,

we obtain a representation with ranks more than 1000 (at level 1) and a storage complexity

greater than 9 · 106 for a representation with relative precision 10−14.

For the application of Algorithm 9 with tree adaptation, we start from trees belonging to

two families T 1
σ and T 2

σ , respectively obtained by permutations of the trees T 1 and T 2 shown

in Figures 2.7a and 2.7b. Each run of the algorithm starts with a random permutation σ.

Recall that di�erent trees Tσ may yield the same tree-based format, if they coincide as

elements of 22D . For example, for T = T 1
σ with σ = (7, 8, 6, 5, 4, 3, 1, 2), T = T 1. Then, we
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will say the algorithm �nds an optimal tree if it yields a permutation such that T = T 1 as

elements of 22D .

{1} {2} {3} {4} {5} {6} {7} {8}

(a) Tree T 1.

{8}
{7}

{6}
{5}

{4}
{3}

{2} {1}

(b) Tree T 2.

Figure 2.7: Two di�erent dimension trees T 1 and T 2.

Table 2.9 summarizes the obtained results. We observe that the algorithm is able to recover

with high probability an optimal tree, even when starting from the tree T 2
σ that does not

coincide with the natural tree structure of the function f .

With high probability, the algorithm yields an approximation with very low error, even with

a small sample size n. With a training sample large enough, the algorithm is able to recover

the function f at machine precision. Figure 2.8 shows the α-ranks of an approximation

computed by the algorithm with n = 105 with a generalization error at machine precision.

Tσ n P̂(T = T 1) ε(Stest, v) CV error C(T, r)

T 1
σ

103 90% [1.55 · 10−05, 1.32 · 10−04] [8.46 · 10−07, 3.38 · 10−05] [529, 1121]
104 100% [1.04 · 10−08, 6.80 · 10−06] [4.34 · 10−11, 4.91 · 10−06] [593, 2688]
105 100% [3.29 · 10−15, 1.80 · 10−04] [1.74 · 10−15, 1.96 · 10−04] [342, 2800]

T 2
σ

103 90% [1.75 · 10−05, 1.75 · 10−04] [1.01 · 10−06, 8.71 · 10−05] [360, 1062]
104 90% [2.15 · 10−08, 4.10 · 10−03] [1.21 · 10−09, 4.26 · 10−03] [185, 2741]
105 100% [4.67 · 10−15, 8.92 · 10−03] [2.29 · 10−15, 6.83 · 10−03] [163, 2594]

Table 2.9: Results for Function (I.v): training sample size n, estimation of the probability
of obtaining T 1 and ranges (over the 10 trials) for the test error, the cross-validation (CV)
error estimator and the storage complexity.

Illustration of the behavior of algorithm 9. Table 2.10 illustrates the behavior of

Algorithm 9 when using a training sample of size n = 105 and starting from a tree T 2
σ

shown in Figure 2.9a. The adapted trees at each iteration m are displayed in Figure 2.9.

We observe that the algorithm recovers the function with a high accuracy after 25 iterations

and 7 adaptations of the tree.
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Figure 2.8: α-ranks and dimensions associated with leaf nodes of an approximation of
Function (I.v) obtained using Algorithm 9 with n = 105, starting from a tree T 2

σ . The
obtained tree is T 1.

2.7.2 Density estimation

In this section, we illustrate the performance of the proposed algorithm for learning proba-

bility distributions using tree-based formats. Note that we do not normalize the obtained

approximations nor impose their nonnegativity, so that they a priori do not de�ne proba-

bility density functions.

Contrast function and reference measure. In all examples, we consider the L2
µ con-

trast function γ(g, x) = ‖g‖2−2g(x). The reference measure µ is always a product measure

and X = X1 × · · · × Xd. For examples involving discrete random variables, we consider

µ =
∑

x∈X δx, so that L2
µ(X ) is identi�ed with `2(X ). For continuous random variables,

µ is taken as the Lebesgue measure or a uniform probability measure on X when X is a

compact set.

Approximation spaces. In the case of discrete random variables with a �nite set X , we
let H = L2

µ(X ) so that there is no discretization error, and we use a canonical basis (see

Remark 1.2.2). In the case of continuous random variables, for each dimension ν = 1, . . . , d,

we introduce a �nite dimensional space Hν in L2
µν (Xν) and use orthonormal bases of Hν

(e.g. polynomials, wavelets). We exploit sparsity in the leaf tensors (Cα)α∈L(T ) by using

a working set strategy. For polynomial bases, we use the natural sequence of candidate

patterns associated with spaces of polynomials with increasing degree.

Tensor formats. We only consider tensor formats associated with binary dimension par-

tition trees. We use Algorithm 9 with rank and tree adaptation, always starting with a

linear dimension tree (such as in Figure 3c) where the dimensions ν = 1, . . . , d are randomly

assigned to the leaf nodes. We set ε = 10−6 and N = 1000 in Algorithm 5, and let the

maximum number of iterations in Algorithm 9 be su�ciently high.
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m Tree T Tree-based rank rm ε(Stest, v) C(T, rm)

1 Fig. 2.9a (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 3.38 · 10−2 79

2
Fig. 2.9b

(1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) 2.95 · 10−2 100
3 (1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) 2.95 · 10−2 100

4
Fig. 2.9c

(1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1) 2.45 · 10−2 121
5 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1) 2.45 · 10−2 121

6
Fig. 2.9d

(1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1) 1.85 · 10−2 142
7 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1) 1.85 · 10−2 142
8 (1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2) 8.97 · 10−3 163

9
Fig. 2.9e

(1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 9.54 · 10−3 188
10 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.89 · 10−3 188

11
Fig. 2.9f

(1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 9.47 · 10−3 188
12 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.87 · 10−3 188

13
Fig. 2.9g

(1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 5.22 · 10−3 188
14 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 3.97 · 10−3 188
15 (1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3) 1.55 · 10−4 308

16

Fig. 2.9h

(1, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3) 1.18 · 10−4 364
17 (1, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3) 1.18 · 10−4 364
18 (1, 3, 4, 3, 4, 2, 4, 3, 4, 2, 4, 3, 4, 4, 4) 6.65 · 10−6 520
19 (1, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 5, 5) 1.19 · 10−6 723
20 (1, 4, 5, 4, 5, 3, 5, 4, 5, 3, 5, 4, 5, 5, 5) 1.72 · 10−7 865
21 (1, 4, 6, 4, 6, 3, 6, 4, 6, 3, 6, 4, 6, 6, 6) 1.47 · 10−8 1113
22 (1, 5, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 6, 6) 7.02 · 10−9 1311
23 (1, 5, 7, 5, 7, 3, 7, 5, 7, 3, 7, 5, 7, 7, 7) 1.27 · 10−10 1643
24 (1, 5, 8, 5, 8, 3, 8, 5, 8, 3, 8, 5, 8, 8, 8) 3.87 · 10−12 2015
25 (1, 5, 9, 5, 9, 3, 9, 5, 9, 3, 9, 5, 9, 9, 9) 2.95 · 10−14 2427

Table 2.10: Behavior of Algorithm 9 for the approximation of Function (I.v), with n = 105

and an initial dimension tree shown in Figure 2.9a.

Error measures. The quality of the obtained approximation g is assessed by estimating

the risk by

RStest(g) = ‖g‖2 − 2

#Stest

∑
x∈Stest

g(x),

with Stest a sample of X, independent of S, as well as, when f can be evaluated, by

computing the relative error

ε(Sε, g) =

(∑
x∈Sε(f(x)− g(x))2∑

x∈Sε(f(x))2

)1/2

,

with Sε a sample from µ if µ is a probability measure, or from 1
µ(X )µ when µ is a �nite

measure (e.g. when µ is the Lebesgue measure over a compact set X ). In the case of discrete

random variables, a function f in RX is identi�ed with a multi-dimensional array, and Sε

corresponds to a sample of the entries of the array.
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2.7.2.1 Truncated multivariate normal distribution

We �rst consider the estimation of the density of a random vector X = (X1, . . . , X6) follow-

ing a truncated normal distribution with zero mean and covariance matrix Σ. Its support

is X = ×6
ν=1[−5σν , 5σν ], with σ2

ν = Σνν . The reference measure µ is the Lebesgue measure

on X and the density to approximate is such that

f(x) ∝ exp

(
−1

2
xTΣ−1x

)
1x∈X . (II.i)

We use in each dimension ν polynomials of maximal degree 50, orthonormal in L2(Xν).

Groups of independent random variables. We consider the following covariance ma-

trix

Σ =



2 0 0.5 1 0 0.5

0 1 0 0 0.5 0

0.5 0 2 0 0 1

1 0 0 3 0 0

0 0.5 0 0 1 0

0.5 0 1 0 0 2


. (Σ1)

Up to a permutation (3, 6, 1, 4, 2, 5) of its rows and columns, it can be written

2 1 0.5 0 0 0

1 2 0.5 0 0 0

0.5 0.5 2 1 0 0

0 0 1 3 0 0

0 0 0 0 1 0.5

0 0 0 0 0.5 1


so that one can see that the random variables (X1, X3, X4, X6) and (X2, X5) are indepen-

dent, as well as X4 and (X3, X6). Therefore, the density has the form

f(x) = f1,3,4,6(x1, x3, x4, x6)f2,5(x2, x5) = f4|1(x4|x1)f1,3,6(x1, x3, x6)f2,5(x2, x5).

Then one can then expect that, when approximating the density ofX in tree-based format, a

suitable dimension tree T would contain the nodes {2, 5} and {1, 3, 4, 6}, since rank{2,5}(f) =

rank{1,3,4,6}(f) = 1. If we further assume that f1,3,6 has low ranks, it would contain the nodes

{3, 6} and {1, 4}, since rank{3,6}(f) = rank{3,6}(f1,3,6) and rank{1,4}(f) = rank{1,4}(f1,3,6)

(see a possible tree in Figure 2.10).

Table 2.11 shows the results obtained with the learning algorithm with di�erent sizes of

training set. We notice that, as expected, RStest(g) and ε(Sε, g) decrease with n. In Figure

2.11, we observe the obtained tree (associated with the smallest error over 10 trials) for
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di�erent training sample sizes n. For n ≥ 104, the algorithm yields a tree with the expected

nodes.

n RStest(g) · 10−2 ε(Sε, g) T C(T, r)

102 [−5.50, 119] [0.53, 4.06] Fig. 2.11a [311, 311]
103 [−7.29,−5.93] [0.22, 0.47] Fig. 2.11b [311, 637]
104 [−7.60,−6.85] [0.11, 0.33] Fig. 2.11c [521, 911]
105 [−7.68,−7.66] [0.04, 0.07] Fig. 2.11c [911, 1213]
106 [−7.70,−7.69] [0.01, 0.01] Fig. 2.11c [1283, 1546]

Table 2.11: Ranges over 10 trials of the obtained results for the learning of (II.i) with
covariance matrix (Σ1), with di�erent training sample sizes n.

Band-diagonal covariance matrix. We now consider the following covariance matrix

Σ =



2 1/5 0 0 1/4 0

1/5 2 0 0 0 0

0 0 2 0 1/3 1/2

0 0 0 2 0 1

1/4 0 1/3 0 2 0

0 0 1/2 1 0 2


(Σ2)

which is, after applying the permutation σ = (4, 6, 3, 5, 1, 2), a band diagonal matrix

2 1 0 0 0 0

1 2 1/2 0 0 0

0 1/2 2 1/3 0 0

0 0 1/3 2 1/4 0

0 0 0 1/4 2 1/5

0 0 0 0 1/5 2


.

The vector (Xσ(1), . . . , Xσ(6)) therefore represents a Markov process and the density f has

the following form

f(x) = f2|1(x2|x1)f1|5(x1|x5)f5|3(x5|x3)f3|6(x3|x6)f6|4(x6|x4).

Given this structure, one might expect the density of X to be e�ciently and accurately

represented in tree-based tensor format with one of the linear trees of Figure 2.12 or any

tree containing the same internal nodes.

Table 2.12 shows the results obtained when using the learning algorithm to approximate

the density of X. Figure 2.13 shows the obtained trees (associated with the smallest error

over 10 trials) for di�erent sizes of training sets. We observe that except for n = 102, the

algorithm yields trees that contain most of the expected internal nodes.
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n RStest(g) · 10−2 ε(Sε, g) T C(T, r)

102 [−4.21, 1.91] [0.58, 1.11] Fig. 2.13a [311, 311]
103 [−5.83,−5.13] [0.28, 0.45] Fig. 2.13b [311, 579]
104 [−6.26,−6.01] [0.09, 0.22] Fig. 2.13c [416, 837]
105 [−6.30,−6.29] [0.03, 0.05] Fig. 2.13d [835, 1083]
106 [−6.31,−6.31] [0.01, 0.02] Fig. 2.13d [1008, 1291]

Table 2.12: Obtained results for the learning of (II.i) with covariance matrix (Σ2), with
di�erent training sample sizes n.

2.7.2.2 Markov chain

In this section, we study a discrete time discrete state space Markov process. We have that

X = (X1, . . . , X8), where each random variable Xν takes values in Xν = {1, . . . , 5}. The

distribution of X writes

f(i1, . . . , i8) = P(X1 = i1, . . . , X8 = i8) = fd|d−1(i8|i7) · · · f2|1(i2|i1)f1(i1) (II.ii)

with f1(i1) = 1/5 for all i1 ∈ X1, and for ν = 1, . . . , d − 1, fν+1|ν(iν+1|iν) = Piν ,iν+1 the

(iν , iν+1) component of a randomly chosen rank-2 transition matrix P , independent of the

dimension ν.

As shown in Example A.3.1 of Appendix A, that studies the same function, the choice of

the tree has a great impact on the storage complexity of the representation of the Markov

process. We then expect the adaptive learning algorithm to compute an approximation of

f with a tree containing the same internal nodes as in Figure A.1a. Table 2.13 shows the

ranges over 10 trials of the obtained results. One can notice that, even though the algorithm

did not recover an optimal tree for the representation of the Markov chain, it is able, with a

sample size high enough, to represent it with dimension trees including most of the internal

nodes yielding the smallest α-ranks, limiting the complexity of the representation.

n RStest(g) ε(Sε, g) T C(T, r)

103 [−2.22,−1.25] [0.49, 0.75] Fig. 2.14a [47, 109]
104 [−2.85,−2.04] [0.16, 0.55] Fig. 2.14b [72, 298]
105 [−2.93,−2.91] [0.04, 0.08] Fig. 2.14c [294, 519]
106 [−2.93,−2.93] [0.01, 0.02] Fig. 2.14d [384, 1010]

Table 2.13: Ranges over 10 trials of the obtained results for the learning of (II.ii), with
di�erent training sample sizes n.

2.7.2.3 Graphical model with discrete random variables

We consider the graphical model represented in Figure 2.15, in dimension d = 10. The

random variable Xν takes values in Xν = {1, 2, 3, 4, 5}, 1 ≤ ν ≤ d, so that f(i) = P(X = i)
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is de�ned by

f(i1, . . . , i10) = f1,2,3,7(i1, i2, i3, i7)f3,4,5,6(i3, i4, i5, i6)f4,8(i4, i8)f8,9,10(i8, i9, i10). (II.iii)

The tensors fα are randomly selected under the constraint that any of their matricization

has a rank equal to 3.

As shown in the motivating example of Section 1.8.1 of Chapter 1 for the tree adaptation,

representing this function in tree-based tensor format with the binary tree in Figure 1.4

yields a storage complexity of 117027, whereas using the tree in Figure 1.5, which exhibits

the dependence structure of the graphical model, leads to a representation with a stor-

age complexity of 675. We then expect our algorithms to be able to learn f with a tree

representing its dependence structure.

Table 2.14 shows the ranges over 10 trials of the obtained results. We observe that, even

though the obtained errors are high, the algorithm is able to provide approximations of f

with a tree that exhibits the dependence structure of the graphical model (for instance by

containing the nodes {1, 2, 3, 7}, {4, 8} or {4, 8, 9, 10}, which are cliques of the graph of f).

n RStest(g) ε(Sε, g) T C(T, r)

103 [−1.08,−1.04] [0.53, 0.55] Fig. 2.16a [59, 99]
104 [−1.36,−1.13] [0.30, 0.49] Fig. 2.16b [72, 421]
105 [−1.48,−1.43] [0.10, 0.20] Fig. 2.16c [496, 885]
106 [−1.49,−1.42] [0.07, 0.22] Fig. 2.16d [373, 813]

Table 2.14: Ranges over 10 trials of the obtained results for the learning of (II.iii), with
di�erent training sample sizes n.

2.8 Conclusion

This chapter focused on the learning of functions with model classes of functions in tree-

based tensor format.

After a presentation of the problem to solve, we described the main contributions of this

chapter: adaptive learning algorithms in tree-based tensor format. We proposed in Chapter

1 a stochastic algorithm to perform adaptation of the dimension tree, and in Section 2.6.1, we

proposed a heuristic algorithm to perform rank adaptation, by increasing a subset of α-ranks

associated with the notion of highest truncation errors. These two adaptive algorithms were

combined in Section 2.6.2 to propose a learning algorithm with model classes of functions in

tree-based tensor format, with adaptation of the dimension tree and the tree-based ranks.

The performances of the algorithms were illustrated in Section 2.7 on numerical experiments

in least-squares regression and least-squares density estimation. We showed that the ob-

tained approximations in tree-based tensor format can, if enough training data is available,

give information about the structure of the function to approximate.
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A larger probability of recovering an optimal tree could be obtained by running Algorithm

9 M times, each starting from a di�erent tree (of same arity), and by retaining the approx-

imation giving the best result: if the probability of obtaining an optimal tree out of one

trial is p, the probability of obtaining the optimal tree out of M trials by selecting the best

approximation among them is 1− (1− p)M .

As expected, the quality of the approximation improves with the training sample size n.

However, computational costs increase with n. In the case of large data sets, variants of

the proposed algorithm using subsamples of the training sample could be proposed, in the

spirit of stochastic gradient methods.

Finally, the proposed adaptive algorithms provide numerous approximations, each associ-

ated with di�erent trees and di�erent tree-based ranks. This calls for a robust approach

for model selection or aggregation that does not rely on statistical estimations of the gen-

eralization error, either using an independent test sample (not used to train the model)

or a cross-validation estimator (which may be a bad estimator if n is small and/or if the

observations are noisy).
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(h) m = 16, . . . , 25.

Figure 2.9: Dimension trees associated with the iteration number m in Table 2.10, with
each node numbered. The singletons {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} correspond to the
leaf nodes numbered 9, 5, 3, 13, 11, 14, 7, 15 respectively.
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Figure 2.10: Example of expected tree T for the approximation of (II.i) with covariance
matrix (Σ1) in tree-based tensor format with tree adaptation.
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(c) n = 104, 105, 106.

Figure 2.11: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (II.i) with covariance matrix (Σ1), using di�erent training sample sizes n.
The displayed trees are associated with the smallest error over 10 trials.
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Figure 2.12: Example of expected trees T for the approximation of (II.i) with covariance
matrix (Σ2) in tree-based tensor format.
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(d) n = 105, 106.

Figure 2.13: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (II.i) with covariance matrix (Σ2) using di�erent training sample sizes n.
The displayed trees are associated with the smallest error over 10 trials.
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Figure 2.14: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (II.ii), using di�erent training sample sizes n. The displayed trees are
associated with the smallest error over 10 trials.
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Figure 2.15: Example of graphical model.
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Figure 2.16: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (II.iii), using di�erent training sample sizes n. The displayed trees are
associated with the smallest error over 10 trials.
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3.1 Introduction

Some functions might only exhibit a low-rank structure after a suitable change of variables.

A simple example is as follows: consider the function f , in dimension d = 5, that writes

f(x) = h1(x)h2(x) + h2(x)2h3(x), (3.1)

with hi(x) = wᵀ
i x and wi ∈ Rd with components randomly drawn in [−1, 1]. It admits a

representation in T Tr (H) with the tree and ranks represented in Figure 3.1a and a storage

complexity equal to 432. Introducing the changes of variables zi = hi(x), i = 1, 2, 3, the

function f(x) = v(z) = z1z2 + z2
2z3 admits a representation in tree-based tensor format

with the tree and ranks represented in Figure 3.1b. Its complexity (taking into account the

coe�cients of h1, h2, h3) is equal to 45, almost 10 times smaller than without the change of

variables. We say that we reduced the complexity and the e�ective dimension of f , going

from d = 5 to the so-called e�ective dimension m = 3.

1

4

6

{1}
4

{2}
4

6

{3}
4

{4}
4

{5}
4

(a) Without change of variables.

1

2

{1}
2

{2}
2

{3}
2

(b) With the change of variables zi = hi(x), i =
1, 2, 3.

Figure 3.1: Dimension trees used for the representation of Function (3.1) with and without
change of variables. The obtained α-ranks are indicated at each node and the dimensions
associated with the leaf nodes are displayed in brackets.

In this chapter, we seek to construct approximations of the form g = v◦h, with h a mapping

from Rd to Rm (that operates the change of variables) chosen in a given function space, and

v a m-dimensional function belonging to the model class of functions in tree-based tensor

format.

In the example above, one could introduce the changes of variables z′1 = h1(x)h2(x) and

z′2 = h2(x)2h3(x), yielding another representation of f with e�ective dimension 2, with a

di�erent complexity. One could also consider the change of variables z′′1 = h1(x)h2(x) +

h2(x)2h3(x), with v = id, an e�ective dimension equal to 1 and again another complexity.

This simple illustration shows that a key goal is to �nd an optimal e�ective dimension m

and approximations v and h (in suitable model classes and with a given accuracy) in the

sense of the storage complexity. In a learning framework, with a given training sample of

�nite size, this translates into �nding the value of m and approximations v and h (in some

model classes) yielding a good trade-o� between estimation and approximation errors.
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In this chapter, we propose algorithms that compute, in a statistical learning framework,

a sequence of approximations gm = vm ◦ hm with increasing e�ective dimension m =

1, . . . ,mmax with, for each m, adaptation of both the dimension tree and tree-based rank

using the learning algorithms proposed in Chapter 2. Then, the approximation gmopt ,

1 ≤ mopt ≤ mmax, yielding the smallest risk (estimated on a sample independent from

the training sample) is retained.

The outline of this chapter is as follows: Section 3.2 presents the considered model class

of functions in tree-based tensor format combined with changes of variables, Section 3.3

introduces the proposed algorithms for learning with such model classes and �nally, Sec-

tion 3.4 demonstrates their performances on several numerical experiments in least-squares

regression.

3.2 Tree-based tensor formats combined with changes of vari-

ables

We consider X = (X1, . . . , Xd), a set of independent random variables, with Xν with values

in Xν and with probability law µν , ν = 1, . . . , d. The random variable X is with values in

X = X1 × · · · × Xd and with probability law µ = µ1 ⊗ · · · ⊗ µd.

We consider a mapping h ∈ Hm = Rm ⊗ H from Rd to Rm, with H a �nite-dimensional

space of functions de�ned on X . It is such that h(x) = (h1(x), . . . , hm(x)) with, for ν ∈
M = {1, . . . ,m}, hν ∈ H.

We denote by U the random variable obtained after applying the mapping h to X:

U = (U1, . . . , Um) = h(X),

with values in U = U1×· · ·×Um and with probability law denoted by h#µ, the push-forward

measure of µ.

We then have Uν = hν(X) with probability law hν#µ, ν ∈ M . We introduce the product

measure h⊗µ = h1#µ ⊗ · · · ⊗ hm#µ which is, in general, such that h#µ 6= h⊗µ (the push-

forward measure of µ is in general not a product measure).

Remark 3.2.1 (Estimation of the push-forward measure hν#µ, ν ∈ M). In practice, for

ν ∈ M , the density of the push-forward measure hν#µ can be estimated from a sample

{hν(xk)}nk=1, using a Gaussian kernel density estimator with selection of the bandwidth

according to Scott's rule [44] (for more information, see Appendix B).

For ν ∈ M , let Vν be a �nite dimensional subspace of L2
hν#µ

(Uν), equipped with the norm

‖vν‖2
L2
hν#µ

(Uν)
= E(vν(Uν)2). Then, V m = V1⊗· · ·⊗Vm is a subspace of L2

h⊗µ
(U), equipped

with the norm ‖v‖2
L2
h⊗µ

(U)
= E(v(U)2). Let {φνi : i ∈ Iν} be an orthonormal basis of Vν ,

and Nν = dim(Vν) = #Iν . For a multi-index i = (i1, . . . , id) ∈ I = I1 × · · · × Id, we let
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φi = φ1
i1
⊗ · · · ⊗ φdid . The set of functions {φi : i ∈ I} constitutes an orthonormal basis of

V m ⊂ L2
h⊗µ

(U).

Given a dimension tree T ⊂ 2M and a tree-based rank r = (rα)α∈T , we denote by

G(H,V m, T, r) =
{
v ◦ h : h ∈ Hm, v ∈ T Tr (V m)

}
the set of functions in tree-based tensor format combined with changes of variables.

Proposition 3.2.2. If dh#µ(u) = p(u)dh1#µ(u1) · · · dhm#µ(um), with supu∈U p(u) < ∞,

then G(H,V m, T, r) ⊂ L2
µ(X ).

Proof. For g = v ◦ h ∈ G(H,V m, T, r), we have

‖v ◦ h‖2L2
µ(X ) =

∫
X
v(h(x))2dµ(x) =

∫
U
v(u)2dh#µ(u)

=

∫
U
v(u)2p(u)dh1#µ(u1) · · · dhm#µ(um)

≤ sup
u∈U

p(u)

∫
U
v(u)2dh1#µ(u1) · · · dhm#µ(um)

= sup
u∈U

p(u)‖v‖2L2
h⊗µ

(U),

hence, if supu∈U p(u) < ∞, v ∈ L2
h⊗µ

(U) implies v ◦ h ∈ L2
µ(X ). By de�nition, v ∈

T Tr (V m) ⊂ L2
h⊗µ

(U), hence G(H,V m, T, r) ⊂ L2
µ(X ).

Also, if X is bounded and if h and v are continuous, or if h ∈ L∞µ (X ) and v is continuous,

we have v ◦ h ∈ L∞µ (X ) ⊂ L2
µ(X ).

In the sequel, we assume that G(H,V m, T, r) is a subset of L2
µ(X ).

3.2.1 Representation of functions in G(H, V m, T, r)

Let {ϕj}qj=1 be a basis of H, orthonormal with respect to the measure µ of X. For ν ∈M ,

the change of variables hν(x) writes

hν(x) =

q∑
j=1

W ν
j ϕj(x),

with parameters W ν = (W ν
j )qj=1.

A function g ∈ G(H,V m, T, r) then admits the representation

g(x) =
∑
iν∈Iν
ν∈L(T )

∑
1≤kβ≤rβ

β∈T

∏
α∈T\L(T )

Cα(kβ)β∈S(α),kα

∏
α∈L(T )

Cαiα,kαφ
α
iα

 q∑
j=1

Wα
j ϕj(x)

 ,

with parameters (Cα)α∈T and (Wα)α∈L(T ). We recall that L(T ) denotes the leaves of T .
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For α ∈ T , we rede�ne the linear partial map (1.4) for functions g ∈ G(H,V m, T, r):

g(x) = Ψα(h(x))(Cα)

=
∑

1≤kα≤rα

∑
iα∈Iα

Cαiα,kαφ
α
iα(hα(x))f̃αkα(hαc(x)),

with the functions φαiα and f̃αkα introduced in Section 1.4, and with hα(x) = (hν(x))ν∈α.

Denoting by W the parameters (Wα)α∈L(T ), we also introduce the nonlinear partial map

Ψh(x), de�ned by

g(x) = Ψh(x)(W )

=
∑
iν∈Iν
ν∈L(T )

vi1,...,im
∏

α∈L(T )

φαiα

 q∑
j=1

Wα
j ϕj(x)

 ,

with vi1,...,im the components of a tensor v ∈ T Tr (RI) that write

vi1,...,im =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

Cα(kβ)β∈S(α),kα

∏
α∈L(T )

Cαiα,kα .

3.2.2 About the representation with orthogonality conditions

If the push-forward measure h#µ is not a product measure, the functions {φi}i∈I are not

orthonormal with respect to h#µ. Hence, for a function g = v ◦ h ∈ G(H,V m, T, r),

‖v‖L2
h#µ

(U) 6= ‖v‖. Instead, the equality ‖v‖L2
h⊗µ

(U) = ‖v‖ holds, involving the product

measure h⊗µ.

Proposition 3.2.3. If dh#µ(u) = p(u)dh⊗µ(u) with 0 < c ≤ p(u) ≤ C < ∞, then the

norms ‖ · ‖L2
h#µ

(U) and ‖ · ‖L2
h⊗µ

(U) are equivalent.

Proof. First, p(u) ≤ C <∞ yields, for g = v ◦ h ∈ G(H,V m, T, r),

‖v‖2L2
h#µ

(U) =

∫
U
v(u)2dh#µ(u) =

∫
U
v(u)2p(u)dh1#µ(u1) · · · dhm#µ(um)

≤ C
∫
U
v(u)2dh1#µ(u1) · · · dhm#µ(um) = C‖v‖2L2

h⊗µ
(U).

Similarly, 0 < c ≤ p(u) yields

‖v‖2L2
h#µ

(U) =

∫
U
v(u)2dh#µ(u) =

∫
U
v(u)2p(u)dh1#µ(u1) · · · dhm#µ(um)

≥ c
∫
U
v(u)2dh1#µ(u1) · · · dhm#µ(um) = c‖v‖2L2

h⊗µ
(U).

Hence c‖v‖2
L2
h⊗µ

(U)
≤ ‖v‖2

L2
h#µ

(U)
≤ C‖v‖2

L2
h⊗µ

(U)
, which ends the proof.
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Proposition 3.2.4. If dh#µ(u) = p(u)dh⊗µ(u) with p(u) ≤ C < ∞, and if the functions

{φi}i∈I are linearly independent on supp(h#µ) (the support of h#µ) and are orthonormal

with respect to h⊗µ, then the norms ‖ · ‖L2
h#µ

(U) and ‖ · ‖L2
h⊗µ

(U) are equivalent.

Proof. Similarly to the proof of Proposition 3.2.3, p(u) ≤ C < ∞ gives ‖v‖2
L2
h#µ

(U)
≤

C‖v‖2
L2
h⊗µ

(U)
for g = v ◦ h ∈ G(H,V m, T, r). Then, if the functions {φi}i∈I are linearly

independent on supp(h#µ), the Gram matrixG of the basis is positive de�nite: λmin(G) > 0.

This implies

‖v‖2L2
h#µ

(U) =
∑
i∈I

∑
j∈I

vi1,...,imvj1,...,jm

Gij∫
supp(h#µ)

φi(u)φj(u)dh#µ(u)

=
∑
i∈I

∑
j∈I

vi1,...,imvj1,...,jmGij

≥ λmin(G)
∑
i∈I

v2
i1,...,im = λmin(G)‖v‖2L2

h⊗µ
(U),

the last equality being true because the functions {φi}i∈I form an orthonormal basis in

L2
h⊗µ

(U). Hence, c′‖v‖2
L2
h⊗µ

(U)
≤ ‖v‖2h#µ(U) ≤ C‖v‖2

L2
h⊗µ

(U)
with c′ = λmin(G) > 0, which

concludes the proof.

Remark 3.2.5. The results of Proposition 3.2.4 can be extended to the case where the

functions {φi}i∈I are orthonormal with respect to h⊗µ and linearly independent on a subset

B ⊂ U such that infu∈B p(u) > 0. Indeed, for g = v ◦ h ∈ G(H,V m, T, r),

‖v‖2h#µ(U) =

∫
U
v(u)2dh#µ(u)

≥
∫
B

(∑
i∈I

vi1,...,imφi(u)

)2

dh#µ(u)

≥ λmin(G′)
∑
i∈I

v2
i1,...,im = c′′‖v‖2L2

h⊗µ
(U)

with c′′ = λmin(G′) > 0 and G′ the Gram matrix with components

G′ij =

∫
B
φi(u)φj(u)dh#µ(u).

The case B = supp(h#µ) corresponds to Proposition 3.2.4.

These results are important for the tree adaptation which involves truncation, whose accu-

racy is in practice controlled by ‖v − ṽ‖L2
h⊗µ

(U), with ṽ an approximation of v. They are

also important in the rank adaptation procedure, where the heuristic criterion is based on

the truncation error in L2
h⊗µ

(U)-norm.
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In the following, we will assume that we meet the requirements of Remark 3.2.5, which

means that we allow p(u) to be equal to 0 on a subset of U , but there exists B ⊂ U such

that infu∈B p(u) > 0 and on which the functions {φi}i∈I are linearly independent.

3.3 Learning with tree-based tensor formats combined with

changes of variables

In this section, we present algorithms to approximate a function f by a function g ∈
G(H,V m, T, r), where the dimension tree T , the tree-based rank r and the e�ective di-

mension m are adapted. We begin by presenting how to compute the coe�cients (Cα)α∈T
of the tree-based tensor and W of the change of variables, then we describe how to con-

struct an approximation in G(H,V m, T, r) for given T , r and m and �nally, we introduce

the adaptive algorithm mentioned above.

3.3.1 Learning the parameters (Cα)α∈T with �xed W

For a �xed change of variables h (�xedW ), the empirical risk minimization problem to solve

writes

min
(Cα)α∈T

1

n

n∑
k=1

γ(Ψ(h(·))((Cα)α∈T ), zk),

which is solved with Algorithm 6 in Chapter 2, where the points {xk}nk=1 of the training

sample S are replaced by {h(xk)}nk=1. As in Chapter 2, sparsity can be sought in the

parameters (Cα)α∈T .

3.3.2 Learning the parameter W with �xed (Cα)α∈T

For �xed node tensors (Cα)α∈T , the empirical risk minimization problem to solve writes

min
W∈Rm×q

1

n

n∑
k=1

γ(Ψh(·)(W ), zk). (3.2)

In practice, given a current value for W , we compute an update by performing one iteration

of a nonlinear optimization algorithm, for instance a Gauss-Newton algorithm in least-

squares regression, or a gradient descent in density estimation.

Once updated, each Wα is normalized so that
∑q

j=1(Wα
j )2 = 1, and the basis {φαiα}iα∈Iα

is constructed to be orthonormal with respect to the measure hα#µ, α ∈ L(T ), estimated

from the sample {hα#µ(xk)}nk=1 (see Appendix B).
Remark 3.3.1 (Least-squares regression). When using the contrast function γ(g, (x, y)) =
(y − g(x))2, we perform one iteration of a Gauss-Newton algorithm, which involves the
Jacobian matrix J = (J1, . . . , Jm) ∈ Rn×mq. For g ∈ G(H,V m, T, r), the components of
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each Jν ∈ Rn×q, ν ∈ L(T ), write

Jνkj =
∂g

∂W ν
j

(xk)

=
∑
iµ∈Iµ
µ∈L(T )

∑
1≤kγ≤rγ
γ∈T

∏
α∈T\L(T )

Cα(kβ)β∈S(α),kα

∏
β∈L(T )\{ν}

Cβiβ ,kβφ
β
iβ
(hβ(xk))C

ν
iν ,kν (φ

ν
iν )
′(hν(xk))ϕj(xk),

for k = 1, . . . , n and j = 1, . . . , q, and with (φνiν )′(hν(xk)) the derivative of the (univariate)

function φνiν evaluated at the point hν(xk). Given a current value for W , an update ∆W is

computed by solving the linear regression problem

min
∆W∈Rm×q

‖J vec(∆W )− r‖22

with vec(W ) ∈ Rmq the vectorization ofW and r ∈ Rn the residual, such that rk = yk−g(xk),

k = 1, . . . , n. The next iterate then writes W +α∆W , with α selected with a golden section

line search over [0, 1].

Remark 3.3.2 (Density estimation with a quadratic contrast function). When using the

contrast function γ(g, x) = ‖g‖2 − 2g(x), the problem to solve writes

min
W∈Rm×q

‖Ψh(·)(W )‖2L2
µ(X ) −

2

n

n∑
k=1

Ψh(xk)(W ).

The gradient descent algorithm involves the gradient of the functional to minimize

G = 2

∫
X

Ψh(x)(W )
∂

∂ vec(W )
Ψh(x)(W )dµ(x)− 2

n

n∑
k=1

∂

∂ vec(W )
Ψh(xk)(W ),

with vec(W ) ∈ Rmp the vectorization of W and

∂

∂ vec(W )
Ψh(xk)(W ) = (J1

k1, . . . , J
1
kp, . . . , J

m
k1, . . . , J

m
kp)

with Jαkj given in Remark 3.3.1, α ∈ L(T ), j = 1, . . . , p.

It may be interesting to seek sparsity in the parameters {Wα}α∈L(T ), for instance to perform

input variables screening. While searching for sparsity, one must take care to retain a

solution W which is so that there does not exist α ∈ L(T ) such that Wα = 0, because this

would mean Uα = 0 and would lead to the degeneration of the approximation format.

3.3.3 Algorithm for learning in G(H, V m, T, r)

The algorithm to compute an approximation in G(H,V m, T, r) is similar to Algorithm 6

to compute an approximation in T Tr (H), with additional steps after the minimization over

(Cα)α∈T in order to compute W and the bases {φαiα}iα∈Iα , orthonormal with respect to

hα#µ, α ∈ L(T ). Algorithm 10 presents the learning procedure.



3.3. Learning with tree-based tensor formats combined with changes of variables 81

Algorithm 10 Learning in G(H,V m, T, r).

Inputs: sample S = {zk}nk=1, contrast function γ, tensor format with parametrizations

Ψ(h(·))((Cα)α∈T ) and Ψh(·)(W ), and initial values for {Cα}α∈T and W = (Wα)α∈L(T )

Outputs: approximation g ∈ G(H,V m, T, r)

1: while not converged do

2: set hα(x)←∑q
j=1W

α
j ϕj(x), α ∈ L(T )

3: create the bases {φαiα}iα∈Iα , orthonormal with respect to the estimated push-forward

measure hα#µ, α ∈ L(T )

4: for α ∈ T do

5: estimate Cα for �xed parameters Cβ , β 6= α (learning problem with a linear model)

6: end for

7: estimate W = (Wα)α∈L(T ) for �xed parameters Cα, α ∈ T , by performing one itera-

tion of a nonlinear optimization algorithm applied to (3.2)

8: normalize Wα such that ‖Wα‖2 = 1, α ∈ L(T )

9: end while

10: set

g(x)←
∑
iν∈Iν
ν∈L(T )

∑
1≤kβ≤rβ

β∈T

∏
α∈T\L(T )

Cα(kβ)β∈S(α),kα

∏
α∈L(T )

Cαiα,kαφ
α
iα

 q∑
j=1

Wα
j ϕj(x)



3.3.4 E�ective dimension adaptation algorithm

We propose an algorithm that computes an approximation in G(H,V m, T, r), with adapta-

tion of T , r and m, the e�ective dimension. The idea of this algorithm is as follows: starting

from 1, incrementally increase m, each time computing an approximation in tree-based ten-

sor format combined with changes of variables from Rd to Rm, until a maximum dimension

mmax is reached.

At a step m, given a current approximation gm with m e�ective variables U1, . . . , Um, a new

variable Um+1 is added by computing a correction of gm that writes

cm+1(x) =
∑

i∈Im+1

aiφ
m+1
i

 q∑
j=1

Wm+1
j ϕj(x)

 ,

and by de�ning

Um+1 = hm+1(X) =

q∑
j=1

Wm+1
j ϕj(X).

In least-squares regression, this correction corresponds to a one-term projection pursuit re-

gression model [16]. Its computation is described in Algorithm 11: after randomly initializing

the coe�cients Wm+1 of the new variable Um+1, the correction c
m+1(x) is computed by al-

ternatively minimizing on (ai)i∈Im+1 (learning problem with a linear model) and performing
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one iteration of a nonlinear optimization algorithm applied to the problem of minimization

on (Wm+1
j )qj=1, for instance a gradient descent algorithm, or a Gauss-Newton algorithm in

least-squares regression.

Algorithm 11 Computation of a correction cm+1 of an approximation gm with m e�ective
variables.

Inputs: sample S = {zk}nk=1, contrast function γ, function gm of m variables, basis

{ϕj}qj=1, construction method for the basis {φm+1
i }i∈Im+1

Outputs: corrected approximation gm + cm+1, new variable Um+1 = hm+1(X)

1: randomly initialize Wm+1 such that ‖Wm+1‖2 = 1, set hm+1 ←
∑q

j=1W
m+1
j ϕj and

Um+1 = hm+1(X)

2: while not converged do

3: create the basis {φm+1
i }i∈Im+1 , orthonormal with respect to the estimated measure

h(m+1)#µ of Um+1

4: solve the problem

min
a∈RNm+1

1

n

n∑
k=1

γ(g(·) +
∑

i∈Im+1

aiφ
m+1
i (hm+1(·)), zk)

5: perform one iteration of a nonlinear optimization algorithm applied to

min
Wm+1∈Rq

1

n

n∑
k=1

γ(g(·) +
∑

i∈Im+1

aiφ
m+1
i (

q∑
j=1

Wm+1
j ϕj(·)), zk)

6: set hm+1 ←
∑q

j=1W
m+1
j ϕj and Um+1 = hm+1(X)

7: end while

8: set cm+1(·)←∑
i∈Im+1 aiφ

m+1
i (hm+1(·))

Algorithm 12 summarizes the adaptive procedure: starting from 1, it increases the e�ective

dimensionm up tommax, each time computing an approximation in G(H, V m, Tm, rm), with

adapted dimension tree Tm and tree-based rank rm. The selection of the best approximation

gmopt is performed using a validation sample independent of the training sample S.

Remark 3.3.3 (Rank adaptation). At Step 6 of Algorithm 12, the approximations computed

when performing rank adaptation are done without optimizing W .

3.4 Numerical experiments

We now consider several numerical experiments that aim at illustrating the performances

of the proposed algorithms.
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Algorithm 12 Learning in G(H,V m, T, r) with adaptation of T , r and m.

Inputs: sample S = {zk}nk=1, contrast function γ, maximal number of e�ective variables

mmax, basis {ϕj}qj=1, construction method for the bases {φmim}im∈Im , m = 1, . . . ,mmax

Outputs: approximation g ∈ G(H,V m, T, r) with adapted T , r and m

1: set g0 ← 0

2: add a new variable U1 = h1(X) and compute a corrected approximation g1 = g0 + c1

using Algorithm 11

3: add a new variable U2 = h2(X) and compute a corrected approximation g2 = g1 + c2

using Algorithm 11

4: set T 2
init ← {{1, 2}, {1}, {2}}

5: for m = 2, . . . ,mmax do

6: compute an approximation gm = vm ◦ hm ∈ G(H,V m, Tm, rm) with adapted Tm, rm

and change of variables hm = (h1, . . . , hm) using Algorithm 9 of Chapter 2 (with Tminit

as initial tree), where Algorithm 6 in Step 9 is replaced by Algorithm 10

7: if m < mmax then

8: add a new variable Um+1 using Algorithm 11

9: set Tm+1
init ← T

10: in Tm+1
init , replace {m} by {m,m+1} with children S({m,m+1}) = {{m}, {m+1}}

11: end if

12: end for

13: select mopt = argmin1≤m≤mmax
RS̃(gm), with S̃ a validation set independent of S

14: set m← mopt, H ← Hm, T ← Tm, r ← rm and g ← gm

Contrast function. We consider a least-squares regression setting by choosing the con-

trast function γ(g, (x, y)) = (y−g(x))2. Then, we use one step of a Gauss-Newton algorithm

to compute the coe�cients W of the changes of variables.

Approximation spaces. For the spaces Vν , ν = 1, . . . ,mmax, we choose polynomial

spaces Pp(Uν) of degree p and we use orthonormal polynomial bases {φνiν}iν∈Iν in L2
hν#µ

(Uν),

with Iν = {0, . . . , p}. For a given tree Tm with m leaves, we exploit sparsity in the leaf

tensors (Cα)α∈L(Tm) by using a working set strategy. We use the natural sequence of

candidate patterns associated with spaces of polynomials with increasing degree.

For the change of variables h, we choose a basis {ϕi}qi=1 of multivariate polynomials with

total degree bounded by Q, from which we remove the constant function, so that the number

of basis functions is q = (Q+ d)!/(Q!d!)− 1. This basis is taken orthonormal with respect

to the measure µ of X.

Parameters of Algorithm (12). We set N = 103 in Algorithm 5. We also let the

maximum number of iterations in Algorithm 9 be su�ciently high. In Algorithm 10, the

stopping criterion is the stagnation of g in L2
h#µ

(U) norm, with a tolerance equal to 10−6
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and a maximal number of iterations of 100; in Algorithm 11, the stopping criterion is the

stagnation in 2-norm of bothW and a, with a tolerance set to 10−10 and a maximal number

of iterations of 100; �nally, in Algorithm 12, mmax is set to 10.

Error measures. The relative test error ε(Stest, g) associated with the function g and a

test sample Stest of size 105, independent of S, is de�ned as

ε(Stest, g) =

√∑
(x,y)∈Stest(y − g(x))2∑

(x,y)∈Stest y
2

.

Robustness study. For studying the robustness of the proposed algorithm, we run it 10

times for each example, each run using a di�erent training sample S.

Storage complexity. In order to take into account the changes of variables into the

storage complexity, we rede�ne it as

C̃(V m, T, r) = C(T, r) + qm,

the storage complexity of the tree-based tensor, as de�ned in Chapter 1, to which we add

the number of entries in the matrix W .

3.4.1 Simple function in high dimension

We �rst study the function

f(X) =
1

(10 + U1U3 + 0.5U2)2
, (III.i)

with Ui = wᵀ
iX, wi ∈ Rd with components drawn randomly in [−1, 1] such that ‖wi‖2 = 1,

i = 1, 2, 3, and with d = 100. The random variables X1, . . . , Xd are independent and such

that Xi ∼ N (0, 1), i = 1, . . . , d, so that X = (X1, . . . , Xd) is with values in X = Rd.

We choose a polynomial degree p = 10 for the bases {φνiν}iν∈Iν , ν = 1, . . . ,mmax.

Table 3.1 presents the obtained results. We �rst study, in Table 3.1b, the results obtained

without introducing changes of variables, that is to say when approximating f in tree-

based tensor format in dimension d = 100. We see that, because of the high dimension,

the obtained approximations require a large storage complexity to be able to represent the

function with a small error. On the other hand, when introducing a change of variables

using Algorithm 12, we obtain the results of Table 3.1a where we see that, at an equal

number of samples n ≥ 103, we obtain better results, with a smaller storage complexity. We

also notice that, with n = 104, the obtained approximations have on average an e�ective

dimension mopt = 4.4, which is much smaller than the dimension d = 100, but is not able

to �nd the expected e�ective dimension of Function (III.i), equal to 3.
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n mopt ε(Stest, g) CV error C̃(V mopt , T, r)

102 [1, 1.7, 5] [1 · 10−1, 2 · 10−0, 1 · 10+1] [2 · 10−16, 8 · 10−2, 1 · 10−1] [111, 189.4, 559]
103 [3, 5.2, 10] [6 · 10−3, 3 · 10−2, 1 · 10−1] [1 · 10−04, 1 · 10−2, 1 · 10−1] [393, 684.4, 1172]
104 [3, 4.4, 7] [1 · 10−3, 2 · 10−3, 3 · 10−3] [4 · 10−05, 2 · 10−4, 5 · 10−4] [378, 615.6, 1063]

(a) With changes of variables.

n ε(Stest, g) CV error C(T, r)

102 [1 · 10−1, 2 · 10−1, 2 · 10−1] [1 · 10−2, 6 · 10−2, 1 · 10−1] [1199, 1199.0, 1199]
103 [1 · 10−1, 1 · 10−1, 1 · 10−1] [1 · 10−1, 1 · 10−1, 1 · 10−1] [1199, 1213.6, 1284]
104 [3 · 10−2, 4 · 10−2, 8 · 10−2] [1 · 10−2, 2 · 10−2, 4 · 10−2] [3344, 3984.7, 4660]

(b) Without changes of variables, with p = 10.

Table 3.1: [Minimum, mean, maximum] values over 10 trials of the obtained results for
the learning of (III.i), for di�erent training samples sizes n, with and without changes of
variables.

3.4.2 Borehole function

We consider an 8-dimensional function f that models the water �ow through a borehole:

f(X) =
2πTu(Hu −Hl)

ln(r/rw)(1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

)
, (III.ii)

with X = (rw, r, Tu, Hu, Tl, Hl, L,Kw) whose components have the distributions shown in

Table 3.2.

Xi distribution Xi Xi distribution Xi
rw N (0.1, 0.0161812) R Tl U(63.1, 116) [63.1, 116]
r LN (7.71, 1.0056) ]0,+∞[ Hl U(700, 820) [700, 820]
Tu U(63070, 115600) [63070, 115600] L U(1120, 1680) [1120, 1680]
Hu U(990, 1110) [990, 1110] Kw U(9855, 12045) [9855, 12045]

Table 3.2: Distribution and support of the input random variables of the borehole function
(III.ii).

For the basis {ϕi}qi=1 of the changes of variables, we consider maximal total degrees Q = 1

and Q = 3, and for the polynomial bases {φαiα}iα∈Iα , α ∈ L(T ), a degree p = 10.

When studying the expression (III.ii), no linear change of variables seems obvious, except

Hu−Hl. With a polynomial basis with maximal total degree Q = 3, one could also consider

the new variables Tu(Hu−Hl), r
2
wKw and LTu. We then do not expect a large decrease from

d to the e�ective dimension m. Table 3.3 presents the obtained results when approximating

f in G(H,V m, T, r) (using Algorithm 12 for Tables 3.3a with Q = 1 and 3.3b with Q = 3)

and in T Tr (H) (using Algorithm 9 for Table 3.3c).

We see that, as expected, for Q = 1, the error decreases when n increases, and that the cross-

validation error is a good estimator of ε(Stest, g). However, for Q = 3, the error increases on
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n mopt ε(Stest, g) CV error C̃(V mopt , T, r)

102 [4, 4.6, 6 ] [1 · 10−3, 2 · 10−3, 5 · 10−3] [1 · 10−4, 7 · 10−4, 2 · 10−3] [122, 204.1, 284]
103 [6, 7.7, 10] [7 · 10−5, 2 · 10−4, 3 · 10−4] [4 · 10−5, 1 · 10−4, 2 · 10−4] [268, 426.0, 601]
104 [5, 7.4, 10] [3 · 10−5, 1 · 10−4, 2 · 10−4] [3 · 10−5, 7 · 10−5, 2 · 10−4] [380, 540.0, 881]

(a) With changes of variables, with Q = 1.

n mopt ε(Stest, g) CV error C̃(V mopt , T, r)

102 [1, 4.4, 9] [9 · 10−2, 4 · 10−1, 1 · 10−0] [5 · 10−16, 7 · 10−7, 3 · 10−6] [175, 773.4, 1583]
103 [1, 2.0, 3] [2 · 10−4, 8 · 10−0, 8 · 10+1] [6 · 10−05, 7 · 10−4, 1 · 10−3] [175, 411.2, 670]
104 [2, 2.8, 6] [5 · 10−5, 1 · 10−4, 5 · 10−4] [2 · 10−05, 7 · 10−4, 1 · 10−4] [376, 593.3, 1164]

(b) With changes of variables, with Q = 3.

n ε(Stest, g) CV error C(T, r)

102 [1 · 10−5, 3 · 10−5, 6 · 10−5] [1 · 10−6, 3 · 10−6, 9 · 10−6] [199, 235.3, 290]
103 [4 · 10−7, 1 · 10−6, 4 · 10−6] [3 · 10−7, 4 · 10−7, 1 · 10−6] [199, 213.5, 224]
104 [4 · 10−7, 5 · 10−7, 1 · 10−6] [3 · 10−7, 3 · 10−7, 4 · 10−7] [214, 214.0, 214]

(c) Without changes of variables, with p = 10.

Table 3.3: [Minimum, mean, maximum] values over 10 trials of the obtained results for
the learning of (III.ii), for di�erent training samples sizes n, with and without changes of
variables.

average between n = 102 and n = 103, before decreasing for n = 104. This can be explained

by the fact that the changes of variables depend on q = 164 parameters, degrading the

quality of the approximation when considering small training samples. Using a maximal

total degree Q = 3 instead of 1 yields smaller values ofmopt and of the error, at the price of a

larger storage complexity (once again due to the fact that q = 164 instead of 8). This shows

that, when choosing the degree Q, there is a trade-o� between dimension reduction (that

can decrease when increasing Q) and storage complexity (that can increase when increasing

Q). Introducing sparsity in W could be a way of improving the obtained results in the

case of small training samples. Furthermore, it could increase the interpretability of the

components of W , by performing input screening for instance.

We also see that the algorithm provides most of the time an approximation with mopt < d,

which means a reduction of the dimension, this comes however with a larger error than

when approximating in T Tr (H), that is to say without changes of variables. The e�ective

dimension, equal on average to mopt = 2.8 with n = 104 and Q = 3, shows that the

algorithm is able to reduce the dimension by �nding non-trivial changes of variables (as

mentioned above, we expected an e�ective dimension not much smaller than d).

Table 3.4 presents the components of the matrix W of the approximation yielding the

smallest error in Table 3.3a for Q = 1 and di�erent values of n. We notice that the obtained

approximation always features new variables involving Hu − Hl, which was expected. We

also see that the variables r, Tu and Tl have a much smaller in�uence on f(x) than the other

variables, in the sense that their related coe�cients in W are much smaller than the ones of
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other variables. Finally, we see with n = 104, as mentioned above, the e�ective dimension

is greater than 8, which means that the new variables are not linearly independent.

rw r Tu Hu Tl Hl L Kw

U1 0.83 −0.00 −0.00 0.32 0.00 -0.32 -0.31 0.16

U2 −0.01 −0.02 0.01 -0.48 0.02 0.47 0.09 0.74

U3 -0.64 0.01 −0.01 0.43 −0.01 -0.43 0.42 -0.20

U4 -0.59 −0.01 −0.00 0.38 0.01 -0.38 -0.55 0.22

(a) n = 102.

rw r Tu Hu Tl Hl L Kw

U1 -0.83 0.00 0.00 -0.31 −0.00 0.31 0.31 -0.15

U2 0.77 −0.00 0.00 -0.45 −0.00 0.45 0.02 0.00
U3 0.29 −0.01 0.00 0.13 0.00 -0.13 -0.94 0.05
U4 -0.51 0.01 −0.00 -0.20 0.01 0.20 -0.10 0.80

U5 -0.58 -0.22 0.00 0.06 0.74 −0.05 0.15 -0.17

U6 0.80 0.14 −0.03 -0.16 0.08 0.15 0.33 -0.43

U7 0.40 -0.79 0.08 0.15 0.04 -0.13 0.33 0.25

(b) n = 103.

rw r Tu Hu Tl Hl L Kw

U1 -0.84 −0.01 0.00 -0.30 0.01 0.30 0.29 -0.15

U2 -0.96 0.00 −0.00 0.20 0.00 -0.20 0.00 0.07
U3 0.10 0.00 −0.00 -0.70 0.01 0.70 −0.08 0.03
U4 -0.36 0.00 0.00 0.10 −0.03 -0.10 -0.92 0.00
U5 0.06 0.01 0.02 -0.23 -0.30 0.22 -0.50 0.75

U6 -0.10 0.15 0.02 -0.34 -0.65 0.33 -0.37 0.43

U7 0.80 −0.03 −0.00 -0.12 0.07 0.12 -0.57 0.04
U8 0.17 0.03 −0.01 0.30 0.01 -0.29 0.35 -0.82

U9 0.45 -0.12 0.04 -0.62 0.02 0.60 0.15 0.01

(c) n = 104.

Table 3.4: Components in each W i, i ∈ M , involving each variable Xj , j ∈ D, for the
smallest error obtained with di�erent sample sizes n in Table 3.3, when approximating
(III.ii) with Q = 1.

We can then conclude that, even though the algorithm is able to provide a good approxi-

mation with a reduction of the dimension, when there are no obvious changes of variables,

it may yield worse results than when not introducing a change of variables. We propose

several leads as to why this is the case: even though the cross-validation seems like a good

estimator of the generalization error, it might not be good enough for the model selection

involved in the sparsity exploitation in the leaves of the tree, maybe because of the loss

of orthonormal representation (as discussed in Section 3.2.2). Also, one step of the Gauss-

Newton algorithm when learning W might not be enough: this would call for an increase of

the number of steps or for the search for a better solver.
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3.4.3 Function of ten variables with �ve nonin�uential variables

We consider the following function in dimension d = 10, originally used as a test case in

[45]:

f(X) = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5, (III.iii)

where only the �ve �rst input variables have an in�uence on f(X). The random variables

X1, . . . , X10 are uniform on [0, 1], so that X = [0, 1]10.

As for the previous experiment, we choose p = 10. When representing the changes of

variables h with Q = 1, we expect Algorithm 12 to provide an approximation of (III.iii)

with mopt = 4; indeed, it can be written

f(X) = f̃(U) = 10 sin
(π

4
(U2

1 − U2
2 )
)

+ 20(U3 − 0.5)2 + U4

with U1 = X1 + X2, U2 = X1 − X2, U3 = X3 and U4 = 10X4 + 5X5. Similarly, using a

maximal total degree Q = 2 excluding the constant function (containing 65 functions), we

expect Algorithm 12 to provide an approximation of (III.iii) with mopt = 2, because it can

be written

f(X) =
˜̃
f(U) = 10 sin(πU1) + U2

with U1 = X1X2 and U2 = 20(X3 − 0.5)2 + 10X4 + 5X5.

Table 3.5 presents the obtained results with p = 10 and Q = 1, 2, as well as without

introducing changes of variables with p = 20. We see that, with Q = 1 and enough data

points, the algorithm is able to �nd on average an e�ective dimension close to the expected

one of 4, with a small decrease in the storage complexity, at the price of a larger error. When

using Q = 2, we notice that the algorithm cannot achieve the error level obtained without

changes of variables, and yields larger storage complexity. As in the previous example, this

might be due to the use of a cross-validation estimator of the error for model selection, or

to a convergence issue in the Gauss-Newton algorithm. Introducing sparsity in W might

also improve the obtained results.

Table 3.6 presents the components of the matrix W of the approximation yielding the

smallest error in Table 3.5 for Q = 1 and di�erent values of n. We notice that the algorithm

introduces a new variable that involves (up to a factor) 10X4 + 5X5 as expected, but also

the variables X1 and X2. We also notice that there is always a new variable almost equal

to X3 and that the coe�cients associated with the variables Xi, i > 5 are close to 0, which

shows that the algorithm is able to perform input variables screening. Finally, for n = 104,

there are, as expected, two variables approximately proportional to X1 +X2 and X1 −X2

respectively.
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n Q mopt ε(Stest, g) CV error C̃(V mopt , T, r)

102 1 [4, 5.3, 10] [1 · 10−2, 4 · 10−2, 1 · 10−1] [4 · 10−3, 2 · 10−2, 8 · 10−2] [183, 214.3, 260]
2 [1, 2.5, 5] [1 · 10−1, 1 · 10−1, 1 · 10−1] [3 · 10−2, 4 · 10−2, 5 · 10−2] [ 76, 198.6, 430]

103 1 [4, 5.5, 7] [2 · 10−5, 1 · 10−4, 4 · 10−4] [1 · 10−5, 2 · 10−4, 8 · 10−4] [180, 496.8, 778]
2 [3, 3.8, 5] [9 · 10−5, 3 · 10−4, 7 · 10−4] [1 · 10−4, 1 · 10−3, 3 · 10−3] [396, 537.7, 696]

104 1 [4, 4.4, 5] [2 · 10−7, 5 · 10−6, 1 · 10−5] [2 · 10−7, 5 · 10−5, 3 · 10−4] [209, 496.7, 834]
2 [4, 5.5, 10] [4 · 10−5, 8 · 10−5, 1 · 10−4] [4 · 10−5, 4 · 10−4, 1 · 10−3] [726, 1066.6, 1969]

(a) With change of variables, with Q = 1, 2.

n ε(Stest, g) CV error C(T, r,mopt)

102 [1 · 10−4, 2 · 10−2, 1 · 10−1] [2 · 10−5, 1 · 10−2, 8 · 10−2] [219, 385.3, 503]
103 [3 · 10−7, 6 · 10−7, 1 · 10−6] [2 · 10−7, 4 · 10−7, 6 · 10−7] [516, 516.0, 516]
104 [2 · 10−7, 3 · 10−7, 7 · 10−7] [2 · 10−7, 3 · 10−7, 5 · 10−7] [516, 516.0, 516]

(b) Without changes of variables, with degree 20 polynomials for the leaf approximation bases.

Table 3.5: [Minimum, mean, maximum] values over 10 trials of the obtained results for the
learning of (III.iii) with and without introducing changes of variables, for di�erent values
of n and Q (when using a change of variables).

3.5 Conclusion

We proposed in this chapter learning algorithms in formats combining tree-based tensor

formats and changes of variables: g = v◦h, with v ∈ T Tr (V m) and h ∈ Hm. These algorithms

compute a sequence of approximations with increasing so-called e�ective dimensionm, which

corresponds to the dimension of the range of h.

The proposed algorithms are sometimes able to compute accurate approximations with a

storage complexity much smaller than when directly using the algorithms of Chapter 2, that

is to say without introducing changes of variables.

We noticed however that when approximating certain functions, not introducing changes of

variables yields better results than when using the algorithms presented in this chapter. We

propose several leads as to why this is the case, and how to improve the algorithms. We

considered for then changes of variables polynomial bases with total degree bounded by Q,

that have a number of basis functions quickly growing with Q and d. This means that, even

when considering moderate degrees Q, many parameters have to be estimated to describe

the changes of variables, which can be a problem when the training sample sizes are small.

Introducing sparsity in the matrix W might improve the performances of the algorithms. It

would also enable them to perform input variables screening. This would call for the use or

development of e�cient sparsity-inducing nonlinear optimization algorithms. Furthermore,

there is no guarantee that the cross-validation estimator of the generalization risk is a good

estimator, and that it is well suited for model selection, required when seeking sparsity in

the Cα, α ∈ T or a subset of nodes of T . This calls for the development of model selection

techniques that do not rely on this cross-validation estimator.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

U1 0.01 0.90 0.02 0.38 0.19 −0.01 −0.00 0.00 0.00 0.00
U2 0.16 -0.36 0.90 0.16 0.07 0.02 0.00 0.00 0.00 0.01
U3 -0.99 -0.12 −0.01 0.11 0.05 0.01 −0.00 −0.01 0.00 0.00
U4 -0.30 -0.67 -0.68 0.01 −0.00 0.01 −0.00 −0.01 −0.00 −0.00

(a) n = 102.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

U1 0.50 0.52 0.06 0.62 0.31 0.00 0.00 0.00 0.00 0.00
U2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
U3 -0.70 -0.71 −0.00 0.00 0.00 −0.00 0.00 0.00 −0.00 −0.00
U4 -0.29 0.96 −0.00 0.00 0.00 −0.00 0.00 0.00 −0.00 −0.00
U5 0.97 -0.24 −0.00 0.00 0.00 0.00 −0.00 −0.00 0.00 0.00
U6 −0.07 -1.00 0.00 −0.00 −0.00 0.00 0.00 −0.00 0.00 0.00

(b) n = 103.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

U1 0.58 0.55 −0.01 0.54 0.27 −0.00 0.00 −0.00 −0.00 −0.00
U2 0.00 0.00 -1.00 0.00 0.00 −0.00 0.00 0.00 0.00 −0.00
U3 -0.72 -0.69 −0.00 0.00 0.00 −0.00 0.00 0.00 0.00 0.00
U4 0.72 -0.69 −0.00 −0.00 −0.00 0.00 0.00 −0.00 −0.00 0.00

(c) n = 104.

Table 3.6: Components in eachW i, i ∈M , involving each variable Xj , j ∈ D, for the small-
est error obtained with di�erent sample sizes n and Q = 1 in Table 3.5 when approximating
(III.iii).

Finally, we saw that, by combining tree-based tensor format with changes of variables, we

lost the multilinearity of the former, and with it the natural idea to recast the nonlinear risk

minimization problem into a series of learning problems with linear model classes. We then

understand the need to propose speci�c algorithms suited for learning with these formats.
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4.1 Introduction

In an underwater vehicle, numerous noise sources exist, such as the vibrations generated by

the engine and transmitted to the hull or the noise created by the interaction between the

propeller and the wake of the vehicle. Each source can generate in the frequency response

function (FRF) of the sound produced by the vehicle discrete pressure peaks, characterized

by an identi�able acoustic signature [46]: peaks in the frequency range from 0.1 Hz to 10 Hz

are caused by the rotation of the propellers, and are characteristic of sounds that can be

heard at several thousand kilometers of distance [47], which makes it an important source
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to consider; peaks from several Hertz to several hundred Hertz are caused by the vibration

of the hull and engine.

Such a structure may have to meet some discretion requirements that are classically de-

scribed with a threshold curve for the sound pressure level (SPL): the SPL must take values

that stay inferior to this threshold, which means that the vehicle will make less noise than

a certain level.

In this study, in the context of the Eval-π project and the Joint Laboratory of Marine

Technology between Naval Group, Centrale Nantes and Université de Nantes, the quantity

of interest is the sound power level LX , which is a real scalar quantity depending on the

frequency and related to the SPL. An example of frequency response function and associated

envelope curve of the sound power level is shown in Figure 4.1. The frequency response of

LX can be really sensitive to the uncertainties on the characteristics of the materials, on

the position and direction of the forces, etc, and the numerical models able to simulate it

are costly, both in computation time and in memory requirements.
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Figure 4.1: Representation of the sound power level LX and its envelope curve as a function
of the circular frequency ω.

The objective of this chapter is to propose a methodology to predict the impact of uncer-

tainties on quantities of interest derived from the sound power level on a wide frequency

band, based only on a limited number of direct computations and using the learning al-

gorithms proposed in Chapters 1 and 2. Its outline is the following. We �rst present in

Section 4.2 the sound power level of a vibrating underwater vehicle: how to compute it, the

uncertainties on its input parameters, and some quantities of interest that can be deduced

from it. Section 4.3 presents a parameter-dependent frequency transformation that aims at

maximizing the similarity between the realizations of the frequency response of interest by

aligning the resonance peaks. It acts as a pre-treatment for the learning of the frequency

response of the quantity of interest in the transformed frequency space, presented in Section

4.4. Finally, Section 4.5 presents �rst results of the application of the proposed methodology

to the learning of the envelope curve of the sound power level of a vibrating underwater

vehicle.
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4.2 Sound power level of an underwater vehicle

We consider a spherical domain S around an underwater vehicle, illustrated in Figure 4.2,

which is discretized with a mesh with NS nodes. The radius of the sphere is denoted by R.

S

Figure 4.2: Representation of the integration domain around the vehicle.

We are here interested in the quanti�cation of the noise due to the transmission of the

structural vibrations through the hull of the vehicle to the �uid medium. To this end, a

con�guration close to the reality is used: a keelson attached to a section of hull, submerged

in water (represented in Figure 4.3a), and to which a force is applied (see Figure 4.3b) [48].

This model allows the consideration of numerous con�gurations: di�erent characteristics

and thicknesses of the materials and di�erent frequencies and positions for the vibrating

force for instance.

(a) Geometry of the studied case.

•
F

Force

Linkage

Sound pressure

Hull

(b) Representation of a noise source.

Figure 4.3: Studied case: a keelson attached to a section of hull submerged in water. An
oscillating force is applied to the keelson and its energy is transmitted to the water through
the hull.

The (u, p, φ) formulation (with u the displacement, p the pressure and φ the displacement

potential) and �nite-element discretization [49] yield the system

(−iω3I − ω2M(x) + iωC +K(x))V (ω, x) = B
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with i the imaginary unit, I the impedance matrix, M(x) the parameter-dependent mass

matrix

M(x) = M�uid +

3∑
j=1

xjMj ,

C the damping matrix, K(x) the parameter-dependent sti�ness matrix

K(x) = x4K0,

and B the vector associated with the source term. The number of degrees of freedom is

Ndof = 32970. The solution vector V gathers the values of uj , pj , φj for all the nodes j of

the mesh. The densities of the di�erent materials as well as their sti�ness are uncertain: x

is a realization of the random variables with independent components X = (X1, . . . , X4),

where Xi is with values in Xi and with probability law µi, i = 1, . . . , 4, such that

• X1 ∼ U(7065, 8635),

• X2 ∼ U(5887.5, 9812.5),

• X3 ∼ U(7065, 8635),

• X4 ∼ U(0.9, 1.1).

Remark 4.2.1. In dimension d = 3, all the representations in tree-based tensor format are

equivalent, whatever the dimension tree over {1, . . . , d} is. The random variable X4 models

uncertainties that arguably are not realistic (the uncertainties on the sti�ness are the same

for all the di�erent materials): it was arti�cially introduced in the model as a way to increase

the dimension of the problem from 3 to 4, to propose �rst results that represent what can

be expected in higher dimensions, where the dimension tree must be optimized, for instance

with the proposed tree optimization Algorithm 5 of Chapter 1.

The sound power level LX , which is the quantity of interest for Naval Group, can be written

LX = 10 log10

(
P

P0

)
with P0 = 6.414 · 10−19 W a reference sound power, and

P =
1

2

∫
S
<(pv?n)dS =

1

2

∫
S

|p|2
Z<

dS ≈ 4πR2

2NS

NS∑
i=1

|pi|2
Z<

,

where <(·) denotes the real part of a complex number, p is the pressure �eld, approximated

by pi at the NS nodes of the mesh of the spherical domain S, v?n is the particle normal

velocity and Z< is the real part of the impedance.

Several quantities of interest, based on the sound power level LX , can be studied. Its

frequency response, for all values of ω and x in their respective domains, is denoted by q1.

It is the most accurate way of describing the sound power level, but also the most complex,

because of the di�culty to represent its circular frequency dependency. An example of full
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frequency response is depicted in Figure 4.4a. Furthermore, for many industrial applications,

knowing the FRF for all circular frequencies is not necessary. Taking this into account, the

one-third octave band1 FRF of the sound power level, denoted by q2, is often studied. It

o�ers a frequency resolution suited for numerous applications, and is constant on each one-

third octave band. Figure 4.4b shows an example of one-third octave band FRF, computed

from the full FRF of Figure 4.4a. Finally, as mentioned at the beginning of the chapter,

a particularly interesting quantity of interest for Naval Group is the envelope curve of the

FRF of the sound power level, that we denote by q3. This function, which is piece-wise linear

in ω, connects (some of) the peaks of the FRF, so that the latter never has values above

the former. These peaks can be obtained, for instance, with software usually available in

the industry. This envelope function then guaranties that the sound power level never goes

above it, for any value of ω and x. An envelope curve of the FRF of Figure 4.4a is displayed

in Figure 4.4c. One can notice that the proposed envelope curve passes only through some

of the peaks of the FRF: the choice of these peaks is free and depends on the use of the

envelope. In this work, we choose to select only some of the peaks of q1(ω, xj) for a given xj ,

with the following rule: beginning by selecting the circular frequency ωj0 of the maximum

of the FRF on the set of peaks frequencies denoted by Ωj
p, the algorithm retains the next

largest value both on the left and on the right of ω0, that we call ω
j
−1 and ωj1 respectively.

Then, the next largest values on the left of ωj−1 and on the right of ωj1 are selected and so on,

until no points are left in Ωj
p to be selected. The bounds of the circular frequency domain

are also retained. The envelope in Figure 4.4c is obtained by computing a piece-wise linear

interpolation of the points (ωji , q1(ωji , xj)). This procedure is described in Algorithm 13.

In the following, we present methodologies to compute approximations of a FRF of interest

depending on ω and x, which could be either q1, q2 or q3, and we focus on the approximation

of the envelope curve q3, being the quantity of greatest interest for Naval Group. But �rst,

we introduce a problem-dependent peaks aligning procedure that acts as a pre-treatment

for the learning, by aligning the frequencies of the peaks of the FRF for all values of x.

4.3 Peaks aligning frequency transformation

We can see in Figure 4.5a the FRFs of the sound power level q1(ω,X) associated with

di�erent realizations of X. We notice that the circular frequencies of the peaks of the FRFs

change from one realization of X to another. In this section, we propose a parameter-

dependent frequency transformation inspired from [50], that aims at aligning the peaks of

the FRF (or a selection of them, for instance by applying Algorithm 13) in order to increase

the similarity between the FRFs for di�erent values of x, with the hope of reducing the

complexity of the approximations to compute. For instance, applying to the FRFs q1(ω, x)

of Figure 4.5a the piece-wise linear frequency transformations of Figure 4.5b, we obtain the

1See https://law.resource.org/pub/us/cfr/ibr/002/ansi.s1.11.2004.pdf. Accessed on September
27th, 2019.
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(a) Narrow band FRF.

0 0.5 1

·103

100

110

120

130

140

ω (rad s−1)

L
X

(d
B
)

(b) One-third octave band FRF.
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(c) Envelope curve of the FRF.

Figure 4.4: Example of frequency response functions of interest: narrow band, one-third
octave band and envelope curve.

FRFs q̃1(ν, x) of Figure 4.5c, where a selection of peaks are aligned with the peaks of one

common reference realization, arbitrarily chosen.

Let us assume that we know the circular frequencies of (a selection of) peaks of q1(ω, x) in

the range W = [ωmin, ωmax] (the circular frequency domain of interest) for n realizations of

X, stored in πj = (ωj1, . . . , ω
j

njω
), j = 1, . . . , n.

We choose one realization ofX to be the reference with which the peaks for other realizations

will be aligned. If the number of peaks changes from one realization of X to another, we

select a reference index in the set of realizations with the largest number of peaks {k : nkω =

maxj=1,...,n n
j
ω}. We denote the reference peaks frequencies by πref = (ωref1 , . . . , ωref

nrefω
).

The goal is to build a function ν(ω, x;πref) which is such that, for a given x and a circular

frequency ωi corresponding to the i-th peak of the function q1(·, x), we have

ν(ωi, x;πref) = argmin
ω∈πref

|ωi − ω|,
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Algorithm 13 Filtering of the peaks of the function q1(·, xj) for a given xj .

Inputs: input parameter value xj , frequencies of the peaks of q1(·, xj) stored in Ωj
p, asso-

ciated values of q1(ω, xj) for ω ∈ Ωj
p

Outputs: selected peaks frequencies, stored in πj = (ωj1, . . . , ω
j

njω
)

1: ωj0 = argmax
ω∈Ωjp

q1(ω, xj)

2: i = 0, n+
ω = 0

3: while {ζ ∈ Ωj
p : ζ > ωji−1} 6= ∅ do

4: i← i+ 1, n+
ω ← n+

ω + 1

5: ωji = argmax
ω∈{ζ∈Ωjp : ζ>ωji−1}

q1(ω, xj)

6: end while

7: ωji+1 = max
ω∈Ωjp

ω, n+
ω ← n+

ω + 1

8: i = 0, n−ω = 0

9: while {ζ ∈ Ωj
p : ζ < ωji+1} 6= ∅ do

10: i← i− 1, n−ω ← n−ω + 1

11: ωji = argmax
ω∈{ζ∈Ωjp : ζ<ωji+1}

q1(ω, xj)

12: end while

13: ωji−1 = min
ω∈Ωjp

ω, n−ω ← n−ω + 1

14: njω = n+
ω + n−ω

15: ωji ← ωj
i+n−ω+1

, i = 1, . . . , n+
ω (change of indices of the frequencies)

16: return πj ← (ωj1, . . . , ω
j
nω)

that is to say, the peak of frequency ωi must be aligned with its closest reference peak.

Algorithm 14 proposes a methodology to compute the peaks aligning parameter-dependent

frequency transformation, which uses the empirical interpolation method [51] and requires

the realizations (ωji , q1(ωji , xj)), i = 1, . . . , njω and j = 1, . . . , n. This algorithm involves the

computation of approximations in tree-based tensor format, using the learning algorithms

proposed in Chapters 1 and 2. We choose for the approximation space Hα, α ∈ {1, . . . , d}, a
polynomial basis {φαiα}iα∈Iα , orthogonal with respect to the probability measure µα of Xα.
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(a) FRFs q1(ω, x) for several realizations x of X.
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(b) Frequency transformations associated with the FRFs depicted in Figure 4.5a, computed with
Algorithm 14.
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(c) FRFs of Figure 4.5a after applying the parameter-dependent frequency transformation of Figure
4.5b, for di�erent realizations x of X.

Figure 4.5: Example of the use of a parameter-dependent frequency transformation to align
some peaks of FRFs. The reference circular frequencies are displayed in dashed lines.
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Algorithm 14 Computation of the peaks aligning frequency transformation ν(ω, x;πref).

Inputs: {xj}nj=j , πj = (ωj1, . . . , ω
j

njω
), j = 1, . . . , n, reference peaks frequencies πref =

(ωref1 , . . . , ωref
nrefω

), bases {φαiα}iα∈Iα , orthogonal with respect to µα the probability measure

of Xα, α ∈ {1, . . . , d}, number N of interpolation points for the empirical interpolation

method

Outputs: peaks-aligning frequency transformation ν(ω, x;πref)

1: for j = 1, . . . , n do

2: build the frequency transformation ω 7→ νtrue(ω, xj ;π
ref), a piece-wise linear interpo-

lation on the set {(ωji , argminω∈πref |ωji − ω|)}n
j
ω
i=1, so that

νtrue(ωji , xj ;π
ref) = argmin

ω∈πref
|ωji − ω|, i = 1, . . . , njω

3: end for

4: perform an empirical interpolation [51] of the set of functions {νtrue(·, xj ;πref)}nj=1,

to obtain N magic points ζk and their associated interpolation functions ϕk(ω), k =

1, . . . , N

5: for k = 1, . . . , N do

6: build an approximation νk(x) of νtruek (x) := νtrue(ζk, x) in tree-based tensor format

using Algorithm 9 with the training sample S = {(xj , νtruek (xj))}nj=1

7: end for

8: de�ne the parameter-dependent frequency transformation as

ν(ω, x;πref) =
N∑
k=1

αk(x)ϕk(ω)

with the αk(x), k = 1, . . . , N , satisfying the interpolation properties

N∑
k=1

αk(x)ϕk(ζl) = νl(x) ≈ νtruel (x), l = 1, . . . , N
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4.4 Learning the frequency response of the quantity of interest

In this section, we �rst present how to compute an approximation of a FRF of interest q in

tree-based tensor format. Then, we focus on the learning of the envelope curve of the FRF,

denoted by q3, by computing approximations in tree-based tensor format of the magnitude

of q at the reference circular frequencies.

In what follows, the approximation, denoted by g(ν, x), is computed in the transformed

frequency space ν(ω, x;πref), where (a selection of) the peaks of the FRF are aligned with

the reference peaks (with circular frequencies πref), for any x ∈ X . Then, the approximation

of q at a point (ω, x) can be obtained by evaluating g at the point (ν(ω, x;πref), x).

4.4.1 Approximation of the frequency response function of interest q

We consider here that the transformed circular frequency ν is a realization of a uniform

random variable Ω̃ ∼ U(ωmin, ωmax), with values in W = [ωmin, ωmax], independent of Xi,

i = 1, . . . , d. An approximation of the (d + 1)-dimensional function f(X ′) = q̃(Ω̃, X), with

X ′ = (Ω̃, X) and q̃(ν, x) = q(ω, x), can be constructed in tree-based tensor format, using

the learning algorithms described in Chapter 2.

For the functions {φηiη}iη∈Iη associated with the random variable X ′η = Xη−1, η = 2, . . . , d+

1, we can for instance use polynomial bases, orthonormal with respect to the measure µη−1

of Xη−1.

The main issue with this approach is the choice of the functions {φ1
i1
}i1∈I1 associated with

the random variable Ω̃. Indeed, it might be di�cult to represent the frequency dependency

of the FRF with a good accuracy. This can be seen for example in Figure 4.5a, where

the function q1(·, x) is displayed for several realizations x of X: we understand that, for a

given x, representing q1(·, x) on a polynomial basis for instance would require a very high

polynomial degree. One then ought to �nd other ways of representing such functions, for

instance by using bases of rational polynomials [52, 53], or in tree-based tensor format using

tensorization, as described in Chapter 5.

The full FRF q1 not being of major interest for Naval Group, another way to circumvent

this problem is to consider other quantities, derived from q1, with a dependency on ω less

complex to represent. This is the case for the one-third octave band FRF q2, which is

piece-wise constant in ω, and the envelope curve q3, which is piece-wise linear in ω, and

thus, in the transformed circular frequency space, for q̃2(ν, x) = q2(ω, x) which is piece-wise

constant in ν and for q̃3(ν, x) = q3(ω, x) which is piece-wise linear in ν. For q̃2, one could

for instance consider that Ω̃ is a discrete uniform random variable on the set of midpoints

of the one-third octave bands, and choose for the functions {φ1
i1
}i1∈I1 discrete polynomials

(see Remark 1.2.2).
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4.4.2 Approximation of the envelope curve q̃3(ν, x) of the frequency re-

sponse function of interest

We focus in this section on the problem of the approximation of the envelope curve of a

FRF of interest in the transformed circular frequency space, denoted by q̃3(ν, x).

As it can be seen in Figure 4.6a, the envelope curves of interest are piece-wise linear in ν,

with breakpoints corresponding to a selection of peaks of the FRF. One can see in Figure

4.6b that, in the transformed frequency space ν(ω, x;πref), the breakpoints of the envelope

curve share the same circular frequency, for any value of x, contrary to the envelopes in the

original circular frequency space in Figure 4.6a.
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(a) Envelope curves in the original circular fre-
quency space.
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(b) Envelope curves in the transformed circular
frequency space.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·103

110

120

130

140

ν (rad s−1)

q̃ 3
(ω

r
e
f

i
,x

)
(d
B
)

(c) Breakpoints of the envelope curves in the transformed circular frequency space. Notice the
variable number of points associated with each reference circular frequency.

Figure 4.6: Realizations of the envelope curve before and after transformation of the circular
frequency space, and training samples for the learning of the magnitude of the breakpoints
of the envelope.

Then, in order to approximate the envelope curve in the transformed frequency space, one

needs to learn the nrefω magnitudes of the breakpoints, as functions of the random input
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parameters x. More formally, the envelope curve writes

f(ν, x) =

nrefω −1∑
i=1

(
ν − ωrefi

ωrefi+1 − ωrefi
(fi+1(x)− fi(x)) + fi(x)

)
1ν∈[ωrefi ,ωrefi+1],

where the functions f1, . . . , fnrefω give the magnitudes of the reference peaks as a function of

x, and are to be approximated in tree-based tensor format using the algorithms proposed

in Chapters 1 and 2.

These functions being approximated by the functions g1, . . . , gnrefω respectively, the approx-

imated envelope curve writes

g(ν, x) =

nrefω −1∑
i=1

(
ν − ωrefi

ωrefi+1 − ωrefi
(gi+1(x)− gi(x)) + gi(x)

)
1ν∈[ωrefi ,ωrefi+1].

The approximation of fi, 1 ≤ i ≤ nrefω is constructed using the training sample Si =

{(xk, q1(ωk, xk))}k∈Ki , where Ki gathers the indices of the available realizations of X that

are such that there exists a circular frequency ωk of a peak of q1(·, xk) which is such that

ν(ωk, xk;π
ref) = ωrefi . In other words, the training sample to learn the magnitude of the i-th

reference peak is constituted of values of the magnitude of this peak for several realizations

of X. Figure 4.6c shows, for each reference circular frequency ωrefi , the training sample Si.

Remark 4.4.1. If, for a given realization x of X, the function ν(ω, x;πref) maps two or more

circular frequencies to the same reference circular frequency ωref
i , only the one associated with

the highest magnitude of the FRF of interest q1 is retained for the training sample Si.

4.5 Application to envelope learning: �rst results

We apply the proposed methodology to the problem of the approximation of the envelope

curve of the frequency response function of the sound pressure level of an underwater vehicle,

presented in Section 4.2.

In order to compute this approximated envelope curve, denoted by g, we need the circular

frequencies of the peaks and associated evaluations of the FRF for n realizations x1, . . . , xn of

X. As described in Section 4.2, these peaks circular frequencies are stored in πj , j = 1, . . . , n.

In this �rst study, we consider n = 190, with 10 other realizations serving as a validation

sample.

For a given realization xj , 1 ≤ j ≤ n, the peaks circular frequencies πj are obtained using

Algorithm 13, with the candidate peaks circular frequencies Ωj
p computed with a piece-wise

quadratic interpolation of the FRF on a uniform circular frequency grid of 200 points (1 per

Hertz). In an industrial context, this approach would be intractable, the expensive quantity

of interest needing to be evaluated on a �ne circular frequency grid for many realizations
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of the parameters; instead, one could solve for the signed eigenfrequencies of the FRF, that

can be obtained with software generally available in the industry.

4.5.1 Computation of the peaks aligning circular frequency transforma-

tion

We begin by computing the peaks aligning circular frequency transformation ν(ω, x;πref),

by applying the methodology described in Section 4.3. We choose N = 50 magic points,

and orthonormal polynomial bases of degree 10 for the approximation νl(x) of νtruel (x),

l = 1, . . . , N in Algorithm 14.

Table 4.1 presents the coe�cient of variation of the frequencies of the peaks of the FRFs of

the test sample associated with the reference peaks before and after the application of the

constructed circular frequency transformation. We see that, in most cases, the computed

transformation is able to reduce the dispersion around each reference frequency. However,

this decrease is often quite small, as it can be seen in Figure 4.7, where the reduction of the

dispersion is not distinguishable. Note that the 0 value for the dispersion around ωref6 is due

to the fact that only one point was available for the validation sample associated with this

reference circular frequency.

We then see that we were able to compute a circular frequency transformation ν(ω, x;πref)

using the proposed methodology, that o�ered an unsatisfactory precision, certainly due to

the small size of the training samples.

ωref1 ωref2 ωref3 ωref4 ωref5 ωref6 ωref7 ωref8 ωref9 ωref10 ωref11

Before 1.39 3.07 3.48 2.93 0.68 0 1.55 1.53 1.52 1.28 0.00
After 3.10 1.34 3.42 1.00 0.68 0 1.67 1.31 1.29 1.29 0.00

Table 4.1: Coe�cient of variation (in %) of the frequencies of the peaks associated with
the reference peaks, before and after the circular frequency transformation.

4.5.2 Approximation of the envelope curve in the transformed circular

frequency space

We now approximate, in the transformed circular frequency space, the magnitude of the

FRF at the reference circular frequencies, by applying the methodology of Section 4.4.2.

We choose orthonormal polynomial bases of degree 10 for the approximation gi of fi, i =

1, . . . , nrefω , the magnitude of the i-th reference peak.

Table 4.2 shows, for each reference circular frequency, the error on the magnitude of the

FRF, obtained on a validation sample. We see that we are able to predict, with a good

accuracy, these magnitudes, and hence the envelope curve of the FRF in the transformed

circular frequency space. This satisfactory match can also be seen in Figure 4.8 that depicts,

for each realization of the validation set, the true and approximated envelopes.
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(a) FRFs in the original circular frequency space.
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(b) FRFs in the transformed circular frequency
space.

Figure 4.7: E�ect of the computed circular frequency transformation on 10 validation FRFs.

ωref1 ωref2 ωref3 ωref4 ωref5 ωref6 ωref7 ωref8 ωref9 ωref10 ωref11

1.83 1.86 1.26 0.55 0.87 1.58 2.02 2.34 0.73 0.95 1.10

Table 4.2: Errors (in %) of the magnitude of the FRF at the reference peaks, on a test
sample of 10 realizations.

4.6 Conclusion

We proposed in this chapter a method dedicated to the uncertainty quanti�cation in vi-

broacoustics, that involves learning functions of random parameters using the algorithms

proposed in Chapters 1 and 2. The parameter-dependent circular frequency transforma-

tion ν(ω, x;πref), by aligning a selection of signed peaks of the FRF of interest with chosen

reference peaks, maximizes the similarity between its di�erent realizations. Then, in the

transformed circular frequency space, the magnitudes of the FRF at the reference circular

frequencies are approximated, to yield an approximation of the envelope curve of the FRF

q̃3(ν, x).

The proposed �rst results, obtained with a small training sample, are promising. Indeed,

we saw that the learned circular frequency transformation was able to reduce the dispersion

of most of the selected peaks of the FRF, and we obtained a satisfactory accuracy of the

approximation of the envelope curve of the FRF in the transformed space, given the small

size of the training sample.

This study should be continued, by analyzing the impact of all the steps of the proposed

method on the accuracy (selection of the peaks to align, number of magic points, etc.).

Furthermore, it would be interesting to perform this study with the real frequencies of the

peaks, and not with the frequencies interpolated from a grid of evaluations of the FRF, as

it was performed here. Finally, more training data should be generated, in order to increase

the accuracy of the computed approximations.
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(a) Test sample 1.
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(b) Test sample 2.

0 0.5 1

·103

110

120

130

140

ν(ω, x;πref) (rad s−1)

E
n
v
el
o
p
e
(d
B
)

(c) Test sample 3.
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(d) Test sample 4.
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(e) Test sample 5.
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(f) Test sample 6.
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(g) Test sample 7.
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(h) Test sample 8.
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(i) Test sample 9.
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(j) Test sample 10.

Figure 4.8: True (dashed line) and approximated (solid line) envelope curves of the FRF
q̃1 in the transformed frequency space, on a test sample of 10 realizations.
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Chapter 5

Tensorization of functions
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5.1 Introduction

We present, in this chapter, an exploratory work to study the potential of the identi�cation

of a univariate function with a multivariate function, called tensorization, and of its learning

in tree-based tensor format.

The quantized tensor-train (QTT) format [54, 35], a particular case of tensorization, has

been successfully applied to the identi�cation of vectors with 2d entries with 2 × · · · × 2

order-d tensors in tensor-train format to solve elliptic partial di�erential equations with a

very high spatial resolution [55, 56].

In Section 5.2, we propose a more general tensorization, where the base, denoted by b, is

not set to 2 (the case of quantization) but can be any integer greater than 1, and which can

encode functions de�ned on [0, 1[ instead of vectors or matrices. Tensorization enables the

use of the algorithms proposed in Chapters 1 and 2 for the learning of univariate functions

with tree-based tensor formats. In Section 5.3, we illustrate the potential of tensorization

and low-rank approximations, using as a test case a non-smooth frequency response function,

and study the in�uence of the base b and resolution d on the quality and storage complexity

of the obtained approximations. Finally, we study in Section 5.4 the performances of the

learning algorithms proposed in Chapters 1 and 2 applied to the approximation of the same
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non-smooth frequency response function for di�erent values of b, d and n, the training

sample size.

5.2 Tensorization of univariate functions and representation

in tree-based tensor format

We consider, without loss of generality, functions de�ned on the interval I = [0, 1[. An

element x ∈ I can be identi�ed with the tuple (i1, . . . , id, y), such that

x = tb,d(i1, . . . , id, y) =

d∑
k=1

ikb
−k + b−dy

with ik ∈ Ib = {0, . . . , b−1}, k = 1, . . . , d, and y = bdx−bbdxc ∈ [0, 1[. The tuple (i1, . . . , id)

is the representation in base b of bbdxc.

We then introduce a tensorization map Tb,d, which associates to a univariate function F

de�ned on I the multivariate function

f(i1, . . . , id, y) = F (tb,d(i1, . . . , id, y)),

de�ned on Idb × I.

It can be proved that Tb,d de�nes a linear isometry from L2(0, 1) to (RIb)⊗d ⊗ L2(0, 1), the

latter tensor space being equipped with the canonical inner product.

The tensor space

Vb,d,S = Vb,d ⊗ S = (RIb)⊗d ⊗ S,

with Vb,d = RIdb = (RIb)⊗d and S a subspace of functions de�ned on [0, 1[, is the set of linear

combinations of the elementary tensors

(f1 ⊗ · · · ⊗ fd ⊗ fd+1)(i1, . . . , id, y) = f1(i1) · · · fd(id)fd+1(y)

with fk ∈ RIb , k = 1, . . . , d, and fd+1 ∈ S. By convention, Vb,0,S = S. Vb,d,S therefore

de�nes a subspace in L2(0, 1). For S = Pp (polynomial space), Vb,d,S corresponds to piece-

wise polynomials on a uniform partition of I into bd elements.

Considering a dimension tree T over {1, . . . , d+ 1} and a tree-based rank r = (rα)α∈T , the

set of functions in tree-based tensor format in Vb,d,S writes

T Tr (Vb,d,S) = {g ∈ Vb,d,S : rankα(g) ≤ rα, α ∈ T}.

Using this identi�cation, one can apply all the procedures detailed in Chapters 1 and 2 for

the representation, approximation and learning of univariate functions in tree-based tensor

format.
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5.3 Illustration of the approximation of a tensorized frequency

response function

We are here interested in the tensorization and approximation in tree-based tensor format

of a univariate frequency response function, which has similar features to the frequency

response function of the sound power level of the underwater structure presented in Chapter

4, for a given realization of the random input parameters.

We study the vibrations of a bridge, depicted in Figure 5.1a. The �nite-element discretiza-

tion yields the following system to solve:

(−(x∆x+ xmin)2M + (1 + iη)K)U(x) = B

with x ∈ [0, 1[ the standardized circular frequency, xmin and xmax = xmin + ∆x the bounds

of the circular frequency domain, i the imaginary unit, M the mass matrix, K the sti�ness

matrix, η the loss factor characterizing the damping, and B the source vector. The number of

degrees of freedom isNdof = 8952. The solution U(x) contains the values of the displacement

uj(x) for all the nodes j of the mesh. The function of interest to approximate, denoted by

F , writes

F (x) = log

Ndof∑
j=1

uj(x)2

 ,

and is represented in Figure 5.1b.

(a) Geometry of the bridge.
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(b) Frequency response function F .

Figure 5.1: Description of the considered function.

We aim at approximating in tree-based tensor format the function f such that

f(i1, . . . , id, y) = F (tb,d(i1, . . . , id, y)),
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with b the base and d the resolution. The dimension of Vb,d being equal to bd, a function

f ∈ Vb,d,S admits a representation

f(i1, . . . , id, y) =

bd∑
i=1

ciφi(y),

with some coe�cients c1, . . . , cbd and functions {φi}bdi=1 in L2(0, 1). We choose to compute

a piece-wise interpolation Ib,d,pf of f :

Ib,d,pf(i1, . . . , id, y) =
bd∑
i=1

ciIpφi(y) ≈ f(i1, . . . , id, y),

where Ip denotes an interpolation operator on a polynomial space of degree p. The p + 1

interpolation points are chosen as the roots of the Chebyshev polynomial of �rst kind of

degree p+ 1.

The function Ib,d,pf is then approximated by a function g in tree-based tensor format using

a higher-order singular value decomposition (HOSVD) with a linear tree (denoted by T0)

and a tolerance of τ = 10−10, which is �nally optimized using Algorithm 5 of Chapter 1

(also with a tolerance of τ) to yield a tree T possibly reducing the storage complexity of the

approximation. The aim of this illustration is to study the capacities of tree-based tensor

formats to �nd a representation of Ib,d,pf , if it exists, with a storage complexity smaller

than (p+ 1)bd (the number of coe�cients of the interpolation), as a function of (b, d, p), the

base, resolution and polynomial degree respectively.

The obtained results are presented in Table 5.1 and Figure 5.2. The error ε is the relative L2

error between the approximation g in tree-based tensor format and the function f , estimated

with an independent test sample.

We can see that, as one could expect, increasing either b, d or p decreases the obtained error

ε while increasing the storage complexity C(T, r). We also see that the representation in

tree-based tensor format enables a decrease in storage complexity only below a certain error

level, or equivalently above a certain complexity. Above this error level, the representation

in tree-based tensor format yields a storage complexity greater than the complexity of

the interpolation, namely (p + 1)bd, as one can see in the rows of Tables 5.1a and 5.1b

corresponding to the smallest values of d considered for each b and p. This can also be

observed in Figure 5.2 that depicts, for all the considered tuples (b, d, p), the error versus

storage complexity of the original interpolation, of its approximation in tree-based tensor

format with the linear tree T0, and of the approximation with an optimized tree T . We see

that for small errors (ε less than approximately 4 · 10−3), the complexity (p+ 1)bd is above

both C(T0, r0) and C(T, r), whereas it is the opposite for errors greater than approximately

4 · 10−3. We notice a trend in the power of compression of the tree-based tensor format: we

obtain increasingly larger gains in storage complexity with the increase of (p+ 1)bd, which

means that this approach becomes more and more interesting with larger values of the base,
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the resolution and the degree.

An interesting result is the following: classically, the base b is chosen equal to 2 (the case of

quantization). Then, in order to decrease the error, one can either increase the resolution d

or the polynomial degree p. We see in Table 5.1 that considering (b, d, p) = (4, 5, 2) yields

both a smaller error and storage complexity than when considering (b, d, p) = (2, 12, 0)

(which corresponds to quantization). This shows that it is relevant not to consider b �xed

to 2, but on the contrary to search for the tuple (b, d, p) yielding the best performance (error

versus complexity).

We �nally notice that the tree adaptation algorithm is able, in some cases, to reduce the

storage complexity of the approximation by �nding a tree which is not the linear tree T0.

This can be seen for instance for (b, d, p) = (2, 12, 0), where the storage complexity is reduced

by approximately 12% with T instead of T0. This shows that it can be useful to consider

other trees than the linear tree, which is the one classically used in the literature, for instance

by performing tree adaptation with Algorithm 5 of Chapter 1.

103 104

10−3

10−2

Storage complexity

ε

(p+ 1)bd

C(T0, r0)

C(T, r)

Figure 5.2: Error versus storage complexity of Ib,d,pf and of its approximation in tree-based
tensor format, before and after tree adaptation, for several values of (b, d, p).

5.4 Learning tensorized functions in tree-based tensor format

In this section, we study the problem of the approximation of a tensorized function in a

statistical learning context, where, contrary to the previous section, one does not choose the

points at which the function to approximate is evaluated.

We seek to construct an approximation of the univariate frequency response function F

described in Section 5.3, and displayed in Figure 5.1b, in a supervised learning context.

We consider the contrast function γ(g, (x, y)) = (y−g(x))2, and we compute approximations

g of f(i1, . . . , id, y) = F (tb,d(i1, . . . , id, y)) for di�erent tuples (b, d), with b the base and d

the resolution. We choose S = Pp with a polynomial degree p = 2, and we exploit a possible

sparsity in C{d+1}, the parameters associated with the functions of the variable y. The

approximations are obtained with Algorithm 9 of Chapter 2, with rank and tree adaptation.
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b d ε · 103 (p+ 1)bd C(T0, r0) C(T, r)

2
10 4.67 1024 1766 1438
12 2.60 4096 3056 2678
14 0.57 16384 4424 4096

3
7 3.50 2187 2099 2099
8 1.30 6561 2975 2975
9 0.51 19683 4139 4139

4
5 6.79 1024 1478 1478
6 2.39 4096 2842 2754
7 0.65 16384 4378 4290

5
4 7.65 625 977 977
5 2.45 3125 2557 2557
6 0.59 15625 4257 4257

(a) p = 0.

b d ε · 103 (p+ 1)bd C(T0, r0) C(T, r)

2
8 6.69 768 1422 1077
10 2.22 3072 2726 2381
12 0.64 12288 3946 3518

3
5 5.65 729 1143 1035
6 3.07 2187 2016 2016
7 1.27 6561 2895 2893

4
4 6.69 768 1042 1042
5 2.22 3072 2342 2342
6 0.64 12288 3658 3658

5
3 12.6 375 573 573
4 4.50 1875 1828 1828
5 0.78 9375 3513 3368

(b) p = 2.

Table 5.1: Obtained results for the approximation of the tensorization of the frequency
response function F , for di�erent values of b, d and p.

The training sample is

S =
{(
t−1
b,d(xi), F (xi)

)}n
i=1

,

with x1, . . . , xn independent realizations of a uniform random variable on [0, 1], and with

tb,d de�ned in Equation 5.2. We consider three training sample sizes: n = 102, 103 and 104.

The obtained results are displayed in Table 5.2. We see that, with these training samples,

the proposed learning algorithm is able to construct approximations in tree-based tensor

format with small errors and storage complexities. We also see that the choice of the tuple

(b, d) has a great impact on the obtained error and storage complexity of the approximation.

Considering a resolution d = 12, which translates in the computation of a tensor of order

d + 1 = 13, yields bad results compared to the other tuples (b, d) in terms of error. This
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shows, once again, the importance of selecting the tuple (b, d) yielding the best results for

the amount of training data available.

Figure 5.3 shows the error versus storage complexity for the results of Table 5.2, as well

as for the HOSVD of Ib,d,2f for di�erent tuples (b, d) and tolerances τ . We know that

the approximation obtained by the HOSVD is a quasi-best approximation of Ib,d,2f in

T Tr (Vb,d,P2) (see Section 1.6 of Chapter 1), so that the dots of Figure 5.3 give upper bounds

of the best approximation error for several values of (b, d). We notice that the error as

a function of the storage complexity of the approximations obtained with the proposed

learning algorithms behaves similarly to this upper bound, which would indicate that the

performances of the proposed learning algorithms are comparable with the ones of the

HOSVD in that case.

We see in Table 5.2 that cross validation provides a good estimation of the error. However,

it might not be accurate enough to select the optimal tuple (b, d) for a given n, as one can

see with n = 104, (b, d) = (4, 5) and (b, d) = (4, 6): the approximation with the smallest

error would be (b, d) = (4, 6) if we used the cross-validation error estimator of the error,

whereas we see that, in fact, the approximation with (b, d) = (4, 5) yields the smallest error

on an independent validation set. Once again, these results show the need for a robust

method to select a good tuple (b, d).

102 103

10−3

10−2

Storage complexity

ε

HOSVD of Ib,d,2f
Learning in T T

r (Vb,d,P2)

Figure 5.3: Error versus storage complexity of the approximation obtained with a HOSVD
of Ib,d,2f for several values of (b, d) and truncation tolerances τ , and with the proposed
learning algorithm for several values of (b, d) and n, with p = 2.

5.5 Conclusion

We studied, in this exploratory chapter, the possibility to apply the algorithms proposed

in Chapters 1 and 2 for learning univariate functions in tree-based tensor format, using an

identi�cation of a function of the variable x with a function of the tuple (i1, . . . , id, y) called

tensorization.
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b d ε · 102 CV err·102 C(T, r)

2
10 5.61 4.53 33
12 5.39 4.74 39

3
6 4.93 4.85 27
7 3.79 2.34 70

4
5 4.95 4.01 28
6 4.90 4.07 33

5
4 4.50 4.21 27
5 3.50 3.54 46

(a) n = 102.

b d ε · 102 CV err·102 C(T, r)

2
10 5.01 4.89 33
12 5.03 4.87 39

3
6 1.58 0.71 228
7 1.68 1.02 128

4
5 1.87 1.58 142
6 2.43 1.97 119

5
4 1.80 1.56 105
5 1.82 1.22 46

(b) n = 103.

b d ε · 103 CV err·103 C(T, r)

2
10 2.68 2.96 521
12 49.9 49.6 39

3
6 1.98 2.31 549
7 1.65 1.92 639

4
5 2.88 3.34 498
6 2.94 2.47 628

5
4 3.76 4.13 431
5 2.54 2.42 559

(c) n = 104.

Table 5.2: Obtained results for the learning of the tensorization of the frequency response
function F , for di�erent values of b, d and n, with p = 2.

We highlighted in an illustration the importance of the proper choice of the tuple (b, d, p),

namely the base, resolution of the tensorization and the polynomial degree, which can have a

great impact on the error and storage complexity of the approximation. We also showed that

the learning algorithms proposed in Chapters 1 and 2 can be applied to the approximation

of tensorized functions, and can yield approximations with a good convergence of the error

as a function of the storage complexity. It would then be interesting to derive from these

algorithms new adaptive algorithms to learn univariate functions in tree-based tensor format,

with adaptation of b and d as well as of the dimension tree T and tree-based rank r.

Furthermore, robust model selection strategies ought to be developed to be able to select

the best tuple (b, d) without relying on an independent validation set.

Finally, we showed, thanks to the tree adaptation Algorithm 5 of Chapter 1, that the linear

tree, which is the natural tree used in the quantized tensor-train format, is not always

optimal. Indeed, we found that the algorithm was sometimes able to �nd a representation

of the approximation with a tree yielding a smaller storage complexity than with a linear

tree. A more thorough analysis of the complexity reduction enabled by the tree adaptation

with respect to the base b and the resolution d should give more insights about what can

be expected from it.
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Conclusion and future work

The main objectives of this thesis were the development of adaptive algorithms for the

learning of multivariate functions in tree-based tensor format, and their application to un-

certainty quanti�cation in vibroacoustics.

In Chapter 1, after a presentation of the model class of functions in tree-based tensor

format and of some useful representations and algorithms, we proposed a novel algorithm

that performs dimension tree adaptation. This stochastic algorithm, which constitutes the

main contribution of this chapter, optimizes the dimension tree of the representation of a

function in tree-based tensor format, by randomly modifying the tree and retaining the one

yielding the smallest storage complexity. In some cases, we observed that the tree thus

obtained, and associated with a small storage complexity, gave information on the structure

of the function, for instance the dependency structure of a probabilistic model.

Chapter 2 was devoted to the development of adaptive learning algorithms with tree-based

tensor formats. The main contribution of this chapter was a learning algorithm adapting

both the dimension tree (as presented in the previous chapter) and the tree-based rank,

using a heuristic algorithm that incrementally increases subsets of α-ranks associated with

the highest truncation errors. This adaptive learning algorithm was presented in the general

context of statistical learning, and speci�ed for the case of least-squares regression and least-

squares density estimation, cases of supervised and unsupervised learning respectively. We

illustrated the performances of the proposed algorithm in these two settings with several

numerical experiments.

The main contribution of Chapter 3 was a learning algorithm with formats combining tree-

based tensors and changes of variables. This algorithm returns a sequence of approximations

with increasing e�ective dimension (the dimension of the range of the change of variables).

The loss of multilinearity of the format caused by the introduction of the change of vari-

ables prevented from recasting the nonlinear minimization problem into a series of linear

learning problems, as done in the algorithms of Chapter 2. The proposed algorithm then

involved the solution of both linear and nonlinear minimization problems. We saw, by ap-

plying it on several test cases, that this algorithm was sometimes able to compute accurate

approximations with a storage complexity much smaller than without considering changes

of variables.

We developed in Chapter 4 a method dedicated to the uncertainty quanti�cation in vibroa-

coustics. The problem to tackle was the approximation of a frequency response function,

namely the sound power level of an underwater structure, which is a quantity of interest



116 Conclusion and future work

for Naval Group, and which depends on the circular frequency ω and on random param-

eters x. The main contribution of this chapter was the development of a methodology to

compute the envelope curve of this frequency response function, which depends on ω and

x, in a transformed circular frequency space ν(ω, x) where some signed peaks of the fre-

quency response function are aligned. We used the algorithms proposed in Chapters 1 and

2 to compute the circular frequency transformation ν(ω, x) and the approximation of the

envelope of the frequency response function.

Finally, we showed in Chapter 5 that the algorithms proposed in Chapters 1 and 2 can be

applied to the learning of univariate functions, using an identi�cation of a univariate function

with a multivariate function known as tensorization. This constitutes the main contribution

of this exploratory chapter, along with the observation of the interest to consider bases b

di�erent from 2 (known as quantization) and trees di�erent from the linear tree (which are

classically considered in the literature). This approach can be used to represent non-smooth

functions, such as the frequency response functions studied in Chapter 4.

Some aspects of this thesis would deserve further analyses and developments. It would be

interesting for the tree adaptation algorithm of Chapter 1 to allow the transition between

trees of di�erent arities. Furthermore, the in�uence of the parameters of the probability dis-

tributions involved in this stochastic algorithm should be studied. Similarly, the tree-based

rank adaptation proposed in Chapter 2 relies on a heuristic that would deserve a deeper

analysis. This algorithm providing a sequence of approximations with increasing complex-

ity, the development of robust model selection methods that do not rely on an independent

validation sample is crucial to select the best approximation in this sequence. The problem

of being able to well select a model also arises when introducing changes of variables, as

done in Chapter 3. The loss of the multilinearity of the format combining tree-based tensors

and changes of variables calls for the study and development of more robust algorithms able

to handle the nonlinearity induced by the change of variable. The �rst results presented

in Chapter 4, although encouraging, should be further studied, by analyzing the in�uence

of each step of the proposed method on its accuracy. Furthermore, more data should be

generated, in order to improve its global performances. We focused in this chapter on the

approximation of the envelope curve of the frequency response function; however, it might

be of industrial interest to be able to approximate the frequency response function itself,

which is, for one realization of its random parameters, a non-smooth univariate function

of the circular frequency. Following the �rst results of Chapter 5, it would be interesting

to propose learning algorithms of univariate functions with tree-based tensor formats, with

the adaptation of the dimension tree T and tree-based rank r, but also of the base b and

resolution d of the tensorization.
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In this appendix, we discuss di�erent types of representation of probability distributions

using tree-based tensor formats, and provide some results on the relations between the

ranks of these representations. We then provide several examples of standard probabilistic

models, and discuss their representation in tree-based tensor format.

A.1 Representation of a probability distribution

The probability distribution of the random variable X = (X1, . . . , Xd) is characterized by

its cumulative distribution function F (x) = P(X ≤ x). In the following, we assume that

the distribution admits a density f(x) with respect to a product measure µ = µ1⊗ · · · ⊗ µd
on Rd (e.g. the Lebesgue measure), such that

F (x) =

∫
{t≤x}

f(t)dµ(t).

This includes the case of a discrete random variable taking values in a �nite or countable

set X = X1 × · · · × Xd, with measure ρ =
∑

x∈X P(X = x)δx, by letting f(x) := P(X = x)

and µ :=
∑

x∈X δx. In this case, f is identi�ed with an element of RX = RX1×···×Xd .
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Proposition A.1.1. Assume that the distribution F admits a density f with respect to a

product measure µ. Then for any α ⊂ D,

rankα(F ) ≤ rankα(f).

Moreover, if µ is the Lebesgue measure,

rankα(F ) = rankα(f).

Proof. If f(x) =
∑r

k=1 f
α
k (xα)fα

c

k (xαc), then F (x) =
∑r

k=1 F
α
k (xα)Fα

c

k (xαc), F
β
k (xβ) =∫

{tβ≤xβ} f
β
k (tβ)dµβ(tβ) for β = α and αc. This implies rankα(F ) ≤ rankα(f). If µ is the

Lebesgue measure and F (x) =
∑r

k=1 F
α
k (xα)Fα

c

k (xαc), then almost everywhere, f(x) =∑r
k=1 f

α
k (xα)fα

c

k (xαc) with f
β
k (xβ) = ∂xν1 · · · ∂xν#βF

β
k (xβ), β = {ν1, . . . , ν#β}. This implies

rankα(F ) ≥ rankα(f).

Remark A.1.2. Note that the above framework and results can be extended to the case

where a random variable Xν is either continuous or discrete, by letting µν be either the

Lebesgue measure or a discrete measure.

For 1 ≤ ν ≤ d, let us denote by Fν : Xν → [0, 1] the marginal cumulative distribution

function of Xν . By Sklar's theorem, there exists a copula C : [0, 1]d → [0, 1] such that

F (x) = C(F1(x1), . . . , Fd(xd)).

Proposition A.1.3. For all α ⊂ D, if C is a copula of X,

rankα(F ) ≤ rankα(C).

If F admits a density f with respect to the Lebesgue measure, then X admits a unique copula

C with density c and

rankα(F ) = rankα(C) = rankα(f) = rankα(c).

Proof. If C(u) =
∑r

k=1C
α
k (uα)Cα

c

k (uαc), then F (x) =
∑r

k=1C
α
k (uα)Cα

c

k (uαc) with uν =

Fν(xν). This implies rankα(F ) ≤ rankα(C). If F admits a density with respect to

the Lebesgue measure, then C(u) = F (F−1
1 (u1), . . . , F−1

d (ud)), and if it writes F (x) =∑r
k=1 F

α
k (xα)Fα

c

k (xαc), then C(u) =
∑r

k=1 F
α
k (xα)Fα

c

k (xαc) with xν = F−1
ν (uν). This im-

plies rankα(C) ≤ rankα(F ), and therefore rankα(F ) = rankα(C). The other equalities are

deduced from proposition A.1.1.

A.2 Mixtures

Consider a random variable X = (X1, . . . , Xd) which is a mixture of m random variables

Zi = (Zi1, . . . , Z
i
d) with weights γi, 1 ≤ i ≤ m, such that

∑m
i=1 γi = 1. Let f and f i denote



A.3. Markov processes 119

the densities with respect to a product measure µ of the probability distributions of X and

Zi respectively. We have

f(x) =

m∑
i=1

γif
i(x).

From Proposition 1.3.2, we know that for any α ⊂ D, rankα(f) ≤∑m
i=1 rankα(f i), therefore,

for any tree T ,

rankT (f) ≤
m∑
i=1

rankT (f i).

Assuming that Zi has independent components Zik with densities f ik, we have f i(x) =

f i1(x1) · · · f id(xd) with rankα(f i) = 1 for any α, and therefore, for any tree T , rankT (f) ≤ m.

Assume now that the function f i is represented in a tree based format with tree T i. For any

α ⊂ D, there exists a subset T iα of T i which forms a partition of α, and from Proposition

1.3.1, we have rankα(f i) ≤∏β∈T iα rankβ(f i), and therefore

rankα(f) ≤
m∑
i=1

∏
β∈T iα

rankβ(f i) := Rα.

Then a dimension tree for the representation of f could be chosen to minimize the complexity

C(T,R) using the above upper bound R = (Rα)α∈T of the T -rank of f .

A.3 Markov processes

Consider a discrete time Markov process X = (X1, . . . , Xd) whose density is given by

f(x) = fd|d−1(xd|xd−1) · · · f2|1(x2|x1)f1(x1),

where f1 is the density of X1 and fi|i−1(·|xi−1) is the density of Xi knowing Xi−1 = xi−1.

Let mi be the rank of the bivariate function (t, s) 7→ fi|i−1(t|s), i = 2, . . . , d.

Let

T = {{1, . . . , d}, {1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d− 1}}

be the linear tree of Figure A.1a. We note that rank{1}(f) = rank(f2|1) = m2, rank{d}(f) =

rank(fd|d−1) = md and for 2 ≤ ν ≤ d−1, rank{ν}(f) ≤ rank(fν|ν−1)rank(fν+1|ν) = mνmν+1.

Also, for 1 < ν < d, we have that rank{1,...,ν}(f) = rank(fν+1|ν). Letting m = maximi, we

deduce that f has a representation in tree-based format with complexity in O(m4). Note

that the choice of tree is here crucial. Indeed, a di�erent ordering of variables may lead

to ranks growing exponentially with the dimension d. For instance, consider the tree T̃

represented in Figure A.1b, with T̃ = {σ(α) : α ∈ T} with the permutation

σ = (1, 3, . . . , 2

⌊
d+ 1

2

⌋
− 1, 2, 4, . . . , 2

⌊
d

2

⌋
).
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For α = {1, 3, . . . , 2k + 1}, with k ≤ bd+1
2 c − 1, we have rankα(f) ≤ m2m3 · · ·m2k+2 ≤

m2k+1 if 2k + 1 < d, and rankα(f) ≤ m2m3 · · ·m2k+1 ≤ m2k if 2k + 1 = d. Therefore,

the representation in the corresponding tree-based format has a complexity in O(m2d−2).

Example A.3.1 presents a Markov process for which the tree-based rank exhibits such a

behavior. Therefore, when the structure of the Markov process is not known, a procedure

for �nding a suitable tree should be used (see Section 1.8 for the description of the proposed

tree optimization algorithm).

{1, . . . , d}

{1} {2}

{d− 1}

{d}

(a) Linear dimension tree T .

{1, . . . , d}

{1} {3}

{2bd+1
2 c − 1}

{2}

{4}
{2bd2c}

(b) Linear dimension tree T̃ .

Figure A.1: Examples of linear dimension trees.

Example A.3.1 (Discrete state space Markov process). We consider the discrete time

discrete state space Markov process X = (X1, . . . , X8), where each random variable Xν

takes values in Xν = {1, . . . , 5}. The distribution of X writes

f(i1, . . . , i8) := P(X1 = i1, . . . , X8 = i8) = f8|7(i8|i7) · · · f2|1(i2|i1)f1(i1)

with f1(i1) = 1/5 for all i1 ∈ X1, and for ν = 1, . . . , d − 1, fν+1|ν(iν+1|iν) = P νiν ,iν+1

the (iν , iν+1) component of a randomly chosen rank-2 transition matrix P ν . We then have

rank(fν+1|ν) = m = 2 for ν = 1, . . . , d− 1.

We �rst compute a representation of f in tree-based format with the tree T depicted in

Figure A.1a (using a truncation algorithm at precision 10−13, as described in Section 1.6),

the obtained α-ranks are shown in Figure A.2a. We then compute a representation of f in

tree-based format with the tree T̃ depicted in Figure A.1b (with the same precision 10−13), to

obtain the α-ranks shown in Figure A.2b. We see that maxα∈T rankα(f) = 4 = m2 whereas

max
α∈T̃ rankα(f) = 128 = 27 = md−1. As a consequence, the storage complexity of the

representation is equal to 240 with T , and to 35088 with T̃ , more than 146 times larger.
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(a) α-ranks when using T .
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(b) α-ranks when using T̃ .

Figure A.2: Obtained α-ranks when representing the Markov process of Example A.3.1 in
tree-based format with two di�erent linear dimension trees.

A.4 Graphical models

Let us consider a graphical model with a density of the form

f(x) =
∏
β∈C

gβ(xβ)

where C ⊂ 2D represents the cliques of a graph G with nodes {1}, . . . , {d}.

Consider α ⊂ D. First note that if α ∈ C, then rankα(gα) = 1. Also, for a clique β such

that either β ⊂ α or β ⊂ αc, rankα(gβ) = 1. Then let Cα be the set of cliques that intersect

both α and αc,

Cα = {β ∈ C : β ∩ α 6= ∅, β ∩ αc 6= ∅}.

Since C \ Cα = {β ∈ C : β ⊂ αc or β ⊂ α}, and from Proposition 1.3.2, we have

rankα(f) = rankα(
∏
β∈Cα

gβ) ≤
∏
β∈Cα

rankα(gβ).

Assuming that the α-ranks of all functions gβ are bounded by m, we have

rankα(f) ≤ m#Cα = Rα.

For the representation of f in tree-based tensor format, a tree T could be chosen such that it

minimizes the complexity C(T,R), with R = (Rα)α∈T the above upper bound of the T -rank

of f .

Example A.4.1. The motivating example of Section 1.8.1 corresponds to a graphical model

(whose graph is displayed in Figure 2.15), in dimension d = 10 with f(x) = P(X = x). This

example shows the importance of the choice of the dimension tree on the storage complexity
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of the representation, as well as that the dimension tree yielding the smallest storage com-

plexity can carry information about the dependence structure of the probabilistic model, by

containing nodes associated with cliques of the graph.
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We begin by presenting in this appendix some properties of orthonormal polynomials, then

we introduce the three-term recurrence relation used to construct them and some usual

families of orthonormal polynomials. We then propose a methodology to construct a family

of polynomials orthonormal with respect to a measure estimated from a sample. Finally,

we show how to deduce from the family of polynomials orthonormal with respect to the

measure of a random variable Z, the family of polynomials orthonormal with respect to the

measure of the random variable X = sZ+ b, with b and s real numbers, that we call shifted

orthonormal polynomials.

B.1 Properties of orthonormal polynomials

A family of polynomials {pi}i≥0 is said to be orthonormal with respect to the measure µ if

〈pi, pj〉 :=

∫
R
pi(x)pj(x)dµ(x) = δij ,

with δij the Kronecker delta.
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We denote by X the random variable with probability measure µ and with values in X ⊂ R,
and by mn the n-th moment of X, such that

mn =

∫
X
xndµ(x).

The polynomial pn, n ≥ 0, then writes

pn(x) = cn det



m0 m1 · · · mn

m1 m2 · · · mn+1

...
...

. . .
...

mn−1 mn · · · m2n−1

1 x · · · xn


,

with cn a normalizing constant such that 〈pn, pn〉 = 1.

Another way to compute pn, n ≥ 0, is to use a Gram-Schmidt procedure. Beginning with

p̃0(x) = p0(x) = 1, the non-normalized polynomial p̃n+1 writes

p̃n+1(x) = qn+1(x)−
n∑
k=0

〈qn+1, p̃k〉
〈p̃k, p̃k〉

p̃k(x)

with qn+1(x) = xn+1. The normalized polynomial pn+1 writes

pn+1(x) = p̃n+1(x)〈p̃n+1, p̃n+1〉−1/2.

However, in practice, due to rounding errors, this procedure might yield polynomials that

are not exactly orthogonal. We then use another way of generating families of orthogonal

polynomials yielding better results: the three-term recurrence relation.

B.2 Three-term recurrence relation for orthogonal polynomi-

als

It can be shown that orthogonal polynomials of a same family follow the recurrence formula

p̃n+1(x) = (x− αn)p̃n(x)− βnp̃n−1(x), n ≥ 0,

with p̃−1(x) = 0, p̃0(x) = 1,

αn =
〈p̃n, xp̃n〉
〈p̃n, p̃n〉

, βn =
〈p̃n, p̃n〉
〈p̃n−1, p̃n−1〉

. (B.1)

and pn+1(x) = p̃n+1(x)/γn+1, with γn+1 = 〈p̃n+1, p̃n+1〉1/2.

This recurrence formula is interesting because the coe�cients αn, βn and γn can sometimes

be known explicitly (some examples can be found in Section B.3). This way of generating
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the polynomials can then yield better results than the Gram-Schmidt procedure presented

above, by reducing the rounding errors in the computation of the inner products.

An interesting property is as follows: the roots of pn are the eigenvalues of the Jacobi matrix

J =



α0
√
β1√

β1 α1
√
β2√

β2 α2
√
β3

√
β3

. . .
. . .

. . . αn−3

√
βn−2√

βn−2 αn−2

√
βn−1√

βn−1 αn−1


. (B.2)

This is useful for instance to compute the Gauss quadrature points associated with a measure

µ, as it is done in Section B.4.

B.3 Some classical orthonormal polynomials

We present in this section three examples of families of orthonormal polynomials, for which

the recurrence coe�cients are known explicitly.

Legendre polynomials. The Legendre polynomials are associated with the standard

uniform random variable X ∼ U(−1, 1) with values in X = [−1, 1]. They are orthonormal

with respect to the measure µ such that dµ(x) = 1
21x∈Xdx. The coe�cients of the three-

term recurrence relation and the norms write, for n ≥ 0,

αn = 0, βn =
n2

4n2 − 1
, γn =

√
1

2n+ 1

2nn!2

(2n)!
.

Hermite polynomials. The Hermite polynomials are associated with the standard nor-

mal random variable X ∼ N (0, 1) with values in X = R. They are orthonormal with

respect to the measure µ such that dµ(x) = 1
2π exp(−x2/2)1x∈Xdx. The coe�cients of the

three-term recurrence relation and the norms write, for n ≥ 0,

αn = 0, βn = n, γn =
√
n!.

Jacobi polynomials. The Jacobi polynomials are associated with the beta random vari-

able X ∼ Beta(α+1, β+1) with values in X = [−1, 1], with α, β > 0. They are orthonormal

with respect to the measure µ such that dµ(x) = (1− x)α(1 + x)β1x∈Xdx. The coe�cients
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of the three-term recurrence relation and the norms (found in [57]) write, for n ≥ 0,

αn =
β2 − α2

(α+ β + 2n)(α+ β + 2n+ 2)
,

βn =
4n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β)2(2n+ α+ β + 1)(2n+ α+ β − 1)
,

γn =

√
2α+β+2n+1Γ(α+ n+ 1)Γ(β + n+ 1)Γ(α+ β + n+ 1)n!

Γ(α+ β + 2n+ 1)Γ(α+ β + 2n+ 2)
,

with Γ(z) :=
∫∞

0 xz−1 exp(−x)dx, <(z) > 0, the gamma function.

The Chebyshev polynomials of the �rst kind are a particular case of the Jacobi polynomials

with α = β = −1/2. The roots of the Chebyshev polynomials of the �rst kind, that can

be found by computing the eigenvalues of the associated Jacobi matrix (B.2), are widely

used as interpolation points, that give nice properties to the interpolation for polynomial

approximation.

The Legendre polynomials are also (up to a coe�cient) a particular case of the Jacobi

polynomials, with α = β = 0.

B.4 Empirical orthonormal polynomials

In some cases, for instance in Chapter 3, one wishes to create a family of polynomials

orthonormal with respect to the probability density function of a random variable X, es-

timated from a sample of X. We propose in this section a methodology to build such a

family, that we call empirical orthonormal polynomials. This methodology involves two ma-

jor steps: �rst, estimate the density of the unknown measure from the sample, using a kernel

density estimator, then, compute the coe�cients of the three-term recurrence relation.

B.4.1 Estimation of the density of the random variable

We assume that we have at our disposal a sample S = {(xi−m)/σ}ni=1, with xi a realization

of a random variable X with unknown density fX , and where m = 1
n

∑n
i=1 xi and σ2 =

1
n−1

∑n
i=1(xi −m)2 are the empirical mean and standard deviation of S, respectively.

We estimate the density fZ of the standard random variable Z = (X−E(X))/
√

V(Z) with

the kernel density estimator

f̂Z(z) =
1

nh

n∑
k=1

K

(
z − zk
h

)

with zk = (xk − m)/σ, k = 1, . . . , n, where K is a kernel (de�ning a probability density

function), and where h is called the bandwidth, which is a real positive number that needs

to be chosen.
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Here, we use the Gaussian kernel

K(z) =
1

2π
exp(−z

2

2
),

and h is selected following Scott's rule [44]:

h = 3.5n−
1
3 .

This rule is optimal for samples from normal random variables, however, it is an e�cient

way of computing a bandwidth that yields su�ciently good results for many distributions

and applications.

B.4.2 Estimation of the coe�cients of the three-term recurrence relation

Once the density fZ of Z has been approximated by f̂Z , one can compute the coe�cients

of the three-term recurrence relation using Equation (B.1).

To estimate the di�erent inner products appearing in (B.1), we use a Gaussian quadrature

rule: consider the measure ν such that dν(z) = K(z)dz, then

∫
R
g(z)dν(z) =

∫
R
g(z)K(z)dz ≈

N∑
l=1

wlg(ξl) =: QνN (g),

with {ξl}Nl=1 and {wl}Nl=1 the points and weights of the Gauss quadrature rule, respectively.

The quadrature points are the roots of the polynomials of degrees 0 toN−1, orthogonal with

respect to ν, and are computed by �nding the eigenvalues of the associated Jacobi matrix

(B.2). The quadrature weights are related to the eigenvectors V i of (B.2): wi = (V i
1 )2/‖V i‖2,

i = 1, . . . , N . This way of computing the quadrature points and weights is known as

the Golub-Welsch algorithm [58]. This quadrature rule is exact for polynomials of degree

δ ≤ 2N − 1.

The inner products in (B.1) can then be computed as follows:∫
R
p̃i(z)p̃j(z)f̂Z(z)dz =

1

nh

n∑
k=1

∫
R
p̃i(z)p̃j(z)K

(
z − zk
h

)
dz,

=
1

n

n∑
k=1

∫
R
p̃i(hξ + zk)p̃j(hξ + zk)K(ξ)dξ,

=
1

n

n∑
k=1

QνN (p̃i(h ·+zk)p̃j(h ·+zk)),

with 2N − 1 ≥ i+ j so that the quadrature rule is exact.

Here, we consider a Gaussian Kernel: the quadrature points are the roots of the Hermite

polynomials; this special form of quadrature is called a Gauss-Hermite quadrature.
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Algorithm 15 presents the proposed way of computing the coe�cients of the three-term

recurrence relation.

Algorithm 15 Computation of the recurrence coe�cients for orthonormal polynomials.

Inputs: density f̂Z with respect to which the polynomials are orthonormal, estimated with

a kernel density estimator with kernel K, maximal degree δ of the polynomials

Outputs: coe�cients αi, βi and γi, i = 0, . . . , δ − 1

1: compute the Gaussian quadrature points {ξi}δi=1 and weights {wi}δi=1 associated with

the measure ν such that dν(z) = K(z)d(z), to exactly integrate polynomials of degree

less or equal than 2δ − 1

2: set β0 = 0 and γ0 = 1

3: compute α0 =
∫
R zf̂Z(z)dz with the Gaussian quadrature rule

4: set p̃−1(z) = 0

5: set p̃0(z) = 1

6: for i = 1, . . . , δ − 1 do

7: compute p̃i(z) = (z − αi−1)p̃i−1(z)− βi−1p̃i−2(z)

8: compute γi =
√
〈p̃i, p̃i〉 with the Gaussian quadrature rule

9: compute αi = 〈p̃i, zp̃i〉/γ2
i with the Gaussian quadrature rule

10: compute βi = γ2
i /γ

2
i−1

11: end for

12: compute p̃δ(z) = (z − αδ−1)p̃δ−1(z)− βδ−1p̃δ−2(z)

Remark B.4.1. In practice, because of the �nite precision arithmetic involved, the polyno-

mials obtained with Algorithm 15 might not be exactly orthonormal, in the sense that 〈pi, pj〉
might not be equal to δij, especially for large i, j. It is then necessary to ensure that 〈pi, pj〉
does not deviate �too much� from δij. This deviation can be used as a stopping criterion in

Algorithm 15.

B.5 Shifted orthonormal polynomials

The coe�cients of the three-term recurrence relation are exactly known for some usual

standard random variables, a few examples being presented in Section B.3. Knowing the

orthonormal polynomials pi associated with a random variable Z, one can easily compute

the orthonormal polynomials p̂i associated with the random variable X = sZ + b:

p̂i(x) = pi

(
x− b
s

)
with b and s real numbers. We call these new polynomials shifted orthonormal polynomials.

If X is with values in X = [xl, xr], then Z is with values in Z = [(xl − b)/s, (xr − b)/s].
Example B.5.1 (Uniform random variable on [xl, xr]). If X ∼ U(xl, xr) with X = [xl, xr],

then b = (xl + xr)/2, s = (xr − xl)/2 and Z ∼ U(−1, 1) with Z = [−1, 1], whose associated

orthonormal polynomials are the Legendre polynomials.
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Example B.5.2 (Normal random variable with mean m and standard deviation σ). If

X ∼ N (m,σ2) with X = R, then b = m, s = σ and Z ∼ N (0, 1) with Z = R, whose
associated orthonormal polynomials are the Hermite polynomials.

Denoting by fX the density of X and by fZ the density of Z, the moment E(p̂i(X)p̂j(X))

writes, for i, j ≥ 0,

E(p̂i(X)p̂j(X)) =

∫
X
p̂i(x)p̂j(x)fX(x)dx,

=

∫
X
pi

(
x− b
s

)
pj

(
x− b
s

)
fX(x)dx,

=

∫
Z
pi(z)pj(z)sfX(sz + b)dz,

=

∫
Z
pi(z)pj(z)fZ(z)dz,

= δij ,

which shows the orthonormality of the family.

Finally, denoting by rij the roots of pi, and by r̂ij the roots of p̂i, we have

r̂ij = srij + b, 1 ≤ j ≤ i.
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Titre : Apprentissage statistique avec des formats de tenseurs basés sur des arbres– Application à la 
quantification d’incertitudes en vibroacoustique 

Mots clés : Apprentissage statistique, approximation en haute dimension, réseaux de tenseurs basés sur des 
arbres, formats de tenseurs hiérarchiques, algorithmes adaptatifs, quantification d’incertitudes 

Résumé : De nombreux problèmes nécessitent 
l’évaluation de modèles paramétrés complexes pour 
de nombreuses valeurs des paramètres, en 
particulier pour la quantification d’incertitudes. Quand 
le modèle est coûteux à évaluer, il est souvent 
approximé par un autre modèle, moins coûteux à 
évaluer. 
 
L’objectif de cette thèse est de développer des 
méthodes d’apprentissage statistique utilisant des 
classes de fonctions au format de tenseurs basés sur 
des arbres pour l’approximation de fonctions en 
haute dimension, pour l’apprentissage supervisé et 
non supervisé. Ces classes de fonctions, qui sont 
structurés par rangs et paramétrées par un réseau de 
tenseurs de faible ordre à structure d’arbre, peuvent 
être interprétées comme des réseaux de neurones 
profonds avec une architecture et des fonctions 
d’activation particulières. L’approximation est 
obtenue par minimisation du risque empirique sur 
l’ensemble des fonctions au format de tenseurs 
basés sur des arbres. 
 

Pour l’approximation de fonctions en haute 
dimension, ou quand peu d’information sur la 
fonction est disponible, la classe de fonctions doit 
être soigneusement choisie. Nous proposons des 
algorithmes d’apprentissage stables qui adaptent 
l’arbre et les rangs et sélectionnent le modèle en 
s’appuyant sur des estimateurs de validation 
croisée. De plus, certaines fonctions peuvent 
n’exhiber une structure de faible rang qu’après un 
changement de variables adapté. Dans de tels cas, 
nous proposons des algorithmes d’apprentissage 
adaptatifs avec des classes de fonctions combinant 
formats de tenseurs basés sur des arbres et 
changements de variables. 
 
Les algorithmes proposés sont appliqués à la 
quantification d’incertitudes en vibroacoustique. 
 
Cette thèse est incluse dans le Joint Laboratory of 
Marine Technology entre Naval Group, Centrale 
Nantes et l’Université de Nantes, et dans le projet 
Eval-PI. 

 

Title: Learning with tree-based tensor formats–Application to uncertainty quantification in 
vibroacoustics 

Keywords:  Statistical learning, high-dimensional approximation, tree tensor networks, hierarchical tensor 
format, adaptive algorithms, uncertainty quantification 

Abstract:  Many problems require the evaluation of 
complex parametrized models for many instances of 
the parameters, particularly for uncertainty 
quantification. When the model is costly to evaluate, 
it is usually approximated by another model cheaper 
to evaluate. 
 
The aim of this thesis is to develop statistical learning 
methods using model classes of functions in tree-
based tensor formats for the approximation of high-
dimensional functions, both for supervised and 
unsupervised learning tasks. These model classes, 
which are rank-structured functions parametrized by 
a tree-structured network of low-order tensors, can 
be interpreted as deep neural networks with 
particular architecture and activation functions. The 
approximation is obtained by empirical risk 
minimization over the set of functions in tree-based 
tensor format. 
 

For a high-dimensional function, or when little 
information on the function is available, the model 
class has to be carefully selected. We propose 
stable learning algorithms that adapt the tree and 
ranks and select the model based on cross-
validation estimates. Furthermore, some functions 
might only exhibit a low-rank structure after a 
suitable change of variables. For such cases, we 
propose adaptive learning algorithms with model 
classes combining tree-based tensor formats and 
changes of variables. 
 
The proposed algorithms are applied to uncertainty 
quantification in vibroacoustics. 
 
This thesis is included in the Joint Laboratory of 
Marine Technology between Naval Group, Centrale 
Nantes and Université de Nantes, and in the Eval-PI 
project. 
 

 


