
HAL Id: tel-02493124
https://theses.hal.science/tel-02493124v1

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time scalable algorithms for alpha-fair resource
allocation in software defined networks

Zaïd Allybokus

To cite this version:
Zaïd Allybokus. Real-time scalable algorithms for alpha-fair resource allocation in software defined
networks. Networking and Internet Architecture [cs.NI]. COMUE Université Côte d’Azur (2015 -
2019), 2019. English. �NNT : 2019AZUR4038�. �tel-02493124�

https://theses.hal.science/tel-02493124v1
https://hal.archives-ouvertes.fr


Algorithmes distribués dédiés au calcul

de l’allocation alpha-équitable en temps

réel dans les réseaux SDN

Zaïd ALLYBOKUS
Institut National de Recherche en Informatique et en Automatique

(INRIA)

Présentée en vue de l’obtention 
du grade de docteur en Sciences et 

Technologies de l’Information et de la 

Communication (STIC)

d’Université Côte d’Azur

Dirigée par : Dr. Konstantin Avrachenkov 

Co-encadrée par : Dr. Jérémie Leguay

Soutenue le : 11 juin 2019

Devant le jury, composé de : 

Prof. Konstantin Avrachenkov,  Directeur de 

thèse, INRIA Sophia Antipolis

Prof. Walid Ben-Ameur, Rapporteur, Télécom 

SudParis

Dr. Eric Gourdin,  Examinateur, Orange Labs

Prof. Adlen Ksentini, Rapporteur, EURECOM

Dr. Jérémie Leguay, Co-directeur de thèse, 

Huawei Technologies

Dr. Lorenzo Maggi, Co-directeur de thèse, 

Nokia Bell Labs

Prof. Guillaume Urvoy-Keller,  Examinateur, 

Université de Nice Sophia Antipolis

THÈSE DE DOCTORAT



DISSERTATION

in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

from University of Nice Sophia Antipolis

Zaïd Allybokus

Real-Time Scalable Algorithms for
Alpha-Fair Resource Allocation in

Software Defined Networks

Thesis to be defended on the 11th of June, 2019
before a committee composed of:

Reporters Prof. Walid Ben-Ameur (Télécom SudParis, France)
Prof. Adlen Ksentini (EURECOM, France)

Examiners Dr. Eric Gourdin (Orange Labs, France)
Prof. Guillaume Urvoy Keller
(Université de Nice Sophia Antipolis, France)

Thesis Director Prof. Konstantin Avrachenkov
(INRIA Sophia Antipolis, France)

Thesis Co-Directors Dr. Jérémie Leguay (Huawei Technologies, France)
Dr. Lorenzo Maggi (Nokia Bell Labs, France)



ii



Abstract

In this dissertation, we deal with the design of algorithms to tackle the
α-fair resource allocation problem in real-time and distributed Software-
Defined Networks (SDN). First, we define three major requirements that
picture the challenges of real-time algorithms implementable in modern dis-
tributed SDN controllers. Those challenges are the ability to provide feasi-
ble resource allocations at all times, good transient solutions in terms of
optimality gap that converge in an acceptable number of inter-controller
communication rounds, and their ability of being massively parallelized in-
dependently of the network architecture. We use the Alternating Directions
Method of Multipliers to design an algorithm that simultaneously, and un-
precedentedly, tackles the three challenges. Motivated by a first study of the
structural properties of the α-fair model, where we derive a lower bound on
the optimal solution, we tune the penalty parameter of the augmented La-
grangian of the problem in order to optimize the algorithm’s performance.
We show that the algorithm can function in real-time when the traffic re-
quirements can vary more or less abruptly. The variation of the traffic re-
quirements are modeled by real-time varying coefficients of the optimiza-
tion model that is solved on-the-fly and may represent various prioritization
policies of the traffic (payment, traffic type, number of connections within
a tunnel, etc). Then, we describe how to extend the algorithm to real world
use cases with limited modifications to cope with multi-path load balancing
and online adjustments. Furthermore, we address the problem of α-fairness
when the environment is uncertain and the available amount of resources
over the network links is known only through general density functions.
The main focus there is, instead of feasibility, the notion of safety. We design
a heuristic that polishes an outer relaxation of the problem, based on the
sensitivity analysis of the static problem. In general, we are able to provide
a safe and acceptably efficient solution by solving several static problems.

Keywords: Software-Defined Networks, Resource Allocation, Alpha-
Fairness, Real-Time, Distributed Algorithms, ADMM, Convex Optimiza-
tion.

iii



iv



Résumé

Dans cette thèse, nous étudions la conception d’algorithmes dédiés au calul
de l’allocation de ressources α-équitable en temps réel dans les réseaux
Software-Defined Networks (SDN) distribués. En premier lieu, nous définis-
sons trois besoins majeurs établissant les enjeux des algorithmes en temps
réel implémentable dans les controlleurs distribués SDN. Ces enjeux sont
la disponibilité de solutions faisables à tout moment, une qualité transitoire
acceptable en termes d’écart à l’optimum, une convergence en un nombre
raisonnable de tours de communications entre les differents controlleurs,
ainsi qu’une facilité des algorithmes à être massivement parallèles, indépen-
damment de l’architecture SDN du réseau. Nous utilisons les outils de
l’Alternating Directions Method of Multipliers afin de définir une classe
d’algorithmes qui, sans précédent, répondent simultanément à ces enjeux.
À la lumière des propriétés structurelles du modèle de l’allocation α-fair,
nous calculons une borne inférieure sur la solution optimale et l’utilisons
afin d’ajuster le paramètre de pénalité du Lagrangien augmenté du prob-
lème dans le but d’optimiser la performance des algorithmes. Nous mon-
trons que l’algorithme est capable de fonctionner en temps réel lorsque les
exigences du trafic varient de façon plus ou moins brute. La variation des
exigences du trafic est modelisée par la variation en temps réel de certains
coefficients du modèle d’optimisation qui est résolu à la volée. Ces coef-
ficients représentent en pratique des politiques de priorité variées au sein
du trafic (paiement, type de trafic, nombre de connections à l’intérieur d’un
chemin, etc). Ensuite, nous décrivons comment étendre l’algorithme à des
scenarios réels avec des modifications minimes, afin de prendre en compte
l’équilibrage en multi-chemin des flots et l’ajustement de la bande passante
en temps réel. Par ailleurs, nous répondons au problème de partage de
ressources α-équitable lorsque l’environnement admet des incertitudes sur
la quantité de ressources disponibles sur chaque lien, connue uniquement
au travers de fonctions de densités générales. L’axe prioritaire est alors, au
lieu de la faisabilité, la notion de fiabilité. Nous concevons alors une heuris-
tique qui affine une approximation extérieure du problème en se basant sur
l’analyse de sensibilité du problème statique. En toute généralité, nous ar-
rivons à fournir une solution fiable et acceptable en termes d’efficacité en
résolvant quelques problèmes statiques.

Mots-clés: Software-Defined Networks, Allocation de Ressources, Alpha-
Equité, Temps Réel, Algorithmes Distribuées, ADMM, Optimisation Con-
vexe.

v



vi



To my parents...



viii



Acknowledgments

The present work would never have been possible without my supervisor,
Dr. Konstantin Avrachenkov, and my two co-advisors, Dr. Jérémie Leguay
and Dr. Lorenzo Maggi. This is why, first and foremost, I would like to
acknowledge my deepest gratitude and direct my warmest thanks to them.
Your benevolent help and expertise have been the building blocks of this
thesis that I had an extreme pleasure to write while working under your
supervision.

I also wish to express my gratitude to all the colleagues who contributed
greatly to making my working environment a happy place that I was always
keen to go to in the morning. I am convinced that none of you need to be
explicitely named in order to recognize yourselves.

Also, I would like to thank my family for their constant cheer all thor-
ough those three years.

Thank you mother, for always believing in me. You are the person with
the greatest indirect contribution to this work, as you always make me want
to become a better version of myself.

ix



x



Contents

Abstract iii

Résumé v

Acknowledgments ix

1 Introduction 1
1.1 Modern distributed SDN controllers . . . . . . . . . . . . . . . 2
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Our resource allocation challenge . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Symbols and notations . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fair resource allocation: Main concepts and structure 9
2.1 Fairness concepts in resource sharing systems . . . . . . . . . . 11
2.2 The α-fair resource allocation: formalization . . . . . . . . . . 14
2.3 A lower bound on α-fairness . . . . . . . . . . . . . . . . . . . 16

2.3.1 A restriction lemma . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Comparison of d and m . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Reflexions on a possible improvement . . . . . . . . . . . . . . 24

2.5.1 Suspected restricted formula . . . . . . . . . . . . . . . 28
2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Fair resource allocation: Distributed algorithms 31
3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Presentation of ADMM . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 General principles and challenges . . . . . . . . . . . . 36
3.2.2 ADMM algorithm . . . . . . . . . . . . . . . . . . . . . 37

3.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Toward a distribution that respects the domain structure . . . 43

3.4.1 Consensus form . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Fast Distributed ADMM . . . . . . . . . . . . . . . . . . 47
3.4.3 Update rules: some precisions . . . . . . . . . . . . . . 49
3.4.4 What level of distribution should we chose? . . . . . . 51

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 The cost of distribution . . . . . . . . . . . . . . . . . . 51

xi



3.5.2 Comparison against LAGR . . . . . . . . . . . . . . . . 53
3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Extensions and refinements 57
4.1 Convergence of ADMM . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Penalty tuning in FD-ADMM . . . . . . . . . . . . . . . 61

4.2 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Simulation setting . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Practical extensions of the model . . . . . . . . . . . . . . . . . 69
4.3.1 Multi-path extension . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Imposing sparsity patterns . . . . . . . . . . . . . . . . 75

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Safe fair allocation under environment uncertainties 83
5.1 Introduction on chance constraints programming . . . . . . . 87

5.1.1 Model design . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 A lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Mixed integer convex program . . . . . . . . . . . . . . 91
5.2.2 The convex relaxation . . . . . . . . . . . . . . . . . . . 92

5.3 A polishing routine based on sensitivity analysis . . . . . . . . 93
5.3.1 Regularity and sensitivity . . . . . . . . . . . . . . . . . 95
5.3.2 Polishing routine . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Safe and α-fair resource allocation problem . . . . . . . . . . . 98
5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.1 Settings and benchmarks . . . . . . . . . . . . . . . . . 99
5.5.2 Link capacity with Poisson distributions . . . . . . . . 100
5.5.3 General distributions . . . . . . . . . . . . . . . . . . . . 103

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 105

Conclusions and perspectives 107
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

List of publications 111

Bibliography 113

xii



List of Figures

1.1 Logically Centralized or Distributed SDN architecture. . . . . 2

2.1 The n-linear network: each of the n links serves an individual
route, while all the links serve simultaneously one route. . . . 12

2.2 The (1,α)-fair allocation and corresponding throughput in
the 10-linear network. . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 0. . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 1. . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 2. . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 3. . . . . . . . . . . . . . . . . . . . . . . 22

2.7 A comparison of the two bounds. The scores, and the mini-
mum, average and maximum bound improvements are illus-
trated in the cases of (a)-(b) a constant δw for different values
of δc, and of (c)-(d) a constant δc for different values of δw.
Figures (b) and (d) show the bound improvements in the two
extreme situations δc (resp. δw) = 0.01 (resp. 1) in dashed
lines (resp. solid lines). . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 The behaviour of b(n) on the 5-linear network on scenario 0 . 26
2.9 Optimal allocation x∗ and the bounds m and D on the 5-

linear network with scenario 0. . . . . . . . . . . . . . . . . . . 30
2.10 Optimal allocation x∗ and the bounds m and D on the 5-

linear network with scenario 1. . . . . . . . . . . . . . . . . . . 30
2.11 Optimal allocation x∗ and the bounds m and D on the 5-

linear network with scenario 2. . . . . . . . . . . . . . . . . . . 30
2.12 Optimal allocation x∗ and the bounds m and D on the 5-

linear network with scenario 3. . . . . . . . . . . . . . . . . . . 30

3.1 CPU time and number of iterations required to reach the same
level of residual tolerance for C-ADMM and FD-ADMM. . . . 51

3.2 Gaps versus iteration number for FD-ADMM and C-ADMM. 52
3.3 Residual value versus iteration number for FD-ADMM and

C-ADMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Gaps versus time (in seconds) for FD-ADMM and C-ADMM. 53

xiii



3.5 Residual value versus time (in seconds) for FD-ADMM and
C-ADMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Average optimality gap E[gap] vs. the variation amplitude a. . 54
3.7 Average percentage of violated constraints E[v] by LAGR vs.

the variation amplitude a. . . . . . . . . . . . . . . . . . . . . . 54
3.8 Optimality gap of the best feasible point found after 5 sec-

onds runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 The number of iterations required for FD-ADMM to reach a
residual tolerance of 10−3 (left panel) and the achieved op-
timality gap (right panel), versus the initial factor λ0/λ

∗ for
α = 1, 2, 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 The number of iterations required for C-ADMM to reach a
residual tolerance of 10−3 (left panel) and the achieved op-
timality gap (right panel), versus the initial factor λ0/λ

∗ for
α = 1, 2, 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 The achieved optimality gap (left panel) of the sparse solu-
tion x♯ (with reference the optimum with the new weights
w♯), and its ℓ0-difference with the initial allocation x0 versus
the regularization term Θ (right panel), for α = 1, 2, 3. . . . . . 78

5.1 Some examples of the generated distributions pk
j , for a num-

ber of bins K = 100. . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Achieved gaps (with reference the relaxed optimum) for the

simulations under setting 1. . . . . . . . . . . . . . . . . . . . . 101
5.3 Bounding the optimal value under setting 1. The bottom of

each error bar corresponds to the value obtained by Relaxed,
whereas the top corresponds to the value obtained by Safe. . . 102

5.4 Achieved number of inner and outer iterations by Safe during
polishing under setting 1. . . . . . . . . . . . . . . . . . . . . . 103

5.5 The fairness value for Safe (red), Relaxed (blue) and Bonferroni
(gray) against the risk ε under setting 1. . . . . . . . . . . . . . 103

5.6 Achieved gaps (with reference the relaxed optimum) for the
simulations under setting 2. . . . . . . . . . . . . . . . . . . . . 104

5.7 Bounding the optimal value under setting 2. The bottom of
each error bar corresponds to the value obtained by Relaxed,
whereas the top corresponds to the value obtained by Safe. . . 104

5.8 Achieved number of inner and outer iterations by Safe during
polishing under setting 2. . . . . . . . . . . . . . . . . . . . . . 105

5.9 The fairness value for Safe (red), Relaxed (blue) and Bonferroni
(gray) against the risk ε under setting 2. . . . . . . . . . . . . . 106

xiv



Chapter 1

Introduction

S
OFTWARE DEFINED NETWORKING (SDN) technologies are radically
transforming the network architecture of data centers, network over-
lays, and carrier networks [1, 2, 3]. They provide programmable
data planes that can be configured from a remote controller plat-

form. They are implemented on top of commodity servers that provide
a tremendous computational power compared to legacy network devices
and use modern distributed computing technologies (e.g., loosely consis-
tent databases, parallel computing, consensus algorithms, transactional up-
dates) to gather a global view of the network status and push, in real-time,
consistent configuration updates to network equipments. While initial SDN
deployments focused mainly on automated provisioning of tunnels and vir-
tual networks, essentially virtualizing known concepts, it becomes clear to-
day that SDN presents an opportunity for a paradigm shift in network op-
timization. Departing from the classical autonomic routing systems we mi-
grate to a new centralized routing paradigm, where a powerful controller
is aware of the static parameters and time-varying conditions, and centrally
orchestrates the entire network reaching unprecedented levels of efficiency.
Indeed, the necessary ingredients are in place: (i) the power of modern SDN
controllers, and (ii) the recent advances in optimization and machine learn-
ing to produce the desired outcome.

A typical success of deployment solutions for bringing SDN to the real-
world is B4 [4], the world-wide Wide Area Network (WAN) of Google,
among the largest in the Internet. It interconnects its data centers to one
another to replicate data in real-time between individual campuses. Now,
its network will reach the general public with Espresso [5], an extension
of Google’s SDN that will allow to choose from where to serve individual
users and dynamically adjust paths and operate load balancing based on
real-time measurements of how network connections are performing, and
not on individual IP addresses and shortest paths as traditionally.

1



2 Chapter 1. Introduction

Figure 1.1 | Logically Centralized or Distributed SDN architecture.

1.1 Modern distributed SDN controllers

The computation power of SDN controllers fosters the development of a
new generation of control plane architecture that uses compute-intensive
operations.

The design of SDN architectures [6] envision the use of a central con-
troller. However, the myth of one physical controller has long been in-
terpreted as a fundamental limit to the ideological scaling and robustness
of the SDN standard, as the ability of one controller to handle a growing
number of requests and devices, hence its scalability has its own practical
limits. Thus, obvious scalability questions [7], clearly imply that the SDN
control plane, possibly logically centralized, is in fact partially distributed in
large network scenarios [1]. Hence, in practice the control plane may con-
sist of multiple controllers each in charge of an SDN domain consisting of
a portion of the physical network that they each control. They thus op-
erate together, in a flat [8] or hierarchical [9] architecture, to achieve global
tasks. In Figure 1.1, an example of SDN architecture is illustrated. The de-
sign of general SDN architectures with multiple SDN controllers permits
one to define different levels of logical distribution. In a logically central-
ized architecture, whether flat or hierarchical, the domain controllers oper-
ate together as workers in a distributed system, but push their decisions in
a common database to always be consistent. A major drawback with this
model is its requirement in terms of extensive and precise synchronization
between all the sub-controllers (the domain controllers) through the SDN
master controller (the centralized database). Many studies advocate [10]
that this is not optimal for very large data center networks (DCNs) and
WANs. Thus, a logically distributed architecture may also be helpful in
highly distributed networks. Typically, the flat architecture (Figure 1.1) may



1.2. Challenges 3

correspond to a logically distributed SDN control plane where the master
controller is eliminated and replaced with individual databases at each con-
troller level, in which case, East-West communication protocols are required
to share relevent information between controllers. The East-West communi-
cation protocol is not yet standardized and represents today areas of active
research [10, 11, 12].

1.2 Challenges

In distributed SDN architectures [13, 14, 12], each controller has full infor-
mation about its own domain. In order to ensure fault-tolerance, each of
them could be composed of master and slave agents that act as a single en-
tity [15]. To maintain consistency, each controller can communicate with
adjacent peer controllers and/or with a central, upper-layer controller en-
tity. All in all, the multiple controller-based architecture permits to split
the global workload of the control plane on a domain basis while always
maintaining a global view of the network equipment and information such
as topology, flows, traffic patterns. This unprecedented ability of software-
based networks makes it now possible to dynamically control flows carry-
ing traffic while fulfilling global objectives.

In this thesis, we are focused on the problem of bandwidth sharing be-
tween flows in SDN that can now be performed while optimizing globally
joint objectives such as network efficiency, fairness between flows, robust-
ness against failures, etc. The faculty of SDN to address such a problem
globally lies beneath the ability of the distributed control plane to solve
global optimization problems (general network utility maximization prob-
lems instances) with algorithms that can now be implemented and run on
the controllers that can cooperate to solve them. Remarkably, an optimiza-
tion problem that can be formalized and distributed following the actual
distribution into network domains would require the domain controllers
to solve local sub-problems (associated to their own domain), and to com-
municate together to achieve consensus on the variables that they have in
common.

However, exchanges between controllers are expensive in terms of com-
munication delay and overhead [14]. This technological limitation trans-
lates directly into an algorithmic constraint: distributed algorithms for SDN
have a limited budget in terms of the number of iterations to reach conver-
gence, i.e. an optimal solution.

A second crucial property for a distributed algorithm for SDN is respon-
siveness. In fact, the network state may be affected by abrupt changes, e.g.,
flow size variation, flow arrival/departure, link/node congestion. Those
changes fall under the notion of a real-time scenario. In this case, the conver-
gence of a resource sharing strategy for the previous network state may not
even be attained when a change occurs in the system. For this reason, espe-
cially in real-time scenarios, it is often preferable to have a quick access to
a good quality solution rather than a provably asymptotically optimal solu-



4 Chapter 1. Introduction

tion with poor convergence rate. In particular, to address best the dynamic
nature of the network state, it is highly desirable that the resource allocation
computed by a distributed algorithm is feasible, that is, satisfies the physical
constraints posed by the reality of limited resources, at any iteration.

Also, modern propositions of SDN controllers [16] rely on grid comput-
ing technologies such as Akka [17] or Hazelcast [18], respectively for the two
major open source SDN controllers OpenDayLight [19] and ONOS (Open
Network Operating System) [20]. As a consequence, massively paralleliz-
able algorithms for SDN should be preferable as more adapted and better
likely to tackle scalability issues.

1.3 Our resource allocation challenge

To recap, we identify three main requirements for a distributed algorithm
for optimal resource allocation, namely:

1. Real-time: converging to a "good" solution in a small number of itera-
tions,

2. Feasibility: producing feasible solutions at all iterations,

3. Distributivity: being massively parallelized.

We claim that none of the current methods that allocate resources in an
SDN scenario is able to achieve the three aforementioned goals at the same
time. Local mechanisms such as Auto-Bandwidth [21] have been proposed
to greedily and distributedly adjust the allocated bandwidth to support
time-varying IP traffic in Multi Protocol Label Switching (MPLS) networks.
Auto-Bandwidth successfully tackles goals 2. and 3., but not 1., as it does
not optimize resources globally. Also, classic primal-dual algorithms have
been proposed to solve the general network utility maximization problem
and might show as candidates in distributed SDN scenarios, as in [22].
However, primal-dual algorithms are known to fail at providing feasible
solutions at any iteration step, thus they fail at achieving goal 2.

Recently in the optimization research community, the Alternating Direc-
tion Method of Multipliers (ADMM) [23] has captured the attention for its sep-
arability and fast convergence properties. We claim that ADMM offers new
and yet unexploited possibilities to tackle concurrently the goals 1., 2. and
3. Indeed, this dissertation will show how ADMM serves our purposes, by
allowing all controllers to handle their own domains simultaneously, while
still converging to a global optimum in the fashion of a general distributed
consensus problem.

In numerous use cases, it is advocated that a good fitness measurement
for a resource allocation can take the form of a separable function formed by
the aggregate sum of individual utilities of each flow. Separable functions
are very prone to nearly unconditional distribution of optimization prob-
lems, as we will see in this dissertation. We study a particular instance of



1.4. Thesis outline 5

the general network utility maximization problem dedicated to allocate re-
sources while maximizing a certain separable objective: the α- fair resource
allocation problem. The definition and presentation of this notion are car-
ried out in Chapter 2. The major interest of this allocation notion is in its
generality as it covers well-known notions of fairness (notably, max-min fair-
ness, minimum potential delay, proportional fairness), encompassing them all
into a general family of functions forming a spectrum of fairness metrics
parameterized by the positive real number α.

In a first part of this thesis (Chapters 2– 4), as the reader may have
guessed already, we use the framework of ADMM to build a model that
carries out an answer to the question of how to efficiently compute dis-
tributively optimally real-time α-fair resource allocation strategies for a set
of flows over a network, keeping in mind that this is now possible to oper-
ate with a global view of a network, unprecedentedly provided by emergent
SDN technologies. The model is designed to tackle the fair resource alloca-
tion problem over a given, and fixed, network of links each having a fixed
maximum capacity.

The notion of feasibility is central to this dissertation. Indeed, networks
provide bandwidth to all types of traffic from a finite amount of available
resources at each link called capacity. Therefore, efficient load balancing is
critically dependent of active measurement of the available bandwidth on
routes carrying out the traffic. A spectacular example is video streaming,
that nowadays represents the largest portion of the Internet traffic, which
perceived (by the user) quality is highly dependent on adaptive rate of ser-
vice relying on measurement of the real-time network load. There is not
yet a unified protocol for available bandwidth measurement in SDN and
various packet probing techniques such as [24] are being proposed and can
measure the available bandwidth on whole paths, or on a per-link basis.

In the definition of our real-time α-fair allocation model, we are there-
fore conducted to assume that the actual capacity of the links can be known
by the SDN controller, only through those measurements. This is why in
a second part (Chapter 5), we introduce the notion of uncertainties in the
link capacities to account for their possible fluctuations in real-time. In this
kind of scenario, it is common to see robust solutions that would find the
best bandwidth sharing strategy under the worst-case scenario in order to
guarantee strict feasibility. However, the conservative approach is often too
pessimistic in practice and prone to overly deteriorated solutions, thus too
much rigidity in feasibility can lead to excessively sub-optimal solutions in
practice, and cause unnecessary service degradation. In this context, we use
our algorithms to allocate bandwidth to flows while operating a trade-off
between α-fairness and strict feasibility.

1.4 Thesis outline

We now outline the main parts of this thesis.
Chapter 2 is dedicated to an introduction on the concept of fairness in



6 Chapter 1. Introduction

resource sharing systems. We review the major steps that led to the con-
struction and the definition of the notion of α-fairness. Further, we define
the α-fair resource allocation problem as a convex optimization problem
and study its structural properties. Specifically, on a generic instance of the
α-fair resource allocation problem, we build a formula that corresponds to a
lower bound on the allocation of each flow of the problem, that is, we derive
a minimal value that each flow is guaranteed to get considering the struc-
ture of the instance in hand. This lower bound will show great practical
interest in the design and tuning of our algorithms.

In Chapter 3, we build our algorithm that computes the α-fair alloca-
tion distributively. We show that the distribution method of our algorithm
is compatible with any organization of the SDN controller (logically cen-
tralized or distributed) into domains. Our algorithm, FD-ADMM (Fast-
Distributed ADMM), provides feasible iterates at any iteration and we show
its suitability to real-time scenarios when the traffic instance (the objective
function of the optimization problem only) varies on-the-fly, by comparing
its performance to the one of a classic dual decomposition method.

Chapter 4 reviews some technical refinements of FD-ADMM and is or-
ganized in two parts. The first part discusses on an optimal tuning of FD-
ADMM, which performances are highly dependent on the initial tuning of
a parameter introduced in its design. In this part, we use the results from
Chapter 2 to tune the algorithm and show that we obtain near-optimal per-
formance in practice in terms of convergence rate. In a second part, we
extend the model to two practical use cases. Firstly, the algorithm can ad-
dress resource allocation instances where more than one path is available
for each flow, while the algorithm will choose itself on which path to allo-
cate bandwidth to them so as to maximize the overall fairness. Secondly,
we introduce switching costs to be concatenated to the objective that permit
the algorithm to jump from one allocation to another while not exceeding a
bandwidth re-configuration budget (i.e., a maximum number of bandwidth
allocations that are allowed to be re-sized at the same time) in the case where
the traffic requirements have varied from one epoch to another. These two
optional extensions are presented as practical solutions to improve the net-
work’s efficiency by avoiding congested links (the multi-path setting) and
to improve the stability for individual paths (the switching costs setting).
In both cases, we show explicitely the changes in the update rules of the
algorithm.

Lastly, Chapter 5 deals with the extension to the α-fair resource alloca-
tion problem with introduced uncertainties caused by the varying available
capacities of the network links that are constantly evaluated in real-time
by the SDN controller. In this case, it is assumed that the capacity of each
link of the network can take values within a discrete set of possible num-
bers following a general probability distribution. We therefore introduce
a model based on chance-constraints programming that permits to operate
the desired trade-off between strict feasibility (robustness) and efficiency
(fairness) in this situation. We observe that the chanced-constrained exten-



1.5. Symbols and notations 7

sion of our problem relies on finding an optimal set of constraints (in fact,
an optimal scenario among all possible values that the link capacities can
take) to activate among the set of all possible constraints, that finds a de-
sired balance between feasibility preservation and fairness maximization.
This problem can be cast as a minimization problem with convex objective
but in all generality non-convex constraints and yields generally NP-hard
problems. This is why we define a heuristic based on a sensitivity analy-
sis of the ground problem defined in Chapter 2 that iteratively summons
FD-ADMM to choose the best constraints to activate.

1.5 Symbols and notations

All thorough this dissertation, we denote by R the set of real numbers, R+

the set of non-negative real numbers, and R++ the set of positive real num-
bers.

The letter P designs a probability measure on the adequate measured
space, and the letter p can either design a compactly supported probability
measure on R, or the associated density function. Otherwise, boldface let-
ters are always reserved for matrices and vectors. For more clarity though,
only the vector ε is written as ε.

For a matrix A ∈ Rm×n, we denote by Ajp its entry at line j and column
p, where 1 6 j 6 m and 1 6 p 6 n. The symbol I stands for the identity
matrix of the appropriate dimension. The p-th entry of a vector x ∈ Rn is
written xp. The vector of the appropriate dimension with all entries equal
to 0 (respectively 1) is written 0 (respectively 1).

Sometimes, we consider elements of product spaces such as S = S1 ×
. . .× Sk, where typically, Si = Rni . A general vector z ∈ S can be sliced into
k sub-vectors, each belonging to one of the Si. Then, we write z = (zi)i=1...k

with the implicit property that zi ∈ Si, i = 1, . . . k. Vectors of Rn are some-
times regarded as applications from J1,nK to R for more convenience. There-
fore, for V ⊂ J1,nK, z : J1,nK → R and x : V → R, the sum of x and z is
defined as x+ z : V → R, i 7→ xi + zi. This permits to avoid too much heav-
iness in our formulas. Moreover, the proposition x 6 y for two vectors is
always interpreted component-wise.

We use the symbol := to define objects.



8 Chapter 1. Introduction



Chapter 2

Fair resource allocation:
Main concepts and structure

T
HE CONCEPT OF fair resource allocation has been a central topic in
networking. It was notably introduced and built as a way to for-
malize and address congestion control in fixed end-to-end connec-
tions through the Internet, but can also describe numerous use-

cases such as power allocation in wireless networks [25, 26, 27], or be of
a more theoretical interest in bargaining theory [28]. The question of how
to allocate bandwidth to flows over a network fairly and efficiently is fun-
damental. The efficiency of a resource sharing policy is measured by the
aggregate throughput of the network flows. The aggregate throughput of a
network is simply the sum of the allocated bandwidth over all flows, and
overall evaluates how well the network is serving its flows altogether. Fair-
ness, on the contrary, is not necessarily a clearly defined notion. One is
tempted to say that the share of a finite amount c of resource between n

agents is "fair" if all the agents get an equal part of the resource. But this
does not answer to the question (although obvious) of what should be pre-
ferred between the uniform allocations c/n and c/2n. For instance, impos-
ing Pareto optimality of the allocation solves the question and characterizes
the uniform allocation c/n as the most fair and efficient single resource shar-
ing policy for multiple agents. Therefore, it is not enough to impose an equal
allocation to all agents; one must also impose that the allocation should be
efficient. Thereupon, the concept of fairness in networking cannot bypass
the one of efficiency of the sharing policy. A popular resource sharing pol-
icy that brings, as much as possible, an equal share of bandwidth over a
network of resources while enforcing Pareto optimality is max-min fairness.
This notion will be defined later on and interpreted as the "ultimately fair"
sharing policy. It is however known that in a large class of resource sharing
problems1, max-min fairness has the tendency to deteriorate considerably
the overall throughput, and consequently, throughput and fairness can be

1This, however, is not always true although largely stated as fact in the literature, as
shown in the simple counter example in [29].

9



10 Chapter 2. Main concepts and structure

interpreted as two conflicting concepts that a "fair" allocation policy should
trade-off.

The fairness concept that is central to this thesis is α-fairness, and more
generally, weighted (w,α)-fairness. Intuitively, it represents an allocation
policy that encompasses both the ability of being "fair", and the one of being
"efficient". As from now, let us avoid all ambiguities in the interpretation of
the word "fair". We define by the word equity the ability to provide (as much
as possible) the same amount of resources to all agents and in that sense, the
concept accepts all the allocations of the form κ/n, for κ 6 c in the above
example. The word "fair" will be reserved for general (w,α)-fairness.

The α-fair resource allocation problem has received remarkable atten-
tion and has been studied in numerous application fields. This chapter is
dedicated to introducing its concept in resource sharing systems. Fairness
has been a key notion in the problem of resource sharing and has been con-
ceptualized rigorously and studied extensively for the past decades in order
to build answers to the question of equitable and efficient resource sharing.
Different interpretations of what should "fair" mean brought a series of intu-
itive (yet sometimes contestable) axioms that have helped to build families
of fairness notions, and in turn families of resource sharing policies. Cer-
tainly, the most popular axiomatization of a fairness notion is embodied in
the Nash Bargaining Solution (NBS) to the Bargaining Problem [30]. The bar-
gaining problem (historically introduced by Nash [31] for two players or
bargainers) introduces the question of how two players should share a set
of finite resources. Mathematically, a compact subset of R2 is given, and
the question is how to find a point within this subset that would simulta-
neously satisfy (in the sense, for example, of maximizing their correspond-
ing utility function Ui) both players as much as possible. Nash brought
the answer, known as the NBS, that the desired point should maximize the
product of the utility functions. Later, this solution was characterized as
the only solution that satisfies the axiom of the midpoint domination, and
the independence of irrelevant alternatives, bringing a more intuitive and
humanly understandable definition of the policy, instead of only a mathe-
matical formula. The NBS can also be defined and characterized in many
other manners, that is with different sets of axioms (see, for instance, [32]).

More generally, a unified axiomatization framework was brought in by
Lan et al. [33] and introduces a series of five axioms2 that permit one to
define numerous fairness measures, including Atkinson’s index or Jain’s
index. Particularly, it turns out that α-fairness is a particular form of this
family of fairness measures combining one efficiency factor and one equity
factor which helps quantify the actual meaning of the trade-off between the
two notions.

Although axiomatizations and general purpose algorithms have been

2Those five axioms are 1) the axiom of continuity, 2) the axiom of homogeneity, 3) the
axiom of asymptotic saturation, 4) the axiom of irrelevance of partition and 5) the axiom
of monotonicity. For a detailed presentation of the axioms and the fairness family they
characterize, we refer the interested reader to the cited article.



2.1. Fairness concepts in resource sharing systems 11

studied and proposed for α-fairness, a few works have been done on its
practical structure. Motivated by this, we provide a contribution on its
structural properties and in particular give a novel lower bound on the
(w,α)-fair share for a set of users competing for multiple resources. The
lower bound gives a minimal fair-share that a user should get on a network
of multiple resources for multiple users, and refines our understanding of
its behavior and sensitivity. Our statement holds for (w,α)-fairness because
it can be cast as an optimization problem with separable objective function
and linear packing constraints. Particularly, we try to derive formulas that
do not deteriorate with the size of the optimization problem. This means
that we prefer formulas that do not contain global parameters such as total
number of constraints (resources), of variables (users), maximum or min-
imum objective coefficients (weights)/right-hand-side (resource capacity),
etc. On this type of problems, we introduce a localization property that
permits one to better exploit local structures. Remarkably, for the case of
proportional fairness (α = 1), we give a local version of the midpoint domina-
tion axiom that represents a building block of the axiomatization of the NBS
(equivalent to proportional fairness). We also propose a localized formula
for our lower bound for values of α within [0, 1]. The formulas for gen-
eral (α > 1)-fair policies suffer from one global dependency to an instance’s
asymmetries, but contain no global parameter related to the size of the prob-
lem and still represent a considerable improvement with regards to existing
works on α-fair lower bounds. Finally, we conjecture that an extended for-
mula of the midpoint domination axiom to general α > 1 provides a tighter
lower bound on the α-fair resource allocation solution.

IN A NUTSHELL
In this chapter, we introduce the notion of fairness in networking. The
notion of α-fairness as a resource allocation policy is presented, and
the α-fair resource allocation problem is formalized as an optimiza-
tion problem. We study its structure and specifically give a lower
bound on the optimal allocation of each of the flows. Our lower
bounds seek to improve existing formulas that could deteriorate too
much with the size or complexity of the problem instance and is based
on localization properties that permit one to eliminate the dependen-
cies on global quantities.

2.1 Fairness concepts in resource sharing systems

We first aim at introducing a construction by the example in order to give the
reader an intuitive understanding of the motivations underneath the defi-
nition of α-fairness. We illustrate the notion of α-fairness in a simple exam-
ple, on which fairness embodies a continuous trade-off between the notion
of equity and the one of efficiency. The first building block of our introduc-
tion method lies beneath the fundamental difference between the amount



12 Chapter 2. Main concepts and structure

Figure 2.1 | The n-linear network: each of the n links serves an individual
route, while all the links serve simultaneously one route.

of reserved physical resources and the actual amount of service it provides.
Remarkably in network rate control topics, it is clear that an amount of ser-
vice (that is, a bandwidth reservation along a path of network links) of x
requires a quantity of resources equal to lx, where l is the length of the
path (that is, the number of links it contains) through which we are allocat-
ing bandwidth. This is why very often, path establishments prefer shortest
path algorithms, of course because other requirements such as maximum
tolerable delay constraints should be satisfied and naturally favor the use of
short paths, but also because longer paths have the obvious tendency to re-
quire too much resources over a network. Therefore, the length of paths can
cause efficiency degradation and this is why a valid question should be how
to simultaneously provide accurate service to all paths and avoid efficiency
degradation. We will see that (w,α)-fairness naturally brings an answer to
this question.

The weighted (w,α)-fair resource allocation problem, introduced by Mo
and Walrand [34], is to find a vector x∗ ∈ Rn

+ such that:
1) the utility

fα(w, x) =

{
∑n

i=1wi
x1−α
i
1−α , α 6= 1,

∑n
i=1wi log(xi), α = 1

is maximized at x = x∗, and
2) x∗ lies in a feasible set defined by linear constraints of the form Ax 6 c

where c ∈ R
p
+ is a capacity vector for a number p of resources and A is the

binary user-resource incidence (p,n)-constraint matrix, for a number n of
users, weighted by a positive vector w ∈ Rn

+. Particular fairness concepts
can be derived from (w,α)-fair metrics with a particular value of α, namely:
max-throughput (α = 0), proportional fairness, or NBS (α = 1), minimum poten-
tial delay (α = 2) and arbitrarily close approximations of max-min fairness
(α→∞).

In particular, the concept of max-min fairness illustrates the idea that fair-
ness should mean that improving the wealth of the richer automatically de-
teriorates the one of the poorer: a resource allocation strategy is said to be
max-min fair if no allocation can be increased without penalizing another
allocation that was smaller or equal in the beginning. This has been the
classic resource sharing principle [35] and has been studied extensively. We
illustrate a simple example where the reader can get a proper intuition of



2.1. Fairness concepts in resource sharing systems 13

the fundamental conflict between equity and efficiency3.

EXAMPLE

Let us consider a network of n resources (called links) indexed by 1, . . . ,n.
The network serves n+ 1 users, indexed by 0, . . . ,n, in the following way.
User 0 has a path that goes through all the links, and each user i = 1, . . . ,n
has a path made of the sole link i. We call this network the n-linear network.
An illustration of the sharing scenario is carried in Figure 2.1.

For simplicity, let us assume all the links have the same capacity nor-
malized at 1. On the one hand, if one wants to allocate resources to all the
users in order to maximize the overall throughput, one can see that the best
solution is to allocate 1 to all users but user 0 who would get 0, which is ul-
timately unfair, because as some are getting full capacity and therefore full
service, one of the users is getting no service at all; if one is not convinced by
the qualification unfair, one just needs to imagine that user 0 is also paying,
let’s say, as much as the other users, to get service from this network. On
the other hand, allocating resources following max-min fairness would give
1/2 to all users, which is intuitively ultimately fair.

Let us however adopt the throughput point of view. The maximum
achievable throughput is n, as n users are receiving an allocation of 1 unit of
resource. The overall throughput of the max-min fair allocation is (n+ 1)/2,
because n+ 1 users are receiving an allocation of 1/2 unit of resource. So,
we see that the ultimate fairness offered by max-min fairness comes with
the price of throughput degradation with a factor of nearly 2.

Let us imagine now that the sharing policy should ensure that all users
have the same amount of reserved resource. For example, in the max-min fair
allocation, user 0 is getting a resource allocation of 1/2 but has actually 1/2

unit of resource reserved on each link, whereas the other users have a re-
source allocation and a reservation of 1/2 unit of resource all in all. If we say
it is on the amount of reserved resources that fairness should apply, we get
a new allocation: user 0 gets 1

n+1 , while all other users get n
n+1 . Although

user 0 still gets less than the other users, we can consider that this new al-
location is more fair than the allocation given while maximizing throughput,
and in the meantime, the overall throughput of this new allocation sums up
to n2+1

n+1 which is greater than n+1
2 (the max-min fair throughput). To sum up,

this new allocation seems to trade-off better fairness and network efficiency.
It turns out this last allocation strategy is exactly the NBS (or proportional
fairness allocation).

The concept of proportional fairness and its weighted variants were in-
troduced by Kelly, Maulloo, and Tan [36] before the works of Mo and Wal-
rand [34] in which it is presented as the (α = 1)-fair allocation. Thus,
the definition α-fairness permitted to formalize the idea of a continuous
fairness-efficiency equilibrium parameterized by the real number α > 0.
To sum up, there was now a spectrum of functions including all the par-
ticular aforementioned fairness notions unified through a single formula,

3Of course, when the conflict occurs.



14 Chapter 2. Main concepts and structure

Figure 2.2 | The (1,α)-fair allocation and corresponding throughput in the
10-linear network.

and approaching arbitrarily the two extremes (maximum throughput and
max-min fairness), with only the parameter α.

Now that we have more intuition on α-fairness, we can delve into its
formalization as a mathematical problem. In the next section, we formal-
ize, once and for all, the α-fair resource allocation problem in a network of
multiple links. As the reader may have guessed, we define and adopt the
terminology of rate control in fixed communication networks for the rest of
this thesis.

2.2 The α-fair resource allocation: formalization

Let us formalize the weighted α-fair resource allocation problem.
Let J be the set of network links, each link j having a capacity cj ∈ R+.

Let R be the set of paths. Each path r is a predefined route that identifies
with a subset Jr ⊂ J of links of the network. In turn, for each link j ∈ J,
Rj := {r ∈ R; j ∈ Jr} is the set of all paths having a route that contains the
link j. We define the link-route incidence |J|× |R|-matrix A as:

Ajr =

{
1 if j ∈ Jr
0 otherwise

For each path r, xr denotes the bandwidth allocated to r along its route Jr.
We say that an allocation x = (xr)r∈R belongs to the feasibility set C (or is
feasible) if it satisfies the capacity constraint (2.1) below:

x ∈ C⇔ Ax 6 c, x > 0 (2.1)

where c = (cj)j∈J, and the inequality has to be understood component-wise.
In this thesis, we define fairness in an asymmetric manner, in all generality.
The asymmetry is enforced by an individual weight wr ∈ R+ for each path r.
In practice, the weight vector w = (wr)r∈R accounts for a degree of relative
importance between paths that can be defined at the discretion of the net-



2.2. The α-fair resource allocation: formalization 15

work. For instance, it can account for a price paid by a customer purchasing
bandwidth (hence the higher the price, the higher the incentive to reserve
bandwidth for the corresponding route), or simply the number of connec-
tions requesting the path in question (hence, the larger the number of con-
nections, the higher the incentive to reserve bandwidth to the correspond-
ing path). The latter situation is illustrated for instance in [37]. Weighted
(w,α)-fairness is formalized as in Definition 1 below.

DEFINITION 1 ((w,α)-fairness)
Let C ⊂ R

|R|
+ be a feasibility set defined as in (2.1), being a strict super-

set of {0}. Let w ∈ R
|R|
+ and x∗ ∈ C. We say that x∗ is (w,α)-fair (or

simply α-fair when there is no confusion on w) if the following holds:

∀r ∈ R, x∗r > 0 and ∀x ∈ C,
∑

r∈R
wr

xr − x∗r
x∗αr

6 0. (2.2)

Equivalently, x∗ is (w,α)-fair if, and only if x∗ maximizes the α-fair
utility function fα defineda over C∩R|R|

++:

max
x∈C

fα(w, x) =
∑

r∈R
fαr (wr, xr), (2.3)

where

fαr (wr, xr) =

{

wr
x1−α
r
1−α , α 6= 1,

wr log(xr), α = 1.

aWe introduce the redundant subscript r to the individual functions fαr . In the
next chapter, the argument wr will be omitted to avoid heaviness but remembered
through this notation.

The equivalence between the two definitions is straightforward: saying
that fα is maximal at some x∗ over C is exactly saying that ∇xf

α(x∗)T(x−

x∗) 6 0 for all x ∈ C, which is the compact way of writing Equation (2.2).
Therefore, the (w,α)-fair resource allocation problem can be cast as the

following optimization problem:

max fα(w, x) =
∑

r∈R
fαr (wr, xr)

s.t. Ax 6 c, (Pα)
x > 0.

As an illustration, Figure 2.2 shows the optimal allocations of the user 0
and users i = 1, . . . , 10 in the 10-linear network introduced in our example
above, for different values of α, as well as the corresponding throughput



16 Chapter 2. Main concepts and structure

of the system. The reader can appreciate the throughput deterioration that
occurs for this particular topology when α-fairness approaches the notion
of equity.

We are facing a concave maximization problem under linear constraints.
Equivalently, it is a convex minimization problem under linear constraints.
The methods that can be employed to solve this problem will be presented
in the next chapter, focused on how to solve this problem distributively by mod-
ern distributed SDN controllers, rather than only how to solve this problem. But
first, we present some results on the structure of the optimal solution. In
fact, one can remark that the fairness objective f is unbounded from below
near (any of) the xr-axis4. This means that the allocation vectors that lie near
the axis are sub-optimal. The question we answer to, in the next section, is
how to prune the feasible set away from the axis. This manipulation is quite
intuitive, yet very useful. Indeed we end up with a bounded problem with
a differentiable objective function whose gradient is then also bounded. In
order to do this, one could simply choose ε sufficiently small and prune the
feasible set according to the value of ε. However, though easier to carry, this
does not give any information on the fair allocation or the problem struc-
ture. The properties of a lower bound on an optimal solution is important
and gives it a more rigid structure (especially in the case of unbounded vari-
ations near the axis) that can be used to optimize the behavior of algorithms
that compute its value. This is the topic of Chapter 4, where the reader will
see how we use the structural properties of the present chapter to tune our
algorithms. For now, we present the lower bound on the fair resource allo-
cation problem.

2.3 A lower bound on α-fairness

In this section, we derive an explicit lower bound on the general (w,α)-
fair resource allocation problem. Our lower bound depends on the weight
vector w, the capacity vector c and the link-route incidence matrix A. More-
over, the bound exploits the local structure of the problem, which prevents
it from deteriorating systematically with the problem size. We compare it to
the bound that one can formulate as follows:

4Formally, we mean that for r ∈ R, for all (xs)s 6=r > 0, if xr > 0 and xr → 0, then
f(x)→ −∞.



2.3. A lower bound on α-fairness 17

THEOREM 1 (Marasevic, Stein, and Zussman [38])
Let the vector x∗ be the optimal solution to the α-fair resource alloca-
tion problem. Then, for all r ∈ R:

• if 0 < α 6 1, x∗r > mr(α) :=

(

wr
wmaxM

min
j∈Jr

cj

|Rj|

)1/α

c
1−1/α
max

• if α > 1, x∗r > mr(α) :=
(

wr
wmaxM

)1/α
min
j∈Jr

cj

|Rj|

(

cmin

cmax

)1−1/α

where wmax = maxwr, M = min{|R|, |J|}, cmin = min cj and cmax =

max cj.

We seek to derive user-centric formulas in the sense that their value for a
specific user would depend only on the resources within a localized prob-
lem (and not on the global topology) and only on the users that compete over
the same resources. We then evaluate the formulas under different instance
regimes and compare them to the literature in order to appreciate the im-
provements they provide.

A well known lower bound of the proportionally fair (α = 1) resource
allocation was brought in as a building block of the axiomatization of the
Nash Bargaining Solution and is commonly referred to as the midpoint domi-
nation axiom [32]. It states that each path r is given at least a fraction wr∑

s∈R ws

of their dictatorial allocation, that is, the resource they would receive if the
other users accept to receive 0. We refer to the bound given by the mid-
point domination axiom as the midpoint allocation. One can imagine that the
midpoint allocation becomes arbitrarily poor as the total number of users
becomes large, and its utility as a first estimation of the optimum alloca-
tion, negligible. Indeed, the formula includes the weights of the whole set
of users and is independent of the problem’s local structure. Similarly, the
general lower bound found in [38] may suffer from these dependencies.

Concerning proportional fairness (α = 1), we give a more precise mid-
point domination axiom, and provide a lower bound that we call local mid-
point. Our lower bound on the proportionally fair allocation can be inter-
preted as a particular case of the midpoint domination axiom to locality
– now, each path r is proportionally fairly attributable at least a fraction

wr∑
s∈Rr wr

of their dictatorial allocation, where Rr is not the total set of paths,
but the set of paths in competition with the user r for some resource. Few works
attempted at providing lower bounds for the general (w,α)-fair resource al-
location. In fact, the most recent available bound is shown by [38] ( see The-
orem 1), and used by the authors for an initialization of their α-fair heuristic.
To the best of our knowledge, this is the best bound that could be found in
the literature for the (w,α)-fair resource allocation problem and we refer to
it as the State-of-the-Art (SoA). We seek to improve the above bound by re-
moving the global dependencies on wmax, nj, and M, cmin and cmax, those



18 Chapter 2. Main concepts and structure

parameters being the major degradation factor when the size or congestion
of the problems increase.

For each path r ∈ R, let ur := minj∈Jr cj. The so-called utopia point u :=

(ur)r∈R is the (infeasible when the problem is non trivial) allocation repre-
senting the value each path would receive if they were alone in the network,
that is, its dictatorial allocation. Our bound for the (w,α)-fair allocation
only depends on the utopia point (hence on the capacity vector c), the ma-
trix A and on the weight vector w. For r ∈ R, let Rr := {s ∈ R; Jr ∩ Js 6= ∅},
i.e., the set of paths sharing at least one resource with r and R̄r := R−Rr.

First of all, we use the separability of the objective function of Prob-
lem (Pα) to better estimate our lower bound on a restricted problem. Specif-
ically, we prove a restriction lemma (see Lemma 1) that permits one to avoid
unnecessary dependencies between paths that do not share resources to-
gether. Then, we prove our general lower bound on the corresponding re-
stricted problems. Thanks to Lemma 1, the bound remains unchanged in
the original problem.

2.3.1 A restriction lemma

In this paragraph, we show that instead of evaluating our bound on Prob-
lem (Pα), one can use a smaller path-centric problem. Specifically, let x∗

denote the optimal solution of Problem (Pα) and let r0 ∈ R be an arbitrary
path. We define the restricted problem at r0, as the following:

max
∑

r∈Rr0

fαr (wr, xr)

s.t.
∑

r∈Rj∩Rr0

xr 6 c̃j := cj ∀j ∈ Jr0 ,

∑

r∈Rj∩Rr0

xr 6 c̃j := cj −
∑

r∈Rj∩Rr0

x∗r ∀j ∈ J− Jr0 .

(Pr0
α )

Intuitively, Problem (Pr0
α ) arises when the allocations of all the paths that do

not share any link with r0 are fixed to their optimal α-fair value (that is, fol-
lowing the vector x∗), and one needs to compute the α-fair allocation of the
remaining paths, that is, the paths within Rr0 that share at least one resource
with r0. The capacity constraints are thus updated taking into account the
amounts of resources that are already allocated, as shows the second line
of the constraints. We remark that all the links in J− Jr0 that do not serve
any of the paths within Rr0 form trivial constraints in (Pr0

α ) and can hence
be removed without any loss. Also, the restriction to Problem (Pr0

α ) comes
with an a priori new value of the utopia point that we denote ũ. We thus



2.3. A lower bound on α-fairness 19

remind the definition5:

∀r ∈ Rr0 , ũr := min
j∈Jr

c̃j (2.4)

We then have the following result:

LEMMA 1
The restriction to (Pr0

α ) does not change the optimal allocation of the
remaining paths: if x is the optimal solution of the Problem (Pr0

α ), then,
xs = x∗s, for s ∈ Rr0 .

Proof. Consider the problem:

max
∑

r∈R
fαr (wr, xr)

s.t. Ax 6 c,
xr > x∗r ∀r ∈ R̄r0 .

(2.5)

It suffices to show that the problems (2.5) and (Pr0
α ) are equivalent. Then,

the unicity of the solutions permits one to conclude.
We know that the problem (2.5) is feasible, as x∗ is a feasible point. De-

note its optimal solution by x̃. We remark that both x∗ and x̃ are feasible
for both problems (Pα) and (2.5). Hence, by optimality, we necessarily have
fα(w, x̃) = fα(w, x∗). Moreover, for instance, problem (Pα) has a unique
optimal solution. Thus,

x∗ = x̃.

Particularly for r ∈ R̄r0 , x∗r = x̃r. Thus, we can fix the values xr = x∗r for
r ∈ R̄r0 without changing the optimum. Thus, solving Problem (2.5) is
equivalent to solving the restricted problem (Pr0

α ), in the sense that the two
allocations x and x̃ they give are equal. hus, x∗s = x̃s = xs, for all s ∈ Rr0 .

Thanks to Lemma 1, we are now ready to present our lower bound on
the α-fair allocation based on the structure of the restricted problems.

2.3.2 Lower bound

We now show the main result of the discussion. We define the local midpoint
p as the following:

∀r ∈ R pr :=
wr

∑

s∈Rr

ws

ur.

5Here, we omit the subscript reference to r0 to avoid heaviness. Each time the notation
ũ will be used, the restriction will be clearly specified.



20 Chapter 2. Main concepts and structure

THEOREM 2
Let x∗ denote the optimal solution of problem (Pα). Let r0 :=

argmins∈R ps. Then, x∗ can be lower bounded as follows:

• if α > 1, ∀r ∈ R x∗r > dr(α) := p
1−1/α
r0 p

1/α
r

• if 0 < α 6 1, ∀r ∈ R x∗r > dr(α) :=









wrur
∑

s∈Rr

wsu
1−α
s









1/α

.

Proof. We first prove the proposition for α > 1. Let us define the path rmin
as the path with the least optimal allocation: rmin = argmins∈R x∗s. By defi-
nition of r0, we have:

prmin > pr0 (2.6)

Let r ∈ R. By Lemma 1, it suffices to show the inequality in the restricted
problem (Pr

α) associated to r. Let Cr denote its feasible set. Thus, for all
(xs)s∈Rr ∈ Cr we have:

∑

s∈Rr

ws
xs − x∗s
x∗αs

6 0,

This inequality holds for all feasible (xs)s∈Rr ∈ Cr. Thus, we evaluate it at
the dictatorial allocation of r, that is, at the point x defined as xr = ũr and
xs = 0 for all s ∈ Rr − {r}. In light of (2.4), we have: ũr = minj∈Jr c̃j =

minj∈Jr cj = ur. Thus,

wrũr = wrur 6 x∗αr
∑

s∈Rr

wsx
∗1−α
s 6

(

∑

s∈Rr

ws

)

x∗1−α
rmin

x∗αr , (2.7)

where we remind that rmin = argmins∈R x∗s and 1− α 6 0. Rearranging the
terms, one gets:

wrur
∑

s∈Rr

ws

x∗α−1
rmin

6 x∗αr ,

which yields:
p
1/α
r x

∗1−1/α
rmin 6 x∗r (2.8)

In particular, applying equation (2.8) to r = rmin and using (2.6), we get:

x∗rmin
> prmin > pr0 (2.9)

Finally, we plug (2.9) in (2.8) to obtain the desired lower bound on x∗r (be-
cause 1− 1/α > 0).



2.4. Comparison of d and m 21

Path i 0 1 2 3 4 5

wi 0.51 0.54 0.72 0.73 1.48 1.08
ci x 1.05 0.66 1.25 1.11 1.08

Table 2.1 | The samples of c and w used for the comparisons of d and m in
the 5-linear network.

Next, we show the bound for 0 < α < 1. In the same fashion, we look at
the restricted problem. Let r ∈ R and consider its restricted problem. Then,
one has:

wrur

x∗αr
6

∑

s∈Rr

wsx
∗1−α
s 6

∑

s∈Rr

wsũ
1−α
s 6

∑

s∈Rr

wsu
1−α
s . (2.10)

Rearranging the terms finally provides the desired bound. For any value of
α, one can remark that the bound (dr(α))r∈R only depends on the capacity
vector c, the weight vector w, and the link-route incidence structure given
by A.

2.4 Comparison of d and m

In this section, we compare the bound derived in Theorem 2 to the one pre-
sented in Theorem 1 on several examples and settings. Broadly, our bound
d numerically outperforms m for α = 1, 2 and greater values to a certain ex-
tent. In all generality, the analytical expression of d

m suggests that the rela-
tive values of the bounds should depend on the system settings, namely the
variance in the weights w and in the capacities c. This means that the two
bounds may behave differently to a fluctuating asymmetry of the weight
vector w or the capacity vector c, namely, a variation of the two parameters
δw := minwr

maxwr
and δc := cmin

cmax
. This is why, on an illustration on the 5-linear

network (see the illustration in Figure 2.1), we compare the bounds in the
four possible scenarios, scenario 0) w and c generated following Table 2.1,
scenario 1) c generated following Table 2.1 and w equal to 1, scenario 2) w
generated following Table 2.1 and c equal to 1 scenario 3) w and c equal to 1.
Figures 2.3–2.6 show the values of d, m and the optimum x∗ on the 5-linear
network.

Next, we compare on synthetic instances how the two bounds relate to
each other when α varies.

The two bounds were compared on instances with 1000 requests over a
same graph of type barabasi(100,4) (see [39]). The routes were generated at
random by taking the shortest path between pairs of sources and destina-
tions drawn uniformly at random. The weights (resp. link capacities) were
also drawn uniformly at random within intervals I satisfying inf I/ sup I =

δw (resp. δc). For each instance, and each α, we define the score of d as the
number |{r : dr(α) > mr(α)}|/|R|. The score represents the proportion of re-
quests for which our bound d(α) beats the SoA bound m(α) for a particular



22 Chapter 2. Main concepts and structure

Figure 2.3 | Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 0.

Figure 2.4 | Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 1.

Figure 2.5 | Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 2.

Figure 2.6 | Optimal allocation x∗ and the bounds d and m on the 5-linear
network with scenario 3.



2.4. Comparison of d and m 23

Figure 2.7 | A comparison of the two bounds. The scores, and the min-
imum, average and maximum bound improvements are illustrated in the
cases of (a)-(b) a constant δw for different values of δc, and of (c)-(d) a con-
stant δc for different values of δw. Figures (b) and (d) show the bound im-
provements in the two extreme situations δc (resp. δw) = 0.01 (resp. 1) in
dashed lines (resp. solid lines).

α. In Figure 2.7(a), the parameter δw was fixed to 1 (which namely means
w = 1) and we plotted the score of d versus α for different values of δc.
Figure 2.7(c) shows the score in the other extreme situation δc = 1 (which
means all the link capacities are equal) for different values of δw.

In order to appreciate the quality of the bound improvement, if any, we
plotted, in Figures 2.7(b) and 2.7(d), the corresponding bound improve-
ments, measured with the values of the ratios dr(α)/mr(α). To preserve
readability of the plots, we represented only the extreme situations corre-
sponding to the values δc = 0.01 (dashed lines) and δc = 1 (solid lines) for
Figure 2.7(b) and to the values δw = 0.01 (dashed lines) and δw = 1 (solid
lines) for Figure 2.7(d). Figures 2.7(b) and 2.7(d) show the best, worst, and
average improvements encountered in the same problem instance. All the
points represented in Figure 2.7 correspond to an average over 10 instances
generated under identical conditions. In Figures 2.7(a) and 2.7(c), we also
included the specific points as translucent scattered markers.

According to Figure 2.7, our bound is an absolute improvement for val-
ues of α in the interval [0,2] (thus including the max-throughput, propor-
tional fairness, and min-delay popular concepts) in all situations. Particu-
larly for proportional fairness, the simulations show that we improved the
bound m by two orders of magnitude in all situations. For min-delay fair-
ness, the bound is generally improved on average by a multiplicative factor



24 Chapter 2. Main concepts and structure

between 1 and several tens. For greater values of α, it is interesting to see
that either d or m is more adapted to certain problem structures. For in-
stance, d will be of greater interest when the network link capacities are
more heterogeneous, δc << 1 (which may correspond to situations where
the network is asymmetrically congested), whereas m is more adapted to
asymmetrically weighted problems, δw << 1. One can thus conclude that
the two available bounds complement each other for general α > 1.

2.5 Reflexions on a possible improvement

In this section, we seek to discuss on a possible improvement on the case
α > 1. As one can see, the bound given in Theorem 2 are completely lo-
calized (in the sense that they only depend on parameters within the re-
stricted problem) for 0 6 α 6 1, and the improvement they offer compared
to Theorem 1 are definitive. However, for greater values of α, the influence
of the global term pr0 is clearly destructive to the individual values of the
bounds, as now, a global (in the sense that it could intuitively have limited
incidence given the form of the restricted problem) imbalance in the weights
w and/or the capacity vector c has a substantial influence on the degrada-
tion of the bounds (see Figure 2.7). Therefore, we wish to derive, in the same
fashion as in the cases 0 6 α 6 1, the same type of user-centric formulas. In
order to do this, we examine more closely the methodology of the previous
section.

The proof in the previous section happens to suggest an iterative tech-
nique to derive a new bound based on an already known bound. Indeed,
in the inequalities within Equation (2.10), one can see that when α > 1, the
term

∑
s∈Rr wsx

∗1−α
s can be dominated by a term

∑
s∈Rr wsβ

1−α
s , where β is

a known lower bound on the fair allocation x∗. Particularly, this observation
can be summarized in the following lemma:

LEMMA 2
Let α > 1. Let b be a known lower bound on the optimal solution.
Then, we have:

∀r ∈ R, x∗r >

(

wrur
∑

s∈Rr wsb
1−α
s

)1/α

(2.11)

Proof. Fix r ∈ R. In the same fashion as in 2.3.2, we look at the restricted
problem around r. We remark that the allocation xr = ur and xs∈Rr−{r} = 0

is feasible in the restricted problem. Therefore, the optimality condition:

wrur

x∗αr
6

∑

s∈Rr

wsx
∗1−α
s (2.12)



2.5. Reflexions on a possible improvement 25

holds. But 1− α 6 0. Hence, the right-hand side of the inequality above is
less than the bound: ∑

s∈R
wsb

1−α
s .

Rearranging the terms, we get:

x∗αr >
wrur

∑

s∈Rr

wsb
1−α
s

, (2.13)

which concludes the proof.

Therefore, given a lower bound b on the fair allocation x∗, Lemma 2 tells
us that another lower bound can be derived. More precisely, we have the
following immediate corollary:

COROLLARY 1
Let α > 1. Let b(0) := d(α) and the sequence b(n) be defined by the
formula:

∀r ∈ R br(n+ 1) :=









wrur
∑

s∈Rr

wsbs(n)
1−α









1/α

. (2.14)

Then, (b(n))n is a sequence of lower bounds for the α-fair resource
allocation problem for α > 1.

The behavior of the sequence (b(n))n∈N is of course of interest. Let us
first illustrate it on a simple example of the 2-linear network introduced in
2.1. In this case, we have the following:

b0(n+ 1) =
w0c0

w0b0(n)1−α +w1b1(n)1−α +w2b2(n)1−α
(2.15)

and
bi(n+ 1) =

wici
w0b0(n)1−α +wibi(n)1−α

, i = 1, 2. (2.16)

In Figure 2.8, we plot the iterates b(n) for a value of α set to 1, 2 and 4.
The trajectories are plotted for 100 different initializations of b(0) (drawn
uniformly at random in the interval [0, 1]) and we demonstrate its empirical
convergence in this situation. Figure 2.8 is shown to illustrate the conver-
gence of b(n). In fact, we remark in the simulations that b(n) converges to
the same point, no matter its initialization. This behavior suggests us that
a limit point could be derived in a closed form that does not contain any
influence from initialization. We seek to get insights on this form, and its
potential expression. In order to do that, we relax a little bit the formulas



26 Chapter 2. Main concepts and structure

Figure 2.8 | The behaviour of b(n) on the 5-linear network on scenario 0

by not restricting the problem. Lemma 2 and Corollary 1 can also be stated
in the global problem, that is, by replacing Rr by simply R in the denomi-
nator. Of course, this will necessarily deteriorate the value of the bounds.
Nonetheless, it is more simple to work with, and get the following result:

PROPOSITION 1
Let α > 1. Let x∗ denote the optimal solution of problem (Pα). Then,
x∗ can be lower bounded as follows:

∀r ∈ R, x∗r >
w

1/α
r u

1/α
r

∑

s∈R
w

1/α
s u

1/α−1
s

. (2.17)

Proof. Let n be a positive index. We show by recursion on 1 6 k 6 n that
b(n) takes the following form:

br(n) = w
1/α
r u

1/α
r K

qnn−k

n−k

(

∑

s∈R
w

1/α
s u

1/α−1
s

)hn
n−k

, (2.18)

where Kn−k :=
(

fα(w,b(n−k))
1−α

)

=
∑

s∈Rwsbs(n− k)1−α, qn
n−k and hn

n−k are
real numbers satisfying a recursion rule that will be deduced.

We know that for k = 1, this is Equation (2.18) with qn
n−1 = −1/α and

hn
n−1 = 0.



2.5. Reflexions on a possible improvement 27

Further, one has:

K
qnn−k

n−k =





∑

s∈R
ws

(

wsus

Kn−(k+1)

)1/α−1




qnn−k

(2.19)

=

(

∑

s∈R
w

1+1/α−1
s u

1/α−1
s

)qnn−k

K
−(1/α−1)qnn−k

n−(k+1)
(2.20)

=

(

∑

s∈R
w

1/α
s u

1/α−1
s

)qnn−k

K
(1−1/α)qnn−k

n−(k+1)
. (2.21)

Therefore, by plugging in the expression of K
qnn−k

n−k in Equation (2.18), one
gets:

br(n) = w
1/α
r u

1/α
r K

qn
n−(k+1)

n−(k+1)

(

∑

s∈R
w

1/α
s u

1/α−1
s

)hn
n−(k+1)

, (2.22)

with the recursion formulas:
{
qn
n−(k+1)

= (1− 1
α)q

n
n−k,

hn
n−k+1 = hn

n−k + qn
n−k

. (2.23)

Solving Equation (2.23) is straightforward, as (qn
n−k)k=1,...,n is a geometric

sequence with factor (1− 1/α), and the expression of (hn
n−k)k=1,...,n follows,

one gets:
{
qn
n−k = − 1

α(1−
1
α)

k−1

hn
n−k = (1− 1

α)
k − 1

. (2.24)

Therefore, Equation (2.18) is proved, and, evaluating it for k = n, we have:

br(n) = w
1/α
r u

1/α
r K

1
α (1− 1

α )n−1

0

(

∑

s∈R
w

1/α
s u

1/α−1
s

)(1− 1
α )n−1

. (2.25)

The formula (2.25) being valid for all n, as qn
0 → 0 and hn

0 → −1, we see
that the sequence br(n) is convergent6 to the value:

b⋆r =
w

1/α
r u

1/α
r

∑

s∈R
w

1/α
s u

1/α−1
s

. (2.26)

Finally, for each n, br(n) 6 x∗r by Corollary 1.

The formula (2.26) gives a quite elegant expression of a lower bound for

6And we remark that the limit does not depend on b(0), because qn
0 → 0.



28 Chapter 2. Main concepts and structure

the fair allocation for α > 1. This form is seen in numerous works around
resource sharing problems when only one resource is shared and can be
derived by classic water-filling arguments or as an immediate consequence
of KKT conditions [40]. Here we have generalized this formula to the case
of the multi-resource sharing problem, and proved that it corresponds to a
lower bound on the solution. However, as such, it does not improve the for-
mulas derived in the last section. Indeed, we are now stuck with a summa-
tion over R in the denominator, which naturally deteriorates unnecessarily
the value of the bound when the problem gets arbitrarily large. In partic-
ular, for α = 1, the two formulas would coincide if the summation in the
denominator of (2.25) was Rr, and not R. We would therefore prefer a local-
ized formula in the fashion of Theorem 2. Unfortunately, the calculus in the
proof of Proposition 1 does not hold in the restricted problem. Indeed, the
quantity Kk = Kk(r) =

∑
s∈Rr wsbs(k)

1−α now depends on r and cannot be
taken out of the sum from line (2.19) to (2.20).

One way to circumvent this technical question is to see if, as in Lemma 1,
it is possible to restrict the problem around Rr and derive the correspond-
ing formulas. The difficulty is in that even though the result in Lemma 1
holds, it gives a bound that depends on the restricted utopia points ũ. Un-
fortunately, we do not have in all generality u = ũ. We end this chapter
by proposing a possible localization of (2.25) that generalizes the result ob-
tained for α = 1 in Theorem 2 to arbitrary values of α.

2.5.1 Suspected restricted formula

Our suspected restricted formula of a localized lower bound for the α-fair
resource allocation problem can be stated as the (unproven) proposition be-
low:

CONJECTURE 1 (Proven by Theorem 2 if α = 1.)
Let α > 1. Let x∗ denote the optimal solution of problem (Pα). Then,
x∗ can be lower bounded as follows:

∀r ∈ R, x∗r >
w

1/α
r u

1/α
r

∑

s∈Rr

w
1/α
s u

1/α−1
s

. (2.27)

Although this proposition is not proven for 1 < α 6 ∞, we illustrate
in Figures 2.9–2.12 the effect of this possible improvement and plot on the
same four scenarios as in Figures 2.3–2.6, its value (that we refer to as D),
against m and the optimum x∗.

Because of the improved quality of the bound it yields, in the sequel, we
always mean by the term “lower bound", the bound D given by the con-
jecture. Of course, we always verify numerically that the formula is indeed
a lower bound before we use it, keeping in mind that we always have the



2.6. Concluding remarks 29

(less tight) lower bound d as backup. Of course, we could have used instead
either d, or the limit point of the series (b(n))n initialized with b(0) = d,
following the result of Corollary 1. However, interestingly, we have never
found any counter example where Dr > x∗r for some r, for any value of
α > 1, in any of our instances. Therefore, because of the practicality of
the evaluation of D, and its empirical correctness and improvement with
regards to d and m, we used D instead.

2.6 Concluding remarks

In this chapter, the α-fair resource allocation problem was formalized, and
presented as a convex optimization problem. We studied its structure and
derived a lower bound on the solution. The first lower bound that we de-
rive in Theorem 2 relies on a localization of the problem onto which we sim-
ply apply the definition or α-fairness. We discover that this lower bound
permits to improve the one of Theorem 1 for values of α 6 2 in all the con-
sidered settings (Figure 2.7) but not for greater values of α. Motivated by
the form of the individual formulas we obtain in Proposition 1, and by the
restricted particular case for α = 1 (Conjecture 1 and Theorem 2), we postu-
late that it is possible to show the same restricted versions of the formulas in
Conjecture 1 for general α > 1. However, this question is still problematic
for us. We nevertheless illustrated (Figures 2.9–2.12) the potential improve-
ment the bound of Conjecture 1 gives, compared to our established bounds.
Other than bounding the optimal α-fair allocation from below, which itself
is an interesting exercise and helps improve our understanding of α-fair al-
locations, the lower bound will be very helpful to tune the algorithms that
we derive in order to compute them, the design of which (only) is the topic
of the next chapter.



30 Chapter 2. Main concepts and structure

Figure 2.9 | Optimal allocation x∗ and the bounds m and D on the 5-linear
network with scenario 0.

Figure 2.10 | Optimal allocation x∗ and the bounds m and D on the 5-linear
network with scenario 1.

Figure 2.11 | Optimal allocation x∗ and the bounds m and D on the 5-linear
network with scenario 2.

Figure 2.12 | Optimal allocation x∗ and the bounds m and D on the 5-linear
network with scenario 3.



Chapter 3

Fair resource allocation:
Distributed algorithms

A
FORMALIZATION OF the fair resource allocation problem was done
and its structure was studied in the previous chapter. Particu-
larly, we presented a minimal value for the allocation of band-
width to network paths in form of a lower bound (Theorem 2).

At present state, the interest of this lower bound appears in that the search
space for the optimal solution can be reduced to the upper right region
defined by this point, giving more structure to the problem that is now
bounded (away from zero). Another important interest of this bound will
be introduced in the next chapter. But for now, the natural next step is to
ask ourselves how the problem can be solved efficiently in distributed sys-
tems. We remind that the SDN controller is physically distributed. This
means that the global view of the network is logically available, but in fact
achieved through information sharing between a group of controllers each
in charge of a (partially or entirely) exclusive network domain. The dis-
tribution of the SDN (global) controller is a scenario that was described in
Chapter 1, where we identified three main requirements for our α-fair re-
source allocation algorithm:

1. Real-time: converging to a "good" solution in a small number of itera-
tions,

2. Feasibility: producing feasible solutions at all iterations,

3. Distributivity: being massively parallelized.

Thus, the SDN domains should enforce goals 1–3 cooperatively by solv-
ing local sub-problems (with as sole information the internal knowledge
of their own domain parameters, plus the information that they can pos-
sibly gather from their peers - or a central synchronization master - through
inter-domain communications), and broadcasting their partial results such
that global iterates (good quality feasible iterates) or solutions can be rebuilt
easily by all the controllers. The cooperation of the different controllers is

31



32 Chapter 3. Distributed algorithms

unavoidable in a distributed setting when the problem to solve at hand is
not trivially separated. Of course, if all the paths that exist in the network
do not cross domains, the α-fair resource allocation problem becomes sep-
arated into P independent sub-problems (where P is the number of con-
trollers/domains). This is why in the sequel, we always assume each do-
main serves at least one path that crosses it but is not contained in it.

To sum up, we look for algorithms that can decompose adequately into
sub-problems fitted to the domain structures, typically in terms of topology.
Also, the iterative algorithms should demonstrate good rate of convergence
so that a minimal number of communication rounds (that come at non triv-
ial costs in terms of delay) are needed in order to achieve good quality solu-
tions. By good quality solutions, we mean feasible solutions with acceptable
accuracy in terms of optimality gap. At last, the algorithms should have ef-
ficient and simple update rules.

The present chapter is organized as follows. In Section 3.1, we review
the work around algorithms designed to tackle the general α-fair resource
allocation problem or one of its particulars. Specifically, we present an algo-
rithm based on the classic dual decomposition method introduced by Voice
[41] and Kelly, Maulloo, and Tan [36] that could be considered as the State-
of-the-Art for this problem. Further, we dedicate Section 3.2 to an intro-
duction on the ADMM, the tool that we use to design our distributed algo-
rithms. Let us say in passing that the curious reader may also refer to Boyd
et al. [23] for a very complete theory. Finally, we present our algorithm,
FD-ADMM, as the tool to answer all our challenges, and we illustrate its
performance by comparing it against the State-of-the-Art dual decomposi-
tion based algorithm. From now on, we drop some heavy notations and
write simply fr(xr) := fαr (wr, xr). The value of α will always be general or
specified, and the weight wr remembered through the subscript r.



3.1. Related works 33

IN A NUTSHELL
In this chapter, we review existing algorithms that compute α-fair re-
source allocations. Based on the identified goals that algorithms de-
signed for distributed SDN should tackle in real-time allocation prob-
lems, we develop an ADMM-based method (FD-ADMM, Algorithm
3) for the α-fair resource allocation problem over a distributed SDN
control plane. It iteratively produces resource allocations that con-
verge to the α-fair optimal allocation. Heavy computations, requiring
projections on polytopes, can be massively parallelized on a link-by-
link basis in each domain. This yields a convergence rate that does not
depend on the partitioning of the network into domains. FD-ADMM
is a distributed version of a generic centralized algorithm offered by
the ADMM framework and present the general tricks to perform such
a distribution.
We will show that our FD-ADMM algorithm can function in real-
time, as (i) close-to-optimal solutions are available since the very first
iterations and (ii) feasible allocations are available at all iterations
(Proposition 2), a property that standard primal-dual decomposition
methods generally lack. This permits to adjust within up to a few
milliseconds the bandwidth of flows that evolve quickly and need
immediate response. Finally, we compare FD-ADMM with the State-
of-the-Art (SoA) approach for computing α-fair resource allocations
in distributed scenarios in [22], which is based on the Lagrangian dual
splitting method and that as from now we refer to as LAGR. We show
that our algorithm outperforms LAGR in terms of convergence rate,
feasibility preservation and hence, overall, real-time responsiveness.

3.1 Related works

Works around resource allocation and algorithms to compute them have
been arising for the past decades in various application domains.

The probably most important (and known) notion of fairness would be
max-min fairness. As we remarked in the last chapter, its definition brings
a more natural and acceptable notion of what one can call “fair". As such,
we have seen in the last chapter that computing the max-min fair alloca-
tion is not quite difficult: a finite-time algorithm based on the water-filling
principle is available. Unfortunately, its design makes it naturally a cen-
tralized algorithm, and as such in traditional networks, its implementa-
tion was problematic. This is why some early notable works on max-min
fairness were focussed on proposing algorithms that could work distribu-
tively and asynchronously to adapt to traditional networks, where central-
ized management was not yet available. For instance, Charny, Jain, and
Clark [42] propose an asynchronous distributed algorithm that communi-



34 Chapter 3. Distributed algorithms

cates explicitly with the sources and pays some overhead (between the net-
work switches) in exchange for more robustness and faster convergence.
Later in [43], a distributed algorithm is defined for the weighted variant of
max-min fair resource allocation problem in MPLS networks, based on the
well-known bottleneck property, that we recalled and used in Chapter 2,
stating that an allocation is max-min fair if and only if each Label-Switched
Path (LSP) either admits a bottleneck link among its used links or meets its
maximal bandwidth requirement. With the apparition of SDN and its ability
to tackle these problems with a global viewpoint, the problem of Network
Utility Maximization (NUM) was more and more relevant to the network
resource allocation challenges. The idea was that instead of implementing
local algorithms that would globally perform (or converge to an a-like be-
havior with guarantees to ensure) a certain fairness objective, it was possible
to compute directly the optimal solution, because the vision was now global,
on the links, the capacities, the traffic matrices. Therefore, the NUM prob-
lem was also addressed with standard decomposition methods that could
give efficient and very simple algorithms based on gradient ascent schemes
performing their update rules in parallel. In this context, Voice [41], then
McCormick et al. [22], tackle the α-fair resource allocation problem with a
gradient descent applied to the dual of the problem. The derived algorithm
is today known and commonly referred to in the literature as Kelly’s algo-
rithm.

Dual gradient descent based algorithm

In the last chapter, the problem of α-fair resource allocation was formulated
in terms of a concave maximization (or equivalently, convex minimization)
problem under linear inequality constraints. In [22], the Lagrangian dual of
the problem was formed:

L(x,u) =
∑

r∈R
fr(xr) +uT(c−Ax). (3.1)

Then, the standard dual algorithm to solve the NUM (as surveyed by
Palomar and Chiang [44]) problem was applied and gave the following up-
date rules:

(primal) xr ← argmax
x>0

fr(x) −





∑

j∈Jr

uj



 x ∀r ∈ R

(dual) uj ←



uj − λj(cj −
∑

r∈Rj

xr)





+

∀j ∈ J,

(3.2)

where λj > 0 is a sufficiently small step-size (that can depend on j in all



3.1. Related works 35

generality). In [22], the step-size λj is chosen as:

λj =
uj

2cj
, (3.3)

following [41].
The dual algorithm thus designed seems extremely simple to carry: each

update is fully separable, either with respect to R, or with respect to J, and
can work very efficiently on massively parallel hardware. It was indeed
tested on FPGA hardware and demonstrated time performances measur-
able at the scale of the millisecond, instead of seconds or minutes. The ac-
curacy of a trick to condition the multi-path version was also demonstrated
to reach a 1% root-mean-square error within the millisecond.

Certainly, the major contribution of the works around dual decomposi-
tion method is that the algorithm is very simple to implement, has update
rules with very limited computation cost and massively parallelized, and
therefore, can propose extremely fast and highly accurate solution. Notwith-
standing, a fast and accurate solution should not necessarily be the only
criteria that justifies its adaptability to real-time scenarios. We pointed out
the fact that feasibility was a non negligible property in distributed scenar-
ios. Indeed, a central projection sub-routine being not trivially available
(unless, of course, it is implemented as a distributed iterative algorithm in
the same way as the fair share computation itself), the availability of a solu-
tion that respects the link capacity constraints is highly desirable. Not for-
getting in real-time scenarios where the problem parameters are changing
continuously, sometimes abruptly, a whole process to compute the optimal
solution of a fixed problem may be irrelevent, because at the time the opti-
mal solution is finally available, the problem parameters have changed and
the solution is no longer optimal: the long term performance of the system
might be better if feasible close to optimal solution were implemented on a
shorter time scale. This preference can justified in fields of machine learn-
ing, where optimality to high accuracy does not considerably/necessarily
improve interpolations compared to modestly accurate solutions. It hap-
pens that penalizing the constraints through the classic Lagrangian relax-
ation as occurs in the dual decomposition method does not permit to avoid
feasibility preservation. In fact, the iterates generically approach the opti-
mal solution while being super-optimal, that is, from the outside of the fea-
sible set, providing upper-bounds on the optimal value of the problem. Of
course, the projected gradient algorithm permits to avoid this phenomenon,
but again, it requires a central projection algorithm, which is not available
in our case.

In the works above, no mention is made on the potential (in fact, system-
atic) feasibility violation of the sequences generated by those algorithms,
which is a crucial matter in distributed SDN settings. In fact, the computa-
tion time to optimum can be a valid argument to swipe away this question
and justify its adaptability to real-time scenarios. Nonetheless, an imple-
mentation on a distributed system makes not only the computation time



36 Chapter 3. Distributed algorithms

important, but also the number of required iterations to reach convergence.
As one iteration equals (at least) one communication round between the dif-
ferent agents, which comes at a non trivial cost, the time-to-value itself of the
optimal point may be a burden if the transient solution is not feasible and
optimality has to be reached so that feasibility is at least approached. For
these reasons, real-time feasibility should somehow, in distributed real-time
scenarios, be more precious than extremely accurate optimality. Regarding
this topic on max-min fairness, the authors of [45] employ damping tech-
niques to avoid transient infeasibility while reaching the max-min fair point,
but cannot guarantee feasibility at all times, especially in dynamic settings.
Also motivated by this, more recently the authors of [46] provide a feasibil-
ity preserving version of Kelly’s methodology from [36]. Their algorithm
introduces a slave that gives at each (master) iteration an optimal solution
of a weighted proportionally fair resource allocation problem that is explic-
itly addressed in only the two cases of polymatroidal and flow aggregating
networks. In fact, our works contribute to this problem by proposing an effi-
cient real-time version of the slave process, for any topology, preserving fea-
sibility at each (slave) iteration. Among approximative approaches, one can
quote the works [38] where a multiplicative approximation for α 6= 1 and
additive approximation for α = 1 is provably obtained in poly-logarithmic
time in the problem parameters. Moreover, starting from any point, the
algorithm reaches feasibility within poly-logarithmic time and remains fea-
sible forever after. In the same vein, the algorithm we derive solves the
problem optimally and reaches feasibility as from the first iteration from
any starting point.

3.2 Presentation of ADMM

In this preliminary section, we present the main definitions and assump-
tions required to design our algorithm based on ADMM.

3.2.1 General principles and challenges

The Alternating Method of Multipliers (ADMM) is an optimization frame-
work dedicated to convex programs. Its main feature is that it adapts el-
egantly to a convex problem’s separable structure, and permits to break
down optimization stages. The framework is based on augmenting the
classical dual Lagrangian by a penalization of the constraint violations by
means of its squared 2-norm.

The work around ADMM is currently flourishing. The O( 1n) best known
convergence rate of ADMM [47] failed to explain its empirical fast conver-
gence until very recently, for instance in [48], where global linear conver-
gence rates are established in four scenarios of the strongly convex case.
ADMM is also well-known for its performance that highly depends on the



3.2. Presentation of ADMM 37

parameter tuning, namely, the penalty parameter1 λ in the augmented La-
grangian formulation (see Section 3.2.2 below). An effective use of this class
of algorithms cannot be decoupled from an accurate parameter tuning, as
convergence can be extremely slow otherwise. Thus, in the same paper [48],
the authors provide a linear convergence proof that yields a convergence
rate in a closed form that can be optimized with respect to the problem pa-
rameters. Therefore, thanks to these works, we derive a near-optimal tuning
of ADMM for the α-fair resource allocation problem. Several papers use the
distributivity of ADMM to design efficient distributed algorithms solving
consensus formulations for e.g. model predictive control [49] and resource
allocation in wireless virtual networks [50] but do not address this funda-
mental detail.

To the best of our knowledge, we are the first to show how ADMM
can help designing real-time distributed algorithms for computing α-fair
resource allocations in distributed settings. We are also the first to exhibit a
near-optimal convergence rate of ADMM in this situation with our recipro-
cal penalty parameter adaptation scheme.

3.2.2 ADMM algorithm

In this paragraph, we summarize the principles of ADMM and show the
unaware reader how the algorithm is designed. We also show how one can
intentionally breakdown sub-problems in a coupled problem by introduc-
ing artificial separability. Of course, separability always come with a price
when it is not natural, and we will qualify the tradeoffs later on.

Optimization model

We present the general optimization model that ADMM naturally addresses
and the general definitions assumptions we need. Let n,m,p be positive
integers.

1In the literature, what we usually call penalty parameter is the number ρ = 1
λ . The

number λ is therefore the reciprocal penalty parameter. Here, we arbitrarily adopt the
notation λ and abusively still call it penalty parameter to avoid too much heaviness.



38 Chapter 3. Distributed algorithms

DEFINITION 2
Let f : Rn → R be an extended real-valued function.
We say that f is convex, if for x1, x2 ∈ Rn, and t ∈ [0, 1],

f(tx1 + (1− t)x2) 6 tf(x1) + (1− t)f(x2).

We say that f is lower semi-continuous, or closed, if for all ξ ∈ R, the set

{x : f(x) 6 ξ}

is closed.
We denote dom(f), and we call domain of f, the set {x ∈ Rn : f(x) < ∞}.
We say that f is proper if dom(f) 6= ∅.

Now, we assume g : Rn → R and h : Rm → R are two functions satisfy-
ing the assumption:

Assumption 1. The functions g and h are convex, closed, and proper.

Let A and B be two matrices of size (p,n) and (p,m), respectively, and
b ∈ Rp. The ADMM applies to the following generic optimization model:

min
x,y

g(x) + h(y)

s.t. Ax+ By = b
(A0)

In this thesis, the models in question are re-formulated in the particular
case where n = m = p, and A = −B = I (the identity matrix of the appro-
priate dimension) and b = 0. For this reason, we avoid too much heaviness
in the discussion and place ourselves directly in this particular case. For a
complete presentation, the reader is of course referred to the reference in
this topic [23].

Assumption 1 defines the minimal conditions under which the following
definition is well-posed:



3.2. Presentation of ADMM 39

DEFINITION 3 (Proximity Operator)
Let f : Rn → R be a function satisfying Assumption 1. Then, for all
u ∈ Rn, there exists an unique minimizer xfu ∈ Rn to the problem:

argmin f(x) +
1

2
||x−u||2. (3.4)

Therefore, the function x 7→ xfu is well-defined and we denote it
xfu =: proxf(u). As f is proper, proxf takes finite values at all point.
Therefore, dom(proxf) = Rn. Remarkably, if C is a convex non-empty
set, and f is its indicator function:

f(x) =

{
0 if x ∈ C

∞ otherwise , (3.5)

Then proxf = PC, the euclidean projection onto the set C.

The general algorithm

The ADMM algorithm aims at finding a minimizer of the augmented La-
grangian:

Lλ(x,y,u) = g(x) + h(y) +
1

2λ
||x−y||2 +uT(x−y), (3.6)

where λ is a positive parameter. The vector u is a dual variable associated to
the constraints x−y = 0. For convenience we can re-write Lλ in the form:

Lλ(x,y,u) = g(x) + h(y) +
1

2λ
||x−y+ λu||2 −

λ

2
||u||2. (3.7)

Then, the following update rules are to be repeated till a suitable stop-
ping criterion is satisfied, and one can check that they correspond to com-
puting a proximity operator of Definition 3:

xk+1 ← argmin
x

Lλ(x,yk,uk) = proxλg(y
k − λuk) (3.8)

yk+1 ← argmin
y

Lλ(x
k+1,y,uk) = proxλh(x

k+1 + λuk) (3.9)

uk+1 ← uk +
1

λ

(

xk+1 −yk+1
)

(3.10)

In the above equations, it is important to notice that the update rules
(3.8) and (3.9) actually replace the update rule in the classic method of mul-
tipliers that consists in minimizing Lλ with respect to x and y jointly. By
doing two minimization stages for one variable each, the two separate up-
date rules can be considerably more simple to solve than the joint update



40 Chapter 3. Distributed algorithms

rule of the method of multipliers. Also, the alternating directions variant
adapts naturally to the separability properties of g and h, as a block, but
also individually.

Separation patterns

Now, let us assume that g has a specific separable structure. Let Ω =

(Ωp)p∈P be a partition of [1,n]. This means that the Ωp are disjoint and
their union sums up to [1,n]. We say that g is separable with respect to Ω if g
can be written in the form:

g(x) =
∑

p∈P
gp(xp), gp : xp = (xω)ω∈Ωp

∈ RΩp → g(xp) ∈ R. (3.11)

As a direct consequence, the proximity operator of g becomes, for u =

(up)p∈P:
proxg(u) = (proxgp(up))p∈P. (3.12)

In other words, computing the proximity operator of g boils down to
evaluating, separately and independently, the ones of each gp and then con-
catenating them together. This interesting property forms the first building
block of accurate distribution in ADMM.

Correctness

The convergence of ADMM has motivated numerous works and is still an
area of active research today. In the present chapter, we do not focus on
the speed of convergence of ADMM (see Chapter 4). However, one can
establish (non-trivial, see [23], Appendix A) that the update rules (3.8)-(3.10)
give iterates xk, yk, and dual iterates uk that verify:

1. xk −yk → 0

2. g(xk) + h(yk)→ p∗ (the optimal value of the problem)

3. uk converges to an optimal dual point,

as k → ∞, under the additional (mild) assumption that the classical La-
grangian function Lλ=∞(x,y,u) := g(x) + h(y) + uT(x− y) admits a sad-
dle point. On top of this result, it is possible to guarantee that the primal
variables x and y converge also to an optimal point, but with additional
assumptions.

Stopping criteria

Let us consider the general primal-dual iterate (xk,yk,uk), where k is the it-
eration number. The optimality conditions give the necessary and sufficient
conditions for a primal-dual solution (x∗,y∗,u∗):

1. Primal feasibility: Ax∗ + By∗ = b, and



3.3. Model Formulation 41

R set of paths
J the set of links
cj the capacity of the link j ∈ J

wr the weight associated to path r

xr the resource allocation variable at path r ∈ R

Jr the set of links the path r is crossing
Rj the set of paths that are crossing the link j

A link route incidence binary matrix: ajr = 1 iff j ∈ Jr

Table 3.1 | Terminology.

2. Dual feasibility: 0 ∈ ∂g(x∗) +ATu∗ and 0 ∈ ∂g(y∗ + BTu∗).

We define the primal and dual residuals, respectively, by:

rk := Axk + Byk −b, and sk =
1

λ
ATB(yk −yk−1). (3.13)

Following Boyd et al. [23], these residuals permit to bound the optimality
gap, up to a certain constant factor depending on the problem parameters,
and converge to 0 as k grows, and therefore yield the practical stopping
criteria:

||rk||+ ||sk|| 6 ε. (3.14)

Other than time limits, this is always the stopping criteria that will be used
in the simulations.

3.3 Model Formulation

In this section, we reformulate the α-fair resource allocation problem as a
convex optimization problem that matches the structure of (A0). We use the
tools described in the last section to formulate our problem in the canoni-
cal form of ADMM and design a first algorithm, C-ADMM, that solves our
problem in a centralized fashion and that will be helpful to design our dis-
tributed algorithm. We use the same terminology as in Chapter 2 that we
remind in Table 3.1.
We recall that our aim is to compute an α-fair allocation x:

max
x>0,Ax6c

f(x) (3.15)

where the α-fair utility function f is defined as in Definition 1 (Chapter 2)
and that we remind below.

f(x) =

n∑

r=1

fr(xr),



42 Chapter 3. Distributed algorithms

where

fr(xr) =

{

wr
x1−α
r
1−α , α 6= 1,

wr log(xr), α = 1.

We observe that the α-fair utility functions are non-decreasing, strictly
concave, non-identically equal to −∞, and upper semi-continuous. It is
well-known that under these conditions, the function f admits a unique
maximizer over any convex closed non-empty set.

From now on, we adopt the convex optimization terminology. Define
for each r ∈ R the convex cost function gr : xr 7→ gr(xr) := −fr(xr). Then,
g :=

⊕

r gr = −f is a convex closed proper2 function over R|R|
+ .

Let us introduce ι as the indicator function of the convex closed set {x :

Ax 6 c, x > 0}:

ι(x) =

{
0 if Ax 6 c, x > 0

∞, otherwise.

Then the α-fair allocation problem can equivalently be formulated as the
following convex program in the form of (A0):

min
x,z

∑

r∈R
gr(xr) + ι(z), (3.16)

s.t. x− z = 0. (3.17)

A centralized algorithm

The above formulation (3.16) naturally yields a centralized algorithm based
on ADMM that can be expressed in the proximal form below, which we
refer to as Centralized ADMM (C-ADMM) and in which the stopping crite-
rion (3.14) is integrated.

Algorithm 1 Centralized ADMM (C-ADMM)

Input: Initial values z, u
1: while the stopping condition (3.14) is not met do
2: x← proxλg(z− λu)

3: z←P(x+ λu)

4: u← u+ 1
λ(x− z)

5: end while

In Algorithm 1, P = proxλι is the projection on {x : Ax 6 c, x > 0},
and u the dual variable. Now, the first step of Algorithm 1 (line 2) can be
separated thanks to the separability property of the objective function. As
g is fully separable, that is, g(x) =

∑
gr(xr), the proximal update of line 2

takes the trivially parallel form:

∀r xk+1
r = proxλgr(z

k
r − uk

r ) (3.18)

2See the definitions in the Assumptions of the previous section.



3.4. Toward a distribution that respects the domain structure 43

such that each local variable xr can be computed separately.
Through expression (3.18), we are thus able to provide an efficient up-

date rule for x, provided that the separate proximal computations are inex-
pensive. However, two main issues arise.

a) First, an update of the variable z in line 3 of Algorithm 1 requires
full knowledge of the projection mapping, which in turn requires full in-
formation on the capacity set of the network. Thus, this global update rule
represents a fundamental limiting factor to the design of a fully distributed algo-
rithm, which is our main design interest here to follow the distribution of
SDN control planes.

b) Moreover, although the convergence of C-ADMM may be fast (see
Section 3.5.1, and Chapter 4 for further details), computation time may be
a burden for its application due the successive summoning of a projection
subroutine that would not scale with respect to the problem size. One must
keep issue a) in mind that makes a global projection subroutine impossi-
ble to compute unless another decentralized scheme is triggered by the set
of controllers to iteratively compute its solution in inner communication
rounds. More specifically, to compute a global projection in order to de-
liver the solution of line 3, the distributed controller engages in an inner
loop of computations and communications, to end up with the sole update
of the variable z. This therefore gives rise to a double loop algorithm where
each iteration requires the convergence of an inner process that can be time-
consuming (remember that communications between controllers can only
be done at a non-trivial cost). Finally, let us remark that computing the pro-
jection of a generic point onto a closed convex non-empty polyhedron is in
general non-trivial. Hence, for general polyhedra, one has to operate alter-
nate projections, summon quadratic programming solvers or use iterative
algorithms such as the one in [51].

We address issues a,b) in the next section, where we propose FD-ADMM,
a distributed version of C-ADMM.

3.4 Toward a distribution that respects the domain struc-

ture

A physically distributed SDN controller separates the physical network’s
topology into domains and assigns each domain to a corresponding domain
controller. We thus assume that the set of links J is split into subsets Jp,p =

1 . . . P such that (Jp)p forms a partition of the set of links J. Let Rp be the
set of paths traversing the domain Jp via some link j ∈ Jp. More formally,
Rp = {r ∈ R : ∃ j ∈ Jp s.t. j ∈ Jr}. Hence, (Rp)p forms a covering of R. Let ιj
denote the indicator function for the capacity contraint of link j ∈ J, i.e.,

ιj(x) =

{
0 if

∑
r∈Rj

xr 6 cj, x > 0,
∞ otherwise.

(3.19)

Thus, we can define the indicator function for the capacity constraints of



44 Chapter 3. Distributed algorithms

the links within a domain p as:

ιp :=
∑

j∈Jp
ιj. (3.20)

Specifically, an allocation vector x satisfies the capacity constraints within
domain p if, and only if, ιp(x) = 0, which is in turn equivalent to ιj(x) =

0, ∀j ∈ Jp.

Also, let us define Sp := dom(ιp). Thus, for each p ∈ P, Sp is the (convex,
closed) capacity set of the associated to domain p. Finally, for p ∈ P and
z ∈ R|R|, PRO(p, z) denotes the Euclidean projection of z onto Sp.

3.4.1 Consensus form

We can now reformulate our objective to a fully separable form. We write
Ir = {q ∈ [1,P] r ∈ Rq} to design the set of domain indices which r tra-
verses. We say that the path r traverses a domain p when there exists a link
j ∈ Jp such that r ∈ Rj. In the same fashion as in Section 3.3, we plug the
feasibility constraints into the objective by means of the indicator functions
ιp. Problem (3.16), (3.17) becomes equivalent to:

min
∑

r∈R
gr(wr, xr) +

∑

p∈P
ιp(x). (3.21)

In order to fully benefit from the canonical structure from Section 3.2.2,
we first artificially give a separable structure that is adapted to the domain
distribution. Thus, we create a copy of the variable x, let us say z, for the
term

∑
p∈P ιp(x) and impose the equality constraint x− z = 0. We go a little

bit further by creating a special variable zp = (z
p
r )r∈Rp for each domain p

and by adding the equality constraints

zpr − xr = 0, ∀r ∈ R, ∀p ∈ Ir. (3.22)

Each variable zp will be handled exclusively by its corresponding domain
p.

Under the condition (3.22), we have:

∑

r∈R
gr(xr) =

∑

p∈P

∑

r∈Rp

1

|Ir|
gr(z

p
r ). (3.23)

We can thus write the objective function as follows, where the variable z

is the concatenation of all the zp:



3.4. Toward a distribution that respects the domain structure 45

G(z) =
∑

r∈R
gr(xr) +

∑

p∈P
ιp(z

p) (3.24)

=
∑

p∈P






∑

r∈Rp

1

|Ir|
gr(z

p
r ) + ιp(z

p)





(3.25)

=:
∑

p∈P
gp(zp). (3.26)

To sum up, we have artificially separated the objective function by creating a
minimal number of copies of the primal variable x. Now, instead of a global re-
source allocation variable, several copies of the variable account for how its
value is perceived by each domain. To enforce an inter- (global) domain con-
sistent value of the appropriate allocation, consensus constraints are added
to the problem. This new formulation can be interpreted as a multi-agent
consensus problem formulation where a domain p has a cost gp. As we
separated the global objective on purpose, the separability property of the
proximal operator thus gives the following:

proxλG(u) =
(

(proxλgp(u
p
r ))r, (proxλιp(u

p))
)

.

These definitions permit next to write the distributed consensus model
where each agent only has access to local information. Now that the objec-
tive is separated according to the network domains, we mimic the form of
(A0) by posing the following optimization problem:

min
P∑

p=1

gp(z
p) + χ(z ′

p
)

s.t. zp = z ′
p ∀p = 1 . . . P,

zp = (zpr )r∈Rp ,

z
′p = (z ′

p
r )r∈Rp ,

(3.27)

where χ is the indicator function of the consensus set

X := {z ′ = (z ′
p
)p=1...P : ∀r ∈ R, ∀p,q ∈ Ir, z ′

p
r = z ′

q
r },

the Euclidean projection3 on which we denote PX. Finally, the construction
of last section applies to this formulation, and one gets the following update

3Remark: In fact, the operator maps the vector z ′p to a vector x of the same size, that
is, x = (xp)p=1...P with xp ∈ RRp that verifies the consensus constraints. We therefore
do not lose any information by keeping one coordinate only for each path r and thus post-
restricting PX :

⊕

p RRp → RR, instead of having a larger vector with identical entries
(x

p
r )p∈Ir .



46 Chapter 3. Distributed algorithms

rules, where u is the dual variable associated to the constraints z = z ′:

Algorithm 2 Distributed ADMM (D-ADMM)

Input: Initial values z, u
1: while the stopping condition (3.14) is not met do
2: ∀p ∈ P zp ← proxλgp(z

p − λup)

3: z← PX(z+ λu)

4: u← u+ 1
λ(z− z)

5: end while

Of course, Algorithms 1 (C-ADMM) and 2 (D-ADMM) have the same
form. The main difference is that in D-ADMM, the “central projection" is in
fact the Euclidean projection PX onto the consensus set X, which is simply
the average point of all coordinates:

∀z = (zp)p=1...P such that zp ∈ RRp , PX(z)r =
1

|Ir|

∑

q∈Ir
zqr . (3.28)

This difference is fundamental in our design. The complicating (coupling)
constraints Ax 6 c, that makes C-ADMM fundamentally centralized, have
been broken down and integrated to the objective function while respecting
the domain structure. Now, each domain will handle the constraints corre-
sponding to the link belonging to them separately. Also, and this is a ma-
jor improvement, the communication round between the different domains
boils down into computing an average, whereas before, it would require
the summoning of an iterative method based on numerous communication
rounds (see b)). Thus, one can see that D-ADMM, has a much simpler multi-
agent structure, as the only work that requires communication happens to
be the less complicated work to do. Of course, we are assuming that each
domain p has an efficient way of evaluating the operator proxgp . This means
that each controller solves the sub-problem:

min
∑

r∈Rp

wr

|Ir|
gr(z

p
r ) +

1

2λ
||zp − (zp −up)||2

s.t.
∑

r∈Rj

zpr 6 cj ∀j ∈ Jp.
(3.29)

In other words, each domain solves a regularized (with the presence of the
squared 2-norm) version of the original problem. Although smaller, the
problem itself was not simplified. This is why we further decompose the
problem in order to get explicit update rules.



3.4. Toward a distribution that respects the domain structure 47

3.4.2 Fast Distributed ADMM

This time, we push the distribution to the link level. For each link j ∈ J,
let zj ∈ RRj be a copy of the variables (xr)r∈Rj

. Then , we can equivalently
express our problem as follows:

minH(x, z) :=
∑

r∈R
gr(xr) +

∑

j∈J
ιj(zj)

zjr = xr ∀r ∈ Rj ∀j ∈ J

(3.30)

We apply ADMM again to this formulation. Now, the objective that replaces
the one in the update 2 is the whole objective function in (3.30). Indeed, we
have separated sufficiently the indicator functions to obtain a fully separa-
ble proximity operator:

proxλH(v,u) =
(

(proxλgr(vr)r∈R, (PRO(j,uj)))
)

(3.31)

Just like for the design of D-ADMM, we plug in the consensus con-
straints into the objective via the introduction of copies of the variables
(x, z), and end up with the canonical form of ADMM that follows:

min H(x, z) + χ(x ′, z ′)

s.t.
(

x

z

)

−

(

x ′

z ′

)

=

(

0

0

)

,
(3.32)

where χ is again the indicator function of the set X := {(x, z) : zjr = xr ∀r ∈
Rj ∀j ∈ J}. Again, we define the operator PX as the following. For the
generic variable (x, z) ∈ RR ××j∈JR

Rj , let (x, z) be its projection onto the
consensus constraint set of (3.30). Then,

z̃ := PX(x, z) ∈ RR is the vector defined by z̃r = xr = zjr ∀j ∈ Jr, ∀r ∈ R.
(3.33)

Then, one has simply:

PX(x, z) =

(

xr +
∑

j∈Jr z
j
r

|Jr|+ 1

)

r∈R
. (3.34)

Using the distributive properties, we obtain Algorithm 3 (Fast Distributed
(FD)-ADMM).

This yields the simple update rules at lines 3 and 124.

4These updates rules are also simplified using the straightforward fact that the sum
∑

l∈r ulr is constant. It can thus be fixed to 0 by initialization.



48 Chapter 3. Distributed algorithms

Algorithm 3 Fast Distributed ADMM (FD-ADMM)

1: procedure OF DOMAINp

2: RECEIVE zqr ∀q ∈ Ir ∀r ∈ Rp

3: z̃r ← 1
|Jr|+1

(∑
q∈Ir zqr + xr

)

∀r ∈ Rp

4: for j ∈ Jp do

5: u
j
r ← u

j
r +

1
λ(z

j
r − z̃r) ∀r ∈ Rj

6: zj ← LINK_PROJ(j, z̃− λuj)

7: end for
8: for r ∈ Rp do
9: vr ← vr +

1
λ(xr − z̃r)

10: xr ← proxλgr(z̃r − λvr)

11: end for
12: SEND zpr =

∑
j∈Jr∩Jp zjr and z∗pr = minj∈Jp zjr to domains q ∈

Ir ∀r ∈ Rp

13: end procedure

Communication among domain controllers

In FD-ADMM, only domains that do share a path together have to communi-
cate. The communication procedures among the domain controllers are de-
scribed at lines 2 and 12. In these steps, the domains gather from and broad-
cast to adjacent domains the sole information related to paths that they share
in common. In particular, domains are blind to paths that do not traverse
them, and can keep their internal paths secret from others. In details, after
each iteration of the algorithm, each domain p receives the minimal infor-
mation from other domains such that it is still to compute a local value zpr
that is destined to be broadcasted again in order to build the global consen-
sus value z̃r. The domain p has to send the value z

p
r back to neighboring

domains within Ir only.
Communication overhead: In terms of overhead, we can easily evaluate

the number of floats transmitted between each domain at each iteration. At
each communication, domain Jp must transmit zpr and z∗pr for each r ∈ Rp

to each other domain that r traverses. The variable z0 does not need to
be centralized or transmitted between controllers. Each domain controller
may actually have a copy z0 and perform the (low-cost) computation of their
update rule (see line 10 in Algorithm 3) locally. Hence, domain p transmits
in total 2

∑
q 6=p |Rp ∩ Rq| floats to the set of its peers. As a comparison, in

a distributed implementation of the algorithm given in [22] and stated in
Section 3.1, each domain p transmits in total

∑
q 6=p |{j ∈ Jp, ∃r ∈ Rq s.t. j ∈ r}|

floats to the set of its peers, which is bounded by (P− 1)|Jp| as |R| grows.

Feasibility preservation

As we just saw, a potential drawback of the distributed approach is the po-
tential feasibility violation by the iterate z̃k. After all, this is a major appre-



3.4. Toward a distribution that respects the domain structure 49

ciable feature of C-ADMM and the fact that global anytime feasibility, had
to be traded for distribution through D-ADMM and FD-ADMM is a point
that needs to be accounted for. However, we have the following positive
result.

PROPOSITION 2
D-ADMM and FD-ADMM provide sequences of feasible points that
converges to the optimum.

Proof. The arguments are the same for both algorithms. We only expand the
proof for FD-ADMM. For any link j, we have by line 6 of Algorithm 3 that
zj is feasible in link j. That is,

∑
r∈j zjr 6 cj. Define z∗r = minj∈Jr zjr. Then,

for each link j: ∑

r∈j
z∗r 6

∑

r∈Rj

zjr 6 cj. (3.35)

Thus, no capacity is violated by the allocation z∗r. At the optimum, the
consensus is reached. This means that lim z∗r = lim xr = lim z

j
r, ∀j ∈ Jr.

Thus z∗r forms a feasible sequence that converges to the optimum.

Thus, in a certain way, for sufficiently loaded and communicating domains
(i.e. the |Rp∩Rq| are large enough) we might sacrifice some overhead (counted
on a per iteration basis) compared to standard dual methods. However, the
algorithm supports anytime feasibility, a major feature that dual methods
do not generically provide (unless a global projection sub-routine is imple-
mented, which we assumed is not the case).

3.4.3 Update rules: some precisions

In this paragraph, we specify the update rules of FD-ADMM. This permits
us to show precisely the costs of the update rules sub-routine, and at the
same time, we justify the benefits of the distribution: further than being flex-
ible enough to adapt to the domain structure, the distribution that appeard
in the design of ADMM permits one to end up with drastically simpler com-
putations.

Proximity operators

Let α > 0 and r ∈ R Let u ∈ R. We want to evaluate the proximity operator
with penalty λ of gr at the point u. We have:

proxλgr(u) = argmin
x∈R

g
(
rx) +

1

2λ
||x− u||2. (3.36)

Fact 3 ensures that the minimizer xλr of the function exists and is unique.
Moreover, by differentiability, it is a critical point of the function. Therefore,



50 Chapter 3. Distributed algorithms

∇gr(xλr) +
1

λ
(xλr − u) = 0, (3.37)

which gives:
xα+1
λr − uxαλr + λwr = 0. (3.38)

In other words, the evaluation of the proximity operator of gr boils down
to finding the root of a univariate function over R+. This can be done very
efficiently with basic root finding algorithms. Particularly, (3.38) is a second
order polynomial equation for α = 1, a cubic equation for α = 2 and a
quartic for α = 3. For all values of α, a straightforward function study shows
the equation admits a unique positive real solution for which a closed form
is derivable. In general, using integer values of α such as 1, 2 and 3 as an
approximation of max-min fairness5 is common and acceptable, and when
a closed form is not available (in general for greater integer values of α)
polynomial root finding algorithms can be even more efficient6 than generic
methods that work for all convex functions.

Link projections

The particular interest that comes with the distribution of the problem to
the level of the links is that we end up with individual constraints taken
separately. In FD-ADMM, instead multiple constraints defined polyhedron,
we now have to project points onto single constrained (plus positivity con-
straints) polyhedron. These actually define (the positive regions of) sim-
plices with a radius equal to the right hand side of the constraint. In [52],
the authors give an algorithm to compute the exact projection onto a sim-
plex of dimension q with a complexity equivalent to the one of sorting a
list, that is, in average O(q logq). We recall the projection algorithm here. A
correctness proof and performance evaluation are available in [52].

Algorithm 4 Algorithm for LINK_PROJ.

Input: xj Output: LINK_PROJ(xj), the projection of xj onto the feasible set of
constraint j.

1. Sort the components of xj as ξ1 > . . . > ξN where N is the length of xj

2. Set k := max{ℓ s.t.
∑ℓ

s=1 ξs−cj
ℓ < ξℓ}

3. Set τ :=
∑k

s=1 ξs−cj
k

4. For all p set xjp = [x
j
p − τ]+.

5In this thesis, we consider only those three metrics.
6For instance, algorithms that compute the root of a polynomial can compute the eigen-

values of the companion matrix of the polynomial.



3.5. Numerical results 51

Figure 3.1 | CPU time and number of iterations required to reach the same
level of residual tolerance for C-ADMM and FD-ADMM.

3.4.4 What level of distribution should we chose?

With the design of D-ADMM and FD-ADMM, one can see that any level
of distribution is possible. One can separate the global problem into P in-
dependent sub-problems (where dP is the number of domains) and solve a
consensus problem with P agents. Then, each agent has to solve indepen-
dently the problem (3.29). The first globally feasible point is thus available
after the agents solve this problem and communicate for the first time. Such
a level of distribution is perfectly acceptable for the domain independence
constraints in distributed SDN. However, it still requires a black box that
solves the sub-problem (near-)optimally. For instance, this black box can be
an implementation of a localized C-ADMM, or FD-ADMM.

3.5 Numerical results

In this section, we compare FD-ADMM with C-ADMM and LAGR, and
evaluate, the respective convergence speed in the former case, and the re-
sponsiveness in terms of transient feasibility preservation in the latter. We
are not focused on absolute performance in terms of time, but rather on
relative improvements all our algorithms are implemented in Python.

Our algorithms are evaluated either on synthetic networks generated
following the Barabasi-Albert model [39], or on the real world British Tele-
com (BT) topology that was used by McCormick et al. [22].

3.5.1 The cost of distribution

A first thing one wants to check is the cost, in terms of convergence, of the
distribution from C-ADMM to FD-ADMM. Although the question of the
convergence rates will be posed in the next chapter, we can already say here,
as we will see, that the convergence of C-ADMM is linear with a rate that
can be upper-bounded with the problem parameters. The question is, what
do we lose in terms of convergence rate or speed by distributing the algo-
rithm link-wise? One should expect that the convergence of FD-ADMM is



52 Chapter 3. Distributed algorithms

Figure 3.2 | Gaps versus iteration number for FD-ADMM and C-ADMM.

Figure 3.3 | Residual value versus iteration number for FD-ADMM and C-
ADMM.

slower, but iterations can be done quicker. We demonstrate this fact by run-
ning simulations on the synthetic networks. They are small networks made
of 10 nodes with attachment parameter 5. On these small networks, we gen-
erate 500 paths by choosing source-destination pairs uniformly at random
as well as a corresponding weight uniformly in the interval 1±20%. The
reason why we use such a setting is to generate highly congested networks
with only active constraints so that the consensus is the most difficult to
obtain in FD-ADMM. The link capacities are drawn uniformly at random
within the interval 10±20%.

First, we look at the gap and residuals descent with time as the algo-
rithms run. The algorithms are allowed to run for five seconds, at the end
of which they output their last feasible solution (which is also the best). As
is shown in Figures 3.2 and 3.3, the distributed version FD-ADMM requires
more iterations to reach the same level of precision as C-ADMM in terms of
optimality gap. However, within 5 seconds, FD-ADMM is able to perform
drastically more iterations than C-ADMM. In 3.4 and 3.5, the central projec-
tion in C-ADMM is done by CPLEX; yet, the projection step time sums up to
80% of the overall computation time, which explains the slow performance
of C-ADMM. Next, we plot, for a varying number of paths, the computa-
tion time and required iteration steps, to reach the same level of residual
tolerance for both algorithms. The results are shown in Figure 3.1.



3.5. Numerical results 53

Figure 3.4 | Gaps versus time (in seconds) for FD-ADMM and C-ADMM.

Figure 3.5 | Residual value versus time (in seconds) for FD-ADMM and
C-ADMM.

3.5.2 Comparison against LAGR

We now compare the proposed FD-ADMM algorithm against LAGR (see
Section 3.1), for all three values of α. To this aim we perform two experi-
ments, in real-time and static scenarios, respectively.

We start by evaluating the real-time responsiveness of FD-ADMM by
considering a small scenario where 200 routes are established and the
weights (wt

r)r∈R,t∈0...T vary over discrete time t, following the formula:

wt+1
r ∈ [(1− a)wt

r, (1+ a)wt
r] a ∈ [0, 1],

where at each event t, wt
r is chosen uniformly within the above interval in

which a determines the amplitude of the weight variation. In Figure 3.6
we illustrated the average optimality gap of the two algorithms achieved
over 20 events with 10 iterations between each event. We observe that FD-
ADMM outperforms LAGR in terms of optimality gap, although the per-
formance of both algorithms is fairly acceptable. However, remarkably, FD-
ADMM remains always feasible whereas LAGR constantly violates the con-
straints as weights wr change in real-time. Figure 3.7 shows the percentage
of constraints of the problem that are violated for each value of the ampli-
tude a. In fact, LAGR iteratively approaches the fair resource allocation
from the outside of the feasible set. This drawback is commonly amended
by projecting the solution onto the feasible set. However, this is not doable
in our distributed setting, as projection requires costly on-the-fly operations
that require full topological information. For such reasons, we claim that



54 Chapter 3. Distributed algorithms

Figure 3.6 | Average optimality
gap E[gap] vs. the variation am-
plitude a.

Figure 3.7 | Average percentage
of violated constraints E[v] by
LAGR vs. the variation amplitude
a.

Figure 3.8 | Optimality gap of the best feasible point found after 5 seconds
runtime.

the standard LAGR algorithm is not well suited for computing real-time
fair allocations in a distributed SDN setting.

In our last experiment we test the two algorithms under a static sce-
nario, where the weights wr do not vary over time and LAGR has enough
time to find at least one feasible solution. In Figure 3.8 we compare the op-
timality gap of the best feasible solutions found after 5 seconds runtime by
FD-ADMM and LAGR, for different instance sizes over BT topology. We
observe that FD-ADMM obtains a close-to-optimal feasible solution for all
the instance sizes (from 100 to 6000 requests), while LAGR is still far from
the optimum especially when the instance becomes large.

To recap, in this section we have demonstrated by experimentation that
FD-ADMM reacts quickly to unpredictable network variations, while pre-
serving the feasibility of the solutions computed iteratively.

3.6 Concluding remarks

The distributed architecture of a logically centralized SDN controllers was
brought in as a solution to many concerns in control plane design including
scalability, resiliency, fault tolerance, etc. As a consequence to the develop-
ment of such specific architectures, algorithms deployed in the control plane



3.6. Concluding remarks 55

have to be specifically designed to match best with the implied performance
requirements. In this chapter, we identified two important goals that a real-
time bandwidth allocation application should fulfill. First, the algorithm
itself should be suitable for a multi-domain implementation that obeys the
distributed architecture of the SDN controller. This means that it must be
possible for each domain to handle the portion of the global problem that
includes the local information that it detains exclusively, independent from
the other domains. Also, this portion is embodied as a sub-problem that
solving requires the summoning of a sub-routine that should be as simple
and efficiently solvable as possible, so that its computation does not repre-
sent an overwhelming burden for the whole system’s efficiency. Lastly, in a
real-time scenario, anytime feasible solutions should be preferred to asymp-
totically optimal but transiently infeasible solutions, so that an intermediate
but halfway good solution is always available at hand.

To respond to those conflicting requirements, we proposed FD-ADMM,
a massively distributed algorithm, whose behavior does not depend on the
domain distribution, that provides feasible solutions converging to the op-
timum at any iterations, and that demonstrates fast convergence rate.

In the next chapter, we will show how versatile FD-ADMM can be in
adapting to feature additional complicating structural constraints. More-
over, it is important to mention that the algorithm is inspired from its cen-
tralized version that is not implementable in practice, but that is very useful
to its design. Indeed, concerning the speed of convergence, we swept under
the carpet a major technical detail that is the penalty parameter λ. It happens
that its choice conditions highly the convergence speed of ADMM-based al-
gorithms; a suitable design and implementation of an ADMM -based algo-
rithm cannot neglect this fundamental detail. This is why the next chapter
is also dedicated to address the technical considerations that lie beneath the
penalty parameter selection in the runs of FD-ADMM. The reader will then
see how C-ADMM and the results of Chapter 2 become even more useful.



56 Chapter 3. Distributed algorithms



Chapter 4

Extensions and refinements

W
E DESIGNED IN the previous chapter FD-ADMM, a distributed
algorithm that computes optimally the fair resource alloca-
tion problem on general capacitated networks and generally
weighted flows. The algorithm is based on the ADMM that

makes it efficiently adaptable to the distribution model of SDN and the sep-
arated structure of the fairness metrics. In the previous chapter, we ob-
served a likely linear convergence rate of C-ADMM and comparable con-
vergence speed of FD-ADMM (in terms of iteration count). Concerning a
practical question on the simulations, all the tests were represented for a
particular value of the penalty parameter λ that was not specified until now.
Undoubtedly, the convergence of ADMM is highly impacted by the choice
of the penalty parameter, and can be very bad if it is poorly conditioned
(initialized, and/or updated). In this chapter, we investigate on these issues
and propose a near-optimal choice of the penalty parameter for FD-ADMM.
The choice is based on a linear convergence rate result for C-ADMM, which
gives a rate of convergence that can be optimized with respect to λ.

Also, we propose to extend the α-fair resource allocation problem, that
was presented and adressed with FD-ADMM in its most simple setting, to
several practical use cases. The first obvious extension is the one to the
multi-path setting. We can assume that a connection request1 r can have
more than one available paths between its source and destination, that are
pre-computed and can carry the traffic. With the hypothesis that traffic is
infinitely many times splittable, the problem can again be formulated as
a convex optimization problem. As we will see, this extension does not
change the objective function, but rather the feasible set of the problem.

The objective also can be adapted to account for different kinds of system
requirements. We show how FD-ADMM can feature these requirements
and take the particular example of sparse solution structure preferences.

1In this chapter, we change slightly the terminology and call R the set of connection
requests (or shortly, requests) between a source and a destination, whereas the word path
will be reserved for the actual paths that are available to the requests from their source to
their destination.

57



58 Chapter 4. Extensions and refinements

IN A NUTSHELL
The convergence of ADMM is well-known to depend highly on the
choice and update of the penalty parameter λ of the augmented La-
grangian form. In this chapter, we quantify this dependence for our
centralized version of the resource allocation problem and adapt the
results to provide a fine tuning of FD-ADMM that helps observing a
near optimal convergence speed. Also, we show the versatility of the
model to specific solution structures and give the corresponding algo-
rithms to two possible examples of extensions: the multi-path setting
and the sparse structure preferences on the solutions.

4.1 Convergence of ADMM

4.1.1 Background

The work around the convergence of ADMM has been flourishing during
the past years. There is an extensive literature on the ADMM itself and its
possible applications, in various distributed settings in machine learning,
resource allocation, and classification (see for instance, [53], [54], [55]), but
still quite few concerning its theoretical convergence. Goldfarb, Ma, and
Scheinberg [56] show a general O(1/ε) convergence rate and an accelerated
algorithm that converges in O(1/

√
ε) to an ε-optimal solution, particularly

in the case where only one of the two functions is smooth with Lipschitz
continuous gradient. An extension of these results to different scenarios can
be found in [57], where the authors consider various regularity assump-
tions and show the corresponding achievable performances. The different
assumptions include strong convexity, Lipschitz continuity of the gradient
of one, both or none of the functions, on top of the basic convexity assump-
tion. Also, the full rankness (of the rows) of the constraint matrices A and B
are additional assumptions that play a key role in the type of convergence.
The authors show that R-linear convergence is achieved when one of the
two functions is strongly convex and one of the two functions has a Lips-
chitz continuous gradient and the corresponding constraint matrix has full
row rank.

Basically, there are two main approaches to tune the penalty parameter
of ADMM, depending on the structure of the problem:

1. Optimal penalty derivation: Certain problems are particularly well
structured and admit a (worst-case) convergence rate that can be ex-
pressed as a function of λ. In this way, the worst case guarantee can be
optimized with respect to λ, which gives an optimal parameter λ∗. Of
course, this optimal penalty guaranties the worst case convergence rate,
and there is no guarantee that it is the value that gives the best possible
convergence in practice. Nevertheless, this technique generally gives



4.1. Convergence of ADMM 59

very satisfactory results in practical implementations of ADMM-based
algorithms. We will demonstrate this by simulations on our problem.

2. Adaptive penalty: In other problems, it is not possible, or too compli-
cated, to derive a clear penalty value. To circumvent this problem, nu-
merous works have been proposing adaptive penalty tuning schemes
in order to accelerate the convergence. The idea is to initialize the
penalty at a certain value λ0 and then, adapt its value on-the-fly as the
algorithm runs. The adaptive strategy has to be set and it is possible to
still guarantee the convergence of the algorithm to an optimal point.
Adaptive strategies for penalty parameter tuning are known to make
the performance of ADMM less dependent of the initialization in prac-
tical implementations which justifies its use in many applications.

In the next paragraph, we review the principal results on the two afore-
mentioned strategies.

Optimal penalty parameter

For a short survey of existing works on the penalty tuning of ADMM, we
return to the general form of the 2-block formulation of ADMM that we
remind here. Let F : Rn → R and G : Rm → R be two convex functions and
A ∈ Rp×n and B ∈ Rp×m two matrices. Let b ∈ Rp. We look at the problem:

min F(x) +G(y)

s.t. Mx+ Py = b
(4.1)

The update rules of ADMM to solve (4.1) always give a convergent se-
ries to an optimal point for any fixed parameter λ. However, the speed of
convergence will depend of the choice of this parameter. A way of address-
ing this question is to look for an actual expression of the convergence rates:
a convergence rate depending on λ, if derivable, can be optimized, and the
optimal value of λ can be deduced. The following result motivates this ob-
servation:



60 Chapter 4. Extensions and refinements

THEOREM 3 (Deng and Yin [48])
Assume that the problem (4.1) has a saddle point. Assume that M has
full row rank, and that F is σ-strongly convex and has a L-Lipschitz
gradient. Then, the sequence of iterates (primal and dual concate-
nated) of ADMM converges linearly with rate (1+ δ)−1, wherea

δ = 2

(

||M||2

λσ
+

Lλ

λmin(MTM)

)−1

and λ is the penalty parameter in the augmented Lagrangian form.

aλmin is the smallest eigenvalue of a positive matrix, and ||M|| is the operator
norm.

And the corollary that directly follows:

COROLLARY 2
The optimal penalty parametera is

λ∗ =

√

||M||2λmin(MTM)

σL
. (4.2)

aThat minimizes the worst case convergence rate in the assumptions of Theo-
rem 3.

Adaptive penalty tuning schemes

In numerous practical use cases, the conditions of Theorem 3 are not ful-
filled. Many problem formulations do not fulfill the strong convexity as-
sumption for instance, or even the full row-rank assumption that can be
rare in applications. Except for linear programs where linear convergence
of ADMM is still guaranteed, it is not possible to get a theoretically better
convergence than the classic O(1/ε) worst case ε-approximation in general,
even less an insight of what fixed parameter to use. This is why it makes
sense to try an adapt the penalty parameter in real-time while the algorithm
is running. The most popular adaptive penalty strategy is undeniably pro-
posed by He, Yang, and Wang [58] and commonly referred to as residual
balancing. We have seen in Chapter 3 how a valid stopping criteria can be
used to detect the convergence of the algorithm. We need the primal and
dual residual, rk and sk respectively (where k is the iteration count), to be
both small. A typical event when the penalty parameter is badly chosen, is
that one of the residual is substantially greater than the other. On the other
hand, we know that the value of the penalty parameter gives more or less
weight to the objective function F + G compared to the norm of the con-



4.1. Convergence of ADMM 61

sensus constraints violation ||Mx+ Py−b||2 in the augmented Lagrangian,
which creates the imbalance between the primal and residual values. Thus,
it makes sense to use the relative imbalance of the residuals and adapt the
penalty value accordingly. The general scheme reads:

λk+1 =






βλk if rk > µsk

λk/β if sk > µrk

λk otherwise ,
(4.3)

where β,µ > 1.

In many applications, the common practice is to set β = 2 and µ =

10. We keep this setting in all our numerical experiments when residual
balancing is used.

4.1.2 Penalty tuning in FD-ADMM

Problem structures

For appropriate problems, it is possible to use a result shown in [48] to com-
pute an optimal penalty parameter. It will first help us in tuning C-ADMM
to optimize its convergence. Let us first remind the definitions of strong
convexity and Lipschitz continuity.

DEFINITION 4
We recall that a differentiable function f : Rn → R̄ is strongly convex
with modulus σ if:

(∇f(x) −∇f(y))T(x−y) > σ||x−y||2, ∀x,y ∈ dom(f).

Moreover, the function f is Lipschitz with modulus L if:

|f(x) − f(y)| 6 L||x−y||, ∀x,y ∈ dom(f).

In order to apply Corollary 2, we express the coefficients of interest σ,Ld.

Now, let w > 0,α > 0, and let g : x ∈ R++ → g(x) = −wx1−α

1−α if α 6=
1,−w log(x) if α = 1. In all cases, we have:

∇g(x) = −
w

xα
.



62 Chapter 4. Extensions and refinements

Let us assume α > 1. Therefore, for 0 < y < x 6 t:

(∇g(x) −∇g(y))(x− y) = w(
1

yα
−

1

xα
)(x− y)

=
w

xαyα
(xα − yα)(x− y)

=
w

xαyα
αcα−1(x− y)2

(y < c < x)

=
αw

xαy

(

c

y

)α−1

|x− y|2

>
αw

xαy
|x− y|2

>
αw

tα+1
|x− y|2,

(4.4)

where the third equality is just an application of the mean value theorem.
The case α < 1 is handled likewise by integrating xα−1 into the parenthesis
instead of yα−1 in the fourth line. The case α = 1 is straightforward.

Similarly, take 0 < s < y < x, we have:

|∇g(x) −∇g(y)| = w|
1

yα
−

1

xα
|

=
w

xαyα
|xα − yα|

=
w

xαyα
αcα−1|x− y|

(y < c < x)

6
αw

sα+1
|x− y|,

(4.5)

where the last line is obtained in the same fashion as in (4.4), for each case
α < 1, α > 1. The case α = 1 is straightforward. We can therefore state the
following.



4.1. Convergence of ADMM 63

FACT 1
Recall the expression of gr(x) = −wr

x1−α

1−α for α 6= 1 or −wr log(x)
for α = 1, the weighted α-fair (differentiable) convex function of
one variable of domain within [s, t], where 0 < s < t. Then, gr is
σr-strongly convex, and ∇gr is Lr-Lipschitz, with σr = wα

tα+1 , and
Lr =

wα
sα+1 .

Corollary: The α-fair (convex) function g is σ-strongly convex and has
Ld-Lipschitz gradient with:

σ = αmin
r

wr

uα+1
r

, Ld = αmax
r

wr

dα+1
r

(4.6)

on any compact subset of dom(g) of the form Kd = {x > d,Ax 6 c},
for d > 0 (component-wise), and ur = minj∈r cj (the utopia allocation
introduced in Chapter 2).

Optimal penalty for C-ADMM

Inspired by Theorem 3, we can now derive our optimal penalty parameter
for C-ADMM. Let us recall again the centralized formulation:

min g(x) + ι(y)

s.t. x−y = 0,
(4.7)

where ι is the indicator function of the feasible (convex) set, and is thus
convex.

We just showed in Fact 1 that g is σ-strongly convex and has an Ld-
Lipschitz gradient given by formulas (4.6) on a compact set of the form Kd.
The point d > 0 has to be chosen so that Kd is non-empty, and contains the
optimal solution x∗. Therefore, to have a global Lipschitz factor for g, one
must reduce the feasible set to Kd where d is a lower bound on the fair allo-
cation. Let us redefine ι to be the indicator function of the set Kd. Then, we
know that the modified problem (4.7) responds to the conditions of Theo-
rem 3. All in all, we have the:

THEOREM 4
With a chosen penalty parameter λ > 0, the iterates of C-ADMM con-
verge linearly to the optimal solution at rate (1+ δ)−1, where:

δ = 2

(

1

λσ
+ Ldλ

)−1

. (4.8)



64 Chapter 4. Extensions and refinements

We thus have the optimal penalty parameter:

COROLLARY 3
The optimal penalty parameter for C-ADMM is:

λ∗ =

√

1

σL
=

1

α

√

1

minr
wr

uα+1
r

maxr wr

dα+1
r

, (4.9)

where u is the utopia point of the problem, and d is a lower bound on
the fair allocation problem, both introduced or derived in Chapter 2.

Adaptive penalty for FD-ADMM

We now want to propose a penalty parameter for our distributed algorithm
FD-ADMM. We were able to circumvent the difficulty of the unbounded-
ness of the α-fair functions near the axis, by pruning the feasible set away
from them. In this way, we equipped the fair functions with a finite global
Lipschitz factor and were able to verify the assumptions of Theorem 3 which
gave us a parameter with theoretical best worst cast linear convergence rate.
Here, the structure of FD-ADMM is different. In the design of the algorithm,
we plugged the separated link capacity constraints into the objective (with
their indicator function) and landed back on a general form of ADMM (4.1)
with M = −P = I by integrating again the consensus constraints of the type
zjr = xr into the objective. Specifically, in (A0), the structure of FD-ADMM
is as follows:

• F(x, z) = g(x) +
∑

ιj(zj),

• G(x ′, z ′) is the indicator function of the consensus set defined by zjr =

xr for all r and all j ∈ Jr,

• M = −P = I, and b = 0.

Thus, in FD-ADMM, the functions F and G are both convex, and the
matrix M is invertible. However, it is clear that the function F is no longer
strongly convex with respect to the joint variable (x, z), due to the concate-
nation of the indicator functions ιj. Thus, the results of Theorem 3 no longer
apply. In fact, theoretically, we no longer have a worst case convergence
rate guarantee of FD-ADMM and as a consequence cannot provide a cor-
rect penalty tuning. We consider two solutions for this:

1. Fixed parameter tuning: use the optimal parameter from C-ADMM
for FD-ADMM with the same lower bound.

2. Adaptive parameter tuning: use the adaptive scheme presented in
Section 4.1.1.



4.2. Illustration 65

4.2 Illustration

4.2.1 Objective

We now illustrate the results obtained in the previous sections. We wish
to evaluate in practice, the efficiency of the two possible penalty parameter
tuning strategies for FD-ADMM, namely, the adaptive penalty with residual
balancing on-the-fly, and the fixed parameter that is given by a combination
of Theorem 3 and our results in Chapter 2. The residual balancing strat-
egy is certainly the most tempting when one does not know how to tune
the penalty. Indeed, it is well-known, and we will observe this in the sim-
ulations, that residual balancing makes the performance of the algorithm
less dependent of the initialization of the parameter value. The guarantees
of convergence for residual balancing ADMM are set when the parameter
is fixed ultimately. However, it is not clear when to stop the residual bal-
ancing and to which value to fix ultimately the penalty parameter. An ac-
ceptable criterion is to assume that the residual balancing strategy should
stop when the residual values are small enough – a small residual value is
a certificate for a small optimality gap; therefore, we can stop the residual
balancing when we are close enough to the optimum and continue with a
fixed penalty thereafter. On the other hand, it is interesting to see, instead
of balancing the residuals, what would have happened if we had a fixed
parameter from the beginning. In other worlds, we evaluate the gains of
a fixed conditioning of λ against the ones of a generic adaptation scheme
like residual balancing. We therefore compare the achieved gaps when the
residual falls below 10−3, for both fixed and residual balancing strategies.
We plot the number of achieved iterations to reach such a precision, and the
achieved optimality gap at the end of the experiment. We run both algo-
rithms for different values of the initial penalty parameter λ0, to account for
the sensitivity of the performance with respect to initialization. We take as a
reference λ∗, the penalty value obtained with Theorem 3 and Proposition 1
(Chapter 2). Of course, each time the results of Proposition 1 were used, we
verified whether on the particular instance, the lower bound was correct.
Among all our instances, we found no counter example.

4.2.2 Simulation setting

The aim of this experiment is to analyze the behavior of FD-ADMM un-
der different tuning strategies. To observe the structure of the effect of the
penalty initialization/update, it is not crucial to run FD-ADMM on large
instances. This is why we limit ourselves to small synthetic instances. All
our instances are generated following the Barabasi-Albert model. We thus
used networks consisting of 10 nodes built following the model with a gen-
eral connection factor of 3. This gave networks with approximately 30–40
links on which we generated 50 paths formed as the shortest path between
randomly chosen couple of source/destination nodes. All the capacities cj



66 Chapter 4. Extensions and refinements

and the weights wr were fixed to a value within the interval 1± 20% drawn
uniformly at random. All in all, we generated 20 such instances.

We run FD-ADMM separately on those instances, with a fixed param-
eter, and using residual balancing. In both cases, we analyze numerically
the effect of the initialization. Therefore, with λ∗ as a reference, we plot the
results (iterations to achieve a residual tolerance of 10−3, and achieved op-
timality gap) against the initial factor ρ = λ0/λ

∗, so that the initial penalty
is ρλ∗. The runs of FD-ADMM stop whenever the desired tolerance level is
achieved, or when a time limit of 400 iterations is reached.

4.2.3 Results

The results of our experiment for FD-ADMM are shown in Figure 4.1.

Fixed parameter

From the simulation results, we observe that the performance of FD-ADMM
is indeed very dependent of the penalty parameter when it is initialized
to a fixed value. In terms of iteration count, we reach the desired level of
tolerance the fastest when the initial factor λ0/λ∗ is close to 1, for α = 1, 2,
and 3, in average. For the specifics, the "optimal" parameter is within the
same order of magnitude as λ∗. Otherwise, when the initial factor is too
large or too small, we observe a performance deterioration, as the number
of required iterations to reach the same level of tolerance explodes quickly
(below 0.1 and over 10, the iteration count is already more than twice the
one for the best observed performance). Although for all values of α, there
is clearly an optimal penalty parameter that provides a same guarantee of
the residual tolerance, we can observe that the case of proportional fairness
is more permissive of small errors in the initialization. As α grows, it seems
that a fixed penalty should be chosen more accurately to avoid performance
degradation.

In terms of optimality gap, we can interestingly observe that the actual
quality of the solution (which, in passing, cannot be evaluated in real sce-
narios other than via an estimator based on the residual value – see the dis-
cussion in Chapter 3) is also at its best when the initial parameter is chosen
around λ∗. The best optimality gaps are, in all three values of α, reached in
average and in the specific instances for initial factors around but smaller
than 1. On the contrary, we observe that the fewest iterations are achieved
for values of the initial factor close to but greater than 1 in most specific cases.
Interestingly, an initial factor of 1 seems like a good trade-off between itera-
tion count and accuracy.



4.2. Illustration 67

α = 1.

α = 2.

α = 3.

Figure 4.1 | The number of iterations required for FD-ADMM to reach a
residual tolerance of 10−3 (left panel) and the achieved optimality gap (right
panel), versus the initial factor λ0/λ∗ for α = 1, 2, 3.

Residual balancing

The results show without any doubt that the residual balancing strategy
permits to make FD-ADMM essentially independent from the initial factor.
Although we did not plot the points, we observe that for an initial factor be-
low 10−2, the iteration count also explodes, which means that the indepen-
dence occurs to a certain extent. All in all, the curves for RB clearly show
that to reach the same level of residual tolerance (which, again, gives a prac-
tical guarantee on the optimality gap, up to a certain factor), it is enough to
chose an initial penalty parameter that is "large enough". For instance, an
acceptable lower bound on the initial penalty parameter is clearly λ∗.

As for the optimality gap, we observe the same independence property.



68 Chapter 4. Extensions and refinements

Although the independence of the optimality gap with regard to the penalty
parameter initialization is very desirable, we cannot ommit the fact that the
achieved optimality gap, although acceptable, is not as good as the best per-
formance for the fixed parameter run. This illustrates the fact that a residual
balancing scheme needs (theoretically) to be followed by a fixed penalty
run to converge. Notwithstanding, we can observe that the average, best
case, and worst case optimality gaps are always better for the fixed run with
penalty λ∗.

α = 1.

α = 2.

α = 3.

Figure 4.2 | The number of iterations required for C-ADMM to reach a
residual tolerance of 10−3 (left panel) and the achieved optimality gap (right
panel), versus the initial factor λ0/λ∗ for α = 1, 2, 3.

Validation for C-ADMM

Finally, we conducted the same experiment for C-ADMM and observed es-
sentially the same properties as for FD-ADMM. The aim of this last exper-



4.3. Practical extensions of the model 69

iment was to validate our approach of combining Theorem 3 and Propo-
sition 1 (Chapter 2) to derive the penalty parameter λ∗. Surprisingly, the
improved lower bound conjectured in Chapter 2 permits to derive a numer-
ically optimal parameter in average, as the residuals seem to converge the
fastest to 0 at this setting. Also, in terms of optimality gap, we observe that
the best gaps are obtained for fixed values of λ0/λ∗ between 0.01 and 1. In all
cases, these gaps are considerably (especially for the case α = 3) better than
the ones for RB, although when the initial factor is set to 1, both schemes
have a comparable performance.

To summarize the first part of this chapter, we have shown that the it-
erates of C-ADMM converge linearly to the unique optimal point of the
problem, and we derived a theoretical value of the penalty parameter to use
when running the centralized algorithm. This value depends on a lower
and an upper bound on the optimally fair allocation. Although it is easy to
derive an upper bound, as the utopia point is one, deriving a lower bound is
not trivial and was the purpose of the discussion in Chapter 2. We used the
proposed lower bound in Proposition 1 (after checking that it was correct on
each used instance) to derive what we called the optimal penalty parameter.
This parameter was proposed as initialization of the parameter to run our
algorithm FD-ADMM, that does not a priori detain the same convergence
speed and the same dependednce on λ. However, we tested its performance
and showed by simulation that the optimal penalty parameter was a very
good candidate. To validate this property, we compared the performance of
FD-ADMM with fixed parameter against the classic residual balancing strat-
egy and showed that it was possible do obtain comparable performance.

In our distributed setting, the major advantage of having a fixed penalty
parameter is that an update requires to communicate residual values be-
tween the controllers in order to decide whether the penalty parameter has
to change or not. This adds more communication overhead whereas with a
fixed penalty parameter, only the consensus point z̃ needs to be built (and
the feasible point z† when the algorithm decides to stop at the end of the
run).

We therefore argue that knowing that there is a closed form it might be
more profitable to use ADMM with a fixed penalty parameter. This is defi-
nitely the case for FD-ADMM. However, in other applications, it is of course
always better to use residual balancing when no optimal penalty parameter
can be derived.

4.3 Practical extensions of the model

In this section, we present some extensions of the fair resource allocation
model. We show how they can be easily adapted in FD-ADMM and present
the corresponding modified update rules.



70 Chapter 4. Extensions and refinements

4.3.1 Multi-path extension

The first natural feature that one can extend the α-fair model with is the
multi-path setting. In this situation, each connection request r ∈ R has a set
of candidate paths Pr. In all generality, no assumption is made on the link-
disjointness of the paths for the same request, but this requirement appears
as an important constraint to empower the model against link/node fail-
ures. As in the rest of this thesis, we assume all the paths are pre-computed
and fixed once and for all. Thus, we have the following terminology:

1. The path-wise bandwidth allocation for a request r over a path p ∈ Pr is
denoted xp;

2. The aggregate bandwidth allocation of a request r over the totality of its
paths is denoted yr.

Notations

The multi-path extension requires the extensions of the definitions and no-
tations established in the last chapter. The set J still denotes the set of the
network links. The set R now denotes the set of connection requests, each link-
ing a source node to a destination node through one or many pre-established
paths. For each request r, let Pr denote the set of its paths. We denote
P := ⊔r∈RPr the disjoint union of the Pr. Therefore, for each path p, there is
an unique r = r(p) such that p ∈ Pr. For each path p, Jp is the set of links
forming it.

Therefore, the capacity constraint matrix A is now with shape |J|× |P|

and has the definition:

Ajp =

{
1 if j ∈ Jp
0 otherwise, (4.10)

For an SDN domain m, the set of links that belong to the domain is de-
noted J(m), and the set of paths p it contains is P(m) = {p ∈ P; ∃j ∈ Jm, j ∈
Jp}. Note that a domain may contain only some but not all of the paths of
a certain request. Conversely, Ip is the set of domains that the path p tra-
verses, i.e., p ∈ P(m) ⇐⇒ m ∈ Ip. Moreover, we assume we have a
partition of the set R into M subsets (R(m))m=1...M, where each request is
assigned to a unique domain. For instance, R(m) can be the set of requests
r that take their source or destination within the domain m.

The centralized algorithm

The allocation fairness is measured over the vector y: the resource allocation
policy should be fair with respect to the aggregate bandwidth allocation.
Therefore, we introduce the request-path incidence matrix B as follows:

Br,p :=

{
1 if p ∈ Pr
0 otherwise, (4.11)



4.3. Practical extensions of the model 71

and the flow conservation constraint:

Bx = y. (4.12)

Consequently, the multi-path weighted (w,α) fair resource allocation
problem can be cast as the following modified optimization problem:

min g(y)

s.t. Ax 6 c,
Bx = y.

(4.13)

Introducing again the link capacity constraints into the objective via their
indicator function, we obtain the modified version of the centralized for-
mulation for C-ADMM:

min g(y) + ι(x)

s.t. y− Bx = 0.
(4.14)

Now, solving the problem formulated by (4.14) with ADMM gives es-
sentially the same update rules than C-ADMM, except that the central pro-
jection in C-ADMM (see Algorithm 1 line 3, page 42) is slightly modified
due to the presence of the matrix B in the equality constraints. Nonetheless,
the two algorithms have a similar structure.

FACT 2
The modified version of C-ADMM adapted to the multi-path formu-
lation (4.14) has the same convergence guarantees as C-ADMM.

Proof. Indeed, we did not step out of the conditions of the convergence the-
orem 3. The function g is strongly convex with respect to the variable y, and
a lower bound on the optimal aggregate bandwidth allocation y∗ can be ob-
tained with the same techniques as in Chapter 2, which gives a bounded
problem on a reduced set and a global Lipschitz constant of ∇g. Moreover,
the constraint matrix applied to the variable y is the identity matrix – hence,
the full row rankness condition holds.

We need to remark immediately that the lower bound is no longer path-
wise. Indeed, the fairness is measured on the aggregate bandwidth alloca-
tions y. Thus, a lower bound for the multi-path fair allocation problem is
a vector b > 0 such that there exists d > 0 verifying the three conditions
Bd = b, Ad 6 c, and b 6 y∗. In other words, we call lower bound, an
aggregate bandwidth allocation corresponding to some feasible path-wise



72 Chapter 4. Extensions and refinements

bandwidth allocation and that is smaller (component-wise) than the opti-
mal aggregate bandwidth allocation.

Also, another important remark is that, although for strict (and in fact,
strong) convexity reasons, the optimal aggregate bandwidth allocation y∗ is
always unique, it is no longer the case for the path-wise bandwidth alloca-
tion, which is thus not uniquely defined2. It is possible to modify the prob-
lem in order to make the optimal path-wise allocation x∗ unique; instead of
constraining Bx = y, one can introduce, for q ∈ (0, 1), the modified con-
vex constraint Bxq = yq (where the exponentiation is defined component-
wise as xq := (x

q
p)p∈P, and likewise for y), which renders the function

x → g((Bxq)1/q) strongly convex in x and therefore eliminates the variable
y while still preserving the structure assumption of Theorem 3. This trick
can be seen in [22]. But in our case, we remarked that this made the proxi-
mal operator of the function g ◦ B more difficult to evaluate. Therefore, we
adapted FD-ADMM to the multi-path problem while keeping the path-wise
bandwidth allocation non-unique.

FD-ADMM for multi-path resource allocation

The decomposition procedure takes a similar form than the one in Chap-
ter 3. The multi-path distributed formulation reads:

min H(x, z) + χ(x ′, z ′)

s.t.
(

x

z

)

−

(

x ′

z ′

)

=

(

0

0

)

,
(4.15)

with the new definitions:

H(x, z) =
∑

r∈R
gr(

∑

p∈Pr
xp) +

∑

j∈J
ιj(zj)

χ(x ′, z ′) =
{
1 if xp = zj,p∀p ∈ P, ∀j ∈ Jp
0 otherwise.

(4.16)

This formulation yields the version of FD-ADMM made for multi-path α-
fair resource allocation that is summarized through the update rules of Al-
gorithm 5.

In the following discussion, we display the extended results of Chapter 2
on the lower bounds for the multi-path setting of the fair resource allocation.

Aggregate bandwidth lower bounds

We now wish to extend the results of Chapter 2 to the multi-path fair re-
source allocation extension. As we remarked earlier, the extension of the

2Simply, when the number of paths is greater than the number of requests, the matrix B
cannot have a null kernel for obvious rank reasons.



4.3. Practical extensions of the model 73

Algorithm 5 FD-ADMM (multi-path)

1: procedure OF DOMAIN m

2: RECEIVE zqp ∀q ∈ Ip ∀p ∈ P(m)

3: z̃p ← 1
Ip+1

(∑
q∈Ip zqp + xp

)

∀p ∈ P(m)

4: for j ∈ J(m) do

5: u
j
p ← u

j
p +

1
λ(z

j
p − z̃p) ∀p, j ∈ Jp

6: zj ← LINK_PROJ(j, z̃− λuj)

7: end for
8: for r ∈ R(m) do
9: vp ← vp +

1
λ(xp − z̃p) ∀p ∈ Pr

10: x← proxλgr(z̃− λv)

11: end for
12: SEND zmp = xp +

∑
j∈Jp∩J(m) zjp to domains q ∈ Ip ∀p ∈ P(m)

13: end procedure

results of Chapter 2 yields a lower bound on the aggregate bandwidth al-
location y∗, and not the path-wise allocation x∗, which in passing, is not
uniquely defined. In order to do so, we redefine the utopia point3 as fol-
lows:

∀r ∈ R ur := max
y=Bx,ys6=r=0,Ax6c

yr. (4.17)

Also, for each request r ∈ R, the restricted problem includes all the re-
quests s ∈ R that have some path q ∈ Ps sharing a link with some path
p ∈ Pr:

Rr := {s ∈ R; ∃q ∈ Ps, ∃p ∈ Pr, Jq ∩ Jp 6= ∅} . (4.18)

Lastly, the local midpoint p is defined likewise on the new restricted sets
Rr:

∀r ∈ R,pr :=
wr

∑
s∈Rr wr

ur. (4.19)

First, one can get easily an extension of the formulas in Theorem 2 (Chap-
ter 2):

3The notion itself is unchanged: the utopia allocation of a request is the aggregate band-
width it would receive along the total set of its paths if they were alone in the network.



74 Chapter 4. Extensions and refinements

THEOREM 5
Let y∗ denote the optimal aggregate allocation of the multi-path prob-
lem. Let r0 := argmins∈R ps. Then, x∗ can be lower bounded as fol-
lows:

• if α > 1, ∀r ∈ R y∗r > dr(α) := p
1−1/α
r0 p

1/α
r

• if 0 < α 6 1, ∀r ∈ R y∗r > dr(α) :=









wrur
∑

s∈Rr

wsu
1−α
s









1/α

.

Now, we have the aggregate version of Lemma 2 which can be obtained
likewise, and in the same vein as for the uni-path model, we thus have the
series of lower bounds that permit one to compute a more tighter lower
bound on the restricted problems:

COROLLARY 4
Let α > 1. Let a(0) be a lower bound and the sequence a(n) be de-
fined by the formula:

∀r ∈ R ar(n+ 1) :=









wrur
∑

s∈Rr

wsas(n)
1−α









1/α

. (4.20)

Then, (a(n))n is a sequence of lower bounds for the α-fair resource
allocation problem for α > 1.

In all generality, we have the following formula that can be obtained just
like Proposition 1.

PROPOSITION 3
Let α > 1. Let y∗ denote the optimal aggregate allocation of the prob-
lem. Then, y∗ can be lower bounded as follows:

∀r ∈ R, y∗r >
w

1/α
r u

1/α
r

∑

s∈R
w

1/α
s u

1/α−1
s

. (4.21)

The possible improvement of Proposition 3 to an equivalent form of



4.3. Practical extensions of the model 75

Proposition 1 (Chapter 2) is not straightforward due to the lack of path-wise
sensitivity results in the multi-path setting, the non-unicity of the path-wise
allocation being the major difficulty here. In practice, we chose the limit of
the series (a(n))n as a lower bound to define our penalty parameters.

4.3.2 Imposing sparsity patterns

In this section, we show how FD-ADMM can be adapted to address the
relevant problem of limiting flow reconfiguration. Although we expect FD-
ADMM to continuously provide feasible iterates that respond to traffic vari-
ations in real-time, it is practically infeasible to reconfigure all the flows
too often without overwhelming flow reconfiguration rules that can cause
Quality-of-Service degradation or system instability [59]. Therefore, we use
ideas of sparse optimization to make FD-ADMM sensitive to the cost of a re-
configuration of the bandwidth along a path, and hence operate a trade-off
between fairness and switching cost. The presentation of the (rich) theory
on sparse optimization goes beyond the scope of this thesis. Hence, we limit
ourselves to the adaptation to our setting. The reader is referred to [60] for
an extensive theory. For simplicity, we switch back to the uni-path model of
the fair resource allocation problem. Consequently, we discard the notations
of the last section and switch back to the ones in Chapter 3.

Sparsity-inducing regularization

We assume a traffic is already established with a current resource allocation,
and that its requirements can vary on-the-fly. One can model a variation of
the traffic requirements by a change in priorities between flows via a varia-
tion of the weight vector w, the computation of a new path for an existing
(or not) request, the elimination of a path for a request, etc. Under these
circumstances, FD-ADMM can continuously generate feasible solutions to
adapt the path-wise allocation to the new requirements in real-time. In fact,
by doing so, the controllers may improve the objective, and thus satisfy the
demands with a better fairness measure as they evolve. However, the num-
ber of permitted flow reconfiguration may be limited. Therefore, we in-
troduce a switching cost to limit the number of reconfiguration. The goal
for the controllers will thus be to perform a trade-off between fairness and
switching cost.

The introduction of a switching cost into the objective function can be of
interest to enforce hard constraints onto the number of reconfigured paths.
To be more specific, let x0 be a feasible path-wise allocation and assume
the actual resource allocation of the demands follows x0. Now, the traffic
demands have changed and the network has to recompute a new (uni-path)
allocation x♯ to respond to the traffic requirements. Assume the network
has a budget of κ > 0 reconfigurations. According to the fairness policy of
the network, the allocation should be updated in order to maximize the new



76 Chapter 4. Extensions and refinements

fairness metric, without exceeding this budget:

||x0 − x∗||0 6 κ, ⇐⇒
∑

p

1(x0p 6= x∗p) 6 κ, (4.22)

where ||u||0 = Card{p,up 6= 0} is called the zero-norm4 of a vector usually
denoted ℓ0. Adding the constraint of Eq. (4.22) into the problem gives rise
to a problem structure with integral constraints, and falls out of the scope of
the classic ADMM. We consider here a relaxation of this problem that is still
tractable with the method.

We can control the zero-norm (4.22) by adding the most natural sparsity
inducing penalty induced by the Θ-scaled ℓ1-norm Θ||x0−x∗||1, where Θ is a
positive parameter. The ℓ1-norm is well known to be the fittest convex relax-
ation of the ℓ0-norm, for the simple reason that the ℓ1-ball is the convex hull
of the set of points {v s.t. ||v||0 6 1}. We therefore consider Problem (3.32)
(Chapter 3), with an extended expression of the function H:

H(x, z) =
∑

r∈R
gr(xr) +

∑

j∈J
ιj(zj) +Θ

∑

r∈R
|xr − x0r | (4.23)

Change in FD-ADMM

With this extended formulation, the changes in FD-ADMM only occur in the
proximity operator calculus. Indeed, we combine the regularization term
with the fairness measure by designing a unique variable for the two terms.
Therefore, FD-ADMM will operate the exact same update rules than in Al-
gorithm 3 (Chapter 3), except that line 10 is replaced with:

xr ← proxλgr+λΘ|·−x0r |
(z̃r − λvr). (4.24)

The proximal calculus (4.24) is quite simple to execute. Indeed, let u =

z− λv the proximal point in (4.24) is the unique point x verifying:

∀r ∈ R, xr = argmin
x

β(x) := gr(x) +Θ|x− x0r |+
1

2λ
||xr − ur||

2. (4.25)

As usual, the function β to minimize is strictly convex and coercive,
therefore admits a unique solution. The only trick is that it is not differ-
entiable at x0r . Therefore, we can check:

• if xr > x0r , then xr is a critical point, and verifies the first order condi-
tion, after simplification:

xα+1
r + (Θλ− ur)x

α
r − λwr = 0. (4.26)

4This is an abuse of terminology as it is not a norm.



4.3. Practical extensions of the model 77

• if xr < x0r , then xr is a critical point, and verifies the first order condi-
tion, after simplification:

xα+1
r − (Θλ+ ur)x

α
r − λwr = 0. (4.27)

• else, xr = x0r .

Thus, in our cases α = 1, 2 or 3, we still have to find a positive root of
a polynomial of degree α+ 1. Given the form of the polynomial, we have
already observed that it admits one and only one positive root. Also, by
convexity, we know that x 7→ sup{∂β(x)} is non-decreasing. Moreover, the
point xr is a critical point if and only if 0 ∈ ∂β(xr). It is thus easy to check
where xr compared to x0r by a comparison of the left and right derivatives
of β at x0r :

• if the left and right derivatives have opposite signs, then the proximal
point is x0r .;

• if the left and right derivatives are both non-negative, then xr 6 x0r
and verifies (4.27);

• if the left and right derivatives are both non-positive, then xr > x0r and
verifies (4.26);

Thus, the term-wise minimization of the function H(·, z) now also takes
into account an incentive to stay near the point x0. Of course, a proper
tuning of the parameter Θ is necessary to enforce the real budget κ. The
larger Θ, the smaller the number of re-sized paths. We will show this effect
in the next paragraph, dedicated to the experimentation.



78 Chapter 4. Extensions and refinements

α = 1.

α = 2.

α = 3.

Figure 4.3 | The achieved optimality gap (left panel) of the sparse solu-
tion x♯ (with reference the optimum with the new weights w♯), and its
ℓ0-difference with the initial allocation x0 versus the regularization term Θ

(right panel), for α = 1, 2, 3.

Illustration on the examples

We illustrate the effect of the sparsity inducing ℓ1-norm on the optimal value
and solution x♯ on the instances that have been considered in the simula-
tions of Section 4.2. The setting is as follows. The traffic is considered to be
set at a value x0, which is the optimal solution for the considered instance.
Then we model a change in the traffic requirements by changing all the
weights wr. To do so, we simply draw uniformly a new value w

♯
r for each

r ∈ R. Then, we compute the new optimally fair solution without switching
cost (Θ = 0). Taking this value as reference, for various values of Θ, we
run our modified algorithm to find an allocation that trades off fairness and
switching costs and yields x♯, and plot the corresponding optimality gap.
Also, we show the number of reconfigured paths ℓ0(x

0 − x♯). The results of
this experiment are shown in Figure 4.3.



4.4. Concluding remarks 79

From the results, it is clear that the regularization term Θ permits to
achieve all the levels of sparsity of the vector x0 − xsharp. For no sparsity
at all, Θ = 0 permits the algorithm to change the solution without switch-
ing costs and we get the optimally fair solution for the new traffic setting.
The algorithm is not sensitive to a change of w at all if Θ is large enough.
Of course, the threshold value for Θ as from where the allocation will not
move will depend on w−w♯, and on the instance.

General extensions

Lastly, we would like to give a general and convenient way of adding spe-
cific sets of constraints/regularization terms to the problem. We have seen
that the ℓ1 regularization term was easy to add and gave rise to a tiny mod-
ification of the proximal update rule. This is due to the fact that it is very
straightforward fo carry the proximal calculus of the function β. One can
imagine that a generic regularization term of the form ρ(x) may not result
in such simplicity in the structure of the function β. Although the only re-
quirement is that the function g+ ρ should still be convex, it might be easier
to compute separately proxg and proxρ rather than proxg+ρ (for example,
think of a non-separable function ρ). This is why we give the general trick
to feature complicating constraints/regularizations to the fair resource allo-
cation problem:

• For a new regularization x 7→ ρ(x), create a new variable xρ.

• Redefine χ as the indicator function of the set

{(x, xρ, z); zjr = xr = xρr ∀r ∈ R∀j ∈ Jr}.

• The modified FD-ADMM thus reads:

min
∑

r∈R
gr(xr) + ρ(xρ) +

∑

j∈J
ιj(zj) + χ(x ′, xρ ′, z ′)

s.t.





x

xρ

z



−





x ′

xρ ′

z ′



 =





0

0

0





(4.28)

4.4 Concluding remarks

This chapter was organized into two parts.
In a first part, we reviewed the major results around the convergence

of ADMM and used the structure of the fair allocation problem in order
to provide a satisfactory penalty tuning for our FD-ADMM. The strong con-
vexity of the fairness functions provide C-ADMM with a linear convergence
property with a factor that depends on its penalty parameter λ (Theorem 4).
Therefore, this convergence rate can be optimized with respect to λ which
gives an optimal λ∗ that guarantees best the worst case convergence rate



80 Chapter 4. Extensions and refinements

value (Corollary 3). The theoretical optimality of λ∗ was evaluated and
validated by simulations (Figure 4.2). Unfortunately, our distributed ver-
sion, FD-ADMM, does not have the properties of C-ADMM and we cannot
theoretically provide an optimal penalty tuning. For this kind of problem,
residual balancing is a very common trick to make the algorithm perfor-
mance less dependent of it. However, convergence is guaranteed only if the
penalty is ultimately fixed. Therefore, residual balancing is a technique that
the algorithm can use in order to estimate an accurate penalty from the first
iterates. We compared the first iterations of FD-ADMM with residual bal-
ancing, and without residual balancing for different initialization values of
the penalty parameter λ. It turned out that the optimal penalty λ∗ for C-
ADMM provides very satisfactory results for FD-ADMM, and specifically,
values slightly below λ∗ gave more precise solutions than with residual bal-
ancing (Figure 4.1). The conclusion of these observations is that FD-ADMM
works better in the fist iterations with a fixed penalty computed with the
help of C-ADMM, than with residual balancing, that requires a fixed run at
the end anyway.

In a second part, we showed that FD-ADMM was versatile enough to ad-
dress requirements that could be specific to the concrete problem in hand.
We presented first the natural extension of the fair resource allocation to
the multi-path setting and gave the corresponding modified algorithm and
the new update rules to conduct. We checked that the new centralized for-
mulation had the same structure than C-ADMM and concluded that the
centralized algorithm had the same convergence properties (Proposition 2).
Also, in order to adapt FD-ADMM to this use case, we conducted the same
decomposition method as in the one in Chapter 3, this time yielding a not
strictly convex fair multi-variate function per request. We then extended
the results of Chapter 2 that give a lower bound, not on the path-wise allo-
cation, but the aggregate allocation of each request. In the same way, this
bound permits to derive the multi-path penalty λ∗.

Lastly, we showed with the example of sparse regularization how FD-
ADMM could be adapted to limit the number of resized paths in a real-time
scenario. This feature might be of interest in networks where too much flow
re-sizing may cause instability and quality degradation and where a flow re-
configuration step-by-step is more desirable. In the same vein, we reformu-
lated the problem with the introduction of a ℓ1 regularizer and showed the
corresponding update rules. We implemented the changed in FD-ADMM
and showed the effect of the regularization term Θ on the number of re-sized
paths (Figure 4.3). The results showed that the value of Θ could enforce all
the spectrum of desired sparsity. Of course, a precise quantification of the ef-
fects of Θ is another interesting technical question. More generally, we gave
the global method to equip FD-ADMM with another set of complicating
constraints on the variable x and/or another more complicated regularizer.

Therefore, we argue that our algorithm FD-ADMM is well equipped and
conditioned to tackle the problem of fair resource allocations in real-time
with time-varying traffic requirements. Indeed, the previous chapters, and



4.4. Concluding remarks 81

the present one, showed that the algorithm can provide feasible (uni-path or
multi-path) solutions on demand (Chapter 3) while continuously approach-
ing the optimum, and can choose which path to reconfigure with a simple
ℓ1-regularization that provides sparse structured modifications. FD-ADMM
thus responds to the real-time fairness and optimizes resources globally, and
the whole procedure can be massively distributed following any domain
distribution of the Software-Defined Network.

Thus, fairness as a resource sharing policy was addressed on networks of
capacitated links and we showed how to tackle it in real-time. FD-ADMM
is fit to tweak the resource allocation in real-time while taking account of a
reconfiguration budget not to trespass, when the traffic requirements vary
on-the-fly. Another parameter that can vary in practical scenarios is the net-
work link capacities. Until now, we always assumed the capacity vector c

was fixed and known by the SDN controller. In reality, a fixed capacity vec-
tor is a bold simplification of the resource allocation challenge. Indeed, the
network equipment is scaled and partitioned between many users (service
providers) and this partitioning of the resources might be dynamically ad-
justed to best fit the different users’ requirements. In this context, one can
adapt the resource allocation problem by defining a varying capacity vec-
tor. This immediately leads us to define a stochastic version of our resource
allocation problem that takes into consideration a potential uncertainty on
the parameter c. In this situation, the notion of feasibility is replaced with
the one of safety, which is essentially a probabilistic notion of feasibility. The
object of the next and last chapter of this thesis is therefore the safe and fair
resource allocation in uncertain environments.



82 Chapter 4. Extensions and refinements



Chapter 5

Safe fair allocation under
environment uncertainties

R
EGARDLESS OF ITS distributed structure, we considered so far in
this thesis an SDN controller as a central entity that had access
to all global parameters such as flow information, path structure,
link capacities. This unprecedented feature of SDN makes the

whole paradigm very desirable for intelligent network control and manage-
ment. We proposed FD-ADMM, an algorithm that computes, distributively,
the α-fair resource allocation problem, given a link-path incidence matrix
A, a per link capacity vector c, a set of connection requests R each with a
positive weight w. We always assumed the controller had full knowledge
of all these parameters, and most of all, that they are fixed.

However in practice, the information that the controller detains on the
actual network state is maintained through dynamic parameters that are
measured actively and cannot be updated without active monitoring through
measurements.

A typical parameter is the remaining available bandwidth on the links of
the network. The available bandwidth of a path characterizes the amount
of bandwidth that can be allocated along that path without deteriorating
the bandwidth of other paths already established before-hand (e.g. from a
higher priority class of traffic, some Bandwidth on Demand service, other
service provider sharing the same physical resources, etc) that meets it on
some link. Thus the available bandwidth, modeled all thorough this thesis
by the fixed capacity vector c, is in fact by definition, a dynamic value.

The maintenance and optimization of inherently dynamic services with
rigid performance requirements (QoS) such as video streaming, where adap-
tive re-routing of flows and re-allocation have a crucial role in QoS guaran-
tees and enhancement, cannot bypass the benefits of available bandwidth
monitoring [61, 62]. Several approaches have been proposed for available
bandwidth estimation. They are generally based on throwing probing pack-
ets through the network and which permit to deduce an estimation of the
remaining capacity based on the effects on the links and routers. Among the

83



84 Chapter 5. Safe fair allocation under environment uncertainties

developed estimation tools, one can cite Abing [63], Assolo [64], Pathload [65]
and PathChirp [66], to name only a few. However, those methods [67] si-
multaneously suffer a lack of precision, which requires a single estimation
to rely on many measurements, and a tendency to generate non-negligible
probing traffic per measurement. For instance, Pathload generates from
2.5MB to 10MB per traffic estimation. Thus, they often produce poorly re-
liable measurements. More precise and reliable estimation tools leverag-
ing the new possibilities with SDN are emerging, such as SOMETIME [68],
the first of which was proposed by Megyesi et al. [69], where messages are
sent from the controller through the Southbound API to poll counters in the
switches and deduce the current bandwidth utilization and derive the avail-
able bandwidth at the link level. In the latter paper, the authors show the ac-
curacy (less than 5% error compared to the ground truth) of their method to
estimate individual1 available bandwidth under various traffic conditions
and Southbound communication delays and polling periods.

In all generality, we therefore extend our model with a varying available
bandwidth scenario, typically by introducing the existence of a background
traffic on the network, and the SDN controller is allocating the remaining
bandwidth between a set of flows.

In this case, the link capacities form uncertain parameters on which,
through measurements, we have a certain amount of information: we as-
sume in this chapter that the network has been observing the background
traffic enough time to obtain, for each link, an estimation of the behavior
of the remaining capacity in terms of a distribution. This means that the
network is able to predict that with probability p, the link j has a remaining
capacity less or equal than zj.

Thus mathematically, it is acceptable for us to assume each link comes
with a probability distribution function on its available bandwidth. When
the background traffic has a cyclic pattern, it might be considered to have a
timely capacity vector (as, as shown in [69], not more than 5 seconds polling
can lead to very satisfactorily accurate estimations), that is, we might know
a precise capacity vector for each time, for instance, 5 seconds. But we men-
tioned in the last chapter how it might be costly to reconfigure tunnel sizes
too often. It might on the other hand be too inefficient to compute the fair
allocation considering the worst case for all measurements made thorough
the cycle. Thus, we can define a typical configuration time-scale at the end
of which a new allocation has to be made, considering a new estimation of
the capacity vector. In between this time scale, the allocation can be read-
justed (with a fixed estimated capacity vector) when needed in the fashion
of Chapter 4 (with or without switching costs) when the weight vector w

varies. Therefore, we pose the problem of computing an allocation based
on the measurements that are available to the controller, at the end of the
configuration time-scale.

To this aim, it is required to extend the α-fair resource allocation model
to account for those uncertainties. We point out two fundamental point of

1meaning, from each link.



85

views of how to approach such uncertain environments.

• Worst scenario: a robust solution is wanted. In this case, indepen-
dent of the background traffic, the resource allocation should never
violate the capacity constraints. We take the minimum value of the
possible realizations of each link capacity and thus optimize over the
corresponding reduced set. This defines the robust solution, which is
ultimately conservative (as the optimal solution on a reduced feasible
subset is of course sub-optimal);

• Violation tolerance: we do not need a robust solution, but a solution
that one can guarantee, that with probability at least 1− ε, will respect
the capacity constraints, where ε ∈ [0, 1]. In this way, we sacrifice some
feasibility guarantees and of course permit to improve the efficiency of
the system (in terms of objective value, here, in terms of fairness). The
worst case scenario thus corresponds to the situation ε = 0.

The violation tolerance point of view is quite attractive in practice. It
is often acceptable to have a solution that would not violate the constraints
most of the time, and in the meantime, sacrificing a little bit of feasibility helps
improve the quality of the solution at all times. It is thus tempting to relax
the notion of feasibility to the alternative notion of ε-safety:

DEFINITION 5 (ε-safety)
Assume that the capacity vector c is a random variable in (R|J|, P),
where P is a probability measure. We say that the vector x is ε-safe if:

P(Ax 6 c) > 1− ε, or equivalently P(Ax > c) 6 ε. (5.1)

Thus, when the vector x satisfies Equation (5.1), we say that x is ε-safe (or
simply safe when there is no ambiguity on ε, which will be the case). On the
contrary case, we will say that x is ε-unsafe, or simply unsafe. An attractive
way to capture the notion of ε-safe solutions to an optimization problem
with uncertainties is chance constrained programming.

Nonetheless, chance constrained programs are generically non-convex,
not even tractable, and under the most general assumptions, give rise to NP-
hard problems. As will be shown, our extension model is based on chance-
constrained programming and invokes convex optimization programs with
many additional binary variables, which make it much more difficult to
solve. Tractable and efficiently solvable approximations of chance constrained
programs can be obtained through convexification tools, but are often too
conservative, returning sub-optimal solutions within an inner approxima-
tion of the set of safe points. Thus, we propose a polishing routine, Polish,
to improve greedily such inner approximations, and build an algorithm,
Safe, to compute a safe allocation that improves a convex outer approxima-
tion of the mixed binary convex program. In a certain way, Polish mimics



86 Chapter 5. Safe fair allocation under environment uncertainties

the behavior of the well-known greedy algorithm to maximize sub-modular
functions [70, 71, 72], a general iterative ascent method that uses the con-
cept of marginal value2 to decide greedily which direction to choose in the
ascent, but while only estimating and not evaluating all marginal values in
order to go quicker3.

This last chapter is organized as follows. Section 5.1 introduces the con-
cept of chance constrained programming. Considering our setting and ac-
cording to [69], we design the safe and fair resource allocation problem with
individual chance constraints and discrete probability densities. Then, in
Section 5.2, we describe the mixed binary convex optimization problem that
solves the problem optimally. This problem being intractable, we present
the natural lower bound given by relaxing the binary constraints, efficiently
computable as a convex optimization problem. Next (Section 5.3) we intro-
duce the concept of sensitivity analysis with the help of which we define
our polishing algorithm, after which the Safe algorithm is designed (Sec-
tion 5.4). Finally, Section 5.5 is dedicated to the validation of Safe by com-
parison with classic inner approximations (that will be introduced thereby),
and Section 5.6 concludes the chapter.

2Briefly, let F : 2X → R be a general set-function, X being a discrete finite set. For S ⊂ X,
the marginal value function of F at x maps a set S to the value F(S∪ {x}) − F(S). We say that
F is sub-modular if its marginal value functions are all non-increasing (for the partial order
⊂).

3In fact, the standard greedy algorithm requires to compute all possible marginal values
in order to choose the best ascent direction. In our case, as the reader will see later, this re-
quires to solve |J| instances of the (classic) fair resource allocation problem at each polishing
iterations, which we reduce to only one by only estimating the best marginal value instead
of finding it.



5.1. Introduction on chance constraints programming 87

IN A NUTSHELL
We extend the α-fair resource allocation problem to account for uncer-
tainties in the available bandwidth over the set of links of the network.
The variability of the remaining available bandwidth lies beneath an
introduced existence of a background traffic over the network, that
the SDN controller is able to monitor but not control (higher prior-
ity class already established, other application sharing the same re-
sources, etc), on top of which it is allocating bandwidth fairly between
a set of flows. In this situation, we argue that the SDN controller may
build information on the possible available bandwidth over individ-
ual links in form of general (discrete) density functions, and extend
our model to account for this form of uncertainty in the capacity vec-
tor c, that is now seen as a random variable, although so far assumed
as fixed and known (typically, no background traffic). In this chapter,
we introduce briefly the framework of chance constrained program-
ming with right-hand side uncertainties, and extend the notion of fea-
sibility to the one of ε-safety. We design an algorithm, Safe, that given
a collection of density functions pj for each link, and a total tolerated
violation risk ε, returns an ε-safe allocation. Safe relies on a polishing
sub-routine that takes unsafe solutions back to the safety set, improves
safe solutions in terms of fairness, based on the sensitivity of the α-fair
resource allocation problem. We show numerically that the fairness of
this safe allocation is satisfactory, making Safe a good candidate as an
efficient heuristic.

5.1 Introduction on chance constraints programming

Chance-constrained programming is a very natural way to formulate the
problem of safe allocations based on parameters uncertainties. In this chap-
ter, we focus on our introduced use-case where the uncertainties are limited
to the network capacities. Mathematically, this means that our optimiza-
tion problem contains uncertainties on the right-hand side of the inequality
constraints. Let us fix a probability measure P on the natural (borelian) mea-
sured space structure of R|J|. The general chance-constrained problem with
right-hand side uncertainty can be formulated as the following:

min g(x)

s.t. P(Ax 6 c) > 1− ε,
(5.2)

where c is a random variable of the measured space R|J|.
The problem posed by (5.2) is commonly called joint-chance-constrained

problem. The typical feature lying behind the word “joint" is that the toler-
ance ε controls the reliability level of the vector x regarding a set of (more
than one) probabilistic constraints, depending on a random variable c in



88 Chapter 5. Safe fair allocation under environment uncertainties

the ground space R|J|. In all generality, the joint reliability level P(Ax 6 c)

is challenging to even evaluate point-wise as it requires the knowledge of
the law of the joint variable c; this makes the general joint-chance con-
strained optimization very difficult to solve (without further assumptions
on the probability distributions that can for instance guarantee convexity of
the program - see for instance [73]).

In practice, the monitoring of the background traffic permits to maintain
information on the remaining capacities of each link of the network. There-
fore, an explicit individual probability distribution from the separate obser-
vations is more directly available. Fair enough, it is still generically difficult
to evaluate the probability distribution of the joint variable c from the in-
dividual probability distributions of the single variables cj without further
assumption on a possible correlation or independence of the different vari-
ables cj, as this would lead us to restrict the structure of the matrix A, and
also on the background traffic that we want to keep unknown. We there-
fore argue that the individually chance constrained version of the problem
is more adapted to the present model:

ming(x) (P1)

s.t. pj((Ax)j 6 cj) > 1− εj,

where pj is a probability measure on R, and εj ∈ (0, 1) is a tolerated violation
risk for constraint j.

5.1.1 Model design

Variable tolerated violation risks

On top of the practical interest for our problem, instead of having a block
probabilistic constraint as in (5.2), we now come with the constraint-wise
separated uncertainties. For each link j, let εj ∈ [0, 1] be a tolerated vio-
lation risk. Each link capacity cj is now seen as a positive random vari-
able with density pj and, for simplicity, with support in some fixed interval
[cmin, cmax] not containing4 0. The fair resource allocation problem under
these conditions, with individually chance constraints can be cast as the fol-
lowing program:

min g(x)

s.t.
∫ (Ax)j

cmin

pj 6 εj.
(5.3)

Now, it is clear that z 7→
∫z
cmin

pj is an increasing function. This means
that, if cj is defined as the εj-quantile of the distribution pj (that is, if cj :=
inf{z,

∫z
cmin

pj > εj}), then the feasible set of Problem 5.3 is equal to:

4In this way, the robust problem is well-posed and bounded.



5.1. Introduction on chance constraints programming 89

{x : Ax 6 c} . (5.4)

We call cj the value-at-risk of the j-th variable with risk εj and we denote it
VaRj εj. As we have seen in the precedent chapters, we can solve (5.4) effi-
ciently. It is important to note that the risk ε := (εj)j∈J is a design parameter
rather than a design variable. This means that the values of εj, j ∈ J need to
be decided and fixed in advance. Then only, we fall into the framework of
convex optimization, by (5.4).

A typical approximation of (5.2) with individually chance-constraints
and fixed tolerated violation risks is the Bonferroni approximation. The
Bonferroni approximation uses the union bound to split the joint chance
constrained program (5.2) into the constraints of (P1) with εj =

ε
|J|

. Indeed,
if each constraint of Problem (P1) is respected with this value of the individ-
ual risks εj, then the union bound ensures that the constraint of (5.2), where
P is any joint probability measure on the product space R|J| generated by
(pj)j, is respected. However, the Bonferroni approximation responds to the
individual risk distribution quite blindly – all the constraints are added the
same amount of risk, regardless of the problem structure. In reality, some
constraints may not even improve the objective if we loosen them, because
they are not tight in the beginning, so it should be of no use to attribute
risks on those. Further, if we take into consideration only the t tight con-
straints (by the solution to the robust problem, in the robust problem) in
the Bonferroni approximation, it is not clear that εj/t is the best attribution.
Clearly, it is more attractive to attribute the individual risks εj taking into
consideration how well they could improve the objective.

This is why a generalization of the Bonferroni approximation to arbitrary
values of the εj is relevant.

Now, it is valid to question particular choices of ε. For instance, if ε = 0,
we get the robust problem. Although by definition, a solution to the robust
problem is always feasible (that is, never violates the capacity constraints),
the robust problems deprives the resource allocation scheme of many pos-
sible risk tolerant choices, which may give, a highly conservative optimal
solution with unnecessary precaution as the worst case scenario may be at-
tained (i) either rarely, or (ii) at worst, not on all links at the same time.
Therefore, we pay the price of absolute and simultaneous individual feasi-
bility, which might not even be required in practice, for efficiency improve-
ment in terms of objective. On the other hand, although positive values of
εj can sacrifice some feasibility to improve effectively the fitness of the solu-
tion, a bad choice of the εj can provide no improvement at all: for instance,
choosing εj > 0 on an un-tight constraint does not improve the solution
(this statement will be precised in the next section).

Therefore, we define the vector ε as a design variable, so that an "opti-
mal" set of tolerated violation risks can be chosen.



90 Chapter 5. Safe fair allocation under environment uncertainties

Practical discrete model

In our model, the true value of a link’s remaining capacity varies with time,
because the background carried flow is itself variable. Our vision of the true
value can only be estimated via (a finite number of) measurements.

We thus assume that the link capacities of the links are random variables
with discrete support and values following a probability distribution. We
assume that a certain number of measurements have been done during the
past such that a number of realizations of the link capacities are available
along with their empirical probability. For each link j ∈ J, cj has the set
of realizations {ξ1j , . . . , ξ

nj

j }, with respective probabilities {pkj }k=1,...nj
}, where

nj > 1. We assume the scenarios are sorted as ξ1j 6 . . . 6 ξ
nj

j .
Therefore, for a given load z ∈ R+, the measure:

pj(z) :=
∑

z>ξkj

pkj

expresses the probability that the remaining capacity cj is below z. For any
εj ∈ (0, 1), the value-at-risk of the j-th variable with risk εj for the distribu-
tion pj is:

VaRj(εj) = ξ
qj
j , where qj := sup{k = 1 . . . nj s.t. pj(ξ

k
j ) 6 εj}.

The discrete distribution formulation with fixed risk vector ε then reads:

min g(x)

s.t. Ax 6 VaR(ε),
(5.5)

where VaR(ε)j := VaRj(εj) is the value-at-risk vector.
The robust solution of (P1) is the resource allocation that maximizes the

objective while satisfying the worst-case scenario: ε = 0. It therefore reads:

min g(x)

s.t. Ax 6 ξ1,
(R)

where ξ1 := (ξ1j )j∈J.
We now introduced our model with variable risk tolerances εj. Although

the risk vector ε can lie in a general compact subset of R|J|, we here do not
make any assumptions on the particular structure of the probabilities pj and
the joint probability P. For simplicity instead, we assume a given global risk
budget of ε > 0 is given and we search for a vector x that gives the best
possible solution for Problem (5.5), by considering altogether the possible
choices of ε respecting the risk budget ε and that can be made to attribute in-
dividual risk tolerances εj. Specifically, the union bound trivially guarantees
that if each constraint j is respected with probability at least 1− εj at some x,



5.2. A lower bound 91

then the joint chance constraint Ax 6 c is respected with probability at least
1− ε, provided

∑
j∈J εj 6 ε. Here again, the union bound might still be too

conservative, as a constraint. Other constraints of the form aTε 6 ε, ε > 0

can be used, where a is a positive vector. But the choice a = 1 is very
common and sensible.

Thus, we now have a new problem:

min g(x)

s.t. pj((Ax)j) 6 εj ∀j ∈ J
∑

εj 6 ε.

(5.6)

5.2 A lower bound

5.2.1 Mixed integer convex program

When the support of the capacity distributions are finite, it is possible to
formulate the problem with a mixed integer program. For this, we just need
to define a binary variable bkj that activates or deactivates the k-th scenario
for constraint j, which means, bkj = 1 if the capacity of link j is estimated at
ξkj , and bkj = 0 otherwise. Then, we have

∑
j∈J nj constraints, of which only

|J| are to be activated. The goal of the program is thus to find the |J| optimal
constraints to activate, that give the best solution in terms of fairness, while
respecting the global risk budget ε.
Terminology: The variable b will be referred to as the scenario variable. Let
k := {kj}j∈J be a collection of integers such that 1 6 kj 6 nj, for all j ∈ J. We
also call k a scenario, interpreted as bkj = 1 ⇐⇒ k = kj.

We thus introduce the following optimization problem:

min g(x) (5.7)
s.t. Ax 6 z (5.8)

nj∑

k=1

ξkj b
k
j = zj ∀j ∈ J (5.9)

nj∑

k=1

qk
j b

k
j 6 εj ∀j ∈ J (5.10)

nj∑

k=1

bkj = 1 ∀j ∈ J (5.11)

∑

j∈J
εj 6 ε (5.12)

x > 0,bkj ∈ {0, 1}, z > 0. (5.13)



92 Chapter 5. Safe fair allocation under environment uncertainties

Equation (5.8) are the classic capacity constraints, except that now the ac-
tivated capacity is a variable z whose components are chosen by the follow-
ing constraints of Equation (5.9). The individual risk tolerances are enforced
by Equation (5.10), where we define qk

j as the probability that cj < ξkj :

qk
j :=

k−1∑

l=1

plj, (5.14)

with the convention that the empty sum equals 0. A unique scenario is
activated per constraint, which is formalized by Equation (5.11). Finally, the
individual risks of the program respect the total budget of risk ε, as simply
indicates the constraints (5.12).

Overall, it is clear that (5.7)– (5.13) finds the optimal resource allocation
fairness on a selected capacity set chosen so as to respect the total allowed
violation tolerance budget ε. Unfortunately, this program is an instance of
the optimized Bonferroni approximation approach which in general leads
to NP-hard problems [74, 75]. Therefore, there is no hope of solving this
problem optimally and efficiently for large instances.

This is why we first get a lower bound on the optimal value by relaxing
the integrity constraints.

5.2.2 The convex relaxation

It is easy to derive the convex relaxation of Problem (5.7)–(5.13): we just
define bkj ∈ [0, 1] instead of bkj ∈ {0, 1}. In other words, we get a convex
optimization problem at hand, that can again be addressed itself with an
adaptation of FD-ADMM5. Thus, solving this relaxation can be done very
efficiently, and it gives a first estimation of the optimal right-hand-side sce-
narios to activate. The relaxed problem therefore reads:

5Not immediate but doable: one needs to throw the all the variable right-hand-sides
to the left side of the constraints in order to have a constant right-hand-side, gather all
the inequality constraints to the form A ′(x,b, z) 6 d and then include the additional con-
straints (5.11) in the fashion of Section 4.3.2



5.3. A polishing routine based on sensitivity analysis 93

min g(x) (5.15)
s.t. Ax 6 z (5.16)

nj∑

k=1

ξkj b
k
j = zj ∀j ∈ J (5.17)

nj∑

k=1

qk
j b

k
j 6 εj ∀j ∈ J (5.18)

nj∑

k=1

bkj = 1 ∀j ∈ J (5.19)

∑

j∈J
εj 6 ε (5.20)

x > 0,bkj ∈ [0, 1], z > 0. (5.21)

Of course, the value of the relaxed problem is a lower bound on the opti-
mal value. An optimal solution with the fractional values b̃k

j has fractional
activations of the different scenarios, and we know that for all j,

∑
k b

k
j = 1.

Thus, one can build a binary vector b by rounding this fractional solution:
the simplest solution would be to project b̃ onto the set defined by (5.11) as
well as binary constraints bkj ∈ {0, 1}. This means that the highest value of
b̃kj is set to 1, while all other values are set to 0. Other rounding schemes can
also take into account the constraints (5.9) and (5.10). In other words, they
would require to find the projection of the point b̃ onto the discrete set de-
scribed by those constraints. But this gives problems that are also intractable
in general.

Instead, in the next section, we design a polishing routine that can take
the rounded solution as described above and locally improves it by (i) tak-
ing a step back into the safe set if the rounded scenario does not satisfy
constraints (5.12), and/or (ii) improving the solution by searching for neigh-
boring scenarios that are safe and that augment the value of the program.
The polishing routine is based on sensitivity analysis and mimics the well-
known greedy algorithms employed to maximize submodular functions [70,
72].

5.3 A polishing routine based on sensitivity analysis

In this section, we introduce formally the question of sensitivity of the objec-
tive with respect to the right-hand-side (link capacities) of the constraints.
For this, we once again need the dual variables λ associated to the capacity
constraints. This discussion will help us to build a polishing routine that ap-
proaches the critical set {

∑
j εj = ε} from the outside or the inside in order to

step back into the safety set/improve best the objective from a conservative



94 Chapter 5. Safe fair allocation under environment uncertainties

solution.
Let us refresh the notations by reminding the basic problem of fair allo-

cation and its dual.
The α-fair resource allocation problem reads:

min g(x)

s.t. Ax 6 c,
x > 0.

(5.22)

If λ denotes the dual variable associated with the capacity constraints Ax 6

c, then the dual of (5.22) reads:

max h(λ)

s.t. λ > 0,
(5.23)

where h(λ) := minx>0L(x,λ), and L(x,λ) := g(x) + λT(Ax− c) is the La-
grangian function of (5.22).

We remind that the primal-dual pair (5.22)–(5.23) problem responds to
the strong duality theorem and that the primal-dual optimal corresponding
pair (x,λ) (is unique and) verifies the KKT conditions:

• complementary slackness: λT(Ax− c) = 0,

• optimality: xr =
(

wr∑
j∈Jr

λj

)1/α
,

• dual feasibility: λ > 0,

• primal feasibility: Ax 6 c.

Applying the KKT conditions to the robust problem (R), one can remark
the well-known but important property: if the constraint j is not active, that
is if (Ax∗)j < ξ1j , then λ∗j = 0. This property implies that a positive dual
variable λ∗j is a certificate of the tightness of the constraint j. Therefore, if
we want to add some more risk on a constraint, that is, to augment the cor-
responding risk tolerance εj, we should be looking at the constraints with
a positive optimal dual variable, because the tight constraints are the good
candidates for bottlenecks that can improve the objective when liberated,
not the untight constraints. Unfortunately, the KKT conditions do not per-
mit to quantify this observation, nor do they tell what can be deduced when
λ∗j = 0. The constraint might as well be tight. Sensitivity analysis responds
partially to this question.

Let us introduce the following general perturbed problem, with reference
to the robust problem (R):

min g(x)

s.t. Ax 6 ξ1 +u.
(5.24)



5.3. A polishing routine based on sensitivity analysis 95

This problem was introduced in Chapter 2 where we discussed the be-
havior of the optimal solution x∗ when the problem was perturbed. Here, we
are interested with the behavior of the optimal value of the perturbed prob-
lem with respect to the perturbation. Let p denote the value function:

For all u ∈ R|J| such that ξ1 +u > 0, p(u) := min
Ax6ξ1+u

f(x).

The link between p and our chance constrained problem is the follow-
ing. For a risk ε, let c(ε) be its value-at-risk, that is, cj(ε) := VaRj(εj). Then,
the optimal value of Problem (5.5) for c∗ = c(ε) is p(c(ε) − ξ1). Therefore,
solving (5.5) is equivalent to minimizing p(c(ε) − ξ1) subject to the con-
straints

∑
εj 6 ε, where ε is a chosen joint risk tolerance. Of course, it is not

trivial to tackle the direct minimization of p over such packing constraints,
for p(c(·) − ξ1) is, as a sub-routine, not immediate to evaluate. Nonethe-
less, the value function p gives precious information on the sensitivity of
the program with respect to the right-hand-side.

5.3.1 Regularity and sensitivity

We have the first convexity property of the value function p:

PROPOSITION 4
The value function p is convex.

Proof. For a perturbation u, we denote by Cu the corresponding feasible set
in (5.24). Let u and v be two perturbations and t ∈ [0, 1]. We have:

tCu + (1− t)Cv ⊂ Ctu+(1−t)v.

Therefore, for xu and xv ∈ Cu and Cv, respectively;

p(tu+ (1− t)v) = min
x∈Ctu+(1−t)v

g(x)

6 g(txu + (1− t)xv)

6 tg(xu) + (1− t)g(xv).

(5.25)

This being true for all xu ∈ Cu, xv ∈ Cv, we thus have the property:

p(tu+ (1− t)v) 6 tp(u) + (1− t)p(v).



96 Chapter 5. Safe fair allocation under environment uncertainties

PROPOSITION 5
For any perturbation u, there exists an unique primal-dual pair
(xu,λu) to (5.24). Moreover, for all couple of perturbations (u, v), we
have the sensitivity inequality:

p(v) − λT
u(u− v) > p(u) > p(v) − λT

v(u− v). (5.26)

Proof. By optimality of the primal-dual pair (xu, λu), we have:

g(xu) + (Axu − ξ1 −u)Tλu 6 g(xv) + (Axv − ξ1 −u)Tλu. (5.27)

Moreover, the complementary slackness ensures that the inner product on
the left-hand-side of (5.27) is zero. Also, Axv − ξ1 − u 6 v− u, as xv ∈ Cv.
Therefore, plugging these two observations into the above inequality, and
recalling that λu > 0, we get:

g(xu) 6 g(xv) + (v−u)Tλu. (5.28)

Thus,
p(u) − p(v) 6 −(u− v)Tλu, (5.29)

which is the left inequality. The right inequality is obtained by interchang-
ing u and v.

As a direct consequence, −λT
v is a sub-gradient of p at v.

The last proposition gives us an insight on the behavior of the value
function. Let v 6 u. From perturbation v to u, we know that we cannot im-
prove the objective (as a convex minimization problem, to improve means to
decrease) to below the value p(v) − λT

u(u− v). Therefore, when a dual vari-
able λv,j associated to a constraint j is very small, we know that the interest
of adding a perturbation to the corresponding constraint is very limited. On
the other hand, when the dual variable is very high, we cannot quantify the
added value to a perturbation, but we know at least that there is no such
limitation to the improvement. However, in the latter case, if we tighten the
constraint j, the last proposition tells us that the objective is guaranteed to
deteriorate greatly. All in all, we can qualify the sensitivity of the perturbed
problem as follows:

1. If λv,j is big, tightening the constraint j deteriorates the objective greatly.

2. If λv,j is small, loosening the constraint j does not improve much the
objective.

5.3.2 Polishing routine

The two above properties permit to define a simple iterative algorithm that
adds (positive or negative) perturbations greedily to the capacity vector



5.3. A polishing routine based on sensitivity analysis 97

while keeping track of the optimal dual variable.

Algorithm 6 Polish

Input: A scenario b, the corresponding risk and capacity vector u
1: kj := the unique index k ∈ [1,nj] s.t. bkj = 1 ∀j ∈ J.
2: while risk > ε do ⊲ The scenario (kj)j is unsafe
3: (xu,λu)← the new primal dual pair on Cu.
4: j = argminj λuj
5: kj ← kj − 1

6: risk← risk − p
kj
j

7: uj ← ξ
kj
j

8: end while ⊲ Now, the current scenario (kj)j is safe.
9: while risk < ε do

10: (xu,λu)← the new primal dual pair on Cu.
11: H := {j; risk + p

kj
j 6 ε}

12: if H = ∅ then
13: Terminate
14: else
15: j = argmaxj∈H λuj
16: end if
17: risk← risk + p

kj
j

18: kj ← kj + 1

19: uj ← ξ
kj
j

20: end while
Output: (xu, λu, risk)

Algorithm 6, which we hereafter refer to as Polish, is in fact inspired
of the well-known greedy algorithm that finds a solution to the problem
of maximization of submodular functions. Basically, a submodular func-
tion has non-decreasing marginal values. The idea is therefore, from a sub-
optimal solution, to add the positive perturbation to the problem that maxi-
mizes the (non-negative) marginal value. Conversely, starting from a super-
optimal solution (hence, unsafe), one can add negative perturbations to ade-
quate constraints in order to step back into the safe set. In this case, the ade-
quate constraints are the ones with the smallest marginal values (so that the
tightening of the constraint costs as little objective value as possible). Thus,
knowing that the marginal value is non-decreasing, we have the guarantee
that at each step, the best "greedy" decision is taken, that is, the perturba-
tion is added to the constraint that improves immediately the objective the
most. It is clear that this scheme does not necessarily lead to the optimal
solution. However, it permits to build, or improve, a solution locally in re-
duced time and in an online fashion. The difference with (our) Polish, is that
instead of computing all possible marginal values (which means solving at
most |J| problems to compare their values), we evaluate what could be the
best possible marginal value by means of the dual optimal variable. Given



98 Chapter 5. Safe fair allocation under environment uncertainties

our discussion in the previous Section, we know where it is more interest-
ing to add/remove perturbation: see observations 1. and 2. above. This
does not guarantee that the constraint with the greatest dual optimal value
leads to the best marginal improvement, or that the smallest dual optimal
value leads to the smallest degradation of the objective value when the cor-
responding constraint is tightened, though. Polish can be somehow seen as
a blurry way to enforce the general greedy algorithm. Per extension, one
can imagine, for instance, a hybrid polishing consisting of a combination of
the two, where the marginal values are effectively computed for the q best
candidates with the greatest (or lowest for negative perturbations) values
of λuq at each step of the iterative process. We will nevertheless demon-
strate that the approach of Polish gives satisfactory results. Thus, we are
able to define an heuristic algorithm that computes a safe and fair resource
allocation solution.

5.4 Safe and α-fair resource allocation problem

We are now ready to define our Safe algorithm. First, we compute the re-
laxed solution given by relaxing the binary constraints on the scenario vari-
able b (line 1). Thus, we solve Problem (5.15)– (5.21). This gives a fractional
scenario, b̃, that we next round by projecting on the space {b ∈ {0, 1}|J|; ∀j ∈
J
∑

k b
k
j = 1} (line 2). This results in taking, for each j, the greatest value of

b̃kj ,k = 1 . . . nj and setting it to 1, while all other values are set to 0. Con-
sequently, we get a new binary scenario b, that forms the starting point for
Polish (line 3).

Of course, the scenario b might be unsafe, i.e., the vector b might not
respect the constraints (5.10) and (5.12) anymore. But this situation is con-
trolled by the first loop (Algorithm 6, line 2).

At the end of Polish, it is clear that the returned scenario vector b∗ is safe.
Then, the first safe scenario vector that Polish encountered, was improved
greedily with the help of the sub-gradient −λ∗ of the value function p at the
current fair allocation (corresponding to the current activated scenario). The
three stages of Safe are summarized in Algorithm 7.

Algorithm 7 Safe

1: b̃← the fractional optimal scenario of Problem (5.15)– (5.21).
2: b ← rounded b̃ by projecting onto the binary space with con-

straint (5.11).
3: (x∗,b∗)← the final α-fair allocation onto the corresponding chosen sce-

nario by Polish (Algorithm 6).
Output: (x∗,b∗)

It is crucial to remark that the optimal solution in line 1 corresponds to a
lower bound of the optimal value (we have a minimization problem at hand,
and we have relaxed some constraints). Conversely, the output of Polish is



5.5. Numerical results 99

always an upper bound on the optimal value, as the solution is always ε-safe.
Therefore, we possess two estimations of the optimal value, a lower bound,
and an upper bound. If those two are close enough, we have a guarantee on
the actual performance of Safe, based on the gap between the lower bound
and the upper bound. Thus, in the next section, we conduct simulations to
illustrate the performance of Safe.

5.5 Numerical results

In this section, we show our simulation results in the evaluation of Safe.
First, we describe the setting in terms of the instances that we consider, as
well as the distributions pj.

5.5.1 Settings and benchmarks

The instances that we consider are all built on the Fat-Tree [76] model6 with
a number of k = 4 or 8 pods. This gives small networks of 32 links and
average-sized networks of 256 links, respectively.

To generate requests, we concatenate to the topology a root node that
models the connection of the network to the exterior through the core nodes.
Then, for each of the k3/4 server nodes, two connection requests are gener-
ated from this node to the root node on top of the core nodes through 4
different paths. The links between the root and the core nodes do not form
part of the problem and were just a tool to generate paths from the same
requests with different endpoints from the core nodes.

Thus, for each server node, we modeled two connection requests that
go down from and up to a fictional external network (the Internet, or other
data centers, for instance, in a WAN) through different paths, and we are
therefore in the multi-path setting. As a consequence, each instance comes
with a set of k3/2 requests r ∈ R each with a uniformly drawn weight wr

under the same conditions as in the simulations of Chapter 3.
Concerning the probability densities pj, we did not find well-documented

natural models. Therefore, we created two typical settings that we describe
below, under which we evaluate the algorithm:

1. First, we assumed each link capacity follows a Poisson distribution
with a specific mean value per link drawn uniformly at random within
the interval (30, 100). The choice of the Poisson distribution was arbi-
trary and was made in order to have a mean value with high proba-
bility as well as a typical decrease on both sides of the mean value.

2. Second, we built synthetic capacity distributions by throwing, for a
chosen capacity c0, a background traffic generated following a birth
and death process. Specifically, for one process of N units of time, we

6This topology model was originally proposed in [76] and was advocated for data center
topologies in [77].



100 Chapter 5. Safe fair allocation under environment uncertainties

Figure 5.1 | Some examples of the generated distributions pk
j , for a number

of bins K = 100.

generated a background traffic t that increased of b+ at rate β ∈ [0, 1],
and decreased of b− at rate δ ∈ [0, 1]. In order to always have a well-
defined robust solution, we always bounded t 6 νc0, with ν ∈ [0, 1].
Then, we built the histogram based on the realizations of the number
c0 − t and converted the result into a probability density. This process
was very simple and yet gived various density structures (with one or
many spikes, with a most likely extreme value and a vanishing tail to
the other extreme, etc). Some examples are illustrated in Figure 5.1. In
practice, we used b+ = 1.1,b− = 1.15,β = .33, δ = .5, and ν = 0.9.

In both cases, the density functions of each link has a number K of bins
that we also vary. This parameter illustrates the effects of the precision of
the monitoring of the available bandwidth on the performance of Safe: the
greater the number of bins, the more precise the distribution, but the more
the created scenarios. K is in fact an instance of the numbers nj (introduced
in the definition of the discrete model, see Section 5.1.1), that for simplicity,
we keep all equal within the same instance.

As the exact problem is intractable and impossible for us to solve exactly
within reasonable computation time (tens of minutes), we compare the so-
lutions of Safe with the ones of the relaxed problem (5.15)– (5.21), that we
from now on name Relaxed, together with the ones of the Bonferroni inner
approximation, that we call Bonferroni. Also, we compare with the worst-
case solution of (R), Robust.

5.5.2 Link capacity with Poisson distributions

Optimality gap for various instances

For each value of α = 1, 2 or 3, we first generated a total of 250 instances,
all under the same setting. Each run of the algorithm Robust, Safe, Relaxed
or Bonferroni on an instance yielded one single point. Although only small



5.5. Numerical results 101

Figure 5.2 | Achieved gaps (with reference the relaxed optimum) for the
simulations under setting 1.

values of ε are interesting (for instance, ε 6
1
2 ) we generated instances with

ε ∈ (0, 1). Thus, one instance corresponds to a particular collection of:

1. the collection of distributions pj, that here have an individual mean
value,

2. the tolerated risk ε,

3. the number of bins (or scenarios per link) K.

Other than those three parameters, all the instances are identical.
We remind that the relaxed problem gives a lower bound on the optimal

value, and that Robust, Safe and Bonferroni each give an upper bound, as they
give by definition safe allocations. We here call estimated optimality gap the
actual gap between a solution and a reference value, here of course taken as
the relaxed value. We drive the reader’s attention onto the important fact:

• A good estimated optimality gap guarantees a good actual optimal-
ity gap (between a solution and the actual optimum, that we cannot
compute here) of a solution.

• A bad estimated optimality gap does not mean that the solution has a bad
actual optimality gap – with reference the true optimum. Indeed, it might
just be that the relaxation is a bad lower bound.

This remark being done, we hereafter say "optimality gap", instead of "esti-
mated optimality gap", without fear of misleading by confusion.

In Figure 5.2, we represented the optimality gap achieved by Robust,
Safe and Bonferroni for all the generated instances, for the three values of α.

From the results, it is clear that Safe outperforms considerably the Bon-
ferroni. For α = 1, although the performed gaps are all good (less than 1%),
the value of the gap for Robust shows that the proportionally fair allocation
value does not seem too sensitive to the added perturbations in the capacity



102 Chapter 5. Safe fair allocation under environment uncertainties

Figure 5.3 | Bounding the optimal value under setting 1. The bottom of
each error bar corresponds to the value obtained by Relaxed, whereas the
top corresponds to the value obtained by Safe.

vector. This might also be specific to the distribution models, and the topol-
ogy. Notwithstanding, Safe provides a gap of nearly two orders of magni-
tude smaller Bonferroni. The benefit of Safe is more obvious for the cases
α = 2 and 3. Likewise, the obtained gap is two orders of magnitude smaller
than the one for Bonferroni, that performs with a gap of around 50%. In the
two latter cases, the gaps provided by Robust show that there is a substantial
possible improvement of α-fairness for α = 2, 3, motivating the central idea
of this chapter, of relaxing strict feasibility to ε-safety, which Safe operates
with very satisfactory results.

In order to provide a practical appreciation of how the two approaches,
Relaxed, and Safe, bound the true optimal value, we plotted as error bars the
achieved values, in Figure 5.3.

Overall, according to Figures 5.2 and 5.3, it is clear that the approach
of Safe permits one to get relatively satisfactory estimations of the safe fair
allocation under uncertain available bandwidth knowledge in setting 1.

Number of convex problems to solve

Lastly, the reader has already seen that the application of Safe algorithm im-
plies to solve a certain number of the α-fair resource allocation problem.
Following the work that has been done in the precedent chapters, we have
indeed demonstrated that it is now easy to solve such problems very ef-
ficiently. Nevertheless, we show, for the same experiment, the number of
iterations achieved by Safe, if need be, in order to make the rounded sce-
nario from 6–line 2 safe (which we call number of outer iterations), as well
as the number of iterations achieved in order to make the feasible scenario
from 6–line 9 (which we call number of inner iterations). Hence, the notion of
iteration here corresponds to the computation of the dual variables, which
in turns can be done by solving optimally an instance of the fair resource
allocation problem.

Unfortunately, for the two last introduced figures 5.3 and 5.4, it was not



5.5. Numerical results 103

Figure 5.4 | Achieved number of inner and outer iterations by Safe during
polishing under setting 1.

Figure 5.5 | The fairness value for Safe (red), Relaxed (blue) and Bonferroni
(gray) against the risk ε under setting 1.

obvious to derive a possible structure of the behaviors with respect to a
parameter. Arbitrarily, we represented all the figures as clouds against their
respective values of the tolerated risk ε.

In particular, this is why we illustrated, on Figure 5.5, on a same fixed
instance, the evolving values of Safe and Bonferroni, as well as the one of
Relaxed, against the risk ε. This figure comforts the intuition that while the
risk ε grows, one is able to improve the fairness, and confirms the expected
performance of Safe against the ones of Bonferroni. Ten curves are illus-
trated each corresponding to a fixed instance, and while the specifics are
plotted with translucent markers, the average curve is shown in solid lines
and empty markers.

5.5.3 General distributions

We now present the same results under the setting 2.



104 Chapter 5. Safe fair allocation under environment uncertainties

Figure 5.6 | Achieved gaps (with reference the relaxed optimum) for the
simulations under setting 2.

Figure 5.7 | Bounding the optimal value under setting 2. The bottom of
each error bar corresponds to the value obtained by Relaxed, whereas the
top corresponds to the value obtained by Safe.

Optimality gap for various instances

Figure 5.6 shows the achieved gaps for different values of ε under setting
2. Likewise, we also plotted the values of the lower and upper bounds ob-
tained for each instance, in Figure 5.7

We observe the same improvement as in Section 5.5.2 from Bonferroni to
Safe (approximately two orders of magnitude better). Now, the achieved
gap for Bonferroni grows quickly with ε, and for α = 2, 3, goes substantially
above 50% as from a tolerated budget of 0.2, and 0.1, respectively.

Thus, we can see that when it is profitable to trade strict feasibility for
objective improvement, Safe is able to perform considerably better than the
Bonferroni. For α = 2, the gap between the allocation of Safe and the lower
bound given by Relaxed does not exceed 10%. For α = 3, it is within the
same order of magnitude, although some realizations might go up to 60%.

In Figure 5.7, the lower and upper bounds on the true optimum are
shown in the same fashion as for setting 1 to illustrate in absolute values



5.6. Concluding remarks 105

Figure 5.8 | Achieved number of inner and outer iterations by Safe during
polishing under setting 2.

the results of Figure 5.6.

Number of convex problems to solve

Just as for setting 1, we represented in Figure 5.8 the number of inner and
outer iterations achieved with the Polish sub-routine by Safe. We can ob-
serve that the large majority of instances led to a safe rounded scenario vec-
tor as output of the rounding sub-routine. This fact is encouraging as an safe
rounded scenario leads to an instantly available safe allocation, whereas it
is more problematic to polish an unsafe scenario, especially for some cases,
for α = 3, where hundreds of outer iterations are carried. This observation
can also be made for setting 1.

All in all, this analysis leads us to the conclusion, although this situation
occurs in practice quite rarely, that it might be of interest to integrate some
additional constraints in the rounding sub-routine so that it outputs at all
times (almost) safe scenarios.

Lastly, we give an equivalent illustration to Figure 5.5, of an evolution
of the values for Safe, Bonferroni, and Relaxed, on ten fixed instances for a
varying risk ε. Likewise, the specifics are shown with translucent markers
whereas we build a solid curve with empty markers to show the average
evolution. The same conclusions as in setting 1 apply.

5.6 Concluding remarks

The α-fair resource allocation problem was extended to take account of the
varying remaining available bandwidths over the links of the network. To
tackle this setting, we introduced an extension of the model in the form of
individually chance constrained programming with variable individual tol-
erance risks and formalized the problem with introduced binary variables
that activate the different possible scenarios. Due to the binary variables,
the problem is in fact highly intractable, and a heuristic, Safe, was designed.



106 Chapter 5. Safe fair allocation under environment uncertainties

Figure 5.9 | The fairness value for Safe (red), Relaxed (blue) and Bonferroni
(gray) against the risk ε under setting 2.

Safe was based on the relaxation of the binary program and a polishing sub-
routine that finds a scenario improving greedily, first safety and then opti-
mality, with the help of the sensitivity of the (classic) problem with respect
to the capacity constraints. It is inspired from the greedy heuristic for the
maximization of submodular functions, with the additional feature that the
marginal values are only estimated through dual variables and not through
explicit evaluation, which permit to perform quicker (possibly poorer) iter-
ations.

We compared Safe with Bonferroni, a classic approach with fixed indi-
vidual tolerated violation risks split equally among the constraints, over
Fat-Tree type networks, and showed by simulation that the performance
was two orders of magnitude better, in terms of (estimated) optimality gap.
Moreover, with the help of the relaxed solution, we showed that together,
Relaxed and Safe, permit to bound satisfactorily the optimal value of the
mixed binary problem.



Conclusions and perspectives

Summary

With the rise of SDN technologies that can perform network management
while globally optimizing resources, the research on network resource allo-
cation has regained momentum. In this dissertation, we mainly studied an
important instance of the network utility maximization problem, called the
α-fair resource allocation problem. Motivated by the practical challenges
of real-time resource allocation in distributed SDNs, we provided answers
to the problems of transient infeasibility that can cause service degrada-
tion in terms of congestion, packet loss, and common undesired conse-
quences of capacity violation. We also tailored our algorithms to a SDN
distributed architecture, by ensuring locality of the system parameters and
variables, while guaranteeing convergence in a distributed implementation
where communication costs between sub-controllers come at a non-trivial
cost in terms of delay.

In Chapter 2, the fair resource allocation problem was introduced for-
mally, and we studied the α-fair allocation structure in order to derive a
minimal value on the optimally fair bandwidth allocation, which was com-
pared to the only other bound we could find in the literature. Our bound
also proves useful to optimally tune our main algorithm for resource alloca-
tion in Chapter 4.

In Chapter 3, we reviewed the literature on algorithms that were de-
signed to compute the α-fair resource allocation problem, and discovered
that none of them could address simultaneously our three main require-
ments (defined in Section 1.3). Based on the desirable versatility and dis-
tributive properties of ADMM, we designed FD-ADMM to achieve our goals.
Indeed, FD-ADMM distributes across any domain distribution of the SDN
network and operates parallel projections on a link basis, thus requires no
globally shared information, except the for one unique consensus point.
Also, it reacts to changes in the traffic requirements, modeled by variations
of the problem’s coefficients on-the-fly, while always preserving feasibility
and performing an acceptable optimality gap.

In Chapter 4, we considered practical refinements of FD-ADMM, start-
ing with its tuning. Indeed, we discovered that the performance of FD-
ADMM was highly dependent of the penalty parameter λ introduced in the
augmented Lagrangian of the problem. We therefore summoned the results

107



108 Chapter 5. Safe fair allocation under environment uncertainties

of Chapter 2 that, other than giving insights on the structural properties of
fairness, permitted us to derive a theoretically "optimal" penalty parame-
ter to use in the centralized version C-ADMM, that happened to provide
near-optimal convergence rate of the residuals to 0 for FD-ADMM. Fur-
ther, in section 4.3, we presented an extended version of the model to the
multi-path setting where requests can have their traffic split among several
connection paths, as well as the related relevant problem of limiting flow re-
configuration by incorporating switching costs. In both cases, we presented
in detail how to modify the algorithm. Also, we gave the general method to
incorporate any kind of regularization term translating a special structure
preference on the fair solution.

In Chapter 5, FD-ADMM was considered as a by-product able to solve
instance of the α-fair resource allocation problem efficiently. We introduced
the relevant situation where the network contains another traffic class over
which it has no control, and the resource allocation has to be chosen over
an unknown but estimable (via a probability density) remaining available
bandwidth on each link. To model this situation, we adopted the chance
constraints programming view and proposed a heuristic that trades off fea-
sibility with efficiency while respecting an overall fixed budget of violation
risk. The heuristic takes the solution of an outer approximation of the exact
problem and improves it greedily by evaluating the sensitivity of the α-fair
problem, and thus mimics the well-known greedy heuristic that maximizes
a function with diminishing marginal values.

Perspectives

The starting model responds to the problem of allocating bandwidth over
pre-established paths. A first natural extension could therefore take into ac-
count the traffic engineering problem, that is, to compute paths and their re-
spective bandwidth allocation altogether, along with additional constraints
such as delay, path length, or maximal number of paths for each request in
a multi-path setting.

We would like to provide a definitive answer to the question posed in
Chapter 2 about the bound improvement, although by experimentation,
we found no counterexample at all. Also, the performance of the penalty
parameter derived following the bound improvement of Chapter 2 in FD-
ADMM is still a phenomenon that we do not understand fully. A first natu-
ral continuation of the works in this dissertation could be this topic.

Concerning Chapter 5, the model solved by Safe could be restructured
to avoid the summoning of an inner iterative loop (such as FD-ADMM) at
each iteration. We argued that an algorithm such as Safe should apply more
at the end of some monitoring phase, thus not in real-time, as the build-
ing of an accurate estimation of the available bandwidth takes some time.
Therefore, it is acceptable to use algorithms with less stressful time require-
ments. Nonetheless, algorithms with more efficient (particularly, without
inner iterative processes) update rules are always more desirable. Thus, we



5.6. Concluding remarks 109

are interested in re-formulating Problem (5.7)– (5.13) in the general form of
ADMM, in order to solve it with the framework. Since the problem now
includes binary variables, it will not have the same convergence guaran-
tees as C-ADMM of FD-ADMM. Also, such an algorithm would require
Euclidean projections on discrete sets, which will require the development
of specific heuristics with strict performance guarantees. The application of
ADMM to non-convex problems is documented in the very recent literature
(NC(Non Convex)-ADMM, [78]) and specifically requires careful study of
the projection and proximal subroutines in order to be able to (i) guarantee
the stabilization of the algorithms and (ii) provide estimates on the fitness
of the solutions. In general, the guarantees of NC-ADMM is still, to the best
of our knowledge, an area of active research.

Also, Chapter 5 tackles the problem of controlling the probability of vio-
lation of the constraints; however, it does not control explicitly the amount
of violated resources. We are interested in providing answers to this ques-
tion by including additional control features to Safe such as Quality of Ex-
perience for video applications in SDN [79, 80].



110 Chapter 5. Safe fair allocation under environment uncertainties



List of publications

1. Allybokus, Zaid, Konstantin E Avrachenkov, Jeremie Leguay and Lorenzo
Maggi. “Real-Time Fair Resource Allocation in Distributed Software
Defined Networks.” 2017 29th International Teletraffic Congress (ITC
29) 1 (2017): 19-27. (Best Paper Award)

2. Allybokus, Zaid, Konstantin E Avrachenkov, Jeremie Leguay and Lorenzo
Maggi. “Lower Bounds for the Fair Resource Allocation Problem.”
SIGMETRICS Performance Evaluation Review 45 (2017): 167-173.

3. Allybokus, Zaid, Konstantin E Avrachenkov, Jeremie Leguay and Lorenzo
Maggi. “Multi-Path Alpha-Fair Resource Allocation at Scale in Dis-
tributed Software-Defined Networks.” IEEE Journal on Selected Areas
in Communications 36 (2018): 2655-2666.

111



112 Chapter 5. Safe fair allocation under environment uncertainties



Bibliography

[1] Diego Kreutz et al. “Software-defined networking: A comprehensive
survey”. In: Proc. of the IEEE 103.1 (2015), pp. 14–76.

[2] Mohammad Mousa, Ayman M Bahaa-Eldin, and Mohamed Sobh. “Soft-
ware Defined Networking concepts and challenges”. In: 2016 11th
International Conference on Computer Engineering & Systems (ICCES).
IEEE. 2016, pp. 79–90.

[3] Hyojoon Kim and Nick Feamster. “Improving network management
with software defined networking”. In: IEEE Communications Maga-
zine 51.2 (2013), pp. 114–119.

[4] Sushant Jain et al. “B4: Experience with a globally-deployed software
defined WAN”. In: ACM SIGCOMM Computer Communication Review.
Vol. 43. 4. ACM. 2013, pp. 3–14.

[5] Kok-Kiong Yap et al. “Taking the edge off with espresso: Scale, reli-
ability and programmability for global internet peering”. In: Proceed-
ings of the Conference of the ACM Special Interest Group on Data Commu-
nication. ACM. 2017, pp. 432–445.

[6] Steven J Vaughan-Nichols. “OpenFlow: The next generation of the
network?” In: Computer 44.8 (2011), pp. 13–15.

[7] Sandra Scott-Hayward. “Design and deployment of secure, robust,
and resilient SDN Controllers”. In: Proceedings of the 2015 1st IEEE con-
ference on network Softwarization (NetSoft). IEEE. 2015, pp. 1–5.

[8] William Stallings. “Software-defined networks and openflow”. In: The
internet protocol Journal 16.1 (2013), pp. 2–14.

[9] Soheil Hassas Yeganeh and Yashar Ganjali. “Kandoo: a framework for
efficient and scalable offloading of control applications”. In: Proc. of
ACM HotSDN. 2012.

[10] Fouad Benamrane, Mouad Ben Mamoun, and Benaini Redouane. “An
East-West interface for distributed SDN control plane: Implementa-
tion and evaluation”. In: Computers & Electrical Engineering 57 (Sept.
2016).

[11] Jun Huy Lam et al. “TLS Channel Implementation for ONOS’s East/West-
Bound Communication”. In: Electronics, Communications and Networks
V. Ed. by Amir Hussain. Singapore: Springer Singapore, 2016, pp. 397–
403. ISBN: 978-981-10-0740-8.

113



114 Bibliography

[12] Pingping Lin, Jun Bi, and Yangyang Wang. “East-West bridge for SDN
network peering”. In: vol. 401. Jan. 2013, pp. 170–181.

[13] Tsung-Hui Chang et al. “Asynchronous distributed ADMM for large-
scale optimization—Part I: Algorithm and convergence analysis”. In:
IEEE Transactions on Signal Processing (2016).

[14] Kévin Phemius, Mathieu Bouet, and Jérémie Leguay. “Disco: Distributed
multi-domain SDN controllers”. In: Proc. IEEE NOMS. 2014, pp. 1–4.

[15] Mathis Obadia et al. “Failover mechanisms for distributed SDN con-
trollers”. In: NOF. IEEE. 2014.

[16] Othmane Blial, Mouad Ben Mamoun, and Redouane Benaini. “An
overview on SDN architectures with multiple controllers”. In: Journal
of Computer Networks and Communications 2016 (2016).

[17] Akka. URL: https://akka.io/.

[18] Jisoo Shin et al. “IRIS-HiSA: Highly Scalable and Available Carrier-
Grade SDN Controller Cluster”. In: Mobile Networks and Applications
(2017).

[19] OpenDayLight. URL: https://www.opendaylight.org/.

[20] The ONOS Project. URL: https://onosproject.org.

[21] Udayasree Palle et al. PCEP Extensions for MPLS-TE LSP Automatic
Bandwidth Adjustment with Stateful PCE. Internet-Draft draft-dhody-
pce-stateful-pce-auto-bandwidth-09. Work in Progress. Internet Engi-
neering Task Force, Nov. 2016. 25 pp.

[22] Bill McCormick et al. “Real time alpha-fairness based traffic engineer-
ing”. In: Proc. of ACM HotSDN. 2014, pp. 199–200.

[23] Stephen Boyd et al. “Distributed optimization and statistical learning
via the alternating direction method of multipliers”. In: Foundations
and Trends in Machine Learning 3.1 (2011), pp. 1–122.

[24] Anees Al-Najjar et al. “Link capacity estimation in SDN-based end-
hosts”. In: 2016 10th International Conference on Signal Processing and
Communication Systems (ICSPCS). IEEE. 2016, pp. 1–8.

[25] Eitan Altman, Konstantin Avrachenkov, and Andrey Garnaev. “Gen-
eralized α-fair resource allocation in wireless networks”. In: 2008 47th
IEEE Conference on Decision and Control. IEEE. 2008, pp. 2414–2419.

[26] Mikael Johansson and Lin Xiao. “Scheduling, routing and power al-
location for fairness in wireless networks”. In: 2004 IEEE 59th Vehicu-
lar Technology Conference. VTC 2004-Spring (IEEE Cat. No. 04CH37514).
Vol. 3. IEEE. 2004, pp. 1355–1360.

[27] Aizaz U Chaudhry, Nazia Ahmad, and Roshdy HM Hafez. “Improv-
ing throughput and fairness by improved channel assignment using
topology control based on power control for multi-radio multi-channel
wireless mesh networks”. In: EURASIP Journal on Wireless Communi-
cations and Networking 2012.1 (2012), p. 155.

https://akka.io/
https://www.opendaylight.org/
https://onosproject.org


Bibliography 115

[28] Abhinay Muthoo. Bargaining theory with applications. Cambridge Uni-
versity Press, 1999.

[29] Ao Tang, Jiantao Wang, and Steven H Low. “Is fair allocation always
inefficient”. In: IEEE INFOCOM 2004. Vol. 1. IEEE. 2004.

[30] Ken Binmore, Ariel Rubinstein, and Asher Wolinsky. “The Nash bar-
gaining solution in economic modelling”. In: The RAND Journal of Eco-
nomics (1986), pp. 176–188.

[31] John F Nash. “The Bargaining Problem”. In: Econometrica 18.2 (1950),
pp. 155–162.

[32] Geoffroy de Clippel. “An axiomatization of the Nash bargaining solu-
tion”. In: Social Choice and Welfare 29.2 (2007), pp. 201–210. ISSN: 1432-
217X.

[33] T. Lan et al. “An Axiomatic Theory of Fairness in Network Resource
Allocation”. In: 2010 Proceedings IEEE INFOCOM. 2010, pp. 1–9.

[34] Jeonghoon Mo and Jean Walrand. “Fair end-to-end window-based
congestion control”. In: IEEE/ACM Transactions on Networking (ToN)
8.5 (2000), pp. 556–567.

[35] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data net-
works. Vol. 2. Prentice-Hall International Series, 1992.

[36] Frank P Kelly, Aman K Maulloo, and David KH Tan. “Rate control
for communication networks: shadow prices, proportional fairness
and stability”. In: Journal of the Operational Research society 49.3 (1998),
pp. 237–252.

[37] Fernando Paganini et al. “Network stability under alpha fair band-
width allocation with general file size distribution”. In: IEEE Transac-
tions on Automatic Control 57.3 (2012), pp. 579–591.

[38] Jelena Marasevic, Clifford Stein, and Gil Zussman. “A Fast Distributed
Stateless Algorithm for alpha-Fair Packing Problems”. In: Proc. of ICALP),
vol.55, pp.54–1. 2016.

[39] Réka Albert and Albert-László Barabási. “Statistical mechanics of com-
plex networks”. In: Rev. Mod. Phys. 74 (1 2002), pp. 47–97.

[40] Eitan Altman, Konstantin Avrachenkov, and Sreenath Ramanath. “Mul-
tiscale fairness and its application to resource allocation in wireless
networks”. In: Computer Communications 35.7 (2012), pp. 820–828.

[41] Thomas Voice. “Stability of multi-path dual congestion control algo-
rithms”. In: Proc. of Valuetools. ACM. 2006.

[42] Anna Charny, Raj Jain, and David Clark. “Congestion control with
explicit rate indication”. In: Proc. of IEEE ICC. 1995.

[43] Fabian Skivée and Guy Leduc. “A distributed algorithm for weighted
max-min fairness in MPLS networks”. In: International Conference on
Telecommunications. Springer. 2004, pp. 644–653.



116 Bibliography

[44] Daniel Pérez Palomar and Mung Chiang. “A tutorial on decomposi-
tion methods for network utility maximization”. In: IEEE Journal on
Selected Areas in Communications 24.8 (2006), pp. 1439–1451.

[45] Tae-Jin Lee and G. De Veciana. “A decentralized framework to achieve
max-min fair bandwidth allocation for ATM networks”. In: IEEE GLOBE-
COM 1998. 1998, 1515–1520 vol.3.

[46] Rajesh Sundaresan et al. “An Iterative Interior Point Network Utility
Maximization Algorithm”. In: arXiv preprint arXiv:1609.03194 (2016).

[47] Bingsheng He and Xiaoming Yuan. “On the O(1/N) Convergence Rate
of the Douglas-Rachford Alternating Direction Method”. In: SIAM J.
Numer. Anal. 50.2 (Apr. 2012), pp. 700–709. ISSN: 0036-1429.

[48] Wei Deng and Wotao Yin. “On the Global and Linear Convergence
of the Generalized Alternating Direction Method of Multipliers”. In:
Journal of Scientific Computing 66.3 (2016), pp. 889–916.

[49] João FC Mota et al. “Distributed ADMM for model predictive control
and congestion control”. In: Proc. of IEEE CDC. 2012.

[50] C. Liang and F. R. Yu. “Distributed resource allocation in virtualized
wireless cellular networks based on ADMM”. In: 2015 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). 2015,
pp. 360–365.

[51] Alfredo N Iusem and Alvaro R De Pierro. “A simultaneous iterative
method for computing projections on polyhedra”. In: SIAM Journal on
Control and Optimization 25.1 (1987), pp. 231–243.

[52] Yunmei Chen and Xiaojing Ye. “Projection onto a simplex”. In: arXiv
preprint arXiv:1101.6081 (2011).

[53] Bo Wahlberg et al. “An ADMM Algorithm for a Class of Total Varia-
tion Regularized Estimation Problems”. In: IFAC Proceedings Volumes
45.16 (2012). 16th IFAC Symposium on System Identification, pp. 83
–88. ISSN: 1474-6670.

[54] Caoxie Zhang, Honglak Lee, and Kang Shin. “Efficient distributed
linear classification algorithms via the alternating direction method
of multipliers”. In: Artificial Intelligence and Statistics. 2012, pp. 1398–
1406.

[55] João FC Mota et al. “Basis pursuit in sensor networks”. In: 2011 IEEE
international conference on acoustics, speech and signal processing (ICASSP).
IEEE. 2011, pp. 2916–2919.

[56] Donald Goldfarb, Shiqian Ma, and Katya Scheinberg. “Fast alternat-
ing linearization methods for minimizing the sum of two convex func-
tions”. In: Mathematical Programming 141.1-2 (2013), pp. 349–382.

[57] Damek Davis and Wotao Yin. “Faster convergence rates of relaxed
Peaceman-Rachford and ADMM under regularity assumptions”. In:
Mathematics of Operations Research 42.3 (2017), pp. 783–805.



Bibliography 117

[58] BS He, Hai Yang, and SL Wang. “Alternating direction method with
self-adaptive penalty parameters for monotone variational inequal-
ities”. In: Journal of Optimization Theory and applications 106.2 (2000),
pp. 337–356.

[59] Stefano Paris et al. “Controlling flow reconfigurations in SDN”. In:
Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on. IEEE. 2016, pp. 1–9.

[60] Francis Bach et al. “Optimization with sparsity-inducing penalties”.
In: Foundations and Trends R© in Machine Learning (2012).

[61] Tsung-Feng Yu, Kuochen Wang, and Yi-Huai Hsu. “Adaptive routing
for video streaming with QoS support over SDN networks”. In: 2015
International Conference on Information Networking (ICOIN). IEEE. 2015,
pp. 318–323.

[62] Sangwook Bae, Dahyun Jang, and KyoungSoo Park. “Why is http
adaptive streaming so hard?” In: Proceedings of the 6th Asia-Pacific Work-
shop on Systems. ACM. 2015, p. 12.

[63] Jiri Navratil and R Les Cottrell. “ABwE: A practical approach to avail-
able bandwidth estimation”. In: Proc. passive and active measurement
workshop. 2003.

[64] Emanuele Goldoni, Giuseppe Rossi, and Alberto Torelli. “Assolo, a
new method for available bandwidth estimation”. In: 2009 Fourth In-
ternational Conference on Internet Monitoring and Protection. IEEE. 2009,
pp. 130–136.

[65] Manish Jain and Constantinos Dovrolis. “Pathload: A measurement
tool for end-to-end available bandwidth”. In: In Proceedings of Passive
and Active Measurements (PAM) Workshop. Citeseer. 2002.

[66] Vinay Joseph Ribeiro et al. “pathchirp: Efficient available bandwidth
estimation for network paths”. In: Passive and active measurement work-
shop. 2003.

[67] Salcedo Morillo et al. “Overhead in available bandwidth estimation
tools: Evaluation and analysis”. In: (2017).

[68] Giuseppe Aceto et al. “Sometime: Software defined network-based
available bandwidth measurement in monroe”. In: 2017 Network Traf-
fic Measurement and Analysis Conference (TMA). IEEE. 2017, pp. 1–6.

[69] Péter Megyesi et al. “Available bandwidth measurement in software
defined networks”. In: Proceedings of the 31st Annual ACM Symposium
on Applied Computing. ACM. 2016, pp. 651–657.

[70] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher.
“An analysis of approximations for maximizing submodular set func-
tions—I”. In: Mathematical programming 14.1 (1978), pp. 265–294.

[71] Maxim Sviridenko. “A note on maximizing a submodular set function
subject to a knapsack constraint”. In: Operations Research Letters 32.1
(2004), pp. 41–43.



118 Bibliography

[72] Michel Minoux. “Accelerated greedy algorithms for maximizing sub-
modular set functions”. In: Optimization techniques. Springer, 1978, pp. 234–
243.

[73] Arkadi Nemirovski and Alexander Shapiro. “Convex approximations
of chance constrained programs”. In: SIAM Journal on Optimization
17.4 (2006), pp. 969–996.

[74] James Luedtke, Shabbir Ahmed, and George L Nemhauser. “An in-
teger programming approach for linear programs with probabilistic
constraints”. In: Mathematical programming 122.2 (2010), pp. 247–272.

[75] Feng Qiu et al. “Covering linear programming with violations”. In:
INFORMS Journal on Computing 26.3 (2014), pp. 531–546.

[76] Charles E Leiserson. “Fat-trees: universal networks for hardware-efficient
supercomputing”. In: IEEE transactions on Computers 100.10 (1985),
pp. 892–901.

[77] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A
scalable, commodity data center network architecture”. In: ACM SIG-
COMM Computer Communication Review. Vol. 38. 4. ACM. 2008, pp. 63–
74.

[78] Steven Diamond, Reza Takapoui, and S Boyd. “A general system for
heuristic minimization of convex functions over non-convex sets”. In:
Optimization Methods and Software 33.1 (2018), pp. 165–193.

[79] René Serral-Gracià et al. “An overview of quality of experience mea-
surement challenges for video applications in IP networks”. In: Inter-
national Conference on Wired/Wireless Internet Communications. Springer.
2010, pp. 252–263.

[80] Michael Jarschel et al. “SDN-based application-aware networking on
the example of youtube video streaming”. In: 2013 Second European
Workshop on Software Defined Networks. IEEE. 2013, pp. 87–92.


	Abstract
	Résumé
	Acknowledgments
	Introduction
	Modern distributed SDN controllers
	Challenges
	Our resource allocation challenge
	Thesis outline
	Symbols and notations

	Fair resource allocation: Main concepts and structure
	Fairness concepts in resource sharing systems
	The -fair resource allocation: formalization
	A lower bound on -fairness
	A restriction lemma
	Lower bound

	Comparison of d and m
	Reflexions on a possible improvement
	Suspected restricted formula

	Concluding remarks

	Fair resource allocation: Distributed algorithms
	Related works
	Presentation of ADMM
	General principles and challenges
	ADMM algorithm

	Model Formulation
	Toward a distribution that respects the domain structure
	Consensus form
	Fast Distributed ADMM
	Update rules: some precisions
	What level of distribution should we chose?

	Numerical results
	The cost of distribution
	Comparison against LAGR

	Concluding remarks

	Extensions and refinements
	Convergence of ADMM
	Background
	Penalty tuning in FD-ADMM

	Illustration
	Objective
	Simulation setting
	Results

	Practical extensions of the model
	Multi-path extension
	Imposing sparsity patterns

	Concluding remarks

	Safe fair allocation under environment uncertainties
	Introduction on chance constraints programming
	Model design

	A lower bound
	Mixed integer convex program
	The convex relaxation

	A polishing routine based on sensitivity analysis
	Regularity and sensitivity
	Polishing routine

	Safe and -fair resource allocation problem
	Numerical results
	Settings and benchmarks
	Link capacity with Poisson distributions
	General distributions

	Concluding remarks

	Conclusions and perspectives
	Summary
	Perspectives

	List of publications
	Bibliography

