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Introduction

This Ph.D. thesis is the result of my research work in the intelligent transportation
field to solve the problem of developing a multi-task pedestrian protection system
(PPS) including not only pedestrian classification, detection and tracking, but also
pedestrian action-unit classification and prediction, and finally pedestrian risk es-
timation. Moreover, our PPS system uses original cross-modality deep learning ap-
proaches.

The pedestrian protection issue is one of the major research directions in the
domain of object recognition, computer vision, robotics, and intelligent transporta-
tion systems. According to European Commission statistics published in 2016, the
number of pedestrians injured in road accidents in 2014 was 1,419,800, and there
were 25,900 fatalities.

The number of vehicles on the road has greatly increased over the last few deca-
des. As a consequence, the number of car accidents has also risen, and along with
that has grown the need to develop better traffic safety mechanisms.

Traffic safety has become a priority for both the automobile industry and the sci-
entific community, which have invested in the development of different protection
systems. Initially, improvements involved simple mechanisms for driver protection
such as seat belts, but then more complex systems like anti-lock braking systems
(ABS), electronic stabilization programs (ESP) and airbags were developed. Over the
last decade, the focus has moved to intelligent on-board systems called Advanced
Driver Assistance Systems (ADAS). In the framework of smart vehicles, these sys-
tems have to perceive the road environment, to detect road obstacles, to classify
their type (cars, cycles, pedestrians) in order to be able to assist the driver and even
to stop the vehicle to prevent imminent accidents.

Advanced Driver Assistance Systems (ADAS) could be defined as an intelligent
safety system that could enhance the driving experience and ensure better road ac-
tor safety. The ADAS system could be set with several options, from simple adap-
tive cruise control up to a fully autonomous vehicle control. A full ADAS system
should include: adaptive light control, adaptive cruise control, hill descent con-
troller, tire pressure monitoring, blind spot detection, automatic parking, intelligent
speed adaptation, advanced braking systems, driver drowsiness detection, lane de-
parture warning systems, night vision improvement, road obstacle detection, and
pedestrian protection functionality including the estimate and potential prevent
a crash or mitigate the severity of a traffic collision. Currently, the academic re-
search and industrial developments propose ADAS systems that include only a part
of those functionalities and very few of them address the problem of pedestrian risk
estimation. The goal of this thesis is to propose a real time, efficient and robust so-
lution for a multi-task pedestrian protection system able to discriminate between
pedestrians and other road obstacles, to identify the pedestrian action units and to
estimate pedestrian risk situations.
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In the PPS field there are several innovative devices, like the pedestrian detec-
tion provided by Bosh which consists of a camera and a radar sensor which warn
the driver or automatically launch emergency braking if the system identifies a dan-
gerous situation for pedestrians. The DENSO company has developed a pedestrian
detection sensor for the car hood. This sensor aims to decrease pedestrian head in-
juries in a car collision by creating a larger buffer space between the car hood and
hard car components under the hood. The Mobileye detection device consists of a
mono-camera automotive pedestrian detection system which can detect pedestri-
ans and cyclists up to a 30-meter range. This system emits audible and visual warn-
ings to alert the driver when there could be a crucial situation. The Delphi detection
system has multiple safety functions. It consists of a high camera which allows the
system to detect and classify various targets including lane pedestrian, tracking and
also inform the driver with a collision warning in a critical situation. A pedestrian
and cyclist detection system employing thermal imaging cameras has been devel-
oped by Flip company. The thermal imaging camera can make a sharp difference
between pedestrians, cyclists, and cars due to its functions to create a clear image
based on the temperature stamps of different road users, making it possible to dis-
criminate between them.

Automotive companies like BMW, Mercedes, Nissan, Audi, Toyota, and Peugeot
have ADAS technology in the majority of their high-end automobiles. Since 2013,
BMW vehicles have been provided with a driver assistance package for pedestrian
detection warning. The Mercedes system has connected stereo vision cameras with
long, medium, and short-range radars to monitor the area in front of the vehicle.
In 2016 the Volkswagen Tiguan was equipped with an advanced radar sensor capa-
ble of detecting pedestrians and objects, at a range of up to 170 meters. The Nissan
company has developed a system which recognizes the vehicle’s environment, in-
cluding pedestrians, other vehicles, and the road. Lexus RX 2017 has a self-driving
system which is linked up to a pedestrian detection system. The Audi ADAS system
collects the data from the camera and/or radar sensor to estimate the possibility of a
collision by detecting pedestrians or cyclists and alerts the driver with visual, acous-
tic and haptic warnings if a collision is imminent. The new Peugeot 308 comes with
an active safety brake and distance alert. This system detects pedestrians in the car’s
path and warns the driver if there is a risk of collision. If the driver does not show any
reaction in a critical situation or takes too long to, the system immediately activates
the automatic brake after a warning. To our knowledge, these ADAS systems do not
properly estimate the pedestrian risk situation but only emit a warning whenever a
pedestrian is detected within a specific distance range. Our objective is to design an
intelligent system able from a previous detected-pedestrian action-unit classifica-
tion to estimate the pedestrian risk situation.

Moreover, there are some critical aspects that an ADAS should fulfill in order to
become a feasible solution that could be implemented on-board a vehicle:

• the system cost: this should be reasonably low since the system has to be
incorporated in every model of a series;

• the real-time request: it has to be fast enough to detect and recognize ob-
stacles in real time, as an obstacle may quickly appear in front of the car and
result in an accident. Such a situation is to be avoided at all costs;

• efficiency: it should be able to deal with pedestrian occlusions and variable
obstacle/ pedestrian shapes and appearances;



LIST OF TABLES

Figure 1 – The main architecture of our system.

• robustness: it should work well even in difficult lighting conditions and with
a cluttered background;

• ergonomy: in order to have a real impact on driver habits, an ADAS has to
be ergonomic (especially when drivers are old and/or have physical disabili-
ties), adapted to driver’s requirements (asking for warning, assistance or auto-
matic control) and able to take into account the driver behaviour (also hypo-
vigilance and emotional states, not only driver actions).

In recent years, many ADAS have been proposed, perceiving the road environ-
ment with active sensors (radar, laser scanner, radar, lidar, and sonar) and/or pas-
sive sensors (cameras using the visible or infra-red spectrum), without solving all
of these problems. The main advantages of using active sensors are their possi-
bility to measure the distance and the speed of the targets and the fact that they
work well even in bad weather or poor illumination conditions. However, other is-
sues remain: interference problems, difficulties in interpreting the output signals
returned by these sensors for obstacle-classification purposes and the acquisition
price, which is usually very high compared to that of vision sensors (the low-cost
Valeo’s SCALA laser scanner is a refreshing exception). Thus, ADAS employing cur-
rent technologies are efficient and robust, but they are too expensive, whereas those
using only passive sensors are quite cheap, but their functioning still needs to be
improved since they struggle in the presence of occlusions and severe lighting con-
ditions.

The goal of our research is to develop an intelligent pedestrian protection com-
ponent based only on a single stereo vision system using an optimal cross-modality
deep learning architecture in order to fulfill the prior requirements.

Our system involves four components (see Figure 1):

1. The Perception module senses the road environment with external cameras
(monocular or stereo vision) in order to deliver environmental information,
including road trajectory estimation, illumination and weather condition de-
tection, obstacle hypothesis generation, among others. This module has been
developed by our teams: the STI team at LITIS and the RITS team at Inria
Paris.

2. The Identification/Fusion module has to detect all road obstacles and among
them to identify the most vulnerable ones (i.e. pedestrians), by choosing the
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best perception channel or by fusing multi-modal, multi-domain perception
channels, according to the environmental conditions and the camera/sensor
states. Moreover, this component has to identify the pedestrian action for
each frame (crossing, not crossing, and ambiguous action, among others) and
to predict not only the pedestrian trajectory but also its action. We study the
short, medium and long term prediction approaches. In this thesis, we use
the Intensity, Depth and Optical Flow images modality.

3. The Decision module has to estimate the risk in order to identify the appro-
priate vehicle control level (information/advice).

4. The Action module has to warn the driver if there is a risk of collision and
if necessary the system immediately activates the automatic vehicle control
after the warning. The module has been developed by our RITS team at Inria
Paris.

The system has to be able not only to detect all the pedestrians with high pre-
cision but also to track all the pedestrian paths, to classify the current pedestrian
action and to predict their next actions and finally to estimate the pedestrian risk by
the time to cross for each pedestrian.

The question is, could we investigate an end-to-end method for the pedestrian
detection, classification and prediction components or we must use a sequential
method to investigate them separately step by step, according to the target appli-
cation, as existing approaches from the literature? Our thesis sets out to answer
this question following the next methodology: First, we investigate the classifica-
tion component where we analyzed how learning representations from one modal-
ity would enable recognition for other modalitie(s) in various deep learning ap-
proaches, which is termed cross-modality learning.

Second, we study how cross modality learning improves an end-to-end pedes-
trian action detection.

Third, we analyze the pedestrian action prediction and the estimation of pedes-
trian time to cross.

The thesis is organized as follows:

• Chapter 1 describes the architecture of our pedestrian classifier and the meth-
ods we proposed based on the Cross-Modality deep learning of CNNs based
on Daimler [EESG10] and Caltech [DWSP09] datasets.

The late fusion scheme connected with CNN learning is deeply investigated
for pedestrian recognition based on the Daimler stereo vision dataset. Thus,
an independent CNN for each imaging modality (Intensity, Depth, and Op-
tical Flow) is used before the fusion of the CNN’s probabilistic output scores
with a Multi-Layer Perceptron which provides the recognition decision.

We propose four different learning patterns based on Cross-Modality deep
learning of Convolutional Neural Networks:

1. a Particular Cross-Modality Learning;

2. a Separate Cross-Modality Learning;

3. a Correlated Cross-Modality Learning;

4. an Incremental Cross-Modality Learning model.
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Moreover, we also design a new CNN architecture, called LeNet+, which im-
proves the classification performance, not only for each modality classifier,
but also for the multi-modality late-fusion scheme. Finally, we propose to
learn the LeNet+ model with the incremental cross-modality approach using
optimal learning settings, obtained with a K-fold Cross Validation pattern.

This method outperforms the state-of-the-art classifier provided with Daim-
ler datasets on both non-occluded and partially-occluded pedestrian tasks.

• Chapter 2 is concerned with the pedestrian detection component and action
recognition.

In this chapter, we focus on both pedestrian detection and pedestrian ac-
tion recognition based on the Joint Attention for Autonomous Driving (JAAD)
[KRT16] dataset, applying deep learning approaches.

The main objective of this approach is to find out if a pedestrian is crossing, or
whether the pedestrian’s action does not present a critical situation. The most
crucial case for the pedestrian and drivers is when the pedestrian is crossing
the street in the front of the vehicle, and the car cannot stop or avoid it on
time.

We introduce a unified pedestrian detection component based on deep learn-
ing, that also recognizes different pedestrian actions; this is in contrast to
usual pedestrian detection methods, which only discriminate between pedes-
trians and non-pedestrians among other road users.

We define four main pedestrian actions in order to find out if the pedestrian’s
action presents a risky situation:

1. the pedestrian is preparing to cross the street;

2. the pedestrian is crossing the street;

3. the pedestrian is about to cross the street;

4. the pedestrian’s intention is ambiguous.

• Chapter 3 describes the pedestrian detection component merged with the
pedestrian action prediction and estimation of time to crossing.

The pedestrian detection system is one of the vital components of the ad-
vanced driver assistance system because it contributes to road safety. The
security of the traffic participant could be significantly improved if this sys-
tem could recognize and predict pedestrian actions or even estimate the time
to cross for each pedestrian.

In this chapter, we focus on pedestrian action prediction, and estimate the
time to crossing for each pedestrian. We based this work on the Joint Atten-
tion for Autonomous Driving (JAAD) [KRT16] dataset, applying deep learning
approaches.

We propose:

1. a prediction of pedestrian action using a recurrent deep learning net-
work in order to predict the pedestrian’s next actions on the short (T+1,
T+2, T+3, T+4, T+5), medium (T+14) and long time (T+40);
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2. an estimation of time to cross for a single and multiple pedestrians using
recurrent deep learning network.

We use an Long Short-Term Memory (LSTM) [HS97] to estimate the pedes-
trian intention action using the previous 5, 14 and respectively 40 frames as
time steps. We show that integrating multiple pedestrian tags for the detec-
tion part, merged with LSTM, can achieve a significant performance.

• Finally, in Chapter 4 we present our conclusions and discuss future work.
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CHAPTER 1. CROSS-MODALITY PEDESTRIAN RECOGNITION

1.1 Introduction

Pedestrian detection is a highly debated issue in the scientific community due to
its major importance for a large number of applications, especially in the fields of
automotive safety, robotics and surveillance. In spite of the widely varying meth-
ods developed in recent years, pedestrian detection is still an open challenge whose
accuracy and robustness has to be improved.

A pedestrian detection system has three main components: the sensors used to
capture the visual data, the modality image processing components and the clas-
sification components. In general, all these components are processed and devel-
oped together to obtain a high detection performance, but sometimes each element
could be investigated separately according to the target application. The main dif-
ference between the detection and classification is that the classification task is the
process of distinguishing the objects/images between them and classifying the ob-
jects/images to some categories, based on specifics features, while the detection
task is the process of finding out the particular objects in the images, that involves
both classification and localization. Therefore the classification requires features
information from detection task.

This Chapter is concerned with improving the classification task, which is the
central part of the pedestrian detector.

In recent years, deep learning classification methods, in particular Convolu-
tional Neural Networks (CNNs), combined with multi-modality images applied on
different fusion schemes have achieved great performances in computer vision tasks.
For the pedestrian recognition task, the late-fusion scheme outperforms the early
and intermediate integration of modalities.

These CNNs differ in size and depth according to the objects that need to be clas-
sified. Thus, with an increase in the complexity of the classifier’s problem, the CNN’s
size and depth also increase, which usually enhances the CNN’s performance.

The drawback of CNNs with very large and complex architectures, such as Goog-
leNet, VGG, is that they require considerable computing power and a vast storage
space, especially for the off-line learning process, but also to a lesser degree for the
on-line classification applications.

This problem has been partially solved since for the off-line step the CNNs could
be learnt on an expensive powerful network of computers, but it could be an un-
solved problem for several on-line embedded applications. Indeed, the CNNs in-
volved in an ADAS system should fulfill some requirements to become a feasible
solution for on-board implementation in a vehicle.

One of them is the system cost. It should be low enough since it has to be in-
corporated in every series vehicles. We believe that those series vehicles with ADAS
system incorporate must be affordable for all population categories.

The question is: could we adapt a vast CNN architecture to be a feasible solution
in order to upload it into a cheap embedded processing module or should we cre-
ate a new one to fit on the required ADAS settings? We propose to investigate this
question in the section 1.3.2 were we designed a new CNN. Increasing the CNN’s
complexity (architecture and learning settings), the classifier models require higher
computing power for off-line learning and on-line applications that lead to the pur-
chase of more powerful and expensive GPUs.

In order to solve this issue we can increase the hardware capabilities which are
in continuously evolving, which today it makes sense to use more complex network
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Figure 1.1 – The main architecture of our system. In red are the issues investigated in this
Chapter.

architectures in ADAS applications (as long as a proper region proposal method is
used), or to adapt a CNN architectures which should be compact enough to allow
an efficient and real-time implementation, even on a cheap Nvidia embedded plat-
form with limited memory size and quite sluggish processing time, to make their
use possible in every series vehicles.

We chose to propose a compact, but efficient CNN architecture for the pedes-
trian recognition task, one that is well-suited to small-size multi-modal images de-
rived from stereo vision.

Deep learning classification methods associated with multi-modality images and
different fusion patterns have achieved notable performances in many applications,
including pedestrian classification issue.

This Chapter investigates how a multi-modal system could be learnt when data
in one of the modalities is scarce (e.g. many more images in the visual spectrum
than depth). If the system is learnt on multi-modal data, could it still work when the
data from one of the domains is missing? Could the learning process be improved if
it uses a different image modality validation set than the training set?

This Chapter sets out to evaluate this cross-modality concept through various
experiments based on the Daimler stereo vision dataset [EESG10] and will allow us
to chose the most promising one for this pedestrian classification task.

The main contribution of this chapter is concerned with investigating different
cross-modality learning approaches for deep neural networks aimed at the pedes-
trian recognition task on both non-occluded and partially-occluded samples, using
various sensor modalities. It also proposes a new variation of the LeNet architecture
and provides results for a late-fusion approach. Thus according to our main thesis
object described in the introduction (see Figure 1), in this chapter, we analyze only
the first two components (see Figure 1.1):

• Perception: using the stereo vision images;

• Identification/Fusion: pedestrian classification using cross-modality deep learn-
ing approach.

This Chapter is organized as follows:
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• Subsection 1.2 shows the related work from the literature.

• Subsection 1.3 presents the classification architecture and the associated learn-
ing methods based on Cross-Modality deep learning of CNNs.

• Subsection 1.4 describes the evaluation protocol in order to asses our classi-
fication approaches.

• Finally, Subsection 1.5 presents our conclusion for this chapter.

13



CHAPTER 1. CROSS-MODALITY PEDESTRIAN RECOGNITION

1.2 Related Work

The pedestrian classification issue has attracted considerable interest over the last
decade, resulting in a wide variety of detection methods. This issue has been widely
investigated, but it still remains an open challenge because the detection progress
is hindered by the difficulty of detecting all partially occluded pedestrians and the
problem of classifying in severe weather conditions.

This subsection presents the background knowledge related to the pedestrian
classification system. It presents recent scientific investigations, which can gener-
ally be classified in two categories: Handcrafted Features Models and Deep Learning
Neural Network Models.

1.2.1 Handcrafted Features Models

Pedestrian classification is one of the most significant issues in computer vision re-
search and object recognition. Over the last decade, this problem has been more
deeply investigated through the development of classification methods using a com-
bination of features such as Integral Channel Features [DTPB09], Histograms of Ori-
ented Gradients (HOG) [DT05b], Local Binary Patterns (LBP), Scale Invariant Fea-
ture Transform (SIFT) [VGVZ09a], among others [SKHD09, FGMR10a], followed by
a trainable classifier such as a Support Vector Machine (SVM) [FGMR10a], Multi-
Layer Perceptron (MLP), boosted classifiers [DTPB09] and random forests [BOHS14,
DWSP12a].

A comprehensive review based on 16 state-of-the-art detectors over 6 data sets
made up to 2012 is presented in [DWSP12b], where it brought together and studied
a annotated pedestrian detection including size, occlusion and pedestrian positions
in public scenes.

A detailed investigation of 40+ detectors made up to 2014, based on the Caltech
pedestrian detection benchmark is introduced in [BOHS14]. The paper presents the
most promising ideas from multiple published strategies and a comparison of the
contemporary pedestrian datasets.

A recent strengthening of results for pedestrian detection using HOG, LUV, and
optical flow as features with the AdaBoost classifier based on Caltech-USA pedes-
trian dataset is presented in [RSZS16]. An improved fast multiscale pedestrian de-
tection algorithm based on integral channel features and cascade AdaBoost classi-
fiers is presented in [GHW18]. The RGB video is converted into LUV images, and
then the image pyramid is determined to obtain the channel features. A trilinear
interpolation in HOG feature merged with SVM is introduced in [PP17], where it
is applied to two planes of training, the learnt classifier and the full-body classifier
with the estimated scores. A Haar wavelet decomposition and HOG feature extrac-
tion with a basic statistical operator for adapting to a binary classification based on
a Support Vector Regression (SVR) is presented in [ER16]. This method is applied
on a public pedestrian dataset and compared with K-Nearest Neighbors (KNN) and
SVM classifiers.

We chose to present the state-of-the-art models given with the Daimler data sets,
since our classification models are developed on these datasets.

In so far as we are going to work with multiple image modality, we selected
to employ the Daimler dataset in our preliminary pedestrian classification experi-
ments because the authors of the dataset have already defined the Intensity, Depth,
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and Optical Flow image modalities including the learning and testing samples, and
that enable us to perform a fair comparison benchmark.

A Mixture-of-Experts (MoE) framework performed with HOG and LBP features,
and MLP or linear SVM classifiers was presented in [EESG10, EG11]. In the HOG/
linSVM MoE, the HOG descriptor was computed with 12 orientation bins and 6 x
6 pixel cells, accumulated for overlapping 12 x 12 pixel blocks with a spatial shift
of 6 pixels, and then those features were inserted into linerar SVM [EESG10]. In
the HOG+LBP/ MLP Mixture-of-Experts (MoE), the HOG and LBP features were in-
serted into MLP [EG11]. The HOG descriptor was applied with 9 orientation bins
and 8 x 8 pixels cells, accumulated for overlapping 16 x 16 pixels blocks with a spa-
tial shift of 8 pixels. The LBP descriptor was applied using 8 x 8 pixel cells and a
maximum number of 0-1 transitions of 2. Those feature-based Mixture-of-Experts
(MoE) models are learnt using a classical learning methodology where both learning
and testing were done on the same modality: Intensity, Depth or Optical Flow.

1.2.2 Deep Learning Features Models

In recent research studies, deep learning neural networks including convolutional
neural networks (CNNs), like LeNet [LBBH98], VGG [SZ14], GoogLeNet [SLJ+14],
have usually led to improvement in classification performance [HOBS15, FYY+15].

A deformation part-based model combined with a deep model based on a re-
stricted Boltzmann Machine for pedestrian detection is presented in [OW12]. The
deformation-part component receives the scores of pedestrian body-part detectors
and provides a decision hypothesis to the deep model in order to discriminate the
visibility correlation among overlapping elements at multilayers. This approach was
applied not only on the Daimler datasets but also on the Caltech, ETH and CUHK
datasets. A deep unified model that conjointly learns feature extraction, deforma-
tion handling, occlusion handling and classification evaluated on the Caltech and
ETH datasets for pedestrian detection was proposed in [OZL+17]. A solution for
detecting pedestrians at different scales and evaluated on the Caltech dataset by
combining three CNNs was proposed in [ESWG16]. A cascade Aggregated Chan-
nel Features detector is used in [XWK+15] to create pedestrian candidate windows
followed by a CNN-based classifier for assessment purposes on monocular Caltech
and stereo ETH data sets.

Recently, in [BDX16] a CNN to learn the features with an end-to-end approach
was presented. This experiment focused on the detection of small scale pedestrians
on the Caltech dataset.

A pedestrian detection system based on the Gabor filter, HOG and CNN employ-
ing the INRIA and Daimler Mono Pedestrian dataset is presented in [ATI19] where
both data sets were applied for training, testing and the PennFidanPed dataset only
for testing.

The visual contexts based on scale and occlusion cues from detection at prox-
imity using CNN for a better pedestrian detection for surveillance applications was
introduced in [WXY16].

In [YML17], the authors presented a new multi-scale classifier method based on
CNN, using the nearby scale classifier instead of extracting features multiple times
from the resizing images and also introduced a Binary Pattern of Gradient (BPG) in
order to accelerate the feature extraction speed.

Two CNN-based fusion methods (early and intermediate fusion architectures)
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Figure 1.2 – The Handcrafted Features Model Architecture. The ROI Processing represents
the regions of interest from the proposed image, which inserts it in a feature extraction algo-
rithm and then inserts this emphasizes information in the learning classifier process. When-
ever the learning process is over; it returns the trained classifier, which could be used in the
real-time application.

of thermal and visible images were presented in [WFHB16] and evaluated on the
KAIST pedestrian dataset. The early fusion approach merges the information of
these modalities at the pixel level, the intermediate fusion method generates a fea-
ture representation for each modality using separate sub-networks before classifi-
cation. The authors concluded that intermediate fusion has greater classification
accuracy than early fusion.

In the literature, for the late fusion architectures, the learning is performed inde-
pendently on each modality, with annotated images provided exclusively from that
modality. To the best of our knowledge, no study has been carried out on cross-
modality learning for pedestrian recognition, but only on cross-dataset learning.
Thus, in [KG16], the authors proposed an incremental cross-dataset learning algo-
rithm for the pedestrian detection problem. A synthetic dataset (Virtual Pedestrian
dataset [VLM+14]) is used for basic training and two distinct real-world datasets
(KITTI Vision Benchmark Suite and the Daimler Mono Pedestrian Detection Bench-
mark) for fine-tuning the models and for evaluation.

1.2.3 Handcrafted Features Models vs. Deep Learning Features Mod-
els

The handcrafted feature is usually handled with classical machine learning methods
for object recognition and computer vision. It address to features determined using
several algorithms employing the information present in the image like edges and
corners.

The handcrafted features methods mentioned above usually are processed in
three steps [AH16, NGB17]: a detection algorithm which locates the regions of in-
terest from the proposed image, then a feature algorithm which extracts the char-
acteristics information and then a classification algorithm which distinguishing the
designated area on each particular features from the others (see Figure 1.2). The set
of features considered for creating the descriptor depends on the specific feature
being used. The handling proceeding of handcrafted features represent a drawback
because of processing time and often involves finding the right trade-off between
accuracy and computational efficiency. On the other hand, some of most of them
has been solved the shortcomings issue in the speed and efficiency and were pro-
posed to be applied in real time applications on devices with low computational
power.

The Deep Learning progress exceeded the image classification issue [KSH12a]
using handcraft features. It usually consists in complex networks for solving the
problem of image classification, regularly addressed through CNNs, where deep lay-
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Figure 1.3 – The Deep Learning Features Model Architecture. The CNN extract implicit the
features from the image which are learnt in the same step. When the learning stage is com-
pleted, it returns the trained classifier, which could be used in the real-time application.

ers in these complex networks perform as a collection of feature extractors that are
commonly quite generic and somehow independent in the particular classification
task [Sch15,LBH15] (see Figure 1.3. The idea of this method is to create multiple lev-
els of representation so that higher-level features can describe the meaning of the
data, which in turn can render higher robustness to intra-class variability [CJG+15].

Therefore, it is reasonable to consider the deep layers of CNN as a feature ex-
tractor. The significant difference consists in that the features extracted by a CNN
are learned to employ the data in contrast to hand-crafted features, that must be
created before by researchers to achieve a given set of chosen characteristics.

Since the Deep Learning methods achieve better accuracy than Handcrafted fea-
ture approaches, we decided to use this technique in our research.

The drawback of CNN models is that they need a large amount of annotated data
for each modality. It usually happens that one has not (enough) annotated data in
one modality compared with other modalities.

The question is whether one modality can be used exclusively (standpoint one)
for training the classification model used to recognize pedestrians in another modal-
ity or only partially (standpoint two) for improving the training of the classification
model in another modality. To our knowledge, these questions have not yet been
answered for the pedestrian recognition task, the fact that we decided to merge the
cross-modality method with deep learning strategy.

1.3 Proposed Architectures for Pedestrian Classier

In this section, we present our proposed cross-modality pedestrian classification
architectures, including explanations and setups of our approaches.

We believe it is necessary to improve the classification component of an ADAS
system to be able to discriminate between the obstacle type (pedestrian, cyclist,
child, old person) in order to adapt the car driver systems behavior according to the
estimated level of risk. This Chapter is concerned with improving the classification
component of a pedestrian detector. The work presented in this chapter aims to
train a CNN-based classifier using a combination of Intensity, Depth and Optical
Flow modalities on the Daimler [EESG10] stereo vision dataset.

To achieve this aim, we develop the classification component based on four
CNNs:

1. Lenet [LBBH98] as it is a straightforward and small architecture which allows
better running even on a CPU (using small image size, the default is 32x32
pixels);

2. Lenet+ which we proposed, is a variation of Lenet and improves the classifi-
cation performance for each modality classifier;
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3. AlexNet [KSH12a] for its incontestable impact on machine learning due to a
good balance between its performance and compact architecture;

4. VGG-16 [SZ14] because of its high performance obtained with such a vast ar-
chitecture commonly used in pedestrian detection.

To do so, we followed the procedure below, relying on a deep learning approach:

• Investigating the performances of AlexNet [KSH12a] and LeNet [LBBH98] on
the Caltech [DWSP09] dataset using RGB image modality where pedestrian
bounding boxes (BBs) are more than 50 pixels. All BB were resized to quadratic
size (64 x 64 pixels) to obtain a better performance.

• Evaluating the LeNet architecture with various learning algorithms and learn-
ing rate policies using the classical learning method for each Intensity, Depth
and Optical Flow image modalities;

• Combining three image modalities (intensity, depth and optical flow) to feed
a unique Convolutional Neural Network (CNN), using an Early fusion method
and fusing the results of three independent CNNs, using Late fusion method;

• Evaluating a Particular Cross-Modality learning method where a CNN is trained
and validated on the same image modality, but tested on a different one;

• Evaluating a Separate Cross-Modality learning method which uses a different
image modality for training than for validation;

• Evaluating a Correlated Cross-Modality learning method where a unique CNN
is learnt (trained and validated) with Intensity, Depth and respectively Optical
Flow images for each frame;

• Evaluating an Incremental Cross-Modality learning where a CNN is learnt with
the first images modality frames, then a second CNN, initialized by transfer
learning on the first CNN, is learnt on the second image modality frames, and
finally a third CNN initialized on the second CNN, is learnt on the last image
modality frames;

• Improving the incremental cross-modality learning due to a new CNN (we
called Lenet+) architecture that we proposed together with K-fold Cross Vali-
dation of both the learning rate and epoch numbers;

• Learning on AlexNet [KSH12a] and VGG-16 [SZ14] using the default CNNs set-
ting with the Classical Learning method and respectively with the Incremental
Cross Modality Deep Learning method on Intensity, Depth and Optical Flow
image modality;

• Optimizing the CNNs hyper-parameters (convolution stride, kernel size, con-
volution number of outputs, weights of the fully connected layers) for the clas-
sical learning method and for the incremental cross modality deep learning
method respectively;

• Implementing the late fusion scheme with Support Vector Machine (SVM)
[FGMR10b] for classical learning approach;
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• Implementing the late fusion scheme with Multi-Layer Perceptron (MLP) for
both classical and incremental cross-modality learning methods considered
above.

We benchmark different learning algorithms and rate policies using the LeNet
architecture. We show that the late-fusion classifier outperforms not only all single
modalities but also the early-fusion classifier.

We examine all these methods with the classical learning one where each CNN is
learnt and evaluated on the same image modality. We also compare all these learn-
ing patterns with the classical learning approaches within the MoE framework pro-
posed in [EESG10, EG11] and deep Boltzmann-Machine [OW12] for the recognition
of both partially occluded and non-occluded pedestrians.

The following subsection describes the architecture and the corresponding set-
tings for each of the classical and respectively cross-modality learning methods.

Figure 1.4 – The classical learning approach uses the same image modality for the training,
validation, and testing processes. The Particular Cross-Modality learning uses the same im-
age modality for training and validation, but a different one for testing. The Separate Cross-
Modality learning uses the same image modality for training and testing, but a different one
for validation.

1.3.1 Classical Learning Approach

The Classical Learning (CL) method involves that both training and validating are
performed on the same image modality. For each image modality, a classifier model
is fitted on the respective training dataset; successively, the fitted model is used to
predict the labels for the observations in the validation dataset; and finally, the test
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dataset is used to provide an unbiased evaluation of the final model fitted on the
learning dataset (union of training and validation datasets). For the classical learn-
ing approach, we have trained, validated and evaluated each CNN with the same
imaging modality either Intensity, Depth, or Optical Flow (see Fig.1.4).

We start by comparing AlexNet to LeNet with different learning algorithms: Stoc-
hastic Gradient Descent (SGD) [Bot12], Adaptive Gradient (ADAGRAD) [DHS10],
Nesterov Accelerated Gradient (NAG), RMSPROP, ADAM and learning rate polices:
Step Down (STEP), Polynomial Decay (POLY) and Inverse Decay (INV) on the in-
tensity modality. From the Caltech image dataset we selected pedestrians bounding
boxes (BB) of more than 50 pixels. All the BB were resized to quadratic size (64 x 64
pixels), that allows to obtain a local minimizer of the quadratic criterion easily and
obtains a better performance [LBBH98]. We observed that the LeNet provides better
results than AlexNet for these small size image datasets samples.

In the second experiment, we evaluated the LeNet architecture with various lear-
ning algorithms on the Daimler [EESG10] dataset: Stochastic Gradient Descent (SGD)
[Bot12], Adaptive Gradient [DHS10], RMSPROP [TG12], ADADELTA and learning
rate policies: Fixed (FIX), Exponential (EXP) [Sun13], Step Down, Polynomial De-
cay (POLY) [BT10], Sigmoid, Multi-Step and Inverse Decay. Each modality classifier
was exclusively trained with images of its own modality using the original images
size (96 x 46 px). We conclude that various modalities require different learning
algorithms and rate policies for an efficient learning but an equivalent number of
iteration and similar initial learning rate.

1.3.2 LeNet+ Convolutional Neural Network Architecture

Each modality CNN, was first set up on the LeNet architecture [LBBH98]. We ob-
served that the LeNet has a limited generalization power for our needs. In order to
enhance the classification performance and avoid overfitting, we designed a CNN,
which we called LeNet+, (see Fig 1.5) by extending the LeNet architecture by adding
three layers and replacing the weight filler algorithm from FC layers. We add a ReLU
layer, a Local Response Normalization (LRN) layer [KSH12b] at the first Pooling
Layer, a Dropout layer [SHK+14] with a rate of 50% at the first FC layer. Moreover, for
the weight filler we use the Gaussian [MU08] instead of the Xavier algorithm [GB10].
For the FC layers, we used 4096 neurons for the first FC layer and two neurons for
the second FC layer.

Figure 1.5 – The proposed extended LeNet Architecture (LeNet+). The extension consists in
adding a ReLu and an LRN layer at the first Pooling layer, adding a Dropout layer at the first
FC layer, using the Gaussian instead of Xavier algorithm for the weight filler and increasing
the outputs for the first FC layer from 500 to 4096.
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1.3.3 Early Fusion architecture

The early fusion approach integrates three image modalities (Intensity, Depth and
Optical Flow) by concatenating them to learn a single CNN (see Figure 1.6).

It is less efficient and robust than the late-fusion model. Thus, the early-fusion
model requires high image calibration and synchronization. The early-fusion train-
ing method is more constrainable since for a given image frame it needs an item for
each modality, and therefore the classifier requires more samples to learn the prob-
lem. With the early-fusion model, it is impossible to take advantage of cross-dataset
training methods, by using modality images from different uni-modal and/or multi-
modal datasets where all the modalities involved are not acquired and/or anno-
tated. The early fusion method does not allow one to improve the learning by ex-
tending the number and the variety of items through the cross modality learning.
The performance of the early fusion and late fusion models on the Daimler stereo
vision dataset were compared in our work (see subsection 1.4.5).

Figure 1.6 – The Early Fusion Architecture

1.3.4 Late Fusion architecture

We proposed a late-fusion architecture using two approaches:

• We propose the fusion of the Intensity, Depth and Flow modalities within a hy-
brid CNN-SVM framework. We train an SVM to discriminate between pedes-
trians (P) and non-pedestrians (P) on the classification results of the three in-
dependent CNNs;

• We propose a late-fusion architecture (see Figure 1.7) where an MLP is used to
discriminate between pedestrians (P) and non-pedestrians (P) on the classifi-
cation results (it combines the output scores of all classifiers) of three modal-
ity CNNs.
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Each CNN is exclusively trained with images from the same modality (among In-
tensity, Depth and Optical flow) and then tested on that modality images. All models
are learnt and compared with Daimler [EESG10, EG11] dataset.

The final layer for each CNN returns the classifier probabilistic scores from CNN’s
and after that, an MLP/SVM fuses the classifier probabilistic scores to obtain the fi-
nal decision of the classifier system: P or P.

We believe that the late-fusion we propose based on three independent CNNs
followed by an SVM or MLP is a promising approach because a sequential learning
usually provides better results.

The off-line learning of the late fusion scheme is therefore costly, but it is an
efficient solution for on-line applications.

Analyzing the CNN-SVM late fusion model, it did not outperform the best Daim-
ler classifier which is carried out with HOG+LBP/MLP [EESG10, EG11]. We decided
to use only the MLP as in [EESG10, EG11] in our next late-fusion experiments, to
maintain a fair comparison.

Figure 1.7 – The MLP Late-Fusion Architecture

1.3.5 Cross-Modality Learning Approaches

In the first part, we studied three methods of integrating different image modali-
ties (Intensity, Depth, Optical Flow) to improve pedestrians detection. In the sec-
ond part, we studied how learning representations from one modality would enable
prediction for other modalities, which they term as Cross-Modality Learning.

Thus, the following methods analyzed cross-modality learning through various
experiments based on the Daimler stereo vision dataset.

Particular Cross-Modality Learning

We propose a Particular Cross-Modality Learning (PaCML) that carries out the learn-
ing process on the same image modality, although the training and validation sets
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are disjoint, and the performance is evaluated on a different modality. This ap-
proach shows whether the automatic annotation of modality images could be ex-
tracted with a classifier trained with different modality data (see Fig.1.4).

Separate Cross-Modality Learning

We also propose a Separate Cross-Modality Learning (SeCML) that carries out the
learning process when the modality of the training set differs from that of the val-
idation set. The testing set belongs to the same modality as the training set (see
Fig.1.4). This approach could improve the generalization power of CNN and shows
how we could train a system when one of the imaging modalities is limited.

Correlated Cross-Modality Learning

Then we design a Correlated Cross-Modality Learning (CoCML) approach that learns
a single CNN, where the data training set consists of frames with distinct image
modalities: Intensity Ii , Depth Di and Flow Fi with i=1,n (see Fig. 1.8).

The CNN model is validated in two different ways: on a multi-modal valida-
tion set (a stack of images from the same frames for different image modalities) and
respectively on a uni-modal validation set. The training and validation sets are dis-
joint.

We consider that the disadvantage of CoCML is that it requires to use an iden-
tical CNN model. This weakness is a considerable restriction if distinct modalities
improve the learning process with a specific CNN architecture and/or with various
settings (i.e., learning rate policies and learning algorithms).

Figure 1.8 – Correlated Cross-Modality Learning. The learning data consists of Multi-Modal
Correlated images presented successively to the CNN for training and respectively in Multi-
Modal or Uni-Modal images for validation. I∈{I1,I2 ... In}; D∈{D1,D2 ... Dn}; F∈{F1,F2 ... Fn};
I=Intensity; D=Depth; F=Optical Flow.

Incremental Cross-Modality Learning

In our incremental cross-modality approach, a first CNN is learned (trained and val-
idated) with the first image modality frames, then a second one, initialized by trans-
fer learning on the primary CNN, is learned on the second image modality frames,
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and finally a third one initialized on the second CNN, is learned on the last modal-
ity image frames. This model does not require correlated modality frames or equal
numbers of items (see Fig.1.9).

This method has some advantages compared with both classical and others cross
modality methods. One of the benefits is that it is more flexible than the previ-
ous cross-modality learning methods. This method allows different settings to be
adapted for each classifier (i.e. different learning rate policies and learning algo-
rithms) which leads to better learning for the final classification system. Transfer-
ring the weight information from one classifier which was already learned to an-
other one which will be learnt next, increases the ability of the model to discrimi-
nate with a distinct point of view for the same standard target class of modalities (i.e.
pedestrians or non pedestrians). It allows additional learning with other modality
images without changing the concept target class.

Learning this model does not require any calibration and/or synchronization
between modality images. This approach could be adapted and utilized when the
multi-modality images are not derived from the same database and/ or obtained
from related sensors/ cameras. Moreover, this procedure can be suitable for using
various data sets and stretch out in cross-dataset training.

This approach casts doubt upon whether the learning image modality order
could affect the performance of the final classifier. We have examined various com-
binations by interchanging the imaging modalities, and conclude that to classify the
Intensity image modality, the training process needs to start with Depth modality,
followed by Optical Flow and finally Intensity images (D, F, I training model of I). The
optimal learning order for Optical Flow image modality classification is Depth im-
ages, followed by Intensity images and finally Flow images (D, I, F training model of
F). To achieve the best learning performance for Depth modality, the training pro-
cess should start with Intensity images followed by Flow images and finally Depth
images (I, F, D for the training of D).

Figure 1.9 – Incremental Cross-Modality Learning. The first CNN is learning (training + val-
idation) on the same image modality. When the learning process is over, the weights infor-
mation from the previous CNN is transferred to the next CNN in which the learning process
starts with a different image modality.
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Figure 1.10 – The Late Fusion Architecture with the Incremental Cross-Modality Learning.
The modality probabilistic output scores of Intensity (Pr(I)), Depth (Pr(D)) and Optical Flow
(Pr(F)).

1.3.6 Late Fusion Pedestrian Classification with Incremental Cross-
Modality Learning

Our late-fusion architecture (see Fig 1.10) consists of three independent CNN clas-
sifiers and an MLP that discriminates between pedestrians (P) and non-pedestrians
(P) based on class probabilistic estimates provided by each CNN. The learning pro-
cess for each CNN classifier is done with an incremental cross-modality learning
approach in an independent manner. The last layer of each CNN provides only
one of the modality probability output scores among Intensity Pr(I), Depth Pr(D)
and Optical Flow Pr(F). The MLP is composed of three neurons in the input layer,
one hidden layer with 100 neurons, and 2 neurons in the output layer. We used
the ReLU function for the activation function and a Stochastic Gradient Descent
(SGD) [Bot12] solver for the weight optimization. For the weight updates, we used a
constant learning rate (1e-07).

Late fusion focuses on three independent components for the learning of modal-
ities, and then, the probabilistic output scores are fused into a multi-modal repre-
sentation for the final learning step. The off-line learning of the late fusion scheme
is therefore costly but it is an efficient paralelisable solution for on-line applications.

We experimented out target classification task with different CNNs (VGG [SZ14]
[LBBH98], AlexNet [KSH12a], GoogleNet [SLJ+14] and LeNet [LBBH98]) and various
hyperparameters. Concerning the input image size, the bounding box in Daimler
sets are images of 48x96 pixels. We resized the input layer size accordingly to 48x96
pixels for the LeNet, AlexNet, GoogleNet, VGG. The AlexNet and VGG did not return
suitable results for this input image size, because these CNNs is designed to achieve
better performance with large-scale images, while LeNet is expected to handle even
with small-images suitably. To solve this problem the solution is to increase the
image input size by interpolation and the best results were obtained with 256x256
pixels for AlexNet, GoogleNet and VGG. However, the performances obtained with
those more sophisticated architectures are less than those obtained with LeNet on
the Daimler dataset. Another solution to avoid this problem is to remove some lay-
ers and/or to change the convolution parameters and num-output options in the
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convolution and inner product layers. This is equivalent to designing a task-specific
CNN architecture, the option that we have chosen to solve this issue and proposed
the LeNet+ architecture.

In the next section, we present our set of experiments with CNN-based cross-
modality learning for the pedestrian recognition task. We describe the experimental
setup and assess the performance of our approaches.

1.4 Evaluation of Classification Components

In this section, we present our set of experiments including setups and assess the
performance of our approaches.

1.4.1 Experimental Setups and Evaluation Protocol

The experiments were analyzed using various dataset and different dataset settings:

1. We used the Caltech dataset using RGB image modality where pedestrian bou-
nding boxes(BBs) are more than 50 pixels. All BB were resized to quadratic size
(64 x 64 pixels) to obtain a better performance. This is a preliminary classifi-
cation experiment in order to make an analogy between AlexNet and LeNet.

2. We used the Daimler stereo dataset with the image scalse of 36 x 84 pixels with
a 6-pixel border around the pedestrian image crops as in [EESG10] to allow
fair comparisons. Since the results were better than [EESG10] by less than the
best Daimler classifier [EG11], we decided to use the original image scales in
our next experiments.

3. We used the original Daimler stereo vision dataset with the images scalse of 48
x 96 pixels with a 12-pixel border around the pedestrian images as in [EG11]
to allow fair comparisons with this approach. Hence in the following, we de-
tailed the experiments setups using these dataset settings and where it re-
quires, we described the dataset and setting used for each experiment.

The experiments were performed on the original Daimler stereo vision images
of 48 x 96 px with a 12-pixel border around the pedestrian images acquired from
three modalities: Intensity, Depth, and Optical Flow.

The learning process (training and validation) was performed on 84577 samples
(52112 samples of non-occluded pedestrians and 32465 samples of non-pedestrians),
based mainly on the holdout validation method involving a single run. The holdout
validation method consists in using a part of the learning set as a validation set (75%
samples for training, and the remaining 25% samples for validation) to fit the CNN’s
hyperparameters. The holdout validation is applied in two steps. In the first step,
all the hyperparameters: the learning function, the learning rate policy, the initial
learning rate and the number of epochs/iterations are optimized for each image
modality among Intensity, Depth and Optical Flow. In the second step, several hy-
perparameters (the learning function and the learning rate policy) are fixed to their
optimum values obtained in the first step, while only the most critical ones: the
initial learning rate and the number of epochs/iterations are optimized/validated.

We also used the 10-fold cross-validation (CV) to fine-tune these most criti-
cal hyper-parameters. The k-fold CV consists of randomly partitioning the train-
ing dataset into k=10 equal sized subsamples, then a single one is used to validate
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the model, and the remaining subsamples are used for its training. Since this CV
method is time costly, only the most critical hyper-parameters (the initial learning
rates and the number of epochs/iterations) of the most promising multi-modal In-
CML classifiers are optimized.

The testing dataset used to assess the classification performance is indepen-
dent of the training/validation datasets, and it has the same samples as suggested
in the Daimler datasets. It contains 36768 samples of pedestrians (25608 samples
of non-occluded pedestrians and 11160 samples of partially occluded pedestrians),
and 16235 samples of non-pedestrians.

The learning (training and validation) process for all the proposed CNN models
was done with the Caffe Deep Neural Network Framework [JSD+14]. The perfor-
mances are assessed by the Accuracy (ACC) and the Receiver Operating Character-
istics (ROC) curves. The classification task is evaluated also by the area under the
curve (AUC). These performance measures are completed with the F-measure to
provide the harmonic average of the precision and recall, which is essential for the
object detection system design. The ACC, AUC, F-measure values and ROC curves
were executed with the Scikit-Learn tool [PVG+11]. We calculate the margin of error
(Confidence Interval - CI) with a confidence level of 95% to evaluate whether one
model is statistically better than another one. If the CI of two classifiers are disjoint
then the one that is significantly statistically better then other can be chosen.

CI = 1.96

√
P(100−P)

N
%. (1.1)

In this formulation, P represents the performance of the classification system
(e.g., ACC, AUC) computed from the confusion matrix, and N represents the number
of testing samples. We also measured the Structural Similarity [WBSS04] and com-
puted the Correlation Coefficient between two couples of images (Intensity-Flow,
Intensity-Depth, Depth-Flow) to better analyze the classifier performances and to
estimate the area of interest for the proposed cross-modality learning methods.

1.4.2 Evaluation of Uni-Modal Learning Classifiers

In order to test the CNN’s performance, we carried out several experiments. In
our first experiment, we investigated the performances of AlexNet [KSH12a] and
LeNet [LBBH98] on the Caltech [DWSP09] dataset using RGB image modality where
pedestrian bounding boxes (BBs) are more than 50 pixels. All BB were resized to
quadratic size (64 x 64 px). We observed that the LeNet provides the best results for
these small size image datasets (see Table 1.1).

In the second experiment, we evaluated the LeNet architecture with various learn-
ing algorithms: Stochastic Gradient Descent (SGD) [Bot12], Adaptive Gradient, RM-
SPROP [TG12], ADADELTA and learning rate policies: Fixed (FIX), Exponential (EXP)
[Sun13], Step Down, Polynomial Decay (POLY) [BT10], Sigmoid, Multi-Step and In-
verse Decay. Each modality classifier was exclusively trained with images of its own
modality. We used a fixed batch size of 64 images which means that the train-
ing set (63433 samples) needs 992 iterations for one epoch. The holdout valida-
tion provides the optimal hyper-parameters for the Intensity modality: 29760 iter-
ations and 0.01 initial learning rate using the RMSPROP learning algorithm (RMS-
decay, τ=0.98) and POLY (power, ρ=0.75) learning rate policy; for the Depth modal-
ity: 29760 iterations and 0.01 initial learning rate using SGD learning algorithm
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(gamma, γ =0.99; momentum, µ=0.89) and EXP learning rate policy; for the Optical
Flow modality: 29760 iterations and 0.01 initial learning rate using the ADADELTA
learning algorithm (momentum, µ=0.89) and FIX learning rate policy. We conclude
that various modalities require different learning algorithms and rate policies for ef-
ficient learning but an equivalent number of iterations and similar initial learning
rates (see Table 1.2. We obtained ACC=96.55% on the Intensity modality (see Table
1.3) followed by the Depth modality with ACC = 89.78% and finally the ACC = 87.34%
for Optical Flow.

Table 1.1 – Comparison of learning algorithms and rate policies between AlexNet and LeNet
on Caltech dataset

AUC% STEP INV POLY
SGD LeNet 95.69% LeNet 96.24% LeNet 95.6%

ADAGRAD LeNet 94.17% LeNet 92.66% LeNet 94.64%
ADAM AlexNet 92.24% AlexNet 96.% AlexNet 92.14%

RMSPROP AlexNet 96.05% AlexNet 93.05% LeNet 97.09%
NAG LeNet 96.98% LeNet 95.82% LeNet 95.51%

Table 1.2 – Comparison of learning algorithms and rate policies on Intensity, Depth and
Optical Flow Daimler data sets

Accuracy

Modality Type
Learning rate polics

EXP FIX INV POLY SIG STEP MS
Algorithm Learning

Intensity

SGD 95.96% 96.07% 96.01% 96.09% 96.01% 96.20% 95.78%
RMSPROP 95.53% 61.19% 95.24% 96.55% 96.42% 95.91% 93.37%
ADADELTA 88.67% 93.08% 91.77% 88.79% 91.96% 91.10% 89.75%
ADAGRAD 95.02% 95.41% 95.83% 95.49% 95.46% 95.87% 95.02%

Depth

SGD 89.78% 61.2% 89.26% 89.69% 88.24% 88.97% 61.2%
RMSPROP 88.64% 61.17% 81.99% 89.10% 88.66% 89.22% 83.54%
ADADELTA 87.14% 88.11% 87.64% 87.27% 88.24% 87.72% 87.77%
ADAGRAD 88.77% 88.81% 89.44% 89.25% 89.44% 89.09% 88.71%

Flow

SGD 86.53% 61.2% 86.69% 86.90% 86.72% 86.84% 61.2%
RMSPROP 86.89% 61.91% 80.33% 85.69% 87.16% 86.33% 86.57%
ADADELTA 86.56% 87.34% 87.08% 86.78% 87.03% 86.82% 87.18%
ADAGRAD 87.22% 86.46% 87.11% 86.17% 86.59% 86.68% 86.97%

1.4.3 Evaluation of the Particular Cross-Modality Learning Classi-
fier

We tested the particular cross-modality learning (PaCML) models where each CNN
based classifier is learnt on one modality with the holdout validation method, but
tested on a different one (see Table 1.3). The best performance for this approach
is achieved on Intensity images when trained on Flow images (ACC = 73.79%), on
Depth images when trained on Intensity images (ACC = 58.24%), and on Flow im-
ages when trained on Intensity images (ACC = 72.97%). The performances below are
those obtained when the learning and testing are performed on the same modality.
This idea could be promising for the automatic annotation of modality images with
a classifier trained with other modality data.

In order to estimate the generalization skills of the proposed automatic anno-
tation approach, we need to know whether this ability depends on the similarity
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Table 1.3 – Comparison of Classical Uni-Modal Learning (UML) vs. Particular Cross-
Modality Learning (PaCML) on Non-Occluded Pedestrian Daimler Date Set through LeNet
CNN architecture with RMSPROP and POLY Learning Settings

Train on Valid on Test on ACC ± CI

UML
Intensity Intensity Intensity 96.550(174)%

Depth Depth Depth 89.100(298)%
Flow Flow Flow 85.690(335)%

PaCML

Depth Depth Intensity 50.510(479)%
Flow Flow Intensity 73.790(421)%

Intensity Intensity Depth 58.240(472)%
Flow Flow Depth 54.230(477)%

Intensity Intensity Flow 72.970(425)%
Depth Depth Flow 57.550(473)%

and/or correlation between two modalities. Therefore we compute the Mean of
the Structural Similarity Index [WBSS04] (MSSI) (see Table 1.4) and the Mean of the
Correlation Coefficient (MR) (see Table 1.5) on the original images and on the edge
detector images (using the Laplacian of the Gaussian method) (see Table 1.6) be-
tween a pair of images among Intensity-Flow, Intensity-Depth, and Depth-Flow on
the training and testing sets.

As reported, (see Tables 1.4, 1.5, 1.6) the Depth with Optical Flow is the most cor-
related modality pair for MSSI similarity, MR and MR-Log correlation coefficients
for all investigated data sets. However, even the highest MSSI similarity between
Depth and Optical Flow in the original images is of 0.3319 which proves a low corre-
lation. This highlights the generalization capability of the proposed PaCML model
on Daimler [EESG10] dataset.

The MSSI and MR index returns a value in the range from -1 and 1. For MSSI the
value of 1 indicates two identical sets of data, and 0 signifies, there is no structural
similarity of data. For MR the 1 shows the most robust possible agreement and 0 the
most reliable possible.

Nonetheless, the best performance was obtained with the following particu-
lar cross-modality models: learnt on Intensity and tested on Flow and respectively
learnt on Flow and tested on Intensity. This method raises the question of whether
we can regenerate data in one domain by the observation from the other domain.
The Depth modality could not be regenerated only from the Intensity modality be-
cause two stereo images are needed (space redundancy). The Flow modality could
be created from intensity modality if one has access to images from previous times
(temporal redundancy).

1.4.4 Comparison of Uni-Modal Classifiers with Cross-Modality Learn-
ing Models

In this section, all the models were trained on the LeNet architecture with the same
learning algorithm settings (RMSPROP -RMS-decay, τ=0.98 are the optimal ones
found previously for the most efficient Intensity modality) and learning rate pol-
icy (POLY – power, ρ=0.75), and tested on the non-occluded pedestrian Daimler
dataset. The CNNs were enhanced with holdout validation method on the learning
set through an optimal number of iterations (29760), and an optimal initial learning
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Table 1.4 – Mean of The Structural Similarity Index (MSSI) on the original image Daimler
dataset

MSSI
Intensity

Depth
Intensity

Flow
Depth
Flow

Pedestrians Train Sets 0.1430 0.1592 0.3319
Non Pedestrian Train Sets 0.1150 0.1399 0.3213

Non-Occluded
Pedestrians Test Sets

0.1335 0.1529 0.3058

Non Pedestrian Test Sets 0.1129 0.1446 0.2865

Table 1.5 – Mean of Correlation Coefficient (MR) on the original image Daimler dataset

|MR| Intensity
Depth

Intensity
Flow

Depth
Flow

Pedestrian Train Sets 0.0011 0.0117 0.0433
Non Pedestrian Train Sets 0.0575 0.0358 0.1222

Non-Occluded
Pedestrians Test Sets

0.0359 0.0077 0.0402

Non Pedestrian Test Sets 0.0170 0.0252 0.0752

rate (0.01) for the classical uni-modal learning method and all cross-modality learn-
ing models except for the correlated cross-modality one. Since the complexity of the
CNN’s learning algorithm for the correlated cross-modality learning was extended,
the holdout validation provided an optimal number of training iterations increased
to 89220 for an initial learning rate (0.01).

Separate Cross-Modality Learning Approach

We evaluated the separate cross-modality learning models where each CNN-based
classifier is trained and tested on one image modality but validated (holdout valida-
tion method) on a different one. These experiments prove that the cross-modality
learning approach performs slightly better than the classical learning approach (see
Table 1.7), but only for the Optical Flow and Depth modalities. The improvements
are statistically significant only for Optical Flow ∆ACC=0.25% (when validated on
Depth). This could be explained by the fact that for the Depth-Flow modality pair,
the values of the MSSI, MR, MR-LOG (see Tables 1.4, 1.5, 1.6) are stronger than for
the other modality pairs (Intensity-Depth, and Intensity-Flow).

Correlated Cross-Modality Learning

Since the RMSPROP with POLY learning rate settings produced successful results
on the Intensity modality, we used those learning settings for all correlated cross-
modality (CoCML) models.

The CoCML models are validated following two different approaches: on the
multi-modal union dataset or on a uni-modal dataset (see Table 1.7). The multi-
modality union validation approach yields better results than the uni-modal valida-
tion approach. This method performs better than classical uni-modal learning, but
only on the Optical Flow testing set, the improvement is statistically significant with
∆ACC=1.927%. The experiment could explain this problem, with vast (three times
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Table 1.6 – Mean of the Correlation Coefficient (MR-LOG) on the edge detector images
Daimler dataset, using the Laplacian of Gaussian method

MR-LOG
Intensity

Depth
Intensity

Flow
Depth
Flow

Pedestrians Training Sets 0.0126 0.0106 0.0178
Non Pedestrians Training Sets 0.0128 0.0111 0.0253

Non-Occluded
Pedestrians Test Sets

0.0142 0.0085 0.0149

Non Pedestrians Test Sets 0.0154 0.0139 0.0198

more) and different modalities (Intensity, Depth, and Optical Flow) training data,
the breadth and depth of the network should be extended. Moreover, according
to [LBBH98], the complexity would be limited by the computing resources, which
would thus hinder the performance.

Table 1.7 – Comparison of Correlated (CoCML), Separate (SeCML) vs Incremental Cross-
Modality (InCML) Learning Models on the Non-Occluded Daimler Pedestrian Dataset. The
results in bold are statistically better than those obtained with the Classical Uni-Modal
method.

CNN
Learning
Settings

Validation
Method

Approach Train on Valid on Test on ACC ± CI

Classical
Uni-modal

Intensity Intensity Intensity 96.550(174)%
Depth Depth Depth 89.100(298)%
Flow Flow Flow 85.690(335)%

SeCML

Intensity Depth Intensity 96.310(180)%

LeNet

Same
Settings for
RMSPROP
with POLY

Holdout

Intensity Flow Intensity 96.230(182)%
Depth Intensity Depth 89.000(299)%
Depth Flow Depth 89.330(338)%
Flow Intensity Flow 86.120(331)%
Flow Depth Flow 86.600% ± 0.325%

CoCML
Intensityi +Depthi +Flowi

i=1,n

Intensity j +Depth j +Flow j

j=1,m
Intensity 94.540(217)%

Intensity j +Depth j +Flow j

j=1,m
Depth 85.390(338)%

Intensity j +Depth j +Flow j

j=1,m
Flow 88.26% ± 0.308%

Intensity Intensity 94.400(220)%
Depth Depth 86.060(331)%
Flow Flow 87.38% ± 0.318%

InCML

Depthi ,Flowi ,Intensityi

i=1,n
Depth j ,Flow j ,Intensity j

j=1,m
Intensity 96.700(171)%

Intensityi ,Flowi ,Depthi

i=1,n
Intensity j ,Flow j ,Depth j

j=1,m
Depth 89.390(295)%

Intensityi +Depthi +Flowi

i=1,n
Intensity j +Depth j +Flow j

j=1,m
Flow 87.02% ± 0.3220%

Optimal
Specific
Settings

K-fold Cross
Validation
K=10

InCML

Depthi ,Flowi ,Intensityi

i=1,n
Depth j ,Flow j ,Intensity j

j=1,m
Intensity 97.50%± 0.149%

Intensityi ,Flowi ,Depthi

i=1,n
Intensity j ,Flow j ,Depth j

j=1,m
Depth 88.92% ± 0.300%

Intensityi +Depthi +Flowi

i=1,n
Intensity j +Depth j +Flow j

j=1,m
Flow 88.70% ± 0.303%

LeNet+
Optimal
Specific
Settings

K-fold Cross
Validation
K=10

InCML

Depthi ,Flowi ,Intensityi

i=1,n
Depth j ,Flow j ,Intensity j

j=1,m
Intensity 97.78% ± 0.141%

Intensityi ,Flowi ,Depthi

i=1,n
Intensity j ,Flow j ,Depth j

j=1,m
Depth 91.30% ± 0.27%

Intensityi +Depthi +Flowi

i=1,n
Intensity j +Depth j +Flow j

j=1,m
Flow 89.75% ± 0.29%

Incremental Cross-Modality Learning

Since the incremental cross-modality learning (InCML) method is the most prom-
ising approach, we decided to carry out more extensive experiments. Thus, the In-
CML models were learnt using different approaches:

31



CHAPTER 1. CROSS-MODALITY PEDESTRIAN RECOGNITION

Table 1.8 – Optimal Learning Rate and number of iterations for the Incremental Cross
Modality Learning with K=10 cross-validation for LeNet and LeNet+ Architectures on Daim-
ler dataset

Image modality CNN
Initial Learning Rate

Iterations
Specific Averaged

Intensity
LeNet 0.01 1.5e-05 158640

LeNet+ 0.001 1.2e-05 119040

Depth
LeNet 0.01 1.93e-04 208320

LeNet+ 0.001 1.014e-05 208320

Optical Flow
LeNet 0.01 1.5e-04 158640

LeNet+ 0.01 1.2e-05 158640

(a) Training and holdout validation using the same settings for the learning algo-
rithm (RMSprop with RMS-decay, τ=0.98), for the learning rate policy (POLY
with power, ρ=0.75) and a batch size=64 for all three modality-specific CNNs;

(b) Training and holdout validation using optimal modality-specific hyper pa-
rameter settings for each CNN. For the Intensity modality: RMSPROP with
RMS-decay, τ=0.98 and POLY with power, ρ=0.75; for the Depth modality:
SGD with gamma, γ=0.99; momentum, µ=0.89 and EXP; for the Optical Flow
modality: ADADELTA with momentum, µ=0.89 and FIX learning rate policy
(see Section V.B);

(c) Training and k-fold cross-validation method using the algorithm settings from
point (a);

(d) Training and k-fold cross-validation method using the algorithm settings from
point (b);

The holdout validation in (a) and (b) approaches makes it possible not only to fit
the optimal initial learning rate, but also to verify that 29760 iterations avoid un-
der and over fitting. The k-fold cross-validation in (c) and (d) approaches started
learning with specific initial learning rates for each modality CNN based on LeNet
and respectively LeNet+ architecture for all ten train/valid folds. For each fold and
modality CNN we considered the final learning rate for 29760 iterations. The op-
timal initial learning rate value for each modality CNN are obtained by averaging
the final values from prior training folds. These optimal values are used to initialize
the training of each modality CNN in a holdout validation method. This makes it
possible to find out the optimal number of iterations for the last CNN within each
InCML model. The optimal hyperparameter values used in the last learning process
are depicted in Table 1.8.

As shown in Table 1.7, the InCML learning approach based on the LeNet ar-
chitecture with the holdout validation method and RMSPROP - POLY settings, per-
forms slightly better than classical uni-modal learning for all image modalities, but
the improvements are statistically significant only for the Optical Flow modality.
The LeNet+ architecture we have proposed, with the K-fold cross-validation method
and optimal specific learning settings, performs better than the classical learning
approach, for all image modalities and the improvements are statistically signifi-
cant for all image modalities: ∆ACCI =0.915%, ∆ACCD=1.632%, ∆ACCF=3.435% (see
Table 1.7). Moreover, this approach is more flexible, allowing for adaptive settings
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according to each CNN classifier whereas the correlated cross-modality method re-
quires using a single CNN model and therefore the same learning settings.

1.4.5 Early-Fusion vs Late-Fusion with Classical Learning method

The training and testing were carried out on Daimler stereo vision images of 36 x 84
pixels with a 6-pixel border around the pedestrian image crops in three modalities:
Intensity, Depth and Optical flow, to allow fair comparisons [EESG10].

We use 84577 samples for training, 75% of which were for learning, 25% for val-
idation and 41834 for testing. The best performances optimized on the validation
set were acquired with 208320 epochs and 0.01 learning rate.

Intensity Depth Flow Early-Fusion Late-Fusion
AUC 96.39% 87.08% 88.24% 89.88% 99.21%
IC/2 ±0.08 ±0.15 ±0.16 ±0.14 ±0.04

Table 1.9 – Single-modality vs. multi-modality on Daimler testing set using images of 36 x
84 pixels.

In Table 1.9 we show the AUC obtained with single-modality versus multi modal-
ity. The best performance with single modality is obtained for intensity (96.39%)
followed by Depth and Optical Flow. For the multi-modality architectures, the late-
fusion solution we propose not only outperforms all the single modality classifiers
but also the early fusion solution. This improvement is statistically significantly
since the confidence intervals are disjoint. These performance are also shown in
the ROC curves (see Fig 1.11).

Figure 1.11 – Single-modality vs. multi-modality ROC classification performance on Daim-
ler testing dataset using images of 36 x 84 pixels. FPR at 90% detection rate.

The classifier system proposed in [EESG10] obtains an FPR of 0.0125% at 90%
detection rate with their SVM early-fusion model on Daimler dataset. Therefore
our late-fusion model significantly improves the classification performance with ∆

FPR=0.0085%. However the best classifier on the Daimler dataset carried out with
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HOG+LBP/MLP, Monolithic HOG classifier (Intensity + Depth + Flow) [EG11], al-
lowed an FPR of 0.00026% at 90% detection rate. This system used features, which
are extracted explicitly and made the training more efficient while the CNN classi-
fier has to extract implicit features and requires several samples for training.

Since the SVM late fusion model did not exceed the best Daimler pedestrian
classifier, we picked to handle only the MLP as in [EG11] in our next late-fusion
analyses to enable for an evenhanded comparison.

1.4.6 Late-Fusion with Classical vs Cross-Modality Learning using
LeNet and LeNet+ CNN architectures

The late fusion approach was investigated in two ways using MLP: with the LeNet
and respectively with the LeNet+ architecture we proposed, both on the non-occluded
pedestrian and also on the partially occluded pedestrian data sets.

First, all the models were trained using the same settings with the incremen-
tal cross-modality approach. We chose the RMSPROP with the POLY settings since
they allowed for the best results on the Intensity modality. Then, optimal specific
parameters (selected from the validation set) were used to learn the CNNs through
the incremental cross-modality model, and consequently the RMSPROP with the
POLY settings for the Intensity modality, the SGD with EXP settings for the Depth
modality and ADADELTA with FIX settings for the Flow modality.

The LeNet+ architecture performs statistically better than LeNet for both non-
occluded (see Table 1.10) and partial-occluded (see Table 1.11) Daimler dataset not
only with classical learning but also for the incremental cross-modality learning.
Indeed the confidence intervals are disjoint.

In Tables 1.10 and 1.11 we show that the performance obtained with incremen-
tal cross-modality using the best specific modality learning settings are statistically
better than those obtained with the same learning settings. The incremental cross-
modality learning is an efficient solution not only with the single modality classi-
fiers, but also with the late-fusion scheme, since its performance is statistically bet-
ter than late fusion with classical learning.

The improvements brought by non-occluded pedestrian and partially occluded
pedestrian over the Daimler datasets are respectively:

• ∆ACCnon−occl uded = 1.1034%;

• ∆AUCnon−occl uded = 1.5047%;

• ∆ACCpar ti al l y−occl uded = 5.281%;

• ∆AUCpar ti al l y−occl uded = 5.497%

The improvements are higher for partially-occluded pedestrian recognition than
for non-occluded pedestrian recognition. This result proves the robustness of our
models. These assessments are also drawn in the ROC curves (see Figure 1.12). We
observe that the ROC curves obtained with the InCML based models with K-Cross
and specific settings (SP) are statistically better than all the other approaches but
the improvement obtained with LeNet+ vs LeNet is limited.
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Table 1.10 – The performance with late fusion on Non-Occluded Pedestrian Daimler Testing
Set. The results in bold are statistically better than those obtained with Classical Uni-Modal
Learning. SM=Same Settings, SP=Specific Settings, K-Cross=K-fold Cross-Validation.

CNN Late-fusion Trained on AUC ± CI ACC ± CI F1-Measure ± CI
LeNet

Classical Learning
SM 97.040(162)% 97.460(150)% 97.3100(1609)%

LeNet+ SM 97.560(153)% 97.970(140)% 97.4600(1565)%

LeNet
Incremental Cross
Modality Learning

SM 97.200(158)% 97.620(146)% 97.4900(1556)%
SP 97.47(15)% 97.690(143)% 97.5400(1540)%

SP; K-Cross 98.26% ± 0.125% 98.29%± 0.124% 98.60% ± 0.1168%

LeNet+
Incremental Cross
Modality learning

SP; K-Cross 98.811% ± 0.1039% 98.817% ± 0.1036% 99.11% ± 0.0934%

Table 1.11 – The performance with late fusion on Partially Occluded Pedestrian Daimler
Testing set. The results in bold are statistically better than those obtained with Classical Uni-
Modal Learning. SM=Same Settings, SP=Specific Settings, K-Cross=K-fold Cross-Validation.

CNN Late-fusion Trained on AUC ± CI ACC ± CI F1-Measure ± CI
LeNet

Classical Learning
SM 78.130(489)% 81.110(463)% 80.6600(4677)%

LeNet+ SM 84.930(423)% 82.490(450)% 82.4800(4502)%

LeNet
Incremental Cross
Modality Learning

SM 78.360(487)% 80.480(469)% 79.5700(4775)%
SP 78.400(535)% 81.300(461)% 80.8700(4658)%

SP; K-Cross 82.88% ± 0.446% 85.09% ± 0.421% 84.65% ± 0.4269%

LeNet+
Incremental Cross
Modality Learning

SP; K-Cross 86.12% ± 0.409% 88.38% ± 0.379% 88.34% ± 0.3801%

1.4.7 Late-Fusion with Classical vs Incremental Cross-Modality Learn-
ing using AlexNet and VGG-16 CNN architectures

The architecture involves three independent InCML-based classifiers which are fed
with a specific modality among Intensity, Depth and Optical Flow, and an MLP
which discriminates between pedestrians (P) and non-pedestrians (P) using proba-
bilistic class estimates provided by each InCML classifier. The last layer of each CNN
provides the probability output scores of Intensity Pr(I), Depth Pr(D) and Optical
Flow Pr(F). The MLP includes three neurons in the input layer, one hidden layer of
100 neurons, and 2 neurons in the output layer. The ReLU function with a Stochas-
tic Gradient Descent solver and a constant learning rate of 1e-07 were used for the
weights optimization.

The learning and testing were carried out on Daimler [EESG10] stereo vision im-
ages of 48 x 96 pixels with a 12-pixel border around the pedestrian images extracted
from three modalities: Intensity, Depth and Optical Flow.

The learning and testing processes operate on AlexNet and VGG-16 using orig-
inal (default) and optimized settings respectively. For the learning with the incre-
mental cross-modality and classical methods, we use RMSPROP with POLY settings
for all CNNs with the same learning rate (0.0001). The setting optimization consists
in removing the crop of size features, reducing the number of outputs (from 96 to
20), decreasing the kernel size (from 7 to 5) and minimizing the stride (from 4 to 1 for
AlexNet and from 2 to 1 for VGG-16) in the first convolution layer. We also marked
down the number of outputs (from 4096 to 2048) in the last two Fully Connected
(FC) layers for AlexNet and respectively in the previous three FC layers (from 4096
to 2048 in the FC6 and FC7 respectively from 1000 to 500 in the FC8) for VGG-16.

The complexity of the classification system is assessed by the False Positive Rates
(FPR) using a True Positive Rate (TPR) of 95% and a Confidence Interval (CI) to prove
whether one model is statistically better than another one. The results, given in
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Table 1.12 – Comparison of our models with the state-of-the-art with the false positive rate
at 95% True Positive Rate on Daimler dataset

Method
Pedestrian

DataSet
FP Rate ± CI

Deep DP-BM [OW12]
Partially

Occluded

0.25 ± 0.0043%
HOG/linSVM MoE [EESG10] 0.20 ± 0.0040%

L+; InCML; K-Cross; SP 0.124 ± 0.0033%
Deep DP-BM [OW12]

Non
Occluded

0.05 ± 0.0021%
HOG/linSVM MoE [EESG10] 0.0302 ± 0.0016%
HOG+LBP/MLP MoE [EG11] 0.0035 ± 0.00056%

L+; InCML; K-Cross; SP 0.0016 ± 0.000382%

Table 1.13, allow for the following comparisons on the Daimler data sets:

• Default vs. optimized settings: The optimization method presented allows
statistically significant improvement for both CL/InCML methods and AlexNet,
VGG-16 architectures up to ∆= 0.4925%

• Incremental Cross-Modality Deep Learning (InCML) vs. Classical Learning
(CL): With the optimized settings the results obtained with InCML are statis-
tically better than those achieved with the CL, but only with AlexNet on the
partially occluded pedestrian Daimler dataset and with VGG-16 on the non-
occluded pedestrian Daimler dataset.

1.4.8 Comparisons with the state-of-the-art methods

We choose to compare our best classifier LeNet+ with Incremental Cross-Modality
learning with specific learning settings and the K-fold Cross Validation method (L+;
InCML; K-Cross; SP) with the state-of-the-art classifiers provided on the Daimler
data sets. These classifiers are based on a mixture of experts (MoE) with handcrafted
features HOG/linSVM [EESG10] and respectively HOG+LBP/MLP [EG11] within a
late fusion of Intensity, Depth and Optical Flow modalities. We also considered for
comparison the best Deep models provided on the Daimler dataset, based on De-
formation Part and Boltzmann Machine (Deep DP-BM) [OW12].

For the comparison, we cannot draw the ROC curves of these classifiers since the
algorithm’s source code is not provided, nor is a detailed explanation of the learning
methodology given. Thus, no information is given concerning the learning settings
for MLP (e.g., learning rate, number of iterations), nor for SVM (e.g., penalty param-
eter C of the error term, tolerance for stopping criteria, loss function) or how those
hyper-parameters were optimized. Since we do not know how the learning set was
shared between the training and validation sets and whether a cross-validation or
a holdout validation technique was used, we cannot reproduce the classification
method in a fair manner.

Therefore, to assess the performance of our best classifier (L+; InCML; K-Cross;
SP), we compute the false positive rates (see Table 1.12) using a true positive rate of
95% as a frequent reference point using the interpolation method. This target al-
lows a fair comparison with the cited state-of-the-art pedestrian classifiers on both
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Table 1.13 – Comparison of AlexNet and VGG-16 with the state-of-the-art on Daimler dataset

Pedestrian
Dataset

Method and Settings
TPR
90%

TPR=95%
FPR ± CI

Partially
Occluded

(p-occ)

AlexNet

Default-CL 0.73 0.8671 ± 0.0034%
Default-InCLM 0.712 0.7126 ± 0.0037%

Optim-CL 0.137 0.2363 ± 0.0042%
Optim-InCLM 0.105 0.1920 ± 0.0039%

VGG-16

Default-CL 0.597 0.7360 ± 0.0044%
Default-InCLM 0.605 0.7704 ± 0.0042%

Optim-CL 0.447 0.6495 ± 0.0047%
Optim-InCLM 0.457 0.6714 ± 0.0047%

HOG/linSVM MoE [EESG10] 0.175 0.20 ± 0.0040%
Deep DP-BM [OW12] 0.216 0.25 ± 0.0043%

Non
Occluded
(non-occ)

AlexNet

Default-CL 0.328 0.4465 ± 0.0048%
Default-InCLM 0.362 0.4939 ± 0.0048%

Optim-CL 0.0006 0.0011 ± 0.00031%
Optim-InCLM 0.0009 0.0014 ± 0.00035%

VGG-16

Default-CL 0.151 0.2531± 0.0042%
Default-InCLM 0.125 0.2150± 0.0039%

Optim-CL 0.011 0.0296± 0.0016%
Optim-InCLM 0.0078 0.0236± 0.0015%

HOG+LBP/MLP MoE [EG11] 0.0002 0.0035 ± 0.00056%
HOG/linSVM MoE [EESG10] 0.011 0.0302 ± 0.0016%
Deep DP-BM [OW12] 0.007 0.05 ± 0.0021%

partially-occluded and non-occluded pedestrian Daimler data sets. We also com-
puted the confidence intervals (CI) with a risk level of 0.05 to allow a significant
statistical analysis. Our model outperforms both the handcrafted-features MoE and
deep DP-BM models.

The improvements obtained with our classifier (L+; InCML; k-Cross; SP) com-
pared with all these models are statistically significant on both partially occluded
and non occluded data sets since the confidence intervals are disjoint:

• ∆FPR MoEpar ti al l y−occl uded =0.0484%;

• ∆FPR MoEnon−occl uded =0.0019%;

• ∆FPR DP-BMpar ti al l y−occl uded =0.126%;

• ∆FPR DP-BMnon−occl uded =0.076%;

It is interesting to note that the improvement obtained with our model is more sig-
nificant for the partial-occluded task for both the handcrafted-features and deep
models. However, our model needs to be validated on more extensive datasets and
various applications (multiclass road obstacle detection, traffic collision risk assess-
ment).

The improvements obtained with optimized settings on TPR=95% based on Alex-
Net using the InCML method approach are statistically significant on both partially-
occluded and non-occluded data sets since the confidence intervals are disjoint:
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(a) Non Occluded Pedestrian Data Classification

(b) Partially Occluded Pedestrian Data Classification

Figure 1.12 – The ROC classification performance on Daimler testing dataset; where
L=LeNet Architecture, L+= Extended LeNet Architecture, CL=Classical Learning method,
HO=Holdout validation, SM=Same Settings, SP=Specific Settings, K-Cross=K-fold Cross-
Validation.

• ∆FPR MoEp−occ =0.008%;

• ∆FPR MoEnon−occ = 0.0024%;

• ∆ FPR DP-BMp−occ =0.0489%;

• ∆FPR DP-BMnon−occ =0.076%.

On the other hand, the method used AlexNet and VGG-16 do not outperform
the method [EESG10] at TPR=90%. However, [EESG10] was only analyzed on the
non-occluded pedestrian dataset. Our approach was learnt on the entire dataset
which includes occluded and non-occluded pedestrian samples. It is to be noted
that the AlexNet obtained better results than VGG-16 on the Daimler data sets, this
highlighting that a huge architecture does not always achieved better results.
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1.5 Conclusion

In this chapter, we systematically depicted different cross-modality learning ap-
proaches of various methods based on Convolutional Neural Networks for pedes-
trian recognition:

• We studied three methods of integrating different image modalities (Intensity,
Depth, Optical Flow) to improve the classification component. Two methods
of training were analyzed:

1. Classical Training;

2. Cross Modality Training;

• We studied how learning representations from one modality would enable
prediction for other modalities, which is termed cross-modality learning. Four
approaches were proposed:

1. a particular cross-modality learning (PaCML);

2. a separate cross-modality learning (SeCML);

3. a correlated cross-modality learning (CoCML);

4. an incremental cross-modality learning (InCML);

• We studied two different fusion schemes:

1. Early Fusion;

2. Late Fusion;

We presented an early fusion versus late fusion comparison on the non-occluded
Daimler stereo vision dataset. The early fusion approach integrates three image
modalities (Intensity, Depth and Optical Flow) by concatenating them to learn a sin-
gle CNN. The late fusion approach consists in fusing the probabilistic output scores
of three independent CNNs, trained on different image modalities (Intensity, Depth
and Optical Flow) by an MLP classifier.

We concluded that the early-fusion approach is less efficient and robust than the
late-fusion model. Moreover, the early-fusion model requires high image calibra-
tion and synchronization. The early-fusion training method is more constrainable
since, for a given image frame, it needs an item for each modality, and therefore
the classifier requires more samples to learn the problem. With the early-fusion
model, it is impossible to take advantage of cross-dataset training methods, by us-
ing modality images from different unimodal and/or multi-modal datasets where
all the modalities involved are not acquired and/or annotated. The early fusion
method does not allow one to improve the learning by extending the number and
the variety of items through cross-modality learning.

The particular cross-modality learning could be extended for an automatic an-
notation method of new modality images. Incremental cross-modality learning cou-
ld be used when there are not enough annotated images in each modality to im-
prove the classification performances. The separate and correlated cross-modalities
learning models do not allow for statistically significant improvements since they
require the same learning settings for all modality models and, for the second one
(CoCML), the same image frame for each modality.
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The effectiveness of those methods has been analyzed through various perfor-
mance measures with statistical coefficients (Confidence Intervals, Correlation Co-
efficients, Structural Similarity Index). Incremental cross-modality learning based
on modality transfer learning is better than both the separate and correlated cross-
modality learning models. It also improves the classification performances, in con-
trast to classical learning of uni-modal CNNs, through late-fusion designed on the
Daimler dataset. We assume that the incremental method is the promising cross-
modality learning model. Indeed, this cross-modality learning method is more flex-
ible than the others we analyzed since it could be used with different learning set-
tings adapted for each image modality. In order to improve its performances, we
proposed a new CNN architecture called LeNet+ which outperforms the state-of-
the-art pedestrian classifier for both non-occluded and partially-occluded pedes-
trian Daimler dataset. However, those cross-modality learning methods have to be
validated not only for pedestrian classification, but also for pedestrian unit action
recognition, pedestrian detection and tracking.

The enhancements proposed in LeNet+ allow us to validate the cross-validation
learning methodology and chose from the proposed models (PaCML, SeCML, CoC-
ML, InCML) the most promising one on a multi-modality classification task on the
Daimler dataset. The InCML model could be used not only for an ADAS system but
also for a wide variety of learning components with a multi-modality system within
complex multi-class classifiers.

Future work, we are planing to work with CNNs designed for multi-class detec-
tion (SSD, Faster RCNN, R-FCN) on different databases. In addition, we intend to
apply the promising InCML model for the classification and detection of other road
objects (traffic signs and traffic lights) and road users (vehicles, cyclists).

In the next Chapter, the Incremental Cross-Modality Deep Learning approach
is applied in the pedestrian detection task and pedestrian action recognition issue.
Its evolution and advancement using complicated and huge detector CNN has been
deeply investigated.
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2.1 Introduction

The ability to detect and classify objects is the fundamental requirement for design-
ing intelligent application systems, like autonomous vehicles, and driver assistance
systems.

In the first chapter, we analyzed approximately the first two components from
our main objective: the Perception and the Identification/Fusion. The Perception
component involves the stereo vision dataset based on the Daimler dataset [EESG10]
while the Identification/Fusion component use the environment information pro-
vided from the prior component and classify the information, (distinguish between
pedestrian and non-pedestrian) based on our cross-modality deep learning approa-
ches. The Identification/Fusion component involves even detection task. Detection
is a process that involves the classification task in order to categorize and locate all
known content in the scene. Thus, in this chapter, we study the pedestrian detection
component, including not only the pedestrian detection task but also the pedes-
trian action-unit classification using our Incremental Deep Learning Approach, de-
scribed in the previous chapter (see Figure 2.1).

The detection component raises several problems like viewpoint variation, illu-
mination, occlusion, scale, deformation, background clutter, and intra-class varia-
tion. The objects of interest appear in highly dynamic and cluttered environments
and have a wide range of looks, due to body size and posture, clothing, viewpoint,
and outdoor lighting conditions. The pedestrians must be detected even if they
stand far away from the camera, and thus appear rather small in the image, at low
resolution. A significant complication comes from the moving vehicle when one
does not have the luxury to use simple background subtraction methods (such as
those used in surveillance applications) to obtain a foreground region containing
the moving obstacle (i.e. pedestrian, vehicle). Furthermore, pedestrians can exhibit
highly irregular motion.

Different pedestrian detectors have been developed until now, but in current
research, deep learning neural networks, including Convolutional Neural Networks
(CNNs), like Fast R-CNN [Gir15], Faster R-CNN [RHGS15a], YOLO [RDGF15], SSD
[LAE+15] have frequently led to an enhancement in detection performance, due to
their discriminatory features for each raw pixel proposed.

Furthermore, the deep learning object detection mentioned above jointed with
differnet backbones (e,g, VGG [SZ14], AlexNet [KSH12a], RestNet [HZRS15], Google-
Net [SLJ+14]), have obtained the best performances for object detection issue.

The difficulty of deep learning approaches is that they require significant data
samples and computing power, particularly for the off-line learning process, but
also, to a lesser extent, for the on-line detection applications.

A considerable dataset is needed not only to train and test the detection or the
classification system components but also to measure its overall performance. The
dataset has to cover a broad range of pedestrian appearances captured in diverse
environmental conditions: winter, spring, summer, autumn, heavy rain, fog, with
different illumination/contrast levels that can appear due to the position of the sun
(sunrise, middle of the day, sunset, shadows). Different occlusion situations give
special cases that must be captured in the dataset. Hence, we use the JAAD dataset
because its pedestrians are annotated from various environmental conditions.

A real-world pedestrian detector has to take into account that most pedestrians
(70%) are occluded in at least one frame (especially children in pushchair and old
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Figure 2.1 – The main architecture of our system. In red are the issues investigated in the
first chapter. In blue is the problems studied in this chapter.

persons), underscoring the importance of detecting occluded people; the fraction of
occlusion can vary significantly (heavy 35%, full 44%); over 97% of occluded pedes-
trians belong to just a small subset of the hundreds of possible occlusion types. In
this chapter, we use out Incremental Deep Learning (presented in the first chap-
ter) in order to improve the detection/classification performance for occluded and
partial occluded based on JAAD [KRT16] dataset.

Since we are planning to use our Incremental Cross modality deep learning ap-
proach in the detection task, we need to use three image modality (Intensity, Depth,
and Optical Flow). The main problem of the JAAD [KRT16] dataset is that it pro-
vides only the RGB image modality. This limitation leads us to use the RGB instead
of Intesity and to find a method to extract the Optical Flow and Depth from JAAD
dataset. This problem is not very difficult for Optical Flow since we have the frames
T and T-1 while for Depth image modality usually needs a stereo camera. Neverthe-
less, we wondered could we extract the Depth modality using the frames T and T-1
from JAAD dataset? How this representation influences the detection/classification
performance using the InCML approach? Hence in this chapter, we investigate our
InCML approach using RGB, Optical Flow, and Depth for the detection issue and
also validate this method for the detection task.

More than that, in this chapter we propose even a pedestrian detection system
able also to recognize pedestrian actions, which is in contrast to classical systems
which only discriminate between pedestrians and non-pedestrians from other road
users.

This approach is a preliminary experiment before the pedestrian action predic-
tion task, the reason that we investigate it independently. We consider the pedes-
trian action detection task necessary, even if it detects the action pedestrian at time
T=0 because it could offer pertinent information to the diver/car to act in accor-
dance with the pedestrian’s action at that time. For instance, the pedestrian sits
on a bench, and the car usually moves on the road. In this case, the detector re-
turns the pedestrian’s action at the current moment. The pedestrian’s action does
not represent a dangerous situation so that the car can continue its moves without
any limitation. On the other hand, there is also a dangerous situation where the
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pedestrian could stand in the middle of the road. To avoid a collision in this dan-
gerous situation, it is necessary to take temporary account information, but for this
problem, we investigate in the next chapter.

We wondered what happens if the pedestrian is walking along the street (there
is no footpath/crosswalk) or the pedestrian already passed the road, and maybe
he/she suddenly decide to return. We wondered if could we make a clear distinc-
tion between the pedestrians who are planning to cross the street and then cross
the road and the pedestrian who starts to cross the street but for a different reason
he/she stops.

We consider that the JAAD annotations do not adequately cover all the pedes-
trian action/intention. These particularly cases struggle us to derivate our annota-
tion in order to fulfill our thesis objectives. Therefore, according to the specifica-
tions and annotations, we separate the pedestrian labels into four classes: pedes-
trian is preparing to cross the street, pedestrian is crossing the street, pedestrian is
about to cross the street, and pedestrian’s intention is ambiguous.

The contribution of this Chapter concerns detecting the pedestrian and pedes-
trian actions. To do so, we develop the following methodology relying on a deep
learning approach:

• The RetinaNet [LGG+17a] and Faster R-CNN with Inception V2 [HRS+16a] are
trained for pedestrian detection proposes using all pedestrian samples;

• Split the pedestrian Joint Attention for Autonomous Driving (JAAD) [KRT16]
dataset into four classes: pedestrian is preparing to cross the street, pedes-
trian is crossing the street, pedestrian is about to cross the street, and pedes-
trian’s intention is ambiguous.

• Pull out the Optical Flow (T, T-1) and Depth (T, T-1) from JAAD dataset.

• Train all pedestrian samples using the pedestrian action tags mentioned above
with the RetinaNet using RGB, Optical Flow and Depth motion for pedestrian
detection and action classification;

• Training the Incremental Cross-modality Deep Learning using RetinaNet for
pedestrian detection and pedestrian action recognition using RGB, Depth and
Optical Flow.

The Chapter is organized as follows: Section 2 outlines some existing approaches
from the literature and gives our main contribution. Section 3 presents an overview
of our system. Section 4 describes the experiments and the results on the JAAD
dataset. Finally, Section 5 presents our conclusions.
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2.2 Related Work

Pedestrian detection has been widely investigated in various research tasks because
is one of the most significant issues in self-transportation and driver assistance sys-
tems [BOHS14, ZBO+16].

These detectors can be analyzed from different points of view since they are sit-
uated at the confluence among Machine Learning, Computer Vision and Intelligent
Vehicles domains.

The most detector algorithm used in the computer vision is the sliding window.
In the context of computer vision, a sliding window is a rectangular region of fixed
width and height that slides several windows across an image. For each of these
windows, we employ an image classifier to determine if the window has an object
that interests us.

Pedestrian detection approaches using sliding window algorithm and various
predefined feature vector models (handcrafted feature models) such as Local Binary
Patterns (LBP) [BJNL13], Scale Invariant Feature Transform [VGVZ09b], Histograms
of Oriented Gradients (HOG) [DT05a], Integral Channel Features [DTPB09] followed
by a trainable classifier such as a Support Vector Machine (SVM) [FGMR10b], Multi-
Layer Perceptron (MLP), boosted classifiers [DTPB09], were the main methods used
for object detection and classification, until progress in deep learning outperformed
them for image classification issue [KSH12a].

Deep learning approaches do not require predefined features due to their ability
to learn features directly from the images. In deep learning methods, an outstand-
ing representation of the training set is more significant than predefined features to
obtain the high-grade performance for the target application.

Due to the possibility of computing parallelizing the learning process on GPU
platforms, the interest of using deep learning procedure in pedestrian detection task
has increased significantly in the last years.

Therefore, we review the main object detectors based on CNN as Fast R-CNN
[Gir15], R-CNN [GDDM13], Faster R-CNN [RHGS15a], YOLO [RDGF15], Single Shot
Multibox Detector (SSD) [LAE+15], and Region-Based Fully Convolutional Networks
(R-FCN) [DLHS16], followed by some related pedestrian detection work based on
deep learning approaches.

2.2.1 Object Detectors

The main difference between object detection and classification algorithms is that
detection algorithms try to locate the object of interest by drawing a bounding box
around it, in contras with classification algorithms which only name the object of
interest. The object detector algorithm takes various regions of interest from each
image, and links them up with a CNN classifier, which identifies the object within
that region. This approach could be very costly because the algorithm must local-
ize/draw a bounding box for each object found in the image, and it would not know
how many objects have already been detected.

To avoid the problem of picking a considerable number of regions, the R-CNN
[GDDM13] uses a selective search algorithm to extract only 2000 regions (called re-
gion proposals) from a given image frame. These regions are covered into a square
and inserted into a CNN that renders a 4096-dimensional feature vector as output,
and then the outputs are inserted into an SVM to classify the object from the pro-
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posed region. However, the R-CNN is limited by the selective search algorithm (it is
a fixed algorithm) which is costly in terms of training time and real-time processing.

Fast R-CNN [Gir15] managed to solved a few of the R-CNN’s drawbacks and
made the R-CNN faster. The method is related to the R-CNN algorithm, where in-
stead of supplying the region proposals to the CNN, it provides the input image to
the CNN to create a convolutional feature map. The region proposals are distin-
guished from convolutional feature map, with a RoI pooling layer. It warps them
into squares and insert into a fully connected layer. Then, it uses a softmax layer to
predict the class of the proposed region and the offset values for the bounding box.
Although the Fast R-CNN is indeed faster than R-CNN, its performance is hindered
by the region proposals.

Faster R-CNN [RHGS15a] eliminated the selective search algorithm and used
a separate network to predict the region proposals, the region proposal network
(RPN). This change makes it faster than previous detectors, and it can be applied for
real-time object detection. It operates similarly to Fast R-CNN. It provides the image
as an input to a convolutional network which provides a convolutional feature map.
The predicted region proposals are inserted into an RoI pooling layer which is then
used to classify the image within the proposed region and predict the offset values
for the bounding boxes.

R-FCN (Region-based Fully Convolutional Network) [DLHS16] increases the spe-
ed and detection performance by inserting position-sensitive score maps. It shares
the computations across every single output. Each position-sensitive score map de-
notes one suitable location of one object class. These score maps are convolutional
feature maps that have been trained to identify specific parts of each object. The
R-FCN is faster than Faster R-CNN and achieves comparable performance.

YOLO (You Only Look Once) [RDGF15] comes with a different approach for an-
alyzing the regions of interest. It uses a single CNN to predict the bounding boxes
and their class probabilities. It takes an image and splits it into an NxN grid, within
each part of the grid it takes M bounding boxes. YOLO is faster than Faster-RCNN,
but small objects in the image hinder its performance.

SSD (Single-Shot Detector) [LAE+15] gains high-speed processing over Faster R-
CNN by simultaneously performing the region proposals and region classification
in two independent steps. It uses a region proposal network to generate regions of
interest, then either fully-connected layers or position-sensitive convolutional lay-
ers to classify these regions, and finally predicts the bounding box and the class.

Currently, Faster R-CNN and SSD are the most widely-used object detection
models. The paper [HRS+16b] presents a reliable comparison between those de-
tection algorithms using different CNN classifiers (eg, VGG, ResNet, Inception) and
concludes that Faster R-CNN is slower but more accurate than SSD.

In [LGG+17a] a variation on SSD (called RetinaNet) is presented which uses the
ResNet [HZRS15] and Focal Loss [LGG+17b]. Its performance exceeds Faster R-
CNN [RHGS15a], R-FCN [DLHS16], SSD [LAE+15] and YOLOv1 [RDGF15]. Reti-
naNet uses ResNet for feature extraction then, a Feature Pyramid Network (FPN)
is used on top of ResNet to assemble a strong multi-scale feature pyramid from one
single resolution input image.

In our preliminary detection experiment we used the Faster R-CNN with Incep-
tion V2 and then we used it with the RetinaNet due to its height performance. We
also made a compression between these CNNs on the pedestrian detection and ac-
tion recognition issues and the RetinaNet get better results, the fact that we decided
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to used it in our work.

Pedestrian Detection Studies with Deep Learning

A comprehensive overview of different handcrafted feature models (classical ap-
proaches) and deep learning techniques used in the pedestrian detection task is
presented in [RR19]. The study also presents various data sets available for pedes-
trian detection and the classical and deep learning approaches used for pedestrian
detection, localization and tracking methods.

An overview of the main deep learning detection methods applied is the pedes-
trian detection task is presented in [BKFG19]. The authors optimize and adapt
Faster R-CNN [RHGS15b], R-FCN, SSD [LAE+15], and YOLOv3 for the EuroCity Per-
son dataset. They use Faster R-CNN, R-FCN, SSD with VGG-16 as the base clas-
sify network and YOLOv3 with the DarkNet framework and conclude that the vari-
ation of Faster R-CNN has high-grade performance on the EuroCity Person dataset
[BKFG19].

A recent state of the art for pedestrian detectors based on deep learning is pre-
sented in [BFF+19]. It shows a comparison and evaluation criteria of the traditional
hand-crafted features methods and Region based-CNN (R-CNN) detectors.

Pedestrian detection based on Region Proposal Network (RPN) and Boosted For-
est (BF) compiled on Caltech [DWSP09], INRIA [DT05a], ETH, and KITTI [GLSU13]
data sets is presented in [ZLLH16], where the method overcomes two Faster R-CNN
[Gir15] limitations for pedestrian detection: unusefulness to detect the small scale
pedestrians due to the insufficient resolution and the lack of a self-generating pro-
cess for hard negative samples.

In [LDWW18] the authors present a pedestrian detection based on a variation of
the YOLO network (where three layers were added to the original one), in order to
join the shallow layer pedestrian features to the deep layer pedestrian features and
connect the high, and low-resolution pedestrian features.

A variation of SSD-Inception CNN based on the SvDPed dataset is proposed
in [KML+18]. The method merges the RGB images, low-resolution Lidar, and the
distance between the camera and the detected object.

A deep unified model that conjointly learns feature extraction, deformation han-
dling, occlusion handling and classification evaluated on the Caltech and ETH data
sets for pedestrian detection was proposed in [OZL+17]. A solution for detecting
pedestrians at different scales evaluated on the Caltech dataset by combining three
CNNs, was proposed in [ESWG16]. A cascade Aggregated Channel Features detec-
tor is used in [XWK+15] to create pedestrian candidate windows followed by a CNN-
based classifier for assessment purposes on monocular Caltech and stereo ETH data
sets.

In [BDX16] a CNN to learn the features with an end-to-end approach is pre-
sented. This experiment focuses on the detection of small scale pedestrians on the
Caltech dataset.

These algorithms are applied only RGB image modality in order to detect the
pedestrians, while we also use this different image modality. Hence, we use the well
known Faster RCNN and SSD detector CNNs using the default setting with RGB,
Optical Flow and Depth modalities, and we also envolve out InCML model in the
pedestrian detection task.
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Pedestrian Action Detection Studies

Most of approaches for pedestrian action recognition are made from video data sets
which are not involved in the intelligent transportation field since these fields have
too few public data sets (Daimler, JAAD).

Hence, we present some related studies which are not involved in the trans-
portation field, but the approaches are significant for the pedestrian action recog-
nition issues, and then some related studies used in the transportation field.

Pedestrian Action Classification used in Machine Learning

A survey of pedestrian attribute recognition is presented in [WZY+19, KF18]. The
authors present the current models, technical issues, action databases and the eval-
uation protocols.

A multi-branch classification layer for each attribute learning with a convolu-
tional network is presented in [SSL15]. The authors assume a pre-trained AlexNet
as a basic feature extraction sub-network, and replace the last fully connected layer
with one loss per attribute using the KL-loss (Kullback-Leibler divergence based loss
function).

A deep neural network for pedestrian attributes recognition merged with hand-
crafted features, and correlations between attributes is proposed in [LCH15]. The
authors propose two approaches called DeepSAR and DeepMAR, where they use
AlexNet as a backbone network and change the output category specified in the last
dense layer into two to obtain the DeepSAR. The softmax loss is used to estimate the
final classification loss. The DeepMAR runs on the human image, and its attribute
label vectors concurrently and jointly estimate all the attributes through sigmoid
cross entropy loss.

A joint multi-task learning algorithm for attribute estimation using CNN, called
MTCNN, is introduced in [AWLJ16]. The authors assume multi-task learning to de-
termine the corresponding attributes. The CNN models assign visual information
among various attribute classes.

The algorithms, as mentioned above [SSL15, LCH15, AWLJ16], use the entire im-
ages as input and handle the multi-task learning for pedestrian actions recognition.
Another approach for solving this issue is to employ local and global visual infor-
mation to achieve more reliable efficiency. These algorithms use the localization of
body parts, which is achieved by an external part localization module, such as part
detection [LYT16, LCZH18, LHLT16], pose estimation [ZPR+13, LCZH18], poselets
[BMM11], or proposal generation algorithm [JWZ13,GGM14,LLYS18,LHLT16]. This
additional information improves the recognition performance significantly [BMM11,
JWZ13, ZPR+13, GGM14, LYT16, LCZH18, LHLT16, LLYS18].

In [LZT+17], the authors set out to encode multi-scale features from multiple
levels for pedestrian analysis using Multi-Directional Attention (MDA) modules call-
ed Attentive Deep Features for Pedestrian Analysis (HydraPlus Net). It contains
the Main Net (M-Net) which is a generic CNN and Attentive Features Net (AF-Net)
which involves multiple forks of multi-directional attention modules. The authors
use Inception-v2 as a based network classifier.

The DIAA (Deep Imbalanced Attribute Classification using Visual Attention Ag-
gregation) is an algorithm [SXK18] than combines the multi-scale visual attention
and focal weight loss. The primary purpose is to learn the attention maps in a
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Figure 2.2 – Pedestrian detection using the same tag for all pedestrians. P=Pedestrian

weakly supervised manner to improve the classification performance by guiding the
network. The authors use the features map from different layers.

Pedestrian Action Detection/Classification used in Intelligent Transportation Filed

In the transportation field, pedestrian actions recognition could be one of the po-
tential by essential building components since the detector not only discriminates
the pedestrian from other road users but also returns the pedestrian actions, the
fact that could influence the car road flow. The algorithms can analyze the human
body motion characteristics at a current stage of an activity using the techniques
mentioned earlier or convolutional neural network.

A framework of pedestrian detection and actions recognition merged with the
Euclidian distance, and joint entropy-based features selection is made in [SKA+17].
This framework was trained on the Mit, Caviar and BMW-10 datasets and tested on
the MSR Action dataset, INRIA, and CASIA datasets.

A comparative study on recursive Bayesian filters combined with Extended Kal-
man Filters (EKF) and Interacting Multiple Models (IMM) performed on four pedes-
trian motions (crossing, stopping, bending in, starting) is presented in [SG13a]. The
method performed on the Daimler dataset [SG13a].

A pedestrian action recognition method using the width and height of the boun-
ding box and centroid of human shape to determine the pose ratio based on the
Daimler dataset is presented in [HK16]. The method merges the pose ratio with
pedestrian walking speed, and direction and a spatial plan of the background in
order to perform action recognition.

A detection of pedestrians crossing the road is presented in [HJ15a]. The authors
use the optical flow to detect the movement of pedestrians, then use the KLT tracker
to find the corresponding features in progressive images followed by a classification
step which classifies each block into a motion region and finally a probabilistic gen-
eration of the foreground mask is applied, to find if the pedestrian is crossing or not
the street. The authors use the correlation of the pedestrian ratio for the width and
height of the detected bounding box and the ratio of the centroid position from the
ground level divided by the height of bounding box, to carry out the action recogni-
tion task.
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Figure 2.3 – Pedestrian detection using multiple tags. PPC: Pedestrian is Preparing to Cross
the street; PC: Pedestrian is Crossing the street, PAC: Pedestrian is About to Cross the street;
PA: Pedestrian intention is Ambiguous (PA)

2.3 Pedestrian Detection

In this section, we present our pedestrian detection component followed by the
steps that we use to extract the Depth image modality and Optical Flow image modal-
ity from JAAD [KRT16] dataset in order to use them in our Incremental Cross Modal-
ity Deep Learning approach descried in the first chapter.

2.3.1 Pedestrian Detection Component

In order to develop a pedestrian detection system it is mandatory to take into ac-
count three main components: the sensors employed to capture the visual road
environment, the processing elements, and the classification parts. In general, all
these components has to be together developed to achieve a high detection per-
formance, but seldom are specific items that could be investigated independently
according to the target application. We have examined the detection part by apply-
ing a generic object detector based on the public RetineNet [LGG+17a] and Faster
R-CNN [RHGS15a]. We have handled the Resnet50 CNN [HZRS15] and Inception
V2 CNN [HRS+16a] architectures for the classification task with the Keras public
open source RetinaNet implementation described in [LGG+17a] and with Tensor-
Flow public open source Faster R-CNN Inception V2 implementation described in
[HRS+16a]. All the training process are based on the JAAD [RKT17a] dataset, that
provides an annotation of pedestrians with behavioral tags and pedestrians without
behavior tags. We focus on finding whether the pedestrian is crossing or not cross-
ing the street at the current time (t=0) and the pedestrian detector is the first com-
ponent. The Jaad dataset [RKT17b, RKT18] descriptions and annotations present
various specific events and actions made by pedestrians before crossing the street,
thus we divide the pedestrian actions into four classes: pedestrian is preparing to
cross the street (PPC), pedestrian is crossing the street (PC), pedestrian is about to
cross the street (PAC), and pedestrian intention is ambiguous (PA). Moreover, the
JAAD dataset provides a unique id for each pedestrian in a given video.

We adopted four approaches for the training stage:

1. using all pedestrian samples where we consider all the annotation tags as a
pedestrian (P) (see Fig 2.2);

2. using the four proposed pedestrian tags mentioned above and taking into ac-
count only the pedestrian behaviors (PPC, PC, PAC, PA) (see Fig 2.3).

3. using the four proposed pedestrian tags mentioned above and taking into ac-
count both the pedestrian behaviors and the id according to JAAD [KRT16]
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Figure 2.4 – Pedestrian detection using pedestrian actions and id. e.g. pedestrian1 cross=
P1C, pedestrian2 preparing to cross=P2PC, pedestrian3 ambiguous=P3A

pedestrian annotations (e.g. pedestrian1 cross= P1C, pedestrian2 cross=P2C,
pedestrian3 ambiguous=P3A) (see Fig 2.4).

4. applying the Incremental Cross Modality Learning (InCML) using RGB, Depth
and Optical Flow (described in Chapter 1) on (1) and (2) approaches men-
tioned below (see Fig 2.5).

The JAAD dataset offers only the RGB image modality. In order to apply the In-
CML, we have to extract the Depth and Optical Flow image modality. In the this
chapter, we use RGB image modality instead of Intensity in the InCML approach
(see Fig 2.5).

Figure 2.5 – The InCML Pedestrian Detection Architecture

2.3.2 Depth Modality from JAAD Dataset

In order to obtain the Depth image modality, we use the public source code pro-
vided by OpenCV, which is based on the equivalent triangles method. The algorithm
is inversely proportional to the difference in distance of corresponding image points
and their camera centers.

disparity = x −x ′ = B f

Z
(2.1)

In this formula x and x’ express the distance between points in the image plane, B
represents the gap between two cameras and f signifies the focal length of the cam-
era. This values are already known and are set by default, but with the possibility of
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changes. We use the default values since we do not have available this information.
On other words, the equation mentioned above states that the depth of a point in a
scene is inversely proportional to the difference in distance of corresponding image
points and their camera centers. Therefore with this information, we can derive the
depth of all pixels in an image, which it finds corresponding matches between two
images.

We obtain the Depth image modality for the JAAD dataset by applying the code
mentioned above on the frame at times T and T-1 time (see Fig 2.6). We adjusted the
values of the number of Disparities at 32 and blockSize at 10 that helped us to get
better results.

Figure 2.6 – The JAAD Depth image modality sample

2.3.3 Optical Flow Modality from JAAD Dataset

In order to extract the Optical Flow from JAAD video data sets, we used the public
open source code "Python Dense Optical Flow," 1 code which was initially devel-
oped as part of the [PGD+17] project. It is a fast and reliable optical flow method
based on the Coarse2Fine warping method from Thomas Brox. It uses the conju-
gate gradient for solving large linear systems rather than Gauss-Seidel or SOR like
other public source codes. The conjugate gradient provides a matrix A which has
the concatenations decomposed of filtering and weighting. We obtain the optical
flow for the JAAD dataset by applying the code mentioned above on the frame at
time T and T-1 (see Fig 2.7).

1https://github.com/pathak22/pyflow
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Figure 2.7 – The JAAD Optical Flow image modality sample

2.4 Experiments

In this section, we present our set of experiments including setups and performance
assessment of our approaches.

2.4.1 Data setup

There are many different large-scale pedestrian detection data sets used in com-
puter vision and deep learning and mainly designed for automotive safety issue.
The main difference comes from the number of samples, image size, the way how
the data were captured (monocular, stereo, infrared, among others), the weather
condition, the context of the date and also what additional information provides
about pedestrian like bounding box, pedestrian behavior, pedestrian action, pedes-
trian ids etc. We highlight only a few of them which we consider that are the most
important ones, and we summarized the differences between them in the Table 2.1.

The purpose of the thesis is concerned with pedestrian action recognition and
pedestrian tracking for traffic collision risk assessment, more than pedestrian de-
tection, which is a preliminary step, we naturally decided to use the JAAD dataset
[RKT17a] in our experiments.

The experiments were performed on the JAAD dataset [RKT17a] because its data

Table 2.1 – Comparison of the pedestrian detection data sets.

Dataset
KITTI

[GLSU13]
Caltech

[DWSP09]
MPD

[HPK+15]
INRIA

[DT05a]
Daimler Mono

[EG09]
JAAD

[KRT16]
ESP

[BKFG19]
No ped. samples 12k 347k 86.2k 1.8k 72k 337k 238k

No frames 80k 250k 95k 2.5k 28.5k 82k 47k
OCC. Labels x x x x x

Temporal Corr. x x x x
Video sequences x x x x x x

Behavior data x
Context data x

Weather Variation x x
Geographical Variational x x
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was collected in usual urban road traffic environments for different locations, times
of the day, road and weather conditions. This dataset provides pedestrian bound-
ing boxes (BB) for pedestrian detection (including, for several of them, the pedes-
trian actions), pedestrian attributes for estimating the pedestrian behavior and traf-
fic scene elements. It has 346 video sequences (between 5 and 15 seconds long)
with an image resolution of 1920 x 1080 and respectively 1280 x 720 pixels recorded
in different urban environments [KRT16]. Moreover, it contains approximately 337k
pedestrian samples of which approximately 72.000 (18%) samples are tagged as par-
tially occluded BBs and 46000 (11%) samples as heavily occluded BBs.

We use all the pedestrian samples, including the partially and heavily occluded
pedestrians, for all training and testing processes.

2.4.2 Training protocol

We used the first 250 video sequences for the training process and the rest for test-
ing. The training and testing samples include also partially occluded and heavily
occluded BBs.

In [RKT17b, RKT18], the authors present a variety of pedestrian behaviors done
before crossing and after crossing the street and even when the pedestrian does not
cross the street. These behaviors were collected and annotated with different ac-
tion labels according to the pedestrian events for each pedestrian from all the video
sequences.

The events could be:

• the pedestrian completes to cross the street;

• the pedestrian has no intention to cross the road (e.g. sits on a public bench,
waiting for public transportation);

• the pedestrian does not cross the street (e.g the pedestrian has started to cross
the street but suddenly he/she is stopping).

For instance, if the pedestrian is going to cross the street, he/she can do a min-
imum of actions like standing, looking, and then crossing the street, or moving,
looking, and then crossing the street. The pedestrian actions applied before or dur-
ing one event could be different for each pedestrian, even if the event is the same.
Hence, according to these action annotations, we can observe there exists a typi-
cal pattern of actions timeline/succession for each pedestrian for each event (see
Figure 2.8).

Therefore, according to the specifications and annotations presented above, we
divide the pedestrian labels into four classes:

1. Pedestrian is Preparing to Cross the street (PPC), where the pedestrian is walk-
ing/standing, paying attention or not and changing or not its behavior before
crossing. In this case, the actions could be: moving, looking, standing, nod-
ing, glancing, hand waving, slowing down, and finally crossing the street. We
take into account all the actions up to the crossing event as being in the PPC
class. In this case, the pedestrian were definitely crossing the street after these
actions.

2. Pedestrian is Crossing the street (PC), where the pedestrian is observed from
the point of crossing until he/she has crossed the road. In this case, it is

55



CHAPTER 2. PEDESTRIAN DETECTION WITH ACTION CLASSIFICATION

Figure 2.8 – Timeline of events/actions whenever the pedestrian is going to cross the street.
This image was picked from JAAD [KRT16] dataset source and modified/updated to our re-
quirements.

mandatory to have a crossing action during this event but is not mandatory
to have a specific event before the crossing event. There are video sequences
where the pedestrians are annotated only from point of crossing the street.
The pedestrian behavior could involve other actions like looking, hand wav-
ing, speeding up, nodding, slowing down, glancing during this event.

3. Pedestrian is About to Cross the street (PAC), where the pedestrian is about to
cross and pays attention and responds according to the event. In this case, the
actions could be: moving, looking, standing, noding, glancing, hand waving,
slowing down, but the pedestrian will not crossing the street. The pedestrian
is definitely not crossing the street after these actions.

4. Pedestrian intention is Ambiguous (PA), where the pedestrian is walking or
standing, and his/her intention is ambiguous. In this case, the actions could
be: moving, looking, standing, glancing, speeding up. We consider all the ac-
tions after the pedestrian crosses the street. In this case, the pedestrian has
crossed the road or other events which do not present a risk situation.

2.4.3 The convolution neural network setups

We train the Convolution Neural Network (CNN) in three ways:

1. We train the CNN with all pedestrian samples where we consider all the an-
notation tags as a pedestrian (P);

2. We train the CNN with the pedestrian action tags mentioned above (PPC, PC,
PAC, PA);
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3. We train the CNN with the pedestrian actions tags (PPC, PC, PAC, PA) with the
pedestrian’s id for each pedestrian/video sequence according to JAAD pedes-
trian id annotations.

In this work we have to analyzed whether pedestrians cross and pedestrian do
not cross the street. Hence in the first 250 video sequences (using the original res-
olution, 1920x1080) we used for the training process. We have 24324 samples of
pedestrians who are preparing to cross the street (PPC), 51012 samples where pedes-
trians are crossing the street (PC), 14267 samples where pedestrians are about to
cross the street (PAC) and 5567 samples where th pedestrian’s intentions are am-
biguous (PA).

The pedestrian identifications were independently made for each pedestrian
and each video sequence [KRT16]. Hence, we have 13 pedestrian ids for pedestrians
who are preparing to cross the street (PPC), 13 ids for pedestrian which are crossing
the street (PC), 12 ids for pedestrians who are about to cross the street (PAC) and 11
ids for pedestrians whose intentions are ambiguous (PA).

We perform the CNN learning process during 48 hours on 2 GPU, with a batch
size of 1, using an initial learning rate value of 0.0005 with ADAM algorithm learning.

2.4.4 Testing protocol

The testing set used to assess the CNN model performances is independent of the
training dataset. It contains 105 video sequences. It has a total of 43420 samples,
where 12110 examples are pedestrians who are preparing to cross the street (PPC),
19157 samples are pedestrians who are crossing the street (PC), 1296 samples are
pedestrians who are about to cross the street (PAC) and 4857 examples where their
intention is ambiguous (PA).

The testing methodology consists in the following:

• testing independently the pedestrian detection component for each image
modality: RGB, Depth and Optical Flow;

• testing the pedestrian action detection;

• testing the Incremental Cross Modality pedestrian detection;

2.4.5 Evaluation protocol

The evaluation process for all the CNN models was done with Tensorflow Deep Neu-
ral Network Framework. The performances are assessed by the average precision
(AP) and mean average precision (mAP) for the detection part. The AP and mAP
values were computed using the TensorFlow metrics tool. The AP is calculated as
the area under the curve (AUC) of the Precision x Recall curve. It is the precision
averaged across all recall values between 0 and 1.

Precision = True Positive

All prediction detection
(2.2)

Recall = True Positive

All ground truths
(2.3)
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AP = 1

11

∑
r={0,0.1,....1}

ρi nter p(r ) with ρi nter p(r ) = max
r̃ :r̃≥r

ρ(r̃ ) (2.4)

The ρ(r̃ ) is the measured precision at recall r̃ .
Instead of using the precision observed at each point, the AP is obtained by in-

terpolating the precision only at the 11 levels taking the maximum precision whose
recall value is greater than r.

The AP is calculated only for each class, which has the detection-result higher
than 50% (Intersection over Union, IoU ≥ 0.50).

Intersection Over Union (IoU) estimates the overlap between the ground truth
bounding box (BBg r ) and the predicted bounding box (BBpr ). The IoU presents
whether a detection is correct (True Positive, IoU ≥ 0.5) or wrong (False Positive,
IoU < 0.5).

IoU = ar ea(BBg r ∩BBpr )

ar ea(BBg t ∪BBpr )
(2.5)

We calculate the margin of error (Confidence Interval - CI at 95 % confidence) to
evaluate whether one model is statistically better than another one.

CI = 1.96

√
P(100−P)

N
%. (2.6)

In this formulation, P represents the performance system (e.g., AP, mAP) and N
represents the number of testing samples.

2.5 Evaluation and Results

The experiments were performed on the JAAD dataset (on the original video size)
which provides only the RGB image modality. We extracted the Optical Flow and
Depth image modality in order to apply our Incremental Cross-modality learning
depicted in Chapter 1. We independently provide the results for the pedestrian
detection component for each image modality: RGB, Depth and Optical Flow (us-
ing the classical deep learning approach), followed by the pedestrian action results,
then the results for the Incremental Deep Learning approach applied on the pedes-
trian detection component and pedestrian action component.

2.5.1 Evaluation of the Uni-Modal Pedestrian Detection Compo-
nent

In order to test the detection performance, we carried out several experiments.

Table 2.2 – Our detection performances using one label. One label represents that all sam-
ples are tagged only as a pedestrian (without action recognition).

Approach Learning on Testing on mAP±CI

Classical
Unimodal

RGB RGB 56.05±0.93
Optical Flow Optical Flow 53.12±0.91

Depth Depth 46.5±0.85
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Figure 2.9 – The Uni-modal true positive detection performance on each image modalities.

Our detection results are summarized in Table 2.2. We observed that the detec-
tion performance obtained with the classical approach (using all samples as pedes-
trians) gives a good performance on the JAAD dataset since it has to distinguish the
pedestrian from other road users.

We obtained mAP=56.05% on the RGB modality followed by the Optical Flow
modality with mAP = 53.12% and finally the mAP = 46.50% for Depth modality. Ac-
cording the Figure 2.9, from 43420 testing samples, the classical detection approach
managed to detect 24437 RGB samples, 23139 Optical Flow samples, and 20190
Depth samples. We observe that the detection performance between RGB image
modality and Optical Flow are quite close. Based on this fact, we assume that data
which were obtained from different locations, times of the day, roads and weather
conditions affect the detection component according to each image modality.

2.5.2 Evaluation on Uni-Modal Incremental Cross-Modality Deep
Learning Pedestrian Detection

Since the incremental cross-modality learning (InCML) method is the most promis-
ing approach in Chapter 1, we decided to carry out more extensive experiments.
Thus, the InCML model was applied to the detection approach using RetineNet
[LGG+17a] on each image modality, RGB, Optical Flow, Depth. We kept the same
learning order as in Chapter 1 but instead of Intensity image modality, we used
RBG image modality. Hence, the RGB learning order in InCML approach starts with
Depth motility followed by Optical Flow and then RGB image modality. The Optical
Flow learning order for InCML is RGB, followed by Depth images and finally, Opti-
cal Flow image modality. The Depth learning order InCML is RGB, then Optical Flow
and, finally, Depth image modality.

The detection performance is presented in Table 2.3 and we obtained mAP=
59.65% on the RGB modality followed by the Optical Flow modality with mAP =
53.61% and finally the mAP = 45.28% for Depth modality. The InCML outperformed
the classical uni-modal detection approach on the RGB and Optical Flow image
modality, but its performance is statistically significant only for the RGB image modal-
ity ∆RGB=1.70.
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Table 2.3 – Our Classical vs InCML detection performances using one label. One label rep-
resents that all samples are tagged only as a pedestrian.

Approach Learning on Testing on mAP±CI

Classical
Unimodal

RGB RGB 56.05±0.93
Optical Flow Optical Flow 53.12±0.91

Depth Depth 46.5±0.85

InCML

Depthi +Optical Flowi +RGBi

i=1,n
RGB 59.65±0.96

RGBi +Depthi +Optical Flowi

i=1,n
Optical Flow 53.61±0.91

RGBi +Optical Flowi +Depthi

i=1,n
Depth 45.28±0.84

Figure 2.10 – The Incremental Cross Modal true positive detection performance.

In Fig 2.10, we present a comparison between true detection and false detec-
tion. We observed the significant accurate detection prediction is achieved only
with the InCML RGB modality since the performance obtained with the Optical flow
is better but not statistically significant. The highlight comes from the Depth image
modality, where its performance is worse than classical uni-modal. Although the
difference is not significant, we believe that this degradation result because we have
derived the Depth modality from mono camera videos.

The previous CNN directly influences this method because it is based on trans-
fer learning. The transfer learning takes the weight information from the previous
CNN, which has already been trained. The InCML approach achieves better results
due to this transfer learning technique. In the second and third learning steps, the
InCML takes more specific and optimal weight information according to the target
application. For instance, our target application is to detect pedestrians. If we use
the weight information from a CNN whose is target application was to detect 1000
objects, we will find a lot of information about the purpose (e.g., cars, plants, an-
imals) which does not correspond to the pedestrian detection target application.
The first CNN in the InCML approach is focused on taking into account only the
information required for the target application. Then the second and third will op-
timize only the data specific to its purpose.
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Table 2.4 – The comparison between Faster R-CNN Inception V2 and RetinaNet using the
classical unimodal approach on JAAD dataset. The labels represent: PPC= Pedestrian is
Preparing to Cross the street, PC= Pedestrian is Crossing the street, PAC= Pedestrian is About
to Cross the street and PA= Pedestrian intention is Ambiguous.

CNN Learning on Testing On
PC PPC PAC PA

mAP
AP

Faster R-CNN
Inception V2

RGB RGB 64.99 13.65 11.01 9.63 24.82

RetinaNet RGB RGB 65.57 17.67 13 9.22 26.36

However, this method is a generic model. It is more flexible, allowing for adap-
tive settings according to each CNN detector. It could be used and adapted for all
types of CNN, not only for a specific one.

2.5.3 Evaluation of Uni Modal Pedestrian Action Detection

In our first experiment, we made an analogy between RetinaNet [LGG+17a] and
Faster R-CNN-Inception v2 [ZLLH16] performances. The experiment was carried
out on the RGB image modality using multiple pedestrian tags, PPC, PC, PAC, PA.
We observed the RetineNet returned better performance than Faster R-CNN Incep-
tion v2 except for a PA case where the Faster R-CNN Inception v2 achieved a better
result (9.63 AP), but its performance is not statistically significant. The compari-
son between RetinaNet and Faster R-CNN performance is summarized in Table 2.4.
Since the RetinaNet returned a better result than Faster R-CNN Inception v2, we
decided to use it in the next experiments.

Table 2.5 – Our detection performances using multiple output labels. The labels represent:
PPC= Pedestrian is Preparing to Cross the street, PC= Pedestrian is Crossing the street, PAC=
Pedestrian is About to Cross the street and PA= Pedestrian intention is Ambiguous.

Approach Learning on Testing on
PC PPC PAC PA mAP

±CIAP AP AP AP

Classical
Unimodal

RGB RGB
65.57
±1.35

17.67
±1.36

13
±1.54

9.22
±1.63

26.36
±0.83

Optical Flow Optical Flow
62.87
±1.37

14.74
±1.26

1.00
±0.46

8.89
±1.60

24.13
±0.80

Depth Depth
52.34
±1.41

9.32
±1.04

2.55
±0.72

7.08
±1.44

17.82
±0.72

The detection performance using RetinaNet approach (using multiple pedes-
trian tags, PPC, PC, PAC, PA) is presented in Table 2.5. We observed that the de-
tection performance is worse than the classical pedestrian detection since it has to
distinguish the pedestrian from other road users and even its actions.

We archived 26.36 mAP using the RGB modality then 24.13 mAP using Optical
Flow and finally 17.87 mAP using the Depth modality.

The main objective of this approach is to find out if a pedestrian is crossing, or
whether the pedestrians action presents a critical situation. The most crucial cause
for the pedestrian and drivers is when the pedestrian is crossing, and the car cannot
stop or avoid it in time.
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According to Table 2.5 and Figure 2.15 we observe that the detection perfor-
mance when a pedestrian is crossing the street (PC) is the highest one for all im-
age modalities (65.57% AP for RGB, 62.87% AP for Optical Flow, 52.34% for Depth
modality).

This leads us to believe that if a pedestrian detection system returns even the
pedestrians current action, the vehicle can act according to the situation and also to
avoid a collision.

The PC detection’s performance is followed by a pedestrian who is preparing to
cross the street (PPC) (17.67% AP for RGB, 14.74% AP for Optical Flow, 9.32% for
Depth modality),a pedestrian is about to cross the street (PAC) (13.00% AP for RGB,
1.00% AP for Optical Flow, 2.55% for Depth modality), and finally the pedestrian’s
intention is ambiguous (PA) (9.22% AP for RGB, 8.89% AP for Optical Flow, 7.08% for
Depth modality). The highlight is in the PAC situation, where the Depth modality
achieved better performance than Optical Flow. We deem the Optical Flow per-
formance for the PAC situation is less than the Depth modality because PAC and
PPC configurations are too closer, impossible even for a human being to distinguish
between them. We have evaluated that the pedestrian action detection takes into

Figure 2.11 – Pedestrian Actions detection performance using ids. The horizontal values rep-
resent the pedestrian ids. The Vertical values represent the AP performances. PPC= Pedes-
trian is Preparing to Cross the street, PC= Pedestrian is Crossing the street, PAC=Pedestrian
is About to Cross the street and PA= Pedestrian intention is Ambiguous.

account even the pedestrian id according to JAAD annotations in order to unify the
deep learning step with tracking the pedestrians step (see Figure 2.16). Each pedes-
trian has a unique identifier on each video. For this method, we analyzed only on
the RGB image modality. Since its performance is too low (Figures 2.11 and 2.14), we
decided not to continue to experiment with other image modalities and detection
methods. We deem it is a better solution to apply a separate tracking algorithm or to
find a new solution for fusing the deep learning with the tracking issue (see Chapter
3).
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2.5.4 Evaluation of Incremental Cross Modality Deep Learnig Pedes-
trian Action Detection

We evaluate the pedestrian action detection using the incremental cross-modality
learning (InCML) since it is the most promising approach in Chapter 1.

We keep the same learning order as in Chapter 1 and in the previous InCML de-
tection method but instead of the Intensity image modality, we used the RBG image
modality.

The detection achievement is shown in Table 2.6. We obtained mAP=29.54%
on the RGB modality followed by the Optical Flow modality with mAP = 22.30% and
finally the mAP = 18.17% for Depth modality. The InCML outperformed the classical
uni-modal pedestrian action detection approach on all image modalities, but its
performance is statistically significant only for the RGB image modality ∆RGB=1.63.

The detection performance (see Table 2.6 and Fig 2.15) if a pedestrian is cross-
ing the street (PC) is the highest one for all image modalities (68.68% AP for RGB,
62.68% AP for Optical Flow, 53.35% for Depth modality), followed by pedestrian is
preparing to cross the street (PPC) (21.72% AP for RGB, 15.26% AP for Optical Flow,
10.60% for Depth modality), followed by pedestrian is about to cross the street (PAC)
(15.93% AP for RGB, 10.60% AP for Optical Flow, 4.33% for Depth modality), and fi-
nally pedestrian intention is ambiguous (PA) (11.82% AP for RGB, 9.90% AP for Op-
tical Flow, 6.20% for Depth modality).

We observe that the performance of the InCML detector is directly proportional
to the performances of each pedestrian action detection.

Table 2.6 – Our Classical vS InCML detection performances using multiple output labels.
The labels represent: PPC= Pedestrian is Preparing to Cross the street, PC= Pedestrian is
Crossing the street, PAC= Pedestrian is About to Cross the street and PA= Pedestrian inten-
tion is Ambiguous.

Approach Learning on Testing on
PC PPC PAC PA mAP

±CIAP AP AP AP

Classical
Unimodal

RGB RGB
65.57
±1.35

17.67
±1.36

13
±1.54

9.22
±1.63

26.36
±0.83

Optical Flow Optical Flow
62.87
±1.37

14.74
±1.26

1.00
±0.46

8.89
±1.60

24.13
±0.80

Depth Depth
52.34
±1.41

9.32
±1.04

2.55
±0.72

7.08
±1.44

17.82
±0.72

InCML

RGB RGB
68.68
±1.31

21.72
±1.47

15.93
±1.68

11.82
±1.82

29.54
±0.86

Optical Flow Optical Flow
61.68
±1.37

15.26
±1.28

10.60
±1.41

9.90
±1.68

24.61
±0.81

Depth Depth
53.35
±1.41

9.79
±1.06

4.33
±0.93

6.2
±1.36

18.17
±0.73
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2.5.5 Comparison of the Uni-Modal vs Incremental Cross Modality
Deep Learning Pedestrian Detection for Pedestrian Action De-
tection

The comparison between Uni-Modal Pedestrian Detection and Incremental Pedes-
trian Detection was made independently for each situation:

• Comparison of Uni-Modal Pedestrian Detection and Incremental Pedestrian
Detection using only one class (the first detection approach where the classes
is only Pedestrian=P) and using multiple class (the second approach, where
the classes are PC, PPC, PAC, PA);

• Comparison of pedestrian action detection for each imaging modality.

Comparison of Uni-Modal Pedestrian Detection and Incremental Cross Modality
Deep Learning Pedestrian Detection

Figure 2.12 – Comparison of Uni Modal Pedestrian Detection and Incremental Cross-
Modality Pedestrian Detection.

We observed from Fig 2.12 that the detection performance achieved with the
classical approach (using all samples as pedestrians) performs well on the JAAD
dataset since it has to identify the pedestrian from other road users. The second
approach (using multiple pedestrian tags), although it detects the pedestrians, can-
not be associated with the first method because it also instantly classifies the ac-
tion of the pedestrian during the detection step. Therefore its performance is lower
than the first classical detection approach. On the other hand, pedestrian detec-
tion using the multiple tags approach could be a starting point for a deep investi-
gation. This approach estimates the pedestrian actions at the current time (T=0)
and could be beneficial for developing a pedestrian prediction system. We can not
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compare our detection models with JAAD approaches [RKT17a] as our results are
not directly comparable. The authors made a classification for a specific pedestrian
action based on pedestrian attention information and used the only non-occluded
pedestrian samples [RKT17a]. Their approach is based on a variation of the AlexNet-
Imagenet CNN, where the input data are cropped beforehand.

For the majority of the image modalities, the InCML approach outperformed the
classical uni-modal detection for both patterns improvement with and without ac-
tion classification. In the first approach, the InCML obtained statistically significant
performance only for the RGB image modality (∆RGB=1.70) except for the Depth im-
age modality; the return is less than the classical approach.

In the second approach, InCML exceeded the classical uni-modal detection for
all image modalities, but the only notable performance was yielded for the RGB im-
age modality (∆RGB=1.63).

We conclude that the InCML detection method achieved statistically significant
results only for the RGB image modality because the JAAD dataset only offers mono-
vision RGB videos. We consider that to acquire high-grade performance for the
depth and optical flow, we require a more optimal and reliable algorithm to derive
those image modalities from monovision.

Comparison of Pedestrian Action Detection for each Imaging modality

Figure 2.13 – Comparison of Pedestrian Action Detection for each Imaging modality.

We observe from Fig 2.13 that the InCML pedestrian action detection using the
RGB image modality exceeds all detection modalities. Its achievement is statisti-
cally significant when the pedestrian is crossing the street (∆PCRGB=0.34) followed
by pedestrians who are preparing to cross the street (∆PCCRGB=1.66) and finally the
pedestrians who are about to cross the street (∆PACRGB=0.66). When the pedestrian
intention is ambiguous, the InCML outperforms the classical uni-modal approach,
but the performance is not statistically significant.

The InCML results using the Optical Flow image modality exceeds the classical
unimodal approach for PPC, PAD, and PA situations. Its performance is statistically
notable only for PAC (∆PACRGB=7.46). When the pedestrian is crossing the street,
the InCML achieved slightly lower performances than the classical unimodal ap-
proach.
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The InCML performance using the Depth image modality slight exceeds the
classical unimodal approach for PC, PPC, and PAC situations. Its performance is
not statistically significant. When the pedestrian intention is ambiguous, the In-
CML achieved slightly lower performances than the classical unimodal approach.

We consider that the dispersion of results is due to the power of optimization
and discrimination of the InCML method.
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Figure 2.14 – Pedestrian Action Detection performance using ids. The horizontal values rep-
resent the pedestrian ids. The Vertical values represent the AP performances. PPC= Pedes-
trian is Preparing to Cross the street, PC= Pedestrian is Crossing the street, PAC=Pedestrian
is About to Cross the street and PA= Pedestrian intention is Ambiguous.
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(a) Predicted Objects performance using Uni-
Modal Pedestrian for RGB image modality

(b) Predicted Objects performance using In-
cremental Pedestrian Detection for RGB im-
age modality

(c) Predicted Objects performance using Uni-
Modal Pedestrian for Optical Flow image
modality

(d) Predicted Objects performance using In-
cremental Pedestrian Detection for Optical
Flow image modality

(e) Predicted Objects performance using Uni-
Modal Pedestrian for Depth image modality

(f) Predicted Objects performance using In-
cremental Pedestrian Detection for Depth im-
age modality

Figure 2.15 – Comparison of Predicted Objects Actions using Uni-Modal Pedestrian Detec-
tion and Incremental Pedestrian Detection. PC= Pedestrian is Preparing to Cross the street,
PC= Pedestrian is Crossing the street, PAC=Pedestrians is About to Cross the street and PA=
Pedestrian intention is Ambiguous.
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(a) Results of pedestrian detection using PPC, PC,
PAC, PA classes.

(b) Results of pedestrian detection using PPC, PC,
PAC, PA classes.

(c) Results of PPC, PC, PAC, PA detection (d) Results of PPC, PC, PAC, PA detection.

(e) Results of PPC, PC, PAC, PA detection (f) Results of PPC, PC, PAC, PA detection.

(g) Results of pedestrian detection using PPC,
PC, PAC, PA classes and pedestrian ids.

(h) Results of pedestrian detection using PPC,
PC, PAC, PA classes and pedestrian ids.

Figure 2.16 – Example of pedestrian actions detection using a different approach.
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2.6 Conclusion

In this chapter, we systematically studied three methods of integrating different im-
age modalities (RGB, Depth, Optical Flow) to improve the detection component. We
used the JAAD dataset, which provides videos only in RGB format. We derived the
Optical Flow and Depth image modality in order to apply our Incremental Cross
Learning modality.

We analyzed two detection methods:

1. We trained the CNN with all pedestrian samples using the classical detection
system where we consider all the annotation tags only as pedestrians;

2. We trained the CNN with all pedestrians using the various action tags;

We studied different pedestrian actions to find out if a pedestrian is crossing the
street or if the pedestrian’s action presents a critical situation:

1. We split the pedestrian Joint Attention for Autonomous Driving (JAAD) dataset
in into four classes: pedestrian is preparing to cross the street (PCC), the pedes-
trian is crossing the street (PC), pedestrian is about to cross the street (PAC),
and pedestrian intention is ambiguous (PA);

2. We extracted the Optical Flow and Depth motion from the JAAD dataset;

3. We trained all pedestrian samples using the pedestrian action tags mentioned
above with the RetinaNet using RGB, Optical Flow and Depth motion for pedes-
trian detection using a Classical-unimodal approach and our Incremental Cross
Learning modality;

4. We explored the Classical Uni-modal on RGB image modality using the four
proposed pedestrian action tags mentioned above and take into account the
pedestrian behaviors and its id according to JAAD pedestrian annotations (e.g.,
pedestrian1 cross= P1C, pedestrian2 cross=P2C, pedestrian3 ambiguous=P3A).

We evaluated the pedestrian detection approach (called the classical approach),
where all samples are tagged as pedestrian and not pedestrian and a pedestrian
detection approach using multiple tags. The first method achieved better perfor-
mance since it has only to distinguish the pedestrians from other road users, in
contrast to the second one which even has to recognize pedestrian actions. The
second detection approach returned a weaker performance than the classical one.
On the other hand, pedestrian detection using the multiple tags approach could be
useful for the prediction action part and especially for the Time to Cross (TTC) the
street prediction, developed in the next chapter.

The InCML outperformed the classical detection approach on all modalities,
but its performance is statistically significant only for the RGB image modality. We
noticed that the performance of the InCML detector is directly proportional to the
achievements of each pedestrian detection action component.

The InCML approach is based on transfer learning, and the previous CNN di-
rectly influences this method. The InCML approach achieves better results due to
this transfer learning technique. In the second and third learning steps, the InCML
takes more specific and optimal weight information according to the target applica-
tion. Moreover, this InCML method is a generic model. It is more flexible, allowing
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for adaptive settings according to each CNN detector. It could be used and adapted
for all types of CNN, not only for a specific one.

In the next chapter we proposed to with CNNs and LSTM is order to predict the
pedestrian action intentions and time to cross the street for each pedestrian.
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3.1 Introduction

Pedestrian detection and action/intention prediction is a crucial component of ad-
vanced driver assistance systems since it contributes to the road flow safety. The
traffic participants security could be significantly improved if these systems could
also predict and recognize the pedestrian actions, or even estimate the time to cross
the street for each pedestrian.

Human errors abound due to fatigue, driving the car while using the telephone,
driving under the influence of medicine, or pedestrians’ bad and/or risky behav-
ior any of which may generates traffic collisions. These collisions between cars and
pedestrians could be greatly decreased if human error could be eliminated by em-
ploying an Advanced Driver Assistance System (ADAS) for pedestrian detection. If
these ADAS systems include not only the pedestrian detection but also the pedes-
trian actions prediction and/or estimate time to cross the street of the pedestrians,
the collision could be significantly reduced by adapting the functionality of intelli-
gent vehicles according to the road used concerned. Such a system can dramatically
improve the vulnerable road user (e.g pedestrians) safety in future ADAS and/or
self-driving car.

In the first chapters, we analyzed the first two components from our main thesis
objective: the Perception and the Identification/Fusion. The Perception component
involves the stereo vision dataset based on the Daimler dataset [EESG10] while the
Identification/Fusion component use the environment information provided from
the prior component then detect the pedestrian and classify the pedestrian’s action
at T=0 (distinguish between pedestrian and non-pedestrian, distinguish between
4 pedestrian’s actions: PC,PPC,PA,PAC) based on our Incremental Cross-modality
Deep Learning approach. In this chapter we investigate the Decision component
(see Figure 3.1) where the module has to estimate the risk in order to identify the
appropriate vehicle control level (information/advice). Thus, in this chapter we an-
alyze the pedestrian action prediction and the estimation of pedestrian time to cross
the street.

Prediction and estimation are sometimes seem to function similarly, but there is
a sharp distinction between them in the standard model of a statistical problem. An
estimator uses data to guess at a parameter while a predictor uses the data to guess
at some random value that is not part of the dataset. Estimation is the calculated
approximation of a result while the prediction is merely assuming something about
the future.

Thus, the designed system in this chapter touches the problem of pedestrian
action, intention prediction and estimation of time to cross the street of pedestrians
recorded from on-board a moving vehicle.

To do that the system should have a high detector component, for localizing and
recognize the pedestrians among another road users, a classification component
to distinguish the pedestrian actions and a prediction component to estimate the
pedestrian actions over next frames (short, medium and/or long time prediction).
The prediction component should perform efficiently in different environmental
circumstances and should even offer the possibility to estimate the time to cross
the street for each pedestrian.

The common approach to solve the road users prediction issue is to involve dy-
namic factors such as pedestrian trajectory [CS14, EG11], velocity [PESv09], or the
expected final goal of pedestrian trajectory [RK15b, KAHS16]. These research inves-
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Figure 3.1 – The main architecture of our system. In red are the issues investigated in the
first chapter. In blue are the problems studied in second chapter. In orange is the problem
analyzed in this chapter

tigations are quite limited in scope because those take into account very few con-
textual traffic road elements of predicting the behavior of pedestrian. Besides of
the spatiotemporal factors which we have mentioned above, there also exist other
factors that can influence the crossing behavior of pedestrian, for instance: envi-
ronmental factors (e.g., weather condition, visibility), the crosswalk structure (e.g.,
pedestrian traffic light, traffic signs, delineation) or the pedestrian’s characteristic
(e.g., demographics, the pedestrian’s culture).

This issue has been widely investigated, but it still remains an open challenge
because progress in pedestrian detection is hindered by the difficulty of detecting
all partially occluded pedestrians and the problem of operating efficiently in severe
weather conditions. Moreover, current systems cannot yet understand the inten-
tion of road users involved to ensure their safety and secure the traffic flow. For this
purpose, the system should have i) a detection model for localizing and recognizing
the pedestrians among other road users, ii) a classification model to distinguish the
pedestrian actions, and iii) a prediction model to estimate the pedestrian actions
over the next frames (short, medium and/or long-time prediction). The prediction
component should perform efficiently in various environmental circumstances and
even offer the possibility of estimating the time to cross the street for each pedes-
trian.

The difficulty in solving these problem comes from the lack of public annotated
data bases. Hence, there are no public databases annotated with pedestrian time to
cross, while there are several interesting huge pedestrian detection databases (Kitti,
Caltech, among others). The problem is that those databases do not provide any
pedestrian action labels. To the best of our knowledge, the only public dataset with
pedestrian action tags in urban traffic environmental is JAAD [KRT16]. Since this
dataset does not provide the annotations directly for pedestrian time to cross, we
determine it for each pedestrian trajectory (frame sequences).

The question is, could we manage the pedestrian action classification and the
pedestrian bounding box (BB) detection in one end-to-end detector? or we must
use two separate methods: first for pedestrian detection and then for pedestrian
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action recognition, as existing approaches from literature?
The contribution of this chapter concerns solving this issue by applying a multi-

task deep learning model for detecting, classifying, and estimating the time to cross
for multiple pedestrian actors.

The detection and classification components we have already explicitly depicted
in the previous chapters, but seldom we have to recall some of the related con-
cepts/approaches previously mentioned the in prior research since the prediction
system component is directly connected with the pedestrian detection/classification
one.

In this chapter, we focus on pedestrian action prediction and estimation when-
ever the pedestrian’s action presents a risky situation like time to cross the street

To do so, we develop the following methodology relying on a deep learning ap-
proach:

• Use the pedestrian action detector based on RetinaNet [LGG+17a] using clas-
sical learning approach with RGB image modality. This approach is explicitly
presented in the second chapter;

• Use the Joint Attention for Autonomous Driving (JAAD) [KRT16] dataset in our
experiments with our four pedestrian action classes which we have described
in the second chapter: pedestrian is preparing to cross the street (PPC), the
pedestrian is crossing the street (PC), the pedestrian is about to cross the street
(PAC), and pedestrian’s intention is ambiguous (PA);

• Train a Long Short-Term Memory (LSTM) [HS97] for (T+1, T+2, T+3, T+4,
T+5), medium (T+14) and long-time (T+40) prediction in order to estimate
the pedestrian bounding box coordinates, the actions and time to cross the
street for each pedestrian.

The Chapter is organized as follows: Section 2 outlines some existing approaches
from the literature and gives our main contribution. Section 3 presents an overview
of our system. Section 4 describes the experiments and the results on the JAAD
dataset. Finally, Section 5 presents our conclusions.
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3.2 Related Work

Several research activities addressing pedestrian detection have produced signifi-
cant performances for this issue [BOHS14, ZBO+16, PRNB17, LDWW18, BKFG19].

In terms of data collection, most pedestrian detection systems collect data from
video cameras [BOHS14, ZBO+16], from LIDAR [LL16] or fusing data information
[SCK16, PRNB17]. These systems are based on handcrafted features models fol-
lowed by a trainable classifier or deep learning neural networks models. The draw-
back of these systems is that they cannot anticipate pedestrian actions. The estima-
tion of the pedestrian’s intention is even more challenging than the pedestrian de-
tection task because of the pedestrian’s ambiguities in the pedestrian’s movements.
The pedestrian could decide to change his/her behavior/movement in less than
one second, an issue which increases the difficulty of solving the problem. Nev-
ertheless, the interest in estimating pedestrian actions for intelligent cars has sig-
nificantly increased in the last few years [HTDD18,SG13b,RWLS18,RK15a,RRL+18].
In order to find a solution to this issue, the research analyzed has various features
like pedestrian movements and/or pedestrian behaviors [FL18, QPLS14], interac-
tions between pedestrians [AGR+16, HJ15b] and pedestrian tracking paths [SG13b,
RWLS18].

Most deep learning prediction methods are based on Recurrent Neural Networks
(RNNs) because the recurrent connections of RNN allow memorizing historical in-
formation from previous states, which is very different from the classical neural net-
work. This ability permits the RNN network to detect changes over time.

The pedestrian action prediction and time to cross estimation can be considered
as a sequence prediction problems. Therefore, we briefly review the main Recurrent
Neural Networks (RNNs) which could be used in the prediction task followed by
some related pedestrian prediction work based on deep learning methods.

3.2.1 Prediction Analysis Models

We briefly present some variation of the RNN which were used in the prediction task
in the following:

• Recurrent Neural Network (RNN) is based on the hypothesis that all inputs
and outputs are self-supporting. The RNN can be seen as multiple copies of
the same network where each network transfer the information to its succes-
sor (see Figure 3.2). It has minimum a hidden layer at a time which depends
on the input at time t,x1 but also on the same hidden layer at time t-1 or on
the output at time t-1. Therefore the RNN has a loop from the hidden layer to
itself or from the output to the hidden layer;

Figure 3.2 – The RNN unrolled architecture



CHAPTER 3. PEDESTRIAN ACTION PREDICTION AND TIME TO CROSS
ESTIMATION

• Long Short-term Memory (LSTM) [HS97] is a variation of the recurrent neu-
ral network. It was introduced to to learn long time dependencies. An LSTM
cell contains at time t, a state C1, and an output ht . As input, this cell at time
t contains xt , Ct−1. An LSTM has three gates, to enable or not send the infor-
mation i.e., the forget gate, input gate, and output gate (see Figure 3.3);

Figure 3.3 – The LSTM representation

• Gated Recurrent Unit (GRU), proposed by [CvMG+14]. It is a variation of the
LTSM model. It has fewer parameters than LSTM because it joins the forget
and input gates into a single update gate. The GRUs returns better perfor-
mance than LSTM on particular smaller data sets and same performance on
certain tasks. It joins the forget and input gates into a single update gate (see
Figure 3.4);

Figure 3.4 – The LSTM vs GRU architectures

• Recursive Neural Network (RvNN) proposed in [IC14], is a variety of deep
neural network created by implementing the corresponding set of weights re-
cursively over a structured input. In the common RVNN structure, the nodes
are using a weight matrix root to share over the entire network (see Figure 3.5);

• Sequential CNN proposed in [JZ15,GAG+17], differs from regular works which
use RNN to encode the time series inputs. Sequence to sequence learning
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Figure 3.5 – The RvNN architectures

approach implies the same idea of recurrent neural network-based encoder-
decoder architectures (see Figure 3.6). The encoder RNN has a sequence x of
m elements an input and returns state descriptions z. The decoder RNN uses
z descriptions and forms the output sequence y. In order to get the output y

i+1, the decoder calculates a new hidden state hi+1 relying on the prior state
hi , an embedding gi of the preceding target yi , as well as a conditional input ci

obtained from the encoder output z. Based on this standard pattern, several
encoder-decoder architectures have been proposed, which differ mainly in
the limited input and the type of RNN. For instance, in [JZ15] the authors use
a CNN instead of on RNN to compute the intermediate between encoder and
decoder states.

Figure 3.6 – The RNN based encoder-decoder architectures.

Since the Long Short-Term Memory (LSTM) network is the perhaps most suc-
cessful RNN, and we found it used in many pedestrian prediction approaches from
literature, we have decided to use it in our research.



CHAPTER 3. PEDESTRIAN ACTION PREDICTION AND TIME TO CROSS
ESTIMATION

3.2.2 Related Studies Concerning Pedestrian Action Prediction

A comprehensive review of the predicting pedestrian behavior research is presented
in [RRL+18] which includes several pedestrian action and movement estimation ap-
proaches and also sets out the advantages and shortcomings of the currently avail-
able datasets. The authors assume that in the prediction of pedestrian intention it
is better to use pedestrian specific dynamics information and the contextual scene.

In [RKT17a], the authors present a pedestrian actions prediction approach based
on AlexNet handling JAAD dataset, where they investigate whether the full pedes-
trian body and part of pedestrian body (consisting either of the head or lower pedes-
trian body) influence the classification task. They also use a linear SVM to distin-
guish the situation of a pedestrian crossing or not based on pedestrian attention
information. The authors conclude that it is better to use the contextual informa-
tion to increase the prediction performance. From our point of view, the authors
did only a pedestrian action recognition because their approach can only predict
the pedestrian action for one-time step ahead (T+1), which we deem, it is not that
much of a prediction model..

A pedestrian position estimation based on the Extended Kalman Filter (EKF) and
Interacting Multiple Model (IMM) algorithm using Constant Velocity (CV), Constant
Acceleration (CA) and Constant Turn (CT) is proposed in [SG13b]. The authors also
introduce a dataset, the Daimler dataset, with four pedestrian actions called: cross-
ing, bending in, bending out, and stopping. A combination of the Gaussian pro-
cess dynamical models, Probabilistic Hierarchical Trajectory Machine (PHTM) and,
Kalman Filter and Interacting Multiple Model based on the Daimler dataset using
stereo vision images is presented in [KG14]. The authors get better performance
than their previous work [SG13b] for the stopping situation. They also make a com-
parison between these approaches and conclude that the performances almost sim-
ilar.

A short-term prediction of pedestrian behaviors using Daimler datasets was in-
cluded in [HTDD18] which is based on the Variational Recurrent Neural Network,
which provides the latent variables suitable for a dynamic state-space model. The
authors predict whether a pedestrian is stopping or crossing, and obtain high per-
formance on the Daimler benchmark. To predict the pedestrian trajectory and its
final destination, an approach using CNN, LSTM and path planning is presented
in [RWLS18]. This system can predict both destinations and pedestrian trajecto-
ries. A mixture of CNN-based pedestrian detection, tracking and pose estimation
to predict if the pedestrian cross the street based on the JAAD dataset is addressed
in [FL18]. The authors utilize the Faster R-CNN object detector based on VGG16
CNN architecture for the classification task, use a multi-object tracking algorithm
based on the Kalman filter, apply the pose estimation pattern on the bounding box
predicted by the tracking system and finally use the SVM/Random Forest to classify
the pedestrian actions (Crossing /Not Crossing).

All these approaches for pedestrian action prediction exploit a standard pedes-
trian detection component which only discriminates between the pedestrian from
non-pedestrian, and estimate the pedestrian action or its final destination for the
next frames (short, medium and long term).

One of the main goals of our thesis is to predict the future action and location (as
bounding box coordinates) of pedestrians filmed from a moving vehicle. We study
the short (from T+1 up to T+5), medium (T+14), and long (T+40) time prediction in
order to predict the pedestrian’s next actions on the JAAD [KRT16] dataset.
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Figure 3.7 – Pedestrian detection using multiple tags

Since the pedestrian prediction component is directly connected with the pedes-
trian detection one, our pedestrian action prediction can be separated into two
stages:

1. We train the RetinaNet [LGG+17a] object detection network to output the four
labels, the pedestrian is preparing to cross the street (PPC), the pedestrian is
crossing the street (PC), the pedestrian is about to cross the street (PAC), the
pedestrian’s intention is ambiguous (PA) along with the bounding box, instead
of outputting just the "Pedestrian" label (see Figure 3.7). This method is de-
scribed in second chapter;

2. We fuse the output (the bounding box coordinates) of the RetinaNet detection
network with an LSTM, in order to estimate the pedestrian action intentions
and its location.

Several advantages of LSTM for prediction, in comparison with MLP or Kalman
filter, among others, are well known in theory and literature, fact that we decided to
use LSTM in our model. Thus, the recurrent connections of RNN allow to memorize
historical information from previous image frames, while MLP only uses informa-
tion from the actual frame. This ability permits the RNN network to detect changes
over time. Hence, a comparison between Kalman Filter and RNNs for signal estima-
tion was made in [DH92], It shown that RNNs improve signal estimation compared
to Kalman filter.

We also present a multi-task application which can estimate not only the time
to cross for each pedestrian but also its actions.

The time to cross estimation task is more challenging and difficult than estimat-
ing the next pedestrian action due to the lack of public annotated data. This task, is
sometimes challenging even for a human being because pedestrian movements are
unpredictable. To our knowledge, there are no different approaches for pedestrian
time to cross (TTC) prediction, other than the method addressed in [FL18] on JAAD
dataset. Nevertheless, the authors in [FL18] have handled this problem in a step-
by-step manner, including the pedestrian tracking component, based on different
image processing and machine learning approaches, allowing finally for the pedes-
trian TTC prediction. We propose an original method for TTC prediction, without
an explicit tracking component, based only on deep learning neural networks.

The JAAD dataset is not annotated for the prediction of pedestrian time to cross
issue. The issue of TTC prediction is addressed in [FL18] where the authors made
their own pedestrian TTC annotation on JAAD dataset to solve it, but the authors
did not make public these annotations. Moreover, the authors did not apply their
annotation process on all JAAD videos, but only on several sequences. For the TTC
prediction problem, we select some cues from the JAAD [KRT16] public dataset in
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order to solve this issue and then we made our pedestrian TTC annotation for all
videos.

We also present a multi-task application which can estimate the time to cross
the street for each pedestrian using a recurrent neural network approaches (LSTM)
in two ways:

• using only BB coordinates in order to estimate the time to cross the street (see
Figure 3.8);

• using BB coordinates and pedestrian action tags in order to estimate the time
to cross the street (see Figure 3.9);

We use the classical approach where the detection and prediction part were in-
dependently analyzed (we called the two-stage approach). The LSTM estimate the
time to cross street for each video sequence (estimate the time to cross for all pedes-
trians from the entire visual spectrum).

3.3 Method

In this section, we outline the components and methods used for solving this issue.
Since the pedestrian detection component was depicted in the second chapter, in
this section, we explicit describe the pedestrian action prediction component and
the pedestrian time to cross estimation one.

3.3.1 Pedestrian Position and Action Prediction

The conventional approach for solving the difficulty of pedestrian behavior predic-
tion is to employ a minimum of one dynamic elements contributing to the per-
ception of pedestrian behavior situations such as trajectory [HTDD18], or veloc-
ity [SG13b], or to anticipate the final destination of pedestrians [RWLS18].

Some researches investigate the effectiveness of pedestrian’s contour, body lan-
guage and posture to predict their intention.

Moreover, to achieve a high pedestrian action and movement prediction per-
formance, it is necessary to take into account the temporal context information in
order to help predicting the pedestrian behavior.

The prediction issue is commonly grouped into two categories:

1. Collision avoidance scenarios (short-term modelling), where the goal is to re-
act with emergency maneuvers for road obstacle avoidance. The prediction
horizon is here max. 1-2 seconds [RK15a, RRL+18].

2. Long-term modelling, where the goal is to have a more comfortable driving
behavior. The prediction horizon here is 2+ seconds, depending on the vehicle
speed and ruttier environment [RK15a].

We focus on the short (from T+1 up to T+5), medium (T+14) and long (T+40)
term prediction approaches of both pedestrian position and action by using an
LSTM to take into account the temporal context information (previous frames from
T-5, T-14 and T-40). The LSTM input are 2D bounding box (BB) coordinates pro-
vided by the detection component mentioned above.
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Figure 3.8 – Our time to cross the street estimation method using only BB coordinates in
order to estimate the time to cross the street. BB= Bonding Box coordinates, Label= Pedes-
trian action tag, PPC= Pedestrian Preparing to cross the street; TTC= time to cross; -1= no
pedestrian.

Whenever applying the pedestrian detection method, the LSTM input data are
the pedestrian tags (label class) and BB coordinates which allow to anticipate the
next frames following the pedestrian BB coordinates and his/her behavior (see Fig
3.10).

Our prediction model consist in four blocks of LSTM with 50 nodes followed by
Dropout layer with a rate of 20% for each LTMS layer and finally a two fully con-
nected layers with four and respectively one neurons. We used this architecture
because we observed a better performance on these values. These values have been
tuned over a validation dataset.

3.3.2 Estimation of Time to Cross

The estimation of time to cross for each pedestrian is essential for the ADAS systems
since it could predict if and when there could be a risky situation.

From a machine learning point of view, TTC estimation can be considered as a
regression problem, where we aim at estimating an integer or a real value (whether
we consider a number of frames or a time in seconds) for each frame of a given
video. As the dynamic of the signal is essential to estimate TTC efficiently, we have
naturally turned toward the use of a recurrent neural network to capture the spatial,
temporal context of the motion. Among recurrent models, we have chosen to use
LSTMs which have shown their efficiency on many sequence analysis problems.

To predict the pedestrian time to cross, we proposed two approaches:

• individual estimate of TTC for each pedestrian BB sequences provided by the
pedestrian detector (using only PPC samples);

• multiple estimates for all detected pedestrians (using all samples).

The prediction model is based on LSTM, and it has the 2D bounding box (BB)
coordinates as input data provided by the detection component. The output con-
sists of time to cross for each pedestrian, and it outlines over how many frames the
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Figure 3.9 – Our time to cross the street estimation method using the BB coordinates and
pedestrian action labels in order to estimate the time to cross the street. BB= Bonding Box
coordinates, PPC= Pedestrian is Preparing to Cross the street; PC= Pedestrian is crossing the
street; PAC= Pedestrian is About to Cross the street; PA= Pedestrian’s intention is Ambiguous;
P1,P2= Detected pedestrians; T1,T2= Pedestrian Action Tags; TTC= time to cross; -1= no
pedestrian.

Figure 3.10 – A unified CNN-LSTM architecture for detection, recognition and pedestrian
action prediction. BBc=Bounding Box Coordinates, P-Tag=Pedestrian action tag, T=Time
step, n∈ {1,14}. The CNN has the frames as input data and the LSTM has the pedestrian BBc
and pedestrian action tags as input data.

pedestrian crosses the road. We take into account the temporal context information
for the previous frames from T-5, T-14, and T-40.

We emphasis that the detection and prediction components are learnt indepen-
dently.

The detection step is based on RetinaNet [LGG+17a],because its performance
exceeds the Faster R-CNN [RHGS15a], R-FCN [DLHS16], SSD [LAE+15] and YOLOv1
[RDGF15]. It has as input the entire RGB images and returns the pedestrian corre-
sponding bounding box and its action tag.

The prediction model is based on LSTM, and it has the 2D bounding box (BB)
coordinates as input data provided by the detection component. The output con-
sists of time to cross for each pedestrian, and it outlines over how many frames the
pedestrian crosses the road. We take into account the temporal context information
for the previous frames from T-5, T-14, and T-40 in order the estimate the time to
cross the street in term if short (5 frames), medium (14 frames) and long (40 frames)
term estimation.
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3.4 Experiments

In this section, we present our set of experiments, including setups and perfor-
mance assessment of our approaches.

3.4.1 Data setup

There are many different large-scale pedestrian detection datasets used for the pedes-
trian detection task. Several of them have in somehow the potential of derivate spe-
cific annotation to estimate/predict the pedestrian behaviors/actions. Most of the
data sets provide only the bounding boxes annotations, from which is quite hard to
make your annotations in order to solve the prediction of the pedestrian action and
estimate the pedestrian’s time to cross. Hence there is a lack of public annotated
dataset, the fact that the pedestrian action prediction and time to cross estimation
is more charging and difficulty to solve.

To our knowledge, there are only two data sets which could be used in order to
solve these issues. One of them is Daimler [SG13a] which provides four different
pedestrian motion types crossing, stopping, starting to walk and bending-in, the
bounding box coordinates, and the trajectory data. The drawback of the Daimler
dataset is that it provides the video sequences with only one pedestrian in the series
and the pedestrians are not occluded.

We did not use the Daimler [SG13a] dataset, because it is too small to train our
deep learning model and it was not acquired in real urban traffic conditions and
shows a single pedestrian per video performing predefined actions.

The only public dataset with pedestrian action tags in urban traffic environmen-
tal is JAAD [KRT16].

This dataset provides pedestrian bounding boxes (BB) for pedestrian detection
(including for several of them the pedestrian actions), pedestrian attributes for es-
timating the pedestrian behavior and traffic scene elements.

The drawback of JAAD dataset is that it does not provide annotation for the
pedestrian time to cross estimation task. This issue struggles us to make our pedes-
trian TTC annotation for all videos. Nevertheless, the only public dataset with pedes-
trian action tags in urban traffic environmental is JAAD [KRT16] fact that we decided
to use in our experiments.

3.4.2 Training protocol

The training protocol is related to the pedestrian detection component one since
the prediction involves the detection as a prior stage. We briefly outline the com-
mon training settings, and we explicitly detail for the prediction step. Thus, we used
the first 250 video sequence for training process and the rest for the testing because
the videos are disjointed. The training and testing samples include even the par-
tially occluded and heavily occluded BBs.

In [RKT17b, RKT18], the authors present a variety of pedestrian behaviors done
before crossing and after crossing the street and even when the pedestrian does not
cross the street. These behaviors were collected and annotated with different action
labels according to the pedestrian crossing attributes (we called crossing event) for
each pedestrian from all video sequences. We use the event terms instead of cross-



CHAPTER 3. PEDESTRIAN ACTION PREDICTION AND TIME TO CROSS
ESTIMATION

ing attributes to make a clear distinction between pedestrian action, pedestrian be-
havior and crossing attribute.

The event reprints the main action of the pedestrian that happens on the video.
The pedestrian action represents the pedestrian act that occurs in a specific place
during a particular interval of time. The pedestrian behavior represents the man-
ner and/or reaction of the pedestrian before, during and after given urban traffic
circumstances.

The events could be:

• the pedestrian completes to cross the street;

• the pedestrian has no intention to cross the road (e.g. sits on a public bench,
waiting for public transportation);

• the pedestrian does not cross the street (e.g the pedestrian has started to cross
the street but suddenly he/she is stopping).

Figure 3.11 – Timeline of event, action and pedestrian behavior whenever the pedestrian
is going to cross the street. This image was picked from JAAD [KRT16] dataset source and
modified/updated to our requirements.

For instance, if the pedestrian is going to cross the street, he/she can present
minimum behavior like standing, looking, and then crossing the street, or moving,
looking, and then crossing the street. The pedestrian actions applied before or dur-
ing one event, could be different for each pedestrian, even if the event is the same.
Hence, according to these action annotations, we can observe that there exists a
typical pattern for each pedestrian for a given event (see Figure 3.11).

We observed that the JAAD event annotations do not adequately cover all the
pedestrian intention, and it could not directly help us to solve the pedestrian action
prediction and time to cross estimation.
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We wondered what happens if the pedestrian is walking along the street (there
is no footpath/crosswalk) or the pedestrian already passed the road, and maybe
he/she suddenly decide to return. We wondered if could we make a clear distinc-
tion between the pedestrians who are planning to cross the street and then cross
the road and the pedestrian who starts to cross the street but for a different reason
he/she stops.

These particularly cases struggle us to derivate our annotation in order to fulfill
our thesis objectives: pedestrian action prediction and time to cross estimation.

Therefore, according to the specifications and annotations presented above, we
separate the pedestrian labels into four classes. In the second chapter, we have de-
tailed the explication of the pedestrian labels, but we sketch them in this chapter for
a better understanding of our approach:

1. Pedestrian is Preparing to Cross the street (PPC), where the pedestrian is walk-
ing or standing, pays attention or not and changes or does not change its
behavior before crossing. In this case, the pedestrian is definitely assume to
cross the street after these actions.

2. Pedestrian is Crossing the street (PC), where the pedestrian is observed from
the point of crossing until he/she has crossed the road. There are video se-
quences where the pedestrians are annotated only from the point of crossing
the street.

3. Pedestrian is About to Cross the street (PAC), where the pedestrian is about to
cross and pays attention and responds according to the event. The pedestrian
definitely does not cross the street after these actions.

4. Pedestrian intention is Ambiguous (PA), where the pedestrian is walking or
standing, and his/her intention is ambiguous. In this case, the pedestrian has
crossed the road or other event which does not present a risk situation.

The Detection Learning Protocol including all learning setups are detailed in the
second chapter. In this chapter we used the RetinaNet [LGG+17a] as a pedestrian
detection algorithm using RGB image modality.

Pedestrian Action Prediction Setups

The Long Short-Term Memory (LSTM) use as input the bounding box (BB) coor-
dinates and pedestrian action tags in order to predict the pedestrian action for the
next frames as output: short (T+1,T+2,T+3,T+4,T+5), medium (T+14) and long (T+40)
term.

Each video sequence has a different number of frames and pedestrians per frame.
To create the training set and to ensure the pedestrian information is not mixed with
those of others pedestrians information, we create a generalization method to track
and provide the data for each pedestrian. This method tracks each pedestrian on
each video sequence from the first point of performing in a video until the pedes-
trian disposes of the frames and creates a subset with all bounding box (BB) co-
ordinates and pedestrian actions for each pedestrian. For instance, the video no
1 has 600 frames with two pedestrians which have annotations for their actions.
Both pedestrians appear from scarce, but after several frames, one of the pedestri-
ans disappears from the ruttier environment. Whenever one pedestrian exits from
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the environment or the video sequence is over, the method creates an independent
subset with the according annotations for each pedestrian. Those subsets generate
the training dataset, which consist of various pedestrian independent sequences
with different lengths.

In our approach, the training set has the bounding box (BB) coordinates and
the pedestrian action as data information in contrast with the usual methods from
literature which use the centroid of the bounding box (x,y) coordinates.

We performed the LSTM training process with the ADAM learning algorithm
method, with ten epochs using pasted time steps of 5, 14 and respectively 40 frames
in order to predict the next pedestrian actions on the next frames (T+1, T+2, T+3,
T+4, T+5, T+14, and T+40).

Estimation of time to cross Protocol

The pedestrian time to cross was calculated only for pedestrians who are prepar-
ing to cross the street (PPC) because only in this particular case are the pedestrians
definitively going to cross the street and only in this specific case can we estimate
the time to cross for each pedestrian. Thus after a PA action, the pedestrian will
never cross the street, and after a PAC, the crossing is quite unpredictable (even for
the pedestrian itself).

To determine the time to cross, we use an LSTM which is trained independently
of the CNN based detector since it is applied after the detection step.

We create a bounding box matrix to predict the time to cross for multiple pedes-
trians sequences within the LSTM (see Figure 3.12).

The LSTM was learnt with the following methodology:

• We created an input bounding box matrix (4x20) for each frame where we set
the bounding box coordinates only for the pedestrians preparing to cross the
street (see Figure 3.8). For the other pedestrians (PA, PC, PAC) the input values
in that matrix are fixed to (-1) indicating there is not any pedestrian preparing
to cross the street. For the PPC element in the input matrix, the corresponding
output is the time to cross, which consists in the descending scrambling order
of frames to the moment of crossing. While for the other pedestrians (PA, PAC,
PC), the corresponding output is (-1). In our approach, we consider there are
no more than 20 pedestrians per frame.

• We created an input bounding box matrix (5x20) for each frame where we set
the bounding box coordinates and pedestrian action tag only for the pedes-
trians preparing to cross the street. The input values for the other pedestrians
action tags (PA, PC, PAC) are coded identically as previously matrix box while
for PPC is coded with 0. For the PPC element in the input matrix, the corre-
sponding output is the time to cross, which consists in the descending scram-
bling order of frames to the moment of crossing, while for the other pedestri-
ans (PA, PAC, PC), the corresponding output is (-1).

• We created an input bounding box matrix (4x20) for each frame where we set
only the bounding box coordinates for all the pedestrians actions. The output
matrix is the time to cross for the PPC tag, while for the other pedestrians (PA,
PAC, PC), the corresponding output is (-1).
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• We created an input bounding box matrix (5x20) for each frame where we set
the bounding box coordinates and pedestrian action tag for all the pedestrians
actions (see Figure 3.9). The input matrix values for the pedestrians action
tags are coded with the following: PPC=0; PA=1; PC=2; PAC=3. The output
matrix is the time to cross for the PPC tag, while for the other pedestrians (PA,
PAC, PC) the corresponding output is (-1).

Figure 3.12 – The proposed LSTM based architecture for pedestrian time to cross estima-
tion. Input: The BB matrix (4 x 20) at frame T until previews T-n (n= 5, 14, 40), where the
Xi 1,Yi 1,Xi 2,Yi 2 i=1 to 20 are the BB coordinates for each pedestrian i detected on frame T;
output: TTC(i)= number of frames from frame T to the beginning of crossing for the pedes-
trian i; -1= no pedestrian.

We performed the LSTM training process with the ADAM learning algorithm
method, using previous time steps of 5, 14, and respectively 40 frames to estimate
time to cross. For each step, the LSTM estimates over how many frames the PPC
pedestrian will cross the street.

3.4.3 Testing protocol

The testing set used to assess the CNN, and LSTM model performances are inde-
pendent of the training dataset. It contains 105 video sequences. It has a total of
43420 samples, where 12110 examples are pedestrians who are preparing to cross
the street (PPC), 19157 samples are pedestrians who are crossing the street (PC),
1296 samples are pedestrians who are about to cross the street (PAC) and 4857 ex-
amples where intention is ambiguous (PA). We test the prediction part on the differ-
ence frames to analyze the performance of our prediction model. The TTC model
was assessed only on the 12110 samples, of pedestrians who are preparing to cross
the street (PPC) because this is the only case where the pedestrians are clearly going
to cross the street.

We test the prediction component on two different ways:

• first only on the 12110 pedestrian samples to assess only the predictor capa-
bilities independently of the pedestrian detector and classifier, because this is
the only case where the pedestrians are clearly going to cross the street.

• second on the all 43420 pedestrian samples.

The TTC is tested on the ground truth (real values) test BB samples which are
provided by JAAD dataset and also on the detected BB samples which are supplied
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by the pedestrian detection component, while the pedestrian action prediction is
tested only on the grand truth values.

Our testing methodology consists of the upcoming plan:

• testing the pedestrian position prediction and the action prediction compo-
nent independently of the previous detection component;

• testing, independently of the detection and classification components, the
pedestrian time to cross estimation on the PPC pedestrian samples only with
and without pedestrian action tags;

• testing, independently of the detection and classification components, the
pedestrian time to cross estimation on all pedestrian samples with and with-
out pedestrian action tags;

• testing the detection component connected with the prediction component
(time to cross).

In this section, we perform all the testing steps.

3.4.4 Evaluation protocol

The evaluation process for all the CNN models was done with the Tensorflow Deep
Neural Network Framework. The performances were assessed by the Accuracy (ACC)
and Root Mean Square Error (RMSE) for the prediction component. The ACC values
were computed using the Keras metrics tool, where P represent the predicted value
(observed value), A the Actual value (true value) and n the number of samples.

ACC = 1

n

n∑
i=1

1(Pi −Ai ). (3.1)

Moreover, we compute Root Mean Square Error (RMSE) using the Scikit-Learn
tool [PVG+11], in order to measure the differences between the predicted values and
the observed ones, which is the common estimator evaluation metric (deviation of
the prediction errors).

RMSE =

√√√√√ n∑
i=1

(Pi −Ai )2

n
. (3.2)

In this equation, P represents the Predicted value (expected values), A the Actual
values (true value, actual results) and n represents the number of sequences.

For TTC we calculate the Mean of Root Mean Square Error (MRMSE) for each
video, because of the huge number of pedestrians per video.

MRMSE = 1

m

m∑
j=1

√√√√√ n∑
i=1

(Pi −Ai )2

n
. (3.3)

In this equation, P represents the Predicted value (expected value), A the Actual
values (true value), n represents the number of frames/video and m the number of
videos.
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We calculate the margin of error (Confidence Interval - CI) to evaluate whether
one model is statistically better than another one.

CI = 1.96

√
P(100−P)

n
%. (3.4)

In this formulation, P represents the performance system (e.g., ACC, RMSE) and
n represents the number of testing samples.

3.5 Results

The experiments were performed on the JAAD dataset using the original video size.
We independently provide the results for the pedestrian, action precision results
and finally, we present the estimation of time to cross methods. The performance
of the pedestrian detection component are presented in second chapter.

Table 3.1 – The performance of the pedestrian action prediction. ACC BB: Accuracy estima-
tion for the the next bounding box coordinates; RMSE BB: The bounding box Root Mean
Square Error; ACC Actions: The actions accuracy estimation for the the next frames; RMSE
Actions: The Root Mean Square Error action prediction; ACC Model: The accuracy of the
model which is a mean between the ACC BB and ACC Actions; RMSE Model: The Root Mean
Square Error is a mean between the RMSE BB and RMSE Actions

Past Time
Steps

Next
Frames

ACC
BB

RMSE
BB

ACC
Actions

RMSE
Actions

ACC
Model

RMSE
Model

5

1 73.45 0.092 97.23 0.077 85.34 0.0845
2 72.54 0.1096 97.40 0.127 84.97 0.1185
3 71.66 0.1230 97.12 0.1637 84.39 0.1434
4 71.67 0.1469 92.27 0.2226 81.97 0.1840
5 69.47 0.1739 84.74 0.2726 77.11 0.2233

14 58.46 0.2171 84.68 0.3172 71.57 0.2672
40 31.94 0.3159 78.96 0.3623 55.45 0.339

14

1 72.51 0.0866 97.57 0.0601 85.04 0.0733
2 71.20 0.0988 97.27 0.0986 84.23 0.0987
3 70.73 0.1091 96.97 0.0951 83.85 0.1021
4 68.79 0.1319 96.62 0.1093 82.71 0.1206
5 66.53 0.1422 96.35 0.1169 81.44 0.1295

14 60.24 0.2114 91.65 0.2206 75.94 0.2160
40 24.00 0.3560 78.16 0.3982 51.08 0.3771

40

1 76.13 0.0800 97.32 0.0563 86.72 0.0681
2 69.43 0.1219 96.99 0.0782 83.21 0.1000
3 68.73 0.1227 96.69 0.1026 82.71 0.1122
4 69.91 0.1330 96.40 0.1121 82.65 0.1225
5 67.09 0.1425 95.91 0.1430 81.86 0.1449

14 60.24 0.235 92.53 0.2260 76.38 0.2306
40 32.85 0.2866 82.31 0.2914 57.58 0.2890
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3.5.1 Evaluation of Pedestrian Actions Prediction

We present a comparison between our prediction models in Table 3.1. We also
present the pedestrian prediction action on different time steps. According to RMNS
Model values, we observe that our model achieved the best performance using 40
frames as a prior time step to predict the next 1, 3, 4, and 40 frames. The values ob-
tained the best performance using 14 frames as a prior time step to predict the next
2, 5 14, frames. The RMNS Model values obtained using 5 frames as previous time
steps returned the worst performance.

The smallest RMSE error is the best one, but the slight differences between RMSE
are not relevant. We observed that with the increase in prediction time, the action
estimation is more unpredictable, but by using more time steps to predict the next
frames the prediction becomes more stable and accurate. The low performance us-
ing more previous time steps to predict the next frames can come even from the
pedestrian behaviors manifested during stable time, where the pedestrian’s actions
could often be shifting, a fact which affects the temporal information. The pedes-
trian prediction process is a complex process for smart systems, but it is also often
difficult for human beings, since the pedestrians can change their behavior sud-
denly.

3.5.2 Evaluation of Pedestrian time to cross Component

Table 3.2 – The estimation of time to cross method, independently of the detection-
classification component. PPC:Pedestrian is Preparing to Cross the street. Real values:
testing, independently the pedestrian time to cross estimation on the all real pedestrian
samples; Detected Values: testing the detection component connected with the prediction
component (time to cross).

Learned on Tested On Past Time Steps
MRMSE

Real Values Detected Values

Only PPC
BB Coordinates

With Action Tag All Samples
5 12.17 13.12

14 9.36 11.72
40 10.43 10.43

Without Action Tag All Samples
5 9.61 11.21

14 13.38 13.34
40 11.64 11.57

Only PPC
BB Coordinates

with Action Tag
Only PPC

BB Coordinates

5 5.87 8.03
14 5.04 7.30
40 4.76 4.88

Without Action Tag
Only PPC

BB Coordinates

5 5.75 7.14
14 5.47 8.44
40 5.86 8.26

All BB
Coordinates

With Action Tag
All BB

Coordinates

5 6.22 6.89
14 5.57 8.71
40 4.10 6.07

Without Action Tag
All BB

Coordinates

5 6.20 6.86
14 5.36 6.32
40 4.01 4.60

In Table 3.2, we present a comparison between our time to cross estimation
models. We also present the pedestrian time to cross estimation models on different
prior time steps.

According to RMSE, the smallest error is the best one. We achieved 9.36 RMSE
tested on real values (grand truth) and 10.42 RMNS tested on detected values. This
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method was learned only on PPC samples with action tags and tested on all samples
using 14 and respectively 40 frames as previous time step.

We obtained 4.76 RMSE tested on real values and 4.88 on detected values using
only the PPC samples with action tags with 40 and respectively 5 frames as previous
time steps.

For the method learned on all BB coordinates samples we achieved the best per-
formance with 40 frames at a time steps using only BB coordinates for both tested
methods, (4.01 RMSE) real values and (4.60 RMSE) detected data methods.

We observed the best for those methods were obtained with different time steps.
We think this difference comes from the various lengths of the pedestrian sequences
and the complexity of data. However, the estimation of time to cross using all sam-
ples is more challenging for LTMS since it has to take into account even the pedes-
trian who are not preparing to cross the street, or whose intention is ambiguous.

In Figures 3.13, 3.14 and 3.15 we plot the ground truth TTC versus predicted TTC
on different time steps and for different approaches. We can observe that the esti-
mation of TTC is globally satisfying. Indeed, the shape of the plot spread shows
a roughly linear correlation between the real and the estimated values of TTC. We
also plot the mean of RMNS values (see Figures 3.16, 3.17 and 3.18) for each video
sequence on for different time steps and different approaches which confirms this
observation. It confirms that the TCC values can be directly estimated in a regres-
sion method using a deep learning approach.



CHAPTER 3. PEDESTRIAN ACTION PREDICTION AND TIME TO CROSS
ESTIMATION

(a) TTC Predicted vs TTC Ground Truth real val-
ues on 5 time step, learned only on PPC samples
with action tags and tested on the all samples:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(b) TTC Predicted vs TTC Ground Truth detected
values on 5 time step, learned only on PPC sam-
ples with action tags and tested on all samples:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(c) TTC Predicted vs TTC Ground Truth real val-
ues on 5 time step, learned and tested only on
PPC samples with action tags: Horizontal: SUM
of time to cross predicted; Vertical: Sum of time
to cross ground truth

(d) TTC Predicted vs TTC Ground Truth detected
values on 5 time step, learned and tested only on
PPC samples with action tags: Horizontal: SUM
of time to cross predicted; Vertical: Sum of time
to cross ground truth

(e) TTC Predicted vs TTC Ground Truth real val-
ues on 5 time step, learned and tested on all sam-
ples without action tags: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

(f) TTC Predicted vs TTC Ground Truth detected
values on 5 time step, learned and tested on all
samples without action tags: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

Figure 3.13 – Performance of the time to cross methods using 5 time step.
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(a) TTC Predicted vs TTC Ground Truth real val-
ues on 14 time step, learned only on PPC sam-
ples with action tags and tested on the all sam-
ples: Horizontal: SUM of time to cross predicted;
Vertical: Sum of time to cross ground truth

(b) TTC Predicted vs TTC Ground Truth detected
values on 14 time step, learned only on PPC sam-
ples with action tags and tested on all samples:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(c) TTC Predicted vs TTC Ground Truth real val-
ues on 14 time step, learned and tested only on
PPC samples with action tags: Horizontal: SUM
of time to cross predicted; Vertical: Sum of time
to cross ground truth

(d) TTC Predicted vs TTC Ground Truth detected
values on 14 time step, learned and tested only
on PPC samples with action tags: Horizontal:
SUM of time to cross predicted; Vertical: Sum of
time to cross ground truth

(e) TTC Predicted vs TTC Ground Truth real val-
ues on 14 time step, learned and tested on all
samples without action tags: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

(f) TTC Predicted vs TTC Ground Truth detected
values on 14 time step, learned and tested on all
samples without action tags: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

Figure 3.14 – Performance of the time to cross methods using 14 time step.
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(a) TTC Predicted vs TTC Ground Truth real val-
ues on 40 time step, learned only on PPC sam-
ples with action tags and tested on the all sam-
ples: Horizontal: SUM of time to cross predicted;
Vertical: Sum of time to cross ground truth

(b) TTC Predicted vs TTC Ground Truth detected
values on 40 time step, learned only on PPC sam-
ples with action tags and tested on all samples:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(c) TTC Predicted vs TTC Ground Truth real val-
ues on 40 time step, learned and tested only on
PPC samples with action tags: Horizontal: SUM
of time to cross predicted; Vertical: Sum of time
to cross ground truth

(d) TTC Predicted vs TTC Ground Truth detected
values on 40 time step, learned and tested only
on PPC samples with action tags: Horizontal:
SUM of time to cross predicted; Vertical: Sum of
time to cross ground truth

(e) TTC Predicted vs TTC Ground Truth real val-
ues on 40 time step, learned and tested on all
samples without action tags: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

(f) TTC Predicted vs TTC Ground Truth detected
values on 40 time step, learned and tested on all
samples without action tags: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

Figure 3.15 – Performance of the time to cross methods using 40 time step.
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(a) RMNS on real values at 5 time step, learned
only on PPC samples with action tags and tested
on the all samples: Horizontal: SUM of time to
cross predicted; Vertical: Sum of time to cross
ground truth

(b) RMNS on detected values at 5 time step,
learned only on PPC samples with action tags
and tested on all samples: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

(c) RMNS on real values at 5 time step, learned
and tested only on PPC samples with action tags:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(d) RMNS on detected values at 5 time step,
learned and tested only on PPC samples with ac-
tion tags: Horizontal: SUM of time to cross pre-
dicted; Vertical: Sum of time to cross ground
truth

(e) RMNS on real values at 5 time step, learned
and tested on all samples without action tags:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(f) RMNS on values at 5 time step, learned and
tested on all samples without action tags: Hori-
zontal: SUM of time to cross predicted; Vertical:
Sum of time to cross ground truth

Figure 3.16 – RMNS performance of the time to cross methods using 5 time step.
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(a) RMNS on real values at 14 time step, learned
only on PPC samples with action tags and tested
on the all samples: Horizontal: SUM of time to
cross predicted; Vertical: Sum of time to cross
ground truth

(b) RMNS on detected values at 14 time step,
learned only on PPC samples with action tags
and tested on all samples: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

(c) RMNS on real values at 14 time step, learned
and tested only on PPC samples with action tags:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(d) RMNS on detected values at 14 time step,
learned and tested only on PPC samples with ac-
tion tags: Horizontal: SUM of time to cross pre-
dicted; Vertical: Sum of time to cross ground
truth

(e) RMNS on real values at 14 time step, learned
and tested on all samples without action tags:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(f) RMNS on values at 14 time step, learned and
tested on all samples without action tags: Hori-
zontal: SUM of time to cross predicted; Vertical:
Sum of time to cross ground truth

Figure 3.17 – RMNS performance of the time to cross methods using 14 time step.
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(a) RMNS on real values at 40 time step, learned
only on PPC samples with action tags and tested
on the all samples: Horizontal: SUM of time to
cross predicted; Vertical: Sum of time to cross
ground truth

(b) RMNS on detected values at 40 time step,
learned only on PPC samples with action tags
and tested on all samples: Horizontal: SUM of
time to cross predicted; Vertical: Sum of time to
cross ground truth

(c) RMNS on real values at 40 time step, learned
and tested only on PPC samples with action tags:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(d) RMNS on detected values at 40 time step,
learned and tested only on PPC samples with ac-
tion tags: Horizontal: SUM of time to cross pre-
dicted; Vertical: Sum of time to cross ground
truth

(e) RMNS on real values at 40 time step, learned
and tested on all samples without action tags:
Horizontal: SUM of time to cross predicted; Ver-
tical: Sum of time to cross ground truth

(f) RMNS on values at 40 time step, learned and
tested on all samples without action tags: Hori-
zontal: SUM of time to cross predicted; Vertical:
Sum of time to cross ground truth

Figure 3.18 – RMNS performance of the time to cross methods using 40 time step.
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3.6 Conclusion

In this Chapter, we evaluated the estimation time to cross for pedestrians with deep
learning approaches using the JAAD dataset.

We studied different pedestrian actions to find out if a pedestrian is crossing the
street and based on this information, we estimate the time to cross for pedestrian.
We split the pedestrian Joint Attention for Autonomous Driving (JAAD) dataset in
into four classes: pedestrian is preparing to cross the street (PCC), the pedestrian is
crossing the street (PC), pedestrian is about to cross the street (PAC), and pedestrian
intention is ambiguous (PA).

We evaluated the pedestrian detection approach, where all samples are tagged
as pedestrian and not pedestrian and a pedestrian detection approach using multi-
ple tags. The first method achieved better performance since it has only to distin-
guish the pedestrians from other road users in contrast to the second one which has
to recognize even the pedestrian actions. The second detection approach returned
a weaker performance than the classical one.

The estimation of time to cross was learned using only PPC samples and all sam-
ples. Since our global method is created in two stages, the first one could be applied
whenever the pedestrian detector returns the PPC event in contrast with the second
one, which could be used without any restriction. The first one returns a better per-
formance, but we consider the second one the more promising because it is more
realistic, so we will continue to analyze it in our future our and also create an end-
to-end detector-estimation time to cross approach.
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Chapter 4

Conclusion

In this thesis, we have focused on developing a multi-task pedestrian protection
system (PPS) which is an essential function of Advanced Driver Assistance systems
(ADAS) because it reduces traffic accidents by assisting the driver and even stop-
ping the vehicle to prevent imminent accidents. Our PPS system includes not only
pedestrian classification, detection and tracking, but also pedestrian action-unit
classification and prediction and, finally, pedestrian risk estimation (time to cross).
This particular issue was solved by using original cross-modality deep learning ap-
proaches.

In Chapter 1, we introduced different learning methods based on Cross-Modality
deep learning of Convolutional Neural Networks (CNNs) to solve the pedestrian
classification issue:

• a Particular Cross-Modality learning method, where a CNN is trained and val-
idated on the same image modality, but tested on a different one;

• a Separate Cross-Modality learning method which uses a different image mod-
ality for training than for validation;

• a Correlated Cross-Modality learning method where a unique CNN is trained
and validated with Intensity, Depth and Optical Flow images for each frame;

• an Incremental Cross-Modality learning where a CNN is learnt with the first
images modality frames, then a second CNN, initialized by transfer learning
on the first CNN, is learnt on the second image modality frames, and finally a
third CNN initialized on the second CNN, is learnt on the last image modality
frames.

• an improvement of incremental cross-modality learning thanks a new CNN
architecture that we proposed together with K-fold Cross-Validation of both
the learning rate and epoch numbers.

We examine all these methods with the classical learning one where each CNN is
trained and evaluated on the same image modality.

The experiments showed that the incremental cross-modality deep learning of
CNNs achieves the best performances (distinguishing pedestrians and non pedes-
trians). It improves the classification performances not only for each modality clas-
sifier but also for the multi-modality late-fusion scheme. We analyzed the incre-
mental cross modality deep learning even in the second part of our research.

In Chapter 2, we addressed severs problems:
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Figure 4.1 – The main architecture of our upcoming system.

• We applied the incremental cross-modality deep learning method on the de-
tection method;

• We found out whether a pedestrian is crossing, and whether the pedestrian’s
action does not present a critical situation, where we have defined four main
pedestrian actions:

1. the pedestrian is preparing to cross the street;

2. the pedestrian is crossing the street;

3. the pedestrian is about to cross the street;

4. the pedestrian’s intention is ambiguous;

• We introduced a unified pedestrian detection component based on incremen-
tal cross-modality deep learning, which also recognizes different pedestrian
actions.

The incremental cross-modality deep learning method outperformed the clas-
sical detection approach on all modalities, but its performance is statistically sig-
nificant only for the RGB image modality. We noticed that the performance of the
incremental cross-modality deep learning detector is directly proportional to the
achievements of each detection of pedestrian actions. We validated the Incremen-
tal Cross-Modality learning method not only for pedestrian classification, but also
for pedestrian unit action recognition and pedestrian detection.

We extended the pedestrian detection component using incremental cross moda-
lity deep learning by taking into account the temporal context in order to predict the
next pedestrian action. We analyzed this issue in the third part of our research with-
out using the incremental cross-modality deep learning.

In Chapter 3, we merged the pedestrian detection component with the pedes-
trian action prediction and estimation of time to cross.

We developed a prediction of pedestrian action using an estimation of time to
cross for a single and multiple pedestrians using a Long Short-Term Memory (LSTM)

We used a Long Short-Term Memory (LSTM) [HS97] to estimate the pedestrian
intention action using the previous 5, 14, and respectively 40 frames as time steps.
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We showed that integrating multiple pedestrian tags for the detection part and merg-
ing with LSTM, can achieve a significant performance.

Since in our thesis we have managed to develop only the first three-component
(Perception, Identification/Fusion, and Decision) from our main project, for last
component (Actions), we will implement it in the Inria’s vehicle in our future work
(see Figure 4.1). More then that, for continuing the work, we are planning to create
an end-to-end incremental cross-modality deep leaning detector-estimation time
to cross approach, which will be able to do all the functionalities in one step (detec-
tion, action recognition, action prediction, estimation of time to cross). In addition,
we intend to apply the incremental cross-modality deep leaning model for the clas-
sification and detection of other road objects (traffic signs and traffic lights) as well
as road users (vehicles, cyclists).
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Appendix A

Annexes

A.1 RTMAPS Architecture

Figure A.1 – The RTMAPS Detection Architecture for RGB

Figure A.2 – The RTMAPS Detection Architecture for multiple image modality
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