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ont menés et les questions qu’ils ont posés sont très intéressantes. Ça me permettra
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pertinente sur les perspectives de mes travaux. Je tiens également mon merci à Mme.
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Je tiens également à remercier mes amis (amies) avec qui j’ai partagé des moments
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Chapter 1

State of the art

Contents
1.1 Background and motivations . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature review of different methods . . . . . . . . . . . . . . . . . . . 5

1.2.1 The finite element method . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 The fast Fourier transform based method . . . . . . . . . . . . . . 6

1.2.3 The finite difference method . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 The matrix free finite element method . . . . . . . . . . . . . . . . 7

1.2.5 The MultiGrid method . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.6 Parallel computing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Background and motivations
The development of material processing leads to innovations in material science. Many
man-made materials, with improved corrosion resistance, high strength, light weight, etc.,
are widely used in the industrial domain and in the biological domain. However, during
the life cycle of these innovative materials, many problems, e.g. damage, crack, etc.
can send the products into discarding step. The work of scientists is to find the defects on
these materials and to give some advice to engineers to improve the material performance.
Many techniques are investigated to find the defects on and in material. Thousands of
years ago, chips of crystal or obsidian were used by Egyptians to better view small objects.
Nowadays, the microscope has been developed, but it can only help scientists to see the
surface of materials. The homogenization method was then investigated to predict the
effective material properties from its microstructure. Since the structure of man-made
materials are ”theoretically known”, researchers proposed to predict the effective material
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1. State of the art

properties from the ”theoretical” microstructure of materials, e.g. laminated structure
materials.

Heterogeneity leads to homogenization. The mathematical theory of homogeniza-
tion methods was proposed to obtain the effective properties, e.g. conductivity, elas-
tic modulus, of heterogeneous materials, e.g. composite materials. The principle
of the homogenization method is to obtain the global material property from its mi-
crostructure as presented in Figure 1.1 from a to b. In the 1950s, researchers started
studying the strain and stress in heterogeneous materials. The well-known Eshelby’s
problem ([ESH 57, ESH 59]) dates to these years. After that, the elastic behavior of
more complex materials, e.g. composite materials and polycrystals was studied by
[HAS 62b, HAS 62a, HAS 64]. But the homogenization method was really proposed
in the 1970s ([PAP 78, SÁN 80, OLE 84]) for periodic structures. It was developed for
the application of the multiscale method. For more information, e.g. history, theory, about
homogenization, see in [PAP 78, CIO 99, TAR 09, BAK 12].

Figure 1.1: The principle of the homogenization method

Nowadays, two typical homogenization methods are used: the numerical homog-
enization and the analytical homogenization. The well-known analytical homoge-
nization methods are: Hashin-Shtrikman by [HAS 62b, HAS 62a], Mori-Tanaka by
[MOR 73, BEN 87], self-consistent by [HER 54, BUD 65, HIL 65], etc.. The principle
of the analytical homogenization is to use a formulation to compute the effective material
properties from its microstructure with the material properties, volume fractions, geome-
tries, etc. of each component. The advantage of this kind of homogenization method
is that the numerical process is simple. However, these methods are suitable only for
materials with simple geometry and it does a poor job for materials with large property
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variations. For random heterogeneous materials, the analytical homogenization method is
not sufficient. The computational or numerical homogenization method is developed and
often used in the last three decades. The principle of the numerical homogenization is to
carry out numerical simulations with specific boundary conditions on its microstructure.
The effective material properties at the macroscopic scale can then be computed from its
solutions at the microscopic scale.

However, as stated the origin of the homogenization method: to predict the effective
material properties from its microstructure. The two major drawbacks of the homoge-
nization method are obvious.

• It looses microscopic details. e.g. The free edge effect in laminated structures can
never be predicted by the classical laminate theory. However, this kind of effects
can lead to material damage.

• The ”theoretical” material microstructure is just theoretical, the ”real” microstruc-
tures are always different from its theoretical structures due to the manufacturing
process limitations.

To obtain the real material microstructure without destroying the material, the well-
known Computed Tomography (CT) was invented.

The mathematical theory of the Radon transform in 1917 is the first proposal of X-ray
computed tomography according to [RAD 05]. In 1979, Allan M. Cormack and Godfrey
N. Hounsfield received the Nobel Prize in Physiology or Medicine for ”the development
of computer assisted tomography”. After that, the CT techniques are widely used in the
last three decades. Especially, it is widely used in the medical domain for screening for
diseases and preventive medicine, e.g. full-motion heart scans, screening for rheumatic
diseases as illustrated in Figure 1.2.

Beside the medical use, CT techniques are also used in material sciences. [HIR 95]
observed the internal damage in a metal matrix composite under static tensile loading by
in situ X-ray computed tomography. [HEE 97] introduced the potential of the CT to quan-
tify plant roots in situ. [RAN 10] studied the fatigue crack by using the CT image of cast
iron, as presented in 1.3. [LEC 15] observed the free edge effect in laminated composites
by using X-ray CT. [RUB 13] studied the mechanical fatigue properties of natural rubber
by the in situ X-ray tomography. The squeeze flow is studied in heterogeneous unidi-
rectional discontinuous viscous prepreg laminates by using CT techniques in [SOR 17].

The application of CT images, is not only useful in the experimental domain, but
also in the numerical simulation domain. The objective of using CT images to perform
numerical simulations is to account for the ample information of the inner structure of
materials, especially for complex microstructures, e.g. composite materials. The main
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Figure 1.2: A rheumatic diseases image. iStock.com

process of using the CT image for numerical simulations is to use the CT image as input
and to account for the material microstructure. The work of [LEN 98] and [BES 07]
presented the real simulation of bone tomography. They studied mechanical problems
e.g. hip fractures of the human femur, using Finite Element Methods (FEM). [FER 99],
[MIC 10] and [PRO 16] applied the FEM simulations to tomographic images of industrial
materials to analyze their properties. [LEG 11] developed an image-based modeling using
the X-FEM and the level set numerical solver. The investigation, i.e. high order X-
FEM and the level sets for complex microstructures, proposed in [LEG 12], can also
applied for CT simulations. [LIA 13] studied a voxel-based approach compared with the
X-FEM/levelset based on images.

Both the numerical and the experimental development on CT images have been made
by researchers. However, for certain cases, the experimental applications can not be per-
formed, e.g. a living part of human, or the available equipment can not insure an exper-
iment, or the experiments are so expensive. In these cases, numerical simulations have
been widely developed and used by researchers and scientists. Meanwhile, CT images
contain ample information. Using them as an input for the numerical simulation permits
one to understand material behavior at the microscopic scale. As stated above, many in-
vestigations have been made by researchers to perform CT simulations. However, the
numerical simulations using CT images are still a challenge for researchers because of
its complexity and its dimension. To employ such simulations, the computational cost is
expensive both because of the time consumption and the memory space requirement, e.g.
large CT images can have more than 8 billion voxels.

This work is motivated by the following points.
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Figure 1.3: Crack in cast iron

• To understand the material behavior of heterogeneous materials.

• To automatically perform numerical simulations using large scale 3D CT images.

1.2 Literature review of different methods
To develop a solver for numerical simulations, the first step is to choose a numerical
technique, e.g. the Finite Element Method (FEM), the Finite Difference Method (FDM),
the Fast Fourier Transform (FFT), etc..

1.2.1 The finite element method
Among all the techniques for the numerical simulations of mechanical and thermal prob-
lems, the first to come to mind is the FEM. The FEM was firstly proposed in the 1950s. It
was used for the aerospace industry at the beginning. According to [FIS 07], its principle
is to discretize the target domain into small parts, which refers to finite elements. Equa-
tions are firstly developed on each element. These small domains are then assembled to
have a large system of equations. This large system of equations models the entire prob-
lem. The final step is to solve this large system of equations by direct or iterative solvers.
For more information about the FEM and its applications to mechanical problems, see in
[ZIE 00, LAR 13].

Many works of numerical simulations are based on the FEM. [FOU 99, CHE 02]
investigated the contact problem of forming processes by the FEM. [LEN 98, BES 07,
FER 99, MIC 10, PRO 16] applied the FEM on CT simulations. [KAN 03, ANN 07,

5
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(a) FEM mesh (b) FDM mesh

Figure 1.4: Mesh generated by FEM and FDM for a circular inclusion in a rectangular
domain [GU 16]

KAR 07] presented the applications of the FEM on composite materials. The advantages
of the FEM are the following:

• Abundant element types can deal with complicated geometries to obtain a good ap-
proximation. As presented in 1.4(a), a circle can be almost perfectly approximated.

• The implementation of boundary conditions is straightforward.

• Many investigations have been made by researchers.

Despite these advantages, the two weak points of FEM are the complicity of mesh gen-
eration and the computational cost. Its abundant element types can insure the correct
geometry, but it requires a lot of work, especially for CT images. To generate a perfect
mesh corresponding to CT images, it requires plenty of human intervention. This can take
more than half of the total work time. Meantime, the assembled large system of equations
of the entire problem is very large for a problem with billions of Degree of Freedom
(DoF). It requires much memory space, e.g. the size of the sparse stiffness matrix for a
problem with 16 billion of DoF is about 3.14 TB. Furthermore, traditional FEM can slow
down quickly for large scale problems. The traditional FEM can be a big challenge if
used in this work. Thus, specific treatment is needed to apply the FEM for this work.

1.2.2 The fast Fourier transform based method
FFT-based methods are very attractive for problems with highly heterogeneous ma-
terials. FFT based methods for periodic elasticity have been successfully used for
composite materials during the last three decade. This method does not need the
full mesh of the microstructure. The FFT based method is carried out on a regu-
lar grid. It can overcome the drawback of FEM. It was the periodic problems that
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led to the FFT-based method [NEM 82, SUQ 90]. This method is then developed by
[MOU 98, EYR 99, VIN 08, IDI 09, BIL 07]. It becomes almost routinely applied to
visco-plastic and rigid-plastic materials. However, as implied its origin, it can correctly
deal with problems with periodic boundary conditions, which is not possible to simulate
using the experimental boundary conditions, e.g. traction, fracture problems.

1.2.3 The finite difference method
The finite difference method is a method used for solving partial differential equations
(PDEs). It was firstly applied in the 1950s. The principle is to use the Taylor expan-
sion and differential quotients to approximate the derivatives in PDEs. The approximated
solutions are then solved by the direct or the iterative solver, e.g. Jacobi solver, Gauss-
Seidel solver. The FDM is a conventional method applied for fluid mechanical problems,
e.g. Navier-Stokes equations, Poisson equations. The way to discretize the domain of
the FDM is not like the FEM. As illustrated in Figure 1.4(b), for the same problem, the
FDM discretization can not have the same geometry approximation as the FEM. For more
information about the FDM, see in [SMI 85].

For the same problem, the FDM is normally faster than the FEM for a uniform struc-
tured grid. The memory space required by the FDM is less than the FDM. However, the
implementation of the boundary conditions for the FDM is complicated. Nevertheless,
some work [DOW 90] has been done to relieve this problem. Meanwhile, the conver-
gence of the FDM can be slowed down quickly after few iterations. This is because the
Jacobi solver and Gauss-Seidel solver can quickly eliminate high frequency errors. But
for the low frequency errors, they do a poor job. Due to these drawbacks, the FDM is
not often used for the solid mechanics. Nevertheless, several works can be found like
[DOW 90, GU 16].

1.2.4 The matrix free finite element method
As stated above, the application of the FEM on the X-ray tomography image simulation
is a big challenge due to the memory space requirement and the time consumption. To
overcome the drawback of the FEM, a reformulated FEM is investigated by researchers
([HUG 87, RIE 96, AUG 06]) during the last three decades. It is the matrix free finite ele-
ment method (MF-FEM). The MF-FEM was proposed to diminish memory requirements
and to apply parallel computing. The MF-FEM is particularly favorable for problems with
regular and few element types. The MF-FEM does a good job for problems arising from
voxel conversions. With the voxel conversion, the mesh generation can be automatic.
All the generated elements have exactly the same geometry and orientation. [ARB 08]
presents a human bone structures simulation using CT images by the MF-FEM.

The often used MF-FEM technique for heterogeneous materials is element-by-
element (EBE). The principle is to compute the residual element by element without

7
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the entire stiffness matrix. The main drawback of this technique is that it is difficult
to find an efficient preconditioner. The often used preconditioner is the EBE precondi-
tioning ([HUG 87]) or the Jacobi preconditioning (diagonal scaling). However, it is not
efficient for complex problems like CT simulations. An often used accelerator is the
well-known MultiGrid algorithm, as presented in [ARB 08] the MF-FEM coupled with
the aggregation-based MultiGrid method.

1.2.5 The MultiGrid method
The MultGrid (MG) method is an acceleration method based on the FDM or the FEM
by solving the problem on different grids. As presented in Figure 1.5, the problem is
discretized using two different mesh sizes. By solving the problem on these two grids, the
high frequency part of the error can be eliminated on the fine grid and the low frequency
part can be eliminated on the coarse grid. This strategy can thus overcome the drawback
of the Jacobi relaxation. The MG method used in this work refers to the geometric MG.
Another kind of MG is algebraic MG (AMG [RUG 87]), which is not presented in this
work.

The MG method was proposed in the 1960s by [FED 62, FED 64]. Its initial objective
was to solve the Poisson equation. The efficiency of the MG was presented about ten years
after the paper of Fedorenko by Brandt ([BRA 77, BRA 77]). Meanwhile, the principle of
the MG was pointed out by Brandt. After that, other researchers investigated to improve
the convergence performance of the MG method on problems with large variations of
material properties, such as the work of [ALC 81] for 2D, [HOE 98] for 3D, [ENG 96]
and [ENG 97]. For more information about the MG method, see in [BRA 11, TRO 00,
VEN 00].

All the early work using the MG method was on fluid mechanics. The application
of the MG method to solid mechanics dates to the 1980s for 2D problems by [BRA 88,
BRA 85]. Its applications on 3D solid mechanics are illustrated by [PAR 90a, PAR 90b].
They pointed out that the MG convergence performance does not depend on the prob-
lem size by using a homogeneous structure, but it is sensitive to the problem feature.
[ADA 99] applied the parallel computing on the MG method to achieve efficiency. For
the work of the recent years, [PAS 11] applied the MG method with the extended FEM
to estimate the generalized stress intensity factors. [BOF 15, ZHA 19, BOF 12b] studied
the contact problem in heterogeneous materials.

1.2.6 Parallel computing
The numerical technique has a huge influence on the efficiency. The computer which
performs the numerical simulations plays also an important role. Nowadays, with the
development of supercomputers, one can apply parallel computing to diminish the com-
puting time.

8
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Coarse grid Fine grid

Figure 1.5: The coarse grid and the fine grid for a plate with a rectangular cavity

The first electronic programmable computer ENIAC built in the U.S, brought the dawn
to computational science. Nevertheless, researchers and inventors were not satisfied with
such huge and slow computer. The development of the modern computer received its
significant considerations. Supercomputers were therefore built to support the wide am-
bitions of researchers. Sperry Rand built the first supercomputer LARC in 1960, a true
massively parallel computer was firstly realized in the 1970s. Moreover, during the last
decade, the supercomputers have been rapidly developed. Until today, the fastest super-
computer of the world can achieve 148 600.0 TFlop/s with more than 2 million cores.
They are no longer reserved only for national institutes e.g. weather research, nuclear re-
search. Nowadays, some large companies have supercomputers to carry out their research
on industrial applications.

According to [KUM 02], the use of the supercomputer is primary on structural me-
chanics ([ADE 91]), computational biology ([SCH 96]) and commercial applications.
This book ([KUM 02]) gives an overall reference to know and to learn parallel computing.
For more information about parallel computing, please refer to this book. Nevertheless
the investigations of researchers, there are still many challenges to apply parallel comput-
ing on traditional numerical techniques. Many researchers try to improve the performance
of parallel computing. [MES 08, DIG 19] proposed a parallel anisotropic mesh adaption
for the application of fluid mechanics on supercomputers. Applications of the parallel
computing on the MG method can be found in [BRA 81, MCB 91, DUR 96, YAN 02].
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1.3 Objectives
The proposal of this work is based on the difficulties of performing numerical simulations
directly on X-ray tomography images. As stated before, the major questions are:

• How to deal with the complicated microstructure of CT images (mesh generation
problem)?

• How to handle the material property jumps?

• How to reduce the memory space requirement?

• How to obtain the result efficiently?

With these proposed questions, the aim of this work is to develop an automatic and ef-
ficient solver to perform numerical simulations on heterogeneous materials using X-ray
tomographic images. This objective can be detailed as followings.

• Automatic: the numerical simulation shall performance itself without too much
human intervention.

• Efficient: the solver shall have a good efficiency.

• Heterogeneous materials: the solver shall be robust to deal with material property
discontinuities or jumps as well as with geometries discontinuities.

To achieve these objectives, this work is based on the following proposals:

• Propose a strategy to take one image voxel as an elementary node for the mesh
generation to avoid human intervention.

• Apply the MF-FEM to reduce memory space requirement and improve parallel
performance.

• Investigate an efficient and new homogenization technique to compute the coarse
grid operator of the MG method to improve its convergence performance for the
heterogeneous materials.

• Develop a massively parallel MF-FEM based MG program both for thermal prob-
lems and mechanical problems, and analyze its performance and efficiency.

• Apply the developed strategy by using images of a laminate structure and a random
heterogeneous structure, i.e. glass reinforced plastic laminated structure and cast
iron. The effective conductivity of this two materials is also computed by apply the
numerical homogenization.

• Analyze the free edge effect in the composite materials and compare to the experi-
mental result.

• Study the effects of soft inclusions in materials with a crack opening problem.

10
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1.4 Outline of the thesis
The outline of the rest chapters of this thesis is presented as followings.

Chapter 2 reviews the fundamentals of thermal conduction and its numerical solutions.
The proposed strategy is presented in this chapter, its efficiency is also demonstrated.
Section 2.2 presents the equations of the thermal conduction and its numerical solutions
by the MF-FEM. Section 2.3 introduces the basic of the MG method. Its defects are also
presented. Several special techniques, e.g. homogenized material property, are proposed
to enhance the stability and the efficiency of MG methods. In section 2.4, we present
the high performance computing to tackle time and memory consumption. The hybrid
MPI+OpenMP programming and its communication strategy are illustrated. The parallel
performance is analyzed at last.

Chapter 3, we present some applications of the thermal conduction in heterogeneous
materials by using CT images. The validation of the proposed method is illustrated in
this chapter. The application of the numerical homogenization method with the proposed
strategy is demonstrated by using images of nodular graphite cast iron and composite
materials. Simulations with more than 8 billion DoF are presented at the end of this
chapter.

Chapter 4 demonstrates the principle to apply the proposed strategy for the mechan-
ical problem. The process to develop an efficient strategy on mechanical problems is
illustrated. The detailed application is presented for linear elastic problems. The valida-
tion of the built program is employed on a spherical inclusions problem. The free edge
effect in a laminated structure is analyzed by a CT simulation with more than 18 billion
DoF. The numerical result is compared with an experimental result. The last application
deals with the linear elasticity of random heterogeneous material, e.g. cast iron, by using
its CT image with a prescribed crack.

Finally, some conclusions and perspectives are drawn.

11



1. State of the art

12



Chapter 2

Thermal problems
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A part of this chapter is adapted from our published paper [LIU 19].

2.1 Introduction
In this chapter, the efficient strategy by using the MF-FEM based MG method is pro-
posed. The strategy is built based on thermal conductions in heterogeneous materials.
Section 2.2 reviews the thermal conduction and its numerical solutions by the MF-FEM.
Section 2.3 introduces the basics of the MG algorithm and its sensibility on problems
with large material property variations. Several specific techniques, e.g. homogenized
material property, are proposed in this section to enhance the stability and the efficiency
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of the MG method. The efficiency of the proposed algorithm is analyzed at the end of
this section. In section 2.4, we present the high performance computing to tackle the time
and the memory consumption when working with large tomographic images. The hybrid
MPI+OpenMP programming and its communication strategy are illustrated. Its parallel
performance is analyzed.

2.2 Thermal conduction and its numerical solutions

2.2.1 Thermal conduction theory
Thermal conduction can be treated by a heat equation according to the first law of ther-
modynamics (i.e. conservation of energy):

ρcp
∂T
∂t
−∇ · (α∇T ) = q̇v (2.1)

where:

ρ is the mass density of material

cp is the specific heat capacity

T is the temperature

t is the time

∇ denotes the gradient operator

α is the thermal conduction coefficient which is a second order tensor

q̇v is the volumetric heat source.

Since the focus of this work is thermal conductivity, it is assumed that there is no extra
source and the thermal field does not depend on time. The heat equation (2.1) becomes a
typical Poisson equation:

∇ · (α∇T ) = div(α∇T ) = 0 (2.2)

The tomographic image used in this study is a cubic domain Ω ∈R3. Two kinds of
boundary conditions are used on ∂Ω as illustrated in Figure 2.1:

• Dirichlet boundary condition, i.e. prescribed temperature, e.g. on Γ1 and Γ2

• Neumann boundary condition, i.e. prescribed heat flux, e.g. zero heat flux on the
other four surfaces.

14



Thermal conduction and its numerical solutions

Figure 2.1: Two types of boundary conditions applied on ∂Ω

which can be written as equation (2.3):
T = T0 on Γ1

T = T1 on Γ2

α∇T ·~n = 0 on the other surfaces
(2.3)

where~n denotes the outward normal direction. To solve equation (2.2) and 2.3, many in-
vestigations have been proposed by researchers, e.g. FEM, FDM, the FFT based method.
As reviewed in the previous chapter, the MF-FEM is the best choice for this work. One
uses a finite element (FE) discretization to discretize the domain Ω.

2.2.2 The finite element discretization
FEM is one of the most common methods to discretize Ω and solve the governing equa-
tions. However, the images representing the inner structure of the material have a very
complex shape. The use of standard meshes conforming to the phase geometry, requires
much human work, as mentioned before and stated in the work of many researchers, e.g.
[LEN 98], [BES 07], [FER 99], [MIC 10], [PRO 16] and [NGU 17]. The strategy to use
one node per voxel in images has been chosen to avoid this difficulty. That means to as-
sign the material property in each voxel on each elementary node. 8-node cubic elements
are chosen to discretize Ω.

Multiplying equation (2.2) with a test function and integrating over Ω, one obtains:∫
Ω

div(−α∇T )ϕdΩ = 0 (2.4)

where ϕ is the test function.

Applying integration by parts, the formula reads:

−
∫

∂Ω

α∇T · #»n ϕdS+
∫

Ω

α∇T ·∇ϕdΩ = 0 (2.5)
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2. Thermal problems

where −α∇T · #»n is the heat flux in the outward normal direction #»n on the boundary.
Equation (2.5) can be summarized as:∫

Ω

α∇T ·∇ϕdΩ =
∫

∂Ω

α∇T · #»n ϕdS (2.6)

which is also referred to:
~qin =~qex (2.7)

with {
~qin =

∫
Ω
α∇T ·∇ϕdΩ

~qex =
∫

∂Ω
α∇T · #»n ϕdS

where~qin is the internal heat flux. ~qex denotes the external heat flux.

Employing finite element discretization, one obtains:

#»
T ≈ #»

Th =
N

∑
i=1

Tiϕi (2.8)

where
#»
Th = {T1,T2, . . . ,Tn} is an approximate solution of T , N denotes the node number

and ϕi is the shape functions of 8-node cubic elements, which is the same as the test
function.

In this work, the material is locally isotropic. Instead of using α, we use α for the
sake of simplicity. Finally, the internal heat flux for node j can be described as:

qin = ∑
e

∑
i

∑
m

8

∑
g=1

wg∇mϕiα
gTi∇mϕ j (2.9)

where g is the Gauss integration point number. m = 1,2,3 represents three directions. wg
is the weight of each Gauss integration point. αg is the conductivity at Gauss integration
point. ∑e demotes the sum in elements. α is the conductivity at each Gauss integration
point, which can be is obtained by the integration with shape functions from the conduc-
tivity at each elementary node:

α
g =

8

∑
i=1

αiϕi

2.2.3 The matrix free finite element iterative solver
The aim is to solve equation (2.7). The solution of this equation can be obtained by the
well-known direct solvers and iterative solvers. For direct solves, we have to assemble the
stiffness matrix, For a simulation of a 20483-element problem, the size of global sparse
stiffness matrix is 2049×2049×2049×27×8bytes≈ 1.69 TB, it is impossible to solve
this problem with a normal computer.
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Instead of using a direct solver, one proposes to use an iterative solver. The assembly
of the stiffness matrix is not suggested due to the size of the entire stiffness matrix. More-
over, for a mechanical problem, the size of the stiffness matrix is much larger than the
thermal problem. One of the best-known techniques not assembling the stiffness matrix
is to use a matrix free FEM (MF-FEM). The regular structure model, grid-based, per-
mits one to use the MF-FEM. The work of HUGHES et. al [HUG 83] used MF-FEM
for the first time. It was therewith developed by CAREY et. al [CAR 86]. For instance,
this method is developed and widely used, especially, for parallel computing (see e.g.
[TEZ 93]). KRONBICHLER et. al [KRO 18] presented the performance of a MF-FEM
based MG method for a Poison problem. In spite of the development of this technique,
nowadays, MF-FEM is not yet included in commercial software.

The strategy proposed in this work is to compute the unknowns node-by-node. It can
be described as:

T iter+1 = T iter +ω
qex−qin

sti f f
(2.10)

where T iter+1 and T iter are the temperature of one node in the current and the previous
iteration. ω is the relaxation coefficient. For 0 < ω < 1.0, it is often referred to the
damped Jacobi, ω = 1.0 reads the normal Jacobi and ω > 1.0 presents the over-relaxation.
Different relaxation coefficients can lead to different convergence speeds. sti f f is the
diagonal value of the stiffness matrix at each DoF. It reads:

sti f f = ∑
e

∑
m

8

∑
g=1

wg∇mϕiα
g
∇mϕi

With such a strategy, we firstly compute the residual and sti f f element-by-element,
and then the unknown node-by-node. Hence, we dot not need to assemble the entire
stiffness matrix, which solves the problem of memory consumption.

2.3 MultiGrid
The MFE-FE type iterative single level Jacobi solver proposed previously can quickly
decrease the high frequency components of the error, but for low frequency errors, it does
a poor job [VEN 00]. The convergence speed diminishes rapidly as presented in Figure
2.9(a) for a typical spherical inclusion problem with a material property contrast of 10.

2.3.1 The standard MultiGrid
It is well known that the MG method is one of the most efficient ways to increase the con-
vergence rate. The idea of the MG method is to construct several levels or grids. Then, it-
erative relaxations are carried out at each level, high-frequency errors can be eliminated on
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fine grids and low-frequency errors can be eliminated on coarse grids [BRA 77, BRA 11].
With this method, one can solve the slow convergence problem of the single level Jacobi
solver due to the presence of low-frequency errors. The work of [BIB 13] shows the effi-
ciency of using a MG method on the FEM. However, they assembled the stiffness matrix,
which is very expensive for large scale problems. In this work, we propose to use the MG
method with the MF-FEM to decrease the memory consumption. The MG method can
alleviate the time consumption.

The process of the standard MG method is reviewed in the following scheme with a
2D two levels.

Figure 2.2 shows a typical two level V-Cycle MG scheme. We construct two levels
in the same domain. The gird size on level 1, i.e. H, is two times larger than the size of
grid on level 2, i.e. h. The aim is to obtain the solution on the finest grid, i.e. level 2.
Instead of doing single level Jacobi relaxations only on level 2, one proposes to carry out
relaxations on both levels. The problem is how to pass the information from one level to
another level. One needs specific operators to transform residuals and corrections. This
2-level V-Cycle MG algorithms can be described as:

• Step 1: Perform pre-smoothing (relaxations) with equation (2.10) on the level 2
with the MF-FEM based iterative solver to obtain an approximated solution T̃ h.

• Step 2: Compute the residual rh of each node j on level 2 by:

rh = qh
ex−∑

e
∑
m

∑
i

8

∑
g=1

wg∇mϕ
h
i α

hT̃ h
i ∇mϕ

h
j

• Step 3: Inject solutions on level 2 to level 1 on the coinciding points:

T̂ H = T̃ h

• Step 4: Restrict the residual of level 2 to level 1 by the restriction operatorR:

qH
ex = ∑

e
∑

i
∑
m

8

∑
g=1

wg∇mϕ
H
i α

H T̂ H
i ∇mϕ

H
j +Rrh

• Step 5: Carry out equation (2.10) on level 1 to obtain an approximated solution T H

on level 1.

• Step 6: Prolong the correction from level 1 to level 2 by using the prolongation
operator P :

T h = T̃ h +P (T H− T̂ H)

• Step 7: Employ post-smoothing by equation (2.10) on level 2 with the corrected
solution T h.
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From the above steps, three important operators are presented in the MG algorithms:
the restriction operatorR, the prolongation operator P and the implicit coarse grid oper-
ator L. The coarse grid operator LH reads:

LH =
∫

Ω

∇φ
H
i α

H
∇φ

H
j dΩ (2.11)

which is a part of the formulation to compute the internal heat flux. For the FEM based
MG method, the relation between R and P is:

R = PT

Compute residual

Pre-smoothing

Restrict residual
Prolong corrections

Smoothing

Post-smoothing

Inject solutions

Figure 2.2: Two levels MG scheme with 2D grids (H = 2h)

To understand the standard restriction operator, an example of a 3D restriction opera-
tor combining 27 points is described in Figure 2.3. The goal is to take the residual from
27 points to the center point. Equation (2.12) presented the strategy of this processing.
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Figure 2.3: Restriction operator R and its weight [BOF 12a]

rH
i, j,k =

1
64

[1× (rh
2i−1,2 j−1,2k−1 + rh

2i−1,2 j−1,2k+1+

rh
2i−1,2 j+1,2k−1 + rh

2i−1,2 j+1,2k+1+

rh
2i+1,2 j−1,2k−1 + rh

2i+1,2 j−1,2k+1+

rh
2i+1,2 j+1,2k−1 + rh

2i+1,2 j+1,2k−1)+

2× (rh
2i−1,2 j−1,2k + rh

2i−1,2 j+1,2k+

rh
2i+1,2 j−1,2k + rh

2i+1,2 j+1,2k+

rh
2i−1,2 j,2k−1 + rh

2i−1,2 j,2k+1+

rh
2i+1,2 j,2k−1 + rh

2i+1,2 j,2k+1+

rh
2i,2 j−1,2k−1 + rh

2i,2 j−1,2k+1+

rh
2i,2 j+1,2k−1 + rh

2i,2 j+1,2k+1)+

4× (rh
2i−1,2 j,2k + rh

2i+1,2 j,2k+

rh
2i,2 j−1,2k + rh

2i,2 j+1,2k+

rh
2i,2 j,2k−1 + rh

2i,2 j,2k+1)+

8×rh
2i,2 j,2k]

(2.12)

where i, j,k is the node number. rH and rh are residuals on the coarse grid and the fine
grid, respectively. The prolongation operator is the transpose of the restriction operator.
With these three operators, one can construct the full MG V-Cycle scheme. It can be
described as:
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1. Carry out relaxations with the MF-FEM Jacobi solver on level l.

2. Inject the solution and restrict the residual to level l−1 and perform
relaxations on this level.

3. Repeat steps 1,2,3 from the finest grid to the coarsest grid l = 1.

4. Prolong the correction to level l +1 and relax on this level.

5. Repeat step 4 until the finest level.

6. Loop step 1,2,3,4,5 until obtaining the required residual.

7. Output results

Besides the V-Cycle MG schema, W-cycle is also an often used MG scheme (see
in Figure 2.5). The Full MultiGrid (FMG) cycle is another efficient MG scheme. The
principle of the FMG is to start computing on the coarsest level instead of starting on
the finest level, e.g. Figure 2.6 shows FMG cycle for a 3 level problem. For most of the
applications in this work, one starts on a 4×4×4 grid on level 1. The grid size on level
l + 1 is two times smaller than that of level l, e.g. for a problem of 20483 elements, one
has 10 levels. ν0 is the number of relaxations performed on level 1, ν1 is the number of
relaxations performed on each level going up. ν2 is the number of relaxations performed
on each level going down. For the FMG cycle, one uses ncy V-Cycles on each level. For
the initial solution of each fine level l +1, one does a linear interpolation of the solution
of level l. Compared to the V-Cycle and the W-cycle, the FMG cycle requires more
relaxations on the coarse grids. The cost of all relaxations on FMG cycles and V–Cycle
is described as following.

WFMG ≤
ncy

1− (H/h)−d WV−Cycle =
ncy(ν1 +ν2)

(1− (H/h)−d)2WU (2.13)

where WU is the cost of one relaxation on the finest grid. WFMG and WV−Cycle are the
cost of FMG cycles and V–Cycle. H/h = 2 in this work which presents the ratio between
the grid size of coarse l− 1 and fine grid l. d is the problem dimension with d = 3 in
this work. There is also the cost of transform between grids, but the problem that will be
solved in this work is too large, the relaxation time is much more expensive than others
routines. One accounts only the cost of relaxations on coarse grid and fine grid.

Figure 2.4 illustrates the convergence for both FMG cycles and V–Cycle on a spherical
thermal conduction case with a material property contrast of 10. The MG parameter
setting is: ncy = 5, ν1 + ν2 = 3, H = 2h and d = 3. Figure 2.4 shows that FMG cycles
start by a better initial solution which is about 100 times smaller than the V–Cycle. The
cost of these two types MG cycle is

WFMG ≈ 5.7WV−Cycle < 8WCycle
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Figure 2.4: FMG cycles and V–Cycle on a spherical thermal conduction problem with a
material contrast of 10

It means that to achieve the same residual, FMG cycles are more efficient than V–Cycle.
We propose to use FMG cycles. For the detail of the different performances of these types
of MG cycles, please see [VEN 00].

2.3.2 The MG method with large variations

Nevertheless, a standard MG method is not adapted for problems with high contrast (see
[BOF 12b, BOF 14, ENG 97, GU 16]). It has a very poor convergence performance, when
large variations of the material properties exist, or rather, high temperature gradients on
coarse grids are involved. These variations make the linear prolongation and restriction
operator almost ineffective. The material property on a coarse grid is unknown and should
be chosen to avoid the poor performance of classical coarse grid and inter-grid operators.
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Figure 2.5: Different MG cycles (4 levels)
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{
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Figure 2.6: FMG Cycle (3 levels)

2.3.2.1 The coarse grid operator

To solve these problems, one needs a new coarse grid operator, prolongation operator
and restriction operator. Several researchers have investigated this problem, such as the
work of [ALC 81] for 2D, [HOE 98] for 3D, [ENG 96] and [ENG 97]. These researchers
proposed several methods to alleviate the poor convergence of the standard MG method.
But the problem is that the implementation of these ideas is not simple. The computational
time and memory cost are the two other limitations. Based on the work of [ALC 81] and
[SVI 15], some new operators for the MG method are proposed in this work.

[SVI 15] proposed to use a Cardwell and Parsons (CP) bounds type homogenization
to obtain the analytical coarse grid operator. The idea is to compute the upper and lower
CP bounds of the material property on each coarse grid from the finest grid. After that,
the average of the arithmetic and geometric averages of the CP bounds, is supposed to be
the effective property on each coarse grid. With this strategy, one can obtain the diagonal
components of the material property tensor, which is sufficient for isotropic materials. For
anisotropic materials, they proposed a method to calculate the off-diagonal components
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of the property tensor, please see [SVI 15] for details. With the effective material property
tensor, the coarse grid operator on each level can be easily obtained by equation (2.11).

The weak point of [SVI 15] is that, the CP bounds on each coarse gird has to be
computed from the finest grid. It requires too much computational time when using many
grids. Therefore, one proposes to use a different homogenization technique which can be
computed recursively.

Among different homogenization methods, the Voigt approximation is one of the best-
known methods. In addition, it can be computed recursively. It is also referred to as the
arithmetic mean:

α
HV
xx =

∑
k=Nh

k=1 αh
xx

Nh (2.14)

where αHV
xx is the diagonal component of αHV which is the average obtained by Voigt

homogenization on the coarse grid l− 1, αh
xx is the diagonal component of αh which is

the material property on the fine grid l, x = 1,2,3, Nh is the number of nodes on level l,
which has the same volume as one element on level l−1.

Another approximation often used is the Reuss approximation. Equally, it can be
obtained recursively, It is also known as the harmonic mean:

α
HR
xx =

Nh

∑
k=Nh

k=1 αh
xx
−1 (2.15)

where αHR
xx is the diagonal component of αHR which is the average obtained by Reuss

homogenization at the grid l−1.

Instead of the CP bounds, the Voigt-Reuss (VR) bounds are used in this work. Thus
the effective material property tensor can be obtained recursively. The assumption is that
the effective value lies within the arithmetic and geometric averages of the VR bounds.

Definition: The effective material property tensor ᾱH is the average of the arithmetic
and the geometric average of the VR bounds. It is presented as:

α
H
xx =

1
2
(αa

xx +α
g
xx) (2.16)

where, αH
xx is the diagonal component of ᾱH , αa

xx is the diagonal value of the arithmetic
average of the VR bounds, which is defined as:

α
a
xx =

1
2
(
α

HR
xx +α

HV
xx
)

α
g
xx is the diagonal value of the geometric average of the VR bounds, which is defined as:

α
g
xx =

√
αHR

xx ·αHV
xx
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The material used in this work is supposed to be isotropic, off–diagonal values of ᾱH

are zero. The strategy to obtain the off-diagonal components is therefore not presented in
this work.

An analysis of different homogenization methods (e.g. Voigt, Reuss, Hashin-
Shtrikman, Self-Consistent) is performed. For the formulation of each method, refer
to Appendix 4.5. The idea is to compute the effective thermal conductivity for a cubic
structure, in which there is a spherical inclusion.

• The conductivity of the sphere is 100 W·m−1·K−1, 1 W·m−1·K−1 for the other part
of the cube

• The edge length of the cube is 1 m

• The radius of the sphere is between 0 m and 0.4 m

Figure 2.7 illustrates the effective conductivity obtained by different homogeniza-
tion methods, when the sphere radius varies. The effective property obtained by the VR
bounds lies between the Hashin-Shtrikman bounds. It confirms that the method used in
this work is robust, and it can be computed level by level, so it is also efficient.
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Figure 2.7: Different homogenization methods. V R+: VR upper bound, V R−: VR lower
bound, HS+: Hashin-Shtrikman upper bound, HS−: Hashin-Shtrikman lower bound, SC:
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2.3.2.2 Prolongation and restriction operators

Besides the coarse grid operator, the prolongation and the restriction operator also need
specific treatment. As mentioned above, the relation between the restriction operator (i.e.
R) and the prolongation operator (i.e. P ) is:

P =RT (2.17)

So here, we present only the prolongation operator P , the restriction operatorR can then
be obtained automatically.

The work of [BOF 14] presents the principle to derive P and R. The point is to consider
the material discontinuities. The prolongation process will be briefly presented in this
work.

As illustrated in Figure 2.8, the big box with solid edges represents one element on
the coarse grid l− 1, and the eight small boxes with dotted edges are the eight elements
on the fine grid l. The temperature correction e, at each ”black” node (e.g. A1, A2) of the
coarse grid is known. The goal is to obtain the temperature correction at all the 27 nodes
of the fine grid. For the temperature correction at the eight ”black” nodes of the fine grid
coinciding with the ones on the coarse grid, one performs an injection, which means:

el
A1 = el−1

A1 (2.18)

For the other nodes, instead of the linear prolongation of the standard MG method, the
nodal material property is taken into account. It reads as follows.

For the ”red” nodes (Figure 2.8) located at the center of the edge between two coarse
grid nodes (e.g. node B1):

el
B1 =

αA1el−1
A1 +αA2el−1

A2
αA1 +αA2

(2.19)

For the ”blue” nodes, which are located at the center of each face of the big box (e.g.
node C1):

el
C1 =

αB1el
B1 +αB2el

B2 +αB3el
B3 +αB4el

B4
αB1 +αB2 +αB3 +αB4

(2.20)

For the ”yellow” center node of the big box (e.g. node O):

el
O =

αC1el
C1 +αC2el

C2 +αC3el
C3 +αC4el

C4 +αC5el
C5 +αC6el

C6
αC1 +αC2 +αC3 +αC4 +αC5 +αC6

(2.21)
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Figure 2.8: Prolongation scheme

2.3.2.3 FMG cycle with homogenization technique and its performance

The FMG cycle with the proposed homogenization technique for a 3-level problem can
be therefore described as:

1. Compute the Voigt and the Reuss approximations on each level, re-
spectively; obtain the effective material properties αH for all levels
besides the finest level, which exhibits the real material properties.

2. Carry out relaxations with the Jacobi solver on the coarsest level 1.

3. Employ linear interpolation of the level 1 solution to level 2.

4. Perform V-Cycles with these two levels until the required residual on
level 2.

5. Employ linear interpolation of the level 2 solution to level 3.

6. Perform V-Cycles with these three levels until the required residual
on level 3.

7. Output results

For a problem with more than 3 levels, one repeats the interpolation step and V-Cycles
until the required level.

2.3.3 Efficiency of the proposed MG strategy

The performance of the MG method compared to the single level Jacobi solver is stud-
ied below. One carries out a simulation on a spherical thermal inclusion problem with a
conductivity of 10 W·m−1· K−1 for the sphere and 1 W·m−1· K−1 for the other part of
the cube. The sphere radius is a quarter of the size of cube. The domain Ω is discretized
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with 1283 (more than two million) elements. The boundary conditions are set according
to equation (2.3). The simulation is run on an office computer equipped with one proces-
sor ”Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz”. For the single level iterative
relaxation, the Jacobi relaxation is applied directly on this 1283 grid problem. For the MG
scheme, one has 6 levels for this 1283 grid problem with a coarse level of 43 elements.
ν0, ν1, ν2, ncy are set to be 10, 1, 2 and 5, respectively. Three different values for the
relaxation coefficient ω, i.e. 0.5, 1.0 and 1.5, are used for both simulations.

Single level MG scheme
Residual achieved 1.55×10−2 7.89×10−6

Cost / WU 4139 19.6

Tableau 2.1: Comparison between single level relaxation and a MG scheme
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Figure 2.9: Convergence of the Jacobi solver (a) and FMG scheme (b) on a 1293 nodes
problem

Table 2.1 and figure 2.9 illustrate the performance of the MG scheme and the sin-
gle level Jacobi solver. The convergence rate of the single level Jacobi solver decreases
rapidly both for damped Jacobi with ω=0.5 and normal Jacobi with ω=1.0. On the other
hand, the convergence rate of the MG scheme remains constant with ω=0.5 and ω=1.0.
For the case of over relaxation i.e. ω=1.5, it diverges with both methods for this prob-
lem. With a ω=1.0, one has the best convergence performance for the MG scheme. After
4139 relaxations, the single level Jacobi relaxation does not yet reach the initial solution
of FMG cycle on the finest level. It confirms that one has a good initial solution for
the finest level with FMG cycles. The MG scheme costs about 211 times lower, with a
residual 10 000 times smaller than the single level Jacobi solver.

28



High performance computing

To demonstrate the efficiency of the proposed MG method in front of the standard MG
method, several numerical simulations are employed.

The idea is to compare the convergence performance between the classical MG and
the proposed MG method. Compared to the classical Geometric MultiGrid (GMG), the
proposed method has two differences:

• Instead of the linear prolongation and restriction operators, one proposes to consider
the material properties for the prolongation and restriction operators.

• A homogenization technique is used in the proposed method to obtain material
properties on the coarse grid. However, in the classical GMG, a simple average, i.e.
Voigt approximation, is used to obtain material properties on the coarse grid.

According to the difference between a classical GMG and the proposed MG, one carries
out three simulations for the spherical case with a material property contrast of 1 000
(detailed in section 3.3.2) and for the composite case (detailed in section 3.3.4).

• GMG-A: Linear restriction and prolongation operators, Voigt approximation of the
material properties on the coarse grids

• GMG-H: Linear restriction and prolongation operators, homogenized material
property on the coarse grids

• Proposed method: Considering material property for restriction and prolongation
operators, homogenized material properties on coarse grids

As illustrated in Figure 2.10(a) and 2.10(b), these three methods converge for both the
spherical and the composite case. For the spherical case, both the proposed method and
GMG-H have the best performance. For the composite case, the proposed method has
the best performance. For both cases, it shows that the coarse grid material property has
a large influence on the convergence speed, a representative material property for coarse
grid is highly important to ensure good convergence. The idea to includes the material
property for the prolongation and the restriction operator does not always have a large
improvement, for some symmetrical case, e.g. spherical inclusion, it does not have a large
improvement compared to GMG-H. But for the most complex case e.g. for a composite
material, it has a good performance. Since the aim of the proposed algorithm is to deal
with complex materials with large material property variations, the proposed algorithms
are more efficient.

2.4 High performance computing
The proposed strategy permits one to have a good and efficient convergence. However, for
an image with 20493 voxels, even carrying out one relaxation on the finest level requires a
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Figure 2.10: Convergence of the MG method with different intergrid operators

lot of time and memory. Fortunately, high performance computing (HPC) can be of help.

To apply numerical simulations on supercomputers, special programming methods
are needed according to the supercomputers architecture. Three well-known parallel
programming methods are Message Passing Interface (MPI), Open Multi-Processing
(OpenMP), Compute Unified Device Architecture (CUDA). MPI and OpenMP are spe-
cially used on CPUs. CUDA is reserved for GPUs. MPI is designed to provide both the
point-to point and collective communications among distributed memory machines. It
was invented for massively parallel computing. OpenMP is proposed for shared mem-
ory multi-platform. For more details about the MPI, OpenMP, please refer to [AUB 11]
and [KAR 03]. All of these three programming have a good performance for different
machine architectures. To choose the final programming method, one shall first take ac-
knowledge of the available supercomputer.

The architecture of the available machine is the supercomputer ”Liger” at Centrale
Nantes. As presented in Figure 2.11, Liger has a hierarchical hardware design, which
composes of many nodes. Each node consists of 2 processors (i.e. sockets) with a total
RAM of 128 GB and each processor is constituted by 12 cores. It is therefore a Multi-
Core/Multi-Socket supercomputer. Liger is also equipped with graphic cards to support
CUDA, but it is too limited compared to its CPU ability. Since the aim of this work is to
solve a 20483-element problem, large memory is essential. Pure OpenMP can only ensure
128 GB of RAM, which is not sufficient. Moreover, OpenMP only can not ensure a suf-
ficient speedup. MPI programming allows one to have a massively parallel programming
with large memory and sufficient speedup. For the available machine, the maximum num-
ber of cores can be used is fixed at 1000 by the owner, which allows us to have a sufficient
speedup and memory space for this work.
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Figure 2.11: Supercomputer architecture

2.4.1 Hybrid MPI+OpenMP
MPI seems to be a good choice for this work. it has a good performance. However, with a
MG method, one can have a large limitation for the parallel computing. The coarsest MG
gird often starts by a 43 grid, which means that on the coarsest level, it does not permit one
to use as many MPI as we want. Researchers developed several strategies to avoid such
problems. Some researchers propose to compute the entire coarse grid solution in each
MPI task and only partition the fine grid simulations into different MPI tasks, since it is
the fine grid which is time consuming. Another solution is to change the number of MPI
tasks during the computation. For the coarse gird, one uses only one MPI core and lets
other cores ”sleep”. For the fine grid, one uses all the MPI cores. Both these two options
are not simple to implement. Beside these two options, another often used strategy is the
Hybrid MPI+OpenMP, see [GAH 12], [NAK 12] and [BER 06].

Hybrid MPI+OpenMP programming is designed by researchers to achieve a better
performance. Rabenseifner et.al. [RAB 09] found that compared to pure MPI and pure
OpenMP, a hybrid programming model is the superior solution because of memory con-
sumption and reduced communication requirements. Since the available machine is a
hierarchical machine, it allows us to use Hybrid MPI+OpenMP programming. MPI is
applied for the inter-zone parallelization and OpenMP is applied for the intra-zone par-
allelization. The hybrid programming can also reduce the number of output files, which
can minimize the visualization problem. e.g. To use 640 cores, instead of using 640 MPI
tasks which creates 640 small output files, one uses 64 MPI with 10 OpenMP per MPI
task, the number of output files reduces to 64.

The Hybrid MPI+OpenMP implementation is chosen for this work. As mentioned
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previously, for a problem with 43 elements on the coarse grid, the maximal number of
MPI can be used is 64. For large problems, in order to have a good speedup, the idea
is to use one MPI on one socket and 12 OpenMP on each socket. In this way, one cam
have 768 cores working simultaneously. The option of using one MPI per node and 24
OpenMP per MPI permits to use more cores. But it is does not give a good performance,
since OpenMP has a poor performance when accessing data between two sockets.

2.4.2 Domain decomposition and communication
For both MPI pure programming and Hybrid MPI+OpenMP programming, the part of
MPI is fundamental. To apply MPI, the first step is to decompose the domain. The way
to decompose the computational domain has a significant influence on the speedup. The
optimum option is to let all the MPI tasks have an identical workload, i.e. the number of
unknowns to be computed is identical in each MPI task.

The domain Ω in this work is cubic. One proposes to use a 3D domain decomposition
(see Figure 2.12). A 2D example is presented to explain it. As illustrated in Figure 2.13,
a 2D 6×6 grid problem is separated into 9 MPI tasks. All the tasks are named as (0, 0),
(0, 1), ... , (2, 2). Each MPI task calculates a 2×2 grid problem. To obtain the unknown
on an elementary node, it needs the residual of all the four elements which are connected
with this node. For the center node, e.g. node O, it has all his neighbors to accomplish
its computation in task (1, 1). For nodes on boundaries, e.g. node A, their neighbors are
not in processor (1,1). To obtain the value of the unknown on node A, elements e1, e2, e3
and e4 are required. However, since it is a distributed memory supercomputer, one does
not have directly data access to another computer node. The strategy is to create ”ghost”
elements in task (1, 1). As shown in Figure 2.13, elements e

′
2, e

′
3 and e

′
4 are virtually the

same as elements e2, e3 and e4 in task (0, 1), (0, 2) and (1, 2), respectively. To computer
all the unknowns, other ”ghost” elements are also needed. Figure 2.13 shows all the ”real”
elements and ”ghost” elements for this 2D example.

After the first relaxation in each MPI task, values on all nodes of elements e2, e3 and e4
are updated. But their ”ghost” elements still have ”old” values, which can not be updated.
To ensure the value of e

′
2, e

′
3 and e

′
4 be updated before the second relaxation, one needs the

MPI to do communication job. The idea is to send the updated value to each ghost points.
For the previous 2D example, each processor has to communicate with all the surrounding
processors. If one does it point by point, the implementation and communication process
will be too complicated. To simplify the communication strategy, many researchers in-
vestigated in this subject. One proposes to use the MPI topology (see in [GRO 99] and
[TRA 02]). The idea is to create a virtual topology that represents the way that MPI pro-
cesses communicate. As the domain is decomposed into a regular 3D cube, Cartesian
topology is used. A 3D coordinate (npx ,npy ,npx) is then assigned to each MPI task. To
organize the communication and to simplify the implementation, three communicators
representing three directions are created. The derived datatypes are also constructed to
create communication ”box”, i.e. a group of data. A 2D example is presented here to
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Figure 2.12: 3D decomposition. IDRIS presentation

have an idea about the communication. Figure 2.14 shows the communication process for
a 2D problem with 4 MPI tasks. Figure 2.15(a) presents the situation after one relaxation.
As we can observe, the value on all the ghosts points shall be updated before the second
relaxation. The first step is to communicate in the vertical direction. As illustrated in Fig-
ure 2.14(a), in each MPI task one line of values is sent to the neighbor MPI in the vertical
direction by using the communicator in this direction. After the first communication, the
value on each point is presented in Figure 2.15(b). The second communication is in the
horizontal direction (see Figure 2.14(b)), one sends one line of values in each MPI task
to its horizontal neighbor. The final updated ”ghost” points are shown in Figure 2.15(c).
For 3D problems, one needs one communication per direction, i.e. three communications
in total.

During the MG scheme, communications are carried out after each relaxation to up-
date the solution. It is carried out after each restriction of residual to update the residual
on ”ghost” points. It is also used after each prolongation step.

For the input part, since the tomography image is not too large e.g. about 8 GB for an
image with 20493 voxels, one requires each MPI task to read the entire image and to take
the part that it needs. For the output part, the float type data is used in the binary VTK
format files. One requires each MPI task to output only the ”real” element part. A pVTK
file is created by the master process for the post-processing.
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Figure 2.13: A 2D domain decomposition for a 6×6 grid problem and its MPI topology.
Solid lines denote ”real” elements, Dashed lines represent ”ghost” elements

2.4.3 HPC performance

The performance of the proposed HPC strategy is analyzed by solving a problem contain-
ing 10243 elements.

For the performance of the hybrid programming, two parameters have to be inves-
tigated: the number of MPI and the number of threads per MPI task. As mentioned
previously, each processor has 12 cores for the available machine, and each node has 2
processors. In order to have a good efficiency, the number of threads per MPI is limited
by 12 to avoid the use of OpenMP between two sockets, since OpenMP suffers from poor
data access patterns when using two sockets. The maximum number of cores that can be
used is 1 000 fixed by the owner. As presented in Figure 2.16, one simulation with 1 core
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(a) First communication (b) Second communication

Figure 2.14: Communication processing for a 2D problem (Rectangle with a inner point
donates ghost point)

(a) Before communication (b) After 1st communication (c) After 2nd communication

Figure 2.15: Communication result for a 2D problem (Rectangle with a inner point do-
nates ghost point)

and 1 MPI is carried out to have a reference to compute the speedup. The number of MPI
is set to 1,2,4,8,16,32 and 64. 12 threads are used in each MPI task. This curve illus-
trates that for a 10243 problem, even with 768 cores, a good speedup is obtained. Within
this number of cores, the speedup increases linearly as the number of cores increasing.
Furthermore, the speedup is closed optimal at 80%.

Besides the number of cores that has a big influence on the parallel performance,
the configuration of the number of MPI and the number of OpenMP can also have an
influence. i.e. for 384 cores, one has the following configurations: 32 MPI with 12
threads, 48 MPI with 8 threads, 64 MPI with 6 threads, 96 MPI with 4 threads, 128 MPI
with 2 threads.

Simulations for three different configurations, i.e. 32 MPI with 12 threads, 48 MPI
with 8 threads and 64 MPI with 6 threads, are carried out for a problem with 10243

elements. As presented in table 2.2, with 48 MPI and 8 threads per MPI, one has a
poor performance. Since in one node, there are 3 MPI which means there is at least one
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Figure 2.16: Parallel performance of the proposed hybrid strategy

Configurations Time / s
32 MPI, 12 threads 480
48 MPI, 8 threads 726
64 MPI, 6 threads 463

Tableau 2.2: Comparison between different configurations

MPI using cores from two sockets. With 64 MPI and 6 threads per MPI, one obtains
a better performance than that with 32 MPI and 12 threads, but the difference is only
480−463

463 ≈ 4%. It confirms that nevertheless the current program does not allow one to use
as many MPI tasks as we want, a sufficient performance is obtained. For a problem with
20243 elements, using 12 cores for each of the 64 MPI, i.e. 768 cores in total, one can
already accomplish the simulation in about 3 hours.

2.5 Conclusion

This chapter introduced the basics of the thermal conduction problem. The notation of
the finite element method and the MultiGrid method were reviewed. A new efficient strat-
egy of using a MF-FEM type MG with homogenization techniques was proposed. The
comparison of the proposed strategy with the single level Jacobi solver and with the stan-
dard MG method confirmed its efficiency. The massively parallel programming was also
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presented with an efficiency of 80%. With all of the proposed steps, one can finally carry
out massively parallel thermal conduction simulations on real images of heterogeneous
materials at the microscopic scale.
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Chapter 3

Thermal conduction applications using
tomographic images

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The homogenization method and the effective material property . . . . 40

3.3 Validation and applications . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Spherical inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Nodular graphite cast iron image . . . . . . . . . . . . . . . . . . . 44

3.3.4 Laminated composite material image . . . . . . . . . . . . . . . . 46

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

The main content of this chapter is adapted from our published paper [LIU 19].

3.1 Introduction

The major part of this chapter is about the computational homogenization method and
its applications. Several applications of the proposed strategy are demonstrated. The
computational homogenization with the proposed MG strategy is firstly introduced in
section 3.2. Section 3.3 reveals the validation of the proposed method and its applications
on industrial materials.
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3.2 The homogenization method and the effective mate-
rial property

The material behavior is determined by its microscopic structure. However, for indus-
trial applications, the main interest is to know its macroscopic behavior. Researchers
found a straightforward way to analyze the macroscopic properties of materials. The ho-
mogenization method is invented on the background. Nowadays, there are the analytical
homogenization method and the numerical homogenization method. The well-known an-
alytical homogenization methods, e.g. Hashin-Shtrikman bounds, Mori-Tanaka methods,
self-consistent method, etc., are often used for structured or regular materials. For com-
plex heterogeneous materials, the numerical homogenization method does a better job
than the analytical homogenization method. The following part presents the strategy of
the application of the proposed method on the numerical homogenization method.

As presented in the work of [ÖZD 08], the idea is to consider the entire domain Ω

to be one element, which is also referred to be a Representative Volume Element (RVE).
The principle of RVE homogenization is briefly presented below.

The well known Fourier’s law is described as:

−A ·∇θ = Q (3.1)

where,A is the effective thermal conductivity at the macroscopic scale, θ is the tempera-
ture at the macroscopic scale. ∇θ is the temperature gradient and Q is the total heat flux at
the macroscopic scale, which can be computed from the local heat flux with the following
equation:

Q =
1
V

∫
V

qdv =− 1
V

∫
V
α∇T dv (3.2)

With the specific boundary conditions, one can obtain A. In this work, one suggests
to apply the following boundary conditions:

∇θx = 1K·m−1

∇θy = 0
∇θz = 0
T = ∇θxx on ∂Ω


∇θx = 0
∇θy = 1K·m−1

∇θz = 0
T = ∇θyy on ∂Ω


∇θx = 0
∇θy = 0
∇θz = 1K·m−1

T = ∇θzz on ∂Ω

(3.3)

respectively. ∇θx, ∇θy and ∇θz are the temperature gradients in the X, Y and Z direction,
respectively. With each boundary condition, one column ofA can be obtained. The three
columns ofA can finally be obtained by these three simulations.
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3.3 Validation and applications

3.3.1 Validation
A multi-layer problem is used to validate the proposed solver. The domain Ω: 1.0×1.0×
1.0 cm3, consists of four uniform layers. The thermal conductivity of each layer is: α1 = 1
W·m−1· K−1, α2 = 4 W·m−1· K−1, α3 = 8 W·m−1· K−1 and α4 = 4 W·m−1· K−1. The
distribution of these four materials is presented in Figure 3.1. Boundary conditions are
applied as mentioned in equation (2.3). T1 = 0 K and T2 = 1 K are applied.

Figure 3.1: Boundary conditions on the multi-layer structure and its conductivity

The analytical solution of this problem is described as:

T (z) =


32
13z for 0≤ z < 0.25cm
8
13 +

8
13(z−0.25) for 0.25cm≤ z < 0.5cm

10
13 +

4
13(z−0.50) for 0.5cm≤ z < 0.75cm

11
13 +

8
13(z−0.75) for 0.75cm≤ z≤ 1.0cm

(3.4)

where z is the coordinate of the Z axis.

To validate the numerical solution, the error between the analytical and the numerical
solution is computed. However, the FEM has a discretization error, the number of ele-
ments used to obtain the numerical solution affects the error between the analytical and
the numerical solution. As a result, on one side, the error between the analytical and the
numerical solution is studied; on the other side, the FEM discretization error is studied.

For the numerical solution, one discretizes Ω into 128×128×128 (i.e. more than two
million) cubic elements, and applies the same boundary conditions as for the analytical
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solution and carries out the simulation. The coarsest level has 4×4×4 elements, for each
finer level, the grids size is devised by two i.e. 6 levels for a 1283 problem. Figure 3.2
shows the temperature variations of the analytical and the numerical solution, respectively,
along the Z direction. The temperature obtained by the numerical simulation is almost
the same as the one obtained by the analytical solution. The L2 error norm between the
analytical solution and the numerical solution is 0.0027.

To analyze the influence of the element size, one discretizes Ω with 16× 16× 16,
32× 32× 32 and 64× 64× 64 elements and computes the L2 error norm compared to
the analytical solution, respectively. Figure 3.3 shows the l2 error norm as a function
of element size. The L2 norm error decreases almost linearly in log-log scale with the
element size. The accuracy increases by a factor of 2 when the element size decreases,
which confirms to the accuracy obtained for the large variation cases with MultiGrid
methods.
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Figure 3.2: Temperature variation in Z direction of the analytical (Red) and the numerical
(Blue) solution

The analytical and numerical solution show that the strategy of using the MG method
coupled with homogenization technique can deal with problems with varying coefficients.

3.3.2 Spherical inclusion
The stability of the proposed method is analyzed in this subsection, when it handles a
spherical inclusion problem with large material property variations.
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Figure 3.3: L2 norm error analysis

The domain Ω is a cube, which has two materials, as presented in figure 3.4(a). The
radius of the inclusion is R = L

4 , where, L is the size of cube. The thermal conductivity
of the material in the sphere is 1 000 W·m−1·K−1, whereas it is set to 1 W·m−1·K−1 in
the other part. The contrast between these two materials is 1 000. One discretizes the
cube with 128×128×128 cubic elements. The boundary conditions are presented in the
following equation. 

T = 0 K on Γ1

T = 1 K on Γ2

α∇T ·~n = 0 on the other surfaces

The coarsest starts always by a 4×4×4 grid. ν0, ν1, ν2, ncy are set to be 100, 4, 8 and 10,
respectively.

Figure 3.4(b) shows the temperature gradient in Ω. The large variation of the conduc-
tivity on the interface explains the large variation of the temperature gradient around the
interface.

This application confirms the good stability of this strategy in case of large variations
of material properties.
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(a) Conductivity (b) Temperature gradient

Figure 3.4: Conductivity in Ω and its temperature gradient field

3.3.3 Nodular graphite cast iron image

Nodular graphite cast iron is a well-known and widely used material in the industrial
domain. The prediction of the conductivity of cast iron is a significant difficulty for re-
searchers. Several papers investigate the conductivity, e.g. [HEL 91] regarded cast iron as
a composite material and created a model to predict its conductivity. Nevertheless, since
the distribution of carbon nodules in cast iron affects its conductivity, the property of
cast iron is different for different manufacturers. One proposes to use X-ray tomographic
techniques to obtain the carbon nodules distribution in an image format. The numerical
simulation is then employed on this image to analyze the influence of carbon nodules and
to obtain the effective conductivity of cast iron.

The original tomographic image of cast iron is an image with 512×340×340 voxels
[RAN 10]. The voxel size is 5.06µm. The region of interest (ROI) in this work is a part
of this image. This part has 257× 257× 257 (more than 16 million) voxels. Each voxel
is supposed to be one elementary node of the FEM discretization. A conductivity is as-
signed to each node. Figure 3.5(a) illustrated the ROI with gray level, where the carbon
nodule is obvious. To go from the gray level in the tomographic image to material proper-
ties, the thresholding method is applied as presented in Figure 3.5(b). With this strategy,
the volume fraction of carbon nodules corresponds to the volume fraction provided in
[RAN 10]. Figure 3.6(a) illustrates the conductivity of the two components in cast iron,
where, the black nodules in this image are the carbon nodules. The carbon conductivity
is 129.0 W·m−1· K−1, for the other part, one takes the conductivity of iron which, is 80.4
W·m−1· K−1.
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(a) Gray level (b) Thresholding function

Figure 3.5: The gray level on each voxel, where GL is the original value of each voxel
obtained by X–Ray tomography, which is an integer between 0 and 255.

To obtain the effective conductivity of the cast iron, the homogenization method is
used. The boundary condition is applied as equation (3.3). For the FMG Cycle, 7 levels
are used, ν0, ν1, ν2, ncy are set to be 10, 2, 1 and 5, respectively. Figure 3.6(b) shows the
distribution of the temperature gradient in the case iron with the boundary conditions in
equation 3.5. This figure presents that inclusions in cat iron can be considered as many
small spherical inclusions in cast iron. The location of the inclusions where there are small
temperature gradient, coincides with the location of carbon nodules whose conductivity is
larger. On the two poles of inclusion in the gradient direction, a large temperature gradient
is located. This confirms to the spherical inclusion.


∇θx = 0
∇θy = 0
∇θz = 1K·m−1

T = ∇θzz on ∂Ω

(3.5)

The effective conductivity obtained is:

A=


82.4311 0.0020 0.0040
0.0020 82.4223 −0.0026
0.0040 −0.0026 82.4277

W ·m−1 ·K−1
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3. Thermal conduction applications using tomographic images

(a) Conductivity (b) Temperature gradient

Figure 3.6: Conductivity of each component of cast iron and its temperature gradient
field

Up to two significant digits,A can be described as:

A=


82.43 0.00 0.00
0.00 82.42 0.00
0.00 0.00 82.43

W ·m−1 ·K−1

which means that cast iron of this manufacturer is almost isotropic regardless of the ran-
dom carbon distribution. Since the material is isotropic, one proposes to compute its
effective property by classic Voigt-Reuss and Hashin-Shtrikman analytical homogeniza-
tion method. Table 3.1 confirms the agreement between the analytical and the numerical
homogenization for materials with such complex microstructure.

3.3.4 Laminated composite material image
Cast iron is almost isotropic, one may measure its conductivity experimentally. However,
layered composite materials, which are also widely used in the industrial domain due
to its good performance, can be significantly anisotropic. To carry out an experimental
measurement, several external factors have to be observed, which is not simple and some-
times, not possible. Employing numerical simulations directly on tomographic images
can be good alternative to know the composite properties.

The image used in this work is the image of a laminate composite material consisting
of unidirectional E-glass fibers and a M9 epoxy matrix. It is a Glass Fiber Reinforced
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Tableau 3.1: Effective thermal conductivity obtained by analytical homogenization meth-
ods

Bounds A / W·m−1·K−1)

VR− 81.86
VR+ 82.70
HS− 82.33
HS+ 82.42

Polymer (GFRP) manufactured by the Hexcel Company. Its mechanical properties have
been studied by [LEC 15]. The details of this image can be found in the work of [LEC 15].
In this work, the heat transfer in this GFRP is studied to obtain its effective conductivity.

Figure 3.7: The ROI of the GFRP

The original image of this GFRP is an image consisting of 700×1300×1700 voxels,
As mentioned in the work of [LEC 15], this material is designed with four layers, the
fibers orientation is +15◦,−15◦,−15◦ and +15◦, respectively, for each layer. The idea
is to take a cubic domain from the part which has the same fiber orientation. One takes
129× 129× 129 voxels from the part with a fiber orientation of −15◦, as the ROI (see
Figure 3.7). As presented in 3.7, the interface between the E-glass fiber and M9 epoxy
matrix is not extraordinarily sharp. It is difficult to distinguish between these two phases
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3. Thermal conduction applications using tomographic images

(a) Composite image
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Figure 3.8: Laminated composite image and its histogram

(matrix and fiber) as presented in Figure 3.8(a). From the histogram of this laminated
composite in Figure 3.8(b), the interface is not obvious neither. Instead of applying two
discontinuous phases, one proposes to apply a continuous conductivity between 0.150
W·m−1· K−1 (epoxy) and 1.30 W·m−1· K−1 (E-glass fiber). One chooses to smooth the
image gray level before it is used to compute the local material property at each voxel. It
can be described as:

α = 0.575
((

1− e−
|GL−160.5|

20

)
sign(GL−160.5)+1

)
+0.15 (3.6)

where GL is the original value of each voxel obtained by X–Ray tomography, which is an
integer between 0 and 255. Figure 3.9 presents the material property variation in function
of gray level. Figure 3.10 illustrates a good agreement can be found between the gravy
level and the material property variations. Except for the problem of the allocation of
the conductivity, another problem is that the diameter of fiber is too small to have enough
voxels in it. Sub-sampling i.e. linear interpolation, is therefore applied to this ROI to have
more voxels in each fiber. The FEM discretization error therefore needs to be analyzed, to
obtain the number of voxels needed for each section. A simulation with ∇θz = 1 W·m−1·
K−1, ∇θx = ∇θy = 0 and T = ∇θzz on ∂Ω is performed. One time sub-sampling (case
I) and two times sub-sampling (case II) are applied to the ROI, respectively. Figure 3.11
illustrates the conductivity of each node in this ROI after one time sub-sampling. For the
FMG Cycles, ν0, ν1, ν2, ncy are set to be 10, 2, 1 and 5, respectively.

The third column of the effective property tensorAc is computed for each case.
For case I (7 levels i.e. 2573 nodes):

A3
c = {−0.001559 0.025400 0.744922}

For case II (8 levels i.e. 5133 nodes):

A3
c = {−0.001607 0.026223 0.745158}
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Figure 3.9: Function to generate material property from gray level. 0 represents the resin,
2 represents fibers.

It means that about up to three significant digits, the effective conductivity tensor is the
same, or rather, one can take three significant digits for theAc obtained by one time sub-
sampling, which is sufficient for industrial applications. The temperature gradient is also
computed, as presented in Figure 3.12.

Similar to the previous cast iron application, two other simulations with boundary
conditions of equation (3.3) are performed. The effective conductivity of the ROI of the
GFRP is:

Ac =


0.625386 0.002162 −0.001559
0.002162 0.628834 0.025400
−0.001559 0.025400 0.744922

W/(mK)

With up to three significant digits, it reads:

Ac =


0.625 0.002 −0.002
0.002 0.629 0.025
−0.002 0.025 0.745

W/(mK)

which confirms that GFRP is an orthotropic material.

The effective property tensor obtained above, is for the fibers with an orientation of
−15◦, for that of the +15◦ orientation, one can derive it directly.

The applications introduced above reveal that, the effective conductivity can be ob-
tained by numerical simulations directly from an X-Ray tomographic image, without any
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3. Thermal conduction applications using tomographic images

(a) Gray level (b) Material property variations

Figure 3.10: Laminated composite image and its property

Figure 3.11: The conductivity of the fibers and the matrix

human intervention. The current tomographic images have 2048× 2048× 2048 voxels
or more than 8 billion elements. The final application for this work it to carry out the
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Figure 3.12: The temperature gradient in this composite material

numerical simulation with such a large image.

The image used in this case is the GFRP image of the previous application. One takes
a part from the original image, the ROI consists of 513×513×513 voxels. As presented
in Figure 3.13, it consists of four layers with different E–glass fiber orientations. One
employs a two times sub-sampling to obtain an image consisting of 2048×2048×2048
elements. The smoothing process on the gray level is also applied and the material prop-
erty has been assigned to each node as presented in Figure 3.13. The boundary conditions
are applied as the following.

T = 0K on Γ1

T = 1K on Γ2

α∇T ·~n = 0 on the other surfaces

For the FMG cycles in this simulation, 10 levels of grids are used, ν0, ν1, ν2, ncy are
set to be 10, 2, 1 and 5, respectively. 768 cores (64 MPI, 12 OpenMP/MPI) are used
simultaneously. The calculation time is about 3.16 hours.

Figure 3.14 illustrates the residual evolution with the number of V-Cycles on level
10. Regardless of the size of the problem, the convergence speed remains very good. To
achieve a residual of 10−6, only 5 V-Cycles on the finest level are required. It means that
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3. Thermal conduction applications using tomographic images

Figure 3.13: E–glass fiber orientation in each layer and conductivity at each elementary
node

the number of relaxations on the finest level is only 15. It confirms the efficiency of the
strategy used in this work.

The temperature gradient is presented in Figure 3.15. Figure 3.15 and 3.16 illustrate
the correspondence between conductivity and temperature gradient. A smaller tempera-
ture gradient can be found in fibers where their thermal conductivity are larger.

3.4 Conclusion
The examples given in this chapter show the stability and the efficiency of the proposed
strategy. They proved that numerical simulations at the microscopic scale permit one to
deeply understand the material behavior. The CT simulation directly using the laminated
structure implies the possibility to carry out numerical simulations with billions of DoF.
The application of the spherical inclusion, of the cast iron image and of the composite
image confirmed the stability of the proposed MF-FEM based MG method. The numeri-
cal homogenization coupled with the proposed strategy demonstrated the direct, efficient
and automatic way to obtain the effective property of materials by using its tomography
images.
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Figure 3.14: FMG convergence on the 20483-element problem

Figure 3.15: Temperature gradient of this four-layer composite material
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3. Thermal conduction applications using tomographic images

Figure 3.16: Conductivity (left) and temperature gradient (right) in the section of fibers
and their surrounding matrix
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Chapter 4

Mechanical problems
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4.1 Introduction

In this chapter, the proposed massively parallel matrix free finite element based Multi-
Grid method is applied to the mechanical problems. Section 4.2 reviews the equations of
mechanics and its numerical solutions by the MF-FEN iterative solver. The linear elastic
case is also presented in the second part of this section. Section 4.3 introduces the process
to apply the MG method on the mechanical problems with large material properties varia-
tions. Section 4.4 demonstrates the validation of the proposed method by comparing with
the analytical homogenization method for a spherical inclusion case. The applications of
the CT image of a laminated structure are presented after the validation in this section.
The last part of this section studies the crack opening by using a CT image of the cast
iron.
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4. Mechanical problems

4.2 Problem statement and theory
To solve a mechanical problem, the equations of equilibrium are the basics. The funda-
mentals of solid mechanics equations and their numerical solutions are presented in this
section.

4.2.1 Governing equations

Assuming a deformed domain Ω as presented in Figure 4.1, ∂Ω is its boundary and ~n is
its exterior normal. σ denotes the second order stress tensor. ~f is the body force in Ω,
which is due to gravity, magnetism, etc.. ~a is the acceleration, ρ is an abbreviation for
density. The equilibrium equations can be described as:

∇ ·σ+ρ~f = ρ~a (4.1)

For the sake of simplicity, the inertia effects are neglected in this paper. The equations of
equilibrium can be simplified to:

∇ ·σ =~0 (4.2)

Another often used form can be written as follows:
∂σxx
∂x +

∂σxy
∂y + ∂σxz

∂z = 0
∂σyx
∂x +

∂σyy
∂y +

∂σyz
∂z = 0

∂σzx
∂x +

∂σzy
∂y + ∂σzz

∂z = 0

Besides the equilibrium equations, the boundary conditions on ∂Ω are essential to
solve a mechanical problem. Two kinds of boundary conditions are Dirichlet and Neu-
mann boundary conditions. The Dirichlet boundary condition applied on ∂ΩD is often
presented as prescribed displacements, e.g. ~u = ~u0 on Γ1. The Neumann boundary condi-
tion applied on ∂ΩN refers to the external force ~fex, which can be described as:

~fex = σ ·~n

e.g. applying ~f0 on Γ2.

To solve equation (4.2), as stated in the fist chapter of this work, one has many choices
e.g. the FDM, the FEM, the FFT, etc.. The aim of this work is to build an automatic solver
using information directly from CT images. As presented in the above chapter the matrix
free finite element method (MF-FEM) is suitable for the CT simulations. Instead of taking
the heavy meshing step, each voxel in the CT image is supposed to be an elementary node.
8-node cuboid elements are therefore used to discretize Ω. With this strategy, the mesh
generation step becomes automatic.
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Figure 4.1: An elastic body Ω and its boundary

Multiplying equation (4.2) by a test function ~u∗ and integrating on Ω, the weak form
of equation (4.2) reads: ∫

Ω

∇ ·σ~u∗ dΩ = 0 (4.3)

Applying the divergence theorem and integrating by parts, it reads:∫
Ω

σ∇~u∗ dΩ =
∫

∂Ω

σ ·~n~u∗ dS (4.4)

which can be described as the equilibrium of internal forces ~fin and external forces ~fex:

~fin = ~fex (4.5)

with {
~fin =

∫
Ω
σ∇~u∗ dΩ

~fex =
∫

∂Ω
σ ·~n~u∗ dS

(4.6)

Applying finite element discretization, the displacements~u can be described by:

~uc ≈
N

∑
i=1

ψ
c
i ûc

i (4.7)

where i denotes the node number, N is the number of nodes, index c represents the three
directions with c = {1,2,3}. ~̂u is the displacement at the elementary node i. ûc

i is thus the
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component c of the displacement at the node i. ψ is the shape function of a 8-node cubic
element. The test function ~u∗ reads:

~u∗ = ψ
c
j

where j is the node number.

The internal force for node j and component c reads:

f c
in = ∑

m
∑
e

8

∑
g=1

wgσcm(~u)∇mψ
c
j (4.8)

with m = {1,2,3}. g is the Gauss integration point number, wg is its weight. 8 Gauss
integration points are used in each element. e is the element number. σ(~u) is the function
implying the relationship between σ and ~u. This function can be obtained by the consti-
tutive law (The constitutive law of a linear elastic material is presented in the next part).

To solve equation (4.4), the typical FEM process is to compute the stiffness matrix and
to use a direct or iterative solver. However, a typical FEM process is almost impossible
for a large scale CT image simulation because of memory space limitations, e.g. for a
problem with more than 18 billion DoF. In this chapter, the MF-FEM iterative solver is
developed for CT simulations on mechanical problems.

The principle is to compute the unknowns node by node without using the entire
stiffness matrix. It can be described by equation (4.9).

~̂uite+1 = ~̂uite +ωS(~fex− ~fin) (4.9)

where ~̂uite+1 and ~̂uite are displacements of one node in the current iteration and the previ-
ous iteration. ω is the relaxation coefficient, for 0 < ω < 1, it refers to damped Jacobi, i.e.
under-relaxation, which is used in this part. S is the compliance of the diagonal value of
the stiffness matrix at this node. It reads:

S =


1

Ku
0 0

0 1
Kv

0
0 0 1

Kw

 (4.10)

where Ku, Kv and Kw are the diagonal values of the stiffness matrix at each DoF.

4.2.2 The linear elasticity
It this work, the above strategy is applied to a linear elastic problem.

For a linear elastic problem, the constitutive equation reads:

σ =Cε (4.11)
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where ε is the second order strain tensor, C is a symmetric forth order tensor. For
isotropic materials, only two elastic constants are independent. The often used constants
are Young’s modulus E and Poisson’s ratio υ. C for isotropic materials can be described
as:

C =
E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 (4.12)

In this work, materials are considered to be locally isotropic, i.e. on each elementary
node. The constitutive law can implied by the bulk modulus and the shear modulus:

σ = Ktr(ε)I+2G
(
ε− 1

3
tr(ε)

)
(4.13)

K and G refer to the bulk modulus and the shear modulus, respectively. I is the unit
tensor. Using with the Young’s modulus E and the Poisson ratio υ, K and G read:

K =
E

3(1−2υ)
, G =

E
2(1+υ)

The strain ε can be described by the displacement~u:

ε=
1
2
(
∇~u+∇

T~u
)

(4.14)

Since~u is symmetrical, one has:

tr(ε) = tr
(

1
2
(
∇~u+∇

T~u
))

= tr(∇~u)

Combining equation (4.13) and (4.14), equation (4.13) reads:

σ =

(
K− 2G

3

)
tr(~u)I+G(∇~u+∇

T~u) (4.15)

Applying the finite element discretization with equation (4.7), the stress reads:

σcm(~u) = ∑
i

[(
K− 2G

3

)(
∑
k

∇kψ
k
i ûk

i

)
δcm +G(∇mψ

c
i ûc

i +∇cψ
m
i ûm

i )

]
(4.16)

where k = {1,2.3}. δcm is the Kronecker delta. It reads:

δcm =

{
1 c = m
0 c 6= m

59



4. Mechanical problems

Combining equation (4.8) and (4.16), one obtains the component c of the internal force
on node j:

f c
in =∑

e

8

∑
g=1

∑
i

wg

{(
Kg− 2Gg

3

)(
∑
k

∇kψ
k
i ûk

i

)
∇cψ

c
j

+∑
m

[
Gg (∇mψ

c
i ûc

i +∇cψ
m
i ûm

i )∇mψ
c
j
]} (4.17)

Kg and Gg are the material property at a Gauss point. As mentioned before, the material
property is assigned to each node from voxel information. An interpolation is used to
obtain the material property at each Gauss point. It reads:

Kg =
8

∑
i=1

ψiKi Gg =
8

∑
i=1

ψiGi.

Ku in the first term of S in equation (4.10) reads:

Ku = ∑
e

∑
g

wg

[(
Kg− 2Gg

3

)
∇cψ

c
j∇cψ

c
j +∑

m
Gg

∇mψ
c
j∇mψ

c
j +Gg

∇cψ
c
j∇cψ

c
j

]
where c = 1 represents the first term. Equation (4.9) can thus be solved node by node.

4.3 The MultiGrid method for mechanical problems
As presented in the work of the thermal conduction problems, using only the MF-FEM
Jacobi solver, the convergence rate can be very slow after several iterations. The same
strategy is applied to the mechanical problem to improve convergence. The MG method
is therefore applied to the iterative solver to improve convergence.

As mentioned in the thermal conduction application, the principle of MG is that relax-
ations on the fine grid can eliminate high frequency errors, and the low frequency errors
can be eliminated by relaxing on the coarse grid. The first step of MG is therefore to
construct several levels. In this work, the grid size on level l is two times larger than that
on level l + 1, e.g, for a 1283-grid problem with 3 level, the number of points on each
level is: 1283 on level 3, 643 on level 2 and 323 on level 1.

Once the different grids are constructed, as presented in the above chapter, three im-
portant operators are needed to employ a MG scheme: the coarse grid operator, the re-
striction operator R and the prolongation operator P . As presented in for the thermal
conduction, the standard MG scheme can not deal efficiently with problems with large
variations of the material properties. Special intergrid operators are generated in the same
way for the mechanical problems.
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The process to obtain the ~Fin and the S indicates that for a representative coarse grid
operator, one needs the material property and the shape function on the coarse grid. The
shape function of an element on each coarse grid is simple to obtain with the finite el-
ement theorem. For the material property on the coarse grid, the standard method is to
compute the arithmetic average, i.e Voigt approximation, of the material property on the
coarse grid. However, for heterogeneous materials with large property variations, a sim-
ple average can not represent the material on the fine grid. In this chapter, we propose to
apply the homogenization method proposed for the thermal problems, which applied the
homogenization method on MG algorithms to obtain the coarse grid operator.

The principle is to compute first the Voigt and Reuss approximations of K and G on
all the coarse grid recursively as follow:Voigt: KHV =

∑
Nh
1 Kh

Nh
, GHV =

∑
Nh
1 Gh

Nh

Reuss: KHR = Nh

∑
Nh
1

1
Kh

, GHR = Nh

∑
Nh
1

1
Gh

where KHV , GHV , KHR and GHR are Voigt and Reuss approximations of the bulk modulus
and shear modulus on the coarse grid, Nh is the number of nodes on level l, which has the
same volume as one element on level l−1.

According to the work on homogenization techniques, the effective material prop-
erty lies between the Voigt and Reuss approximations, which is called Voigt-Reuss (VR)
bounds. VR bounds are not the most accurate bounds, but one can compute them re-
cursively from the finest level. The effective material property on the coarse grid can be
obtained by the following equation:KH =

(
KHV +KHR

2 +
√

KHV KHR
)

2

GH =

(
GHV +GHR

2 +
√

GHV GHR
)

2

(4.18)

which means the effective KH and GH on the coarse grid is the mean of the arithmetic
and geometric average of the VR bounds on this level. According to the comparison of
different homogenization methods in [LIU 19], the proposed homogenization scheme is
robust and efficient.

With the correct material property and correct shape function on the coarse grid, one
can now define the coarse grid operator. For the restriction operator R and the prolon-
gation operator P , the process of prolongation of corrections can be described with one
element on the coarse grid l− 1 and its eight elements on the fine grid l as presented in
Figure 4.2. The objective is to bring the correction, i.e displacement corrections ~e, from
level l−1 to level l. The displacement correction of level l−1 at black points is known.
Instead of computing a simple average, one proposes to account for the material property
at each node. The bulk modulus K is used.
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O

A1 A2B1

B2

B3

B4
C1

C2

C3

C6

C5

C4

Figure 4.2: Prolongation scheme

For the black points on level l, one performs an injection from level l− 1 to l, e.g.
point A1:

~el
A1 =

~el−1
A1 .

For the red points, one computes them from the ~e at black point of level l, e.g. point
B1:

~el
B1 =

KA1
~el
A1 +KA2

~el
A2

KA1 +KA2
.

For the blue points, one computes them from the~e at red points on level l, e.g. point
C1:

~el
C1 =

KB1
~el
B1 +KB2

~el
B2 +KB3

~el
B3 +KB4

~el
B4

KB1 +KB2 +KB3 +KB4
.

For the yellow points, one computes them from the ~e at blue points on level l, e.g.
point O:

~el
O =

KC1
~el
C1 +KC2

~el
C2 +KC3

~el
C3 +KC4

~el
C4 +KC5

~el
C5 +KC6

~el
C6

KC1 +KC2 +KC3 +KC4 +KC5 +KC6
.
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For the restriction process, one can useR= P T to obtain the restriction operator.

In this part, FMG cycle is performed to have a good initial solution on the finest grid.
The process of the FMG cycle is the same as for the thermal conduction problem.

With the above strategy, the construction of a MF-FEM iterative solver with homoge-
nized MG algorithms for the mechanical problems is finished. One can start performing
numerical simulations. However, for a large image, e.g. with more than 18 billion DOF,
the computational time is too long using a standard computer. Hybrid MPI+OpenMP pro-
gramming is therefore applied to achieve good parallel computational performance as the
strategy propose for the thermal applications.

4.4 Validation and applications
In this section, the proposed strategy is validated using a spherical inclusion case. The
effective elastic modulus of a spherical inclusion is computed both by the analytical ho-
mogenization method and the computational homogenization method with the proposed
strategy. A comparison of the effective modulus obtained by different methods is then
performed. Two industrial material applications are presented following the validation
subsection.

4.4.1 Validation
To validate the proposed strategy, the typical spherical inclusion case is used. The cubic
domain Ω is filled with a spherical inhomogeneity and a homogeneous matrix as presented
in figure 4.3. The sphere radius is a quarter of the cube size L. The elastic modulus of
the sphere is Cs, and Cm denotes the elastic modulus of matrix. The ratio between these
two materials is re =

Em
Es

, where Em and Es are the Young modulus of matrix and inclusion
e.g. Figure 4.3 presents the case of Em = 500 GPa and Es = 1 GPa. The Poisson ratio
equals to 0.3 for both materials. The objective is to compute the effective modulus C of
the domain Ω for different re. For the sake of simplicity, Es equals to 1 GPa.

One of the best-know methods is the Mori-Tanaka (MT) homogenization method, see
[MOR 73] and [BEN 87] for details. The effective modulus obtained by MT is:

CMT =Cm +Vs(Cs−Cm)A

where
A= T [(Vm−Vs)I+VsT ]

−1

with
T = [I+SsC

−1
m (Cs−Cm)]

−1

where I is the unit tensor, Ss is the Eshelby tensor (see [GU 16] for details and Appendix
4.5 for its formulation), Vs denotes the volume fraction of the sphere part, CMT is the
effective elastic modulus obtained by MT homogenization.
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Figure 4.3: Young modulus of inclusion and matrix

For the computational homogenization with the proposed MG strategy, the homoge-
neous displacement boundary condition is applied to obtain the effective modulus CMG.
Domain Ω is discretized by 256×256×256 elements. The under-relaxation coefficient
equals to 0.5 for the jacobi solver. The coarsest grid has 4×4×4 elements, thus there are
7 levels. The FMG cycles use ncy = 6, ν0 = 50, ν1 = 4 and ν2 = 2. The comparison
between CMT and CMG is qualified using the following equation:

eMT−MG =
1
nt

√√√√ nt

∑
i=1

(
CMT

i −CMG
i

CMT
i

)2

where CMT
i is each term of CMT . CMG

i is each term of CMG. nt is the number of compo-
nents in elastic modulus, which equals to 36.

The elastic modulus for re = 10 obtained by the MT and the MG is presented as the
following:

CMT =


11.933 4.997 4.997 0 0 0
4.997 11.933 4.997 0 0 0
4.997 4.997 11.933 0 0 0

0 0 0 3.563 0 0
0 0 0 0 3.563 0
0 0 0 0 0 3.563

GPa
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CMG =


11.986 4.991 4.991 0 0 0
4.991 11.986 4.991 0 0 0
4.991 4.991 11.986 0 0 0

0 0 0 3.488 0 0
0 0 0 0 3.488 0
0 0 0 0 0 3.488

GPa

From these two elastic modulus, we find that the effective material is isotropic, which
confirms to this case. Table 4.1 presents the first item of the effective modulus obtained
by the MT and the MG method for different re. eMT−MG is also presented in Table 4.1.
From this table, a good agreement can be found between the MT and the MG. There is
a small difference (less than 0.5%) between these two methods. The proposed method is
therefore validated.

Tableau 4.1: C1111 obtained by MT and MG
re CMT

1111/GPa CMG
1111/GPa eMT−MG

1 1.346 1.346 0
10 11.934 11.986 0.31%
50 58.220 58.557 0.40%
100 116.037 116.730 0.42%
200 231.6670 233.068 0.43%
500 578.549 582.073 0.43%

The strain field of this spherical case with re = 500 is illustrated in Figure 4.4. It is the
field of strain XX obtained by the prescribed displacement as indicated in equation 4.19.

~u = {x, 0, 0} on all the surfaces (4.19)

where x is the coordinate of the X direction. Some strain raisers are found at the interface
of matrix and inhomogeneity. The strain inside the sphere is smaller than in the matrix
which is typical for soft inclusions.

The efficiency of the proposed strategy is also analyzed for this mechanical problem.
The principle is to perform the numerical simulation for re = 10 with both the FMG
scheme and the single level Jacobi iterative solver. Figure 4.4.1 implies that with 2000
relaxations, the single level Jacobi iterative solver still can not achieve the initial residual
of the FMG scheme. The FMG achieves a residual of 10−5 with 36 relaxations. The FEM
convergence slows down after only few relaxations. However, the FMG scheme remains
its good convergence. The red line in Figure 4.5(b) demonstrates the residual at the finest
level after each V–Cycle of the FMG scheme.
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x

y z

Figure 4.4: Strain field of spherical inclusion case. The white box is the initial shape of
Ω
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Figure 4.5: Convergence of the Jacobi solver (a) and FMG scheme (b) on a 2563 nodes
problem
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4.4.2 Laminated material simulations
In this subsection, a simulation on a problem with more than 18 billion DoF is presented.
The numerical result is then compared to the experimental result obtained by the digital
image correlation (DIC).

The CT image of a laminated material is used in this case. This CT image has
700×1300×1700 voxels with 4.5 µm/pixel. This laminated structure consists of four
layers with a fiber orientation of 15◦, -15◦, -15◦ and 15◦, respectively. The fiber is the
E-glass fiber with a Young’s modulus of 80.0 GPa. The matrix is s M9 epoxy with a
Young’s modulus of 3.2 GPa. The Poisson ratio of these two materials equals to 0.22.
Figure 4.6 illustrates a section view of an interface of layers, one can observe two dif-
ferent fiber orientations crossing, and the fiber distributions are not uniform. All these
defects, which can only be seen by CT, have an impact on the material mechanical be-
havior under certain loading. More information about this image and this material can be
found in [LEC 15].

YZ PlaneXY Plane XZ Plane

Figure 4.6: Sections of material

The main subject of this subsection is to analyze free edge effects in the laminated
structure by numerical simulation. A qualitative comparison between the numerical re-
sults and the experimental results is also presented. The free edge effect was firstly pre-
sented by [PIP 94], who found the strain concentrations around free edges and the ply
interface. [LEC 09] illustrates the free edge effect by the DIC experimental method of an
unidirectional carbon fiber reinforced plastic laminated structure. For more information
about the free edge effect, see [PIP 94]. In this paper, instead of carrying out DIC ex-
periments, the CT image of the laminated material is used directly to employ numerical
simulations and understand the free edge effect.
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To carry out numerical simulations, one proposes to take a part of this image which
refers to the region of interest (ROI). The ROI is constituted of 577×1153×1153 voxels
as presented in Figure 4.7. To have more voxels in the fiber section, one performs a sub-
sampling, i.e. linear interpolation, on this ROI. Figure 4.8 shows that we have about ten
pixels per fiber diameter. The final input image, i.e. domain Ω, has 1153×2305×2305
voxels which means we have more than 6 billion elements, i.e. 18 billion DoF. The
coordinates of the center of Ω are (0,0,0) with a size of L×2L×2L.

X Y

Z

Figure 4.7: The gray level (GL) of the ROI opened in Paraview with colors

The boundary conditions are given by the following equations:{
~u = {0, 0,−0.01L}, on z =−L
~u = {0, 0, 0.01L}, on z = L

(4.20)

where uz is the displacement in Z direction.

There are 1153×2305×2305 elementary nodes on the finest level and 9×18×18 ele-
ments on the coarsest level with a total of 8 levels. The under-relaxation coefficient equals
to 0.5 for the Jacobi solver. The parameters of the FMG cycles are: ncy = 9, ν0 = 500,
ν1 = 4 and ν2 = 2.

Figure 4.9 illustrates the Young modulus and the shear strain XZ on surface y = −L.
This figure demonstrates that the shear strain field mimics the Young modulus distribu-
tion. Shear strain concentrations are found on the two interfaces. This is the so called free
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Figure 4.8: Pixels in fiber section; red is fiber, blue is matrix

edge effect in laminated materials. In the area with few fibers with too much matrix, they
also aches strain concentrations which can lead to preventive damage in industrial applica-
tions. The same phenomena are found by the DIC experimental method in [LEC 09]. The
material used in [LEC 09] is a carbon fiber reinforced plastic laminated structure which is
similar to the material used in this work. A good correlation between the numerical and
the experimental results is found.

Figure 4.10 reveals the displacement in the Z direction on the two opposite surfaces
y=−L and y= L. Equally, the free edge effect can be found on the interfaces, which leads
to large displacement variations on the interfaces. This displacement variation can also
be found in [LEC 09], the displacement curves illustrated in Figure 4.11, have the same
tendency both for the numerical results and the DIC results. Another phenomenon that
we can observe is that the displacement variations on y = −L is almost anti-symmetric
to y = L. This is because the fiber orientations on these two opposite surfaces are anti-
symmetric. The Z displacements along the X axis in the center of these two surfaces are
illustrated in Figure 4.11 where a clear anti-symmetry can be found.

4.4.3 Cast iron applications

Cast iron is a widely used industrial material. Its artifacts date to the fifth century BC
according to an analysis of the microstructures of the artifact according to [WAG 93].
However, its mechanical behavior is not known as long as its history. Nowadays, re-
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X

Z

Figure 4.9: Young modulus and strain on the surface y =−L; the white dashed lines are
the interfaces of layers. Straino is the macroscopic strain, which is 1%.

searchers are still not able to understand its complete mechanical behavior due to its com-
plex structure at the microscopical scale, e.g. carbon nodule distributions. Because of its
wide use, many researchers investigated its mechanical and thermal properties. [ELL 88]
and [ANG 60] are early books which analyzed cast iron in detail. [RAN 10] analyzed the
fatigue crack problem by using the CT image of cast iron both numerically and experi-
mentally. In this work, we perform the proposed strategy on a nodular graphite cast iron
CT image.

The image used in this paper is the image obtained by [RAN 10] using X–Ray tomog-
raphy. This image consists of 340×340×512 voxels with a 5.06 µm/pixel size. For more
information about this CT image, please refer to [RAN 10]. A ROI with 257×257×257
voxels is taken from this CT image. As illustrated in Figure 4.12, many carbon nodules
with a random distribution, can be found at the microscopic scale of the CT image.

The objective is to perform the linear elastic simulation on the ROI, with a prescribed
rectangular crack to see how carbon nodules affect the crack opening. Assuming Ω is the
ROI. The center of the Ω is the origin of axis. The size of Ω is L. 2563 8-node cubic
elements are used to discretize Ω. The rectangular crack is presented in Figure 4.13. The
width of the crack is the size of the cube L. Its length is L

3 . The crack is constructed by
setting material property as 0 one three layers of nodes in Z direction. The prescribed
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X

Z

X

Z

/L

y=-L y=L

Figure 4.10: Displacement uz on the surface y =−L and on the surface y = L; the while
dashed lines are two interfaces of layers, the green line is the z = 0 line which is the center

of the surface

boundary conditions are given by the following equations.
uz = 0, on Z =−L

2
uz = 0.01L, on Z = L

2
~̂u =~0, at node (0,0,−L

2 )

The material properties are given in Table 4.2. Table 4.2 implies that the crack is defined
by setting the material property to 0 at the crack nodes. The crack domain is considered
as nodes with a material property 0, which means the computational domain is the entire
cubic Ω. To perform this numerical simulation, a specific treatment is required to deal
with the infinite material property jump. This treatment involves in the following steps.

• Step A: The MF-FEM iterative solver for the relaxation step.

• Step B: The injection of solutions from the fine grid to the coarse grid.

• Step C: The restriction of residuals from the fine grid to the coarse grid.

• Step D: The prolongation of the corrections from the coarse grid to the fine grid.
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Figure 4.11: Displacement uz along the line z = 0 on surface y = −L and y = L (see
Figure 4.10 for position of line)

Tableau 4.2: Material properties in cast iron

Component
Young’s
modu-
lus/GPa

Poisson
ratio

Iron 210 0.3
Carbon granules 21 0.2

Crack 0 0

For ”Step A”: during the relaxation processing, the displacements on nodes without
material are not updated.
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Figure 4.12: THE GL of the ROI of the CT image of cast iron

For ”Step B”: as mentioned above, the Reuss approximation is

KHR =
Nh

∑
Nh
1

1
Kh

, GHR =
Nh

∑
Nh
1

1
Gh

To avoid 0 in the denominator, one defines: if there is Kh = 0 and Gh = 0, then KHR = 0
and GHR = 0.

For ”Step C” and ”D”: the restriction and the prolongation process are done only
when the material property on this node and on all of its nearest neighbor nodes is not 0
at the fine grid. If 0 appears in the denominator when computing the restriction matrix,
one replaces it with 10−6.

For the grids, one has 256×256×256 elements on the finest level and 4×4×4 elements
on the coarsest level with 7 levels. The under-relaxation coefficient is taken to 0.5 for the
Jacobi solver. The parameters of the FMG cycles are: ncy = 4, ν0 = 100, ν1 = 8 and
ν2 = 4. Since the displacement and the crack thickness are too small for the visualization,
i.e. 1%, in the following figures the displacement is multiplied by a factor of 20.

Figure 4.14 illustrates the Young’s modulus and the strain field in the cast iron. It
presents the strain concentrations on the crack front. The largest strain can be found in
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x y

z

Figure 4.13: The prescribed rectangular crack in cast iron CT image

carbon nodules on the crack front. The largest strain is 10 times larger than the prescribed
strain at the macroscopic scale, i.e. 1%. Other strain concentrations are located on carbon
nodules, because carbon nodules are 10 times softer than iron.

Another simulation is carried out to compare the crack opening in a homogeneous ma-
terial and in a heterogeneous material. The principle is to replace all the carbon nodules
in the CT image by iron, which means the simulation is carried with a prescribed crack in
the iron. The same boundary conditions are applied on the simulation of the crack open-
ing in iron. Figure 4.15 shows the strain field in the homogeneous iron and heterogeneous
cast iron. The strain field in the iron presents typical butterfly strain concentrations in the
homogeneous materials after the crack opening. Compared to the strain concentrations in
the iron, the strain concentrations in the cast iron are not only in the vicinity of the crack
front but also in the carbon nodules over the entire volume. The material heterogeneity
spreads strain concentrations in a large volume. Figure 4.16 illustrates the strain concen-
trations on the crack front in the iron and in the cast iron, respectively. The largest strain is
located on carbon nodules on the crack front in the cast iron, but in iron, a uniform strain
concentration can be found on the entire crack front. This should lead to non rectilinear
crack front (if crack propagation is performed) and strong interactions between the crack
and the material microstructure.
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Figure 4.14: The Young’s modulus and the strainzz in cast iron

4.5 Conclusion
In this chapter, the proposed strategy is developed for the mechanical problems. The
free edge effect is analyzed by using the the CT image of an E–glass fiber reinforced
plastic laminated structure. The numerical simulation with more than 18 DoF implies the
possibility to carry out CT simulations with larger area, The good correlation between the
numerical simulation and the DIC experiment demonstrated the importance to carry out
simulations directly from CT images but not using the theoretical microstructures. The
analyze of crack opening confirms that one can perform CT simulations to analyze the
mechanical behavior of heterogeneous materials.
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Iron Cast iron

Figure 4.15: Strainzz in iron and in cast iron
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Iron Cast iron

Figure 4.16: Strain concentrations on the crack font in the cast iron and in the iron
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General conclusion
As stated at the beginning of this thesis, the objective of this work is to develop an auto-
matic and efficient solver for the CT image simulations. To achieve this final objective, we
started by analyzing the suitable numerical methods. After reviewing all the commonly
used methods, the matrix free finite element method is finally chosen in this work. The
MF-FEM has a large advantage for the voxel conversion problems. It diminishes memory
requirement. To deal with the slow convergence of the MF-FEM, the MultiGrid method
is applied to speedup convergence. The comparison between the MG method and the sin-
gle level Jacobi iterative solver shows the efficiency of the MG method. Several specific
strategies are proposed to overcome the drawbacks of the MG method, when large ma-
terial properties variations are involved. The comparison between different MG methods
demonstrates the stability and the efficiency of the proposed strategy. The new homog-
enization technique proposed in this work is very efficient and suitable to compute the
coarse grid operator of the MG method. To obtain a complete strategy, a parallel comput-
ing is applied to the MF-FEM based MultiGrid method. An efficiency of 80% is achieved
for simulation with about 1000 cores simultaneously. The entire program, including the
input and output, is developed using C/C++ with the hybrid MPI+OpenMP. The solver
can automatically read information from CT images and carry out the numerical simula-
tions itself and finally output the result in vtk and pvtk files. The entire process requires
little human intervention.

Compared to [ARB 08], we apply the standard MG method to the matrix free element
method, which is simpler. Meanwhile, for the voxel conversion problem, we use only
cubic elements, the aggregation-based MultiGrid method can not show its advantage for
this structural grid. [ARB 08] performed the CT simulation on a human bone, i.e., ho-
mogeneous material, within one billion of DoF. In this work, using more than 16 billion
DoF, we achieved a parallel efficiency of about 80%. Moreover, the effect of material
heterogeneity is studied in this work.

The proposed method is developed on the thermal conduction problem. It is extended
for mechanical problems. The mechanical applications imply that employing the CT
simulations can help researchers to understand the material behavior at the microscopic
scale. It permits ones to predict the effects of the defects in materials and to improve
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performance. The study about the free edge effects demonstrates the advantage and the
power of using the CT images at the microscopic scale. The good correlation between
the CT simulations and the DIC experiment verifies the necessity of carrying out simula-
tions with real microstructures. The simulation with more than 16 billion DoF for a real
tomography image demonstrates the efficiency and the stability of the proposed strategy.
It implies the possibility to carry out CT simulations in larger domain. The crack opening
application confirms the stability of the proposed strategy. It can deal with problems with
infinite material property jumps between cracks and materials. The interaction between
the crack and the microstructure is also observed by CT simulations.

Perspectives
In this work, a qualitative comparison is performed between CT simulations and DIC
experiments. For the next step, a quantitative comparison is more interesting. One of
challenges to perform this quantitative comparison, is that the DIC measurement is per-
formed with a precision of about ten voxels. However, the CT simulation has a precision
until one voxel. A strategy shall be proposed to perform this comparison.

With the quantitative comparison between the CT simulation and the DIC experiment,
one can try to identify the real material properties of each constituent in heterogeneous
materials. The principle is to prescribe the DIC measurement as boundary conditions in
the simulation and to optimize the different between the simulation and experiment to
find the good material properties of each constituent. With this good material properties
of each constituent, one can well predict material behavior by CT simulations.

The problem of crack opening is analyzed in this work. However, it does not study the
real crack propagation. The crack propagation by the phase field method can be carried
out using the proposed strategy. For the crack propagation in the brittle materials, there
are two parts: linear elasticity and crack propagation. In the equations of the phase field
method (4.5), we can see two essential parts. One is similar to the elastic problem, the
other is similar to the thermal conduction problem. A next step is to combine these two
parts. 

2(1−d)H − gc
l (d− l2∆d) = 0 in Ω

d(x) = 1 on Γ

∇d(x) ·n= 0 on ∂Ω

With the CT simulation on the crack propagation problems at the microscopic scale,
the interaction between microstructures and crack propagation can be analyzed. One can
obtain the propagation law for the same material at the macroscopic scale. It permits
one to carry out crack propagation in large structures with a good precision and to better
understand and predict material behavior.
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Formulations of several analytical homogenization meth-
ods
The following analytical homogenization formulations are destined for the tow-phase in-
clusion of the linear thermal conduction problems. The following formulation is presented
under these conditions:

• It is a two-phase particulate microstructure.

• The material is isotropic

Supposing the conductivity of the matrix is αm, and αs for the inhomogeneity with αs >
αm. The volume fraction is Vm for matrix and Vs for the inhomogeneity. The effective
thermal conductivity is αe. The dimension of the problem is d, d = 2 for 2D, d = 3 for
3D.

Voigt-Reuss bounds
The Voigt-Reuss lower bound is:

α
V R−
e =

Vm +Vs
Vm
αm

+ Vs
αs

The Voigt-Reuss upper bound is:

α
V R+
e =

Vmαm +Vsαs

Vm +Vs

Hashin-Shtrikman bounds
The Hashin-Shtrikman lower bound is:

α
HS−
e = α

V R+
e − VmVs(αs−αm)

2

α̃+(d−1)αm

with
α̃ =Vmαs +Vsαm

81



Appendix A

The Hashin-Shtrikman upper bound is:

α
HS−
e = α

V R+
e − VmVs(αs−αm)

2

α̃+(d−1)αs

Self-Consistent method
The process of the Self-Consistent method is to find the αSC

e with the following equation:

Vm
αm−αSC

e
αm +(d−1)αSC

e
+Vs

αs−αSC
e

αs +(d−1)αSC
e

= 0

Eshelby’s tensor for a spherical inclusion
The following Eshelby’s tensor is for the spherical inclusion of a linear elastic problem in
isotropic materials.

S =
1

15(1−ν)


7−5ν 5ν−1 5ν−1 0 0 0
5ν−1 7−5ν 5ν−1 0 0 0
5ν−1 5ν−1 7−5ν 0 0 0

0 0 0 4−5ν 0 0
0 0 0 0 4−5ν 0
0 0 0 0 0 4−5ν


where ν is the Poisson ratio of inclusion.
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Titre :  Une méthode multigrille massivement parallèle à base d‘éléments finis sans matrice 
pour la simulation des matériaux hétérogènes à partir d’images de tomographie 

Mots clés :   CT simulations, Multigrille, Calcul parallèle, Hétérogène, Homogénéisation 

Résumé :  Les simulations numériques à partir 
d’images de tomographie sont de plus en plus 
courantes depuis les vingt dernières années. 
Les simulations à l’échelle microscopique à 
partir d’images réelles de matériaux permettent 
aux chercheurs de connaître ses 
comportements thermiques et mécaniques, et 
d’améliorer leurs performances. Les difficultés 
de faire la simulation à partir d’images viennent 
de leur complexité et leur taille. La génération de 
maillages pour la microstructure complexe 
nécessite une intervention humaine pour 
l'utilisation de la méthode des éléments finis.  
Ces simulations à partir d’images de 
tomographie haute résolution demandent 
beaucoup de temps et de mémoire. 

L’objectif de ce travail est de surmonter ces 
difficultés pour effectuer automatiquement des 
simulations numériques à partir d’images 
réelles des matériaux hétérogènes. Une 
méthode éléments finis sans matrice (MF-FEM) 
est utilisée pour diminuer les besoins en 
mémoire. Les méthodes de multigrille sont 
intégrées pour améliorer la convergence de la 
MF-FEM. Une technique efficace à la base 
d’homogénéisation est proposée pour traiter la 
mauvaise convergence de multigrille pour les 
problèmes avec grandes variations des 
propriétés des matériaux. Le calcul en parallèle 
hybride est aussi appliqué. Des simulations 
avec des milliards degrés de libertés sont 
effectuées sur des problèmes thermiques et 
mécaniques.  

 

Title: A massively parallel matrix free finite element based MultiGrid method for simulations 
of heterogeneous materials using tomography images 
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Abstract: Numerical simulations using X-ray 
based Computed Tomography (CT) images 
became more and more common in the last two 
decades. CT images give researchers ample 
information about material microstructures.  
Performing numerical simulation at the 
microscopical scale permits researchers to 
understand the thermal and mechanical 
behavior of materials, and to improve material 
performance. The difficulties of performing 
simulations come from the complexity and the 
dimension of images. The meshing generation 
for the complex microstructure requires human 
intervention when using the finite element 
method. Simulations using large scale CT 
images are memory and time consuming.  

The objective is to overcome these difficulties 
and to perform automatically numerical 
simulations directly from CT images. The matrix 
free finite element method (MF-FEM) is applied 
to diminish the memory requirements. A 
MultiGrid (MG) method is used to improve the 
convergence of the MF-FEM. An efficient 
homogenization method to compute the coarse 
grid operator of MG methods is proposed to 
insure the convergence of MG methods for 
problems with large material property variations. 
Massively parallel computing is applied to deal 
with time consumption problem. Numerical 
simulations directly from CT images with billions 
of degrees of freedom are finally performed on 
the thermal and mechanical problems.  
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