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This thesis concerns the application of the Generative Topographic Mapping (GTM) approach to the analysis, visualization, and modeling of Big Data in chemistry. The main topics covered in this work are multi-target virtual screening in drug design and large chemical libraries visualization, analysis, and comparison. Several methodological developments were suggested: (i) an automatized hierarchical GTM zooming algorithm helping to resolve the map resolution problem; (ii) an automatized Maximum Common Substructure (MCS) extraction protocol improving efficiency of data analysis; (iii) constrained GTM-based screening allowing to detect molecules with a desired pharmacological profile, and (iv) a parallel GTM technique, which significantly increases the speed of GTM training. Developed methodologies were implemented in a software package used in both academic (University of Strasbourg, France) and industrial (Boehringer Ingelheim Pharma company, Germany) projects.
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1 Résumé en français

Introduction

De nos jours, les bases de données chimiques telles que CAS, contiennent des millions de structures chimiques [START_REF] Tetko | BIGCHEM: Challenges and Opportunities for Big Data Analysis in Chemistry[END_REF], et ce nombre augmente exponentiellement, grâce à l'utilisation de nouvelles technologies de synthèse combinatoire et parallèle, de réacteurs en flux continu ou de micro-ondes, entre autres. De plus, des milliards de structures virtuelles sont aisément énumérées par ordinateur (166 milliards de composés dans la base de données GDB-17 [START_REF] Ruddigkeit | Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17[END_REF]). Ces chiffres restent toutefois modestes comparés au nombre de composés dans l'espace chimique d'intérêt thérapeutique, estimé à 10 33 [3]. L'exploration de ces espaces chimiques est un défi pour les chimistes souhaitant comprendre leur structure, découvrir les régions inexplorées et analyser les relations structure-activité des molécules qu'ils contiennent.

Les cartes topographiques génératives (Generative Topographic Mapping -GTM) [START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF] permettent de modéliser, d'analyser et de visualiser de grandes bases de données. Leur contenu est projeté dans un espace bidimensionnel, qualifié d' « espace latent ». Cette méthode a été appliquée avec succès pour comparer des chimiothèques [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF] et pour la modélisation de Relations Quantitatives Structure-Activité (QSAR) [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF]. Néanmoins, des ajustements technologiques et méthodologiques sont nécessaires pour utiliser cette approche dans le cas des mégadonnées ( ou « Big Data »).

Cette thèse est dédiée à l'amélioration de la GTM et à ses applications dans différents contextes de mégadonnées. Cette thèse consiste en 6 Chapitres. Le chapitre 1 est une introduction concernant la méthode GTM et ses applications décrites dans la littérature. Le chapitre 2 présente les améliorations méthodologiques proposées, telles que le zoom hiérarchique, le domaine d'applicabilité double ou encore l'extraction des structures maximales communes. Le Chapitre 3 rapporte les résultats de l'utilisation de la GTM pour établir le profil de composés sur de multiples cibles simultanément, c'est-à-dire pour un criblage virtuel multi-cibles (VS), et des études comparatives de la GTM avec des algorithmes d'apprentissage machine éprouvés. Le Chapitre 4 décrit les résultats de la comparaison de grandes bases de données publiques (PubChem-17 et ChEMBL-17) avec les composés virtuels énumérés dans la FDB-17 [7]. Le Chapitre 5 montre l'application de la GTM pour enrichir les collections de produits de la société Boehringer Ingelheim Pharma (BI) avec des composés originaux, en tenant compte de l'expérience apportée par les projets précédents. Le dernier chapitre (Chapitre 6) est consacré à l'implémentation d'algorithmes parallèles pour accélérer les calculs GTM et aborder de nouveaux problèmes dans le domaine des mégadonnées.

Résultats et discussions

Criblage virtuel de grandes collections chimiques

Les Relations Quantitatives Structure-Activité (QSAR) sont un domaine clé de la chémoinformatique. Ces modèles visent à sélectionner rationnellement les composés par rapport à une activité biologique ou une propriété. Etant donné que la GTM peut être utilisée pour créer des modèles QSAR, le premier défi était de l'appliquer à du criblage virtuel (VS) sur une cible (mono-cible) puis sur plusieurs cibles simultanément (multicible). Ces techniques ont été appliquées à une grande collection de problèmes de classification appelée DUD (Directory of Useful Decoys) [8]. A cette fin, les GTM universelles décrites par P. Sidorov et al. [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF] ont été utilisées. Ces cartes sont entrainées pour modéliser une grande base de données (ChEMBL v23 dans cette étude) et ont été choisies pour leur capacité à prédire plusieurs centaines de propriétés biologiques. La méthode a aussi été comparée à d'autres approches d'apprentissage machine éprouvées : la recherche par similarité (avec et sans fusion de données), des réseaux de neurones, et une forêt aléatoire. Pour mesurer la performance d'une méthode, la moyenne des aires sous la courbe ROC (Receiver Operating Characteristic), <AUC> 1/2 , a été utilisée. Les résultats de la validation sur les centaines de cibles utilisées pour choisir les cartes sont présentés en La validation effectuée sur les 9 cibles de la DUD en utilisant des données jamais utilisées pour entraîner ou sélectionner les cartes, a montré des performances similaires (Figure 2). Les résultats de cette étude ont été publiées [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF]. Ensuite, l'approche de la GTM universelle a été testée dans l'environnement industriel de Boehringer Ingelheim. Tout d'abord, des GTM ont été entrainées sur 25K structures chimiques représentatives des collections internes de l'entreprise (le « frame set »). Les descripteurs moléculaires et les paramètres de la méthode GTM les plus pertinents ont été déterminés en échantillonnant systématiquement leurs valeurs sur une grille (le nombre de noeuds est 20*20 ÷ 50*50 avec un pas de 5, le nombre de RBF est 40 ÷ 70% du nombre de noeuds avec un pas de 10, le coefficient de régularisation est 1.0 ÷ 5.0 avec un pas de 0.5, et la largeur des RBF est 1.0 ÷ 5.0 avec un pas de 0.5).

Plus de 230K combinaisons de paramètres ont été essayées, et les 5 meilleures cartes ont été sélectionnées (Table 7 ; chapitre 5.2.4).

Ces cartes ont été validées par validation croisée en 3 paquets sur 2371 problèmes de classification concernant l'activité de composés sur des cibles biologiques. Pour mesurer la performance d'une carte, la moyenne des aires sous la courbe ROC (<AUC> 3cls pour les problèmes à 3 classes et <AUC> bin pour les problèmes à 2 classes) a été utilisée (Table 8). La validation croisée montre que ces cartes sont prédictives dans plus de 50% des tests proposés (1318 tests), avec une <AUC> 3cls ≥ 0.7. Ces cartes ont été utilisées pour prédire l'activité sur 42 nouvelles cibles biologiques. Pour 4 d'entre elles, la précision balancée (Balanced Accuracy, BA) était supérieure à 0.7.

Comparaison de bases de données chimiques publiques

Une base de données couvrant l'espace chimique de composés contenant au plus 17 atomes lourds a été publiée par J.-L. Reymond et al. [START_REF] Ruddigkeit | Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17[END_REF] (GDB-17). Des molécules contenant également au plus 17 atomes lourds ont été échantillonnés dans les bases de données ChEMBL (ChEMBL-17) et PubChem (PubChem-17) pour être comparées à un échantillon de 10M de composés de la GDB-17, la FDB-17 [7]. L'objectif était d'identifier les chémotypes particuliers appartenant à l'une ou à l'autre base en exclusivité. Comme la FDB-17 contient des structures chimiques virtuelles énumérées par un algorithme, la comparaison avec de véritables composés chimiques (ChEMBL-17, PubChem-17) pourrait donner lieu à la découverte de nouveaux chémotypes, qui n'ont encore jamais été synthétisés. Une GTM a donc été entrainée sur un frame set de 100K structures, sélectionnées au hasard mais avec un ratio égal pour chacun des 3 jeux de données. Puis, les données (21.1M de composés) ont été projetées sur cette carte. Les cartes ont été annotées en fonction de la prévalence d'une base par rapport à une autre dans une région de l'espace chimique représentée par la carte. Ces cartes annotées sont appelées paysages, dans la suite.

Les jeux de données ont été comparés en utilisant (i) des métriques de dissimilarité (le coefficient de Bhattacharyya, les distances Euclidienne et de Soergel), (ii) des paysages comparant FDB-17 avec PubChem-17/ChEMBL-17, et (iii) des propriétés moléculaires (nombre d'atomes lourds, chiralité, LogP, nombre d'atomes aromatiques, etc.) Les résultats de l'étude ont été publiés [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF]. Pour résumer, la comparaison a montré que les bases de données PubChem-17 et ChEMBL-17 sont très similaires, ce qui est expliqué par le fait que la première inclut la seconde (Figure 3).

Par contraste, la PubChem-17 diffère significativement de la FDB-17. Le paysage résultant, illustré par la Figure 4, montre que la PubChem-17 est dominante dans plusieurs zones de la carte dans lesquelles les composés avec des groupes nitro attachés à un système aromatique et/ou des groupes carboxyl sont localisés (zones rouges). L'absence de ces structures dans la FDB-17 est expliquée par les règles que les auteurs de la base de données ont appliquées au cours de l'énumération des structures pour restreindre l'espace chimique virtuel à des composés qu'ils ont jugés intéressants pour des applications pharmaceutiques [7]. Au cours de ce travail, un écueil était que les cartes représentaient un si grand nombre de composés que chaque élément en couvrait des centaines de milliers, ce qui en compliquait l'analyse. Pour résoudre ce problème et analyser plus finement les composés dans les zones de l'espace chimique où la FDB-17 se recouvre avec la PubChem-17 (zones vertes et jaunes), une technique appelée zoom hiérarchique de GTM (proposée auparavant par Nabney et al. [START_REF] Tino | Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way[END_REF]) a été appliquée. Elle consiste à extraire les composés d'une région de l'espace chimique représentée par une zone délimitée sur la carte et d'entrainer une nouvelle GTM en utilisant les mêmes paramètres que ceux de la carte principale (Figure 5).

Cette technique a permis d'identifier de nouveaux châssis moléculaires absents de la base de données PubChem. Les structures contenant ces châssis et présentées en Pour finir, les bases de données ont été comparées en termes de 6 propriétés calculées sur les structures chimiques à l'aide du logiciel MOE : l'entropie de la distribution des éléments composant la molécule (a_ICM), le nombre d'atomes lourds (a_heavy), la chiralité (chiral), la lipophilicité (LogP), le nombre d'atomes aromatiques (a_aro), et le statut de quasi-fragment ASTEX (ast_fraglike_ext) [12]. Les résultats sont représentés sur la Figure 6. Les paysages de propriétés correspondants au nombre d'atomes lourds dans les molécules de ChEMBL-17 et de PubChem-17 (Figure 6) sont similaires. Toutefois, PubChem-17 contient un excès d'entrées de plus haut poids moléculaire (en rouge sombre).

Ceci résulte de deux biais de composition des bases de données : d'une part, PubChem est composé de structures chimiques sélectionnées pour être à priori bio-actives puisqu'elles sont soumises à des bancs de tests biologiques. Les très petits composés ne pouvant pas former de complexes très stables avec des protéines (et en dépit de leur éventuelle efficacité en tant que ligand) sont rares dans PubChem. 

Enrichissement de librairie structurale pour Boehringer Ingelheim

En prenant en compte l'expérience apportée par les projets précédents, la GTM a démontré une bonne efficacité en criblage virtuel et pour la comparaison de chimiothèques.

Dans cette étude, cette technique a été utilisée pour augmenter la diversité chimique de la collection interne de composés de Boehringer Ingelheim (BI). Pour ce faire, une carte GTM a été utilisée pour comparer cette collection BI au catalogue de l'entreprise Aldrich-Market Select (AMS) référençant plus de 8M de produits. Pour entraîner la carte, un jeu de données représentatif de 25,000 structures de diversité chimique contrôlée (ne présentant pas plus de deux structures chimiques plus similaires qu'une valeur seuil) a été constitué à partir de la base de données AMS. Pour commencer, un paysage de classification a été construit pour comparer les distributions des composés dans chaque chimiothèque (Figure 7).

Afin de découvrir de nouveaux châssis moléculaires, l'approche du zoom hiérarchique de GTM a été automatisée pour être appliquée systématiquement sur les zones de la carte dans lesquelles les composés AMS étaient le plus surreprésentés. Les collections ainsi identifiées ont été analysées pour en extraire les sous-structures maximales communes (Figure 8). 

Conclusions

1)

La méthode GTM (Generative Topographic Mapping) a été testée pour le criblage virtuel (VS) mono-cible et multi-cible. Les études comparatives ont montré que les modèles GTM ont des performances similaires aux autres méthodes d'apprentissage machine. Mais elle possède plusieurs avantages comme la possibilité de visualiser l'espace chimique.

2)

La méthode GTM a été testée avec succès pour comparer de grandes bases de données de composés réels et virtuels (PubChem-17, ChEMBL-17, FDB-17). Il a été montré que la GTM permet de visualiser facilement des millions de points de données et de localiser les zones de l'espace chimiques où ces ensembles de molécules se recouvrent.

3)

La technique de zoom hiérarchique de GTM a été proposée comme une solution pour analyser plus finement le contenu des zones de l'espace chimique les plus peuplées. Elle augmente la capacité de la GTM à distinguer différents chémotypes. Ceci donne lieu à une extraction plus efficace de châssis et de sous-structures maximales communes.

4)

Un nouveau protocole d'extraction de sous-structures maximales communes a été proposé. Ce protocole a été intégré à la technique de zoom hiérarchique de GTM.

L'outil développé a été utilisé avec succès pour enrichir la collection interne de la société Boehringer Ingelheim Pharma (45.5K nouvelles sous-structures, 401K molécules analysées et une liste de composés recommandés pour être achetés ou synthétisés par la société).

5)

Le concept de GTM parallèle a été proposé. Il a été testé sur un jeu de données extrait de la base de données ChEMBL. Il a été montré que la GTM parallèle propose à l'utilisateur des modèles dont les performances sont conservées tout en divisant par 2 les temps de calcul. 

Liste des presentations

Introduction

The number of synthesized chemical structures increases exponentially because of the implementation of parallel and combinatorial synthesis approaches, as well as new experimental techniques like flow or microwave reactors. CAS Registry is the largest chemical database of registered compounds that have been synthesized since the 1800s, and it already contains 154 million organic and inorganic substances [START_REF]Chemical Abstract Service[END_REF]. Yet, it covers just a part of chemical space. Thus, Reymond et al. [START_REF] Ruddigkeit | Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17[END_REF] virtually enumerated a new database (GDB-17) of 166 billion small molecules containing no more than 17 heavy atoms.

According to the estimation made by P. Polishchuk et al. [3], the drug-like chemical space includes at least 10 33 molecules. These studies demonstrated that modern chemistry enters the era of Big Data.

Among various definitions of "Big Data", the most pertinent, to our opinion, belongs to A. De Mauro et al. [START_REF] Mauro | A formal definition of Big Data based on its essential features[END_REF] who defined this as "the information asset characterized by such high Volume, Velocity, and Variety to require specific technology and analytical methods for its transformation into value". Lusher et al. [START_REF] Lusher | Datadriven medicinal chemistry in the era of big data[END_REF] included in this description "Veracity"

and "Value" criteria thus completing the 5 "V's" definition. Specifically for chemical data, Bajorath et al. [START_REF] Hu | Entering the 'big data'era in medicinal chemistry: molecular promiscuity analysis revisited[END_REF] suggested also to use the Complexity and Heterogeneity criteria.

The value of Big Data in chemistry is determined by the knowledge which can be extracted via large chemical databases analysis and modeling. In this context, data visualization and analysis plays an important role in modern chemistry and, especially, in drug-discovery. This helps a chemist to decide by combining human and artificial intelligence.

Nowadays, three groups of methods are used for chemical data analysis, visualization and modeling: (i) graph-based, (ii) descriptors-based, and (iii) combined methods. The graph-based approaches represent a molecule as a graph where the nodes represent atoms and the edges play a role of chemical bonds. A general way to analyze graph-based chemical space stands on the concept of a molecular framework (scaffold) defined as the part of a structure which remains after all terminal chains have been removed [START_REF] Bemis | The properties of known drugs. 1. Molecular frameworks[END_REF].

Scaffolds can be used to group structures in a hierarchical scaffold tree which allows to visualize data and even to model structure-activity relationship (SAR) [START_REF] Schuffenhauer | The Scaffold Tree -Visualization of the Scaffold Universe by Hierarchical Scaffold Classification[END_REF]. Maximum

Common Substructure (MCS) -based algorithms are used in chemoinformatics to extract the largest connected or disconnected subgraph shared by a pair or a group of structures. Its application can be also found in data clustering and SAR studies [START_REF] Cao | A maximum common substructure-based algorithm for searching and predicting drug-like compounds[END_REF]. Matched Molecular Pairs (MMP) method [START_REF] Kenny | Structure modification in chemical databases[END_REF] represents another popular way for SAR analysis.

In contrast to the graph-based methods, the descriptors-based approaches consider a molecule as a vector of numbers (descriptors) that describe a compound in terms of structural and/or physical or chemical properties (e.g., structural fragments, molecular weight, LogP, etc.). These descriptors vectors are used as input in various machine-learning approaches, among which the dimensionality reduction techniques reside a huge variety of multi-dimensional data visualization and modeling. Nowadays, dozens of dimensionality reduction methods are reported in the literature [START_REF] Sorzano | A survey of dimensionality reduction techniques[END_REF]: Multi-Dimensional Scaling (MDS) [START_REF] Buja | Data visualization with multidimensional scaling[END_REF], Sammon mapping [START_REF] Sammon | Sammon Mapping)A Nonlinear Mapping for Data Structure Analysis[END_REF], Principal Component Analysis (PCA) [START_REF] Pearson | On lines and planes of closest fit to systems of points[END_REF][START_REF] Hotelling | Analysis of a complex of statistical variables into Principal Components[END_REF][START_REF] Akella | Cheminformatics approaches to analyze diversity in compound screening libraries[END_REF], Self-Organizing Maps (SOM) [START_REF] Kohonen | The self-organizing map[END_REF], Laplacian Eigenmaps [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF], Canonical Correlation Analysis [START_REF] Foster | Multi-view dimensionality reduction via canonical correlation analysis 31[END_REF], Independent Component Analysis [31], Exploratory Factor Analysis [START_REF] Osborne | Best practices in exploratory factor analysis[END_REF], Isomaps [START_REF] Balasubramanian | The isomap algorithm and topological stability[END_REF], Locally Linear Embedding [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF], Auto-encoder based dimensionality reduction [START_REF] Wang | Auto-encoder based dimensionality reduction[END_REF],

etc. These methods became popular due to their efficiency and capabilities. For instance, SOM is providing the user with a nice 2D map which is based on a non-linear model, whereas PCA is able to represent the data in 2D or 3D PC space. However, these popular methods have some clear drawbacks. Thus, PCA can efficiently be applied to process huge datasets with linearly dependent features, but it is less effective with nonlinear data distributions [START_REF] Balakin | Pharmaceutical Data Mining: Approaches and Applications for Drug Discovery[END_REF]. As a consequence, this approach fails to represent the cluster structure of vast multidimensional data [37]. MDS is also a linear technique, which for the case of Euclidean distances gives equivalent results to PCA [START_REF] Neal | Pattern Recognition and Machine Learning[END_REF]. Sammon maps have no explicit mapping function and, therefore, do not allow one to place any new data on an already existing map. In that case, a new map must be rebuilt from scratch [START_REF] Hutchison | Intelligent Data Engineering and Automated Learning[END_REF]. Besides, calculation and storage of all inter-point distances are required; this imposes severe restrictions on many practical applications dealing with large amounts of data or incremental data flow. The SOM approach has no well-defined objective function to be optimized during the training procedure [START_REF] Bishop | Developments of the generative topographic mapping[END_REF][START_REF] Erwin | Self-organizing maps: Ordering, convergence properties and energy functions[END_REF] and, therefore, no theoretical framework to prove its convergence and to select the method's parameters can be defined. This leads to some ambiguity in the selection of the "best" SOMs.

In an attempt to overcome the drawbacks mentioned above, a probabilistic extension of SOM named Generative Topographic Mapping (GTM) [START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF] was proposed. Unlike its predecessor, GTM considers the likelihood of training data points as the objective function.

Also, a data point is not associated with one particular node but it is represented as a probability distribution over the entire latent space. Cumulating the probabilities over the data set, it is possible then to create continues chemical landscape which might serve for data sets visualization and comparison as well as for the building of regression and classification models.

The last group of methods can be illustrated on the example of Chemical Space Networks (CSN) [START_REF] Maggiora | Chemical space networks: a powerful new paradigm for the description of chemical space[END_REF] which combines both graph-and descriptors-based approaches. The idea is to represent chemical space as a huge graph where the nodes represent individual molecules, and the edges between the nodes are created as a function of either pairwise molecular similarity threshold or Matched Molecular Pair relations. CSN can be used to visualize a target-specific data set as an interactive graph where active and inactive molecules are grouped. These networks can efficiently be used for SAR exploration, and they provide a depiction of target promiscuity, scaffold hopping [START_REF] Schneider | Scaffold-hopping" by topological pharmacophore search: a contribution to virtual screening[END_REF] and/or similarity cliffs [START_REF] Iyer | Activity landscapes, information theory, and structure-activity relationships[END_REF], where a single target exhibits activity for more than one class of compounds.

Despite the availability of a large number of various tools of chemical space analysis, only a few of them are suitable to be applied to Big Data. In our work, we focused on GTM possessing clear advantages over other methods because of its versatility, easy implementation and the possibility to combine options of data visualization, analysis, and modeling. A detailed description of GTM is given in the next section.

Generative Topographic Mapping (GTM) Overview

GTM is a dimensionality reduction algorithm well described in the literature [START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF][START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF][START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF]. Briefly speaking, the algorithm injects a 2D hypersurface (manifold) into an initial Ddimensional data space. The manifold is fitted to the data distribution by the Expectation-Maximization (EM) algorithm which minimizes the log-likelihood of the training data.

Once the fitting is done, each item from the data space is projected to a 2D latent grid of K nodes. In the latent space, the objects are described by the corresponding vector of normalized probabilities (responsibilities). In turn, the entire data set can be represented by cumulative responsibilities. These cumulative responsibilities can be further visualized as a GTM Landscape or used to create regression or classification model.

Basics

Original GTM Algorithm

The algorithm was proposed by C. Bishop et al [START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF] in 1998. As it was already mentioned, GTM is a probabilistic extension of SOM where log-likelihood is utilized as an objective function. The manifold used to bind a data point t* in the data space and its projection x* in the latent space (Figure 12) is described by a set of M Radial Basis Function (RBF; Gaussian functions are used in the current implementation) centers.

To map the items from the initial space to the latent grid, the mapping function Y is used. It is described by K x M matrix (𝚽) containing the RBF positions in the latent space with respect to the nodes, and the M x D parameter matrix (W) characterizing the position of the manifold in the initial space:

𝐘 = 𝚽𝐖 (3.1).
The first step of the GTM training procedure is parameter matrix (W) initialization which can be done by randomization of the initial values or application of PCA where the first two principal components are used:

𝐖 = 𝚽 -1 (𝐗𝐔) (3.2).
Here, U is 2 x D matrix of the first two eigenvectors, and X is K x 2 matrix of nodes' coordinates in the latent space. The initialized manifold is inserted to the data space, and the initial log-likelihood value LLh(W, β) is computed using the 3 rd eigenvalue as an initial guess of β -1 :

LLh(𝐖, β) = 1 N ∑ ln { 1 K ∑ p(𝐭 n |𝐱 k , 𝐖, β) K k=1 } N n=1 (3.3), p(𝐭 n |𝐱 k , 𝐖, β) = ( β 2π ) -𝐷/2 exp (- β 2 ‖𝐲 k -𝐭 n ‖ 2 ) (3.4),
Figure 12. The basic idea of the GTM. Here, the data point t* from the multi-dimensional data space (right) is projected to x* the 2D latent space (left) using the manifold which is injected into the data space and described by a set of Radial Basis Functions (RBF).

On the second step, the EM algorithm is run which, first, computes the corresponding responsibilities r n , and then updates the parameter matrix W and β -1 :

In the equation (3.7), T is N x D matrix describing N data points in the initial Ddimensional space, λ is the regularization coefficient, and I is M x M unit matrix. The algorithm recomputes the LLh(𝐖 ̃, β ̃) using the updated 𝐖 ̃ and β ̃, and compare it with the LLh(W, β) obtained in the previous iteration. It can be seen from the equation (3.4) that the algorithm uses gradient descent minimizing the distance between the nodes and the data points. The manifold is considered to be trained enough when the EM algorithm achieves a certain threshold of convergence (e.g., LLh new -LLh old ≤ 0.001). Then, each data point is described on the 2D latent grid by its LLh and corresponding vector of responsibilities r k .

Incremental GTM Algorithm

The "Big Data" term is used to describe data sets of millions of data points. Such data sets can hardly be handled by the classical GTM algorithm due to the huge matrix of responsibilities (R, equation (3.5)). In the case of large data sets (e.g. more than 50K compounds) it cannot be fully stored in the computer's RAM. In order to solve this issue, C.

Bishop et al. have proposed to use an incremental GTM [START_REF] Bishop | Developments of the generative topographic mapping[END_REF]. Within this approach, the manifold is initialized by a randomly chosen subset. Next, the data set is split into a series of blocks of a certain size which are used to train the manifold sequentially. In this scenario, the M step described in 3. (3.10).

The next block of compounds is taken into the process only if convergence for the current one was achieved (LLh i -LLh i-1 ≤ 0.001). The incremental GTM algorithm was implemented by H. Gaspar et al. and tested in a compound library comparison project [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF].

Its performance is discussed in chapter 3.4.2.

GTM Landscapes

To visualize and model chemical data, the GTM landscape is used [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF][START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF][START_REF] Gaspar | Generative topographic mapping-based classification models and their applicability domain: Application to the biopharmaceutics drug disposition classification system (BDDCS)[END_REF]. With The class landscape represents a combination of classes' probabilities c i computed as:

P(c i |𝐱 k ) = P(𝐱 k |c i ) * P(c i ) ∑ P(𝐱 k |c j ) * P(c j ) j (3.11), P(𝐱 k |c i ) = ∑ r kn 𝐶𝑖 N n=1 N c i (3.12), P(c i ) = N c i N total (3.13),
where N c i is the number of items for the class c i , N total is the total number of training items, and r kn is the responsibilities of the members of the class c i in the node k computed according to the equation (3.5). To predict a class for a new compound q, the equation (3.14) is used:

P(c i |𝐭 q ) = ∑ P(c i |𝐱 k ) * r kq K k=1 (3.14),
To visualize the landscape, normalized probability of the class c 2 is used as a color code (only a binary class landscape can be visualized at the moment). To consider the density of the nodes' population, transparency is added. In the case of a multi-class task (more than 2), GTM projections (the average positions of the items in the latent space) can be used instead of fuzzy GTM landscapes.

The second type of the GTM landscape is the property landscape which is used to visualize the distribution of a property over the latent space and which might serve as a regression model. The property landscape is defined by a list of property values corresponding to a particular node:

p k = ∑ p n * r kn N n=1 ∑ r kn N n=1 (3.15),
where p n is the property value for the compound n, and p k is the mean property value for the node k.

The prediction of a property p for a new structure q is done similar to class prediction:

p q = ∑ r kq * p k K k=1 (3.16).
To visualize the property landscape, p k value is interpreted as a color code.

The last type of the GTM landscape -density landscape -is a special case of the property landscape where p k is represented as a sum of responsibilities in the node k. This landscape is used to analyze the data distribution over the map which is not always obvious via the landscape's transparency.

GTM Parameters Tuning

GTM has four parameters (number of nodes, number of RBFs, regularization coefficient, RBF's width) needed to be optimized according to some scoring function.

Besides these parameters, a "suitable" descriptors space and the frame set (usually a subset of representative compounds used to train the manifold; FS) size should be chosen. Two approaches are applied: grid search (brute force) and Genetic Algorithm (GA) [START_REF] Davis | Handbook of Genetic Algorithms[END_REF]. The former investigates all possible combinations of 4 parameters. This approach is deterministic but it takes too much time and computational power. In contrast, GA is a stochastic approach but it allows the user to reach maximal fitness trying just a range of combinations which might lead to different endpoints in different runs. The workflow of the GA used to tune the GTM parameters and to select the suitable descriptors space and the frame set size is illustrated in Figure 14.

The details of the algorithm are already described in several publications [START_REF] Horvath | An Evolutionary Optimizer of libsvm Models[END_REF][START_REF] Sidorov | QSAR modeling and chemical space analysis of antimalarial compounds[END_REF][START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF].

Briefly speaking, GA generates a set of chromosomes composed randomly. All the attempts are cross-validated using the "selection" set (a set which differs from the FS and possesses activity/property values), and the mean Balanced Accuracy (BA) is computed. Next, the crossover and mutation of some attempts are applied, and the new attempts are computed.

The algorithm stops in case if it achieved the convergence (there is no attempt with larger BA during the two last generations) or the total number of attempts is exceeded.

GTM-based Applicability Domain

Applicability Domain (AD) plays an important role in any machine-learning method.

It allows the researcher to avoid costly wrong predictions in prospective virtual screening.

For GTMs, five AD definitions were reported [START_REF] Gaspar | Generative topographic mapping-based classification models and their applicability domain: Application to the biopharmaceutics drug disposition classification system (BDDCS)[END_REF][START_REF] Gaspar | Generative topographic mapping approach to chemical space analysis[END_REF]: 1) likelihood-based, 2) densitybased, 3) class-dependent density, 4) predominant class AD, and 5) class entropy AD.

Within the likelihood-based concept, an item is considered out of AD if it is too far from the manifold in the initial data space. To filter such items, the LLh cutoff is determined. The approach to compute this cutoff is quite straightforward: the compounds from the frame set are ordered accordingly to their LLhs, and it is assumed that the last n% of compounds are out of AD. Thus, the LLh cutoff is taken as the highest LLh out of this bottom n%. The density-based AD discards the nodes on the GTM landscape where the cumulative responsibility is below a certain threshold. This allows using only populated zones to make the predictions. The class-dependent density (CDD) AD is similar to the density-based AD. The difference is that the CDD AD checks only the density of the winning class c best in the node, which has the highest conditional node probability P(x k |c best )

(equation (3.12).

The predominant class AD is based on the selection of a dominant class in a node to which the maximal probability in this node corresponds. To control the predominance, a new class prevalence factor (CPF) was introduced. The idea is to discard the nodes in the latent space where the ratio of the classes' probabilities in a node is below the CPF.

Herewith, the CPF becomes an additional degree of freedom which should be optimized to obtain a good model in terms of predictive performance.

The last approach is the class entropy-based AD. The class entropy S of the q th molecule is computed as:

S q = -∑ P(c i |q) log(P(c i |q) i (3.17).
The entropy of the molecule is compared to the maximal entropy S max = log(N c )

where N c is the number of classes. The decision to discard the compound is made using the class-likelihood factor (CLF) computed as S q / S max . Thereby, CLF is high for the compounds with similar P(c i |q) for all classes, and low for the compounds with some dominant class (i.e. the P(c i |q) for this class is about 0.8-1.0). Thus, the compound is considered as out of AD if its CLF is above some threshold varying between 0 (all compounds are out of the AD) and 1 (all compounds are in AD).

Maps Application and Analysis

GTM is in practice a Swiss army knife of chemoinformatics, because it may serve in applications ranging from data visualization to libraries comparison, (multi-task) predictive modeling and AD control, de novo design, conformational space analysis, etc. (Figure 15).

Here, we discuss some of them that were described in the literature so far.

Obtaining of Classification and Regression Models with GTM

GTM has been already successfully applied as a tool for QSAR and QSPR modeling in many projects. In the paper by N. Kireeva et al. [START_REF] Kireeva | Toward navigating chemical space of ionic liquids: Prediction of melting points using generative topographic maps[END_REF], the authors have demonstrated the application of the classification GTM to predict the melting point of ionic liquids. Three data sets were modeled, and the mean accuracy of the models in 5-folds cross-validation varied from 0.81 to 0.87. H. Gaspar et al. [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF] have applied the regression GTM to model stability constants for metal binders, aqueous solubility, and activity of thrombin inhibitors.

The authors compared the predictive performance of the regression GTM models to other machine-learning approaches, namely Self-Organizing Maps [START_REF] Erwin | Self-organizing maps: Ordering, convergence properties and energy functions[END_REF], Random Forest (RF) [START_REF] Liaw | Classification and regression by randomForest[END_REF], k-nearest neighbors [START_REF] Nadaraya | On Estimating Regression[END_REF], M5P regression tree [START_REF] Quinlan | Learning With Continuous Classes[END_REF], and partial least squares [56].

External validation showed that RF overcomes the GTM in some cases (the difference of the determination coefficients in cross-validation ΔQ 2 is up to 0.24). At the same time, the likelihood-based applicability domain (chapter 3.3) improved the performance and reduced the ΔQ 2 down to 0.1. A similar trend was demonstrated in the paper of T. Gimadiev et al. [START_REF] Gimadiev | Generative Topographic Mapping Approach to Modeling and Chemical Space Visualization of Human Intestinal Transporters[END_REF] where the authors applied GTM to model 21 inhibition activity for efflux and influx transporters.

Across many projects, it was demonstrated that GTM produces target-and propertyspecific models which quality is comparable to other methods. However, in contrast to other popular machine-learning approaches, GTM is an unsupervised method that trains its manifold using the unlabeled chemical data. Therefore, it can build a map not for a particular activity/property but for a given database which includes thousands and millions of compounds. This idea was extended and tested by P. Sidorov et al. [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF] which have proposed a concept of a universal map. The authors aimed to cover a large chemical space of around 1.3M compounds (ChEMBL database of version 20) using a single map. The descriptors space and the GTM parameters were selected using the Genetic algorithm described in chapter 3.2. The results showed that the universal approach is able to cover efficiently large range of chemotypes. Several tests ("challenges") were done to prove its performance. For instance, the best map selected by GA was cross-validated on 410

ChEMBL targets, and about 80% of the targets were predicted with the mean Balanced Accuracy of 0.7.

The universal approach described in [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF] has demonstrated that GTM is ready to model Big Data, and it can be also used in multi-target machine learning where the universal map can predict several activities/properties without training a new model. This also opened the door to large-scale Virtual screening (VS). In the context of the given work, Virtual Screening is defined as an application of QSAR to model and predict Big Data.

Very recently, GTM was shown as a nice tool for VS [START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF]. The authors trained GTMs in different descriptors spaces on ChEMBL data. It was established that one descriptors space is not sufficient, and at least 7 fragmentation schemes are needed. It was also shown that the consensus approach made on several maps gives better accuracy than single-map predictions.

Data Analysis and Chemical Libraries Comparison

Besides QSAR/QSPR studies, GTM was applied to visualize and analyze chemical data. For instance, GTM was used to visualize and cluster the data on motor unit action potential [START_REF] Andrade | Generative topographic mapping applied to clustering and visualization of motor unit action potentials[END_REF]. The authors of the study trained GTM on nine data sets and then used the latent grid as a basis for data clustering. In the paper of D.M. Maniyar et al.

[37], the authors applied hierarchical GTM [START_REF] Tino | Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way[END_REF] to visualize the distribution of active and inactive classes for five data sets (GPCRs and Kinase) obtained from different high-throughput screens. They trained a manifold using these five data sets, and, if the map resolution was not sufficient to distinguish the compounds from different classes, they extracted the compounds from such a "mixed" area and retrained a "child" manifold. GTM has even been proposed for nonlinear fault identification in a chemical process [START_REF] Escobar | Combined generative topographic mapping and graph theory unsupervised approach for nonlinear fault identification[END_REF].

Also, an attempt to combine the GTM method with Chemical Space Networks (CSN) [START_REF] Maggiora | Chemical space networks: a powerful new paradigm for the description of chemical space[END_REF] was done [START_REF] Kayastha | From bird's eye views to molecular communities: two-layered visualization of structure-activity relationships in large compound data sets[END_REF]. The authors proposed the two-layered SAR visualization concept for SAR exploration of increasingly large compound data sets. The underlying idea is to first generate global "bird's eye" views of the activity landscapes of large data sets to identify SAR-informative regions for more detailed analysis. Then, selected regions were further analyzed by the CSN at the level of individual compounds. The GTM-CSN technique was applied to analyze three relatively small activity-specific compound series (up to 2.2K compounds) extracted from BindingDB [START_REF] Liu | BindingDB: a webaccessible database of experimentally determined protein-ligand binding affinities[END_REF][START_REF] Gilson | BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology[END_REF] and big antimalarial screening (up to 13K compounds) data set [START_REF] Gamo | Thousands of chemical starting points for antimalarial lead identification[END_REF]. The authors checked structural modifications resulting in potency changes and discussed it in the example of several analogs where such modifications increased the pKi value (e.g. from 6.1 to 8.1 pKi).

Despite a large number of different GTM applications, yet, it was used to analyze only relatively small data sets (up to 20-30K compounds). The first attempt to visualize large data sets (2.2M compounds) was done by H. Gaspar et al. [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF]. The authors applied the incremental GTM (chapter 3.1.2) to compare 36 commercial libraries and the NCI database in terms of molecular properties (molecular weight, number of H-bond donors and acceptors, chirality, logP, TPSA, etc.), similarity (Tanimoto coefficient), and compounds distribution over the 2D latent space. The libraries were also compared using meta-GTM where a map was trained on all 37 libraries. Each library was considered as a single object represented by cumulated responsibilities or property landscape values at nodes x k . The authors also showed that some regions of interest can be detected in the landscape using the desired property landscapes. This brought us closer to Big Data, but still, the analysis of the structures residing the nodes was done manually.

To automate that, the Responsibility Pattern (RP) term was introduced by K.

Klimenko et al. [START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF]. The idea was to group structures that reside neighboring nodes on the map using their responsibilities. RPs allowed to detect and to extract compounds that are similar in the latent space automatically to search then for privileged structural motifs (PSM).

The concept of "privileged substructures" was originally introduced by B.E. Evans et al. [START_REF] Evans | Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists[END_REF], referring to core structures that are recurrent in compounds active against a given target family and, therefore, associated with that biological activity. Privileged substructures are thought to be selective toward a given target family but not individual family members. Most of the earlier studies focused on the exploration of molecular core structures or scaffolds, and some privileged scaffolds have been proposed for drugs and natural products. However, it was shown in [START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF] that common structural motifs may vary from precisely defined scaffolds or even substituted scaffolds, to fuzzier ensembles of related, interchangeable scaffolds, to even fuzzier 'pharmacophore-like' patterns.

The PSM approach allowed chemists to relate a particular activity/property to a certain chemical pattern. The PSM technique was also applied in modeling and analysis of antimalarial compounds [START_REF] Sidorov | QSAR modeling and chemical space analysis of antimalarial compounds[END_REF]. The authors highlighted some of the specific privileged patterns linked to antimalarial activity (e.g., naphthoquinones and 4-aminoquinolines).

Later, the method was modified by the application of retrosynthetic rules (RECAP) [START_REF] Kayastha | Privileged Structural Motif Detection and Analysis Using Generative Topographic Maps[END_REF].

The authors tried to extract the "frequent" RECAP cores to identify PSMs for inhibitors of protease, kinase, and GPCRs. However, the workflow where the PSM was implemented still includes some steps that must be done manually (PSM are extracted by hands). This limits the workflow and restricts it in the analysis of larger data sets.

GTM for Conformational Space Analysis

Another application of GTM was found in the analysis of conformational space.

Conformational sampling is the key to the fundamental understanding of molecular properties. It plays an important role in medicinal chemistry since different conformations may possess different biological activities (in terms of IC50, EC50 or Ki). Several techniques are applied in conformational sampling [START_REF] Liwo | Computational techniques for efficient conformational sampling of proteins[END_REF][START_REF] Good | Analysis and optimization of structure-based virtual screening protocols (1): exploration of ligand conformational sampling techniques[END_REF][START_REF] Agrafiotis | Conformational sampling of bioactive molecules: a comparative study[END_REF]. However, GTM has a clear advantage in the context of conformational space visualization.

The general idea of GTM application in conformational sampling was described by D.

Horvath et al. [START_REF] Horvath | Generative topographic mapping of conformational space[END_REF]. One can train a map using "contact" or "interaction" fingerprints as well as torsion angles as descriptors to predict total, non-bonded and contact energies, surface area or fingerprint darkness. For this purpose, a set of (previously generated) conformers

with known score values (e.g. total energy computed by AMBER force field [START_REF] Wang | Development and testing of a general amber force field[END_REF]) can be used to prepare frame, color and test sets. Next, the Genetic Algorithm (see chapter 3.2) is run to tune the GTM parameters. Once the algorithm achieved convergence (e.g. root mean square deviation does not change a lot), the obtained map can be used to visualize and analyze the corresponding conformational space as well as to predict the energy of a new conformer or to sample conformers using the property landscape as a basis in the reverse task (projection from the latent space back to the initial space).

The described approach was evaluated by the authors in the task of monitoring the conformational space of dipeptides [START_REF] Horvath | Monitoring of the Conformational Space of Dipeptides by Generative Topographic Mapping[END_REF]. Later, it was applied to the docking problem [START_REF] Horvath | Generative Topographic Mapping of the Docking Conformational Space[END_REF].

The concept was illustrated by a docking study into the ATP-binding site of CDK2. The maps trained on contact fingerprints and hybrid descriptors (contact fingerprints in combination with ligand fragment descriptors) were used to discriminate native from non-native ligand poses and to distinguish ligands by their potency. It was shown that the maps trained on hybrid descriptors possess higher prioritization performance (the Area Under the Receiver Operating Characteristics Curve is above 0.8) and, thus, they can be efficiently used in Virtual Screening campaigns.

GTM in De Novo Design

Besides data analysis and modeling, GTM is also used in de novo design of new structures. In 2014, K. Mishima et al. [START_REF] Mishima | Development of a New De Novo Design Algorithm for Exploring Chemical Space[END_REF] applied GTM in a loop of biological activity assessment of virtually enumerated structures. The seed structures were selected from the activity landscape and modified in various ways to generate new structures. The generated structures were filtered after by the same GTM activity landscape and used (in case of success) as new seeds. The loop stops when enough structures are generated. This algorithm was also applied by S. Takeda et al. [START_REF] Takeda | Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules[END_REF] to generate a set of drug-like molecules.

Another attempt to use GTM in the generation of chemical structures with desirable activity(ies) was made by introducing the Stargate GTM [START_REF] Gaspar | Stargate GTM: bridging descriptor and activity spaces[END_REF]. Here, GTM was used to bind descriptors and activities spaces by training two manifolds in both spaces in parallel. The defined "reverse" mapping function allowed to "jump" from the activities space back to descriptors space and, hence, to determine the desirable descriptors vectors. Next, one can generate structures with high similarity to the returned vectors assuming that these new structures will possess the requested activity profile.

Besides, GTM was also combined with auto-encoder where the map was trained on the generated latent descriptors. B. Sattarov et al. [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF] analyzed the binding potency of automatically generated 394 ligands for the Adenosine A2a receptor. These ligands were docked to the binding site using S4MPLE docking method [START_REF] Hoffer | S4MPLE-Sampler For Multiple Protein-Ligand Entities: simultaneous docking of several entities[END_REF]. It was shown that the average docking score of the generated structures is even better than the average docking score of real active molecules.

Conclusion

In recent studies carried out in the Laboratory of Chemoinformatics, Generated Topographic Mapping designed by C. Bishop as a data visualization approach was significantly extended on the modeling and analysis of chemical data. This PhD project represents a continuation of these studies. Our main challenge concerned the further extension of GTM toward Big Data, which, in turn, may require using large frame sets (FS) in combination with large dimensionality of the initial data space for manifold construction.

Since the capacity of earlier reported classical and incremental algorithms for manifold construction was limited, our goal was to design a new more efficient algorithm.

In earlier studies, relatively small FSs were used to build GTM for large chemical databases. However, a systematic investigation of GTM performance as a function of FS size was never performed. This question was considered in our work.

In this thesis, we also tackled some other methodological problems. The first one concerned a rational determination of the log-likelihood threshold used for defining the applicability domain of GTM-based models. The second one dealt with an automatized protocol of Maximum Common Substructures extraction from the ensemble of structures populated selected area on the map.

Some earlier reported options of GTM-based data analysis were fully automatized in this work. It concerns (i) selection of zones of interest [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF] and, (ii) hierarchical GTM zooming [START_REF] Tino | Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way[END_REF]37].

Developed algorithms and tools were used in three projects: (i) application of GTM to virtual screening (VS), (ii) comparison of large databases, and (iii) enrichment of proprietary library.

Methodological Developments

Descriptor normalization for GTM

The Generative Topographic Mapping (GTM) method is sensitive to the descriptors and its preprocessing. For instance, the PCA, which is the first step of GTM, requires the descriptors to be centered. Therefore, it is needed to find a suitable scheme of descriptors preprocessing which provides the user with a better map. For this purpose, five preprocessing schemes were compared to each other and the scenario when no preprocessing was done:

1) No preprocessing;

2) Standardization (centering and division by its standard deviation);

3) Centering;

4) Scaling to [-1;1]; 5) Scaling to [-1; 1] and centering.

To see the impact of different preprocessing schemes, a set of 98 compounds active against the tyrosine kinase inhibitors (SRC) and 980 decoys were extracted from the Directory of Useful Decoys (DUD) [8]. The structures were standardized (aromatized, explicit hydrogens were removed, common chemical groups like nitro group were transformed, etc.), and ISIDA descriptors were generated (atom-centered sequences of atoms and bonds with a length of 1 to 3 atoms) [START_REF] Ruggiu | ISIDA Property-labelled fragment descriptors[END_REF]. The descriptors were preprocessed according to 5 scenarios mentioned above, and a GTM was trained using the following parameters: 625 nodes, 144 RBFs, RBF's width is 2.82, and the regularization coefficient is The results in Table 1 and Figure 16 demonstrate that the GTM trained with the original descriptors performs similarly to those built on standardized descriptors. On the other hand, the items are better spread on the former map (Figure 16a) than on the others.

Notice that the above results correspond to a particular data set and descriptors type.

GTM Applicability Domain (AD)

The Applicability Domain (AD) topic was already discussed in chapter 3.3. The approaches described in [START_REF] Gaspar | Generative topographic mapping approach to chemical space analysis[END_REF] use tunable parameters which bring an additional degree of freedom to the model optimization procedure. So far, the predominant class AD needs the class prevalence factor (CPF) for each GTM landscape to ignore the mixed nodes which, in turn, decreases the density of the landscape. The class entropy AD needs a threshold for the class-likelihood factor (CLF). These ADs make the GTM tuning procedure described in chapter 3.2 more complicate.

In the author's opinion, the likelihood-based AD described in chapter 3.3 is the most simple and intuitive approach. Predictions made for the compounds which are away from the manifold will be worse in terms of confidence than for the compounds which are closer to it. The shape of the LLh distribution of the frame compounds (the axis X represents the LLh, and the axis Y represents the number of compounds) is similar to the shape of a shifted Gaussian distribution. The LLh values vary from -∞ to 0, and the peak of this distribution corresponding to the major part of the frame set situates near 0. The right part of the distribution is very short since no compounds can be predicted with LLh>0. In contrast, the left part possesses a very long "tail" (the blue line in Figure 17).

If the LLh distribution would perfectly follow the normal distribution, the top 95% (i.e. 5% beyond the threshold) of the frame compounds would form an area under the Gaussian curve where the last one is cut in the μ ± 2σ range. However, this LLh distribution is not perfectly normal (besides the fact that it is shifted). Many attempts to fit a Gaussian to the LLh distribution minimizing the root mean square error (RMSE) were done. The schematic example is shown in Figure 17, and RMSE was computed as:

RMSE = √ ∑ (𝑁𝑐 𝑖 𝐺𝑇𝑀 -𝑁𝑐 𝑖 𝐺𝑎𝑢𝑠𝑠 ) 2 𝑁𝐿 𝑖=1 𝑁𝐿 (4.1),
where NL is the number of unique LLh with a non-zero number of the frame compounds, and 𝑁𝑐 𝑖 𝐺𝑇𝑀 and 𝑁𝑐 𝑖 𝐺𝑎𝑢𝑠𝑠 are the numbers of the frame compounds given by GTM and fitted

Gaussian at particular log-likelihood value LLh i (𝑁𝑐 𝑖 𝐺𝑇𝑀 -𝑁𝑐 𝑖 𝐺𝑎𝑢𝑠𝑠 is named "deviation"

in Figure 17). It was found that the RMSE is always above zero. Therefore, to determine the meaningful AD, a Gaussian approximation is needed.

Automatized Hierarchical GTM Zooming

The map resolution is a known problem of GTM in Big Data. The molecules of different classes might be projected to the same zone on the map. This makes the zone uncertain (mixed). As it was described in chapter 3.3, an attempt to discard such mixed zones was already made considering them as out of the applicability domain. This removes the uncertainty but it also reduces the number of populated nodes on the landscape. I. Nabney and P. Tino [START_REF] Tino | Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way[END_REF] suggested solving the resolution problem by training a new GTM manifold using the items of a selected area as a training set. The compounds used to train the "child" manifold are selected manually using projections on a "parent" map where each structure is represented as a single point. The authors created a multi-level hierarchical GTM tree and tested it on toy data sets. It was also tested in a task of analysis of GPSR activities [37]. In this project, we propose an automatized GTM zooming approach where individual projections are replaced by a class landscape (see chapter 3.1.3).

Thus, a compound is extracted from a zone of interest (e.g. a square cluster of nine nodes)

basing on the sum of its responsibilities in this zone which has to be larger than a certain threshold (e.g. 0.8). The child manifold is trained then using these compounds as a frame set with the same descriptors and GTM parameters. The likelihood-based AD described in chapter 4.2 can be then applied if needed. The approach was tested in the project of private chemical collection enrichment (see chapter 7; Figure 18).

It is shown in Figure 18 that the second level of zooming discovered some areas populated exclusively by the private compounds (black nodes), whereas the parent area was shown in red (mostly public data). Within the automated procedure, the zones can be selected accordingly to two scenarios: 1) the grid of nodes can be simply divided into a set of joined square clusters of 3x3 nodes (Figure 19a), or 2) the zones can occupy the grid sharing the nodes on the borders between each other (Figure 19b). The advantage of the second scenario is that the items which locate on the border of a zone and are not considered as members of this zone due to the responsibility threshold, they will be taken by the neighboring zone. This generates more zones than the simple strategy but it can be easily reduced by increasing the zone size. In turn, the second strategy brings more items to the subsets than simple division, and, thus, more chemotypes can be analyzed further.

As soon as the zones are delineated, the decision to zoom or not to zoom is made based on the number of extracted compounds (for instance, at least 1000 items must be extracted). Child GTMs are trained then using these subsets as frame sets. In the case of large subsets (i.e. larger than 10,000 items), the frame set size should be controlled.

Therefore, not the entire subset but only 10% of it (but not less than 1000 items) are used to train the manifold. After, the analysis of zones of a child manifold is repeated, and if the population of some zone is still too high, the zooming procedure repeats.

Automatized Maximum Common Substructures Extraction from GTM

The GTM provides chemists with a chemical landscape that can be visualized and analyzed. However, no relation between structural patterns and particular zone on the map is provided. For this purpose, the responsibility patterns (RP) method has been proposed to group the compounds which were then analyzed by the Scaffold Hunter tool to identify common scaffolds/substructures [START_REF] Sidorov | QSAR modeling and chemical space analysis of antimalarial compounds[END_REF][START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF]. Compounds sharing the same RP will typically share some common structural features that are further manually processed to annotate the map. This is a tedious and error prone-task. As an alternative, we propose to exploit the Maximum Common Substructure (MCS) search to automatically highlight shared features.

Our solution is based on ChemAxon's JChem engine [81]. The MCS extraction protocol is described in Figure 20.

Here, an arbitrarily selected structure in the list of N items is compared to the other N-1, resulting in N-1 connected MCSs. A size filter keeps only the MCS covering at least 30% of the heavy atoms in both structures of a pair. Then, duplicate MCSs are grouped and the unique MCSs are sorted according to their occurrence in the list. The most frequent MCS is selected. Structures featuring the selected MCS are removed from the list, and a new iteration is started. K. Klimenko et al. [START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF] demonstrated that common structural motifs may range from precisely defined scaffolds or even specifically substituted scaffolds, to fuzzier ensembles of related, interchangeable scaffolds, and to even fuzzier 'pharmacophore-like' patterns.

Therefore, the perspective here is to use the disconnected MCS which would describe the molecular core as well as the substituents.

Constrained Screening

Nowadays, searching for drug candidates quite often involves screening of chemical libraries of sizes ranging within 10K ÷ 10M compounds. Many different methods of machine-learning are applied to treat big real and virtual chemical libraries [START_REF] Muegge | Advances in virtual screening[END_REF][START_REF] Lavecchia | Machine-learning approaches in drug discovery: methods and applications[END_REF][START_REF] Hristozov | Ligand-based virtual screening by novelty detection with self-organizing maps[END_REF][START_REF] Kaiser | Self-organizing maps for identification of new inhibitors of P-glycoprotein[END_REF][START_REF] Schneider | Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps[END_REF]. In this case, the usual virtual screening (VS) procedure includes many steps where each of them tends to decrease the size of a screening pool, in discarding the unappropriated compounds according to the methodology at that step. Faster and less accurate steps proceed first, operating on the entire library -sophisticated ones later, operating only on subsets passing the fast ones. However, the large size of the potential drug-like space makes us change our vision of virtual screening. Instead of saving some milliseconds per compound, we should optimize the VS algorithms. The idea of screening the entire pool against the required profile (desirable and/or undesirable activities, ADME properties, etc.) once brings us to the concept of Constrained Screening (CS).

CS is based on a universal GTM trained for a large data set (see chapter 3.4.1). The manifold produced by the universal approach covers a wide range of chemotypes and it is applicable to model different biological activities and properties. In particular, on a given GTM landscape describing a property (activity), P one can easily select some zones populated by molecules for which the property varies in the range P min < P <P max , where P min and P max are the user-defined thresholds. Such zones were named "regions of interest" and described in [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF]. As it was mentioned in the paper, to identify the location of molecules possessing desirable profile {P 1 , P 2 , … , P N }, one can superimpose corresponding property landscapes. Then, these regions can be analyzed and/or corresponding compounds can be extracted.

The concept of zones of interest was also applied in [START_REF] Gimadiev | Generative Topographic Mapping Approach to Modeling and Chemical Space Visualization of Human Intestinal Transporters[END_REF] where the authors trained a map for human intestinal transporters. It allowed delineating the areas on the map populated either by molecules exhibiting inhibition but not transport activity or vice versa.

In this project, we automatized the zones of interest selection. Since these zones may overlap fully or partially, we also propose a concept of a Query Landscape which describes zones populated by molecules possessing desirable profile entirely (all P i are confined in user-defined intervals) or partially (some P i are out of the range).

In Figure 21, an example of the query landscape is shown where the vascular endothelial growth factor receptor 2 (CHEMBL279) data set containing 6.7K compounds was used to train the manifold. For the demonstration purpose, the request on CHEMBL279 activity, solubility (LogS) and the number of H-bond donors was modeled. The corresponding GTM landscapes were built, and a query was prepared: the probability to be active in the range of 50-100%, LogS varies from -2.0 to 0.0, and the number of H-bond donors ranges from 2 to 4. Next, the GTM landscapes were filtered according to the query, and the zones of interest were shown (red areas in the middle line of landscapes Figure 21). The overlaying of these zones results in a query landscape where the red areas satisfy all the conditions in the query, yellow ones correspond only to two out of three, and blue areas represent the zones where only one out of three conditions is satisfied.

The white areas on the query landscape represent the zones where no training molecules with desirable activities/properties were found.

Query Landscape can be applied (i) to select a focused subset from the database used for GTM construction, and (ii) for virtual screening of an external database. In the latter case, a satisfaction score is assigned to each compound in the pool which means how well the compound fits the query. The approach was implemented as a web-tool. It is described in chapter 8.5.

Parallel GTM (PGTM)

Generative Topographic Mapping (GTM) [START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF] is a perspective tool used to visualize, analyze and model chemical data. Its advantages in comparison to other dimensionality reduction methods were already demonstrated in several projects [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF][START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF][START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF]. The maps trained on data sets of a regular size (up to 10,000 items) as well as the ones trained to describe millions of compounds were presented [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF][START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF][START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF]. The demonstrated results

show that GTM can be successfully applied to large chemical databases visualization and comparison as well as in virtual screening campaigns. However, the limitation on the number of training data points restricts GTM to treating millions of structures during the training procedure. To overcome the limit, a frame set (FS) is gathered which is supposed to represent the chemical space sparsely. This FS of few thousand data points (e.g. 25,000 structures) is used to set the initial position and to fit the manifold in the initial data space.

Once the manifold is fitted, the entire data set is projected and filtered using the likelihood-based GTM Applicability Domain (AD). Further, these projections can be used to build a classification or regression GTM landscape which can serve as a QSAR or QSPR model [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF].

GTM does not require the chemical space to be dense to train the manifold, and, hence, the chemical space of some million structures can be easily represented by some thousands. At the same time, the potential global chemical space of drug-like molecules is estimated as 10 33 , and it can hardly be described just by some thousands of structures [3].

Therefore, a new strategy to treat larger frame sets is needed.

FS size is limiting in several ways: by (i) the amount of RAM used to store the large matrix of responsibilities, and (ii) the time spent to perform some matrix operations implemented in the GTM algorithm. An attempt to accelerate the algorithm was already made by parallelization of it using Message Passing Interface (MPI) technique [START_REF] Gabriel | Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation[END_REF][START_REF] Qiu | Parallel Data Mining on Multicore Systems[END_REF][START_REF] Choi | High performance dimension reduction and visualization for large high-dimensional data analysis[END_REF]. To this purpose, the matrix of responsibilities was decomposed and its parts were distributed over the CPUs to be updated by small chunks of the data set iteratively. The disadvantage of this approach is the dependency of the code on the certain architecture of a machine used to run the calculations. Namely, a single machine or a highly organized cluster that supports the MPI technology has to be used for calculations, and the RAM has to be shared between the machines to store the whole matrix of responsibilities. If the first issue can be solved by purchasing a better machine, the second one will limit the calculations as in terms of storing the objects as in terms of speed (the mpi technology will spend some time to transmit the data from one machine to another). Besides that, this does not solve the problem of manifold overfitting which was detected by D. Ormoneit and V. Tresp [START_REF] Ormoneit | Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates[END_REF]. It was shown that the Expectation-Maximization algorithm tends to overfit the Gaussians-mixture model.

In this chapter, we present a new attempt to parallelize the GTM which is supposed to speed up the calculations, to solve the problem of overfitting and to support the use of larger frame sets.

Method

The limitation of the classical GTM algorithm is the memorization of the large matrixes of responsibilities (R) and descriptors (T). To control the size of R, incremental GTM was proposed by H. Gaspar et al. [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF]. Within the incremental approach (chapter 3.1.2), the equations (3.7) and (3.8) were modified to (3.9) and (3.10), respectively. Thus, the initial data set was divided into a batch of blocks of a certain size (e.g. 10,000 items) and treated sequentially. This solved the problem of the R size but the order of the chemotypes coming from different blocks begins to impact the shape of the manifold. So far, the initial manifold position is determined only by the first block, and then the manifold learns the shape of data distribution analyzing each block sequentially. As a result, the impact of the middle blocks on the final shape of the manifold becomes lower in comparison to the later ones. This brings us to the phenomenon when the chemotypes allocating in the middle of a data set might be forgotten by the manifold since the final shape of it is mainly formed by the first and the last blocks.

To overcome the limits of the classical GTM algorithm and to solve the problems of the incremental algorithm, we propose the new Parallel GTM (PGTM) approach. The basic idea of it is described in Figure 22.

Within this approach, we distinguish the manifold initialization and manifold training procedures. To initialize the manifold, the incremental Principal Components Analysis (PCA) is applied to the entire data set where the two first components are computed. To do so, the covariance matrix is computed incrementally followed by the Eigenvalue decomposition [START_REF] Franklin | Matrix theory[END_REF] using a graphical card (the scikit-cuda library in Python was applied) [START_REF] Givon | scikit-cuda 0.5.2: a Python interface to GPU-powered libraries[END_REF]. Once the PCA is done, the initial W and β are computed, and the manifold is trained on different blocks of the data set in parallel. The fact that the same initial manifold and the same GTM parameters are used to treat the blocks, the tasks can be independently distributed to different machines with no preferable architecture. In addition, no RAM sharing is needed since the size of a particular matrix R is determined only by the size of a block.

The last step is to merge the produced intermediate GTM manifolds into the global one. For this purpose, simple averaging of W and β is used in this study. The output of the method is a single "final" manifold which potentially should cover the given data space.

Data

In this project, ChEMBL database of version 23 was used to perform the benchmarking study [START_REF] Gaulton | The ChEMBL database in 2017[END_REF]. The structures were standardized: removed explicit hydrogens, aromatized using the basic rule, some functional groups were transformed (e.g. nitro group), etc. The ISIDA descriptors that were used to train the first universal GTM in [START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF] were computed: sequences of 2 and 3 atoms, labeled by their CVFF [START_REF] Dauber-Osguthorpe | Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system[END_REF] force field types and formal charge flag using all paths (IA-FF-FC-AP-2-3) [START_REF] Ruggiu | ISIDA Property-labelled fragment descriptors[END_REF][START_REF] Marcou | FAF-Drugs: free ADME/tox filtering of compound collections[END_REF]. The descriptors were standardized (centered and divided by its standard deviation) and filtered by its variance (987 out of 5,161 descriptors were kept; the threshold was 2% of the maximal standard deviation in the data set).

To cross-validate the maps, the mean Balanced Accuracy (BA) and the Area Under the Receiver Operating Characteristics Curve (ROC AUC) were used as metrics. The labels "active/inactive" were assigned accordingly to the procedure described in the previous studies [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF].

Benchmarking Strategy

The benchmarking study was split into two parts. First, the GTM approaches (classical, incremental and parallel) were compared in terms of execution time and predictive performance (BA) where maps were trained on a target-specific set of compounds (CHEMBL204, Thrombin) with and without "decoys" (100K random compounds with unknown activity). To train the manifold, the GTM parameters corresponding to the first universal GTM described in [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF] were used: 41*41 nodes, 23*23 RBFs, regularization coefficient is 1.122018, RBF width is 1.1. To validate the map, a 3-fold cross-validation procedure was run where the number of actives and inactives was controlled (463 actives and 1440 inactives per fold; decoys were not taken for crossvalidation). As an additional option, two blocks' sizes were tried: 500 and 1000 compounds.

The number of blocks treated in parallel was limited to 14 due to the occupancy of a machine used to run the benchmarking tests.

The second part was devoted to algorithms comparison using Frame Sets (FS) of different sizes: 1K, 5K, 10K, 20k, 30K, 50K, 100K, 200K, 400K, 750K, 1M, 1.7M (entire ChEMBL) compounds. The FSs were gathered controlling the diversity for the compounds using pairwise Soergel distance (1-Tanimoto). The algorithm to collect the compounds was the following: the first compound was selected randomly, and the next compounds were compared to the ones that were already selected. A compound was added to the FS in case if the minimal Soergel distance among all pairwise comparisons between the compound and others from the FS was larger than a threshold (e.g. 0.95). If the loop finished but the required number of items in the FS was not reached yet, the threshold was decreased (e.g. down to 0.9), and the loop started again. Thus, each FS possessed its own value of dissimilarity. The corresponding minimal pairwise Soergel distances are shown in Table 2. In the second part, the maps were also compared in terms of data coverage (percentage of compounds passed the log-likelihood threshold), normalized Shannon entropy [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF] characterizing the distribution of the compounds over the latent space, number of targets with mean BA ≥ 0.7 and number of targets with mean ROC AUC ≥ 0.7. The protocol used in this work to compute the likelihood threshold is described in chapter 4.2.

To cross-validate the maps, more than 600 ChEMBL targets were used.

Results and Discussion

First, the GTM was trained on 5,710 ChEMBL compounds using a target-specific series of compounds with known activities against the Thrombin target (CHEMBL204).

The obtained maps were cross-validated. The results are shown in Table 3. One can see that the classical algorithm produces a better model (the mean BA is 0.73) since no approximations were done. In this context, the incremental and parallel algorithms produce models with comparable predictive performance (BA=0.7±0.015). The models trained by the incremental GTM with blocks of 500 and 1000 compounds do not differ significantly in terms of BA as well as the ones trained with the parallel approach. The GTM class landscapes were built and visualized (Figure 23). One can see that the incremental algorithm visualizes the data space differently for the different block sizes, whereas the parallel GTM returns the same landscape for both sizes. A comparison of the likelihood distribution (Figure 24) shows that PGTM covers the data as well as the classical algorithm. In contrast, the incremental algorithm has worse data coverage which can be seen in the GTM landscape (Figure 23b and Figure 23c).

Next, the methods were tested on the larger data set where 100K random "decoys"

(ChEMBL compounds with unknown activity) were added. The maps were rebuilt on 105,710 structures. The results of the cross-validation are given in Table 4.

In comparison with the first experiment, the acceleration of GTM by the parallel algorithm now is more significant. The parallel algorithm trained the manifold 5 times faster than the incremental one keeping the same level of the predictive performance (BA=0.67±0.02). The likelihood distribution in Figure 25 demonstrates that the PGTM covers the data similar to the incremental GTM. Although parallel GTM algorithm leads to similar predictive performance and LLh distribution as incremental GTM, their manifold shapes, and, hence, the data distribution on the maps are pretty different (Figure 26). One can see that a larger frame set leads to lower data coverage (Figure 27). This can be explained by the Applicability Domain (AD) which is wide in the case of general FS (1K compounds; the most diverse compounds are selected), and, in contrast, it becomes more narrow by adding similar compounds. In the latter case, the map focuses more on the dense groups of compounds which are presented in the FS by a larger number of items. Thus, GTM pays less attention to the chemical families represented by some items, or these families can be even ignored in the case of a huge FS (e.g. 200K). At the same time, the entropy and the predictive performance grow. It can be also seen that the FS of 5K compounds is already enough to describe ChEMBL23 containing 1.7M compounds, whereas it is not clear how big should be the FS in case of larger databases, such as PubChem (96M), Zinc (1.3B), and GDB-17 (166B). Comparing the predictive performance of the GTM algorithms, it is shown that all of them possess the same level of BA and ROC AUC (Figure 28). However, PGTM is much faster than Incremental GTM, and, therefore, it is able to treat larger FSs than both classical and incremental algorithms.

Conclusion

GTM is an efficient tool applied in different contexts. However, some methodological developments were needed to adopt the method to the Big Data case. First, the impact of different preprocessing schemes was checked using the SRC data set (tyrosine kinase inhibitors). The strategies of descriptors preparation were compared in terms of Balanced Accuracy (BA) and Area under the Receiver Operating Characteristics Curve (ROC AUC).

It was demonstrated that the highest predictive performance is achieved by descriptors standardization (centering and division by its standard deviation).

Some applicability domain (AD) concepts have already been proposed for GTM (chapter 3.3), and their drawbacks have been discussed here. For instance, the predominant class AD needs the CPF value to ignore the mixed nodes which, in turn, decreases the density of the landscape. As an alternative, a new approach to compute the log-likelihood cutoff was proposed and applied in this work.

To solve the problem of the map resolution and the problem of the mixed zones, a hierarchical GTM zooming approach was automatized. Two strategies for zones generation were implemented. The developed tool was coupled with a new Maximum Common Substructure (MCS) extraction protocol proposed for zone-specific substructures search.

The tool was applied in the project of chemical library enrichment which was done in cooperation with Boehringer Ingelheim company (the results are described in chapter 7).

Finally, the idea of Constrained Screening (CS) and Parallel GTM approaches were presented. As it was described, CS allows screening the database querying not a single activity/property but a desirable profile. The returned compounds possess the satisfaction score which can be used to rank the structures and to select the hits.

Parallel GTM allows training the GTM manifold with larger data sets. It initializes the manifold using the incremental PCA and then trains it on a series of blocks in parallel.

The method was compared to the incremental approach in terms of speed of calculations and predictive performance (BA). It was established that Parallel GTM trains the manifold 5-6 times faster producing the models with the same BA.

Implementation of Parallel GTM allowed us to perform a comparison of the predictive performance of classification models as a function of a Frame set size. It has been demonstrated that the FS of 5,000 structures is sufficient to prepare a GTM for the entire ChEMBL23 database containing more than 1.7M compounds.

The predecessor of GTM -Self-Organizing Maps (SOM) -was already tested as a VS technique in several studies [START_REF] Hristozov | Ligand-based virtual screening by novelty detection with self-organizing maps[END_REF][START_REF] Kaiser | Self-organizing maps for identification of new inhibitors of P-glycoprotein[END_REF][START_REF] Schneider | Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps[END_REF]. For instance, it was used to identify several purinergic receptor agonists [START_REF] Schneider | Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps[END_REF]. Later, SOM was compared to the similarity search with data fusion, and, despite the poor predictive performance, in principle, SOM can be used as a tool for the VS tasks [START_REF] Hristozov | Ligand-based virtual screening by novelty detection with self-organizing maps[END_REF]. Since GTM may perfectly mimic SOMs -by narrowing RBF width to ensure that item responsibility focuses 100% on the nearest manifold grid point -but also can outperform it by applying fuzzy logics, GTM is a better VS tool than SOM.

GTM has never been applied to multi-target virtual screening (virtual profiling)

where a model is used to select the compounds in terms of several biological activities. This can be achieved on the hand of universal GTMs, a concept introduced by P. Sidorov et al. [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF]. Herein, a manifold is optimized not for one single, but with respect to the largest possible panel of target-specific series of compounds (ChEMBL database of v.20 in reference [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF]). The obtained map is used then to make predictions for an extended pool of activities/properties (including ones not used for manifold optimization but seen to be properly supported by the manifold nevertheless).

In this project, GTM was tested as a single-target and multi-target virtual screening technique. Its predictive performance was compared to two popular single-target approaches: Random Forest and Neural Network. As a baseline, the similarity search with data fusion was used. The results were published in our article in the Journal of Computer-Aided Molecular Design [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF] (see below).

Conclusion

The universal GTM was tested as a tool for single-target and multi-target virtual screening tasks. It was shown that local GTM possesses better predictive performance than the universal approach. Even so, the universal GTM predicted almost 500 ChEMBL targets with ROC AUC > 0.8 in the internal validation. In the external validation, 8 out of 9 targets were predicted with ROC AUC > 0.7. In terms of the enrichment factor, only half of the DUD targets were predicted well.

In contrast, the single-target GTM approach demonstrates high predictive performance which is comparable to other VS techniques described in the paper. Almost 500 ChEMBL targets were predicted with ROC AUC > 0.8 in the internal validation. In the virtual screening of the DUD database, local GTM even overcomes the MLP with one hidden layer, and it is comparable to RF. The same tendency is also demonstrated by the enrichment factor.

The results show that GTM can be efficiently applied as a filter in the VS funnel. Its speed and predictive performance are comparable to other popular VS techniques, whereas it has the advantage of visualization support.

Virtual Screening in Industrial Context

Introduction

The benchmarking results presented above demonstrate that the universal GTM can be applied in VS campaigns. One or several universal maps can easily work a with wide range of assays and cover different chemotypes. Therefore, it was decided to test GTM in the industrial environment of Boehringer Ingelheim Pharma company (BI). For this purpose, their proprietary database of 1.7M compounds was used to train the manifold. Next, the map is used to predict more than 2.3K assays as well as some ADME properties.

Method

To find a suitable universal map(s), a grid search was run. Within this search, 4 GTM parameters (Table 5) and descriptor space were optimized. Here, 100 fragmentation schemes supported by the ISIDA Fragmentor software [START_REF] Ruggiu | ISIDA Property-labelled fragment descriptors[END_REF][START_REF] Marcou | FAF-Drugs: free ADME/tox filtering of compound collections[END_REF] were used as a starting pool for the search of a suitable descriptor space. These 100 fragmentation schemes were gathered according to the experience of previous works [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF][START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF].

To build the GTM manifold, a Frame set (FS) of 25K compounds was prepared. Here, the FS is fixed to reduce the number of tunable parameters. To gather the FS, clustering procedure with Tanimoto=0.7 was performed (done by BI earlier). As a result, more than 135K clusters were found. 25K clusters out of it were chosen randomly, where one random compound represents each particular cluster. Width of an RBF center, w 1.0 5.0 1.5

Once the descriptors were computed, they were normalized and filtered according to their standard deviation (rare columns for which its standard deviation is lower than 2% of the value range were removed). To train the manifold, the incremental GTM algorithm with 5K items in a block was used (chapter 3.1.2) [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF].

The goal of this virtual screening was to distinguish 3 classes: actives, weakly actives and inactives. Therefore, classification models with 3 classes as well as with 2 classes (just active and inactive) were built. To evaluate the models, a 3-folds cross-validation procedure was performed for 500 random assays (the validation on the entire set of assays is timeconsuming). As a score, the mean area under the Receiver Operating Characteristic (ROC AUC) was computed for each class within one fold: actives against others, inactives against others, and middle compounds against others. The result was averaged over the 3 folds, and then over 500 assays. This ROC AUC was used to estimate the quality of the map(s) (< 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠 and < 𝐴𝑈𝐶 > 𝑏𝑖𝑛 for 3 classes and 2 classes, respectively).

In addition to the mean ROC AUC values, some other scores were used: Once the top-5 maps are chosen, they will be checked using all 2371 assays.



Results and Discussion

In the grid search, more than 226K GTMs were trained and cross-validated. The ROC AUC scores obtained for the best maps with different map resolution are shown in Figure 30. One can see that the map with 25*25 nodes is already enough to perform 2 classes classification, whereas for 3 classes higher map resolution is better. To validate the maps in ADME properties, the latter ones were classified, and < 𝐴𝑈𝐶 ̅̅̅̅̅̅ > 3 𝑐𝑙𝑠 and < 𝐴𝑈𝐶 ̅̅̅̅̅̅ > 𝑏𝑖𝑛 were computed (Table 9). The < 𝐴𝑈𝐶 ̅̅̅̅̅̅ > 3 𝑐𝑙𝑠 values demonstrate that the map 1 stays at the top in both 3 classes and 2 classes classification.

The average < 𝐴𝑈𝐶 ̅̅̅̅̅̅ > 3 𝑐𝑙𝑠 for the map 1 varies from 0.65 to 0.72. a See Table 7.

The last step was to externally validate the maps using new data for 42 assays. The Balanced Accuracy in 3 classes classification was above 0.5 for 30 assays.

Conclusion

Five GTMs were trained and selected out of 236K maps produced by grid search optimizer. They were cross-validated on more than 2.3K assays from BI. The crossvalidation demonstrated that about 55% of the assays are predicted with ROC AUC ≥ 0.7.

The external validation on 42 assays for which new data were received showed that 30 out of 42 assays are predicted well (Balanced Accuracy ≥ 0.5 in 3 class classification).

6 Public Chemical Databases Comparison

Introduction

Chemical databases are huge, and they grow each year since new records are added to public and private chemical databases. Nowadays, the largest public chemical resources (PubChem, CAS, Zinc) contain millions and even hundreds of millions of compounds.

However, the potential of the full chemical space is much larger. So far, P. Polishchuk et al.

[3] have guesstimated the drug-like space as 10 33 compounds.

Analysis of large chemical space is a real challenge that requires suitable chemoinformatics tools. Generative Topographic Mapping (GTM) has been already tested as a tool to analyze big data sets (up to 2M items). In this project, we raise the bar (up to 20M compounds) and test GTM in the task of big chemical libraries analysis and comparison. For this purpose, a data set of existing compounds from PubChem database with no more than 17 heavy atoms were compared to virtually generated compounds from the FDB-17 database [7]. The data sets were compared using (i) Bhattacharyya, Soergel and Euclidean distances, (ii) GTM class landscapes, and (iii) GTM property landscapes. To resolve the problem of GTM resolution and to find unique for a given database chemotype, hierarchical GTM zooming technique described in chapter 4.3 was applied, see below our publication in ChemMedChem [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF].

Conclusion

The Generative Topographic Mapping (GTM) method was trained and applied to Thus, GTM becomes an attractive tool that can be efficiently applied for novelty analysis.

Finally, the data sets were compared in terms of molecular properties (LogP, chirality, number of aromatic atoms, etc.). It was shown that FDB-17 is richer in terms of chirality and it is more homogenous in terms of heavy atoms' types in a molecule (more or less the same atom types are used in the virtual structures).

(featuring no two compounds more similar than a given threshold) was prepared. To measure the dissimilarity, Soergel distance [106] basing on Morgan fingerprints [107,108] of radius 4 was computed. FS compounds are expected to represent a non-redundant, representative "core" of spanned chemical space. They are not subjected to any other specific constraints, meaning that any state-of-art molecular descriptor/dissimilarity metric can be equally well used for selection.

The GTM manifold was trained using an incremental algorithm described by H.

Gaspar et al. [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge[END_REF] The parameters were taken from the previous study [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF]. The experience of previous projects [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF][START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF]109] showed that the usage of ISIDA descriptors is a good choice for GTM training. The initial descriptor space features ISIDA counts of sequences of 2 and 3 atoms, colored by their CVFF [START_REF] Dauber-Osguthorpe | Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system[END_REF] force field types and including formal charge information (IA-FF-FC-2-3) [START_REF] Ruggiu | ISIDA Property-labelled fragment descriptors[END_REF][START_REF] Marcou | FAF-Drugs: free ADME/tox filtering of compound collections[END_REF]. Fragmentation of the FS compounds produced 6142 distinct fragments. However, the vast majority thereof is sparsely populated: only 798 terms were considered for actual manifold construction (the descriptors for which standard deviation over the FS compounds exceeds 2% of their value range width). This (or closely related) fragmentation schemes were often selected by evolutionary [START_REF] Horvath | An Evolutionary Optimizer of libsvm Models[END_REF] map tuning procedures [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF]. Other adopted map parameters include resolution (841 nodes), the number of RBFs (324), the regularization coefficient (3.236), RBF width (0.4), and incremental block size (10K compounds).

When the Expectation-Maximization algorithm used to train the manifold has achieved a certain level of convergence (𝐿𝐿ℎ 𝑛𝑒𝑤 -𝐿𝐿ℎ 𝑝𝑟𝑒𝑣 ≤ 0.001), the entire data was projected, and the compounds considered as out of Applicability Domain (the structures positioned far away from the manifold) were removed. To do so, a new strategy for GTM Applicability Domain (AD) identification was suggested where a Gaussian is fitted to the FS compounds distribution minimizing the root mean square error. Once the fitting is done, the LLh threshold is determined as the LLh value with the highest population (peak) minus three Gaussian widths ("3σ" rule, Figure 31).

For visualization and analysis purposes, property and fuzzy class landscapes are used to "color" the map. To this goal, the mean class/property value in each node is taken as responsibility-weighted means of class labels/property values of resident items [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF]. In consequence, areas of interest (for example, clusters of nodes exclusively populated by AMS compounds) can be easily highlighted.

Zooming

GTM landscape analysis is the following step in the library comparison process. The goal is to bind a certain chemotype to a particular area on the map. In simple cases, map zones (square clusters of nine nodes) do indeed contain structurally quite homogeneous populations of residents. If so, it is straightforward to search for common scaffolds or maximum common substructures (MCSs). However, if too many compounds (e.g. more than 1000 items) reside in one zone, searching for common scaffolds or MCSs is not efficient. Therefore, when the algorithm detects highly populated zones, zooming is automatically applied. For this purpose, the compounds for which the sum of its responsibilities within the zone is higher than 0.95 are selected and used as frame set source for the fitting of a new GTM manifold (using the same setups as those of the global map). For this purpose, the FS -of minimal 1000, but maximal 10% of the local compound pool size -is randomly selected. The "submap" is likewise checked for the zones with a population exceeding 1000 items. If necessary, the procedure is repeated (multi-level zooming). If a zone contains less than 1000 compounds, it will be analyzed as such, without further zooming.

Maximum Common Substructure (MCS) searching

The responsibility patterns (RP) method has been used to identify the shared underlying features (scaffolds, substructures, pharmacophore patterns) for a chosen area on the map [START_REF] Sidorov | QSAR modeling and chemical space analysis of antimalarial compounds[END_REF][START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF]. Compounds sharing the same RP will typically share some common structural features that are further manually processed to annotate the map. This is a tedious and error-prone task. As an alternative, it is proposed here to exploit the MCS search to automatically highlight shared features. Our solution is based on ChemAxon's JChem engine [81].

The problem of MCS searching for a set of compounds was already discussed earlier by Hariharan et al.[110]. The authors showed that in some situations, the intersection of pairwise MCS search is empty or results in small, non-specific substructure, while the molecules in a given set share large and complex substructures. The problem is that such a common substructure of a compound set is not the maximum common substructure of any compounds pair. As a solution, Hariharan et al enumerated all maximal cliques for each pair of molecules, and then intersected the generated lists. The so-called multi-MCS is the largest of the identified substructure that is common to all compounds in the set.

However, when the molecule set is very large, the idea to return a single multi-MCS does not work anymore. In this case, we aimed at identifying lists of frequent substructures.

In our approach, an arbitrarily selected structure in the list of N items is compared to the other N-1, resulting in N-1 connected MCS (Figure 32). Since we are working with large sets, this already results in a large list of chemically relevant substructures, although the list 123 might not be exhaustive. Additionally, a size filter keeps only the MCS covering at least 30% of the heavy atoms in both structures of a pair. Then, duplicate MCSs are removed from the list and sorted according to their occurrence in the list. The most frequent MCS is selected.

Structures featuring the selected MCS are removed from the list, and a new iteration is started. In contrast with the previous scenarios, the new strategy returns a list of MCSs which is more relevant in the context of Big Data.

The entire workflow is implemented in Python3 language using NumPy [111,112] and Plotly [113] libraries. When the MCSs absent in the BI pool were found, the structures containing these MCSs were retrieved from the AMS collection, and their biological profile was predicted using previously developed universal GTMs [START_REF] Lipinski | Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[END_REF].

Virtual Profiling of Novel Compound Candidates

The approach supported on the public property prediction server (http://infochim.ustrasbg.fr/webserv/VSEngine.html) utilizes consensus prediction of the activity class (active or not) of a compound with respect to 749 biological targets for which structureactivity records found in ChEMBL v.24 were considered to be sufficiently robust to provide for meaningful activity class landscapes on the seven distinct "universal" GTMs of drug-like space. Each candidate is iteratively projected onto each of the seven universal maps [START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF], and its projection is then placed in the context of the map-specific activity landscapes of each of the 749 targets. For each target, the compound is assigned a probability to belong to the "active" class, which corresponds to the relative excess of "active" population in its residence zone (or zero if the target-specific data from ChEMBL do not occupy at all this residence area). Herewith, a consensus probability 𝑃 ̅ to be active on a target is taken as the mean of the seven predictions of the complementary universal maps. This mean is penalized by the standard deviation of the seven estimations, to signal that mutual agreement of predictions enhances the trustworthiness of consensus:

P corrected = P ̅ -√ 1 6 ∑(P i -P ̅ ) 2 7 i=1 (7.1). 
where P ̅ -the mean probability over the 7 universal maps; P i -the probability to be active on a map i; P corrected -the corrected consensus probability.

The tool supports processing of up to a few million compounds, operating on the HPC cluster of the University of Strasbourg, in order to return a virtual profile matrix of input compounds × 749 predicted consensus probabilities.

of "universal" maps [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF] where a frame set of the order of 10K random compounds was shown to suffice for the coverage of ChEMBL chemical space and supporting robust predictive activity models for hundreds of independent targets. The density landscapes in Figure 34a-b show that the libraries are globally similar since they both mostly reside in the same areas. However, there are some areas where the AMS library has a strong presence and even fills some "holes" of the BI Pool. In the fuzzy class landscape, AMS-dominated areas are dark red (Figure 34c). The dark-red areas can serve as a source of new chemotypes for the BI collection.

However, even mixed zones might also contain some structural patterns not shared by both libraries [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF]. To investigate this possibility, 187 zones were checked whereby 151 zones were zoomed (the maximal level of zooming was up to 4). The procedure took approximately 7 days using 48 CPUs. An example of multi-level zooming is given in Figure 35.

In total, more than 222K substructures were processed. This set included some 45.5K

MCS present only in AMS collection. More than 401K structures containing these MCSs were extracted from the AMS collection and projected onto the map. The density landscape

with some examples of the most popular new AMS substructures is given in Figure 36. Accordingly to Lipinski's rule of five [START_REF] Lipinski | Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[END_REF], most of the extracted compounds can be classified as drug-like. These structures were also virtually profiled against 749 ChEMBL targets. 109.5K compounds were predicted as active against at least one out of 749

ChEMBL targets with a probability score P corrected >0. 38, where the compounds are predicted as active against Photoreceptor-specific nuclear receptor (CHEMBL4374), Cholecystokinin B receptor (CHEMBL3508), Muscarinic acetylcholine receptor M4 (CHEMBL317), and Pyruvate dehydrogenase kinase isoform 1 (CHEMBL4766) [START_REF] Gaulton | The ChEMBL database in 2017[END_REF].

The type of the source of the structures (a chemical online store) allows us to say that these compounds are potentially synthesizable or even purchasable (the real synthesizability depends on a supplier since some suppliers just claim that it can be synthesized if a client asks). This and the number of predicted actives demonstrate that the revealed substructures are new and useful for the pharma company. Also, it supports the statement that GTM is a powerful method for the efficient library comparison and enrichment (in terms of structural diversity). 

Conclusion

Generative Topographic Mapping was enabled to provide automated hierarchical analysis of large libraries, by means of the herein described "AutoZoom" tool. This integrates automated zooming and a new MCS extraction protocol and was successfully applied to diversify the in-house collection of Boehringer Ingelheim (BI). Some 45.5K

substructures were found to be absent in the BI collection. The corresponding structures (401K items) were checked for Lipinski's rule compliance and classified as drug-like. In addition, they were virtually profiled against 749 ChEMBL targets. More than 1.2K compounds were predicted active against different targets with a corrected consensus probability (removing a standard deviation) higher than 80%. The discovered structures were recommended to the company to be imported as novel chemical matter that would be useful in diversifying the in-house collection.

Software Development

Several tools were developed during this PhD project. These tools are used to preprocess the descriptors, to assign the labels, to visualize the GTM landscapes, etc. They are written in Python3 and Java languages and available by a request to the Laboratory of Chemoinformatics.

GTM Preprocessing

Descriptor Standardization

As it was described in chapter 4.1, GTM is sensitive to preprocessing. Therefore, the standardization scheme was implemented using Java programming language (standardizeDescriptors.jar). The incremental algorithm to compute the mean values and variances is used in the program:

x ̅ i = x ̅ i-1 + x i -x ̅ i-1 i (8.1), var i = var i-1 + i * (i -1) * (x ̅ i -x ̅ i-1 ) 2 (8.2),
where x ̅ i and var i are the mean value and the variance of a descriptor after passing the i th molecule, respectively. Next, the standard deviation is computed as a square root out of the variance, and the settings file containing the number of descriptors, mean values, variances and standard deviations is created. This settings file can be used later to transform other data sets which should be projected to the map.

threshold fitting a Gaussian minimizing a root mean square error (RMSE). The workflow consists of four steps:

1) Sorting and clustering the data set accordingly to its LLh with step=1;

2) Initialize the parameters of the Gaussian function (the width ω init , the amplitude A init , and the peak position μ init );

3) Fit the Gaussian minimizing the RMSE; 4) Compute the LLh threshold.

The Gaussian function is determined as:

D i ′ = A * exp (- LLh i -μ 2ω 2 ) (8.3),
where D i ′ is the predicted number of items at the LLh i . Here, A is initialized as the largest number of items possessing the same LLh, and μ is initialized as:

μ init = ∑ LLh i * N i n i=1 n (8.4),
where n is the number of items in the data set, and N i is the number of items corresponding to the LLh i . Thus, ω is initialized as:

ω init = stdv 2 (8.5), stdv = √ ∑ (LLh i -μ init ) 2 n i=1 n -1 (8.6).
To optimize the Gaussian parameters, brute force is used. For each combination μ-Aω rmse is computed using the equation (8. Once the grid search is finished, the attempt with the minimal RMSE is selected, and the LLh threshold (LLh threshold ) is computed as:

𝐿𝐿ℎ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 -3 * 𝜔 (8.7).
The described algorithm is implemented in Python3 and can be easily used as a Python library. As input, it needs only the file with the responsibilities generated by the GTMapTool.

GTM Landscape Building and Visualization

The concept of GTM landscapes is already discussed in chapter 3. The tool is mainly used to build classification, regression and density landscapes. The output landscape is saved as an XML file which can be used later to make the predictions for the new compounds. The landscape can be also visualized in an interactive way. For this purpose, an HTML page is generated which can be customized by the user adding smooth and transparency which, in turn, corresponds to density, changing the map size (width and height), setting the minimal and maximal property values used to compute the color scale, etc. Note that the tool uses dynamic transparency thresholds to display density using the minimal Density threshold.

In addition, the tool is able to compute basic statistics used in QSAR studies, namely determination coefficient (R 2 ), Balanced Accuracy (BA) and Area Under the Receiver Operating Characteristics Curve (ROC AUC). For this purpose, a test file with its responsibilities and known labels/property values are specified.

AutoZoom

To analyze and to compare large chemical collections, the AutoZoom tool was developed. This tool takes the manifold and GTM class landscape (chapter 3.1.

3) built for

To use the tool, the manifold file, and the classes/properties landscapes must be specified. To add more landscapes, the user should use the "+" button. To remove a landscape, the user should use the "-" button. Once the files are given, the X range (the desirable range for the given activity/property) for each landscape is specified. The query landscape can be built by pressing the "Build" button (Figure 40). The user can then continue the analysis of the query landscape in the Plotly's cloud or he/she can download it using the "Download" button. The numbers on the right side of the color bar represent the satisfaction score. This score means how much the nodes match the given query and it ranges from 0 to the number of conditions in the user's query. Thus, the score equal to 2 means that only 2 conditions are satisfied. Notice that the ensemble of these zones over the map form Query Landscape, which can be used in virtual screening by selecting hits dropping in the zones of interest.

The hierarchical GTM zooming approach proposed by Nabney et al. [START_REF] Tino | Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way[END_REF] in view of improving map's resolution, becomes desirable, in some cases strictly required for GTMs accommodating large volumes of data. The developed algorithm first screens the map in order to select rectangular zones susceptible to zooming procedure according to the data density threshold. Two scenarios were considered: overlapping and non-overlapping zones.

The former allows increasing the overall size of zoomed areas because of the possibility to overcome the density threshold.

Applications. Developed tools were used in three projects: (i) application of GTM to virtual screening (VS), (ii) comparison of large databases, and (iii) enrichment of proprietary library.

In the VS project, two types of GTMs for the ChEMBL23 database were used:

"universal" and "local". The formers were trained in a multitask manner to obtain simultaneously classification models for 236 activities, whereas the latter were trained individually for each activity. The developed maps and class landscapes were benchmarked with several machine-learning techniques (similarity search with data fusion, neural network, and random forest) in virtual screening of the DUD database. It has been demonstrated that local GTMs perform similarly or even better than popular machinelearning approaches. In terms of predictive performance, "universal" GTMs were less efficient, but still acceptable. On the other hand, the models derived from the "universal" map have a larger applicability domain.

In Perspectives. Some projects initiated in this work have not been completed. Still, the Query Landscapes technique needs to be validated in virtual screening experiments.

Another project may concern an application of the hierarchical GTM zooming to GTMbased classification and regression tasks.

In its current state, the MCS extraction protocol operates only with connected graphs.

However, common structural motifs may range from specifically substituted scaffolds to fuzzier 'pharmacophore-like' patterns [START_REF] Klimenko | Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set[END_REF]. Therefore, the extension of our algorithm on disconnected MCS could improve the structural data analysis.

The manifold "fusion" protocol in Parallel GTM needs to be optimized. Thus, in the current version of the program, the manifold merging strategy simply computes the average positions of the RBFs. Weighted by likelihood merging could, in principle, be used as an alternative.

Studied in this work datasets of some 20 M molecules represent a small portion of all existing molecules (some 200 M). An application of GTM to larger datasets is an obvious extension of this work. 
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 1 Figure 1. Le nombre de cibles pour lesquelles le meilleur modèle sur les quatre espaces de descripteurs retourne <AUC> 1/2 > 0.8. A -Recherche par similarité dans l'espace initial, B -Recherche par similarité dans l'espace des responsabilités (description des données par la GTM), C -GTM universelle, D -GTM mono-cible, E -Recherche par similarité avec fusion de données dans l'espace initial, F -Recherche par similarité avec fusion de données dans l'espace des responsabilités, G -Réseau de neurones, H -Forêt aléatoire.
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 2 Figure 2. Comparaison des méthodes de criblage virtuel. Les GTM ont été entraînées et validées sur ChEMBL v23. Les cartes utilisées sont celles qui ont montré les meilleures performances en termes de ROC AUC, obtenues en validation croisée.
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 3 Figure 3. Diagramme de chaleur représentant les similarités entre trois chimiothèques sur la base de GTM. Les métriques utilisées sont (a) le coefficient de Bhattacharyya (1-S Bhattacharyya ), (b) le coefficient de Tanimoto (1-S Tanimoto ) et (c) la distance Euclidienne.
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 5 ont été extraites de la collection FDB-17. Aucune molécule similaire n'est présente dans la base de données PubChem.
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 4 Figure 4. Paysage comparant les bases de données FDB-17 et PubChem-17.

Figure 5 .

 5 Figure 5. Zoom hiérarchique de GTM sur l'espace chimique occupé par la FDB-17 (en bleu) et la PubChem-17 (en rouge). Pour une zone délimitée sur une carte, un modèle local de GTM est reconstruit en utilisant uniquement sur les molécules y résidant. Sous la carte zoomée sont montrés des exemples de composés extraits d'une zone peuplée exclusivement par des composés de la FDB-17 sur une carte zoomée. Ces composés n'ont pas d'analogues dans la base de données PubChem.
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 6 Figure 6. Paysages de propriété pour a_ICM (entropie de la distribution des éléments de la molécule), a_heavy (nombre d'atomes lourd), chiral (chiralité), LogP (lipophilicité), a_aro (nombre d'atomes aromatiques), et ast_fraglike_ext (Satut de quasi-fragment ASTEX) [12].
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 7 Figure 7. Comparaison des bases de données BI Pool vs AMS: (a) paysage de densité BI Pool, (b) paysage de densité AMS, et (c) paysage de prépondérance AMS contre BI Pool. Les régions blanches sont non peuplées, et la transparence est proportionnelle à la densité de population.
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 8 Figure 8. Un exemple d'analyse de zoom hiérarchique de GTM. Ici, une nouvelle sousstructure de la collection Aldrich-Market Select (AMS) a été découverte en utilisant un zoom à 2 niveaux. L'espace blanc indique des zones non peuplées, et la transparence correspond à la densité de la population.
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 9 Figure 9. Histogrammes représentant le nombre de donneurs et d'accepteurs de liaison hydrogène, de lipophilicité (LogP), de poids moléculaires, et de surface polaire topologique (TPSA) calculés pour l'extrait de 401K composés de la base de données AMS. Les lignes pointillées rouges matérialisent les règles de Lipinski [13].
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 10124 Figure 10. Exemples de structures prédites actives et identifiées dans l'extrait de 401K de la base de données AMS.
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 11 Figure 11. Représentation schématique de l'algorithme GTM Parallèles.

  Figure 13.
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 13 Figure 13. The example of class, property and density landscapes. The map was trained on vascular endothelial growth factor receptor 2 (CHEMBL279) data set containing 6.7K compounds. Here, (a) represents class landscape which demonstrates the distribution of molecules of two classes (active, inactive), (b) -property landscape (solubility, LogS), and (c) -density landscape providing the information about the nodes' population.
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 14 Figure 14. Evolutionary map selection scheme.

Figure 15 .

 15 Figure 15. Areas of GTM application.
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 16 Figure 16. GTM projections of the SRC data set with (a) no descriptors preprocessing, (b) descriptors standardization, (c) centering of the descriptors, (d) scaling the descriptors, and (e) scaling and centering the descriptors.

Figure 17 .

 17 Figure 17. An example of a Gaussian (red line) fitted to the log-likelihood data distribution (blue line) of "Thrombin" (CHEMBL204) data set. GTM Applicability Domain is identified here by log-likelihood threshold LLh threshold = LLh peak -3σ. Here, LLh peak and σ are, respectively, the peak position and the width of the Gaussian function.

Figure 18 .

 18 Figure 18. An example of the hierarchical GTM zooming approach applied to large public and private chemical databases comparison. Here, the map is trained to cover Aldrich-Market Select (AMS, 8.5M compounds) data set and the in-house collection of Boehringer Ingelheim (BI Pool, 1.7M compounds; see chapter 7).

Figure 19 .

 19 Figure 19. Zones selection schemes: (a) simple division of a grid of nodes (GTM landscape) into a set of square clusters of 9 nodes where the zones' borders are highlighted by orange lines; (b) zones selection using overlap. The zones on the scheme (b) have their own nodes in the white-areas as well as the nodes on the borders shared with the neighboring zones (orange).
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 20 Figure 20. Maximum Common Substructure search protocol.

Figure 21 .

 21 Figure 21. An example of a query landscape where the map is trained on Vascular endothelial growth factor receptor 2 (CHEMBL279) data set (6.7K compounds) using ISIDA fragment descriptors [10, 58]. Here, the query is set to find areas where the probability to be active varies from 50% to 100%, LogS is between -2.0 and 0.0, and number of H-bond donors ranges within 2-4. The first line represents the individual GTM landscapes, the second line represents the areas of interest on the individual landscape, and the last one is the query landscape.
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 22 Figure 22. The scheme of the Parallel GTM.

Figure 23 .

 23 Figure 23. The fuzzy class landscapes for the "Thrombin" data set of 5,710 compounds: (a) the classical GTM, the incremental GTM with blocks of (b) 500 and (c) 1,000 items, and the parallel GTM with blocks of (d) 500 and (e) 1,000 items. Here, the transparency corresponds to the density.

Figure 24 .

 24 Figure 24. Log-likelihood distribution for the compounds from "Thrombin" data set produced by the classical (green), incremental (blue), and parallel (red) GTMs.

Figure 25 .

 25 Figure 25. Log-likelihood distribution for the "Thrombin" data set with random 100K decoys produced by the incremental (blue), and parallel (red) GTMs.

Figure 26 .

 26 Figure 26. The fuzzy class landscapes where "Thrombin" data set of 5,710 compounds.Here, the manifold were trained by (a) incremental and (b) parallel GTM algorithms using "Thrombin" data set with random 100K decoys (105,710 compounds) as a Frame set.

Figure 27 .

 27 Figure 27. Data coverage, normalized Shannon entropy [5], and mean Balanced Accuracy (BA) computed for classical, incremental and parallel GTMs where frame sets of different sizes were used to train the manifolds.

Figure 28 .

 28 Figure 28. Mean ROC AUC, number of targets with mean BA ≥ 0.7 and number of targets with mean ROC AUC ≥ 0.7 computed for classical, incremental and parallel GTMs where frame sets of different sizes were used to train the manifolds.

Figure 29 .

 29 Figure 29. Labels assignment protocol which bases on IC50 value of compounds. Here, Act IC50 is the threshold on IC50 for active compounds; Inact IC50 is the threshold on IC50 for inactive compounds.



  Number of assays for which the mean ROCAUC ≥ 0.5; Number of assays for which the mean ROCAUC ≥ 0.6; Number of assays for which the mean ROCAUC ≥ 0.7 (main score used in 3 classes classification to select the best map); Number of assays for which the mean ROCAUC ≥ 0.8; Number of assays for which the mean ROCAUC ≥ 0.9.

Figure 30 .

 30 Figure 30. The grid search progress. Here, the number of models aligned along the Y axe corresponds to the best map with the current map resolution.

  analyze and compare large public chemical databases. It was shown that ChEMBL-17 is very similar to PubChem-17 since the first one is a part of the PubChem database. At the same time, virtually generated FDB-17 differs significantly (Soergel distance to PubChem-17 is about 0.55). The GTM class landscape demonstrated that there are some areas on the map populated only by PubChem-17 compounds. Scaffold analysis showed that the chemotypes allocated in these areas were discarded by the authors of the FDB-17 collection due to the rules used to gather the last one.An example of the application of hierarchical GTM zooming was also demonstrated to increase the map resolution. With the help of this technique, a mixed zone populated equally by PubChem-17 and FDB-17 compounds was zoomed. The multilevel zooming discovered some chemotypes presented in FDB-17 but missed by the PubChem database.

Figure 31 .

 31 Figure 31. GTM Applicability Domain is identified by log-likelihood threshold LLh 0 = LLh peak -3. Here, LLh peak and σ are, respectively, a position and with of a Gaussian function which fits the LLh distribution.

Figure 32 .

 32 Figure 32. MCS extraction protocol.

Figure 34 .

 34 Figure 34. BI Pool vs AMS comparison: (a) BI Pool density landscape, (b) AMS density landscape, and (c) fuzzy class landscape. Here, the white space means non-populated areas, and the transparency corresponds to the density.

Figure 35 .

 35 Figure 35. An example of zooming analysis. Here, a new substructure from AMS collection was discovered using 2-levels zooming. The white space means non-populated areas, and the transparency corresponds to the density of population.

Figure 37 .

 37 Figure 37. Histograms represent the number of H-bond donors and acceptors, LogP, molecular weight, and Topological Polar Surface Area (TPSA) computed for the extracted 401K AMS compounds. Here, the red dashed line represents Lipinski's thresholds [13].

Figure 38 .

 38 Figure 38. Examples of structures predicted as actives and taken from the extracted 401K AMS compounds. Here, the probability to be active returned by the web server is computed according to equation (7.1).

  3), where μ ⸦ [μ init ; LLh(A init )*0.95], A ⸦ [A init * 0.9; A init * 1.1], and ω ⸦ [ω init ; ω init * 3]. In order to boost the calculations, the algorithm checks the ω values until RMSE new -RMSE old ≤ 0.001. For A and μ, all values are checked.

Figure 39 .

 39 Figure 39. The client side of the Constrained Screening web tool.

Figure 41 .

 41 Figure 41. Predicting new compounds using the query landscape.

  another project, GTM was challenged to analyze large chemical data set of more than 21M compounds resulted from merging of 3 databases: ChEMBL-17 (100K compounds), PubChem-17 (11M compounds) and FDB-17 (10M compounds). Two former databases contained only existing molecules, whereas the latter contained virtual structures containing no more than 17 heavy atoms. The databases were compared using (i) Bhattacharyya, Soergel and Euclidean distances, (ii) GTM class and (iii) GTM property landscapes. The data analysis with the help of GTM allowed us to identify structural motifs exclusively present only in one of the considered databases.In the 3 rd project, the proprietary collection of Boehringer Ingelheim (1.7 M molecules) was superposed on GTM with commercial Aldrich-Market Select database (8.2 M). Analysis of non-overlapping zones revealed 1.2K commercial structures containing fully new cores, passed drug-like filters and predicted as active against at least one ChEMBL target. The corresponding molecules were recommended to BI to be synthesized or purchased.Software development. New methodology and algorithms developed in this workwere implemented as a command line and web-based software tools. Thus, the hierarchical GTM zooming technique was coupled with the MCS extraction protocol and presented as the "AutoZoom" tool written in Python3 language. The algorithm helping to delineate zones of interest was implemented as a web-based tool within the Django framework. The tools for the construction of GTM-based classification and regression models were prepared using FreePascal and Python3 programming languages. These tools are accessible from the Laboratory of Chemoinformatics by a request.

Figure S2 .

 S2 Figure S2. GTM property landscapes for a_nF (number of fluorine atoms), a_nCl (number of chlorine atoms), a_nBr (number of bromine atoms), and a_nI (number of iodine atoms).

  

  

  

  D'autre part, on peut remarquer que l'échantillon de la FDB-17 a été spécifiquement conçu pour équilibrer le nombre d'entrées correspondant à des molécules de tailles différentes. Les composés ayant un nombre d'atomes lourds intermédiaire ont été volontairement sur-échantillonnés. Autrement, pour des raisons évidentes de combinatoire, l'énumération systématique des composés ayant au plus 17 atomes lourds est dominé par les structures contenant exactement 17 atomes lourds.Le paysage de l'entropie de la distribution des éléments (indice a_ICM de MOE) dans les molécules est similaire pour les jeux de données ChEMBL-17 and PubChem-17, alors que FDB-17 contient des structures moins diverses, au sens qu'il y a un biais de

composition en faveur des chaines hydrocarbures en comparaison de fonctions chimiques plus élaborées. Des règles élémentaires de stabilité chimique empêchent la concaténer des hétéroatomes dans les structures de la base de données GDB-17, ce qui explique que les chaînes carbonées soient prédominantes. Mais, les chimiothèque de molécules effectivement synthétisées incluent des groupes fonctionnels chimiques élaborés qui apportent de la réactivité et des propriétés physico-chimiques intéressantes. Ces biais sont bien mis en évidence sur les cartes.

Table 1 .

 1 1.0. The 2/3 part of the data set was used to build the class landscape, and the rest was used as a test set to assess the predictive performance in terms of Balanced Accuracy (BA) and Area Under the Receiver Operating Characteristics Curve (ROC AUC). Validation results of the GTMs trained for the SRC data set with different preprocessing schemes. A probability threshold of 0.5 was used for BA assessment.

	Preprocessing scheme	BA	ROC AUC
	No preprocessing	0.71	0.88
	Standardization	0.72	0.88
	Centering	0.74	0.66
	Scaling to [-1;1]	0.49	0.72
	Scaling to [-1;1] and centering	0.52	0.91

Table 2 .

 2 Minimal pairwise Soergel distance corresponding to different Frame Sets.

	Frame set size, compounds Corresponding minimal pairwise Soergel
		distance (1-Tanimoto) within the FS
	1K	0.8
	5K	0.7
	10K	0.7
	20K	0.65
	30K	0.6
	50K	0.55
	100K	0.45
	200K	0.4

Table 3 .

 3 Benchmarking results using "Thrombin" data set (5,710 compounds).

	Description	Block size		Balanced Accuracy		Time, h:m 1
			Fold 1 Fold 2 Fold 3	Mean	
	Classical GTM	-	0.74	0.73	0.73	0.73	3:07
		500	0.7	0.69	0.69	0.69	2:28
	Incremental GTM						
		1000	0.69	0.72	0.69	0.7	0:33
		500	0.70	0.69	0.68	0.69	0:41
	Parallel GTM						
		1000	0.71	0.72	0.72	0.72	0:43

1 

Approximate execution time recorded during manifold training.

Table 4 .

 4 Benchmarking results where "decoys" were added to the Thrombin data set.

	Description	Block size		Balanced Accuracy		Time, h:m 1
			Fold 1 Fold 2 Fold 3	Mean
		5000	0.65	0.65	0.64	0.65	23:57
	Incremental GTM					
		10000	0.67	0.67	0.68	0.67	28:52
		5000	0.65	0.65	0.65	0.65	5:48
	Parallel GTM					
		10000	0.69	0.68	0.69	0.69	10:33
	1 Approximate execution time recorded during manifold training.	

Table 5 .

 5 GTM parameters ranges set for the grid search.

	Name of the parameter	Starting value	Ending value	Step
	Number of nodes (root value), k	20	50	5
	Number of RBF centers	40% out of the	70% out of the	
				10
	(root number), m	number of nodes	number of nodes	
	Regularization coefficient, l	1.0	5.0	0.5

Table 7 .

 7 Top

	Table 5 and Table 6).	Number of assays where	≥0.9 ≥0.8 ≥0.7 ≥0.6 ≥0.5 < 𝐴𝑈𝐶 > 𝑏𝑖𝑛 ROCAUC (2 classes)	87 297 401 473 493 0.8	87 297 401 473 493 0.79	87 297 401 473 493 0.8	87 297 401 473 493 0.8	87 297 401 473 493 0.79
	-5 maps sorted by ROCAUC≥0.7 in 3-classes task (see the abbreviations in	Number of assays where	ROCAUC (3 classes) < 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠 ≥0.9 ≥0.8 ≥0.7 ≥0.6 ≥0.5	2 65 294 448 494 0.71	1 65 294 448 494 0.71	1 65 294 448 494 0.71	3 65 294 448 494 0.71	2 65 294 448 494 0.71

Table 8 .

 8 Top-5 maps (Table7) validated with 2371 assays.

	Number of assays where ROCAUC	(2 classes)	≥0.9	428	428	428	428	428

Table 9 .

 9 Validation results for ADME properties.

	ADME property	Map 1 a	Map 2	Map 3	Map 4	Map 5
		< 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠	< 𝐴𝑈𝐶 > 𝑏𝑖𝑛	< 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠	< 𝐴𝑈𝐶 > 𝑏𝑖𝑛	< 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠	< 𝐴𝑈𝐶 > 𝑏𝑖𝑛	< 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠	< 𝐴𝑈𝐶 > 𝑏𝑖𝑛	< 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠	< 𝐴𝑈𝐶 > 𝑏𝑖𝑛
	Caco2_Efflux	0.69 0.76 0.68 0.76 0.68 0.76 0.68 0.77 0.66 0.74
	CL_Mouse	0.67 0.75 0.64 0.7 0.66 0.73 0.65 0.75 0.65 0.7
	CL_Rat	0.66 0.75 0.64 0.72 0.65 0.73 0.65 0.75 0.62 0.72
	HHEP	0.66 0.71 0.69 0.76 0.68 0.77 0.67 0.74 0.68 0.77
	HLM	0.65 0.72 0.62 0.69 0.62 0.69 0.63 0.71 0.62 0.67
	MDCKBCRP_Efflux 0.66 0.73 0.68 0.75 0.7 0.78 0.65 0.74 0.68 0.75
	MDCKPGP_Efflux	0.69 0.76 0.68 0.75 0.68 0.75 0.67 0.74 0.67 0.73
	MHEP	0.68 0.75 0.69 0.74 0.68 0.74 0.68 0.75 0.7 0.74
	MLM	0.68 0.76 0.66 0.75 0.66 0.74 0.67 0.76 0.65 0.72
	PPBhuman	0.72 0.82 0.7 0.8 0.7 0.79 0.7 0.8 0.69 0.79
	PPBmouse	0.72 0.82 0.72 0.83 0.69 0.79 0.7 0.79 0.7 0.8
	RHEP	0.67 0.75 0.66 0.78 0.65 0.73 0.67 0.75 0.65 0.73
	RLM	0.65 0.74 0.62 0.68 0.62 0.68 0.64 0.72 0.61 0.66
	SOL68	0.66 0.7 0.63 0.66 0.63 0.66 0.65 0.68 0.62 0.65
	Mean	0.68 0.75 0.66 0.74 0.66 0.74 0.66 0.75 0.66 0.73

  1.3. Here, we describe the tool which is used to build and to visualize the landscape, to make the QSAR/QSPR predictions, and to validate the model. The tool named GTM2018.py is written in Python3 and it has two dependencies: Plotly [113] and SciKit-Learn [118].

11 List of Abbreviations

  

	AD	Applicability Domain
		An abbreviation in pharmacokinetics and pharmacology for
	ADME	
		"Absorption, Distribution, Metabolism, and Excretion"
	AMS	Aldrich-Market Select
	ANN	Artificial Neural Network
	AUC (ROC AUC)	Area Under the Receiver Operating Characteristics Curve
	BA	Balanced Accuracy
	BI	Boehringer Ingelheim
	CLF	Class-Likelihood Factor
	CPF	Class Prevalence Factor
	CPU	Central Processing Unit
	CS	Constrained Screening
	CVFF	Consistent Valence Force Field
	DUD	Directory of Useful Decoys

Table S1 .

 S1 List of 618 ChEMBL (v. 23) targets used for unievrsal GTM training and validation.

	CHEMBL340	CHEMBL3622	CHEMBL3778	CHEMBL3892	CHEMBL4895
	CHEMBL3401	CHEMBL3629	CHEMBL3785	CHEMBL3898	CHEMBL4896
	CHEMBL3426	CHEMBL3636	CHEMBL3788	CHEMBL3902	CHEMBL4897
	CHEMBL1075104 CHEMBL1293266 CHEMBL3437 CHEMBL3650	CHEMBL1790 CHEMBL3795	CHEMBL1859 CHEMBL3905	CHEMBL4633 CHEMBL4898
	CHEMBL1075145 CHEMBL1293267 CHEMBL1795139 CHEMBL3438 CHEMBL3663 CHEMBL3807	CHEMBL1860 CHEMBL3906	CHEMBL4641 CHEMBL4899
	CHEMBL1075167 CHEMBL1293289 CHEMBL1795186 CHEMBL3468 CHEMBL3683 CHEMBL3816	CHEMBL1862 CHEMBL3911	CHEMBL4644 CHEMBL4444
	CHEMBL1075189 CHEMBL1293293 CHEMBL3474 CHEMBL3687	CHEMBL1801 CHEMBL3819	CHEMBL1864 CHEMBL3913	CHEMBL4657 CHEMBL4461
	CHEMBL1075322 CHEMBL1615381 CHEMBL3475 CHEMBL3691	CHEMBL1804 CHEMBL3820	CHEMBL1865 CHEMBL3920	CHEMBL4660 CHEMBL4462
	CHEMBL1163101 CHEMBL1741176 CHEMBL3476 CHEMBL3961	CHEMBL1808 CHEMBL3829	CHEMBL1867 CHEMBL3922	CHEMBL5084 CHEMBL4465
	CHEMBL1163125 CHEMBL1741186 CHEMBL3510 CHEMBL3965	CHEMBL1811 CHEMBL3831	CHEMBL1868 CHEMBL3935	CHEMBL5103 CHEMBL4478
	CHEMBL1255126 CHEMBL1741207 CHEMBL3514 CHEMBL3969	CHEMBL1821 CHEMBL3835	CHEMBL1871 CHEMBL3959	CHEMBL5113 CHEMBL4481
	CHEMBL1275212 CHEMBL1741215 CHEMBL3836 CHEMBL3972	CHEMBL1822 CHEMBL4051	CHEMBL1873 CHEMBL4203	CHEMBL5122 CHEMBL4482
	CHEMBL1287628 CHEMBL3837	CHEMBL1781 CHEMBL3973	CHEMBL1824 CHEMBL4068	CHEMBL1878 CHEMBL4204	CHEMBL5137 CHEMBL4501
	CHEMBL1293222 CHEMBL3861	CHEMBL1782 CHEMBL3974	CHEMBL1825 CHEMBL4071	CHEMBL1881 CHEMBL4223	CHEMBL5141 CHEMBL4506
	CHEMBL1293224 CHEMBL3863	CHEMBL1785 CHEMBL3975	CHEMBL1827 CHEMBL4072	CHEMBL1889 CHEMBL4224	CHEMBL5147 CHEMBL4801
	CHEMBL1293255 CHEMBL3572	CHEMBL1787 CHEMBL3976	CHEMBL1829 CHEMBL4073	CHEMBL1892 CHEMBL4225	CHEMBL5776 CHEMBL4803
	CHEMBL1833 CHEMBL3582	CHEMBL1900 CHEMBL3979	CHEMBL1947 CHEMBL4079	CHEMBL1899 CHEMBL4227	CHEMBL5794 CHEMBL4804
	CHEMBL1835 CHEMBL3587	CHEMBL1901 CHEMBL3982	CHEMBL1949 CHEMBL4080	CHEMBL2003 CHEMBL4234	CHEMBL5804 CHEMBL4816
	CHEMBL1836 CHEMBL3983	CHEMBL1902 CHEMBL4081	CHEMBL1951 CHEMBL4237	CHEMBL2007 CHEMBL4422	CHEMBL5600 CHEMBL4581
	CHEMBL1844 CHEMBL3991	CHEMBL1903 CHEMBL4093	CHEMBL1952 CHEMBL4247	CHEMBL2007625 CHEMBL4426	CHEMBL5608 CHEMBL4599
	CHEMBL1850 CHEMBL4005	CHEMBL1904 CHEMBL4101	CHEMBL1957 CHEMBL4261	CHEMBL2008 CHEMBL4427	CHEMBL5627 CHEMBL4600
	CHEMBL1853 CHEMBL4015	CHEMBL1906 CHEMBL4123	CHEMBL1908 CHEMBL4270	CHEMBL2016 CHEMBL4439	CHEMBL5646 CHEMBL5261
	CHEMBL1856 CHEMBL4016	CHEMBL1907 CHEMBL4128	CHEMBL1913 CHEMBL4273	CHEMBL202 CHEMBL4441	CHEMBL5650 CHEMBL5282
	CHEMBL1968 CHEMBL4018	CHEMBL1966 CHEMBL4142	CHEMBL1914 CHEMBL4282	CHEMBL2028 CHEMBL4714	CHEMBL5658 CHEMBL5285
	CHEMBL1916 CHEMBL4026	CHEMBL203 CHEMBL4145	CHEMBL1974 CHEMBL4296	CHEMBL2243 CHEMBL4718	CHEMBL5678 CHEMBL5314
	CHEMBL1917 CHEMBL4029	CHEMBL2035 CHEMBL4147	CHEMBL1977 CHEMBL4302	CHEMBL225 CHEMBL4722	CHEMBL5697 CHEMBL5330
	CHEMBL1918 CHEMBL4036	CHEMBL2039 CHEMBL4158	CHEMBL1978 CHEMBL4303	CHEMBL2250 CHEMBL4761	CHEMBL4767 CHEMBL5331
	CHEMBL1921 CHEMBL4040	CHEMBL204 CHEMBL4176	CHEMBL1980 CHEMBL4306	CHEMBL226 CHEMBL4766	CHEMBL4769 CHEMBL6164
	CHEMBL1929 CHEMBL4045	CHEMBL2041 CHEMBL4179	CHEMBL1981 CHEMBL4315	CHEMBL2265 CHEMBL4608	CHEMBL4777 CHEMBL6166
	CHEMBL1936 CHEMBL4374	CHEMBL2047 CHEMBL4191	CHEMBL1985 CHEMBL4338	CHEMBL227 CHEMBL4617	CHEMBL4789 CHEMBL6175
	CHEMBL1937 CHEMBL4375	CHEMBL2055 CHEMBL4198	CHEMBL1987 CHEMBL4361	CHEMBL2276 CHEMBL4618	CHEMBL4791 CHEMBL4698
	CHEMBL1940 CHEMBL4376	CHEMBL2056 CHEMBL4202	CHEMBL1991 CHEMBL4367	CHEMBL2285 CHEMBL4625	CHEMBL4792 CHEMBL4699
	CHEMBL1941 CHEMBL4393	CHEMBL206 CHEMBL4508	CHEMBL1994 CHEMBL4662	CHEMBL2288 CHEMBL4630	CHEMBL4793 CHEMBL4852
	CHEMBL1942 CHEMBL4394	CHEMBL2061 CHEMBL4516	CHEMBL1995 CHEMBL4674	CHEMBL2292 CHEMBL4576	CHEMBL4796 CHEMBL4829
	CHEMBL1944 CHEMBL4398	CHEMBL2068 CHEMBL4523	CHEMBL1997 CHEMBL4681	CHEMBL230 CHEMBL4578	CHEMBL5409 CHEMBL4835
	CHEMBL208 CHEMBL4408	CHEMBL2069 CHEMBL4525	CHEMBL2000 CHEMBL4683	CHEMBL231 CHEMBL4708	CHEMBL5443 CHEMBL4601
	CHEMBL2083 CHEMBL4822	CHEMBL2073 CHEMBL4575	CHEMBL2001 CHEMBL4685	CHEMBL2318	CHEMBL5455
	CHEMBL2085	CHEMBL2074	CHEMBL2002	CHEMBL2319	CHEMBL5469
	CHEMBL209	CHEMBL232	CHEMBL220	CHEMBL2553	CHEMBL5485
	CHEMBL210	CHEMBL2326	CHEMBL2208	CHEMBL256	CHEMBL5491
	CHEMBL2107	CHEMBL233	CHEMBL221	CHEMBL2563	CHEMBL5493
	CHEMBL211	CHEMBL2334	CHEMBL2216739	CHEMBL2568	CHEMBL6101
	CHEMBL2219	CHEMBL2337	CHEMBL2123	CHEMBL258	CHEMBL6115
	CHEMBL222	CHEMBL2343	CHEMBL213	CHEMBL2581	CHEMBL6120
	CHEMBL2231	CHEMBL2345	CHEMBL2146302	CHEMBL259	CHEMBL6136

Table S2 .

 S2 PubChem biological targets used for GTM map selection. PubChem ID PubChem BioAssay name * Tissue non-specific alkaline phosphatase precursor [Homo sapiens] HTS for Foot and Mouth Disease Virus Antivirals QHTS Assay For Inhibitors Of Bacillus Subtilis Sfp Phosphopantetheinyl Transferase (PPTase) QHTS Assay For Inhibitors Of Leishmania Mexicana Pyruvate Kinase (LmPK) A Screen For Inhibitors Of The PhoP Regulon In Salmonella Typhimurium Using A Modified Counterscreen qHTS Assay for Inhibitors and Activators of Human alpha-Glucosidase Cleavage of Glycogen qHTS Assay for Modulators of miRNAs and/or Inhibitors of miR-21 Cycloheximide Counterscreen For Small Molecule Inhibitors Of Shiga Toxin A QHTS For Small Molecule Inhibitors Of Shiga Toxin qHTS Assay for Inhibitors of Fructose-1,6-bisphosphate Aldolase from

	PubChem ID PubChem BioAssay name *
	qHTS for Inhibitors of Inflammasome Signaling: IL-1-beta AlphaLISA
	Primary Screen
	Cytochrome P450, family 2, subfamily C, polypeptide 19 [Homo sapiens]
	uHTS for the identification of compounds that potentiate TRAIL-induced
	apoptosis of cancer cells
	Inhibitors of Plasmodium falciparum M17-Family Leucine
	Aminopeptidase (M17LAP)
	Identification of SV40 T antigen inhibitors: A route to novel anti-viral
	reagents
	A Counter Screen To Identiry Small Molecule Screen For Inhibitors Of The
	PhoP Regulon In Salmonella Typhimurium
	QHTS Assay For Rab9 Promoter Activators
	QHTS Assay For Inhibitors Of GCN5L2
	Discovery Of Small Molecule Probes For H1N1 Influenza NS1A
	QHTS Assay For Inhibitors Of Histone Lysine Methyltransferase G9a
	Giardia Lamblia QHTS Assay For Inhibitors of bromodomain adjacent to zinc finger domain
	VP16 Counterscreen QHTS For Inhibitors Of ROR Gamma 2B [Homo sapiens]
	Transcriptional Activity Chain A, Jmjd2a Tandem Tudor Domains In Complex With A
	Trimethylated Histone H4-K20 Peptide
	QHTS For Inhibitors Of ROR Gamma Transcriptional Activity Primary QHTS For Delayed Death Inhibitors Of The Malarial Parasite
	HTS Of A Putative Kinase Compound Library To Identify Inhibitors Of Plastid, 48 Hour Incubation
	Mycobacterium Tuberculosis H37Rv Small Molecules That Selectively Kill Giardia Lamblia: QHTS
	Cytochrome P450, family 1, subfamily A, polypeptide 2 [Homo sapiens] QHTS Assay For Inhibitors Of Mammalian Selenoprotein Thioredoxin
	Niemann-Pick C1 protein precursor [Homo sapiens] Reductase 1 (TrxR1): QHTS
	Thioredoxin glutathione reductase [Schistosoma mansoni] QHTS For Inhibitors Of Polymerase Kappa
	ATP-dependent phosphofructokinase [Trypanosoma brucei] QHTS Of Nrf2 Activators
	ATAD5 protein [Homo sapiens] QHTS Assay To Identify Small Molecule Activators Of BRCA1

Acknowledgements I would like to express my deep gratitude to all my colleagues from the Laboratory of Chemoinformatics in UniStra. Particular thanks to my supervisor Professor Alexandre Varnek for his patience, advices and for sharing enthusiasm in some experiments even if they had to fail. Also, I thank my colleagues Dr. Gilles Marcou, Dr. Dragos Horvath and Dr. Igor Baskin for their help in my work and very productive discussions. I appreciate the help of Dr. Fanny Bonachera and Dr. Olga Klimchuk in organizing my working process and documents. I am grateful to other colleagues in our lab, especially, Iuri Casciuc and Yuliana Zabolotna, for our friendship and ability to discuss different scientific topics. I thank my colleagues from Computational Chemistry Department in Boehringer Ingelheim Pharma Co. & KG, especially Dr. Bernd Beck and Dr. Mathias Zentgraf for their support and kind atmosphere during my stay in Biberach. Finally, I would like to thank the BigChem Marie-Curie EU program for giving me the opportunity to participate in this amazing project, to travel around Europe and to make new professional contacts.

GTM as a Tool for Virtual Screening

Virtual Screening (VS) is a common technique in drug discovery used in different projects [96][START_REF] Giganti | Comparative Evaluation of 3D Virtual Ligand Screening Methods: Impact of the Molecular Alignment on Enrichment[END_REF][START_REF] Basse | Novel Organic Proteasome Inhibitors Identified by Virtual and in Vitro Screening[END_REF]. Its goal is to select potential hits from the chemical database using knowledge retrieved from the existing data. Usually, the so-called VS funnel has several layers differentiating in terms of accuracy. Thus, the methods with lower accuracy (e.g. similarity filters) but higher speed stand at the beginning and the more accurate methods (e.g., docking) are run at the end since they are restricted in terms of compounds that these methods can handle.

In this chapter, we discuss the application of GTM to virtual screening. The first part of the chapter describes the benchmarking results done for single-target and multi-target VS on public data. Next, the obtained knowledge was applied to industrial data to test the GTM in the industrial drug discovery process.

5.1

Multi-Target Virtual Screening

Introduction

GTM is a data visualization and analysis tool which can successfully be used to train classification and regression models. The benchmarking studies done so far show that GTM provides similar predictive performance to other machine-learning methods (SVM, Random Forest, Neural Networks) [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF]. This makes GTM attractive to be used in virtual screening (VS) campaigns.

Data

1.7M structures were standardized by ChemAxon Standardizer [81] using the following protocol:

1) Dearomatization;

2) Remove stereo;

3) Remove explicit hydrogens; 4) Remove solvents; 5) Aromatization;

6) Normalize default ChemAxon Standardizer chemotypes (nitro, azide, diazo, phosphonic, etc.).

To validate the GTM models, BI bio profile was used where a list of IC50/EC50 values was given. 6848 assays were presented in the profile but only 3320 assays containing more than 100 records were taken. The labels assignment protocol described in Figure 29 was applied to split the data into 3 classes: active, weakly active and inactive.

First, the algorithm optimizes the threshold for the "active" class to collect at least 15 compounds. The active threshold ranges within 10 and 1000 nM (not systematically; see Figure 29). Next, it tunes the threshold for the "inactive" class maximizing the number of items but keeping the ratio of the thresholds (Inact IC50 / Act IC50 ) at least 10 folds or greater.

Here, the inactive threshold varies from 1 μM to 10 μM with a step of 1 μM. Once 30% of compounds are collected as inactives (at least 15), the ratio of the thresholds is checked again, and, if it is larger than 10, the active threshold (Act IC50 ) is increased in a way that it becomes to be 10 times smaller than the inactive threshold (Inact IC50 ).

2371 assays associated with sufficiently large (at least 30 compounds/series) and conveniently balanced (no less than 15 actives and 15 inactives) structure-activity series were selected. The external validation was performed using new data points measured in BI 6 months later.

The maps were sorted according to the number of assays predicted with the mean AUC over the 3 classes (< 𝐴𝑈𝐶 > 3 𝑐𝑙𝑠 ) larger than 0.7. The best 5 maps were selected (Table 7). The explanation of the corresponding descriptors is given in Table 6.

Table 6. Descriptors explanation [START_REF] Ruggiu | ISIDA Property-labelled fragment descriptors[END_REF][START_REF] Marcou | FAF-Drugs: free ADME/tox filtering of compound collections[END_REF]. 8.

Descriptors abbreviation

One can see from Table 7 that the best map in 3 classes cross-validation successfully predicted 59% of given assays (294 out of 500). In 2 classes validation, the result is even better (80%). The same trend was demonstrated in cross-validation on the entire set (1318 out of 2371 assays were predicted well by the map 1; Table 8).

Chemical Library Enrichment

Introduction

Structural library enrichment is an important task for the pharmaceutical industry.

The number of hits in screening campaigns depends on drug-likeness and diversity of the underlying screening set. To be efficient in drug-discovery, the existing screening pool needs to be regularly updated to include new chemotypes. Generative Topographic Mapping or GTM [START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF]) providing with the visualization support.

GTM is a method of choice in this study because of its clear advantage over PCA and SOM approaches.

Recently we demonstrated that GTM represents an efficient tool for comparison of large chemical libraries FDB-17 and PubChem-17 [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF]. The hierarchical GTM zooming technique [START_REF] Tino | Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way[END_REF] was successfully applied in [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF] in order to analyze the chemotypes of molecules populated selected zones and to highlight the scaffolds present exclusively in FDB-17.

In this study, the zooming technique was automatized and coupled to a Maximum

Common Substructure (MCS) extraction protocol ("AutoZoom" tool). The developed tool was used for the enrichment of the in-house collection of Boehringer Ingelheim (further on referred to as the "BI Pool") by the compounds from the commercial Aldrich-Market Select (AMS) database. A drug-likeness and an activity profile of selected AMS compounds against 749 biological targets were assessed using the ChEMBL data-driven predictor based on Universal GTMs [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF]. The paper reporting these results has been recently accepted in J. Computer-Aided Molecular Design.

Data

Boehringer Ingelheim (BI) is steadily committed to innovation in medicinal chemistry and is hence interested in new compounds featuring new scaffolds. At the same time, new structures have to be synthesizable and should have the potential to be active.

As a basis in this work, we used the in-house collection of drug-like compounds provided by BI (BI Pool) which contained more than 1.7M structures. The source for novel compounds was the publicly available Aldrich-Market Select (AMS) collection of purchasable compounds containing more than 8.2M items (http://www.aldrichmarketselect.com). The data was standardized by ChemAxon's standardizer tool using a list of rules, such as aromatization, removing stereo labels, the standard representation of N-oxides including nitro group, etc.

[105]

Method

The computational workflow consists of three parts. First, the mapping of AMS chemical space was undertaken by calibrating a pertinent GTM manifold, followed by projection of entire AMS and BI Pool collections. Then, the hierarchical GTM zooming was performed for selected areas of the map followed by MCSs extraction. The most of interest represented some zones exclusively populated by AMS compounds. The latter was extracted and profiled using universal GTMs described in our previous papers [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?[END_REF]. To this purpose, the publicly available virtual screening webserver of the Laboratory of Chemoinformatics (http://infochim.u-strasbg.fr/webserv/VSEngine.html) was employed. In addition, simple molecular properties, like LogP, number of H-bond donors and acceptors, molecular weight, and TPSA, were computed using ChemAxon's JChem engine [81].

GTM training

The Generative Topographic Mapping (GTM) method relates the data points positions in the initial N-dimensional space and in the latent 2D space. The GTM algorithm is described in a range of publications [START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF][START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF][START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF][START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF]. Briefly speaking, GTM injects a 2D hypersurface (manifold) into a multidimensional data space populated by a set of representative items (the Frame Set, FS). The algorithm fits the manifold to the FS data distribution by changing the positions of Radial Basis Function centers and, hence, maximizing the data log-likelihood (LLh). At the next stage, the data points are projected on the manifold followed by the manifold unbending. Each compound in the latent space is represented by a vector of normalized probabilities (responsibilities) computed in the nodes of a square grid superposed with the manifold. In turn, the entire data set can be characterized by a vector of cumulative responsibilities. This enables the user to perform an efficient data sets comparison as well as QSAR/QSPR studies [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF][START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF][START_REF] Sidorov | QSAR modeling and chemical space analysis of antimalarial compounds[END_REF].

In our early study [START_REF] Lin | Mapping of the Available Chemical Space versus the Chemical Universe of Lead-Like Compounds[END_REF], the frame set compounds were randomly selected from large chemical libraries. Here, a FS containing 25K AMS compounds of controlled diversity

Results and Discussion

To train the GTM manifold, a Frame set (FS) of 25K compounds needed for the manifold construction was diversity-picked from the AMS library with the dissimilarity threshold equal to 0.4. At the next stage, the log-likelihood threshold LLh = -2501.52 was determined as described in Figure 31 in order to delineate the GTM Applicability Domain (AD). With this threshold, 95.5% of the FS items passed the AD criteria (23.9K compounds out of 25K). Figure 33 visualizes the distribution of the FS compounds over the map. The density landscape shows that the FS covers most parts of the map, and the maximal population of compounds in each node doesn't exceed 5% of the entire FS.

To understand how the two chemical collections relate to each other, they were projected on the map and rendered as individual density landscapes and a fuzzy classification landscape, respectively (Figure 34). Some 94.1% of the BI Pool and 95.8% of the AMS collections passed the LLh threshold which means that the frame set extracted from AMS is diverse enough to describe both databases. We assume that as far as the frame set is diverse enough to span the relevant chemical space zone, its explicit composition is of rather little importance -a recurrent conclusion in all our GTM studies, notably the creation Comparing the density landscape from Figure 36 and the fuzzy class landscape from Figure 34, we see that most of the compounds came from the areas where AMS dominated.

At the same time, several thousands of structures also came from mixed areas (green and yellow). This was achieved by the application of zooming.

To check the drug-likeness of the extracted structures, simple molecular properties, namely the number of H-bond donors and acceptors, LogP, molecular weight, and TPSA were computed (Figure 37). First, the settings file containing mean values and standard deviations for the given data set should be generated by standardizeDescriptors.jar (chapter 8.1.1). Next, the initial SVM file, as well as the header file (in case of ISIDA fragment descriptors generated by ISIDAFragmentor2017 tool [START_REF] Marcou | FAF-Drugs: free ADME/tox filtering of compound collections[END_REF]) are filtered accordingly to the threshold on standard deviation set by the user. This threshold is a percentage out of the maximal standard deviation detected across the file (2% by default). So, if a descriptor possesses the deviation which is less than the threshold, such descriptor will be removed from the SVM file.

Since the standardization process of a large number of descriptors (>100K) is a computationally heavy task, it is recommended first to generate the settings file using standardizeDescriptors.jar, then to filter the descriptors using filterISIDAdescriptors.jar, and after to standardize the filtered SVM file using the filtered settings file.

Likelihood-Based GTM Applicability Domain Implementation

The likelihood-based GTM Applicability Domain (AD) is already described in chapter 4.2 and its basic idea is to discard the items which log-likelihood (LLh) is lower than a certain threshold. As was mentioned, in this project we propose to generate the the libraries as input matter. Also, it requires the responsibilities, the list of smiles and the descriptors for each library separately.

The algorithm implemented in the AutoZoom tool first scans the landscape in order to find the zones which are needed to be zoomed (chapter 4.3). If such are found, it runs recursive (multilevel) zooming until the density in the cluster satisfies the required threshold. Next, the algorithm runs Maximum Common Substructure (MCS) search described in chapter 4.4. The discovered MCSs are then collected and stored as a pickle archive (Python package to work with binary files). Besides that, the tool collects the information on the parent nodes (the full path to the node where the MCSs were extracted from) and smiles returned these MCSs.

The program has several dependencies, such as NumPy, Plotly, GTMapTool, and ChemAxon's JChem cartridge.

GTM Constrained Screening

The tool developed for Constrained Screening (CS) is web-based. The backend part is written in Python where the GTM2018.py tool is used as a library (see chapter 8.3). The server is run by Django software [119]. The frontend part is done in JavaScript, HTML5, and JQuery. The new page is shown in Figure 39.

In case if the user wants to predict new compounds, he/she chooses the SVM file with the corresponding descriptors in the "Input file" field and pushes the "Submit" button. The tool will show the top-10 compounds with their order number and satisfaction score (Figure 41). The rest can be downloaded by the user using the "Download" button in the "Output table" section. 

Conclusion and Perspectives

In this work, we dealt with: (i) methodological developments, (ii) design of algorithms for automatized maps analysis, (iii) GTM application to different chemoinformatics tasks (libraries comparison, library enrichment, and virtual screening)

and, (iv) software development.

Methodological developments. Treatment of Big Data in chemistry is a challenge for any machine learning method, in particular, for GTM, which may need to use large frame sets (FS) in combination with large dimensionality of the initial data space. Since the capacity of earlier reported algorithms for manifold construction (classical and incremental)

was limited, we designed the "Parallel GTM" algorithm based on simultaneous training of several manifolds on different FSs followed by their merging into one sole manifold. The developed algorithm allowed us to build a GTM for the ChEMBL-23 database (1.7 M compounds) using the entire database as a FS. Benchmarking of predictive performance of classification models, which were built on the manifolds obtained with different algorithms and FS sizes varying from 1K to 1.7M molecules, demonstrated that (i) the parallel algorithm performs similarly to classical and incremental ones, and (ii) a small frame set of 5000 molecules (i.e., 0.003% of ChEMBL) is sufficient for obtaining well-performing manifold.

The log-likelihood (LLh) threshold is often used to delimit an applicability domain of GTM-based classification and regression models. In order to calculate the "optimal" the EC50 
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