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The ships and oshore platforms, which have an expected lifetime of 25 years or so, are exposed to ocean environment where the typical wave periods are in the range of 6-25s. They experience billions of oscillations during their lifetime, therefore it is essential to estimate the forces acting on those structure and their motions.

The hydrodynamic forces are of various kinds from simple hydrostatic loads to very complex wave impacts and the complexity of the mathematical model is relevant to achieve accuracy.

Some transfer function as the motion Response Amplitude Operators (RAOs) are very well and quickly computed with linear potential ow, whereas extreme response or extreme loads could be inuenced by nonlinear features or even multiphase ow and consequently a more complex and dedicated model is necessary, often based on Navier Stokes equations, with or without turbulence model.

The behavior of bodies in waves is possible to compute analytically for a limited number of geometrical shapes and with strong assumptions on the hydrodynamic model, specically the linearization of the free surface and body boundary conditions. Real ships and oshore platforms have complex geometries and the wave structure interaction phenomena can be assessed by conducting experiments or by solving numerically the chosen mathematical model. Performing experiments is a good methodology to get real-time data and to emulate complex natural phenomena, however there are numerous limitations as scaling eects, the facility, the data acquisition and overall costs. This explains why the numerical analysis is often attractive, though the cost and the complexity of the computation can also be large. In the present research, the objective is to use complex models but to limit the computational costs in simulating the wave structure interaction problem. This is done by coupling dierent types of hydrodynamic models which have dierent levels of assumptions.

Two mathematical models are commonly used in naval and ocean engineering elds nowadays, that can be stated as potential ow and viscous ow models, the former being derived with hypothesis imposed on the latter.

Potential ow models are derived from the assumption of incompressible, inviscid uid and irrotational ow. The most common numerical algorithms are based on the boundary integral equation which transforms a three-dimensional (3D) computational domain into two-dimensional (2D) domain. 3D problems are reformulated along the body surface with the introduction of a Green function satisfying all the boundary conditions except body boundary condition. This methodology is used in the naval and oshore elds to compute Linear Transfer Function (LTF), Quadratic Transfer Function (QTF), radiation forces (added mass and radiation damping) and motion Response Amplitude Operators (RAOs) of a oating/xed body subject to waves. However, potential ow based solvers cannot model vorticity, viscosity, turbulence and wave breaking phenomenon, making them less attractive for computing the drag resistance of ships, maneuvering, roll damping and gap resonance. In addition, the algorithm complexity and the numerical cost increase when the nonlinearity of the free surface and the body perturbation need to be accounted.

Viscous ow models are more and more used in wave-structure interaction problems to overcome the limitations of the potential ow model thanks to the increase of computational resources.

Viscous ow models are generally derived from the Navier Stokes equations and the assumption of Newtonian uid. A 3D computational grid is required to solve the equations numerically.

The size of the grid depends generally of several parameters and specically from the Reynolds number for a typical marine computation. Turbulence models can be used to reduce the number of nodes, Reynolds averaged Navier-Stokes equations (RANSE) are commonly used to solve a highly nonlinear phenomena including viscosity, vorticity and turbulent eects. Though the numerical computation of the free surface motions in viscous ows has also its challenges, the simulation of wave run-up, green water, and extreme bow slamming events are more and more conducted. Performing long simulations with oating or xed body, as example in irregular waves for the typical duration of 3 hours is still very expensive and unpractical for engineering companies.

Those two dierent ow models have each advantages and drawbacks for simulating wavestructure interaction. The coupling of potential and viscous ows in wave-structure interaction problem has started in the early 1990s to take the benets of those two dierent models. The viscous model needs a large computational eort and it is not suitable to model propagating waves to the far-eld. Meanwhile, the potential ow model is regarded as good for wave propagation. Therefore, the propagating waves in the far-eld region of the domain with viscous ow can potentially be improved by using a potential ow model, as depicted in gure 1.1.

Figure 1.1. The concept of coupling between two ows in wave-structure interaction problem.

The reduction of the computational domain dedicated to the viscous ow decreases the computational burden. The key is that this reduction does not increases the wave reections on the boundary and that the computational cost to solve the potential ow does not compensate what has been gained. This is the reason why in this thesis the speed of the potential ow algorithm has been accounted for and object of dedicated studies.

Two ow models are based on dierent assumptions that raise many questions in a sense of physical meaning. However, the coupling between potential and viscous ow models is attractive and has a strength on both eciency and accuracy.

1.2 Previous and related researches

Potential ow

In potential ow, Boundary Element Method (BEM) is widely used for numerical simulations.

It is classied into two methods which depends on the selection of the fundamental solution: the Rankine method and the solution using the free surface Green function.

Rankine panel method uses a simple source as the fundamental solution. It provides a exibility in treating boundary conditions, and calculating singularities is simple. However, the boundary surface where singularities are located should cover the whole uid domain and a panelling over the free surface is necessary. As a result, the computational eort increases due to the need to solve a large and fully populated linear system. Recently, it has often been applied with nonlinear free surface and body boundary conditions which appear in problems of ship with forward speed in waves and of wave-structure interaction in high wave. [START_REF] Dawson | A practical computer method for solving ship-wave problems[END_REF] showed that this methodology gives a fairly good result for a ship with forward speed. After his work, [START_REF] Nakos | Ship wave patterns and motions by a three dimensional Rankine panel method[END_REF] introduced a B-spline shape function for panel connectivity and investigated numerical dispersion, dissipation, and stability. [START_REF] Raven | A solution method for the nonlinear wave resistance problem[END_REF] compared the dierent numerical implementation of nonlinear free surface boundary condition. This methodology was applied in the time domain by [START_REF] Kring | Time domain ship motions by a three-dimensional Rankine panel method[END_REF]. Recently, [START_REF] Kim | Time-domain analysis of nonlinear motion responses and structural loads on ships and oshore structures: development of WISH programs[END_REF] used this method in the principle of weak scattering already introduced by [START_REF] Pawlowski | Nonlinear theory of ship motion in wave[END_REF].

The method using the free surface Green function, which satises a linearized free surface condition with sea bottom and radiation conditions, is the second category of BEM. With a linearized boundary condition, the integral equation is only discretized on the mean position of the body.

Therefore, a small computational eort is necessary to solve a linear system of relatively small size. However, the algorithms for the computation of the Green functions are complex. The mathematical representation of the wave Green function is well summarized in the book of [START_REF] Wehausen | Surface waves[END_REF]. Typically, the wave Green function involves an innite integral with singularity which makes its numerical evaluation dicult. Therefore, most of associated research works have focused on the ecient computation of Green functions. [START_REF] Newman | Algorithms for free-surface Green function[END_REF]; [START_REF] Telste | Numerical evaluation of the Green function of water-wave radiation and diraction[END_REF]; [START_REF] Chen | Free surface Green function and its approximation by polynomial series[END_REF]; [START_REF] Newman | Approximation of free-surface Green functions[END_REF] suggested several numerical algorithms by applying dierent approximations depending on nondimensional variables for numerical eciency.

Recently, [START_REF] Xie | Comparison of existing methods for the calculation of the innite water depth free-surface Green function for the wavestructure interaction problem[END_REF] summarized the single-integral type of wave Green function in the frequency domain and compared the precision and computational cost of various available numerical algorithms. A dierent perspective on the deep water wave Green function has been proposed

by Clément (1998). He showed that the time domain wave Green function is a solution of 4-th order Ordinary Dierential Equation (ODE), and he identied that the frequency domain wave

Green function satises a second order ODE by applying Fourier transform [START_REF] Clément | A second order ordinary dierential equation for the frequency domain Green function[END_REF].

Clément (1998) used a 4-th order Runge-Kutta time integration to solve the 4-th order ODE of the time domain Green function. Later, [START_REF] Chuang | On the evaluation of time-domain Green function[END_REF] introduced a time-marching Frobenius method to solve the ODE analytically. Recently, [START_REF] Bingham | A note on the relative eciency of methods for computing the transient free-surface Green function[END_REF] compared the eciency of the numerical algorithms calculating the time domain wave Green function. A good summary of existing ordinary dierential equations in both time and frequency domain with respect to spatial and temporal variables can be found in [START_REF] Xie | An ecient method for the calculation of the free-surface Green function using ordinary dierential equations[END_REF].

The panel discretization along the boundary surface is a concern in BEM. Linear potential codes for a diraction-radiation problem in frequency domain, such as WAMIT by [START_REF] Lee | WAMIT Theory Manual[END_REF],

HydroStar by [START_REF] Chen | Hydrodynamics in oshore and naval applications -Part I[END_REF], Aquaplus by [START_REF] Delhommeau | Amélioration des performances des codes de calcul de diractionradiation au premier ordre[END_REF] and Nemoh by [START_REF] Babarit | Theoretical and numerical aspects of the open source BEM solver NEMOH[END_REF], are based on constant panel method. [START_REF] Kim | Hydroelastic analysis of three dimensional oating structures[END_REF] used a linear panel method to solve the hydroelasticity problem of oating body. For a precise computation of wave drift forces, corresponding to second-order problem, [START_REF] Hong | Numerical and experimental study on hydrodynamic interaction of side-by-side moored multiple vessels[END_REF] applied a Higher-Order BEM (HOBEM) and validated with experiments.

Other numerical approaches than BEM are applicable for potential ows. [START_REF] Bai | Numerical solutions to free surface ow problems[END_REF] solved the free surface problem by Finite Element Method (FEM) for 2D problem. Later, [START_REF] Bai | A localized nite-element method for three dimensional ship motion problems[END_REF]; [START_REF] Bai | Numerical computations for a nonlinear free surface ow problem[END_REF] extended FEM for 3D free surface ow. Recently, [START_REF] Nam | A numerical study on berthing problem between two oating bodies in waves[END_REF] applied 3D FEM for berthing problem with fully nonlinear free surface and body boundary conditions.

The Harmonic Polynomial Cell (HPC) method was proposed by [START_REF] Shao | A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics[END_REF].

Dierently from the BEM, these methodologies require the whole 3D computational domain to be discretized into the cells.

The mentioned potential ow models have focused on the evaluation of velocity potential on the boundary surface. [START_REF] Noblesse | Boundary-integral representation of linear free-surface potential ows[END_REF] 

Viscous ows

Viscous ow models solve Navier-Stokes equations, which are the governing equations of Newtonian uid. RANSE version of Navier-Stokes equations is frequently used in naval and oshore engineering applications and they can be solved eciently by decomposing velocities and viscos-ity into time-averaged and uctuating parts. These equations are solved numerically, because analytical solutions are rarely available for the nonlinear viscous ows with free surface. The Finite Volume Method (FVM) is commonly used because it satises the conservation laws even when the discretized mesh is relatively coarse. FVM discretizes the uid domain into cells which are small control volumes (CVs) where uxes comes in and out through the control surfaces.

The governing equations are reconstructed in the framework of FVM. The uid media (water) in marine hydrodynamics is assumed to be incompressible and viscous. [START_REF] Patankar | A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic ows[END_REF] introduced Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm to solve steady-state problems of incompressible viscous uid. In this algorithm, the pressure correction is introduced to satisfy the continuity equation after solving the momentum equation. [START_REF] Issa | Solution of the implicitly discretised uid ow equations by operator-splitting[END_REF] devised Pressure-Implicit with Splitting of Operators (PISO) algorithm, which is an extended version of SIMPLE algorithm, for unsteady problem. In the PISO algorithm, the coupled velocity and pressure are solved by one predictor and two corrector steps.

The numerical modeling of the interface between air and water is also one of the main research topic in marine hydrodynamics. Interface models are categorized into Lagrangian and Eulerian approaches. The Lagrangian approach advects special marker points distributed on the interface, and reconstructs the interface with the distribution of marker points [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible ow of uid with free surface[END_REF]. The reconstructed interface is considered as sharp and precise, but an extra redistribution procedure is necessary to get a sucient resolution. [START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-uid ows[END_REF] proposed a front-tracking method, transporting marker points in an Eulerian domain. It enables the calculation of an accurate surface curvature and the conservation of a sharp interface. However, an extra redistribution procedure is still necessary to get a sucient resolution. Furthermore, the complexity increases in the case of wave breaking. Meanwhile, the Eulerian approach uses an indicator function, representing whether a CV is wet or dry by a function value dened at each cell. This approaches are commonly used nowadays, from [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible ow of uid with free surface[END_REF] who proposed a marker and cell method. Other indicator functions, the Volume Of Fluid (VOF) by [START_REF] Hirt | Volume of uid (VOF) method for the dynamics of free boundaries[END_REF], the Level-Set (LS) function by [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF] and the Phase Function (PF) by [START_REF] Boettinger | Phase-eld simulation of solidication 1[END_REF], have been proposed in the literature and are widely used in many applications. Those methods using indicator functions need however a special attention on treating numerically the convection terms due to its diusivity.

VOF methods conserve the mass well but suer from interface smearing and the diculty on the calculation of the interface curvature. Several convection schemes have been applied to prevent smearing interface and maintain boundedness. Most of convection terms are evaluated by blending the low and high order advection ows with ow limiter, such as HRIC by [START_REF] Muzaferija | Computation of free-surface ows using interface-tracking and interface-capturing methods[END_REF], Flux-corrected transport (FCT) by [START_REF] Boris | Flux-corrected transport. I. SHASTA, a uid transport algorithm that works[END_REF], CICSAM by [START_REF] Ubbink | Numerical prediction of two uid systems with sharp interfaces[END_REF]. The multiphase solver in OpenFOAM (interFoam) is based on the FCT method which has been extended up to multi-dimensions by [START_REF] Zalesak | Fully multidimensional ux-corrected transport algorithms for uids[END_REF]. The computation procedures are well explained in [START_REF] Damián | An extended mixture model for the simultaneous treatment of short and long scale interfaces[END_REF]. As an alternative to algebraic solving techniques, a geometric VOF approach was proposed by [START_REF] Roenby | A computational method for sharp interface advection[END_REF] though it limits the maximum Courant number.

LS function keeps the interface sharp, but mass loss often happens due to its signed distance 1. Introduction [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase ow[END_REF]. Extra computation procedures, re-distancing the level-set, have been applied to improve the accuracy while maintaining the interface sharpness [START_REF] Chang | A level set formulation of Eulerian interface capturing methods for incompressible uid ows[END_REF][START_REF] Sussman | An improved level set method for incompressible two-phase ows[END_REF][START_REF] Di Mascio | On the application of the single-phase level set method to naval hydrodynamic ows[END_REF].

PF method uses a smoothly varying function φ ∈ (-1, 1) in computational domain. It also has a mass loss problem like LS function, but the proper choice of phase-function may help the accuracy and boundedness. The use of biased phase function having values between 0 and 1 is adopted to keep the boundedness [START_REF] Desjardins | An accurate conservative level set/ghost uid method for simulating turbulent atomization[END_REF]. [START_REF] Sun | Sharp interface tracking using the phase-eld equation[END_REF] set the phase-function has a hyperbolic curve. The derived PF equation involves the self-adjusting variable controlling interface diusion.

The quality of wave propagation in the computational domain is important for any wave-structure interaction problem. The numerical dissipation brought by the discretization makes simulations in large domain dicult and the oscillatory behavior of waves calls for a special boundary condition to minimize undesired reections at the inlet/outlet. Ocean waves have typical periods in the range of 6-25s and travel long distances with very small energy dissipation. Waves with a wavelength of 73.15m (T = 6.84s) travel 924 km in a day, with its wave height only diminished by one or two percent because of friction [START_REF] Lamb | Hydrodynamics[END_REF][START_REF] Joseph | Potential ow of viscous uids: Historical notes[END_REF]. Nonlinear potential wave models are useful to initialize and generate incident waves. For example, [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF] used a stream function for fully nonlinear regular waves, and some nonlinear potential models for irregular waves can be found [START_REF] Ducrozet | 3-D HOS simulations of extreme waves in open seas[END_REF][START_REF] Ducrozet | A modied high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF][START_REF] Engsig-Karup | An ecient exible-order model for 3D nonlinear water waves[END_REF].

However, the absorption of waves at the extremities of the domain is still ongoing research. The waves at outlet are a combination of incident waves, body-scattered waves and are also aected by numerical dissipation. [START_REF] Israeli | Approximation of radiation boundary conditions[END_REF] introduced the technique of "damping zone" or "sponge layer" to absorb the waves. A relaxation scheme which blends the computed quantities with a target solution in the sponge layer (also called relaxation zone; blending zone) has been popular recently, see [START_REF] Kim | Ringing analysis of a vertical cylinder by Euler overlay method[END_REF]; [START_REF] Jacobsen | A wave generation toolbox for the open-source CFD library: OpenFoam R[END_REF]; [START_REF] Paulsen | An ecient domain decomposition strategy for wave loads on surface piercing circular cylinders[END_REF]. As the target ow and weight function can be specied by the user, the wave outlet is relatively easily handled compared to with other methodologies which need a parameter tuning. The relaxation scheme is categorized into implicit and explicit relaxation. The implicit relaxation scheme combines the governing equations and target equations with a spatially distributed weight factor. As a result, source terms appear in the original equations, see [START_REF] Kim | Ringing analysis of a vertical cylinder by Euler overlay method[END_REF]; [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF]. Meanwhile, the explicit relaxation scheme blends the ow values with target values in the relaxation zone after solving the governing equations, see [START_REF] Mayer | A fractional step method for unsteady free-surface ow with applications to non-linear wave dynamics[END_REF]; [START_REF] Fuhrman | Numerical solutions of Boussinesq equations for fully nonlinear and extremely dispersive water waves[END_REF]; [START_REF] Engsig-Karup | Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations[END_REF]; [START_REF] Seng | Slamming and whipping analysis of ships[END_REF] for example.

Coupling of potential and viscous ows

Navier-Stokes equations are used to state the behaviour of viscous ow. Viscosity eect and rotational ow are considered naturally in governing equations. The potential ow is introduced based on the hypothesis that uid is incompressible and inviscid and ow is irrotational. Consequently, the coupling between viscous and potential ows is sort of a contradiction. After [START_REF] Prandtl | über üssigkeitsbewegung bei sehr kleiner reibung. Verhandl III[END_REF] discovered boundary layer exists only near a body moving through uid media, it has been thought that the potential ow model can model the outer uid region of the boundary layer.

However, ow quantities such as uid velocity and stress considered in viscous and potential ow models are derived in dierent manner. The coupling between two ow models is considered to be skeptical in view of physics.

The eorts to couple potential and viscous ows in marine hydrodynamics have been investigated from the early 1990s. Fluid viscosity has not been accounted for seriously because viscous eects on the global performance of ship and oshore platform are some times very low and often hard to estimate. The viscous eect is important for specic phenomena such as friction resistance

of ship, roll damping, gap resonance, moonpool resonance. Most of the associated research has assumed that the ow quantities of viscous and potential ow models are continuous or have changed the boundary condition to consider viscosity eects.

In this section, previous research on the coupling between viscous and potential ow models in marine hydrodynamics are summarized by categorizing coupling methodology. The way of coupling is dened by transferring the information from one solver to the other. (1) One-way coupling is when an available solution is transferred to the solver, but the available solution is not aected by the solver. ( 2) Two-way coupling means that each ow solvers delivers the information to the other, and each ow solver is updated from the delivered information. The gure 1.2 shows a schematic view of coupling ways with decomposition. In a coupled solver, the computation can be decomposed spatially and/or functionally. The decomposition of total problem can be then categorized into two groups:

• Domain decomposition: The computational domain for each ow is separated or overlapped. Potential and viscous ow models are applied in the separated domains.

• Functional decomposition: The total quantities in viscous ow are decomposed into potential and viscous parts. The governing equations and boundary conditions are changed.

Remark that the domain and functional decompositions are applicable together for one problem.

1. Introduction

Domain decomposition

The domain decomposition (DD) splits the computational domain and applies the dierent ow models that are suitable for concerned phenomenon. In the wave-structure interaction problem, viscous eects and wave nonlinearities are strong in the vicinity of body surface. Even though the generated vortex propagates up to relatively far-eld, it is possible to decompose the computational domain into viscous inner sub-domain and potential outer sub-domain. Both two-way and one-way coupling methodologies are applicable with dierent coupling regions. In the coupling region, the information is delivered from viscous/potential ow to the other. It is usually categorized into direct and overlapped coupling regions. The direct coupling region represents that two ows share one surface (S d ) to deliver each of the ow quantities to the other. The over- lapped coupling regions refers to that the information transfer happens at two distinct boundary surfaces (S o ) with distance or the volumic blending zones (Z b ). In the volumic blending zone, the weight function is applied for smooth transition of ow quantities. Therefore, information delivery is done in dierent places. [START_REF] Tahara | An interactive approach for calculating ship boundary layers and wakes for nonzero Froude number[END_REF] applied two-way coupling by two distinct boundary surfaces for inviscid and viscous ows, respectively. BEM and FVM are used to solve each ow region, the normal velocity for potential ow and the total velocity for viscous ows being updated at each time step. [START_REF] Campana | Viscous-inviscid coupling in ship hydrodynamics[END_REF] used Rankine source BEM and FVM to solve the two-dimensional submerged wings in current with the free surface. The normal velocity for potential ow and the pressure and velocity for viscous ow are imposed as boundary conditions for each ow at direct coupling surface. Later, [START_REF] Campana | Viscous-inviscid coupling in free surface ship ows[END_REF] applied the two distinct coupling surfaces for the forward speed ship problem and reported that the overlapped region gave a stable simulation. [START_REF] Iafrati | A domain decomposition approach to compute wave breaking (wave-breaking ows)[END_REF] [START_REF] Colicchio | A BEM-level set domain-decomposition strategy for non-linear and fragmented interfacial ows[END_REF] applied the coupling between BEM and FVM with domain decomposition for dam breaking and wave impact problem. Two distinct matching surfaces are used to transfer the velocity, wave elevation or the pressure, and the pressure correction in the viscous ow solver from the obtained potential uid velocity. They also reported that the overlapped matching surface gives a stable result both in potential and viscous ow solver. [START_REF] Greco | 3D domain decomposition for violent wave-ship interactions[END_REF] extended up to 3D problem to simulate Green water impact on a deck. To reduce the computational cost of potential ow, Hamilton and Yeung (2011) adopted a cylindrical matching surface and applied the Shell function, which is the surface integrated Green function, to solve potential ow. [START_REF] Fredriksen | A numerical and experimental study of a two-dimensional body with moonpool in waves and current[END_REF] limited the viscous ow region near to the corner of two-dimensional moonpool, and attempted to couple velocity and pressure in a segregated numerical algorithm.

A two-way coupling with the linear potential theory based on Poincaré's velocity representation is attempted by [START_REF] Guillerm | Application de la méthode de Fourier-Kochin au problème du couplage uide visqueux-uide parfait[END_REF] for steady forward ship problem. He adopted the overlapped surfaces for both ows and the viscous ow is solved by Finite Dierence Method (FDM) with boundary conditions computed by the linear potential ow. As a coupling variable, the normal and tangential velocity is transferred to potential ow, as the boundary condition for viscous ow, the velocity and wave elevation calculated by the potential ow is used. Poincaré's velocity representation for generic free surface ows are given in [START_REF] Noblesse | Boundary-integral representation of linear free-surface potential ows[END_REF]; [START_REF] Noblesse | Velocity representation of free-surface ows and Fourier-Kochin representation of waves[END_REF].

He suggested the Poincaré's velocity representation for the problems of satisfying free surface conditions φ = 0 and ∂φ ∂z = 0, steady forward speed, time-harmonic without and with forward speed. After his work on two-way coupling, there has been no more attempt to apply Poincaré's velocity representation for a time-harmonic or unsteady problem.

Two-way coupling solves both ows, consequently the iterations between two ows increase the computational costs. Therefore, one-way coupling is commonly used nowadays by imposing the incident waves as the boundary condition. 

Functional decomposition

The functional decomposition (FD) splits the total solution into potential and viscous ow components in the same computational domain. The governing equations and boundary conditions are reformulated for the quantities of interest. The Helmholtz decomposition theorem states that the total uid velocity can be decomposed into the irrotational and vortical velocity (Arfken et al., 1995) u = v + ∇Φ,

(1.2)
where v is a rotational velocity and Φ is velocity potential. v and ∇Φ satisy the continuity equation

∇ • v = 0, ∇ 2 Φ = 0, (1.3) 
and (1.5)

∇ • u = ∇ • v + ∇ 2 Φ = 0, ∇ × u = ∇ × v.
The normal derivative of velocity potential is given in

∇Φ • n = -v • n, (1.6)
where n is normal vector at body surface. In a local-orthogonal coordinate system shown in gure 1.4 

∂v n ∂n + ∂v t ∂t = 0.
(1.8)

Integrating the equation along the local normal direction from body surface to the boundary

thickness δ ˆδ 0 ∂v n ∂n dn = - ˆδ 0 ∂v t ∂t dn v n (δ) -v n (0) = - ˆδ 0 ∂v t ∂t dn v n (0) = ˆδ 0 ∂v t ∂t dn + v n (δ).
(1.9)

By denition of boundary layer, v n (δ) ≈ 0. Therefore, the body boundary condition given in

(1.6) is written as

∇Φ • n = -v • n = -v n (0)
= -ˆδ 0 ∂v t ∂t dn.

(1.10) The SWENSE method to decomose the functional quantities of total ow into incident and complementary parts [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF].

It makes the computational grid to be modeled dense near to the body only and is thought as ecient. This methodology has been applied for single-phase uids by [START_REF] Luquet | RANSE analysis of 2D ow about a submerged body using explicit incident wave models[END_REF]; [START_REF] Gentaz | Numerical simulation of the 3D viscous ow around a vertical cylinder in non-linear waves using an explicit incident wave model[END_REF]; [START_REF] Monroy | Simulation numérique de l'interaction houle-structure en uide visqueux par décomposition fonctionnelle[END_REF]; [START_REF] Reliquet | Simulation numérique de l'interaction houle/carène par couplage d'une méthod spectral HOS avec un algorithme de capture d'interface[END_REF] with marine hydrodynamic purpose. Recently, [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] has reformulated SWENSE in multi-phase ow by decomposing a level-set and uid velocity, later Li (2018) applied a similar approach with extended incident pressure for VOF eld. As boundary conditions, the relaxation schemes are applied in both researches, relaxing the scattering waves with zero.

Summary

The coupling methodology is based on the decomposition of ows that allows to split the computational domain and/or the functional value. The transition of dierent physics across the components/domains remains a question. The associated previous research is summarized in Table 1.1.

The coupling methodology is categorized by coupling way: (1) Two-way coupling and (2) Oneway coupling. The quantities used for coupling are dierent for research. p and u are pressure and uid velocity. Φ is the velocity potential. The subscript I denotes the incident components and n and t are the normal and tangential vector components, respectively. The coupling place where the information is delivered denoted with S and Z when the information is delivered at the surface or volumic zone. SWENSE and FD are when the SWENSE method and functional decomposition is used. S o , S s are the case when the overlapped surfaces or one surface is used for coupling. S body and S ∞ are the body surface and the surface at innity, respectively. where subscript I,C represent the incident wave and complementary components, respectively.

The incident waves satisfy the nonlinear free surface boundary condition discussed in the previous section, consequently, the incident wave terms that corresponds to Euler equations can be cancelled. The governing equations for complementary components are written as

∇ • u C = 0, (1.18) ∂(ρu C ) ∂t + ∇ • (ρuu C ) = -∇ • (ρu C u I ) -∇p C + ∇ • τ , (1.19) ∂φ color C ∂t + ∇ • (uφ color C ) = - ∂φ color I ∂t -∇ • (uφ color I
).

(1.20)

In a physical sense, the complementary components are signicant in the vicinity of body, and they decay as the distance increases due to energy conservation. Therefore, coarse mesh can be used in the far-eld where the complementary potential ow is considered to represent the physical quantities through the two-way coupling.

Interface boundary coditions for viscous ow model will be discussed in Chapter 6.

Potential ow

The potential ow formulation is based on the assumption that the uid is incompressible and inviscid and the ow is irrotational. A velocity potential can be introduced from the assumption.

It satises the Laplace equation in the whole uid domain

∇ 2 Φ = 0, in x ∈ Ω w , (1.21)
where Φ is the velocity potential and Ω w is the uid domain. The free surface (Ξ) is assumed to be a single-valued function

Ξ = Ξ(x, y; t) (1.22)
and the kinematic free surface condition for potential ow is given as

DΞ(x, y, t) Dt = 0 ⇔ ∂Ξ ∂t + ∂Φ ∂x ∂Ξ ∂x + ∂Φ ∂y ∂Ξ ∂y + ∂Φ ∂z = 0, on x = Ξ.
(1.23)

Remark that the total derivatives are given as

D Dt = ∂ ∂t + (∇Φ -U) • ∇ when a forward speed (U)
is considered. The dynamic free surface boundary condition for potential ow is derived from Bernoulli's equation as

p a = p w ⇔ ∂Φ ∂t + 1 2 ∇Φ • ∇Φ + gΞ = 0, on x = Ξ, (1.24)
where p a and p w are the water and air pressure innitesimally closed to the free surface. The kinematic and dynamic conditions involve both wave elevation and velocity potential. It is useful to combine the free surface boundary condition expressed in velocity potential as

∂ 2 Φ ∂t 2 + g ∂Φ ∂z + 2∇Φ • ∇ ∂Φ ∂t + 1 2 ∇Φ • ∇ (∇Φ • ∇Φ) = 0, on x = Ξ.
(1.25)

Note that the free surface boundary condition is highly nonlinear and is imposed on the unknown free surface. Two nonlinearties arise from nonlinear terms and unknown free surface make the free surface problem dicult to solve. Laplacian in the equation (1.21) is linear operator, therefore the perturbation series can be introduced as

Φ = Φ (1) + Φ (2) + Φ (3) + • • • , (1.26) Ξ = Ξ (1) + Ξ (2) + Ξ (3) + • • • , (1.27)
Substituiting the perturbation series into equation (1.25) and applying a Taylor series expansion with respect to wave elevation, the linear free surface boundary condition is obtained as

∂ 2 Φ (1) ∂t 2 + g ∂Φ (1) ∂z = 0, on z = 0.
(1.28)

For higher-order potential problem, the nonlinear terms appear in right-hand-sides so that the boundary conditions are non-homogeneous ) , on z = 0.

∂ 2 Φ (m) ∂t 2 + g ∂Φ (m) ∂z = Q (m
(1.29)

where Q (m) is the source term given by the combination of lower-order free surface quantities. This expansion method is called Stokes's expansion and the boundary value problems for each order of velocity potential can be set up. As the order of problem increases, the boundary condition becomes more complex and nonlinear.

The velocity potential can be decomposed again as

Φ = Φ I + Φ C , (1.30)
where Φ I is an incident wave potential, and Φ C is a complementary (scattering; diractionradiation) potential. In the present study, the fully nonlinear free surface boundary conditions are applied for the incident wave potential

∂Ξ I ∂t + ∂Φ I ∂x ∂Ξ I ∂x + ∂Φ I ∂y ∂Ξ I ∂y + ∂Φ I ∂z = 0 ∂Φ I ∂t + 1 2 ∇Φ I • ∇Φ I + gΞ I = 0 , on x = Ξ I , (1.31)
and the linearized free surface boundary condition is used for the complementary potential

∂Ξ C ∂t + ∂Φ C ∂z = 0 ∂Φ C ∂t + gΞ C = 0 , on z = 0.
(1.32)

Introduction

The incident waves evolve in space and time. And the interaction between waves to waves generates the nonlinearity which is unpredictable and occurs at arbitrary space and time. It Figure 1.6a explains the conguration of computation when the Navier-Stokes equations is solved for wave-structure interaction problem. The total functional quanties considered for computation are blended to the quantities of incident potentital ow in the far-eld. This conguration has been commonly applied for wave-structure interaction problem [START_REF] Seng | Slamming and whipping analysis of ships[END_REF][START_REF] Paulsen | An ecient domain decomposition strategy for wave loads on surface piercing circular cylinders[END_REF][START_REF] Monroy | Développements et validation de l'outil CFD OpenFOAM pour le calcul de tenue à la mer[END_REF].

Figure 1.6b states when the SWENSE method is used for computation. The functional quantities of incident ow are already dened in the whole computational domain. Therefore, the complementary functional quanties considered in the viscous ow model is blended to zero in the far-eld [START_REF] Ferrant | A potential/RANSE approach for regular water wave diraction about 2-D structures[END_REF][START_REF] Gentaz | Numerical simulation of the 3D viscous ow around a vertical cylinder in non-linear waves using an explicit incident wave model[END_REF][START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF][START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF].

The congurations of computational domain and functional quantities considered in the present study is depicted in gure 1.7. 

Contribution of work

The purpose of present study is the two-way coupling between potential and viscous ows in a marine application, especially for unsteady time-domain wave-structure interaction problems.

A hypothesis that total ow can be decomposed into the incident and complementary is as- In the far-eld, the potential ow model based on Poincaré's velocity representation is applied to simulate complementary waves.

The following specic contributions are made in the present study.

• A preliminary study on the coupling of potential and viscous ows is conducted. The results

show that the obtained solution of blending to potential ows gives good results and the solution converges faster. The two-way coupling allows us to use a small computation domain for the same accuracy of the solution, but the total computation time increases due to the extra expenses of calculating the potential ows. Therefore, a fast potential ow model with eective blending schemes is necessary for coupling.

• The generation of nonlinear irregular waves in the three-dimensional viscous domain is proposed with nonlinear potential ow solver which is called Higher Order Spectral (HOS) method [START_REF] Ducrozet | 3-D HOS simulations of extreme waves in open seas[END_REF][START_REF] Ducrozet | A modied high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF]. The algorithm uses a Fast Fourier Transform (FFT)

and multi-dimensional cubic spline interpolation, the generation of three-dimensional irregular waves in viscous ow model is achieved fastly. The results are validated againist HOS simulations and experiments.

• A new potential ow in the time domain is introduced based on Poincaré's velocity representation. It is formulated alternatively with arbitary and cylindrical matching surfaces.

Introduction

The numerical algorithms on the new type of Green function and the elementary functions are proposed. The proposed model is validated by comparing with analytic potential solution based on linear theory.

• A viscous ow model based on SWENSE with Level-set is proposed in the present study.

The functional quantities are decomposed into the incident and complementary components. The governing equations are reconstructed with respect to viscous complementary parts. The results are validated with multi-phase solver in a framework of OpenFOAM. 2 Preliminary study on the coupling of potential and viscous ows 2.1 Description on the preliminary study

The objective of the preliminary study is to investigate the feasibility of a coupling methodology between potential and viscous ows when the solution of potential ow is available at the boundaries of the viscous ow model. Therefore, dierent outlet conditions including the potential ow and other outlets are considered for comparison. In the preliminary study, foamStar which is based on the multiphase ow model in the framework of OpenFOAM is used [START_REF] Seng | Slamming and whipping analysis of ships[END_REF][START_REF] Monroy | Développements et validation de l'outil CFD OpenFOAM pour le calcul de tenue à la mer[END_REF]. The computation algorithm of foamStar is described in gure 2.1. When the simulation time is advanced, weight functions in the relaxation zones (boundaries) are updated.

In the outer iteration (PIMPLE; Combination of PISO and SIMPLE algorithms), the oating body dynamics is solved by the mechanical solver, the computational mesh is updated from the displacement of the oating body, and the α transport equation is solved and relaxed to target α T arget at the boundaries. After solving PISO loop, u is also relaxed to target velocity u T arget at boundaries. A parametric study on foamStar is conducted before the preliminary study. The propagating incident waves in a numerical wave tank and the swaying Lewis form are considered as the benchmark test cases for dierent outlets.

Parametric study on the viscous solver

The parametric study is conducted on foamStar to nd proper parameters for wave propagation.

Fully nonlinear regular wave are considered and the condition is given in Table 2.1. The case considered here is a two-dimensional domain with a cyclic lateral boundary condition, where

waves are initialized at the initial time from a fully nonlinear stream function waves [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF][START_REF] Ducrozet | CN-Stream: Opensource library for nonlinear regular waves using stream function theory[END_REF]. The schematic view of the problem, the initialized Volume Of Fluid (VOF; α) and the computational mesh are shown in gure 2.2. The computational domain has the length of one wavelength (1λ) and the height is taken to be 2h (h = 0.6m; water depth). Except if indicated otherwise in the parametric study, the computational meshes are uniformly spaced in a longitudinal direction with length ∆x = λ/100. For vertical direction, the cell height is taken to be ∆z = H/40 in z ∈ [-H, H] and the cell height is gradually stretched as it goes far from the mean free surface. 

Time integration scheme

Time integration schemes for an unsteady problem in OpenFOAM can be selected among Implicit Euler, Crank-Nicolson, and second-order backward schemes. The standard multi-phase solver of OpenFOAM, interDymFoam, uses a special module which is called MULES to solve the α-transport equation, where α is the Volume Of Fluid (VOF). MULES employs the Flux-Corrected Transport (FCT) scheme by [START_REF] Boris | Flux-corrected transport. I. SHASTA, a uid transport algorithm that works[END_REF]; [START_REF] Zalesak | Fully multidimensional ux-corrected transport algorithms for uids[END_REF], therefore the computation procedure is decomposed into the predictor and corrector steps, for controlling the α boundedness. As an example, α is computed with the implicit Euler scheme in the predictor step

(V ) n+1 P (α) * P -(V ) n P (α) n P ∆t + f F b α,f = 0, (2.1)
where the superscript * ,n denotes the predictor and time iteration respectively, V is a cell volume, and subscript P denotes an owner cell. ∆t is the time step between two successive time iterations, f represents the face index surrounding the owner cell. F b α,f is the bounded ux computed by using a low-order convection scheme. After the predictor step, the ux limiter λ limit f is evaluated by the predicted α * and the unbounded ux (F u α,f ) which is computed with a high-order scheme.

In the corrector step, α is corrected with ux limiter and unbounded ux

(V ) n+1 P (α) n+1 P -(V ) n+1 P (α) * P ∆t + f λ limit f (F u α,f -F b α,f ) = 0. (2.2) 
By summing equations (2.1) and (2.2), the original discretized α transport equation is obtained.

The detailed algorithm of MULES can be found in [START_REF] Damián | An extended mixture model for the simultaneous treatment of short and long scale interfaces[END_REF]. Because MULES needs the α ux to be bounded in the predictor step, the time integration schemes are limited to Euler implicit and Crank-Nicolson schemes in OpenFOAM. Euler and Crank-Nicolson time integrations are obtained by applying dierent weights on the present and next time steps. When an ordinary dierential equation, ẏ = f (t, y), is given, a weight factor is applied on the right-hand-side to solve the equation

y n+1 -y n ∆t = γf n+1 + (1 -γ)f n . (2.3)
where γ ∈ [0, 1]. γ = 0 and γ = 1 represent the explicit and implicit Euler time integration schemes respectively, and γ = 1 2 is classied as an original Crank-Nicolson scheme. In Open- FOAM, γ is selectable between in range of γ ∈ 1 2 , 1 for numerical stability and Crank-Nicolson .4) where c CN = 0 represents fully implicit Euler integration, and c CN = 1 is the original Crank-Nicolson scheme. It is commonly recommended to use c CN ≈ 0.9 as a compromise between stability and accuracy. It is known that the Crank-Nicolson scheme is unconditionally stable and has a second-order accuracy, but the obtained solution is characterized by an oscillatory behavior which results in numerical instability. Implicit Euler schemes are unconditionally stable and are immune to the oscillatory behavior. Nevertheless, it induces signicant numerical damping leading to poor results, especially for wave propagation problems.

number (c CN ) is introduced instead of γ c CN = 1 -γ γ , c CN ∈ [0, 1]. ( 2 
Simulations were performed with dierent Crank-Nicolson numbers, c CN = 0 (Euler implicit), 0.5 and 0.95 to observe the eect of the time integration scheme. Figure 2.3 compares the measured wave elevation at the center of domain with the wave crest and trough values given by stream function wave theory. The moving window Fast Fourier Transform (mwFFT) is applied to wave elevation time series and the rst harmonic amplitudes and phases are plotted in gure 2.4. The measured wave amplitudes, evaluated with the implicit Euler scheme and the Crank-Nicolson scheme, decrease gradually over simulation time. Moreover, the phase dierence between the CFD result and the analytical solution becomes larger when the low-order time integration scheme is adopted. Results show that propagating waves need at least second order time integration scheme not to damp it out. In the present study, the Crank-Nicolson scheme with c CN = 0.95 is selected for time integration. 

Mesh and time convergence

The computational grid and time steps are tested with dierent discretizations to check the order of convergence of the solver. The considered cell length ∆x, height ∆z, and time step ∆t are given in Table 2 dierent convection schemes used for momentum equation ρU. The V-scheme means that the ow limiters are calculated separately for each vector components. It results in a more stable but less accurate simulation than the simulation case without V-scheme. The results with V-scheme are more accurate than without V-scheme, but the simulation becomes unstable with increasing time. The parameter used for the convergence analysis is the wave elevation rst harmonic amplitude computed for the rst ten wave periods. The order of convergence is computed by the procedure of [START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid renement studies[END_REF], which applies the least square method to get the order of convergence (p) and uncertainty. The order of convergence for the discretization of Courant and cell-Reynolds numbers with dierent convection schemes are plotted in gure 2.6. The order of convergence (p) for Courant and Reynolds number discretizations with V-scheme are estimated as 1.14 and 1.60, respectively. The order of convergence increases to 1.93 and 1.69 without V-scheme. From the parametric study on propagating waves with cyclic lateral boundary conditions, the simulation time and meshes should be discretized over than T /∆T ≥ 400, λ/∆x ≥ 100 and H/∆z ≥ 40 to have 3.5% of amplitude reduction at t = 10T .

Mesh spacing in the vertical direction

The velocity prole of propagating waves underwater has an exponential behavior in the vertical direction. In wave theory, the maximum velocity occurs at the free surface and it decays going far from the free surface. Therefore, the meshes are modeled to be dense near the free surface to save computational cost. The vertical mesh spacing is varied to observe the eects on the simulation of given wave conditions. The meshes are divided into 3 zones: (1) underwater zone The method for generation and absorption of waves in foamStar is based on explicit relaxation schemes which blend the computed solution with target solution in relaxation zones [START_REF] Jacobsen | A wave generation toolbox for the open-source CFD library: OpenFoam R[END_REF][START_REF] Mayer | A fractional step method for unsteady free-surface ow with applications to non-linear wave dynamics[END_REF][START_REF] Fuhrman | Numerical solutions of Boussinesq equations for fully nonlinear and extremely dispersive water waves[END_REF][START_REF] Engsig-Karup | Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations[END_REF][START_REF] Seng | Slamming and whipping analysis of ships[END_REF]. The explicit relaxation scheme uses a weight function which varies between 0 and 1 in the relaxation zone.

(z ∈ [-h, -H]), ( 
After solving the governing equations, the computed solution is relaxed with target solution as χ = (1 -w)χ + wχ T arget , (2.6) where χ is the computed solution, w is a weight function and χ T arget is a target solution. The computed values shall be blended smoothly if a smooth weight function is used. Implicit blending schemes, which blend the governing equations with target governing equations, have been applied by many researchers [START_REF] Kim | Ringing analysis of a vertical cylinder by Euler overlay method[END_REF][START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF]. Only the explicit relaxation scheme is considered in the present study. The choice of weight function is an important key to minimize wave reection. [START_REF] Engsig-Karup | Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations[END_REF] analyzed the condition of w, which satises the original governing equations, and he showed that it is the case for the Heaviside step function. However, the Heaviside step function has a jump in the middle of the relaxation zone, which causes undesirable reection and instability, so the choice of the weight function has to be dierent. As a weight function, [START_REF] Mayer | A fractional step method for unsteady free-surface ow with applications to non-linear wave dynamics[END_REF] and [START_REF] Engsig-Karup | Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations[END_REF] applied polynomials, and Jacobsen et al. ( 2012) used an exponential scaled function. [START_REF] Seng | Slamming and whipping analysis of ships[END_REF], for its own part, introduced a dynamic weight as

w d = 1 -(1 -w) |u-u T arget |∆t/∆x , (2.7) 
where u is a computed uid velocity, u T arget is the target uid velocity, w d is a dynamic weight and ∆x is a size of the cell. The dynamic weight is applied adaptively based on the dierence between target and computed velocity after PISO loop, uu T arget . w is the base weight functions which are categorized into polynomial and exponential functions

w(ξ) =      e ξ 3.5 relax -1 e -1 , exponential weight, -2ξ 3 relax + 3ξ 2 relax , polynomial weight , (2.8) 
where ξ ∈ [0, 1] is a normalized coordinate in relaxation zones.

In summary, the weight functions in foamStar are categorized into exponential/polynomial and static/dynamic weights. The size of the relaxation zone is also important for determining an optimal size of inlet/outlet zones in terms of numerical cost against accuracy.

Damping layer method

The damping layer method, which is also called 'sponge layer method', is considered here [START_REF] Israeli | Approximation of radiation boundary conditions[END_REF]. Linear and quadratic damping source terms are commonly used to damp waves [START_REF] Park | Fully non-linear free-surface simulations by a 3D viscous numerical wave tank[END_REF][START_REF] Peri¢ | Reliable damping of free-surface waves in numerical simulations[END_REF]. The momentum equations of multiphase ow with the damping source terms

∂(ρu) ∂t + ∇ • (ρuu T ) -∇ • µ ∇u + ∇u T = -∇p d -(g • x)∇ρ + S, (2.9) 
where µ is a dynamic viscosity, p d = p -ρg • x is a dynamic pressure which is equivalent to the value of subtracted hydrostatic pressure (ρg • x) from total pressure (p). S is the linear and quadratic damping source. The damping sources are only applied in vertical velocity components

S = [0, 0, ρ(C 1 + C 2 u z )wu z ] T (2.10)
where C 1 and C 2 are the linear and quadratic damping coecients and w is weight function. The parametric study on the damping coecients conducted by [START_REF] Peri¢ | Reliable damping of free-surface waves in numerical simulations[END_REF] showed that an optimal choice of coecients can minimize wave reections. Recently, [START_REF] Peri¢ | Tuning the case-dependent parameters of relaxation zones for ow simulations with strongly reecting bodies in freesurface waves[END_REF] proposed a method for evaluating the wave reection coecients with numerical parameters such as linear damping coecient and the outlet length. Furthermore, they proposed a method for calculating the linear damping coecient, which minimizes the reection coecient.

Based on their method, the optimal linear damping coecient (C 1 ) is around 7.5 when the outlet length is equal to 1.5λ and target waves are set to zero. In the present study, the linear damping coecients are considered for the damping layer method due to the complexity of the combination of quadratic damping coecient.

Increased viscosity in the outlet / Stretched mesh outlet

The viscosity can be increased articially in the outlet zone to damp the waves. The momentum equation with increased viscosity in the outlet is given as

∂(ρu) ∂t + ∇ • (ρuu T ) -∇ • (µ + µ add ) ∇u + ∇u T = -∇p d -(g • x)∇ρ, (2.11)
where µ add is the increased viscosity in the outlet zone. The stretched mesh outlet, which triggers numerical damping by stretching meshes, is also considered in the present study.

Modied waves: Adaptive wave absorption

When relaxation schemes are used, the target ow can be selected by the user. For the wavestructure interaction problem, the target ow can correspond to incident waves only. Diracted waves generated by structure are then relaxed to zero. For 2D propagating waves, the adaptive absoption scheme, which adapts its wave amplitude and phase by measuring the wave elevation in front of the outlet, can be applied. It is assumed that the propagating wave do not change wave frequency and wave number. Then, the rst harmonic wave amplitude and phase dierence are calculated by applying a Fourier transform on the measured wave elevation in front of the outlet zone as

A = 2 T cos ∆φ ˆt t-T Ξ(x 0 , τ ) cos(k(x -x 0 ) -ωτ )dτ
(2.12) and tan(∆φ) = -´t t-T Ξ(x 0 , τ ) sin(k(x -x 0 ) -ωτ )dτ ´t t-T Ξ(x 0 , τ ) cos(k(x -x 0 ) -ωτ )dτ (2.13) where A is the rst harmonic amplitude of modied waves, ∆φ is the phase dierence between incident and modied waves. Ξ(x 0 , τ ) is measured wave elevation in front of outlet zone at x 0 .

The wave elevation and uid velocity of modied waves are then given by

Ξ I = 2A H Ξ streamW ave I , u I = 2A H u streamW ave I , (2.14) 
where Ξ streamW ave I and u streamW ave I are the wave elevation and uid velocity by stream function wave theory [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF].

2.4 Preliminary study 1: Numerical wave tank

Description

The wave described in table 2.1 is used here, but the length of the domain increases and relaxation zones are introduced. Based on the vertical mesh spacing of Mesh-515, the computational domain with relaxation zones is described in gure 2.9. The inlet length, L inlet , is taken to be 1.5λ for 

Reection coecients

The quality of the wave propagation will be assessed through the estimation of linear reection coecients. Linear incident and reected waves in the system are written as

Ξ I = A I cos(kx -ωt) Ξ R = A R cos(kx + ωt + ∆φ) (2.15)
where subrscript I,R represent the incident and reected waves. ∆φ is phase dierence. The wave reection coecient is evaluated as in [START_REF] Dean | Water wave mechanics for engineers and scientists[END_REF])

κ R = A R A I = a max -a min a max + a min , (2.16)
where κ R is reection coecient, a max and a min is the measured maximum and minimum wave amplitudes in the region of interest, respectively. The propagating waves in the present study are nonlinear. Consequently, the equation 2.16 is not directly applicable. Likewise [START_REF] Carmigniani | Optimal sponge layer for water waves numerical models[END_REF], the rst harmonic amplitudes are used to evaluate the wave reection coecients.

The rst harmonic amplitude by Fourier transform is given as

a i (t) = 2 T ˆt t-T Ξ(x i , t) cos(kx i -ωτ )dτ, (2.17) 
where subscript i denotes i-th wave gauge. In the middle of the computation zone, 250 wave gauges are distributed along 5λ to detect the amplitudes of wave envelope. The wave reection coecient for each simulation time step is evaluated as κ R (t) = max(a i (t)) -min(a i (t)) max(a i (t)) + min(a i (t)) .

( for the dynamic polynomial weight with outlet length over than 1.5 wavelengths. Moreover, wave reection increases faster for the relaxation zone less than 1.5 wavelengths. The measured rst harmonic amplitudes and reection coecients with respect to weight functions are compared in gure 2.12. The rst harmonic amplitudes with static weight give a lower dissipation than with dynamic weight. The dierence of wave amplitude between static and dynamic weights with outlet lengths over than 1.5 wavelengths is 1.33 %. Moreover, the wave reection increases when the outlet length is less than one wavelength. Simulation results should not be sensitive to the selection of outlet length. We hope to get predictable results, the dynamic-polynomial weight is selected as a representative relaxation scheme because it shows a stable velocity eld even if it has a slightly smaller wave amplitude compared the simulation cases with static weight.

Finally, it is identied that the outlet length should be longer than 1.5 wavelengths to decrease the reection more eciently. 

Parametric study on the stretched mesh outlet

As the stretched mesh schemes depend on cases and on authors [START_REF] Monroy | RANS simulations of a calm buoy in regular and irregular seas using the SWENSE method[END_REF][START_REF] Peri¢ | Assessment of uncertainty due to wave reections in experiments via numerical ow simulations[END_REF], it is dicult to nd a standard for wave propagation. Therefore, the cell length is stretched with a ratio (r x ) of an adjusted cell which is located at upstream as

∆x n = r x ∆x n-1 (2.19)
where ∆x n and r x represents a longitudinal length of the n-th cell and the stretching ratio, respectively. To nd a representative result of stretched mesh outlet, the dierent stretching ratios are considered as [START_REF] Peri¢ | Reliable damping of free-surface waves in numerical simulations[END_REF] showed that an unappropriate use of damping coecient leads to unwanted wave reections. The authors used a Froude scaling law to nd a dependency of damping coecients. They showed that the linear and quadratic damping coecients could be scaled by wave frequency and wavelength, respectively. [START_REF] Peri¢ | Tuning the case-dependent parameters of relaxation zones for ow simulations with strongly reecting bodies in freesurface waves[END_REF] proposed the method on wave reection by analyzing the wave equation in the case of a linear damping source. The minimal wave reection coecients with linear damping coecients are available by the code published in (Peri¢ et al., 2018a). The algorithm predicted that the wave reection coecient would be 1.5% with the linear damping coecient C 1 ≈ 7.5 for outlet length 1.5λ. Note that the target ow is no waves, and the static exponential function is used in their approach. [START_REF] Shen | An irregular wave generating approach based on naoe-FOAM-SJTU solver[END_REF] 

r x =    c, constant stretching; c = 1.

Increased viscosity in the outlet

The increased viscosity in the outlet, imposing a high viscosity in the outlet zone compared to original uid media, is easy to implement. For a smooth change of viscosity, the added viscosity µ add is multiplied by the cubic polynomial weight function given in equation (2.8). As the user articially introduces the added viscosity, the added viscosity and outlet length need to be tuned. Three dierent added viscosities are considered that have the values of µ add = 0.5, 0.2 and 0.1kg • m -1 • s -2 , respectively. The wave reection coecients for added viscosity and dierent outlet lengths are given in Table 2.6. The smallest wave reections are obtained for relaxation to modied waves, and the other outlet conditions also give good results. Proper tuning of linear damping source and increased viscosity would give probably better results. Nevertheless, the parametric study of these outlets needs more work than relaxation schemes, and it is dicult to understand the physics with tuned parameter.

To conclude, comparison of dierent outlets shows that the relaxation schemes with out-going waves at the boundaries give good results compared to other outlets. In the middle of the domain, the Lewis form moves with its motion amplitude (A s ) and frequency (ω). The pure CFD zone length is dened from the wall of Lewis form to entrance of outlet.

The meshes are moving with Lewis form without deformation to keep the mesh quality. The underwater oset of Lewis form is given as [START_REF] Kashiwagi | Hydrodynamics of oating body[END_REF] x = M {(1 + a 1 ) sin θ -a 3 sin 3θ}

(2.21a) z = -M {(1 -a 1 ) cos θ + a 3 cos 3θ} (2.21b) with a 1 = H 0 -1 2(M/d) , a 3 = H 0 + 1 2(M/d) -1 M d = 3(H 0 + 1) -(H 0 + 1) 2 + 8H 0 (1 -4σ/π) 4
where x, z and θ ∈= [-π/2, π/2] are the underwater osets of Lewis form and corresponding angle, respectively. M is a magnication factor. B and d are breadth and draft, respectively.

H 0 = B/2 d is a ratio of half breadth to draft. σ = S
Bd is an area coecient corresponding to the block coecient of a ship. The geometric coecients of Lewis form used in this study are B/2 = 1.0m, d = 1.0m and σ = 0.95. The oset above the free surface is generated by mirroring with respect to z = 0.

Dierent moving frequencies and swaying amplitudes have been considered and are given in Table 2.8. and L outlet = 2.5λ.

Comparison of dierent outlets

From the results of the previous parametric study, the parameters r x = 1.02, C 1 = 20 and µ add = 100µ water are selected for the dierent outlets of mesh stretching, linear damping source and increased viscosity, respectively. The target functions of relaxation schemes are set to no waves and linear potential ow. To determine the size of pure and outlet zones, the relaxation schemes are rstly tested with dierent zone sizes. The linear potential ow of 2D Lewis form is available by Ursell-Tasai's multipole expansion [START_REF] Ursell | On the heaving motion of a circular cylinder on the surface of a uid[END_REF][START_REF] Tasai | Formula for calculating hydrodynamic force on a cylinder heaving in free surface (N-parameter family)[END_REF][START_REF] Tasai | Hydrodynamic force and moment produced by swaying and rolling osciilation of cylinders on the free surface[END_REF]. Wheeler stretching is applied to describe the velocity prole with changing wave elevation. This comparison attempts to compare the reduction limit of outlet zones for dierent outlets. The domains are constructed between z ∈ [-d-0.75λ, 2m] and zone length changes with respect to wavelength. The considered domain sizes are given in Table 2.9. The mesh size near the body surface is kept in similar size for each frequency. When the length of pure and outlet zones is reduced, the mesh resolution of each domain is maintained by shortening length and excluding the computational meshes in the far-eld.

Table 2.9. The meshes used for the parametric study Mesh name It is noticeable that the radiation forces converge faster when the target function is set to potential ow, which is more like outgoing waves. They converge 1.4-2 times(average 1.6 times) faster for given convergence tolerance (1%) in simulation time. The large domain which has a pure zone L pure = 12.5λ (≈ 20c g T ; c g = dω dk is a group velocity) and an outlet zone L outlet = 5.0λ with same mesh quality is used as another reference because the wave steepness (kA) varies between 0.06 and 0.25, which are in range of nonlinear waves. This implies that the computed radiation forces may not match with values using linear potential ow due to nonlinearity.

L pure L outlet N cell (ω = 2.4rad/s) N cell (ω = 4.2rad/s) N cell (ω = 7.0rad/s) P150R35 1.5λ 3.5λ
a 22 = a 22 ρ(B/2) 2 , b 22 = b 22 ρω(B/2) 2 ,
The radiation forces computed by linear potential theory, long domain and target ows of no waves with dierent domain sizes are summarized in Table 2.10. The dierence of radiation forces between linear potential ow and long domain becomes larger as the wave steepness increases. Also, the computed forces with no waves converge to values of the long domain as the domain increases. The results show that the solutions are not much sensitive to the pure zone size and the relative errors of both relaxation schemes (to no waves and to potential ow) are in the range of long domain. The relative errors between linear wave theory with dierent outlets are plotted in gure 2.19b. The relative errors of all outlets decrease as the outlet zone becomes larger and get close to the relative error of long domain. And the results show that the solution is more sensitive to the reduction of outlet zone rather than that of the pure zone. When the target function is similar to outgoing waves, the pure and outlet zone can be reduced.

The radiation forces of the dierent outlets with xed lengths of domain which are L pure = 1.0λ and L outlet = 2.0λ are tabulated in Table 2.11. The increased viscosity outlet (µ add = 100µ water ) does not damp the radiation waves properly, the force time series has modulation and increases dramatically due to reection. Therefore, the computed radiation forces are taken from meaningful simulation results. It is thought that the increased viscosity should be determined based on wave frequency.

In summary, when the target function is similar to outgoing waves, the domain and simulation time both can be reduced. The other outlets are also good choices when relatively large domain (L pure ≥ 0.5λ and L outlet ≥ 3λ) are used.

Conclusion

In the preliminary study, a parametric study of propagating waves with viscous ow model solving RANSE based on FVM is conducted. This parametric study shows that the time integration scheme for wave-propagation problem should have at least second-order accuracy to keep the wave amplitude and its phase. The convection schemes aect the order of convergence and the stability of simulation. High-order convection schemes give good results but the simulation becomes unstable as time goes.

As the outlets need dierent parameters to absorb waves well at the boundary, parametric studies on dierent outlets are conducted and the representative cases are compared with each other.

The considered outlets are listed as the stretched mesh, increased viscosity, momentum sources and relaxation schemes. It is thought that the dierent outlets which are properly tuned would

give good results but it is dicult to tune outlet parameters of mesh stretching, linear damping source and increased viscosity even if there are some suggestions by other researchers.

The relaxation scheme with properly given target ows that are similar to the outgoing waves, gives stable and good results compared to the others. In the benchmark test of swaying Lewis form, the computational domain and outlet zones can be reduced when the relaxation zone with target ow of outgoing wave is used. Furthermore, the simulation time to obtain the converged solution decreases. Though, relaxation zone larger than 2 wavelengths is necessary to obtain similar results of relatively large computational domain. The preliminary study conrms that two-way coupling can reduce both computational domain and simulation time. To succeed in coupling two ow models, two things are required

• Ecient evaluation of outgoing waves in the relaxation zones from potential ow model.

• Enhanced relaxation scheme to minimize the eect of weight function.

Potential ow: Incident waves

The boundary value problem for an incident wave is recalled. Perfect uid with irrotational ow is assumed to introduce the incident wave potential. The incident wave potential satises Laplace's equation

∇ 2 Φ I = 0, x ∈ Ω.
where Φ I is the velocity potential, and Ω is the uid domain. The at sea bottom condition is given as

∂Φ I ∂z = 0, on z = -h, (3.1)
where h is water depth. Overturning of waves is not considered, therefore the incident wave elevation (Ξ I ) is a single-valued function

Ξ I = Ξ I (x, y; t), (3.2) 
where x and y are horizontal coordinate, t is time. The nonlinear kinematic and dynamic free surface boundary conditions for incident waves are given as

∂Ξ I ∂t + ∂Φ I ∂x ∂Ξ I ∂x + ∂Φ I ∂y ∂Ξ I ∂y + ∂Φ I ∂z = 0 ∂Φ I ∂t + 1 2 ∇Φ I • ∇Φ I + gΞ I = 0 , on z = Ξ I .
The lateral (or innity) boundary condition for incident waves are dierent for wave model and will be discussed in the following section.

Regular waves

The simplest potential theory on 2D regular waves, which is called Airy waves, assumes that the wave height is small compared to its wavelength, and therefore the linearized free surface boundary condition is imposed on the mean free surface [START_REF] Airy | Tides and waves[END_REF]. Later, the potential theory is expanded with a perturbation series approach, which is known as Stokes expansion, with respect to wave steepness (kA) to apply nonlinear free surface boundary conditions [START_REF] Stokes | On the theory of oscillatory waves[END_REF]. After his works, the perturbation theory based on Stokes expansion have been extended

for deep and nite water depth [START_REF] Wilton | On deep water waves[END_REF][START_REF] De | Contributions to the theory of Stokes waves[END_REF]. As the order of perturbation increases, free surface boundary conditions become complex and can be solved by the help of computer up to 117-th order [START_REF] Schwartz | Computer extension and analytic continuation of Stokes' expansion for gravity waves[END_REF].

Instead of using the velocity potential, [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF] introduced a stream function theory by Fourier series expansion to solve the nonlinear 2D regular wave. The wave elevation and stream function in Fourier series are given as

Ξ I (x; t) = η I (x)e -iωt =   A 0 + N A j=1 A j cos k j x   e -iωt , (3.3) 
Ψ I (x, z; t) = ψ I (x, z)e -iωt =   B 0 z + N B j=1 B j sinh k j (z + h) cosh k j h cos k j x   e -iωt , (3.4) 
where Ψ I is an incident wave stream function, A j and B j are the modal amplitudes of Fourier modes, k j is a modal wavenumber. N A and N B are the number of truncated Fourier series. As the stream function of constant value represents the streamline, variation of stream function between two isolines is equal to ow rate (Q). Consequently, the bottom and free surface boundary conditions are simply given as

ψ I (x, z = -h) = 0, ψ I (x, z = Ξ I ) = -Q. (3.5)
The uid velocity is calculated from the stream function as

u x I (x, z; t) = ∂Ψ I ∂z =   B 0 z + N B j=1 k j B j cosh k j (z + h) cosh k j h cos k j x   e -iωt , (3.6) 
u z I (x, z; t) = - ∂Ψ I ∂x =   B 0 z + N B j=1 k j B j sinh k j (z + h) cosh k j h sin k j x   e -iωt , (3.7) 
where u x I and u z I are horizontal and vertical uid velocity by incident wave, respectively. The incident wave pressure (p I ) is given by Bernoulli equation

p I ρ = R -gz - 1 2 (u x I ) 2 + (u z I ) 2 , (3.8) 
where R is Bernoulli constant. The important dimensionless parameters in regular waves are the wave steepness kH and Ursell number U r = Hλ 3 h 3 (Ursell, 1953). Ursell number becomes important when the water depth is limited. The limitation of regular wave theory in a sense of application is given by a combination of two dimensionless parameters in Le Méhauté's diagram [START_REF] Méhauté | An introduction to hydrodynamics and water waves[END_REF]) in gure 3.1. The stream function theory covers the regular wave up to wave breaking, and consequently is adopted in the present study for the generation of regular waves. 3.2 Irregular waves and waves in wave tank

Linear theory and related research on irregular waves

The simplest method to generate irregular waves is the superposition of linear Airy waves with random phases. 2D irregular waves with each of regular wave amplitudes are given in

Φ I (x; t) = Nwave i=1 gA I i ω i cosh |k i | (z + h) cosh |k i | h e -i(k i •x-ω i t+δ i ) , (3.9) 
where ω i = g |k i | tanh(|k i h|) is i-th wave frequency, k i is a directional wave number, N wave is the number of waves and δ i is a random phase, respectively. A I i is i-th wave amplitudes which is given by wave spectrum [START_REF] Kraaiennest | Le Méhauté's diagram[END_REF] The wave spectrum (S(ω)) has various forms. The commonly used wave spectra are Pierson-Moskowitz and JONSWAP which were invented for unlimited and limited fetch sea, respectively [START_REF] Pierson | Proposed spectral form for fully developed wind seas based on the similarity theory of s. a. kitaigorodskii[END_REF][START_REF] Hasselmann | Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP)[END_REF]. Ochi-Hubble wave spectrum, which has two peaks by the combination of JONSWAP, is used to describe west Africa sea state [START_REF] Ochi | Six-parameter wave spectra[END_REF]. For three dimensional irregular waves, the directional spreading function, which is denoted as D(ω|θ) is multiplied to wave spectrum as

A I i = 2S(ω i )∆ω i , (3.10) Figure 3.1. Le Méhauté's diagram,
A I i = 2S(ω i )D(ω i |θ i )∆ω i ∆θ i , (3.11) of which, D(ω|θ) satises ˆθmax θ min D(ω|θ)dθ = 1,
of which, the spreading angle θ i is between θ min and θ max . Half-cosine 2s power directional spreading function, which is modied version of cosine 2l power, is commonly used in nowadays [START_REF] Pierson | Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics[END_REF][START_REF] Longuet-Higgins | Observations of the directional spectrum of sea waves using the motions of a oating buoy[END_REF]. [START_REF] Goda | A comparative review on the functional forms of directional wave spectrum[END_REF] summarized wave spectra and directional spreading functions.

The linear superposition of Airy waves assumes that each wave component is independent, but in reality interferences between waves exists. [START_REF] Goda | Analysis of wave grouping and spectra of long-travelled swell[END_REF] analyzed the wave measurement at Caldera port in Costa Rica. He showed the sea spectrum was exhibiting the secondary peak due to the interaction of waves and nonlinearities are noticeable in shallow water. Though the second order wave spectrum model is proposed by [START_REF] Tick | Nonlinear probability models of ocean waves[END_REF]; [START_REF] Hamada | The secondary interactions of surface waves[END_REF], the superposition model is not adopted to describe a higher-order interaction between waves. In addition, the superposition of regular waves needs a discretization of sea spectrum that gives a huge computational burden to reconstruct irregular waves in viscous ow grid.

To overcome the limits of linear superposition theory, the direct simulation with nonlinear free surface boundary conditions has been studied. [START_REF] Engsig-Karup | An ecient exible-order model for 3D nonlinear water waves[END_REF] applied the nitedierence method based fully nonlinear potential ow model to simulate 3D irregular waves. As the computational meshes are discretized in a manner of nite dierence, numerical errors due to discretization are involved. [START_REF] Ducrozet | 3-D HOS simulations of extreme waves in open seas[END_REF][START_REF] Ducrozet | HOS-ocean: Open-source solver for nonlinear waves in open ocean based on high-order spectral method[END_REF] applied a pseudo-spectral method to simulate the 3D irregular waves with fully nonlinear free surface boundary condition. Moreover, [START_REF] Ducrozet | A modied high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF] extended this methodology to the numerical wave tank problem by adding extra velocity potential in the same principle of pseudo-spectral. It is called a Higher-order spectral method (HOS) because its basis functions are expanded in a pseudo-spectral way. The fast Fourier transform (FFT) reduces the computational burden, furthermore, the treatment of spatial gradient is easier than other numerical methods. In the present study, HOS wave model is adopted to simulate irregular waves.

Nonlinear irregular waves: Open-ocean

The higher-order spectral method has been initiated by [START_REF] Dommermuth | A high-order spectral method for the study of nonlinear gravity waves[END_REF]; [START_REF] West | A new numerical method for surface hydrodynamics[END_REF]. Cartesian coordinates are applied with rectangular computation domain with its horizontal lengths, L x and L y along x and y directions, respectively. The origin O is located at the corner of domain on the mean free surface z = 0. In the open ocean, the domain is horizontally periodic, and has a at bottom. The free surface boundary condition is constructed by introducing the surface velocity potential ΦI (x, y; t) = Φ I (x, y, Ξ I (x, y); t) dened on the free surface as

∂ ΦI ∂t + gΞ I = Q(Ξ I , ΦI , w) = - 1 2 ∇ ΦI • ∇ ΦI + 1 2 (1 + ∇Ξ I • ∇Ξ I ) w 2 ,
(3.12)

∂Ξ I ∂t = P(Ξ I , Φ, w) = (1 + ∇Ξ I • ∇Ξ I ) w -∇ ΦI • ∇Ξ I , (3.13) 
where w = ∂Φ ∂z is the vertical velocity. The surface velocity potential and wave elevation are calculated by solving the above equations. The periodic lateral and at sea bottom boundary conditions are given in

Φ I (0, y, z; t) = Φ I (L x , y, z; t), Ξ I (0, y; t) = Ξ I (L x , y; t), Φ I (x, 0, z; t) = Φ I (x, L y , z; t), Ξ I (x, 0; t) = Ξ I (x, L y ; t) (3.14)
and

∂Φ I ∂z = 0, z = -h. (3.15)
As the domain is limited in horizontal lengths and water depth, the velocity potential is expanded with the linear set of mode functions φ I,mn (x, y, z) which satisfy the periodic and sea bottom boundary conditions

Φ I (x, y, z; t) = ∞ m=0 ∞ n=0 A I mn (t)φ I,mn (x, y, z) (3.16) with φ I,mn (x, y, z) = cosh k mn (z + h) cosh k mn h e ik x m x e ik y n y (3.17)
where A I mn (t) are the amplitudes of modes. where M x and N y are the number of truncated Fourier modes. Because the free surface boundary conditions, given in equations ( 3.12) and (3.13), are nonlinear, Stokes's expansion is applied on the incident velocity potential and wave elevation. The perturbation series expansion with wave steepness (kH ) are given as

k x m = m 2π Lx = m∆k x , k y n = n 2π Ly = n∆k y and k 2 mn = (k x m ) 2 + (k y n ) 2
Φ I (x, y, z; t) = M HOS m=1 Φ (m) I (x, y, z; t), (3.20) 
where M HOS is a HOS order that represents the nonlinearity order. Unknown wave elevation position needs an iterative Taylor series expansion at z = 0 with respect to wave elevation

Φ

(1) Initialization of wave elds for Ξ(x, y; t = 0) and Φ(x, y; t = 0) are necessary for propagating waves in HOS-ocean model. Both regular and irregular waves can be used to initialize the wave eld. As a regular waves, the nonlinear stream function wave theory is used in HOS model, and the linear superposition of irregular waves is used to initialize the wave elds for irregular waves.

I (x, y, 0, t) = ΦI (x, y; t), (3.21) Φ (m) I (x, y, 0, t) = - m-1 k=1 (Ξ I ) k k! ∂Φ (m-k) I ∂z k (x, 0, t), for m ≥ 2.
At the initial condition, the magnitudes of modes for irregular waves are given in

1 2 B Ξ mn (t = 0) 2 = S(k x , k y )∆k x ∆k y = 1 k ∂ω ∂k S(ω)D(ω|θ)∆k x ∆k y , (3.23) 
where ∆k x and ∆k y are modal wave number discretization in x and y directions. By considering random phase (δ θ mn ), the wave elevation modal amplitudes are determine by

B Ξ mn (t = 0) = e iδ θ mn B Ξ mn (t = 0) . (3.24)
The initial mode amplitudes of velocity potentials are derived from linearized free surface boundary condition

B φ mn (t = 0) = -i ω mn g B Ξ mn (t = 0). (3.25)
It must be noticed that simulating the nonlinear HOS wave model with the initial condition which is given by linear superposition model may lead to instability [START_REF] Ducrozet | HOS-ocean: Open-source solver for nonlinear waves in open ocean based on high-order spectral method[END_REF].

A ramping function (f ramp (t)), allowing a smooth transition from linear to nonlinear sea state, is used as a multiplication fact for the nonlinear terms in free surface boundary condition

∂ ΦI ∂t + gΞ I = f ramp (t)Q(Ξ I , ΦI , w), (3.26) ∂Ξ I ∂t -w (1) = f ramp (t) P(Ξ I , ΦI , w) -w (1) , (3.27) with f ramp (t) = 1 -e -(t/Tramp) n ramp . (3.28)
where T ramp and n ramp are a transition time and ramp parameter, respectively. w (1) is the linear vertical velocity.

The details on mathematical formulation and procedures are explained in [START_REF] Ducrozet | 3-D HOS simulations of extreme waves in open seas[END_REF][START_REF] Ducrozet | HOS-ocean: Open-source solver for nonlinear waves in open ocean based on high-order spectral method[END_REF][START_REF] Bonnefoy | Time-domain simulation of nonlinear water waves using spectral methods[END_REF].

Nonlinear waves: Numerical wave tank(NWT)

The HOS model can be formulated for a 3D rectangular wave tank equipped with wavemaker at rest position x = 0, and surrounded by vertical walls. The wave absorbing beach is placed at the end of wave tank. The kinematic boundary condition on the wavemaker is given in

D Dt (x -X wm (y, z; t)) = 0, on x = X wm (y, z; t), (3.29) 
where X wm (y, z; t) is a displacement of wavemaker. The above equation is rewritten as

∂X wm ∂t = ∂Φ I ∂x - ∂X wm ∂y ∂Φ I ∂y - ∂X wm ∂z ∂Φ I ∂z , on x = X wm (y, z; t). (3.30)
The vertical wall condition is given as

∂Φ I (L x , y, z; t) ∂x = 0, ∂Φ I (x, 0, z; t) ∂y = ∂Φ I (x, L y , z; t) ∂y = 0. (3.31)
To solve the boundary value problem, Φ I (x, y, z; t) and Ξ I (x, y; t) are decomposed into

Φ I (x, y, z; t) = Φ H (x, y, z; t) + Φ L (x, y, z; t), (3.32) 
Ξ I (x, y; t) = Ξ H (x, y; t) + Ξ L (x, y; t), (3.33) where Φ H (x, y, z; t) and Φ L (x, y, z; t) are the harmonic and local velocity potentials. The lateral boundary conditions for Φ L (x, y, z; t) are given as

∂Φ L ∂x x=X = ∂X wm ∂t + ∂X wm ∂y ∂Φ L ∂y + ∂X wm ∂z ∂Φ L ∂z , ∂Φ L ∂x x=Lx = 0, ∂Φ L ∂y y=0 = 0, ∂Φ L ∂y y=Ly = 0, (3.34)
The perturbation series expansion of the wavemaker boundary condition needs a vertically extended domain with articial height h add , depicted in gure 3.2.

Figure 3.2. The extended HOS-NWT domain [START_REF] Ducrozet | A modied high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF].

The extended domain consists of three zones: (1) original domain is mapped into z = -1 to z = 0.

(2) The mirror of original domain with respect to z = (h add -1)/2. This zone is dened between z = h add -1 and z = h add . (3) A smoothly varying surface domain between original and mirror domain, from z = 0, z = h add -1. The displacement of wavemaker is applied z ∈ [-1, 0] and z = [h add -1, h add ] with symmetry. Between two zones, the wave motions are extrapolated with polynomial functions. The articial height is taken to be h add = 3. For the local velocity potential, the symmetric condition with respect to z = (h add -1)/2 is applied, instead of free surface boundary condition. The perturbation series is also applied to local velocity components upto third order as

Φ L (x, y, z ; t) = 3 m=0 Φ (m) L (x, y, z ; t), (3.35) 
m-th order potential is expanded with the pseudo-spectral method as

Φ (m) L (x, y, z ; t) = Ny n=0 N add p=0 B add np (t)φ L,mn (x, y, z ) (3.36) with φ L,mn (x, y, z ) = cos(k y n y) cos k add p (z + 1) cosh k add np (L x -x) cosh k add np L x , (3.37) 
where k y n = nπ Ly , k add p = pπ h add +1 and k add np = (k y n ) 2 + (k add p ) 2 . The local velocity potential can be solved with the Taylor series expansion with respect to the nonlinear wavemaker boundary condition at x = 0.

The non-homogeneous wavemaker boundary condition at x = 0 is satised by local velocity potential, the lateral boundary condition for harmonic velocity potential is given by

∂Φ H ∂x x=X = 0, ∂Φ H ∂x x=Lx = 0, ∂Φ H ∂y y=0 = 0, ∂Φ H ∂y y=Ly = 0. (3.38)
The harmonic velocity potential and wave elevation in perturbation series

Φ H (x, y, z ; t) = M HOS m=0 Φ (m) H (x, y, z ; t), (3.39) Ξ I (x, y; t) = M HOS m=0 Ξ (m) I (x, y; t), (3.40) 
and m-th order harmonic velocity potentials and wave elevations are expressed with eigenfunction expansion as

Φ (m) H (x, y, z ; t) = Mx m=0 Ny n=0 B Φ mn (t)φ H,mn (x, y, z ), (3.41) 
Ξ (m) I (x, y; t) = Mx m=0 Ny n=0 B Ξ mn (t) cos(k x m x) cos(k y n y), (3.42) with φ H,mn (x, y, z ) = cos(k x m x) cos(k y n y) cosh(k mn (z + 1)) cosh k mn (3.43)
where k x m = mπ Lx and k mn = (k x m ) 2 + (k y n ) 2 are eigenvalues of wave tank. It is solved by applying nonlinear free surface boundary conditions, considering absorbing beach by a modication of pressure

p ρ = D(x)w = D(x) ∂Ξ ∂t ∂Φ H ∂t + gΞ I = - 1 2 ∇Φ H • ∇Φ H + 1 2 (1 + ∇Ξ I • ∇Ξ I ) (u z I ) 2 -∇Φ I • ∇Φ L - 1 2 ∇Φ L • ∇Φ L - ∂Φ L ∂t -D(x) ∂Ξ ∂t (3.44) ∂Ξ I ∂t = (1 + ∇Ξ I • ∇Ξ I ) w -∇Φ I • ∇Ξ I + u z L .
(3.45)

Note that the nonlinear terms involve the local velocity potentials. The details of formulation and numerical algorithm are explained in [START_REF] Ducrozet | A modied high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF].

Reconstruction of nonlinear irregular waves in viscous model

The nonlinear models based on HOS for irregular waves have been developed and validated for several years [START_REF] Ducrozet | 3-D HOS simulations of extreme waves in open seas[END_REF][START_REF] Bonnefoy | Time-domain simulation of nonlinear water waves using spectral methods[END_REF][START_REF] Ducrozet | A modied high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF][START_REF] Ducrozet | HOS-ocean: Open-source solver for nonlinear waves in open ocean based on high-order spectral method[END_REF].

Those HOS wave solvers are released as open-source codes, which anyone can develop, use and distribute under the terms of GNU General Public Licence (GPLv3). As the pseudo-spectral method is used, the free surface grid is discretized with equal spacing to apply FFTs. Therefore, the reconstruction of wave elds is necessary to deliver ow quantities to the viscous ow model.

The reconstructed nonlinear ows are able to be used for the initialization of domain and the boundary.

A HOS wrapper program, which is called as Grid2Grid, has been developed to reconstruct the wave elds from the results of HOS computation [START_REF] Choi | Grid2Grid: HOS wrapper program for CFD solvers[END_REF]. Grid2Grid applies an inverse FFTs and a quick B-spline module to reconstruct the nonlinear wave elds for arbitrary simulation time and space [START_REF] Frigo | The design and implementation of FFTW3[END_REF][START_REF] Williams | bspline-fortran[END_REF]. The simulated nonlinear irregular waves by HOS provide the time histories of mode amplitudes. By applying inverse FFTs with vertical functions, f (z) = cosh kmn(z+h) cosh kmnh and f add (z ) = cos k add p (z + 1), the exact nonlinear wave elds are reconstructed in rectilinear grid at HOS simulation time t = t HOS .

As the rectilinear grid does not change with respect to time, the continuous HOS wave elds in discrete time are reconstructed via interpolation. B-spline interpolation at arbitrary points,

x 1 , x 2 , • • • , x N are evaluated with known interpolation nodes x i 1 , x i 2 , • • • , x i N and their function values f (x i 1 , x i 2 , • • • , x i N ) f (x 1 , x 2 , • • • , x N ) = N mod +1 i 1 ,i 2 ,••• ,i N =-N mod f (x i 1 , x i 2 , • • • , x i N ) N j=1 b (p) ij (x j ) (3.46)
where N mod = N interp /2, p = N interp -1, and N interp is an interpolation order. b 

(p) ij (x j ) is B-spline function dened by b (0) ij (x j ) =    1 if x j i < x j < x j i+1 , 0 otherwise (3.47) b (p) ij (x j ) = x j -x j i x j i+p -x j i b (p-1) ij (x j ) + x j i+p+1 -x j x j i+p+1 -x j i+1 b (p-1) i+1,j (x j ), p ≥ 1. 
ij (x j ), but evaluates the function value by recursive way. The computational algorithm is called De Boor's algorithm [START_REF] De Boor | A practical guide to splines[END_REF]. The cubic spline interpolation is used for evaluating uid velocity, pressure and wave elevation with respect to spatial and temporal variables.

Validation on the generation of nonlinear waves in the viscous ow solver

The generation of stream function wave theory in viscous ows is tested and validated in Chapter 2.1. The generation of HOS nonlinear waves in viscous ows is important to simulate realistic irregular waves, to investigate its eects on the oating body and to regenerate the experimental waves in the numerical simulation. The HOS waves in viscous ow solver are regenerated by opensource library Grid2Grid [START_REF] Choi | Grid2Grid: HOS wrapper program for CFD solvers[END_REF]. The time series of mode amplitudes are obtained to reconstruct HOS waves by inverse FFTs and interpolation module. The ow quantities of nonlinear incident waves are possibly calculated for a particular position and time where the specic nonlinear phenomenon occurs.

For the validation, foamStar, which is based on multiphase solver with the VOF model, is used [START_REF] Seng | Slamming and whipping analysis of ships[END_REF][START_REF] Monroy | Développements et validation de l'outil CFD OpenFOAM pour le calcul de tenue à la mer[END_REF]. The relaxation schemes, described in section 2.3.1 is used.

The reconstructed nonlinear incient waves are used to initialize the computational domain and to give the target values in the viscous ow solver.

Validation with HOS simulations

The generation of HOS wave models in the viscous ow model is validated with HOS simulations. [START_REF] Gatin | A framework for ecient irregular wave simulations using Higher Order Spectral method coupled with viscous two phase model[END_REF] simulated the nonlinear 3D irregular waves based on HOS-ocean (open sea waves) in a multiphase ow solver, however the scheme was not tested with waves generated in a wave tank (HOS-NWT). In the present study, the generation of both HOS wave theories in viscous ow solver is validated.

The considered wave conditions for validation are given in Table 3.1. For HOS-NWT 3D regular waves, the oblique wave of propagation angle, θ = 60 • is considered. 

γ [-] 3.3 3.3 3.3 3.3
The computational domain of viscous solver is depicted in gure 3.4. The waves generated at inlet relaxation zones are propagating to the pure viscous ow domain.

After traveling across the pure viscous ow domain, waves enter the outlet relaxation zones. For the HOS-NWT 3D regular waves, the reection waves due to the lateral wall are well shown in simulation.

The measured wave time series in viscous ow are compared with the results of HOS simulation in gure 3.6. The measured wave elevation at the center of viscous ow domain shows a good agreement with the results of HOS wave theory. The discrepancies between viscous ow and HOS simulation come from

• The computational meshes need to be ne suciently to describe the waves, especially for irregular waves which have short/long waves with various wave heights.

• Interpolation errors in the wrapper program could provide an error source in viscous ow.

The cubic-spline interpolated velocity in HOS grid may not satisfy the mass conservation [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. Therefore, the extra sources may appear in momentum/pressure equation.

• HOS is based on a psuedo-spectral method that may lead to high-frequency components.

The zero-padding on spectral quantities is used to remove this phenomenon. It may lose the wave energy.

• Relaxation scheme with weight function generates undesired waves in the relaxation zones.

Introduced weight function appears as source terms in VOF transport and momentum equations, and is able to give an extra error for wave propagation problem. Peri¢ et al.

(2018b) investigated the eect of weight function and showed that the wave reection is inevitable with the relaxation scheme.

• Other factors like numerical damping, uid viscosity, numerical errors, ...

Validation with HOS simulations and Experiments

Extreme waves corresponding to the 1000 year return period of irregular waves in the Gulf of Mexico (GOM) is regenerated by the proposed reconstruction procedure in the viscous ow model. The results is validated with HOS simulation and experiments.

The wave condition is given in Table 3.2. HOS-NWT 2D model is used to simulate extreme waves.

The same conguration of computational doamin described in gure 3.4 is used for numerical setup. The convergence of HOS-NWT model is conducted with respect to the number of modes and the order of HOS. 

F wave /E c p = u wave c p = 1 c p ∂Φ I ∂x z=Ξ I ≥ 0.75. (3.49)
where F wave is a local energy ux in wave propagation direction and E is local energy density.

The ratio is approximated to the water particle velocity under the crest, u wave . c p is a local phase velocity. The breaking criterion is taken from [START_REF] Tian | An eddy viscosity model for two-dimensional breaking waves and its validation with laboratory experiments[END_REF]. The complexity of evaluating the local phase velocity for all computational domain and time are explained in [START_REF] Seiert | Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset[END_REF]. The breaking model considers the local energy dissipations appearing as Laplacian term in nonlinear free surface boundary conditions as

∂ ΦI ∂t + gΞ I = - 1 2 ∇ ΦI • ∇ ΦI + 1 2 (1 + ∇Ξ I • ∇Ξ I ) (u z I ) 2 + 2ν eddy ∇ • ∇ ΦI , (3.50) ∂Ξ I ∂t = (1 + ∇Ξ I • ∇Ξ I ) u z I -∇ ΦI • ∇Ξ I + 2ν eddy ∇ • ∇Ξ I , (3.51) 
with eddy viscosity

ν eddy = α br H br L br T br , (3.52)
where T br is a breaking duration time from when the wave crest begins to fall until the surface disturbance front is no longer obvious, L br is a distance from wave breaking to the obvious surface disturbance ends, H br is a falling crest height, α br is a parameter and the value α br = 0.02 is used by [START_REF] Tian | Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model[END_REF]. The wave breaking model indroduced in HOS is validated with experimental measurement in [START_REF] Seiert | Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation[END_REF]. Wave breaking events are recorded during the HOS simulation of extreme waves and shown in gure 3.7 as markers. At the moments of wave breaking, the wave heights are measured and colored dierently in the gure 3.7. The wave breaking event, occurs at x/L w ≈ 5 and t/T p ≈ 85, is selected for benchmark case. The time and mesh discretization considered in viscous ow are given in Table 3.3. Note that the computational mesh denoted as normal is set from the result of preliminary test on the incident waves in Chapter 2.1. The measured wave elevation at the breaking point are compared in gure 3.9 with respect to discretization. The results show that a small dierence is shown for a coarse mesh with others. Results are slightly dierent after wave breaking event, but they give good results for overall simulation time. Possible numerical errors has discussed in previous section Both CFD and HOS show good agreements with each other, however the dierences between experiment and simulations exist though the experimental result has 3D eects in horizontal direction. The possible errors are:

• Perturbation series of HOS-NWT wave theory.

• Simple wave breaking model in HOS (events appearing before the one simulated).

• Wave maker transfer function to regenerate the HOS waves in experiments. HOS-NWT model uses a linear transfer function.

• The reection by wave absorber, 3D eects and dierent water depths in experiments. 4 Potential ow: Complementary waves with an arbitrary matching surface

Conclusion

The linear potential ow model for complementary waves generated by the existence of the body is considered in this chapter.

Boundary value problem

The complementary waves are generated by wave-structure interaction and they propagate in perfect uid medium in the presence of a free surface. The uid domain and boundaries are depicted in gure 4.1. The grey color denes the uid domain of interest. At t = 0 no complementary waves exist in the uid domain of interest. The uid is surrounded by boundary surfaces, such as the matching surface (S M ), the free surface (S F ) and the surface at innity (S ∞ ). The body is located inside the matching surface. where Ω represents the uid domain. On the matching surface, complementary uid velocity can be decomposed into the irrotational and vortical velocity by Helmholtz decomposition theorem (Arfken et al., 1995) u

C = ∇Φ C + v C , on x ∈ S M . (4.2)
where u C is the complementary uid velocity obtained by the viscous ow model. ∇Φ C and v C are complementary irrotational and vortical velocities, respectively. In the present study, the vortical velocity v C is assumed to be suciently small on the matching surface as

v C ≈ 0, on x ∈ S M . (4.3)
Therefore, the following boundary condition is imposed on the matching surface as

∇Φ C = u C , on x ∈ S M . (4.4)
The linearized free surface conditions on the mean free surface are given as

∂ 2 Φ C ∂t 2 + g ∂Φ C ∂z = 0, ∂Ξ C ∂t - ∂Φ C ∂z = 0, on z = 0, (4.5) 
The radiation condition on the surface at innity is given as

∇Φ C = 0, for x ∈ S ∞ . (4.6)
4.2 Poincaré's velocity representation

Poincaré's velocity representation for source

The boundary integral equation for the complementary velocity potential is given as

-4πΦ C (x) = ‹ S [G(x, ξ ξ ξ) {n • ∇ ξ Φ C (ξ ξ ξ)} -Φ C (ξ ξ ξ) {n • ∇ ξ G (x, ξ ξ ξ)}] dS(ξ ξ ξ), (4.7) 
where G(x, ξ ξ ξ) is the Green function. n is a unit normal vector to the closed boundary surfaces S and it points inside of the uid domain. ∇ ξ is the spatial derivative with respect to source point coordinate

∇ ξ = ∂ ∂ξ , ∂ ∂η , ∂ ∂ζ .
(4.9)

The uid velocity at eld point is obtained by applying the gradient with respect to eld point coordinate (∇ x ) dened as 

∇ x = ∂ ∂x , ∂ ∂y , ∂ ∂z ,
-4π∇ x Φ C (x) = ‹ S {n • ∇ ξ Φ C (ξ ξ ξ)} ∇ x G(x, ξ ξ ξ) -Φ C (ξ ξ ξ) ∇ x {n • ∇ ξ G (x, ξ ξ ξ)} dS(ξ ξ ξ).
(4.11)

The above expressions denote that the uid velocity at the eld point can be calculated by the distribution of sources and dipoles on the boundary surfaces. The uid velocity at the eld point can be decomposed as

-4π∇ x Φ C (x) = ∇ x ψ -∇ x χ, (4.12) 
where ∇ x ψ and ∇ x χ are the contributions of sources and dipoles given by

∇ x ψ = ‹ S {n • ∇ ξ Φ C (ξ ξ ξ)} ∇ x G(x, ξ ξ ξ)dS, (4.13) 
and

∇ x χ = -u xd , u yd , u zd T = ‹ S Φ C (ξ ξ ξ) ∇ x {n • ∇ ξ G (x, ξ ξ ξ)} dS. (4.14)
The contribution of dipoles can be given alternatively (see Appendix 2 in Noblesse et al. (1997))

u xd , u yd , u zd T = - ‹ S {∇ ξ Φ C (ξ ξ ξ) × n} × ∇ x G (x, ξ ξ ξ) dS(ξ ξ ξ). (4.15)
for a Green function satisfying the relationships

(G x , G y , G z ) = (-G ξ , -G η , -G ζ ) , (4.16)
where the subscripts denote the derivative with respect to coordinate. Therefore, the uid velocity can be expressed in compact form

∇ x Φ C (x) = 1 4π ‹ S [{n • ∇ ξ Φ C (ξ ξ ξ)} ∇ ξ G(x, ξ ξ ξ) + ∇ ξ G (x, ξ ξ ξ) × {∇ ξ Φ C (ξ ξ ξ) × n}] dS(ξ ξ ξ) (4.17)
The above velocity representation is called Poincaré's velocity representation in [START_REF] Hunt | The mathematical basis and numerical principles of the boundary integral method for incompressible potential ow over 3-D aerodynalic congurations[END_REF][START_REF] Noblesse | Velocity representation of free-surface ows and Fourier-Kochin representation of waves[END_REF]. Note that the factor 4π in equation ( 4.17) is divided in [START_REF] Noblesse | Velocity representation of free-surface ows and Fourier-Kochin representation of waves[END_REF] due to denition of Green function. Comparing (4.17) to the original velocity representation in (4.12), the spatial derivatives on Green function are moved to the velocity potential.

Therefore, the expression is less singular than the case of original integral equation. The uid velocity at the eld point is explicitly expressed by denition of the velocity potential, e.g.,

∇ ξ Φ C = u C (x ξ ).
It means that the dipole contribution multiplied by unknown potential value (Φ C ) is replaced by equivalent source contributions multiplied by a known value (e.g., tangen- tial velocity, ∇ ξ Φ C × n) at the boundary surface. Therefore, the system matrix obtained by discretizing the equation (4.7) does not need to be solved to get the velocity potential on the boundary surface.

However the velocity potential, which is necessary for evaluating the pressure, is not obtained from this velocity representation. To overcome this, Noblesse and Yang ( 2004) integrated the Poincaré's velocity representation to get the velocity potential at the eld point.

Poincaré's velocity representation for image source and free surface term

The Green function for deep water and free surface ow has a generic form of

G(x, ξ ξ ξ) = 1 r 1 + G F = G S + G h + G W , (4.18)
where, G S is the source given by 

G S = 1 r 1 , r 1 = R 2 + (z -ζ) 2 , R 2 = (x -ξ) 2 + (y -η)
G F = G h + G W ,
u xd , u yd , -u zd T = - ‹ S {∇ ξ Φ C (ξ ξ ξ) × n} × ∇ x G F (x, ξ ξ ξ) dS(ξ ξ ξ).
G F x , G F y , G F z = -G F ξ , -G F η , G F ζ (4.22)
Therefore, two alternative expressions given in equations ( 4.15) and ( 4.21) lead to the velocity representation given as

u C (x) = u S C (x) + u F C (x) (4.23)
The velocity components u S C and u F C are expressed in the form of

4πu S C (x) = ‹ S {n • ∇ ξ Φ C (ξ ξ ξ)} ∇ ξ G S (x, ξ ξ ξ) -{∇ ξ Φ C (ξ ξ ξ) × n} × ∇ ξ G S (x, ξ ξ ξ) dS(ξ ξ ξ), (4.24) 4π ûF C (x) = ‹ S {n • ∇ ξ Φ C (ξ ξ ξ)} ∇ ξ G F (x, ξ ξ ξ) -{∇ ξ Φ C (ξ ξ ξ) × n} × ∇ ξ G F (x, ξ ξ ξ) dS(ξ ξ ξ), (4.25)
where û is an operator dened as û = (u, v, -w).

(4.26)

A generic velocity representation for free surface ows can be introduced [START_REF] Noblesse | Velocity representation of free-surface ows and Fourier-Kochin representation of waves[END_REF] 4π

   u C v C w C    = ‹ S    (∇ ξ Φ C • n)G + ξ + (∇ ξ Φ C × n) ζ G + η -(∇ ξ Φ C × n) η G + ζ (∇ ξ Φ C • n)G + η + (∇ ξ Φ C × n) ξ G + ζ -(∇ ξ Φ C × n) ζ G + ξ (∇ ξ Φ C • n)G - ζ + (∇ ξ Φ C × n) η G - ξ -(∇ ξ Φ C × n) ξ G - η    dS, (4.27) by dening G ± as G ± = G S ± G F . (4.28)
The surface integral given in equation 4.27 can be decomposed into three surface integrals for problem described in gure 4.1 as

‹ S {•} dS = ¨SM {•} dS + ¨SF {•} dS + ¨S∞ {•} dS. (4.29)
Surface integral on the matching surface (S M ) is necessary to impose boundary condition. The integral along S ∞ is zero thanks to time domain radiation condition that complementary terms are zero in the far-eld (∇Φ C → 0). However, the free surface integral ˜SF {•} dS needs to be transformed into a proper line integral because it is dened from matching surface to innity.

Generic representation for free surface integral

The wave Green function for deep water is given by

G = G S + G F , (4.30) 
where

G S = 1 r 1
is source and G F can be selected by sign of image source as

G F =        - 1 r 2 + H 1 r 2 + F , 1 r 2 = 1 √ R 2 + Z 2 , with Z = z + ζ, (4.31)
where

1 r 2
is the image source. H and F are the corresponding wave terms. The generic Green function for deep water can be given by substituting above equation into equation ( 4.28) as

G ± =        1 r 1 ∓ 1 r 2 ± H 1 r 1 ± 1 r 2 ± F . (4.32)
On the mean free surface, z = 0, the generic Green function satises the relationships Therefore, the integral over the free surface in the generic velocity representation is given in He suggested the velocity representation for the cases of free surface problems listed as:

(G + , G + ξ , G + η , G + ζ ) = (H, H ξ , H η , F ζ ) (G -, G - ξ , G - η , G - ζ ) = -(F, F ξ , F η , H ζ ) , z = 0,
¨SF    Φ n G + ξ + (∇ ξ Φ × n) ζ G + η -(∇ ξ Φ × n) η G + ζ Φ n G + η + (∇ ξ Φ × n) ξ G + ζ -(∇ ξ Φ × n) ζ G + ξ Φ n G - ζ + (∇ ξ Φ × n) η G - ξ -(∇ ξ Φ × n) ξ G - η    dS = - ¨SF    Φ ζ H ξ + F ζ Φ ξ Φ ζ H η + F ζ Φ η Φ ξ F ξ + Φ η F η -Φ ζ H ζ    dS.
• Case of rigid free surface boundary condition: ∂Φ ∂z = 0 on z = 0. • Case of soft free surface boundary condition: Φ = 0 on z = 0.

• Steady ship waves.

• Time-harmonic wave radiation-diraction without forward speed.

• Time-harmonic ship waves.

However, the velocity representation for unsteady time domain free surface ows has never been suggested nor studied.

Poincaré's velocity representation in time domain free surface ow

For the convenience, the complementary velocity potential Φ C is replaced by Φ and the complementary uid velocity u C is replaced by u in this section. The Green's identity with time derivatives of velocity potential gives a boundary integral equation with respect to Φ τ (see Appendix A.1 in [START_REF] Bingham | Simulating ship motions in the time domain[END_REF]) 

-4πΦ τ (x, τ ) = ‹ S Φ nτ (ξ ξ ξ, τ )G(x, ξ ξ ξ, t -τ ) -Φ τ (ξ ξ ξ, τ )G n (x, ξ ξ ξ, t -τ ) dS(ξ ξ ξ),
G(x, ξ ξ ξ, t -τ ) = 1 r 1 - 1 r 2 + H(x, ξ ξ ξ, t -τ ), (4.37) with H(x, ξ ξ ξ, t -τ ) = 2 ˆ∞ 0 e kZ 1 -cos gk(t -τ ) J 0 (kR)dk.
u x τ (x, τ ) u y τ (x, τ ) u z τ (x, τ )    = ¨SM ∪S F ∪S∞    Φ nτ (ξ ξ ξ, τ )G + ξ (x, ξ ξ ξ, t -τ ) + (∇ ξ Φ τ (ξ ξ ξ, τ ) × n) ζ G + η (x, ξ ξ ξ, t -τ ) Φ nτ (ξ ξ ξ, τ )G + η (x, ξ ξ ξ, t -τ ) + (∇ ξ Φ τ (ξ ξ ξ, τ ) × n) ξ G + ζ (x, ξ ξ ξ, t -τ ) Φ nτ (ξ ξ ξ, τ )G - ζ (x, ξ ξ ξ, t -τ ) + (∇ ξ Φ τ (ξ ξ ξ, τ ) × n) η G - ξ (x, ξ ξ ξ, t -τ ) -(∇ ξ Φ τ (ξ ξ ξ, τ ) × n) η G + ζ (x, ξ ξ ξ, t -τ ) -(∇ ξ Φ τ (ξ ξ ξ, τ ) × n) ζ G + ξ (x, ξ ξ ξ, t -τ ) -(∇ ξ Φ τ (ξ ξ ξ, τ ) × n) ξ G - η (x, ξ ξ ξ, t -τ )    dS(ξ ξ ξ), (4.39)
the uid domain is surrounded by the matching surface(S M ), free surface(S F ) and surface at innity(S ∞ ). The contribution of innity surface integral for uid velocity at eld point is zero by radiation condition

∇ ξ Φ(ξ ξ ξ) → 0, on ξ ξ ξ ∈ S ∞ . (4.40)
The notation of Green function is replaced for the sake of convenience by

G =    G + , if the velocity component is horizontal, e.g. (u x , u y ) G -, if the velocity component is vertical, e.g. (u z ) (4.41)
Then, the acceleration of the uid is given in vectorial form

4πu τ (x, τ ) = ¨SM ∪S F [Φ nτ (ξ ξ ξ, τ )∇ ξ G(x, ξ ξ ξ, t -τ ) + ∇ ξ G(x, ξ ξ ξ, t -τ ) × {∇ ξ Φ τ (ξ ξ ξ, τ ) × n}] dS(ξ ξ ξ), (4.42)
The matching surface is not moving with respect to time. Applying the integral by parts in time to the right-hand-side in equation ( 4.42)

¨S {Φ nτ ∇ ξ G + ∇ ξ G × (∇ ξ Φ τ × n)} dS(ξ ξ ξ) = d dτ ¨S {Φ n ∇ ξ G + ∇ ξ G × (∇ ξ Φ × n)} dS(ξ ξ ξ) -¨S {Φ n ∇ ξ G τ + ∇ ξ G τ × (∇ ξ Φ × n)} dS(ξ ξ ξ) (4.43)
Then, the acceleration of the uid is given as

4πu τ (x, τ ) = d dτ ¨SM ∪S F {Φ n ∇ ξ G + ∇ ξ G × (∇ ξ Φ × n)} dS(ξ ξ ξ) - ¨SM ∪S F {Φ n ∇ ξ G τ + ∇ ξ G τ × (∇ ξ Φ × n)} dS(ξ ξ ξ). (4.44)
After integrating in time, the uid's velocity at eld point is given with initial condition and time convolution integral

4π {u(x, t) -u(x, t 0 )} = ¨SM ∪S F {Φ n (ξ ξ ξ, t)∇ ξ G(x, ξ ξ ξ, 0) + ∇ ξ G(x, ξ ξ ξ, 0) × (∇ ξ Φ(ξ ξ ξ, t) × n)} dS(ξ ξ ξ) - ¨SM ∪S F {Φ n (ξ ξ ξ, t 0 )∇ ξ G(x, ξ ξ ξ, t -t 0 ) + ∇ ξ G(x, ξ ξ ξ, t -t 0 ) × (∇ ξ Φ(ξ ξ ξ, t 0 ) × n)} dS(ξ ξ ξ) - ˆt t 0 dτ ¨SM ∪S F {Φ n (ξ ξ ξ, τ )∇ ξ G τ (x, ξ ξ ξ, t -τ ) + ∇ ξ G τ (x, ξ ξ ξ, t -τ ) × (∇ ξ Φ(ξ ξ ξ, τ ) × n)} dS(ξ ξ ξ). (4.45)
Terms involving ∇ ξ Φ(ξ ξ ξ, t 0 ) in the integrals and u(x, t 0 ) vanish due to the initial condition that the complementary uid velocity is zero over boundary surfaces and uid domain at initial time, t = t 0 . Therefore, the velocity representation with two surface contributions is given to be 

4πu(x, t) = ¨SM ∪S F {Φ n (ξ ξ ξ, t)∇ ξ G(x, ξ ξ ξ, 0) + ∇ ξ G(x, ξ ξ ξ, 0) × (∇ ξ Φ(ξ ξ ξ, t) × n)} dS(ξ ξ ξ) - ˆt t 0 ¨SM ∪S F {Φ n (ξ ξ ξ, τ )∇ ξ G τ (x, ξ ξ ξ, t -τ ) + ∇ ξ G τ (x, ξ ξ ξ, t -τ ) × (∇ ξ Φ(ξ ξ ξ, τ ) × n)} dS(ξ ξ ξ) dτ.

Contribution of the matching surface integral

The contribution of the matching surface integral in time domain Poincaré's velocity representation is dened as

u M (x, t) = ¨SM {Φ n (ξ ξ ξ, t)∇ ξ G(x, ξ ξ ξ, 0) + ∇ ξ G(x, ξ ξ ξ, 0) × (∇ ξ Φ(ξ ξ ξ, t) × n)} dS(ξ ξ ξ) - ˆt t 0 ¨SM {Φ n (ξ ξ ξ, τ )∇ ξ G τ (x, ξ ξ ξ, t -τ ) + ∇ ξ G τ (x, ξ ξ ξ, t -τ ) × (∇ ξ Φ(ξ ξ ξ, τ ) × n)} dS(ξ ξ ξ) dτ. (4.47)
The time domain Green function for deep water given in equation ( 4.37) satises the relationships

∇ ξ G ± (x, ξ ξ ξ, 0) = ∇ ξ {R(x, ξ ξ ξ) ± R * (x, ξ ξ ξ)} (4.48)
and

∇ ξ G ± τ (x, ξ ξ ξ, t -τ ) = ±∇ ξ H τ (x, ξ ξ ξ, t -τ ) (4.49)
where the source and image source are denoted as R(x, ξ ξ ξ) = 1/r 1 and R * (x, ξ ξ ξ) = -1/r 2 .

The matching surface integral can be decomposed into three velocity contributions

u M (x, t) = u R (x, t) + u R * (x, t) + u H (x, t) (4.50) where u R (x, t) =    u x R u y R u z R    = ¨SM {Φ n (ξ ξ ξ, t)∇ ξ R(x, ξ ξ ξ) + ∇ ξ R(x, ξ ξ ξ) × (∇ ξ Φ(ξ ξ ξ, t) × n)} dS(ξ ξ ξ) (4.51) ûR * (x, t) =    u x R * u y R * -u z R *    = ¨SM {Φ n (ξ ξ ξ, t)∇ ξ R * (x, ξ ξ ξ) + ∇ ξ R * (x, ξ ξ ξ) × (∇ ξ Φ(ξ ξ ξ, t) × n)} dS(ξ ξ ξ) (4.52) ûH (x, t) =    u x H u y H -u z H    = - ˆt t 0 ¨SM {Φ n (ξ ξ ξ, τ )∇ ξ H τ (x, ξ ξ ξ, t -τ ) +∇ ξ H τ (x, ξ ξ ξ, t -τ ) × (∇ ξ Φ(ξ ξ ξ, τ ) × n)} dS(ξ ξ ξ)dτ (4.53)
Each of the velocity components represents the surface integral contribution of source, image source, and wave terms.

Contribution of the free surface integral

The contribution of the free surface integral is given by

u F (x, t) = ¨SF {Φ n (ξ ξ ξ, t)∇ ξ G(x, ξ ξ ξ, 0) + ∇ ξ G(x, ξ ξ ξ, 0) × (∇ ξ Φ(ξ ξ ξ, t) × n)} dS(ξ ξ ξ) - ˆt t 0 dτ ¨SF {Φ n (ξ ξ ξ, τ )∇ ξ G τ (x, ξ ξ ξ, t -τ ) + ∇ ξ G τ (x, ξ ξ ξ, t -τ ) × (∇ ξ Φ(ξ ξ ξ, τ ) × n)} dS(ξ ξ ξ). (4.54)
The free surface is the region from the waterline of matching surface to innity. The transformation to waterline integral is necessary for its evaluation. Using the general representation for free surface integral discussed in section 4.2.3, the velocity contribution of the free surface integral is given by

u F (x, t) = u (0) F (x, t) + u (t) F (x, t) (4.55)
with the current time free surface integral contribution

u (0) F (x, t) = - ¨SF    F ζ (x, ξ ξ ξ, 0)Φ ξ (ξ ξ ξ, t) F ζ (x, ξ ξ ξ, 0)Φ η (ξ ξ ξ, t) F ξ (x, ξ ξ ξ, 0)Φ ξ (ξ ξ ξ, t) + F η (x, ξ ξ ξ, 0)Φ η (ξ ξ ξ, t)    dS(ξ ξ ξ). (4.56)
The convolution integral is given by 

u (t) F (x, t) = ˆt t 0 ¨SF    H ξτ (x, ξ ξ ξ, t -τ )Φ ζ (ξ ξ ξ, τ ) + F ζτ (x, ξ ξ ξ, t -τ )Φ ξ (ξ ξ ξ, τ ) H ητ (x, ξ ξ ξ, t -τ )Φ ζ (ξ ξ ξ, τ ) + F ζτ (x, ξ ξ ξ, t -τ )Φ η (ξ ξ ξ, τ ) F ξτ (x, ξ ξ ξ, t -τ )Φ ξ (ξ ξ ξ, τ ) + F ητ (x, ξ ξ ξ, t -τ )Φ η (ξ ξ ξ, τ ) -H ζτ (x, ξ ξ ξ, t -τ )Φ ζ (ξ ξ ξ, τ )    dS(ξ ξ ξ)dτ.
H ξτ Φ ζ + F ζτ Φ ξ = (F ζ Φ ξ ) τ + H ξτ Φ ζ -F ζ Φ ξτ = (F ζ Φ ξ ) τ -(F ζ Φ τ ) ξ - 1 g (H ξτ Φ τ ) τ . (4.59)
Likewise, the y-component is expressed as the following

H ητ Φ ζ + F ζτ Φ η = (F ζ Φ η ) τ -(F ζ Φ τ ) η - 1 g (H ητ Φ τ ) τ . (4.60)
The z-component is transformed by using ∇ 2 F = 0 

F ξτ Φ ξ + F ητ Φ η -H ζτ Φ ζ = (F ξ Φ ξ + F η Φ η ) τ -F ξ Φ ξτ -F η Φ ητ -H ζτ Φ ζ = (F ξ Φ ξ + F η Φ η ) τ -(F ξ Φ τ ) ξ -(F η Φ τ ) η + 1 g (H ζτ Φ τ ) τ .
u (t) F (x, t) = ˆt t 0 dτ ¨SF    (F ζ Φ ξ ) τ (F ζ Φ η ) τ (F ξ Φ ξ + F η Φ η ) τ    dS - ˆt t 0 dτ ¨SF    (F ζ Φ τ ) ξ (F ζ Φ τ ) η (F ξ Φ τ ) ξ + (F η Φ τ ) η    dS - 1 g ˆt t 0 dτ ¨SF    (H ξτ Φ τ ) τ (H ητ Φ τ ) τ -(H ζτ Φ τ ) τ    dS, (4.62)
The Reynolds transport and Stokes theorems on the free surface are given as

¨SF (t) ∂f ∂t dS = d dt ¨SF (t) f dS - ˛C(t) f U 2D n dl, (4.63) 
and 

¨SF (t) f x dS = ˛C(t) t y f dl, ¨SF (t) f y dS = - ˛C(t) t x f dl
u (t) F (x, t) = ¨SF    F ζ (x, ξ ξ ξ, 0)Φ ξ (ξ ξ ξ, t) F ζ (x, ξ ξ ξ, 0)Φ η (ξ ξ ξ, t) F ξ (x, ξ ξ ξ, 0)Φ ξ (ξ ξ ξ, t) + F η (x, ξ ξ ξ, 0)Φ η (ξ ξ ξ, t)    dS - ˆt t 0 dτ ˛C(t)    F ζ (x, ξ ξ ξ, t -τ )Φ ξ (ξ ξ ξ, τ ) F ζ (x, ξ ξ ξ, t -τ )Φ η (ξ ξ ξ, τ ) F ξ (x, ξ ξ ξ, t -τ )Φ ξ (ξ ξ ξ, τ ) + F η (x, ξ ξ ξ, t -τ )Φ η (ξ ξ ξ, τ )    U 2D n dl - ˆt t 0 dτ ˛C(t)    t y F ζ (x, ξ ξ ξ, t -τ ) -t x F ζ (x, ξ ξ ξ, t -τ ) t y F ξ (x, ξ ξ ξ, t -τ ) -t x F η (x, ξ ξ ξ, t -τ )    Φ τ (ξ ξ ξ, τ )dl - 1 g ˛C(t)    H ξτ (x, ξ ξ ξ, 0) H ητ (x, ξ ξ ξ, 0) -H ζτ (x, ξ ξ ξ, 0)    Φ τ (ξ ξ ξ, t)dl + 1 g ˆt t 0 dτ ˛C(t)    H ξτ (x, ξ ξ ξ, t -τ ) H ητ (x, ξ ξ ξ, t -τ ) -H ζτ (x, ξ ξ ξ, t -τ )    Φ τ (ξ ξ ξ, τ )U 2D n dl. (4.65)
Substituting equations in (4.56) and ( 4.65) into (4.55), the velocity contribution of free surface integral is given in compact form

u F (x, t) = - ˆt t 0 dτ ˛C(t)    F ζ Φ ξ F ζ Φ η F ξ Φ ξ + F η Φ η    U 2D n dl - ˆt t 0 dτ ˛C(t)    t y F ζ -t x F ζ t y F ξ -t x F η    Φ τ dl + 1 g ˆt t 0 dτ ˛C(t)    H ξτ H ητ -H ζτ    Φ τ U 2D
n dl.

(4.66)

The radiation and kinematic free surface boundary condition gives an explicit velocity expression

u F (x, t) = - ˆt t 0 dτ ˆCM    F ζ Φ ξ F ζ Φ η F ξ Φ ξ + F η Φ η    U 2D n dl + g ˆt t 0 dτ ˆCM    t y F ζ -t x F ζ t y F ξ -t x F η    Ξ C (ξ ξ ξ, τ )dl - ˆt t 0 dτ ˆCM    H ξτ H ητ -H ζτ    Ξ C (ξ ξ ξ, τ )U 2D n dl, (4.67) 
where Ξ C (ξ ξ ξ, t) is the complementary wave elevation on waterline of matching surface. Note that the free surface integral representation needs both the complementary uid velocity and wave elevation on the waterline.

Summary: Poincaré's velocity represenation in time domain free surface ow

The complementary velocity potential and uid velocity are denoted here with subscript C . The gradient of velocity potential is replaced by uid velocity as

∇ ξ Φ C = u C , (4.68) 
The normal and tangential uid velocities are written in the following form

u n C = u C • n, w C = u C × n, (4.69) 
The complementary uid velocity at eld point by Poincaré's velocity representation is given by four velocity contributions

4πu C (x, t) = u R (x, t) + u R * (x, t) + u H (x, t) + u F (x, t) (4.70)
and each of the velocity representations is given explicitly with ow values at the boundary surface as follows

u R (x, t) = ¨SM {u n C (ξ ξ ξ, t)∇ ξ R(x, ξ ξ ξ) + ∇ ξ R(x, ξ ξ ξ) × w C (ξ ξ ξ, t)} dS, (4.71) ûR * (x, t) = ¨SM {u n C (ξ ξ ξ, t)∇ ξ R * (x, ξ ξ ξ) + ∇ ξ R * (x, ξ ξ ξ) × w C (ξ ξ ξ, t)} dS, (4.72) ûH (x, t) = - ˆt t 0 dτ ¨SM {u n C (ξ ξ ξ, τ )∇ ξ H τ (x, ξ ξ ξ, t -τ ) + ∇ ξ H τ (x, ξ ξ ξ, t -τ ) × w C (ξ ξ ξ, τ )} dS, (4.73) ûF (x, t) = - ˆt t 0 dτ ˆCM ∇ ξ F (x, ξ ξ ξ, t -τ ) × {u C (ξ ξ ξ, τ ) × e z } U 2D n dl + g ˆt t 0 dτ ˆCM {∇ ξ F (x, ξ ξ ξ, t -τ ) × t} Ξ C (ξ ξ ξ, τ )dls - ˆt t 0 dτ ˆCM ∇ ξ H τ (x, ξ ξ ξ, t -τ )Ξ C (ξ ξ ξ, τ )U 2D n dl. (4.74)
The operator û is dened in (4.26) as

û = [u x , u y , -u z ] .
The transport velocity on the waterline is equal to zero, the contribution of the free surface is simply given as 

ûF (x, t) = g ˆt t 0 dτ ˆCM {∇ ξ F (x, ξ ξ ξ, t -τ ) × t} Ξ C (ξ ξ ξ, τ )dl.
∇ 2 G(x, ξ ξ ξ, t) = δ(x -ξ ξ ξ)δ(t -τ ), for x ∈ Ω; t ≥ 0 (4.76)
and the linearized free surface boundary condition

∂ 2 G ∂t 2 + g ∂G ∂z = 0, on z = 0, (4.77)
the radiation and sea bottom condition

|∇ x G| → 0, as r → ∞; ∀t ≥ 0, (4.78)
with the initial conditions

G(x, ξ ξ ξ, 0) = 0, ∂G(x, ξ ξ ξ, 0) ∂t = 0, for x ∈ Ω. (4.79)
The solution of above initial-boundary value problem is given by Brard ( 1948)

G(x, ξ ξ ξ, t) = 1 r 1 - 1 r 2 + 2 ˆ∞ 0 1 -cos gkt e kZ J 0 (kR) dk (4.80)
The Bessel function integral relation is given as [using the equation 6.621 in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]]

ˆ∞ 0 e -αx J 0 (x)dx = 1 √ 1 + α 2 , α > 0. (4.81)
The image source is replaced by integral of Bessel and exponential functions 1 r 2 = ˆ∞ 0 e kZ J 0 (kR) dk. 

G(x, ξ ξ ξ, t) = 1 r 1 + 1 r 2 -2
ˆ∞ 0 cos gkt e kZ J 0 (kR)dk. 

Evaluation of time domain Green functions

The evaluation of two wave terms given in equations (4.84) and (4.85) are necessary for Poincaré's velocity representation with arbitrary matching surfaces. Many pieces of research have been dedicated to the time derivatives of rst wave term denoted as H τ for ecient and accurate computation. [START_REF] Beck | Transient motions of oating bodies at zero forward speed[END_REF] decomposed the computational domain of variables and applied a series expansion and numerical quadrature for dierent domain. [START_REF] Newman | Approximation of free-surface Green functions[END_REF] presented an algorithm based on [START_REF] Beck | Transient motions of oating bodies at zero forward speed[END_REF]. Later, Clément (1998) method, and PI method. He reported that the interpolation with tabulated data is faster than solving the ordinary dierential equations with 5-6 digits of accuracy. Also, the time-marching

Frobenius method is about two times faster than the Runge-Kutta scheme.

Nevertheless, the velocity representation needs two expressions of wave term and their derivatives which are

H(x, ξ ξ ξ, t) = 2 ˆ∞ 0 1 -cos gkt e kZ J 0 (kR) dk, F (x, ξ ξ ξ, t) = 2
ˆ∞ 0 e kZ cos gkt J 0 (kR)dk.

Previous researchers have focused on the rst term H τ (x, ξ ξ ξ, t -τ ), but no study has been conducted for the second expression F (x, ξ ξ ξ, t -τ ) because F has never been applied in time domain BEM to the author's knowledge. It is convenient to express wave terms with two real variables.

The wave terms with nondimensional spherical coordinates, µ = -(z + ζ)/r 2 and τ = t/ g/r 2 are given by

H τ (x, ξ ξ ξ, t) = -2 g r 3 2 Hτ (µ, τ ), F (x, ξ ξ ξ, t) = 2 r 2 F (µ, τ ) (4.86)
where

Hτ (µ, τ ) = ˆ∞ 0 √ λe -µλ J 0 λ 1 -µ 2 sin τ √ λ dλ, (4.87) F (µ, τ ) = ˆ∞ 0 e -µλ J 0 λ 1 -µ 2 cos τ √ λ dλ.
(4.88) Clément (1998) showed that the rst integral( Hτ (µ, τ )) and its derivatives fall into the same kind of integral and they all satisfy the 4-th order ordinary dierential equation.

In present study, Clément's ordinary dierential equation is extended to include the other wave term.

Proposition 1 Let ν and l be two real parameters, τ and µ are two real variables with 0 ≤ µ ≤ 1.

The functions A ν,l and B ν,l dened by

A ν,l (µ, τ ) = ˆ∞ 0 λ l e -µλ J ν λ 1 -µ 2 sin τ √ λ dλ, (4.89) B ν,l (µ, τ ) = ˆ∞ 0 λ l e -µλ J ν λ 1 -µ 2 cos τ √ λ dλ (4.90)
are the solutions of the dierential equation

∂ 4 W ν,l ∂τ 4 + µτ ∂ 3 W ν,l ∂τ 3 + τ 2 4 + µ (3 + 2l) ∂ 2 W ν,l ∂τ 2 + τ l + 5 4 ∂W ν,l ∂τ + (l + 1) 2 -ν 2 W ν,l = 0, (4.91) 
where

W ν,l (µ, τ ) = A ν,l (µ, τ ) or B ν,l (µ, τ ).
Proof ) Clément (1998) proved that the function A ν,l (µ, τ ) is a solution of ordinary dierential equation

A (4) ν,l + µτ A (3) ν,l + τ 2 4 + µ (3 + 2l) A (2) ν,l + τ l + 5 4 A (1) ν,l + (l + 1) 2 -ν 2 A ν,l = 0
where superscript (•) represents the derivatives with respect to τ .

Applying the derivative with respect to τ again on the ordinary dierential equation leads to

A (5) ν,l + µτ A (4) ν,l + τ 2 4 + µ 3 + 2 l + 1 2 A (3) ν,l +τ l + 1 2 + 5 4 A (2) ν,l + l + 3 2 2 -ν 2 A (1)
ν,l = 0.

Substituting the following relation between

A ν,l and B ν,l ∂A ν,l (µ, τ ) ∂τ = B ν,l+ 1 2 (µ, τ, )
into the ordinary dierential equation given above, the ordinary dierential equation with respect to B ν,l+ 1 2 is derived as

B (4) ν,l+ 1 2 + µτ B (3) ν,l+ 1 2 + τ 2 4 + µ 3 + 2 l + 1 2 B (2) ν,l+ 1 2 + τ l + 1 2 + 5 4 B (1) ν,l + l + 3 2 2 -ν 2 B ν,l+ 1 2 = 0.
Because l is arbitrary real, B v,l is the solution of this ordinary dierential equation.

Furthermore, the spatial derivatives of two integrals fall into the same integral kind given before.

The interpolation based on tabulated data is ecient compared to solving the ordinary dierential equation [START_REF] Bingham | A note on the relative eciency of methods for computing the transient free-surface Green function[END_REF]. However, the development of algorithms based on tabulation method for two wave terms and their derivatives need huge eorts to get accuracy and eciency in same time.

In the present study, the wave terms and their gradients are evaluted by solving the ordinary dierential equation. The initial condition of A ν,l is given by Clément (1998) by

A (2k) ν,l (µ, 0) = 0, A (2k+1) ν,l (µ, 0) = (-1) k+ν Γ l + 2k + 3 2 -ν P ν l+k+1/2 (µ), k = 0, 1, 2, • • • (4.92)
where Γ(x) is Gamma function, P ν l (x) is Legendre function of the rst kind [START_REF] Abramowitz | Handbook of mathematical functions: With Formulas, Graphs, and Mathematical Tables[END_REF]. The initial conditions for B ν,l and its derivatives with respect to τ are given by

B (2k) ν,l (µ, 0) = (-1) k ˆ∞ 0 λ l+k e -λµ J ν λ 1 -µ 2 dλ, B (2k+1) ν,l (µ, 0) = 0, k = 0, 1, 2, • • • (4.93)
Using the integral relation of Bessel function with the exponential and polynomial (equation 6.625.6 in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF])

ˆ∞ 0 e -t cos θ J µ (t cos θ)t ν dt = Γ(ν + µ + 1)P -µ ν (cos θ), for [ν + µ] > 1, 0 ≤ θ ≤ π 2 .
The initial condition for even order derivatives of B ν,l are given by

B (2k) ν,l (µ, 0) = (-1) k+ν Γ(l + k -ν + 1)P ν l+k (µ) = (-1) k+ν (l + k -ν)!(1 -µ) ν 2 d ν dµ ν P l+k (µ).
The initial conditions for H τ are given in Clément (1998) by using above relationships. The initial conditions for H τ and F are therefore given by Hτ (µ, 0) = 0, H(1)

Rτ (µ, 0)= 1, H(2) τ (µ, 0) = 0, H (3) 
Rτ (µ, 0)= -2µ.

and

F (µ, 0) = 1, F (1) (µ, 0)= 0, F (2) (µ, 0) = -µ, F (3) 
(µ, 0)= 0.

In a similar way, the initial condition of horizontal and vertical gradients of H τ and F are given by HRτ (µ, 0) = 0, HZτ (µ, 0) = 0,

H(1) Rτ (µ, 0) = 3µ 1 -µ 2 , H(1) Zτ (µ, 0) = 3µ 2 -1, H(2) Rτ (µ, 0) = 0, H(2) Zτ (µ, 0) = 0, H(3) Rτ (µ, 0) = -(15µ 2 -3) 1 -µ 2 , H(3) Zτ (µ, 0) = -15µ 3 + 9µ,
and

FR (µ, 0) = 1 -µ 2 , FZ (µ, 0) = µ, F (1) R (µ, 0) = 0, F (1) Z (µ, 0) = 0, F (2) R (µ, 0) = -3µ 1 -µ 2 , F (2) Z (µ, 0) = -3µ 2 + 1, F (3) R (µ, 0) = 0, F (3) 
Z (µ, 0) = 0.

To solve the ordinary dierential equation, the time marching Frobenius method proposed by [START_REF] Chuang | On the evaluation of time-domain Green function[END_REF] is adopted in the present study. The 4-th order ordinary dierential equation is given in (4.91) as

W (4) ν,l + µτ W (3) ν,l + τ 2 4 + αµ W (2) 
ν,l + βτ W

(1) ν,l + γW ν,l = 0

where α = 3 + 2l, β = l + 5 4 , γ = (l + 1) 2 -ν 2 .
The solution of the ordinary dierential equation of next time step τ is expanded with the power series of the previous time step τ 0 as

W v,l (τ ) = ∞ n=0 a n (τ -τ 0 ) n . (4.94)
Substituting the power series expanded solution into the ordinary dierential equation, the rst four coecients are given as

a 0 = W ν,l (µ, τ 0 ), a 1 = W (1) ν,l (µ, τ 0 ), (4.95) 
a 2 = 1 2 W (2) ν,l (µ, τ 0 ), a 3 = 1 6 W (3) 
ν,l (µ, τ 0 ). The recursion relations of a n for n ≥ 4 is given as

a n+4 = - 1 λ n+4 (λ n+3 a n+3 + λ n+2 a n+2 + λ n+1 a n+1 + λ n a n ) , for n ≥ 0, with λ n+4 = κ 1 (n + 4)(n + 3)(n + 2)(n + 1), λ n+3 = κ 3 (n + 3)(n + 2)(n + 1), λ n+2 = κ 2 (n + 2)(n + 1)n + κ 6 (n + 2)(n + 1), λ n+1 = κ 5 n(n + 1) + κ 8 (n + 1), λ n = κ 4 n(n -1) + κ 7 n + κ 9 .
Therefore, the next time step solution W ν,l (τ ) is given by the summation of coecients with the desired accuracy. The evaluated wave terms and their derivatives are plotted in gure 4.2. The Humle's heaving hemisphere is considered to validate the proposed Poincaré's velocity representation with matching surface [START_REF] Hulme | The wave forces acting on a oating hemisphere undergoing forced periodic oscillations[END_REF]. The analytical solution of surface-piercing hemisphere is given by [START_REF] Hulme | The wave forces acting on a oating hemisphere undergoing forced periodic oscillations[END_REF] for surging and heaving motion. A heaving hemisphere on the mean free surface is shown in gure 4.3. When the hemisphere motion is given in A heave sin ωt where A heave and ω are motion amplitude and frequency, respectively, velocity potential is given in series of multipoles as

Φ R = ωA heave φ R e -iωt , (4.100) 
with radiation potential (φ R ) in frequency domain

φ R = c 0 a 2 ψ s 0 + ∞ n=1 c n a 2n ψ s 2n (4.101)
where c n denotes the multipole strengths and ψ 2n are the wave-free potentials by multipoles which are given in

ψ 0 = 1 r 1 + πik ∞ n=0 (-kr) n n! P n (µ) -k ∞ n=0 (-1) n ∂ ∂ν (kr) ν nu! P ν (µ) ν=n , (4.102 
)

ψ 2n = P 2n (µ) r 2n+1 + k 2n P 2n-1 (µ) r 2n , (4.103) 
where µ = cos ϕ, k = ω 2 /g, P ν (µ) are Legendre polynomials given by P 0 (µ) = 1,

P 1 (µ) = µ, (n + 1)P n+1 (µ) = (2n + 1)µP n (µ) -nP n-1 (µ),
for n ≥ 1. 

F (µ, ka) - ∞ n=1 c n {kaP 2n-1 (µ) + (2n + 1)P 2n (µ)} = P 1 (µ) c 0 , (4.106) 
with F (µ, ka) = a 2 ∂ψ 0 ∂r .

After integrating above expression with respect to ϕ over

[0, 1] gives ˆ1 0 F (µ, ka)dµ -ka ∞ n=1 c n I 0,2n-1 = 1 2c 0 , (4.107)
where the integrals of Legendre functions are dened by 

I m,n = ˆ1 0 P m (µ)P n (µ)dµ.
F (µ, ka) - ∞ n=1 c n {kaP 2n-1 (µ) + (2n + 1)P 2n (µ)} = 2P 1 (µ) ˆ1 0 F (µ, ka)dµ -ka ∞ n=1 c n I 0,2n-1 (4.109)
After manipulating previous equation, multiplying P 2m (µ) and integrating with respect to µ over (0, 1), we can obtain the equations for multipole strengths

2m + 1 4m + 1 c m + ka ∞ n=1 {I 2m,2n-1 -2I 2m,1 I 0,2n-1 } c n = J 2m -2J 0 I 2m,1 (4.110) 
with Poincaré's velocity representation with arbitrary matching surface is validated with following cases:

J m = ˆ1 0 F (µ, ka)P m (µ)dµ = -I m,0 -ka ∞ n=1 (-ka) n (n -1)! ∂I m,ν ∂ν ν=n + ka ∞ n=0 (-ka) n n! [n {ψ(n + 1) + πi -ln ka} -1] I m,n ( 
• Discretization of matching surface: The eld point is located underwater, the hemisphere shaped matching surface is rened to see the convergence.

• Discretization of convolution time dierence: The eld point is located underwater, the convolution time dierence is rened with hemisphere shaped matching surface.

• Dierent heaving frequencies: The eld point is located underwater at xed position, the heaving frequency of hemisphere is changed.

• Dierent matching surfaces: The eld point is located underwater at xed position, various shaped matching surfaces are applied.

• Field point is located on z = 0: When the eld point is located on z = 0, the uid velocity reconstructed by Poincaré's velocity representation will be discussed. After the initial evolution of memory eects, the reconstructed velocities show good agreement with analytical solution. The amplitudes of reconstructed velocities for dierent frequencies have relative errors less than the value of 0.6%.

In the results, we can verify that the reconstructed waves by Poincaré's velocity representation are propagating with dierent speed. This is the eects of dispersion on the speed of the waves.

Dierent matching surfaces

A set of dierent matching surfaces such as hemisphere, bottom-opened circular cylinder, ellipsoid and parallel-pipe shown in gure 4.11, are considered to check the sensitivity of the proposed velocity representation to the geometry of the matching surface. The convolution time step of ∆τ = 0.01s is used and the convolution integral is calculated over 15s.

Time series and mwFFT of reconstructed uid velocity at eld point (kR = 3.19, kz = -0.6370)

are compared with the analytical solution in gure 4.12. The reconstructed velocity with closed matching surfaces have relative errors of less than 0.4% and the velocity with bottom-opened circular cylinder has a relative error of 1%.

The results are summarized as follows:

• The proposed velocity representation is validated for arbitrary matching surfaces. For submerged eld point, the reconstructed velocity shows good agreements with analytical solution.

• For a matching surface deep suciently, the proposed velocity representation works even when the bottom surface is opened. When the source point is deeply submerged and the distance between eld and source points is large enough, the time domain Green function has very small value and the uid velocity at the source point is negligible. Two velocity contributions may cause this singular behavior:

• Contribution of harmonic component (u H ) has a highly oscillatory unstable velocity prole when convolution integral is partially evaluated with a moving window interval. It becomes smooth after the moving window convolution time interval(T 0 ) passes the simulation time t > T 0 .

• Contribution of free surface component (u F ) has a highly oscillatory unstable velocity prole when the convolution integral is partially evaluated with moving integral interval as:

ˆt t-T 0 {•} dτ (4.112)
where T 0 is moving window convolution time interval. The contribution of free surface integral is unstable after simulation time t > T 0 , e.g., t -T 0 > 0.

This singular behavior is thought to be similar to the singular behavior of waterline integral in the time domain problem [START_REF] Bingham | Simulating ship motions in the time domain[END_REF]. When source and eld points move towards mean free surface, the nondimensionalized spatial variable of the time domain Green function is given by

µ = z + ζ r 2 → 0. (4.113) 
The time domain Green functions and their spatial derivatives, shown in gure 4.2, have the diverging behaviors when µ = 0. At the limit µ = 0, the time domain Green function Hτ (µ, τ )

is expressed in the combination of Bessel functions [START_REF] Wehausen | Surface waves[END_REF]:

Hτ (0, τ ) = πτ 2 √ 2 J 1/4 τ 2 8 J -1/4 τ 2 8 + J 3/4 τ 2 8 J -3/4 τ 2 8 τ 2 8 , (4.114) 
and it is bounded but has diverging behavior for τ → ∞: Results show that the waterline discretization helps to remedy the singular behavior of reconstructed uid velocity on the mean free surface. However, highly oscillatory behavior of uid velocity does not be cured by discretizing waterline segment. 

- τ √ 2 ≤ Hτ (0, τ ) ≤ τ √ 2 .

Remarks on singular behavior

When both eld and source points are located on the mean free surface, the time domain Green function and its derivatives fall into the integral type

ˆ∞ 0 k p J 0 (kR) cos t √ gk sin t √ gk dk, (4.116) 
where p is polynomial order. The time domain Green function has a diverging behavior when p is large and the oscillating band of Green function increases with p. Therefore, it is necessary to reduce the order of polynomial p on a mathematical point of view.

Derivating above integral with respect to time and space, the polynomial order (p) increases by 0.5 and 1, respectively, as shown below: is applied to calculate the wave terms.

∂ ∂t ˆ∞ 0 k p J 0 (kR) cos t √ gk sin t √ gk dk = √ g ˆ∞ 0 k p+0.
The heaving hemisphere is considered as a benchmark test to validate the proposed velocity representation [START_REF] Hulme | The wave forces acting on a oating hemisphere undergoing forced periodic oscillations[END_REF].

When the eld point is located underwater, the proposed Poincaré's velocity representation is show good agreements with analytical solution. It is validated for the cases of the discretization of matching surface, discretization of convolution time step size, dierent heaving frequency and various shaped matching surface.

However, a singular behavior of reconstructed velocity appears when the eld point is located on mean free surface (z = 0). Discretization of matching surface and its waterline with diverging behavior of time domain Green function causes this singular problem.

It has been shown that integrating the time domain Green function along matching surface or its waterline makes the problem weakly singular. In the following Chapter 5, a circular cylindrical matching surface with pseudo-spectral method based on Fourier-Laguerre appoximation is introduced.

5 Potential ow: Complementary waves with a vertical circular cylindrical matching surface

The velocity representation given in the previous section is formulated for an arbitrary matching surface and its waterline. The discretization of matching surface and waterline into panels and line segments causes numerical diculties when the eld point is located on the mean free surface, due to the singular behavior of the time domain Green function. Futhermore, discretization requires multiple summations with respect to panels, line segments and convolution integral. It needs also huge computation time and resources.

The matching surface does not necessarily need to be arbitrarily shaped. Even if the uid velocity is possibly computed by discretized panels and line segments, it is numerically favorable to use an analytical shape as the matching surface. Applying the surface integral to the velocity representation over an analytic matching surface can reduce the computational cost and minimize the singular behavior.

The complementary waves which are generated by the body without forward speed propagate in all directions. In the far-eld, the complementary waves can be approximated by Fourier series. Therefore, a vertical circular cylindrical matching surface, which has a radius larger than body dimension, is introduced in the present study. The body is located inside the matching surface. On the matching surface and its waterline, the uid velocities and wave elvations are approximated into Fourier-Laguerre series.

A vertical circular cylindrical matching surface

The coordinates with cylindrical matching surface are depicted in gure 5.1. The eld point P = (r, θ, z) is located at the outside of matching surface, r > a, z < 0. The source point Q = (a, θ , ζ) is on the vertical circular cylindrical matching surface with radius of a. By the law of cosines, the distance between the source and eld points (R) is given by

R 2 = a 2 + r 2 -2ar cos(θ -θ ), R = 2a sin |θ -θ | 2 , if r = a.
(5.1)

A vector in cartesian coordinates is transformed into cylindrical coordinates using

f =    f x f y f z    =    cos θ -a sin θ 0 sin θ a cos θ 0 0 0 1       f r f θ f z    (5.2)
where the superscript is a corresponding directional vector component.

The normal unit vector on the cylindrical matching surface is given by n = cos θ e x + sin θ e y + 0 where êx , êy and êz are unit basis vectors with respect to cartesian coordinates. êr and êθ are unit basis vector with respect to cylindrical coordinates. The normal uid velocity is given by

• e z = 1 • êr + 0 • êθ + 0 • e z ( 
u n C = u C • n = cos θ u ξ C + sin θ u η C , (5.4) 
and the tangential velocity is given by

w C = u C × n = w ξ C e x + w η C e y + w ζ C e z , (5.5) 
with

w ξ C = -u ζ C sin θ , w η C = u ζ C cos θ , w ζ C = u ξ C sin θ -u η C cos θ .
(5.6)

The gradients in cylindrical coordinates are dened by

∇ x f = f r êr + f θ êθ + f z e z , ∇ ξ f = f a êr + f θ êθ + f ζ e z (5.7) with (f r , f θ , f z ) = ∂f ∂r , 1 r ∂f ∂θ , ∂f ∂z , (f a , f θ , f ζ ) = ∂f ∂a , 1 a ∂f ∂θ , ∂f ∂ζ .
(5.8)

Applying coordinates transformation in equation ( 5.2), the derivatives of Green functions are given by

R ξ = cos θ R a -sin θ R θ , R η = sin θ R a + cos θ R θ , (5.9) R * ξ = cos θ R * a -sin θ R * θ , R * η = sin θ R * a + cos θ R * θ ,
(5.10)

H ξ = cos θ H a -sin θ H θ , H η = sin θ H a + cos θ H θ , (5.11) 
F ξ = cos θ F a -sin θ F θ , F η = sin θ F a + cos θ F θ .
(5.12)

Substituting above relationships into velocity representation in equations (4.71), (4.72), (4.73) and ( 4.74) and applying surface integral along vertical circular cylindrical matching surface gives

   u x C u y C u z C    =    u x R + u x R * + u x H + u x F u y R + u y R * + u y H + u y F u z R + u z R * + u z H + u z F    , (5.13) 
where each of velocity components with vertical circular cylindrical matching surface is given by

• Rankine source contribution    u x R u y R u z R    = ˆ0 -∞ ˆ2π 0    R a cos θ u n C -R θ sin θ u n C + R a sin θ w ζ C + R θ cos θ w ζ C -R ζ w η C R a sin θ u n C + R θ cos θ u n C -R a cos θ w ζ C + R θ sin θ w ζ C + R ζ w ξ C R ζ u n C + R a w θ C -R θ w a C    adθ dζ (5.14) • Image source contribution    u x R * u y R * -u z R *    = ˆ0 -∞ ˆ2π 0    R * a cos θ u n C -R * θ sin θ u n C + R * a sin θ w ζ C + R * θ cos θ w ζ C -R * ζ w η C R * a sin θ u n C + R * θ cos θ u n C -R * a cos θ w ζ C + R * θ sin θ w ζ C + R * ζ w ξ C R * ζ u n C + R * a w θ C -R * θ w a C    adθ dζ (5.15) • Harmonic contribution    u x H u y H -u z H    = - ˆt t 0 ˆ0 -∞ ˆ2π 0    H τ a cos θ u n C -H τ θ sin θ u n C + H τ a sin θ w ζ C + H τ θ cos θ w ζ C -H τ ζ w η C H τ a sin θ u n C + H τ θ cos θ u n C -H τ a cos θ w ζ C + H τ θ sin θ w ζ C + H τ ζ w ξ C H τ ζ u n C + H τ a w θ C -H τ θ w a C   
adθ dζdτ

(5.16)

• Free surface contribution    u x F u y F u z F    = - ˆt t 0 ˆ2π 0    F ζ cos θ (gΞ C ) F ζ sin θ (gΞ C ) F a (gΞ C )    adθ dτ (5.17) with w a C = w ξ C cos θ -w η C sin θ ,
(5.18)

w θ C = 1 a w ξ C sin θ + w η C cos θ .
( 

   u x C u y C u z C    ≈ N q=-N M q=0    U x pq U y pq U z pq    e iqθ L p (-sz), (5.20) and       u n C w ξ C w η C w ζ C       r=a ≈ N n=-N M m=0       C n mn W ξ mn W η mn W ζ mn       L m (-sζ) e inθ .
( where L m (-sζ) is Laguerre polynomial

L m (x) = e x m! d m dx m e -x x m = 1 m! d dx -1 m x m , (5.23)
where s is an user-dened parameter. The Laguerre functions for dierent m are depicted in gure 5.2. (5.24)

The user-dened parameter s is selected to be two times the representative wave number (s = 2k 0 ) for a good approximation. For regular waves, the representative wave number is easily selected with k 0 = ω 2 /g. In the case of irregular waves, the representative wave number is taken from the wave number of peak wave periods (k 0 = k p ). (2018) applied Fourier-Laguerre series for deep water cases.

To evaluate the Fourier-Laguerre coecients, the surface integral with Fourier-Laguerre function is applied to equation ( 5.21) as

ˆ0 -∞ ˆ2π 0       u n C w ξ C w η C w ζ C       r=a L p (-sζ)e -ilθ adζdθ = ˆ0 -∞ ˆ2π 0 N n=-N M m=0       C n mn W ξ mn W η mn W ζ mn      
L m (-sζ) L p (-sζ)e i(n-l)θ adζdθ

(5.28)

The orthogonalities given in equations (5.25) and (5.26) are applied to evaluate the coecients used for approximation as

      C n mn W ξ mn W η mn W ζ mn       = s 2π ˆ2π 0 ˆ0 -∞       u n C w ξ C w η C w ζ C       r=a L m (-sζ) e -inθ dζdθ .
(5.29)

Fourier approximation of wave elevation

The wave elevation on the waterline is approximated by Fourier series with Fourier coecient E n

[gΞ C ] r=a ≈ N n=-N
E n e inθ .

(5.30)

Fourier coecients for wave elevation are calculated by applying an integral over waterline to E n e i(n-l)θ adθ .

(5.31)

Using the orthogonality given in equation ( 5.26)

E n = 1 2π ˆ2π 0 [gΞ C
] r=a e -inθ dθ . 

f (r, θ, z, t) = ˆt t 0 ˆ2π 0 ˆ0 -∞ f (a, θ , ζ, τ )G(x, ξ ξ ξ, t -τ )adζdθ dτ, (5.33) 
where f (r, θ, z) is the ow component at eld point, f (a, θ , ζ) is the ow component at the matching surface. Fourier-Laguerre expansions on ow components are given by

f (r, θ, z, t) = ∞ q=-∞ ∞ p=0
C pq (r, t)e iqθ L p (-sz),

(5.34)

f (a, θ , ζ, τ ) = ∞ n=-∞ ∞ m=0
C mn (a, τ )e inθ L m (-sζ).

(5.35)

Substituting equations (5.34) and ( 5.35) into equation (5.33)

∞ q=-∞ ∞ p=0 C pq (r, t)e iqθ L p (-sz) = ∞ n=-∞ ∞ m=0 ˆt t 0 C mn (a, τ ) × ˆ2π 0 ˆ0 -∞ e inθ L m (-sζ)G(x, ξ ξ ξ, t -τ )adζdθ dτ, (5.36) 
Multiplying by e -iq θ L p (-sz) and integrating with respect to θ from 0 to 2π and z from -∞ to 0 ˆ2π

0 ˆ0 -∞ ∞ q=-∞ ∞ p=0 C pq (r, t)e i(q-q )θ L p (-sz)L p (-sz)dzdθ = ∞ n=-∞ ∞ m=0 ˆt t 0 C mn (a, τ ) × ˆ2π 0 ˆ0 -∞ ˆ2π 0 ˆ0 -∞ e i(nθ -q θ) L m (-sζ)L p (-sz)G(x, ξ ξ ξ, t -τ )adζdθ dzdθdτ.
(5.37)

Using the orthogonalities in equations (5.25) and (5.26), the Fourier-Laguerre coecient at the eld point is explicitly given by

C pq (r, t) = as 2π ∞ n=-∞ ˆt t 0 C mn (a, τ ) × ˆ2π 0 ˆ2π 0 ˆ0 -∞ ˆ0 -∞
e inθ e -iqθ L m (-sζ)L p (-sz)G(x, ξ ξ ξ, t -τ )dζdzdθ dθdτ.

(5.38)

In the previous section, it is shown that the time domain Green function can be expressed with Fourier series. The Green function in Fourier series is given by

G(r, θ, z, a, θ , ζ, t -τ ) = ∞ l=-∞
e il(θ-θ ) G l (r, z, a, ζ, t -τ ), (5.39) where G l (r, z, a, ζ, t -τ ) are the Fourier components of Green function. Substituting above expression into (5.38) and applying orthogonalitygiven in equation ( 5.26), we obtain

C pn (r, t) = ∞ n=-∞ ˆt t 0
C a mn (a, τ )S n,mp (r, a, t -τ )dτ, (5.40) where S n,mp (r, a, t -τ ) are the surface elementary functions

S n,mp (r, a, t -τ ) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)G n (r, z, a, ζ, t -τ )dζdz.
(5.41)

The elementary functions for the circular waterline integral

The right-hand-sides of equation ( 5.17) are given by a waterline integral on a ow quantities associated with the Green function. The ow component at the eld point is expressed as

g(a, θ, z, t) = ˆt t 0 ˆ2π 0 g(a, θ , ζ = 0, τ )G(x, ξ ξ ξ; t -τ )adθ dτ, (5.42) 
where g(a, θ, z; t) is the ow component at the eld point, g(a, θ , 0; τ ) is the ow component on the waterline of matching surface. Fourier-Laguerre and Fourier expansions on g(a, θ, z; t) and g(a, θ , 0; τ ) are given by

g(a, θ, z, t) = ∞ q=-∞ ∞ p=0
D pq (r, t)e iqθ L p (-sz),

(5.43)

g(a, θ , ζ = 0, τ ) = ∞ n=-∞ D n (a, τ )e inθ , (5.44) 
Substituting these two expansions into equation ( 5.42)

∞ q=-∞ ∞ p=0 D r pq e iqθ L p (-sz) = ∞ n=-∞ ˆt t 0 D n (τ ) ˆ2π 0 e inθ G(x, ξ ξ ξ; t -τ )adθ dτ, (5.45) 
Multiplying e -iq θ L p (-sz) and integrating with respect to θ from 0 to 2π and z from -∞ to 0 ˆ2π

0 ˆ0 -∞ ∞ q=-∞ ∞ p=0 D pq (r, t)e i(q-q )θ L p (-sz)L p (-sz)dθdz = ∞ n=-∞ ˆt t 0 D n (a, τ ) × ˆ2π 0 ˆ0 -∞ ˆ2π 0 e i(nθ -q θ) L p (-sz)G(x, ξ ξ ξ; t -τ )adθ dzdθdτ, (5.46) 
Using the orthogonal relationships given in equations (5.25) and (5.26), the Fourier-Laguerre coecient at eld point is given by

D pq (r, t) = as 2π ∞ n=-∞ ˆt t 0 D n (a, τ ) ˆ2π 0 ˆ2π 0 ˆ0 -∞
e inθ e -iqθ L p (-sz)G(x, ξ ξ ξ; t -τ )dzdθ dθdτ.

(5.47)

Substituting the Green function given by Fourier-series in equation ( 5.39) into the above equation, we obtain 5.48) where F n,p (r, a, t -τ ) are the waterline elementary functions

D pn (r, t) = ∞ n=-∞ ˆt t 0 D n (a, τ )F n,p (r, a, t -τ )dτ, ( 
F n,p (r, a, t -τ ) = 2πas ˆ0 -∞ L p (-sz)G n (r, z, a, ζ = 0, t -τ )dz.
(5.49)

5.4 Elementary functions for the time domain Green function

Green function in circular cylindrical coordinates

The source and image source are expressed with Bessel function integrals as

R(x, ξ ξ ξ) = 1 r 1 = 1 R 2 + (z -ζ) 2 = ˆ∞ 0 e -k|z-ζ| J 0 (kR)dk, R * (x, ξ ξ ξ) = - 1 r 2 = - 1 R 2 + (z + ζ) 2 = -
ˆ∞ 0 e k(z+ζ) J 0 (kR)dk.

(5.50) Applying Graf 's addition theorem on Bessel function

J 0 (kR) = ∞ l=-∞ J l (kr)J l (ka)e il(θ-θ ) , (5.51) 
Therefore, source and image source can be expressed by Fourier series

R(x, ξ ξ ξ) = ∞ l=-∞ e il(θ-θ ) R l (r, z, a, ζ), (5.52) R * (x, ξ ξ ξ) = ∞ l=-∞ e il(θ-θ ) R * l (r, z, a, ζ).
(5.53)

with their Fourier components z+ζ) J l (kr)J l (ka)dk.

R l (r, z, a, ζ) = ˆ∞ 0 e -k|z-ζ| J l (kr)J l (ka)dk, (5.54) R * l (r, z, a, ζ) = - ˆ∞ 0 e k(
(5.55)

The wave terms in Fourier series are given by

H(x, ξ ξ ξ, t -τ ) = 2 ˆ∞ 0 e k(z+ζ) J 0 (kR) 1 -cos gk(t -τ ) dk = ∞ l=-∞ e il(θ-θ ) H l (r, z, a, ζ, t -τ ),
(5.56)

F (x, ξ ξ ξ, t -τ ) = -2 ˆ∞ 0 e k(z+ζ) J 0 (kR) cos gk(t -τ ) dk = ∞ l=-∞ e il(θ-θ ) F l (r, z, a, ζ, t -τ ), (5.57) 
where

H l (r, z, a, ζ, t -τ ) = 2
ˆ∞ 0 e k(z+ζ) J l (kr)J l (ka) 1 -cos gk(t -τ ) dk,

(5.58)

F l (r, z, a, ζ, t -τ ) = -2
ˆ∞ 0 e k(z+ζ) J l (kr)J l (ka) cos gk(t -τ ) dk.

(5.59)

Surface elementary functions for the source

Fourier-series expansion of the source is given in equation ( 5.52) as:

R(r, a, θ, θ , z, ζ) = ∞ l=-∞ e il(θ-θ ) R l (r, a, z, ζ),
with its Fourier components R l (r, a, z, ζ) = ˆ∞ 0 e -k|z-ζ| J l (kr)J l (ka)dk.

Spatial derivatives of the source can be expressed with Fourier-series as

∇ ξ R(r, a, θ, θ , z, ζ) = ∞ l=-∞ e il(θ-θ ) R a,l êr + R θ ,l êθ + R ζ,l e z , (5.60) 
where vector components are given by R a,l = ˆ∞ 0 ke -k|z-ζ| J l (kr)J l (ka)dk,

(5.61) R θ ,l = - il a ˆ∞ 0 e -k|z-ζ| J l (kr)J l (ka)dk, (5.62) R ζ,l = ˆ∞ 0 ∂ ∂ζ e -k|z-ζ| J l (kr)J l (ka)dk = ˆ∞ 0 z -ζ |ζ -z| ke -k|z-ζ| J l (kr)J l (ka)dk.
(5.63)

Substituting the Fourier components into equation (5.41), the surface elementary functions for derivatives of source are given by

S R a,n,mp (s; r, a) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)R a,n (r, z, a, ζ)dζdz = 2πa ˆ∞ 0 kZ (1) mp (s; k)J n (kr)J n (ka)dk, (5.64) S R θ ,n,mp (s; r, a) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)R θ ,n (r, z, a, ζ)dζdz = -2πni ˆ∞ 0 Z (1) mp (s; k)J n (kr)J n (ka)dk, (5.65) S R ζ,n,mp (s; r, a) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)R ζ,n (r, z, a, ζ)dζdz = 2πa
ˆ∞ 0 kZ (2) mp (s; k)J n (kr)J n (ka)dk, (5.66) where Z

(1) mp (s; k) and Z

(2) mp (s; k) are dened here by the vertical integral functions of rst and second kind

Z (1) mp (s; k) = s ˆ0 -∞ ˆ0 -∞ e -k|z-ζ| L m (-sζ)L p (-sz)dζdz,
(5.67)

Z (2) mp (s; k) = s ˆ0 -∞ ˆ0 -∞ z -ζ |ζ -z| e -k|z-ζ| L m (-sζ)L p (-sz)dζdz,
(5.68) respectively.

Surface elementary functions for the image source

Fourier-series expansion of the image sources is given in equation ( 5.53) as

R * (r, a, θ, θ , z, ζ) = ∞ l=-∞ e il(θ-θ ) R * l (r, a, z, ζ)
with its Fourier components

R * l (r, a, z, ζ) = - ˆ∞ 0 e k(z+ζ) J l (kr)J l (ka)dk.
Fourier series expansion of the spatial derivatives of the image sources is given by

∇ ξ R * (r, a, θ, θ , z, ζ) = ∞ l=-∞ e il(θ-θ ) R * a,l êr + R * θ ,l êθ + R * ζ,l e z , (5.69) 
where vector components are given by R * a,l = -ˆ∞ 0 ke k(z+ζ) J l (kr)J l (ka)dk, R * ζ,l = -ˆ∞ 0 ke k(z+ζ) J l (kr)J l (ka)dk.

(5.72)

Substituting the Fourier components into equation ( 5.41), the surface elementary functions for spatial derivatives of the image source are given by 3) mp (s; k)J n (kr)J n (ka)dk, (5.75) where Z

S R * a,n,mp (s; r, a) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)R * a,n (r, z, a, ζ)dζdz = -2πa ˆ∞ 0 kZ (3) mp (s; k)J n (kr)J n (ka)dk, (5.73) S R * θ ,n,mp (s; r, a) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)R * θ ,n (r, z, a, ζ)dζdz = 2πni ˆ∞ 0 Z (3) mp (s; k)J n (kr)J n (ka)dk, (5.74) S R * ζ,n,mp (s; r, a) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)R * ζ,n (r, z, a, ζ)dζdz = -2πa ˆ∞ 0 kZ ( 
(3) mp (s; k) are dened as the vertical integral functions of third kind z+ζ) L m (-sζ)L p (-sz)dζdz.

Z (3) mp (s; k) = s ˆ0 -∞ ˆ0 -∞ e k(
(5.76)

Surface elementary functions for the harmonic component

The time derivative of wave term in the Green function expanded with Fourier series is given in equation ( 5.56) as

H τ (r, a, θ, θ , z, ζ, t) = ∞ l=-∞
e il(θ-θ ) H τ l (r, a, z, ζ, t), (5.77) and its Fourier components

H τ l (r, a, z, ζ, t) = 2 √ g ˆ∞ 0 k
1 2 e k(z+ζ) J l (kr)J l (ka) sin( gkt)dk.

(5.78) Spatial derivatives of wave term in Green function can be expressed with Fourier series

∇ ξ H τ = ∞ l=-∞ e il(θ-θ ) H τ a,l êr + H τ θ ,l êθ + H τ ζ,l e z , (5.79) 
with H τ a,l = 2 √ g ˆ∞ 0 k

3 2 e k(z+ζ) J l (kr)J l (ka) sin( gkt)dk,

(5.80) z+ζ) J l (kr)J l (ka) sin( gkt)dk,

H τ θ ,l = -2 √ g il a ˆ∞ 0 k 1 2 e k(
(5.81)

H τ ζ,l = 2 √ g ˆ∞ 0 k
3 2 e k(z+ζ) J l (kr)J l (ka) sin( gkt)dk.

(5.82)

Substituting the Fourier components into equation ( 5.41), the surface elementary functions for derivatives of the harmonic term are given by

S H a,n,mp (s; r, a, t) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)H τ a,n (r, z, a, ζ)dζdz = 4πa √ g ˆ∞ 0 k 3 2 Z (3) mp (s; k)J n (kr)J n (ka) sin( gkt)dk, (5.83) S H θ ,n,mp (s; r, a, t) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)H τ θ ,n (r, z, a, ζ)dζdz = -4πni √ g ˆ∞ 0 k 1 2 Z (3) mp (s; k)J n (kr)J n (ka) sin( gkt)dk, (5.84) S H ζ,n,mp (s; r, a, t) = 2πas ˆ0 -∞ ˆ0 -∞ L m (-sζ)L p (-sz)H τ ζ,n (r, z, a, ζ)dζdz = 4πa √ g ˆ∞ 0 k 3 2 Z (3)
mp (s; k)J n (kr)J n (ka) sin( gkt)dk.

(5.85)

Waterline elementary functions

The wave term F in Fourier series is given in equation ( 5.57) as

F (r, a, θ, θ , z, ζ, t) = ∞ l=-∞ e il(θ-θ ) F l (r, a, z, ζ, t)
with its Fourier components

F l (r, a, z, ζ, t) = -2
ˆ∞ 0 e k(z+ζ) J l (kr)J l (ka) cos( gkt)dk.

Spatial derivatives of the wave term can be expressed with Fourier series

∇ ξ F = ∞ l=-∞ e il(θ-θ ) F a,l êr + F θ ,l êθ + F ζ,l e z , (5.86) 
where its Fourier components are given by F a,l = -2 ˆ∞ 0 ke k(z+ζ) J l (kr)J l (ka) cos( gkt)dk,

(5.87)

F θ ,l = 2il a ˆ∞ 0 e k(z+ζ) J l (kr)J l (ka) cos( gkt)dk, (5.88) 
F ζ,l = -2 ˆ∞ 0 ke k(z+ζ) J l (kr)J l (ka) cos( gkt)dk.

(5.89)

Substituting above Fourier components into equation (5.49), the waterline elementary functions for derivatives of the wave term are given by 4) p (s; k)J n (kr)J n (ka) cos( gkt)dk,

F F a,n,p (s; r, a, t) = 2πas ˆ0 -∞ L p (-sz)F a,n (r, z, a, ζ = 0, t -τ )dz = -4πa ˆ∞ 0 kZ ( 
(5.90) 4) p (s; k)J n (kr)J n (ka) cos( gkt)dk, (5.92) where Z

F F θ ,n,p (s; r, a, t) = 2πas ˆ0 -∞ L p (-sz)F θ ,n (r, z, a, ζ = 0, t -τ )dz = 4πni ˆ∞ 0 Z (4) p (s; k)J n (kr)J n (ka) cos( gkt)dk, (5.91) F F ζ,n,p (s; r, a, t) = 2πas ˆ0 -∞ L p (-sz)F ζ,n (r, z, a, ζ = 0, t -τ )dz = -4πa ˆ∞ 0 kZ ( 
p (s; k) are the vertical integral function of the fourth kind dened by

Z (4) p (s; k) = s ˆ0 -∞
e kz L p (-sz)dz.

(5.93)

The vertical integral functions

The vertical integral functions are dened in equations (5.67), (5.68), (5.76) and ( 5.93) as

Z (1) mp (s; k) = s ˆ0 -∞ ˆ0 -∞ e -k|z-ζ| L m (-sζ)L p (-sz)dζdz, Z (2) mp (s; k) = s ˆ0 -∞ ˆ0 -∞ z -ζ |ζ -z| e -k|z-ζ| L m (-sζ)L p (-sz)dζdz, Z (3) mp (s; k) = s ˆ0 -∞ ˆ0 -∞ e k(z+ζ) L m (-sζ)L p (-sz)dζdz, Z (4) p (s; k) = s ˆ0 -∞ e kz L p (-sz)dz.
The vertical integral functions of the rst and second kind can be decomposed into two subintegrals as (5.96) the recursion relationship of integral is given as follows

Z (1) mp (s; k) = s ˆ0 -∞ ˆ0 z e k(z-ζ) L m (-sζ)L p (-sz)dζdz + s ˆ0 -∞ ˆz -∞ e -k(z-ζ) L m (-sζ)L p (-sz)dζdz (5.94) Z (2) mp (s; k) = s ˆ0 -∞ ˆ0 z e k(z-ζ) L m (-sζ)L p (-sz)dζdz -s ˆ0 -∞ ˆz -∞ e -k(z-ζ) L m (-sζ)L p (-sz)dζdz
ˆz -∞ e -k(z-ζ) L m (-sζ)dζ = L m (-sz) -L m-1 (-sz) k + s 2 + k -s 2 k + s 2 ˆz -∞ e -k(z-ζ) L m-1 (-sζ)dζ (5.97) ˆ0 z e k(z-ζ) L m (-sζ)dζ = L m (-sz) -L m-1 (-sz) k -s 2 + k + s 2 k -s 2 ˆ0 z e k(z-ζ) L m-1 (-sζ)dζ (5.98) with the integral values when m = 0 ˆz -∞ e -k(z-ζ) L 0 (-sζ)dζ = e sz 2 k + s 2 , ˆ0 z e k(z-ζ) L 0 (-sζ)dζ = e sz 2 -e kz k -s 2 , (5.99) 
Two sub-integrals are given by

ˆ0 -∞ ˆz -∞ e -k(z-ζ) L m (-sζ)L q (-sz)dζdz =            - (k-s 2 ) |p-m|-1 (k+ s 2 ) |p-m|+1 m > p 1 s 1 k+ s 2 m = p 0 m < p , ˆ0 -∞ ˆ0 z e k(z-ζ) L m (-sζ)L q (-sz)dζdz =            0 m > p 1 s 1 k+ s 2 m = p - (k-s 2 ) |p-m|-1 (k+ s 2 )
|p-m|+1 m < p .

5.5 Poincaré's velocity representation with a vertical circular cylindrical matching surface

Integrals involving cosine, sine functions or normal and azimuth directional components

The velocity contributions given in equations (5.14), (5.15), (5.16) and ( 5.17) include cos θ and sin θ . Therefore, the integrals involving cos θ and sin θ are necessarily as given by (5.110)

s 2π ˆ2π 0 ˆ0 -∞ f (a, θ , ζ) cos θ sin θ L m (-sζ) e -inθ dζdθ ,
The coecients of Fourier-Laguerre and Fourier series on the matching surface are given by

C mn = s 2π ˆ2π 0 ˆ0 -∞ f (a, θ , ζ)L m (-sζ) e -inθ dζdθ , (5.111) 
D n = 1 2π ˆ2π 0 g(a, θ , 0)e -inθ dθ . the integrals can be given by the Fourier coecients of n -1 and n + 1 modes as

s 2π ˆ2π 0 ˆ0 -∞ f (a, θ , ζ) cos θ sin θ L m (-sζ) e -inθ dζdθ = 1 2 C mn+1 + C mn-1 i(C mn+1 -C mn-1 )
, (5.114) and

1 2π ˆ2π 0 f (a, θ , 0) cos θ sin θ e -inθ dθ = 1 2 D n+1 + D n-1 i(D n+1 -D n-1 )
.

(5.115)

The normal and azimuth directional vector components are given by coordinates transformations given in equation ( 5.2)

f a = cos θ f ξ -sin θ f η , f θ = 1 a sin θf ξ + cos θf η .
Using the relationships given in (5.113), the integrals involving normal and azimuth directional vector component can be given by

C a mn = s 2π ˆ2π 0 ˆ0 -∞ f a (a, θ , ζ)L m (-sζ)e -inθ dζdθ = 1 2 C ξ mn+1 + C ξ mn-1 -iC η mn+1 + iC η mn-1 (5.116) C θ mn = s 2πa ˆ2π 0 ˆ0 -∞ f θ (a, θ , ζ)L m (-sζ)e -inθ dζdθ = 1 2 iC ξ mn+1 -iC ξ mn-1 + C η mn+1 + C η mn-1 (5.117) D a n = 1 2π ˆ2π 0 f a (a, θ , 0)e -inθ dθ = 1 2 D ξ n+1 + D ξ n-1 -iD η n+1 + iD η n-1 (5.118) D θ n = 1 2πa ˆ2π 0 f θ (a, θ , 0)e -inθ dθ = 1 2 iD ξ n+1 -iD ξ n-1 + D η n+1 + D η n-1 (5.119)
where C ξ mn , C η mn , D ξ n , D η n are Fourier-Laguerre and Fourier coecients involving f ξ and f η dened by

C ξ mn = s 2π ˆ2π 0 ˆ0 -∞ f ξ (a, θ , ζ)L m (-sζ)e -inθ dζdθ , C η mn = s 2π ˆ2π 0 ˆ0 -∞ f η (a, θ , ζ)L m (-sζ)e -inθ dζdθ , D ξ n = 1 2π ˆ2π 0 f ξ (a, θ , 0)e -inθ dθ , D η n = 1 2π ˆ2π 0 f η (a, θ , 0)e -inθ dθ .

Poincaré's velocity representation with elementary functions

The uid velocity at eld point in Fourier-Laguerre series obtained by using elementary functions and ows in Fourier-Laguerre series are given by

   u x C u y C u z C    = 1 4π N n=-N M p=0    U x pn U y pn U z pn    e inθ L p (-sz), (5.120) 
where U x pn , U y pn and U z pn are Fourier-Laguerre coecients of the uid velocity at eld point and superscripts are corresponding direction respectively. Fourier-Laguerre coecients of the uid velocity have four contributions given by

U x pn = U Rx pn + U Rx * pn + U Hx pn + U F x pn , (5.121) 
U y pn = U Ry pn + U Ry * pn + U Hy pn + U F y pn ,

(5.122)

U z pn = U Rz pn + U Rz * pn + U Hz pn + U F z pn .

(5.123)

The terms in right-hand-side of above equations correspond to contributions of source, image source, harmonic and waterline integrals, respectively. These contributions are summarized as follows:

• Source and image source contributions

U Rx pn + U Rx * pn = 1 2 N n=-N M m=0 [ C n mn+1 + C n mn-1 + iW z mn+1 -iW z mn-1 (S R a,n,mp + S R * a,n,mp ) + W z mn+1 + W z mn-1 -iC n mn+1 + iC n mn-1 (S R θ ,n,mp + S R * θ ,n,mp ) -2W y mn (S R ζ,n,mp + S R * ζ,n,mp )],
(5.124)

U Ry pn + U Ry * pn = 1 2 N n=-N M m=0 [ iC n mn+1 -iC n mn-1 -W z mn+1 -W z mn-1 (S R a,n,mp + S R * a,n,mp ) + C n mn+1 + C n mn-1 + iW z mn+1 -iW z mn-1 (S R θ ,n,mp + S R * θ ,n,mp ) + 2W x mn (S R ζ,n,mp + S R * ζ,n,mp )],
(5.125)

U Rz pn + U Rz * pn = N n=-N M m=0 [C n mn (S R ζ,n,mp -S R * ζ,n,mp ) + W θ mn (S R a,n,mp -S R * a,n,mp ) -W a mn (S R θ ,n,mp -S R * θ ,n,mp )], (5.126) 
where W a mn and W θ mn are Fourier-Laguerre coecients of normal and azimuth directional components of tangential velocity. Using the equations (5.116) and (5.117), they are given by

W a mn = s 2π ˆ2π 0 ˆ0 -∞ w a L m (-sζ)e -inθ dζdθ = 1 2 W x mn+1 + W x mn-1 -iW y mn+1 + iW y mn-1 (5.127) W θ mn = s 2π ˆ2π 0 ˆ0 -∞ w θ L m (-sζ)e -inθ dζdθ = 1 2 iW x mn+1 -iW x mn-1 + W y mn+1 + W y mn-1
(5.128)

• Harmonic contributions

U Hx pn = - 1 2 N n=-N M m=0 ˆt t 0 [ C n mn+1 + C n mn-1 + iW z mn+1 -iW z mn-1 S H a,n,mp -2W y mn S H ζ,n,mp + W z mn+1 + W z mn-1 -iC n mn+1 + iC n mn-1 S H θ ,n,mp ]dτ, (5.129) 
U Hy pn = - (5.131)

1 2 N n=-N M m=0 ˆt t 0 [ iC n mn+1 -iC n mn-1 -W z mn+1 -W z mn-1 S H a,n,mp + 2W x mn S H ζ,n,mp + C n mn+1 + C n mn-1 + iW z mn+1 -iW z mn-1 S H θ ,
• Waterline contributions

U F x pn = - 1 2 N n=-N ˆt t 0 (E n+1 + E n-1 )F F ζ,n,p dτ, (5.132) U F y pn = - i 2 N n=-N ˆt t 0 (E n+1 -E n-1 ) F F ζ,n,p dτ, (5.133) U F z pn = - N n=-N ˆt t 0 E n F F a,n,p dτ.
(5.134)

5.6 Evaluation of elementary functions

Elementary functions involving semi-innite integrals

The surface and waterline elementary functions involve the integrals

ˆ∞ 0 k ν Z (i) mp (s; k) Z (4) p (s; k) × J n (kr) J n (ka) J n (ka) × cos t √ gk sin t √ gk dk, i = 1, 2 , 3. 
( 5.135) where

Z (i) mp (s; k) and Z (4) 
mp (s; k) are the vertical integral functions discussed in section 5.4.6. They are written again

Z (1) mp (s; k) =          2 (k + s 2 ) m = p -s k -s 2 |m-p|-1 k + s 2 |m-p|+1 m = p , Z (2) mp (s; k) =        0 m = p (-s)sgn(m -p) k -s 2 |m-p|-1 k + s 2 |m-p|+1 m = p . and Z (3) mp (s; k) = s (k -s 2 ) m+p (k + s 2 ) m+p+2 , Z (4) p (s; k) = s (k -s 2 ) p (k + s 2 ) p+1 .
All vertical integral functions can be expressed as functions of k as (k -s 2 ) q (k + s 2 ) r , q < r, (5.136) where q and r are integer.

The derivative of the Bessel function of the rst kind can be given by a Bessel function of the rst kind with dierent order as [START_REF] Abramowitz | Handbook of mathematical functions: With Formulas, Graphs, and Mathematical Tables[END_REF])

J n (x) = 1 2 {J n-1 (x) -J n+1 (x)} , (5.137) 
J n (x) = -J n+1 (x) + n x J n (x).

(5.138) Therefore, the surface and waterline elementary functions need the evaluation of semi-innite integrals with respect to k

I pqr mn (s; r, a, t) = ˆ∞ 0 k p (k -s 2 ) q (k + s 2 ) r J m (kr)J n (ka) cos t √ gk sin t √ gk dk.
(5.139)

where p is a real number. q and r are integers. s is a positive real number (s > 0). m and n are integers. r and a are real positive numbers satisfying r > a. t is a positive real number with t ≥ 0.

Semi-innite integrals

The integrals given in equation ( 5.139) are rewritten by applying the change of variable x = ka

I pqr mn (s; r, a, t) = a r-p-q-1 ˆ∞ 0 x p (x -σ) q (x + σ) r J m (αx) J n (x) cos τ √ x sin τ √ x dx (5.140)
with the following parameters

σ = sa 2 , α = r a , τ = t g/a.
(5.141)

The eld point (r) being located outside of vertical circular cylindrical matching surface of radius (a) and time being always positive, then α ≥ 1, τ ≥ 0.

(5.142)

The evaluation of two semi-innite integrals involving two Bessel and trigonometric functions given in following equations are necessary

I c,mn (α; τ ) = ˆ∞ 0 f (x)J m (αx)J n (x) cos τ √ xdx, (5.143) 
I s,mn (α; τ ) = ˆ∞ 0 f (x)J m (αx)J n (x) sin τ √ xdx, (5.144) 
with the function

f (x) = x p (x -σ) q (x + σ) r .
(5.145)

The integral can be split into three integrals dened by

ˆ∞ 0 {•} dx = ˆ1 4 0 {•} dx + ˆxc 1 4 {•} dx + ˆ∞ xc {•} dx.
(5.146) where x c is the semi-innite integral bound and will be discussed later.

Integrals near zero and intermediate interval

The integral near zero is given by

I (0) c,mn I (0) s,mn = ˆ1 4 0 f (x)J m (αx)J n (x) cos τ √ x sin τ √ x dx.
(5.147)

Applying the change of variable, x = u 2 leads to

ˆ1 4 0 f (x)J m (αx)J n (x) cos τ √ x sin τ √ x dx = 2 ˆ1 2 0 uf (u 2 )J m (αu 2 )J n (u 2 )
cos τ u sin τ u du.

(5.148)

The original and transformed integrands given in the above equation are compared in gure 5.3.

In the gure 5.3, the original integrand shows a highly oscillatory behaviour near x = 0. It gives poor results when a direct numerical integration is applied. On the contrary, the transformed integrand shows a relatively smooth behavior near u = 0. A numerical integration for transformed integrand gives a reliable result for small u. The integral upper bound is set to x = 1 4 , u = 1 2 by numerical test. The adaptive 3-point Gaussian quadrature with discretized integral integral ∆u = min 0.2π max(α + 1, τ + 0.001) , 0.05 (5.149) is applied to calculate the integral from x = 0 to x = 1 4 .

(a) Jm(ax)Jn(bx) cos(c √ x) sin(c √ x) (b) uJm(au 2 )Jn(bu 2 ) cos(cu) sin(cu)
The integrals having intermediate interval from x = 1 4 to x c are dened by

I (i1) c,mn I (i1) s,mn = ˆxc 1 4 f (x)J m (αx)J n (x) cos τ √ x sin τ √ x dx, (5.150) 
The numerical integration by applying 3-point adaptive Gaussian quadrature with discretized interval ∆x = ∆u is used. The choice of integral upper bound x c will be discussed later.

Evaluation of semi-innite integral by splitting oscillatory functions

Computing a semi-innite integral of an oscillatory function with slowly decaying amplitude is more complicated than for a monotonic function. [START_REF] Blackemore | Comparison of some methods for evaluating innite range oscillatory integrals[END_REF] compared numerical methods, evaluating the semi-innite integral of an oscillatory function. They concluded that the integration, then summation algorithm provided good results over a wide range of functions.

The eciency of the numerical algorithm increases by using an accelerator. The accelerator is numerical algorithm extrapolating an innite summation from nite summation.

Lucas and Stone (1995) applied the integration, then summation algorithm on the integral involving a single Bessel function with various accelerators, e.g, Euler transform, -algorithm and mW-transform with a dierent sub-integral interval [START_REF] Davis | Methods of Numerical Integration[END_REF][START_REF] Shanks | Non-linear transformations of divergent and slowly convergent sequences[END_REF][START_REF] Wynn | On a device for computing the e m (S n ) transformation[END_REF][START_REF] Sidi | A user-friendly extrapolation method for oscillatory innite integrals[END_REF][START_REF] Lyness | Integrating some innite oscillating tails[END_REF]. They showed that all accelerators enhanced numerical eciency and concluded that mW-transform with successive zeros of the Bessel function gives better results than others. Following previous works, [START_REF] Lucas | Evaluating innite integrals involving products of Bessel functions of arbitrary order[END_REF] applied the same idea on the integral involving two Bessel functions. Two Bessel functions are split into two oscillatory functions and zeros are found by asymptotic forms of oscillatory functions.

The present study extended their idea for the case of the integral involving two Bessel function multiplied by sine or cosine functions. The integrals involving two Bessel functions multiplied by sine or cosine functions are dened by

I ∞ c,mn (α, τ ) I ∞ s,mn (α, τ ) = ˆ∞ xc f (x)J m (αx)J n (x) cos τ √ x sin τ √ x dx.
(5.151)

Using the asymptotic forms of Bessel function for large arguments given by [START_REF] Abramowitz | Handbook of mathematical functions: With Formulas, Graphs, and Mathematical Tables[END_REF])

J n (x) = 2 πx cos x - nπ 2 - π 4 
,
(5.152)

Y n (x) = 2 πx sin x - nπ 2 - π 4 
,
( 5.153) and the relationships of trigonometric functions given by cos(A ± B) = cos A cos B ∓ sin A sin B, (5.154) sin(A ± B) = sin A cos B ± sin B cos A, (5.155) the oscillatory terms in the integrand are split into four functions

J m (αx)J n (x) cos τ √ x = 1 4 4 i=1 J (i) mn (α, τ ; x), (5.156) J m (αx)J n (x) sin τ √ x = 1 4 4 i=1 Y (i) mn (α, τ ; x) (5.157)
where

J (i)
mn and Y (i) mn are the oscillatory functions dened as

J (1) mn (α, τ ; x) = J - mn (α; x) cos τ √ x + Y - mn (α; x) sin τ √ x,
(5.158)

J (2) mn (α, τ ; x) = J - mn (α; x) cos τ √ x -Y - mn (α; x) sin τ √ x,
(5.159)

J (3) mn (α, τ ; x) = J + mn (α; x) cos τ √ x + Y + mn (α; x) sin τ √ x,
(5.160)

J (4) mn (α, τ ; x) = J + mn (α; x) cos τ √ x -Y + mn (α; x) sin τ √ x, (5.161) Y (1) mn (α, τ ; x) = J - mn (α; x) sin τ √ x -Y - mn (α; x) cos τ √ x, (5.162) Y (2) mn (α, τ ; x) = J - mn (α; x) sin τ √ x + Y - mn (α; x) cos τ √ x,
(5.163)

Y (3) mn (α, τ ; x) = J + mn (α; x) sin τ √ x -Y + mn (α; x) cos τ √ x, (5.164) 
Y (4) mn (α, τ ; x) = J + mn (α; x) sin τ

√ x + Y + mn (α; x) cos τ √ x, (5.165) with J ± mn (α; x) = J m (αx)J n (x) ∓ Y m (αx)Y n (x),
(5.166)

Y ± mn (α; x) = J m (αx)Y n (x) ± Y m (αx)J n (x).
(5.167)

Using the asymptotic forms of Bessel functions in equations ( 5.152) and ( 5.153), the asymptotic forms of oscillatory functions are given by

J (1) mn (α, τ ; x) ∼ 2 πx √ α cos (α -1) x + τ √ x - π 2 (m -n) ,
(5.168)

J (2) mn (α, τ ; x) ∼ 2 πx √ α cos (α -1) x -τ √ x - π 2 (m -n) ,
(5.169)

J (3) mn (α, τ ; x) ∼ 2 πx √ α cos (α + 1) x -τ √ x - π 2 (m + n + 1) , (5.170) 
J (4) mn (α, τ ; x) ∼ 2 πx √ α cos (α + 1) x + τ √ x - π 2 (m + n + 1) , (5.171) 
and

Y (1) mn (α, τ ; x) ∼ 2 πx √ α sin (α -1) x + τ √ x - π 2 (m -n) , (5.172) 
Y (2) mn (α, τ ; x) ∼ -

2 πx √ α sin (α -1) x -τ √ x - π 2 (m -n) , (5.173) 
Y (3) mn (α, τ ; x) ∼ -

2 πx √ α sin (α + 1) x -τ √ x - π 2 (m + n + 1) , (5.174) 
Y (4) mn (α, τ ; x) ∼

2 πx √ α sin (α + 1) x + τ √ x - π 2 (m + n + 1) .
(5.175)

The behaviour of split oscillatory functions follows a sinusoidal function for large x. The phase function is given by

ϑ = α ± x ± τ √ x + γ.
( 5.176) where α ± = α ± 1 and γ is function of m and n. Therefore, the phase functions corresponding to the oscillatory functions are dened by

ϑ (1) = α -x + τ √ x + γ A , for J (1)
mn and Y (1) mn ,

(5.177) 2) mn and Y (2) mn ,

ϑ (2) = α -x -τ √ x + γ A , for J ( 
(5.178) 3) mn and Y (3) mn ,

ϑ (3) = α + x -τ √ x + γ B , for J ( 
(5.179) 4) mn and Y (4) mn ,

ϑ (4) = α + x + τ √ x + γ B , for J ( 
(5.180)

where

γ A = - π 2 (m -n), γ B = - π 2 (m + n + 1).
(5.181)

The behavior of the phase functions is plotted with respect to x in gure 5.4.

Figure 5.4. The phase function of oscillatory functions along x-axis

The gure shows that ϑ (i) for i = 1, 4 always increases with respect to x, but ϑ (i) for i = 2, 3 has a minimal value when

dϑ (i) dx x=xs = α ∓ - τ 2 √ x s = 0 for i = 2, 3.
(5.182)

The value of x s minmizing ϑ (i) for i = 2, 3 is given by

x s = 1 4 τ α ∓ 2 .
(5.183)

The phase functions, ϑ (i) for i = 2, 3, decrease until x ≤ x s and increase for x ≥ x s . Near x s where the phase changes slowly, the oscillatory functions, J

mn and Y (i)

mn for i = 2, 3, look stationary. Therefore, x s is dened here as a stationary point of oscillatory functions in the present study. [START_REF] Lucas | Evaluating innite integrals involving products of Bessel functions of arbitrary order[END_REF] reported a similar phenomenon as initial poor behavior of J + mn . It is understood that initial poor behavior happens when the phase function of J + mn is equal to zero.

The semi-innite integral is separated into the summation of sub-integrals with proper integral intervals. The zeros or maxima/minima of oscillatory functions are used in the integration, then summation algorithm but nding maxima/minima of arbitrary oscillatory functions given in equations ( 5.158)-(5.165) are not easy. Therefore, zeros are used as integral interval for subintegral in the present study.

Finding the zeros of oscillatory functions, J (i) mn , Y

(1,4) mn for i = 1, 4, is relatively easy. After nding the rst zero by direct searching with marching interval ∆x = π 4α ∓ .

(5.184)

The next zero guess is taken from phase function, ϑ (i) for i = 1, 4. The next zero guess, x * j+1 , is estimated by increasing the phase by π as

α ∓ x * j+1 + τ x * j+1 = α ∓ x j + τ √ x j + π, (5.185) 
It gives an explicit expression of next zero guess

x * j+1 =   -τ + τ 2 + 4α ∓ α ∓ x j + τ √ x j + π 2α ∓   2 .
(5.186)

From the next zero guess x * j+1 , the Newton-Raphson method with the initial guess of x

(0) j+1 = x * j+1 is used to compute the next zero as x (n+1) j+1 = x (n) j+1 - dϑ (i) (x (n) j+1 ) dx , i = 1, 4.
(5.187)

The next zero, x j+1 , is taken from the converged value x (n+1) j+1 . Numerical tests show that the Newton-Raphson method converges within 3-4 steps with accuracy O(10 -12 ).

Finding the zeros of oscillatory functions, J

mn , Y

mn for i = 2, 3, is complicated due to the existence of a stationary point. The phase of the stationary point is given by

ϑ s = ϑ (i) (x s ), for i = 2, 3.
(5.188)

After nding the rst zero by direct searching, the next zero guess is given by

α ± x * i+1 -τ x * i+1 =          α ± x i -τ √ x i , |ϑ i -ϑ s | < 1.5π, α ± x i -τ √ x i -π, x i ≤ x 0 , and |ϑ i -ϑ s | ≥ 1.5π, α ± x i -τ √ x i + π, x i ≥ x 0 , and |ϑ i -ϑ s | ≥ 1.5π.
(5.189)

It also gives an explicit expression of the next zero guess

x * i+1 =                        τ + τ 2 +4α ± (α ± x i -τ √ x i) 2α ± 2 , x i -x 0 < 1.5π, τ -τ 2 +4α ± (α ± x i -τ √ x i -π) 2α ± 2 , x i ≤ x 0 , and x i -x 0 ≥ 1.5π, τ + τ 2 +4α ± (α ± x i -τ √ x i +π) 2α ± 2 ,
x i ≥ x 0 , and x i -x 0 ≥ 1.5π.

( 5.190) It is straightforward to apply the Newton-Raphson method to nd zeros of oscillatory functions as

x (n+1) j+1 = x (n) j+1 - dϑ (i) (x (n) j+1 ) dx , i = 2, 3.
(5.191) Some of the zeros near the stationary points are not detected by the above procedures. In that case, the zeros are found by applying direct searching with marching interval given in equation (5.184). After nding the rst zero after stationary point, the extrapolation procedure is applied to accelerate the evaluation.

The procedures of decomposed oscillatory functions are plotted in gure 5.5. The behaviours of stationary point are observed for the functions, J

mn , Y x c = max y m,1 α , y n,1

( 5.193) with an approximated rst zero of Bessel function of the second kind

y ν,1 =    0.89357697, ν = 0, ν + 0.9315768ν 1 3 + 0.260351ν -1 3 + 0.01198ν -1 -0.006ν -5 3 -0.001ν -7 3 , ν ≥ 1.
( 5.194) Finally, the semi-innite integral is split into four integrals as

I ∞ c,mn (α, τ ) = 1 4 4 i=1 I (i) c,mn (α, τ ), (5.195) I ∞ s,mn (α, τ ) = 1 4 4 i=1 I (i)
s,mn (α, τ ), (5.196) where eight integrals are dened by

I (i) c,mn (α, τ ) = ˆ∞ xc f (x)J (i)
mn (α, τ ; x)dx,

I (i) s,mn (α, τ ) = ˆ∞ xc f (x)Y (i) mn (α, τ ; x)dx , i = 1, 2 , 3, 4. 
( 5.197) The successive zeros of oscillatory functions can be found after the rst zero x 0 has been searched from the lower integral bound, x c . Then, the semi-innite integral is expressed as 5.198) 5.199) with the innite series summation of sub-integral

I (i) c,mn = ˆx0 xc f (x)J (i) mn (α, τ ; x)dx + ˆx1 x 0 f (x)J (i) mn (α, τ ; x)dx + ˆx2 x 1 f (x)J (i) mn (α, τ ; x)dx + • • • = ˆx0 xc f (x)J (i) mn (α, τ ; x)dx + R (i) c,∞ , for i = 1, 4, ( 
I (i) s,mn = ˆx0 xc f (x)Y (i) mn (α, τ ; x)dx + R (i) s,∞ for i = 1, 4, ( 
R (i) c,∞ = lim K→∞ K k=0 a (i) 2k , R (i) s,∞ = lim K→∞ K k=0 b (i) 2k , for i = 1, 4, (5.200) 
where series terms are given by a

(i) k = ˆxk+2 x k f (x)J (i) mn (α, τ ; x)dx, b (i) k = ˆxk+2 x k f (x)Y (i) mn (α, τ ; x)dx.
, for i = 1, 4. 

I (i) c,mn = ˆx0 xc f (x)J (i) mn (α, τ ; x)dx + S (i) c + R (i) c,∞ for i = 2, 3 , 
I (i) s,mn = ˆx0 xc f (x)Y (i) mn (α, τ ; x)dx + S (i) s + R (i) s,∞ for i = 2, 3, (5.202) 
with the nite and innite series summations

S (i) c = l k=0 a (i) 2k , R (i) c,∞ = lim K→∞ K k=0 a (i) 2(l+1)+2k for i = 2, 3, (5.203) 
S (i) s = l k=0 b (i) 2k , R (i) s,∞ = lim K→∞ K k=0 b (i) 2(l+1)+2k
for i = 2, 3.

( 5.204) where series terms are given by a

(i) k = ˆxk+2 x k f (x)J (i) mn (α, τ ; x)dx b (i) k = ˆxk+2 x k f (x)Y (i) mn (α, τ ; x)dx , for i = 2, 3.
(5.205)

The summation index l is chosen in order to have x l > x c . The innite series summations R (i) 2k by using -algorithm (Wynn, 1956). The -algorithm extrap- olates the innite series summation with a polynomial multiplied by a decaying exponential.

(i) c;∞ and R (i) s;∞ are split into R (i) c;∞ (j) = j k=0 a (i) 2k + ∞ k=j+1 a (i) 2k , i = 1, 2, 3, 4, (5.206) 
R (i) s;∞ (j) = j k=0 b (i) 2k + ∞ k=j+1 b (i) 2k , i = 1, 2 , 3, 4. 
The following error criterion with a successive increment of j is used to obtain the integral with desired accuracy( I ) With the successive move of sub-integration, the extrapolation errors shall be reduced. The starting points of extrapolation depend on the oscillatory functions. 

1 -I ≤ R (i) c,s;∞ (j) R (i) c,s;∞ (j -2) ≤ 1 + I , and 1 -I ≤ R (i) c,s;∞ (j) R (i) c,s;∞ (j -1) ≤ 1 + I , j ≥ 2.
ˆ∞ 0 xe -0.01x J 0 (3x)J 0 (x) cos 10 √ xdx 4.828753 × 10 -1 4.828750 × 10 -1 -0.00006 ˆ∞ 0 xe -0.01x J 0 (3x)J 0 (x) sin 10 √ xdx -2.588788 × 10 -2 -2.588785 × 10 -2 -0.00012
Computation time 0.176 s 0.068 s -

The relative errors of integral values evaluated by using extrapolation are calculated with the reference integral values. The reference integral values are calculated by numerical quadrature without extrapolation. An absolute integral error criterion of 10 -9 is used for calculating reference integral values. The relative errors for benchmark test functions are less than 2.4 × 10 -4 %.

Note that the relative errors can be further reduced by adjusting the desired accuracy ( I ) in equation 5.208.

The results show that the evaluated semi-innite integral with extrapolation gives good results and the computation is accelerated. It is more evident when f (x) has a slowly decaying behavior.

It must be noticed that the numerical algorithm with split oscillatory functions can be applicable for an arbitrary but monotonic behavior function. The numerical algorithm is able to be used by selecting the starting point of extrapolation for functions having monotonic behaviours for large x.

Evaluation of semi-innite integral by steepest descent method

An alternative way of evaluating the semi-innite integrals based on the steepest descent method has been suggested [START_REF] Chen | Reformulation of wavenumber integrals describing transient waves[END_REF]Li et al., 2019a). The integrands in equation ( 5.151) have highly oscillatory behaviours when the variable τ is large [START_REF] Li | Fast algorithm on the interaction of transient Green function on the cylindrical surface. 8th Green function Seminar[END_REF]. The computational time of algorithm based on split oscillatory functions for large τ is slightly longer than the case of small τ . The procedure proposed by Chen and Li (2019); Li et al. (2019a) is summarized in this section.

The semi-innite integral of two Bessel functions multiplied by sinusoidal functions given in equation ( 5.151) are wirtten again

I ∞ c,mn (α, τ ) = ˆ∞ xc f (x)J m (αx)J n (x) cos τ √ xdx, I ∞ s,mn (α, τ ) = ˆ∞ xc f (x)J m (αx)J n (x) sin τ √ xdx.
Introducing the complex integral

I ∞ mn (α; t) = I ∞ c,mn (α; t) -iI ∞ s,mn (α; t) = ˆ∞ xc f (x)J m (αx)J n (x)e -iτ √
x dx, (5.209) and the relationship between Hankel and Bessel functions

J m (αx) = 1 2 H (1) m (αx) + H (2) m (αx) , J n (x) = 1 2 H (1) n (x) + H (2) n (x) , (5.210) 
let us obtain for the integrand

I ∞ mn (α; τ ) = 1 4 ˆ∞ xc f (x) H (1) m (αx)H (1) n (x) + H (2) m (αx)H (1) n (x)
+H (1) m (αx)H (2) n (x) + H (2) m (αx)H (2) n (x) e -iτ √ x dx.

(5.211)

The oscillatory parts of Hankel functions can be decomposed from asymptotic forms of Hankel function as [START_REF] Abramowitz | Handbook of mathematical functions: With Formulas, Graphs, and Mathematical Tables[END_REF])

H (1) m (αx) = Ĥ(1) m e iαx , H (2) 
m (αx) = Ĥ( 2) m e -iαx ,

(5.212)

H (1) m (x) = Ĥ(1) m e ix , H (2) 
m (x) = Ĥ( 2) m e -ix .

( 

Ĥ(2)

m are the amplitude functions of Hankel functions. And the exponential terms corrspond to oscillatory parts of Hankel functions. Using the above equations, the semi-innite integral can be decomposed into four integrals 2) m (αx) Ĥ( 2)

I ∞ mn (α; τ ) = I ∞,A mn (α; τ ) + I ∞,B mn (α; τ ) + I ∞,C mn (α; τ ) + I ∞,D mn (α; τ ), (5.214) with I ∞,A mn (α; τ ) = ˆ∞ xc f (x) Ĥ(1) m (αx) Ĥ(1) n (x)e i[(α+1)x-τ √ x] dx, (5.215) I ∞,B mn (α; τ ) = ˆ∞ xc f (x) Ĥ(1) m (αx) Ĥ(2) n (x)e i[(α-1)x-τ √ x] dx, (5.216) I ∞,C mn (α; τ ) = ˆ∞ xc f (x) Ĥ(2) m (αx) Ĥ(1) n (x)e i[-(α-1)x-τ √ x] dx, (5.217) I ∞,D mn (α; τ ) = ˆ∞ xc f (x) Ĥ(
n (x)e i[-(α+1)x-τ √
x] dx.

(5.218)

I ∞,A (α + ; τ ) = ˆ∞ xc f A (x)e i[α + x-τ √ x] dx, I ∞,B (α -; τ ) = ˆ∞ xc f B (x)e i[α -x-τ √
x] dx, (5.219) 2) n (x) (5.222) where parameters α ± = α ± 1 are used. The exponential terms in integrands have phase functions similar to ϑ in equation (5.176). Function f (x) is multiplied by amplitude functions of

I ∞,C (α -; τ ) = ˆ∞ xc f C (x)e -i[α -x+τ √ x] dx, I ∞,D (α + ; τ ) = ˆ∞ xc f D (x)e -i[α + x+τ √ x] dx, (5.220) with f A (x) = f (x) Ĥ(1) m ( α + -1 x) Ĥ(1) n (x), f B (x) = f (x) Ĥ(1) m ( α -+ 1 x) Ĥ(2) n (x) (5.221) f C (x) = f (x) Ĥ(2) m ( α -+ 1 x) Ĥ(1) n (x), f D (x) = f (x) Ĥ(2) m ( α + -1 x) Ĥ(

Hankel functions

Ĥ(1) m (x) and Ĥ( 2) m (x). Because the amplitude functions Ĥ(1) m (x) and Ĥ( 2) m (x) are smoothly changing with respect to x > 0, the functions f A , f B , f C and f D have smooth behaviors. The oscillatory phase function in exponential term is transformed into

α ± x ± τ √ x = x 2α ± τ 2 ± 2 √ x 2α ± τ + 1 τ 2 4α ± - τ 2 4α ± .
(5.223)

Introducing the integral variable 

u = √ x 2α ± τ , or inversely x = 1 4 uτ α ± 2 , ( 5 
I ∞,C = e iτ - ˆ∞ u - c g C (u)e -iτ -(u+1) 2 du, I ∞,D = e iτ + ˆ∞ u + c g D (u)e -iτ + (u+1) 2 du, (5.226) 
with smoothly behaving functions

g A (u) = f A u 2 τ + α + 2uτ + α + , g B (u)= f B u 2 τ - α - 2uτ - α -, (5.227) g C (u) = f C u 2 τ - α - 2uτ - α -, g D (u)= f D u 2 τ + α + 2uτ + α + .
(5.228)

The integral parameters are given by

u ± c = √ x c 2α ± τ > 0, τ ± = τ 2 4α ± ≥ 0.
(5.229) Therefore, the four dierent integrals fall into two types of integral given by

I I = ˆ∞ uc g(u)e -iκ(u+1) 2 du, (5.230) 
I II = ˆ∞ uc g(u)e iκ(u-1) 2 du.

(5.231)

Evaluation of the second integral type is separated into (5.234)

I II =    I II 0 , when u c ≥ 1, I II 0 + I III , when u c < 1,

Integral type I in the complex plane

The integral type I is given in equation ( 5.230) as

I I = ˆ∞ uc g(u)e -iκ(u+1) 2 du
Applying the change of integral variable, w = (u + 1) 2 , this integral is transformed into where the complex variable w = ρe iθ is used. θ c is integral bound will be discussed soon. The above integral is zero when the real part of exponential function is negative from Jordan's Lemma [START_REF] Brown | Complex variables and applications[END_REF]. Because κ and ρ are positive, sin θ should be negative, in other words, θ should be in range θ ∈ [-π 2 , 0] to make I I ∞ be zero. Consequently, the closed contour passes through quadrant 4 of the complex w plane.

I I = ˆ∞ w + c g ( √ w -1) 2 √ w e -iκw dw
The steepest descent path is determined by putting the imaginary part of integrand in equation ( 5.237) as zero. Therefore, the integral path of

I I i is set to be θ c = -π 2 .
Using Cauchy's theorem in equation ( 5.236), the integral along real w axis can be evaluated by steepest descent method as

I I = -I I i = -e -iκw + c i 2 ˆ∞ 0 g w + c -iw -1 w + c -iw e -κw dw
(5.238)

The semi-innite integral involves the exponential factor, e -κw , the numerical evaluation of above integral is straightforward and converges fastly for large κ, where κ is proportional to τ 2 α 2 .

Integral type II in the complex plane

The second integral type with lower integral bound u c ≥ 1 is given in equation ( 5.230) as

I II 0 = ˆ∞ uc g(u)e iκ(u-1) 2 du.
Applying the change of variable, w = (u -1) 2 , this integral is transformed into the following form

I II 0 = ˆ∞ wc g( √ w + 1) 2 
√ w e iκw dw (5.239) with lower integral bound w + c = (u c -1) 2 . The contour of integration path for second integral type is depicted in gure 5.9. There is no singularity inside closed contour, the integral along closed path is given by using Cauchy's theorem

I II 0 + I II 0∞ + I II 0i = 0.
(5.240) Figure 5.9. Closed contour II integration path in complex w-plane and mapped integration path in complex u-plane. ( 5.241) where the complex variable w = ρe iθ is used. The above integral is zero when the real part of exponential argument is negative. Therefore, θ should be in range θ ∈ [0, π 2 ] to make the integral be zero by using Jordan's Lemma. The steepest descent path is determined by making the imaginary part of exponential argument in above integrand to be zero, e.g.

θ c = π 2 .
The integration along real w-axis can be given by using Cauchy's theorem in equation ( 5.240) as

I II 0 = -I II 0i = e iκwc i 2 ˆ∞ 0 g( √ w c + iw + 1) √ w 1 + iw e -κw dw.
(5.242)

Integral type III in the complex plane

A supplementary integral is necessary when the lower integration bound u c is lower than 1 for integral type II. The integral type III is given in equation ( 5.234) as

I III = ˆ1 uc g(u)e iκ(u-1) 2 du
Applying the change of variable, w = (u -1) 2 , the integral is transformed into 5.243) with lower bound w - c = (u c -1) 2 .The contour integration path is depicted in gure 5.10. No singularity is located inside the closed integration path, then the integral along closed path can be given as the below:

I III = ˆ0 w - c - g(1 - √ w) 2 √ w e iκw dw ( 
I III + I III i0 + I III ∞ + I III i1 = 0.
(5.244)

Figure 5.10. Closed contour III integration path in complex w-plane and mapped integration path in complex u-plane.

where the integration I III ∞ can be expressed as

I III ∞ = lim w I →∞ ˆw- c 0 - g(1 - √ w + iw I ) 2 √ w + iw I e iκ(w+iw I ) dw = lim w I →∞ ˆw- c 0 - g(1 - √ w + iw I ) 2 √ w + iw I
e iκw e -κw I dw.

(5.245)

The real part of exponential function in above integral should be negative to make the integral zero. Therefore, w I should be positive. When w I is positive innity, above integral is zero by using Jordan's Lemma. Two integrals along vertical paths are given by

I III i0 = - i 2 ˆ∞ 0 g 1 - √ iw √ iw
e -κw dw, (5.246) and

I III i1 = e iκw - c i 2 ˆ∞ 0 g 1 -w - c + iw w - c + iw
e -κw dw.

(5.247)

Therefore, the integration along the real w axis can be calculated by evaluating two integrals along the vertical axis

I III = i 2 ˆ∞ 0 g 1 - √ iw √ iw e -κw dw -e iκw - c i 2 ˆ∞ 0 g 1 -w - c + iw w - c + iw
e -κw dw.

(5.248)

It must be noticed that the contour integrations along the vertical axis are introduced to provide the complete sets of steepest descent method evaluating oscillatory functions. The integration interval for integral type III is dened along the real axis w, and it is nite from w - c to 1. There is no numerical diculty to evaluate the integral type III along real axis w. In the present study, the numerical quadrature is directly applied on equation (5.243) instead of evaluating two semi-innite integrals though they involve exponential factors in the integrands.

Choice of lower integral bound x c

Functions g A (u), g B (u), g C (u), g D (u) dened in equations (5.227) and 5.228 can be expressed by

g T (u) = f T u 2 τ * α * 2uτ * α * , T = A, B, C, D.
(5.249)

with functions f T (x) can be expressed as 

f T (x) = f (x) Ĥ(i) m ([α * ± 1]x) Ĥ(j) m (x) , i, j = 1 or 2.
f (x) = x p (x -σ) q (x + σ) r .
(5.251)

Therefore, the functions g T (u) can be expressed in the forms below with denominator

g T (u) = h T (u) 1 4 u 2 τ 2 α 2 + σ r (5.252)
where h T (u) corresponds to the terms related to the nominator of original function f (x), two Hankel funtions and change of variable.

Functions g T (u) are singular when the denominator is equal to zero. Therefore, the poles are given by:

u = iu ± p , with u ± p = ± 2α √ σ τ .
(5.253)

The poles u = iu ± p locate outside of contour integrals I and II, but u = iu - p can be located inside the contour integral III depicted in gure 5.10. Value of u 2 is given by mapping function

iu 2 = 1 -w - c + iw.
(5.254)

Splitting real and imaginary parts gives the relationship

w - c = 1 -u 2 2 ,
and w = -2u 2 .

(5.255)

Introducing w - c = (1 -u c ) 2
, the location of pole is obtained as

u 2 = -u c (2 -u c ).
(5.256)

To construct a closed contour integration without pole inside, we use the fact that u 2 satises u - p > u 2 . With the relation u - p = -u c σ xc the criterion of lower integral bound is given by

x c > σ u c 2 -u c .
(5.257)

The lower integral bound x c = σ uc 2-uc is a motononically increasing function for 0 < u c ≤ 1 and has a maximum value of 1 when u c = 1. It provides a choice of x c > σ. Futhermore, integrals involving Hankel functions H

(1)

m (z) = J m (z) + iY m (z), H (2) 
m (z) = J m (z) -iY m (z) provide the criterion for the lower integral bound due to singular behavior of Y m (z) near z = 0. Therefore, the lower integration bound is selected by

x c = max σ, max y m,1 α , y n,1 .
( 5.258) where y m,1 is the approximated rst zero of Y m (z) given in equation (5.194).

Remarks on elementary functions

The numerical evaluation of elementary function proposed in the present study is based on direct numerical quadrature. The computation algorithm could be optimized by constructing sets of approximation functions with decomposed regions, which are commonly used for the evaluation of wave Green function in linear potential codes [START_REF] Chen | Hydrodynamics in oshore and naval applications -Part I[END_REF][START_REF] Lee | WAMIT Theory Manual[END_REF][START_REF] Babarit | Theoretical and numerical aspects of the open source BEM solver NEMOH[END_REF].

It is presumed that the ODEs of time domain Green function may help to evaluate the elementary functions. Furthermore, it probably can accelerate for computation of convolution integrals.

The ODE for wave term of time domain Green function in spatial and time variable is given by (Clément, 1998)

R 2 + Z 2 ∂ 4 H τ ∂τ 4 -Zτ ∂ 3 H τ ∂τ 3 + 1 4 τ 2 -4Z ∂ 2 H τ ∂τ 2 + 7 4 τ ∂ 3 H τ ∂τ 3 + 9 4 H τ = 0.
(5.259)

When the eld points are not on the matching surface(R 2 + Z 2 > 0) 5.260) where U(R, Z) represent the square of source function

∂ 4 H τ ∂τ 4 + τ 2 U U Z ∂ 3 H τ ∂τ 3 + τ 2 4 U + 2 U U Z ∂ 2 H τ ∂τ 2 + 7 4 τ U ∂ 3 H τ ∂τ 3 + 9 4 UH τ = 0, ( 
U(R, Z) = 1 R 2 + Z 2 .
(5.261) If integrals over circular cylindrical surface with weight function on ODEs are evaluated analytically, ODEs for elementary functions can be derived. If ODEs and initial conditions for elementary functions are available, elementary functions can be evaluated by solving the ODEs rather than using the numerical quadrature. Furthermore, Clément (1998) suggested the idea that convolution integrals involving the Green function can be updated by simply integrating ODEs. If ODEs for elementary functions are derived, the convolution integrals involving the elementary functions given by

ˆt t 0 f (τ )S a,θ ;n,mp (t -τ )dτ, ˆt t 0 f (τ )F a,θ ;n,p (t -τ )dτ, (5.262) 
where S a,θ ;n,mp (τ ) and F a,θ ;n,p (τ ) are the elementary functions. If ODEs are available for elementary functions, the computation of convolution integrals can be accelerated, and a better accuracy is also expected for the convolution integral.

In the present study, the convolution integral is evaluated by direct summation with simulation time step.

Summary on the evaluation of elementary functions

Elementary functions having two Bessel functions and trigonometric function are dened by

I c,mn (α; t) = ˆ∞ 0 f (x)J m (αx)J n (x) cos τ √ xdx, I s,mn (α; t) = ˆ∞ 0 f (x)J m (αx)J n (x) sin τ √ xdx.
They are evaluated by splitting the integral interval into several sub-integrals

ˆ∞ 0 {•} dx = ˆ1 4 0 {•} dx + ˆxc 1 4 {•} dx + ˆ∞ xc {•} dx.
The rst integral is transformed with the change of variable u 2 = x due to the highly oscillatory behavior near to origin, giving

ˆ1 4 0 f (x)J m (αx)J n (x) cos τ √ x sin τ √ x dx = 2 ˆ1 2 0 uf (u 2 )J m (αu 2 )J n (u 2 ) cos τ u sin τ u du.
The numerical quadrature is applied to evaluate above integral and the integral along intermediate interval from 1 4 to x c with discretization integral ∆u = ∆x = min 0.2π max(α+1,τ +0.001) , 0.05 .

The numerical quadrature used in present study is the 3-point adaptive Gaussian quadrature.

Two numerical algorithms have been suggested for evaluation of semi-innite integrals from x c to innity.

• Split oscillatory functions

Irregularly oscillatory functions are split into interpretable oscillatory functions. Semiinnite integrals of split functions are transformed into innite summation of sub-integrals, which corresponds to nite integral between zeros. Innite summation is extrapolated from nite summation of series with Wynn's -algorithm [START_REF] Wynn | On a device for computing the e m (S n ) transformation[END_REF].

• Steepest descent method

Oscillatory functions are transformed into the complex plane. Using Jordan's Lemma, steepest descent paths are found for corresponding integrals. Integrals involve exponential factors having negative real arguments. The exponential factors having negative real arguments make the integrand decay to zero fastly. The implementation of numerical quadrature is straightforward due to this decaying behavior. The argument of exponential factor is proportional to τ 2 /α 2 , implying that numerical eciency increases for large τ and/or small α.

In computational procedure of steepest descent method, transformed function into complex domain has its phase function:

α ± x ± τ √ x = x 2α ± τ 2 ± 2 √ x 2α ± τ + 1 τ 2 4α ± - τ 2 4α ± ,
It involves the denominator of τ . It makes the accuracy and eciency of the steepest descent method being poor for small τ /α compared to the split oscillatory functions algorithm. Therefore, the following criterion is adopted to select algorithm evaluating semi-innite integral 

       τ α < 0.

Reconstruction of wave elevation and uid velocity above the mean free surface

The complementary uid velocity at the eld point is calculated by equation (5.120). The complementary wave elevation can be computed using the kinematic free surface boundary condition by

∂Ξ C ∂t = u z C (r, θ, 0; t) = 1 4π N n=-N M p=0 U z pn e inθ , (5.264) 
A Crank-Nicolson scheme is applied to calculate the wave elevation for time integration. After the complementary wave elevation has been reconstructed, a pseudo-Wheeler stretching is applied on the Laguerre function for the extrapolation of velocity for z > 0 by using Laguerre function [START_REF] Wheeler | Method of calculating forces produced by irregular waves[END_REF]) 5.265) with coordinates transformation similar to Wheeler stretching for deep water z = z -Ξ C .

   u x C u y C u z C    = 1 4π N n=-N M p=0    U x pn U y pn U z pn    e inθ L p (-sz ), ( 
(5.266)

Laguerre functions for z > 0 increase exponentially which give large uid velocities in the air zone. Therefore the value of Laguerre functions is limited to 2 as follows:

L p (-sz ) =    f limit z = 2, if L p (-sz ) > 2,
L p (-sz ), otherwise.

(5.267)

The behavior of Laguerre functions above the mean free surface is shown in gure 5.13.

Figure 5.13. Behavior of Laguerre functions for z > 0.

Reconstruction of complementary wave ow in viscous ow model

The proposed velocity representation with a vertical circular cylindrical matching surface is valid when the eld point is located outside the matching surface, e.g., r > a. The evaluation of elementary functions and convolution integrals on the computational mesh of the viscous ow model are time-consuming tasks.

Instead of evaluating the ow components at each eld point from elementary functions, A Bspline interpolation scheme on the structural grid can be used for calculating the complementary uid velocity and wave elevation at arbitrary point. A cylindrical interpolation grid is introduced to construct complementary uid velocity and wave elevation by using Poincaré's velocity representation.

The procedure of calculating complementary uid velocity and wave elevation is depicted in gure 5.14. The complementary uid velocities on the matching surface and wave elevations on the waterline of the matching surface are obtained. The complementary uid velocities at the Gauss points are interpolated from complementary uid velocities on the matching surface.

The Fourier-Laguerre coecients of complementary uid velocities in equation ( 5.29) are calculated by applying Fast Fourier Transform (FFT) and the integral along vertical axis ζ. Fourier coecients of wave elevation in equation ( 5.32) are computed by using FFT. The coecients are given by

      C n mn W ξ mn W η mn W ζ mn       = s 2π ˆ2π 0 ˆ0 -∞       u n C w ξ C w η C w ζ C       r=a L m (-sζ) e -inθ dζdθ . and E n = 1 2π ˆ2π 0 [gΞ C ] r=a e -inθ dθ .
Fourier-Laguerre coecients of complementary uid velocity at eld points are calculated by using Poincaré's velocity representation given in equation ( 5.121) as

U x pn = U Rx pn + U Rx * pn + U Hx pn + U F x pn , U y pn = U Ry pn + U Ry * pn + U Hy pn + U F y pn , U z pn = U Rz pn + U Rz * pn + U Hz pn + U F z pn .
The vertical component of complementary uid velocity on the mean free surface is calculated by applying inverse Fourier-Laguerre series.

u z C (r, θ, 0; t) = 1 4π N n=-N M p=0 U z pn e inθ ,
The complementary wave elevation is reconstructed from kinematic free surface boundary condition as

Ξ C (r, θ = 0; t) = ˆt 0 u z C (r, θ, 0; τ )dτ.
(5.268)

The complementary wave eld is reconstructed by applying inverse FFT. The complementary uid velocity on the interpolation grid is calculated by applying inverse Fourier-Laguerre series with pseudo Wheeler stretching as 5.9 Validation and discussion

   u x C u y C u z C    = 1 4π N n=-N M p=0    U x pn U y pn U z pn    e inθ L p (-sz ), with z = z -Ξ C .

Benchmark tests

Here we use the same type of benchmark test as the one previously used for the Poincaré's velocity representation with arbitrary matching surface. Two complementary wave problems representing radiation-diraction problems are considered.

• The radiation problem of a heaving hemisphere introduced in previous section 4. 5.1 [START_REF] Hulme | The wave forces acting on a oating hemisphere undergoing forced periodic oscillations[END_REF].

• The diraction problem of a wave diraction by a vertical circular cylinder [START_REF] Mccamy | Wave forces on piles: A diraction theory[END_REF].

In the wave diraction problem, circular cylindrical coordinates are used. The linear incident wave potential can be expressed in cylindrical coordinates by Graf 's addition theorem [START_REF] Abramowitz | Handbook of mathematical functions: With Formulas, Graphs, and Mathematical Tables[END_REF])

Φ I = - igA ω cosh k 0 (z + H) cosh k 0 H e ik 0 x e -iωt = - igA ω cosh k 0 (z + H) cosh k 0 H ∞ m=0 m i m J m (k 0 R) cos mθe -iωt , (5.269) 
where A is incident wave amplitude. ω is wave frequency. H is water depth. m = 1 for m = 0 and m = 2 for m > 0. k 0 is the modal wavenumber satisfying linear dispersion relationship ω 2 = gk 0 tanh k 0 H.

(5.270)

The diraction potential should satify the body boundary condition given by 5.271) where Φ D is the diraction potential and a cylinder is the radius of cylinder.

∂Φ D ∂R = - ∂Φ I ∂R , on R = a cylinder , ( 
The diraction potential satisfying the above body boundary condition is given by eigenfunction expansion

Φ D = igA ω cosh k 0 (z + H) cosh k 0 H ∞ m=0 m i m J m (k 0 a cylinder ) H m (k 0 a cylinder ) H m (k 0 R) cos mθe -iωt .
( (Kim and Yue, 1989).

Fourier-Laguerre approximation

The complementary uid velocity on the vertical circular cylindrical matching surface needs to be approximated by Fourier-Laguerre series with coecients in Poincaré's velocity representation. The approximated complementary uid velocities with Fourier-Laguerre series are given in equation ( 5.21) as

      u n C w ξ C w η C w ζ C       r=a ≈ N n=-N M m=0       C n mn W ξ mn W η mn W ζ mn       L m (-sζ) e inθ .
where C n mn , W ξ mn , W η mn and W ζ mn are Fourier-Laguerre coecients.

It is necessary to evaluate the Fourier-Laguerre coecients for arbitrary function f (a, θ , ζ) dened on the matching surface. Let the scalar function dened on the matching surface can be approximated with Fourier-Laguerre series as

f (a, θ , ζ) ≈ M m=0 N n=0
C mn L m (-sζ)e inθ , (5.273) where C mn is Fourier-Laguarre coecients of function f (a, θ , ζ).

Using the orthogonal relationships of Laguerre and trigonometric functions given in equations (5.25) and ( 5.26), the coecient is given by

C mn = s 2π ˆ0 -∞ ˆ2π 0 f (a, θ , ζ)L m (-sζ)e -inθ dζdθ (5.274)
Integral along θ can be evaluated easily by using Fast Fourier Transform(FFT). The integral along vertical axis ζ is dened by

ˆ0 -∞ h(ζ)L m (-sζ)dζ = ˆ0 -∞ h(ζ)e s 2 ζ L m (-sζ)dζ = ˆ∞ 0 h(-u)L m (su)e -s 2 u du = ˆ∞ 0 ĥ (x) e -x dx (5.275) with h(ζ) = s 2π ˆ2π 0 f (a, θ ζ)e -inθ dθ , and ĥ(x) = 2 s h - 2x s L m (2x).
(5.276)

The semi-innite integral along x-axis can be evaluated by using Gauss-Laguerre quadrature.

Gauss points and associated weights can be used to evaluate semi-innite integral as [START_REF] Abramowitz | Handbook of mathematical functions: With Formulas, Graphs, and Mathematical Tables[END_REF] ˆ∞ 0 ĥ(x)e -x dx ≈ N Gauss i=1 w i ĥ(x i ), (5.277) where x i and w i are i-th Gauss point(abscissas) and weight. N Gauss is the number of Gauss points. Gauss points is taken from i-th zero of Laguerre polynomial L N Gauss (x) and the weights of Gauss-Laguerre quadrature (w i ) are given by

w i = (N Gauss !) 2 x i (N Gauss + 1) 2 [L N Gauss +1 (x i )] 2 .
(5.278) Gauss points and weights are obtained by using subroutine cdgqf of IQPACK [START_REF] Elhay | Algorithm 655: IQPACK, FORTRAN subroutines for the weights of interpolatory quadrature[END_REF].

Gauss points may be located outside of computational domain because the depth of computational domain is limited. Therefore, extrapolation of scalar function f (a, θ , ζ) is necessary to evaluate Gauss-Laguerre quadrature. Let Gauss points(ζ i ), which is physical axis transformed from mathematical axis x i , are located in the computational domain with function values f i . Exponential function is used to extrapolate

f (ζ) as f (ζ) ≈ ae bz , (5.279)
where a and b are arbitrary real and b should be equal or greater than zero. If all f i are positive or negative, a and b can be evaluated by applying the least squre method as .281) where N selected is the number of exsiting Gauss points inside of computational domain. Signs of ln a and ln(f i ) depend on the sign of function value f i .

± ln a b = A T ls A ls -1 A T ls b ls , (5.280) with A ls =       1 ζ 1 1 ζ 2 . . . . . . 1 ζ N selected       , b ls =       ln (±f 1 ) ln (±f 2 ) . . . ln (±f N selected )       . ( 5 
When some of f i has dierent sign, e.g., some of f i are positive and some of f i are negative, a nonlinear least square method is needed to evaluate a and b. A global nonlinear optimization algorithm based on iterative random search procedure with adaptive movement is applied to minimize the approximation error dened by [START_REF] Corana | Minimizing multimodal functions of continuous variables with the "Simulated Annealing algorithm[END_REF] E(a, b) = The values of arbitrary function f i are distributed with respect to z ∈ [-10, 0], as plotted with circle in gure 5.17. f i have positive and negative sign. Extrapolated function by using nonlinear optimization algorithm is plotted as rigid black line in gure 5.17. They are following the global tendencies of distributed f i along z axis. The results show that extrapolation for arbitrary functions for z < 0 works well.

N selected i=1 f i -ae bz i 2 , a, b ∈ R, b ≥ 0.
Figure 5.17. Benchmark tests on approximation of exponential function by using nonlinear optimization algorithm.

After applying least square method, Fourier-Laguerre coecients can be evaluated by

C mn = s N θ N θ -1 j=0   N selected i=1 w i f i,j+1 + N Gauss i=N selected +1 w i f i,j+1
  e -2πin(j/N θ ) , (5.283) where f i,j = f (a, θ j , ζ i , ) are ow quantities obtained at Gauss points x = (a, θ j , z i ). Fourier-Laguerre approximation of uid velocity is tested by increasing the number of Fourier-Laguerre modes and Gauss points. Approximation errors of uid velocity are dened by 5.284) where superscripts denote the directional component. u aprx and u analytic are approximated uid velocity and analytical uid velocity at i-th Gauss point, respectively. Approximation errors of uid velocity with respect to dierent numbers of Fourier-Laguerre modes and Gauss points are shown in gure 5.19 during one period of heaving motion.

   x u y u z u    = 1 N Gauss N Gauss i=1    (u x aprx,i -u x analytic,i ) 2 (u y aprx,i -u y analytic,i ) 2 (u z aprx,i -u z analytic,i ) 2    ( 
Sudden changes of approximation errors, as shown in 5.19, happen when the calculation switches between linear and nonlinear approximation algorithms. As the number of modes and Gauss points increases, the approximation error decreases. Results conrm that the approximation of uid velocity by Fourier-Laguerre series show good agreements with analytical solution, and that the approximation errors can be reduced by increasing the number of Gauss points. 

Diraction problem: Diraction by a vertical circular cylinder

Wave diraction by a vertical circular cylinder in regular waves is considered here. Similarly to the radiation problem, the complementary uid velocity and wave elevation at Gauss points are calculated by the analytical soution described in section 5.9.1. The Poincaré's velocity representation with a cylindrical matching surface is used to reconstruct the complementary uid velocity and wave elevation at the eld point.

Figure 5.22 shows the complementary wave elevation and velocities at the eld point x = (r, θ, z) = (5, π 4 , 0). The radial frequency and amplitude of regular waves are ω = 2.0 and 0.8m, respectively. The water depth is equal to 8m and the radius of vertical circular cylinder is 1m. The radius of the matching surface for Poincaré's velocity representation is a = 2m. The numbers of Fourier and Laguerre modes are N F ourier = 6 and N Laguerre = 3, respectively. Time step is set to be ∆t = 0.01s. Convergence test on the number of Fourier and Laguerre modes

The complementary wave elevation and velocity on the mean free surface are reconstructed with respect to the dierent number of Fourier-Laguerre modes. The wave diraction by the vertical circular cylinder is used because the waves diracted by cylinder have many Fourier components. 

Remarks of benchmark tests on radiation and diraction problems

In numerical computation, following error sources are identied

• s parameter in Laguerre function aects on Fourier-Laguerre approximation of complementary velocity. A bad selection of s needs large number of Laguerre modes for good approximation.

• Truncation of Fourier-Laguerre modes and limited number of Gauss points shall give large approximation errors.

• Convolution integrals with moving window convolution time interval generate numerical errors. The moving window convolution time interval has to be long enough.

Conclusion

A Poincaré's velocity representation has been formulated with a circular cylindrical matching surface. The surface integral is analytically applied to Poincaré's velocity representation along the matching surface. The complementary uid velocities and wave elevation are developed in Fourier-Laguerre and Fourier series, respectively. The time domain Green functions are expressed in Fourier series. The analytical integration along the matching surface and the matching waterline enhances the numerical stability. Furthermore, it reduces the computational burden in reconstructing three-dimensional wave elds. However, complex elementary functions, which are surface integral of the time domain Green function and Fourier-Laguerre modes, appear in the formulation. In the nal formulation, the complementary uid velocity at eld point is given by convolution integrals of ow at matching surface and elementary functions.

Numerical algorithms to compute the elementary functions have been proposed. The rst approach transforms the semi-innite integral into an innite series summation of sub-integrals.

The innite series summation is evaluated by the extrapolation using continuous sets of nite summation. The second approach extends an integral variable in the real domain into the complex domain. Semi-innite integrals along the real axis are evaluated by steepest descent method.

Evaluation of elementary functions is validated by comparing two algorithms.

The wave elevation is reconstructed by integrating the vertical velocity on the mean free surface.

After the reconstruction of the wave elevation, Wheeler stretching with Laguerre function is used to extrapolate the uid velocity above mean free surface. 3D cubic spline interpolation is used to calculate the wave elevation and the uid velocity at arbitrary points.

Finally, the complementary wave problems, which are referred to the radiation and diraction problems, are considered for validation. A heaving hemisphere is considered for radiation problem [START_REF] Hulme | The wave forces acting on a oating hemisphere undergoing forced periodic oscillations[END_REF]. Wave diraction by a vertical circular cylinder is used for diraction problem [START_REF] Mccamy | Wave forces on piles: A diraction theory[END_REF]. Numerical results show that the proposed Poincaré's velocity representation shows very good agreements with the analytical solution. Three-dimensional complementary wave elds are reconstructed with the limited number of Fourier-Laguerre modes, and they show good agreements with the wave elds calculated by the analytical solution.

6 Viscous ow: Multi-phase SWENSE with Level-set 6.1 Two-phase ow model 6.1.1 Two-phase mixture model (used in interFoam)

The continuity and Navier-Stokes equations for an incompressible air are written as

∇ • u a = 0 (6.1) ∂(ρ a u a ) ∂t + ∇ • (ρ a u a u a ) = -∇p a + ρ a g + ∇ • µ a ∇u a + ∇u T a , (6.2) 
and the equations for incompressible water are given by ∇ • u w = 0

(6.3) ∂(ρ w u w ) ∂t + ∇ • (ρ w u w u w ) = -∇p w + ρ w g + ∇ • µ w ∇u w + ∇u T w , (6.4) 
where subscript w or a denotes uid which is considered as w for water and a for air. ρ and µ are the density and viscosity of the uid, p is pressure and g is gravitational acceleration vector.

In the Volume Of Fluid method (VOF), α is introduced as the ratio between the water occupied in the cell volume and the total cell volume. For example, α = 1 means that the cell is fully submerged and α = 0 represents a dry cell. The mixture quantities can be given with α as

ρ = αρ w + (1 -α)ρ a , µ = αµ w + (1 -α)µ a , (6.5) 
and

u = αu w + (1 -α)u a , p = αu w + (1 -α)p a (6.6) 
where ρ, µ, u and p represent mixture density ,viscosity, velocity and pressure, respectively.

Two-phase Navier-Stokes equations are then rewritten as the equations for single mixture

∇ • u = 0, (6.7) 
∂(ρu) ∂t + ∇ • (ρuu) -∇ • (µ∇u) = -∇p + ρg + ∇u • ∇µ + σκ∇α. (6.8)
The surface tension force σκ∇α is introduced due to the existence of the interface between water and air. The uid velocity u and pressure p are the mixture ow quantities. The gravitational force is replaced by introducing the dynamic pressure for numerical modeling of body boundary condition [START_REF] Rusche | Computational uid dynamics of dispersed two-phase ows at high phase fractions[END_REF])

p d = p -ρg • x, (6.9) 
and the momentum equation is rewritten as

∂(ρu) ∂t + ∇ • (ρuu) = -∇p d -g • x∇ρ + ∇ • µ ef f ∇u + ∇u T + σκ∇α.
(6.10)

The Navier-Stokes equations considering two uids as one mixture have been commonly used in academic and industrial elds due to easy numerical modeling [START_REF] Hirt | Volume of uid (VOF) method for the dynamics of free boundaries[END_REF][START_REF] Damián | An extended mixture model for the simultaneous treatment of short and long scale interfaces[END_REF][START_REF] Jacobsen | A wave generation toolbox for the open-source CFD library: OpenFoam R[END_REF][START_REF] Paulsen | An ecient domain decomposition strategy for wave loads on surface piercing circular cylinders[END_REF]. Recently, Vuk£evi¢ (2016) stated that the numerical evaluation of the gradient of dynamic pressure with a density gradient

∇p d + g • x∇ρ, (6.11) 
is not equal to zero for a hydrostatic case where it should be zero. It gives source in the momentum equation, therefore a spurious air velocity appears near the interface during the simulation. The spurious air velocity is factored by density variance of water and air, the ow eld near the interface becomes violent and unstable. The density gradient in the momentum equation gives a large numerical value on the interface due to the density jump from one uid to the other.

The jump is smoothed and the interface smears when the color function advects. Solving the two phase ow with single uid (mixture) makes the numerical modeling easier and the equation looks intuitive.

6.1.2 Two-phase mixture model with interface condition (used in present study)

An alternative two-phase ow model imposes the stress balance across the interface to prevent spurious air velocity near the interface. Navier-Stokes equations for air are rewritten as

∂u a ∂t + ∇ • (u a u a ) = - 1 ρ a ∇p a + g + ∇ • ν a ∇u a + ∇u T a , (6.12) 
and the equations for water are given by .13) Kinematic condition that uid particles on the interface move together giving a velocity condition on the interface

∂u w ∂t + ∇ • (u w u w ) = - 1 ρ w ∇p w + g + ∇ • ν w ∇u w + ∇u T w . ( 6 
u w = u a , ⇔ u = u a -u w = 0, on x ∈ S f (6.14)
where the jump operator f = f a -f w is dened at the air/water interface S f . The jump operator represents the dierence of f quantities across the interface. It enables us to express the uid veloicty for two uids as the mixture uid velocity in computational domain.

The dynamic condition condition on the interface represents the stress balance on the uid particles across the interface [START_REF] Kang | A boundary condition capturing method for multiphase incompressible ow[END_REF][START_REF] Carrica | An unsteady single-phase level set method for viscous free surface ows[END_REF][START_REF] Lervåg | Simulation of two-phase ow with varying surface tension[END_REF] pI 6.15) where n f denotes the interface normal vector and ∇ i is a gradient along interface coordinates. ∇ i σ represents Marangoni eect. It becomes important when two uids have a big temperature dierence. [START_REF] Huang | Coupled ghost uid/two-phase level set method for curvilinear body-tted grids[END_REF] conducted the dimensional analysis on the interface conditions and showed that the contribution of viscosity terms in interface condition is proportional to the inverse of Reynolds number. Therefore, the contribution of viscosity terms can be considered negligible for naval application. Therefore, above equation can be approximated as

+ 2µD • n f = -(σκn f + ∇ i σ), on x ∈ S f ( 
pI • n f = 0, on x ∈ S f . (6.16)
The interface normal vector (n f ) is arbitrary and the stress balance condition on the interface simplies in the pressure boundary condition for naval application as p = 0, on x ∈ S f .

(6.17) Two-phase Navier-Stokes equations with interface boundary conditions are summarized as follows

• Mass conservation ∇ • u = 0, • Momentum equation ∂u ∂t + ∇ • (uu) = - ∇p ρ + g + ∇ • ν ∇u + ∇u T , • Kinematic interface condition u = 0, on x ∈ S f
• Pressure balance (Dynamic condition) on the interface p = 0,

on x ∈ S f
Comparing the derived momentum equation and pressure interface condition with the mixture momentum equation (6.10), the pressure jump condition appears in right-hand-side of mixture momentum equation as density gradient. The surface tension which is neglected in stress balance is given in mixture momentum equation.

Interface modeling

The Level-Set (LS) function for interface modeling which is categorized as an Eulerian method is used in the present study. LS function is the signed distance function from the interface dened by 6.18) where d denotes the distance from interface. Ω a and Ω w represent air and water uid domains, respectively. The LS function has a positive value when the cell is submerged. The volume fraction α can be calculated from LS function as

ψ(x) =          -d, if x ∈ Ω a , 0, if x on the interface S f , d, if x ∈ Ω w ( 
α(x) = 1 2 [sgn {ψ(x)} + 1] . (6.19) 
The above equation results in α eld having a sudden change across the interface, which is not desirable when the continuous viscosity eects need to be accounted for in the simulation. VOF with user-dened interface thickness ( inter ) can be introduced to smooth change of the α eld near the interface The signed distance function is not bounded, the LS function after solving the above transport equation is not bounded. Therefore, conservation of uid mass should be checked during the entire simulation.

α(x) = 1 2 tanh ψ(x) inter √ 2 + 1 .
After solving the LS function transport equation, redistancing of LS function in the entire uid domain is used to keep a sharp interface [START_REF] Chang | A level set formulation of Eulerian interface capturing methods for incompressible uid ows[END_REF][START_REF] Sussman | An improved level set method for incompressible two-phase ows[END_REF][START_REF] Di Mascio | On the application of the single-phase level set method to naval hydrodynamic ows[END_REF]. Re-distancing of LS function is usually conducted to make LS function satisfy the Eikonal equation |∇ψ| = 1.

A pseudo-time τ is introduced to get the steady state solution of Eikonal equation as

∂ ψ ∂τ + sgn(ψ) ∇ ψ -1 = 0.
Solving the Eikonal equation needs extra sub-iteration within the time step.

In the present study re-distancing of LS function in the entire uid domain is done by recalculating the distance from the nearest interface in equation 6.18 at each time step.

Functional decomposition

A variant version of the Navier-Stokes equations which is called Spectral Wave Explicit Navier-Stokes Equations (SWENSE) has been introduced for wave-structure interaction problem [START_REF] Ferrant | A potential/RANSE approach for regular water wave diraction about 2-D structures[END_REF]. The SWENSE method is based on the hypothesis that the functional quantity of total ow can be decomposed into incident and complementary parts as

χ = χ I + χ C (6.22)
where χ, χ I and χ C are quantities from respectively total, incident and complementary ows.

It is assumed that the incident ow is already available from a nonlinear potential ow model for incident waves. The incident ow components are subtracted from original Navier-Stokes equations by supposing that the incident ow satises Euler equations. Then, equations for the complementary ow can be reconstructed. In this way, a numerical (CFD) computation is performed for the complementary ow only, the total ow being reconstructed from (6.22). Thus procedure has numerical advantages:

• The incident ow components are not aected by the viscous ow solver.

• The absorption of complementary waves is easier.

• The computational mesh needs to be rened in the vicinity of the body only, savings in computer resources.

The SWENSE method has been validated for single phase ows by [START_REF] Luquet | RANSE analysis of 2D ow about a submerged body using explicit incident wave models[END_REF][START_REF] Gentaz | Numerical simulation of the 3D viscous ow around a vertical cylinder in non-linear waves using an explicit incident wave model[END_REF]; [START_REF] Monroy | Simulation numérique de l'interaction houle-structure en uide visqueux par décomposition fonctionnelle[END_REF]; [START_REF] Reliquet | Simulation numérique de l'interaction houle/carène par couplage d'une méthod spectral HOS avec un algorithme de capture d'interface[END_REF]. Recently, [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] applied SWENSE method to decompose uid velocity and LS function. [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] decomposed velocity and pressure in a two-phase ow solver with the original VOF equation.

The present work aims at decomposing the uid velocity, pressure and LS function into the incident and complmentary ow components by combining the ideas of [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] and [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. The uid velocity, pressure and LS function are decomposed as

u =u I + u C , ⇔ u C =u -u I , (6.23) 
p = p I + p C , ⇔ p C = p -p I , (6.24) 
ψ =ψ I + ψ C , ⇔ ψ C =ψ -ψ I , (6.25) 
where u, p and ψ are uid velocity, pressure and LS function, respectively. Subscripts I and C denote quantities of incident and complementary ows, respectively.

Governing equations

The decomposition of the continuity equation is written as

∇ • u C = -∇ • u I = 0. (6.26)
Vuk£evi¢ ( 2016) remarked that though the divergence of the incident velocity eld is theoretically zero, it does not vanish when it is mapped into nite volume discretization. To keep the order of the numerical discretization, he kept the term (-∇ • u I ) in his formulation. In the present study, only ∇ • u C = 0 is kept. because -∇ • u I is thought to give an extra error source in the pressure equation.

Euler equations for incident ow are written as 

∂u I ∂t + ∇ • (u I u I ) = - 1 ρ ∇p I + g.
p * I = ρ ρ w p I , (6.28) 
where p * I is pseudo mixture incident pressure. Euler equations can be rewritten with p * I as

∂u I ∂t + ∇ • (u I u I ) = - 1 ρ ∇p * I + p I ρ w ∇ρ ρ + g, (6.29) 
The second term in right-hand-side, p I ρw ∇ρ ρ , is equal to zero in both water and air regions, it only has a non-zero value on the interface. The momentum equations for complementary ow can be given by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] ∂u

C ∂t + ∇ • (uu C ) + u C • ∇u I = - 1 ρ ∇p C - p I ρ w ∇ρ ρ + ∇ • ν ∇u C + ∇u T C . (6.30) 
The transport equation for complementary LS function is given by

∂ψ C ∂t + ∇ • (uψ C ) = - ∂ψ I ∂t -∇ • (uψ I ) . (6.31)
The re-distancition of the complementary LS function is calculated by subtracting the incident wave LS function from distance as

ψ C = sgn(d) -ψ I . (6.32) 6.3 

.2 Interface conditions

Interface boundary conditions need to be formulated with respect to complementary terms. The kinematic free surface boundary condition is given by

u = u I + u C = 0, on x ∈ S f . (6.33)
Assuming that the incident velocity is continuous across the interface by Wheeler stretching, e.g., u I = 0. The kinematic free surface boundary condition for complementary velocity is given by

u C = 0, on x ∈ S f . (6.34)
The pressure jump condition is given by

p = p I + p C = 0, on x ∈ S f . (6.35)
The incident pressure p I is replaced by pseudo incident pressure given in equation (6.28). The jump condition for complementary pressure is given by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF])

p C = -p * I = -p I ρ ρ w = p I ρ w -ρ a ρ w . (6.36)
The pressure jump term is shown in the right-hand-side term. Compared to [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF], pressure jump condition in the present study incorporates the incident wave pressure, including hydrostatic pressure. For the calm water case, the same pressure jump condition is obtained p I = ρ w g • x.

Summary of functional decomposition

Govening equations for complementary ow are summarized as below:

• Continuity equation for complementary ow

∇ • u C = 0.
• Momentum equations for complementary ow

∂u C ∂t + ∇ • (uu C ) + u C • ∇u I = - 1 ρ ∇p C - p I ρ w ∇ρ ρ + ∇ • ν ∇u C + ∇u T C .
• LS function transport equation for complementary ow

∂ψ C ∂t + ∇ • (uψ C ) = - ∂ψ I ∂t -∇ • (uψ I ) . • Redistancing ψ C ψ C = sgn(d) -ψ I ,
where d is the distance from nearest interface.

Interface boundary conditions for complementary ow are summarized as below:

• Kinematic interface condition for complementary ow u C = 0.

• Pressure jump condition for complementary ow p C = p I ρ w -ρ a ρ w .

Domain decomposition: Relaxation

Relaxation scheme described in section 2.3.1 is used to relax the complementary LS function and velocity into target quantities. Explicit relaxation scheme which blends computed complementary quantities and target quantities with weight function in the relaxation zone is adopted.

Complementary ow is relaxed as

χ C = (1 -w)χ C + wχ T arget C , (6.37) 
where χ C is the complementary quantity, χ T arget C is the target quantity and w is a weight function.

In the literature, the target quantity has been set to zero due to the lack of solution [START_REF] Jacobsen | A wave generation toolbox for the open-source CFD library: OpenFoam R[END_REF][START_REF] Seng | Slamming and whipping analysis of ships[END_REF][START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF][START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF].

In present study, Poincaré's velocity representation is used to calculate target complementary quantities in the relaxation zone. Complementary uid velocity and LS function are relaxed as 

u C = (1 -w)u C + wu Poincaré C , (6.38) 
ψ C = (1 -w)ψ C + wψ Poincaré C . ( 6 

Extrapolation of ows up to air zone

The SWENSE method in multi-phase ow requires the evaluation of incident ows in air zone which is not available in potential ow model. Wheeler stretching can be used to extrapolate incident ow, however hyperbolic characteristics of waves in vertical direction generates large velocity and pressure for large z. It causes undesirable results in numerical discretization especially for discretizing the incident wave quantities in air zone. [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] set constant values for incident ow above limited height to prevent numerical errors due to large value. Nevertheless, their gradients still have the discontinuities at limited height.

In the present study, incident wave quantities are extrapolated by using cubic polynomials to prevent discontinuities of incident ow and its gradient in the air zone.

Extrapolation by cubic polynomials

Let the ow quantity and its gradient are given at z = Ξ + h ref and

z = Ξ + h ref + h thickness as f (Ξ + h ref ) = f 0 , df (Ξ + h ref ) dz = f 0 , (6.40) 
f (Ξ + h ref + h thickness ) = f 1 df (Ξ + h ref + h thickness ) dz = f 1 . (6.41) 
where h ref is a reference height from interface to start extrapolation. h thickness is the height interval for cubic polynomials. Introducing cubic polynomials with normalized coordinate

ζ dened between ζ ∈ [0, 1] as g( ζ) = a ζ3 + b ζ2 + c ζ + d, (6.42) 
where a, b, c and d are coecients. ζ is a normalized coordinate dened by

ζ = z -Ξ + h ref h thickness . (6.43) 
Boundary conditions for cubic polynomials g( ζ) can be given as

g(0) = f 0 , dg(0) d ζ = g 0 = h thickness f 0 , (6.44) g(1) = f 1 dg(1) d ζ = g 1 = h thickness f 1 . (6.45)
Using boundary conditions, coecients of cubic polynomials are determined as a = 2(g 0 -g 1 ) + (g 0 + g 1 ) ,

(6.46) b = -3 (g 0 -g 1 ) + 2 g 0 + g 1 -g 1 , (6.47) c = g 0 , (6.48) 
d = g 0 .

(6.49)

Application to ow properties and discussion

Boundary conditions for incident velocities are given by

u 0 = u I (Ξ I + h ref ), u 0 = du I (Ξ I + h ref ) dz (6.50) u 1 = u(Ξ I + h ref + h thickness ) = u wind , u 1 = du I (Ξ I + h ref + h thickness ) dz = 0. (6.51)
The dynamic part of the incident pressure is dened by subtracting the hydrostatic pressure as

p I,d = p I -ρg • x, (6.52) 
where p I,d is the dynamic incident pressure and ρg • x is the hydrostatic pressure. Boundary conditions for the dynamic incident pressure are given by

p 0 = p I,d (Ξ I + h ref ), p 0 = dp I,d (Ξ I + h ref ) dz , (6.53 
)

p 1 = 0, p 1 = dp I,d (h ref ) dz = 0, (6.54) 
If vertical gradients of incident velocity and dynamic pressure are available from the incident potential ow model, extrapolations of uid velocity and dynamic incident pressure are straightforward.

Extrapolated uid velocity by cubic polynomials does not satisfy mass conservation in the air zone. If horizontal uid velocity and its horizontal gradient at z = Ξ I + h ref are slowly varying, the total continuity error due to extrapolation can be estimated as

continuity ∆x∆y ≈ ˆΞI +h ref +h thickness Ξ I +h ref ∇ • u(z)dz ≈ ˆΞI +h ref +h thickness Ξ I +h ref du(z) dz dz = |u wind -u I (Ξ I + h ref )| . (6.55)
The estimated continuity error is constant with respect to h thickness and proportional to the dierence of uid velocity between incident waves and wind. The local continuity error on the local cell therefore decreases as h thickness increases. Extrapolation improves numerical stability and prevents large ux in the air zone due to discontinuity of velocity.

Buer zone with thickness h ref is introduced to have a distance from interpolation region to interface because of mentioned continuity error in air. Extrapolated velocity is shown in gure 6.1. Velocity elds with air extrapolation for nonlinear regular waves are shown in gure 6.2. No discontinuity of uid velocity is seen when the extrapolation is applied. 

Finite volume discretization

The numerical discretization of governing equations for two-phase interface ows is presented in this section. Collocated Finite Volume (FV), second-order discretization on the arbitrary polyhedral (unstructured) grid is used [START_REF] Jasak | Error analysis and estimation for the nite volume method with applications to uids ows[END_REF]. Computational domain is discretized into computational cells and each of these cells is treated as a control volume having averaged quantities within cell. The geometrical description of computational cell with owner index P is shown in gure 6.3. Computational cell has its own volume (V P ) and has the faces connected with Figure 6.3. Finite volume cell in polyhedral shape, [START_REF] Tukovic | A moving mesh nite volume interface tracking method for surface tension dominated interfacial uid ow[END_REF].

neighbor cells (cell index; N ) or boundary surfaces. The surface area vector (s f ) is dened as a vector normal to the corresponding face with its magnitude equal to the surface area. The distance vector (d f = x N -x P ) is dened as the distance from owner cell P to neighbor cell N . General FV discretization on collocated grids is well described in [START_REF] Jasak | Error analysis and estimation for the nite volume method with applications to uids ows[END_REF]. Special FV discretization considering the pressure conditions on the interface is also given by Vuk£evi¢ (2016). These pressure conditions need a special FV discretization technique, which is called Ghost Fluids Method (GFM).

Numerical discretization of governing equations and terms related to pressure proposed by Vuk£e-vi¢ ( 2016) is briey reproduced in this section.

Discretization of momentum equations

Momentum equations given in (6.30) are rearranged as

∂u C ∂t + ∇ • (uu C ) -∇ • (ν∇u C ) = - 1 ρ ∇p C - p I ρ w ∇ρ ρ -u C • ∇u I + ∇u C • ∇ν,
Following the discretization notation of [START_REF] Rusche | Computational uid dynamics of dispersed two-phase ows at high phase fractions[END_REF], momentum equations without pressure gradient are discretized by

∂u C ∂t + ∇ • (uu C ) -∇ • (ν∇u C ) i = - p I ρ w ∇ρ ρ -u C • ∇u I + ∇u C • ∇ν e , (6.56) 
where {•} i and {•} e denote the implicit and explicit discretization, respectively. The discretization of momentum equations in FV grid is given by

a P (u C ) P + f a N (u C ) N = s u C , (6.57) 
where (•) P and (•) N denote averaged quantities at owner (P ) and neighbor (N ) cells, respectively. a P and a N represent the diagonal and o-diagonal terms of momentum equations, respectively. s u C is the source term of the momentum equations which includes:

• The old time contribution of local term in momentum equations.

• Nonlinear deered correction of convection term.

• Non-orthogonal correction of FV discretization.

• Incident ow terms coming from SWENSE method.

Deferred correction of convection terms and non-orthogonal correction are well explained in [START_REF] Jasak | Error analysis and estimation for the nite volume method with applications to uids ows[END_REF][START_REF] Moulkalled | The nite volume method in computational uid dynamics[END_REF].

Discretization of pressure equation

To satisfy the continuity equation, complementary pressure and velocity are coupled [START_REF] Patankar | A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic ows[END_REF]. Predicted complementary velocity from the momentum equation is written as

u C P = 1 a P H {(u C ) P } = - 1 a P    f a N (u C ) N -s u C    (6.58)
The pressure gradient, excluded from previous discretization of momentum equations, is now added to predicted velocity as

(u C ) P = u C P - 1 a P 1 ρ ∇(p C ) P , (6.59) 
Right-hand side term is called pressure corrected velocity. Complementary velocity should satisfy the continuity equation as

∇ • (u C ) P = 0, (6.60) 
Therefore, the equation for complementary pressure is given by

∇ • 1 a P 1 ρ ∇(p C ) P = ∇ • 1 a P H {(u C ) P } , (6.61) 
Applying FV discretization and Gauss's divergence theorem of volume integral over V P above equation gives

f 1 a P 1 ρ ∇(p C ) P f • ds f = f 1 a P H {(u C ) P } f • ds f . (6.62)
where (•) f denotes the quantity at face center. When the computational cell is small, the quantity at face center is interpolated from adjacent cell centers as .63) where (•) f is interpolated at face center from cell centered value. The above equation gives the algebraic equations for complementary pressure at cell center. After solving the pressure equation, the complementary velocity is corrected by equation ( 6.58) and the total ux is also calculated by

f 1 a P f 1 ρ ∇(p C ) P f • ds f = f 1 a P H {(u C ) P } f • ds f . ( 6 
F f = s f • (u C + u I ) f = s f • 1 a P H {(u C ) P } f - 1 a P f 1 ρ ∇(p C ) P f + (u I ) f . (6.64)
The incident velocity should be also evaluated at face centers to give the total ux.

Discretization of LS function transport equation

The complementary LS function transport equation is discretized using implicit and explicit operators by

∂ψ C ∂t + ∇ • (uψ C ) i = - ∂ψ I ∂t -∇ • (uψ I ) e , (6.65) 
and it gives the discretized equation for complementary LS function as

a ψ P (ψ C ) P + f a ψ N (ψ C ) N = s ψ , (6.66) 
where a ψ P and a ψ N are diagonal and o-diagonal terms. The total LS function is calculated after solving the above equation as

(ψ) P = (ψ I ) P + (ψ C ) P , (6.67) 
Interface location is calculated from total LS function (ψ = 0). The distance from the interface to the cell center (P ) is calculated for each computational cell. Re-distancing of complementary LS function is computed by subtracting incident LS function from signed distance by

(ψ C ) P = sgn {(d) P } -(ψ I ) P .
(6.68)

Extrapolation of pressures by Ghost Fluid Method

The FV discretization of pressure terms appears in momentum and pressure equations. Interface boundary conditions for complementary pressure are considered by using Ghost Fluid Method (GFM). Layout of nite volume cells with the interface is depicted in gure 6. Wet cell P and dry cell N share an interface face s f f . The dimensionless distance parameter dening the interface location by LS function is given by

λ f = (ψ) P (ψ) P -(ψ) N , (6.70) 
The location of the interface is dened by using the dimensionless distance parameter (λ f ) as

x f = (x) P + λ f d f . (6.71) 
The pressure jump condition on the interface is given by

(p C ) P = p C,a -p C,w = p I ρ w -ρ a ρ w = H I (6.72)
where p C,a and p C,w are the complementary pressures near the interface at air and water sides.

H I = p I ρw-ρa ρw
is the pressure jump on the interface. The complementary pressure values near the interface at each uid domain are expressed with jump conditions

p C,w = ρ a ρ w p C,a - H I ρ w , (6.73) p C,a = ρ w ρ a p C,w + H I ρ a . (6.74)
The relation of pressure gradient for extrapolation

The pressure boundary condition is imposed on the air/water interface. Because the interface between two uids is not always located on a computational cell or face center, the pressure extrapolation from the computational cell or face center to the position of interface is necessary.

Applying the kinematic boundary condition on the momentum equations gives

Du Dt = - 1 ρ ∇p + ∇ • (ν∇u) + ∇u • ∇ν + g = 0, on x ∈ S f (6.75)
It states that the acceleration of two uid particles on the interface is equal to each other. After neglecting the viscosity terms, the jump condition for pressure gradient is derived as

1 ρ ∇p = ∇ • (ν∇u) + ∇u • ∇ν = 0. , on x ∈ S f (6.76)
The pressure is decomposed into incident and complementary parts as in equation ( 6.23). Density scaling of incident pressure gives the continuous ∇p I /ρ across the interface [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. Therefore, the jump condition for complementary pressure gradient is given by

1 ρ ∇p C = 0, on x ∈ S f . (6.77) 
The pressure extrapolation using above relations is proposed by [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] in the procedure of Finite Volume (FV) discretization.

Pressure extrapolation from wet owner cell (P ) to the dry neighbor cell (N)

When owner cell is wet and neighbor cell is dry, pressure gradient condition on the interface is given by

∇p C ρ = ∇p C,a ρ a - ∇p C,w ρ w = 1 ρ a (p C ) N -p C,a 1 -λ f - 1 ρ w p C,w -(p C ) P λ f = 0, (6.78) 
Using equations (6.73), (6.74) and ( 6.78), pressure near the interface can be expressed with pressure values at cell centers with pressure jump term as

p C,w = λ f ρ a ρw (p C ) N + (1 -λ f ) ρ a ρw (p C ) P -λ f H I ρw , (6.79) p C,a = λ f ρ w ρw (p C ) N + (1 -λ f ) ρ w ρw (p C ) P + (1 -λ f ) H I ρw , (6.80) with ρw = λ f ρ w + (1 -λ f ) ρ a .
(6.81) Extrapolated pressure at ghost dry cell center N from wet cell center P can be given by

(p C,w ) GC N = p C,w + 1 -λ f λ f {p C,w -(p C ) P } = ρ a ρw (p C ) N + 1 - ρ w ρw (p C ) P - H I ρw . (6.82)
Pressure extrapolation from dry owner cell (P ) to the wet neighbor cell (N)

Similar to the previous case, when owner cell is dry and neighbor cell is wet, the pressure gradient condition on the interface is given by

∇p C ρ = 1 ρ a p C,a -(p C ) P λ f - 1 ρ w (p C ) N -p C,w 1 -λ f = 0, (6.83) 
Substituting the equations (6.73) and ( 6.74) into (6.83) yields the pressures near the interface as

p C,a = λ f ρ w ρa (p C ) N + (1 -λ f ) ρ w ρa (p C ) P + λ f H I ρa , (6.84) p C,w = λ f ρ a ρa (p C ) N + (1 -λ f ) ρ a ρa (p C ) P -(1 -λ f ) H I ρa , (6.85) 
with ρa = λρ a + (1 -λ) ρ w .

(6.86)

Similarly to the previous case, the extrapolated pressure on the ghost wet cell center (N ) from dry cell center (P ) is given by

(p C,a ) GC N = p C,a + 1 -λ f λ f {p C,a -(p C ) P } = ρ w ρa (p C ) N + 1 - ρ a ρa (p C ) P + H I ρa . (6.87) 
The procedure of pressure extrapolation is well explained in Vuk£evi¢ (2016).

FV discretization with extrapolated pressures

The gradient of the complementary pressure at cell center P is calculated by Gauss's divergence theorem

(∇p C ) P = 1 V P f s f (p C ) f , (6.88) 
Each of face components contributes to the pressure gradient. At face center, the complementary pressure is calculated by linear interpolation based on distance as

(p C ) f = f x (p C ) P + (1 -f x ) (p C ) N , (6.89) 
where f x = f P / |d f | is a distance weight. f P is the distance from cell center P to face center f .

When the owner cell is wet and the neighbour cell is dry, the complementary pressure at neighbour is replaced by the extrapolated complementary pressure obtained by GFM .90) where (p C,w ) GC N is the extrapolated pressure from wet cell by the GFM dened in equation (6.82).

(p C ) GC f = f x (p C ) P + (1 -f x ) (p C,w ) GC N . ( 6 
When the owner cell is dry and the neighbour cell is wet, the complementary pressure at the neighbour cell is replaced by the extrapolated complementary pressure by GFM as .91) where (p C,a ) GC N is the extrapolated pressure from dry cell by the GFM dened in equation (6.87).

(p C ) GC f = f x (p C ) P + (1 -f x ) (p C,a ) GC N . ( 6 
The pressure gradient of interface cell is evaluated by replacing the complementary pressure at face center by the extrapolated complementary pressure by GFM

(∇p C ) P = 1 V P    f s f (p C ) f - f S f s f (p C ) f + f S f s f (p C ) GC f    . (6.92)
The same procedure can be applied for other gradient discretization by replacing complementary pressure at interface face. Laplacian operator in pressure equation also requires special FV discretization considering interface condition. Interpolated density

1 ρ f
is necessary to construct the pressure equation in (6.63). Continuous ∇p C ρ across interface enables us to extrapolate density by GFM

1 ρ GC f =        1 ρ w ,
when the owner cell P is wet, (ψ) P ≥ 0.

1 ρ a , when the owner cell P is dry, (ψ) P < 0.

(6.93)

The pressure Poisson equation is rewritten with interpolated density at face center as

f 1 a P f 1 ρ f (∇p C ) f • ds f = f 1 a P H {(u C ) P } f • ds f , (6.94) 
The left-hand side is divided into orthogonal and non-orthogonal components [START_REF] Jasak | Error analysis and estimation for the nite volume method with applications to uids ows[END_REF] f

1 a P f 1 ρ f (∇p C ) f • ds f = f 1 a P f 1 ρ f ∆ f • (∇p C ) f + f 1 a P f 1 ρ f k f • (∇p C ) f (6.95)
where the surface vector s f is divided into two vectors

s f = ∆ f + k f . (6.96)
The vector ∆ f is taken to be parallel with d f . k f is a non-orthogonal vector component k f = s f -∆ f . The choice and eects of non-orthogonal correction are well discussed in [START_REF] Jasak | Error analysis and estimation for the nite volume method with applications to uids ows[END_REF].

The non-orthogonal correction term is calculated by previous outer iteration or time step by deferred correction and it is taken into account as the source term. Rewritten complementary pressure equation is given as

f 1 a P f 1 ρ f ∆ f • (∇p C ) f = f 1 a P H {(u C ) P } f • ds f - f 1 a P f 1 ρ f k f • (∇p C ) o f . (6.97)
Left-hand side is given by complementary pressures at neighbor N and owner P center

f 1 a P f 1 ρ f ∆ f • (∇p C ) f = f 1 a P f 1 ρ f |s f | |d f | {(p C ) N -(p C ) P } (6.98)
On the interface face, complementary pressure at neighbor cell center N is replaced by extrapolated pressure

f 1 a P f 1 ρ f |s f | |d f | {(p C ) N -(p C ) P } = f 1 a P f 1 ρ f |s f | |d f | {(p C ) N -(p C ) P } - f S f 1 a P f 1 ρ f |s f | |d f | {(p C ) N -(p C ) P } + f S f 1 a P f 1 ρ GC f |s f | |d f | (p C,i ) GC N -(p C ) P , i = w, a. (6.99) 
Above equation constructs the system matrix with respect to pressure at each cell center. The diagonal contribution of interface face S f is given by interface cell P as,

a p C P = -            1 a P f |s f | |d f | ρ w ρw , if the owner cell P is wet, neighbor cell N is dry, 1 a P f |s f | |d f | ρ a ρa , if the owner cell P is dry, neighbor cell N is wet. (6.100)
and the o-diagonal contribution

a p C P N =            1 a P f |s f | |d f | ρ a ρw , if the owner cell P is wet, neighbor cell N is dry, 1 a P f |s f | |d f | ρ w ρa ,
if the owner cell P is dry, neighbor cell N is wet.

(6.101)

The pressure jump terms appear as the extra source term as

Q p C P =            - 1 a P f |s f | |d f | H I ρw , if the owner cell P is wet, neighbor cell N is dry, 1 a P f |s f | |d f | H I ρa , if the owner cell P is dry, neighbor cell N is wet. (6.102)
Vuk£evi¢ ( 2016) showed that the o-diagonal contributions of pressure equation are symmetric but the extra source term arising from pressure jump is antisymmetric. The details on the FV discretization with interface condition is well described in [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] with dierent notation on the inverse density β = 1 ρ .

Boundary conditions

Solving the Navier-Stokes equation requires initial and boundary conditions. For the wavestructure problem, the initial conditions are set to be incident wave elds without scattering waves. There are several types of boundaries (1) body/wall(bottom) (2) inlet/outlet and ( 3)

atmosphere.

On the body surface

• The boundary condition for scattering uid velocity is set to

u C = u b -u I (6.103)
where u b is the velocity of the body surface. The impermeable no-slip body boundary condition is achieved.

• The fixedFluxPressure boundary condition is imposed on the pressure. The pressure gradient is adjusted by velocity ux which is specied with velocity boundary condition.

Complementary uid velocity on the boundary face is written by

(u C ) f = 1 a P H(u C ) f - 1 a P f (∇p C ) f (6.104)
Applying the inner product with the surface vector

s f = |s f | n f gives (u C ) f • s f = 1 a P H(u C ) f • s f - 1 a P f (∇p C ) f • s f (6.105)
Therefore, the pressure boundary condition is given in

(∇p C ) f • n f = (a P ) f |s f | 1 a P H(u C ) f • s f -(u C ) f • s f = (a P ) f |s f | F H/A f -F f (6.106)
where

F H/A f = 1 a P H(u C ) f • s f , F f = (u C ) f • s f . (6.107) F H/A f
is the ux predicted by momentum equation and F f is the ux calculated by the velocity boundary condition. 

(∇p C ) f • n f = (a P ) f |s f | F H/A f -F f (6.110)
• Complementary LS function is blended with zero or complementary wave elevation computed by potential theory. (6.112) where (u C ) BC is the velocity obtained from boundary cellcenter.

ψ C =    (1 -w)ψ C ,
• Following pressure condition is imposed at atmosphere boundary as 6.113) where the reference pressure, p 0 is set to zero.

p C = p 0 -0.5ρ |u C | 2 ( 
• At atmosphere boundary surfaces normal to z-plane, ∇ψ ≈ ∇ψ I ≈ 1. Boundary condition for complementary LS function at atmosphere is given by n • ∇ψ C = 0.

(6.114)

6.9 Validation and discussion 6.9.1 Wave propagation in NWT Incident wave propagation in a numerical wave tank is considered as benchmark test case. The same computational mesh and wave conditions as described in the section 2.2 are used. Relaxation zones of length 1.5λ are dened at ends of computation domain as the inlet and outlet for generation and absorption of waves. Length and height of total computational domain are 10λ and 2H. Mean free surface is located on z = 0.

Extrapolation of incident wave velocity and pressure above free surface

Incident velocity in the air by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] is evaluated by putting the height limit (1.5Ξ I ) as 

Mesh and time convergence tests

Spatial and temporal discretizations given in Table 6.1 are tested. Representative Courant(Co)

and Reynolds numbers (Re ∆ ) are dened in equation 2.5. A Crank-Nicolson time scheme with c CN = 0.95 is used for all local terms. Convection terms of LS function transport equations are discretized by van Leer scheme [START_REF] Van Leer | Towards the ultimate conservative dierence scheme. II. Monotonicity and conservation combined in a second-order scheme[END_REF]. A rst-order upwind scheme is used to discretize the convection terms in momentum equations. First-harmonic amplitudes and phase dierences of wave elevation with respect to Co and Re ∆ discretizations are shown in gures 6.12 and 6.13. When coarse time and space discretization are used, the rst-harmonic amplitudes of wave elevation show unstable results compared to the simulation case with a ne discretization. et al. (1994).

The mean shift of wave elevation decreases as time and space discretizations are rened. Redistancing technique adopted in present study is based on the calculation of the distance from the nearest interface. (6.116) where c α is an interface compression coecient and u n is the uid velocity normal to the interface. The VOF compression term c α ∇ • (u n α(1 -α)) only acts when α ∈ (0, 1).

Wave elevation time series at the center of the computational domain are compared in gure 6.16.

Wave elevation calculated by solving Navier-Stokes equations with VOF interface modeling show a decaying behavior for simulation time, and a small phase shift is seen. Wave elevations simulated by solving SWENSE with VOF interface modeling depend on articial VOF compression term. When a small VOF compression coecient c α = 0.3 is used, wave elevations show a decaying behavior with a large phase shift. Meanwhile, wave elevations computed by the present method show consistent results compared to other viscous ow solvers.

First-harmonic amplitudes and phase dierence between analytical solution are compared in gure 6.17 (a) First-harmonic amplitude (b) First-harmonic phase dierence Figure 6.17. Comparision of wave elevation rst harmonics with other viscous solvers.

Regular wave diraction by a vertical circular cylinder

Experiments on a vertical circular cylinder in regular wave are considered. The conguration of experiments conducted by [START_REF] Huseby | An experimental investigation of higher-harmonic wave forces on a vertical cylinder[END_REF] is depicted in gure 6.18. A thin cylinder with radius r = 0.03m is xed in wave tank of depth H = 0.6m. Incident regular waves of frequency f = ω 2π = 1.425 Hz with various wave height (H ) are generated by a wavemaker.

In the present study, simulations are conducted in wave steepness range kH ∈ [0.12, 0.48]. A cylindrical computation mesh with radius of 2λ = 1.537m and height 0.8m is considered. A relaxation zone with the length of 1.5λ is dened from the far-eld boundary. The pure CFD zone is 0.5λ from cylinder wall to relaxation zone following previous work [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. The computational domain is discretized with cell length ratio in the radial direction by ∆R max /∆R min = 40.

The number of cells in the radial direction is N R = 40. The mesh is discretized uniformly in θ-direction with N θ = 30. Three mesh blocks are considered in the vertical direction. The First and higher harmonics of the horizontal force acting on cylinder are compared in gure 6.23.

Analytical solution on the vertical circular cylinder in regular waves is available up to third-order. [START_REF] Mccamy | Wave forces on piles: A diraction theory[END_REF] introduced linear theory based on the eigenfunction expansion, [START_REF] Kim | The complete second-order diraction solution for an axisymmetric body Part 1. Monochromatic incident waves[END_REF] presented the second order velocity potential on the vertical circular cylinder and [START_REF] Chau | Second-order wave diraction by a vertical cylinder[END_REF] suggested the complete expression for second order problem. [START_REF] Malenica | Third-harmonic wave diraction by a vertical cylinder[END_REF] extended the eigen-function expansion up to third-order problem. [START_REF] Huseby | An experimental investigation of higher-harmonic wave forces on a vertical cylinder[END_REF] conducted the experiments with dierent cylinder radii (a=3cm, 4cm). Special attention was given to remove the second-order free waves due to the wave maker. Measurement is taken before high-harmonic free waves reach the cylinder. They compared the force harmonics amplitudes ( F (n) ) and phases (ϑ(F (n) )), where (n) denotes the harmonic order. Amplitudes of force harmonics are normalized as follows:

F (n) ρga 3 a H/2 n . (6.117)
Horizontal force harmonics calculated by present method is compared with others [START_REF] Ferrant | Fully nonlinear interactions of long-crested wave packets with a three dimensional body[END_REF][START_REF] Shao | A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics[END_REF][START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. [START_REF] Shao | A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics[END_REF] However, small amplitude dierences are observed for small kH that should have the similar value with analytical solution. Second-harmonic amplitudes and phases show similar results with [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. Third-harmonic amplitudes and phases are slightly dierent for small kH compared to others and analytic solution. Fourth-hamonic amplitude and phase show similar results with [START_REF] Ferrant | Fully nonlinear interactions of long-crested wave packets with a three dimensional body[END_REF] and [START_REF] Shao | A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics[END_REF].

Force harmonics calculated by proposed method show good results even if a relative coarse discretization (N cell = 190, 000) is used. Figure 6.23. Harmonics of horizontal force acting on the cylinder.

Conclusion

The SWENSE method is applied to multi-phase ow with Level-Set function for the interface modeling. Kinematic and dynamic interface boundary conditions in multiphase ow are reviewed.

Navier-Stokes equations and interface boundary conditions are reformulated with respect to the complementary ow by combining previous works by [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] and [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF].

Pressure related terms are discretized by considering the interface boundary conditions in the framework of Finite Volume (FV). A FV discretization procedure based on Ghost Fluid Method (GFM) proposed by [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] is used to consider the pressure boundary conditions on the interface. The incident pressure including the dynamic pressure of incident waves and hydrostatic pressure is used for the pressure jump condition [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. Both pressure jump conditions proposed by [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] and [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] are same for calm water case.

The extrapolation of incident velocity and dynamic part of incident wave pressure with cubic polynomials is proposed in the present work. It provides smooth transitions of incident wave quantities up to air zone without any complex algorithm and with fast computation. Nevertheless, the extrapolation with cubic polynomials generates mass continuity error in the air zone. Numerical simulations showed that the extrapolation of the incident ow up to air zone is necessary for multi-phase ow simulation based on the SWENSE approach.

Redistancing Level-Set (LS) function by calculating the distance from the nearest interface is used in the present study. The numerical discretization of incident ow terms in LS equation generates errors which are cumulated in simulation time. Redistancing LS is thought to remove cumulated errors due to the discretization of incident ow terms. Then, a negligible mass loss is observed during the simulation. Spatial and time discretization tests were conducted to check the order of convergence. Furthermore, a comparison with other viscous ow solvers was conducted for wave propagation. Results showed that the proposed viscous ow solver gives better results during simulation compared to others.

At last, a benchmark test on the wave diraction by a thin cylinder is conducted. Amplitudes and phase of force harmonics are compared with analytical solution, experiments and other numerical computations. Although a small number of computation cells is used for the simulation, the results calculated by the proposed viscous ow solver show similar results compared with other computations.

Computation algorithm

A segregated algorithm is used to solve the wave-structure interaction problem considering coupling viscous and potential ow models. The uid velocities and wave elevations computed by potential and viscous solvers are coupled and they are imposed as the boundary conditions of each ow model at the same computational time. where t is time, and it is updated with new simulation time. The complementary elds obtained by the potential ow solver are updated by following procedure:

• Fluid velocities and wave elevations of complementary waves on the matching surface and waterline are obtained from the viscous ow model. The principle of Wheeler stretching is applied to obtain the uid velocity of complementary waves on the matching surface because the wave elevations of viscous ow model are not calculated on the mean position.

The vertical position of Gauss point (ζ i ) is given in case of calm water, the vertical position of Gauss point is moved with respect to total wave elevation

ζ i = ζ i -Ξ, (7.1) 
where ζ i is a new vertical position of Gauss point adapted to the total wave elevation (Ξ). Fluid velocities of complementary waves at Gauss points are interpolated from uid velocities on the matching surface. It should be noted that the weight of Gauss-Laguerre quadrature is not changing, but the vertical location of the Gauss point is moved with respect to total wave elevation.

• Fourier-Laguerre coecients of complementary uid velocity are computed on the matching surface. Fourier coecients of complementary wave elevation are computed on the matching waterline.

• Poincaré's velocity representation is used to calculate Fourier-Laguerre coecients of the complementary uid velocity at the eld point. The elementary functions and Fourier-Laguerre coecients of complementary uid velocity and Fourier coecients of complementary wave elevations are used.

• The vertical component of the complementary uid velocity is computed at the eld point on the free surface. Complementary wave elevation at eld point is computed by integrating the vertical complementary uid velocity.

• The complementary uid velocity at the eld points is computed by applying Wheeler stretching and Fourier-Laguerre series.

• Constructed complementary uid velocity and wave elevation at the eld points are used to interpolate the complementary ows for viscous ow model. The viscous ow model is updated by following the computational procedure:

Update of viscous ow

• The dynamics of the body is solved by using a mechanical solver if a oating body is considered. The computational mesh of the viscous ow model is updated from the displacement of the body surface.

• Flow quantities related to the incident waves are updated. Fluid velocity, wave elevation and dynamic pressure of incident waves are updated from the incident wave model.

• The incident Level-Set (LS) function (ψ I ) is calculated by using wave elevation (Ξ I ) as ψ I (x, y, z; t) = -z + Ξ I (x, y; t).

• Flow quantities related to the complementary waves in the relaxation zone are updated from Poincaré's velocity representation. The complementary uid velocity and wave elevation in the relaxation zones are updated.

• The complementary LS function in the relaxation zone is calculated by using the complementary wave elevation as

ψ Poincaré C (x, y, z; t) = Ξ C (x, y; t).
where ψ Poincaré C is the complementary LS function obtained from Poincaré's velocity representation.

• The transport equation of complementary LS function (ψ C ), as given below, is solved in the computational mesh of the viscous ow model. where d is the distance from the nearest interface(free surface) to cell center(P ).

• The relaxation scheme is applied to the complementary LS function in the relaxation zones as

ψ C = (1 -w)ψ C + wψ Poincaré C ,
where w ∈ [0, 1] is the weight function dened in the relaxation zones.

• PISO loop is used to solve u C and p C equations with interface conditions. The governing equations for u C and p C are given by ∂u

C ∂t + ∇ • (uu C ) -∇ • (ν ef f ∇u C ) = - p I ρ w ∇ρ ρ -u C • ∇u I + ∇u C • ∇ν ef f , and ∇ • 1 a P 1 ρ ∇(p C ) P = ∇ • 1 a P H {(u C ) P } .
The interface conditions are given by

u C = 0, p C = p I ρ w -ρ a ρ w , 1 ρ ∇p C = 0.
The Ghost Fluid Method is applied to solve the equations for u C and p C by considering the interface boundary conditions.

• The relaxation scheme is applied to the complementary uid velocity in the relaxation zones as

u C = (1 -w)u C + wu Poincaré C .
• Turbulence model is solved after the PISO loop. In the present study, the turbulence model is not considered. In other words, a laminar ow is assumed.

• If the solutions are converged in the PIMPLE loop, the update of viscous ow is done. 1993). Nevertheless, the third harmonic components measured in experiments show a scattered distribution, that is why the rst, second and third harmonic components of horizontal forces calculated from M&M theory can be used as reference values [START_REF] Malenica | Diraction de troisième ordre et interaction houle-courant pour un cylindre vertical en profondeur nie[END_REF].

The horizontal forces on the bottom-mounted vertical circular cylinder in regular waves can be decomposed into the harmonic components as [START_REF] Malenica | Third-harmonic wave diraction by a vertical cylinder[END_REF] F x (t) = F (1) x e -iωt + F (2) x e -2iωt + F (3) x e -3iωt + F (2)

x + • • • , (7.2) 
where F

(1)

x , F

x and F

(3) x are the rst harmonic, second harmonic(sum-frequency) and third harmonic components of horizontal force.

F

x is a mean drift force which corresponds to a second order dierent-frequency component. Analytical solution of force harmonics can be found in the literature: the rst harmonic by [START_REF] Mccamy | Wave forces on piles: A diraction theory[END_REF], the second harmonic by [START_REF] Kim | The complete second-order diraction solution for an axisymmetric body Part 1. Monochromatic incident waves[END_REF]; [START_REF] Chau | Second-order wave diraction by a vertical cylinder[END_REF] and the third harmonic by [START_REF] Malenica | Third-harmonic wave diraction by a vertical cylinder[END_REF].

Mean drift force acting on the structure is given by [START_REF] Pinkster | Low frequency second order wave exciting forces on oating structures[END_REF]. In the present study, the mean drift forces are calculated by using Higher-Order Boundary Element Method(HOBEM) [START_REF] Hong | Numerical and experimental study on hydrodynamic interaction of side-by-side moored multiple vessels[END_REF].

The conditions of regular waves considered in the present study are given in Table 7.1. The modal wave number (k 0 ) is selected to be in the range k 0 a cylinder ∈ [0.5, 2.0] satisfying a deep water condition that the half of wavelength is smaller than the water depth. The modal wave number is calculated by using a linear dispersion relationship as ω 2 = k 0 h tanh(k 0 h) (7.3) where ω = 2π T is wave frequency, T is wave period. λ 0 = 2π k 0 is the modal wavelength. Wave height is selected to keep the wave steepness, k 0 H 2 = 0.25. 7.4) where m is the order of force harmonics. A is wave amplitude. In the relaxation zone, the complementary ows are relaxed to zero when no coupling is applied or to the complementary ows calculated by potential ow solver when the coupling is considered.

F (m) x ρga 3 cylinder (A/a cylinder ) m ( 

Computational domain

Complementary wave eld Force harmonics and mean drift forces are extracted by using moving window FFT. They are compared in gure 7.10 with respect to dierent computational meshes of viscous ow model and two-way coupling between potential and viscous ows. The analytical values for the rst , second and third harmonics of horizontal forces are obtained from potential ow theory based on perturbation series [START_REF] Malenica | Diraction de troisième ordre et interaction houle-courant pour un cylindre vertical en profondeur nie[END_REF], as given by black lines in gures 7.10a, 7.10c and 7.10d.

Reference values for the mean drift forces are calculated by using HOBEM [START_REF] Hong | Numerical and experimental study on hydrodynamic interaction of side-by-side moored multiple vessels[END_REF], as given by black line in gure 7.10b. with the results of HOBEM(numerics) except the case with small computational domain and without two-way coupling. It seems that the two-way coupling helps to assess the mean drift force on the structure in a small computational domain. Figure 7.10d shows the third harmonic of horizontal forces. The third harmonics of horizontal forces for all simulations have similar tendencies with the analytical solution, but the poor results are obtained on the magnitude of forces for all simulations. Especially for the cases of large wavenumbers k 0 a cylinder > 1, the simulation results are dierent.

The following things are summarized from the results.

• SWENSE with LS function for interface modeling with a relatively large computational domain gives good results up to second-order forces.

• Two-way coupling between viscous and potential ow model gives slightly better results

for the rst-and second harmonics and mean drift forces in a small computational domain.

However, poor results are obtained for third-order harmonics.

• Nevertheless, the third harmonics obtained from the simulation have tendencies similar to the analytical solution, the large dierences between analytical solution and simulation results are shown.

(a) First harmonic,

F (1) (b) Mean drift force, F (2) 
(c) Second harmonic, F (2) (d) Third harmonic, F Computational domain Some information of computational domains are summarized in Table 7.3. The radius of viscous ow domains is L CF D = a cylinder +3.0λ 0 and a cylinder +1.5λ 0 for MeshL and Mesh2, respectively. The relaxation zone is dened in the far-eld region with its length L relax = 1.5λ 0 and 1λ 0 for MeshL and Mesh2, respectively. The numbers of computational cells are in the range of 3millions and 0.36millions for MeshL and Mesh2, respectively. The simulation time step is T /∆t = 1600

and 1000 for MeshL and Mesh2, respectively. Figure 7.11 show the computational grid of MeshL for the simulation case of ka cylinder = 1.0. The computational grid for Mesh2 is already shown in gure 7.7b.

The radius of matching surface is a = 2a cylinder . Some information of interpolation grid is given in Table 7.3. Two-way coupling is only applied when Mesh2 is used in the viscous ow solver.

The distance between the matching surface and relaxation zone is d couple = 0.5λ 0 . The numbers of Fourier and Laguerre modes are N f ourier = 6 and N laguerre = 3, respectively. Poincaré and r z2 Poincaré The results can be summarized as follows:

• Total wave elds in the vicinity of the vertical circular cylinder are similar.

• The viscous ow solver based on NS equations and VOF interface modeling needs more rened mesh than the computational mesh used in the present study.

• When the two-way coupling is used, the waves diracted by the structure are propagating up to far-eld. A smooth transition of complementary waves across the relaxation and pure zone are presented. 

F (m) x,i = 1 N k 0 a cylinder   N k 0 a cylinder i=1   F (m) x,i -F (m) x,i,potential F (m) x,i,potential   2   1 2 , (7.13) where F (m) x,i
is a relative dierence of m-th harmonics of horizontal force with respect to potential ow result. N k 0 a cylinder is the number of simulated wavenumbers. F (m)

x,i is m-th harmonic component of horizontal force obtained by simulation with i-th k 0 a cylinder . F (m)

x,i,potential is m-th harmonic components calculated by potential ow theory at i-th k 0 a cylinder .

When the two-way coupling is applied, the relative dierences of force harmonics are reduced for rst-and second harmonics and mean drift forces. Meanwhile, the relative dierences of third harmonics increases when the two-way coupling is considered. The complementary waves diracted by the vertical circular cylinder propagates up to far-eld with two-way coupling. Total wave elds obtained from the simulations with two-way coupling shows that the diracted waves are propagating in the relaxation zone that are similar to the total wave elds obtained from the simulation in the large computational domain.

Horizontal forces acting on the vertical circular cylinder are compared by extracting its harmonics and mean drift forces. The simulations by considering two-way coupling give good results for the rst harmonics, second harmonics and mean drift forces which correspond to the second-order component. In the potential theory, the linear wave distribution along the waterline contributes mainly on the second order forces [START_REF] Pinkster | Low frequency second order wave exciting forces on oating structures[END_REF]. When the two-way coupling is applied the dierences of rst and second order forces with the solution potential ow model are reduced because the linear parts of complementary waves in the relaxation zone are well treated.

However, the third harmonics obtained from the simulation by considering two-way coupling are worst than those obtained without two-way coupling. The potential ow model for complementary ows based on linear theory may not appropriate to obtain the third order components which are given by the combination of second and rst order components.

The two-way coupling strategy is applied also for the viscous ow solver based on NS equations and VOF and the results are compared. The same conclusion is drawn from the simulation results.

The computational costs are increased when the two-way coupling is applied. 

Description

The experiments on a xed Catenary Anchor Leg Mooring (CALM) buoy in regular and irregular waves were carried out in 3D ocean wave tank in Ecole Centrale de Nantes [START_REF] Rousset | Model tests for principia R&D. CTR1-JIP Calm Buoy 2[END_REF][START_REF] Monroy | RANS simulations of a calm buoy in regular and irregular seas using the SWENSE method[END_REF][START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. Specications of wave basin in Ecole Centrale de Nantes was given in section 3.3. The buoy is a truncated vertical circular cylinder with a thin skirt near to the bottom. The buoy model and the picture of the installed buoy in the wave basin are shown in gure 7.15. Geometrical dimensions of the buoy are given in Table 7.5. The horizontal and vertical forces acting on the buoy and the wave elevations are measured in experiments.

The conditions of regular and irregular waves are given in Table 7.6 Information of computational domain is given in Table 7.7. The length of computional domain for the viscous ow model is L CF D = a skirt + 2λ. The relaxation zone is dened from far-eld boundary with its length L relax = 1.5λ. The pure zone, where relaxation scheme is not applied, has a length L pure = a skirt + 0.5λ. The computational cells of N cell = 473, 136 is used for simulation.

The matching surface to update the potential ow model is located with its radius a = 2.5a skirt .

The same conguration of interpolation grid for Poincaré's velocity representation, as explained in section 7.2.1, is used. The information of interpolation grid is given in Table 7. The magnitudes of rst-harmonics obtained from simulations are compared with the experiment in Table 7.8 with results of [START_REF] Li | Comparison of wave modeling methods in CFD solvers for ocean engineering applications[END_REF]. When the two-way coupling is applied, the dirences between simulation and experiments are reduced. Even if a small number of cell (N cell ) is used, the coupling gives good results compared with results of [START_REF] Li | Comparison of wave modeling methods in CFD solvers for ocean engineering applications[END_REF].

Table 7.8. Harmonics of wave elevation measured at wave gauges.

Case

Gauge #1 Force-harmonics and horizontal mean drift force are extracted by applying moving window FFT, as given in Table 7.9 with results of [START_REF] Li | Comparison of wave modeling methods in CFD solvers for ocean engineering applications[END_REF].

(Ξ (1) /A) Gauge #2 (Ξ (1) /A) Gauge #3 (Ξ ( 
First-harmonic components of horizontal forces obtained from simulations have dierences of less than 5%. When the two-way coupling is applied, the dierence between simulation and experiment is reduced.

Horizontal mean drift force obtained from the simulation without considering two-way coupling has an dierence of 16.8% with respect to the result of the experiment. When the two-way coupling is considered in simulation, the dierence of 4.17% is obtained. It reconrms the results of benchmark case on the vertical cylinder discussed in section 7.2.4 that the two-way coupling helps to assess horizontal mean drift forces acting on the structure.

Second-harmonic components of horizontal forces calculated by simulations have dierences of less than 9%. An dierence obtained by applying two-way coupling is smaller than the simulation without considering two-way coupling.

First-harmonic components of vertical forces computed by simulations have large dierences compared with horizontal force. The dierence between experiments and simulation is also reduced when the two-way coupling is considered. 
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Computational cost

The computational times spent for the simulations are summarized in Table 7.10. The buoy model in regular waves is simulated for 15 wave periods t ∈ [0, 15T ]. The same number of processors are used for the simulations.

The computational time is increased by 80.4% when the two-way coupling is considered. The increased percentage of computational time is similar to the increased percentage of the benchmark test on the vertical circular cylinder. In the previous benchmark test, the computational time increases by 84% with viscous solver based on SWENSE and LS interface modeling. 

L relax = 1.5λ p .
When the two-way coupling is considered, the matching surface has a radius of a = 2.5a skirt . The information of interpolation grid for Poincaré's velocity representation is summarized in Table 7. The dierences between simulations and experiment can be listed as

• The incident waves simulated by HOS-NWT model have small discrepancies with the incident waves generated in the experiments.

• Transfer function of wavemaker in HOS simulation is based on linear theory and minor compensation is applied for second order component.

• Wave reections exist at the wavemaker and absorbing beach in the wave tank. HOS-NWT model also uses a numerical beach model to absorb propagating waves. Wave reections both in experiment and simulation may give the dierence, especially when the size of the wave tank is limited. Experiment on the irregular waves needs a long measurement time.

Therefore the wave reections exist in the experiment. shown in the calculation with a large computational domain.

Harmonic components of force acting on the vertical circular cylinder are compared. When the two-way coupling is applied, the errors of rst-and second-order forces are reduced. The distribution of linear wave elevation along the waterline contributes mainly on the second-order forces. The complementary waves are well treated in the relaxation zones by linear potential ow theory. Therefore the errors of second-order forces can be reduced.

However, the third-harmonics obtained by considering two-way coupling are poor than the case without considering two-way coupling. The potential ow model for complementary ows based on linear theory may not appropriate to obtain the third-order components.

Finally, the benchmark test on the CALM buoy model in regular and irregular waves are conducted. In the regular wave test, the errors of wave elevation and forces are reduced when the two-way coupling is applied. Notably, the horizontal mean drift force shows a good result. In the irregular wave test, the generated complementary waves by buoy model are small. The twoway coupling has little eects on the numerical results. The incident wave model in numerical simulation gives the main dierence between experiment and numerical simulation.

The computational cost increases when the two-way coupling is applied. When the viscous ow model based on SWENSE with LS function for interface modeling is used, the computational times are increased about 80% for the case of regular wave and 40% for the case of irregular waves. The computational time increases 56% for the case of regular wave when the viscous ow model based on Navier-Stokes with VOF interface modeling is considered.

In the present work a numerical model is developped to solve the wave-structure interaction problem by considering a two-way coupling between potential and viscous ow models, the latter being considered only in the vicinity of the body.

Flow quantities are decomposed into incident and complementary parts. In the functional decomposition used, the incident waves are computed without considering the structure and once it is known only the complementary ow need to be solved both in the potential and viscous ow models. The potential ow models for nonlinear incident waves is detailed.

A domain decomposition strategy is applied for the complementary ow. In the vicinity of structure the viscous ow model is based on a two-phase Spectral Wave Explicit Navier-Stokes Equation (SWENSE) method, with a Level-Set function introduced for interface modeling. In the far-eld, the complementary ow is calculated by using a linear potential ow model based on Poincaré's velocity representation. This is done with new theoretical developments with respect to the existing literature. The complementary uid velocity and wave elevation are used to couple potential and viscous ow models. The matching surface for potential ow model and the relaxation scheme for viscous ow model are applied to update each ow solver.

During the PhD various software package were updated or developped for the broad subject of numerical computations about wave structure interaction.

• Grid2Grid (newly developped from exisiting package): Fast library for reconstrusting HOS ow eld in CFD grid [START_REF] Choi | Grid2Grid: HOS wrapper program for CFD solvers[END_REF] • POIVRE (newly developped): Library for calculating the complementary ow based on the Poincaré's velocity representation However in the nal applications involving functional and domain decompositions with a 2-way coupling approach, the complexity of the algorithm is increased and it is still to be understood how ecient this will be in practical case. The benchmark tests were carried out for propagating waves in numerical wave tank (NWT) and a swaying 2D Lewis form. The results show that the relaxation to the propagating waves in the outlet zone gives good results compared to others. The size of the computational domain and simulation time both can be reduced when the two-way coupling is applied. An ecient potential ow model with good relaxation schemes are necessary for two-way coupling.

Potential ow: Incident waves

The nonlinear incident wave models on the regular and irregular waves are summarized. The stream function theory for regular waves [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF] and HOS wave models for irregular waves and waves in NWT [START_REF] Ducrozet | 3-D HOS simulations of extreme waves in open seas[END_REF][START_REF] Ducrozet | A modied high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF] are briey reviewed.

The reconstruction procedure of nonlinear waves simulated by HOS wave model is proposed in the present study. B-spline interpolation on HOS grid is used to compute nonlinear waves at the arbitrary space and time. The generation of nonlinear HOS waves in viscous ow solver is validated with numerical simulation for various HOS wave models.

The nonlinear irregular waves corresponding to the 1000 year return period waves in the Gulf of It is proved that two expressions of the time-domain Green function for deep water in velocity representation are the solutions of Clément's 4-th order Ordinary Dierential Equation(ODE) (Clément, 1998). The computational algorithm based on time-marching Frobenius method proposed by [START_REF] Chuang | On the evaluation of time-domain Green function[END_REF] is used to calculate the time-domain Green function. Proposed velocity representation can be applied for the arbitrary matching surface with a heaving hemisphere. However, the singular behaviour is observed when the eld point moves towards the mean free surface due to diverging behavior of time-domain Green functions.

A circular cylindrical matching surface is introduced to remedy the singular behavior. Coordinates transformation from Cartesian to circular cylindrical coordinates are applied to the velocity components and Green function. A pseudo-spectral method using the Fourier-Laguerre and Fourier series is applied. Fluid velocity at the eld points is expressed by a combination of The methodology of spectral wave explicit Navier-Stokes equations (SWENSE) is applied for the multi-phase ow with Level-set interface modeling. The method of SWENSE for multi-phase ows have been studied by [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] and [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] applied the functional decomposition on the uid velocity and LS function to reconstruct the governing equations with respect to complementary ows. However, the terms corresponding to the Euler equation are saved. He used Ghost Fluid Method (GFM) to solve the multi-phase ow problem by considering the pressure jump condition on the interface. [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] introduced an extended mixture pressure up to air zone to cancel the terms related to the Euler equation. He presented many versions of SWENSE for multi-phase ow with a method of Volume Of Fluid (VOF) for interface modeling.

In the present study, the works done by [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] and [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] are combined. The Navier-Stokes equations are reformulated into SWENSE by using the extended mixture pressure proposed by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. The interface between two uids is modeled by LS function. Functional decomposition is applied to the LS function [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF]. The original LS function transport equation with a simple re-distancing the LS function is used instead of using the LS function equation in [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF]. The numerical discretization by GFM is applied to solve the multiphase ow problem with a pressure jump condition [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF].

The benchmark tests ware conducted to validate the viscous ow model. The viscous ow model gives good results for propagating waves in Numerical Wave Tank (NWT) compared to other viscous ow models. Nevertheless, a small loss of mass is observed when the coarse mesh and large time dierence are used for simulation. The mass loss is reduced as the mesh and time dierence are rened.

The wave diraction by a vertical circular cylinder is considered for second benchmark test [START_REF] Huseby | An experimental investigation of higher-harmonic wave forces on a vertical cylinder[END_REF]. The proposed viscous ow model gives good results on the forceharmonics when coarse computational meshes are used. The coupling strategy is applied for a vertical circular cylinder in regular waves and the CALM buoy model in waves. Simulations with two-way coupling between potential and viscous ow models give better results on the wave elevations, rst-order and second-order forces acting on the structure. The computational time increases when the two-way coupling is applied.

Conclusion

Two-way coupling between potential and viscous ow models are proposed in the present study. To couple potential and viscous ow models, the continuous wave elevation and uid velocity across the computational domain are assumed. In the matching surface, the complementary uid velocity and wave elevation are used to update the complementary ow eld in the fareld region by using Poincaré's velocity representation. In the far-eld, the relaxation scheme is used to blend the computed complementary ow with the target ow calculated from Poincaré's velocity representation.

A segregated algorithm solving the wave-structure problem by considering two-way coupling is presented. The benchmark tests are carried out for a bottom-mounted vertical circular cylinder in regular waves and a xed buoy model in regular and irregular waves. Results of the benchmark tests show that the two-way coupling can improve the wave elevations and the forces acting on the structure. Especially, the horizontal mean drift forces acting on the structure are enhanced signicantly when the two-way coupling is adopted. However, the two-way coupling gives poor results on the third-harmonics of forces. When the complementary waves are small, the two-way coupling does not aect the results. When the two-way coupling is applied, the computational costs are increased by 80% for regular wave simulation and 40% for irregular wave simulation. • Les modèles de uide parfait potentiel pour les ondes incidentes non-linéaires sont présentés.

Une nouvelle procédure de reconstruction des ondes non-linéaires dénies via une méthode uide parfait potentiel HOS (High Order Spectral) sur un maillage de domaine uide adapté à un modèle de uide visqueux via une interpolation B-spline est présentée et validée à l'aide de comparaison entre simulation numérique et expérience.

• autour d'un hémisphère perçant la surface libre et en mouvement forcé [START_REF] Hulme | The wave forces acting on a oating hemisphere undergoing forced periodic oscillations[END_REF]. La vitesse du uide et l'élévation de la vague sur la surface correspondante ainsi que la fonction de Green dans le domaine temporel sont utilisées pour reconstruire la vitesse complémentaire à partir de la représentation de la vitesse de Poincaré. La vitesse complémentaire reconstruite par la représentation de vitesse de Poincaré est comparée à la solution analytique.

Lorsque le point de champ est situé sous la surface libre moyenne, les tests de référence suivants sont eectués :

• L'étude de convergence en temps montre que les vitesses complémentaires reconstruites convergent correctement avec la diminution du pas de temps. Lorsque la discrétisation est susante, la vitesse relative reconstituée a une erreur relative inférieure à 1%.

• Lorsque le point où on évalue le champ complémentaire est xe, la fréquence de mouvement de l'hémisphère est modiée. Les résultats montrent un bon accord avec la solution analytique. Lorsque la discrétisation est susante, la vitesse complémentaire reconstruite présente des erreurs relatives inférieures à la valeur de 1%.

• Diérentes surfaces de couplage, telles que un hémisphère, un cylindre circulaire ouvert par le bas, un ellipsoïde ou un cube fermé sur sa partie inférieure sont utilisées pour vérier la sensibilité de la représentation de vitesse proposée à la géométrie de la surface de couplage.

Après calcul, la vitesse complémentaire reconstruite a des erreurs relatives inférieures 1%.

Il est vérié que la représentation de vitesse proposée fonctionne même lorsque la surface inférieure est susamment ouverte pour une surface correspondante susamment profonde.

Cependant, un comportement singulier apparaît lorsque le point de calcul de la vitesse est situé sur la surface libre moyenne (z = 0). Deux contributions de vitesse sont identiées pour générer ce comportement singulier :

• La contribution de la composante harmonique a un prol de vitesse hautement instable lorsque l'intégrale de convolution est partiellement évaluée avec un intervalle de type fenêtre glissante.

• La contribution de la composante de surface libre a un prol de vitesse hautement oscillant lorsque l'intégrale de convolution est partiellement évaluée avec un intervalle de type fenêtre glissante.

Ce comportement singulier est dû au comportement divergent de la fonction de Green lorsque • Division des fonctions oscillantes L'idée d'évaluer l'intégrale impliquant les fonctions de Bessel proposée par [START_REF] Lucas | Evaluating innite integrals involving Bessel functions of arbitrary order[END_REF]; [START_REF] Lucas | Evaluating innite integrals involving products of Bessel functions of arbitrary order[END_REF] est développée ici. Les fonctions oscillantes irrégulières sont divisées en fonctions oscillantes elles-mêmes transformées en une somme innie de sous-intégrales avec des zéros. Cette somme innie est calculée à l'aide de l' -algorithme de Wynn [START_REF] Wynn | On a device for computing the e m (S n ) transformation[END_REF].

• Méthode à directions de descente 
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∂η

  Partial derivative with respect to source point cartesian coordinate η q ξ = ∂q ∂ξ Partial derivative with respect to source point cartesian coordinate ξ q ζ = ∂q ∂ζ Partial derivative with respect to source point cartesian/cylindrical coordinate ζ q a = ∂q ∂a Partial derivative with respect to eld point cartesian coordinate a q n = ∇ ξ q • n Normal gradient component xv q x = ∂q ∂x Partial derivative with respect to eld point cartesian coordinate x q y = ∂q ∂y Partial derivative with respect to eld point cartesian coordinate y q z = ∂q ∂z Partial derivative with respect to eld point cartesian/cylindrical coor-modeling of wave-structure interaction

  introduced a new Poincaré's velocity representation in free surface potential ow to compute the uid velocity at eld points. The original boundary integral equation states that the velocity at eld points can be calculated by the surface distribution of sources and dipoles with their strength. In his work, the dipole contribution is transformed into the equivalent source contribution multiplied by the tangential velocity. Therefore, the uid velocity at any eld points can be expressed explicitly by the velocity distribution over the surrounding boundary surfaces. Following his previous work, Noblesse (2001) presented a generic expression for free surface ows and suggested the Poincaré's velocity representations for the cases of soft (Φ = 0) and rigid ( ∂Φ ∂z = 0) free surface, steady forward ship problem, timeharmonic without/with forward speed. Furthermore, he introduced a potential representation which is called weakly singular boundary integral equation by dening a vertically integrated Green function (Noblesse and Yang, 2004). Guillerm (2001) applied Noblesse's representation for the steady forward ship problem by coupling a viscous ow model in the vicinity of the ship and a potential ow model far from the ship.

Figure 1 . 2 .

 12 Figure 1.2. Categorization of coupling methodologies by information delivery direction.

  Figure 1.3. Categorization of coupling methodology by place of information delivery.

  used FVM for viscous ow in the region near to free surface and BEM for the region body surface to FVM region for the simulation of wave breaking by interaction of current and submerged obstacle. They dened two dierent coupling techniques, DtN (Dirichlet to Neumann) and NtD (Neumann to Dirichlet), leading to dierent delivered information. In 1a velocity potential and G is the Green function, DtN update the velocity potential (Φ) on the boundary surface by Bernoulli equation from the obtained pressure in the viscous ow. The Dirichlet boundary condition (Φ) is used to calculate the normal derivatives of velocity potential ( ∂Φ ∂n ) along the boundary surface. The velocity calculated from the potential ow is imposed to viscous ow boundary condition. NtD applies a Neumann boundary condition ( ∂Φ ∂n ) on the boundary surface by uid velocity obtained from viscous ow to calculate the velocity potential (Φ). The pressure by Bernoulli's equation is imposed as the boundary condition for viscous ow.

  [START_REF] Chen | Simulation of wave runup around oshore structures by a chimera domain decomposition approach[END_REF];[START_REF] Kim | Ringing analysis of a vertical cylinder by Euler overlay method[END_REF];[START_REF] Jacobsen | A wave generation toolbox for the open-source CFD library: OpenFoam R[END_REF];[START_REF] Paulsen | An ecient domain decomposition strategy for wave loads on surface piercing circular cylinders[END_REF] applied a relaxation/blending scheme in volumic relaxation zones, which relaxing the total ows into incident components. Therefore, the scattering term shall be blended zero smoothly in the relaxation zone. The weight function gives an extra source in relaxation zones, therefore, it generates unnecessary waves in the computation domain[START_REF] Peri¢ | Tuning the case-dependent parameters of relaxation zones for ow simulations with strongly reecting bodies in freesurface waves[END_REF].

(1. 4 )

 4 Based on the Helmholtz decomposition theorem,[START_REF] Kim | The complementary RANS equations for the simulation of viscous ows[END_REF] proposed a complementary Reynolds Averaged Navier-Stokes Equations(RANSE) that solves the vortical velocity. Potential ow solver calculates the irrotational velocity. Consequently, the Euler terms are cancelled in the momentum equation. They reported that the functional decomposition reduces the computational cost by adopting a coarse grid in the far-eld. For the 2D wing problem, Edmund (2012); Rosemurgy (2014) manipulated the body boundary condition for potential ow that the contribution of vortical velocity is taken into account by integrating them within the boundary layer. Following the equation (1.2), the derivative of velocity potential on the body surface is given as u = 0, ⇐⇒ ∇Φ = -v.

Ferrant

  et al. (2003) introduced a functional decomposition method which is named as Spectral Wave Explicit Navier-Stokes Equations (SWENSE). It assumes that the total ow has two components:(1) incident wave ow and (2) complementary wave ow as χ = χ I + χ C , (1.11) where χ, χ I and χ C are the ow quanties of total, incident wave and complementary waves, respectively. The incident ow terms are subtracted from the Navier-Stokes equation and equations are reconstructed with respect to complementary ow terms. The nonlinear incident wave model being thought to satisfy Euler equations can be canceled. Figure 1.5 shows the SWENSE method to decompose the functional quantities of total ow into incident and complementary parts.

Figure

  Figure 1.5. The SWENSE method to decomose the functional quantities of total ow into

3

 3 Governing equations and boundary conditions for viscous and potential ows 1.3.1 Viscous ow The viscous ow model considers the unsteady, incompressible, and viscous ow. Navier-Stokes equations for viscous ow are given by ∇ • u = 0, (ρuu) = -∇p + ∇ • τ + ρg, (1.13) where u is uid velocity, ρ is uid density, p is pressure, τ is stress tensor and g gravitational acceleration. The color function(indicator function) that indicates the uid region by color function(φ color ) is used for interface modeling. The transport equation of color function (φ color ) is given as ∂φ color ∂t + ∇ • (uφ color ) = 0. numerical modeling of the interface in the viscous ow model is relatively more exible than the potential ow model because no assumption of the single-valued function and the series expansion are required. In the present study, the methodology of SWENSE is used to reconstruct the governing equations for complementary components by u = u I + u C ,

  Figure 1.6. Congurations of computation domain and functional quantities used in previous studies.

Figure 1 . 7 .

 17 Figure 1.7. Conguration considered in the present study.

Figure 1 .

 1 Figure 1.8 shows the place of coupling between viscous and potential ows.

Figure 1

 1 Figure 1.8. Coupling strategy used in the present study.

  sumed. The functional quantities of potential and viscous ow are decomposed into the incident and complementary ow parts. The governing equations and boundary conditions for each ow part are reformulated. It is assumed that the nonlinear potential ow model for incident waves is available in a whole uid domain and satises Euler equations. It makes us divide the computational domain of potential and viscous ow models only for complementary waves. In the vicinity of structure, the viscous ow model based on Spectral Wave Explicit Navier-Stokes Equation(SWENSE) method is used to solve complementary waves generated by the structure.

Figure 2 .

 2 Figure 2.1. The computational algorithm in foamStar (from Monroy et al. (2016))

Figure 2 . 2 .

 22 Figure 2.2. Schematic view on the parametric study of propagating waves with the cyclic lateral boundary condition.

Figure 2 . 3 .

 23 Figure 2.3. The measured wave elevation time series with respect to dierent Crank-Nicolson numbers (c CN ).

  (a) Hamonic amplitudes (b) Phase dierences

Figure 2 . 4 .

 24 Figure 2.4. Comparison of rst-harmonic wave amplitudes and its phase dierences with respect to Crank-Nicolson number (c CN ).

Figure 2 . 5 .

 25 Figure 2.5. Comparison of rst-harmonic wave amplitudes with mesh and time dierence discretization.

Figure 2 . 6 .

 26 Figure 2.6. The order of convergence with respect to discretization of Co and Re ∆ .

Figure 2 . 7 .

 27 Figure 2.7. Dierent vertical mesh spacings of three divided zones with the geometric ratio.

Figure 2 .

 2 Figure 2.8. The rst-harmonic amplitudes and phase dierences with respect to vertical mesh spacing.

Figure 2 .

 2 Figure 2.9. Schematic view of the NWT for a parametric study on the relaxation schemes.

Figure 2 .

 2 Figure 2.10. The maximum Courant number during wave propagation simulation with relaxation to incident waves.

  Figure 2.11. Comparison of reection coecient time series with respect to dierent relaxation schemes and outlet lengths.

Figure 2 .

 2 Figure 2.13. Meshes near to the outlet with dierent stretching.

  schemes and to compare dierent outlets. The schematic view of swaying Lewis form with dierent outlets is depicted in gure 2.16.

Figure 2 .

 2 Figure 2.16. Schematic view of swaying Lewis form with dierent outlet.

  Figure 2.17. The computational meshes of swaying 2D Lewis form; ω = 4.2rad/s, L pure = 1λ

  Figure 2.18. Radiation force time series with respect to target ows, L pure = 1λ and L outlet = 2.5λ for ω = 4.2rad/s.

  Figure 2.19. Relative errors with respect to the size of domain.

Fenton ( 1988 )

 1988 published a Fortran algorithm calculating the stream function waves. Recently, Ducrozet et al. (2019) published an open-source program based on stream function wave theory with a self-adjusting algorithm to cover all wave steepness and Ursell number combinations with desired error tolerance.

  are the modal wavenumbers for x, y and z directions, respectively. Though the basis functions satisfy the lateral, sea bottom and linearized free surface boundary conditions, the wavenumbers are not eigenvalues. Therefore, the problem is solved in a pseudo-spectral way.The open ocean conditions are approximated by applying periodicity conditions on the side of a rectangular domain. Fourier series are applied to express the surface velocity potential and incident wave elevationΦI (x, y; t) 

  boundary condition for Φ I on z = Ξ I is transformed into the simple boundary condition for Φ (m) I on z = 0. As the nonlinear boundary conditions are given explicitly, m-th order velocity potentials Φ (m) I are solved by applying the modal functions in equation (3.16).

  spline function with respect to p is shown in gure 3.3. The reconstructed HOS wave elds have 3 spatial and time variables.

Figure 3 . 3 .

 33 Figure 3.3. The basis functions, b (p) ij (x j ).

Figure 3 . 4 . 3 .

 343 Figure 3.4. The computational domain of viscous ow solver for generation of HOS waves.

Figure 3 . 6 .

 36 Figure 3.6. Generation of nonlinear HOS waves in viscous ow solver and comparison with HOS wave model (top : HOS-Ocean 2D, 3D irregular waves, middle : HOS-NWT 2D regular/irregular waves, bottom:HOS-NWT 3D regular/irregular waves)

Figure 3 . 7 .

 37 Figure 3.7. The wave breaking event in HOS simulation

Figure 3 .

 3 Figure 3.8. Specication of wave tank in Ecole Centrale de Nantes(ECN)

3. 3

 3 .1. The extreme event in simulation and experiment are shown in gure 3.10. A small spilling breaker is observed in the front crest of waves in simulation and experiments. In the experiment, 3D eects along horizontal directions are observed.

Figure 3 .

 3 Figure 3.9. Convergence test on the simulation of extreme waves

Figure 3 .

 3 Figure 3.11. Comparision of wave elevation time series for extreme wave condition.

  Potential ow theories on nonlinear incident waves are summarized. Stream function wave theory for regular waves is reviewed in view of boundary value problem and the eigenfunction expansion.HOS wave theories based on the pseudo-spectral way is summarized for irregular waves and waves in NWT. The reconstruction of HOS wave elds in viscous ow is introduced in the present study based on inverse FFT and B-spline interpolation.The proposed reconstruction procedure is validated with HOS simulation for dierent HOS models. Furthermore, a nonlinear wave breaking event predicted by the simple wave breaking model in HOS simulation is simulated in the viscous ow model. Time and space limited simulation has been conducted on breaking event. The experiment has been conducted to validate the procedure at the wave tank of Ecole Centrale de Nantes. The result shows a good agreement with the results of HOS simulation and experimental measurement.

Figure 4 .

 4 Figure 4.1. Domain denition for complementary potential ow with matching surface.

  x and ξ ξ ξ are the eld and source points dened as x = (x, y, z), and ξ ξ ξ = (ξ, η, ζ).

( 4 .

 4 20) where G h is function satisfying the homogeneous Neumann or Dirichlet condition at the mean free surface. It is taken as the image source or sink located at z = -ζ above the plane of mean free surface for deep water. G W is a wave function introduced to satisfy free surface and far-eld boundary conditions. The contribution of dipoles in equation (4.14) can be given as (see Appendix A in Noblesse (2001))

( 4 .

 4 21)for the Green function (G F ) satisfying the relationships

  relationships of source and image source on z =

( 4

 4 .35) where Φ n = ∇ ξ Φ • n. The above equation is introduced by Noblesse (2001) as generic free surface integral representation.

  Green function for deep water

  (4.38) Note that the factor 4π is taken in the present study because the eld point is not located on the boundary surface. Poincaré's velocity representation given in equation (4.27) is derived by manipulating the spatial derivatives on the boundary integral equation, the time derivative of uid velocity can also be established as 4π   

  (4.57) The linearized free surface boundary conditions for velocity potential and Green function for time domain free surface ow are given inΦ τ τ + gΦ ζ = 0, H τ τ + gF ζ = 0, on ζ = 0.

  surface boundary conditions, the x-component in the convolution integral given in (4.57) is modied as belows

  equations (4.59), (4.60) and (4.61) into(4.57) 

( 4 .

 4 64) where C(t) = C M ∪ C ∞ is the closed line of free surface. C M is waterline of matching surface and C ∞ is the closed curve at innity. U 2D n = u • n 2D is the transport velocity at line. t = (t x , t y , 0) is the unit vector tangent to the boundary curve of the free surface. It is oriented clockwise along the curve of matching waterline and anticlockwise along the curve at innite distance. Applying Reynolds transport and Stokes theorems on the convolution integral in equation (4.62) allows us to obtain

4

 4 Time domain Green function for deep water 4.4.1 Time domain Green function for Poincaré's velocity representation The time domain Green function of the free surface ow for unsteady problem satises the Laplace equation

( 4 .

 4 82) where Z = z + ζ. Substituting the integral relation into equation (4.80), the time domain Green function can be expressed with image source having a positive sign as

  Green function dened in equation (4.32), the wave terms in time domain free surface Green functions are given asH(x, ξ ξ ξ, t) = 2 ˆ∞ 0 1 -cos gkt e kZ J 0 (kR) dk,(4.84)F (x, ξ ξ ξ, t) = -2 ˆ∞ 0 cos gkt e kZ J 0 (kR) dk.

  announced a new theorem showing that the time domain Green function is the solution of 4-th order ordinary dierential equation. Instead of computing the Green function itself, he solved the ordinary dierential equation for the evaluation of Green function and its derivatives with Runge-Kutta 4-th order scheme. Chuang et al. (2007) proposed a time-marching Frobenius method to evaluate the Green function analytically. Li et al. (2015) suggested a precise integration (PI) method to solve the ordinary dierential equation. Recently, Bingham (2016) compared the accuracy and eciency of computation algorithms based on the interpolation of tabulated data, solving the ordinary dierential equations by Runge-Kutta 4-th order scheme, time-marching Frobenius

  variable coecients of the ordinary dierential equation as κ 1 = 1, κ 2 = µ, κ 3 = µτ 0 , κ 4 , κ 7 = β κ 8 = βτ 0 , κ 9 = γ.

  (a) Hτ (µ, τ ) (b) F (µ, τ ) (c) Horizontal gradient, HτR (d) Vertical gradient , HτZ (e) Horizontal gradient, FR (f ) Vertical gradient, FZ

Figure 4 . 2 .

 42 Figure 4.2. Time domain Green function and their derivatives, Hτ (µ, τ ) and F (µ, τ ).
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 5 Validation and discussion 4.5.1 A heaving hemisphere on the mean free surface

Figure 4 . 3 .

 43 Figure 4.3. A heaving hemisphere on the mean free surface.

  on r = a, for ϕ ∈ [0, π/2].

  boundary condition given in equation (4.106) leads to:

  4.111) where ψ(x) = d dx ln (Γ(x)) = Γ (x) Γ(x) is digamma function. Note that digamma function inHulme (1982) is mistyped, e.g. written as φ(n). After solving the algebraic equations (4.109), c 0 is determined by equation (4.107). The computed radiation forces are compared in gure 4.4 with the results of[START_REF] Hulme | The wave forces acting on a oating hemisphere undergoing forced periodic oscillations[END_REF].

Figure 4 . 4 .

 44 Figure 4.4. Nondimensionalized radiation forces acting on heaving hemisphere.

Figure 4 . 5 .

 45 Figure 4.5. Benchmark test.
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 53 Discretization of matching surface Hemisphere shaped matching surfaces with a radius of 2a are shown in gure 4.6. The heaving hemisphere is located inside of this matching surface. The uid velocities at two eld points, kR = 3.19, kz = -0.637 and kR = 23.54, kz = -0.637 are reconstructed by Poincaré's velocity representation, respectively. The reconstructed uid velocity are compared with the analytical solution in gures 4.7 and 4.8. In the gures, A(f ) is the amplitude of f . (a) N panel = 28, N line = 8 (b) N panel = 165, N line = 20 (c) N panel = 781, N line = 44 (d) N panel = 3381, N line = 92

Figure 4 . 6 .

 46 Figure 4.6. Discretized matching surfaces of hemisphere shape.

Figure 4 . 7 . 4 . 5 . 4

 47454 Figure 4.7. The reconstructed velocity with respect to matching surface discretization at kR = 3.19 and kz = -0.637 (left : time series, right : mwFFT, top : horizonal velocity, bottom : vertical velocity)

Figure 4 . 9 .

 49 Figure 4.9. The reconstructed velocity with respect to convolution time dierence ∆τ at kR = 3.19 and kz = -0.637 (left : time series, right : mwFFT, top : horizonal velocity, bottom : vertical velocity)

Figure 4 .

 4 Figure 4.10. The reconstructed velocity with respect to dierent heaving frequency ω at R = 5.0m and z = -1m (left : horizontal velocity, right : vertical velocity)

  Figure 4.11. Dierent matching surfaces.

Figure 4 . 4 . 5 . 7

 4457 Figure 4.12. Reconstructed velocity with respect to dierent matching surfaces at kR = 3.19 and kz = -0.637 (left : time series, right : mwFFT, top : horizontal velocity, bottom : vertical velocity)

Figure 4 .

 4 Figure 4.13. A singular behavior of reconstructed uid velocity and its components with respect to integral contributions.

  of time domain Green function with the limited number of discretized constant panels make the reconstructed velocity unstable. Numerical singularity due to the discretization of panels and diverging behavior of time domain Green function for µ = 0 is depicted in gure 4.14. To verify that the mesh and waterline discretizations causes the singular behavior, the waterline segements are discretized into subline segments. N subline = 21 means that one original line segment is discretized into 21 sub-line segments. Reconstructed horizontal and vertical velocities with respect to waterline discretization are shown in gure 4.15.

Figure 4 .

 4 Figure 4.14. Understanding of numerical singularity due to the discretization of matching surface and waterline with time domain Green function.

Figure 4 .

 4 Figure 4.15. Understanding of numerical singularity due to the discretization of matching surface and waterline with time domain Green function.

  derivating the time domain Green function gives poor results in numerical simulation.When the surface and time integrals are applied to Poincaré's velocity representation, the order of polynomial (p) in time domain Green function is reversely reduced by 1 and 0.5, respectively. Therefore, a circular cylindrical shaped matching surface is introduced in the next Chapter 5. Integrating Poincaré's velocity representation along cylindrical matching surface makes the velocity representation less singular.4.6 ConclusionPoincaré's velocity representation, based on a modication of the boundary integral equation, is introduced. Consequently, the velocity representation becomes weakly singular and the uid velocity at the eld point is given explicitly from the normal and tangential velocity at boundary surfaces.The velocity representation is applied to the unsteady time-domain problem with the linearized free surface boundary condition without forward speed. The free surface integral is transformed into a waterline integral by Reynolds transport and Stokes theorems. As a result, the uid velocity at eld point is given by the distribution of uid velocities and wave elevations on the matching surface and waterline explicitly. It is shown that the various forms of wave term in the time domain Green functions satisfy the same 4-th order dierential equations proposed byClément (1998). Initial conditions of wave terms are suggested to solve the ordinary dierential equation with respect to τ . A time-marching Frobenius method proposed by[START_REF] Chuang | On the evaluation of time-domain Green function[END_REF] 

  Figure 5.1. The coordinates with a vertical circular cylindrical matching surface

  .21) where U, C and W are Fourier-Laguerre coecients for uid velocity at eld point, normal and tangential velocities at matching surface, respectively. The series expansion are truncated with the number of Fourier modes, N , and Laguerre modes, M . L m (-sζ) is Laguerre function dened by L m (-sζ) = e s 2 ζ L m (-sζ),(5.22) 

Figure 5 . 2 .

 52 Figure 5.2. Laguerre functions L m (-sζ).

  research,[START_REF] Hamilton | Viscous and inviscid matching of three-dimensional free-surface ows utilizing shell functions[END_REF] applied Fourier-Chebyshev series on the velocity potential for nite water depth problems, while Liang and Chen (2017); Liang et al.

( 5 .

 5 30) by ˆ2π 0 [gΞ C ] r=a e -ilθ adθ ≈

  elementary functions for the circular cylindrical matching surface integral Right-hand-sides of velocity representation given in equations (5.14),(5.15) and(5.16) are given by surface integral on the ow quantities with Green function. The harmonic velocity contribution are expressed with multiple integrals including the convolution and surface integrals on the ow component over the matching surface with Green function as

  z+ζ) J l (kr)J l (ka)dk,(5.71) 

  1 (-sζ) + sL m-1 (-sζ).

Figure 5 . 3 .

 53 Figure 5.3. The behavior of oscillatory integrands near to zero.

  mn for i = 2, 3, and the singular behaviors are also shown due to Bessel function of the second kind which has a singular behavior at x = 0 lim x→0 + Y m (x) = -∞.

Figure 5 . 5 .

 55 Figure 5.5. The oscillatory functions, J mn and Y mn , for m = n = 0 and α = 4, τ = 20.

  mn for i = 2, 3 are expressed with sub-integrals considering the stationary point (x s )

  by sub-integrals having the integral interval from x i to x i+2 .

Figure 5 . 6 .

 56 Figure 5.6. The evaluation procedure of semi-innite integral involving J(i) mn and Y (i) mn for

Figure 5 . 7 .

 57 Figure 5.7. The evaluation procedure of semi-innite integral involving J(i) mn and Y (i) mn for

  .224) the semi-innite integrals are given by I ∞,A = e -iτ + ˆ∞ u + c g A (u)e iτ + (u-1) 2 du, I ∞,B = e -iτ - ˆ∞ u - c g B (u)e iτ -(u-1) 2 du,

  bound, w + c = (u c + 1) 2 . The closed contour integral of integral type I is shown in gure 5.8. The integrand does not have singularity inside of closed contour, the integral along closed contour given by using Cauchy theorem as I I + I I ∞ + I I i = 0.

Figure 5

 5 Figure 5.8. Closed contour I integration path in complex w-plane and mapped integration path in complex u-plane.

123 5 .

 5 Potential ow: Complementary waves with a vertical circular cylindrical matching surfaceThe integral I II 0∞ can be expressed as e iκρ cos θ e -κρ sin θ ρdθ.

4 ,

 4 Split oscillatory functions, harmonic and waterline elementary functions with two numerical algorithms are shown in gures 5.11 and 5.12. The elementary functions are calculated by steepest descent method for τ α ≥ 0.4. The results from two numerical algorithms evaluating elementary functions are in good agreement with each other.

Figure 5 .

 5 Figure 5.11. Computed harmonic elementary functions with two numerical algorithms, r = 8.694, a = 2.5, s = 3.26, m + p = 0, (left: n = 0, right: n = 1).

Figure 5 .

 5 Figure 5.12. Computed waterline elementary functions with two numerical algorithms, r = 8.694, a = 2.5, s = 3.26, p = 1, (left: n = 1, right: n = 2).

  Figure 5.14. Reconstruction of complementary uid velocity and wave elevation on a cylindrical grid by using a Poincaré's velocity representation.

  .272) The diraction problem considered in the present study has various Fourier components. In constrast, the radiation problem has only one Fourier component. Force acting on the cylinder and wave elevation along waterline of cylinder are shown in gures 5.15 and 5.16.

Figure 5 .

 5 Figure 5.15. Horizontal force acting on vertical circular cylinder, H = 10a[START_REF] Malenica | Diraction de troisième ordre et interaction houle-courant pour un cylindre vertical en profondeur nie[END_REF].

Figure 5 .

 5 Figure 5.16. Wave elevation along waterline of vertical circular cylinder, H = a, ω 2 g a = 2

  a, b) is approximation error. Initial values of a and b for nonlinear optimization algorithm are given by a and b obtained in previous time step. Benchmark tests on nonlinear algorithm for arbitrary function with exponentially decaying behavior are shown in gure 5.17.

  Gauss points are determined from abiscissa of Gauss-Laguerre quadrature and uniformly distributed Fourier points. The complementary uid velocities on the matching surface for heaving hemisphere is approximated by Fourier-Laguerre series and shown in gure 5.18. The number of Fourier and Laguerre modes used for approximation are N F ourier = 2 and N Laguerre = 1, respectively. The number of Gauss points used for approximation is 128.

138 5 .

 5 Figure 5.18. Fourier-Laguerre approximation on uid velocity generated by heaving hemisphere.

  Figure 5.19. Fourier-Laguerre approximation errors of uid velocity with respect to number of Gauss points and modes.

Figure 5 .

 5 Figure 5.20 shows complementary uid velocity and wave elevation calculated by the analytical solution and the Poincaré's velocity representation when the eld point is located on the mean free surface, x = (r, θ, z) = (8, π 4 , 0). A(f ) denotes the rst-harmonic amplitude of f . The sphere of radius 1m has a heaving frequency ω = 2.0 rad/s and heave motion amplitude of 2.0m. Time step used for simulation is ∆t = 0.01s. The matching surface has a radius a = 2m. The numbers of Fourier and Laguerre modes used for Poincaré's velocity representation are N F ourier = 6 and N Laguerre = 3, respectively.

Figure 5 . 5 .

 55 Figure 5.20. Reconstructed complementary wave elevation and velocity on the mean free surface for heaving hemisphere, (r, θ, z) = (8.0, π 4 , 0), ω = 2.0 rad/s. From top to bottom : wave elevation, x-, yand z-component velocity, respectively.

Figure 5 .

 5 Figure 5.21 shows complementary uid velocity and wave elevation elds calculated by the analytical solution and Poincaré's velocity representation. The absolute error is taken by subtracting the analytical solution from the value of Poincaré's velocity representation. The uid velocity above the mean free surface is not calculated and Wheeler stretching is not applied for comparison. The reconstructed wave elds by using Poincaré's velocity representation show good agreements with the analytical solution.

Figure 5 .

 5 Figure 5.22. Reconstructed complementary wave elevation and velocity on the mean free surface for cylinder diraction, (r, θ, z) = (5.0, π 4 , 0), ω = 2.0 rad/s. From top to bottom : wave elevation, x-, yand z-component velocity, respectively.

Figure 5 .

 5 Figure 5.23 shows the complementary uid velocity and wave elevation elds and their absolute errors. The complementary wave elevation and velocity elds reconstructed from Poincaré's velocity representation show good agreements with the analytical solution. The wave elds for diraction problem have more than one Fourier mode.

Figure 5 .

 5 Figure 5.24 shows the complementary wave elevation and velocity reconstructed by Poincaré velocity representation with respect to dierent number of Fourier modes (N F ourier ). The number of Laguerre modes is kept to be N Laguerre = 3. The results show that the horizontal velocity components are convergent slowly with respect to the number of Fourier modes. Meanwhile, the vertical velocity and wave elevation show good agreements with the analytical solution even if the number of Fourier modes are small.

Figure 5 .Figure 5 .Figure 5 .

 555 Figure 5.25 shows the complementary wave elevation and velocity with respect to dierent number of Laguerre modes (N Laguerre ). The number of Fourier modes is kept to be N F ourier = 5. The results show that the reconstructed ow quantities are not sensitive to the number of Laguerre modes. The optimal choice of s gives good approximations of Laguerre functions to the velocity prole along the matching surface.

  models for incident ow explained in Chapter 3 are limited to the water domain. Incident ow needs to be extended up to the air domain to apply multi-phase ow. The incident uid velocity and pressure can be extended by using hyperbolic function used in the potential ow model for incident waves. However, the extrapolation of incident pressure with hyperbolic function results in large values in the air zone which can lead to numerical instability during simulation. To overcome this,[START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] scaled the incident pressure by mixture density

  .39) where u Poincaré C and ψ Poincaré C are the target complementary uid velocity and LS function computed by Poincaré's velocity representation.

Figure 6 .

 6 Figure 6.1. Velocity extrapolation up to air zone with cubic polynomials.

Figure 6 . 2 .

 62 Figure 6.2. Comparison of |u I | eld with/without velocity extrapolation up to air zone by cubic polynomials(black line denotes the interface).

  4. Interface between water and air is plotted with blue dashed line. Red colored lines denote interface faces. Interface cells are denoted with red cross at center. Interface cells are determined by (ψ) P (ψ) N < 0.

Figure 6 . 4 .

 64 Figure 6.4. Finite volume cells and interface crossing the computational domain.

  relaxation to nonlinear incident waves, (1 -w)ψ C + wψ Poincaré C , relaxation to total waves (6.111) Atmostphere • The pressureInletOutlet boundary condition which is a combined boundary condition imposing a zero normal gradient for outow and velocity obtained from boundary cellcenter for inow is imposed for complementary velocity. n • ∇u C = 0, for outow. u C = (u C ) BC , for inow.

  Figure 6.5. Magnitude of incident wave eld (u I ) with and without extrapolation by cubic polynomials up to air, Black line denotes ψ ∈ [-0.01, 0.01].

Figures 6 .Figure 6 . 6 .,

 666 Figures 6.6 shows |u C | elds in the middle of the computational domain at the simulation time t = 1T . Spurious air velocity appears in both elds but the air velocity without extrapolation reaches large values in the at atmosphere, near the upper limit of the domain. A sudden change of complementary velocity is observed at z = 1.5Ξ I when the air velocity is xed to the constant velocity. As the vertical gradient of the incident wave velocity ∂u I ∂z is not continuous at z = 1.5Ξ I , the complementary velocity has an extra velocity at z = 1.5Ξ I to satisfy the continuity equation. This sudden change of u C gives a large velocity ux when solving the complementary LS function transport and momentum equations. As large ux exists near the interface, the complementary LS function are aected by u C . The air velocity eld with the extrapolation by cubic polynomials has also extra velocity above the interface, however its value and gradients change smoothly along the vertical direction. Therefore, computed LS function eld is reliable when the extrapolation by cubic polynomials is applied.

Figure 6 . 8 .

 68 Figure 6.8. Wave elevation time series at the middle of computational domain with/without redistancing ψ C .

Figure 6 .

 6 Figure 6.10. Wave elevation time series with respect to Co discretization.

Figure 6 .

 6 Figure 6.11. Wave elevation time series with respect to Re discretization.

Figure 6 .Figure 6 .

 66 Figure 6.14 shows the convergence of rst-harmonic amplitudes during t ∈ [25T, 40T ] with respect to Co and Re ∆ discretizations. The procedure ofEça and Hoekstra (2014) is applied to estimate the order of convergence (p). The obtained convergence orders for Co and Re ∆ discretization are p = 1.2 and 2.0, respectively.

Figure 6 .

 6 Figure 6.15. Moving averages of wave elevation with respect to Co and Re ∆ discretization and ψ C redistancing.

  . Wave amplitudes computed by solving Navier-Stokes equations with VOF interface modeling show decaying behavior during simulation time. Results simulated by solving SWENSE with VOF interface modeling with c α = 0.3 are poor compared to the other viscous ow solvers.When c α = 1.0 is used for SWENSE with VOF interface modeling, rst-harmonic amplitudes larger than 1 are obtained until t < 32T and decay after t = 32T . First-harmonic amplitudes and phase dierences calculated by solving SWENSE with LS function for interface modeling show a good and consistent behaviour compared to other viscous ow models.

Figure 6 .

 6 Figure 6.16. Comparison of wave elevation time series with other viscous solvers.

  underwater block is dened in z ∈ [-0.6H, -0.75H] with cell height ratio ∆z max /∆z min = 50, and number of cells N z1 = 25 is used. The free surface block is dened in z ∈ [-0.75H, 0.75H]. This part of the domain is discretized uniformly with N z2 = 40. The air block is dened in z ∈ [0.75H, 0.2m]. Here the mesh uses a cell height ratio ∆z max /∆z min = 12 with number of cells N z3 = 15. The computational mesh used for the simulation case kH = 0.48 is shown in gure 6.19. The time step is set to T /∆t = 800. Total number of cells used for computation is N cell = 190, 000.

Figure 6 .

 6 Figure 6.18. Conguration of experiments for thin cylinder in regular waves by Huseby and Grue (2000).

Figure 6 .

 6 Figure 6.19. Computational mesh used for thin cylinder in regular waves, kH = 0.48.

Figure 6 .

 6 Figure 6.20 shows the force time series with respect to dierent wave steepnesses. Magnied force time series shows that nonlinear components increase with wave steepness. Total wave elds around cylinder at the simulation time t = 30T are compared in gure 6.21 with respect to dierent wave steepnesses. This gure shows that complementary waves around cylinder increase with wave steepness.

Figure 6 .

 6 Figure 6.22 shows total wave elevations around cylinder for simulation time. Complementary waves generated by a vertical cylinder are clearly veried.

Figure 6 .

 6 Figure 6.20. Time series of horizontal force acting on the cylinder for dierent wave steepness (kH ).

Figure 6 .

 6 Figure 6.21. Total wave eld around cylinder at t = 30T for dierent wave steepness (kH ).

Figure 6 .

 6 Figure 6.22. Total wave eld around cylinder at 4 instants, kH = 0.48.

  evaluated the force harmonics by Harmonic Polynomial Cell (HPC) method and Li (2018) calculated forces by nite vomume method based on multi-phase SWENSE and VOF procedure for interface modeling. Computed force harmonics by present study show good results with others. First-harmonic amplitudes and phases have similar tendencies with what shown in Li (2018).

Figure 7 .

 7 Figure 7.1 shows the computation algorithm solving the wave-structure interaction problem. Viscous ow model and potential ow model are initialized at the beginning of the algorithm.

Figure 7 .

 7 Figure 7.1. Global computational algorithm of two-way coupling between potential and viscous ows.

  Figure 7.2 shows the initialization procedure of potential ow model. The nonlinear potential ow model for dierent incident waves is initialized: • Regular waves: Stream function theory is used. The modal amplitudes for uid velocity and wave elevation of regular waves are computed in this step. • Irregular waves/Propagating waves in NWT: HOS model is used. The input parameters and numerical results of HOS wave simulation are read. Initial 3D wave eld for interpolation is constructed. Potential ow model for complementary waves is initialized by computing the elementary functions of source, image source, harmonic terms and waterline. After calculating the elementary functions necessary for Poincaré's velocity representation, 3D cylindrical grid is constructed for the interpolation of complementary velocity and wave elevation in the relaxation zone.

Figure 7 . 2 .

 72 Figure 7.2. Initialization of incident and complementary potential ows.

Figure 7 . 3 .

 73 Figure 7.3. Update procedure of the potential ow models for the incident and complementary waves in the time loop.

Figure 7 .

 7 Figure 7.4 shows the computational procedure to update the viscous ow model. The PIMPLE algorithm, which is a combination of PISO (Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations), is used to solve the segregated equations for an unsteady problem.

Figure 7 . 4 .

 74 Figure 7.4. Updating the viscous ow in time loop.

  ∂ψ C ∂t + ∇ • (uψ C ) = -∂ψ I ∂t -∇ • (uψ I )After solving ψ C -transport equation, the complementary LS function is re-distanced by (ψ C ) P = sgn((d) P ) -(ψ I ) P ,

7. 2

 2 Benchmark test 1: A vertical circular cylinder in regular waves7.2.1 DescriptionA bottom-mounted vertical circular cylinder in regular waves is considered for the benchmark test case. Dierent wave frequencies are used for incident regular waves. The magnitude of waves diracted by the cylinder increases as the wavelength of incident waves becomes shorter.The test cases are selected from the previous study on the wave diraction theory by Malenica and Molin (1995) (M&M theory). They calculated the third-order harmonic forces acting on a vertical circular cylinder. Perturbation series with respect to wave steepness is applied to the velocity potential and wave elevation. The third-hamonic component magnitude of horizontal forces acting on the vertical circular cylinder are compared with experimental results (Moe,

Figure 7 .

 7 Figure 7.5 shows the conguration of the benchmark test case. A bottom-mounted vertical circular cylinder having a radius of a cylinder = 1m is located in regular waves. Water depth is h = 10a cylinder = 10m. The computational domain of the viscous ow solver is dened surrounding the vertical circular cylinder, as colored grey in gure 7.5. The radius and height of the computational domain of the viscous ow solver are L CF D and h + h air , respectively. The relaxation zone is dened from the far-eld boundary with its length L relax . The pure zone where no relaxation scheme is applied has a length L pure = L CF D -L relax . The computational domain of the potential ow model for complementary waves is constructed to cover at least the relaxation zone of viscous ow model, as outlined with a solid black line in gure 7.5. The complementary uid velocity and wave elevation are obtained from viscous ow model at Gauss points colored red in gure 7.5.

Figure 7 . 5 .

 75 Figure 7.5. Computational domain of viscous and potential ow models for benchmark test case on a vertical circular cylinder in regular waves.

Figure 7 . 6 .

 76 Figure 7.6. Interpolation grid of Poincaré's velocity representation for complementary ows.

Figure 7 . 7 .

 77 Figure 7.7. Computational meshes of viscous ow model based on SWENSE with LS function for the case of ka cylinder = 1.0.

Figure 7 .

 7 Figure 7.8 shows the complementary wave elevations in the computational domain of the viscous ow model at simulation time t = 12T, 12.4T and 12.8T . Incident waves are propagating from left to right. Relaxation zone is dened in the far-eld region of the computational domain, from red-circle to the ends of domain in gure 7.8. The matching surface of radius a = 2.5a cylinder is is located at blue circle in gure 7.8.

  Figure 7.8. Complementary wave elevation elds with respect to application of two-way coupling for the case of k 0 a cylinder = 1.0 (Left: without coupling, right: with coupling).

Figure 7 .

 7 Figure 7.10a shows the rst harmonic of horizontal forces compared with the analytical solution. The rst harmonics show good agreements with the analytical solution obtained from the potential ow theory. When no coupling is applied, the rst harmonics obtained from dierent computational meshes are slightly dierent for the cases of k 0 a cylinder ≥ 0.75. The rst harmonics obtained from dierent computational meshes by applying two-way coupling show consistent values for the cases of k 0 a cylinder ≤ 1.25.

Figure 7 .

 7 Figure 7.10b shows the mean drift force in the horizontal direction. They are similar compared

Figure 7 .

 7 Figure 7.10c shows the second harmonic of horizontal forces. The second harmonics show similar behaviour with the analytical solution from potential ow theory. With two-way coupling, the second harmonics are slightly better compared to the simulation results without two-way coupling.

Figure 7 .,

 7 Figure 7.10. Harmonics of horizontal force acting on vertical circular cylinder. Horizontal forces are calculated by viscous ow model based on SWENSE with LS function. Poincaré's velocity representation is used for two-way coupling.

Figure 7 .

 7 Figure 7.11. Computational grid of MeshL for the simulation case of ka cylinder = 1.0

Figure 7 .Figures 7 .

 77 Figure 7.12a shows total wave elevation eld computed by solving Navier-Stokes (NS) equations and VOF interface modeling in MeshL without coupling. In the gure, the total waves diracted by the vertical circular cylinder are propagating to the far-eld. The amplitudes of total wave elevation in the vicinity of the vertical circular cylinder are smaller than the simulation case with Mesh2 due to numerical dissipation.

Figures 7 .

 7 Figures 7.12c and 7.12e show the total wave elevation elds calculated by viscous ow models with two-way coupling in Mesh2, Figure 7.12c by viscous ow model based on NS equations and VOF interface modeling, and Figure 7.12e by viscous ow model based on SWENSE with LS function. The total waves diracted by the cylinder are propagating in the relaxation zone and a smooth transient of wave elevation across the pure and relaxation zone are presented.

  Figure 7.12. Total wave elevation elds with respect to two-way coupling for the case of k 0 a cylinder = 1.0.

Figure 7 .

 7 Figure 7.13a shows the rst harmonics of horizontal forces. The rst harmonics calculated by solving SWENSE with LS function show better results for small wavenumbers than the simulation solving NS equations and VOF interface modeling. Nevertheless, the eects of two-way coupling on the rst harmonics are small, the rst harmonics approach to the analytical solution when the two-way coupling is considered.

Figure 7 .

 7 Figure 7.13b shows the horizontal mean drift forces. The mean drift forces calculated by viscous ow models without two-way coupling show big dierences, especially for the simulation cases of k 0 a cylinder=1,1.25 . When the two-way coupling is considered, the mean drift forces show better results than the simulation without considering two-way coupling.

Figure 7 .

 7 Figure 7.13c shows the second harmonics of horizontal forces. The second harmonics obtained from all simulations follow the analytical solution. When the two-way coupling is considered, the second harmonics show better results than the simulation cases without considering two-way coupling.

Figure 7 .

 7 Figure 7.13d shows the third harmonics of horizontal force. Third harmonics by SWENSE and NS viscous ow models without considering two-way coupling show similar tendency. When the two-way coupling is applied, the results are more divergent than the simulation cases without considering two-way coupling for large wavenumbers.

  Figure 7.15. A CALM Buoy model.

Figure 7 .

 7 Figure 7.16 shows a conguration of the computational domain of viscous and potential ow models for complementary waves. The same conguration of the previous benchmark test is used. The body in the computational domain of the viscous ow model is only replaced.

Figure 7 .

 7 Figure 7.16. Computational domain of viscous and potential ow models for CALM buoy.

Figure 7 .

 7 Figure 7.17 shows the computational mesh for viscous ow model. The relaxation zone is dened in the region of far-eld, as colored grey in gure 7.17a. The computational mesh is rened in the vicinity of buoy model, as shown in gure 7.17b. The boundary faces of buoy model are shown in gure 7.17c.

  7. The numbers of Fourier and Laguerre modes used for Poincaré's velocity representation are N f ourier = 6 and N laguerre = 3, respectively. The distance from the matching surface to the relaxation zone is d couple = 1.15m.

  Figure 7.17. Computational mesh used for the viscous ow model.

Figure 7 .

 7 Figure 7.18 shows complementary wave elevation elds with respect to the application of two-way coupling. Relaxation zone is dened in outer-region of red-circle. Matching surface is located inside of relaxation zone, as plotted red circle in gure 7.18. Complementary waves propagate up to far-eld and smooth transient across the relaxation and pure zones are shown when the coupling is applied.

Figure 7 .

 7 Figure 7.19 shows the total wave elevations measured at wave gauge positions in simulation and experiment. Total wave elevation computed by considering two-way coupling shows better agreements with experimental results comparing with the simulation without considering coupling.

Figure 7 .

 7 Figure 7.19. Wave elevations measured at the positions of wave gauges for the buoy model in regular wave

Figure 7 .Figure 7 .

 77 Figure 7.20 shows horizontal and vertical forces acting of buoy model. The forces obtained by considering two-way coupling show better agreements with experimental results than the simulation results without considering two-way coupling.

  Figure 7.21. Computational mesh of viscous ow model for the buoy model in irregular waves.

Figure 7 .

 7 Figure 7.22 shows total wave elevation measured at the positions of wave gauges in simulations and experiment. The wave elevations calculated by simulations have small dierences with respect to the application of two-way coupling. The wavelength of peak wave period is relatively longer than the size of the buoy model. Therefore the complementary waves generated by the buoy model is small. The wave elevations at the positions of wave gauges have small dierences because the complementary waves are small.

Figure 7 .

 7 Figure 7.22. Wave elevations measured from wave gauges for the buoy model in irregular waves.

Figure 7 .

 7 Figure 7.23 shows the horizontal and vertical forces acting on the buoy model. The force time series obtained from simulations are globally following the behaviours of experimental measurements. Forces near to the time of the extreme event are magnied in the sub-gures located at the right. When the two-way coupling is considered, the force time-series are slightly dierent from the results of the simulation without two-way coupling after the extreme event. Nevertheless, the dierence exists after the extreme event. The force time series obtained from both simulation are similar. It is understood that the generated complementary waves are relatively small. They show similar behavior in global simulation time.

Figure 7 .

 7 Figure 7.23. Horizontal and vertical forces acting on buoy model in regular waves

•

  foamStar (updated): Multiphase ow model based on Navier-Stokes and VOF • foamStarSWENSE (Level-Set version is newly introduced): Multiphase ow model based on SWENSE and LS function On each separated subject, improvements have been documented and quality results were achieved.

  survey on the coupling methodology in a marine application Literature survey on potential and viscous ow models in marine application is proposed. A focus is given on the coupling between potential and viscous ows. One-and two-way couplings are distinguished. The methodology of coupling are categorized into Functional Decomposition (FD) and Domain Decomposition (DD). Associated research on coupling is explained by way of coupling and coupling methodology.

8. 1 . 2

 12 Preliminary study on the coupling of potential and viscous owsThe preliminary study on the two-way coupling was conducted to investigate the feasibility of coupling between potential and viscous ow models. OpenFOAM based multi-phase viscous ow solver is used. The viscous ow model is based on the Navier-Stokes equations and the Volume Of Fluid (VOF) method for interface modeling. The parametric tests on the viscous ow model were conducted to set the proper parameters for propagating waves.The benchmark tests are devised by using multiple outlet conditions. The outlets considered in the present study are the stretched mesh, increased viscosity in the outlet, linear momentum source, and relaxation schemes with dierent target ows. The relaxation scheme blends the viscous ows with the target ows in the relaxation zone. The target ows for propagating waves are no waves, incident wave and modied incident wave. The modied waves are an adaptation of incident waves by measuring the wave elevation in front of the outlet.

  Mexico (GOM) are regenerated in viscous ow solver. The simple wave breaking model is used to capture the extreme event during HOS simulation. The viscous ow model is used to simulate the extreme event with limited computational domain and simulation time. The simulation results show good agreements with the results of HOS simulation and experiments. 8.1.4 Potential ow: Complementary waves A new Poincaré's velocity representation for unsteady free surface ow in deep water is proposed based on linear potential theory. The contribution of dipoles in the Boundary Integral Equation (BIE) is replaced by an equivalent source contribution with tangential velocity on the boundary surface. The complementary uid velocity at eld point can be obtained by the distribution of uid velocity on the matching surface and wave elevation on the waterline of matching surface.

Fourier

  and Fourier-Laguerre coecients and elementary functions. The elementary functions are the resultants of surface or line integral of the Green function with modal function. Two numerical algorithms evaluating the elementary functions are proposed. Benchmark tests validate the velocity representation with the circular cylindrical matching surface on the heaving hemisphere and wave diraction by a vertical circular cylinder. 8.1.5 Viscous ow: Multi-phase SWENSE with Level-set

8. 1 . 6

 16 Two-way coupling of potential and viscous owsA segregated computational algorithm is suggested to solve the problem of wave-structure interaction by considering the two-way coupling between potential and viscous ow models. The domain and functional decompositions are applied for coupling methodology. Functional decomposition (FD) is applied to decompose the ow quantities of potential and viscous ow models into the incident and complementary parts. The incident waves are calculated by nonlinear potential ow model. Poincaré's velocity representation based on linear potential theory is used to calculate the complementary waves in the far-eld. The SWENSE method is applied in a viscous ow model to solve the complementary ows in the vicinity of the structure. Domain decomposition (DD) is used to couple complementary ows calculated by potential and viscous ow models. The complementary uid velocity and wave elevation on the matching surface are obtained from the viscous ow model. The obtained ows are used to update the complementary ows in the relaxation zone by using Poincaré's velocity representation. In the relaxation zone, the complementary uid velocity and LS function of viscous ow model are relaxed to the target values which are updated by using potential ow model.

  The potential ow models for the incident and complementary ows and the viscous ow model based on SWENSE and LS interface modeling are explained. Benchmark tests validate each ow models and show good agreements. It is assumed that the wave elevation and uid velocity across the ow models are continuous. To couple the potential and viscous ow models, the methodologies of functional decomposition (FD) and domain decomposition (DD) are applied for potential and viscous ows. Functional decomposition (FD) is applied for potential and viscous ow models. The functional quantities of the total ow into the incident and complementary parts. The nonlinear potential ow for incident waves is assumed to be available in a whole uid domain and satises the Euler equations. The linear potential ow model based on Poincaré's velocity representation for complementary ow is proposed. The availability of nonlinear incident waves leads to use of a Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method as the viscous ow model only to consider the complementary ow. Domain decomposition (DD) is used to decompose the computational domain. The nonlinear incident waves from the nonlinear potential ow model are available in the whole computational domain. It makes us divide the computational domain of potential and viscous ow models only for complementary waves. In the vicinity of structure, the viscous ow model based on SWENSE is used. The linear potential ow model for complementary ow is applied in the far-eld region.

8. 3

 3 Proposals for future work 8.3.1 Poincaré's velocity representation for unsteady free surface ow with forward speedPoincaré's velocity representation in a marine application has been studied for steady and timeharmonic problems by[START_REF] Noblesse | Boundary-integral representation of linear free-surface potential ows[END_REF];[START_REF] Noblesse | Velocity representation of free-surface ows and Fourier-Kochin representation of waves[END_REF];[START_REF] Noblesse | Weakly singular boundary-integral representations of freesurface ows about ships or oshore structures[END_REF]. The velocity representation is extended to the unsteady free surface problem without forward speed in the present study. The velocity representation for unsteady wave-structure interaction problem with forward speed may be derived with Neumann-Kelvin free surface boundary condition. It can be used to couple viscous ow model for evaluating the added resistance of ship in waves. 8.3.2 Coupling between linear potential ow model and other ow models The proposed velocity representation may be used to couple with the viscous ow model based on SWENSE and VOF interface modeling by Li (2018). The elementary function introduced in the present study can be applicable for boundary integral equation. The ow model used to solve wave-structure interaction in the vicinity of structure can be replaced by nonlinear potential ow models such as Rankine Panel Method (RPM) or Finite Element Method (FEM). 8.3.3 Evaluation of mean drift forces acting on blunt body Two-way coupling between potential and viscous ow models show good results on the horizontal mean drift forces acting on the structure. The mean drift forces on the blunt body such as shuttle tanker and FPSO are signicant and important to design a mooring system. The proposed twoway coupling strategy can enhance the simulation based on the viscous ow model to assess mean drift forces, especially for the blunt body in beam sea condition. Résume étendu Introduction générale Un modèle numérique prenant en compte le couplage bidirectionnel entre les modèles de uide parfait potentiel loin de la structure et de uide visqueux au voisinage de celle-ci est présenté pour résoudre le problème de l'interaction houle-structure. L'écoulement total est décomposé en un écoulement incident et un écoulement complémentaire (diracté). En pratique, les variables (vitesses, pression) du problème sont la somme d'un terme incident et d'un terme complémentaire. Pour les ondes incidentes, le modèle d'écoulement potentiel utilisé est non-linéaire et peut être utilisé dans l'ensemble du domaine uide. Pour l'écoulement complémentaire le domaine de calcul est divisé en deux parties distinctes. Au voisinage de la structure, cet écoulement complémentaire est résolu en utilisant un modèle uide réel basé sur la méthode SWENSE (Spectral Wave Explicit Navier-Stokes Equation) qui consiste à écrire les équations RANS (Reynolds Averaged Navier-Stokes) pour les variables complémentaires, les termes incidents apparaissant alors comme des termes de forçage. Loin de la structure, l'écoulement complémentaire est traité avec un modèle de uide parfait potentiel basé sur la représentation de Poincaré. La présente étude se résume comme suit : • Les modèles de uide parfait potentiel et de uide visqueux utilisés dans les applications marines sont brièvement passés en revue. Les couplages existants pour ces modèles sont également présentés. Une étude préliminaire est réalisée pour étudier la faisabilité du couplage entre les modèles d'écoulement potentiel et visqueux. Les premiers résultats montrent que le couplage bidirectionnel avec un bon schéma de relaxation peut améliorer les résultats numériques.

  Un nouveau modèle potentiel linéarisé basé sur la représentation de Poincaré est proposé pour l'écoulement complémentaire instationnaire loin de la structure. La vitesse complémentaire du uide au point considéré peut être explicitement calculée avec la fonction de Green instationnaire par des combinaisons de vitesses de uide et d'élévations de surface libre. Un algorithme de calcul pour diérents types de fonction de Green dans le domaine temporel est également présenté. La représentation de Poincaré proposée est validée avec une solution analytique et montre un bon accord lorsque le point de calcul est situé sous la surface libre. Cependant, un comportement singulier est observé lorsque le point du calcul est situé sur la surface libre moyenne. • Une surface de couplage cylindrique circulaire à axe vertical avec une méthode pseudo-et complémentaire. Etant donné que le modèle d'écoulements en uide parfait potentiel nonlinéaire pour les ondes incidentes est disponible pour l'ensemble du domaine uide, la méthode DD est appliquée uniquement aux parties complémentaires des modèles de uides potentiel et visqueux. Au voisinage de la structure, le modèle d'écoulement visqueux basé sur la méthode SWENSE est utilisé et le modèle d'écoulement potentiel basé sur la représentation de Poincaré est introduit pour décrire les ondes complémentaires dans le champ lointain. Les équations qui régissent chacun des deux modèles de uide sont résumées et le contexte général de l'étude expliqué. 2. L'étude préliminaire sur le couplage des écoulements potentiel et visqueux Une étude préliminaire sur le couplage entre les modèles d'écoulements de uide potentiel et visqueux est menée. Le modèle d'écoulement de uide visqueux basé sur les équations de Navier-Stokes (approche RANS) avec une modélisation d'interface Volume Of Fluid (VOF) est considéré. Une série d'études paramétriques avec ce modèle est réalisée pour trouver une conguration numérique appropriée au problème de propagation de houle. Cette étude montre que le schéma d'intégration en temps du problème de propagation de houle devrait avoir au moins une précision de second ordre pour conserver l'amplitude et la phase de la houle. Les schémas de convection aectent l'ordre de convergence et la stabilité de la simulation. Les schémas de convection d'ordre élevé donnent de bons résultats mais conduisent à une instabilité de la simulation. La propagation de la houle en bassin (sans interaction avec une structure) et le problème de radiation pour une forme de Lewis 2D sont considérés comme des essais préliminaires pour le couplage. Les tests sont eectués en modiant le traitement numérique dans la zone extérieure du domaine uide. Les cas considérés sont l'étirement horizontal des mailles, l'augmentation de la viscosité, l'utilisation de coecients d'amortissement dans les équations de quantité de mouvement ou d'un schéma de relaxation. Dans la zone extérieure du domaine uide ou zone de relaxation, le schéma de relaxation fait tendre progressivement les quantités d'intérêt calculées vers les quantités cibles souhaitées (pas de houle, houles incidente ou totale calculées par le modèle potentiel ...). Les résultats numériques montrent que le schéma de relaxation avec des quantités cibles similaires aux ondes sortantes donne des résultats stables et satisfaisants par rapport aux autres. En outre, le temps de simulation nécessaire pour obtenir la solution convergée diminue lorsque le schéma de relaxation est considéré avec des quantités cibles correctement dénies. Cela conrme que le couplage entre les modèles d'écoulement potentiel et visqueux peut réduire à la fois le domaine de calcul et le temps de simulation. En conclusion, une évaluation ecace des ondes sortantes par un modèle d'écoulement potentiel et un schéma de relaxation amélioré sont nécessaires pour réussir le couplage entre les deux modèles d'écoulement.

  les points de calcul et de la source sont situés sur la surface libre moyenne (z = ζ = 0). En eet, le comportement hautement oscillant de la vitesse du uide ne peut être corrigé en ranant la discrétisation de la ligne de ottaison. Pour nir, la nécessité d'intégrer la représentation de Poincaré le long de la surface de couplage cylindrique verticale est expliquée.5. L'écoulement potentiel : Houle complémentaire sur une surface de couplage cylindrique circulaire verticale La représentation de vitesse de Poincaré est formulée avec une surface de couplage cylindrique circulaire. La vitesse complémentaire et l'élévation de surface libre sont approximées respectivement par les séries de Fourier-Laguerre et de Fourier. Après avoir intégré la représentation de la vitesse de Poincaré le long de la surface de couplage cylindrique circulaire avec la vitesse du uide et l'élévation de la houle multipliées par la fonction de Green dans le domaine temporel, la vitesse complémentaire au point d'intérêt peut être calculée par les coecients des séries de Fourier-Laguerre et de Fourier de la vitesse complémentaire et de l'élévation de la houle sur la surface de couplage multipliée par des fonctions élémentaires.Les fonctions élémentaires sont dérivées de l'intégrale de surface des séries de Fourier-Laguerre et de Fourier avec la fonction de Green dans le domaine temporel. Elles impliquent l'intégrale utilisant les fonctions de Bessel multipliées par une fonction sinus ou cosinus. Des algorithmes numériques adaptés sont présentés pour calculer les fonctions élémentaires. Après avoir calculé l'intégrale oscillante jusqu'à la borne d'intégration dénie, deux approches permettent d'évaluer l'intégrale semi-innie de cette borne à l'inni. Les détails des deux approches s'expliquent comme suit :

  Les intégrales semi-innies sont évaluées en appliquant une méthode à directions de descente[START_REF] Liang | Wave-making problem by a vertical cylinder:Neumann-Kelvin theory versus Neumann-Michell theory[END_REF];Li et al. (2019a). Les fonctions oscillatoires sont transformées dans le plan complexe. L'intégrale le long du contour fermé dans le plan complexe est obtenue en appliquant le théorème de Cauchy. Le chemin d'intégration le plus ecace est trouvé en prenant les parties imaginaires de l'argument exponentiel à zéro. Finalement, les intégrales le long du chemin de descente le plus ecace impliquent les facteurs exponentiels ayant des arguments réels négatifs qui permettent de faire tendre l'intégrand rapidement vers zéro.Les fonctions élémentaires sont évaluées en utilisant les approches proposées. Deux approches montrent un bon accord entre elles.L'élévation de houle complémentaire au point considéré est reconstruite en utilisant la condition cinématique à la surface libre. La vitesse verticale sur la surface libre moyenne est intégrée en fonction du temps pour calculer l'élévation de la houle complémentaire. Un pseudo-étirement de Wheeler est appliqué sur la fonction de Laguerre pour l'extrapolation de la vitesse au-dessus de la surface libre moyenne (z > 0). La valeur de la fonction de Laguerre au-dessus de la surface libre moyenne est limitée an d'empêcher de trop fortes valeurs de la vitesse dans l'air.La reconstruction de la vitesse complémentaire et de l'élévation de surface libre en un point donné est obtenue en utilisant une interpolation B-spline. Après avoir reconstitué la vitesse complémentaire du uide et l'élévation de surface libre sur la grille cylindrique circulaire 3D, l'interpolation B-spline est utilisée pour calculer la vitesse complémentaire du uide et l'élévation de surface libre en un point donné. et comparées aux expériences montrent des erreurs moins importantes lorsque le couplage est appliqué. Les harmoniques en amplitude des eorts au premier et deuxième ordre et les forces de dérive moyennes sont améliorées lorsque le couplage est appliqué. Dans le test de la houle irrégulière, un eet de couplage négligeable est observé car les houles complémentaires sont de faible amplitude. Les coûts de calcul augmentent lorsque le couplage est appliqué d'environ 80% et 49% pour les cas de simulation de houle régulière et irrégulière, respectivement. En conclusion, le couplage bidirectionnel entre les modèles d'écoulement potentiel et visqueux fonctionne lorsque les houles complémentaires sont susamment importantes. L'élévation de la houle et les eorts aux premier et deuxième ordres -en particulier les forces de dérive-agissant sur la structure peuvent être améliorées si l'on considère le couplage bidirectionnel. Cependant, les coûts de calcul augmentent d'environ 80% pour les cas de houle régulière et de 50% pour les cas de houle irrégulière.8. Conclusion et perspectives Le couplage bidirectionnel entre les modèles d'écoulement de uide parfait potentiel et visqueux est proposé dans la présente étude. Les modèles d'écoulement potentiel pour des écoulements incidents et complémentaires ainsi que le modèle d'écoulement visqueux basé sur SWENSE avec la fonction LS pour la modélisation de l'interface sont expliqués. Les tests de référence valident chaque modèle d'écoulement et montrent un bon accord avec les résultats de référence disponibles. On suppose que l'élévation de surface libre et la vitesse du uide dans les modèles d'écoulement sont continues. Pour coupler les modèles des écoulements potentiels et visqueux, les méthodologies de décomposition fonctionnelle (FD) et de décomposition de domaine (DD) sont appliquées. La décomposition fonctionnelle (FD) est appliquée aux modèles d'écoulement potentiel et visqueux. Les quantités d'intérêt totales sont décomposés en parties incidente et complémentaire. L'écoulements potentiel non-linéaire pour les houles incidentes est supposé disponible dans tout le domaine uide et satisfait les équations d'Euler. Le modèle potentiel linéarisé basé sur la représentation de la vitesse de Poincaré pour un écoulement complémentaire est proposé. D'autre part, le fait de disposer d'un modèle de houle incidente non-linéaire conduit à l'utilisation de la méthode SWENSE pour prendre en compte l'écoulement complémentaire dans le cadre d'un modèle de uide visqueux. La décomposition de domaine (DD) est utilisée pour décomposer le domaine de calcul. Les ondes incidentes non-linéaires du modèle d'écoulement de potentiel nonlinéaire sont disponibles dans tout le domaine de calcul. Cela nous oblige à diviser le domaine de calcul des modèles d'écoulement potentiel et visqueux uniquement pour les ondes complémentaires. Au voisinage de la structure, le modèle d'écoulement visqueux basé sur SWENSE est utilisé et le modèle d'écoulement potentiel linéarisé pour un écoulement complémentaire est appliqué dans la région du champ lointain. Pour coupler les modèles d'écoulement potentiel et d'écoulement visqueux, on accepte l'hypothèse de l'évolution continue de l'élévation de surface libre et de la vitesse du uide dans le domaine de calcul. Sur la surface de couplage considérée, la vitesse du uide complémentaire et l'élévation de la houle sont utilisées pour mettre à jour le champ d'écoulement complémentaire dans la région du champ lointain à l'aide de la représentation de la vitesse de Poincaré. Dans le champ lointain, le schéma de relaxation est utilisé pour fusionner le champ complémentaire calculé avec le champ cible calculé à partir de la représentation de la vitesse de Poincaré. Un algorithme résolvant le problème d'interaction houle-structure en considérant un couplage bidirectionnel est présenté. Les tests de référence sont eectués pour un cylindre circulaire vertical soumis à une houle incidente régulière et une bouée xe soumis à des houles incidentes régulière et irrégulière. Les résultats des tests de référence montrent que le couplage bidirectionnel peut améliorer les élévations de surface libre et les eorts agissant sur la structure. En particulier, les eorts de dérive moyennes horizontales agissant sur la structure sont considérablement améliorés lorsque le couplage bidirectionnel est adopté. Cependant, le couplage bidirectionnel donne des résultats médiocres sur la troisième harmonique des eorts. Lorsque les houles complémentaires sont ptites, le couplage bidirectionnel n'aecte pas les résultats. Lorsque le couplage bidirectionnel est appliqué, les coûts de calcul sont augmentés de 80 % pour la simulation en houle régulière et de 40 % pour la simulation en houle irrégulière. Pour les travaux futurs, les sujets de recherche suivants peuvent être mentionnés : • Représentation de la vitesse de Poincaré pour un écoulement de surface libre pour le navire avec vitesse d'avance La représentation de la vitesse de Poincaré dans une application marine a été étudiée pour résoudre des problèmes stationnaires et périodiques par Noblesse et al. (1997); Noblesse (2001); Noblesse and Yang (2004). La représentation de la vitesse pour le problème d'interaction houle-structure avec vitesse d'avance peut être réalisée avec la condition limite de surface libre de Neumann-Kelvin. Un tel modèle peut être utilisé pour coupler un modèle d'écoulement visqueux an d'évaluer la résistance ajoutée du navire dans la houle. • Couplage entre le modèle d'écoulement potentiel linéaire et d'autres modèles d'écoulement La représentation de vitesse proposée peut être utilisée pour coupler le modèle d'écoulement visqueux basé sur la modélisation d'interface SWENSE et VOF par Li (2018). La fonction élémentaire introduite dans la présente étude peut être applicable à l'équation intégrale de frontière. Le modèle d'écoulement utilisé pour résoudre l'interaction houle-structure au voisinage de la structure peut être remplacé par des modèles d'écoulement à potentiel non-linéaire tels que la méthode des singularités de type Rankine (RPM ; Rankine Panel Method) ou la méthode des éléments nis (FEM ; Finite Element Method). • Evaluation des eorts de dérive moyennes agissant sur un corps non-prolé Le couplage bidirectionnel entre les modèles d'écoulement potentiel et visqueux donne de bons résultats sur les forces de dérive moyennes horizontales agissant sur la structure, forces qui sont importantes dans la conception des systèmes d'amarrage pour des naviresciternes ou des FPSO. Il serait donc intéressant d'étudier le comportement à la mer de telles structures via le couplage bidirectionnel mis en place dans ce travail. Titre : Couplage bidirectionnel entre des écoulements de potentiel et visqueux pour une application marine Mots clés: Interaction houle-structure ; Génération et absorption de houle; Couplage des écoulements en fluide potentiel et visqueux; représentation de la vitesse par modèle de Poincaré; équations SWENS ; logiciel OpenFOAM Résumé: Ce travail propose une méthodologie de couplage bidirectionnel entre un modèle Navier-Stokes et un modèle fluide parfait potentiel pour des applications d'ingénierie marine et particulièrement d'interaction houlestructure. Les quantités d'intérêt sont décomposées comme la somme d'un terme d'écoulement incident et un terme d'écoulement complémentaire. Un modèle p ote nti el no n-lin éaire (HOS : Hig h-Ord er Spectral) est utilisé pour l'écoulement incident. L'écoulement complémentaire est traité par des modèles de fluide visqueux et de fluide parfait potentiel. Le modèle fluide visqueux est basé sur les équations SWENS (Spectral Wave Explicit Navier-Stokes) et une formulation de type Level-Set pour la prise en compte de l'interface; ce modèle est utilisé dans un domaine proche de la structure marine étudiée. Le modèle de fluide potentiel est un modèle linéarisé basé sur une description de Poincaré. Cette description est utilisée pour effectuer de nouveaux développements où la surface de couplage est un cylindre circulaire, ce qui permet de résoudre les problèmes de divergence numérique rencontrés initialement sur la surface libre. Les variables utilisées pour le couplage entre les deux modèles sont la vitesse du fluide et l'élévation de surface libre. Le couplage proposé est validé pour des cas de diffraction-radiation et l'accord avec les résultats de référence est bon. En particulier, les efforts du 1er et du 2ème ordre sont bien restitués. Title : Two-way coupling between potential and viscous flows for a marine application Keywords: Wave-structure interaction; Wave generation and absorption; Potential and viscous flow coupling; Poincaré's velocity representation; SWENSE; OpenFOAM Abstract: The present study proposes a two-way coupling methodology between potential and viscous flow models for a marine application. A hypothesis that the functional quantities of total flow can be decomposed into the incident and complementary parts is assumed. The nonlinear potential flow model for incident flow is available. Therefore the complementary flow is only concerned in the potential and viscous flow models. The computational domain for complementary flow is decomposed. In the vicinity of structure, the viscous flow model based on Spectral Wave Explicit Navier-Stoke Equations (SWENSE) is used. A linear potential flow model based on Poincaré velocity representation is applied to simulate the complementary wave in the far-field. The fluid velocity and wave elevation are used to couple the potential and viscous flow models. A preliminary study on the coupling is conducted and the necessity to a fast evaluation of potential flow is raised. The nonlinear potential flow models for incident waves are summarized and the reconstruction procedure in the viscous flow solver is proposed and validated with the simulation and experiments. A new Poincaré's velocity representation for time domain free surface flow is introduced with a circular cylindrical matching surface. The proposed representation is validated with the linear radiation-diffraction problem and the results show good agreements. The viscous flow solver based on SWENSE method with Level-Set interface modeling is proposed. The potential and viscous flow models are coupled and the results show that the coupling can enhance the first-and second-order forces acting on the structure.

  

  

Table 1 .

 1 1. Summary of previous research on the coupling of potential/viscous ows

		Coupling	Coupling values	Coupling	Numerical model
	Previous research	way	Φ → N S	N S → Φ	region	Φ	N S
	Tahara et al. (1992)	Two	p, u	Φ n , Φ t	S o	BEM	FVM
	Campana et al. (1992)	Two	p, u • t	Φ n	S s	BEM	FVM
	Campana et al. (1995)	Two	u	Φ n	S s	BEM	FVM
	Guillerm (2001)	Two	u	Φ n , ∇ × Φ	S o	Poincaré	FDM
	Iafrati and Campana (2003)	Two	p or u	Φ n or Φ	S o or S d	BEM	FVM
	Colicchio et al. (2006)	Two	u or p	Φ t or Φ n	S d	BEM	FVM
	Hamilton and Yeung (2011)	Two	u or p	Φ or Φ n	S d	Shell func.	FVM
	Edmund (2012)	Two	u	Φ n , w • n	S body /S ∞	BEM	FVM
	Rosemurgy (2014)	Two	u	Φ n , w • n	S body /S ∞	BEM	FVM
	Fredriksen (2015)	Two					
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  The numerical algorithm for the coupling of potential and viscous ows is introduced. It is assumed that the nonlinear potential ow model for incident waves is available in a

	1. Introduction
	behavior of the proposed Poincaré's velocity representation. A pseudo-spectral method with
	Fourier-Laguerre and Fourier approximations of the complementary velocity and wave elevation
	are applied, respectively. The analytic surface integral with Poincaré's velocity representation
	requires the evaluation of elementary functions which are the surface integral of a Green function
	with Fourier-Laguerre modes. Two numerical algorithms based on the summation and extrap-
	olation and steepest descent method are presented to calculate the elementary functions. After
	the vertical velocity on the free surface is calculated from Poincaré's velocity representation, the
	wave elevation is reconstructed by a linear kinematic free surface boundary condition. To couple
	with the multiphase ow solver, the Wheeler stretching is applied to extend the velocity above
	the mean free surface. As the benchmark test, the heaving hemisphere and diraction by vertical
	whole uid domain. The computational domain of potential and viscous ow models only circular cylinder are considered. The results show good agreements with the analytical solution.
	for complementary waves is decomposed. In the vicinity of structure, the viscous ow
	model based on SWENSE method is used. In the far-eld, the potential ow model based Chapter 6 presents the viscous ow model based on SWENSE methodology. The momentum and
	on Poincaré's velocity representation is applied. It is assumed that the computed uid pressure equations are reformulated by introducing the viscous complementary ow. The uid
	velocity and wave elevations are continuous across the ow models. A benchmark test on velocity, pressure and Level-set function are decomposed into the incident and complementary
	the coupling methodology is considered. parts. An extrapolation of air velocity with cubic polynomials is introduced to give smooth
	incident wave velocity prole. Moreover, the re-distancing the Level-set function is adopted to
	keep the interface sharp. The parametric study on the discretization of time and mesh, wave 1.5 Thesis outline propagation, and cylinder diraction problem is conducted for validation.
	Chapter 2 presents the preliminary study on the coupling of potential and viscous ows. A Chapter7 presents the coupling algorithm of potential and viscous ows. The benchmark tests
	parameteric study on the viscous ow solver is investigated before the preliminary study. The with the vertical circular cylinder in regular waves and calm buoy in regular and irregular waves
	wave propagation with inlet/outlet and the two-dimensional radiation problem with dierent are considered. The discussion on the eect of coupling is made from the simulation results of
	outlet conditions are considered. The necessity of new ecient potential ow representation is with/without coupling methodology.
	drawn from the results of this preliminary study. Chapter 8 summarizes the contribution of the present study. Conclusions and perspectives are
	Chapter 3 summarizes the nonlinear potential theory on incident waves including regular and given.
	irregular cases. A stream function wave theory for regular wave and a pseudo-spectral method for
	irregular waves are briey reproduced. For the ecient generation of three-dimensional irregular
	waves in viscous ow solver, the interpolation methodology with respect to space and time is
	proposed with the B-spline curve. The generation of nonlinear irregular waves in viscous ow
	model is validated with nonlinear potential theory and experiment.
	Chapter 4 introduces a new potential representation for linear complementary waves which is
	based on Poincaré's velocity representation. It is newly formulated for an unsteady time domain
	free surface problem. The complementary uid velocity at eld point is explicitly represented by
	the distribution of complementary uid velocity and wave elevation on the matching surface with
	the help of the time domain Green function. It is proved that a new form of time domain Green
	function satises an ordinary dierential equation and the solving technique is presented for
	ecient evaluation. The analytical solution for a heaving hemisphere based on linear potential
	theory is selected as a benchmark test case. The results show good agreements when the eld
	point is located underwater. However, a singular behavior is obtained when the eld point is
	located on the mean free surface due to the diverging behavior of the time domain Green function.
	Chapter 5 introduces a vertical circular cylindrical matching surface to remove the singular

Table 2

 2 

	.1. Wave condition for parametric study of foamStar.
	Item	Unit	Value
	Water depth (h)	[m]	0.6
	Wave period (T )	[s]	0.7018
	Wave height (H )	[m]	0.0575
	Wavelength (λ)	[m]	0.8082
	H/λ	[-]	0.0712

  where u wave and v wave are the horizontal and vertical uid velocities given by stream function waves, ν is the kinematic viscosity of water. Two series of tests are conducted, one where grid and time steps are set to change the cell Reynolds number keeping the Courant number xed and the second where the grid is xed and the time step is only varied to have dierent Courant numbers. The rst-harmonic amplitudes of the wave elevation obtained over time for dierent Courant and cell Reynolds numbers are compared in gure 2.5. The results are compared with

		.2. The representative Courant (Co) and cell-Reynolds (Re ∆ ) numbers are
	dened by using analytic wave uid velocities as			
		Co = Co 2 x + Co 2 z ,	Re ∆ = Re 2 ∆x + Re 2 ∆z	(2.5)
	with,							
	Co x =	u wave ∆t ∆x	, Co z =	w wave ∆t ∆z	, Re ∆x =	u wave ∆x ν	, Re ∆z =	w wave ∆z ν

Table 2 .

 2 2. Mesh and time discretization for the convergence tests.

	Case	λ/∆x	H/∆z	T /∆t	Co	Re ∆
	Mesh025-dt100	25	5	100	0.171	8,836
	Mesh050-dt200	50	10	200	0.171	4,418
	Mesh100-dt400	100	20	400	0.171	2,209
	Mesh200-dt800	200	40	800	0.171	1,105
	Mesh100-dt100	100	20	100	0.684	2,209
	Mesh100-dt200	100	20	200	0.342	2,209
	Mesh100-dt800	100	20	800	0.086	2,209
	Mesh100-dt1600	100	20	1600	0.043	2,209

Table 2 .

 2 3. Information of stretched mesh outlets for propagating waves.

	Choice of r x	Number of cells	L/λ	L outlet /λ	∆x max /λ
	γ = 1.001	225,420	39.6	31.1	1.11
	r x = 1.02	206,340	59.5	58.0	1.05
	r x = 1.05	180,120	29.9	21.4	1.14
	r x = 1.08	173,470	22.0	13.5	1.18

Table 2 .

 2 4. Reection coecients with respect to stretched mesh outlets.

	Choice of r x	γ = 1.001	r x = 1.02	r x = 1.05	r x = 1.08
	κ R	0.0499	0.0474	0.0569	0.1046
	2.4.5 Linear damping source outlet			

Table 2 .

 2 5. Reection coecient with respect to linear damping source outlet.

	used the linear damping coecient of C 1 = 20 with second order polynomial weight
	function for irregular wave simulation. It is thought that the damping coecients should be tuned
	with the dierent outlets and weight functions to minimize the wave reection. In the present
	study, the linear damping coecient with cubic polynomials weight given in equation (2.8) is
	studied with dierent outlet lengths. Considered linear damping coecients with reection
	coecients are tabulated in Table 2.5. The linear damping coecient of C 1 = 20 is selected as a
	L outlet	30	20	C 1 10	5	1
	1.5λ	0.0579	0.0513	0.0521	0.0817	-
	3.0λ	-	0.0460	0.0468	0.0474	-
	6.0λ	-	-	0.0400	0.0406	0.0406
	representative case of damping source outlet because it gives the lowest wave reection coecient
	with the limited outlet length L outlet = 1.5λ.			

Table 2 .

 2 6. Reection coecient with respect to the increased viscosity in the outlet.

	L outlet	µ add [N • s/m 2 ] 0.5 (500µ water ) 0.2 (200µ water ) 0.1 (100µ water )
	1.5λ	0.1446	0.0996	0.0769
	3.0λ	0.0764	0.0785	0.0651
	6.0λ	0.0739	0.0931	0.0563

Table 2 .

 2 7. Reection coecient with respect to dierent outlet.

	Outlet	κ R
	Mesh stretching (r x = 1.02)	0.047
	Linear damping source (C 1 = 20)	0.051
	Increased viscosity (µ add = 100µ water )	0.077
	Relax to no waves	0.077
	Relax to incident waves	0.042
	Relax to modied waves	0.039

Table 2 .

 2 8. Motion frequency and amplitudes of Lewis form.

	Frequency (ω)
	Item

Table 2 .

 2 10. Radiation coecient of pure zone size (Relaxation to no waves).

	Coef.		a 22			b 22	
	ω [rad/s]	2.4	4.2	7.0	2.4	4.2	7.0
	Analytic	1.304	0.136	0.365	2.169	0.798	0.156
	Long Domain	1.297	0.144	0.388	2.162	0.780	0.148
	P150R35	1.279	0.129	0.386	2.190	0.779	0.146
	P100R35	1.283	0.129	0.380	2.194	0.781	0.146
	P050R35	1.278	0.129	0.391	2.192	0.781	0.146
	P025R35	1.312	0.146	0.382	2.136	0.743	0.140
	P100R25	1.281	0.115	0.375	2.194	0.788	0.149
	P100R20	1.276	0.103	0.372	2.209	0.802	0.154
	P100R15	1.276	0.096	0.368	2.248	0.832	0.162

Table 2 .

 2 11. Radiation coecient of dierent outlets (L pure = 1.0λ and L outlet = 2.0λ).

	Coef.		a 22			b 22	
	ω [rad/s]	2.4	4.2	7.0	2.4	4.2	7.0
	Analytic	1.304	0.136	0.365	2.169	0.798	0.156
	Long Domain	1.297	0.144	0.388	2.162	0.780	0.148
	Relax to no waves	1.276	0.103	0.372	2.209	0.802	0.154
	Relax to potential ow	1.316	0.141	0.392	2.185	0.798	0.151
	Linear damping source	1.270	0.121	0.384	2.263	0.782	0.148
	Increased viscosity	-	0.154	0.388	-	0.842	0.147

Table 3 .

 3 1. HOS wave condition for validation

			HOS-Ocean	HOS-NWT
	Wave Type	Value				
			2D	3D	2D	3D
		T [s]	-	-	0.702	0.702
	Regular Wave	H [m]	-	-	0.0431	0.0288
		T p [s]	0.702	1.0	1.0	0.702
	Irregular Waves	H s [m]	0.0288	0.10	0.05	0.0384

Table 3 .

 3 

	2. Extreme wave condition
	Item	Value
	Peak period (T p )	15.5 s
	Signicant wave height (H s )	17.5 m
	Peak enhancement factor (γ)	3.3
	Wave spectrum	JONSWAP

The wave breaking events are identied during HOS simulation with a criterion dened by a ratio of local energy ux velocity to local crest velocity

[START_REF] Barthelemy | On a unied breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] 

Table 3 .

 3 3. Time and mesh discretizations used for the simulation of extreme waves

	Mesh type	λ p /∆x	H s /∆z	∆x/∆z	T p /∆t
	coarse	62.5	18.4	6.5	300
	normal	125	36.8	6.5	600
	ne	250	73.5	6.5	1,200
	very ne	500	73.5	3.25	2,400

  F is a function satisfying the Laplace equation and the boundary condtions on the sea bottom, free surface and surface at innity. It is usually composed with two terms as

2 , (4.19) and G

Table 5 .

 5 1. Evaluated integral values of benchmark function 1 with extrapolation algorithm

						Direct integral	Integral with
		Integral						Error(%)
						(with zeros)	extrapolation
	ˆ∞ 0	e -0.01x J 0 (3x)J 0 (x) cos 10	√ xdx	1.249865 × 10 -1	1.249862 × 10 -1	-0.00024
	ˆ∞ 0	e -0.01x J 0 (3x)J 0 (x) sin 10	√	xdx	2.209661 × 10 -2	2.209660 × 10 -2	-0.00005
		Computation time				0.084 s	0.044 s	-

Table 5 .

 5 2. Evaluated integral values of benchmark function 2 with extrapolation algorithm

	Direct integral	Integral with
	Integral	Error(%)
	(with zeros)	extrapolation

•

  Complementary velocity is blended with zero or values of potential theory if it is available.

	u C =	   (1 -w)u C , (1 -w)u C + wu Poincaré C	relaxation to nonlinear incident waves, , relaxation to total waves	(6.109)
	• The fixedFluxPressure boundary condition is imposed on the pressure that determined
	by velocity boundary condition, likewise body boundary condition.	

Table 6 .

 6 1. Spatial and temporal discretization for SWENSE-LS convergence test.

	Case	λ/∆x	H/∆z	T /∆t	Co	Re ∆
	Mesh025-dt100	25	5	100	0.171	8,836
	Mesh030-dt120	30	6	120	0.171	7,363
	Mesh040-dt160	40	8	160	0.171	5,523
	Mesh050-dt200	50	10	200	0.171	4,418
	Mesh100-dt400	100	20	400	0.171	2,209
	Mesh200-dt800	200	40	800	0.171	1,105
	Mesh100-dt200	100	20	200	0.684	2,209
	Mesh100-dt800	100	20	800	0.086	2,209
	Mesh100-dt1600	100	20	1600	0.043	2,209
	Wave elevation time series measured at the center of computational domain are compared in
	gures 6.10 and 6.11 with respect to Co and Re ∆ discretizations. The results show that the
	measured wave elevation converges to the analytic solution, and the wave amplitudes are well
	preserved with respect to Co and Re ∆ discretizations.			

•

  Irregular waves/Propagating waves in NWT: Time-varying mode amplitudes of HOS wave model are updated by the results of HOS simulation. The velocity potential for Open-ocean

	was given in equation (3.16) as	
	∞		∞
	Φ I (x, y, z; t) =		A I mn (t)φ I,mn (x, y, z)
	m=0	n=0
	and the velocity potential for NWT was given in equation (3.32) as
	Φ I (x, y, z; t) = Φ H (x, y, z; t) + Φ L (x, y, z; t)
	where Φ H and Φ L are the harmonic and local velocity potentials given in (3.36) and (3.41)
	as	
	Mx		Ny
	Φ H (x, y, z ; t) =		B Φ mn (t)φ H,mn (x, y, z ),
	m=0	n=0
	Ny	N add
	Φ L (x, y, z ; t) =		B add np (t)φ L,mn (x, y, z )
	n=0		p=0
	where A I mn (t), B Φ mn (t) and B add np (t) are time-varying mode amplitudes of HOS wave model.
	Fluid velocity, wave elevation and dynamic pressure of incident waves are reconstructed on
	the computational grid by applying inverse Fourier transform. The reconstructed 3D wave
	elds are used to construct 3D incident wave eld in the viscous ow model by using cubic
	spline interpolation.	

Table 7 .

 7 1. Wave conditions for a vertical circular cylinder in regular wave.

					Wave
	k 0 a cylinder	Wave period (T )	Wave height (H = 2A)	Wavelength (λ 0 = 2π k 0 )	steepness ( k 0 H 2 )
	[-]	[s]	[m]	[m]	[-]
	0.50	2.837	1.000	12.566	0.25
	0.75	2.316	0.667	8.376	0.25
	1.00	2.006	0.500	6.283	0.25
	1.25	1.794	0.400	5.027	0.25
	1.50	1.638	0.333	4.189	0.25
	1.75	1.516	0.286	3.590	0.25
	2.00	1.419	0.250	3.142	0.25
	The force harmonics and mean drift components of horizontal force are extracted from the
	CFD solution by applying moving window FFT. The force harmonics and mean drift forces are
	nondimensionalized by:				

Table 7 .

 7 3. Computational domains used for the comparison of two-way coupling with various viscous ow models.

	Item	MeshL	Mesh2
	L CF D	a cylinder + 3.0λ 0	a cylinder + 1.5λ 0
	L relax	1.5λ 0	1λ 0
	L pure	a cylinder + 1.5λ 0	a cylinder + 0.5λ 0
	N cell	2,808,000 -3,132,000	360,000
	a	2a cylinder	2a cylinder
	Interpolation grid	-	r ∈ [a + 0.3λ 0 , L CF D + 0.2λ 0 ], z ∈ [-H -1m, 3.5m]
	N r Poincaré and N θ Poincaré	-	80 and 128
	N z1 Poincaré and N z2 Poincaré	-	300 and 50
	r z1		

Table 7 .

 7 4. Relative dierences of force harmonics acting on vertical circular cylinder with respect to viscous ow models and two-way coupling.Two-way coupling strategy between viscous and potential ows is applied for a problem of wave diraction by a bottom mounted vertical circular cylinder in regular waves. Two-way coupling strategy is also applied for the viscous ow solver based on SWENSE with LS function. The simulations are conducted for various regular wave frequency keeping the wave steepness.

	Simulations / Force harmonics	F x (1)	F (2) x	F x (2)	(3) x F
	NS+ VOF without coupling (large domain)	0.0443	0.0481	0.2814	0.1317
	NS + VOF without coupling (small domain)	0.0449	0.0662	0.1133	0.1285
	NS + VOF with coupling (small domain)	0.0410	0.0363	0.0736	0.1368
	SWENSE + LS without coupling (small domain)	0.0355	0.0605	0.0928	0.0972
	SWENSE + LS with coupling (small domain)	0.0300	0.0485	0.0522	0.1425

Table 7 .

 7 5. Geometrical dimensions of the CALM buoy model.

	Item	Value
	Calm buoy radius (a buoy )	0.460m
	Height overall	0.560m
	Skirt radius (a skird )	0.550m
	Skirt thickness	0.004 m
	From bottom to the skirt	0.04 m
	Draft	0.25 m
	207	

Table 7 .

 7 6. Wave conditions considered in the experiments on the CALM buoy model.

			Wave Type	
	Regular waves		Irregular waves	
	Item	Value	Item	Value
	Wave height(H )	0.16 m	Signicant wave height(H s )	0.12 m
	Wave period(T )	1.80 s	Peak wave period(T p )	2.00 s
	-	-	Peak enhancement factor(γ)	3.0
	-	-	Wave spectrum	JONSWAP

Table 7 .

 7 7. Computational domain of the buoy model in regular waves.

	Item	Value	Remarks
	L CF D	10.1 m	a skirt + 2λ
	L relax	7.575 m	1.5λ
	L pure	2.525 m	a skirt + 0.5λ
	N cell	473,136	-
	a	1.375 m	2.5a skirt
		r ∈ [2.4m, 11.0m],	
	Interpolation grid	z ∈ [-1.6m, 0.6m]	Cover whole relaxation zone.
	N r Poincaré and N θ Poincaré	80 and 128	-
	N z1 Poincaré and N z2 Poincaré	300 and 100	-
	r z1 Poincaré and r z2 Poincaré	3 and 3	-
	d couple	1.15 m	0.5λ -1.5a skirt
	Wave elds		

  1) /A)

					Average
					Dier-
					ence
		1.140	1.122	0.969	
	Experiment	± 0.0032	± 0.0027	± 0.0040	-
	ISIS-CFD-IWG	1.201	1.189	1.009	
	(Li et al. (2019b), N Cell = 2.4M )	(5.33%)	(5.93%)	(4.12%)	5.13 %
	SWENSE+VOF w/o coupling	1.196	1.180	1.013	
	(Li et al. (2019b), N Cell = 0.72M )	(4.89%)	(5.13%)	(4.54%)	4.85 %
	SWENSE+LS w/o coupling	1.240	1.226	1.062	
	(Present study, N Cell = 0.47M )	(8.71%)	(9.25%)	(9.58%)	9.18 %
	SWENSE+LS with coupling	1.184	1.174	1.035	
	(Present study, N Cell = 0.47M )	(3.80%)	(4.62%)	(6.77%)	5.06 %

Table 7 .

 7 9. Harmonics of forces acting on buoy model.

	Case	(1) x F ρgAV	2 3

Table 7 .

 7 10. Computational cost for the simulation of CALM buoy in regular waves.The computational mesh of viscous ow model is shown in gure 7.21. Relaxation zone is dened in far-eld region of computational domain, as colored grey in gure 7.21a. The computational mesh is rened near to the buoy model. The side view near to the buoy model is shown in gure 7.21b. The boundary faces of the buoy model is shown in 7.21c.The computational domain of viscous ow model has a length a skirt + 1.92λ p where λ p is a wavelength of peak wave period of wave spectrum in Table7.6. Length of relaxation zone is

	Case	Computational time
	SWENSE+LS without coupling	129,394s
	SWENSE+LS with coupling	233,397s (1.804)

Table 7 .

 7 11. Computational domain of the buoy in irregular waves.

	Item	Value	Remarks
	L CF D	12.5664 m	a skirt + 1.92λ p
	L relax	9.368 m	1.5λ p
	L pure	3.198 m	a skirt + 0.42λ p
	N cell	644,016	-
	a	1.375 m	2.5a skirt
		r ∈ [3.0m, 13.0m],	
	Interpolation grid	z ∈ [-1.6m, 0.6m]	Cover whole relaxation zone.
	N r Poincaré and N θ Poincaré	80 and 128	-
	N z1 Poincaré and N z2 Poincaré	300 and 100	-
	r z1 Poincaré and r z2 Poincaré	3 and 3	-
	d couple	1.823 m	0.42λ p -1.5a skirt
	Wave elds		

Two-way coupling of potential and viscous ows
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Consequently, the vertical integral functions of rst and second kinds are expressed as The vertical integral functions of third and fourth kinds are given by

(5.103)

(5.104)

Note that the vertical integral functions have the following symmetry and antisymmetry properties Z (i) mp (s; k) = Z (i) pm (s; k), i = 1, 3

(5.105) and Z (2) mp (s; k) = -Z (2) pm (s; k) (5.106) Consequently, the elementary functions also have the following symmetry or antisymmetry relationship with respect to Laguerre mode m and p:

S n,mp (s; r, a, t) = S n,pm (s; r, a, t),

when the integral involves Z (1,3) mp (s; k), (5.107) S n,mp (s; r, a, t) = -S n,pm (s; r, a, t),

when the integral involves Z (2) mp (s; k).

(5.108)

Therefore, the vertical derivative of source elementary function has an antisymmetry relationship, and the other elementary functions satisfy the symmetry relationship with respect to m and p.

Using the symmetry and antisymmetry properties, the computational eorts for calculating the elementary functions can be reduced.

6.8 Comparison with [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] and [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] The present study is based on the previous works of [START_REF] Vuk£evi¢ | Numerical modelling of coupled potential and viscous ow for marine applications[END_REF] and [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. Previous and present works can be summarized as:

Vuk£evi¢ (2016)

• Fluid velocity and interface quantity are decomposed in incident and complementary parts in framework of SWENSE.

• Pressure is not decomposed and is coupled with complementary velocity.

• All incident wave terms survive in FV discretization to keep the order of the numerical discretization.

• Transport equation for Level-Set (LS) function is derived from Phase-Function (PF) transport equation. Self-adjusting terms controlling the diusion and compression of interface are considered. [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] • Fluid velocity and pressure are decomposed into incident and complementary parts in the framework of SWENSE.

• Incident ow terms appearing in Euler equations are canceled in momentum equations, therefore they do not appear in FV discretization.

• Volume Of Fluid (VOF) is used for interface modeling. Boundedness of VOF is kept, however VOF is not decomposed into incident and complementary parts.

Present work

• Fluid velocity, pressure, and interface quantity are decomposed in incident and complementary parts in framework of SWENSE.

• Incident ow terms appearing in Euler equations are canceled in momentum equations, therefore they do not appear in FV discretization.

• Transport equation for Level-Set (LS) function is used for interface modeling. However, incident LS function terms are not canceled but given as the source terms of complementary LS function transport equuation. Re-distanding of complementary LS function is applied by calculating the distance from nearest interface.

• Incident uid velocity and pressure are extrapolated up to air zone using cubic polynomials. Incident uid velocity and pressures and their gradient have smooth proles in the computational domain for multi-phase ow.

However, the combination of complementary ux with incident LS function -∇ • (u C ψ I ) induces large extra source on near to interface, the simulation becomes unstable. Futhermore, the extrapolated incident wave velocity above the interface is non-physical and has large values. The combination of opposite signed large velocities near crest and trough and the convection scheme makes ψ C above the interface unstable. Measured time series and rst-harmonics of wave elevation at the middle of the computational domain are compared in gure 6.9. The rst harmonic amplitude without redistanding ψ C show uctuating behaviors for simulation time. On the contrary, the rst harmonic amplitude with redistancing ψ C show consistent results during the simulation. Numerical discretization errors can be listed as the below:

• Discretization of equation for incident LS function by low order numerical scheme may not satisfy the incident LS function transport equation.

• When the incident LS function is calculated from the wave theory, the signed distance 7 Two-way coupling of potential and viscous ows

The computational algorithm solving a problem of wave-structure interaction by considering the two-way coupling between potential and viscous ow models are introduced. It is based on the hypothesis that total ow can be decomposed into the incident and complementary is assumed.

In the present study, the following principles are used:

• Total ow can be decomposed into the incident and complementary parts.

• The incident parts are calculated from the nonlinear potential ow models for incident waves in a whole computational domain.

• The complementary parts in the vicinity of a structure are solved by viscous ow model based on SWENSE method.

• The complementary parts in the far-eld are modeled by Poincaré's velocity representation based on linear potential theory.

Based on the above principle, the functional decomposition (FD) and domain decomposition (DD) are applied as the coupling methodology as:

• Functional decomposition (FD) is applied for both potential and viscous ow models.

Because the nonlinear potential ow model for incident waves is available in a whole uid domain, the complementary parts are considered as the main concerns for the computation.

The governing equations and boundary conditions for potential and viscous ow models are reformulated for complementary ow. Poincaré's velocity representation is used for potential ow and SWENSE method is applied for viscous ow.

• Domain decomposition (DD) is considered to decompose the computational domain of potential and viscous ow models for complementary parts. The viscous ow model based on SWENSE with LS function for interface modeling calculates the complementary waves in the vicinity of a structure. The complementary waves in the region of far-eld are modeled by Poincaré's velocity representation based on linear potential theory.

Two-way coupling between potential and viscous ow models for complementary ow assumed that the uid velocity and wave elevation across the ow models are continuous. Each of the ow models is updated as follows:

• Viscous ow model to potential ow model

The complementary uid velocity and wave elevations on the matching surface are obtained from the viscous ow model. Fourier-Laguerre and Fourier coecients of complementary velocity and wave elevation are calculated, respectively. The complementary velocity and wave elevation elds in the relaxation zones are constructed by using Poincaré's velocity representation.

• Potential ow model to viscous ow model

The target values of complementary velocity and Level-Set function in the relaxation zone are calculated from the complementary velocity and wave elevation elds by using Poincaré's velocity representation. The relaxation scheme, which blends the calculated quantity with the target quantity, is used to update the viscous ow model.

The cylindrical-shaped interpolation grid is dened in r ∈ [r min

and θ ∈ [0, 2π]. The interpolation grid is discretized uniformly in a radial direction with discretization number (N r Poincaré ). In the vertical direction, the grid is decomposed into the under- water zone (z ≤ 0) and the air zone (z > 0). The underwater zone is discretized with the number of N z1 with a cell height ratio r z1 in the vertical direction. The air zone is also discretized in the vertical direction with the number of N z2

Poincaré with a cell height ratio r z2 . The cell height ratios are dened as .5) where h z1

Poincaré and h z2 Poincaré are the cell height of the underwater and air zone, respectively.

The cells having the minimum height are located on the mean free surface to give a dense mesh distribution near to the free surface. Interpolation grid is uniformly distributed in θ-direction with the number of N θ Poincaré .

Coupling between viscous ow solver based on SWENSE with LS function and potential ow solver

Numerical setting

The viscous ow solver based on SWENSE with LS function for interface modeling is used.

Results with and without two-way coupling are compared. Two computational meshes are used for the viscous ow solver and relative information is given in Table 7.2. 

Poincaré and N θ Poincaré 120 and 128 80 and 128

N z1

Poincaré and N z2 Poincaré 300 and 50 300 and 50 r z1

Poincaré and r z2 Poincaré The horizontal force acting on the vertical circular cylinder Figure 7.9 shows the time series of horizontal forces acting on the vertical circular cylinder. The horizontal forces are compared with respect to the dierent computational meshes of viscous ow model and two-way coupling between viscous and potential ows. The magnitude of total forces and behaviours are not changed signicantly with respect to the computational meshes and twoway coupling. The time series of forces are slightly changed when the dierent computational meshes are used for the case of large wavenumber, k 0 a cylinder ≥ 1. Two-way coupling between potential and viscous ows also slightly aects the time series of forces. 

Considered computations

The viscous ow solvers with and without two-way coupling are applied. The computations considered are listed as below:

• Viscous ow solver based on NS+VOF with and without two-way coupling

Viscous ow solver based on Navier-Stokes equations and VOF interface modeling is used.

In the relaxation zone, the functional quantities of total ows are relaxed to the target functional quantities as quantities calculated by incident waves as

where u T arget and α T arget are the target uid velocity and VOF.

When the coupling is not applied, the target uid velocity and VOF are set to be the functional quantities of incident waves as

where u I is the uid velocity computed by incident waves, α T arget,I is VOF calculated by using the wave elevation of incident waves.

Meanwhile, the target uid velocity and VOF changes when the two-way coupling is applied

α = (1 -w)α + wα T arget,T otal , (7.10) where u Poincaré is complementary uid velocity computed by Poincaré's velocity representa- tion, α T arget,T otal is VOF calculated by using total wave elevation(Ξ). Total wave elevation in the relaxation zone is given by a superposition of incident wave and complementary waves

To update the potential ow solver, the complementary uid velocity and wave elevation on the matching surface are obtained by subtracting the incident ow parts as

at Gauss points on matching surface and waterline, (7.12) where u I and Ξ I are uid velocity and wave elevation calculated by incident waves at Gauss points, respectively.

• Viscous ow solver based on SWENSE+LS with and without two-way coupling

Viscous ow model based on SWENSE with LS function for interface modeling is used.

In the relaxation zone, the complementary ows are relaxed to the complementary ows

Horizontal force acting on the vertical circular cylinder

Horizontal force harmonics and mean drift forces acting on the vertical circular cylinder are compared in gure 7.13 with respect to the two-way coupling for dierent viscous ow models.

(a) First harmonic,

(c) Second harmonic, F (2) (d) Third harmonic, F (3) Figure 7.13. Horizontal force harmonics and mean drift forces with respect to the two-way coupling for dierent viscous ow models.

Computational cost

Computational costs for simulating the wave diraction by the vertical circular cylinder are compared. The computational costs are dened by computational time multiplied by the number of processors used for computation as Cost = t proc × N proc , (7.14) where t proc is a computational time, N proc is the number of processors used for parallel computation. In the present study, N proc = 12 is used for both viscous ow solvers based on NS equations and SWENSE in the small computational domain. In the large domain, the number of processor N proc = 120 is used for computation. Figure 7.14 shows the normalized computational costs by the computational cost of the viscous ow solver based NS equations and VOF interface modeling without two-way coupling in the small computational domain.

The computational cost of the viscous ow solver based on the NS equation and VOF interface modeling in the large computational domain is about 21.6 times of reference case. Viscous ow solver based on SWENSE with LS function is faster than the viscous ow solver based on NS equations and VOF interface modeling. VOF transport equation is solved by an algorithm called MULES, which solves the transport equation by using FCT-scheme [START_REF] Boris | Flux-corrected transport. I. SHASTA, a uid transport algorithm that works[END_REF][START_REF] Zalesak | Fully multidimensional ux-corrected transport algorithms for uids[END_REF], in OpenFOAM framework. MULES needs the nonlinear iteration for calculating the ux limiter on each internal faces. Therefore, the computational costs are larger than solving the LS-transport equation.

Computational costs are increased when the two-way coupling is applied. Extra computational costs for two-way coupling are listed as below:

• Computation of convolution integrals in Poincaré's velocity representation needs extra computational time. It can be reduced by applying parallel computation.

• Interpolating the complementary uid velocity and wave elevation in the relaxation zone are computational burden.

• Approximation of complementary ows on the matching surface by Fourier-Laguerre series and Fourier series needs a short computational time compared to other procedures. 

Computational cost

Computational times for simulating the buoy model in irregular waves are summarized in Table 7.12. The number of processors, N proc = 22, is used for simulations. When the two-way coupling is applied, the computational time is increased by 48.5%. When the two-way coupling is applied the rst harmonics of horizontal and vertical forces acting on the buoy model show better results than the simulation without considering two-way coupling.

The second-harmonic and horizontal mean drift forces obtained by considering two-way coupling have smaller dierences than the simulation without two-way coupling.

The complementary waves generated due to the existence of structure is small, the two-way coupling aects small on the wave elevations and forces acting on the structure.

The computational costs are increased by 80% for the simulation of structure in the regular wave, and 49% for the simulation of structure in the irregular wave.

Closure

The computational algorithm solving a problem of wave-structure interaction by considering the two-way coupling between potential and viscous ow models has been introduced. La diraction de la houle incidente par un cylindre circulaire vertical est considérée pour le deuxième test [START_REF] Huseby | An experimental investigation of higher-harmonic wave forces on a vertical cylinder[END_REF]. • L'écoulement total peut être décomposé en parties incidentes et complémentaires.

• Les parties incidentes sont calculées à partir des modèles d'écoulement potentiel non-linéaire pour les houles incidentes dans l'ensemble du domaine uide considéré.

• Les parties complémentaires au voisinage d'une structure sont résolues par un modèle d'écoulement visqueux basé sur la méthode SWENSE.

• Les parties complémentaires dans le champ lointain sont modélisées par la représentation de vitesse de Poincaré basée sur la théorie d'écoulement potentiel linéarisé.

Sur la base du principe ci-dessus, la décomposition fonctionnelle (FD) et la décomposition de domaine (DD) sont appliquées en tant que méthodologie de couplage :

• La décomposition fonctionnelle (FD)