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1. Introduction

1 Introduction

1.1 Numerical modeling of wave-structure interaction

The wave-structure interaction is a major concern for naval architecture and ocean engineering.
The ships and offshore platforms, which have an expected lifetime of 25 years or so, are exposed
to ocean environment where the typical wave periods are in the range of 6-25s. They experience
billions of oscillations during their lifetime, therefore it is essential to estimate the forces acting

on those structure and their motions.

The hydrodynamic forces are of various kinds from simple hydrostatic loads to very complex
wave impacts and the complexity of the mathematical model is relevant to achieve accuracy.
Some transfer function as the motion Response Amplitude Operators (RAOs) are very well and
quickly computed with linear potential flow, whereas extreme response or extreme loads could be
influenced by nonlinear features or even multiphase flow and consequently a more complex and
dedicated model is necessary, often based on Navier Stokes equations, with or without turbulence

model.

The behavior of bodies in waves is possible to compute analytically for a limited number of
geometrical shapes and with strong assumptions on the hydrodynamic model, specifically the
linearization of the free surface and body boundary conditions. Real ships and offshore plat-
forms have complex geometries and the wave structure interaction phenomena can be assessed
by conducting experiments or by solving numerically the chosen mathematical model. Perform-
ing experiments is a good methodology to get real-time data and to emulate complex natural
phenomena, however there are numerous limitations as scaling effects, the facility, the data ac-
quisition and overall costs. This explaing why the numerical analysis is often attractive, though
the cost and the complexity of the computation can also be large. In the present research, the
objective is to use complex models but to limit the computational costs in simulating the wave
structure interaction problem. This is done by coupling different types of hydrodynamic models

which have different levels of assumptions.

Two mathematical models are commonly used in naval and ocean engineering fields nowadays,
that can be stated as potential flow and viscous flow models, the former being derived with

hypothesis imposed on the latter.

Potential flow models are derived from the assumption of incompressible, inviscid fluid and
irrotational flow. The most common numerical algorithms are based on the boundary integral
equation which transforms a three-dimensional (3D) computational domain into two-dimensional
(2D) domain. 3D problems are reformulated along the body surface with the introduction of
a Green function satisfying all the boundary conditions except body boundary condition. This
methodology is used in the naval and offshore fields to compute Linear Transfer Function (LTF),
Quadratic Transfer Function (QTF), radiation forces (added mass and radiation damping) and
motion Response Amplitude Operators (RAOs) of a floating/fixed body subject to waves. How-

ever, potential flow based solvers cannot model vorticity, viscosity, turbulence and wave breaking
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phenomenon, making them less attractive for computing the drag resistance of ships, maneuver-
ing, roll damping and gap resonance. In addition, the algorithm complexity and the numerical
cost increase when the nonlinearity of the free surface and the body perturbation need to be

accounted.

Viscous flow models are more and more used in wave-structure interaction problems to overcome
the limitations of the potential flow model thanks to the increase of computational resources.
Viscous flow models are generally derived from the Navier Stokes equations and the assumption
of Newtonian fluid. A 3D computational grid is required to solve the equations numerically.
The size of the grid depends generally of several parameters and specifically from the Reynolds
number for a typical marine computation. Turbulence models can be used to reduce the number
of nodes, Reynolds averaged Navier-Stokes equations (RANSE) are commonly used to solve a
highly nonlinear phenomena including viscosity, vorticity and turbulent effects. Though the
numerical computation of the free surface motions in viscous flows has also its challenges, the
simulation of wave run-up, green water, and extreme bow slamming events are more and more
conducted. Performing long simulations with floating or fixed body, as example in irregular
waves for the typical duration of 3 hours is still very expensive and unpractical for engineering

companies.

Those two different flow models have each advantages and drawbacks for simulating wave-
structure interaction. The coupling of potential and viscous flows in wave-structure interaction
problem has started in the early 1990s to take the benefits of those two different models. The
viscous model needs a large computational effort and it is not suitable to model propagating
waves to the far-field. Meanwhile, the potential flow model is regarded as good for wave propa-
gation. Therefore, the propagating waves in the far-field region of the domain with viscous flow

can potentially be improved by using a potential flow model, as depicted in figure 1.1.

Body
@ ©
@ Viscous flow
@ model Potential flow

model

Figure 1.1. The concept of coupling between two flows in wave-structure interaction problem.

The reduction of the computational domain dedicated to the viscous flow decreases the compu-
tational burden. The key is that this reduction does not increases the wave reflections on the
boundary and that the computational cost to solve the potential flow does not compensate what
has been gained. This is the reason why in this thesis the speed of the potential flow algorithm

has been accounted for and object of dedicated studies.
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Two flow models are based on different assumptions that raise many questions in a sense of
physical meaning. However, the coupling between potential and viscous flow models is attractive

and has a strength on both efficiency and accuracy.

1.2 Previous and related researches
1.2.1 Potential flow

In potential flow, Boundary Element Method (BEM) is widely used for numerical simulations.
It is classified into two methods which depends on the selection of the fundamental solution: the

Rankine method and the solution using the free surface Green function.

Rankine panel method uses a simple source as the fundamental solution. It provides a flexibility
in treating boundary conditions, and calculating singularities is simple. However, the boundary
surface where singularities are located should cover the whole fluid domain and a panelling
over the free surface is necessary. As a result, the computational effort increases due to the
need to solve a large and fully populated linear system. Recently, it has often been applied
with nonlinear free surface and body boundary conditions which appear in problems of ship
with forward speed in waves and of wave-structure interaction in high wave. Dawson (1977)
showed that this methodology gives a fairly good result for a ship with forward speed. After his
work, Nakos (1990) introduced a B-spline shape function for panel connectivity and investigated
numerical dispersion, dissipation, and stability. Raven (1995) compared the different numerical
implementation of nonlinear free surface boundary condition. This methodology was applied in
the time domain by Kring (1994). Recently, Kim et al. (2011) used this method in the principle
of weak scattering already introduced by Pawlowski (1992).

The method using the free surface Green function, which satisfies a linearized free surface condi-
tion with sea bottom and radiation conditions, is the second category of BEM. With a linearized
boundary condition, the integral equation is only discretized on the mean position of the body.
Therefore, a small computational effort is necessary to solve a linear system of relatively small
size. However, the algorithms for the computation of the Green functions are complex. The
mathematical representation of the wave Green function is well summarized in the book of We-
hausen and Laitone (1960). Typically, the wave Green function involves an infinite integral with
singularity which makes its numerical evaluation difficult. Therefore, most of associated research
works have focused on the efficient computation of Green functions. Newman (1985); Telste and
Noblesse (1986); Chen (1991); Newman (1992) suggested several numerical algorithms by ap-
plying different approximations depending on nondimensional variables for numerical efficiency.
Recently, Xie et al. (2018) summarized the single-integral type of wave Green function in the fre-
quency domain and compared the precision and computational cost of various available numerical
algorithms. A different perspective on the deep water wave Green function has been proposed
by Clément (1998). He showed that the time domain wave Green function is a solution of 4-th
order Ordinary Differential Equation (ODE), and he identified that the frequency domain wave
Green function satisfies a second order ODE by applying Fourier transform (Clément, 2013).



1. Introduction

Clément (1998) used a 4-th order Runge-Kutta time integration to solve the 4-th order ODE of
the time domain Green function. Later, Chuang et al. (2007) introduced a time-marching Frobe-
nius method to solve the ODE analytically. Recently, Bingham (2016) compared the efficiency
of the numerical algorithms calculating the time domain wave Green function. A good summary
of existing ordinary differential equations in both time and frequency domain with respect to

spatial and temporal variables can be found in Xie (2019).

The panel discretization along the boundary surface is a concern in BEM. Linear potential
codes for a diffraction-radiation problem in frequency domain, such as WAMIT by Lee (1995),
HydroStar by Chen (2004), Aquaplus by Delhommeau (1989) and Nemoh by Babarit and Del-
hommeau (2015), are based on constant panel method. Kim (2011) used a linear panel method
to solve the hydroelasticity problem of floating body. For a precise computation of wave drift
forces, corresponding to second-order problem, Hong et al. (2005) applied a Higher-Order BEM
(HOBEM) and validated with experiments.

Other numerical approaches than BEM are applicable for potential flows. Bai and Yeung (1974)
solved the free surface problem by Finite Element Method (FEM) for 2D problem. Later, Bai
(1981); Bai et al. (1989) extended FEM for 3D free surface flow. Recently, Nam (2015) applied
3D FEM for berthing problem with fully nonlinear free surface and body boundary conditions.
The Harmonic Polynomial Cell (HPC) method was proposed by Shao and Faltinsen (2014).
Differently from the BEM, these methodologies require the whole 3D computational domain to

be discretized into the cells.

The mentioned potential flow models have focused on the evaluation of velocity potential on the
boundary surface. Noblesse et al. (1997) introduced a new Poincaré’s velocity representation
in free surface potential flow to compute the fluid velocity at field points. The original bound-
ary integral equation states that the velocity at field points can be calculated by the surface
distribution of sources and dipoles with their strength. In his work, the dipole contribution is
transformed into the equivalent source contribution multiplied by the tangential velocity. There-
fore, the fluid velocity at any field points can be expressed explicitly by the velocity distribution
over the surrounding boundary surfaces. Following his previous work, Noblesse (2001) presented
a generic expression for free surface flows and suggested the Poincaré’s velocity representations
for the cases of soft (® = 0) and rigid (%—f = 0) free surface, steady forward ship problem, time-
harmonic without/with forward speed. Furthermore, he introduced a potential representation
which is called weakly singular boundary integral equation by defining a vertically integrated
Green function (Noblesse and Yang, 2004). Guillerm (2001) applied Noblesse’s representation
for the steady forward ship problem by coupling a viscous flow model in the vicinity of the ship

and a potential flow model far from the ship.
1.2.2 Viscous flows
Viscous flow models solve Navier-Stokes equations, which are the governing equations of New-

tonian fluid. RANSE version of Navier-Stokes equations is frequently used in naval and offshore

engineering applications and they can be solved efficiently by decomposing velocities and viscos-
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ity into time-averaged and fluctuating parts. These equations are solved numerically, because
analytical solutions are rarely available for the nonlinear viscous flows with free surface. The
Finite Volume Method (FVM) is commonly used because it satisfies the conservation laws even
when the discretized mesh is relatively coarse. FVM discretizes the fluid domain into cells which
are small control volumes (CVs) where fluxes comes in and out through the control surfaces.
The governing equations are reconstructed in the framework of FVM. The fluid media (water)
in marine hydrodynamics is assumed to be incompressible and viscous. Patankar and Spalding
(1972) introduced Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm
to solve steady-state problems of incompressible viscous fluid. In this algorithm, the pressure
correction is introduced to satisfy the continuity equation after solving the momentum equation.
Issa (1986) devised Pressure-Implicit with Splitting of Operators (PISO) algorithm, which is
an extended version of SIMPLE algorithm, for unsteady problem. In the PISO algorithm, the

coupled velocity and pressure are solved by one predictor and two corrector steps.

The numerical modeling of the interface between air and water is also one of the main research
topic in marine hydrodynamics. Interface models are categorized into Lagrangian and Eulerian
approaches. The Lagrangian approach advects special marker points distributed on the inter-
face, and reconstructs the interface with the distribution of marker points (Harlow and Welch,
1965). The reconstructed interface is considered as sharp and precise, but an extra redistribution
procedure is necessary to get a sufficient resolution. Unverdi and Tryggvason (1992) proposed
a front-tracking method, transporting marker points in an Eulerian domain. It enables the cal-
culation of an accurate surface curvature and the conservation of a sharp interface. However,
an extra redistribution procedure is still necessary to get a sufficient resolution. Furthermore,
the complexity increases in the case of wave breaking. Meanwhile, the Eulerian approach uses
an indicator function, representing whether a CV is wet or dry by a function value defined at
each cell. This approaches are commonly used nowadays, from Harlow and Welch (1965) who
proposed a marker and cell method. Other indicator functions, the Volume Of Fluid (VOF) by
Hirt and Nichols (1981), the Level-Set (LS) function by Osher and Sethian (1988) and the Phase
Function (PF) by Boettinger et al. (2002), have been proposed in the literature and are widely
used in many applications. Those methods using indicator functions need however a special

attention on treating numerically the convection terms due to its diffusivity.

VOF methods conserve the mass well but suffer from interface smearing and the difficulty on
the calculation of the interface curvature. Several convection schemes have been applied to
prevent smearing interface and maintain boundedness. Most of convection terms are evaluated
by blending the low and high order advection flows with flow limiter, such as HRIC by Muzaferija
and Peric (1999), Flux-corrected transport (FCT) by Boris and Book (1973), CICSAM by Ubbink
(1997). The multiphase solver in OpenFOAM (interFoam) is based on the FCT method which
has been extended up to multi-dimensions by Zalesak (1979). The computation procedures are
well explained in Damian (2013). As an alternative to algebraic solving techniques, a geometric
VOF approach was proposed by Roenby et al. (2016) though it limits the maximum Courant

number.

LS function keeps the interface sharp, but mass loss often happens due to its signed distance
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(Sussman et al., 1994). Extra computation procedures, re-distancing the level-set, have been
applied to improve the accuracy while maintaining the interface sharpness (Chang et al., 1996;
Sussman et al., 1998; Di Mascio et al., 2007).

PF method uses a smoothly varying function ¢ € (—1,1) in computational domain. It also
has a mass loss problem like LS function, but the proper choice of phase-function may help the
accuracy and boundedness. The use of biased phase function having values between 0 and 1
is adopted to keep the boundedness (Desjardins et al., 2008). Sun and Beckermann (2007) set
the phase-function has a hyperbolic curve. The derived PF equation involves the self-adjusting

variable controlling interface diffusion.

The quality of wave propagation in the computational domain is important for any wave-structure
interaction problem. The numerical dissipation brought by the discretization makes simulations
in large domain difficult and the oscillatory behavior of waves calls for a special boundary con-
dition to minimize undesired reflections at the inlet/outlet. Ocean waves have typical periods in
the range of 6-25s and travel long distances with very small energy dissipation. Waves with a
wavelength of 73.15m (T = 6.84s) travel 924 km in a day, with its wave height only diminished
by one or two percent because of friction (Lamb, 1945; Joseph, 2006). Nonlinear potential wave
models are useful to initialize and generate incident waves. For example, Rienecker and Fenton
(1981) used a stream function for fully nonlinear regular waves, and some nonlinear potential

models for irregular waves can be found (Ducrozet et al., 2007, 2012; Engsig-Karup et al., 2009).

However, the absorption of waves at the extremities of the domain is still ongoing research. The
waves at outlet are a combination of incident waves, body-scattered waves and are also affected by
numerical dissipation. Israeli and Orszag (1981) introduced the technique of "damping zone" or
"sponge layer" to absorb the waves. A relaxation scheme which blends the computed quantities
with a target solution in the sponge layer (also called relaxation zone; blending zone) has been
popular recently, see Kim et al. (2012); Jacobsen et al. (2012); Paulsen et al. (2014). As the target
flow and weight function can be specified by the user, the wave outlet is relatively easily handled
compared to with other methodologies which need a parameter tuning. The relaxation scheme
is categorized into implicit and explicit relaxation. The implicit relaxation scheme combines the
governing equations and target equations with a spatially distributed weight factor. As a result,
source terms appear in the original equations, see Kim et al. (2012); Vuk&evi¢ (2016). Meanwhile,
the explicit relaxation scheme blends the flow values with target values in the relaxation zone
after solving the governing equations, see Mayer et al. (1998); Fuhrman (2004); Engsig-Karup
(2006); Seng (2012) for example.

1.2.3 Coupling of potential and viscous flows

Navier-Stokes equations are used to state the behaviour of viscous flow. Viscosity effect and
rotational flow are considered naturally in governing equations. The potential flow is introduced
based on the hypothesis that fluid is incompressible and inviscid and flow is irrotational. Conse-
quently, the coupling between viscous and potential flows is sort of a contradiction. After Prandtl

(1904) discovered boundary layer exists only near a body moving through fluid media, it has been
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thought that the potential flow model can model the outer fluid region of the boundary layer.
However, flow quantities such as fluid velocity and stress considered in viscous and potential flow
models are derived in different manner. The coupling between two flow models is considered to

be skeptical in view of physics.

The efforts to couple potential and viscous flows in marine hydrodynamics have been investigated
from the early 1990s. Fluid viscosity has not been accounted for seriously because viscous effects
on the global performance of ship and offshore platform are some times very low and often hard
to estimate. The viscous effect is important for specific phenomena such as friction resistance
of ship, roll damping, gap resonance, moonpool resonance. Most of the associated research has
assumed that the flow quantities of viscous and potential flow models are continuous or have

changed the boundary condition to consider viscosity effects.

In this section, previous research on the coupling between viscous and potential flow models
in marine hydrodynamics are summarized by categorizing coupling methodology. The way of
coupling is defined by transferring the information from one solver to the other. (1) One-way
coupling is when an available solution is transferred to the solver, but the available solution
is not affected by the solver. (2) Two-way coupling means that each flow solvers delivers the
information to the other, and each flow solver is updated from the delivered information. The

figure 1.2 shows a schematic view of coupling ways with decomposition.

7 Potential flow

_________ One-way
""" coupling

Figure 1.2. Categorization of coupling methodologies by information delivery direction.

In a coupled solver, the computation can be decomposed spatially and/or functionally. The

decomposition of total problem can be then categorized into two groups:

e Domain decomposition: The computational domain for each flow is separated or over-

lapped. Potential and viscous flow models are applied in the separated domains.

e Functional decomposition: The total quantities in viscous flow are decomposed into poten-

tial and viscous parts. The governing equations and boundary conditions are changed.

Remark that the domain and functional decompositions are applicable together for one problem.
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Domain decomposition

The domain decomposition (DD) splits the computational domain and applies the different flow
models that are suitable for concerned phenomenon. In the wave-structure interaction problem,
viscous effects and wave nonlinearities are strong in the vicinity of body surface. Even though
the generated vortex propagates up to relatively far-field, it is possible to decompose the compu-
tational domain into viscous inner sub-domain and potential outer sub-domain. Both two-way
and one-way coupling methodologies are applicable with different coupling regions. In the cou-
pling region, the information is delivered from viscous/potential flow to the other. It is usually
categorized into direct and overlapped coupling regions. The direct coupling region represents
that two flows share one surface (Sy) to deliver each of the flow quantities to the other. The over-
lapped coupling regions refers to that the information transfer happens at two distinct boundary
surfaces (S,) with distance or the volumic blending zones (Z;). In the volumic blending zone,
the weight function is applied for smooth transition of flow quantities. Therefore, information

delivery is done in different places. Figure 1.3 shows direct and overlapped coupling regions.

Viscous flow region Potential flow region Viscous flow region Potential flow region
|
/
Body /
Distinct boundary / N
surface(S,) // ‘\Q{l& @'@a
/ g
ViSCOUS ya Aé _sf% Volumic blending
. / S
Viscous flow fow \ © & zones(Z;)
/" Information transfer e ©
4 7 ¥
\z\ at shared surface(Sy) L “ﬁﬁg‘i \
NN e A0 c©
. EASIPR .
. W&Ox\\_* “ e Potential flow
Potential flow <«
(a) Direct coupling surface (b) Overlapped coupling region

Figure 1.3. Categorization of coupling methodology by place of information delivery.

Tahara et al. (1992) applied two-way coupling by two distinct boundary surfaces for inviscid
and viscous flows, respectively. BEM and FVM are used to solve each flow region, the normal
velocity for potential flow and the total velocity for viscous flows being updated at each time
step. Campana et al. (1992) used Rankine source BEM and FVM to solve the two-dimensional
submerged wings in current with the free surface. The normal velocity for potential low and the
pressure and velocity for viscous flow are imposed as boundary conditions for each flow at direct
coupling surface. Later, Campana et al. (1995) applied the two distinct coupling surfaces for the
forward speed ship problem and reported that the overlapped region gave a stable simulation.
lafrati and Campana (2003) used FVM for viscous flow in the region near to free surface and BEM
for the region body surface to FVM region for the simulation of wave breaking by interaction of
current and submerged obstacle. They defined two different coupling techniques, DtN (Dirichlet

to Neumann) and NtD (Neumann to Dirichlet), leading to different delivered information. In



1. Introduction

the boundary integral equation

od oG

where ® is a velocity potential and G is the Green function, DtN update the velocity potential
(®) on the boundary surface by Bernoulli equation from the obtained pressure in the viscous
flow. The Dirichlet boundary condition (®) is used to calculate the normal derivatives of velocity
potential (g—i) along the boundary surface. The velocity calculated from the potential flow is
imposed to viscous flow boundary condition. NtD applies a Neumann boundary condition (g—i)
on the boundary surface by fluid velocity obtained from viscous flow to calculate the velocity
potential (®). The pressure by Bernoulli’s equation is imposed as the boundary condition for

viscous flow.

Colicchio et al. (2006) applied the coupling between BEM and FVM with domain decomposition
for dam breaking and wave impact problem. Two distinct matching surfaces are used to transfer
the velocity, wave elevation or the pressure, and the pressure correction in the viscous flow solver
from the obtained potential fluid velocity. They also reported that the overlapped matching
surface gives a stable result both in potential and viscous flow solver. Greco et al. (2013) extended
up to 3D problem to simulate Green water impact on a deck. To reduce the computational
cost of potential flow, Hamilton and Yeung (2011) adopted a cylindrical matching surface and
applied the Shell function, which is the surface integrated Green function, to solve potential
flow. Fredriksen (2015) limited the viscous flow region near to the corner of two-dimensional

moonpool, and attempted to couple velocity and pressure in a segregated numerical algorithm.

A two-way coupling with the linear potential theory based on Poincaré’s velocity representation
is attempted by Guillerm (2001) for steady forward ship problem. He adopted the overlapped
surfaces for both flows and the viscous flow is solved by Finite Difference Method (FDM) with
boundary conditions computed by the linear potential flow. As a coupling variable, the normal
and tangential velocity is transferred to potential flow, as the boundary condition for viscous
flow, the velocity and wave elevation calculated by the potential flow is used. Poincaré’s velocity
representation for generic free surface flows are given in Noblesse et al. (1997); Noblesse (2001).
He suggested the Poincaré’s velocity representation for the problems of satisfying free surface
conditions ¢ = 0 and % = 0, steady forward speed, time-harmonic without and with forward
speed. After his work on two-way coupling, there has been no more attempt to apply Poincaré’s

velocity representation for a time-harmonic or unsteady problem.

Two-way coupling solves both flows, consequently the iterations between two flows increase the
computational costs. Therefore, one-way coupling is commonly used nowadays by imposing the
incident waves as the boundary condition. Chen et al. (2005); Kim et al. (2012); Jacobsen et al.
(2012); Paulsen et al. (2014) applied a relaxation/blending scheme in volumic relaxation zones,
which relaxing the total flows into incident components. Therefore, the scattering term shall
be blended zero smoothly in the relaxation zone. The weight function gives an extra source in
relaxation zones, therefore, it generates unnecessary waves in the computation domain (Perié

et al., 2018b).
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Functional decomposition

The functional decomposition (FD) splits the total solution into potential and viscous flow com-
ponents in the same computational domain. The governing equations and boundary conditions
are reformulated for the quantities of interest. The Helmholtz decomposition theorem states that
the total fluid velocity can be decomposed into the irrotational and vortical velocity (Arfken et al.,

1995)
u=v+VQo, (1.2)

where v is a rotational velocity and @ is velocity potential. v and V& satisfiy the continuity
equation
V-v=0, V2P =0, (1.3)

and
V-u=V.-v+V®=0, Vxu=Vxv. (1.4)

Based on the Helmholtz decomposition theorem, Kim et al. (2005) proposed a complementary
Reynolds Averaged Navier-Stokes Equations(RANSE) that solves the vortical velocity. Potential
flow solver calculates the irrotational velocity. Consequently, the Euler terms are cancelled in
the momentum equation. They reported that the functional decomposition reduces the com-
putational cost by adopting a coarse grid in the far-field. For the 2D wing problem, Edmund
(2012); Rosemurgy (2014) manipulated the body boundary condition for potential flow that the
contribution of vortical velocity is taken into account by integrating them within the boundary
layer. Following the equation (1.2), the derivative of velocity potential on the body surface is

given as

u=0, <= V&=-v. (1.5)
The normal derivative of velocity potential is given in
V& -n=—-v-n, (1.6)

where n is normal vector at body surface. In a local-orthogonal coordinate system shown in

figure 1.4

Figure 1.4. A local coordinate system and the boundary layer with thickness §. In the figure,
different notations are used. n = 7 and t = ¢, wy = v*, 6Qp represents the body surface
(Rosemurgy, 2014).

10



1. Introduction

the vortical velocity and gradient operator can be decomposed into the normal and tangential

components

0 0
n t
v=v"n+v't, and V= ann—l—att (1.7)

where t is an unit tangential vector in local coordinate. Using the continuity equation given in
(1.3)
o ot
—+ - =0. 1.8
on ot (18)
Integrating the equation along the local normal direction from body surface to the boundary
thickness 0

1) t
(0 =) = - | %“tdn (1.9)
) t
ov
v"™"(0) = —dn +0"(d
0= [ San+ o

By definition of boundary layer, v"(d) ~ 0. Therefore, the body boundary condition given in

(1.6) is written as

V& .-n=-v-n=—-0v"(0)
5 gyt (1.10)

=— —dn.

o ot

An user-defined threshold is used to calculate boundary layer thickness. Potential and viscous
flow satisfying the body boundary condition given in (1.10) are solved iteratively. The details
are explained in Edmund (2012); Rosemurgy (2014). Recently, Chen and Maki (2017) extended
it up to 3D seakeeping problem.

Ferrant et al. (2003) introduced a functional decomposition method which is named as Spec-
tral Wave Explicit Navier-Stokes Equations (SWENSE). It assumes that the total flow has two

components:(1) incident wave flow and (2) complementary wave flow as

X = X1 + X0 (1.11)

where x, x7 and x¢ are the flow quanties of total, incident wave and complementary waves,
respectively. The incident flow terms are subtracted from the Navier-Stokes equation and equa-
tions are reconstructed with respect to complementary flow terms. The nonlinear incident wave
model being thought to satisfy Euler equations can be canceled. Figure 1.5 shows the SWENSE
method to decompose the functional quantities of total flow into incident and complementary

parts.

11
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—
NS(x)-E(x)=0 -€—— SW(xc)=0 _‘Ib,

Xc = XX
Solve x¢ using CFD

Navier-Stokes Equations Total Solution
NS(x) =0 X = xitxc
Euler Equations Incident Wave Solution
Ex)=0 v

from spectral methods

/

SWENSE Equations

Figure 1.5. The SWENSE method to decomose the functional quantities of total flow into
incident and complementary parts (Li, 2018).

It makes the computational grid to be modeled dense near to the body only and is thought as
efficient. This methodology has been applied for single-phase fluids by Luquet et al. (2003); Gen-
taz et al. (2004); Monroy (2010); Reliquet (2013) with marine hydrodynamic purpose. Recently,
Vukéevié (2016) has reformulated SWENSE in multi-phase flow by decomposing a level-set and
fluid velocity, later Li (2018) applied a similar approach with extended incident pressure for VOF
field. As boundary conditions, the relaxation schemes are applied in both researches, relaxing

the scattering waves with zero.

Summary

The coupling methodology is based on the decomposition of flows that allows to split the com-
putational domain and/or the functional value. The transition of different physics across the
components/domains remains a question. The associated previous research is summarized in
Table 1.1.

The coupling methodology is categorized by coupling way: (1) Two-way coupling and (2) One-
way coupling. The quantities used for coupling are different for research. p and u are pressure
and fluid velocity. @ is the velocity potential. The subscript ; denotes the incident components
and ,, and ; are the normal and tangential vector components, respectively. The coupling place
where the information is delivered denoted with S and Z when the information is delivered at
the surface or volumic zone. SWENSE and FD are when the SWENSE method and functional
decomposition is used. S,, S5 are the case when the overlapped surfaces or one surface is used

for coupling. Spoay and Sy are the body surface and the surface at infinity, respectively.

12
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Table 1.1. Summary of previous research on the coupling of potential /viscous flows

_ Coupling Coupling values Coupling  Numerical model
Previous research .
way NS NS—O region d NS
Tahara et al. (1992) Two P, U o, O; S, BEM FVM
Campana et al. (1992) Two p,u-t D, Ss BEM FVM
Campana et al. (1995) Two u ¢, Ss BEM FVM
Guillerm (2001) Two u d,, Vxo So Poincaré FDM
Tafrati and Campana
Two poru ®, or ¢ S, or Sy BEM FVM
(2003)
Colicchio et al. (2006) Two uor p o, or @, Sq BEM FVM
Hamilton and Yeung Shell
Two U Or p ® or ¢, Sy FVM
(2011) func.

Edmund (2012) Two u Pp, w-n Spody/S BEM FVM
Rosemurgy (2014) Two u Pp, wen Spody/S BEM FVM
Fredriksen (2015) Two u ) So HPC FVM

Ferrant et al. (2003) One uy, pr - SWENSE HOS FDM

Kim et al. (2005) One uy, pr - FD BEM FVM

Kim et al. (2011) One uy, o ; Zn »,  FVM
Jacobsen et al. (2012) One uy, ag - ZRr D, FVM
Paulsen et al. (2014) One uy, ag - Zr FDM FVM

Vukeevic (2016) One uy, Yy - SWENSE Dy FVM

Li (2018) One uj, pr, oy - SWENSE HOS FVM

1.3 Governing equations and boundary conditions for viscous and potential
flows

1.3.1 Viscous flow

The viscous flow model considers the unsteady, incompressible, and viscous flow. Navier-Stokes

equations for viscous flow are given by

V-u=0, (1.12)

d(pu)
ot

+ V- (puu) = -Vp+ V-1 +pg, (1.13)

where u is fluid velocity, p is fluid density, p is pressure, T is stress tensor and g gravitational
acceleration. The color function(indicator function) that indicates the fluid region by color
function(¢") is used for interface modeling. The transport equation of color function (¢°°r)
is given as

a¢color

colory __
5 TV (uer) =0, (1.14)
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The mathematical and numerical modeling of the interface in the viscous flow model is relatively
more flexible than the potential flow model because no assumption of the single-valued function
and the series expansion are required. In the present study, the methodology of SWENSE is

used to reconstruct the governing equations for complementary components by

u =y + ug, (1.15)
p =pr+pc, (116)
¢color — ¢§olor + (bccglm“7 (1.17)

where subscript ;¢ represent the incident wave and complementary components, respectively.
The incident waves satisfy the nonlinear free surface boundary condition discussed in the previ-
ous section, consequently, the incident wave terms that corresponds to Euler equations can be

cancelled. The governing equations for complementary components are written as

V- ue =0, (1.18)
0
([gth) + V- (puuc) = -V - (pucus) —Vpc +V -7, (1.19)
o ¢g)lo7‘ B o qb?olor

— V- (ug$lor). (1.20)

. colory _
5 TV (ueg™) o

In a physical sense, the complementary components are significant in the vicinity of body, and
they decay as the distance increases due to energy conservation. Therefore, coarse mesh can
be used in the far-field where the complementary potential flow is considered to represent the

physical quantities through the two-way coupling.

Interface boundary coditions for viscous flow model will be discussed in Chapter 6.

1.3.2 Potential flow

The potential flow formulation is based on the assumption that the fluid is incompressible and
inviscid and the flow is irrotational. A velocity potential can be introduced from the assumption.

It satisfies the Laplace equation in the whole fluid domain
V=0, in x€Q,, (1.21)

where @ is the velocity potential and §2,, is the fluid domain. The free surface (Z) is assumed to

be a single-valued function

2 =E(z,y;t) (1.22)
and the kinematic free surface condition for potential flow is given as
D=(z,y,t) o= 0®o= 0P0= 0P
Dt ot " ozox " oyoy  0: on x (123)

Remark that the total derivatives are given as - = % +(V®—U)-V when a forward speed (U)
is considered. The dynamic free surface boundary condition for potential flow is derived from

Bernoulli’s equation as
od 1

Da = Pw < E—FiV@-V@—i—gE:O, on xXx=2=2, (1.24)

14



1. Introduction

where p, and p,, are the water and air pressure infinitesimally closed to the free surface. The
kinematic and dynamic conditions involve both wave elevation and velocity potential. It is useful

to combine the free surface boundary condition expressed in velocity potential as

e 0P oe 1
—_— — +2V0 .- V— + -V . o .Vo) = = =. 1.2
92 +gaz + 2V v@t + 2V V(V®-V®)=0, on x (1.25)

Note that the free surface boundary condition is highly nonlinear and is imposed on the unknown
free surface. Two nonlinearties arise from nonlinear terms and unknown free surface make the free

surface problem difficult to solve. Laplacian in the equation (1.21) is linear operator, therefore

the perturbation series can be introduced as

d = q>(1) + (I)(Q) + (1)(3) e (1.26)

=0 2@ 126 4 ... (1.27)

— —

[1]

Substituiting the perturbation series into equation (1.25) and applying a Taylor series expansion

with respect to wave elevation, the linear free surface boundary condition is obtained as

92 op)
_|_

BRI g s =0, on z=0. (1.28)

For higher-order potential problem, the nonlinear terms appear in right-hand-sides so that the
boundary conditions are non-homogeneous
2¢p(m) (m)
0°P 0o (m)

92 +gaz Q"™ on z=20 (1.29)

where QU™ is the source term given by the combination of lower-order free surface quantities.
This expansion method is called Stokes’s expansion and the boundary value problems for each
order of velocity potential can be set up. As the order of problem increases, the boundary

condition becomes more complex and nonlinear.

The velocity potential can be decomposed again as
D=0+ Op, (1.30)

where ®; is an incident wave potential, and ®¢ is a complementary (scattering; diffraction-
radiation) potential. In the present study, the fully nonlinear free surface boundary conditions

are applied for the incident wave potential

EI+8CI)15E] 0P; 0=  0P;
ot Or Oz oy Oy 0z
0P 1 ’

— 4+ -Vo; -V =r=0
at+2VIV1+91

=0

on x ==X, (1.31)

and the linearized free surface boundary condition is used for the complementary potential

= )

580+580:0

aé o , on z=0. (1.32)
c ., o= _

W—i—g_c—o
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The incident waves evolve in space and time. And the interaction between waves to waves
generates the nonlinearity which is unpredictable and occurs at arbitrary space and time. It
is necessary to consider the nonlinear boundary condition for incident waves. Meanwhile, the
complementary potential generated by the existence of the body decreases as the distance from
body surface increases in the 3D problem. The nonlinearity of potential flow without forward
speed is governed by the wave steepness. Therefore a linear free surface boundary condition
can be applicable for the complementary potential in the far-field. The nonlinearity from body
surface perturbation is not considered here because the complementary potential flow is defined

in outer sub-domain only.

1.3.3 Summary and coupling of two flows

The configurations of computational domain and functional quantities considered in previous

study are shown in figure 1.6.

Region of pure Region of complementary

complementary viscous flow | viscous flow blended with zero

Region of pure Region of viscous flow
i blended with potential flow

viscous flow

SWENSE for Zero complementary flow

Navier-Stokes equations ; Incident potential flow
complementary flow (ue = 0, pe = 0, Z¢ = 0)
for total flow (ur, pr and Ey) e e =5 pc="0=c=
uc, pc and Z¢) A
(u,pand E) .~ (uc, pc C )
Nonlinear incident flow from potential flow
is known and used for functional decomposition.
(ur, pr and =)
(a) NS equations (b) SWENSE method

Figure 1.6. Configurations of computation domain and functional quantities used in previous

studies.

Figure 1.6a explains the configuration of computation when the Navier-Stokes equations is solved
for wave-structure interaction problem. The total functional quanties considered for computation
are blended to the quantities of incident potentital flow in the far-field. This configuration has
been commonly applied for wave-structure interaction problem (Seng, 2012; Paulsen et al., 2014;
Monroy et al., 2016).

Figure 1.6b states when the SWENSE method is used for computation. The functional quan-
tities of incident flow are already defined in the whole computational domain. Therefore, the

complementary functional quanties considered in the viscous flow model is blended to zero in the
far-field (Ferrant et al., 2003; Gentaz et al., 2004; Vukéevié, 2016; Li, 2018).

The configurations of computational domain and functional quantities considered in the present

study is depicted in figure 1.7.
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Region of pure Region of complementary viscous flow

complementary viscous flow blended with complementary potential flow

SWENSE for Complementary potential flow
complementary flow ‘,'"" based on Poincaré representation

(uc and Z¢)

Nonlinear incident flow from potential flow is known

and used for functional decomposition. (uz, p; and Zy)

Figure 1.7. Configuration considered in the present study.

A hypothesis that total flow can be decomposed into the incident and complementary is assumed.

The functional quantities of potential and viscous flow are decomposed into the incident and

complementary flow parts. The functional quantities of nonlinear incident flow is known in a

whole fluid domain. The computational domain of potential and viscous flow models are divided
for complementary flow. In the vicinity of structure, the viscous flow model based on Spectral
Wave Explicit Navier-Stokes Equation (SWENSE) method is used. Turbulence model is not

considered. A linear potential flow model based on Poincaré’s velocity representation applied in

the far-field. No wave breaking is allowed for complementary waves and the interaction between

incident waves is not considered.

Figure 1.8 shows the place of coupling between viscous and potential flows.

Nonlinear potential low model for incident waves

Potential flow region

Viscous flow region

/" Volumic blending zone

(Potential to Viscous)

Linear potential flow model
for complementary flow

Figure 1.8. Coupling strategy used in the present study.
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Overlapped coupling region with the matching surface for potential flow and the volumic blending
zone (relaxation zone) for viscous flow are considered in the domain decomposition. The matching
surface is located inside of the computational domain of the viscous flow model. The rotational
velocity components are assumed to be zero from the matching surface to infinity, e.g. no viscous
effects from the matching surface. On the matching surface, the complementary flow velocity
and wave elevation obtained from the viscous flow model are used as the boundary condition for
potential flow model. By using the linear potential flow model, the complementary flow velocity
and wave elevation are reconstructed in the region of far-field. At the volumic blending zone,
being located in the region of far-field, the complementary flow velocity and wave elevation from

linear potential flow model are imposed as the boundary conditions for viscous flow.

1.4 Contribution of work

The purpose of present study is the two-way coupling between potential and viscous flows in a

marine application, especially for unsteady time-domain wave-structure interaction problems.

A hypothesis that total flow can be decomposed into the incident and complementary is as-
sumed. The functional quantities of potential and viscous flow are decomposed into the incident
and complementary flow parts. The governing equations and boundary conditions for each flow
part are reformulated. It is assumed that the nonlinear potential flow model for incident waves
is available in a whole fluid domain and satisfies Euler equations. It makes us divide the com-
putational domain of potential and viscous flow models only for complementary waves. In the
vicinity of structure, the viscous flow model based on Spectral Wave Explicit Navier-Stokes
Equation(SWENSE) method is used to solve complementary waves generated by the structure.
In the far-field, the potential flow model based on Poincaré’s velocity representation is applied

to simulate complementary waves.

The following specific contributions are made in the present study.

e A preliminary study on the coupling of potential and viscous flows is conducted. The results
show that the obtained solution of blending to potential flows gives good results and the
solution converges faster. The two-way coupling allows us to use a small computation
domain for the same accuracy of the solution, but the total computation time increases
due to the extra expenses of calculating the potential flows. Therefore, a fast potential

flow model with effective blending schemes is necessary for coupling.

e The generation of nonlinear irregular waves in the three-dimensional viscous domain is
proposed with nonlinear potential flow solver which is called Higher Order Spectral (HOS)
method Ducrozet et al. (2007, 2012). The algorithm uses a Fast Fourier Transform (FFT)
and multi-dimensional cubic spline interpolation, the generation of three-dimensional ir-
regular waves in viscous flow model is achieved fastly. The results are validated againist

HOS simulations and experiments.

e A new potential flow in the time domain is introduced based on Poincaré’s velocity repre-

sentation. It is formulated alternatively with arbitary and cylindrical matching surfaces.
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The numerical algorithms on the new type of Green function and the elementary func-
tions are proposed. The proposed model is validated by comparing with analytic potential

solution based on linear theory.

e A viscous flow model based on SWENSE with Level-set is proposed in the present study.
The functional quantities are decomposed into the incident and complementary compo-
nents. The governing equations are reconstructed with respect to viscous complementary

parts. The results are validated with multi-phase solver in a framework of OpenFOAM.

e The numerical algorithm for the coupling of potential and viscous flows is introduced. It
is assumed that the nonlinear potential flow model for incident waves is available in a
whole fluid domain. The computational domain of potential and viscous flow models only
for complementary waves is decomposed. In the vicinity of structure, the viscous flow
model based on SWENSE method is used. In the far-field, the potential flow model based
on Poincaré’s velocity representation is applied. It is assumed that the computed fluid
velocity and wave elevations are continuous across the flow models. A benchmark test on

the coupling methodology is considered.

1.5 Thesis outline

Chapter 2 presents the preliminary study on the coupling of potential and viscous flows. A
parameteric study on the viscous flow solver is investigated before the preliminary study. The
wave propagation with inlet/outlet and the two-dimensional radiation problem with different
outlet conditions are considered. The necessity of new efficient potential flow representation is

drawn from the results of this preliminary study.

Chapter 3 summarizes the nonlinear potential theory on incident waves including regular and
irregular cases. A stream function wave theory for regular wave and a pseudo-spectral method for
irregular waves are briefly reproduced. For the efficient generation of three-dimensional irregular
waves in viscous flow solver, the interpolation methodology with respect to space and time is
proposed with the B-spline curve. The generation of nonlinear irregular waves in viscous flow

model is validated with nonlinear potential theory and experiment.

Chapter 4 introduces a new potential representation for linear complementary waves which is
based on Poincaré’s velocity representation. It is newly formulated for an unsteady time domain
free surface problem. The complementary fluid velocity at field point is explicitly represented by
the distribution of complementary fluid velocity and wave elevation on the matching surface with
the help of the time domain Green function. It is proved that a new form of time domain Green
function satisfies an ordinary differential equation and the solving technique is presented for
efficient evaluation. The analytical solution for a heaving hemisphere based on linear potential
theory is selected as a benchmark test case. The results show good agreements when the field
point is located underwater. However, a singular behavior is obtained when the field point is

located on the mean free surface due to the diverging behavior of the time domain Green function.

Chapter 5 introduces a vertical circular cylindrical matching surface to remove the singular
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behavior of the proposed Poincaré’s velocity representation. A pseudo-spectral method with
Fourier-Laguerre and Fourier approximations of the complementary velocity and wave elevation
are applied, respectively. The analytic surface integral with Poincaré’s velocity representation
requires the evaluation of elementary functions which are the surface integral of a Green function
with Fourier-Laguerre modes. Two numerical algorithms based on the summation and extrap-
olation and steepest descent method are presented to calculate the elementary functions. After
the vertical velocity on the free surface is calculated from Poincaré’s velocity representation, the
wave elevation is reconstructed by a linear kinematic free surface boundary condition. To couple
with the multiphase flow solver, the Wheeler stretching is applied to extend the velocity above
the mean free surface. As the benchmark test, the heaving hemisphere and diffraction by vertical

circular cylinder are considered. The results show good agreements with the analytical solution.

Chapter 6 presents the viscous flow model based on SWENSE methodology. The momentum and
pressure equations are reformulated by introducing the viscous complementary flow. The fluid
velocity, pressure and Level-set function are decomposed into the incident and complementary
parts. An extrapolation of air velocity with cubic polynomials is introduced to give smooth
incident wave velocity profile. Moreover, the re-distancing the Level-set function is adopted to
keep the interface sharp. The parametric study on the discretization of time and mesh, wave

propagation, and cylinder diffraction problem is conducted for validation.

Chapter7 presents the coupling algorithm of potential and viscous flows. The benchmark tests
with the vertical circular cylinder in regular waves and calm buoy in regular and irregular waves
are considered. The discussion on the effect of coupling is made from the simulation results of

with/without coupling methodology.

Chapter 8 summarizes the contribution of the present study. Conclusions and perspectives are

given.

20



2. Preliminary study on the coupling of potential and viscous flows

2 Preliminary study on the coupling of potential and viscous

flows

2.1 Description on the preliminary study

The objective of the preliminary study is to investigate the feasibility of a coupling methodology
between potential and viscous flows when the solution of potential flow is available at the bound-
aries of the viscous flow model. Therefore, different outlet conditions including the potential flow
and other outlets are considered for comparison. In the preliminary study, foamStar which is
based on the multiphase flow model in the framework of OpenFOAM is used (Seng, 2012; Mon-
roy et al., 2016). The computation algorithm of foamStar is described in figure 2.1. When the
simulation time is advanced, weight functions in the relaxation zones (boundaries) are updated.
In the outer iteration (PIMPLE; Combination of PISO and SIMPLE algorithms), the floating
body dynamics is solved by the mechanical solver, the computational mesh is updated from the
displacement of the floating body, and the a transport equation is solved and relaxed to target
alarget at the boundaries. After solving PISO loop, u is also relaxed to target velocity u? ¢t
at boundaries. A parametric study on foamStar is conducted before the preliminary study. The
propagating incident waves in a numerical wave tank and the swaying Lewis form are considered

as the benchmark test cases for different outlets.

2.2 Parametric study on the viscous solver

The parametric study is conducted on foamStar to find proper parameters for wave propagation.
Fully nonlinear regular wave are considered and the condition is given in Table 2.1. The case
considered here is a two-dimensional domain with a cyclic lateral boundary condition, where
waves are initialized at the initial time from a fully nonlinear stream function waves (Rienecker
and Fenton, 1981; Ducrozet et al., 2019). The schematic view of the problem, the initialized Vol-
ume Of Fluid (VOF; «) and the computational mesh are shown in figure 2.2. The computational
domain has the length of one wavelength (1)) and the height is taken to be 2h (h = 0.6m; water
depth). Except if indicated otherwise in the parametric study, the computational meshes are
uniformly spaced in a longitudinal direction with length Az = \/100. For vertical direction, the
cell height is taken to be Az = H/40 in z € [-H, H| and the cell height is gradually stretched

as it goes far from the mean free surface.

Table 2.1. Wave condition for parametric study of foamStar.

Item Unit Value
Water depth (h) [m] 0.6
Wave period (T) [s] 0.7018
Wave height (H) [m] 0.0575
Wavelength () [m] 0.8082

H/\ ] 0.0712
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Figure 2.1. The computational algorithm in foamStar (from Monroy et al. (2016))
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Figure 2.2. Schematic view on the parametric study of propagating waves with the cyclic

lateral boundary condition.
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2.2.1 Time integration scheme

Time integration schemes for an unsteady problem in OpenFOAM can be selected among Im-
plicit Euler, Crank-Nicolson, and second-order backward schemes. The standard multi-phase
solver of OpenFOAM, interDymFoam, uses a special module which is called MULES to solve
the a-transport equation, where « is the Volume Of Fluid (VOF). MULES employs the Flux-
Corrected Transport (FCT) scheme by Boris and Book (1973); Zalesak (1979), therefore the
computation procedure is decomposed into the predictor and corrector steps, for controlling the
a boundedness. As an example, « is computed with the implicit Euler scheme in the predictor

step

<v>;;+1<a>;zA - VB | S~ 2.1)
f

where the superscript ™ denotes the predictor and time iteration respectively, V is a cell volume,
and subscript p denotes an owner cell. At is the time step between two successive time iterations,
f represents the face index surrounding the owner cell. F& 5 is the bounded flux computed by
using a low-order convection scheme. After the predictor step, the flux limiter )\lfim“ is evaluated
by the predicted o* and the unbounded flux (F o, f) which is computed with a high-order scheme.
In the corrector step, « is corrected with flux limiter and unbounded flux

V)p (@)p™ = (V)p" (@) imit
B R Y Ny — Fay) = 0. (2.2)
f

By summing equations (2.1) and (2.2), the original discretized « transport equation is obtained.
The detailed algorithm of MULES can be found in Damian (2013). Because MULES needs the
« flux to be bounded in the predictor step, the time integration schemes are limited to Euler
implicit and Crank-Nicolson schemes in OpenFOAM. Euler and Crank-Nicolson time integrations
are obtained by applying different weights on the present and next time steps. When an ordinary
differential equation, § = f(t,y), is given, a weight factor is applied on the right-hand-side to

solve the equation
e TR (R ) (23)

where v € [0,1]. v = 0 and v = 1 represent the explicit and implicit Euler time integration
schemes respectively, and v = % is classified as an original Crank-Nicolson scheme. In Open-
FOAM, ~ is selectable between in range of v € [%, 1] for numerical stability and Crank-Nicolson

number (con) is introduced instead of ~y
11—~

CON = T, CCN € [0, 1]. (2.4)
where cony = 0 represents fully implicit Euler integration, and cony = 1 is the original Crank-
Nicolson scheme. It is commonly recommended to use cony =~ 0.9 as a compromise between
stability and accuracy. It is known that the Crank-Nicolson scheme is unconditionally stable and
has a second-order accuracy, but the obtained solution is characterized by an oscillatory behavior
which results in numerical instability. Implicit Euler schemes are unconditionally stable and
are immune to the oscillatory behavior. Nevertheless, it induces significant numerical damping

leading to poor results, especially for wave propagation problems.

23



2. Preliminary study on the coupling of potential and viscous flows

Simulations were performed with different Crank-Nicolson numbers, cony = 0 (Euler implicit),
0.5 and 0.95 to observe the effect of the time integration scheme. Figure 2.3 compares the
measured wave elevation at the center of domain with the wave crest and trough values given
by stream function wave theory. The moving window Fast Fourier Transform (mwFFT) is
applied to wave elevation time series and the first harmonic amplitudes and phases are plotted
in figure 2.4. The measured wave amplitudes, evaluated with the implicit Euler scheme and the
Crank-Nicolson scheme, decrease gradually over simulation time. Moreover, the phase difference
between the CFD result and the analytical solution becomes larger when the low-order time
integration scheme is adopted. Results show that propagating waves need at least second order
time integration scheme not to damp it out. In the present study, the Crank-Nicolson scheme

with cony = 0.95 is selected for time integration.

A

0 5 10 15 20 25 30 35 40

I \

Figure 2.3. The measured wave elevation time series with respect to different Crank-Nicolson

numbers (con).
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Figure 2.4. Comparison of first-harmonic wave amplitudes and its phase differences with

respect to Crank-Nicolson number (con).
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2.2.2 Mesh and time convergence

The computational grid and time steps are tested with different discretizations to check the
order of convergence of the solver. The considered cell length Az, height Az, and time step At
are given in Table 2.2. The representative Courant (Co) and cell-Reynolds (Rea) numbers are

defined by using analytic wave fluid velocities as

Co = 1/Co? + Co?, Rea = /Re%, + ReA. (2.5)

with,

Uwave AT Wyave At Uwave AT Wyave AZ
— Co,=—F——, Rear=———, Rea,=——
Az Az v v

Co, =
where Uwave and vyave are the horizontal and vertical fluid velocities given by stream function
waves, v is the kinematic viscosity of water. Two series of tests are conducted, one where grid
and time steps are set to change the cell Reynolds number keeping the Courant number fixed
and the second where the grid is fixed and the time step is only varied to have different Courant
numbers. The first-harmonic amplitudes of the wave elevation obtained over time for different
Courant and cell Reynolds numbers are compared in figure 2.5. The results are compared with
different convection schemes used for momentum equation pU. The V-scheme means that the
flow limiters are calculated separately for each vector components. It results in a more stable but
less accurate simulation than the simulation case without V-scheme. The results with V-scheme
are more accurate than without V-scheme, but the simulation becomes unstable with increasing
time. The parameter used for the convergence analysis is the wave elevation first harmonic
amplitude computed for the first ten wave periods. The order of convergence is computed by the
procedure of Eca and Hoekstra (2014), which applies the least square method to get the order
of convergence (p) and uncertainty. The order of convergence for the discretization of Courant

and cell-Reynolds numbers with different convection schemes are plotted in figure 2.6.

Table 2.2. Mesh and time discretization for the convergence tests.

Case N Az H/Az T/At Co Rea
Mesh025-dt100 25 ) 100 0.171 8,836
Mesh050-dt200 20 10 200 0.171 4,418
Mesh100-dt400 100 20 400 0.171 2,209
Mesh200-dt800 200 40 800 0.171 1,105
Mesh100-dt100 100 20 100 0.684 2,209
Mesh100-dt200 100 20 200 0.342 2,209
Mesh100-dt800 100 20 800 0.086 2,209
Mesh100-dt1600 100 20 1600 0.043 2,209
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Figure 2.5. Comparison of first-harmonic wave amplitudes with mesh and time difference

discretization.
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Figure 2.6. The order of convergence with respect to discretization of Co and Rea.

The order of convergence (p) for Courant and Reynolds number discretizations with V-scheme
are estimated as 1.14 and 1.60, respectively. The order of convergence increases to 1.93 and
1.69 without V-scheme. From the parametric study on propagating waves with cyclic lateral
boundary conditions, the simulation time and meshes should be discretized over than T'/AT >
400, A/Az > 100 and H/Az > 40 to have 3.5% of amplitude reduction at ¢t = 107".
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2.2.3 Mesh spacing in the vertical direction

The velocity profile of propagating waves underwater has an exponential behavior in the vertical
direction. In wave theory, the maximum velocity occurs at the free surface and it decays going
far from the free surface. Therefore, the meshes are modeled to be dense near the free surface
to save computational cost. The vertical mesh spacing is varied to observe the effects on the
simulation of given wave conditions. The meshes are divided into 3 zones: (1) underwater zone
(z € [=h,—H]), (2) free surface zone (z € [-H, H|) and (3) air zone (z € [H, h]). To distinguish
different meshes, they are denoted as Mesh-ijk where i, j, and k represents the ratio of maximum
to minimum height of a cell in the underwater, the free surface, and the air zones, respectively.
Mesh-212, Mesh-515 (original) and Mesh-818 are considered in the present study, and they are
shown in figure 2.7. The first-harmonic amplitudes and the phase differences for different vertical
mesh spacing are compared in figure 2.8. The first-harmonic amplitudes and phase differences
for different vertical mesh spacings are almost identical, and the vertical mesh spacings used here

do not affect the simulation of the given wave conditions.

1 i
(a) Mesh-212 (b) Mesh-515(original) (c) Mesh-818

Figure 2.7. Different vertical mesh spacings of three divided zones with the geometric ratio.
2.3 Description on the inlet/outlet condition
2.3.1 Relaxation scheme

The method for generation and absorption of waves in foamStar is based on explicit relaxation
schemes which blend the computed solution with target solution in relaxation zones (Jacobsen
et al., 2012; Mayer et al., 1998; Fuhrman, 2004; Engsig-Karup, 2006; Seng, 2012). The explicit
relaxation scheme uses a weight function which varies between 0 and 1 in the relaxation zone.

After solving the governing equations, the computed solution is relaxed with target solution as
X = (1 —w)x +wx 9, (2.6)

where y is the computed solution, w is a weight function and x7%"9¢ is a target solution. The
computed values shall be blended smoothly if a smooth weight function is used. Implicit blending

schemes, which blend the governing equations with target governing equations, have been applied
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Figure 2.8. The first-harmonic amplitudes and phase differences with respect to vertical mesh

spacing.

by many researchers (Kim et al., 2012; Vukéevi¢, 2016). Only the explicit relaxation scheme is
considered in the present study. The choice of weight function is an important key to minimize
wave reflection. Engsig-Karup (2006) analyzed the condition of w, which satisfies the original
governing equations, and he showed that it is the case for the Heaviside step function. However,
the Heaviside step function has a jump in the middle of the relaxation zone, which causes
undesirable reflection and instability, so the choice of the weight function has to be different. As a
weight function, Mayer et al. (1998) and Engsig-Karup (2006) applied polynomials, and Jacobsen
et al. (2012) used an exponential scaled function. Seng (2012), for its own part, introduced a

dynamic weight as

wl—1— (1 B w)‘u_uTa'r'get‘At/Al” (2.7)

Target is the target fluid velocity, w? is a dynamic weight

where u is a computed fluid velocity, u
and Az is a size of the cell. The dynamic weight is applied adaptively based on the difference
between target and computed velocity after PISO loop, }u —ulr9et| 4 is the base weight

functions which are categorized into polynomial and exponential functions

eéfﬁaa) — 1
wE) =9 e-1"
—263 ., + 3£3elaz, polynomial weight |

relax

exponential weight,

where £ € [0, 1] is a normalized coordinate in relaxation zones.

In summary, the weight functions in foamStar are categorized into exponential/polynomial and
static/dynamic weights. The size of the relaxation zone is also important for determining an

optimal size of inlet/outlet zones in terms of numerical cost against accuracy.
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2.3.2 Damping layer method

The damping layer method, which is also called ’sponge layer method’, is considered here (Is-
raeli and Orszag, 1981). Linear and quadratic damping source terms are commonly used to
damp waves (Park et al., 1999; Peri¢ and Abdel-Maksoud, 2016). The momentum equations of

multiphase flow with the damping source terms

d(pu)

5 +V - (puu’) = V- [p(Vu+ Vu')] = —~Vp, — (g x)Vp+ S, (2.9)

where p is a dynamic viscosity, pg = p — pg - x is a dynamic pressure which is equivalent to
the value of subtracted hydrostatic pressure (pg - x) from total pressure (p). S is the linear and

quadratic damping source. The damping sources are only applied in vertical velocity components
S =[0,0, p(Cy + Couz)wu,]” (2.10)

where C1 and C5 are the linear and quadratic damping coefficients and w is weight function. The
parametric study on the damping coefficients conducted by Peri¢ and Abdel-Maksoud (2016)
showed that an optimal choice of coefficients can minimize wave reflections. Recently, Peri¢
et al. (2018b) proposed a method for evaluating the wave reflection coefficients with numerical
parameters such as linear damping coefficient and the outlet length. Furthermore, they proposed
a method for calculating the linear damping coefficient, which minimizes the reflection coefficient.
Based on their method, the optimal linear damping coefficient (C7) is around 7.5 when the outlet
length is equal to 1.5\ and target waves are set to zero. In the present study, the linear damping
coefficients are considered for the damping layer method due to the complexity of the combination

of quadratic damping coefficient.

2.3.3 Increased viscosity in the outlet / Stretched mesh outlet

The viscosity can be increased artificially in the outlet zone to damp the waves. The momentum

equation with increased viscosity in the outlet is given as

9(pu)
ot

+ V- (puu”) = V- [(1+ fraga) (Vu+ Vu')] = =Vpg — (g x)Vp, (2.11)

where [1,44 is the increased viscosity in the outlet zone. The stretched mesh outlet, which triggers

numerical damping by stretching meshes, is also considered in the present study.

2.3.4 Modified waves: Adaptive wave absorption

When relaxation schemes are used, the target flow can be selected by the user. For the wave-
structure interaction problem, the target flow can correspond to incident waves only. Diffracted
waves generated by structure are then relaxed to zero. For 2D propagating waves, the adaptive
absoption scheme, which adapts its wave amplitude and phase by measuring the wave elevation
in front of the outlet, can be applied. It is assumed that the propagating wave do not change

wave frequency and wave number. Then, the first harmonic wave amplitude and phase difference
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are calculated by applying a Fourier transform on the measured wave elevation in front of the

outlet zone as

g =( — — 2.12
TCOSA¢/ (zo,7) cos(k(x — xg) — wr)dT (2.12)

and

tan(A¢) = ft 7 Z(xo, 7) sin(k(z — x9) — wT)dT

(2.13)
ft 7 E(x0,7) cos(k(x — ) — wr)dr

where A’ is the first harmonic amplitude of modified waves, A¢ is the phase difference between

incident and modified waves. Z(xg,7) is measured wave elevation in front of outlet zone at x.

The wave elevation and fluid velocity of modified waves are then given by

2 2

- _ —streamW ave _ streamW ave
o = H =7 y uy = H uy 5 (214)
where ~§”e“mwa"e and ume“mW“”e are the wave elevation and fluid velocity by stream function

wave theory (Rienecker and Fenton, 1981).

2.4 Preliminary study 1: Numerical wave tank
2.4.1 Description

The wave described in table 2.1 is used here, but the length of the domain increases and relaxation
zones are introduced. Based on the vertical mesh spacing of Mesh-515, the computational domain

with relaxation zones is described in figure 2.9. The inlet length, L"! is taken to be 1.5\ for

X = (1 _ w)X + wXTarget

pure zone outlet zone

Propagating waves
—

Linlet = 1.5\ Jpure — 7y Loutlet

Figure 2.9. Schematic view of the NWT for a parametric study on the relaxation schemes.

wave generation. The stream function wave is used as the target flow field at the inlet zone. The
pure CFD zone where no relaxation schemes are applied has a length of 7A. 250 wave gauges
are uniformly distributed from x = 2.5\ to x = 7.5\, The first and last wave gauges are located
1)\ apart from inlet and outlet. The wave reflection coefficient is evaluated from the extracted
first harmonic amplitudes of distributed wave gauges. When the generated waves propagate
through the pure CFD zone, their amplitude, and phase change due to numerical dissipation and

dispersion.
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2.4.2 Reflection coeflicients

The quality of the wave propagation will be assessed through the estimation of linear reflection
coefficients. Linear incident and reflected waves in the system are written as
=7 = Arcos(kxr — wt
( ) (2.15)
=g = Arcos(kx + wt + A¢)
where subrscript ; g represent the incident and reflected waves. Ag¢ is phase difference. The

wave reflection coefficient is evaluated as in (Dean and Dalrymple, 1991)

kg = SF _ Omax = Omin (2.16)
Ar @max + @min

where kg is reflection coefficient, amax and amin 18 the measured maximum and minimum wave

amplitudes in the region of interest, respectively. The propagating waves in the present study are

nonlinear. Consequently, the equation 2.16 is not directly applicable. Likewise Carmigniani and

Violeau (2018), the first harmonic amplitudes are used to evaluate the wave reflection coefficients.

The first harmonic amplitude by Fourier transform is given as

2 t
a;(t) = T/ . E(x;, t) cos(kx; — wT)dT, (2.17)
t_

where subscript ¢ denotes i-th wave gauge. In the middle of the computation zone, 250 wave
gauges are distributed along b\ to detect the amplitudes of wave envelope. The wave reflection

coeflicient for each simulation time step is evaluated as

~ max(a;(t)) — min(a;(t))
wi(t) = max(a;(t)) + min(a;(t))’ (2.18)

2.4.3 Parametric study on the relaxation schemes

Different weight functions categorized as static-exponential, static-polynomial, dynamic-exponential
and dynamic-polynomial are applied with various outlet lengths (L°""€* = 1.5\, 3\ and 6)). The
weight functions are changed both inside the inlet zone and the outlet zone. The stream function
waves are used as target flow. Maximum Courant numbers (Comayx) with respect to different re-
laxation schemes and outlet lengths is given in figure 2.10. The relaxation scheme with dynamic
polynomial weight gives a stable simulation in comparison with others. It is less sensitive to the
length of relaxation zones though it becomes unstable when the outlet length is equal to the half
wavelength. The static and dynamic exponential weight functions show a more stable simulation
until t = 20T, but the results show that more extended outlets do not guarantee the reduction of
numerical instability. Meanwhile, the maximum Courant number with static polynomial weight
is higher than other relaxation schemes for all simulations. The wave reflection coefficients for
different relaxation schemes and outlet lengths are compared in figure 2.11. It appears that wave
reflection increases until ¢ = 207 for any length of the outlet zone. This increase is maximal
when the length of the outlet zone is smaller than 1.5 wavelengths. After ¢ = 207", the wave

reflection depends mainly on relaxation schemes. Wave reflection coefficients are less sensitive
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Figure 2.10. The maximum Courant number during wave propagation simulation with

relaxation to incident waves.

for the dynamic polynomial weight with outlet length over than 1.5 wavelengths. Moreover, wave
reflection increases faster for the relaxation zone less than 1.5 wavelengths. The measured first
harmonic amplitudes and reflection coefficients with respect to weight functions are compared
in figure 2.12. The first harmonic amplitudes with static weight give a lower dissipation than
with dynamic weight. The difference of wave amplitude between static and dynamic weights
with outlet lengths over than 1.5 wavelengths is 1.33 %. Moreover, the wave reflection increases
when the outlet length is less than one wavelength. Simulation results should not be sensitive
to the selection of outlet length. We hope to get predictable results, the dynamic-polynomial
weight is selected as a representative relaxation scheme because it shows a stable velocity field
even if it has a slightly smaller wave amplitude compared the simulation cases with static weight.
Finally, it is identified that the outlet length should be longer than 1.5 wavelengths to decrease

the reflection more efficiently.
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Figure 2.11. Comparison of reflection coefficient time series with respect to different

relaxation schemes and outlet lengths.
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Figure 2.12. Comparison of wave amplitudes and reflection coefficients with respect to

relaxation zones and relaxation schemes.

2.4.4 Parametric study on the stretched mesh outlet

As the stretched mesh schemes depend on cases and on authors (Monroy et al., 2011; Perié¢ and
Abdel-Maksoud, 2015), it is difficult to find a standard for wave propagation. Therefore, the cell

length is stretched with a ratio (ry) of an adjusted cell which is located at upstream as

Az, = rAxp_q (2.19)

where Az, and r, represents a longitudinal length of the n-th cell and the stretching ratio,

respectively. To find a representative result of stretched mesh outlet, the different stretching
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2. Preliminary study on the coupling of potential and viscous flows

ratios are considered as

c, constant stretching; ¢ = 1.02, 1.05 and 1.08
g (2.20)

cosh(yn), exponential stretching; v = 1.001
The outlet meshes are stretched until the length of the last three cells is larger than one wave-
length (Az > 1X). The properties of stretched mesh outlets are summarized in Table 2.3. The
computational meshes near the entrance of the outlet zone are shown in figure 2.13. Compared
to the constant stretching ratio, the exponential stretching gives a dense distribution near the
entrance of the outlet zone. The wave reflection coefficients with respect to different stretched
mesh outlets are given in Table 2.4. The constant geometric ratio of r; = 1.02 gives the small-
est wave reflection coefficient among stretched mesh outlet conditions. Thus, it is selected for

comparison with other numerical outlets.

Table 2.3. Information of stretched mesh outlets for propagating waves.

Choice of ry Number of cells L/ Lovtet 7\ Ag™T [\
v =1.001 225,420 39.6 31.1 1.11
Ty = 1.02 206,340 99.5 58.0 1.05
Ty = 1.05 180,120 29.9 214 1.14
Ty = 1.08 173,470 22.0 13.5 1.18

(a) ro =1.02 (b) r- =1.05 (¢) 7 =1.08 (d) v=1.001

Figure 2.13. Meshes near to the outlet with different stretching.

Table 2.4. Reflection coefficients with respect to stretched mesh outlets.

Choice of 7, v = 1.001 ry = 1.02 ry = 1.05 ry; = 1.08
KR 0.0499 0.0474 0.0569 0.1046

2.4.5 Linear damping source outlet

Peri¢ and Abdel-Maksoud (2016) showed that an unappropriate use of damping coefficient leads

to unwanted wave reflections. The authors used a Froude scaling law to find a dependency of
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damping coefficients. They showed that the linear and quadratic damping coefficients could be
scaled by wave frequency and wavelength, respectively. Peri¢ et al. (2018b) proposed the method
on wave reflection by analyzing the wave equation in the case of a linear damping source. The
minimal wave reflection coefficients with linear damping coefficients are available by the code
published in (Peri¢ et al., 2018a). The algorithm predicted that the wave reflection coefficient
would be 1.5% with the linear damping coefficient Cy = 7.5 for outlet length 1.5\. Note that the
target flow is no waves, and the static exponential function is used in their approach. Shen and
Wan (2016) used the linear damping coefficient of Cy = 20 with second order polynomial weight
function for irregular wave simulation. It is thought that the damping coefficients should be tuned
with the different outlets and weight functions to minimize the wave reflection. In the present
study, the linear damping coefficient with cubic polynomials weight given in equation (2.8) is
studied with different outlet lengths. Considered linear damping coefficients with reflection

coefficients are tabulated in Table 2.5. The linear damping coefficient of C7 = 20 is selected as a

Table 2.5. Reflection coefficient with respect to linear damping source outlet.

Loutlet Cl

30 20 10 5} 1
1.5\ 0.0579 0.0513 0.0521 0.0817 -
3.0\ - 0.0460 0.0468 0.0474 -
6.0\ - - 0.0400 0.0406 0.0406

representative case of damping source outlet because it gives the lowest wave reflection coefficient
with the limited outlet length LUHet = 1.5).

2.4.6 Increased viscosity in the outlet

The increased viscosity in the outlet, imposing a high viscosity in the outlet zone compared to
original fluid media, is easy to implement. For a smooth change of viscosity, the added viscosity
fadd 1s multiplied by the cubic polynomial weight function given in equation (2.8). As the
user artificially introduces the added viscosity, the added viscosity and outlet length need to be
tuned. Three different added viscosities are considered that have the values of pgqq = 0.5,0.2 and
0.1kg - m~! - 572, respectively. The wave reflection coefficients for added viscosity and different

outlet lengths are given in Table 2.6.

Table 2.6. Reflection coefficient with respect to the increased viscosity in the outlet.

ot N /]

0.5 (500ptwater) 0.2 (200pater) 0.1 (100pywater)
1.5\ 0.1446 0.0996 0.0769
3.0\ 0.0764 0.0785 0.0651
6.0\ 0.0739 0.0931 0.0563
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2. Preliminary study on the coupling of potential and viscous flows

2.4.7 Comparison and discussion

The stretched mesh, linear damping source, increased viscosity, relaxation to no waves, incident
waves, and modified waves are compared for different wave outlets. Only the limited outlet length
of Levtet — 15X, except for mesh stretching, is considered. The representative results from the
parametric study on each wave outlet are taken for comparison. The first harmonic amplitudes

and phase differences with respect to the different outlets are compared in figure 2.14.

0.1 ‘
1 lassnnafenghonsannnnsnnnnsnnnnnsnnnnnsnnnnnnnnnnnnd | "UEE Analytic
Mesh stretching (r, = 1.02)
——Linear damping source (C; = 20)
0.95 0.05 | Increased viscosity (ftqda = 100uwam)i

Relax to no waves

=
3 ) N Relax to incident waves
= AT Analytic = Relax to modified waves
T 0.9¢ Mesh stretching (r, = 1.02) <<bl
o —— Linear damping source (C; = 20) ) O P PPTE)

——Increased viscosity (paaq = 100uwater)

0.85+ Relax to no waves 1 \
Relax to incident waves \Yﬁ/——/——_

Relax to modified waves

0.8 : : : -0.05 : : :
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t/T t/T
(a) Amplitude (b) Phase differences

Figure 2.14. The first harmonic amplitudes and phase differences with respect to different
outlet.

The measured first harmonic amplitudes during 40 wave periods have an error range of 7%.
Amplitude modulations over simulation time are observed for all cases, and stable results are
obtained for relaxation to incident waves and modified waves. Waves are propagating with
a constant phase difference after a certain time of simulation for linear damping source and
increased viscosity outlets. The phase differences of relaxation to the incident and modified
waves are smaller than other boundary conditions. Relax to no waves slowly converges to the
analytic solution. The reflection coefficients for the different outlets during simulation are plotted

in figure 2.15.

At the initial simulation stage, the high reflection coefficients are measured for linear damping
outlet, increased viscosity, and relax to no waves. It is thought that the different outlet configu-
rations such as different viscosity quantities, artificial sources, and no flow, affect the flow fields
immediately due to the limited length of the outlet. After an initial disturbance, the wave reflec-
tion with linear damping source and increased viscosity decreases, and has a similar reflection
with relaxation to waves from ¢ = 227". Meanwhile, the relax to no waves shows a higher wave
reflection over simulation time after initial disturbance. It shows that blending to wrong target
function in the relaxation zone do not promise a good result. The mesh stretching outlet and

relaxation to the incident and the modified waves have gradually increasing wave reflection over
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0.15 ‘ ‘
Mesh stretching (r, = 1.02)
Linear damping source (C; = 20)
Increased viscosity (tada = 100water)
Relax to no waves
Relax to incident waves
0.1F Relax to modified waves
<
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Figure 2.15. Evolution of reflection coeflicients for different outlet.

simulation time.

The maximum wave reflection coefficients during the simulation for different outlets are tabulated
in Table 2.7.

Table 2.7. Reflection coefficient with respect to different outlet.

Outlet KR
Mesh stretching (r, = 1.02) 0.047
Linear damping source (C; = 20) 0.051
Increased viscosity (ttagq = 100water) 0.077
Relax to no waves 0.077
Relax to incident waves 0.042
Relax to modified waves 0.039

The smallest wave reflections are obtained for relaxation to modified waves, and the other outlet
conditions also give good results. Proper tuning of linear damping source and increased viscosity
would give probably better results. Nevertheless, the parametric study of these outlets needs
more work than relaxation schemes, and it is difficult to understand the physics with tuned

parameter.

To conclude, comparison of different outlets shows that the relaxation schemes with out-going

waves at the boundaries give good results compared to other outlets.
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2.5 Preliminary study 2: Swaying Lewis form
2.5.1 Description

A swaying Lewis form in a two-dimensional domain is introduced to study the effect of relaxation
schemes and to compare different outlets. The schematic view of swaying Lewis form with

different outlets is depicted in figure 2.16.

Atmostphere condition

Swaying motion

A, coswt
-

z

Different Outlet Radiation waves Fﬁ Radiation waves Different Outlet
< d t 0 \/_\_/ /—\
B/2

[ pure Loutlet

Pure CFD zone

Sea bottom condition

Figure 2.16. Schematic view of swaying Lewis form with different outlet.

In the middle of the domain, the Lewis form moves with its motion amplitude (Ay) and frequency
(w). The pure CFD zone length is defined from the wall of Lewis form to entrance of outlet.
The meshes are moving with Lewis form without deformation to keep the mesh quality. The

underwater offset of Lewis form is given as (Kashiwagi, 2003)

x=M{(1+ ay)sinf — a3sin 30} (2.21a)
z=—M{(1—a1)cosf + agcos36} (2.21b)
with
Hy—1 Hy+1 1
a = as = ——— —
LoaMdy T (M)
M 3(Ho+1) —+/(Ho+1)2 +8Ho(1 — 40/7)
d 4
where z, z and 0 €= [—7/2,7/2] are the underwater offsets of Lewis form and corresponding

angle; respectively. M is a magnification factor. B and d are breadth and draft, respectively.
Hy = BT/Q is a ratio of half breadth to draft. o = % is an area coefficient corresponding to
the block coefficient of a ship. The geometric coefficients of Lewis form used in this study are
B/2 =1.0m, d = 1.0m and o = 0.95. The offset above the free surface is generated by mirroring

with respect to z = 0.
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Different moving frequencies and swaying amplitudes have been considered and are given in Table
2.8.

Table 2.8. Motion frequency and amplitudes of Lewis form.

Frequency (w)

Item
2.4 rad/s 4.2 rad/s 7.0 rad/s
Swaying amplitude (As) 0.118 m 0.055 m 0.025 m
Wavelength () 10.70 m 3494 m 1.258 m
Wave amplitude (A) 0.102 m 0.089 m 0.050 m
Wave steepness (kA) 0.06 0.16 0.25

The motion amplitudes are selected to have enough computational cells in a wavelength and a
wave height using far-field wave amplitudes and wavelength. The snappyHex mesh discretization
is used to describe the body surface. The mesh refinements in x- and z-directions are conducted
to match A\/Az > 100 and A/Az > 10. Then, the local refinement near the body surface is
applied. The computational meshes of w = 4.2rad/s with LP*"¢ = 1\ and Lo“¢* = 2.5\ are
shown in figure 2.17.

(a) Half domain (b) Mesh near to the body

Figure 2.17. The computational meshes of swaying 2D Lewis form; w = 4.2rad/s, LP*"¢ = 1)\
and Lowtlet — 2 5\

2.5.2 Comparison of different outlets

From the results of the previous parametric study, the parameters r, = 1.02, C1 = 20 and pqqq =
100pqqter are selected for the different outlets of mesh stretching, linear damping source and
increased viscosity, respectively. The target functions of relaxation schemes are set to no waves
and linear potential flow. To determine the size of pure and outlet zones, the relaxation schemes
are firstly tested with different zone sizes. The linear potential flow of 2D Lewis form is available
by Ursell-Tasai’s multipole expansion (Ursell, 1949; Tasai, 1960, 1961). Wheeler stretching is
applied to describe the velocity profile with changing wave elevation. This comparison attempts
to compare the reduction limit of outlet zones for different outlets. The domains are constructed

between z € [—d—0.75)\, 2m] and zone length changes with respect to wavelength. The considered
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2. Preliminary study on the coupling of potential and viscous flows

domain sizes are given in Table 2.9. The mesh size near the body surface is kept in similar size
for each frequency. When the length of pure and outlet zones is reduced, the mesh resolution of
each domain is maintained by shortening length and excluding the computational meshes in the
far-field.

Table 2.9. The meshes used for the parametric study

Mesh name [pure  poutlet Neen(w = Neen(w = Neen(w =

2.4rad/s) 4.2rad/s) 7.0rad/s)
P150R35 1.5\ 3.5 317,094 350,024 202,022
P100R35 1.0\ 3.5 273,996 313,784 172,666
P050R35 0.5\ 3.5 239,802 277,738 136,892
P025R35 0.25) 3.5 219,020 254,010 131,968
P100R25 1A 2.5\ 291,678 320,090 173,736
P100R20 1A 2.0\ 283,824 323,276 174,260
P100R15 1A 1.5\ 270,782 308,766 160,890

From the measured force time series acting on the body surface, the added mass and radiation
damping are extracted by Fourier transform. Normalized added mass and radiation damping

coefficients are defined as

/ a22 / ba2
U2 = —piovgy b = e 2.22
2= B 2T u(BP (2:22)
where age and bay are the added mass and radiation damping defined by
1 [t .
= / Fy(1)e™ dr = Ag(wags + iwbas), (2.23)
T Ji—r

where Fy(7) is the horizontal force, T" is the period.

The radiation forces for moving frequency w = 4.2rad/s with domain of LP*"¢ = 1\ and Lytet =
3.5\ are plotted in figure 2.18.
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Figure 2.18. Radiation force time series with respect to target flows, LP*"® = 1\ and
Loutier = 2.5\ for w = 4.2rad/s.
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It is noticeable that the radiation forces converge faster when the target function is set to potential
flow, which is more like outgoing waves. They converge 1.4-2 times(average 1.6 times) faster for
given convergence tolerance (1%) in simulation time. The large domain which has a pure zone
LPure = 125\ (= 20¢yT'; ¢y = ‘;—Z is a group velocity) and an outlet zone L%t = 5.0\ with
same mesh quality is used as another reference because the wave steepness (kA) varies between
0.06 and 0.25, which are in range of nonlinear waves. This implies that the computed radiation

forces may not match with values using linear potential flow due to nonlinearity.

The radiation forces computed by linear potential theory, long domain and target flows of no

waves with different domain sizes are summarized in Table 2.10.

Table 2.10. Radiation coefficient of pure zone size (Relaxation to no waves).

Coef. ‘ by ‘ 99
w [rad/s] 24 42 70 | 24 42 70
Analytic 1.304 0.136 0.365 | 2.169 0.798 0.156
Long Domain | 1.297 0.144 0.388 | 2.162 0.780 0.148
P150R35 1.279 0.129 0.386 | 2.190 0.779 0.146
P100R35 1.283 0.129 0.380 | 2.194 0.781 0.146
P050R35 1.278 0.129 0.391 | 2.192 0.781 0.146
P025R35 1.312 0.146 0.382 | 2.136 0.743 0.140
P100R25 1.281 0.115 0.375 | 2.194 0.788 0.149
P100R20 1.2v6 0.103 0.372 | 2.209 0.802 0.154
P100R15 1.276 0.096 0.368 | 2.248 0.832 0.162

The difference of radiation forces between linear potential flow and long domain becomes larger
as the wave steepness increases. Also, the computed forces with no waves converge to values of

the long domain as the domain increases.

The relative errors with pure zone sizes for relaxation schemes are shown in figure 2.19a.

15 \ \ 15 : ;
---------- Long CFD domain e Long CFD domain
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g -4--Relax to potential flow g -4--Relax to potential flow
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0 : : : 0 :
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me‘(z/)\ Loutlet//\
(a) Pure zone size (b) Outlet zone size

Figure 2.19. Relative errors with respect to the size of domain.
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The results show that the solutions are not much sensitive to the pure zone size and the relative
errors of both relaxation schemes (to no waves and to potential flow) are in the range of long
domain. The relative errors between linear wave theory with different outlets are plotted in figure
2.19b. The relative errors of all outlets decrease as the outlet zone becomes larger and get close
to the relative error of long domain. And the results show that the solution is more sensitive
to the reduction of outlet zone rather than that of the pure zone. When the target function is

similar to outgoing waves, the pure and outlet zone can be reduced.

The radiation forces of the different outlets with fixed lengths of domain which are LP*"¢ = 1.0\
and Louet — 2 0\ are tabulated in Table 2.11.

Table 2.11. Radiation coefficient of different outlets (LP*¢ = 1.0\ and L°%!e = 2.0)).

Coef. ‘ by ‘ 99
w [rad/s] 04 42 70 | 24 42 70
Analytic 1.304 0.136 0.365 | 2.169 0.798 0.156
Long Domain 1.297 0.144 0.388 | 2.162 0.780 0.148

Relax to no waves 1276 0.103 0.372 | 2.209 0.802 0.154
Relax to potential flow | 1.316 0.141 0.392 | 2.185 0.798 0.151
Linear damping source | 1.270 0.121 0.384 | 2.263 0.782 0.148

Increased viscosity - 0.154 0.388 - 0.842  0.147

The increased viscosity outlet (ttgaq = 100water) does not damp the radiation waves properly,
the force time series has modulation and increases dramatically due to reflection. Therefore, the
computed radiation forces are taken from meaningful simulation results. It is thought that the

increased viscosity should be determined based on wave frequency.

In summary, when the target function is similar to outgoing waves, the domain and simulation
time both can be reduced. The other outlets are also good choices when relatively large domain
(LPure > 0.5\ and Lot > 3)\) are used.

2.6 Conclusion

In the preliminary study, a parametric study of propagating waves with viscous flow model solving
RANSE based on FVM is conducted. This parametric study shows that the time integration
scheme for wave-propagation problem should have at least second-order accuracy to keep the
wave amplitude and its phase. The convection schemes affect the order of convergence and
the stability of simulation. High-order convection schemes give good results but the simulation

becomes unstable as time goes.

As the outlets need different parameters to absorb waves well at the boundary, parametric studies
on different outlets are conducted and the representative cases are compared with each other.
The considered outlets are listed as the stretched mesh, increased viscosity, momentum sources

and relaxation schemes. It is thought that the different outlets which are properly tuned would
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give good results but it is difficult to tune outlet parameters of mesh stretching, linear damping

source and increased viscosity even if there are some suggestions by other researchers.

The relaxation scheme with properly given target flows that are similar to the outgoing waves,
gives stable and good results compared to the others. In the benchmark test of swaying Lewis
form, the computational domain and outlet zones can be reduced when the relaxation zone with
target flow of outgoing wave is used. Furthermore, the simulation time to obtain the converged
solution decreases. Though, relaxation zone larger than 2 wavelengths is necessary to obtain
similar results of relatively large computational domain. The preliminary study confirms that
two-way coupling can reduce both computational domain and simulation time. To succeed in

coupling two flow models, two things are required
e Efficient evaluation of outgoing waves in the relaxation zones from potential flow model.

e Enhanced relaxation scheme to minimize the effect of weight function.
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3 Potential flow: Incident waves

The boundary value problem for an incident wave is recalled. Perfect fluid with irrotational
flow is assumed to introduce the incident wave potential. The incident wave potential satisfies

Laplace’s equation
VQ(I)[ =0, x € €.

where ®@; is the velocity potential, and 2 is the fluid domain. The flat sea bottom condition is

given as

0P;
0z
where h is water depth. Overturning of waves is not considered, therefore the incident wave

=0, on z=—h, (3.1)

elevation (Z7) is a single-valued function
== El(xay; t)? (32)

where x and y are horizontal coordinate, ¢ is time. The nonlinear kinematic and dynamic free
surface boundary conditions for incident waves are given as
0Z; 0®;0=; 0®;0=Z;  09P;
ot or Ox Oy Oy 0z

o
8; + Vcbf Vo, 4+ g=; =0

The lateral (or infinity) boundary condition for incident waves are different for wave model and

=0

, on z==2=j.

will be discussed in the following section.

3.1 Regular waves

The simplest potential theory on 2D regular waves, which is called Airy waves, assumes that
the wave height is small compared to its wavelength, and therefore the linearized free surface
boundary condition is imposed on the mean free surface (Airy, 1845). Later, the potential
theory is expanded with a perturbation series approach, which is known as Stokes expansion,
with respect to wave steepness (kA) to apply nonlinear free surface boundary conditions (Stokes,
1847). After his works, the perturbation theory based on Stokes expansion have been extended
for deep and finite water depth (Wilton, 1914; De, 1955). As the order of perturbation increases,
free surface boundary conditions become complex and can be solved by the help of computer up
to 117-th order (Schwartz, 1974).

Instead of using the velocity potential, Rienecker and Fenton (1981) introduced a stream function
theory by Fourier series expansion to solve the nonlinear 2D regular wave. The wave elevation

and stream function in Fourier series are given as

Ny
Zr(z;t) = np(z)e @ = | Ag + Z Ajcoskjx| et (3.3)
j=1
iw sinh k;(2 + h) i
Ur(z,2t) = ¥z, 2)e ™ = | Bz + ZB cosh i h coskjz| e (3.4)
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where Uy is an incident wave stream function, A; and B; are the modal amplitudes of Fourier
modes, k; is a modal wavenumber. N4 and Np are the number of truncated Fourier series. As the
stream function of constant value represents the streamline, variation of stream function between
two isolines is equal to flow rate (@Q). Consequently, the bottom and free surface boundary

conditions are simply given as

Yr(x,z=—h) =0, vi(x,z =E1) = —Q. (3.5)
The fluid velocity is calculated from the stream function as
- oV Al coshkj(z + h) it
uf(z, z;t) = 5 = Byz + JZ; ijjW coskjx | e, (3.6)
) OV S5 sinhkj(z+h) ot
uj(x, z;t) = 5 = Boz+;ijjcoshkjh sinkjz| e ", (3.7)

where u7 and uj are horizontal and vertical fluid velocity by incident wave, respectively. The

incident wave pressure (py) is given by Bernoulli equation

Pr 1
—=R—ygz— 5 (W)’ + ()], (3.8)
p 2
where R is Bernoulli constant. The important dimensionless parameters in regular waves are
the wave steepness kH and Ursell number Ur = Hh—ég’ (Ursell, 1953). Ursell number becomes

important when the water depth is limited. The limitation of regular wave theory in a sense of
application is given by a combination of two dimensionless parameters in Le Méhauté’s diagram
(Le Méhaute, 1976) in figure 3.1. The stream function theory covers the regular wave up to wave
breaking, and consequently is adopted in the present study for the generation of regular waves.
Fenton (1988) published a Fortran algorithm calculating the stream function waves. Recently,
Ducrozet et al. (2019) published an open-source program based on stream function wave theory
with a self-adjusting algorithm to cover all wave steepness and Ursell number combinations with

desired error tolerance.

3.2 Irregular waves and waves in wave tank
3.2.1 Linear theory and related research on irregular waves

The simplest method to generate irregular waves is the superposition of linear Airy waves with

random phases. 2D irregular waves with each of regular wave amplitudes are given in

Nwave I
gA; cosh[ki| (z+ ) i, x—witrsn)
) ) = i i(k; x—w;it+9; )
I(X) ) ZZ; WZ' COSh ‘kZ’ h I (3 9)

where w; = g |k;| tanh(|k;h|) is i-th wave frequency, k; is a directional wave number, Nygpe is
the number of waves and §; is a random phase, respectively. AZ-I is ¢-th wave amplitudes which
is given by wave spectrum

AI = QS(OJZ‘)A(.UZ‘, (310)

7
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Figure 3.1. Le Méhauté’s diagram, (Kraaiennest, 2009)

The wave spectrum (S(w)) has various forms. The commonly used wave spectra are Pierson-
Moskowitz and JONSWAP which were invented for unlimited and limited fetch sea, respectively
(Pierson and Moskowitz, 1964; Hasselmann et al., 1973). Ochi-Hubble wave spectrum, which has
two peaks by the combination of JONSWAP, is used to describe west Africa sea state (Ochi and
Hubble, 1976). For three dimensional irregular waves, the directional spreading function, which

is denoted as D(w|f) is multiplied to wave spectrum as

Al = /28 (w;) D(w;|0;) Aw; A, (3.11)

of which, D(w|f) satisfies
emax
/ D(wl|0)dd =1,
amin
of which, the spreading angle 6; is between 6Oy and 0p.x. Half-cosine 2s power directional
spreading function, which is modified version of cosine 2/ power, is commonly used in nowadays
(Pierson et al., 1955; Longuet-Higgins et al., 1963). Goda (1999) summarized wave spectra and

directional spreading functions.

The linear superposition of Airy waves assumes that each wave component is independent, but
in reality interferences between waves exists. Goda (1983) analyzed the wave measurement at
Caldera port in Costa Rica. He showed the sea spectrum was exhibiting the secondary peak due
to the interaction of waves and nonlinearities are noticeable in shallow water. Though the second
order wave spectrum model is proposed by Tick (1963); Hamada (1965), the superposition model
is not adopted to describe a higher-order interaction between waves. In addition, the superpo-

sition of regular waves needs a discretization of sea spectrum that gives a huge computational
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burden to reconstruct irregular waves in viscous flow grid.

To overcome the limits of linear superposition theory, the direct simulation with nonlinear free
surface boundary conditions has been studied. Engsig-Karup et al. (2009) applied the finite-
difference method based fully nonlinear potential flow model to simulate 3D irregular waves. As
the computational meshes are discretized in a manner of finite difference, numerical errors due
to discretization are involved. Ducrozet et al. (2007, 2016) applied a pseudo-spectral method to
simulate the 3D irregular waves with fully nonlinear free surface boundary condition. Moreover,
Ducrozet et al. (2012) extended this methodology to the numerical wave tank problem by adding
extra velocity potential in the same principle of pseudo-spectral. It is called a Higher-order
spectral method (HOS) because its basis functions are expanded in a pseudo-spectral way. The
fast Fourier transform (FFT) reduces the computational burden, furthermore, the treatment of
spatial gradient is easier than other numerical methods. In the present study, HOS wave model

is adopted to simulate irregular waves.

3.2.2 Nonlinear irregular waves: Open-ocean

The higher-order spectral method has been initiated by Dommermuth and Yue (1987); West
et al. (1987). Cartesian coordinates are applied with rectangular computation domain with its
horizontal lengths, L, and L, along x and y directions, respectively. The origin O is located
at the corner of domain on the mean free surface z = 0. In the open ocean, the domain is
horizontally periodic, and has a flat bottom. The free surface boundary condition is constructed

by introducing the surface velocity potential ®;(z,y;t) = ®7(x, y,Zr(x, y); t) defined on the free

surface as
0%, =
o +92r = Q(E, r,w) = —qu)[ V(I)[ + = 5 (1 + VE; - VE[) w?, (3.12)
0= ~ ~
6t1 =P, 0, w) = (14 VE; - VE))w — Vd; - VE,, (3.13)

where w = %—i’ is the vertical velocity. The surface velocity potential and wave elevation are

calculated by solving the above equations. The periodic lateral and flat sea bottom boundary

conditions are given in

‘I)I(O>?/72;t) - QI(LCIHyaZ;t)v EI(OJ/’ t) - EI(anya t)7

(3.14)
®r(x,0,25t) = ®r(x, Ly, 23 1), Er(z,05t) = Ep(x, Lys t)
and
0®;
=0, (3.15)

As the domain is limited in horizontal lengths and water depth, the velocity potential is expanded
with the linear set of mode functions ¢, (x,y, 2) which satisfy the periodic and sea bottom

boundary conditions

Oy(z,y,2;t) Z ZA )1 mn (T, Y, 2) (3.16)

m=0n=0
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3. Potential flow: Incident waves

with b k(2 4 )
COSh Kmn (2 + ok ikiy
- ha gikh 3.17
le,mn (CL’, Y, Z) cosh kmnh € ( )
where Al (t) are the amplitudes of modes. kZ, = i” = mAk*, ky, = nL = nAkY and

k2, = (k%)% + (ki)? are the modal wavenumbers for z, y and z directions, respectively. Though
the basis functions satisfy the lateral, sea bottom and linearized free surface boundary conditions,
the wavenumbers are not eigenvalues. Therefore, the problem is solved in a pseudo-spectral way.
The open ocean conditions are approximated by applying periodicity conditions on the side of
a rectangular domain. Fourier series are applied to express the surface velocity potential and

incident wave elevation

M, Ny

Oy, yit) = > > BY, (t)ekmmelkny, (3.18)

m=0n=0
M, Ny

(z,y;t Z Z BE 1]“"”l%‘/’:eik?””, (3.19)

m=0n=0

where M, and N, are the number of truncated Fourier modes. Because the free surface boundary
conditions, given in equations (3.12) and (3.13), are nonlinear, Stokes’s expansion is applied on
the incident velocity potential and wave elevation. The perturbation series expansion with wave

steepness (kH) are given as

Mpyos
Or(r,y zt) = Y O (w,y, 1), (3.20)
m=1

where Mpogs is a HOS order that represents the nonlinearity order. Unknown wave elevation

position needs an iterative Taylor series expansion at z = 0 with respect to wave elevation

o) (x,y,0,1) = &y (3 1), (3.21)
m—1 ,— ka@(m_k)
=74
®\™ (2, y,0,t) § (k' (@0, for  m>2. (3.22)

The free surface boundary condition for ®; on z = Zj is transformed into the simple boundary

(m)

condition for ®," on z = 0. As the nonlinear boundary conditions are given explicitly, m-th

order velocity potentials (I)gm) are solved by applying the modal functions in equation (3.16).
Initialization of wave fields for Z(z,y;t = 0) and ®(z,y;t = 0) are necessary for propagating
waves in HOS-ocean model. Both regular and irregular waves can be used to initialize the wave
field. As a regular waves, the nonlinear stream function wave theory is used in HOS model, and
the linear superposition of irregular waves is used to initialize the wave fields for irregular waves.

At the initial condition, the magnitudes of modes for irregular waves are given in

1

1 2 10w
5 |

|Br (t = 0)|" = S(ka, ky) Ay Ay = %%S(w)D(w\Q)AkzwAky, (3.23)

mn(

where Ak, and Ak, are modal wave number discretization in x and y directions. By considering

random phase (521,1), the wave elevation modal amplitudes are determine by

BE (t=0) =R [eiéfnn |BE,.(t = 0)\] . (3.24)
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3. Potential flow: Incident waves

The initial mode amplitudes of velocity potentials are derived from linearized free surface bound-

ary condition

B¢ (t=0)= —i“”;” BE (t=0). (3.25)

It must be noticed that simulating the nonlinear HOS wave model with the initial condition

which is given by linear superposition model may lead to instability (Ducrozet et al., 2016).

A ramping function (f"*"P(t)), allowing a smooth transition from linear to nonlinear sea state,

is used as a multiplication fact for the nonlinear terms in free surface boundary condition

oL _ - _
T T 9E1 = F()QEr Brw), (3.26)
9=1 () _ pramp = § M
L) = () (PEr &rw) —w) (3.27)
with
Framp(ty = 1 — et/ Tramp)™"" (3.28)

where T}.qmp and n"¥™P are a transition time and ramp parameter, respectively. w® is the linear

vertical velocity.

The details on mathematical formulation and procedures are explained in (Ducrozet et al., 2007,
2016; Bonnefoy et al., 2009).

3.2.3 Nonlinear waves: Numerical wave tank(NWT)

The HOS model can be formulated for a 3D rectangular wave tank equipped with wavemaker
at rest position x = 0, and surrounded by vertical walls. The wave absorbing beach is placed at

the end of wave tank. The kinematic boundary condition on the wavemaker is given in

D

Ft(x — Xwm(y, 2z;t)) =0, on x = Xum(y, 2; 1), (3.29)

where Xym(y, z;t) is a displacement of wavemaker. The above equation is rewritten as

OXum _ OP;  0Xum 0P1  OXum 0P

= = Xum(y, z;1). 3.30
ot oz oy oy o0z o0z % (v, 27) (3.30)
The vertical wall condition is given as
8(I)I(vayvz;t) -0
O (3.31)
0Py(x,0,2;t)  O0Py(w, Ly, z;t) 0
Ay - Ay o

To solve the boundary value problem, ®;(x,y, z;t) and Zj(z,y;t) are decomposed into

q)l(xvyazﬂt> :(I)H(x7y7z7t)+q)[z(x7y7z7t)7 (332)
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3. Potential flow: Incident waves

where ®p(z,y, z;t) and ®r(x,y, z;t) are the harmonic and local velocity potentials. The lateral

boundary conditions for @ (x,y, z;t) are given as

0Py, _ 0Xwm N 0Xwm 09, n 0Xwm 09, 0Py, ~0

0 | _x ot oy Oy 0z 0z’ or |,_p. ’ A

on, ouy [ _, O
0y ly=o O ly—r,

The perturbation series expansion of the wavemaker boundary condition needs a vertically ex-

tended domain with artificial height hqqq, depicted in figure 3.2.

Figure 3.2. The extended HOS-NWT domain (Ducrozet et al., 2012).

The extended domain consists of three zones: (1) original domain is mapped into 2/ = —1 to
2 = 0. (2) The mirror of original domain with respect to 2/ = (hgqqq — 1)/2. This zone is defined
between 2’ = hggq—1 and 2’ = hggq. (3) A smoothly varying surface domain between original and
mirror domain, from 2z’ = 0,2’ = hyqq — 1. The displacement of wavemaker is applied 2’ € [—1, 0]
and 2’ = [hqqq — 1, haqq) with symmetry. Between two zones, the wave motions are extrapolated
with polynomial functions. The artificial height is taken to be hy,qq = 3. For the local velocity
potential, the symmetric condition with respect to 2’ = (hqqq — 1)/2 is applied, instead of free
surface boundary condition. The perturbation series is also applied to local velocity components

upto third order as
3
Op(,y. 2it) = Y O (x,y, #11), (3.35)
m=0

m-th order potential is expanded with the pseudo-spectral method as
Ny Nadd
o) @,y 25t) = > 3 B (Ddrmn(,y,7) (3.36)

n=0 p=0

with

)) cosh k3d4(L, — x)

dd g/
OLmn(®,y, ) = cos(kly) cos (k™ (= cosh BT,

(3.37)
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3. Potential flow: Incident waves

where k) = T fodd = ot and kadd = [(k%)? 4 (kgdd)2. The local velocity potential can
be solved with the Taylor series expansion with respect to the nonlinear wavemaker boundary

condition at z = 0.

The non-homogeneous wavemaker boundary condition at x = 0 is satisfied by local velocity

potential, the lateral boundary condition for harmonic velocity potential is given by

8(13[{ a(I)H
THy =g, 2 =0
Oor |y_x ’ or |,_p, ’
- (3.38)
ul  _,  %%u  _,
ay y=0 ’ 8y y=Ly .

The harmonic velocity potential and wave elevation in perturbation series

Mruos
Oy (z,y,2'5t) Z <I> (x,y,2';t), (3.39)
MHOS’ (m)
Er(x,yit) = > 7 (w,y5t), (3.40)
m=0

and m-th order harmonic velocity potentials and wave elevations are expressed with eigenfunction

expansion as

]\JT NU
O (2,,2t) = Y 3 BE L ()6mmn(w,y, 2), (3.41)
m=0n=0
M@ Ny
u[ (z,y;t ZZan cos(ki,x) cos(k¥y), (3.42)
m=0n=0
with h(kn (2 + 1))
cos Z +
Ot (.5, ) = cos(k) cos(ily) e (3.43)
where kff, = 77 and kyy, = +/(k3,)? + (kn)? are eigenvalues of wave tank. It is solved by applying

nonlinear free surface boundary conditions, considering absorbing beach by a modification of

pressure £ = D(x)w = D(x)%

9P 1
8tH + g = —fWH Vg + g (1 + VEr - VE)) (uf)?
0%, o=
o=
BtI (1+VE; - VE))w— Vd; - VE; + ui. (3.45)

Note that the nonlinear terms involve the local velocity potentials. The details of formulation

and numerical algorithm are explained in (Ducrozet et al., 2012).

3.2.4 Reconstruction of nonlinear irregular waves in viscous model

The nonlinear models based on HOS for irregular waves have been developed and validated
for several years (Ducrozet et al., 2007; Bonnefoy et al., 2009; Ducrozet et al., 2012, 2016).
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3. Potential flow: Incident waves

Those HOS wave solvers are released as open-source codes, which anyone can develop, use and
distribute under the terms of GNU General Public Licence (GPLv3). As the pseudo-spectral
method is used, the free surface grid is discretized with equal spacing to apply FFTs. Therefore,
the reconstruction of wave fields is necessary to deliver flow quantities to the viscous flow model.
The reconstructed nonlinear flows are able to be used for the initialization of domain and the

boundary.

A HOS wrapper program, which is called as Grid2Grid, has been developed to reconstruct the
wave fields from the results of HOS computation (Choi et al., 2018). Grid2Grid applies an
inverse FFTs and a quick B-spline module to reconstruct the nonlinear wave fields for arbitrary
simulation time and space (Frigo and Johnson, 2005; Williams, 2018). The simulated nonlinear
irregular waves by HOS provide the time histories of mode amplitudes. By applying inverse
FFTs with vertical functions, f(z) = % and fo%(z') = cos k3% (2’ + 1), the exact
nonlinear wave fields are reconstructed in rectilinear grid at HOS simulation time t = ¢H#95.
As the rectilinear grid does not change with respect to time, the continuous HOS wave fields

in discrete time are reconstructed via interpolation. B-spline interpolation at arbitrary points,

x1,%2, -+ ,xy are evaluated with known interpolation nodes z;,, z;,,- - - , z;, and their function
values f(xi, iy, Tiy)
Niod+1 N
f(xlvx?v"' 71:N): Z f(xilvxiw"' ’xlN)Hbz§)(x]) (346)
11,82, iN=—Nmod Jj=1

where Nyod = Ninterp/2, P = Ninterp — 1, and Nipterp is an interpolation order. bl(-?) (xj) is

B-spline function defined by

1 if T, < Tj < Tjiigs

b () = (3.47)
0 otherwise
Ti— Tj, _ Tjipir — Ty _
by () = b (@) ¢ @), p2 1 (348)
Ljipp — L Liivpr1 — Liiyr

The B-spline function with respect to p is shown in figure 3.3. The reconstructed HOS wave
fields have 3 spatial and time variables.

1.2

bf;])(xl)
1L 7177(1’1)(11)
.......... b(j]@;)
0.8 4
Eos |
K]
B}
0.4 J
0.2 ]
J \,
0

Ljis

Figure 3.3. The basis functions, bg) (xj).
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3. Potential flow: Incident waves

The computation algorithm does not calculate the basis functions, bg) (x), but evaluates the
function value by recursive way. The computational algorithm is called De Boor’s algorithm (De
Boor, 1978). The cubic spline interpolation is used for evaluating fluid velocity, pressure and

wave elevation with respect to spatial and temporal variables.

3.3 Validation on the generation of nonlinear waves in the viscous flow solver

The generation of stream function wave theory in viscous flows is tested and validated in Chapter
2.1. The generation of HOS nonlinear waves in viscous flows is important to simulate realistic
irregular waves, to investigate its effects on the floating body and to regenerate the experimental
waves in the numerical simulation. The HOS waves in viscous flow solver are regenerated by open-
source library Grid2Grid (Choi et al., 2018). The time series of mode amplitudes are obtained
to reconstruct HOS waves by inverse FFTs and interpolation module. The flow quantities of
nonlinear incident waves are possibly calculated for a particular position and time where the

specific nonlinear phenomenon occurs.

For the validation, foamStar, which is based on multiphase solver with the VOF model, is used
(Seng, 2012; Monroy et al., 2016). The relaxation schemes, described in section 2.3.1 is used.
The reconstructed nonlinear incient waves are used to initialize the computational domain and

to give the target values in the viscous flow solver.

3.3.1 Validation with HOS simulations

The generation of HOS wave models in the viscous flow model is validated with HOS simulations.
Gatin et al. (2017) simulated the nonlinear 3D irregular waves based on HOS-ocean (open sea
waves) in a multiphase flow solver, however the scheme was not tested with waves generated in
a wave tank (HOS-NWT). In the present study, the generation of both HOS wave theories in

viscous flow solver is validated.

The considered wave conditions for validation are given in Table 3.1. For HOS-NW'T' 3D regular

waves, the oblique wave of propagation angle, § = 60° is considered.

Table 3.1. HOS wave condition for validation

HOS-Ocean HOS-NWT
Wave Type Value
2D 3D 2D 3D
T |s] - - 0.702 0.702
Regular Wave
H |m] - - 0.0431 0.0288
T, [s] 0.702 1.0 1.0 0.702
Irregular Waves Hg|m] 0.0288 0.10 0.05 0.0384
v |- 3.3 3.3 3.3 3.3
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3. Potential flow: Incident waves

The computational domain of viscous solver is depicted in figure 3.4.

Relaxation zones Pure viscous zone Relaxation zones
2X or 2), 2) or 2\, 2X or 2),
HOS waves
1 1
w w
0 0

Figure 3.4. The computational domain of viscous flow solver for generation of HOS waves.

The length of relaxation zones is two times of wavelength (X or A\,) and the same length is used
for pure viscous flow zone where no weight function is applied. The same principle is adopted
for the 3D waves. The snapshots of 3D regular/irregular wave simulation with viscous solver are

shown in figures 3.5. The relaxation zones are colored with transparent grey.

(a) HOS-Ocean 2D Irregular waves

(b) HOS-NWT 2D Regular waves

(c) HOS-Ocean 2D Irregular waves (d) HOS-NWT 3D Regular waves

Figure 3.5. Simulation of nonlinear HOS waves in viscous flow model.
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3. Potential flow: Incident waves

The waves generated at inlet relaxation zones are propagating to the pure viscous flow domain.
After traveling across the pure viscous flow domain, waves enter the outlet relaxation zones. For
the HOS-NWT 3D regular waves, the reflection waves due to the lateral wall are well shown in

simulation.

The measured wave time series in viscous flow are compared with the results of HOS simulation

in figure 3.6.
2.5 : : : 2.5 ; ‘ ‘
——HOS-Ocean 2D Irregular waves ——HOS-Ocean 3D Irregular waves
2¢ - - -Simulation ] 2¢ - - -Simulation ]
1.5+
~ 1r
=
o 0.5¢
=
o 0
-0.5
1k
-1.5 : ; ;
0 10 20 30 40
t/T,
2.5 : : 2.5 ‘ ;
——HOS-NWT 2D Regular waves ——HOS-NWT 2D Irregular waves
2¢ - - -Simulation ] 2¢ - - -Simulation ]
1.5¢ 1 1.5¢
—~ 1 -~ 1t
= =
=05 = 0.5+
= =
m ol m 0
-0.5 -0.5
1t 1t /
-1.5 : : -1.5 : ;
40 50 60 70 40 50 60 70
t/T t/T,
2.5 : \ 2.5 : ;
——HOS-NWT 3D Regular waves ——HOS-NWT 3D Irregular waves
2t - - -Simulation ] 2t —— Simulation ]
1.5¢ 1 1.5¢
—~ 1+ —~
_ =
S 0.5} au}
= =
[1] 0 E
-0.5
1k
-1.5 : : . : ;
10 20 30 40 20 25 30 35

t/T t/Tp

Figure 3.6. Generation of nonlinear HOS waves in viscous flow solver and comparison with
HOS wave model (top : HOS-Ocean 2D, 3D irregular waves, middle : HOS-NWT 2D
regular/irregular waves, bottom:HOS-NWT 3D regular /irregular waves)
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3. Potential flow: Incident waves

The measured wave elevation at the center of viscous flow domain shows a good agreement with

the results of HOS wave theory. The discrepancies between viscous flow and HOS simulation

come from

The computational meshes need to be fine sufficiently to describe the waves, especially for

irregular waves which have short/long waves with various wave heights.

Interpolation errors in the wrapper program could provide an error source in viscous flow.
The cubic-spline interpolated velocity in HOS grid may not satisfy the mass conservation

(Li, 2018). Therefore, the extra sources may appear in momentum /pressure equation.

HOS is based on a psuedo-spectral method that may lead to high-frequency components.
The zero-padding on spectral quantities is used to remove this phenomenon. It may lose

the wave energy.

Relaxation scheme with weight function generates undesired waves in the relaxation zones.
Introduced weight function appears as source terms in VOF transport and momentum
equations, and is able to give an extra error for wave propagation problem. Peri¢ et al.
(2018b) investigated the effect of weight function and showed that the wave reflection is

inevitable with the relaxation scheme.

Other factors like numerical damping, fluid viscosity, numerical errors, ...

3.3.2 Validation with HOS simulations and Experiments

Extreme waves corresponding to the 1000 year return period of irregular waves in the Gulf of

Mexico (GOM) is regenerated by the proposed reconstruction procedure in the viscous flow

model. The results is validated with HOS simulation and experiments.

The wave condition is given in Table 3.2. HOS-NW'T 2D model is used to simulate extreme waves.

The same configuration of computational doamin described in figure 3.4 is used for numerical

setup. The convergence of HOS-NW'T model is conducted with respect to the number of modes
and the order of HOS.

Table 3.2. Extreme wave condition

Item Value
Peak period (7}) 15.5s
Significant wave height (H) 175 m
Peak enhancement factor (v) 3.3

Wave spectrum JONSWAP

The wave breaking events are identified during HOS simulation with a criterion defined by a

ratio of local energy flux velocity to local crest velocity (Barthelemy et al., 2018)

Fwave/E _ Uwave _ l aq)[

> 0.75. (3.49)

p p cp O |,_z,
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3. Potential flow: Incident waves

where Fiqe is a local energy flux in wave propagation direction and F is local energy density.
The ratio is approximated to the water particle velocity under the crest, wyqve. ¢p is a local phase
velocity. The breaking criterion is taken from Tian et al. (2012). The complexity of evaluating
the local phase velocity for all computational domain and time are explained in (Seiffert et al.,
2017). The breaking model considers the local energy dissipations appearing as Laplacian term

in nonlinear free surface boundary conditions as

0P 1= -1 .
aTI + 951 = —5 V-V 4 (14 VE; - VED) (u]) + 20eaay V - V1, (3.50)
(;tl — (14 VEr- VE) uf — V®; - VE[ + 2004,V - VEr, (3.51)
with eddy viscosity
Hy, L
Veddy = Qbr bjc bT’ (352)
br

where Ty, is a breaking duration time from when the wave crest begins to fall until the surface
disturbance front is no longer obvious, Ly, is a distance from wave breaking to the obvious surface
disturbance ends, Hy,. is a falling crest height, ap, is a parameter and the value ap. = 0.02 is
used by Tian et al. (2010). The wave breaking model indroduced in HOS is validated with
experimental measurement in (Seiffert and Ducrozet, 2018). Wave breaking events are recorded
during the HOS simulation of extreme waves and shown in figure 3.7 as markers. At the moments
of wave breaking, the wave heights are measured and colored differently in the figure 3.7. The

wave breaking event, occurs at «/L,, ~ 5 and t/T), ~ 85, is selected for benchmark case.
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Figure 3.7. The wave breaking event in HOS simulation

The experiments were conducted in the 3D ocean wave tank in Ecole Centrale de Nantes(ECN),
and its dimensions are L X B x h = 46.4 x 29.7 x 5.0m with absorbing beach of length 9.7m at

ends. The flap-type wavemakers, which have 3m depth and can move independently, allow us to
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3. Potential flow: Incident waves

generate various type of waves. The specification of wave tank is shown in figure 3.8. The waves
are scaled with ratio 1/100 in experiments and the re-generation of waves are restricted near
to the time of selected wave breaking event to minimize the wave reflection. Three probes are
aligned at the distance 20.81m of the wavemaker with horizontal interval 2.3m (and consequently

at the different transverse direction in the tank).
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Figure 3.8. Specification of wave tank in Ecole Centrale de Nantes(ECN)

The time and mesh discretization considered in viscous flow are given in Table 3.3. Note that the
computational mesh denoted as normal is set from the result of preliminary test on the incident
waves in Chapter 2.1. The measured wave elevation at the breaking point are compared in figure
3.9 with respect to discretization. The results show that a small difference is shown for a coarse
mesh with others. Results are slightly different after wave breaking event, but they give good
results for overall simulation time. Possible numerical errors has discussed in previous section
3.3.1. The extreme event in simulation and experiment are shown in figure 3.10. A small spilling
breaker is observed in the front crest of waves in simulation and experiments. In the experiment,

3D effects along horizontal directions are observed.

Table 3.3. Time and mesh discretizations used for the simulation of extreme waves

Mesh type A\p/ Az H,/Az  Azx/Az T,/ At
coarse 62.5 18.4 6.5 300
normal 125 36.8 6.5 600

fine 250 73.5 6.5 1,200
very fine 500 73.5 3.25 2,400
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Potential flow: Incident waves

2.5
—HOS
2+ ——CFD, coarse
—— CFD, normal
——CFD, fine

——CFD, very fine

|
86 87 88 89 90 91
t/T,

Figure 3.9. Convergence test on the simulation of extreme waves

Extreme event
in experiment

Extreme event in simulation

Small spilling breaker

/

a € [0.01,0.99]

Figure 3.10. Observed extreme wave events in experiment and simulation
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3. Potential flow: Incident waves

The measured wave elevation in experiments is compared with the results of HOS and CFD
(viscous flow model with relaxation with HOS) in figure 3.11. To minimize the 3D effects due to
wave absorption in the experiment, the waves in experiments were generated near to the time of

extreme event.
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2-——FEFD, y = 0m
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2.5
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2+ ‘ —EFD, y =0m
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——FEFD, y =2.3m
1L
~
=
=
< 0f
[1]
1k
_2 | | | | | |
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t/T,

Figure 3.11. Comparision of wave elevation time series for extreme wave condition.
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3. Potential flow: Incident waves

Both CFD and HOS show good agreements with each other, however the differences between
experiment and simulations exist though the experimental result has 3D effects in horizontal

direction. The possible errors are:
e Perturbation series of HOS-NW'T wave theory.
e Simple wave breaking model in HOS (events appearing before the one simulated).

e Wave maker transfer function to regenerate the HOS waves in experiments. HOS-NWT

model uses a linear transfer function.

e The reflection by wave absorber, 3D effects and different water depths in experiments.

3.4 Conclusion

Potential flow theories on nonlinear incident waves are summarized. Stream function wave theory
for regular waves is reviewed in view of boundary value problem and the eigenfunction expansion.
HOS wave theories based on the pseudo-spectral way is summarized for irregular waves and waves
in NWT. The reconstruction of HOS wave fields in viscous flow is introduced in the present study

based on inverse FFT and B-spline interpolation.

The proposed reconstruction procedure is validated with HOS simulation for different HOS mod-
els. Furthermore, a nonlinear wave breaking event predicted by the simple wave breaking model
in HOS simulation is simulated in the viscous flow model. Time and space limited simulation
has been conducted on breaking event. The experiment has been conducted to validate the pro-
cedure at the wave tank of Ecole Centrale de Nantes. The result shows a good agreement with

the results of HOS simulation and experimental measurement.
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4. Potential flow: Complementary waves with an arbitrary matching surface

4 Potential low: Complementary waves with an arbitrary match-

ing surface

The linear potential flow model for complementary waves generated by the existence of the body

is considered in this chapter.

4.1 Boundary value problem

The complementary waves are generated by wave-structure interaction and they propagate in
perfect fluid medium in the presence of a free surface. The fluid domain and boundaries are
depicted in figure 4.1. The grey color defines the fluid domain of interest. At ¢ = 0 no com-
plementary waves exist in the fluid domain of interest. The fluid is surrounded by boundary
surfaces, such as the matching surface (Syr), the free surface (Sp) and the surface at infinity

(Sso). The body is located inside the matching surface.

0bc | 0% _  .=Z(e,yt)

N Sy .. "
»~° —+g
0 t2
s N
T

L

’
i
i
i
!
i
1
i
i
1

Ouy
’

’
’
1
'.' Inner domain
1
i : Viscous flows i
; Outer domain !
’ 1
: Inviscid, incompressible fluid, [
| Voo — 0
/
!
l’
1

irrotational flow

V0o =0
/ SOC

Figure 4.1. Domain definition for complementary potential flow with matching surface.

The perfect fluid and irrotational flow hypothesis are assumed, in order to introduce the velocity
potential. The complementary potential (®¢) satisfies the Laplace’s equation
(4.1)

V2o =0, for x € .
where () represents the fluid domain. On the matching surface, complementary fluid velocity can
be decomposed into the irrotational and vortical velocity by Helmholtz decomposition theorem

(4.2)

(Arfken et al., 1995)
on X € Sy

uc = Voo +vg,

62



4. Potential flow: Complementary waves with an arbitrary matching surface

where ug is the complementary fluid velocity obtained by the viscous flow model. V®¢ and ve
are complementary irrotational and vortical velocities, respectively. In the present study, the

vortical velocity v is assumed to be sufficiently small on the matching surface as
ve ~ 0, on x € Sy. (4.3)
Therefore, the following boundary condition is imposed on the matching surface as
Voo = ug, on X € Sy (4.4)

The linearized free surface conditions on the mean free surface are given as

0*® 0P
20 + gic = 05
ot 0z
on z=0, (4.5)
O0Z¢ B 00 _ 0
Ot oz

The radiation condition on the surface at infinity is given as

Voo =0, for X € S (4.6)

4.2 Poincaré’s velocity representation
4.2.1 Poincaré’s velocity representation for source

The boundary integral equation for the complementary velocity potential is given as
—Ar®c (x) = ﬁg [G(x,8) {n- Ve (§)} — P (§) {n- VG (x,£)} dS(E), (4.7)
where G(x,&) is the Green function. x and £ are the field and source points defined as

X = (z,y,2), and £ =(&,0). (4.8)

n is a unit normal vector to the closed boundary surfaces S and it points inside of the fluid

domain. V¢ is the spatial derivative with respect to source point coordinate

o o0 0

Ve=|—=,—,=— |- 4.9

‘ (86’377’6C> )

The fluid velocity at field point is obtained by applying the gradient with respect to field point

coordinate (V) defined as

o 0 0

Ve=\|7—,=—,=— 1|, 4.10

(&r oy 6z> (4.10)

to the equation (4.7) as

VB0 (x) = %Zé (- Vede (6)) VoG(x,) — Be (€) Va {n- VG (x,6)} dSE).  (4.11)

The above expressions denote that the fluid velocity at the field point can be calculated by the
distribution of sources and dipoles on the boundary surfaces. The fluid velocity at the field point
can be decomposed as

— 47V, Po (x) = Voo — Vi, (4.12)
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4. Potential flow: Complementary waves with an arbitrary matching surface

where V1 and V,x are the contributions of sources and dipoles given by

Vo = ﬁg {n- Vebe (€)} V,G(x,£)dS, (4.13)

and

T
Vox == [ ] = b ¢ ) V. n- VeG (x. )} ds. (4.14)
S
The contribution of dipoles can be given alternatively (see Appendix 2 in Noblesse et al. (1997))

T
[t t] =~ p (Ve (€) x n} x V.G (x,) dS(E). (4.15)
S
for a Green function satisfying the relationships
(G2, Gy, Gy) = (=Ge¢, =Gy, —Ge) (4.16)

where the subscripts denote the derivative with respect to coordinate. Therefore, the fluid

velocity can be expressed in compact form
VoPe(x) = - fh [in- Vebe (6} VeG(x.£) + VeG (x.) x {Vebo (€) x n}]dS(E) (417

The above velocity representation is called Poincaré’s velocity representation in (Hunt, 1980;
Noblesse, 2001). Note that the factor 47 in equation (4.17) is divided in Noblesse (2001) due to
definition of Green function. Comparing (4.17) to the original velocity representation in (4.12),

the spatial derivatives on Green function are moved to the velocity potential.

Therefore, the expression is less singular than the case of original integral equation. The fluid
velocity at the field point is explicitly expressed by definition of the velocity potential, e.g.,
Ve®o = uc(x¢). It means that the dipole contribution multiplied by unknown potential value
(®¢) is replaced by equivalent source contributions multiplied by a known value (e.g., tangen-
tial velocity, V¢®c x n) at the boundary surface. Therefore, the system matrix obtained by
discretizing the equation (4.7) does not need to be solved to get the velocity potential on the

boundary surface.

However the velocity potential, which is necessary for evaluating the pressure, is not obtained
from this velocity representation. To overcome this, Noblesse and Yang (2004) integrated the

Poincaré’s velocity representation to get the velocity potential at the field point.

4.2.2 Poincaré’s velocity representation for image source and free surface term

The Green function for deep water and free surface flow has a generic form of

1

G(x.€) = —+ GF'=G%+Gh+Gv, (4.18)
1
where, G® is the source given by
1
Gi=—  n=VRE+(E-0,  R=E-9'+y-n" (4.19)
1
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4. Potential flow: Complementary waves with an arbitrary matching surface

and GT' is a function satisfying the Laplace equation and the boundary condtions on the sea

bottom, free surface and surface at infinity. It is usually composed with two terms as
GF=Ggh+a", (4.20)

where G" is function satisfying the homogeneous Neumann or Dirichlet condition at the mean
free surface. It is taken as the image source or sink located at z = —( above the plane of mean
free surface for deep water. GV is a wave function introduced to satisfy free surface and far-field

boundary conditions.

The contribution of dipoles in equation (4.14) can be given as (see Appendix A in Noblesse
(2001))

d ,yd a7 F
wrtyur, 4] = = fp (Ve (€) x n) x V.67 (x.€) as(e). (4.21)
S
for the Green function (GF') satisfying the relationships
(GE.Gf.GY) = (-Gf.-Gf,Gf) (4.22)

Therefore, two alternative expressions given in equations (4.15) and (4.21) lead to the velocity

representation given as

uc(x) = ud(x) + ubi(x) (4.23)

The velocity components ug and ug are expressed in the form of
dmug(x) = %Lé [{n - Ve®o (6)} VeG®(x,8) — {Ve®o (€) x n} x VeG® (x,6)] dS(E),  (4.24)
4mag(x) = #‘] [{n - Ve®o (6)} VeGT (x,€) — {Vede (€) x n} x VeG (x,€)] dS(€), (4.25)

where U is an operator defined as
u = (u,v, —w). (4.26)

A generic velocity representation for free surface flows can be introduced (Noblesse, 2001)

uc (Ve®e - n)GE + (Vedeo x n)° Gf — (Vede x )" G
At |ve | = # (Ve®e - n)Gy + (Ve®eo x n)* Gf — (Ve x n)* Gf | dS, (4.27)
we 5 (Ve@e - n)G: + (Ve@e xn)" Gy — (Vede x n)° G,

by defining G* as
Gt =g+at. (4.28)
The surface integral given in equation 4.27 can be decomposed into three surface integrals for

problem described in figure 4.1 as

#g{-}dS:/SM{-}dS+//SF{-}dS+//SOO{-}dS. (4.29)

Surface integral on the matching surface (Sjs) is necessary to impose boundary condition. The
integral along S, is zero thanks to time domain radiation condition that complementary terms
are zero in the far-field (V®c — 0). However, the free surface integral fst {-} dS needs to be

transformed into a proper line integral because it is defined from matching surface to infinity.

65



4. Potential flow: Complementary waves with an arbitrary matching surface

4.2.3 Generic representation for free surface integral

The wave Green function for deep water is given by
G=G%+GF, (4.30)

where G° = % is source and G can be selected by sign of image source as

1
T 1 1

T2

1+F ’ 2 Rtz 2t (4:31)
9

where % is the image source. H and F' are the corresponding wave terms. The generic Green

function for deep water can be given by substituting above equation into equation (4.28) as

1 1
—F—=xH
T T
G:l: — 11 12 (432)
—+—+F
1 T2
On the mean free surface, z = 0, the generic Green function satisfies the relationships
(GT,GE,GY,GY) = (H, He, Hy, Fr)
SEmIO o, (4.33)
(G~ Ge ’Gn’GC) = —(F,F¢, Fy), Hy)
by using the relationships of source and image source on z =0
1 1 0|1 1
[ - } —0, and 2 [ n ] 0 (434)
™ T2 ] ¢=0 ¢ 2] ¢=0

Therefore, the integral over the free surface in the generic velocity representation is given in

P, G + ngb X n) G;{ — (VgCI) X n)n GZ'_ CI)gHg + FCCI)g
// o, G+ + (Ve x n)* Gzr — (Ve® x n)¢ Ggr // n+ Fe®y, ds.
| $.G7 + (Ve® x )" Gy — (Ved x ) G,y o <I>5F§ + <I> F, — ®.H,

(4.35)
where ®,, = V¢®-n. The above equation is introduced by Noblesse (2001) as generic free surface

integral representation.

He suggested the velocity representation for the cases of free surface problems listed as:

e Case of rigid free surface boundary condition: g—‘f =0on z=0.

Case of soft free surface boundary condition: ® =0 on z = 0.

Steady ship waves.
e Time-harmonic wave radiation-diffraction without forward speed.
e Time-harmonic ship waves.

However, the velocity representation for unsteady time domain free surface flows has never been

suggested nor studied.
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4. Potential flow: Complementary waves with an arbitrary matching surface

4.3 Poincaré’s velocity representation in time domain free surface flow

For the convenience, the complementary velocity potential ®¢ is replaced by ® and the comple-

mentary fluid velocity uc is replaced by u in this section.

The Green’s identity with time derivatives of velocity potential gives a boundary integral equation
with respect to @, (see Appendix A.l in Bingham (1994))

— a0 (x.7) = P [0,06 )G 6 =) = B(E. DGk £t~ 7)]dS(E). (436)

with time domain Green function for deep water
1 1

Gx,&t—7)=— — —+H(x,&t—171), (4.37)
1 T2
with -
H(x,€,1 —7) = 2/ eh? [1 — cos (JgT{:(lf - T))} Jo(kR)dk. (4.38)
Note that the factor 47 is taken in tohe present study because the field point is not located on
the boundary surface. Poincaré’s velocity representation given in equation (4.27) is derived by
manipulating the spatial derivatives on the boundary integral equation, the time derivative of

fluid Velocity can also be established as

©,r (€, 7)GE (x,€ T>+<vgc1>7<em>xn><G;<x,§,t 7)
A |u¥(x, 1) //S o s m—(f,T)G;—( —7) 4+ (Ve (&, 7) xn)ngr(x,f,t T)
VOIS @, (6, 7) G (%6, — ) + (Ve®-(€,7) x 1) G (x,6, — 7)
— (Ve®- (&, > >"Gé<x,§,t 7)
— (Ve@,(€,7) x n)* G{ (x,€,t —7) | dS(€), (4.39)
— (Ve®-(¢,7) x ) Gy (x,€,t —7)

n
the fluid domain is surrounded by the matching surface(Sys), free surface(Sp) and surface at
infinity(Ss). The contribution of infinity surface integral for fluid velocity at field point is zero

by radiation condition

Ve®(§) — 0, on € € S (4.40)
The notation of Green function is replaced for the sake of convenience by
GT, if the velocity component is horizontal, e.g. (u®, u¥
G y comp g ( ) (4.41)
G, if the velocity component is vertical, e.g. (u?)

Then, the acceleration of the fluid is given in vectorial form

dmur(x,7) = // [@rr (§, T)VeG(x,8,t —T) + VeG(x,8,t — 7) x {Ve®-(§,7) x n}]dS(E),
e (4.42)
The matching surface is not moving with respect to time. Applying the integral by parts in time
to the right-hand-side in equation (4.42)

4 // (B,VeG + VG x (Ve x )} dS(€) / (B,VeGr + VeGy x (Ve x 1)} dS(€)
(4.43)
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4. Potential flow: Complementary waves with an arbitrary matching surface

Then, the acceleration of the fluid is given as

d
rurer) = 4 ff BTG VG x (Ve x ) dS(E) »

BV VG x (Veb xm}dS(E)
SmUSF

After integrating in time, the fluid’s velocity at field point is given with initial condition and

time convolution integral
4 fu(x, 1) — u(x,fo)} = // (6 D)VEG(x,£,0) + VeG(x,£,0) x (Ve®(E, 1) x n)} dS(E)
S]\/IUSF
[ e )V £t 1)+ Ve £t 1) X (TeB(Ento) x m)}aS(E)
MUSFE

—/ dT// {n(€, )VeGr(x,6,t = 7) + VeGr(x,€,t — 7) X (Ve@(&, 7) x )} dS(§).
to SyvUSE

(4.45)
Terms involving Ve® (€, %) in the integrals and u(x,tp) vanish due to the initial condition that
the complementary fluid velocity is zero over boundary surfaces and fluid domain at initial time,

t = tg. Therefore, the velocity representation with two surface contributions is given to be
truie ) = [ @060VOE0) + VeGlx.6.0) x (Ved(E.t) x )} dS(E)
SpUSE

/to {//SMUSF s TIVeGr (%61 = 7) + VeGr(%,€, 1 = 7) x (Ve (&, 7) X n)}dS(f)} dr.
(4.46)

4.3.1 Contribution of the matching surface integral

The contribution of the matching surface integral in time domain Poincaré’s velocity represen-

tation is defined as
wr(x, 1) = / D6 DVEO.E.0) + TG £.0) x (VePE.1) x m)}dS(E)

- /t {/S {®n(€.7)VeG-(x,6,t — 7) + VeGr(x,€,t — 7) x (Ve®(£,7) x n)} dS(g)} dr.
(4.47)

The time domain Green function for deep water given in equation (4.37) satisfies the relationships

VeG™ (x,6,0) = Ve {R(x,§) £ R"(x,€)} (4.48)
and

VeGE (x,€,t —7) = £V H, (x,€,t —T) (4.49)
where the source and image source are denoted as R(x,§) = 1/r; and R*(x,€) = —1/rs.

The matching surface integral can be decomposed into three velocity contributions
uM(x,t) = uR(x,t) +uR*(X,t) +uH(x, t) (450)
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4. Potential flow: Complementary waves with an arbitrary matching surface

where

_uf%
up(x,t) = u% = /S {®,(£,1)VeR(%,€) + VeR(x,€) x (VeP(§,t) xn)}dS(€E)  (4.51)

x
UR

Upe(X,1) = | up, | = /S {@n(€, 1) VR (x,6) + VR (x,§) x (Ve (€, 1) x )} dS(§)

z
|~ UR«

(4.52)

t
anat) = | u | = / /S (€, 7)VeH, (x, €, — 7)
__u?[ 0 M

+VeH (x,€,t —7) x (Ve@(&,7) x )} dS(€)dr (4.53)

Each of the velocity components represents the surface integral contribution of source, image

source, and wave terms.

4.3.2 Contribution of the free surface integral

The contribution of the free surface integral is given by

up(x,t) = / [ {D1(6.7e00x.6,0) + VeG(x.£.0) x (Ve(E.1) x )} aS(e)

t
~ [ar | (@0 ITeGe £t = 1) + Ve (.6t = 7) x (VeR(Er) x 1)} aS(E).
to Sp

(4.54)
The free surface is the region from the waterline of matching surface to infinity. The transforma-
tion to waterline integral is necessary for its evaluation. Using the general representation for free
surface integral discussed in section 4.2.3, the velocity contribution of the free surface integral is

given by

() (t)

up(x,t) =up (x,t) + up/ (x,t) (4.55)

with the current time free surface integral contribution
FC(Xa€7O)¢)E(€7t)

ull(x, ) = — ﬂs Fe(x,€,0), (£, 1) ds(€). (4.56)
" ( fao)éﬁ(fat) +F77(X7§70)(I>77(§7t)

The convolution integral is given by
up (x, 1) =

; Her(x,€,0 — 1)@ (€, 7) + Fer(x,€,1 — 1) P (€, 7)
/t //S Hyr(x,6,t — 1) (&, 7) + Fer(x,€,0 — 7) Py (€, 7) ds(&)dr.
U Fer (x%,6,t — T) 0 (€,7) + Fpr(x,€,t — 7)€, 7) — Her(x,€,8 — 7)0¢(€,7)
(4.57)
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The linearized free surface boundary conditions for velocity potential and Green function for

time domain free surface flow are given in
Q.+ gPc =0, H 7 +gF:; =0, on ¢=0. (4.58)

Using the free surface boundary conditions, the z-component in the convolution integral given
n (4.57) is modified as belows

Her®¢ + Fer @ = (FePe), + Her P — FPer

1 (4.59)
= (F¢®¢) — (FC<I>T)5 ~ (Her®r) .
Likewise, the y-component is expressed as the following
1
Hpyr®¢ + Fer @y = (Fe @) — (FCCDT)77 ~y (Hyr ®7), (4.60)
The z-component is transformed by using V2F = 0
Fer®¢ + Fyr®y = Her®¢ = (Fe®e + Fy®y) . — FePer — @y — Her P
1 (4.61)
= (Fe®c o+ Fy@y), = (Fe®r)e = (Fy@7),, + © (Her®r),
Substituiting equations (4.59), (4.60) and (4.61) into (4.57)
ch1>5 | T)g
(x,1) / dr // as — dT // c®r) as
to Sk to Sk !
qu’s +F P n)r] Fs¢’ + (Fy®-),
(4.62)
H&T 7' |
- - / dr // ds,
t, S
0 F HCT

The Reynolds transport and Stokes theorems on the free surface are given as

// oS = i //SF@ Jds - 75 JURPdl, (4:63)
//SF(t) f2dS = yﬁcm tY fdl, //sp(t) fdS = — yé(t) £ fdl (4.64)

where C(t) = CpyUC is the closed line of free surface. Cyy is waterline of matching surface and

and

Cw is the closed curve at infinity. U2P = u - nyp is the transport velocity at line. t = (t*,¢¥,0)
is the unit vector tangent to the boundary curve of the free surface. It is oriented clockwise along
the curve of matching waterline and anticlockwise along the curve at infinite distance. Applying

Reynolds transport and Stokes theorems on the convolution integral in equation (4.62) allows us
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to obtain

Fe(%,€,0)®¢(€, 1)
£,t)

(x, 1) //S Fe(x,€,0)®, (€, ds
" Fe(x,€,0)0¢ (€, t)+F( x,&,0)®,(&, 1)
. [ Fe(x,6,t —7)P¢(€,7) .
— [ dr F o, (& T U, ~dl
/| yfc(t) L., — 7) By (€,7)

Ff(xvat_T)(I)f(fv ) (ngat ) (5’7_)

tyFC(X,E,t — 7')

t
_ / d7-¢ —thg(X,f,t—T) O (& 7)dl
o OO R (x, €t — ) — 1 (x,£,t — T)
ET(X7£? 0) Hg’f t - 7-)
_ 1;5 Hyr (x,€,0) | @-(&,t)dl + — / dryg g t—71)| @& T)UPdI.
g Jow) _HCT(X,é,O) to C(t) _HCT x 6 t— )

(4.65)
Substituting equations in (4.56) and (4.65) into (4.55), the velocity contribution of free surface

integral is given in compact form

t I
/ dr 55 U2Pdl — / dr 515 7 F | Ppdl
o AW F§<I>§ FcI> o T lwE e,
(4.66)
/ dr 35 H,, @TUngz.
t,
0 HCT

The radiation and kinematic free surface boundary condition gives an explicit velocity expression

¢ Fe®e ags
—/ dT/ F:®, U2Ddl—|—g/ dT/ —t*F: | Ec(€, 7)dl
oo T B+ F D, S I o of
t | Her
— / dr / H,, | Ec(&, 7)UPdL, (4.67)
t C
0 M _—HCT

where Z¢ (€, t) is the complementary wave elevation on waterline of matching surface. Note that
the free surface integral representation needs both the complementary fluid velocity and wave

elevation on the waterline.
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4. Potential flow: Complementary waves with an arbitrary matching surface

4.3.3 Summary: Poincaré’s velocity represenation in time domain free surface flow

The complementary velocity potential and fluid velocity are denoted here with subscript ¢. The

gradient of velocity potential is replaced by fluid velocity as

Ve®Pe = uc, (4.68)
The normal and tangential fluid velocities are written in the following form
ug =uc - n, wWo = ug X n, (4.69)

The complementary fluid velocity at field point by Poincaré’s velocity representation is given by

four velocity contributions
druc(x,t) = ur(x,t) + up-(x,t) + ug(x,t) + up(x,t) (4.70)

and each of the velocity representations is given explicitly with flow values at the boundary

surface as follows

wn (x,t) = || (B DVER(x,€) + VER(x,€) x we (6. 1)} S, (4.71)
i (x,1) = || | (B OVER" (x.8) + VR (x,) x wel€, 1)} ds, (4.72)

t
uy (x,t) = —/t dT//S {ue(& 7)VeHr(x,&,t —7) + VeHr (x,&,t —7) x we(€,7)} dS,

(4.73)
t
ap(x,t) = —/t dr . VeF(x,€,t—7) x {uc(§,7) x e} Ungl
0 M
t
+ g/ dr {VeF(x,&,t—7) xt} Ec(&,1)dls
to Cm
t
- / dr VeH:(x,€,t —7)2c(&,7)UPdl. (4.74)
to Cm

The operator 0 is defined in (4.26) as
a = [u”,uY, —u®].

The transport velocity on the waterline is equal to zero, the contribution of the free surface is

simply given as

ap(x,t) = g/ dr {VeF(x,€,t —7) x t} Ec(&, 7)dl. (4.75)

to Cm
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4. Potential flow: Complementary waves with an arbitrary matching surface

4.4 Time domain Green function for deep water
4.4.1 Time domain Green function for Poincaré’s velocity representation

The time domain Green function of the free surface flow for unsteady problem satisfies the

Laplace equation
V3G(x,€,t) =6(x—€)d(t—7), for x€Q; t>0 (4.76)

and the linearized free surface boundary condition

(?;t(j + g% =0, on z=0, (4.77)
the radiation and sea bottom condition
|IV.G| — 0, as r—oo; Vt>0, (4.78)
with the initial conditions
G(x,£,0)=0, (%?();;{,O) =0, for x € Q. (4.79)

The solution of above initial-boundary value problem is given by Brard (1948)

G(x,€,1) = 1—+2/0 {1—cos(ft)} e Jo (kR) dk (4.80)

1 T2

The Bessel function integral relation is given as [using the equation 6.621 in (Gradshteyn and
Ryzhik, 2007)]

o 1
e~ Jy(x)dr = ——, a > 0. 4.81

The image source is replaced by integral of Bessel and exponential functions

1 o
— = / e Jo (kR) dk. (4.82)
T9 0

where Z = z + (. Substituting the integral relation into equation (4.80), the time domain Green

function can be expressed with image source having a positive sign as

G(x,€,t) = +1—2/ cos(\ﬁt) ek Iy (kR)dk. (4.83)

T2

Following the generic Green function defined in equation (4.32), the wave terms in time domain

free surface Green functions are given as

H(x,&,1) :2/ {1—cos(\ﬁt)} e Iy (kR) dk, (4.84)
F(x,6,1) = —2 /Oo cos (@t)d“@o (kR) dk. (4.85)
0
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4.4.2 Evaluation of time domain Green functions

The evaluation of two wave terms given in equations (4.84) and (4.85) are necessary for Poincaré’s
velocity representation with arbitrary matching surfaces. Many pieces of research have been
dedicated to the time derivatives of first wave term denoted as H, for efficient and accurate
computation. Beck and Liapis (1987) decomposed the computational domain of variables and
applied a series expansion and numerical quadrature for different domain. Newman (1992)
presented an algorithm based on Beck and Liapis (1987). Later, Clément (1998) announced a
new theorem showing that the time domain Green function is the solution of 4-th order ordinary
differential equation. Instead of computing the Green function itself, he solved the ordinary
differential equation for the evaluation of Green function and its derivatives with Runge-Kutta
4-th order scheme. Chuang et al. (2007) proposed a time-marching Frobenius method to evaluate
the Green function analytically. Li et al. (2015) suggested a precise integration (PI) method to
solve the ordinary differential equation. Recently, Bingham (2016) compared the accuracy and
efficiency of computation algorithms based on the interpolation of tabulated data, solving the
ordinary differential equations by Runge-Kutta 4-th order scheme, time-marching Frobenius
method, and PI method. He reported that the interpolation with tabulated data is faster than
solving the ordinary differential equations with 5-6 digits of accuracy. Also, the time-marching

Frobenius method is about two times faster than the Runge-Kutta scheme.

Nevertheless, the velocity representation needs two expressions of wave term and their derivatives

which are

H(x,g,t)zz/ {1—cos(\ﬁt)} e Jy (kR) dk,

0

F(x,&,t) = 2/0OO e* cos (Jg?:t) Jo(kR)dk

Previous researchers have focused on the first term H.(x,€,t — 7), but no study has been con-
ducted for the second expression F'(x,£,t— 7) because F' has never been applied in time domain

BEM to the author’s knowledge. It is convenient to express wave terms with two real variables.

The wave terms with nondimensional spherical coordinates, p = —(z + () /re and 7 = t/+/g/72

are given by

Hy o 6,0) = =2 [ S r), Plcgit) = () (180

where

_ /Oo Ve A g ()\\/1 - ,ﬂ) sin (T\FA) d, (4.87)
0
F(u,7) = /00 e My (/\\/1 - /1,2) cos <T\/X) dA. (4.88)

0

Clément (1998) showed that the first integral(H, (i, 7)) and its derivatives fall into the same
kind of integral and they all satisfy the 4-th order ordinary differential equation.

In present study, Clément’s ordinary differential equation is extended to include the other wave

term.
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4. Potential flow: Complementary waves with an arbitrary matching surface

Proposition 1 Let v andl be two real parameters, 7 and p are two real variables with 0 < p < 1.
The functions A, ; and B, defined by

Avi(u,7) = / T, (/\ 1 ;ﬂ) sin (Tﬁ> d, (4.89)
0

Bua(u,7) = / Tl </\ 1 ;ﬂ) cos (Tﬁ> dX (4.90)
0

are the solutions of the differential equation

PW,y  PW,, [ W, 5\ W,
art TR g5 +{4+“(3+2l)} o2 +T<l+4> o {0+ = W=,
(4.91)

where
Woi(p,7) = Ay (p,7) or Byi(p,T).

Proof) Clément (1998) proved that the function A, ;(u,T) is a solution of ordinary differential

equation

v,l v,l

A(4) + ;M'A(S) + { 1 >

2 5
T +u(3+25)}A<j} +r <z+ 4) AW 4 {(z +1)2 - VZ}AV,Z =0

where superscript () represents the derivatives with respect to 7.

Applying the derivative with respect to T again on the ordinary differential equation leads to
(%) @, [ 1 3
Ayl T, + 7 TH 3+2 l+§ Al

(e D2V L3 el
2 4 vl 9 vl —

Substituting the following relation between A, ; and B,

6141/,1(:“7 T) _
or - By,l+%(ua7->)

into the ordinary differential equation given above, the ordinary differential equation with respect

to BV,H% 15 derived as
BY 1 urB® 4T fsea (14 )] 5@
viry TPt T g TR > vit

1 51 (1) 3\
+ 7 l+§ +Z Bu,l+ l+§ -V Bzx,l-l—%zo'

Because | is arbitrary real, B, is the solution of this ordinary differential equation.

Furthermore, the spatial derivatives of two integrals fall into the same integral kind given before.
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4. Potential flow: Complementary waves with an arbitrary matching surface

The interpolation based on tabulated data is efficient compared to solving the ordinary differential
equation (Bingham, 2016). However, the development of algorithms based on tabulation method
for two wave terms and their derivatives need huge efforts to get accuracy and efficiency in same

time.

In the present study, the wave terms and their gradients are evaluted by solving the ordinary

differential equation. The initial condition of A, is given by Clément (1998) by

2k 2k+1 y 2k +3 y
Al(/,l)<:u’70> :Oﬂ Al(/,l+ )<,U,,O> = (_1)k+ r (l+ 2 _V> l+k+1/2(:u’)7 k:071727"'
(4.92)
where I'(z) is Gamma function, P/ (z) is Legendre function of the first kind (Abramowitz and

Stegun, 1965). The initial conditions for B, ; and its derivatives with respect to 7 are given by

BPP (11,0) = (1) /oo Ake=Au g, ()\\/1 - ,ﬂ) A\, B&(u,0)=0, k=0,1,2,-
’ (4.93)
Using the integral relation of Bessel function with the exponential and polynomial (equation
6.625.6 in (Gradshteyn and Ryzhik, 2007))

Do

/ e 180 1 (tcos @)tVdt = (v + p + 1) P, #(cos b)), for Rv+pl>1, 0<60<
0

The initial condition for even order derivatives of B, ; are given by
2k
BEO (1,0) = ()T + = v+ 1) PE(n)
v d¥
( ) ( + I/) ( /’L) P} duy

The initial conditions for H; are given in Clément (1998) by using above relationships. The

Prr(p)-

initial conditions for H, and F' are therefore given by

He(u,0) =0,  HR(w,0=1,  HAP(u,0)=0,  HE)(1,0)= —2p.

and

F(p,0) =1, F(l)(M,O): 0, F(z)(:u?O) =H F(g)(M,O): 0.

In a similar way, the initial condition of horizontal and vertical gradients of H; and F' are given
by

Hpy(p1,0) = 0, z7(11,0) =0,
Y (11,0) = 3u\/1 — 122, 75 (1,0) = 3% — 1,
H) (1, 0) =0, 1) (1,0) = 0,
AP (1,0) = (1502 = 3)y/1— 2, H(1,0) = —154% + 9,
and
Fr(1,0) = V1 — 42, 7 (1, 0) = 1,

F (1,0) =0, 720 (1,0) = 0,

F(p.0) = =3u/1— 12, F(1,0) = =3 + 1,

B (1,0) = 0, A (1,0) = 0.
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4. Potential flow: Complementary waves with an arbitrary matching surface

To solve the ordinary differential equation, the time marching Frobenius method proposed by
Chuang et al. (2007) is adopted in the present study. The 4-th order ordinary differential equation
is given in (4.91) as

-2
Wy(i) + MTW@) ( 1 + a,u) + BTW W, =0

where

a=3+2l, 5:l+§, y=(1+1)>2-

4
The solution of the ordinary differential equation of next time step 7 is expanded with the power

series of the previous time step 79 as
o
D= an ()" (191
n=0

Substituting the power series expanded solution into the ordinary differential equation, the first

four coefficients are given as

ao = Wy(1 7o), = W) (1, 70), (4.95)
1
7W( )(:U’vTO) az = EWIEJ)(:U’?TO)‘ (496)

By defining the variable coefficients of the ordinary differential equation as

1

1
k1 =1, Ko=pu, K3z=Wur, ki= 7 K5 = 570, (4.97)
1,
K6 = 170 +au, kKr=p0 ks=pPT0, kK9g=71. (4.98)
The recursion relations of a, for n > 4 is given as
1
an+t4 = _)\ . (An+3an+3 + Ang2ani2 + App1ani1 + )\nan) ) for n >0,

n+

with

( (n+3)(n+2)(n+1),
Ant3 = k3(n+3)(n+2)(n+1),
Ant2 = ka(n+2)(n+ )n+ ke(n + 2)(n+ 1),
Ant1 = ksn(n + 1) + ks(n + 1),

Anta = K1(n+4

)
)

An = kan(n — 1) + krn + Kg.

Therefore, the next time step solution W,,;(7) is given by the summation of coefficients with the

desired accuracy. The evaluated wave terms and their derivatives are plotted in figure 4.2.
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4. Potential flow: Complementary waves

with an arbitrary matching surface
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Figure 4.2. Time domain Green function and their derivatives, H, (u,7) and F(u, ).
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4. Potential flow: Complementary waves with an arbitrary matching surface

4.5 Validation and discussion
4.5.1 A heaving hemisphere on the mean free surface

The Humle’s heaving hemisphere is considered to validate the proposed Poincaré’s velocity rep-
resentation with matching surface (Hulme, 1982). The analytical solution of surface-piercing
hemisphere is given by Hulme (1982) for surging and heaving motion. A heaving hemisphere on

the mean free surface is shown in figure 4.3.

Z = —TCcosyp

R =rsinp (ry, @)

Figure 4.3. A heaving hemisphere on the mean free surface.

Spherical polar coordinates(r, ¢, «) and cylindrical polar coordinates(R, 6, z) defined by
x=Rcosf, y=Rsinf, z=-rcosy, R=rsingy, (4.99)

are used.

When the hemisphere motion is given in Apeqpe sinwt where Apeqpe and w are motion amplitude

and frequency, respectively, velocity potential is given in series of multipoles as
R = wApeaueR [pre '], (4.100)

with radiation potential (¢r) in frequency domain

bR = coa’ <¢8 + Z cnaQ”w§n> (4.101)
n=1

where ¢, denotes the multipole strengths and w9, are the wave-free potentials by multipoles

which are given in

1 = (—kr)™
Yo = H+7rlkz n! nu!

i o ((kr)
Pa(p) =k ) (=1)" o~ Py (1) ; (4.102)
n=0 8 nzzg) ov { 8 }l’:”
_ Pon(p) |k Pona(p)

Yon =5 T o, (4.103)
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4. Potential flow: Complementary waves with an arbitrary matching surface

where y = cosp, k = w?/g, P,(u) are Legendre polynomials given by

Pi(p) = p, (4.104)
(n+1)Ppy1(pn) = 2n+ DuPy(p) — nPy_1(p), for n>1.

The body boundary condition is given by

IR

5, = 08P, on r=a, for ¢el0,7/2] (4.105)
”

Subtituting the velocity potential into body boundary condition

F (u, ka) Z cn {kaPop_1(p) + (2n+ 1)Poy(p)} = PIC(OM), (4.106)

with .Z (u, ka) = a® awo After integrating above expression with respect to ¢ over [0, 1] gives

o0

1
1
/0 F (. ka)dp — kay  cnloon—1 = e (4.107)

n=1

where the integrals of Legendre functions are defined by

1
L = / Pou(1)Pa(j2)dt. (4.108)
0

Recalling the body boundary condition given in equation (4.106) leads to:

F(u, ka) ch {kaPyp—1(p) + (2n+ 1) Pop () }

1 o
= 2P (p) (/ F (p, ka)dp — ka Y cnIo,zn_1>
0

n=1

(4.109)

After manipulating previous equation, multiplying Ps,, (1) and integrating with respect to p over

(0, 1), we can obtain the equations for multipole strengths

2m+1
dm +1

00
cm + ka Z {IZm,2n—1 - 2I2m,1IO72n—l} Cpn = /Zm - 2/01217171 (411())

n=1

with

1
= /O F (1, ka) P 12) g

B (—ka)™ Ol
= ~Ino—ka ) n—0! v |,_

T k“i (_z!a)n n{Y(n+1)+7i—Inka} — 1] I,
ST (4.111)

where ¥ (x) = % In(I'(z)) = l;l((f)) is digamma function. Note that digamma function in Hulme

n=1

(1982) is mistyped, e.g. written as ¢(n). After solving the algebraic equations (4.109), c¢o is
determined by equation (4.107). The computed radiation forces are compared in figure 4.4 with
the results of Hulme (1982).
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4. Potential flow: Complementary waves with an arbitrary matching surface

1 0.5
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) Present study Present study
0.8 . 0.4 1
N 0.6 +
QU
=
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0 : 0
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ka
(b) Radiation damping

ka
(a) Added mass

Figure 4.4. Nondimensionalized radiation forces acting on heaving hemisphere.

4.5.2 Configuration of benchmark test

The schematic view of benchmark test is depicted in figure 4.5. The fluid velocity and wave
elevation on the matching surface and waterline are calculated from analytic solution. They are
used to calculate the fluid velocity at field point from Poincaré’s velocity representation. The

fluid velocity at field point calculated by velocity representation is compared with the analytical

solution.
y4
(o)
q)R = wAh,eave% |:C0a2 <w8 + Z Cna2nw5"’> (g_“‘)t:|
n=1
. R
| o _ _10%g
Y
~7 .'
Aheave Sinwt Hulme’s heaving !
1
i

Analytic Solution

T . Fed
point(P)

1
7

hemisphere(1982)

Poincaré velocity
representation

Analytic
Solution

1
. -~ up = Vop UPZE(URJFHR*JruHJruF)

-
e o o

Matching surface(Sys)

Figure 4.5. Benchmark test.
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4. Potential flow: Complementary waves with an arbitrary matching surface

Poincaré’s velocity representation with arbitrary matching surface is validated with following
cases:

4.5.3

Discretization of matching surface: The field point is located underwater, the hemi-

sphere shaped matching surface is refined to see the convergence.

Discretization of convolution time difference: The field point is located underwater,

the convolution time difference is refined with hemisphere shaped matching surface.

Different heaving frequencies: The field point is located underwater at fixed position,
the heaving frequency of hemisphere is changed.

Different matching surfaces: The field point is located underwater at fixed position,
various shaped matching surfaces are applied.

Field point is located on z = 0: When the field point is located on z = 0, the fluid

velocity reconstructed by Poincaré’s velocity representation will be discussed.

Discretization of matching surface

Hemisphere shaped matching surfaces with a radius of 2a are shown in figure 4.6. The heaving

hemisphere is located inside of this matching surface. The fluid velocities at two field points,

ER =

3.19,kz = —0.637 and kR = 23.54,kz = —0.637 are reconstructed by Poincaré’s velocity

representation, respectively. The reconstructed fluid velocity are compared with the analytical
solution in figures 4.7 and 4.8. In the figures, A(f) is the amplitude of f.
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Figure 4.6. Discretized matching surfaces of hemisphere shape.
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4. Potential flow: Complementary waves with an arbitrary matching surface
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Figure 4.7. The reconstructed velocity with respect to matching surface discretization at

kR = 3.19 and kz = —0.637 (left :

time series, right :

: vertical velocity)
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Figure 4.8. The reconstructed velocity with respect to matching surface discretization at

kR = 23.54 and kz = —0.637 (left : time series, right : mwFFT, top : horizonal velocity,

bottom : vertical velocity)
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4. Potential flow: Complementary waves with an arbitrary matching surface

The reconstructed velocity converges to the analytic solution as the mesh is refined for field point
kR = 3.19. For the discretized matching surfaces of Np,pe = 165,781 and 3381, the relative
errors are 1.1% 0.2% and 0.05%, respectively. The relative errors of the fluid velocity field point

kR = 23.54 with Npgne = 3381 increases up to 2.5%.

The obtained results show good agreement with analytical solution. Poincaré’s velocity rep-
resentation gives good convengence with respect to mesh discretization. When the field point

locates far from the matching surface, matching surface and its waterline need to be discretized

sufficiently.

4.5.4 Discretization of convolution time step

The convolution time step sizes are varied for /AT = 16, 32, 64, 128 with the spherical matching
surface of Npgner = 781. The moving window for convolution integral is set to 4.17". The fluid
velocity at kR = 3.19, kz = —0.637 calculated by Poincaré’s velocity representation is compared

with the analytical solution in figure 4.9.
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Figure 4.9. The reconstructed velocity with respect to convolution time difference A7 at
kR = 3.19 and kz = —0.637 (left : time series, right : mwFFT, top : horizonal velocity, bottom

: vertical velocity)

In the result of mwFFT, 1.3% of error is shown for vertical velocity component with refined
convolution time difference T'/At = 128. It is thought that sufficient discretizations with respect

to mesh and convolution time steps are necessary to obtain accurate results.
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4. Potential flow: Complementary waves with an arbitrary matching surface

4.5.5 Different heaving frequencies

Three differerent heaving frequencies, w = 1.0,2.5 and 4.0 rad/s, have been considered for
validation. Fluid velocities are reconstructed at fixed field point R = 5.0m and z = —1.0m. The
spherical matching surface with the number of panels, Npgner = 781 is used. The convolution

time step is A7 = 0.01s and the convolution integral is calculated over 15s.

Time series of reconstructed velocities are compared with the analytical solution in figure 4.10.
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Figure 4.10. The reconstructed velocity with respect to different heaving frequency w at

R =5.0m and z = —1m (left : horizontal velocity, right : vertical velocity)

After the initial evolution of memory effects, the reconstructed velocities show good agreement
with analytical solution. The amplitudes of reconstructed velocities for different frequencies have

relative errors less than the value of 0.6%.

In the results, we can verify that the reconstructed waves by Poincaré’s velocity representation

are propagating with different speed. This is the effects of dispersion on the speed of the waves.
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4. Potential flow: Complementary waves with an arbitrary matching surface

4.5.6 Different matching surfaces

A set of different matching surfaces such as hemisphere, bottom-opened circular cylinder, ellipsoid
and parallel-pipe shown in figure 4.11, are considered to check the sensitivity of the proposed
velocity representation to the geometry of the matching surface. The convolution time step of

AT = 0.01s is used and the convolution integral is calculated over 15s.

Time series and mwFFT of reconstructed fluid velocity at field point (kR = 3.19, kz = —0.6370)
are compared with the analytical solution in figure 4.12. The reconstructed velocity with closed
matching surfaces have relative errors of less than 0.4% and the velocity with bottom-opened

circular cylinder has a relative error of 1%.

The results are summarized as follows:

e The proposed velocity representation is validated for arbitrary matching surfaces. For
submerged field point, the reconstructed velocity shows good agreements with analytical

solution.

e For a matching surface deep sufficiently, the proposed velocity representation works even
when the bottom surface is opened. When the source point is deeply submerged and the
distance between field and source points is large enough, the time domain Green function

has very small value and the fluid velocity at the source point is negligible.
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Figure 4.11. Different matching surfaces.

86



4. Potential flow: Complementary waves

with an arbitrary matching surface
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Figure 4.12. Reconstructed velocity with respect to different matching surfaces at kR = 3.19

and kz = —0.637 (left : time series, right : mwFFT, top : horizontal velocity, bottom : vertical

velocity)

4.5.7 Singular behavior and discussion

When the field point is located on the mean free surface(z = 0), the reconstructed velocity shown

in figure 4.13 has a singular behavior.
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Figure 4.13. A singular behavior of reconstructed fluid velocity and its components with

respect to integral contributions.
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4. Potential flow: Complementary waves with an arbitrary matching surface

Two velocity contributions may cause this singular behavior:

e Contribution of harmonic component (ug) has a highly oscillatory unstable velocity profile
when convolution integral is partially evaluated with a moving window interval. It becomes
smooth after the moving window convolution time interval(7y) passes the simulation time
t > Ty.

e Contribution of free surface component (up) has a highly oscillatory unstable velocity
profile when the convolution integral is partially evaluated with moving integral interval

/t {-}dr (4.112)
t—To

where Ty is moving window convolution time interval. The contribution of free surface

integral is unstable after simulation time ¢ > Tjp, e.g., t — 1 > 0.

This singular behavior is thought to be similar to the singular behavior of waterline integral in
the time domain problem (Bingham, 1994). When source and field points move towards mean
free surface, the nondimensionalized spatial variable of the time domain Green function is given
by

— 0. (4.113)

The time domain Green functions and their spatial derivatives, shown in figure 4.2, have the
diverging behaviors when p = 0. At the limit p = 0, the time domain Green function H,(u,7)

is expressed in the combination of Bessel functions (Wehausen and Laitone, 1960):

~ T 7-2 7—2 7—2 7—2 7_2
H-(0,7) = 22 {J1/4 (8> J 14 <8> + J3/4 <8> J_3/4 (8) } 3 (4.114)

and it is bounded but has diverging behavior for 7 — oo:

— T <07 < (4.115)

T T
V2 V2
The diverging behavior of time domain Green function with the limited number of discretized
constant panels make the reconstructed velocity unstable. Numerical singularity due to the
discretization of panels and diverging behavior of time domain Green function for p = 0 is

depicted in figure 4.14.

To verify that the mesh and waterline discretizations causes the singular behavior, the waterline
segements are discretized into subline segments. Ngupine = 21 means that one original line
segment is discretized into 21 sub-line segments. Reconstructed horizontal and vertical velocities

with respect to waterline discretization are shown in figure 4.15.

Results show that the waterline discretization helps to remedy the singular behavior of recon-
structed fluid velocity on the mean free surface. However, highly oscillatory behavior of fluid

velocity does not be cured by discretizing waterline segment.
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arbitrary matching surface
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Figure 4.14. Understanding of numerical singularity due to the discretization of matching

surface and waterline with time domain Green function.
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Figure 4.15. Understanding of numerical singularity due to the discretization of matching

surface and waterline with time domain Green function.
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4. Potential flow: Complementary waves with an arbitrary matching surface

Remarks on singular behavior
When both field and source points are located on the mean free surface, the time domain Green

function and its derivatives fall into the integral type

0 gk
/ kP Jo(kR) { “ VI (4.116)
0 sinty/gk

where p is polynomial order. The time domain Green function has a diverging behavior when p

is large and the oscillating band of Green function increases with p. Therefore, it is necessary to

reduce the order of polynomial p on a mathematical point of view.

Derivating above integral with respect to time and space, the polynomial order (p) increases by

0.5 and 1, respectively, as shown below:

9 / K o(kR) 4 VIR e / k05 g k) 4 SIVIRL ) (4.117)
ot Jo sint\/gk 0 costy/gk

o0 t\/gk o0 s ty/gk
9 / kP Jo(kR) 4 R IVITL g = / kPt kR) L CP VIR i (4.118)
OR J, sinty/gk 0 sinty/gk

It means that derivating the time domain Green function gives poor results in numerical simu-

lation.

When the surface and time integrals are applied to Poincaré’s velocity representation, the order
of polynomial (p) in time domain Green function is reversely reduced by 1 and 0.5, respectively.
Therefore, a circular cylindrical shaped matching surface is introduced in the next Chapter
5. Integrating Poincaré’s velocity representation along cylindrical matching surface makes the

velocity representation less singular.

4.6 Conclusion

Poincaré’s velocity representation, based on a modification of the boundary integral equation,
is introduced. Consequently, the velocity representation becomes weakly singular and the fluid
velocity at the field point is given explicitly from the normal and tangential velocity at boundary

surfaces.

The velocity representation is applied to the unsteady time-domain problem with the linearized
free surface boundary condition without forward speed. The free surface integral is transformed
into a waterline integral by Reynolds transport and Stokes theorems. As a result, the fluid
velocity at field point is given by the distribution of fluid velocities and wave elevations on the
matching surface and waterline explicitly. It is shown that the various forms of wave term in
the time domain Green functions satisfy the same 4-th order differential equations proposed by
Clément (1998). Initial conditions of wave terms are suggested to solve the ordinary differential
equation with respect to 7. A time-marching Frobenius method proposed by Chuang et al. (2007)

is applied to calculate the wave terms.

The heaving hemisphere is considered as a benchmark test to validate the proposed velocity

representation Hulme (1982).
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4. Potential flow: Complementary waves with an arbitrary matching surface

When the field point is located underwater, the proposed Poincaré’s velocity representation is
show good agreements with analytical solution. It is validated for the cases of the discretization
of matching surface, discretization of convolution time step size, different heaving frequency and

various shaped matching surface.

However, a singular behavior of reconstructed velocity appears when the field point is located on
mean free surface (z = 0). Discretization of matching surface and its waterline with diverging

behavior of time domain Green function causes this singular problem.

It has been shown that integrating the time domain Green function along matching surface or
its waterline makes the problem weakly singular. In the following Chapter 5, a circular cylin-
drical matching surface with pseudo-spectral method based on Fourier-Laguerre appoximation

is introduced.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5 Potential low: Complementary waves with a vertical circular

cylindrical matching surface

The velocity representation given in the previous section is formulated for an arbitrary matching
surface and its waterline. The discretization of matching surface and waterline into panels and
line segments causes numerical difficulties when the field point is located on the mean free surface,
due to the singular behavior of the time domain Green function. Futhermore, discretization
requires multiple summations with respect to panels, line segments and convolution integral. It

needs also huge computation time and resources.

The matching surface does not necessarily need to be arbitrarily shaped. Even if the fluid
velocity is possibly computed by discretized panels and line segments, it is numerically favorable
to use an analytical shape as the matching surface. Applying the surface integral to the velocity
representation over an analytic matching surface can reduce the computational cost and minimize

the singular behavior.

The complementary waves which are generated by the body without forward speed propagate
in all directions. In the far-field, the complementary waves can be approximated by Fourier
series. Therefore, a vertical circular cylindrical matching surface, which has a radius larger than
body dimension, is introduced in the present study. The body is located inside the matching
surface. On the matching surface and its waterline, the fluid velocities and wave elvations are

approximated into Fourier-Laguerre series.

5.1 A vertical circular cylindrical matching surface

The coordinates with cylindrical matching surface are depicted in figure 5.1. The field point
P = (r,0,z) is located at the outside of matching surface, r > a,z < 0. The source point
Q = (a,0,¢) is on the vertical circular cylindrical matching surface with radius of a. By the law

of cosines, the distance between the source and field points (R) is given by

R? = a4+ 1% — 2arcos(6 — 0'),
P | (5.1)

R = 2asin 5 if r=a.

A vector in cartesian coordinates is transformed into cylindrical coordinates using

fr cosf —asin@ Of |f"
f=|fv| = |sinf acosf 0O |f° (5.2)
f? 0 0 1| | f?

where the superscript is a corresponding directional vector component.

The normal unit vector on the cylindrical matching surface is given by

n=cosfe, +sinf'e,+0-e,=1-&+0-& +0-e, (5.3)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

/—Z\
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Q=(&n0Q)
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P =(z,y,2)
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(a) 3D view (b) Bird’s eye view

Figure 5.1. The coordinates with a vertical circular cylindrical matching surface

where €;, €, and €. are unit basis vectors with respect to cartesian coordinates. €, and &g are

unit basis vector with respect to cylindrical coordinates. The normal fluid velocity is given by

UG = uc - = cos H'U% + sin 0w/,

and the tangential velocity is given by

wC:ucxn:wgex—i—wgey—i—wéez,
with
§ _ C winp _.C / ¢ _ & i pf /
wg = —ugsinf’, w}, = ug, cost, wg = ug sing — ul cos '

The gradients in cylindrical coordinates are defined by

vxf:frér+f9é9+fze2a v{f:faér+f9’é9+fcez

with

_(9f 10f of _ (9 107 9F
(f?“?f@?fz) - (87"7"89’82’)7 (faafGUfC) - (aaa 90"’ 8<> .

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Applying coordinates transformation in equation (5.2), the derivatives of Green functions are

given by
Re¢ = cos 'Rq —sinf' Ry, R, = sin ' Rq + cos 'Ry,
Ri = cosO'R;, — sin0' Ry, R, =sinf'R; + cos 'Ry,
H¢ = cos 0'H, —sin& Hy, H, =sin6'H, + cos ' Hy,
F¢ = cos O'F, —sint' Fy, F, =sin 0'F, + cos ' Fy.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Substituting above relationships into velocity representation in equations (4.71), (4.72), (4.73)

and (4.74) and applying surface integral along vertical circular cylindrical matching surface gives

U up + up, +uf +up

v | — |, Yy Yy y
ul | = |uf +uf, +uly +ub], (5.13)
UG ufp + up, +uj +ugp

where each of velocity components with vertical circular cylindrical matching surface is given by
e Rankine source contribution

u 0. | Racos0'ugy — Rersin 0'ug + Ry sin 6w + R cos O’ wC Rewds

up | = / / Rasin0'u + Ry cos G’UC — R, cosf'w C + R sin G’wc + ngg adf'd¢

% Reud + Rowl — Rowg

<

(5.14)

e Image source contribution

u¥ R . or | R cos0'ugy — Ry, sin 0'u + R} sin 0w —|— R cos wc Rziwc
u, / / R sin 0'up —|— R} cos Q’UC R cosOw —|— R}, sin H/wc + RCwC adf'd¢

—ufh Riug + R;‘;wc - Rg,wc
(5.15)
e Harmonic contribution
uy oy | Hracos0'ugy — Hygr sin0'ug + Hyq sin H’wé + H.¢ cos H’wé — Hycwl,
uY, / / / Hyosin@'u + Hygr cos 'ul — Hyq cos H’wé + H, ¢ sin G’wé + HTgwg
—uZH o HTCUC + Hmwg — HTglw%v
adf'd¢dr
(5.16)
e Free surface contribution
u¥, or | Fecos0'(g=c)
uf | = / / FC sin 9’ gZc) | add'dr (5.17)
z to
Up o)
with
wg = wg cos§' —wl sin¢’, (5.18)
|
%:5< Csmﬁ’—i—wccos€> (5.19)

5.2 Fourier-Laguerre and Fourier approximations
5.2.1 Fourier-Laguerre approximation of fluid velocity

Fluid velocities at field point and matching surface are expanded with Fourier-Laguerre series by

UL Uur

C N M Dq )

u |~ 0D Uy | €7Ly(—52), (5.20)
ue a=-Na=0 Upg
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

and
ug: Con
13 N M Wg -
Yol s Y | £ (=50 e (5.21)
w? n=—N m=0 Tcrm
Cl = Wmn

where U,C and W are Fourier-Laguerre coefficients for fluid velocity at field point, normal and
tangential velocities at matching surface, respectively. The series expansion are truncated with
the number of Fourier modes, N, and Laguerre modes, M. L,,(—s() is Laguerre function defined
by

L (—5C) = €2 Ly (—5(), (5.22)

where L,,(—s() is Laguerre polynomial

e dn 1 (d mo

where s is an user-defined parameter. The Laguerre functions for different m are depicted in
figure 5.2.

-10+

sC

-15¢

20+

-25 : ‘
-0.5 0 0.5 1

Em(i‘SC)

Figure 5.2. Laguerre functions £,,(—s().

The Laguerre function for m = 0 reduces to an exponential function
Lo(—s¢) = e3°. (5.24)

The user-defined parameter s is selected to be two times the representative wave number (s = 2kg)
for a good approximation. For regular waves, the representative wave number is easily selected
with kg = w?/g. In the case of irregular waves, the representative wave number is taken from

the wave number of peak wave periods (kg = k).
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

The orthogonalities of Laguerre functions and Fourier series are given as

0
1
| =5 L5 = S (5.25)
and
2r
/ ¢ "=0940d0 = 276, (5.26)
0
where 0,,,,, is a Kronecker delta given by
1 m=n
Omn, = . (5.27)
0 m#n

In a previous research, Hamilton and Yeung (2011) applied Fourier-Chebyshev series on the
velocity potential for finite water depth problems; while Liang and Chen (2017); Liang et al.

(2018) applied Fourier-Laguerre series for deep water cases.

To evaluate the Fourier-Laguerre coefficients, the surface integral with Fourier-Laguerre function

is applied to equation (5.21) as

uc
0 2T wf o
/ / Sl Lp(=sQ)e " ad¢d’
-0 J0 Wer
¢
w
Clr=a (5.28)
Con
0 g2 N oM o fye ‘ )
= / / ST T L (=5¢) Lp(—s¢)e' "D ad¢de’
—00 J0 n——N m=0 Wmn
Winn

The orthogonalities given in equations (5.25) and (5.26) are applied to evaluate the coefficients

used for approximation as

C},’gn u%
W S 2 0 ’LUC s

[kl p—— Lo (— —in8 qede’. 5.29
=[] " (=5¢) e~ d¢ (5.20)
ng wé

r=a
5.2.2 Fourier approximation of wave elevation

The wave elevation on the waterline is approximated by Fourier series with Fourier coefficient &,
N
92c),—a ™ Y Ene™. (5.30)
n=—N

Fourier coefficients for wave elevation are calculated by applying an integral over waterline to
(5.30) by

2m or N
/ [9EC],—y eiw,adG’%/ Z Ene! DY g’ (5.31)
0 R —
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Using the orthogonality given in equation (5.26)

1 2m e
En=— / [92c],_ e " do’ . (5.32)
27 0

5.3 Elementary functions

5.3.1 The elementary functions for the circular cylindrical matching surface inte-
gral

Right-hand-sides of velocity representation given in equations (5.14), (5.15) and (5.16) are given
by surface integral on the flow quantities with Green function. The harmonic velocity contribu-
tion are expressed with multiple integrals including the convolution and surface integrals on the

flow component over the matching surface with Green function as

2 0
F(r,0,201) = /: /0 /_ F(a,0, ¢, 7)G(x.€,t — T)adCdd'dr, (5.33)

where f(r,0,z) is the flow component at field point, f(a,6’,() is the flow component at the

matching surface. Fourier-Laguerre expansions on flow components are given by

f(r,0,z,1t) ZZcpqrthL( 2), (5.34)

q=—00 p=0

fla,0,¢r) =Y > Cunla,7)e" Lp(—s(). (5.35)

n=—oco m=0

Substituting equations (5.34) and (5.35) into equation (5.33)

ZZC’pqrt ‘qaﬁ —5z) Z Z/CmnaT
q=—o00 p=0 n——o;m 0 (5.36)
X / / e L (—sO)G(x, €, t — T)ad(dl'dr,
0 —00

Multiplying by e*iqlaLp/(—sz) and integrating with respect to 6’ from 0 to 27 and 2z from —oo
to 0

/Qw/ ZZcpqrt =, (—s2)L (szdzd@—ZZ/CmnaT

q=—00 p=0 n=—com=0 (5.37)

2 27
X / / / / 0 =d0 L (—s¢) Ly (—52)G(x,&,t — T)ad(dd' dzddr.
0 —o0 J0 —00

Using the orthogonalities in equations (5.25) and (5.26), the Fourier-Laguerre coefficient at the
field point is explicitly given by

Cpq(r,t) = Z/CmnaT

n=—oo

2 27
X / / / / e e L, (—sC) Ly (—52)G(x,€,t — 7)dCdzdf' dOdr.
0 0 —00 J —00

(5.38)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

In the previous section, it is shown that the time domain Green function can be expressed with

Fourier series. The Green function in Fourier series is given by
o0
G(r,0,z,a,0 ,(,t — 1) = Z =G (r, 2,0, ¢t — T), (5.39)
l=—00
where Gy(r,z,a,(,t — 7) are the Fourier components of Green function. Substituting above
expression into (5.38) and applying orthogonalitygiven in equation (5.26), we obtain

OO t

Con(r,t) = Y [ Citnla,7)Snmp(r, a,t — 7)dr, (5.40)

n=—o0 " t0

where Sy, mp(r, a,t — 7) are the surface elementary functions

)
Spmp(r,a,t —7) = 27ms/ / L (—3C)Lp(—52)Gp(r, z,a,(, t — T)dCdz. (5.41)

5.3.2 The elementary functions for the circular waterline integral

The right-hand-sides of equation (5.17) are given by a waterline integral on a flow quantities

associated with the Green function. The flow component at the field point is expressed as

t 2
g9(a,0,z,t) = / / g(a,0',¢ =0,7)G(x,&;t — 7)adl dr, (5.42)
to JO

where g(a, 0, z;t) is the flow component at the field point, g(a,8’,0;7) is the flow component on
the waterline of matching surface. Fourier-Laguerre and Fourier expansions on g(a,#, z;t) and

g(a,0',0;7) are given by

g(a,0,z,t) Z Zqu r,t)e' " L,(—sz), (5.43)

q=—o00 p=0
[e%S)

9(a,0',¢=0,7) = > Dnfa,7)e", (5.44)

n=-—o00
Substituting these two expansions into equation (5.42)
oo oo .
D > D Ly(—s2) Z / / "' G(x, &t — T)add'dr, (5.45)
q=—00 p=0 n=—o0 * t0

Multiplying e~*'? L, »(—sz) and integrating with respect to 6 from 0 to 27 and z from —oco to 0

e t

/ / Z Zqu (r, t)elle™ q)eﬁ( 52) Ly (—sz)dfdz = Z D, (a,T)

q=—00 p=0 n=—oo Y to
2w 0 2m .
X / / / el(nf'—a Q)Lp/(—sz)G(x,ﬁ; t — 7)adl' dzdfdr,
0 —o0 J0

Using the orthogonal relationships given in equations (5.25) and (5.26), the Fourier-Laguerre

(5.46)

coefficient at field point is given by

2r 27
Dyy(r,t) = Z D (a 7'/ / / et e L, (—52)G(x,&;t — T)dzdb dOdr.
n——oo to
(5.47)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Substituting the Green function given by Fourier-series in equation (5.39) into the above equation,

we obtain

Dy (r,t) Z )Fnp(r,a,t —7)dr,

n=—oo

where F,, (7, a,t — 7) are the waterline elementary functions

0
Fop(ria, t —7) = 271'(18/ Ly(—s2)Gy(r,2,a,{ =0,t — T)dz.

5.4 Elementary functions for the time domain Green function
5.4.1 Green function in circular cylindrical coordinates

The source and image source are expressed with Bessel function integrals as

Rx.8) 1 R2 + (2 — ()2 / ‘ JolkR)dk,
(.8) ro VRt 02 / ok R)dk-

Applying Graf’s addition theorem on Bessel function

Jo(kR) = > Jy(kr)Ji(ka)e' =),

l=—0

Therefore, source and image source can be expressed by Fourier series

&= > R (r 20a,0),

l=—00

R (x.8) = > e R}(r 2a,().

l=—00

with their Fourier components
Ri(r,z,a,() = /0 - e F==Cl g (k) Jy (ka)dE,
Ri(r,z,a,() = — /0 h O 1 (kr) Jy (ka)dk.
The wave terms in Fourier series are given by
H(x,&t—1)= 2/0OO "0 1y (kR) {1 — Cos <\/gik(t - 7')) } dk

e .
= Z SO Hy(r, 2,0, ¢t — 1),

l=—00
F(x,6t—7) = —2/ F+0 Jo (kR) {cos (@(t - T)) } dk
0
= Z eil(G—O')ﬂ(r, Z,a, C?t - T)a
l=—00
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

where

Hi(r,z,a,(,t — 1) =2 /OO "0 1, (kr) Jy (ka) {1 — Cos <\/g7k‘(t - 7‘)) } dk, (5.58)

0

Fi(r,2,a,C,t —7) = —2 /oo kGO 1y (kr) gy (ka) {cos (@(f - 7)) } dk. (5.59)

0

5.4.2 Surface elementary functions for the source

Fourier-series expansion of the source is given in equation (5.52) as:

R(r,a,0,0',2,0) = > IR (r,a,2),

l=—o00

with its Fourier components

Ri(r,a,z,() = / e ¢l (k) Jy (ka) dk.
0
Spatial derivatives of the source can be expressed with Fourier-series as
VeR(r,a,0,0',2,¢) = Z eit(0—0") (leér + R €0 + Rc,lez) , (5.60)

l=—00

where vector components are given by

Ray = / ke H==CL 1, (kr) J] (ka)dk, (5.61)
0
.y oo
RM:_;/ e M= (k) Jy (ka) die, (5.62)
0

o] 6 oo _
Rey = /0 R (e—’flz—ﬂ) Jy(kr) Jy (ka)dk = /O ’z_g‘ke_kz_cjl(kr)Jl(ka)dk. (5.63)

Substituting the Fourier components into equation (5.41), the surface elementary functions for

derivatives of source are given by

0 /0
Sfmmp(s;r, a) = 27Ta5/_ /_ L (—5C)Ly(—52)Ran(r, 2,a,()dCdz
= 2ma /0 k2 (53 k)T (k) T, (ka)dk, (5.64)
0 /0
Sg,n,mp(s; r,a) = 2mwas / L (=5C)Lp(—52)Ror (1, 2, a, ¢)dCdz
= —27ni /0 28 (51 k) Ty (kr) J (ka)dk, (5.65)

0 0
anymp(s;r, a) = 27ras/_ /_ L (—5C)Lp(—52)Ren(r, 2,a,¢)dCdz

= 2ra /0 k283 (55 k)T (k) Ty (Ka)dE, (5.66)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

where Zr(nl])?(s; k) and Zr(gz))(s; k) are defined here by the vertical integral functions of first and

second kind

0 0
Z)(sik) = s /_ /_ e H=C L (—sC) Lp(—s2)dCdz, (5.67)
Z,%))(s;k) = s/_o /_U ’Z:;e_k|z_<|Em(—sg)ﬁp(—sz)dgdz, (5.68)

respectively.

5.4.3 Surface elementary functions for the image source

Fourier-series expansion of the image sources is given in equation (5.53) as

R (r,a,0,0',2,0) = > IR (r,a,2,0)

l=—00

with its Fourier components
Ri(r,a,z,() = —/ ) 7 (ki) Jy(ka)dk.
0

Fourier series expansion of the spatial derivatives of the image sources is given by

[e.e]

VR (roa,0,0',2,¢) = Y O (Ry &, + R &9 + REjes) (5.69)
l=—
where vector components are given by
= /0 h keFE+0) gy (k) J] (ka)dk, (5.70)
Riy = g /0 h eEFO gy (kr) Jy (ka)dk, (5.71)
RE = — /0 h ek Jy (k) Jy (ka)dk. (5.72)

Substituting the Fourier components into equation (5.41), the surface elementary functions for

spatial derivatives of the image source are given by
0 0
Stmptsira) =2mas [ [ a5 Ly (~5RE (1200, dcd:
= —2na /0 kZ$3) (53 k) (k) J, (ka)dk, (5.73)
0 0
Sj?v*njmp(s;r, a) = 27Tas/ / Em(—SC)Ep(—sz)sz’n(r,z,a, ¢)dCdz
= 2mni /0 23 (s1k) Ty (kr) I (ka)dk, (5.74)
0 0
Sf;}mp(s;r, a) = 2mas 3 /_ Em(—sC)Ep(—sz)szn(r,z,a, ¢)d¢dz

= —271a /O kZ$) (53 k)T (k) Ty (ka)dE, (5.75)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

where Z,(s]);(s; k) are defined as the vertical integral functions of third kind

(s;k) = s / / KA L (=5C) Lp(—52)dCd. (5.76)

5.4.4 Surface elementary functions for the harmonic component

The time derivative of wave term in the Green function expanded with Fourier series is given in

equation (5.56) as

HT(T? a797 9/?’2’(71‘:) = Z ell(e_al)HTl(r? a? Z?C? t)? (577)
l=—00
and its Fourier components
Hy(rya,2,¢,t) =29 / k2 b0 g (kr) Jy (ka) sin(y/gkt)dk. (5.78)
0

Spatial derivatives of wave term in Green function can be expressed with Fourier series

VeH, = i O (H,q18r + Hog 8 + Hocpes) (5.79)
l=—00
with
Heay =29 /O h k2 b0 7 (kr) J) (ka) sin(y/gkt)dk, (5.80)
Hyp = —2\/5% /OOO k2 R0 7, (k) Jy (ka) sin(y/gkt)dk, (5.81)
Hyep =29 /O " 3 RO 1y () Jy (k) sin( /gt ). (5.82)

Substituting the Fourier components into equation (5.41), the surface elementary functions for

derivatives of the harmonic term are given by
S mp(siT,a,t) —27ra3/ / Lo (=80)Lp(—52)Hran(r, 2, a,)dldz
= 47a /g / k2 Z83) (55 k) T (kr) Tl (ka) sin(y/gkt)dk, (5.83)
Sot nmp(siTa,t) = 27ras/ / Lo (=5C)Lo(—52)Hrgr (1, 2,0, C)dCdz
= —4mni/g / k2 Z3) (5 k) T (kr) T (ka) sin(/gkt)dk, (5.84)
SH(simat) —27Tas/ / Lon(—=5C) Ly (—=52) Hyen(rs 2, 0, C)dCd
= 4may/g / k2 Z(3) (53 k) Jn(kr) Ty (ka) sin(y/gkt) dk. (5.85)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5.4.5 Waterline elementary functions

The wave term F' in Fourier series is given in equation (5.57) as
oo
F(r,a,0,60',2,¢,t) = Y "R (r,a,2,(1)

l=—00

with its Fourier components

F(r,a,z,(,t) = —2/ G0 gy (kr) Jy (ka) cos(y/gkt)dk
0

Spatial derivatives of the wave term can be expressed with Fourier series
> .
V§F = Z ell(979 ) (Fa,lér + Fglvlég -+ Fglez) , (586)

l=—00

where its Fourier components are given by

Foi= —2/ ke* O gy (kr).J] (ka) cos(\/gkt)dk, (5.87)
O
2
Fpy= ?ll ek CH0) 7y (kr) Jy (ka) cos(/gkt)dE, (5.88)
0
Foy=—2 / keF GO (k) Ti(ka) cos(/gkt)dk. (5.89)
0

Substituting above Fourier components into equation (5.49), the waterline elementary functions

for derivatives of the wave term are given by

F
]:anp

0
(s;rya,t) = 27ms/ Ly(—s2)Fqn(r,z,a,( =0,t —7)dz
= —4ra / k2 (s; k) (k) J), (ka) cos(y/gkt)dk, (5.90)

f£7n7p(s;r,a t) = 2mas L’p —52)Fp (1, 2,0, =0,t — 7)dz

= 47ni /O z{! T (kr)Jp (ka) cos(v/gkt)dk, (5.91)
0

]:Cnp(srat —27ras/ Lp(=sz)Fen(r,z,a,( =0,t —71)dz

o0

— —47a / Jn(kr)Jy (ka) cos(\/gkt)dk, (5.92)

where 2,24)(5; k) are the vertical integral function of the fourth kind defined by

0
Z0(sik) = s / M L (—52)dz. (5.93)

—00
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5.4.6 The vertical integral functions
The vertical integral functions are defined in equations (5.67), (5.68), (5.76) and (5.93) as
Z,,%I),(s;k) = s/o /0 e‘k|z_<|Em(—sC)L'p(—sz)dCdz,
(s;k) —s/ / !C— e HF=Cl L, (—s¢) Ly (—s2)dCdz,
3) (s;k) = s/ / FEFO L (—50) Lp(—52)dCdz,

2 (s;k) = / "= L, (—s2)dz.

The vertical integral functions of the first and second kind can be decomposed into two sub-

integrals as

mp (s; k) = 3/ / L (=5C) Lp(—52 dCdz+s/ / L (=5C) Lp(—52)dCdz

(5.94)
(s; k) = 3/ / 2 Lo (=8C) Lp(—52)dCdz — s/ / L (=5C) Lp(—52)dCdz
(5.95)
Using a recursion relationship of Laguerre functions
0 0
a—CLm(fsC) = a—CLm,l(fSC) + 8$Ly—1(—5C). (5.96)

the recursion relationship of integral is given as follows

k=0 p _ Lm(=82) = Ln-a(=s2) | (k=3) [* _keeg) B
/ooe L (—s¢)d¢ (k—l—%) + (k %) /006 Ln—1(—s¢)d¢

(5.97)

/ 0L, (s = EmlE32) — Lma(osz) | (K ; / ML, L (s0)dC (5.98)

with the integral values when m =0

k) % Y k0 €T — e
e Lo(—sC)d¢ = = e Lo(—sC)d¢ = ————, (5.99)
—o k+ 3 2 k=3
Two sub-integrals are given by
s \lP—mi—1
_Ek;)m mFT M > P
C . 2
/ / ) Lo (—5C) Lg(—s2)dCdz = L m=p:
2
0 m<p
0 m>p
0 0 11
/ / O L, (—5C) Ly(—52)dCdz = sE+S m=p.
—00 J 2z (k s [p—m|—1
2
\ 2
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Consequently, the vertical integral functions of first and second kinds are expressed as

2
m =
(k+3) P
Zﬁ%},(s; k) = (k- £)|mfp|fl , (5.100)
-5 2 m#p
(k+5)"
0 m=p
2O (s k) = g — s)lm-pl-1 . 5.101
(k+3)

Using the integral relationship of Laguerre function multiplied by exponential function

0 (k?— §)m
k¢ . _ Ww=3)

The vertical integral functions of third and fourth kinds are given by

gy _ . (k= F)mtP

2)(s;k) = e (5.103)
4. (k—3)P

ZW(sk) = e %§p+1 (5.104)

Note that the vertical integral functions have the following symmetry and antisymmetry prop-

erties
Zon(sik) = Z5 (s k), i=1,3 (5.105)
and
Zi(sik) = =25 (s; k) (5.106)

Consequently, the elementary functions also have the following symmetry or antisymmetry rela-

tionship with respect to Laguerre mode m and p:

Snmp(8;1,0,t) = Sppm (57,0, 1), when the integral involves Zf,}]f)(s; k),  (5.107)
Snmp(s;1,a,t) = =Sy pm(s; 7, a,t), when the integral involves Z,(ﬁl))(s; k). (5.108)

Therefore, the vertical derivative of source elementary function has an antisymmetry relationship,
and the other elementary functions satisfy the symmetry relationship with respect to m and p.
Using the symmetry and antisymmetry properties, the computational efforts for calculating the

elementary functions can be reduced.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5.5 Poincaré’s velocity representation with a vertical circular cylindrical match-
ing surface

5.5.1 Integrals involving cosine, sine functions or normal and azimuth directional

components

The velocity contributions given in equations (5.14), (5.15), (5.16) and (5.17) include cos 6’ and

sin@’. Therefore, the integrals involving cos @ and sin @’ are necessarily as given by

s (2™ [0 cos @’ g
o [ a0 S L (s dcas (5.109)
and
1 [ , cosO0' | o,
2/, f(a,0',0) D T (5.110)

The coefficients of Fourier-Laguerre and Fourier series on the matching surface are given by

2 0 .
Con= [ [ 5080 (=50 dca G.111)
T Jo —00
1 o / —inb’ 39/
D, = — g(a,0",0)e do'. (5.112)
2w 0

Using the relationships of trigonometric functions

< < Y sl
, 610 4 6—10 ) . 610 _ 6—19
cosf = — sinf’ =

_— 5.113
. (5113)

the integrals can be given by the Fourier coefficients of n — 1 and n + 1 modes as

2 0 / . _
o [ @08 R (s agay = 54 e O L G
2r Jo - sin ¢’ 2 i(Crmnt1 — Crn—1)

and

]_ 27T 9, H / ]_ -DTL Dn—
27 a0y 80 L eming g — L) Pt Pt L (5.115)
21 0 Sin 0/ 2 I(Dn-i—l - Dn—l)

The normal and azimuth directional vector components are given by coordinates transformations

given in equation (5.2)
a I3 : ! rn o’ 1 . 13 n
f¢=cos@ fs —sin@ f", f :7<81n9f +cos€f>.
a
Using the relationships given in (5.113), the integrals involving normal and azimuth directional
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

vector component can be given by

-2 / ” / F4a, 0, C) Lon(—sC)e ™ dcde’

- § (CmTH—I + Cré;m, 1 .Cmn—&-l + lcmn 1) (5116)
27
el = 2 / 19 (a, 8", O) Lo (—sC)e™ ™ dcdy’

ma

2 (lcfrm—l—l lcfnn 1 =+ Cmn—l—l + Cmn 1) (5117)
1 27 L

D=7 |, f*(a,0',0)e™ " '

v

1

== (Dﬁ1 + DSy~ iDLy +iD) ) (5.118)

/ 1 271— / H !

D9 — 0 9/ —inf dal

e A U
1

-2 (D5, —iDS_ + DL,y + DI, (5.119)

where C’rgnny Chhn, D%, D;) are Fourier-Laguerre and Fourier coefficients involving f5 and f7

defined by
s 27 0 .
Con=re [ 100" 0Lm(=s0)e " dcas
27 0 —00

21 0
= o (/f%ﬂ@%@mwwmm
1

D'E —_ 3 9/ —1n0’d9/

1 27T / 0" 1p!

D! = — "(a,0',0)e” " dp’.
T=o [P0

5.5.2 Poincaré’s velocity representation with elementary functions

The fluid velocity at field point in Fourier-Laguerre series obtained by using elementary functions

and flows in Fourier-Laguerre series are given by

U% 1 N M upn -
ul | = e Z Z e Ly (—sz), (5.120)
ué n=—N p=0 uz

where Uy, , Up, and Uy, are Fourier-Laguerre coefficients of the fluid velocity at field point and

superscripts are corresponding direction respectively. Fourier-Laguerre coefficients of the fluid

velocity have four contributions given by

uy — uRy + uRy* + tu + uﬁy’ (5.122)
z Rz Rzx Hz Fz
Uz, = URE Ul eyl Lyl (5.123)

107



5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

The terms in right-hand-side of above equations correspond to contributions of source, image
source, harmonic and waterline integrals, respectively. These contributions are summarized as

follows:

e Source and image source contributions

N M
.1 . . \
Z’lﬁlx + u]ﬁf = 5 Z Z [(C:rlm—i-l + Cgv,n—l + IWTZrm—l-l - lwﬁw ) (an mp an mp)
=—N m=0
+ (Wzanrl + Wﬁ@ - ‘Cr?erl + lcfnnfl) (Sé?,n,mp + S n mp)
u;ﬁLy + ujﬁiy* = Z Z mn+1 mn—l - Wrzrm—i-l - mn 1) (an ,mp + SCIL%,:L,mp)
—N m=0
+ (C’:}mn—i—l + Crrr?lm 1t iW’im-{—l - iwgzn—l) (Sg,n,mp + S n mp)
+ 2 (SE s p + S )]s (5.125)

Rz Rzx 9’ R Rx
upn + upn Z Z SQ n,mp S§ n mp) W (Sa n,mp Sa n mp)
—N m=0

W (S8 oy — SE

,n,mp N mp)]

(5.126)

where W2 and W?

o o are Fourier-Laguerre coefficients of normal and azimuth directional

components of tangential velocity. Using the equations (5.116) and (5.117), they are given

by
2 o
— 71’n d d@/

=35 (Wﬁzn—&—l + Wﬁzn 1 1Wmn+1 + lwg”mfl) (5127)
2T
we = = / W Lo (—sC)e ™0 d¢dl’
= 5 (iwfzn—i-l - iWTIrm—l + Wgwn—l—l + W'gln—l) (5128)

e Harmonic contributions

N M
1 t
. . H H
Uy, = _5 Z Z /t Con1 + Con1 + Wi — iWio1) San mp — Wi S¢inmp
—Nm=0""?%

+ (Wrzrm—i-l + Wrzrm—l - icrﬁm—i—l + icgln—l) SGH’,n,mp]dTv (5129)

1 N M t
H z H T H
upny - _5 Z Z / mn+1 -1 Wmn—H - Wmn 1) Sanmp + 2Wmn8<,n,mp

—Nm=0"1t

+ (Cr?erl + C;;mel + iWTZnnJrl - 1W§m71) Sé_[’,mmp]dTv (5130)

t
utlz — Z Z / o SE iy T WS = W SHE )T (5.131)

—N m=0
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

e Waterline contributions

N t
Uy = —% Z /t (Ens1 + En1)FE, pdr, (5.132)
n=—N "'
. N "
ugzy = _% Z / (gn—l-l - 871—1) fgn,pdﬂ (5133)
n=—N 710
N t
urz = - ;_:N 5 EnF by pdT. (5.134)

5.6 Evaluation of elementary functions
5.6.1 Elementary functions involving semi-infinite integrals

The surface and waterline elementary functions involve the integrals

>~ Zhp(s: k) J} (ka) costv/gk o
/0 ' {354)(8;@} Al {Jn(ka)} ‘ {sint\/gT%} dk, =123 (5.135)

where Zf,i;,(s; k) and Z%),(s; k) are the vertical integral functions discussed in section 5.4.6. They

are written again

2
m =
(1) (k+3) '
Zmp(S; k‘) = (k‘ o %)|m7p|71 9
Sy
2
0 m=p
Z2)(sik) = k—g)m
’ (=s)sgn(m —p)——2 o m#£p
k+3%)
and
ke — S)mtp (k— )
3 (g p) = s 3" (g gy = s F =3
Zmp(‘S?k) 8(kj+ %)m+p+2’ Zp (S’k) S(k + %)erl'

All vertical integral functions can be expressed as functions of k as
(k51

Ta) < (5.136)
(k+3)"

where ¢ and r are integer.

The derivative of the Bessel function of the first kind can be given by a Bessel function of the
first kind with different order as (Abramowitz and Stegun, 1965)

Tofa) = 5 na(a) = T (0)}, (5.137)

T (@) = —Jpir(2) + an(x). (5.138)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Therefore, the surface and waterline elementary functions need the evaluation of semi-infinite

integrals with respect to k

< (k
Brsinan= [ w2l
0

T (5.139)

l\)\m (O] VA
\_/ \_/

sin t+/gk

where p is a real number. ¢ and r are integers. s is a positive real number (s > 0). m and n

T (k1) T (ka) {C(’”\ﬁ} dk.

are integers. r and a are real positive numbers satisfying r > a. t is a positive real number with
t>0.

5.6.2 Semi-infinite integrals

The integrals given in equation (5.139) are rewritten by applying the change of variable x = ka

o0 _ o)
P (s;srya,t) = ar_p_q_l/ xpL 7) Im (ax) Jy () {C?ST\/E} dx (5.140)
0 sinTy/x

with the following parameters

a:%, a:f, T =1t\/g/a. (5.141)
a

The field point (r) being located outside of vertical circular cylindrical matching surface of radius

(a) and time being always positive, then
a>1, 72>0. (5.142)

The evaluation of two semi-infinite integrals involving two Bessel and trigonometric functions

given in following equations are necessary

Lo 7) = /0 (@) I () () cos T/Td, (5.143)
T (0 7) = /O (@) o (0) Iy () sin /T, (5.144)

with the function
f(z) = xpmf. (5.145)

The integral can be split into three integrals defined by

/Ooo {.}da;:/()‘11 {.}d:ch/er{‘}der/: () da. (5.146)

where z. is the semi-infinite integral bound and will be discussed later.

5.6.3 Integrals near zero and intermediate interval

The integral near zero is given by

{(02:} / f(z (){z::\\g}dx (5.147)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Applying the change of variable, x = u? leads to

A4f@ﬁﬂﬂa@JM¢){aﬁTVﬁ}dv—2/buf@%Jm@m%JAu%{gﬁTu}ML (5.148)

sin 7/x sin Tu

The original and transformed integrands given in the above equation are compared in figure 5.3.

In the figure 5.3, the original integrand shows a highly oscillatory behaviour near z = 0. It gives

1.5 ‘ ‘ ‘ 1.5

— Jo(3k) Jo(k) cos(30VE) | —‘uJ()(SUQ)J()(l‘LZ) c'os(SOu)

-1.5 ‘ : ‘ -1.5 ‘ s ‘
0 0.5 1 1.5 2 0 0.5 1 1.5 2
k U
a e . cos(cy/x) T (au? .2 cos(cu)
(Lm<>%w>($M%@J (b) wly(au?) (b )Qm@m>

Figure 5.3. The behavior of oscillatory integrands near to zero.

poor results when a direct numerical integration is applied. On the contrary, the transformed

integrand shows a relatively smooth behavior near v = 0. A numerical integration for transformed
1

4
numerical test. The adaptive 3-point Gaussian quadrature with discretized integral integral

integrand gives a reliable result for small u. The integral upper bound is set to x = 7,u = % by

0.2
Au = mi 0.05 5.149
R (max(a 1,7+ 0.001) > (5.149)

N

is applied to calculate the integral from z =0 to z =

The integrals having intermediate interval from x = % to z. are defined by

{:Z} / (@) Iz @{ziy} .. (5.150)

The numerical integration by applying 3-point adaptive Gaussian quadrature with discretized

interval Az = Auw is used. The choice of integral upper bound x. will be discussed later.

5.6.4 Evaluation of semi-infinite integral by splitting oscillatory functions

Computing a semi-infinite integral of an oscillatory function with slowly decaying amplitude is
more complicated than for a monotonic function. Blackemore et al. (1976) compared numerical

methods, evaluating the semi-infinite integral of an oscillatory function. They concluded that
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

the integration, then summation algorithm provided good results over a wide range of functions.
The efficiency of the numerical algorithm increases by using an accelerator. The accelerator is

numerical algorithm extrapolating an infinite summation from finite summation.

Lucas and Stone (1995) applied the integration, then summation algorithm on the integral in-
volving a single Bessel function with various accelerators, e.g, Euler transform, e-algorithm and
mW-transform with a different sub-integral interval (Davis and Rabinowitz, 1988; Shanks, 1955;
Wynn, 1956; Sidi, 1988; Lyness, 1985). They showed that all accelerators enhanced numerical
efficiency and concluded that mW-transform with successive zeros of the Bessel function gives
better results than others. Following previous works, Lucas (1995) applied the same idea on
the integral involving two Bessel functions. Two Bessel functions are split into two oscillatory

functions and zeros are found by asymptotic forms of oscillatory functions.

The present study extended their idea for the case of the integral involving two Bessel function
multiplied by sine or cosine functions. The integrals involving two Bessel functions multiplied

by sine or cosine functions are defined by

I <
el / £ (o) () 4 TV g (5.151)
I;’Omn sinTy/x
Using the asymptotic forms of Bessel function for large arguments given by (Abramowitz and
Stegun, 1965)

In(z) = \/zcos <$ - % = %) , (5.152)
Yo(z) = \/zsin (:n - ”7” - %) , (5.153)

and the relationships of trigonometric functions given by

cos(A £+ B) = cos A cos B F sin Asin B, (5.154)
sin(A £+ B) =sin Acos B £sin Bcos A, (5.155)

the oscillatory terms in the integrand are split into four functions

4
1 i
Im(ax)Jp(z) cos Tv/x = 1 z; T (a, 73 2), (5.156)
1o
Im(ax)Jp(z) sin T/ = 1 z_: VO (75 2) (5.157)

where j,gf% and y,% are the oscillatory functions defined as

IV, 7)) = J (o) cosTv/T + Y, (o ) sin T/, (5.158)
T2, 7i2) = J (e 2) cosTv/x — Yo, (o ) sin T/ (5.159)
TN, myx) = T (o) cosTv/x + Y, (o ) sin T/, (5.160)
TN, my2) = T (o) cosTy/x — Y, (o ) sin T/, (5.161)
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and
VD (a, m32) = Jo (o ) sinTy/x — Y (0 2) cos T/, (5.162)
VO (o, 7i2) = Jo (o) sinTv/x + Y (0 ) cos T/, (5.163)
VO (a,7mi2) = J (o 2)sinTy/z — Y, (o 2) cos T/, (5.164)
YW (,72) = JF (o x)sinT/x + Y (a;2) cos v/, (5.165)

with
JE (a;2) = Jo(ax)Jn(z) F Vinlox) Y (), (5.166)
YE (;2) = Jp(ax) Y (z) £ Yoo (ox) o (z). (5.167)

Using the asymptotic forms of Bessel functions in equations (5.152) and (5.153), the asymptotic

forms of oscillatory functions are given by

T (e, 75 ) (a=a+7va—Z(m—n)}, (5.168)

jn(fn(a T; )

(a—1) x—T\f—E(m—n)}, (5.169)

(3) _ _r
Toii(a, T3 x) mg\/acos (a+1)z—1Vx 2(m+n+ 1)}, (5.170)
2
(4) _r
T (o, T3 x) Wx\ﬂcos (a+1)z+71Vx (m+n+ 1)} (5.171)

and

Y (e, m52) ~

w;\/asm{(o‘_l)“”f—g(m—n)}, (5.172)

yr(y%r)L(Oé,T;x)N_Trx2\/a8in{<a_1)m_7_ x_g(m_n)}a (5'173)
V) (0, 72) ~ —Wx%/asin{(a-i-l)iU—T T Zmant1)}, (5.174)
2 us
(4) ) - =
Vi (a, ;) Wm\/asm{(oﬂ—l)x—i—Tf z(m—i—n—i—l)}. (5.175)

The behaviour of split oscillatory functions follows a sinusoidal function for large x. The phase
function is given by
Y=otz +7V5+ 7. (5.176)

+

where o™ = a £+ 1 and 7 is function of m and n. Therefore, the phase functions corresponding

to the oscillatory functions are defined by

IV = o~z + 7z + a4, for ) and Y1), (5.177)
9D =a "z -7y 474, for T2 and Y3, (5.178)
93 = otz — 7z 4 8, for %) and Y3, (5.179)
I =ate+ ey, for ) and Y3, (5.180)
where
T T
7A:—§(m—n), ’YB=—§(m+“+1)- (5.181)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

The behavior of the phase functions is plotted with respect to x in figure 5.4.

9 ot + 7T+

o*
S
o
K
!
o
5
o
o
o
o
O
B
o

Figure 5.4. The phase function of oscillatory functions along z-axis

The figure shows that 9 for i = 1,4 always increases with respect to z, but 9 for i = 2,3 has

a minimal value when

dy® T
=af — = f =2, 3. 182
ir | a N 0 or i=2,3 (5.182)
The value of z; minmizing 9@ for i = 2,3 is given by
1/ 7\2
s=-—) . 1
7o =7 (ﬁ) (5.183)

The phase functions, 9®) for i = 2,3, decrease until z < z, and increase for > z;. Near
xs where the phase changes slowly, the oscillatory functions, j,gf% and y,(,% for + = 2,3, look
stationary. Therefore, x5 is defined here as a stationary point of oscillatory functions in the

present study.

Lucas (1995) reported a similar phenomenon as initial poor behavior of J - . Tt is understood

that initial poor behavior happens when the phase function of J! is equal to zero.

The semi-infinite integral is separated into the summation of sub-integrals with proper integral
intervals. The zeros or maxima/minima of oscillatory functions are used in the integration, then
summation algorithm but finding maxima/minima of arbitrary oscillatory functions given in
equations (5.158)-(5.165) are not easy. Therefore, zeros are used as integral interval for sub-
integral in the present study.

Finding the zeros of oscillatory functions, jy(,f%, T%,’f) for i = 1,4, is relatively easy. After finding

the first zero by direct searching with marching interval
o
~ daF’

The next zero guess is taken from phase function, 9@ for i = 1,4. The next zero guess, 7y, is

Ax (5.184)

estimated by increasing the phase by 7 as
aF a7 ut, = aTr + T /T 4, (5.185)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

It gives an explicit expression of next zero guess

2
—7 4+ \/7'2 + 4aF (oﬁa:j + 7T + 7r)

Tji1 = o (5.186)

(0)

.1, the Newton-Raphson method with the initial guess of © j(_)H =i

L
is used to compute the next zero as

From the next zero guess x

(nt1) _ (1) Jt P —

(n+1)
J+1
Newton-Raphson method converges within 3-4 steps with accuracy O(10712).

The next zero, x;41, is taken from the converged value x . Numerical tests show that the

Finding the zeros of oscillatory functions, ,,77%,))7(7?“ for ¢ = 2,3, is complicated due to the

existence of a stationary point. The phase of the stationary point is given by
Oy =099 (x,),  for i=23. (5.188)

After finding the first zero by direct searching, the next zero guess is given by

Oéixi—T Zi, ”191—793| <1.57T,
afzl — T\ Ti = oFa; — /T — z; <2 and |9; — 95| > 15w, (5.189)
atr; — T + T, z; > 2% and |9; — 9| > 1.57.

It also gives an explicit expression of the next zero guess

2
T+ 72+4ai(aixi77 931) 0
2aF > ‘xz -z ’ < 1.57,
\/2 +(at 2
- +4 i— i—
zi, = (T i §zix Ve 7r)> , z; <2 and |z;—a°| > 157, (5.190)
2
+y/ T2 +dat (ata; - it
(7— 2440 gzim 7T W)) 7 T > x07 and |$Uz _$0‘ > 1.57.

It is straightforward to apply the Newton-Raphson method to find zeros of oscillatory functions

as )
ey dOW (237)
R
dx

Some of the zeros near the stationary points are not detected by the above procedures. In that

i=23 (5.191)

case, the zeros are found by applying direct searching with marching interval given in equation
(5.184). After finding the first zero after stationary point, the extrapolation procedure is applied

to accelerate the evaluation.

The procedures of decomposed oscillatory functions are plotted in figure 5.5. The behaviours of
stationary point are observed for the functions, \77%2“ T(rzl)n for ¢ = 2,3, and the singular behaviors

are also shown due to Bessel function of the second kind which has a singular behavior at x =0

lim Y,,(z) = —o0. (5.192)
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Figure 5.5. The oscillatory functions, Jmy, and Vi, for m =n =0 and a = 4, 7 = 20.

The singular behaviour of Bessel function near to origin provides a criterion for assessing the

integral bound (x.)

Ym,1
Ze = max (=25, Yo

with an approximated first zero of Bessel function of the second kind

0.89357697,

Yv1 =
v+ 0.931576803 + 0.2603510~3 + 0.011980 1

Finally, the semi-infinite integral is split into four integrals as

Icoomn Z Ic(zmn
If:omn Z Is(zmn

where eight integrals are defined by

O) (, 73 ) d,

I (c,m) = f( )Tm

)

Ig?nn(%ﬂ :/ (@)Y (a0, 75 x)da

116

— 0.006073 — 0.001~3,

i=1,2,3,4.

(5.193)

v=20,
v>1.
(5.194)

(5.195)

(5.196)

(5.197)
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The successive zeros of oscillatory functions can be found after the first zero ¢ has been searched

from the lower integral bound, x.. Then, the semi-infinite integral is expressed as

10, = [ 1w l><amdx+/ fa jszn<mxdm+/ F (@) TG e 73 2)d +
= f( )T (a,myx)de + RO, for  i=1,4, (5.198)
Is(l,)nn = f( ) (a Ty x)dr + R( ) for i =1,4, (5.199)

with the infinite series summation of sub-integral

R, = lim Za%, RO = 1im Sl for  i=1,4, (5.200)

K—oo

where series terms are given by

ol = /Q%Jr2 (@) TD (o, 75 x)dw
k mn\“ 1 )
Tk for  i=1,4. (5.201)

Integrals involving Jy(nl% and yé?n for ¢ = 2,3 are expressed with sub-integrals considering the

stationary point (x;)

Ic(lmn = f(x)j,g%(a, T;x)dr + S(@ + Rg())o for 1=2,3,
o (5.202)
IO, = [ f@Y0 (e, m2)de + SO + RY, for  i=2,3,

with the finite and infinite series summations

l
ng) = Zag]g, Rcf = hm Za2(l+1)+2k for 1= 2,3, (5.203)
k=0
=0 e
S = by, ROo=lim Y by, for =23 (5.204)
= k=0

where series terms are given by

a(i) _ /:Ek+2 f(a?)j(i) (o, 73 2)dz
k mn ) bl
e ., for  i=23. (5.205)

by = / @)V (@, 2)da

k

(%)

The summation index [ is chosen in order to have z; > z.. The infinite series summations R

and Rg%o are split into

J . e .

RO =S"all+ S af),  i=1,234, (5.206)
k=0 k=j+1
i e

ROLG) =D b5+ D0 byl i=123.4, (5.207)
k=0 k=j+1
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where the right-hand-sided terms Zzozjﬂ aéilz and ZZOZJH bg,z are able to be extrapolated with

successive series terms agg and b( ) by using e-algorithm (Wynn, 1956). The e-algorithm extrap-
olates the infinite series summation with a polynomial multiplied by a decaying exponential.

The following error criterion with a successive increment of j is used to obtain the integral with

desired accuracy(er)

(4) RW (s
()”%’O()gwq, and 1—e,§(i)“’%’?(])§1+e,, j>2.  (5.208)
Res00(j — 2) Res00(j — 1)

The integration procedures of oscillatory functions are depicted in figures 5.6 and 5.7. The series
terms ag’lz and b k) are evalulated by sub-integrals having the integral interval from z; to x;4o.

With the successive move of sub-integration, the extrapolation errors shall be reduced. The

1—6[<

starting points of extrapolation depend on the oscillatory functions.

Ik+2
b() :/ "”’ de, i=1,4.

e RORNTO :
< s M e “2&471)544
s &

TET e \ ¥ [Zrio * »Lk+4
v
\/ \/

A

V! Successive move with extrapolation.
Direct To
Integral

Figure 5.6. The evaluation procedure of semi-infinite integral involving j ) and ymn for

i=1,4.
A
(1) Ti42 (%) o
A / f(x) ’(’;;I(C“’T’“) dz, i=23.
b T mn(av’r;x)
,:’T stationary P—
int T g 7 7
.HF &i L al+27 bl+2 al(+)47 bl(+)4
K
< & DAV
S W AWILN AN
~S— 3 x
Eet P o VARV,
——
=
P
Direct Integral Successive move with extrapolation.

Figure 5.7. The evaluation procedure of semi-infinite integral involving jn(fn and Yy, for
i=2,3.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Two benchmark functions, which have highly oscillatories but slowly decaying behaviors, are

tested with extrapolation. The results are given in Tables 5.1 and 5.2.

Table 5.1. Evaluated integral values of benchmark function 1 with extrapolation algorithm

Direct integral Integral with
Integral & & Error(%)

(with zeros) extrapolation

/ e 001 70(32) Jo (2) cos 10y/zdx 1.249865 x 1071 1.249862 x 101 -0.00024
0

/ e 0012 70(32) Jo (z) sin 10v/zda 2.209661 x 1072 2.209660 x 1072 -0.00005
0

Computation time 0.084 s 0.044 s -

Table 5.2. Evaluated integral values of benchmark function 2 with extrapolation algorithm

Direct integral Integral with
Integral 5 & Error(%)

(with zeros) extrapolation

/ e 00 J0(32) Jo(x) cos 10v/zdx  4.828753 x 1071 4.828750 x 10~ -0.00006
0

/ 2e 00 Jo(32) Jo(x) sin 10y/zdz  —2.588788 x 1072 —2.588785 x 1072 -0.00012
0

Computation time 0.176 s 0.068 s -

The relative errors of integral values evaluated by using extrapolation are calculated with the
reference integral values. The reference integral values are calculated by numerical quadrature
without extrapolation. An absolute integral error criterion of 109 is used for calculating refer-
ence integral values. The relative errors for benchmark test functions are less than 2.4 x 1074%.
Note that the relative errors can be further reduced by adjusting the desired accuracy (er) in

equation 5.208.

The results show that the evaluated semi-infinite integral with extrapolation gives good results
and the computation is accelerated. It is more evident when f(x) has a slowly decaying behavior.
It must be noticed that the numerical algorithm with split oscillatory functions can be applicable
for an arbitrary but monotonic behavior function. The numerical algorithm is able to be used
by selecting the starting point of extrapolation for functions having monotonic behaviours for

large x.
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5.6.5 Evaluation of semi-infinite integral by steepest descent method

An alternative way of evaluating the semi-infinite integrals based on the steepest descent method
has been suggested (Chen and Li, 2019; Li et al., 2019a). The integrands in equation (5.151) have
highly oscillatory behaviours when the variable 7 is large (Li and Chen, 2018). The computational
time of algorithm based on split oscillatory functions for large 7 is slightly longer than the case
of small 7. The procedure proposed by Chen and Li (2019); Li et al. (2019a) is summarized in

this section.

The semi-infinite integral of two Bessel functions multiplied by sinusoidal functions given in

equation (5.151) are wirtten again

25 (o, 1) = Oof(x)Jm(ax)Jn(x) cos Tv/zdr,

c,mn

oo, 7) = /OO f(@)Jm(az)Jy(z) sin Ty/xdz.

Introducing the complex integral

T2 (s ) = T2, (s t) — %, (0 1) = / F(@) () T () Ve d, (5.209)
and the relationship between Hankel and Bessel functions
Im(ax) = % [Hﬁ)(am’) + H,(T?)(ax)} , Jn(z) = % {Hr(ll)(x) + Hg) (a:)} , (5.210)

let us obtain for the integrand
1 o
Ton(57) = § / f(@) [HD (a)HO (@) + HP (o) HD (x)

(5.211)
+HV (ax)HP (2) + H? () HP (x)} e ITVEdy.

The oscillatory parts of Hankel functions can be decomposed from asymptotic forms of Hankel

function as (Abramowitz and Stegun, 1965)

Hr(r})(ozx) = ﬁr(nl)eiw, Hg)(azz:) = ﬁr(,f)e_iam, (5.212)
H(x) = He”, HP () = AP e, (5.213)

where .FAL(& ) and flg ) are the amplitude functions of Hankel functions. And the exponential terms
corrspond to oscillatory parts of Hankel functions. Using the above equations, the semi-infinite

integral can be decomposed into four integrals

Tos(a5m) = TN m) + TP (a5 m) + T (asm) + TP (s ), (5.214)
with
oM onr) = [ F@) AP (0x) A (@)eller D=Vl g, (5.215)
5B (air) = [ f@) A0 (ax) HP (@)l De=vel gy, (5.216)
5l(air) = [ f@) AP (ax) HP (@)l De=vel gy, (5.217)
722D (q;7) = / F(@)HD (ax)HO (z)ell-(etDa=7v] g (5.218)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

The integrals are further simplified as
S . + oo . —
IOO’A(a+;T) = fA(m)el[a IiTﬁ]daz, IOO’B(a_;T) :/ fB(x)el[o‘ =T x]dl', (5.219)
Te Tc

IOO’C(OF;T) = /00 fc(:r)efi[aiwﬁﬁ]dm, TP (at;7) = /OO fD(w)efi[am“ﬁ]dw, (5.220)

with

~
b
&
I
~
—
&
>
=

W(lat —1]a)q8M (@),  fBa)=f@)HAY([a” +1]2)BP (2)  (5.221)
@) = fe)HP ([o +1] ) ]

(
10 (2),  fPe) = f@HD ([of -1 o) HBP (@) (5.222)

n

* — o £ 1 are used. The exponential terms in integrands have phase func-

where parameters «
tions similar to 9 in equation (5.176). Function f(z) is multiplied by amplitude functions of
Hankel functions I:I,(,P(ac) and I:I,(T%)(x) Because the amplitude functions I:IT(;)(JU) and H? (x)
are smoothly changing with respect to z > 0, the functions f4, fB, f¢ and fP have smooth

behaviors. The oscillatory phase function in exponential term is transformed into

ofr+7r = [x (”‘f)z +2/x <2Of> + 1] (;) - <4;2i> : (5.223)

Introducing the integral variable

20 1 2
u=+r (a) , orinversely z = 1 (u—l) : (5.224)
T &

the semi-infinite integrals are given by

7004 = oit* / A TR A e / 9P ()™ T du,  (5.225)

c

720 — it / g€ (u)e ™ D gy gD i / 9P we T du, (5.226)

c

with smoothly behaving functions

gt () = 4 <uz:> QZT gP(u)= fP <“i7_> 22:, (5.227)
9% (u) = f© (i:) QZ:, 9" (u)= f” (uz:) QZ:. (5.228)

The integral parameters are given by

9 +
ut = fcc% >0, rt= 427 > 0. (5.229)

Therefore, the four different integrals fall into two types of integral given by
o0 . 9
7! = / g(w)e WD gy, (5.230)
Uc

IH—/ g(u)ei“(“*wdu. (5.231)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Evaluation of the second integral type is separated into

7l when Ue > 1,
7' = OH . ‘= (5.232)
Iy" +Z1°%", when Ue < 1,
with
o0
T = / g(w)e" gy, oy, > 1, (5.233)
Uc
ue < 1 (5.234)

1
IIII :/ g(u)em(uflydu7

Integral type I in the complex plane
The integral type I is given in equation (5.230) as

II — / g<u)efili(u+l)2du

Applying the change of integral variable, w = (u + 1)2, this integral is transformed into

II — / g (\/Ei 1)67iﬁwdw
wi o 2w

(5.235)

with a lower bound, w} = (u. + 1)2. The closed contour integral of integral type I is shown in

figure 5.8. The integrand does not have singularity inside of closed contour, the integral along

closed contour given by using Cauchy theorem as
' +1L + T =0. (5.236)

S[ul

3{w]
A "

wh 7!
> R[w]

1
1 /
/

—

Figure 5.8. Closed contour I integration path in complex w-plane and mapped integration

path in complex u-plane.

The infinite integral ZL can be written as

b g <\/pei9 — 1) o
e—lﬂpe pde

7L = fm [ N/
* pSoo 2./ pei?
0 pe (5.237)

&g(vpei@—l) ikpcosd kpsin@
— 1 —ikpcos @ kpsin
phm ; N/ e e pdf
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

where the complex variable w = pel? is used. 6. is integral bound will be discussed soon. The
above integral is zero when the real part of exponential function is negative from Jordan’s Lemma
(Brown and Churchill, 2004). Because k and p are positive, sin @ should be negative, in other

words, 6 should be in range 6 € [—3,0] to make Z, be zero. Consequently, the closed contour
passes through quadrant 4 of the complex w plane.

The steepest descent path is determined by putting the imaginary part of integrand in equation
(5.237) as zero. Therefore, the integral path of Z/ is set to be 6, = —73.

Using Cauchy’s theorem in equation (5.236), the integral along real w axis can be evaluated by
steepest descent method as

(5.238)

The semi-infinite integral involves the exponential factor, e the numerical evaluation of above

integral is straightforward and converges fastly for large x, where & is proportional to s

a?”

Integral type II in the complex plane

The second integral type with lower integral bound u. > 1 is given in equation (5.230) as
00 .
Iél = / g(u)em(ufl)Qdu.
Uc
Applying the change of variable, w = (u — 1)?, this integral is transformed into the following

form ~
7 = / IV AL v gy, (5.239)
v 2w
with lower integral bound w} = (u. — 1)2. The contour of integration path for second integral
type is depicted in figure 5.9. There is no singularity inside closed contour, the integral along
closed path is given by using Cauchy’s theorem

T+l + T =o. (5.240)
Slw] S[ul
A A
\\\\\\ ~
\\\\ Ié[ w = (1 — u)2 .
N o0 \
A x> N
\ i\ \
I&I \\\ “¢ J \\
\ \
\ |
\ \
‘. :
| > R[w] > R[u]
We 7! ue > 1

Figure 5.9. Closed contour II integration path in complex w-plane and mapped integration

path in complex u-plane.
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The integral ZL! can be expressed as

0c / nelf .
g( pe” + 1)€im(pe‘9)pd9

7 g
o = o 0 2y/pelf (5.241)
0e ~ )
= lim @ei/’vﬂcm@efﬁpsin@ 4o
=0 Jo 2 peie pav.

where the complex variable w = pel? is used. The above integral is zero when the real part
of exponential argument is negative. Therefore, 6 should be in range 6 € [0, 5] to make the
integral be zero by using Jordan’s Lemma. The steepest descent path is determined by making

juy

the imaginary part of exponential argument in above integrand to be zero, e.g. 0. = 7.

The integration along real w-axis can be given by using Cauchy’s theorem in equation (5.240) as

T — gl — girwe L /OO gWwe 10 £ 1) g, (5.242)
! 2 0 Vv W1 =+ lw

Integral type III in the complex plane
A supplementary integral is necessary when the lower integration bound u. is lower than 1 for

integral type II. The integral type III is given in equation (5.234) as
1
IIII :/ g(u)ein(uflydu
Uc

Applying the change of variable, w = (u — 1)2, the integral is transformed into

THT = /wo_ <—W) e duy (5.243)

with lower bound w, = (u. — 1)%2.The contour integration path is depicted in figure 5.10. No
singularity is located inside the closed integration path, then the integral along closed path can

be given as the below:

T g T T = o, (5.244)
Sw] Slu]
A
Iic{I 0 u.<1 1
"""""" ] > Rlu]
IiIOII 1..11[]

Figure 5.10. Closed contour I1] integration path in complex w-plane and mapped integration

path in complex u-plane.
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where the integration ZX/! can be expressed as

T — Jim we _9(1 —Vw +iwy) elr(wiwr) g,
o0 0 2v/w +iwy

= lim " _g(l — Vwtiw) e TRV .
0 2¢y/w + iwy

The real part of exponential function in above integral should be negative to make the integral

wy—0o0

(5.245)

wy—r0o0

zero. Therefore, wy should be positive. When wj is positive infinity, above integral is zero by

using Jordan’s Lemma. Two integrals along vertical paths are given by

IIII 1 /Oog<1_ 1w> —K)wd (5 246)
0 =z —Fe w, .
i0 2 0 /iw

and

IIII ikwe 1 /OO g (1 B We +iw) —Kkwg (5 247)
: =e ¢ — e w. .
h 0 VvV Wwe + 1w

2
Therefore, the integration along the real w axis can be calculated by evaluating two integrals

along the vertical axis

e "dw. (5.248)

2

i peog (1= Viw) g (1= Ve i)
THI — / ———~ e "dw — " /

0 Viw 2 Jo Vwe +iw

It must be noticed that the contour integrations along the vertical axis are introduced to provide
the complete sets of steepest descent method evaluating oscillatory functions. The integration
interval for integral type III is defined along the real axis w, and it is finite from w_ to 1. There
is no numerical difficulty to evaluate the integral type III along real axis w. In the present
study, the numerical quadrature is directly applied on equation (5.243) instead of evaluating two

semi-infinite integrals though they involve exponential factors in the integrands.

Choice of lower integral bound =z,
Functions g (u), g% (u), ¢°(u), g”(u) defined in equations (5.227) and 5.228 can be expressed
by

2, * *
g ) = 7 <“’ . > Q”—T T=A,B,C,D. (5.249)
« «
with functions f7 (z) can be expressed as
[T (@) = f o) B (0" £ 1)) HY (x), i, j=1or2 (5.250)

where the change of variable x = % (£)2 is used. The original function f (x) is given in equation

5.140 as ( v
— p\ETO) 5951
fla) = a" 2 (5.251)
Therefore, the functions g (u) can be expressed in the forms below with denominator
R (u)
1 u?7? "
(35 +0)
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where h”(u) corresponds to the terms related to the nominator of original function f (), two

Hankel funtions and change of variable.

Functions g7 (u) are singular when the denominator is equal to zero. Therefore, the poles are

given by:
2an/0

T

- : + _
u = lu,, with u, ==+

(5.253)

P
inside the contour integral III depicted in figure 5.10. Value of ug is given by mapping function

iug =1—vVw: +iw. (5.254)

Splitting real and imaginary parts gives the relationship

The poles u = iu;t locate outside of contour integrals I and II, but v = iu;, can be located

w, =1—u3, and w = —2us. (5.255)

c

Introducing w, = (1 — u.)?, the location of pole is obtained as

ug = —v/uc(2 — ue). (5.256)

To construct a closed contour integration without pole inside, we use the fact that ug satisfies

u, > uz. With the relation u, = —uc, /7 the criterion of lower integral bound is given by

Te> 0 < te > . (5.257)

2 — U

Ue

2_uc> is a motononically increasing function for 0 < u. < 1 and

The lower integral bound z, = o (
has a maximum value of 1 when u. = 1. It provides a choice of x. > 0. Futhermore, integrals
involving Hankel functions Hﬁ)(z) = Jn(2) + 1Y (2), H,(,f)(z) = Jm(2) — 1Y (2) provide the
criterion for the lower integral bound due to singular behavior of Y;,,(2) near z = 0. Therefore,

the lower integration bound is selected by

T, = max (O’, max (%7 yn,1>) ) (5.258)

where yp, 1 is the approximated first zero of Y, (2) given in equation (5.194).

5.6.6 Remarks on elementary functions

The numerical evaluation of elementary function proposed in the present study is based on direct
numerical quadrature. The computation algorithm could be optimized by constructing sets of
approximation functions with decomposed regions, which are commonly used for the evaluation of
wave Green function in linear potential codes (Chen, 2004; Lee, 1995; Babarit and Delhommeau,
2015).

It is presumed that the ODEs of time domain Green function may help to evaluate the elementary

functions. Furthermore, it probably can accelerate for computation of convolution integrals.

126



5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

The ODE for wave term of time domain Green function in spatial and time variable is given by
(Clément, 1998)

' H FH, (1 OPH, 7 OPH. 9
(R*+2?) 51 ~ZT 5+ <4T2—4Z> 52 t 173 +H =0 (5.259)

When the field points are not on the matching surface(R? + Z2 > 0)

0*H, 1 U 0°H, 72 U\ 0*°H, 7  0°H. 9
—— — 2— - -UH, =0, 2
art " 2uy 073 +<4u+ uz> g2 iU g T U =0 (5-260)
where U(R, Z) represent the square of source function
1
Z) = ———s. .261

If integrals over circular cylindrical surface with weight function on ODLEs are evaluated an-
alytically, ODEs for elementary functions can be derived. If ODEs and initial conditions for
elementary functions are available, elementary functions can be evaluated by solving the ODEs
rather than using the numerical quadrature. Furthermore, Clément (1998) suggested the idea
that convolution integrals involving the Green function can be updated by simply integrating
ODEs. If ODEs for elementary functions are derived, the convolution integrals involving the

elementary functions given by
t t
F(T)Sa,00m,mp(t — T)dr, f(T)Fagnp(t —7)dr, (5.262)
to to

where S, ¢/:n.mp(7) and Fg g p(7) are the elementary functions. If ODEs are available for
elementary functions, the computation of convolution integrals can be accelerated, and a better

accuracy is also expected for the convolution integral.

In the present study, the convolution integral is evaluated by direct summation with simulation

time step.

5.6.7 Summary on the evaluation of elementary functions
Elementary functions having two Bessel functions and trigonometric function are defined by
oo
Lemn(ost) = / f(@)Im(ax)Jy(x) cos Tv/xd,
0
oo
Tsmn(o;t) = / [ (@) I (az) Iy (z) sin Ty/xdz.
0

They are evaluated by splitting the integral interval into several sub-integrals

/Om{-}dx:/o‘ll{.}der/}le{,}der/:{.}dx'

The first integral is transformed with the change of variable u? = z due to the highly oscillatory

behavior near to origin, giving

/ " F@) Jm(a@) Ju(@) {Tﬁ} dr =2 / " (u2) T () Ty (u) { T“} du.
0 0

sin 7/x sinTu
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The numerical quadrature is applied to evaluate above integral and the integral along interme-
diate interval from % to x. with discretization integral Au = Az = min (W, 0.05).
The numerical quadrature used in present study is the 3-point adaptive Gaussian quadrature.
Two numerical algorithms have been suggested for evaluation of semi-infinite integrals from .

to infinity.

e Split oscillatory functions

Irregularly oscillatory functions are split into interpretable oscillatory functions. Semi-
infinite integrals of split functions are transformed into infinite summation of sub-integrals,
which corresponds to finite integral between zeros. Infinite summation is extrapolated from

finite summation of series with Wynn’s e-algorithm (Wynn, 1956).

e Steepest descent method

Oscillatory functions are transformed into the complex plane. Using Jordan’s Lemma,
steepest descent paths are found for corresponding integrals. Integrals involve exponen-
tial factors having negative real arguments. The exponential factors having negative real
arguments make the integrand decay to zero fastly. The implementation of numerical
quadrature is straightforward due to this decaying behavior. The argument of exponential
factor is proportional to 72/a2, implying that numerical efficiency increases for large 7

and/or small «.

In computational procedure of steepest descent method, transformed function into complex do-

main has its phase function:

(7o)~ ()

It involves the denominator of 7. It makes the accuracy and efficiency of the steepest descent

20\ ? 20t
aixif\/;%:[x<0‘> 12\/:E<O‘>+1
T T

method being poor for small 7/« compared to the split oscillatory functions algorithm. Therefore,

the following criterion is adopted to select algorithm evaluating semi-infinite integral

< 0.4, Split oscillatory functions,
(5.263)

Q2 219

> 0.4, Steepest descent method.

Computed harmonic and waterline elementary functions with two numerical algorithms are shown

in figures 5.11 and 5.12. The elementary functions are calculated by steepest descent method
T

for — > 0.4. The results from two numerical algorithms evaluating elementary functions are in

Q
good agreement with each other.
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5. Potential flow: Complementary waves with a vertical circular

cylindrical matching surface

6 ‘
——Split oscillatory functions
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o
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Figure 5.11. Computed harmonic elementary functions with two numerical algorithms,

r=28.694,a=25s=2326m+p=0, (left: n =0, right: n =1).
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circular cylindrical matching surface

Split oscillatory functions

o Steepest descent method

Split oscillatory functions
o Steepest descent method
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Split oscillatory functions
o Steepest descent method
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o Steepest descent method

Split oscillatory functions
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15
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Figure 5.12. Computed waterline elementary functions with two numerical algorithms,
r=28.694,a =2.5,s=3.26,p=1, (left: n =1, right: n = 2).
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5.7 Reconstruction of wave elevation and fluid velocity above the mean free
surface

The complementary fluid velocity at the field point is calculated by equation (5.120). The com-
plementary wave elevation can be computed using the kinematic free surface boundary condition
by

0Z¢ in

5 = ue(r0,0:1) Z Z et (5.264)

—N p=0

A Crank-Nicolson scheme is applied to calculate the wave elevation for time integration. After the
complementary wave elevation has been reconstructed, a pseudo-Wheeler stretching is applied
on the Laguerre function for the extrapolation of velocity for z > 0 by using Laguerre function
(Wheeler, 1970)

UL Uur

C N M |Upn|

wl| == > > (U] €Ly(—s52), (5.265)
Ué n=—N p=0 u;n

with coordinates transformation similar to Wheeler stretching for deep water
2 =2z-Z¢. (5.266)

Laguerre functions for z’ > 0 increase exponentially which give large fluid velocities in the air

zone. Therefore the value of Laguerre functions is limited to 2 as follows:

lmit — 9, if Lp(—s2') > 2,
Ly(—s2) = £ p(=sZ) (5.267)
L,(—sz'), otherwise.

The behavior of Laguerre functions above the mean free surface is shown in figure 5.13.

5
0r T T -
.
—e—Limited Lo(—s2')
ol —o—Limited £;(—s7')
- —v—Limited £y(—s2)
.......... Original Ly(—sz")
_____ Original £, (—sz')
— —-Original ﬂz( SZ/)
15— ‘ ‘ ‘ ‘
1 1 2 3 !

L, (—s2")

Figure 5.13. Behavior of Laguerre functions for 2’ > 0.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5.8 Reconstruction of complementary wave flow in viscous flow model

The proposed velocity representation with a vertical circular cylindrical matching surface is
valid when the field point is located outside the matching surface, e.g., » > a. The evaluation
of elementary functions and convolution integrals on the computational mesh of the viscous flow

model are time-consuming tasks.

Instead of evaluating the flow components at each field point from elementary functions, A B-
spline interpolation scheme on the structural grid can be used for calculating the complementary
fluid velocity and wave elevation at arbitrary point. A cylindrical interpolation grid is intro-
duced to construct complementary fluid velocity and wave elevation by using Poincaré’s velocity

representation.

The procedure of calculating complementary fluid velocity and wave elevation is depicted in
figure 5.14. The complementary fluid velocities on the matching surface and wave elevations on
the waterline of the matching surface are obtained. The complementary fluid velocities at the

Gauss points are interpolated from complementary fluid velocities on the matching surface.

The Fourier-Laguerre coefficients of complementary fluid velocities in equation (5.29) are calcu-
lated by applying Fast Fourier Transform (FFT) and the integral along vertical axis ¢. Fourier

coefficients of wave elevation in equation (5.32) are computed by using FFT. The coefficients are

given by
Cran ué
Whin s (¥ [0 wg —ing’
= — Ly (— mdCde’.
wir| = L wp|  EmseT
Wrcnn wé r—a
and

1 o = —ind’ 3n/
En = 27r/0 [92c],_, € do’.
Fourier-Laguerre coefficients of complementary fluid velocity at field points are calculated by
using Poincaré’s velocity representation given in equation (5.121) as

g, = Ul U

R R Hq F
u;)ln = upny + upny* + upny + upny ’

Uz, = UNE + U + U + U P

The vertical component of complementary fluid velocity on the mean free surface is calculated

by applying inverse Fourier-Laguerre series.
| NoM
1) — in6
Ué«(?", 9, O, t) = E Z Zu;neln ,
n=—N p=0

The complementary wave elevation is reconstructed from kinematic free surface boundary con-

dition as .
Zc(r,0 =0;t) = / ug(r, 0,05 7)dr. (5.268)
0
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

The complementary wave field is reconstructed by applying inverse FFT. The complementary
fluid velocity on the interpolation grid is calculated by applying inverse Fourier-Laguerre series

with pseudo Wheeler stretching as

u%‘ 1 N M u;fn
ul,| = o Z Z Us, | €L, (—sz"),
Z n=—N p=0 z
Ug p U,

with 2/ = 2 — E¢.

The complementary fluid velocity and wave elevation are now reconstructed in 3D interpolation

grid, as shown in figure 5.14b.

The reconstructed complementary fluid velocity and wave elevation on 3D cylindrical interpola-
tion are used to interpolate the velocity and wave elevation at arbitrary position. A cubic spline
interpolation, as explained in section 3.2.4, is used to evaluate the complementary fluid velocity

and wave elevation at arbitrary point.

z
Bod ‘ @ ;)—O—O—(H R
ody H

Gauss points

Wheeler stretching by

Laguerre function(L,,(—sz))

Poincaré velocity

b Qe

representation

(a) Reconstucted complementary wave field in Fourier space

inverse FFT h

(b) Reconstruction of 3D complementary wave field by inverse Fourier transform

Figure 5.14. Reconstruction of complementary fluid velocity and wave elevation on a

cylindrical grid by using a Poincaré’s velocity representation.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5.9 Validation and discussion

5.9.1 Benchmark tests

Here we use the same type of benchmark test as the one previously used for the Poincaré’s
velocity representation with arbitrary matching surface. Two complementary wave problems

representing radiation-diffraction problems are considered.

e The radiation problem of a heaving hemisphere introduced in previous section 4.5.1 (Hulme,
1982).

e The diffraction problem of a wave diffraction by a vertical circular cylinder (McCamy and
Fuchs, 1954).

In the wave diffraction problem, circular cylindrical coordinates are used. The linear inci-
dent wave potential can be expressed in cylindrical coordinates by Graf’s addition theorem
(Abramowitz and Stegun, 1965)

w  coshkoH koH

igA coshko(z+ H) ipn —iwt
B — g | GOSN T ) ikow ,—iw
! [ w cosh ko H c
(5.269)
Acoshk H)
=R _igA cos oz + Z€ml m(koR) cosmfe™ ],

where A is incident wave amplitude. w is wave frequency. H is water depth. €, = 1 for m =0

and ¢, = 2 for m > 0. kg is the modal wavenumber satisfying linear dispersion relationship
w? = gko tanh ko H. (5.270)

The diffraction potential should satify the body boundary condition given by

by 0%

ﬁ = _ﬁ, on R = acylinder, (5271)

where ®p is the diffraction potential and acyiinder is the radius of cylinder.

The diffraction potential satisfying the above body boundary condition is given by eigenfunction

expansion
igA cosh ko (Z + H) - : J;n(k(]acylmder) iwt
®o =R e mi" H,, (kR Qe Wt . 5.979
’ w cosh kOH Z o Hr,n(koacylmder) ( 0 ) cosmoe ( )

The diffraction problem considered in the present study has various Fourier components. In
constrast, the radiation problem has only one Fourier component. Force acting on the cylinder

and wave elevation along waterline of cylinder are shown in figures 5.15 and 5.16.

134



5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface
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Figure 5.15. Horizontal force acting on
vertical circular cylinder, H = 10a (Malenica,
1994).
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Figure 5.16. Wave elevation along waterline

of vertical circular cylinder, H = a, %Qa =2
(Kim and Yue, 1989).

5.9.2 Fourier-Laguerre approximation

The complementary fluid velocity on the vertical circular cylindrical matching surface needs to
be approximated by Fourier-Laguerre series with coeffcients in Poincaré’s velocity representa-
tion. The approximated complementary fluid velocities with Fourier-Laguerre series are given in

equation (5.21) as

ug Crn
3 N M 13
w W Y
ol 2 2y | Em (5O
We n=—N m=0 mn

r=a

where C1,.. Wfrm, Wik, and ann are Fourier-Laguerre coefficients.

It is necessary to evaluate the Fourier-Laguerre coefficients for arbitrary function f(a, ¢, () de-
fined on the matching surface. Let the scalar function defined on the matching surface can be

approximated with Fourier-Laguerre series as

M N o
Fa,0,0) ~ > CounLm(—sC)e™

m=0n=0

(5.273)

where Cy,, is Fourier-Laguarre coefficients of function f(a,¢’, ().

Using the orthogonal relationships of Laguerre and trigonometric functions given in equations
(5.25) and (5.26), the coefficient is given by

0 2w Y
Cmn - % /;oo /O f(av 0/7 C)ﬁm(_sq)e_lne dCd&/ (5274)
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Integral along 6’ can be evaluated easily by using Fast Fourier Transform(FFT). The integral

along vertical axis ( is defined by

0 0 . o0 .
| m©Lm(=s0dc = [ MO Ln(=50d¢ = [ h(=u)Ln(su)e i du
—oo ~oo 0 (5.275)
:/ h(z)e “dx
0
with
S 2n / —ind®’ 3o/ 7 2 2x
h(¢) = Py f(a,0'Q)e de’, and h(z) = ;h <_s> L, (2x). (5.276)
T Jo

The semi-infinite integral along x-axis can be evaluated by using Gauss-Laguerre quadrature.
Gauss points and associated weights can be used to evaluate semi-infinite integral as (Abramowitz
and Stegun, 1965)

NGauss

/000 h(z)e ®dx ~ Z wih(x;), (5.277)

i=1
where z; and w; are i-th Gauss point(abscissas) and weight. Ngguss 18 the number of Gauss
points. Gauss points is taken from i-th zero of Laguerre polynomial Ly, ..(z) and the weights

of Gauss-Laguerre quadrature (w;) are given by

(NGauss!)2xi
(NGauss + 1)?[LNggusst1(@i)]?
Gauss points and weights are obtained by using subroutine cdgqf of IQPACK (Elhay and Kaut-
sky, 1987).

(5.278)

w; =

Gauss points may be located outside of computational domain because the depth of computa-
tional domain is limited. Therefore, extrapolation of scalar function f(a,’,() is necessary to

evaluate Gauss-Laguerre quadrature.

Let Gauss points((;), which is physical axis transformed from mathematical axis x;, are located

in the computational domain with function values f;. Exponential function is used to extrapolate

f(¢) as
f(¢) ~ ae”, (5.279)

where a and b are arbitrary real and b should be equal or greater than zero. If all f; are positive

or negative, a and b can be evaluated by applying the least squre method as

+Ina

b | = (ALAL) " Alby,, (5.280)
with
1 G In (+f1)
Ay = 1 CZZ . b= ln(j:[fg) . (5.281)
i CNse;ected In (ifz\.fsezected)

where Nggjected 18 the number of exsiting Gauss points inside of computational domain. Signs of

Ina and In(f;) depend on the sign of function value f;.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

When some of f; has different sign, e.g., some of f; are positive and some of f; are negative, a
nonlinear least square method is needed to evaluate a and b. A global nonlinear optimization
algorithm based on iterative random search procedure with adaptive movement is applied to
minimize the approximation error defined by (Corana et al., 1987)
Nselected 2
E(a,b)= Y (fl- —aebzi> . abeR, b>0. (5.282)
i=1

where FE(a,b) is approximation error. Initial values of a and b for nonlinear optimization al-
gorithm are given by a and b obtained in previous time step. Benchmark tests on nonlinear

algorithm for arbitrary function with exponentially decaying behavior are shown in figure 5.17.

The values of arbitrary function f; are distributed with respect to z € [—10,0], as plotted with
circle in figure 5.17. f; have positive and negative sign. Extrapolated function by using nonlinear
optimization algorithm is plotted as rigid black line in figure 5.17. They are following the global
tendencies of distributed f; along z axis. The results show that extrapolation for arbitrary

functions for z < 0 works well.

0 o 5 0 o
o ® %
o
5l 5l
N s
-10+ -10+
o Obtained f; at ¢; o Obtained f; at ;
f(¢) approximation f(¢) approximation
-15 . : : -15 : :
-1 0 1 2 3 -3 -2 -1 1
f(©) f(<)

Figure 5.17. Benchmark tests on approximation of exponential function by using nonlinear

optimization algorithm.

After applying least square method, Fourier-Laguerre coefficients can be evaluated by

S NG/—l Nselected Ngauss
—2min(j /N
Crmn = Yol D wifiga+ > w; fi g1 | e 2 MNe), (5.283)
9 “ - .
7=0 =1 1=Nselectedt1

where f; ; = f(a, 9}, G, ) are flow quantities obtained at Gauss points x = (a, 6, z;). Gauss points
are determined from abiscissa of Gauss-Laguerre quadrature and uniformly distributed Fourier
points. The complementary fluid velocities on the matching surface for heaving hemisphere is
approximated by Fourier-Laguerre series and shown in figure 5.18. The number of Fourier and
Laguerre modes used for approximation are Npoyrier = 2 and Npgguerre = 1, respectively. The

number of Gauss points used for approximation is 128.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Analytic solution Fourier-Laguerre Approximation Absolute error (u,,, — Up,aiytic)
—0.9 0 0.9 —0.9 0 0.9 -0.02 0 0.02

(a) z-directional velocity

Analytic solution Fourier-Laguerre Approximation Absolute error (4l — Ugpaytic)
I 1 D i ) I
-0.9 0 0.9 -0.9 0 0.9 -0.02 0 0.02

(b) y-directional velocity

Analytic solution Fourier-Laguerre Approximation Absolute error (uj,,, — u;nalytic)
T i 1111
-0.9 0 0.9 —0.9 0 0.9 -0.02 0 0.02

(c) =z-directional velocity

Figure 5.18. Fourier-Laguerre approximation on fluid velocity generated by heaving

hemisphere.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

These results show that fluid velocities on the matching surface are well approximated by Fourier-

Laguerre series.

Fourier-Laguerre approximation of fluid velocity is tested by increasing the number of Fourier-

Laguerre modes and Gauss points. Approximation errors of fluid velocity are defined by

T

€T B z 9

Cu 1 Noauss (Uaprai — Yanatytic,i)

vyl — = y Ly 9

“l TN Z (uapv'w,i uanalytic,i) (5.284)
Gauss )

€? 1=1 (’LLZ Ry ) )

v apr,t analytic,i

where superscripts denote the directional component. gpr: and Ugnaiytic are approximated fluid
velocity and analytical fluid velocity at i-th Gauss point, respectively. Approximation errors of
fluid velocity with respect to different numbers of Fourier-Laguerre modes and Gauss points are

shown in figure 5.19 during one period of heaving motion.

Sudden changes of approximation errors, as shown in 5.19, happen when the calculation switches
between linear and nonlinear approximation algorithms. As the number of modes and Gauss
points increases, the approximation error decreases. Results confirm that the approximation of
fluid velocity by Fourier-Laguerre series show good agreements with analytical solution, and that

the approximation errors can be reduced by increasing the number of Gauss points.

9 x1073 %1073
— NFourier = 2, NLu_querre =1, NGausspoint = 128 — NFourier = 2, NLu_querre =1, NGausspoint = 128
150 7 NFuur'ier = 87 NLaguerre = 37 NGaussPoint =128 | | e NFuur'ier = 87 NLaguerre = 37 NGaussPoint =128
== 'Nme,rier = 87 NLaguFrre = 37 NGa,u,ssPnint =512 [ -- 'Nme,rier = 87 NLaguFrre = 37 NGausstfnt =512
o1t 1 & 1t |

t/T

z-directional velocity

t/T
(b) y-directional velocity

x1073

T T
_NFuur'ier = 27 NLaguerre = 17 NGaussPoint =128
""""" NFnurier = 87 NLaguFrre = 37 NGausstfnt =128
- - -NFrourier = 8, NLagueM'e =3, Ncausspoint = 512

t/T

(c) z-directional velocity

Figure 5.19. Fourier-Laguerre approximation errors of fluid velocity with respect to number

of Gauss points and modes.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

5.9.3 Poincaré’s velocity representation for radiation-diffraction problem

Radiation problem: Heaving hemisphere

Hulme’s heaving hemisphere, as explained in section 4.5.1, is considered as a benchmark radiation
problem. The complementary fluid velocity and wave elevation at Gauss points are calculated by
the analytical solution. The Poincaré’s velocity representation with cylindrical matching surface

is used to reconstruct the complementary fluid velocity and wave elevation at the field point.

Figure 5.20 shows complementary fluid velocity and wave elevation calculated by the analytical
solution and the Poincaré’s velocity representation when the field point is located on the mean
free surface, x = (r,0,2) = (8, 7,0). A(f) denotes the first-harmonic amplitude of f. The sphere
of radius 1m has a heaving frequency w = 2.0 rad/s and heave motion amplitude of 2.0m. Time
step used for simulation is At = 0.01s. The matching surface has a radius ¢ = 2m. The numbers
of Fourier and Laguerre modes used for Poincaré’s velocity representation are Npoyrier = 6 and

NrLaguerre = 3, respectively.

2 : =12
o Analytic Poincaré é
g 1.1 Relative error = 0.59%
L S —
=
% 0.9 — — - Analytic
) Poincaré
< 0.8
0 3 6 9 12 15
t/T
2 , — 1.2
3 o Analytic Poincaré é
) T11 Relative error = 1.04%
g ;C‘Z I e
% :\; 0.9 — — - Analytic
S \3: Poincaré
<

e
o

0 3 6 9 12 15
¢/T t/T
2 . — 1.2
= o Analytic Poincaré §
:55 Ng 1.1 Relative error = 1.04%
§ 50
ba;\'./ E/ li——pm===—===—=—x
% <
- :\a 0.9 — — - Analytic
:3:}) = Poincaré
< 0.8
0 3 6 9 12 15
t/T t/T
2 . — 1.2
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% Tl Relative error = 0.60%
4 Y I
% <
T :—\; 0.9 -— —An-alytic
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< 0.8
0 3 6 9 12 15
t/T t)T

Figure 5.20. Reconstructed complementary wave elevation and velocity on the mean free
surface for heaving hemisphere, (7,0, 2) = (8.0, 7,0), w = 2.0 rad/s. From top to bottom : wave

elevation, x—, y— and z-component velocity, respectively.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

After the initial ramp and when the memory effect due to convolution integral has converged,
the complementary wave elevation and fluid velocity show good agreements with results of the
analytic solution. Results of moving window FFT show that first-harmonic amplitudes of recon-

structed fluid velocity and wave elevation have relative errors less than 1.04%.

Figure 5.21 shows complementary fluid velocity and wave elevation fields calculated by the ana-
lytical solution and Poincaré’s velocity representation. The absolute error is taken by subtracting
the analytical solution from the value of Poincaré’s velocity representation. The fluid velocity
above the mean free surface is not calculated and Wheeler stretching is not applied for com-
parison. The reconstructed wave fields by using Poincaré’s velocity representation show good

agreements with the analytical solution.

Analytical solution (E¢) [m] Poincaré representation (E¢) [m] Absolute Error [m]
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 -0.006 0 0.006
e e—— | — —ces——— | — ——— -

(a) Wave elevation field

—03

Analytic solution (ug) [m/s]

—03

Analytic solution (u%) [m/s]

Poincaré representation (u%) -0.3 0 0.3 Poincaré representation (ug) -0.3 0 ‘ 0.3

[m/s] — e | [m/s]

-0.003 0 0.003 -0.003 0 0.003
Absolute error [m/s] — e Absolute error [m/s] —— e —

(b) Horizontal velocity field (c) Vertical velocity field
Figure 5.21. Wave fields calculated by using the analytical solution and Poincaré’s velocity

representation for heaving hemisphere problem.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Diffraction problem: Diffraction by a vertical circular cylinder

Wave diffraction by a vertical circular cylinder in regular waves is considered here. Similarly
to the radiation problem, the complementary fluid velocity and wave elevation at Gauss points
are calculated by the analytical soution described in section 5.9.1. The Poincaré’s velocity
representation with a cylindrical matching surface is used to reconstruct the complementary

fluid velocity and wave elevation at the field point.

Figure 5.22 shows the complementary wave elevation and velocities at the field point x =
(r,0,2z) = (5,%,0). The radial frequency and amplitude of regular waves are w = 2.0 and
0.8m, respectively. The water depth is equal to 8m and the radius of vertical circular cylinder
is Im. The radius of the matching surface for Poincaré’s velocity representation is a = 2m. The
numbers of Fourier and Laguerre modes are Nroyrier = 6 and Npgguerre = 3, respectively. Time
step is set to be At = 0.01s.
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Figure 5.22. Reconstructed complementary wave elevation and velocity on the mean free
surface for cylinder diffraction, (r,6,z) = (5.0, %,0), w = 2.0 rad/s. From top to bottom : wave

elevation, x—, y— and z-component velocity, respectively.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Results show good agreements with the analytical solution. The first-harmonic amplitudes ob-
tained by applying moving window FFT and they are compared in the right side of figure 5.22.

The relative errors of reconstructed flow are less than 1.08%.

Figure 5.23 shows the complementary fluid velocity and wave elevation fields and their absolute
errors. The complementary wave elevation and velocity fields reconstructed from Poincaré’s

velocity representation show good agreements with the analytical solution. The wave fields for

diffraction problem have more than one Fourier mode.

Analytical solution (E¢) [m] Poincaré representation (= Absolute Error [m)]
-0.15 0 0.15  -0.15 0 0 15 -0.002 0 0.002
———— e B ————oeeme ! — — i e —

(a) Wave elevation field

-0. 13

Analytic solution (uZ) [m/s] 013 Analytic solution (ug) [m/s]

Poincaré representation (u%) -0.13 0 0.13  Poincaré representation (u) -0.13 (U 0.13
[m/s] — |l [ /5] —

Absolute error [m/s] _O'OELL—O : _0'0013 Absolute error [m/s] _0'0__013 0  0.0013
(b) Horizontal velocity field (c) Vertical velocity field

Figure 5.23. Wave fields calculated by using the analytical solution and Poincaré’s velocity

representation for cylinder diffraction problem.
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5. Potential flow: Complementary waves with a vertical circular cylindrical matching surface

Convergence test on the number of Fourier and Laguerre modes
The complementary wave elevation and velocity on the mean free surface are reconstructed with
respect to the different number of Fourier-Laguerre modes. The wave diffraction by the vertical

circular cylinder is used because the waves diffracted by cylinder have many Fourier components.

Figure 5.24 shows the complementary wave elevation and velocity reconstructed by Poincaré
velocity representation with respect to different number of Fourier modes (Ngoyrier). The number
of Laguerre modes is kept to be Nrgguerre = 3. The results show that the horizontal velocity
components are convergent slowly with respect to the number of Fourier modes. Meanwhile, the
vertical velocity and wave elevation show good agreements with the analytical solution even if

the number of Fourier modes are small.

Figure 5.25 shows the complementary wave elevation and velocity with respect to different num-
ber of Laguerre modes (Nrqguerre). The number of Fourier modes is kept to be Npoyrier = 5. The
results show that the reconstructed flow quantities are not sensitive to the number of Laguerre
modes. The optimal choice of s gives good approximations of Laguerre functions to the velocity

profile along the matching surface.
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Figure 5.24. Complementary wave elevation and velocity with the different number of Fourier
modes. Cylinder diffraction problem (r,6,2) = (5.0, 7,0), w = 2.0 rad/s.
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Figure 5.25. Complementary wave elevation and velocity with the different number

Laguerre modes. Cylinder diffraction problem (r,6,z) = (5.0, 7,0), w = 2.0 rad/s.

Remarks of benchmark tests on radiation and diffraction problems

In numerical computation, following error sources are identified

e s parameter in Laguerre function affects on Fourier-Laguerre approximation of comple-

mentary velocity. A bad selection of s needs large number of Laguerre modes for good

approximation.

e Truncation of Fourier-Laguerre modes and limited number of Gauss points shall give large

approximation errors.

e Convolution integrals with moving window convolution time interval generate numerical

errors. The moving window convolution time interval has to be long enough.
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5.10 Conclusion

A Poincaré’s velocity representation has been formulated with a circular cylindrical matching
surface. The surface integral is analytically applied to Poincaré’s velocity representation along
the matching surface. The complementary fluid velocities and wave elevation are developed in
Fourier-Laguerre and Fourier series, respectively. The time domain Green functions are expressed
in Fourier series. The analytical integration along the matching surface and the matching wa-
terline enhances the numerical stability. Furthermore, it reduces the computational burden in
reconstructing three-dimensional wave fields. However, complex elementary functions, which are
surface integral of the time domain Green function and Fourier-Laguerre modes, appear in the
formulation. In the final formulation, the complementary fluid velocity at field point is given by

convolution integrals of flow at matching surface and elementary functions.

Numerical algorithms to compute the elementary functions have been proposed. The first ap-
proach transforms the semi-infinite integral into an infinite series summation of sub-integrals.
The infinite series summation is evaluated by the extrapolation using continuous sets of finite
summation. The second approach extends an integral variable in the real domain into the com-
plex domain. Semi-infinite integrals along the real axis are evaluated by steepest descent method.

Evaluation of elementary functions is validated by comparing two algorithms.

The wave elevation is reconstructed by integrating the vertical velocity on the mean free surface.
After the reconstruction of the wave elevation, Wheeler stretching with Laguerre function is used
to extrapolate the fluid velocity above mean free surface. 3D cubic spline interpolation is used

to calculate the wave elevation and the fluid velocity at arbitrary points.

Finally, the complementary wave problems, which are referred to the radiation and diffrac-
tion problems, are considered for validation. A heaving hemisphere is considered for radiation
problem (Hulme, 1982). Wave diffraction by a vertical circular cylinder is used for diffraction
problem (McCamy and Fuchs, 1954). Numerical results show that the proposed Poincaré’s veloc-
ity representation shows very good agreements with the analytical solution. Three-dimensional
complementary wave fields are reconstructed with the limited number of Fourier-Laguerre modes,

and they show good agreements with the wave fields calculated by the analytical solution.

146



6. Viscous flow: Multi-phase SWENSE with Level-set

6 Viscous flow: Multi-phase SWENSE with Level-set

6.1 Two-phase flow model
6.1.1 Two-phase mixture model (used in interFoam)

The continuity and Navier-Stokes equations for an incompressible air are written as
V-ou,=0 (6.1)

9(paua)
ot

and the equations for incompressible water are given by

+ V- (pauguy) = =Vp, + pag + V - (ua (Vua + VuZ)) , (6.2)

V-u, =0 (6.3)

8(pw u,)
ot

where subscript , or , denotes fluid which is considered as w for water and a for air. p and p

+ V- (ppuyply) = =Vpy + pug+ V- (,uw (Vuw + Vug)) , (6.4)

are the density and viscosity of the fluid, p is pressure and g is gravitational acceleration vector.
In the Volume Of Fluid method (VOF), « is introduced as the ratio between the water occupied
in the cell volume and the total cell volume. For example, a = 1 means that the cell is fully
submerged and a = 0 represents a dry cell. The mixture quantities can be given with « as

=« w+1_05 as
p=apy+( )p (6.5)

p=apy + (1 — @) pla,

and

u=auy + (1 —a)u,,
( ) (6.6)
p=auy,+ (1 —a)p,

where p, u, u and p represent mixture density ,viscosity, velocity and pressure, respectively.
Two-phase Navier-Stokes equations are then rewritten as the equations for single mixture

V-u=0, (6.7)

9(pu)
ot

The surface tension force oxVa is introduced due to the existence of the interface between water

+V-:(puu) — V- (uVu) = -Vp+pg+ Vu-Vu+ okVa. (6.8)

and air. The fluid velocity u and pressure p are the mixture flow quantities. The gravitational
force is replaced by introducing the dynamic pressure for numerical modeling of body boundary
condition (Rusche, 2002)

Pd =P~ pg-X, (6.9)

and the momentum equation is rewritten as

d(pu)
ot

+ V- (puu) = —Vpg — g - xVp+ V- (pess (Vu+ VuT)) + okVa. (6.10)
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The Navier-Stokes equations considering two fluids as one mixture have been commonly used in
academic and industrial fields due to easy numerical modeling (Hirt and Nichols, 1981; Damian,
2013; Jacobsen et al., 2012; Paulsen et al., 2014). Recently, Vukéevi¢ (2016) stated that the

numerical evaluation of the gradient of dynamic pressure with a density gradient
Vpq+g-xVp, (6.11)

is not equal to zero for a hydrostatic case where it should be zero. It gives source in the momentum
equation, therefore a spurious air velocity appears near the interface during the simulation. The
spurious air velocity is factored by density variance of water and air, the flow field near the
interface becomes violent and unstable. The density gradient in the momentum equation gives
a large numerical value on the interface due to the density jump from one fluid to the other.
The jump is smoothed and the interface smears when the color function advects. Solving the
two phase flow with single fluid (mixture) makes the numerical modeling easier and the equation

looks intuitive.

6.1.2 Two-phase mixture model with interface condition (used in present study)

An alternative two-phase flow model imposes the stress balance across the interface to prevent

spurious air velocity near the interface. Navier-Stokes equations for air are rewritten as

a;a + V- () = _plvpa +g+ V- (va (Vu, + Vul)), (6.12)

and the equations for water are given by

8;: + V- (upuy) = —:pr +g+ V- (vw (Vuy, + Vug)) ) (6.13)

Kinematic condition that fluid particles on the interface move together giving a velocity condition

on the interface
U, = Ug, & [u] =u, —uy, =0, on x €Sy (6.14)

where the jump operator [f] = f, — fuw is defined at the air/water interface Sy. The jump
operator represents the difference of f quantities across the interface. It enables us to express

the fluid veloicty for two fluids as the mixture fluid velocity in computational domain.

The dynamic condition condition on the interface represents the stress balance on the fluid

particles across the interface (Kang et al., 2000; Carrica et al., 2007; Lervag, 2008)
[pI +2uD] - nf = —(okns + V,0), on x €Sy (6.15)

where ny denotes the interface normal vector and V; is a gradient along interface coordinates.
Vo represents Marangoni effect. It becomes important when two fluids have a big temperature
difference. Huang et al. (2007) conducted the dimensional analysis on the interface conditions

and showed that the contribution of viscosity terms in interface condition is proportional to the
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inverse of Reynolds number. Therefore, the contribution of viscosity terms can be considered

negligible for naval application. Therefore, above equation can be approximated as
[pI] -ny =0, on x € Sy. (6.16)

The interface normal vector (ny) is arbitrary and the stress balance condition on the interface

simplifies in the pressure boundary condition for naval application as

[p] =0, on  x€S) (6.17)

Two-phase Navier-Stokes equations with interface boundary conditions are summarized as follows

e Mass conservation

V-u=0,

e Momentum equation

0
altl—i—v-(uu):—vlf—i-g—%v-{l/(Vu—i-VuT)}a

e Kinematic interface condition

[u] =0, on x €Sy
e Pressure balance (Dynamic condition) on the interface

Ip] =0, on x €Sy

Comparing the derived momentum equation and pressure interface condition with the mixture
momentum equation (6.10), the pressure jump condition appears in right-hand-side of mixture
momentum equation as density gradient. The surface tension which is neglected in stress balance

is given in mixture momentum equation.

6.2 Interface modeling

The Level-Set (LS) function for interface modeling which is categorized as an Eulerian method is
used in the present study. LS function is the signed distance function from the interface defined
by
—d, if x€Qy,
Y(x) =40, if x on the interface Sy, (6.18)
d, if xey
where d denotes the distance from interface. 2, and €2, represent air and water fluid domains,
respectively. The LS function has a positive value when the cell is submerged. The volume

fraction « can be calculated from LS function as
1
a(x) = 5 [sgn {v(x)} +1]. (6.19)
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The above equation results in « field having a sudden change across the interface, which is not
desirable when the continuous viscosity effects need to be accounted for in the simulation. VOF

with user-defined interface thickness (€jnier) can be introduced to smooth change of the a field

a(x) = % {tanh (%) + 1} . (6.20)

Mixture density and viscosity are calculated from the equation 6.5. The LS function transport

near the interface

equation is written by

np B
5 Tu V=0 (6.21)

The signed distance function is not bounded, the LS function after solving the above transport
equation is not bounded. Therefore, conservation of fluid mass should be checked during the

entire simulation.

After solving the LS function transport equation, redistancing of LS function in the entire fluid
domain is used to keep a sharp interface (Chang et al., 1996; Sussman et al., 1998; Di Mascio
et al., 2007). Re-distancing of LS function is usually conducted to make LS function satisfy the
Eikonal equation

VY| =1.

A pseudo-time 7 is introduced to get the steady state solution of Eikonal equation as

?;f + sgn(vy) ()Vl[)’ — 1) =0.

Solving the Eikonal equation needs extra sub-iteration within the time step.

In the present study re-distancing of LS function in the entire fluid domain is done by re-

calculating the distance from the nearest interface in equation 6.18 at each time step.

6.3 Functional decomposition

A variant version of the Navier-Stokes equations which is called Spectral Wave Explicit Navier-
Stokes Equations (SWENSE) has been introduced for wave-structure interaction problem (Fer-
rant et al., 2003). The SWENSE method is based on the hypothesis that the functional quantity

of total flow can be decomposed into incident and complementary parts as

X =X1+Xxc (6.22)

where x, x7 and y¢ are quantities from respectively total, incident and complementary flows.

It is assumed that the incident flow is already available from a nonlinear potential low model
for incident waves. The incident flow components are subtracted from original Navier-Stokes
equations by supposing that the incident flow satisfies Euler equations. Then, equations for
the complementary flow can be reconstructed. In this way, a numerical (CFD) computation is
performed for the complementary flow only, the total flow being reconstructed from (6.22). Thus

procedure has numerical advantages:
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e The incident flow components are not affected by the viscous flow solver.
e The absorption of complementary waves is easier.

e The computational mesh needs to be refined in the vicinity of the body only, savings in

computer resources.

The SWENSE method has been validated for single phase flows by Luquet et al. (2003); Gentaz
et al. (2004); Monroy (2010); Reliquet (2013). Recently, Vukéevi¢ (2016) applied SWENSE
method to decompose fluid velocity and LS function. Li (2018) decomposed velocity and pressure

in a two-phase flow solver with the original VOF equation.

The present work aims at decomposing the fluid velocity, pressure and LS function into the
incident and complmentary flow components by combining the ideas of Vukéevi¢ (2016) and Li

(2018). The fluid velocity, pressure and LS function are decomposed as

u=uy + uc, & uc =u— uy, (6.23)
p = pr+pc, & poc=p-opr (6.24)
Y =1 + e, & o= —1r, (6.25)

where u, p and ¢ are fluid velocity, pressure and LS function, respectively. Subscripts ; and ¢

denote quantities of incident and complementary flows, respectively.

6.3.1 Governing equations

The decomposition of the continuity equation is written as
V-ugc=-V-ur=0. (6.26)

Vukéevié (2016) remarked that though the divergence of the incident velocity field is theoretically
zero, it does not vanish when it is mapped into finite volume discretization. To keep the order
of the numerical discretization, he kept the term (—V - uy) in his formulation. In the present
study, only V - uc = 0 is kept. because —V - uy is thought to give an extra error source in the

pressure equation.
Euler equations for incident flow are written as

ou 1
8—;+V~ (uruy) = —;Vpl-i-g- (6.27)

Nonlinear potential flow models for incident flow explained in Chapter 3 are limited to the water
domain. Incident flow needs to be extended up to the air domain to apply multi-phase flow. The
incident fluid velocity and pressure can be extended by using hyperbolic function used in the
potential flow model for incident waves. However, the extrapolation of incident pressure with
hyperbolic function results in large values in the air zone which can lead to numerical instability

during simulation. To overcome this, Li (2018) scaled the incident pressure by mixture density

i =pr, (6.28)

Pw
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where p} is pseudo mixture incident pressure. Euler equations can be rewritten with p} as

ouy 1 pr Vp

— +V-(uu;)=—-Vpj+ ——+g, 6.29

o V() =~ Vpj 4 P (6.29)
The second term in right-hand-side, —ﬁ 1’0 —Vpp , is equal to zero in both water and air regions, it only

has a non-zero value on the interface. The momentum equations for complementary flow can be

given by (Li, 2018)

0 1 \Y%
% +V:(uue) +uc-Vur = —;Vpc — %7;) + V- (v(Vue + Vug)) . (6.30)

The transport equation for complementary LS function is given by

d 0
% + V- (wpe) = —% — V- (uyy). (6.31)

The re-distancition of the complementary LS function is calculated by subtracting the incident

wave LS function from distance as

Yo = sgn(d) — Y. (6.32)

6.3.2 Interface conditions

Interface boundary conditions need to be formulated with respect to complementary terms. The

kinematic free surface boundary condition is given by
[u] = [ur +uc] =0, on x € Sy. (6.33)

Assuming that the incident velocity is continuous across the interface by Wheeler stretching, e.g.,

[ur] = 0. The kinematic free surface boundary condition for complementary velocity is given by
[uc] =0, on x € Sy. (6.34)
The pressure jump condition is given by

[Pl =[pr +pc] =0, on  x€5;. (6.35)

The incident pressure py is replaced by pseudo incident pressure given in equation (6.28). The
jump condition for complementary pressure is given by (Li, 2018)
lo) _, pw=pa. (6.36)

w Pw

[pc] = —[pi] = —p1

The pressure jump term is shown in the right-hand-side term. Compared to Vukéevi¢ (2016),
pressure jump condition in the present study incorporates the incident wave pressure, including

hydrostatic pressure. For the calm water case, the same pressure jump condition is obtained

pPr = puw8 - X.
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6.3.3 Summary of functional decomposition

Govening equations for complementary flow are summarized as below:

e Continuity equation for complementary flow
V-uc =0.

e Momentum equations for complementary flow

0 1 v
aue L y. (uug) +ue - Vuy = —=Vpe — PLYP . (v (Vue +Vug)) )
ot p Pw P
e LS function transport equation for complementary flow
e Oy

e Redistancing ¢
Yo =sgn(d) — ¥,
where d is the distance from nearest interface.
Interface boundary conditions for complementary flow are summarized as below:

e Kinematic interface condition for complementary flow
[uc] = 0.

e Pressure jump condition for complementary flow

[pc] = pz%-

w

6.4 Domain decomposition: Relaxation

Relaxation scheme described in section 2.3.1 is used to relax the complementary LS function
and velocity into target quantities. Explicit relaxation scheme which blends computed comple-
mentary quantities and target quantities with weight function in the relaxation zone is adopted.

Complementary flow is relaxed as

xe = (1= w)xe +wx"", (6.37)

where ¢ is the complementary quantity, Xgmg “ is the target quantity and w is a weight function.

In the literature, the target quantity has been set to zero due to the lack of solution (Jacobsen
et al., 2012; Seng, 2012; Vukéevi¢, 2016; Li, 2018).

In present study, Poincaré’s velocity representation is used to calculate target complementary

quantities in the relaxation zone. Complementary fluid velocity and LS function are relaxed as

uc = (1 — w)ue + wulonere, (6.38)
o = (1= w)pe + wpem e, (6.39)

where ugomcaré and wg‘)incaré are the target complementary fluid velocity and LS function com-

puted by Poincaré’s velocity representation.
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6.5 Extrapolation of flows up to air zone

The SWENSE method in multi-phase flow requires the evaluation of incident flows in air zone
which is not available in potential flow model. Wheeler stretching can be used to extrapolate
incident flow, however hyperbolic characteristics of waves in vertical direction generates large
velocity and pressure for large z. It causes undesirable results in numerical discretization espe-
cially for discretizing the incident wave quantities in air zone. Li (2018) set constant values for
incident flow above limited height to prevent numerical errors due to large value. Nevertheless,

their gradients still have the discontinuities at limited height.

In the present study, incident wave quantities are extrapolated by using cubic polynomials to

prevent discontinuities of incident flow and its gradient in the air zone.

6.5.1 Extrapolation by cubic polynomials

Let the flow quantity and its gradient are given at 2 = Z+ hy,ef and 2 = E+ lyef + Ninickness as

dz
df (2 + hres + Rinickness)
dz

f(E+href) :f07 :fév (640)

f(E + href + hthickness) = fl = f{ (641)

where h,.r is a reference height from interface to start extrapolation. hgpickness is the height
interval for cubic polynomials. Introducing cubic polynomials with normalized coordinate 5
defined between ¢ € [0,1] as

9(¢) = a® +b(* + o + d, (6.42)

where a, b, ¢ and d are coefficients. E is a normalized coordinate defined by

s — = hre
hthick’ness
Boundary conditions for cubic polynomials g(f ) can be given as
dg(0
g(O) = fo, d(f ): 96 = hthicknessf(,]a (644:)
dg(1
g(l) = h (~> = gi = hthicknessf{- (6.45)
dg
Using boundary conditions, coefficients of cubic polynomials are determined as
a=1{2(g90—g1) + (90 +91)} (6.46)
b=—{3(g0—g1)+2(gh+91) —di}, (6.47)
c=g), (6.48)
d = go. (6.49)
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6.5.2 Application to flow properties and discussion

Boundary conditions for incident velocities are given by

dur(Zr + href)
dz
duI(EI + href + hthickness)
dz

ug = uI(E[ + href)y u6 (6.50)

u; = u(EI + href + hthickness) = Wwind, 11/1 =0. (651)

The dynamic part of the incident pressure is defined by subtracting the hydrostatic pressure as

P1,d = DI — P8 - X, (6.52)

where pr ¢ is the dynamic incident pressure and pg - x is the hydrostatic pressure. Boundary

conditions for the dynamic incident pressure are given by

dpr.a(Er + hrey)
dz ’
de d(href)
(= DL lref) 54
P 0, (6.54)

po = Prd(Er + heey), Py = (6.53)

p1 =0, D

[y

If vertical gradients of incident velocity and dynamic pressure are available from the incident
potential flow model, extrapolations of fluid velocity and dynamic incident pressure are straight-

forward.

Extrapolated fluid velocity by cubic polynomials does not satisfy mass conservation in the air
zone. If horizontal fluid velocity and its horizontal gradient at z = Z; + h,. are slowly varying,

the total continuity error due to extrapolation can be estimated as

€continuity __

El+href +hthickness
V-u(z)d
AxAy / (2)dz

=r +h'ref

(6.55)

dz

Q

/'El+href +hinickness du(z)

Er +h'ref dZ

- ‘uwind - uI<EI + href)| .

The estimated continuity error is constant with respect to hipickness and proportional to the
difference of fluid velocity between incident waves and wind. The local continuity error on the
local cell therefore decreases as hipickness increases. Extrapolation improves numerical stability

and prevents large flux in the air zone due to discontinuity of velocity.

Buffer zone with thickness h,.; is introduced to have a distance from interpolation region to
interface because of mentioned continuity error in air. FExtrapolated velocity is shown in figure
6.1. Velocity fields with air extrapolation for nonlinear regular waves are shown in figure 6.2. No

discontinuity of fluid velocity is seen when the extrapolation is applied.
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Figure 6.1. Velocity extrapolation up to air zone with cubic polynomials.
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cubic polynomials(black line denotes the interface).
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6.6 Finite volume discretization

The numerical discretization of governing equations for two-phase interface flows is presented
in this section. Collocated Finite Volume (FV), second-order discretization on the arbitrary
polyhedral (unstructured) grid is used (Jasak, 1996). Computational domain is discretized into
computational cells and each of these cells is treated as a control volume having averaged quan-
tities within cell. The geometrical description of computational cell with owner index P is shown

in figure 6.3. Computational cell has its own volume (Vp) and has the faces connected with

Figure 6.3. Finite volume cell in polyhedral shape, (Tukovic and Jasak, 2012).

neighbor cells (cell index; N) or boundary surfaces. The surface area vector (s¢) is defined as
a vector normal to the corresponding face with its magnitude equal to the surface area. The
distance vector (dy = xy — xp) is defined as the distance from owner cell P to neighbor cell
N. General FV discretization on collocated grids is well described in Jasak (1996). Special
FV discretization considering the pressure conditions on the interface is also given by Vukcevié¢
(2016). These pressure conditions need a special FV discretization technique, which is called
Ghost Fluids Method (GFM).

Numerical discretization of governing equations and terms related to pressure proposed by Vukée-

vi¢ (2016) is briefly reproduced in this section.

6.6.1 Discretization of momentum equations

Momentum equations given in (6.30) are rearranged as
0 1 \Y
gLy (uug) = V- (vVue) = —=Vpe — prye uc - Vur + Vue - Vr,
ot p Pw P
Following the discretization notation of Rusche (2002), momentum equations without pressure

gradient are discretized by

{a;f—i-v'(uuc)—v-(VVuc)} :{—slvpp—uC-VuI—i—Vuo-Vy} , (6.56)
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where {-}* and {-}° denote the implicit and explicit discretization, respectively. The discretization

of momentum equations in FV grid is given by

ap(uc)p+ Y ay (Ue)y = Sue, (6.57)
!

where (-) p and (-) ; denote averaged quantities at owner (P) and neighbor (V) cells, respectively.
ap and apy represent the diagonal and off-diagonal terms of momentum equations, respectively.

Su 15 the source term of the momentum equations which includes:

The old time contribution of local term in momentum equations.

Nonlinear deffered correction of convection term.

Non-orthogonal correction of F'V discretization.

Incident flow terms coming from SWENSE method.

Deferred correction of convection terms and non-orthogonal correction are well explained in

(Jasak, 1996; Moulkalled et al., 2015).

6.6.2 Discretization of pressure equation

To satisfy the continuity equation, complementary pressure and velocity are coupled (Patankar
and Spalding, 1972). Predicted complementary velocity from the momentum equation is written
as
, 1 1
(uC)P = —H{(uc)p}=-—— ZGN (uc)n — Suc (6.58)
ap ap 7
The pressure gradient, excluded from previous discretization of momentum equations, is now

added to predicted velocity as

(uc)p = (ug)p — alp (;V(pc)P> : (6.59)

Right-hand side term is called pressure corrected velocity. Complementary velocity should satisfy
the continuity equation as
V-(uc)p =0, (6.60)

Therefore, the equation for complementary pressure is given by

v [ L (2verr)| - v [ LH (e, (6.61)

ap \p

Applying FV discretization and Gauss’s divergence theorem of volume integral over Vp above

equation gives

> (i <1V(pc)P>>f s =3 (o {(UC)P}>f dsy. (6.6

f
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where (-) 7 denotes the quantity at face center. When the computational cell is small, the quantity

at face center is interpolated from adjacent cell centers as

Z<1>f <1V(pc)p)f cdsp =) <a1PH{(uC)P}>f - dsy. (6.63)

;NP NP 7

where Uf is interpolated at face center from cell centered value. The above equation gives
the algebraic equations for complementary pressure at cell center. After solving the pressure
equation, the complementary velocity is corrected by equation (6.58) and the total flux is also

calculated by

Fy=s;-(uo+u); = s; { (o {(ucm)f - (lp)f (;wpc)p)f " <u]>f} C(664)

The incident velocity should be also evaluated at face centers to give the total flux.

6.6.3 Discretization of LS function transport equation

The complementary LS function transport equation is discretized using implicit and explicit

{%‘fwwuwc)}i:{—%‘f—v-(uw}e, (6.65)

and it gives the discretized equation for complementary LS function as

operators by

ay (Vo)p+ Y ak (o) = sy, (6.66)
7

where a}@ and a% are diagonal and off-diagonal terms. The total LS function is calculated after

solving the above equation as

(W)p=r)p+ @Wc)p, (6.67)

Interface location is calculated from total LS function (i) = 0). The distance from the interface
to the cell center (P) is calculated for each computational cell. Re-distancing of complementary

LS function is computed by subtracting incident LS function from signed distance by

(Yo)p =sgn{(d)p} — (¥1)p- (6.68)

6.6.4 Extrapolation of pressures by Ghost Fluid Method

The FV discretization of pressure terms appears in momentum and pressure equations. Interface
boundary conditions for complementary pressure are considered by using Ghost Fluid Method
(GFM). Layout of finite volume cells with the interface is depicted in figure 6.4. Interface between
water and air is plotted with blue dashed line. Red colored lines denote interface faces. Interface

cells are denoted with red cross at center. Interface cells are determined by

(V)p (¥)y <0. (6.69)
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O

Dry cells
P <0
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dry cell
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P >0
o}

x

Figure 6.4. Finite volume cells and interface crossing the computational domain.

Wet cell P and dry cell N share an interface face s? The dimensionless distance parameter

defining the interface location by LS function is given by
(6.70)

The location of the interface is defined by using the dimensionless distance parameter (Ay) as
Xf= (X)P—I-)\fdf. (671)

The pressure jump condition on the interface is given by

[(pc)p] = pca — Pow = p P La
P (6.72)

where pc, and pc,, are the complementary pressures near the interface at air and water sides.

H; = pr22—Le is the pressure jump on the interface. The complementary pressure values near
w

p
the interface at each fluid domain are expressed with jump conditions

a H
bCcw = pipC,a - I’ (673)
Pw Pw
w H
PCa = &pc,w + ! . (674)
Pa Pa
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The relation of pressure gradient for extrapolation

The pressure boundary condition is imposed on the air/water interface. Because the interface
between two fluids is not always located on a computational cell or face center, the pressure
extrapolation from the computational cell or face center to the position of interface is necessary.

Applying the kinematic boundary condition on the momentum equations gives
Du 1
[{Eﬂ: [{—;Vp—i—v- (VVu)—i—Vu-Vu—i—gﬂ:O, on  x€ESy (6.75)

It states that the acceleration of two fluid particles on the interface is equal to each other. After

neglecting the viscosity terms, the jump condition for pressure gradient is derived as

[U)Vpﬂ = ﬂv-@w) +Vu-w}]7 o xes, (6.76)

=0.

The pressure is decomposed into incident and complementary parts as in equation (6.23). Density
scaling of incident pressure gives the continuous Vp;/p across the interface (Li, 2018). Therefore,

the jump condition for complementary pressure gradient is given by
1
[[*Vpcﬂ: 0, on xeSy. (6.77)
p

The pressure extrapolation using above relations is proposed by Vukéevié (2016) in the procedure
of Finite Volume (FV) discretization.

Pressure extrapolation from wet owner cell (P) to the dry neighbor cell (N)

When owner cell is wet and neighbor cell is dry, pressure gradient condition on the interface is

given by
[[VPCH _ vpC,a . vpC,w
1Y Pa Pw
6.78
_ 1)y —pca _ 1 pow—(o)p _ (6.78)
p(l 1 - )\f pu) )\f ’

Using equations (6.73), (6.74) and (6.78), pressure near the interface can be expressed with

pressure values at cell centers with pressure jump term as

a a H
Pow = Af§<pc>N+(1 —Af>f’—<pc)p—Afﬁ—f, (6.79)
w w H
Pea = Afg— (po)y + (1= Ap) Z— (pc)p+ (1= Ap) ﬁ—f, (6.80)
with
Pw = Atpuw + (1 = Af) pa. (6.81)

Extrapolated pressure at ghost dry cell center N from wet cell center P can be given by

1—A
(Pea) ¥ = Peaw + —5 7 {pcw — (p)p}
, ! , “, (6.82)
= (pc +<1—fu> pc)p — —-
Pw ( )N Pw ( )P Pw
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Pressure extrapolation from dry owner cell (P) to the wet neighbor cell (N)
Similar to the previous case, when owner cell is dry and neighbor cell is wet, the pressure gradient

condition on the interface is given by

[[Vpc]]: 1 pca—(pc)p 1 (po)y —Pow

=0, 6.83
p Pa Af pw 1 —=2Af (6.83)

Substituting the equations (6.73) and (6.74) into (6.83) yields the pressures near the interface as

w w H
pC,a:Af%(pC)N“‘(1_/\]‘)%(]90)13‘1‘)\]"57]7 (6.84)
a a H
Pew = A2 (pe)y + (1= Ap) 22 (pe)p — (1= Ap) 22, (6.85)
Pa Pa Pa
with
/5(1 = /\pa + (1 - )‘> Pw- (6'86)

Similarly to the previous case, the extrapolated pressure on the ghost wet cell center (N) from

dry cell center (P) is given by

1-A
(el = pea+ 5= {pca = (pe)p)

(6.87)
= Sty + (1-8) o + 5L

a a a

The procedure of pressure extrapolation is well explained in Vukéevi¢ (2016).

6.6.5 FYV discretization with extrapolated pressures

The gradient of the complementary pressure at cell center P is calculated by Gauss’s divergence

theorem .
(Vpe)p = - 251 (be); (6.88)
f

Each of face components contributes to the pressure gradient. At face center, the complementary

pressure is calculated by linear interpolation based on distance as

(pC)f = fz (pC)P+(1_fx) (pC)N7 (6-89)

where f, = fP/|dy| is a distance weight. fP is the distance from cell center P to face center f.

When the owner cell is wet and the neighbour cell is dry, the complementary pressure at neighbour

is replaced by the extrapolated complementary pressure obtained by GFM

(pe)§ = fu (pe)p + (1 = f2) (Pow) N - (6.90)

where (pc,w)%c is the extrapolated pressure from wet cell by the GFM defined in equation (6.82).

When the owner cell is dry and the neighbour cell is wet, the complementary pressure at the

neighbour cell is replaced by the extrapolated complementary pressure by GFM as
(p0)7C = fx (p0)p + (1= 12) (Pea) - (6.91)
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where (pc’a)%c is the extrapolated pressure from dry cell by the GFM defined in equation (6.87).

The pressure gradient of interface cell is evaluated by replacing the complementary pressure at

face center by the extrapolated complementary pressure by GFM

(Vpc)p = le > srpe); =Y splpe)+ > sy (pe)§C b (6.92)
f fs; fs;

The same procedure can be applied for other gradient discretization by replacing complementary
pressure at interface face. Laplacian operator in pressure equation also requires special FV

discretization considering interface condition. Interpolated density (%) ; is necessary to construct
the pressure equation in (6.63). Continuous v—ﬁc across interface enables us to extrapolate density

by GFM
1
Go —, when the owner cell P is wet, () p > 0.

1
<> = pl Y (6.93)
Pl s —, when the owner cell P is dry, (¢)p < 0.
Pa
The pressure Poisson equation is rewritten with interpolated density at face center as

Z<1>f (;)f (Vpe), - dsy = Z <a1PH{(uc)p}>f ~dsy, (6.94)

;e 7

The left-hand side is divided into orthogonal and non-orthogonal components (Jasak, 1996)

Z(;)f <[1)>f (Vpo),-dsp =) <alp>f <;>f A - (Vpe),

/ / (6.95)
1 1
(0, (2w
7T NS \P/ g
where the surface vector sy is divided into two vectors
SfZAf—i-kf. (6.96)

The vector Ay is taken to be parallel with dy. k¢ is a non-orthogonal vector component k; =
sy — Ay. The choice and effects of non-orthogonal correction are well discussed in Jasak (1996).
The non-orthogonal correction term is calculated by previous outer iteration or time step by
deferred correction and it is taken into account as the source term. Rewritten complementary

pressure equation is given as

Z<1>f (;)fAf (Vpe)y =Y. <1H{(uC)P}>f ds;

ap
d - (6.97)

), ()b

f

Left-hand side is given by complementary pressures at neighbor N and owner P center

Z(1>f <;>fAf (Vpo); = Z<1>f (;) 51l ot — o) (698)

T+ \ar — \ar £ 1dyl
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On the interface face, complementary pressure at neighbor cell center N is replaced by extrapo-

lated pressure

Zf:(;;:)f <[1)>f |ZJ;’ {pc)y — (po)pt = ;(czlp)f <[1)>f "Z’h {(pc)y — (pc)p}

) fz; <1P)f <;)f ,’df;n {(pe)y — (p0)p} (6.99)

(), () i e o). smwe
Sf

f

Above equation constructs the system matrix with respect to pressure at each cell center. The

diagonal contribution of interface face Sy is given by interface cell P as,

1
<> @e—w, if the owner cell P is wet, neighbor cell N is dry,
ap/ ¢ | puw
abe = — (6.100)
1
<> M@, if the owner cell P is dry, neighbor cell N is wet.
ap/ ¢ || Pa

and the off-diagonal contribution

1 a : : : .
() M?—, if the owner cell P is wet, neighbor cell N is dry,
ap ) s |dy| pw
iy = . | (6.101)
S w . . . .
<> —f/i—, if the owner cell P is dry, neighbor cell N is wet.
ap/ ¢ || Pa

The pressure jump terms appear as the extra source term as

1 S
— <> Mﬁ, if the owner cell P is wet, neighbor cell N is dry,
ap/y |df‘ Pw
IIJDC _ (6.102)
1 s
<> M&, if the owner cell P is dry, neighbor cell IV is wet.
ap / ¢ ‘df’ Pa

Vukeevié (2016) showed that the off-diagonal contributions of pressure equation are symmetric
but the extra source term arising from pressure jump is antisymmetric. The details on the FV
discretization with interface condition is well described in Vukéevi¢ (2016) with different notation

on the inverse density 8 = %.
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6.7 Boundary conditions

Solving the Navier-Stokes equation requires initial and boundary conditions. For the wave-
structure problem, the initial conditions are set to be incident wave fields without scattering
waves. There are several types of boundaries (1) body/wall(bottom) (2) inlet/outlet and (3)

atmosphere.

On the body surface

e The boundary condition for scattering fluid velocity is set to
uc =u, —uy (6.103)
where wu;, is the velocity of the body surface. The impermeable no-slip body boundary

condition is achieved.

e The fixedFluxPressure boundary condition is imposed on the pressure. The pressure
gradient is adjusted by velocity flux which is specified with velocity boundary condition.

Complementary fluid velocity on the boundary face is written by

e, = (o)) = (), (v, (6.104)

ap

Applying the inner product with the surface vector sy = |s¢[ny gives

(uc); sy = (1H<uc>)f sp- (1>f (Vpo); -1 (6.105)

ap ap

Therefore, the pressure boundary condition is given in

(Vpe), -ny = P <<1H(uc)>f 85— (uc), Sf)

S ap
=] (6.106)
a
= ( P)f (FJ{{/A —Ff)
sl
where
A 1
Ff/ = (H(u(;)> -Sf, Fy=(uc); sy (6.107)
ap f
Ff/ A s the flux predicted by momentum equation and Fy is the flux calculated by the

velocity boundary condition.

e Zero gradient condition is imposed to complementary LS function to prevent extra LS

function flux. 5
e _,, (6.108)
on

inlet /outlet zones

Relaxation to total waves represents that the quantities computed by viscous flow model are
relaxed to total waves including nonlinear incident waves with linear complementary waves.

Linear complementary waves are computed by Poincaré’s velocity representation.
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e Complementary velocity is blended with zero or values of potential theory if it is available.

(1 —w)ug, relaxation to nonlinear incident waves,
uc = (6.109)

(1 — w)ue +wullinar relaxation to total waves

e The fixedFluxPressure boundary condition is imposed on the pressure that determined

by velocity boundary condition, likewise body boundary condition.

(Vpe); ny = ar); (Ff" — Fy) (6.110)

|87l
e Complementary LS function is blended with zero or complementary wave elevation com-

puted by potential theory.

y (1—-w)e, relaxation to nonlinear incident waves, (6.111)
c = . ., :
(1 — w)he + wipPmearé  relaxation to total waves

Atmostphere

o The pressureInletOutlet boundary condition which is a combined boundary condi-
tion imposing a zero normal gradient for outflow and velocity obtained from boundary

cell-center for inflow is imposed for complementary velocity.

n-Vug =0, for outflow.
(6.112)
uc = (uC)Bc, for inflow.
where (uc)pc is the velocity obtained from boundary cell-center.
e Following pressure condition is imposed at atmosphere boundary as
pc = po — 0.5p [uc|? (6.113)

where the reference pressure, pg is set to zero.

e At atmosphere boundary surfaces normal to z-plane, Vi =~ V7 = 1. Boundary condition

for complementary LS function at atmosphere is given by

n- Vipo = 0. (6.114)
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6.8

Comparison with Vuké&evié (2016) and Li (2018)

The present study is based on the previous works of Vukéevi¢ (2016) and Li (2018). Previous

and present works can be summarized as:

Vukcevié (2016)

e Fluid velocity and interface quantity are decomposed in incident and complementary parts
in framework of SWENSE.

e Pressure is not decomposed and is coupled with complementary velocity.

e All incident wave terms survive in FV discretization to keep the order of the numerical
discretization.

e Transport equation for Level-Set (LS) function is derived from Phase-Function (PF) trans-
port equation. Self-adjusting terms controlling the diffusion and compression of interface
are considered.

Li (2018)

e Fluid velocity and pressure are decomposed into incident and complementary parts in the
framework of SWENSE.

e Incident flow terms appearing in Euler equations are canceled in momentum equations,
therefore they do not appear in FV discretization.

e Volume Of Fluid (VOF) is used for interface modeling. Boundedness of VOF is kept,

however VOF is not decomposed into incident and complementary parts.

Present work

Fluid velocity, pressure, and interface quantity are decomposed in incident and comple-

mentary parts in framework of SWENSE.

Incident flow terms appearing in Euler equations are canceled in momentum equations,

therefore they do not appear in FV discretization.

Transport equation for Level-Set (LS) function is used for interface modeling. However,
incident LS function terms are not canceled but given as the source terms of complementary
LS function transport equuation. Re-distanding of complementary LS function is applied

by calculating the distance from nearest interface.

Incident fluid velocity and pressure are extrapolated up to air zone using cubic polynomi-
als. Incident fluid velocity and pressures and their gradient have smooth profiles in the

computational domain for multi-phase flow.
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6.9 Validation and discussion
6.9.1 Wave propagation in NWT

Incident wave propagation in a numerical wave tank is considered as benchmark test case. The
same computational mesh and wave conditions as described in the section 2.2 are used. Relax-
ation zones of length 1.5\ are defined at ends of computation domain as the inlet and outlet for
generation and absorption of waves. Length and height of total computational domain are 10\

and 2H. Mean free surface is located on z = 0.

Extrapolation of incident wave velocity and pressure above free surface
Incident velocity in the air by Li (2018) is evaluated by putting the height limit (1.5Z) as

us(z,y, z;t), for z < 1.5Z7,
uI(J;?y?Z;t) = I( Y ) ! (6115)
us(z,y, 1.5Z1;t), for z > 1.52;.

The same principle is applied for p;/py,. In the present study, the incident fluid velocity and
pressure are extrapolated up to air zone by combining Wheeler stretching and cubic polynomi-
als. The magnitude of the incident wave velocity field with extrapolation by cubic polynomials
is compared in figure 6.5. Air velocity without extrapolation by cubic polynomials is fixed to the
constant velocity above the certain height (z = 1.5Z7). Incident velocity at z = 1.5Z; is calcu-
lated by applying Wheeler stretching on the incident wave model. Meanwhile, the extrapolation
by cubic polynomials permits incident velocity up to air to have a smooth transition from water

velocity to the wind velocity.

[uy|

Jus|

(b) |u;] field with extrapolatation by cubic polynomials

Figure 6.5. Magnitude of incident wave field (uy) with and without extrapolation by cubic
polynomials up to air, Black line denotes ¢ € [—0.01,0.01].
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Figures 6.6 shows |uc| fields in the middle of the computational domain at the simulation time
t = 17'. Spurious air velocity appears in both fields but the air velocity without extrapolation
reaches large values in the at atmosphere, near the upper limit of the domain. A sudden change
of complementary velocity is observed at z = 1.52; when the air velocity is fixed to the constant
velocity. As the vertical gradient of the incident wave velocity % is not continuous at z = 1.5=,
the complementary velocity has an extra velocity at z = 1.5=7 to satisfy the continuity equation.
This sudden change of uc gives a large velocity flux when solving the complementary LS function
transport and momentum equations. As large flux exists near the interface, the complementary
LS function are affected by ue. The air velocity field with the extrapolation by cubic polynomials
has also extra velocity above the interface, however its value and gradients change smoothly along

the vertical direction. Therefore, computed LS function field is reliable when the extrapolation

by cubic polynomials is applied.

[uc|
l 0.005
0.004
0.003

0.002

I 0.001
0

(a) |uc| field without cubic polynomials (b) |uc| field with cubic polynomials

extrapolation extrapolation

Figure 6.6. Magnitude of complementary velocity field (ue) with and without extrapolation
by cubic polynomials up to air at ¢t = 17", T/AT = 400, Black line denotes ¢ € [—0.01,0.01].

Redistancing Level-set

Complementary LS function (i¢) fields without and with redistancing are plotted in figure
6.7. 1Yc-fields should be zero theoretically for propagating waves in NW'T, however ¢ c-fields
without redistancing have errors near to interface, and errors evolve as the simulation time goes.
Generated errors appear in the total computational domain not from the relaxation zones. When

the FV discretization is applied to the Yc-transport equation

e " 0w ‘
+ v -(ua = — — -(ua 9
{%0 +9 (e 2LV (wn)
Numerical time differential and convection schemes are applied to the incident wave terms in the
right-hand-side terms. Time and spatial discretizations of incident wave terms have numerical
discretization errors and they are given as extra source terms in the Yo-transport equation. It
has been tried with complementary LS function transport equation without incident wave terms

given by

{81/}0 Ly (uwc)}z ={-V - (ucyr)}*,

ot
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However, the combination of complementary flux with incident LS function —V - (ugr) induces

large extra source on near to interface, the simulation becomes unstable.

Yo

-0.2 -0.15 -0.1 -0.05 O 0.05 0.1
—— ; U —

Figure 6.7. Complementary LS function fields with/without redistancing ¢, the black line
denotes ¢ € [—0.01,0.01].

Futhermore, the extrapolated incident wave velocity above the interface is non-physical and
has large values. The combination of opposite signed large velocities near crest and trough
and the convection scheme makes ¢ above the interface unstable. Measured time series and
first-harmonics of wave elevation at the middle of the computational domain are compared in
figure 6.9. The first harmonic amplitude without redistanding ¥ ¢ show fluctuating behaviors
for simulation time. On the contrary, the first harmonic amplitude with redistancing ¢ show
consistent results during the simulation. Numerical discretization errors can be listed as the

below:

e Discretization of equation for incident LS function by low order numerical scheme may not

satisfy the incident LS function transport equation.

e When the incident LS function is calculated from the wave theory, the signed distance
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function is calculated as the vertical distance from wave elevation ¥y = —z + =7. As the

incident LS function is defined to be the signed distance from the nearest interface, it may

generate extra errors.

e Numerical FV discretization of the pressure jump and continuous pc/p across the interface

conditions is considered by GFM. However, the numerical discretization of the pressure

jump condition generates an extra flux due to the pressure jump on the interface. This

extra flux can affect the complementary LS function transport equation.

These error sources appear in right-hand-side terms and they are cumulated during the simula-

tion. Redistancing of LS function is thought to cancel the cumulated error sources during the

simulation.
2.5
— — - Analytic
2 - — -without redistancing ¢¢ 7
1.5 --—--with redistancing ¢¢
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Figure 6.8. Wave elevation time series at the middle of computational domain with/without

redistancing v¢.
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Figure 6.9. First-harmonic amplitudes and phase differences of wave elevation with /without

redistancing v¢.
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Mesh and time convergence tests

Spatial and temporal discretizations given in Table 6.1 are tested. Representative Courant(Co)
and Reynolds numbers (Rea) are defined in equation 2.5. A Crank-Nicolson time scheme with
cony = 0.95 is used for all local terms. Convection terms of LS function transport equations
are discretized by van Leer scheme (van Leer, 1974). A first-order upwind scheme is used to

discretize the convection terms in momentum equations.

Table 6.1. Spatial and temporal discretization for SWENSE-LS convergence test.

Case N Az H/Az T/At Co Rea
Mesh(025-dt100 25 ) 100 0.171 8,836
Mesh030-dt120 30 6 120 0.171 7,363
Mesh040-dt160 40 8 160 0.171 2,523
Mesh050-dt200 50 10 200 0.171 4418
Mesh100-dt400 100 20 400 0.171 2,209
Mesh200-dt800 200 40 800 0.171 1,105
Mesh100-dt200 100 20 200 0.684 2,209
Mesh100-dt800 100 20 800 0.086 2,209
Mesh100-dt1600 100 20 1600 0.043 2,209

Wave elevation time series measured at the center of computational domain are compared in
figures 6.10 and 6.11 with respect to Co and Rea discretizations. The results show that the
measured wave elevation converges to the analytic solution, and the wave amplitudes are well

preserved with respect to Co and Rea discretizations.

1F | | | i : \ | i i | ]
= ‘I ‘ ‘ 11 ‘ N ‘
m Ok ‘ 1 |
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Figure 6.10. Wave elevation time series with respect to Co discretization.
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Figure 6.11. Wave elevation time series with respect to Re discretization.

First-harmonic amplitudes and phase differences of wave elevation with respect to Co and Rea
discretizations are shown in figures 6.12 and 6.13. When coarse time and space discretization
are used, the first-harmonic amplitudes of wave elevation show unstable results compared to the

simulation case with a fine discretization.

Figure 6.14 shows the convergence of first-harmonic amplitudes during ¢ € [25T",40T'] with respect
to Co and Rea discretizations. The procedure of Ega and Hoekstra (2014) is applied to estimate
the order of convergence (p). The obtained convergence orders for Co and Rea discretization

are p = 1.2 and 2.0, respectively.
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Figure 6.12. First-harmonic wave amplitudes and phase differences with respect to Co

discretization.
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Figure 6.13. First-harmonic wave amplitudes and phase differences with respect to Rea

discretization.
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Figure 6.14. Convergence of first-harmonic wave amplitude with respect to Co and Rea

discretizations.

A non-zero mean shift of the wave elevation is observed during the simulation. Moving averages
of wave elevation time series for one wave period are shown in figure 6.15. Results show that
redistancing ¥¢ can generate a mean shift of wave elevation compared to the simulation case
without redistancing ¥c. It it thought to be due to a mass loss when redistancing the LS

function. The mass loss due to redistancing Level-Set function have been reported by Sussman

et al. (1994).

The mean shift of wave elevation decreases as time and space discretizations are refined. Redis-

tancing technique adopted in present study is based on the calculation of the distance from the

nearest interface.
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Figure 6.15. Moving averages of wave elevation with respect to Co and Rea discretization

and ¢ redistancing.

Comparison with other viscous flow solvers

Viscous flow solvers based on Navier-Stokes (NS) with VOF interface modeling (foamStar) and
SWENSE with VOF interface modeling by Li (2018) are considered for comparison. An artificial
compression term is commonly added to the VOF-transport equation in order to counteract the

interface smearing

Oa
5 TV () + eV (wa(l —a)) =0, (6.116)

where ¢, is an interface compression coefficient and u,, is the fluid velocity normal to the interface.

The VOF compression term ¢,V - (u,a(1 — «)) only acts when a € (0, 1).

Wave elevation time series at the center of the computational domain are compared in figure 6.16.
Wave elevation calculated by solving Navier-Stokes equations with VOF interface modeling show
a decaying behavior for simulation time, and a small phase shift is seen. Wave elevations simu-
lated by solving SWENSE with VOF interface modeling depend on artificial VOF compression
term. When a small VOF compression coefficient ¢, = 0.3 is used, wave elevations show a de-
caying behavior with a large phase shift. Meanwhile, wave elevations computed by the present

method show consistent results compared to other viscous flow solvers.

First-harmonic amplitudes and phase difference between analytical solution are compared in
figure 6.17. Wave amplitudes computed by solving Navier-Stokes equations with VOF interface
modeling show decaying behavior during simulation time. Results simulated by solving SWENSE
with VOF interface modeling with ¢, = 0.3 are poor compared to the other viscous flow solvers.
When ¢, = 1.0 is used for SWENSE with VOF interface modeling, first-harmonic amplitudes
larger than 1 are obtained until ¢ < 327 and decay after t = 327". First-harmonic amplitudes
and phase differences calculated by solving SWENSE with LS function for interface modeling

show a good and consistent behaviour compared to other viscous flow models.
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Figure 6.16. Comparison of wave elevation time series with other viscous solvers.
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Figure 6.17. Comparision of wave elevation first harmonics with other viscous solvers.
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6.9.2 Regular wave diffraction by a vertical circular cylinder

Experiments on a vertical circular cylinder in regular wave are considered. The configuration of
experiments conducted by Huseby and Grue (2000) is depicted in figure 6.18. A thin cylinder
with radius r = 0.03m is fixed in wave tank of depth H = 0.6m. Incident regular waves of

frequency f = 5~ = 1.425 Hz with various wave height (H) are generated by a wavemaker.

In the present study, simulations are conducted in wave steepness range kH € [0.12,0.48]. A
cylindrical computation mesh with radius of 2A = 1.537m and height 0.8m is considered. A re-
laxation zone with the length of 1.5\ is defined from the far-field boundary. The pure CFD zone
is 0.5\ from cylinder wall to relaxation zone following previous work (Li, 2018). The computa-
tional domain is discretized with cell length ratio in the radial direction by ARmax/ARmin = 40.
The number of cells in the radial direction is Np = 40. The mesh is discretized uniformly in
f-direction with Ny = 30. Three mesh blocks are considered in the vertical direction. The
underwater block is defined in z € [—0.6H, —0.75H] with cell height ratio Azmax/Azmin = 50,
and number of cells N;; = 25 is used. The free surface block is defined in z € [-0.75H,0.75H].
This part of the domain is discretized uniformly with N,o = 40. The air block is defined in
z € [0.75H,0.2m]. Here the mesh uses a cell height ratio Azpax/Azmin = 12 with number of
cells N,3 = 15. The computational mesh used for the simulation case kH = 0.48 is shown in
figure 6.19. The time step is set to T//At = 800. Total number of cells used for computation is
Neeyp = 190, 000.

Wave maker Cylinder(a=3cm) ‘Beach’

| s
T — g i’y

1241 m 8.97m 3.19m

Figure 6.18. Configuration of experiments for thin cylinder in regular waves by Huseby and
Grue (2000).
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Figure 6.19. Computational mesh used for thin cylinder in regular waves, kH = 0.48.
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Figure 6.20 shows the force time series with respect to different wave steepnesses. Magnified
force time series shows that nonlinear components increase with wave steepness. Total wave
fields around cylinder at the simulation time ¢ = 307 are compared in figure 6.21 with respect to
different wave steepnesses. This figure shows that complementary waves around cylinder increase

with wave steepness.

Figure 6.22 shows total wave elevations around cylinder for simulation time. Complementary
waves generated by a vertical cylinder are clearly verified.

10
5r ﬂ ” ﬂ — kH =0.12
~ —kH =0.16
E — kH =020
ol | —KkH =0.26
g ——kH =0.30
N — kH =0.34
& — kH =0.40
-5 | —kH =048

_10 1 1 1
0 10 20 30 40
t/T
10

F./pga*(H/2)

_10 | | |
30 30+ 5 30+ 2 30+ 3T 31
t/T

Figure 6.20. Time series of horizontal force acting on the cylinder for different wave steepness
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s SA

(a) kH =0.12 (b) kH = 0.20
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Figure 6.21. Total wave field around cylinder at t = 307" for different wave steepness (kH ).

‘A

(a) t =307 (b) t = 30T + iT
(c) t =307+ 2r (d) £ =307+ 3r

Figure 6.22. Total wave field around cylinder at 4 instants, kH = 0.48.
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First and higher harmonics of the horizontal force acting on cylinder are compared in figure 6.23.
Analytical solution on the vertical circular cylinder in regular waves is available up to third-order.
McCamy and Fuchs (1954) introduced linear theory based on the eigenfunction expansion, Kim
and Yue (1989) presented the second order velocity potential on the vertical circular cylinder and
Chau and Taylor (1992) suggested the complete expression for second order problem. Malenica
and Molin (1995) extended the eigen-function expansion up to third-order problem. Huseby
and Grue (2000) conducted the experiments with different cylinder radii (a=3cm, 4cm). Special
attention was given to remove the second-order free waves due to the wave maker. Measurement
is taken before high-harmonic free waves reach the cylinder. They compared the force harmonics
amplitudes (}F(")‘) and phases (9(F ™)), where (") denotes the harmonic order. Amplitudes of

force harmonics are normalized as follows:
‘ F(n)’ a \"

— =] . 11
pga’ (H/2> (6147

Horizontal force harmonics calculated by present method is compared with others (Ferrant, 1998;
Shao and Faltinsen, 2014; Li, 2018). Shao and Faltinsen (2014) evaluated the force harmonics
by Harmonic Polynomial Cell (HPC) method and Li (2018) calculated forces by finite vomume
method based on multi-phase SWENSE and VOF procedure for interface modeling. Computed

force harmonics by present study show good results with others.

First-harmonic amplitudes and phases have similar tendencies with what shown in Li (2018).
However, small amplitude differences are observed for small kH that should have the similar
value with analytical solution. Second-harmonic amplitudes and phases show similar results with
Li (2018). Third-harmonic amplitudes and phases are slightly different for small kH compared
to others and analytic solution. Fourth-hamonic amplitude and phase show similar results with
Ferrant (1998) and Shao and Faltinsen (2014).

Force harmonics calculated by proposed method show good results even if a relative coarse
discretization (Nge; = 190, 000) is used.
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Figure 6.23. Harmonics of horizontal force acting on the cylinder.
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6.10 Conclusion

The SWENSE method is applied to multi-phase flow with Level-Set function for the interface
modeling. Kinematic and dynamic interface boundary conditions in multiphase flow are reviewed.
Navier-Stokes equations and interface boundary conditions are reformulated with respect to the

complementary flow by combining previous works by Vukéevié¢ (2016) and Li (2018).

Pressure related terms are discretized by considering the interface boundary conditions in the
framework of Finite Volume (FV). A FV discretization procedure based on Ghost Fluid Method
(GFM) proposed by Vukéevi¢ (2016) is used to consider the pressure boundary conditions on the
interface. The incident pressure including the dynamic pressure of incident waves and hydrostatic
pressure is used for the pressure jump condition (Li, 2018). Both pressure jump conditions

proposed by Vukéevi¢ (2016) and Li (2018) are same for calm water case.

The extrapolation of incident velocity and dynamic part of incident wave pressure with cubic
polynomials is proposed in the present work. It provides smooth transitions of incident wave
quantities up to air zone without any complex algorithm and with fast computation. Nev-
ertheless, the extrapolation with cubic polynomials generates mass continuity error in the air
zone. Numerical simulations showed that the extrapolation of the incident flow up to air zone is

necessary for multi-phase flow simulation based on the SWENSE approach.

Redistancing Level-Set (LS) function by calculating the distance from the nearest interface is
used in the present study. The numerical discretization of incident flow terms in LS equation
generates errors which are cumulated in simulation time. Redistancing LS is thought to remove
cumulated errors due to the discretization of incident flow terms. Then, a negligible mass loss is

observed during the simulation.

Spatial and time discretization tests were conducted to check the order of convergence. Further-
more, a comparison with other viscous flow solvers was conducted for wave propagation. Results
showed that the proposed viscous flow solver gives better results during simulation compared to

others.

At last, a benchmark test on the wave diffraction by a thin cylinder is conducted. Amplitudes and
phase of force harmonics are compared with analytical solution, experiments and other numerical
computations. Although a small number of computation cells is used for the simulation, the
results calculated by the proposed viscous flow solver show similar results compared with other

computations.
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7. Two-way coupling of potential and viscous flows

7 Two-way coupling of potential and viscous flows

The computational algorithm solving a problem of wave-structure interaction by considering the

two-way coupling between potential and viscous flow models are introduced. It is based on the

hypothesis that total flow can be decomposed into the incident and complementary is assumed.

In the present study, the following principles are used:

Total flow can be decomposed into the incident and complementary parts.

The incident parts are calculated from the nonlinear potential flow models for incident

waves in a whole computational domain.

The complementary parts in the vicinity of a structure are solved by viscous flow model
based on SWENSE method.

The complementary parts in the far-field are modeled by Poincaré’s velocity representation

based on linear potential theory.

Based on the above principle, the functional decomposition (FD) and domain decomposition

(DD) are applied as the coupling methodology as:

Functional decomposition (FD) is applied for both potential and viscous flow models.
Because the nonlinear potential flow model for incident waves is available in a whole fluid
domain, the complementary parts are considered as the main concerns for the computation.
The governing equations and boundary conditions for potential and viscous flow models
are reformulated for complementary flow. Poincaré’s velocity representation is used for

potential low and SWENSE method is applied for viscous flow.

Domain decomposition (DD) is considered to decompose the computational domain
of potential and viscous flow models for complementary parts. The viscous flow model
based on SWENSE with LS function for interface modeling calculates the complementary
waves in the vicinity of a structure. The complementary waves in the region of far-field are

modeled by Poincaré’s velocity representation based on linear potential theory.

Two-way coupling between potential and viscous flow models for complementary flow assumed

that the fluid velocity and wave elevation across the flow models are continuous. Each of the

flow models is updated as follows:

Viscous flow model to potential flow model

The complementary fluid velocity and wave elevations on the matching surface are obtained
from the viscous flow model. Fourier-Laguerre and Fourier coefficients of complementary
velocity and wave elevation are calculated, respectively. The complementary velocity and
wave elevation fields in the relaxation zones are constructed by using Poincaré’s velocity

representation.

Potential low model to viscous flow model

The target values of complementary velocity and Level-Set function in the relaxation
zone are calculated from the complementary velocity and wave elevation fields by using
Poincaré’s velocity representation. The relaxation scheme, which blends the calculated

quantity with the target quantity, is used to update the viscous flow model.
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7.1 Computation algorithm

A segregated algorithm is used to solve the wave-structure interaction problem considering cou-
pling viscous and potential flow models. The fluid velocities and wave elevations computed by
potential and viscous solvers are coupled and they are imposed as the boundary conditions of

each flow model at the same computational time.

Figure 7.1 shows the computation algorithm solving the wave-structure interaction problem.

Viscous flow model and potential flow model are initialized at the beginning of the algorithm.

Start

Y v

Initialize the
potential flow

Initialize the viscous flow

Time update

Update potential flow

Update viscous flow

End ?

End

Figure 7.1. Global computational algorithm of two-way coupling between potential and

viscous flows.
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7.1.1 Initialization of the potential flow

Figure 7.2 shows the initialization procedure of potential flow model. The nonlinear potential

flow model for different incident waves is initialized:

e Regular waves: Stream function theory is used. The modal amplitudes for fluid velocity

and wave elevation of regular waves are computed in this step.

e Irregular waves/Propagating waves in NWT: HOS model is used. The input parameters and

numerical results of HOS wave simulation are read. Initial 3D wave field for interpolation

is constructed.

Potential flow model for complementary waves is initialized by computing the elementary func-
tions of source, image source, harmonic terms and waterline. After calculating the elementary

functions necessary for Poincaré’s velocity representation, 3D cylindrical grid is constructed for

the interpolation of complementary velocity and wave elevation in the relaxation zone.

Initialize the
potential flow

|

Initialize incident

potential flow

Regular waves

Incident wave

type

Irregular waves

or NWT(HOS)

Compute the Fourier-modes

of stream function waves

Read the HOS result file
& initialize the HOS fields

!

Construct 3D wave field
for interpolation

l

Initialize
complementary flow

l

Compute the elementary
functions

l

Construct 3D cylindrical
interpolation grid

!

Exit initialization
of potential flow

Figure 7.2. Initialization of incident and complementary potential flows.
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7.1.2 Update of potential flow

Figure 7.3 shows the update procedure of the potential flow model in the time loop.

Update potential flow

|
! :

Update incid.ent wave Update complementary
potential potential flow

l ;

Irregular waves . .
or NWT(HOS) Obtain the velocity and wave

Regular waves

Incident wave
type

elevation on the matching surface|

i

- - - Compute the Fourier and
Time update for stream Reading the amplitudes Fourier-Laguerre coefficients
function waves of HOS modes T

l Compute the Fourier-Laguerre
Contruct incident wave coefficients at field point
fields on HOS grid v
l Construct the wave elevation
Construct data sets
for interpolation !

T Construct the fluid velocity
[ by Wheeler stretching
Exit the update of 1

incident waves Consctruct 3D complementary
wave fields for interpolation

v
Exit the update of
potential flow

Figure 7.3. Update procedure of the potential flow models for the incident and

complementary waves in the time loop.

Updating the potential flow model for incident waves depends on the wave type. The following

procedures are used to update regular or irregular incident waves.

e Regular waves: Time is updated to change the phase function of the stream function
theory. Fluid velocity, wave elevation and dynamic pressure of incident waves are updated
by new phase function. Wave elevation and stream function of regular waves were given in
equations (3.3) and (3.4) as

El<x7t) = n[(x)e—iwt7 \I/I(xv zvt) = wf(xv Z)e_th'

where ¢ is time, and it is updated with new simulation time.

o Irregular waves/Propagating waves in NWT: Time-varying mode amplitudes of HOS wave

model are updated by the results of HOS simulation. The velocity potential for Open-ocean
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was given in equation (3.16) as

@(I‘ y,Zt ZZA Qb[mn(x Y,z )

m=0n=0

and the velocity potential for NWT was given in equation (3.32) as
®y(x,y, 2;t) = P (w,y, 2;t) + Prlz, y, 23t)

where @5 and @, are the harmonic and local velocity potentials given in (3.36) and (3.41)
as

M, Ny

P (l’ y,z t ZZB ¢Hmn(x Y,z )7

m=0n=0

Ny Naga

O (z,y,2'5t) ZZBadd )OL,mn(,y, 2')

n=0 p=0

where Al (), B2 (t) and Bf{gd (t) are time-varying mode amplitudes of HOS wave model.
Fluid velocity, wave elevation and dynamic pressure of incident waves are reconstructed on
the computational grid by applying inverse Fourier transform. The reconstructed 3D wave
fields are used to construct 3D incident wave field in the viscous flow model by using cubic

spline interpolation.

The complementary fields obtained by the potential flow solver are updated by following proce-

dure:

e Fluid velocities and wave elevations of complementary waves on the matching surface and
waterline are obtained from the viscous flow model. The principle of Wheeler stretching
is applied to obtain the fluid velocity of complementary waves on the matching surface
because the wave elevations of viscous flow model are not calculated on the mean position.
The vertical position of Gauss point ((;) is given in case of calm water, the vertical position

of Gauss point is moved with respect to total wave elevation

G =G —E, (7.1)

where (] is a new vertical position of Gauss point adapted to the total wave elevation
(2). Fluid velocities of complementary waves at Gauss points are interpolated from fluid
velocities on the matching surface. It should be noted that the weight of Gauss-Laguerre
quadrature is not changing, but the vertical location of the Gauss point is moved with

respect to total wave elevation.

e Fourier-Laguerre coefficients of complementary fluid velocity are computed on the match-
ing surface. Fourier coefficients of complementary wave elevation are computed on the

matching waterline.

e Poincaré’s velocity representation is used to calculate Fourier-Laguerre coefficients of the
complementary fluid velocity at the field point. The elementary functions and Fourier-
Laguerre coefficients of complementary fluid velocity and Fourier coefficients of comple-

mentary wave elevations are used.
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e The vertical component of the complementary fluid velocity is computed at the field point
on the free surface. Complementary wave elevation at field point is computed by integrating
the vertical complementary fluid velocity.

e The complementary fluid velocity at the field points is computed by applying Wheeler
stretching and Fourier-Laguerre series.

e Constructed complementary fluid velocity and wave elevation at the field points are used

to interpolate the complementary flows for viscous flow model.

7.1.3 Update of viscous flow

Figure 7.4 shows the computational procedure to update the viscous flow model. The PIMPLE
algorithm, which is a combination of PISO (Pressure Implicit with Splitting of Operator) and
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations), is used to solve the segregated

equations for an unsteady problem.

Update viscous flow

}

PIMPLE Loop

i

Mechanical solver Solving ¥ ¢-transport equation
& Mesh update & Redistancing ¢¢
) ¥
Update incident wave fields Relax 1¢ to pgenearé
from wave theory(Zr, uz, pr) Yo = (1 - w)the + wyg e

l Y

Compute the incident LS from PISO Loop
the incident wave elevation(w[) Solve uc equations
i Solve pc equation with GFM
Update the complementary 7

wave fields by using Poincaré Poincaré

Relax uc to ug
Poincaré

velocity representation in the uc = (1—w)ue + wuk

relaxation zones(Z¢, ubeincaré)

|

Compute the complementary LS

. No
by using complementary wave
elevation in the relaxation zones Yes
(pgeimeare) Solve Turbulence

PIMPLE
Converged 7

Exit the update
of viscous flow

Figure 7.4. Updating the viscous flow in time loop.
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The viscous flow model is updated by following the computational procedure:

The dynamics of the body is solved by using a mechanical solver if a floating body is consid-
ered. The computational mesh of the viscous flow model is updated from the displacement

of the body surface.

Flow quantities related to the incident waves are updated. Fluid velocity, wave elevation

and dynamic pressure of incident waves are updated from the incident wave model.

The incident Level-Set (LS) function (¢1) is calculated by using wave elevation (Z;) as
Yr(z,y, 2t) = =2 + Er(w, y; 1)

Flow quantities related to the complementary waves in the relaxation zone are updated from
Poincaré’s velocity representation. The complementary fluid velocity and wave elevation

in the relaxation zones are updated.

The complementary LS function in the relaxation zone is calculated by using the comple-

mentary wave elevation as

77bgoincaré($7 v, 2 t) — EC($7 Y t).

wPoincaré
C

where is the complementary LS function obtained from Poincaré’s velocity repre-

sentation.

The transport equation of complementary LS function (¢¢), as given below, is solved in

the computational mesh of the viscous flow model.

0 0
19 - (whe) = =29 - (uiy)

After solving ¥ c-transport equation, the complementary LS function is re-distanced by

(Yeo)p =sgn((d)p) — (¥r1)p,

where d is the distance from the nearest interface(free surface) to cell center(P).

The relaxation scheme is applied to the complementary LS function in the relaxation zones

as
vo = (1 - w)ihe + wpe™r,
where w € [0,1] is the weight function defined in the relaxation zones.

PISO loop is used to solve ug and po equations with interface conditions. The governing
equations for uc and peo are given by
ou \Y%
67tc + V- (uuc) —-V- (VeffVuC) = —%Tp —uc - Vur +Vug - Vieyy,
w

and
1 /1 1

v (L (Vo) } - v [ Driwe].

The interface conditions are given by

. _ Pw — Pa 1 _
[uc] =0, [pc] = Pr—_ HPVPC]] =0.

The Ghost Fluid Method is applied to solve the equations for uc and pc by considering

the interface boundary conditions.
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7. Two-way coupling of potential and viscous flows

e The relaxation scheme is applied to the complementary fluid velocity in the relaxation
zones as
uc = (1 — w)ue + wullnee,
e Turbulence model is solved after the PISO loop. In the present study, the turbulence model

is not considered. In other words, a laminar flow is assumed.

e [f the solutions are converged in the PIMPLE loop, the update of viscous flow is done.

7.2 Benchmark test 1: A vertical circular cylinder in regular waves
7.2.1 Description

A bottom-mounted vertical circular cylinder in regular waves is considered for the benchmark
test case. Different wave frequencies are used for incident regular waves. The magnitude of
waves diffracted by the cylinder increases as the wavelength of incident waves becomes shorter.
The test cases are selected from the previous study on the wave diffraction theory by Malenica
and Molin (1995) (M&M theory). They calculated the third-order harmonic forces acting on a
vertical circular cylinder. Perturbation series with respect to wave steepness is applied to the
velocity potential and wave elevation. The third-hamonic component magnitude of horizontal
forces acting on the vertical circular cylinder are compared with experimental results (Moe,
1993). Nevertheless, the third harmonic components measured in experiments show a scattered
distribution, that is why the first, second and third harmonic components of horizontal forces

calculated from M&M theory can be used as reference values (Malenica, 1994).

The horizontal forces on the bottom-mounted vertical circular cylinder in regular waves can be

decomposed into the harmonic components as (Malenica and Molin, 1995)

T

Fo(t) = R P p—iwt +F£2)€—2iwt 1 FagS)e—Siwt} +F£2) e, (7.2)

where F;,gl), F:,EQ) and F;£3) are the first harmonic, second harmonic(sum-frequency) and third
harmonic components of horizontal force. Ff) is a mean drift force which corresponds to a
second order different-frequency component. Analytical solution of force harmonics can be found
in the literature: the first harmonic by McCamy and Fuchs (1954), the second harmonic by Kim
and Yue (1989); Chau and Taylor (1992) and the third harmonic by Malenica and Molin (1995).
Mean drift force acting on the structure is given by Pinkster (1980). In the present study, the
mean drift forces are calculated by using Higher-Order Boundary Element Method(HOBEM)
(Hong et al., 2005).

The conditions of regular waves considered in the present study are given in Table 7.1. The
modal wave number (ko) is selected to be in the range koacyiinder € [0.5,2.0] satisfying a deep
water condition that the half of wavelength is smaller than the water depth. The modal wave

number is calculated by using a linear dispersion relationship as
w? = koh tanh(koh) (7.3)
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7. Two-way coupling of potential and viscous flows

where w = 2% is wave frequency, T is wave period. A\g = % is the modal wavelength. Wave

height is selected to keep the wave steepness, kOQH = 0.25.

Table 7.1. Wave conditions for a vertical circular cylinder in regular wave.

. . Wave
Koeytinder Wave period =~ Wave height Wavelength steepness

() (H=24)  (o=2%) i

2

N s] fm] [m] [
0.50 2.837 1.000 12.566 0.25
0.75 2.316 0.667 8.376 0.25
1.00 2.006 0.500 6.283 0.25
1.25 1.794 0.400 5.027 0.25
1.50 1.638 0.333 4.189 0.25
1.75 1.516 0.286 3.590 0.25
2.00 1.419 0.250 3.142 0.25

The force harmonics and mean drift components of horizontal force are extracted from the
CFD solution by applying moving window FFT. The force harmonics and mean drift forces are
nondimensionalized by:
Fm
pgagylinder (A/acylinder)m

where m is the order of force harmonics. A is wave amplitude.

(7.4)

7.2.2 Computational domain

Figure 7.5 shows the configuration of the benchmark test case. A bottom-mounted vertical
circular cylinder having a radius of acyiinger = 1m is located in regular waves. Water depth
is h = 10acyiinder = 10m. The computational domain of the viscous flow solver is defined
surrounding the vertical circular cylinder, as colored grey in figure 7.5. The radius and height
of the computational domain of the viscous flow solver are Lorpp and h + hg;-, respectively.
The relaxation zone is defined from the far-field boundary with its length L,.cjq.. The pure zone
where no relaxation scheme is applied has a length Lyyre = Locrp — Lreiae- The computational
domain of the potential flow model for complementary waves is constructed to cover at least
the relaxation zone of viscous flow model, as outlined with a solid black line in figure 7.5. The
complementary fluid velocity and wave elevation are obtained from viscous flow model at Gauss

points colored red in figure 7.5.

With two-way coupling, the viscous solver needs the target solution for each nodes of the re-
laxation zone. The potential solver based on Poincaré’s velocity representation computes the
complementary flows on the interpolation grid. Therefore, the interpolation grid should cover
the whole relaxation zone of the viscous flow domain. The schematic view of the interpolation

grid for potential flow model is depicted in Figure 7.6.
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7. Two-way coupling of potential and viscous flows

Viscous flow domain for
complementary waves

[-‘/! Relaxation

ANES Potential flow domain for

complementary waves

h: Water depth

Gauss points on cylindrical

matching surface

Figure 7.5. Computational domain of viscous and potential flow models for benchmark test

case on a vertical circular cylinder in regular waves.

Uniformly discretized by

. 9 . . .
min max NS . . in O-direction
re [TPoincaré7 rPoincaré] . . . Poincaré
Uniformly discretized
. by ngoincaré 2
Interpolation (M care)
grid ¢ Air zone: z € [0, 28" ]
= Discretized by NE2, ...c and
------------------- S— 1000 (A cars) 22 _ max(hP)
4 OTL.I b I Y. [Peincart = min(hi )
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Underwater zone:
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I~
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/ — 7.;1_ = méx(:g;mcaré)
Matching / --------------------- \ A\ } oincaré = Wi (AEhincars)
surface . na

max(Mgincars)

Figure 7.6. Interpolation grid of Poincaré’s velocity representation for complementary flows.
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7. Two-way coupling of potential and viscous flows

The cylindrical-shaped interpolation grid is defined in r € [PBil  pmax 1 > ¢ [guater = cair ]
and 6 € [0,27n]. The interpolation grid is discretized uniformly in a radial direction with dis-

T

cretization number (Np ;-

). In the vertical direction, the grid is decomposed into the under-
water zone (z < 0) and the air zone (z > 0). The underwater zone is discretized with the number
of N*! with a cell height ratio r*! in the vertical direction. The air zone is also discretized in

the vertical direction with the number of N32 with a cell height ratio 7?2. The cell height

Poincaré
ratios are defined as

z1 22
T’f)1~ o max(hPoincaré) 7”1%2~ _ maX(hPoincaré) (7 5)
oincaré — . 21 ) oincaré — . 22 .
mln(hPoincaré) mln(hPoincaré)
z1 22 : : :
where hjg; e and hic .. are the cell height of the underwater and air zone, respectively.

The cells having the minimum height are located on the mean free surface to give a dense mesh
distribution near to the free surface. Interpolation grid is uniformly distributed in #-direction
with the number of Ng

oincaré*

7.2.3 Coupling between viscous flow solver based on SWENSE with LS function
and potential flow solver

Numerical setting
The viscous flow solver based on SWENSE with LS function for interface modeling is used.
Results with and without two-way coupling are compared. Two computational meshes are used

for the viscous flow solver and relative information is given in Table 7.2.

Table 7.2. Computational domains of viscous flow model based on SWENSE with LS function

for the vertical circular cylinder in waves.

Ttem Meshl Mesh2

Lerp Qeylinder + 25)\0 Qeylinder + 15)\0

Lrelar 2)\0 1)\0

Lpure Qeylinder + 0.5\ Qeylinder T 0.5\

Neent 360,000 360,000

a 2acylinder 2acylinder

] , r € la+ 0.3\, Lorp +0.2X0], 7 € [a+ 0.3\, Lorp + 0.2)g],
Interpolation grid

z € [-H — 1m,3.5m)| z € [-H — 1m,3.5m)|

Boincare and NB . 120 and 128 80 and 128

NEL care and NE2 o 300 and 50 300 and 50

rf’})incaré and Tf’%incaré 5 and 3 5 and 3

deouple 0.5 0.5

The domain lengths are set to be Lopp = Geylinder + 2.5X0 and Lopp = aeylinder + 1.5Ao for
Meshl and Mesh2, respectively. A relaxation zone is defined in the far-field region, as colored

yellow in figure 7.7. The length of relaxation zones are set to be L,cjqr = 2A0 and Lyejaz = 10
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7. Two-way coupling of potential and viscous flows

for Meshl and Mesh2 respectively. The pure zone has same length in Meshl and Mesh2. The
computational meshes of viscous flow solver for the case of koacyiinder = 1.0 are shown in figure

7.7. The same number of computational cells, N_..;; = 360,000, is used for mesh refinement.

S50
<SSO
et

TR
e
e
LSS

=

S SCSS S

—
s

(a) Meshl (b) Mesh2

Figure 7.7. Computational meshes of viscous flow model based on SWENSE with LS function

for the case of kacyiinder = 1.0.

The radius of the matching surface used to update the potential flow model is set to be a =
2acylinder- The information of interpolation grid used in the benchmark test are summarized in
Table 7.2. The number of Fourier and Laguerre modes used for Poincaré’s velocity representa-
tion are Nyoyrier = 6 and Nigguerre = 3, respectively. Distance between matching surface and

relaxation zone is deoypre = 0.5A0.

In the relaxation zone, the complementary flows are relaxed to zero when no coupling is applied

or to the complementary flows calculated by potential flow solver when the coupling is considered.

Complementary wave field

Figure 7.8 shows the complementary wave elevations in the computational domain of the viscous
flow model at simulation time ¢ = 127,12.4T and 12.87. Incident waves are propagating from
left to right. Relaxation zone is defined in the far-field region of the computational domain, from
red-circle to the ends of domain in figure 7.8. The matching surface of radius a = 2.5a,yiinder 18

is located at blue circle in figure 7.8.

The complementary wave elevation fields without considering the two-way coupling between
potential and viscous flows are shown in figures 7.8a, 7.8c and 7.8e. The complementary wave
elevations only exist in the vicinity of the circular cylinder where no relaxation scheme is applied.
In the relaxation zone, the complementary wave elevation is relaxed to zero. Therefore no

complementary waves are propagating up to the region of far-field.

The complementary wave elevation fields when the two-way coupling is considered are shown in
figures 7.8b, 7.8d and 7.8f. The complementary waves exist both in the vicinity of the circular
cylinder and the region of far-field. A smooth transient of complementary wave elevation between

pure and relaxation zone is shown in the figures.
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7. Two-way coupling of potential and viscous flows

Incident waves
—_—

VA VAVAN

Incident waves
—_—

VA VAN

(a) without coupling, ¢t = 12T (b) with coupling, t = 12T

Incident waves Incident waves

—_—

VA VAN

—_—

VA VAVAN

(c) without coupling, ¢t = 12.4T (d) with coupling, ¢t = 12.4T

Incident waves
—_—

VA VAVAN

Incident waves
—_—

VA VAN

(e) without coupling, t = 12.8T (f) with coupling, ¢t = 12.8T

Figure 7.8. Complementary wave elevation fields with respect to application of two-way

coupling for the case of koacyiinger = 1.0 (Left: without coupling, right: with coupling).
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7. Two-way coupling of potential and viscous flows

The horizontal force acting on the vertical circular cylinder

Figure 7.9 shows the time series of horizontal forces acting on the vertical circular cylinder. The
horizontal forces are compared with respect to the different computational meshes of viscous flow
model and two-way coupling between viscous and potential flows. The magnitude of total forces
and behaviours are not changed significantly with respect to the computational meshes and two-
way coupling. The time series of forces are slightly changed when the different computational
meshes are used for the case of large wavenumber, kyacyiinger > 1. Two-way coupling between

potential and viscous flows also slightly affects the time series of forces.

12 : : : 12 : : :
——SWENSE-+LS(without coupling, Mesh1) ——SWENSE+LS(without coupling, Meshl)
10 — - -SWENSE+LS(with coupling, Meshl) - 10 — - -SWENSE+LS(with coupling, Meshl) -
——SWENSE-+LS(without coupling, Mesh2) ——SWENSE+LS(without coupling, Mesh2)
8L SWENSE+LS(with  coupling, Mesh2) | 8L SWENSE+LS(with  coupling, Mesh2) |
6 ]
< <
s 5
E 3
3 3
> =)
QU U
~ ~
= =
& &
6L i
-8 ‘ ‘ ‘ 8 ‘ ‘ ‘
13 13.5 14 14.5 15 13 13.5 14 14.5 15
t/T t/T
(a) kOacylinder =0.5 (b) koacylinder =1.0
12 : : : 12 : : :
——SWENSE-+LS(without coupling, Mesh1) ——SWENSE+LS(without coupling, Meshl)
10+ — - -SWENSE+LS(with  coupling, Meshl) - 10+ — - -SWENSE+LS(with  coupling, Mesh1) |
——SWENSE-+LS(without coupling, Mesh2) ——SWENSE+LS(without coupling, Mesh2)
8L SWENSE+LS(with  coupling, Mesh2) | 8L SWENSE+LS(with  coupling, Mesh2) |
6 4 6 4
< <
T 4t 1% 4t 1
- 3
3 3
> =)
QU U
~ ~
= =
& &
4l ,
6L ] 6L ,
-8 ‘ ‘ ‘ 8 ‘ ‘ ‘
13 13.5 14 14.5 15 13 13.5 14 14.5 15
t/T t/T

(C) koacylinder =15

(d) koacylinder =20

Figure 7.9. Horizontal force time series with respect to the computational meshes and the
application of two-way coupling (Viscous flow model based on SWENSE with LS function and

Poincaré’s velocity representation is used for two-way coupling).
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7. Two-way coupling of potential and viscous flows

Force harmonics and mean drift forces are extracted by using moving window FFT. They are
compared in figure 7.10 with respect to different computational meshes of viscous flow model
and two-way coupling between potential and viscous flows. The analytical values for the first ,
second and third harmonics of horizontal forces are obtained from potential flow theory based
on perturbation series (Malenica, 1994), as given by black lines in figures 7.10a, 7.10c and 7.10d.
Reference values for the mean drift forces are calculated by using HOBEM (Hong et al., 2005),
as given by black line in figure 7.10b.

Figure 7.10a shows the first harmonic of horizontal forces compared with the analytical solu-
tion. The first harmonics show good agreements with the analytical solution obtained from the
potential flow theory. When no coupling is applied, the first harmonics obtained from different
computational meshes are slightly different for the cases of koacyiindger > 0.75. The first harmon-
ics obtained from different computational meshes by applying two-way coupling show consistent

values for the cases of koacyiinder < 1.25.

Figure 7.10b shows the mean drift force in the horizontal direction. They are similar compared
with the results of HOBEM (numerics) except the case with small computational domain and
without two-way coupling. It seems that the two-way coupling helps to assess the mean drift

force on the structure in a small computational domain.

Figure 7.10c shows the second harmonic of horizontal forces. The second harmonics show sim-
ilar behaviour with the analytical solution from potential flow theory. With two-way coupling,
the second harmonics are slightly better compared to the simulation results without two-way

coupling.

Figure 7.10d shows the third harmonic of horizontal forces. The third harmonics of horizontal
forces for all simulations have similar tendencies with the analytical solution, but the poor
results are obtained on the magnitude of forces for all simulations. Especially for the cases of

large wavenumbers Koacyiinder > 1, the simulation results are different.

The following things are summarized from the results.

e SWENSE with LS function for interface modeling with a relatively large computational

domain gives good results up to second-order forces.

e Two-way coupling between viscous and potential flow model gives slightly better results
for the first- and second harmonics and mean drift forces in a small computational domain.

However, poor results are obtained for third-order harmonics.

e Nevertheless, the third harmonics obtained from the simulation have tendencies similar
to the analytical solution, the large differences between analytical solution and simulation

results are shown.
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9 \ \ \ 1 \
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Figure 7.10. Harmonics of horizontal force acting on vertical circular cylinder. Horizontal
forces are calculated by viscous flow model based on SWENSE with LS function. Poincaré’s

velocity representation is used for two-way coupling.
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7.2.4 Comparison and discussion

Considered computations
The viscous flow solvers with and without two-way coupling are applied. The computations

considered are listed as below:

e Viscous flow solver based on NS+VOF with and without two-way coupling

Viscous flow solver based on Navier-Stokes equations and VOF interface modeling is used.
In the relaxation zone, the functional quantities of total flows are relaxed to the target

functional quantities as quantities calculated by incident waves as

u=(1-w)u+wul®9 (7.6)

(1 — w)a + wal@r9et, (7.7)

(%

where u? %9 and a?979¢ are the target fluid velocity and VOF.

When the coupling is not applied, the target fluid velocity and VOF are set to be the

functional quantities of incident waves as

uTarget = uy, aTarget — aTarget,I’ (78)
where uy is the fluid velocity computed by incident waves, a?%"9¢5! is VOF calculated by
using the wave elevation of incident waves.

Meanwhile, the target fluid velocity and VOF changes when the two-way coupling is applied

as

s
Il

(1 — w)u + w(uy + ubemneare), (7.9)

(1 _ U))Oé + wOéTarget,Total’ (710)

(07

where uPoncaré ig complementary fluid velocity computed by Poincaré’s velocity representa-

Target,Total is VOF calculated by using total wave elevation(Z). Total wave elevation

tion, «
in the relaxation zone is given by a superposition of incident wave and complementary
waves

E — EI + Egoincaré7 (711)

To update the potential flow solver, the complementary fluid velocity and wave elevation

on the matching surface are obtained by subtracting the incident flow parts as

u

u-—uy, . . .
at Gauss points on matching surface and waterline, (7.12)

[1]

C

c==-Z,
where uy and = are fluid velocity and wave elevation calculated by incident waves at Gauss
points, respectively.

e Viscous flow solver based on SWENSE+LS with and without two-way coupling
Viscous flow model based on SWENSE with LS function for interface modeling is used.

In the relaxation zone, the complementary flows are relaxed to the complementary flows
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7. Two-way coupling of potential and viscous flows

computed by Poincaré’s velocity representation as

uc = (1 —w)ue + wugarget,

Yo = (1 —w)po + wip e,

The target complementary fluid velocity and LS functions are determined by application

of two-way coupling as

o Torget _ 0 without coupling wTarget _)o without coupling
C - : . ’ C - . ,
ugomcare with coupling wgomcare with coupling
where ug‘)incaré and wg"incaré are the complementary fluid velocity and LS function calcu-

lated by using Poincaré’s velocity representation.

Computational domain

Some information of computational domains are summarized in Table 7.3. The radius of viscous
flow domains is Lorp = Geylinder +3-0A0 and acyiinger +1.5A0 for MeshL and Mesh2, respectively.
The relaxation zone is defined in the far-field region with its length Lo = 1.5Ag and 1Ag for
MeshL and Mesh2, respectively. The numbers of computational cells are in the range of 3millions
and 0.36millions for Meshl, and Mesh2, respectively. The simulation time step is 7'/At = 1600
and 1000 for MeshLL and Mesh2, respectively. Figure 7.11 show the computational grid of MeshL
for the simulation case of kacyiinger = 1.0. The computational grid for Mesh2 is already shown
in figure 7.7b.

The radius of matching surface is a = 2a,yiinder. Some information of interpolation grid is given
in Table 7.3. Two-way coupling is only applied when Mesh2 is used in the viscous flow solver.
The distance between the matching surface and relaxation zone is deoypre = 0.5Ag. The numbers

of Fourier and Laguerre modes are Nyoypier = 6 and Niggyerre = 3, respectively.

Table 7.3. Computational domains used for the comparison of two-way coupling with various

viscous flow models.

Item MeshL Mesh2
Lerp Qeylinder T 3.0X0 Qeylinder + 1.5Ao
Lyelaz 1.5X0 1o
Lpure Geylinder + 15)\0 Geylinder + 05)\0
Neent 2,808,000 - 3,132,000 360,000

a 2acylinder 2acylinder

r € la+ 0.3\, Lorp + 0.2)0],

Int lati id -
nterpolation gri z € [-H — 1m, 3.5m]

Npgincare and IV, goincaré - 80 and 128
Nigincare a0d Ni%icare - 300 and 50
Tf’%)incaré and rf’%incaré - 5 and 3

dcouple - 05)\0
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Air zone

2 € [H, hgir) i

Free surface zone

z € |—H, H]

Underwater zone

z € [—h,—H]|

Figure 7.11. Computational grid of MeshL for the simulation case of kacyiinder = 1.0

Total wave field
Total wave elevation fields in the vicinity of the circular cylinder are compared in figure 7.12.
Incident waves are propagating from left to right. The relaxation zone is defined in the far-field,

from red circle to the end. The matching surface is given as the blue circle.

Figure 7.12a shows total wave elevation field computed by solving Navier-Stokes (NS) equations
and VOF interface modeling in MeshL without coupling. In the figure, the total waves diffracted
by the vertical circular cylinder are propagating to the far-field. The amplitudes of total wave
elevation in the vicinity of the vertical circular cylinder are smaller than the simulation case with

Mesh2 due to numerical dissipation.

Figures 7.12b and 7.12d show the total wave elevation fields calculated by viscous flow solvers
without two-way coupling in Mesh2, Figure 7.12b by viscous flow solver based on NS equations
with VOF interface modeling and Figure 7.12d by viscous flow solver based on SWENSE with
LS function for interface modeling. They show that the total wave elevations in the relaxation

zone are blended to the incident waves.

Figures 7.12c and 7.12e show the total wave elevation fields calculated by viscous flow models
with two-way coupling in Mesh2, Figure 7.12c by viscous flow model based on NS equations and
VOF interface modeling, and Figure 7.12e by viscous flow model based on SWENSE with LS
function. The total waves diffracted by the cylinder are propagating in the relaxation zone and

a smooth transient of wave elevation across the pure and relaxation zone are presented.

The results can be summarized as follows:
e Total wave fields in the vicinity of the vertical circular cylinder are similar.

e The viscous flow solver based on NS equations and VOF interface modeling needs more
refined mesh than the computational mesh used in the present study.

e When the two-way coupling is used, the waves diffracted by the structure are propagating
up to far-field. A smooth transition of complementary waves across the relaxation and

pure zone are presented.
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Figure 7.12. Total wave elevation fields with respect to two-way coupling for the case of

koacylinder = 1.0.
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Horizontal force acting on the vertical circular cylinder
Horizontal force harmonics and mean drift forces acting on the vertical circular cylinder are

compared in figure 7.13 with respect to the two-way coupling for different viscous flow models.
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Figure 7.13. Horizontal force harmonics and mean drift forces with respect to the two-way

coupling for different viscous flow models.
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7. Two-way coupling of potential and viscous flows

Figure 7.13a shows the first harmonics of horizontal forces. The first harmonics calculated by
solving SWENSE with LS function show better results for small wavenumbers than the simulation
solving NS equations and VOF interface modeling. Nevertheless, the effects of two-way coupling
on the first harmonics are small, the first harmonics approach to the analytical solution when

the two-way coupling is considered.

Figure 7.13b shows the horizontal mean drift forces. The mean drift forces calculated by viscous
flow models without two-way coupling show big differences, especially for the simulation cases
of koacytinder=1,1.25- When the two-way coupling is considered, the mean drift forces show better

results than the simulation without considering two-way coupling.

Figure 7.13c shows the second harmonics of horizontal forces. The second harmonics obtained
from all simulations follow the analytical solution. When the two-way coupling is considered,
the second harmonics show better results than the simulation cases without considering two-way

coupling.

Figure 7.13d shows the third harmonics of horizontal force. Third harmonics by SWENSE and
NS viscous flow models without considering two-way coupling show similar tendency. When the
two-way coupling is applied, the results are more divergent than the simulation cases without

considering two-way coupling for large wavenumbers.

Differences of force harmonics and mean drift forces are summarized in Table 7.4. Relative

differences of horizontal force with the solution potential flow model are defined by

1
Nkoacylinder F(m) o F(m) 2
o 1 j : T, x,i,potential
GF(TIL) — Ni (m) 5 (7.13)
i kOac linder ;— . .
v =1 x,i,potential

where € is a relative difference of m—th harmonics of horizontal force with respect to po-

)

x,1

tential flow result. Niga,,nq., 18 the number of simulated wavenumbers. FCET is m-th harmonic

component of horizontal force obtained by simulation with i-th koacyiinder- FI(T;’.L; otential 15 M-th

harmonic components calculated by potential flow theory at i-th koacyiinder-

When the two-way coupling is applied, the relative differences of force harmonics are reduced for
first- and second harmonics and mean drift forces. Meanwhile, the relative differences of third

harmonics increases when the two-way coupling is considered.

Table 7.4. Relative differences of force harmonics acting on vertical circular cylinder with

respect to viscous flow models and two-way coupling.

Simulations / Force harmonics € €52 € €

NS+ VOF without coupling (large domain) 0.0443 0.0481 0.2814 0.1317
NS + VOF without coupling (small domain) 0.0449 0.0662 0.1133  0.1285
NS + VOF with coupling (small domain) 0.0410  0.0363 0.0736  0.1368
SWENSE + LS without coupling (small domain) 0.0355  0.0605 0.0928 0.0972
SWENSE + LS with coupling (small domain) 0.0300 0.0485 0.0522  0.1425
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7. Two-way coupling of potential and viscous flows

Computational cost
Computational costs for simulating the wave diffraction by the vertical circular cylinder are
compared. The computational costs are defined by computational time multiplied by the number

of processors used for computation as
Cost = tproc X Nprocs (7.14)

where tp.o. is a computational time, Np.o. is the number of processors used for parallel com-
putation. In the present study, Nproc = 12 is used for both viscous flow solvers based on NS
equations and SWENSE in the small computational domain. In the large domain, the number of
processor Npro. = 120 is used for computation. Figure 7.14 shows the normalized computational
costs by the computational cost of the viscous flow solver based NS equations and VOF interface

modeling without two-way coupling in the small computational domain.

The computational cost of the viscous flow solver based on the NS equation and VOF interface
modeling in the large computational domain is about 21.6 times of reference case. Viscous flow
solver based on SWENSE with LS function is faster than the viscous flow solver based on NS
equations and VOF interface modeling. VOF transport equation is solved by an algorithm called
MULES, which solves the transport equation by using FCT-scheme (Boris and Book, 1973; Zalesak,
1979), in OpenFOAM framework. MULES needs the nonlinear iteration for calculating the flux
limiter on each internal faces. Therefore, the computational costs are larger than solving the

LS-transport equation.
Computational costs are increased when the two-way coupling is applied. Extra computational
costs for two-way coupling are listed as below:

e Computation of convolution integrals in Poincaré’s velocity representation needs extra com-
putational time. It can be reduced by applying parallel computation.
e Interpolating the complementary fluid velocity and wave elevation in the relaxation zone

are computational burden.

e Approximation of complementary flows on the matching surface by Fourier-Laguerre series

and Fourier series needs a short computational time compared to other procedures.

9l * NS+VOF(large domain): Cost=21.6 |
) +56 %
Z; L5 +38 % il
X
< 1 - — ] - - 1l R
! 25 %
»n
<}
O
0.5+ 4
SWENSE+LS  SWENSE+LS NS+VOF NS+VOF

w/o Coupling  with Coupling  w/o Coupling  with Coupling

Figure 7.14. Computational cost.
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7. Two-way coupling of potential and viscous flows

7.2.5 Summary of benchmark test 1

Two-way coupling strategy between viscous and potential flows is applied for a problem of wave
diffraction by a bottom mounted vertical circular cylinder in regular waves. Two-way coupling
strategy is also applied for the viscous flow solver based on SWENSE with LS function. The

simulations are conducted for various regular wave frequency keeping the wave steepness.

The complementary waves diffracted by the vertical circular cylinder propagates up to far-field
with two-way coupling. Total wave fields obtained from the simulations with two-way coupling
shows that the diffracted waves are propagating in the relaxation zone that are similar to the

total wave fields obtained from the simulation in the large computational domain.

Horizontal forces acting on the vertical circular cylinder are compared by extracting its harmonics
and mean drift forces. The simulations by considering two-way coupling give good results for the
first harmonics, second harmonics and mean drift forces which correspond to the second-order
component. In the potential theory, the linear wave distribution along the waterline contributes
mainly on the second order forces (Pinkster, 1980). When the two-way coupling is applied the
differences of first and second order forces with the solution potential flow model are reduced

because the linear parts of complementary waves in the relaxation zone are well treated.

However, the third harmonics obtained from the simulation by considering two-way coupling are
worst than those obtained without two-way coupling. The potential low model for complemen-
tary flows based on linear theory may not appropriate to obtain the third order components

which are given by the combination of second and first order components.

The two-way coupling strategy is applied also for the viscous flow solver based on NS equations
and VOF and the results are compared. The same conclusion is drawn from the simulation

results.

The computational costs are increased when the two-way coupling is applied. The computa-
tional costs are increased by 84% (=1.38/0.75) for the viscous flow solver based on SWENSE
with LS function. When the viscous flow solver based on NS equations and VOF is used, the

computational costs are increased by 56%.

7.3 Benchmark test 2: Calm buoy in waves

A Catenary Anchor Leg Mooring (CALM) buoy is considered to demonstrate the ability of
coupling methodology between the viscous flow model based on SWENSE with LS interface

modeling and the potential flow model Poincaré velocity representation.

7.3.1 Description

The experiments on a fixed Catenary Anchor Leg Mooring (CALM) buoy in regular and irregular
waves were carried out in 3D ocean wave tank in Ecole Centrale de Nantes (Rousset and Ferrant,
2005; Monroy et al., 2011; Li, 2018). Specifications of wave basin in Ecole Centrale de Nantes
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7. Two-way coupling of potential and viscous flows

was given in section 3.3. The buoy is a truncated vertical circular cylinder with a thin skirt
near to the bottom. The buoy model and the picture of the installed buoy in the wave basin are
shown in figure 7.15. Geometrical dimensions of the buoy are given in Table 7.5. The horizontal

and vertical forces acting on the buoy and the wave elevations are measured in experiments.

The conditions of regular and irregular waves are given in Table 7.6. Stream function theory is
used to generate regular waves. The irregular waves are re-generated in the simulation by using
the reconstruction procedure of HOS wave model explained in section 3.2. HOS-NW'T model for

2D propagating waves is used for HOS wave model.

(c) Buoy model installed in the wave basin

Figure 7.15. A CALM Buoy model.

Table 7.5. Geometrical dimensions of the CALM buoy model.

[tem Value
Calm buoy radius (apuoy) 0.460m
Height overall 0.560m
Skirt radius (asgirq) 0.550m
Skirt thickness 0.004 m
From bottom to the skirt 0.04 m
Draft 0.25 m
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7. Two-way coupling of potential and viscous flows

Table 7.6. Wave conditions considered in the experiments on the CALM buoy model.

Wave Type
Regular waves Irregular waves
Item Value Item Value
Wave height(H) 0.16 m Significant wave height(Hy) 0.12m
Wave period(7) 1.80 s Peak wave period(7}) 2.00 s
- - Peak enhancement factor(vy) 3.0
- - Wave spectrum  JONSWAP

Figure 7.16 shows a configuration of the computational domain of viscous and potential flow
models for complementary waves. The same configuration of the previous benchmark test is

used. The body in the computational domain of the viscous flow model is only replaced.

The computational domain of viscous flow model is composed of relaxation and pure zones.
The relaxation and pure zones are colored yellow and grey in figure 7.16, respectively. In the
relaxation zone, the complementary flow is relaxed to the complementary flows calculated by

Poincaré’s velocity representation when the two-way coupling is considered.

The matching surface is located at a = 2.5a4x+. The complementary fluid velocity and wave
elevations at Gauss points are obtained from the viscous flow model to update the complementary

waves in the relaxation zones. Gauss points are shown as red points in figure 7.186.
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Figure 7.16. Computational domain of viscous and potential flow models for CALM buoy.
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7.3.2 Regular waves

Numerical setup

Figure 7.17 shows the computational mesh for viscous flow model. The relaxation zone is defined
in the region of far-field, as colored grey in figure 7.17a. The computational mesh is refined in
the vicinity of buoy model, as shown in figure 7.17b. The boundary faces of buoy model are

shown in figure 7.17c.

Information of computational domain is given in Table 7.7. The length of computional domain
for the viscous flow model is Lopp = agpire + 2A. The relaxation zone is defined from far-field
boundary with its length L,¢q = 1.5A. The pure zone, where relaxation scheme is not applied,
has a length Lyure = aspire + 0.5A. The computational cells of N = 473,136 is used for

simulation.

The matching surface to update the potential flow model is located with its radius a = 2.5asx;r¢-
The same configuration of interpolation grid for Poincaré’s velocity representation, as explained
in section 7.2.1, is used. The information of interpolation grid is given in Table 7.7. The numbers
of Fourier and Laguerre modes used for Poincaré’s velocity representation are Nyoypier = 6 and
Nigguerre = 3, respectively. The distance from the matching surface to the relaxation zone is

deoupte = 1.15m.

s L~
—-_-E.———.—.-
—— -

(a) Global view

(b) Side view (c) Discretized boundary faces of buoy
model

Figure 7.17. Computational mesh used for the viscous flow model.
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7. Two-way coupling of potential and viscous flows

Table 7.7. Computational domain of the buoy model in regular waves.

Item Value Remarks
Lerp 10.1 m Gskirt + 2\
Lyelaz 7.575 m 1.5X
Lyure 2.525 m Gskirt + 0.5

Neenr 473,136 _

a 1.375 m 2.5 sirt

r € [2.4m,11.0m),

Cover whole relaxation zone.
z € [-1.6m,0.6m]

Interpolation grid

lgoincaré and Ngoincaré 80 and 128 _
NgL oo and NE2 300 and 100 _
Tf’%)incaré and rf’%incaré 3 and 3 _
dcouple 1.15m 0.5\ — 1.5agkirt
Wave fields

Figure 7.18 shows complementary wave elevation fields with respect to the application of two-way
coupling. Relaxation zone is defined in outer-region of red-circle. Matching surface is located
inside of relaxation zone, as plotted red circle in figure 7.18. Complementary waves propagate
up to far-field and smooth transient across the relaxation and pure zones are shown when the

coupling is applied.

Figure 7.19 shows the total wave elevations measured at wave gauge positions in simulation and
experiment. Total wave elevation computed by considering two-way coupling shows better agree-

ments with experimental results comparing with the simulation without considering coupling.

Incident waves Incident waves

R —

VA VA VAN

R —

VA VA VAN

(a) t = 10T (b) t =10.5T

Figure 7.18. Complementary wave fields with respect to two-way coupling for the calm buoy

in regular wave.
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Figure 7.19. Wave elevations measured at the positions of wave gauges for the buoy model in

regular wave

The magnitudes of first-harmonics obtained from simulations are compared with the experiment
in Table 7.8 with results of Li et al. (2019b). When the two-way coupling is applied, the diffrences

between simulation and experiments are reduced. Even if a small number of cell (N;) is used,

the coupling gives good results compared with results of Li et al. (2019b).

Table 7.8. Harmonics of wave elevation measured at wave gauges.

Average
c Gauge #1 Gauge #2 Gauge #3 Diff
e @ @
ence
. 1.140 1.122 0.969
Experiment -
+ 0.0032 + 0.0027 4 0.0040
ISIS-CFD-IWG 1.201 1.189 1.009 513 %
(Li et al. (2019b), Npwy = 2.4M) (5.33%) (5.93%) (412%) | ~° 7
SWENSE+VOF w/o coupling 1.196 1.180 1.013
_ 4.85 %
(Li et al. (2019b), Noey = 0.72M) (4.89%) (5.13%) (4.54%)
SWENSE+LS w/o coupling 1.240 1.226 1.062 0.18 %
(Present study, Noey = 0.47M) (8.71%) (9.25%) 9.58%) | "
SWENSE+LS with coupling 1.184 1.174 1.035
5.06 %
(Present study, Neey = 0.47TM) (3.80%) (4.62%) (6.77%)
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7. Two-way coupling of potential and viscous flows

Forces acting on the buoy model

Figure 7.20 shows horizontal and vertical forces acting of buoy model. The forces obtained

by considering two-way coupling show better agreements with experimental results than the

simulation results without considering two-way coupling.

2
1.5

Figure 7.20.

T T
—— Experiment

——SWENSE+LS without coupling
- —-SWENSE+LS with coupling

t)T

(a) Horizontal force F

T T
— Experiment

——SWENSE+LS without coupling
- —-SWENSE+LS with coupling

7.5 8 8.5 9 9.5 10 10.5 11
t/T
(b) Vertical force F,

Horizontal and vertical forces acting on buoy model in regular waves

Force-harmonics and horizontal mean drift force are extracted by applying moving window FFT,
as given in Table 7.9 with results of Li et al. (2019b).

First-harmonic components of horizontal forces obtained from simulations have differences of

less than 5%. When the two-way coupling is applied, the difference between simulation and

experiment is reduced.

Horizontal mean drift force obtained from the simulation without considering two-way coupling

has an difference of 16.8% with respect to the result of the experiment. When the two-way

coupling is considered in simulation, the difference of 4.17% is obtained. It reconfirms the results
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7. Two-way coupling of potential and viscous flows

of benchmark case on the vertical cylinder discussed in section 7.2.4 that the two-way coupling

helps to assess horizontal mean drift forces acting on the structure.

Second-harmonic components of horizontal forces calculated by simulations have differences of
less than 9%. An difference obtained by applying two-way coupling is smaller than the simulation

without considering two-way coupling.

First-harmonic components of vertical forces computed by simulations have large differences
compared with horizontal force. The difference between experiments and simulation is also

reduced when the two-way coupling is considered.

Table 7.9. Harmonics of forces acting on buoy model.

F;,gl) F3§2) F;£2) FZ(I)
Case 5 T T 5
pgAVS — pgA?Vs  pgA?Vs pgAV's
Experiment 0.907 0.302 0.802 0.779
ISIS-CFD-IWG 0.939 0.289 0.887 0.758
(Liet al. (2019b), Noey = 2.4M) | (3.35%)  (-4.24%)  (10.6%) |  (-2.66%)
SWENSE+VOF w/o coupling 0.921 0.313 0.817 0.765
(Li et al. (2019b), Noay = 0.72M) | (1.53%)  (3.48%)  (L.84%) | (-1.70%)
SWENSE+LS w/o coupling 0.952 0.360 0.877 0.857
(Present study, Noey = 0.47TM) | (5.02%)  (19.08%)  (9.27%) |  (10.01%)
SWENSE+LS with coupling 0.926 0.314 0.774 0.818
(Present study, Neey = 0.47M) (2.17%) (3.89%) (-3.56%) (5.04%)

Computational cost
The computational times spent for the simulations are summarized in Table 7.10. The buoy
model in regular waves is simulated for 15 wave periods t € [0,157]. The same number of

processors are used for the simulations.

The computational time is increased by 80.4% when the two-way coupling is considered. The
increased percentage of computational time is similar to the increased percentage of the bench-
mark test on the vertical circular cylinder. In the previous benchmark test, the computational

time increases by 84% with viscous solver based on SWENSE and LS interface modeling.

Table 7.10. Computational cost for the simulation of CALM buoy in regular waves.

Case Computational time

SWENSE+LS without coupling 129,394s
SWENSE+LS with coupling 233,397s (1.804)
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7.3.3 Irregular waves

Numerical setup

The computational mesh of viscous flow model is shown in figure 7.21. Relaxation zone is defined
in far-field region of computational domain, as colored grey in figure 7.21a. The computational
mesh is refined near to the buoy model. The side view near to the buoy model is shown in figure
7.21b. The boundary faces of the buoy model is shown in 7.21c.

The computational domain of viscous flow model has a length agpire + 1.92), where A, is a
wavelength of peak wave period of wave spectrum in Table 7.6. Length of relaxation zone is
Lyciar = 1.5),.

When the two-way coupling is considered, the matching surface has a radius of @ = 2.5a4x¢. The
information of interpolation grid for Poincaré’s velocity representation is summarized in Table
7.6. Distance from the matching surface to the relaxation zone is dcoypre = 1.823m. The number
of Fourier and Laguerre modes used for Poincaré’s velocity representation are Nyoypier = 6 and

Nlaguerre =3, respectively.

Numerical simulation starts at the simulation time ¢ = 25T to observe extreme event. The
irregular waves in computational domain of viscous flow is generated by using the reconstruction

procedure in section 3.2.4.

1171

T

i)

AT
T
T
e
AT
e

(b) Side view (c) Discretized boundary faces on buoy

surface

Figure 7.21. Computational mesh of viscous flow model for the buoy model in irregular waves.
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Table 7.11. Computational domain of the buoy in irregular waves.

Item Value Remarks
Lerp 12.5664 m Askirt + 1.92),
Liyeiaz 9.368 m 1.5\,
Lyure 3.198 m Askire + 0.42),
Neelr 644,016 N
a 1.375 m 2.5 sirt
, ) r € [3.0m, 13.0m], ,
Interpolation grid Cover whole relaxation zone.
z € [-1.6m,0.6m]
Poincare a1d V) goincaré 80 and 128 -
ngéincaré and N Pz’gincaré 300 and 100 -
Phoincare 204 TBoincare 3 and 3 -
deouple 1.823 m 0.42)\, — 1.5askirt
Wave fields

Figure 7.22 shows total wave elevation measured at the positions of wave gauges in simulations
and experiment. The wave elevations calculated by simulations have small differences with
respect to the application of two-way coupling. The wavelength of peak wave period is relatively
longer than the size of the buoy model. Therefore the complementary waves generated by the
buoy model is small. The wave elevations at the positions of wave gauges have small differences

because the complementary waves are small.

Total wave elevations obtained from simulations are following the behaviour of wave elevation
measured in the experiments. The time series of wave elevation near to the time of the extreme
event (t ~ 31.27") are magnified on the right. The wave elevations are globally similar to the

wave elevations measured in the experiment, but the differences are shown.

The differences between simulations and experiment can be listed as

e The incident waves simulated by HOS-NW'T model have small discrepancies with the in-

cident waves generated in the experiments.

e Transfer function of wavemaker in HOS simulation is based on linear theory and minor

compensation is applied for second order component.

o Wayve reflections exist at the wavemaker and absorbing beach in the wave tank. HOS-NW'T
model also uses a numerical beach model to absorb propagating waves. Wave reflections
both in experiment and simulation may give the difference, especially when the size of the
wave tank is limited. Experiment on the irregular waves needs a long measurement time.

Therefore the wave reflections exist in the experiment.
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Figure 7.22. Wave elevations

waves.
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Forces acting on the buoy model

Figure 7.23 shows the horizontal and vertical forces acting on the buoy model. The force time

series obtained from simulations are globally following the behaviours of experimental measure-

ments. Forces near to the time of the extreme event are magnified in the sub-figures located at

the right. When the two-way coupling is considered, the force time-series are slightly different

from the results of the simulation without two-way coupling after the extreme event. Never-

theless, the difference exists after the extreme event. The force time series obtained from both

simulation are similar. It is understood that the generated complementary waves are relatively

small. They show similar behavior in global simulation time.

The main difference between simulation and experiments come from incident waves.
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Figure 7.23. Horizontal and vertical forces acting on buoy model in regular waves
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Computational cost
Computational times for simulating the buoy model in irregular waves are summarized in Table
7.12. The number of processors, Np,oc = 22, is used for simulations. When the two-way coupling

is applied, the computational time is increased by 48.5%.

Table 7.12. Computational cost for the simulation of CALM buoy in irregular waves.

Case Computational time
SWENSE-+LS without coupling 202,972s
SWENSE+LS with coupling 301,424s (1.485)

7.3.4 Summary of benchmark test 2

A CALM buoy model in regular and irregular waves is simulated by considering the two-way
coupling between potential and viscous flows. The SWENSE and LS interface modeling is used
for viscous flow model and Poincaré’s velocity representation based on linear theory is used for

the potential flow model.

When the two-way coupling is applied the first harmonics of horizontal and vertical forces acting
on the buoy model show better results than the simulation without considering two-way coupling.
The second-harmonic and horizontal mean drift forces obtained by considering two-way coupling

have smaller differences than the simulation without two-way coupling.

The complementary waves generated due to the existence of structure is small, the two-way

coupling affects small on the wave elevations and forces acting on the structure.

The computational costs are increased by 80% for the simulation of structure in the regular wave,

and 49% for the simulation of structure in the irregular wave.

7.4 Closure

The computational algorithm solving a problem of wave-structure interaction by considering the

two-way coupling between potential and viscous flow models has been introduced.

Fully nonlinear potential low models compute the flow quantities related to incident waves. The
stream function theory is used for regular wave. HOS wave model is used for irregular waves.
The reconstruction based on cubic-spline interpolation is used to generate irregular waves in the

viscous flow model.

The complementary waves in the far-field region are modeled by Poincaré’s velocity represen-
tation based on linear potential theory. The complementary fluid velocity and wave elevations
on the matching surface are obtained from the viscous flow model to update the complementary

wave field in the relaxation zone.

The viscous flow model based on SWENSE with LS function for interface modeling calculates

the complementary waves in the vicinity of a structure. The complementary fluid velocity and
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LS function are relaxed to the corresponding target quantities calculated by Poincaré’s velocity

representation in the relaxation zone defined in the region of far-field.

The benchmark test on the bottom-mounted vertical circular cylinder was conducted. Two
viscous flow models and two-way coupling are considered. Another viscous flow model is based on
Navier-Stokes equations and VOF interface modeling. The wave fields computed by considering
the two-way coupling show that the diffracted waves are going out in the relaxation zone that is

shown in the calculation with a large computational domain.

Harmonic components of force acting on the vertical circular cylinder are compared. When
the two-way coupling is applied, the errors of first- and second-order forces are reduced. The
distribution of linear wave elevation along the waterline contributes mainly on the second-order
forces. The complementary waves are well treated in the relaxation zones by linear potential

flow theory. Therefore the errors of second-order forces can be reduced.

However, the third-harmonics obtained by considering two-way coupling are poor than the case
without considering two-way coupling. The potential low model for complementary flows based

on linear theory may not appropriate to obtain the third-order components.

Finally, the benchmark test on the CALM buoy model in regular and irregular waves are con-
ducted. In the regular wave test, the errors of wave elevation and forces are reduced when the
two-way coupling is applied. Notably, the horizontal mean drift force shows a good result. In
the irregular wave test, the generated complementary waves by buoy model are small. The two-
way coupling has little effects on the numerical results. The incident wave model in numerical

simulation gives the main difference between experiment and numerical simulation.

The computational cost increases when the two-way coupling is applied. When the viscous flow
model based on SWENSE with LS function for interface modeling is used, the computational
times are increased about 80% for the case of regular wave and 40% for the case of irregular
waves. The computational time increases 56% for the case of regular wave when the viscous flow

model based on Navier-Stokes with VOF interface modeling is considered.
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8 Conclusion and perspectives

In the present work a numerical model is developped to solve the wave-structure interaction
problem by considering a two-way coupling between potential and viscous flow models, the

latter being considered only in the vicinity of the body.

Flow quantities are decomposed into incident and complementary parts. In the functional de-
composition used, the incident waves are computed without considering the structure and once
it is known only the complementary flow need to be solved both in the potential and viscous

flow models. The potential flow models for nonlinear incident waves is detailed.

A domain decomposition strategy is applied for the complementary flow. In the vicinity of
structure the viscous flow model is based on a two-phase Spectral Wave Explicit Navier-Stokes
Equation (SWENSE) method, with a Level-Set function introduced for interface modeling. In
the far-field, the complementary flow is calculated by using a linear potential low model based on
Poincaré’s velocity representation. This is done with new theoretical developments with respect
to the existing literature. The complementary fluid velocity and wave elevation are used to
couple potential and viscous flow models. The matching surface for potential flow model and

the relaxation scheme for viscous flow model are applied to update each flow solver.

During the PhD various software package were updated or developped for the broad subject of

numerical computations about wave structure interaction.

e Grid2Grid (newly developped from exisiting package): Fast library for reconstrusting
HOS flow field in CFD grid (Choi et al., 2018)

e POIVRE (newly developped): Library for calculating the complementary flow based on

the Poincaré’s velocity representation
e foamStar (updated): Multiphase flow model based on Navier-Stokes and VOF

e foamStarSWENSE (Level-Set version is newly introduced): Multiphase flow model based
on SWENSE and LS function

On each separated subject, improvements have been documented and quality results were achieved.
However in the final applications involving functional and domain decompositions with a 2-way
coupling approach, the complexity of the algorithm is increased and it is still to be understood

how efficient this will be in practical case.

8.1 Summary
8.1.1 Literature survey on the coupling methodology in a marine application

Literature survey on potential and viscous flow models in marine application is proposed. A
focus is given on the coupling between potential and viscous flows. One- and two-way couplings
are distinguished. The methodology of coupling are categorized into Functional Decomposition
(FD) and Domain Decomposition (DD). Associated research on coupling is explained by way of

coupling and coupling methodology.
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8.1.2 Preliminary study on the coupling of potential and viscous flows

The preliminary study on the two-way coupling was conducted to investigate the feasibility of
coupling between potential and viscous flow models. OpenFOAM based multi-phase viscous flow
solver is used. The viscous flow model is based on the Navier-Stokes equations and the Volume
Of Fluid (VOF) method for interface modeling. The parametric tests on the viscous flow model

were conducted to set the proper parameters for propagating waves.

The benchmark tests are devised by using multiple outlet conditions. The outlets considered
in the present study are the stretched mesh, increased viscosity in the outlet, linear momentum
source, and relazation schemes with different target flows. The relaxation scheme blends the
viscous flows with the target flows in the relaxation zone. The target flows for propagating
waves are no waves, incident wave and modified incident wave. The modified waves are an

adaptation of incident waves by measuring the wave elevation in front of the outlet.

The benchmark tests were carried out for propagating waves in numerical wave tank (NWT)
and a swaying 2D Lewis form. The results show that the relazation to the propagating waves in
the outlet zone gives good results compared to others. The size of the computational domain
and simulation time both can be reduced when the two-way coupling is applied. An efficient

potential flow model with good relaxation schemes are necessary for two-way coupling.

8.1.3 Potential flow: Incident waves

The nonlinear incident wave models on the regular and irregular waves are summarized. The
stream function theory for regular waves (Rienecker and Fenton, 1981) and HOS wave models

for irregular waves and waves in NWT (Ducrozet et al., 2007, 2012) are briefly reviewed.

The reconstruction procedure of nonlinear waves simulated by HOS wave model is proposed in
the present study. B-spline interpolation on HOS grid is used to compute nonlinear waves at
the arbitrary space and time. The generation of nonlinear HOS waves in viscous flow solver is

validated with numerical simulation for various HOS wave models.

The nonlinear irregular waves corresponding to the 1000 year return period waves in the Gulf of
Mexico (GOM) are regenerated in viscous flow solver. The simple wave breaking model is used
to capture the extreme event during HOS simulation. The viscous flow model is used to simulate
the extreme event with limited computational domain and simulation time. The simulation

results show good agreements with the results of HOS simulation and experiments.

8.1.4 Potential flow: Complementary waves

A new Poincaré’s velocity representation for unsteady free surface flow in deep water is proposed
based on linear potential theory. The contribution of dipoles in the Boundary Integral Equation
(BIE) is replaced by an equivalent source contribution with tangential velocity on the boundary

surface. The complementary fluid velocity at field point can be obtained by the distribution of
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fluid velocity on the matching surface and wave elevation on the waterline of matching surface.
It is proved that two expressions of the time-domain Green function for deep water in velocity
representation are the solutions of Clément’s 4-th order Ordinary Differential Equation(ODE)
(Clément, 1998). The computational algorithm based on time-marching Frobenius method pro-
posed by Chuang et al. (2007) is used to calculate the time-domain Green function. Proposed
velocity representation can be applied for the arbitrary matching surface with a heaving hemi-
sphere. However, the singular behaviour is observed when the field point moves towards the

mean free surface due to diverging behavior of time-domain Green functions.

A circular cylindrical matching surface is introduced to remedy the singular behavior. Co-
ordinates transformation from Cartesian to circular cylindrical coordinates are applied to the
velocity components and Green function. A pseudo-spectral method using the Fourier-Laguerre
and Fourier series is applied. Fluid velocity at the field points is expressed by a combination of
Fourier and Fourier-Laguerre coefficients and elementary functions. The elementary functions
are the resultants of surface or line integral of the Green function with modal function. Two
numerical algorithms evaluating the elementary functions are proposed. Benchmark tests val-
idate the velocity representation with the circular cylindrical matching surface on the heaving

hemisphere and wave diffraction by a vertical circular cylinder.

8.1.5 Viscous flow: Multi-phase SWENSE with Level-set

The methodology of spectral wave explicit Navier-Stokes equations (SWENSE) is applied for the
multi-phase flow with Level-set interface modeling. The method of SWENSE for multi-phase
flows have been studied by Vukéevié (2016) and Li (2018). Vukéevi¢ (2016) applied the functional
decomposition on the fluid velocity and LS function to reconstruct the governing equations with
respect to complementary flows. However, the terms corresponding to the Fuler equation are
saved. He used Ghost Fluid Method (GFM) to solve the multi-phase flow problem by considering
the pressure jump condition on the interface. Li (2018) introduced an extended mixture pressure
up to air zone to cancel the terms related to the Euler equation. He presented many versions of
SWENSE for multi-phase flow with a method of Volume Of Fluid (VOF) for interface modeling.

In the present study, the works done by Vukéevi¢ (2016) and Li (2018) are combined. The
Navier-Stokes equations are reformulated into SWENSE by using the extended mixture pressure
proposed by Li (2018). The interface between two fluids is modeled by LS function. Functional
decomposition is applied to the LS function (Vuk&evié, 2016). The original LS function transport
equation with a simple re-distancing the LS function is used instead of using the LS function
equation in Vukéevi¢ (2016). The numerical discretization by GFM is applied to solve the

multiphase flow problem with a pressure jump condition (Vuk&evié¢, 2016).

The benchmark tests ware conducted to validate the viscous flow model. The viscous flow model
gives good results for propagating waves in Numerical Wave Tank (NWT) compared to other
viscous flow models. Nevertheless, a small loss of mass is observed when the coarse mesh and
large time difference are used for simulation. The mass loss is reduced as the mesh and time

difference are refined.
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The wave diffraction by a vertical circular cylinder is considered for second benchmark test
(Huseby and Grue, 2000). The proposed viscous flow model gives good results on the force-

harmonics when coarse computational meshes are used.

8.1.6 Two-way coupling of potential and viscous flows

A segregated computational algorithm is suggested to solve the problem of wave-structure in-
teraction by considering the two-way coupling between potential and viscous flow models. The

domain and functional decompositions are applied for coupling methodology.

Functional decomposition (FD) is applied to decompose the flow quantities of potential and
viscous flow models into the incident and complementary parts. The incident waves are calculated
by nonlinear potential flow model. Poincaré’s velocity representation based on linear potential
theory is used to calculate the complementary waves in the far-field. The SWENSE method is

applied in a viscous flow model to solve the complementary flows in the vicinity of the structure.

Domain decomposition (DD) is used to couple complementary flows calculated by potential and
viscous flow models. The complementary fluid velocity and wave elevation on the matching
surface are obtained from the viscous flow model. The obtained flows are used to update the
complementary flows in the relaxation zone by using Poincaré’s velocity representation. In the
relaxation zone, the complementary fluid velocity and LS function of viscous flow model are

relaxed to the target values which are updated by using potential flow model.

The coupling strategy is applied for a vertical circular cylinder in regular waves and the CALM
buoy model in waves. Simulations with two-way coupling between potential and viscous flow
models give better results on the wave elevations, first-order and second-order forces acting on

the structure. The computational time increases when the two-way coupling is applied.

8.2 Conclusion

Two-way coupling between potential and viscous flow models are proposed in the present study.
The potential low models for the incident and complementary flows and the viscous flow model
based on SWENSE and LS interface modeling are explained. Benchmark tests validate each
flow models and show good agreements. It is assumed that the wave elevation and fluid velocity
across the flow models are continuous. To couple the potential and viscous flow models, the
methodologies of functional decomposition (FD) and domain decomposition (DD) are applied

for potential and viscous flows.

Functional decomposition (FD) is applied for potential and viscous flow models. The functional
quantities of the total flow into the incident and complementary parts. The nonlinear potential
flow for incident waves is assumed to be available in a whole fluid domain and satisfies the
Euler equations. The linear potential flow model based on Poincaré’s velocity representation for

complementary flow is proposed. The availability of nonlinear incident waves leads to use of a
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Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method as the viscous flow model

only to consider the complementary flow.

Domain decomposition (DD) is used to decompose the computational domain. The nonlinear
incident waves from the nonlinear potential flow model are available in the whole computational
domain. It makes us divide the computational domain of potential and viscous flow models only
for complementary waves. In the vicinity of structure, the viscous flow model based on SWENSE

is used. The linear potential flow model for complementary flow is applied in the far-field region.

To couple potential and viscous flow models, the continuous wave elevation and fluid velocity
across the computational domain are assumed. In the matching surface, the complementary
fluid velocity and wave elevation are used to update the complementary flow field in the far-
field region by using Poincaré’s velocity representation. In the far-field, the relaxation scheme is
used to blend the computed complementary flow with the target flow calculated from Poincaré’s

velocity representation.

A segregated algorithm solving the wave-structure problem by considering two-way coupling is
presented. The benchmark tests are carried out for a bottom-mounted vertical circular cylinder
in regular waves and a fixed buoy model in regular and irregular waves. Results of the benchmark
tests show that the two-way coupling can improve the wave elevations and the forces acting on
the structure. Especially, the horizontal mean drift forces acting on the structure are enhanced
significantly when the two-way coupling is adopted. However, the two-way coupling gives poor
results on the third-harmonics of forces. When the complementary waves are small, the two-way
coupling does not affect the results. When the two-way coupling is applied, the computational

costs are increased by 80% for regular wave simulation and 40% for irregular wave simulation.

8.3 Proposals for future work

8.3.1 Poincaré’s velocity representation for unsteady free surface flow with forward
speed

Poincaré’s velocity representation in a marine application has been studied for steady and time-
harmonic problems by Noblesse et al. (1997); Noblesse (2001); Noblesse and Yang (2004). The
velocity representation is extended to the unsteady free surface problem without forward speed in
the present study. The velocity representation for unsteady wave-structure interaction problem
with forward speed may be derived with Neumann-Kelvin free surface boundary condition. It

can be used to couple viscous flow model for evaluating the added resistance of ship in waves.

8.3.2 Coupling between linear potential low model and other flow models

The proposed velocity representation may be used to couple with the viscous flow model based
on SWENSE and VOF interface modeling by Li (2018). The elementary function introduced in

the present study can be applicable for boundary integral equation. The flow model used to solve

224



8. Conclusion and perspectives

wave-structure interaction in the vicinity of structure can be replaced by nonlinear potential flow
models such as Rankine Panel Method (RPM) or Finite Element Method (FEM).

8.3.3 Evaluation of mean drift forces acting on blunt body

Two-way coupling between potential and viscous flow models show good results on the horizontal
mean drift forces acting on the structure. The mean drift forces on the blunt body such as shuttle
tanker and FPSO are significant and important to design a mooring system. The proposed two-
way coupling strategy can enhance the simulation based on the viscous flow model to assess

mean drift forces, especially for the blunt body in beam sea condition.
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Résume étendu

Introduction générale

Un modéle numérique prenant en compte le couplage bidirectionnel entre les modéles de fluide
parfait potentiel loin de la structure et de fluide visqueux au voisinage de celle-ci est présenté

pour résoudre le probléme de 'interaction houle-structure.

L’écoulement total est décomposé en un écoulement incident et un écoulement complémentaire
(diffracté). En pratique, les variables (vitesses, pression) du probléme sont la somme d’un terme
incident et d’un terme complémentaire. Pour les ondes incidentes, le modéle d’écoulement po-
tentiel utilisé est non-linéaire et peut étre utilisé dans I’ensemble du domaine fluide. Pour 1’écou-
lement complémentaire le domaine de calcul est divisé en deux parties distinctes. Au voisinage
de la structure, cet écoulement complémentaire est résolu en utilisant un modeéle fluide réel
basé sur la méthode SWENSE (Spectral Wave Explicit Navier-Stokes Equation) qui consiste
a écrire les équations RANS (Reynolds Averaged Navier-Stokes) pour les variables complémen-
taires, les termes incidents apparaissant alors comme des termes de forcage. Loin de la structure,
I’écoulement complémentaire est traité avec un modéle de fluide parfait potentiel basé sur la

représentation de Poincaré.

La présente étude se résume comme suit :

e Les modéles de fluide parfait potentiel et de fluide visqueux utilisés dans les applications
marines sont briévement passés en revue. Les couplages existants pour ces modeles sont
également présentés. Une étude préliminaire est réalisée pour étudier la faisabilité du cou-
plage entre les modéles d’écoulement potentiel et visqueux. Les premiers résultats montrent
que le couplage bidirectionnel avec un bon schéma de relaxation peut améliorer les résultats

numeériques.

e Les modéles de fluide parfait potentiel pour les ondes incidentes non-linéaires sont présentés.
Une nouvelle procédure de reconstruction des ondes non-linéaires définies via une méthode
fluide parfait potentiel HOS (High Order Spectral) sur un maillage de domaine fluide adapté
4 un modéle de fluide visqueux via une interpolation B-spline est présentée et validée a

I'aide de comparaison entre simulation numérique et expérience.

e Un nouveau modeéle potentiel linéarisé basé sur la représentation de Poincaré est proposé
pour ’écoulement complémentaire instationnaire loin de la structure. La vitesse complé-
mentaire du fluide au point considéré peut étre explicitement calculée avec la fonction de
Green instationnaire par des combinaisons de vitesses de fluide et d’élévations de surface
libre. Un algorithme de calcul pour différents types de fonction de Green dans le domaine
temporel est également présenté. La représentation de Poincaré proposée est validée avec
une solution analytique et montre un bon accord lorsque le point de calcul est situé sous la
surface libre. Cependant, un comportement singulier est observé lorsque le point du calcul

est situé sur la surface libre moyenne.

e Une surface de couplage cylindrique circulaire & axe vertical avec une méthode pseudo-
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spectrale basée sur la série de Fourier-Laguerre est introduite pour remédier au compor-
tement singulier constaté précédemment. La vitesse complémentaire du fluide au point
considéré est donnée par les coefficients de Fourier-Laguerre de la vitesse du fluide et les
coeflicients de Fourier de 1’élévation de la houle avec les fonctions élémentaires correspon-
dantes. Les fonctions élémentaires représentent les intégrales de surface de la fonction de
Green et de la fonction de forme. Les procédures numériques pour calculer les fonctions
élémentaires sont présentées. La vitesse complémentaire du fluide et 1’élévation de la houle
sont reconstruites en utilisant I’étirement de Wheeler. La méthode proposée est validée avec

une solution analytique et montre un bon accord y comprsi sur la surface libre moyenne.

e Un modeéle d’écoulement de fluide visqueux basé sur la méthode SWENSE pour un écou-
lement multi-phase avec une fonction Level-set pour la mise & jour de l'interface est pré-
senté. Ce modele combine les développements numériques spécifiques proposés par Vukéevié
(2016) et Li (2018). Il s’agit d’une part de la décomposition de la vitesse du fluide, la pres-
sion et de la fonction Level-set en composantes incidentes et complémentaires ainsi que la
prise en compte des conditions aux limites sur l'interface air-eau & l'aide de la méthode
Ghost Fluid (GFM pour Ghost Fluid Method). Une procédure simple d’extrapolation de
la vitesse de I’écoulement incident et de la pression dynamique est introduite pour assurer
la stabilité numérique. Les résultats de la simulation de propagation de houle seule et d’'un
cylindre circulaire vertical en houle réguliére montrent un bon accord avec les résultats

expérimentaux correspondants.

e La procédure de calcul du couplage bidirectionnel entre les modéles d’écoulements de fluide
potentiel et visqueux est finalement testée. Un cylindre circulaire vertical soumis & une
houle réguliére et une bouée fixe soumise a des houles réguliéres et irréguliéres sont utilisés
pour étudier les effets du couplage entre les modéles d’écoulements de fluide potentiel
et visqueux. Les résultats de la simulation montrent que le couplage bidirectionnel peut

améliorer les résultats, notamment pour les forces de dérive.

Résumé par chapitre
1. Introduction

L’intérét du couplage entre les modeéles d’écoulements de fluide potentiel et visqueux est expliqué
pour le probléme d’interaction houle-structure. Les modéles d’écoulements de fluide potentiel et
visqueux couramment utilisés pour des applications en ingénierie navale et offshore sont passés en
revue. Les méthodologies des couplages fluide visqueux-fluide potentiel existants sont également
présentées et expliquées. Ces méthodologies se répartissent entre décomposition fonctionnelle

(FD; functional decomposition) et décomposition de domaine (DD ; domain decomposition).

Dans le travail présenté, les méthodologies FD et DD sont utilisées pour coupler des modéles
d’écoulement potentiel et visqueux. Sur la base de I’hypothése selon laquelle la houle totale peut
étre décomposée en houle incidente et houle complémentaire, les quantités d’intérét des modéles

d’écoulements de fluide potentiel et visqueux sont décomposées en une somme de termes incident

240



et complémentaire. Etant donné que le modéle d’écoulements en fluide parfait potentiel non-
linéaire pour les ondes incidentes est disponible pour ’ensemble du domaine fluide, la méthode
DD est appliquée uniquement aux parties complémentaires des modeéles de fluides potentiel et
visqueux. Au voisinage de la structure, le modéle d’écoulement visqueux basé sur la méthode
SWENSE est utilisé et le modéle d’écoulement potentiel basé sur la représentation de Poincaré

est introduit pour décrire les ondes complémentaires dans le champ lointain.

Les équations qui régissent chacun des deux modéles de fluide sont résumées et le contexte général

de 'étude expliqué.

2. L’étude préliminaire sur le couplage des écoulements potentiel et visqueux

Une étude préliminaire sur le couplage entre les modeéles d’écoulements de fluide potentiel et
visqueux est menée. Le modéle d’écoulement de fluide visqueux basé sur les équations de Navier-
Stokes (approche RANS) avec une modélisation d’interface Volume Of Fluid (VOF) est considéré.
Une série d’études paramétriques avec ce modeéle est réalisée pour trouver une configuration
numérique appropriée au probléme de propagation de houle. Cette étude montre que le schéma
d’intégration en temps du probléme de propagation de houle devrait avoir au moins une précision
de second ordre pour conserver ’amplitude et la phase de la houle. Les schémas de convection
affectent 'ordre de convergence et la stabilité de la simulation. Les schémas de convection d’ordre

élevé donnent de bons résultats mais conduisent & une instabilité de la simulation.

La propagation de la houle en bassin (sans interaction avec une structure) et le probléme de
radiation pour une forme de Lewis 2D sont considérés comme des essais préliminaires pour le
couplage. Les tests sont effectués en modifiant le traitement numérique dans la zone extérieure
du domaine fluide. Les cas considérés sont l'étirement horizontal des mailles, "augmentation
de la viscosité, 'utilisation de coeflicients d’amortissement dans les équations de quantité de
mouvement ou d’un schéma de relaxation. Dans la zone extérieure du domaine fluide ou zone de
relaxation, le schéma de relaxation fait tendre progressivement les quantités d’intérét calculées
vers les quantités cibles souhaitées (pas de houle, houles incidente ou totale calculées par le

modele potentiel ...).

Les résultats numeériques montrent que le schéma de relaxation avec des quantités cibles similaires
aux ondes sortantes donne des résultats stables et satisfaisants par rapport aux autres. En outre,
le temps de simulation nécessaire pour obtenir la solution convergée diminue lorsque le schéma
de relaxation est considéré avec des quantités cibles correctement définies. Cela confirme que le
couplage entre les modéles d’écoulement potentiel et visqueux peut réduire a la fois le domaine
de calcul et le temps de simulation. En conclusion, une évaluation efficace des ondes sortantes
par un modeéle d’écoulement potentiel et un schéma de relaxation amélioré sont nécessaires pour

réussir le couplage entre les deux modéles d’écoulement.
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3. L’écoulement potentiel : Houle incidente

Les modéles de houle incidente non-linéaire pour des houles réguliéres et irréguliéres sont résumés.

Pour la houle réguliére, le modeéle adopté (Rienecker and Fenton, 1981) s’appuie sur la fonction
de courant développée en série de Fourier. La librairie open-source pour les ondes réguliéres non-
linéaires appelé CN-Stream développé par Ducrozet et al. (2019) est utilisé pour la génération

d’ondes incidentes réguliéres.

La méthode HOS pour les houles irréguliéres en mer ouverte (HOS-ocean) ou en bassin limité
(HOS-NWT) est ensuite rappelée (Ducrozet et al., 2007, 2012, 2016).

La librairie open-source pour la reconstruction des houles HOS sur un maillage quelconque est
publiée sous licence GPL (Choi et al., 2018)

La procédure de reconstruction proposée est validée avec un modéle d’écoulement de fluide
visqueux basé sur la modélisation des équations RANS par des schémas discrets de type volumes
finis ainsi qu’une résolution découplée en vitesses-pression et la mise & jour de 'interface par une
procédure VOF. Les ondes HOS sont générées dans le modéle a écoulement visqueux et validées
par simulation HOS pour différents modéles HOS. Ceux-ci montrent un bon accord les uns avec
les autres. De plus, un cas de vagues extrémes correspondant & la période de retour de 1000
ans dans le Golfe du Mexique (GOM ; Gulf of Mexico) est pris en compte pour validation. Un
événement de déferlement est prédit & l'aide d’un modéle simple inclus dans le modele HOS.
L’événement extréme simulé dans le modéle & écoulement visqueux est validé avec la simulation

et les expériences HOS. L’accord entre ces différents résultats est satisfaisant.

4. L’écoulement potentiel : Houle complémentaire sur une surface arbitraire

Une nouvelle représentation de la vitesse de Poincaré pour un écoulement & surface libre en
profondeur infinie est proposée dans le cadre de la théorie de fluide parfait potentiel linéarisé. La
contribution des dipoles dans I’équation intégrale de frontiére (BIE ; Boundary Integral Equation)
est remplacée par une contribution source équivalente avec une vitesse tangentielle & la surface
de la frontiére. La vitesse du fluide complémentaire au point du calcul peut étre calculée par la
distribution de la vitesse du fluide sur la surface correspondante et de 1’élévation de la houle sur

la ligne de flottaison de la surface correspondante.

Deux types de fonction de Green dans le domaine temporel doivent étre évaluées pour la repré-
sentation de la vitesse de Poincaré pour un écoulement de surface libre instable. Il est prouvé
que les deux types de la fonction de Green dans le domaine temporel et leurs dérivées spatiales
sont les solutions de ’équation différentielle ordinaire (ODE; Ordinary Differential Equation)
du 4éme ordre de Clément (Clément, 1998). Ces éléments (fonctions de Green et leurs dérivées)
sont calculés en utilisant une méthode de Frobenius & avance temporelle proposée par Chuang
et al. (2007).

La représentation de vitesse proposée est validée avec la solution analytique de 1’écoulement
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autour d’un hémisphére percant la surface libre et en mouvement forcé (Hulme, 1982). La vitesse
du fluide et I’élévation de la vague sur la surface correspondante ainsi que la fonction de Green
dans le domaine temporel sont utilisées pour reconstruire la vitesse complémentaire a partir
de la représentation de la vitesse de Poincaré. La vitesse complémentaire reconstruite par la

représentation de vitesse de Poincaré est comparée a la solution analytique.

Lorsque le point de champ est situé sous la surface libre moyenne, les tests de référence suivants

sont effectués :

e [’étude de convergence en temps montre que les vitesses complémentaires reconstruites
convergent correctement avec la diminution du pas de temps. Lorsque la discrétisation est
suffisante, la vitesse relative reconstituée a une erreur relative inférieure a 1%.

e Lorsque le point o0l on évalue le champ complémentaire est fixe, la fréquence de mouve-
ment de 'hémispheére est modifiée. Les résultats montrent un bon accord avec la solution
analytique. Lorsque la discrétisation est suffisante, la vitesse complémentaire reconstruite

présente des erreurs relatives inférieures a la valeur de 1%.

e Différentes surfaces de couplage, telles que un hémisphére, un cylindre circulaire ouvert par
le bas, un ellipsoide ou un cube fermé sur sa partie inférieure sont utilisées pour vérifier la
sensibilité de la représentation de vitesse proposée a la géométrie de la surface de couplage.
Apres calcul, la vitesse complémentaire reconstruite a des erreurs relatives inférieures 1%.
Il est vérifié que la représentation de vitesse proposée fonctionne méme lorsque la surface

inférieure est suffisamment ouverte pour une surface correspondante suffisamment profonde.

Cependant, un comportement singulier apparait lorsque le point de calcul de la vitesse est situé
sur la surface libre moyenne (z = 0). Deux contributions de vitesse sont identifiées pour générer
ce comportement singulier :
e La contribution de la composante harmonique a un profil de vitesse hautement instable
lorsque I’'intégrale de convolution est partiellement évaluée avec un intervalle de type fenétre

glissante.

e La contribution de la composante de surface libre a un profil de vitesse hautement oscillant
lorsque I’'intégrale de convolution est partiellement évaluée avec un intervalle de type fenétre

glissante.

Ce comportement singulier est di au comportement divergent de la fonction de Green lorsque
les points de calcul et de la source sont situés sur la surface libre moyenne (z = ¢ = 0). En effet,
le comportement hautement oscillant de la vitesse du fluide ne peut étre corrigé en raffinant
la discrétisation de la ligne de flottaison. Pour finir, la nécessité d’intégrer la représentation de

Poincaré le long de la surface de couplage cylindrique verticale est expliquée.

5. L’écoulement potentiel : Houle complémentaire sur une surface de couplage
cylindrique circulaire verticale

La représentation de vitesse de Poincaré est formulée avec une surface de couplage cylindrique
circulaire. La vitesse complémentaire et 1’élévation de surface libre sont approximées respective-

ment par les séries de Fourier-Laguerre et de Fourier. Aprés avoir intégré la représentation de
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la vitesse de Poincaré le long de la surface de couplage cylindrique circulaire avec la vitesse du
fluide et 1’élévation de la houle multipliées par la fonction de Green dans le domaine temporel,
la vitesse complémentaire au point d’intérét peut étre calculée par les coefficients des séries de
Fourier-Laguerre et de Fourier de la vitesse complémentaire et de 1’élévation de la houle sur la

surface de couplage multipliée par des fonctions élémentaires.

Les fonctions élémentaires sont dérivées de l'intégrale de surface des séries de Fourier-Laguerre
et de Fourier avec la fonction de Green dans le domaine temporel. Elles impliquent 'intégrale
utilisant les fonctions de Bessel multipliées par une fonction sinus ou cosinus. Des algorithmes
numeériques adaptés sont présentés pour calculer les fonctions élémentaires. Aprés avoir calculé
Iintégrale oscillante jusqu’a la borne d’intégration définie, deux approches permettent d’évaluer
Iintégrale semi-infinie de cette borne a 'infini. Les détails des deux approches s’expliquent comme

suit :

e Division des fonctions oscillantes

L’idée d’évaluer 'intégrale impliquant les fonctions de Bessel proposée par Lucas and Stone
(1995); Lucas (1995) est développée ici. Les fonctions oscillantes irréguliéres sont divisées
en fonctions oscillantes elles-mémes transformées en une somme infinie de sous-intégrales
avec des zéros. Cette somme infinie est calculée a I'aide de I’ e-algorithme de Wynn (Wynn,
1956).

e Méthode a directions de descente

Les intégrales semi-infinies sont évaluées en appliquant une méthode & directions de des-
cente Liang et al. (2018); Li et al. (2019a). Les fonctions oscillatoires sont transformées dans
le plan complexe. L’intégrale le long du contour fermé dans le plan complexe est obtenue
en appliquant le théoréme de Cauchy. Le chemin d’intégration le plus efficace est trouvé en
prenant les parties imaginaires de I’argument exponentiel & zéro. Finalement, les intégrales
le long du chemin de descente le plus efficace impliquent les facteurs exponentiels ayant des

arguments réels négatifs qui permettent de faire tendre l'intégrand rapidement vers zéro.

Les fonctions élémentaires sont évaluées en utilisant les approches proposées. Deux approches

montrent un bon accord entre elles.

L’élévation de houle complémentaire au point considéré est reconstruite en utilisant la condition
cinématique & la surface libre. La vitesse verticale sur la surface libre moyenne est intégrée en
fonction du temps pour calculer 1’élévation de la houle complémentaire. Un pseudo-étirement de
Wheeler est appliqué sur la fonction de Laguerre pour U'extrapolation de la vitesse au-dessus de
la surface libre moyenne (z > 0). La valeur de la fonction de Laguerre au-dessus de la surface

libre moyenne est limitée afin d’empécher de trop fortes valeurs de la vitesse dans air.

La reconstruction de la vitesse complémentaire et de 1’élévation de surface libre en un point
donné est obtenue en utilisant une interpolation B-spline. Aprés avoir reconstitué la vitesse
complémentaire du fluide et I’élévation de surface libre sur la grille cylindrique circulaire 3D,
Pinterpolation B-spline est utilisée pour calculer la vitesse complémentaire du fluide et 1’élévation

de surface libre en un point donné.
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L’approximation de Fourier-Laguerre de la vitesse complémentaire sur la surface de couplage est

testée. Les vitesses complémentaires approximées sont en bon accord avec la solution analytique.

Un hémisphére percant la surface libre en mouvement forcé et la diffraction d’une houle incidente
réguliére par un cylindre circulaire vertical sont utilisés comme tests de validation. Les vitesses
complémentaires reconstruites et les élévations de houle montrent un bon accord avec la solution

analytique. Aucun comportement singulier n’apparait dans les résultats.

6. L’écoulement visqueux : Multi-phase SWENSE avec fonction Level-set

La méthodologie SWENSE est appliquée pour I’écoulement multi-phase avec une modélisation
d’interface de type Level-set (LS). Le modele utilisé dans ce travail de thése combine les travaux
antérieurs de Vukcevi¢ (2016) et de Li (2018). Vukeevi¢ (2016) a appliqué la décomposition
fonctionnelle sur les variables de vitesse du fluide et fonction LS pour reconstruire les équations
du probléme relatives aux écoulements complémentaires. De plus, les termes incidents ne sont
pas simplifiés par le fait que ’écoulement incident vérife les équations d’Euler mais recalculés
systématiquement. Il a utilisé la méthode GFM pour résoudre le probléme d’écoulement multi-
phase en prenant en compte la condition de saut de pression sur Uinterface. Li (2018), pour sa
part, introduit une pression de mélange étendue jusqu’a la zone occupée par 'air, au-dessus de
I'interface, pour annuler les termes liés au champ incident. Il a présenté différentes versions de
SWENSE pour I’écoulement multi-phase avec une méthode de Volume Of Fluid (VOF) pour la

modélisation de Uinterface.

Dans la présente étude, les équations RANS sont reformulées en SWENSE en utilisant la pression
de mélange étendue proposée par Li (2018). L’interface entre deux fluides est modélisée par la
fonction LS. Une décomposition fonctionnelle est appliquée a la fonction LS suivant (Vukéevic,
2016). Par conséquent, la vitesse du fluide, la pression et la fontion LS sont décomposées en

parties incidentes et complémentaires.

Les termes liés & la pression sont discrétisés en considérant les conditions sur 'interface dans le
cadre d'une approche de type Volumes Finis (FV; Finite Volume). La procédure de discrétisation
FV basée sur la méthode GFM proposée par Vukéevié (2016) est utilisée pour prendre en compte
la condition de pression sur 'interface. La pression incidente, y compris la pression dynamique
de la houle incidente et la pression hydrostatique, est utilisée pour définir le saut de pression
Li (2018). Les conditions de saut de pression proposées par Vukcevi¢ (2016) et Li (2018) sont

identiques pour les cas d’écoulements en eau calme.

L’équation de transport de la fonction LS d’origine avec une simple redistanciation est utilisée
dans la présente étude. La discrétisation numeérique des termes de ’écoulement incident dans
I’équation de la fonction LS génére des sources d’erreur qui se cumulent au cours des simulations
mais que la redistanciation de la fonction LS permet de diminuer largement. Finalement, la perte

de masse observée est négligeable.

L’extrapolation de la vitesse incidente et de la partie dynamique de la pression de la houle

incidente avec des polynoémes cubiques est proposée dans les travaux actuels. Elle permet des
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transitions en douceur des quantités relatives & la houle incidente jusqu’a la zone au-dessus de
I’interface sans algorithme complexe et avec un calcul rapide. Méme si cette technique ne satisfait
pas la continuité de masse dans la zone aérienne, la simulation multi-phase SWENSE devient
stable.

Les houles qui se propagent dans le bassin numérique (NWT ; Numerical Wave Tank) sont prises
en compte dans le cas de référence. Le modéle d’écoulement de fluide visqueux proposé donne de
bons résultats par rapport & d’autres modéles de fluide visqueux. Néanmoins, une faible perte
de masse est observée lorsqu’un maillage grossier et un pas de temps important utilisés pour la
simulation. La perte de masse est réduite & mesure que le maillage est raffiné et le pas de temps

diminué.

La diffraction de la houle incidente par un cylindre circulaire vertical est considérée pour le
deuxiéme test (Huseby and Grue, 2000). Les amplitudes et les harmoniques en amplitude et
en phase pour les efforts sont comparés a la solution analytique, aux expériences et & d’autres
calculs numeériques. Les résultats calculés par le modéle d’écoulement visqueux proposé montrent

des résultats similaires & ceux d’autres calculs.

7. Couplage bidirectionnel des écoulements potentiel et visqueux

L’algorithme de calcul résolvant un probléme d’interaction houle-structure en considérant le
couplage bidirectionnel entre les modéles d’écoulement potentiel et visqueux est introduit. Il
repose sur ’hypothése selon laquelle le ’écoulement total peut étre décomposé en incident et

supposé complémentaire. Dans la présente étude, les principes suivants sont utilisés :
e I’écoulement total peut étre décomposé en parties incidentes et complémentaires.

e Les parties incidentes sont calculées & partir des modéles d’écoulement potentiel non-linéaire

pour les houles incidentes dans I’ensemble du domaine fluide considéré.

e Les parties complémentaires au voisinage d’une structure sont résolues par un modéle

d’écoulement visqueux basé sur la méthode SWENSE.

e Les parties complémentaires dans le champ lointain sont modélisées par la représentation

de vitesse de Poincaré basée sur la théorie d’écoulement potentiel linéarisé.

Sur la base du principe ci-dessus, la décomposition fonctionnelle (FD) et la décomposition de

domaine (DD) sont appliquées en tant que méthodologie de couplage :

e La décomposition fonctionnelle (FD) est appliquée a la fois aux modeéles d’écoule-
ment potentiel et visqueux. Parce que le modéle d’écoulement potentiel non-linéaire pour
les ondes incidentes est disponible dans ’ensemble du domaine fluide entier, les parties
complémentaires constituent le coeur du probléme & résoudre. Les équations principales et
les conditions aux limites pour les modéles d’écoulement potentiel et visqueux sont refor-
mulées pour un écoulement complémentaire. La représentation de la vitesse de Poincaré
est utilisée pour un écoulement potentiel et la méthode SWENSE est utilisée pour un

écoulement visqueux.
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e La décomposition domaine (DD) est considéré comme décomposant le domaine de
calcul des modeéles d’écoulement potentiel et visqueux pour les parties complémentaires.
Le modéle d’écoulement visqueux basé sur la modélisation d’écoulement de fluide visqueux
SWENSE et de la fonction LS calcule les ondes complémentaires au voisinage d’une struc-
ture. Les ondes complémentaires dans la région du champ lointain sont modélisées par la

représentation de vitesse de Poincaré basée sur la théorie du potentiel linéaire.

Le couplage bidirectionnel entre les modéles d’écoulement potentiel et visqueux pour un écou-
lement complémentaire suppose que la vitesse du fluide et 1’élévation de la houle soient des
fonctions continues au passage d’un modéle & ’autre. Chacun des modéles est mis & jour comme
suit :
e Modéle d’écoulement visqueux vers modéle d’écoulement potentiel
La vitesse du fluide complémentaire et les élévations des vagues sur la surface de couplage
correspondante sont obtenues a partir du modéle d’écoulement visqueux. Les coefficients
de Fourier-Laguerre et de Fourier pour, respectivement, la vitesse complémentaire et 1’é1é-
vation de la houle sont calculés. Les champs complémentaires de vitesse et d’élévation des
vagues dans les zones de relaxation sont construits a 'aide de la représentation de vitesse

de Poincaré.

e Modéle d’écoulement potentiel vers modéle d’écoulement visqueux
Les valeurs cibles de la vitesse complémentaire et de la fonction Level-set dans la zone de
relaxation sont calculées & partir des champs complémentaires de vitesse et d’élévation de
la vague en utilisant la représentation de vitesse de Poincaré. Le schéma de relaxation, qui
associe la quantité calculée & la quantité cible, est utilisé pour mettre & jour le modéle

d’écoulement visqueux.
Deux cas de test de référence sont considérés pour validation :

e Un cylindre circulaire vertical en houle réguliére est simulé en considérant le cou-

plage entre les modéles d’écoulement potentiel et visqueux. Le couplage bidirectionnel est
appliqué & divers modéles d’écoulement visqueux. L’un est basée sur la modélisation multi-
phase SWENSE avec la fonction LS pour la gestion de l'interface proposée dans la présente
étude. L autre est basé sur le modélisation des équations RANS avec un modéle VOF pour
la gestion de l'interface. La comparaison est faite en comparant le champ d’élévation de
houle, les harmoniques des amplitudes des efforts et le coiit de calcul.
Les ondes complémentaires générées par le cylindre se propagent jusqu’a la fin de la zone
de relaxation lorsque la méthode de couplage est prise en compte. Il est montré que les
harmoniques en amplitude des efforts au premier et second ordre sont légérement amélio-
rées si le couplage est appliqué. En particulier, les forces de dérive moyennes horizontales
agissant sur le cylindre sont améliorées. Cependant, les cotits de calcul augmentent lorsque
le couplage est appliqué. Le cotit de calcul augmente d’environ 84% pour SWENSE avec la
modélisation d’interface LS et de 56% pour RANS avec la modélisation d’interface VOF.

e Une bouée fixe en houle réguliére et irréguliére est ensuite considérée. Les résultats
de la simulation sont comparés aux résultats expérimentaux. Dans le test de bouée dans

la houle réguliere, les élévations de surface libre obtenues pour différentes sondes a houle
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et comparées aux expériences montrent des erreurs moins importantes lorsque le couplage
est appliqué. Les harmoniques en amplitude des efforts au premier et deuxiéme ordre et
les forces de dérive moyennes sont améliorées lorsque le couplage est appliqué. Dans le test
de la houle irréguliére, un effet de couplage négligeable est observé car les houles complé-
mentaires sont de faible amplitude. Les cotits de calcul augmentent lorsque le couplage est
appliqué d’environ 80% et 49% pour les cas de simulation de houle réguliére et irréguliere,

respectivement.

En conclusion, le couplage bidirectionnel entre les modeéles d’écoulement potentiel et visqueux
fonctionne lorsque les houles complémentaires sont suffisamment importantes. L’élévation de la
houle et les efforts aux premier et deuxiéme ordres -en particulier les forces de dérive- agissant
sur la structure peuvent étre améliorées si 'on considére le couplage bidirectionnel. Cependant,
les cotits de calcul augmentent d’environ 80% pour les cas de houle réguliére et de 50% pour les

cas de houle irréguliére.

8. Conclusion et perspectives

Le couplage bidirectionnel entre les modéles d’écoulement de fluide parfait potentiel et visqueux
est proposé dans la présente étude. Les modeéles d’écoulement potentiel pour des écoulements
incidents et complémentaires ainsi que le modéle d’écoulement visqueux basé sur SWENSE avec
la fonction LS pour la modélisation de l'interface sont expliqués. Les tests de référence valident
chaque modéle d’écoulement et montrent un bon accord avec les résultats de référence disponibles.
On suppose que I'élévation de surface libre et la vitesse du fluide dans les modéles d’écoulement
sont continues. Pour coupler les modéles des écoulements potentiels et visqueux, les méthodologies

de décomposition fonctionnelle (FD) et de décomposition de domaine (DD) sont appliquées.

La décomposition fonctionnelle (FD) est appliquée aux modeéles d’écoulement potentiel et vis-
queux. Les quantités d’intérét totales sont décomposés en parties incidente et complémentaire.
L’écoulements potentiel non-linéaire pour les houles incidentes est supposé disponible dans tout
le domaine fluide et satisfait les équations d’Euler. Le modéle potentiel linéarisé basé sur la re-
présentation de la vitesse de Poincaré pour un écoulement complémentaire est proposé. D’autre
part, le fait de disposer d’'un modéle de houle incidente non-linéaire conduit & 'utilisation de
la méthode SWENSE pour prendre en compte I’écoulement complémentaire dans le cadre d’un

modéle de fluide visqueux.

La décomposition de domaine (DD) est utilisée pour décomposer le domaine de calcul. Les
ondes incidentes non-linéaires du modéle d’écoulement de potentiel nonlinéaire sont disponibles
dans tout le domaine de calcul. Cela nous oblige & diviser le domaine de calcul des modéles
d’écoulement potentiel et visqueux uniquement pour les ondes complémentaires. Au voisinage
de la structure, le modéle d’écoulement visqueux basé sur SWENSE est utilisé et le modéle
d’écoulement potentiel linéarisé pour un écoulement complémentaire est appliqué dans la région

du champ lointain.

Pour coupler les modéles d’écoulement potentiel et d’écoulement visqueux, on accepte 'hypothése
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de I’évolution continue de I’élévation de surface libre et de la vitesse du fluide dans le domaine de
calcul. Sur la surface de couplage considérée, la vitesse du fluide complémentaire et 1’élévation de
la houle sont utilisées pour mettre & jour le champ d’écoulement complémentaire dans la région
du champ lointain & 1’aide de la représentation de la vitesse de Poincaré. Dans le champ lointain,
le schéma, de relaxation est utilisé pour fusionner le champ complémentaire calculé avec le champ

cible calculé & partir de la représentation de la vitesse de Poincaré.

Un algorithme résolvant le probleme d’interaction houle-structure en considérant un couplage
bidirectionnel est présenté. Les tests de référence sont effectués pour un cylindre circulaire vertical
soumis & une houle incidente réguliére et une bouée fixe soumis a des houles incidentes réguliére
et irréguliére. Les résultats des tests de référence montrent que le couplage bidirectionnel peut
améliorer les élévations de surface libre et les efforts agissant sur la structure. En particulier, les
efforts de dérive moyennes horizontales agissant sur la structure sont considérablement améliorés
lorsque le couplage bidirectionnel est adopté. Cependant, le couplage bidirectionnel donne des
résultats médiocres sur la troisiéme harmonique des efforts. Lorsque les houles complémentaires
sont ptites, le couplage bidirectionnel n’affecte pas les résultats. Lorsque le couplage bidirectionnel
est appliqué, les cotits de calcul sont augmentés de 80 % pour la simulation en houle réguliére et

de 40 % pour la simulation en houle irréguliére.

Pour les travaux futurs, les sujets de recherche suivants peuvent étre mentionnés :

e Représentation de la vitesse de Poincaré pour un écoulement de surface libre
pour le navire avec vitesse d’avance
La représentation de la vitesse de Poincaré dans une application marine a été étudiée pour
résoudre des problémes stationnaires et périodiques par Noblesse et al. (1997); Noblesse
(2001); Noblesse and Yang (2004). La représentation de la vitesse pour le probléme d’inter-
action houle-structure avec vitesse d’avance peut étre réalisée avec la condition limite de
surface libre de Neumann-Kelvin. Un tel modéle peut étre utilisé pour coupler un modéle

d’écoulement visqueux afin d’évaluer la résistance ajoutée du navire dans la houle.

e Couplage entre le modéle d’écoulement potentiel linéaire et d’autres modéles
d’écoulement
La représentation de vitesse proposée peut étre utilisée pour coupler le modéle d’écoulement
visqueux basé sur la modélisation d’interface SWENSE et VOF par Li (2018). La fonction
élémentaire introduite dans la présente étude peut étre applicable a I’équation intégrale
de frontiére. Le modeéle d’écoulement utilisé pour résoudre l'interaction houle-structure au
voisinage de la structure peut étre remplacé par des modéles d’écoulement & potentiel
non-linéaire tels que la méthode des singularités de type Rankine (RPM ; Rankine Panel
Method) ou la méthode des éléments finis (FEM ; Finite Element Method).

e Evaluation des efforts de dérive moyennes agissant sur un corps non-profilé
Le couplage bidirectionnel entre les modéles d’écoulement potentiel et visqueux donne de
bons résultats sur les forces de dérive moyennes horizontales agissant sur la structure,
forces qui sont importantes dans la conception des systémes d’amarrage pour des navires-
citernes ou des FPSQO. Il serait donc intéressant d’étudier le comportement a la mer de

telles structures via le couplage bidirectionnel mis en place dans ce travail.
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Résumé: Ce travail propose une méthodologie
de couplage bidirectionnel entre un modéle
Navier-Stokes et un modele fluide parfait
potentiel pour des applications d’ingénierie
marine et particulierement d’interaction houle-
structure.

Les quantités d’intérét sont décomposées comme
la somme d’'un terme d’écoulement incident et un
terme d’écoulement complémentaire. Un modéle
potentiel non-linéaire (HOS : High-Order
Spectral) est utilisé pour I'écoulement incident.
L’écoulement complémentaire est traité par des
modeles de fluide visqueux et de fluide parfait
potentiel. Le modéle fluide visqueux est basé sur
les équations SWENS (Spectral Wave Explicit
Navier-Stokes) et une formulation de type Level-
Set pour la prise en compte de l'interface; ce

modele est utilisé dans un domaine proche de la
structure marine étudiée. Le modéle de fluide
potentiel est un modéle linéarisé basé sur une
description de Poincaré. Cette description est
utilisée pour effectuer de nouveaux
développements ou la surface de couplage est un
cylindre circulaire, ce qui permet de résoudre les
problemes de divergence numérique rencontrés
initialement sur la surface libre. Les variables
utilisées pour le couplage entre les deux modéles
sont la vitesse du fluide et I'élévation de surface
libre.

Le couplage proposé est validé pour des cas de
diffraction-radiation et I'accord avec les résultats
de référence est bon. En particulier, les efforts du
1er et du 2éme ordre sont bien restitués.

Two-way coupling between potential and viscous flows for a marine application

Keywords: Wave-structure interaction; Wave generation and absorption; Potential and viscous flow
coupling; Poincaré’s velocity representation; SWENSE; OpenFOAM

Abstract: The present study proposes a two-way
coupling methodology between potential and
viscous flow models for a marine application. A
hypothesis that the functional quantities of total
flow can be decomposed into the incident and
complementary parts is assumed. The nonlinear
potential flow model for incident flow is available.
Therefore the complementary flow is only
concerned in the potential and viscous flow
models. The computational domain for
complementary flow is decomposed. In the
vicinity of structure, the viscous flow model based
on Spectral Wave Explicit Navier-Stoke
Equations (SWENSE) is used. A linear potential
flow model based on Poincaré velocity
representation is applied to simulate the
complementary wave in the far-field. The fluid
velocity and wave elevation are used to couple
the potential and viscous flow models.

A preliminary study on the coupling is conducted
and the necessity to a fast evaluation of potential
flow is raised. The nonlinear potential flow
models for incident waves are summarized and
the reconstruction procedure in the viscous flow
solver is proposed and validated with the
simulation and experiments. A new Poincaré’s
velocity representation for time domain free
surface flow is introduced with a circular
cylindrical matching surface. The proposed
representation is validated with the linear
radiation-diffraction problem and the results show
good agreements. The viscous flow solver based
on SWENSE method with Level-Set interface
modeling is proposed. The potential and viscous
flow models are coupled and the results show
that the coupling can enhance the first- and
second-order forces acting on the structure.
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