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1. Introduction

1 Introduction

1.1 Numerical modeling of wave-structure interaction

The wave-structure interaction is a major concern for naval architecture and ocean engineering.

The ships and o�shore platforms, which have an expected lifetime of 25 years or so, are exposed

to ocean environment where the typical wave periods are in the range of 6-25s. They experience

billions of oscillations during their lifetime, therefore it is essential to estimate the forces acting

on those structure and their motions.

The hydrodynamic forces are of various kinds from simple hydrostatic loads to very complex

wave impacts and the complexity of the mathematical model is relevant to achieve accuracy.

Some transfer function as the motion Response Amplitude Operators (RAOs) are very well and

quickly computed with linear potential �ow, whereas extreme response or extreme loads could be

in�uenced by nonlinear features or even multiphase �ow and consequently a more complex and

dedicated model is necessary, often based on Navier Stokes equations, with or without turbulence

model.

The behavior of bodies in waves is possible to compute analytically for a limited number of

geometrical shapes and with strong assumptions on the hydrodynamic model, speci�cally the

linearization of the free surface and body boundary conditions. Real ships and o�shore plat-

forms have complex geometries and the wave structure interaction phenomena can be assessed

by conducting experiments or by solving numerically the chosen mathematical model. Perform-

ing experiments is a good methodology to get real-time data and to emulate complex natural

phenomena, however there are numerous limitations as scaling e�ects, the facility, the data ac-

quisition and overall costs. This explains why the numerical analysis is often attractive, though

the cost and the complexity of the computation can also be large. In the present research, the

objective is to use complex models but to limit the computational costs in simulating the wave

structure interaction problem. This is done by coupling di�erent types of hydrodynamic models

which have di�erent levels of assumptions.

Two mathematical models are commonly used in naval and ocean engineering �elds nowadays,

that can be stated as potential �ow and viscous �ow models, the former being derived with

hypothesis imposed on the latter.

Potential �ow models are derived from the assumption of incompressible, inviscid �uid and

irrotational �ow. The most common numerical algorithms are based on the boundary integral

equation which transforms a three-dimensional (3D) computational domain into two-dimensional

(2D) domain. 3D problems are reformulated along the body surface with the introduction of

a Green function satisfying all the boundary conditions except body boundary condition. This

methodology is used in the naval and o�shore �elds to compute Linear Transfer Function (LTF),

Quadratic Transfer Function (QTF), radiation forces (added mass and radiation damping) and

motion Response Amplitude Operators (RAOs) of a �oating/�xed body subject to waves. How-

ever, potential �ow based solvers cannot model vorticity, viscosity, turbulence and wave breaking
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1. Introduction

phenomenon, making them less attractive for computing the drag resistance of ships, maneuver-

ing, roll damping and gap resonance. In addition, the algorithm complexity and the numerical

cost increase when the nonlinearity of the free surface and the body perturbation need to be

accounted.

Viscous �ow models are more and more used in wave-structure interaction problems to overcome

the limitations of the potential �ow model thanks to the increase of computational resources.

Viscous �ow models are generally derived from the Navier Stokes equations and the assumption

of Newtonian �uid. A 3D computational grid is required to solve the equations numerically.

The size of the grid depends generally of several parameters and speci�cally from the Reynolds

number for a typical marine computation. Turbulence models can be used to reduce the number

of nodes, Reynolds averaged Navier-Stokes equations (RANSE) are commonly used to solve a

highly nonlinear phenomena including viscosity, vorticity and turbulent e�ects. Though the

numerical computation of the free surface motions in viscous �ows has also its challenges, the

simulation of wave run-up, green water, and extreme bow slamming events are more and more

conducted. Performing long simulations with �oating or �xed body, as example in irregular

waves for the typical duration of 3 hours is still very expensive and unpractical for engineering

companies.

Those two di�erent �ow models have each advantages and drawbacks for simulating wave-

structure interaction. The coupling of potential and viscous �ows in wave-structure interaction

problem has started in the early 1990s to take the bene�ts of those two di�erent models. The

viscous model needs a large computational e�ort and it is not suitable to model propagating

waves to the far-�eld. Meanwhile, the potential �ow model is regarded as good for wave propa-

gation. Therefore, the propagating waves in the far-�eld region of the domain with viscous �ow

can potentially be improved by using a potential �ow model, as depicted in �gure 1.1.

Figure 1.1. The concept of coupling between two �ows in wave-structure interaction problem.

The reduction of the computational domain dedicated to the viscous �ow decreases the compu-

tational burden. The key is that this reduction does not increases the wave re�ections on the

boundary and that the computational cost to solve the potential �ow does not compensate what

has been gained. This is the reason why in this thesis the speed of the potential �ow algorithm

has been accounted for and object of dedicated studies.

2
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Two �ow models are based on di�erent assumptions that raise many questions in a sense of

physical meaning. However, the coupling between potential and viscous �ow models is attractive

and has a strength on both e�ciency and accuracy.

1.2 Previous and related researches

1.2.1 Potential �ow

In potential �ow, Boundary Element Method (BEM) is widely used for numerical simulations.

It is classi�ed into two methods which depends on the selection of the fundamental solution: the

Rankine method and the solution using the free surface Green function.

Rankine panel method uses a simple source as the fundamental solution. It provides a �exibility

in treating boundary conditions, and calculating singularities is simple. However, the boundary

surface where singularities are located should cover the whole �uid domain and a panelling

over the free surface is necessary. As a result, the computational e�ort increases due to the

need to solve a large and fully populated linear system. Recently, it has often been applied

with nonlinear free surface and body boundary conditions which appear in problems of ship

with forward speed in waves and of wave-structure interaction in high wave. Dawson (1977)

showed that this methodology gives a fairly good result for a ship with forward speed. After his

work, Nakos (1990) introduced a B-spline shape function for panel connectivity and investigated

numerical dispersion, dissipation, and stability. Raven (1995) compared the di�erent numerical

implementation of nonlinear free surface boundary condition. This methodology was applied in

the time domain by Kring (1994). Recently, Kim et al. (2011) used this method in the principle

of weak scattering already introduced by Pawlowski (1992).

The method using the free surface Green function, which satis�es a linearized free surface condi-

tion with sea bottom and radiation conditions, is the second category of BEM. With a linearized

boundary condition, the integral equation is only discretized on the mean position of the body.

Therefore, a small computational e�ort is necessary to solve a linear system of relatively small

size. However, the algorithms for the computation of the Green functions are complex. The

mathematical representation of the wave Green function is well summarized in the book of We-

hausen and Laitone (1960). Typically, the wave Green function involves an in�nite integral with

singularity which makes its numerical evaluation di�cult. Therefore, most of associated research

works have focused on the e�cient computation of Green functions. Newman (1985); Telste and

Noblesse (1986); Chen (1991); Newman (1992) suggested several numerical algorithms by ap-

plying di�erent approximations depending on nondimensional variables for numerical e�ciency.

Recently, Xie et al. (2018) summarized the single-integral type of wave Green function in the fre-

quency domain and compared the precision and computational cost of various available numerical

algorithms. A di�erent perspective on the deep water wave Green function has been proposed

by Clément (1998). He showed that the time domain wave Green function is a solution of 4-th

order Ordinary Di�erential Equation (ODE), and he identi�ed that the frequency domain wave

Green function satis�es a second order ODE by applying Fourier transform (Clément, 2013).
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Clément (1998) used a 4-th order Runge-Kutta time integration to solve the 4-th order ODE of

the time domain Green function. Later, Chuang et al. (2007) introduced a time-marching Frobe-

nius method to solve the ODE analytically. Recently, Bingham (2016) compared the e�ciency

of the numerical algorithms calculating the time domain wave Green function. A good summary

of existing ordinary di�erential equations in both time and frequency domain with respect to

spatial and temporal variables can be found in Xie (2019).

The panel discretization along the boundary surface is a concern in BEM. Linear potential

codes for a di�raction-radiation problem in frequency domain, such as WAMIT by Lee (1995),

HydroStar by Chen (2004), Aquaplus by Delhommeau (1989) and Nemoh by Babarit and Del-

hommeau (2015), are based on constant panel method. Kim (2011) used a linear panel method

to solve the hydroelasticity problem of �oating body. For a precise computation of wave drift

forces, corresponding to second-order problem, Hong et al. (2005) applied a Higher-Order BEM

(HOBEM) and validated with experiments.

Other numerical approaches than BEM are applicable for potential �ows. Bai and Yeung (1974)

solved the free surface problem by Finite Element Method (FEM) for 2D problem. Later, Bai

(1981); Bai et al. (1989) extended FEM for 3D free surface �ow. Recently, Nam (2015) applied

3D FEM for berthing problem with fully nonlinear free surface and body boundary conditions.

The Harmonic Polynomial Cell (HPC) method was proposed by Shao and Faltinsen (2014).

Di�erently from the BEM, these methodologies require the whole 3D computational domain to

be discretized into the cells.

The mentioned potential �ow models have focused on the evaluation of velocity potential on the

boundary surface. Noblesse et al. (1997) introduced a new Poincaré's velocity representation

in free surface potential �ow to compute the �uid velocity at �eld points. The original bound-

ary integral equation states that the velocity at �eld points can be calculated by the surface

distribution of sources and dipoles with their strength. In his work, the dipole contribution is

transformed into the equivalent source contribution multiplied by the tangential velocity. There-

fore, the �uid velocity at any �eld points can be expressed explicitly by the velocity distribution

over the surrounding boundary surfaces. Following his previous work, Noblesse (2001) presented

a generic expression for free surface �ows and suggested the Poincaré's velocity representations

for the cases of soft (Φ = 0) and rigid (∂Φ
∂z = 0) free surface, steady forward ship problem, time-

harmonic without/with forward speed. Furthermore, he introduced a potential representation

which is called weakly singular boundary integral equation by de�ning a vertically integrated

Green function (Noblesse and Yang, 2004). Guillerm (2001) applied Noblesse's representation

for the steady forward ship problem by coupling a viscous �ow model in the vicinity of the ship

and a potential �ow model far from the ship.

1.2.2 Viscous �ows

Viscous �ow models solve Navier-Stokes equations, which are the governing equations of New-

tonian �uid. RANSE version of Navier-Stokes equations is frequently used in naval and o�shore

engineering applications and they can be solved e�ciently by decomposing velocities and viscos-
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ity into time-averaged and �uctuating parts. These equations are solved numerically, because

analytical solutions are rarely available for the nonlinear viscous �ows with free surface. The

Finite Volume Method (FVM) is commonly used because it satis�es the conservation laws even

when the discretized mesh is relatively coarse. FVM discretizes the �uid domain into cells which

are small control volumes (CVs) where �uxes comes in and out through the control surfaces.

The governing equations are reconstructed in the framework of FVM. The �uid media (water)

in marine hydrodynamics is assumed to be incompressible and viscous. Patankar and Spalding

(1972) introduced Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm

to solve steady-state problems of incompressible viscous �uid. In this algorithm, the pressure

correction is introduced to satisfy the continuity equation after solving the momentum equation.

Issa (1986) devised Pressure-Implicit with Splitting of Operators (PISO) algorithm, which is

an extended version of SIMPLE algorithm, for unsteady problem. In the PISO algorithm, the

coupled velocity and pressure are solved by one predictor and two corrector steps.

The numerical modeling of the interface between air and water is also one of the main research

topic in marine hydrodynamics. Interface models are categorized into Lagrangian and Eulerian

approaches. The Lagrangian approach advects special marker points distributed on the inter-

face, and reconstructs the interface with the distribution of marker points (Harlow and Welch,

1965). The reconstructed interface is considered as sharp and precise, but an extra redistribution

procedure is necessary to get a su�cient resolution. Unverdi and Tryggvason (1992) proposed

a front-tracking method, transporting marker points in an Eulerian domain. It enables the cal-

culation of an accurate surface curvature and the conservation of a sharp interface. However,

an extra redistribution procedure is still necessary to get a su�cient resolution. Furthermore,

the complexity increases in the case of wave breaking. Meanwhile, the Eulerian approach uses

an indicator function, representing whether a CV is wet or dry by a function value de�ned at

each cell. This approaches are commonly used nowadays, from Harlow and Welch (1965) who

proposed a marker and cell method. Other indicator functions, the Volume Of Fluid (VOF) by

Hirt and Nichols (1981), the Level-Set (LS) function by Osher and Sethian (1988) and the Phase

Function (PF) by Boettinger et al. (2002), have been proposed in the literature and are widely

used in many applications. Those methods using indicator functions need however a special

attention on treating numerically the convection terms due to its di�usivity.

VOF methods conserve the mass well but su�er from interface smearing and the di�culty on

the calculation of the interface curvature. Several convection schemes have been applied to

prevent smearing interface and maintain boundedness. Most of convection terms are evaluated

by blending the low and high order advection �ows with �ow limiter, such as HRIC by Muzaferija

and Peric (1999), Flux-corrected transport (FCT) by Boris and Book (1973), CICSAM by Ubbink

(1997). The multiphase solver in OpenFOAM (interFoam) is based on the FCT method which

has been extended up to multi-dimensions by Zalesak (1979). The computation procedures are

well explained in Damián (2013). As an alternative to algebraic solving techniques, a geometric

VOF approach was proposed by Roenby et al. (2016) though it limits the maximum Courant

number.

LS function keeps the interface sharp, but mass loss often happens due to its signed distance
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(Sussman et al., 1994). Extra computation procedures, re-distancing the level-set, have been

applied to improve the accuracy while maintaining the interface sharpness (Chang et al., 1996;

Sussman et al., 1998; Di Mascio et al., 2007).

PF method uses a smoothly varying function φ ∈ (−1, 1) in computational domain. It also

has a mass loss problem like LS function, but the proper choice of phase-function may help the

accuracy and boundedness. The use of biased phase function having values between 0 and 1

is adopted to keep the boundedness (Desjardins et al., 2008). Sun and Beckermann (2007) set

the phase-function has a hyperbolic curve. The derived PF equation involves the self-adjusting

variable controlling interface di�usion.

The quality of wave propagation in the computational domain is important for any wave-structure

interaction problem. The numerical dissipation brought by the discretization makes simulations

in large domain di�cult and the oscillatory behavior of waves calls for a special boundary con-

dition to minimize undesired re�ections at the inlet/outlet. Ocean waves have typical periods in

the range of 6-25s and travel long distances with very small energy dissipation. Waves with a

wavelength of 73.15m (T = 6.84s) travel 924 km in a day, with its wave height only diminished

by one or two percent because of friction (Lamb, 1945; Joseph, 2006). Nonlinear potential wave

models are useful to initialize and generate incident waves. For example, Rienecker and Fenton

(1981) used a stream function for fully nonlinear regular waves, and some nonlinear potential

models for irregular waves can be found (Ducrozet et al., 2007, 2012; Engsig-Karup et al., 2009).

However, the absorption of waves at the extremities of the domain is still ongoing research. The

waves at outlet are a combination of incident waves, body-scattered waves and are also a�ected by

numerical dissipation. Israeli and Orszag (1981) introduced the technique of "damping zone" or

"sponge layer" to absorb the waves. A relaxation scheme which blends the computed quantities

with a target solution in the sponge layer (also called relaxation zone; blending zone) has been

popular recently, see Kim et al. (2012); Jacobsen et al. (2012); Paulsen et al. (2014). As the target

�ow and weight function can be speci�ed by the user, the wave outlet is relatively easily handled

compared to with other methodologies which need a parameter tuning. The relaxation scheme

is categorized into implicit and explicit relaxation. The implicit relaxation scheme combines the

governing equations and target equations with a spatially distributed weight factor. As a result,

source terms appear in the original equations, see Kim et al. (2012); Vuk£evi¢ (2016). Meanwhile,

the explicit relaxation scheme blends the �ow values with target values in the relaxation zone

after solving the governing equations, see Mayer et al. (1998); Fuhrman (2004); Engsig-Karup

(2006); Seng (2012) for example.

1.2.3 Coupling of potential and viscous �ows

Navier-Stokes equations are used to state the behaviour of viscous �ow. Viscosity e�ect and

rotational �ow are considered naturally in governing equations. The potential �ow is introduced

based on the hypothesis that �uid is incompressible and inviscid and �ow is irrotational. Conse-

quently, the coupling between viscous and potential �ows is sort of a contradiction. After Prandtl

(1904) discovered boundary layer exists only near a body moving through �uid media, it has been
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thought that the potential �ow model can model the outer �uid region of the boundary layer.

However, �ow quantities such as �uid velocity and stress considered in viscous and potential �ow

models are derived in di�erent manner. The coupling between two �ow models is considered to

be skeptical in view of physics.

The e�orts to couple potential and viscous �ows in marine hydrodynamics have been investigated

from the early 1990s. Fluid viscosity has not been accounted for seriously because viscous e�ects

on the global performance of ship and o�shore platform are some times very low and often hard

to estimate. The viscous e�ect is important for speci�c phenomena such as friction resistance

of ship, roll damping, gap resonance, moonpool resonance. Most of the associated research has

assumed that the �ow quantities of viscous and potential �ow models are continuous or have

changed the boundary condition to consider viscosity e�ects.

In this section, previous research on the coupling between viscous and potential �ow models

in marine hydrodynamics are summarized by categorizing coupling methodology. The way of

coupling is de�ned by transferring the information from one solver to the other. (1) One-way

coupling is when an available solution is transferred to the solver, but the available solution

is not a�ected by the solver. (2) Two-way coupling means that each �ow solvers delivers the

information to the other, and each �ow solver is updated from the delivered information. The

�gure 1.2 shows a schematic view of coupling ways with decomposition.

Figure 1.2. Categorization of coupling methodologies by information delivery direction.

In a coupled solver, the computation can be decomposed spatially and/or functionally. The

decomposition of total problem can be then categorized into two groups:

• Domain decomposition: The computational domain for each �ow is separated or over-

lapped. Potential and viscous �ow models are applied in the separated domains.

• Functional decomposition: The total quantities in viscous �ow are decomposed into poten-

tial and viscous parts. The governing equations and boundary conditions are changed.

Remark that the domain and functional decompositions are applicable together for one problem.
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Domain decomposition

The domain decomposition (DD) splits the computational domain and applies the di�erent �ow

models that are suitable for concerned phenomenon. In the wave-structure interaction problem,

viscous e�ects and wave nonlinearities are strong in the vicinity of body surface. Even though

the generated vortex propagates up to relatively far-�eld, it is possible to decompose the compu-

tational domain into viscous inner sub-domain and potential outer sub-domain. Both two-way

and one-way coupling methodologies are applicable with di�erent coupling regions. In the cou-

pling region, the information is delivered from viscous/potential �ow to the other. It is usually

categorized into direct and overlapped coupling regions. The direct coupling region represents

that two �ows share one surface (Sd) to deliver each of the �ow quantities to the other. The over-

lapped coupling regions refers to that the information transfer happens at two distinct boundary

surfaces (So) with distance or the volumic blending zones (Zb). In the volumic blending zone,

the weight function is applied for smooth transition of �ow quantities. Therefore, information

delivery is done in di�erent places. Figure 1.3 shows direct and overlapped coupling regions.

(a) Direct coupling surface (b) Overlapped coupling region

Figure 1.3. Categorization of coupling methodology by place of information delivery.

Tahara et al. (1992) applied two-way coupling by two distinct boundary surfaces for inviscid

and viscous �ows, respectively. BEM and FVM are used to solve each �ow region, the normal

velocity for potential �ow and the total velocity for viscous �ows being updated at each time

step. Campana et al. (1992) used Rankine source BEM and FVM to solve the two-dimensional

submerged wings in current with the free surface. The normal velocity for potential �ow and the

pressure and velocity for viscous �ow are imposed as boundary conditions for each �ow at direct

coupling surface. Later, Campana et al. (1995) applied the two distinct coupling surfaces for the

forward speed ship problem and reported that the overlapped region gave a stable simulation.

Iafrati and Campana (2003) used FVM for viscous �ow in the region near to free surface and BEM

for the region body surface to FVM region for the simulation of wave breaking by interaction of

current and submerged obstacle. They de�ned two di�erent coupling techniques, DtN (Dirichlet

to Neumann) and NtD (Neumann to Dirichlet), leading to di�erent delivered information. In
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the boundary integral equation

− 4πΦ =

‹
S

(
G
∂Φ

∂n
− Φ

∂G

∂n

)
dS, (1.1)

where Φ is a velocity potential and G is the Green function, DtN update the velocity potential

(Φ) on the boundary surface by Bernoulli equation from the obtained pressure in the viscous

�ow. The Dirichlet boundary condition (Φ) is used to calculate the normal derivatives of velocity

potential (∂Φ
∂n ) along the boundary surface. The velocity calculated from the potential �ow is

imposed to viscous �ow boundary condition. NtD applies a Neumann boundary condition (∂Φ
∂n )

on the boundary surface by �uid velocity obtained from viscous �ow to calculate the velocity

potential (Φ). The pressure by Bernoulli's equation is imposed as the boundary condition for

viscous �ow.

Colicchio et al. (2006) applied the coupling between BEM and FVM with domain decomposition

for dam breaking and wave impact problem. Two distinct matching surfaces are used to transfer

the velocity, wave elevation or the pressure, and the pressure correction in the viscous �ow solver

from the obtained potential �uid velocity. They also reported that the overlapped matching

surface gives a stable result both in potential and viscous �ow solver. Greco et al. (2013) extended

up to 3D problem to simulate Green water impact on a deck. To reduce the computational

cost of potential �ow, Hamilton and Yeung (2011) adopted a cylindrical matching surface and

applied the Shell function, which is the surface integrated Green function, to solve potential

�ow. Fredriksen (2015) limited the viscous �ow region near to the corner of two-dimensional

moonpool, and attempted to couple velocity and pressure in a segregated numerical algorithm.

A two-way coupling with the linear potential theory based on Poincaré's velocity representation

is attempted by Guillerm (2001) for steady forward ship problem. He adopted the overlapped

surfaces for both �ows and the viscous �ow is solved by Finite Di�erence Method (FDM) with

boundary conditions computed by the linear potential �ow. As a coupling variable, the normal

and tangential velocity is transferred to potential �ow, as the boundary condition for viscous

�ow, the velocity and wave elevation calculated by the potential �ow is used. Poincaré's velocity

representation for generic free surface �ows are given in Noblesse et al. (1997); Noblesse (2001).

He suggested the Poincaré's velocity representation for the problems of satisfying free surface

conditions φ = 0 and ∂φ
∂z = 0, steady forward speed, time-harmonic without and with forward

speed. After his work on two-way coupling, there has been no more attempt to apply Poincaré's

velocity representation for a time-harmonic or unsteady problem.

Two-way coupling solves both �ows, consequently the iterations between two �ows increase the

computational costs. Therefore, one-way coupling is commonly used nowadays by imposing the

incident waves as the boundary condition. Chen et al. (2005); Kim et al. (2012); Jacobsen et al.

(2012); Paulsen et al. (2014) applied a relaxation/blending scheme in volumic relaxation zones,

which relaxing the total �ows into incident components. Therefore, the scattering term shall

be blended zero smoothly in the relaxation zone. The weight function gives an extra source in

relaxation zones, therefore, it generates unnecessary waves in the computation domain (Peri¢

et al., 2018b).
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Functional decomposition

The functional decomposition (FD) splits the total solution into potential and viscous �ow com-

ponents in the same computational domain. The governing equations and boundary conditions

are reformulated for the quantities of interest. The Helmholtz decomposition theorem states that

the total �uid velocity can be decomposed into the irrotational and vortical velocity (Arfken et al.,

1995)

u = v +∇Φ, (1.2)

where v is a rotational velocity and Φ is velocity potential. v and ∇Φ satis�y the continuity

equation

∇ · v = 0, ∇2Φ = 0, (1.3)

and

∇ · u = ∇ · v +∇2Φ = 0, ∇× u = ∇× v. (1.4)

Based on the Helmholtz decomposition theorem, Kim et al. (2005) proposed a complementary

Reynolds Averaged Navier-Stokes Equations(RANSE) that solves the vortical velocity. Potential

�ow solver calculates the irrotational velocity. Consequently, the Euler terms are cancelled in

the momentum equation. They reported that the functional decomposition reduces the com-

putational cost by adopting a coarse grid in the far-�eld. For the 2D wing problem, Edmund

(2012); Rosemurgy (2014) manipulated the body boundary condition for potential �ow that the

contribution of vortical velocity is taken into account by integrating them within the boundary

layer. Following the equation (1.2), the derivative of velocity potential on the body surface is

given as

u = 0, ⇐⇒ ∇Φ = −v. (1.5)

The normal derivative of velocity potential is given in

∇Φ · n = −v · n, (1.6)

where n is normal vector at body surface. In a local-orthogonal coordinate system shown in

�gure 1.4

Figure 1.4. A local coordinate system and the boundary layer with thickness δ. In the �gure,

di�erent notations are used. n = n̂ and t = t̂, wt = vt, δΩB represents the body surface

(Rosemurgy, 2014).
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the vortical velocity and gradient operator can be decomposed into the normal and tangential

components

v = vnn + vtt, and ∇ =
∂

∂n
n +

∂

∂t
t, (1.7)

where t is an unit tangential vector in local coordinate. Using the continuity equation given in

(1.3)

∂vn

∂n
+
∂vt

∂t
= 0. (1.8)

Integrating the equation along the local normal direction from body surface to the boundary

thickness δ
ˆ δ

0

∂vn

∂n
dn = −

ˆ δ

0

∂vt

∂t
dn

vn(δ)− vn(0) = −
ˆ δ

0

∂vt

∂t
dn

vn(0) =

ˆ δ

0

∂vt

∂t
dn+ vn(δ).

(1.9)

By de�nition of boundary layer, vn(δ) ≈ 0. Therefore, the body boundary condition given in

(1.6) is written as

∇Φ · n = −v · n = −vn(0)

= −
ˆ δ

0

∂vt

∂t
dn.

(1.10)

An user-de�ned threshold is used to calculate boundary layer thickness. Potential and viscous

�ow satisfying the body boundary condition given in (1.10) are solved iteratively. The details

are explained in Edmund (2012); Rosemurgy (2014). Recently, Chen and Maki (2017) extended

it up to 3D seakeeping problem.

Ferrant et al. (2003) introduced a functional decomposition method which is named as Spec-

tral Wave Explicit Navier-Stokes Equations (SWENSE). It assumes that the total �ow has two

components:(1) incident wave �ow and (2) complementary wave �ow as

χ = χI + χC , (1.11)

where χ, χI and χC are the �ow quanties of total, incident wave and complementary waves,

respectively. The incident �ow terms are subtracted from the Navier-Stokes equation and equa-

tions are reconstructed with respect to complementary �ow terms. The nonlinear incident wave

model being thought to satisfy Euler equations can be canceled. Figure 1.5 shows the SWENSE

method to decompose the functional quantities of total �ow into incident and complementary

parts.
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1. Introduction

Figure 1.5. The SWENSE method to decomose the functional quantities of total �ow into

incident and complementary parts (Li, 2018).

It makes the computational grid to be modeled dense near to the body only and is thought as

e�cient. This methodology has been applied for single-phase �uids by Luquet et al. (2003); Gen-

taz et al. (2004); Monroy (2010); Reliquet (2013) with marine hydrodynamic purpose. Recently,

Vuk£evi¢ (2016) has reformulated SWENSE in multi-phase �ow by decomposing a level-set and

�uid velocity, later Li (2018) applied a similar approach with extended incident pressure for VOF

�eld. As boundary conditions, the relaxation schemes are applied in both researches, relaxing

the scattering waves with zero.

Summary

The coupling methodology is based on the decomposition of �ows that allows to split the com-

putational domain and/or the functional value. The transition of di�erent physics across the

components/domains remains a question. The associated previous research is summarized in

Table 1.1.

The coupling methodology is categorized by coupling way: (1) Two-way coupling and (2) One-

way coupling. The quantities used for coupling are di�erent for research. p and u are pressure

and �uid velocity. Φ is the velocity potential. The subscript I denotes the incident components

and n and t are the normal and tangential vector components, respectively. The coupling place

where the information is delivered denoted with S and Z when the information is delivered at

the surface or volumic zone. SWENSE and FD are when the SWENSE method and functional

decomposition is used. So, Ss are the case when the overlapped surfaces or one surface is used

for coupling. Sbody and S∞ are the body surface and the surface at in�nity, respectively.
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Table 1.1. Summary of previous research on the coupling of potential/viscous �ows

Previous research
Coupling

way

Coupling values Coupling

region

Numerical model

Φ→ NS NS → Φ Φ NS

Tahara et al. (1992) Two p, u Φn,Φt So BEM FVM

Campana et al. (1992) Two p, u · t Φn Ss BEM FVM

Campana et al. (1995) Two u Φn Ss BEM FVM

Guillerm (2001) Two u Φn, ∇×Φ So Poincaré FDM

Iafrati and Campana

(2003)
Two p or u Φn or Φ So or Sd BEM FVM

Colicchio et al. (2006) Two u or p Φt or Φn Sd BEM FVM

Hamilton and Yeung

(2011)
Two u or p Φ or Φn Sd

Shell

func.
FVM

Edmund (2012) Two u Φn, w · n Sbody/S∞ BEM FVM

Rosemurgy (2014) Two u Φn, w · n Sbody/S∞ BEM FVM

Fredriksen (2015) Two u Φ So HPC FVM

Ferrant et al. (2003) One uI , pI - SWENSE HOS FDM

Kim et al. (2005) One uI , pI - FD BEM FVM

Kim et al. (2011) One uI , αI - ZR ΦI FVM

Jacobsen et al. (2012) One uI , αI - ZR ΦI FVM

Paulsen et al. (2014) One uI , αI - ZR FDM FVM

Vuk£evi¢ (2016) One uI , ψI - SWENSE ΦI FVM

Li (2018) One uI , pI , αI - SWENSE HOS FVM

1.3 Governing equations and boundary conditions for viscous and potential

�ows

1.3.1 Viscous �ow

The viscous �ow model considers the unsteady, incompressible, and viscous �ow. Navier-Stokes

equations for viscous �ow are given by

∇ · u = 0, (1.12)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρg, (1.13)

where u is �uid velocity, ρ is �uid density, p is pressure, τ is stress tensor and g gravitational

acceleration. The color function(indicator function) that indicates the �uid region by color

function(φcolor) is used for interface modeling. The transport equation of color function (φcolor)

is given as
∂φcolor

∂t
+∇ · (uφcolor) = 0. (1.14)
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The mathematical and numerical modeling of the interface in the viscous �ow model is relatively

more �exible than the potential �ow model because no assumption of the single-valued function

and the series expansion are required. In the present study, the methodology of SWENSE is

used to reconstruct the governing equations for complementary components by

u = uI + uC , (1.15)

p = pI + pC , (1.16)

φcolor = φcolorI + φcolorC , (1.17)

where subscript I,C represent the incident wave and complementary components, respectively.

The incident waves satisfy the nonlinear free surface boundary condition discussed in the previ-

ous section, consequently, the incident wave terms that corresponds to Euler equations can be

cancelled. The governing equations for complementary components are written as

∇ · uC = 0, (1.18)

∂(ρuC)

∂t
+∇ · (ρuuC) = −∇ · (ρuCuI)−∇pC +∇ · τ , (1.19)

∂φcolorC

∂t
+∇ · (uφcolorC ) = −

∂φcolorI

∂t
−∇ · (uφcolorI ). (1.20)

In a physical sense, the complementary components are signi�cant in the vicinity of body, and

they decay as the distance increases due to energy conservation. Therefore, coarse mesh can

be used in the far-�eld where the complementary potential �ow is considered to represent the

physical quantities through the two-way coupling.

Interface boundary coditions for viscous �ow model will be discussed in Chapter 6.

1.3.2 Potential �ow

The potential �ow formulation is based on the assumption that the �uid is incompressible and

inviscid and the �ow is irrotational. A velocity potential can be introduced from the assumption.

It satis�es the Laplace equation in the whole �uid domain

∇2Φ = 0, in x ∈ Ωw, (1.21)

where Φ is the velocity potential and Ωw is the �uid domain. The free surface (Ξ) is assumed to

be a single-valued function

Ξ = Ξ(x, y; t) (1.22)

and the kinematic free surface condition for potential �ow is given as

DΞ(x, y, t)

Dt
= 0 ⇔ ∂Ξ

∂t
+
∂Φ

∂x

∂Ξ

∂x
+
∂Φ

∂y

∂Ξ

∂y
+
∂Φ

∂z
= 0, on x = Ξ. (1.23)

Remark that the total derivatives are given as D
Dt = ∂

∂t +(∇Φ−U) ·∇ when a forward speed (U)

is considered. The dynamic free surface boundary condition for potential �ow is derived from

Bernoulli's equation as

pa = pw ⇔ ∂Φ

∂t
+

1

2
∇Φ · ∇Φ + gΞ = 0, on x = Ξ, (1.24)
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where pa and pw are the water and air pressure in�nitesimally closed to the free surface. The

kinematic and dynamic conditions involve both wave elevation and velocity potential. It is useful

to combine the free surface boundary condition expressed in velocity potential as

∂2Φ

∂t2
+ g

∂Φ

∂z
+ 2∇Φ · ∇∂Φ

∂t
+

1

2
∇Φ · ∇ (∇Φ · ∇Φ) = 0, on x = Ξ. (1.25)

Note that the free surface boundary condition is highly nonlinear and is imposed on the unknown

free surface. Two nonlinearties arise from nonlinear terms and unknown free surface make the free

surface problem di�cult to solve. Laplacian in the equation (1.21) is linear operator, therefore

the perturbation series can be introduced as

Φ = Φ(1) + Φ(2) + Φ(3) + · · · , (1.26)

Ξ = Ξ(1) + Ξ(2) + Ξ(3) + · · · , (1.27)

Substituiting the perturbation series into equation (1.25) and applying a Taylor series expansion

with respect to wave elevation, the linear free surface boundary condition is obtained as

∂2Φ(1)

∂t2
+ g

∂Φ(1)

∂z
= 0, on z = 0. (1.28)

For higher-order potential problem, the nonlinear terms appear in right-hand-sides so that the

boundary conditions are non-homogeneous

∂2Φ(m)

∂t2
+ g

∂Φ(m)

∂z
= Q(m), on z = 0. (1.29)

where Q(m) is the source term given by the combination of lower-order free surface quantities.

This expansion method is called Stokes's expansion and the boundary value problems for each

order of velocity potential can be set up. As the order of problem increases, the boundary

condition becomes more complex and nonlinear.

The velocity potential can be decomposed again as

Φ = ΦI + ΦC , (1.30)

where ΦI is an incident wave potential, and ΦC is a complementary (scattering; di�raction-

radiation) potential. In the present study, the fully nonlinear free surface boundary conditions

are applied for the incident wave potential

∂ΞI
∂t

+
∂ΦI

∂x

∂ΞI
∂x

+
∂ΦI

∂y

∂ΞI
∂y

+
∂ΦI

∂z
= 0

∂ΦI

∂t
+

1

2
∇ΦI · ∇ΦI + gΞI = 0

, on x = ΞI , (1.31)

and the linearized free surface boundary condition is used for the complementary potential

∂ΞC
∂t

+
∂ΦC

∂z
= 0

∂ΦC

∂t
+ gΞC = 0

, on z = 0. (1.32)
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The incident waves evolve in space and time. And the interaction between waves to waves

generates the nonlinearity which is unpredictable and occurs at arbitrary space and time. It

is necessary to consider the nonlinear boundary condition for incident waves. Meanwhile, the

complementary potential generated by the existence of the body decreases as the distance from

body surface increases in the 3D problem. The nonlinearity of potential �ow without forward

speed is governed by the wave steepness. Therefore a linear free surface boundary condition

can be applicable for the complementary potential in the far-�eld. The nonlinearity from body

surface perturbation is not considered here because the complementary potential �ow is de�ned

in outer sub-domain only.

1.3.3 Summary and coupling of two �ows

The con�gurations of computational domain and functional quantities considered in previous

study are shown in �gure 1.6.

(a) NS equations (b) SWENSE method

Figure 1.6. Con�gurations of computation domain and functional quantities used in previous

studies.

Figure 1.6a explains the con�guration of computation when the Navier-Stokes equations is solved

for wave-structure interaction problem. The total functional quanties considered for computation

are blended to the quantities of incident potentital �ow in the far-�eld. This con�guration has

been commonly applied for wave-structure interaction problem (Seng, 2012; Paulsen et al., 2014;

Monroy et al., 2016).

Figure 1.6b states when the SWENSE method is used for computation. The functional quan-

tities of incident �ow are already de�ned in the whole computational domain. Therefore, the

complementary functional quanties considered in the viscous �ow model is blended to zero in the

far-�eld (Ferrant et al., 2003; Gentaz et al., 2004; Vuk£evi¢, 2016; Li, 2018).

The con�gurations of computational domain and functional quantities considered in the present

study is depicted in �gure 1.7.
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Figure 1.7. Con�guration considered in the present study.

A hypothesis that total �ow can be decomposed into the incident and complementary is assumed.

The functional quantities of potential and viscous �ow are decomposed into the incident and

complementary �ow parts. The functional quantities of nonlinear incident �ow is known in a

whole �uid domain. The computational domain of potential and viscous �ow models are divided

for complementary �ow. In the vicinity of structure, the viscous �ow model based on Spectral

Wave Explicit Navier-Stokes Equation (SWENSE) method is used. Turbulence model is not

considered. A linear potential �ow model based on Poincaré's velocity representation applied in

the far-�eld. No wave breaking is allowed for complementary waves and the interaction between

incident waves is not considered.

Figure 1.8 shows the place of coupling between viscous and potential �ows.

Figure 1.8. Coupling strategy used in the present study.
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Overlapped coupling region with the matching surface for potential �ow and the volumic blending

zone (relaxation zone) for viscous �ow are considered in the domain decomposition. The matching

surface is located inside of the computational domain of the viscous �ow model. The rotational

velocity components are assumed to be zero from the matching surface to in�nity, e.g. no viscous

e�ects from the matching surface. On the matching surface, the complementary �ow velocity

and wave elevation obtained from the viscous �ow model are used as the boundary condition for

potential �ow model. By using the linear potential �ow model, the complementary �ow velocity

and wave elevation are reconstructed in the region of far-�eld. At the volumic blending zone,

being located in the region of far-�eld, the complementary �ow velocity and wave elevation from

linear potential �ow model are imposed as the boundary conditions for viscous �ow.

1.4 Contribution of work

The purpose of present study is the two-way coupling between potential and viscous �ows in a

marine application, especially for unsteady time-domain wave-structure interaction problems.

A hypothesis that total �ow can be decomposed into the incident and complementary is as-

sumed. The functional quantities of potential and viscous �ow are decomposed into the incident

and complementary �ow parts. The governing equations and boundary conditions for each �ow

part are reformulated. It is assumed that the nonlinear potential �ow model for incident waves

is available in a whole �uid domain and satis�es Euler equations. It makes us divide the com-

putational domain of potential and viscous �ow models only for complementary waves. In the

vicinity of structure, the viscous �ow model based on Spectral Wave Explicit Navier-Stokes

Equation(SWENSE) method is used to solve complementary waves generated by the structure.

In the far-�eld, the potential �ow model based on Poincaré's velocity representation is applied

to simulate complementary waves.

The following speci�c contributions are made in the present study.

• A preliminary study on the coupling of potential and viscous �ows is conducted. The results

show that the obtained solution of blending to potential �ows gives good results and the

solution converges faster. The two-way coupling allows us to use a small computation

domain for the same accuracy of the solution, but the total computation time increases

due to the extra expenses of calculating the potential �ows. Therefore, a fast potential

�ow model with e�ective blending schemes is necessary for coupling.

• The generation of nonlinear irregular waves in the three-dimensional viscous domain is

proposed with nonlinear potential �ow solver which is called Higher Order Spectral (HOS)

method Ducrozet et al. (2007, 2012). The algorithm uses a Fast Fourier Transform (FFT)

and multi-dimensional cubic spline interpolation, the generation of three-dimensional ir-

regular waves in viscous �ow model is achieved fastly. The results are validated againist

HOS simulations and experiments.

• A new potential �ow in the time domain is introduced based on Poincaré's velocity repre-

sentation. It is formulated alternatively with arbitary and cylindrical matching surfaces.
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The numerical algorithms on the new type of Green function and the elementary func-

tions are proposed. The proposed model is validated by comparing with analytic potential

solution based on linear theory.

• A viscous �ow model based on SWENSE with Level-set is proposed in the present study.

The functional quantities are decomposed into the incident and complementary compo-

nents. The governing equations are reconstructed with respect to viscous complementary

parts. The results are validated with multi-phase solver in a framework of OpenFOAM.

• The numerical algorithm for the coupling of potential and viscous �ows is introduced. It

is assumed that the nonlinear potential �ow model for incident waves is available in a

whole �uid domain. The computational domain of potential and viscous �ow models only

for complementary waves is decomposed. In the vicinity of structure, the viscous �ow

model based on SWENSE method is used. In the far-�eld, the potential �ow model based

on Poincaré's velocity representation is applied. It is assumed that the computed �uid

velocity and wave elevations are continuous across the �ow models. A benchmark test on

the coupling methodology is considered.

1.5 Thesis outline

Chapter 2 presents the preliminary study on the coupling of potential and viscous �ows. A

parameteric study on the viscous �ow solver is investigated before the preliminary study. The

wave propagation with inlet/outlet and the two-dimensional radiation problem with di�erent

outlet conditions are considered. The necessity of new e�cient potential �ow representation is

drawn from the results of this preliminary study.

Chapter 3 summarizes the nonlinear potential theory on incident waves including regular and

irregular cases. A stream function wave theory for regular wave and a pseudo-spectral method for

irregular waves are brie�y reproduced. For the e�cient generation of three-dimensional irregular

waves in viscous �ow solver, the interpolation methodology with respect to space and time is

proposed with the B-spline curve. The generation of nonlinear irregular waves in viscous �ow

model is validated with nonlinear potential theory and experiment.

Chapter 4 introduces a new potential representation for linear complementary waves which is

based on Poincaré's velocity representation. It is newly formulated for an unsteady time domain

free surface problem. The complementary �uid velocity at �eld point is explicitly represented by

the distribution of complementary �uid velocity and wave elevation on the matching surface with

the help of the time domain Green function. It is proved that a new form of time domain Green

function satis�es an ordinary di�erential equation and the solving technique is presented for

e�cient evaluation. The analytical solution for a heaving hemisphere based on linear potential

theory is selected as a benchmark test case. The results show good agreements when the �eld

point is located underwater. However, a singular behavior is obtained when the �eld point is

located on the mean free surface due to the diverging behavior of the time domain Green function.

Chapter 5 introduces a vertical circular cylindrical matching surface to remove the singular
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behavior of the proposed Poincaré's velocity representation. A pseudo-spectral method with

Fourier-Laguerre and Fourier approximations of the complementary velocity and wave elevation

are applied, respectively. The analytic surface integral with Poincaré's velocity representation

requires the evaluation of elementary functions which are the surface integral of a Green function

with Fourier-Laguerre modes. Two numerical algorithms based on the summation and extrap-

olation and steepest descent method are presented to calculate the elementary functions. After

the vertical velocity on the free surface is calculated from Poincaré's velocity representation, the

wave elevation is reconstructed by a linear kinematic free surface boundary condition. To couple

with the multiphase �ow solver, the Wheeler stretching is applied to extend the velocity above

the mean free surface. As the benchmark test, the heaving hemisphere and di�raction by vertical

circular cylinder are considered. The results show good agreements with the analytical solution.

Chapter 6 presents the viscous �ow model based on SWENSE methodology. The momentum and

pressure equations are reformulated by introducing the viscous complementary �ow. The �uid

velocity, pressure and Level-set function are decomposed into the incident and complementary

parts. An extrapolation of air velocity with cubic polynomials is introduced to give smooth

incident wave velocity pro�le. Moreover, the re-distancing the Level-set function is adopted to

keep the interface sharp. The parametric study on the discretization of time and mesh, wave

propagation, and cylinder di�raction problem is conducted for validation.

Chapter7 presents the coupling algorithm of potential and viscous �ows. The benchmark tests

with the vertical circular cylinder in regular waves and calm buoy in regular and irregular waves

are considered. The discussion on the e�ect of coupling is made from the simulation results of

with/without coupling methodology.

Chapter 8 summarizes the contribution of the present study. Conclusions and perspectives are

given.
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2 Preliminary study on the coupling of potential and viscous

�ows

2.1 Description on the preliminary study

The objective of the preliminary study is to investigate the feasibility of a coupling methodology

between potential and viscous �ows when the solution of potential �ow is available at the bound-

aries of the viscous �ow model. Therefore, di�erent outlet conditions including the potential �ow

and other outlets are considered for comparison. In the preliminary study, foamStar which is

based on the multiphase �ow model in the framework of OpenFOAM is used (Seng, 2012; Mon-

roy et al., 2016). The computation algorithm of foamStar is described in �gure 2.1. When the

simulation time is advanced, weight functions in the relaxation zones (boundaries) are updated.

In the outer iteration (PIMPLE; Combination of PISO and SIMPLE algorithms), the �oating

body dynamics is solved by the mechanical solver, the computational mesh is updated from the

displacement of the �oating body, and the α transport equation is solved and relaxed to target

αTarget at the boundaries. After solving PISO loop, u is also relaxed to target velocity uTarget

at boundaries. A parametric study on foamStar is conducted before the preliminary study. The

propagating incident waves in a numerical wave tank and the swaying Lewis form are considered

as the benchmark test cases for di�erent outlets.

2.2 Parametric study on the viscous solver

The parametric study is conducted on foamStar to �nd proper parameters for wave propagation.

Fully nonlinear regular wave are considered and the condition is given in Table 2.1. The case

considered here is a two-dimensional domain with a cyclic lateral boundary condition, where

waves are initialized at the initial time from a fully nonlinear stream function waves (Rienecker

and Fenton, 1981; Ducrozet et al., 2019). The schematic view of the problem, the initialized Vol-

ume Of Fluid (VOF; α) and the computational mesh are shown in �gure 2.2. The computational

domain has the length of one wavelength (1λ) and the height is taken to be 2h (h = 0.6m; water

depth). Except if indicated otherwise in the parametric study, the computational meshes are

uniformly spaced in a longitudinal direction with length ∆x = λ/100. For vertical direction, the

cell height is taken to be ∆z = H/40 in z ∈ [−H,H] and the cell height is gradually stretched

as it goes far from the mean free surface.

Table 2.1. Wave condition for parametric study of foamStar.

Item Unit Value

Water depth (h) [m] 0.6

Wave period (T ) [s] 0.7018

Wave height (H) [m] 0.0575

Wavelength (λ) [m] 0.8082

H/λ [-] 0.0712
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Figure 2.1. The computational algorithm in foamStar (from Monroy et al. (2016))

(a) Computational domain (b) Initialized α-�eld (c) Computational mesh

Figure 2.2. Schematic view on the parametric study of propagating waves with the cyclic

lateral boundary condition.
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2.2.1 Time integration scheme

Time integration schemes for an unsteady problem in OpenFOAM can be selected among Im-

plicit Euler, Crank-Nicolson, and second-order backward schemes. The standard multi-phase

solver of OpenFOAM, interDymFoam, uses a special module which is called MULES to solve

the α-transport equation, where α is the Volume Of Fluid (VOF). MULES employs the Flux-

Corrected Transport (FCT) scheme by Boris and Book (1973); Zalesak (1979), therefore the

computation procedure is decomposed into the predictor and corrector steps, for controlling the

α boundedness. As an example, α is computed with the implicit Euler scheme in the predictor

step
(V )n+1

P (α)∗P − (V )nP (α)nP
∆t

+
∑
f

F bα,f = 0, (2.1)

where the superscript ∗,n denotes the predictor and time iteration respectively, V is a cell volume,

and subscript P denotes an owner cell. ∆t is the time step between two successive time iterations,

f represents the face index surrounding the owner cell. F bα,f is the bounded �ux computed by

using a low-order convection scheme. After the predictor step, the �ux limiter λlimitf is evaluated

by the predicted α∗ and the unbounded �ux (F uα,f ) which is computed with a high-order scheme.

In the corrector step, α is corrected with �ux limiter and unbounded �ux

(V )n+1
P (α)n+1

P − (V )n+1
P (α)∗P

∆t
+
∑
f

λlimitf (F uα,f − F bα,f ) = 0. (2.2)

By summing equations (2.1) and (2.2), the original discretized α transport equation is obtained.

The detailed algorithm of MULES can be found in Damián (2013). Because MULES needs the

α �ux to be bounded in the predictor step, the time integration schemes are limited to Euler

implicit and Crank-Nicolson schemes in OpenFOAM. Euler and Crank-Nicolson time integrations

are obtained by applying di�erent weights on the present and next time steps. When an ordinary

di�erential equation, ẏ = f(t, y), is given, a weight factor is applied on the right-hand-side to

solve the equation
yn+1 − yn

∆t
= γfn+1 + (1− γ)fn. (2.3)

where γ ∈ [0, 1]. γ = 0 and γ = 1 represent the explicit and implicit Euler time integration

schemes respectively, and γ = 1
2 is classi�ed as an original Crank-Nicolson scheme. In Open-

FOAM, γ is selectable between in range of γ ∈
[

1
2 , 1
]
for numerical stability and Crank-Nicolson

number (cCN ) is introduced instead of γ

cCN =
1− γ
γ

, cCN ∈ [0, 1]. (2.4)

where cCN = 0 represents fully implicit Euler integration, and cCN = 1 is the original Crank-

Nicolson scheme. It is commonly recommended to use cCN ≈ 0.9 as a compromise between

stability and accuracy. It is known that the Crank-Nicolson scheme is unconditionally stable and

has a second-order accuracy, but the obtained solution is characterized by an oscillatory behavior

which results in numerical instability. Implicit Euler schemes are unconditionally stable and

are immune to the oscillatory behavior. Nevertheless, it induces signi�cant numerical damping

leading to poor results, especially for wave propagation problems.
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Simulations were performed with di�erent Crank-Nicolson numbers, cCN = 0 (Euler implicit),

0.5 and 0.95 to observe the e�ect of the time integration scheme. Figure 2.3 compares the

measured wave elevation at the center of domain with the wave crest and trough values given

by stream function wave theory. The moving window Fast Fourier Transform (mwFFT) is

applied to wave elevation time series and the �rst harmonic amplitudes and phases are plotted

in �gure 2.4. The measured wave amplitudes, evaluated with the implicit Euler scheme and the

Crank-Nicolson scheme, decrease gradually over simulation time. Moreover, the phase di�erence

between the CFD result and the analytical solution becomes larger when the low-order time

integration scheme is adopted. Results show that propagating waves need at least second order

time integration scheme not to damp it out. In the present study, the Crank-Nicolson scheme

with cCN = 0.95 is selected for time integration.

Figure 2.3. The measured wave elevation time series with respect to di�erent Crank-Nicolson

numbers (cCN ).

(a) Hamonic amplitudes (b) Phase di�erences

Figure 2.4. Comparison of �rst-harmonic wave amplitudes and its phase di�erences with

respect to Crank-Nicolson number (cCN ).
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2.2.2 Mesh and time convergence

The computational grid and time steps are tested with di�erent discretizations to check the

order of convergence of the solver. The considered cell length ∆x, height ∆z, and time step ∆t

are given in Table 2.2. The representative Courant (Co) and cell-Reynolds (Re∆) numbers are

de�ned by using analytic wave �uid velocities as

Co =

√
Co2

x + Co2
z, Re∆ =

√
Re2

∆x + Re2
∆z (2.5)

with,

Cox =
uwave∆t

∆x
, Coz=

wwave∆t

∆z
, Re∆x =

uwave∆x

ν
, Re∆z=

wwave∆z

ν

where uwave and vwave are the horizontal and vertical �uid velocities given by stream function

waves, ν is the kinematic viscosity of water. Two series of tests are conducted, one where grid

and time steps are set to change the cell Reynolds number keeping the Courant number �xed

and the second where the grid is �xed and the time step is only varied to have di�erent Courant

numbers. The �rst-harmonic amplitudes of the wave elevation obtained over time for di�erent

Courant and cell Reynolds numbers are compared in �gure 2.5. The results are compared with

di�erent convection schemes used for momentum equation ρU. The V-scheme means that the

�ow limiters are calculated separately for each vector components. It results in a more stable but

less accurate simulation than the simulation case without V-scheme. The results with V-scheme

are more accurate than without V-scheme, but the simulation becomes unstable with increasing

time. The parameter used for the convergence analysis is the wave elevation �rst harmonic

amplitude computed for the �rst ten wave periods. The order of convergence is computed by the

procedure of Eça and Hoekstra (2014), which applies the least square method to get the order

of convergence (p) and uncertainty. The order of convergence for the discretization of Courant

and cell-Reynolds numbers with di�erent convection schemes are plotted in �gure 2.6.

Table 2.2. Mesh and time discretization for the convergence tests.

Case λ/∆x H/∆z T/∆t Co Re∆

Mesh025-dt100 25 5 100 0.171 8,836

Mesh050-dt200 50 10 200 0.171 4,418

Mesh100-dt400 100 20 400 0.171 2,209

Mesh200-dt800 200 40 800 0.171 1,105

Mesh100-dt100 100 20 100 0.684 2,209

Mesh100-dt200 100 20 200 0.342 2,209

Mesh100-dt800 100 20 800 0.086 2,209

Mesh100-dt1600 100 20 1600 0.043 2,209
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(a) Di�erent Co (b) Di�erent Re

Figure 2.5. Comparison of �rst-harmonic wave amplitudes with mesh and time di�erence

discretization.

(a) Co discretization, Coc = 0.043 (b) Re discretization, Rec = 1105

Figure 2.6. The order of convergence with respect to discretization of Co and Re∆.

The order of convergence (p) for Courant and Reynolds number discretizations with V-scheme

are estimated as 1.14 and 1.60, respectively. The order of convergence increases to 1.93 and

1.69 without V-scheme. From the parametric study on propagating waves with cyclic lateral

boundary conditions, the simulation time and meshes should be discretized over than T/∆T ≥
400, λ/∆x ≥ 100 and H/∆z ≥ 40 to have 3.5% of amplitude reduction at t = 10T .
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2.2.3 Mesh spacing in the vertical direction

The velocity pro�le of propagating waves underwater has an exponential behavior in the vertical

direction. In wave theory, the maximum velocity occurs at the free surface and it decays going

far from the free surface. Therefore, the meshes are modeled to be dense near the free surface

to save computational cost. The vertical mesh spacing is varied to observe the e�ects on the

simulation of given wave conditions. The meshes are divided into 3 zones: (1) underwater zone

(z ∈ [−h,−H]), (2) free surface zone (z ∈ [−H,H]) and (3) air zone (z ∈ [H,h]). To distinguish

di�erent meshes, they are denoted as Mesh-ijk where i, j, and k represents the ratio of maximum

to minimum height of a cell in the underwater, the free surface, and the air zones, respectively.

Mesh-212, Mesh-515 (original) and Mesh-818 are considered in the present study, and they are

shown in �gure 2.7. The �rst-harmonic amplitudes and the phase di�erences for di�erent vertical

mesh spacing are compared in �gure 2.8. The �rst-harmonic amplitudes and phase di�erences

for di�erent vertical mesh spacings are almost identical, and the vertical mesh spacings used here

do not a�ect the simulation of the given wave conditions.

(a) Mesh-212 (b) Mesh-515(original) (c) Mesh-818

Figure 2.7. Di�erent vertical mesh spacings of three divided zones with the geometric ratio.

2.3 Description on the inlet/outlet condition

2.3.1 Relaxation scheme

The method for generation and absorption of waves in foamStar is based on explicit relaxation

schemes which blend the computed solution with target solution in relaxation zones (Jacobsen

et al., 2012; Mayer et al., 1998; Fuhrman, 2004; Engsig-Karup, 2006; Seng, 2012). The explicit

relaxation scheme uses a weight function which varies between 0 and 1 in the relaxation zone.

After solving the governing equations, the computed solution is relaxed with target solution as

χ = (1− w)χ+ wχTarget, (2.6)

where χ is the computed solution, w is a weight function and χTarget is a target solution. The

computed values shall be blended smoothly if a smooth weight function is used. Implicit blending

schemes, which blend the governing equations with target governing equations, have been applied
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(a) Amplitude (b) Phase di�erences

Figure 2.8. The �rst-harmonic amplitudes and phase di�erences with respect to vertical mesh

spacing.

by many researchers (Kim et al., 2012; Vuk£evi¢, 2016). Only the explicit relaxation scheme is

considered in the present study. The choice of weight function is an important key to minimize

wave re�ection. Engsig-Karup (2006) analyzed the condition of w, which satis�es the original

governing equations, and he showed that it is the case for the Heaviside step function. However,

the Heaviside step function has a jump in the middle of the relaxation zone, which causes

undesirable re�ection and instability, so the choice of the weight function has to be di�erent. As a

weight function, Mayer et al. (1998) and Engsig-Karup (2006) applied polynomials, and Jacobsen

et al. (2012) used an exponential scaled function. Seng (2012), for its own part, introduced a

dynamic weight as

wd = 1− (1− w)|u−uTarget|∆t/∆x, (2.7)

where u is a computed �uid velocity, uTarget is the target �uid velocity, wd is a dynamic weight

and ∆x is a size of the cell. The dynamic weight is applied adaptively based on the di�erence

between target and computed velocity after PISO loop,
∣∣u− uTarget

∣∣. w is the base weight

functions which are categorized into polynomial and exponential functions

w(ξ) =


eξ

3.5
relax − 1

e− 1
, exponential weight,

−2ξ3
relax + 3ξ2

relax, polynomial weight ,
(2.8)

where ξ ∈ [0, 1] is a normalized coordinate in relaxation zones.

In summary, the weight functions in foamStar are categorized into exponential/polynomial and

static/dynamic weights. The size of the relaxation zone is also important for determining an

optimal size of inlet/outlet zones in terms of numerical cost against accuracy.
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2.3.2 Damping layer method

The damping layer method, which is also called 'sponge layer method', is considered here (Is-

raeli and Orszag, 1981). Linear and quadratic damping source terms are commonly used to

damp waves (Park et al., 1999; Peri¢ and Abdel-Maksoud, 2016). The momentum equations of

multiphase �ow with the damping source terms

∂(ρu)

∂t
+∇ · (ρuuT )−∇ ·

[
µ
(
∇u +∇uT

)]
= −∇pd − (g · x)∇ρ+ S, (2.9)

where µ is a dynamic viscosity, pd = p − ρg · x is a dynamic pressure which is equivalent to

the value of subtracted hydrostatic pressure (ρg · x) from total pressure (p). S is the linear and

quadratic damping source. The damping sources are only applied in vertical velocity components

S = [0, 0, ρ(C1 + C2uz)wuz]
T (2.10)

where C1 and C2 are the linear and quadratic damping coe�cients and w is weight function. The

parametric study on the damping coe�cients conducted by Peri¢ and Abdel-Maksoud (2016)

showed that an optimal choice of coe�cients can minimize wave re�ections. Recently, Peri¢

et al. (2018b) proposed a method for evaluating the wave re�ection coe�cients with numerical

parameters such as linear damping coe�cient and the outlet length. Furthermore, they proposed

a method for calculating the linear damping coe�cient, which minimizes the re�ection coe�cient.

Based on their method, the optimal linear damping coe�cient (C1) is around 7.5 when the outlet

length is equal to 1.5λ and target waves are set to zero. In the present study, the linear damping

coe�cients are considered for the damping layer method due to the complexity of the combination

of quadratic damping coe�cient.

2.3.3 Increased viscosity in the outlet / Stretched mesh outlet

The viscosity can be increased arti�cially in the outlet zone to damp the waves. The momentum

equation with increased viscosity in the outlet is given as

∂(ρu)

∂t
+∇ · (ρuuT )−∇ ·

[
(µ+ µadd)

(
∇u +∇uT

)]
= −∇pd − (g · x)∇ρ, (2.11)

where µadd is the increased viscosity in the outlet zone. The stretched mesh outlet, which triggers

numerical damping by stretching meshes, is also considered in the present study.

2.3.4 Modi�ed waves: Adaptive wave absorption

When relaxation schemes are used, the target �ow can be selected by the user. For the wave-

structure interaction problem, the target �ow can correspond to incident waves only. Di�racted

waves generated by structure are then relaxed to zero. For 2D propagating waves, the adaptive

absoption scheme, which adapts its wave amplitude and phase by measuring the wave elevation

in front of the outlet, can be applied. It is assumed that the propagating wave do not change

wave frequency and wave number. Then, the �rst harmonic wave amplitude and phase di�erence
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are calculated by applying a Fourier transform on the measured wave elevation in front of the

outlet zone as

A′ =
2

T cos ∆φ

ˆ t

t−T
Ξ(x0, τ) cos(k(x− x0)− ωτ)dτ (2.12)

and

tan(∆φ) = −
´ t
t−T Ξ(x0, τ) sin(k(x− x0)− ωτ)dτ´ t
t−T Ξ(x0, τ) cos(k(x− x0)− ωτ)dτ

(2.13)

where A′ is the �rst harmonic amplitude of modi�ed waves, ∆φ is the phase di�erence between

incident and modi�ed waves. Ξ(x0, τ) is measured wave elevation in front of outlet zone at x0.

The wave elevation and �uid velocity of modi�ed waves are then given by

ΞI =
2A′

H
ΞstreamWave
I , uI =

2A′

H
ustreamWave
I , (2.14)

where ΞstreamWave
I and ustreamWave

I are the wave elevation and �uid velocity by stream function

wave theory (Rienecker and Fenton, 1981).

2.4 Preliminary study 1: Numerical wave tank

2.4.1 Description

The wave described in table 2.1 is used here, but the length of the domain increases and relaxation

zones are introduced. Based on the vertical mesh spacing of Mesh-515, the computational domain

with relaxation zones is described in �gure 2.9. The inlet length, Linlet, is taken to be 1.5λ for

Figure 2.9. Schematic view of the NWT for a parametric study on the relaxation schemes.

wave generation. The stream function wave is used as the target �ow �eld at the inlet zone. The

pure CFD zone where no relaxation schemes are applied has a length of 7λ. 250 wave gauges

are uniformly distributed from x = 2.5λ to x = 7.5λ. The �rst and last wave gauges are located

1λ apart from inlet and outlet. The wave re�ection coe�cient is evaluated from the extracted

�rst harmonic amplitudes of distributed wave gauges. When the generated waves propagate

through the pure CFD zone, their amplitude, and phase change due to numerical dissipation and

dispersion.
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2.4.2 Re�ection coe�cients

The quality of the wave propagation will be assessed through the estimation of linear re�ection

coe�cients. Linear incident and re�ected waves in the system are written as

ΞI = AI cos(kx− ωt)

ΞR = AR cos(kx+ ωt+ ∆φ)
(2.15)

where subrscript I,R represent the incident and re�ected waves. ∆φ is phase di�erence. The

wave re�ection coe�cient is evaluated as in (Dean and Dalrymple, 1991)

κR =
AR
AI

=
amax − amin

amax + amin
, (2.16)

where κR is re�ection coe�cient, amax and amin is the measured maximum and minimum wave

amplitudes in the region of interest, respectively. The propagating waves in the present study are

nonlinear. Consequently, the equation 2.16 is not directly applicable. Likewise Carmigniani and

Violeau (2018), the �rst harmonic amplitudes are used to evaluate the wave re�ection coe�cients.

The �rst harmonic amplitude by Fourier transform is given as

ai(t) =
2

T

ˆ t

t−T
Ξ(xi, t) cos(kxi − ωτ)dτ, (2.17)

where subscript i denotes i-th wave gauge. In the middle of the computation zone, 250 wave

gauges are distributed along 5λ to detect the amplitudes of wave envelope. The wave re�ection

coe�cient for each simulation time step is evaluated as

κR(t) =
max(ai(t))−min(ai(t))

max(ai(t)) + min(ai(t))
. (2.18)

2.4.3 Parametric study on the relaxation schemes

Di�erent weight functions categorized as static-exponential, static-polynomial, dynamic-exponential

and dynamic-polynomial are applied with various outlet lengths (Loutlet = 1.5λ, 3λ and 6λ). The

weight functions are changed both inside the inlet zone and the outlet zone. The stream function

waves are used as target �ow. Maximum Courant numbers (Comax) with respect to di�erent re-

laxation schemes and outlet lengths is given in �gure 2.10. The relaxation scheme with dynamic

polynomial weight gives a stable simulation in comparison with others. It is less sensitive to the

length of relaxation zones though it becomes unstable when the outlet length is equal to the half

wavelength. The static and dynamic exponential weight functions show a more stable simulation

until t = 20T , but the results show that more extended outlets do not guarantee the reduction of

numerical instability. Meanwhile, the maximum Courant number with static polynomial weight

is higher than other relaxation schemes for all simulations. The wave re�ection coe�cients for

di�erent relaxation schemes and outlet lengths are compared in �gure 2.11. It appears that wave

re�ection increases until t = 20T for any length of the outlet zone. This increase is maximal

when the length of the outlet zone is smaller than 1.5 wavelengths. After t = 20T , the wave

re�ection depends mainly on relaxation schemes. Wave re�ection coe�cients are less sensitive

31



2. Preliminary study on the coupling of potential and viscous �ows

(a) Static exponential weight (b) Static polynomial weight

(c) Dynamic exponential weight (d) Dynamic polynomial weight

Figure 2.10. The maximum Courant number during wave propagation simulation with

relaxation to incident waves.

for the dynamic polynomial weight with outlet length over than 1.5 wavelengths. Moreover, wave

re�ection increases faster for the relaxation zone less than 1.5 wavelengths. The measured �rst

harmonic amplitudes and re�ection coe�cients with respect to weight functions are compared

in �gure 2.12. The �rst harmonic amplitudes with static weight give a lower dissipation than

with dynamic weight. The di�erence of wave amplitude between static and dynamic weights

with outlet lengths over than 1.5 wavelengths is 1.33 %. Moreover, the wave re�ection increases

when the outlet length is less than one wavelength. Simulation results should not be sensitive

to the selection of outlet length. We hope to get predictable results, the dynamic-polynomial

weight is selected as a representative relaxation scheme because it shows a stable velocity �eld

even if it has a slightly smaller wave amplitude compared the simulation cases with static weight.

Finally, it is identi�ed that the outlet length should be longer than 1.5 wavelengths to decrease

the re�ection more e�ciently.
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(a) Static exponential weight (b) Dynamic polynomial weight

Figure 2.11. Comparison of re�ection coe�cient time series with respect to di�erent

relaxation schemes and outlet lengths.

(a) First-harmonic amplitudes (b) Wave re�ection coe�cients

Figure 2.12. Comparison of wave amplitudes and re�ection coe�cients with respect to

relaxation zones and relaxation schemes.

2.4.4 Parametric study on the stretched mesh outlet

As the stretched mesh schemes depend on cases and on authors (Monroy et al., 2011; Peri¢ and

Abdel-Maksoud, 2015), it is di�cult to �nd a standard for wave propagation. Therefore, the cell

length is stretched with a ratio (rx) of an adjusted cell which is located at upstream as

∆xn = rx∆xn−1 (2.19)

where ∆xn and rx represents a longitudinal length of the n-th cell and the stretching ratio,

respectively. To �nd a representative result of stretched mesh outlet, the di�erent stretching
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ratios are considered as

rx =

c, constant stretching; c = 1.02, 1.05 and 1.08

cosh(γn), exponential stretching; γ = 1.001
(2.20)

The outlet meshes are stretched until the length of the last three cells is larger than one wave-

length (∆x ≥ 1λ). The properties of stretched mesh outlets are summarized in Table 2.3. The

computational meshes near the entrance of the outlet zone are shown in �gure 2.13. Compared

to the constant stretching ratio, the exponential stretching gives a dense distribution near the

entrance of the outlet zone. The wave re�ection coe�cients with respect to di�erent stretched

mesh outlets are given in Table 2.4. The constant geometric ratio of rx = 1.02 gives the small-

est wave re�ection coe�cient among stretched mesh outlet conditions. Thus, it is selected for

comparison with other numerical outlets.

Table 2.3. Information of stretched mesh outlets for propagating waves.

Choice of rx Number of cells L/λ Loutlet/λ ∆xmax/λ

γ = 1.001 225,420 39.6 31.1 1.11

rx = 1.02 206,340 59.5 58.0 1.05

rx = 1.05 180,120 29.9 21.4 1.14

rx = 1.08 173,470 22.0 13.5 1.18

(a) rx = 1.02 (b) rx = 1.05 (c) rx = 1.08 (d) γ = 1.001

Figure 2.13. Meshes near to the outlet with di�erent stretching.

Table 2.4. Re�ection coe�cients with respect to stretched mesh outlets.

Choice of rx γ = 1.001 rx = 1.02 rx = 1.05 rx = 1.08

κR 0.0499 0.0474 0.0569 0.1046

2.4.5 Linear damping source outlet

Peri¢ and Abdel-Maksoud (2016) showed that an unappropriate use of damping coe�cient leads

to unwanted wave re�ections. The authors used a Froude scaling law to �nd a dependency of
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damping coe�cients. They showed that the linear and quadratic damping coe�cients could be

scaled by wave frequency and wavelength, respectively. Peri¢ et al. (2018b) proposed the method

on wave re�ection by analyzing the wave equation in the case of a linear damping source. The

minimal wave re�ection coe�cients with linear damping coe�cients are available by the code

published in (Peri¢ et al., 2018a). The algorithm predicted that the wave re�ection coe�cient

would be 1.5% with the linear damping coe�cient C1 ≈ 7.5 for outlet length 1.5λ. Note that the

target �ow is no waves, and the static exponential function is used in their approach. Shen and

Wan (2016) used the linear damping coe�cient of C1 = 20 with second order polynomial weight

function for irregular wave simulation. It is thought that the damping coe�cients should be tuned

with the di�erent outlets and weight functions to minimize the wave re�ection. In the present

study, the linear damping coe�cient with cubic polynomials weight given in equation (2.8) is

studied with di�erent outlet lengths. Considered linear damping coe�cients with re�ection

coe�cients are tabulated in Table 2.5. The linear damping coe�cient of C1 = 20 is selected as a

Table 2.5. Re�ection coe�cient with respect to linear damping source outlet.

Loutlet
C1

30 20 10 5 1

1.5λ 0.0579 0.0513 0.0521 0.0817 -

3.0λ - 0.0460 0.0468 0.0474 -

6.0λ - - 0.0400 0.0406 0.0406

representative case of damping source outlet because it gives the lowest wave re�ection coe�cient

with the limited outlet length Loutlet = 1.5λ.

2.4.6 Increased viscosity in the outlet

The increased viscosity in the outlet, imposing a high viscosity in the outlet zone compared to

original �uid media, is easy to implement. For a smooth change of viscosity, the added viscosity

µadd is multiplied by the cubic polynomial weight function given in equation (2.8). As the

user arti�cially introduces the added viscosity, the added viscosity and outlet length need to be

tuned. Three di�erent added viscosities are considered that have the values of µadd = 0.5, 0.2 and

0.1kg ·m−1 · s−2, respectively. The wave re�ection coe�cients for added viscosity and di�erent

outlet lengths are given in Table 2.6.

Table 2.6. Re�ection coe�cient with respect to the increased viscosity in the outlet.

Loutlet
µadd[N · s/m2]

0.5 (500µwater) 0.2 (200µwater) 0.1 (100µwater)

1.5λ 0.1446 0.0996 0.0769

3.0λ 0.0764 0.0785 0.0651

6.0λ 0.0739 0.0931 0.0563
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2.4.7 Comparison and discussion

The stretched mesh, linear damping source, increased viscosity, relaxation to no waves, incident

waves, and modi�ed waves are compared for di�erent wave outlets. Only the limited outlet length

of Loutlet = 1.5λ, except for mesh stretching, is considered. The representative results from the

parametric study on each wave outlet are taken for comparison. The �rst harmonic amplitudes

and phase di�erences with respect to the di�erent outlets are compared in �gure 2.14.

(a) Amplitude (b) Phase di�erences

Figure 2.14. The �rst harmonic amplitudes and phase di�erences with respect to di�erent

outlet.

The measured �rst harmonic amplitudes during 40 wave periods have an error range of 7%.

Amplitude modulations over simulation time are observed for all cases, and stable results are

obtained for relaxation to incident waves and modi�ed waves. Waves are propagating with

a constant phase di�erence after a certain time of simulation for linear damping source and

increased viscosity outlets. The phase di�erences of relaxation to the incident and modi�ed

waves are smaller than other boundary conditions. Relax to no waves slowly converges to the

analytic solution. The re�ection coe�cients for the di�erent outlets during simulation are plotted

in �gure 2.15.

At the initial simulation stage, the high re�ection coe�cients are measured for linear damping

outlet, increased viscosity, and relax to no waves. It is thought that the di�erent outlet con�gu-

rations such as di�erent viscosity quantities, arti�cial sources, and no �ow, a�ect the �ow �elds

immediately due to the limited length of the outlet. After an initial disturbance, the wave re�ec-

tion with linear damping source and increased viscosity decreases, and has a similar re�ection

with relaxation to waves from t = 22T . Meanwhile, the relax to no waves shows a higher wave

re�ection over simulation time after initial disturbance. It shows that blending to wrong target

function in the relaxation zone do not promise a good result. The mesh stretching outlet and

relaxation to the incident and the modi�ed waves have gradually increasing wave re�ection over
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Figure 2.15. Evolution of re�ection coe�cients for di�erent outlet.

simulation time.

The maximum wave re�ection coe�cients during the simulation for di�erent outlets are tabulated

in Table 2.7.

Table 2.7. Re�ection coe�cient with respect to di�erent outlet.

Outlet κR

Mesh stretching (rx = 1.02) 0.047

Linear damping source (C1 = 20) 0.051

Increased viscosity (µadd = 100µwater) 0.077

Relax to no waves 0.077

Relax to incident waves 0.042

Relax to modi�ed waves 0.039

The smallest wave re�ections are obtained for relaxation to modi�ed waves, and the other outlet

conditions also give good results. Proper tuning of linear damping source and increased viscosity

would give probably better results. Nevertheless, the parametric study of these outlets needs

more work than relaxation schemes, and it is di�cult to understand the physics with tuned

parameter.

To conclude, comparison of di�erent outlets shows that the relaxation schemes with out-going

waves at the boundaries give good results compared to other outlets.
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2.5 Preliminary study 2: Swaying Lewis form

2.5.1 Description

A swaying Lewis form in a two-dimensional domain is introduced to study the e�ect of relaxation

schemes and to compare di�erent outlets. The schematic view of swaying Lewis form with

di�erent outlets is depicted in �gure 2.16.

Figure 2.16. Schematic view of swaying Lewis form with di�erent outlet.

In the middle of the domain, the Lewis form moves with its motion amplitude (As) and frequency

(ω). The pure CFD zone length is de�ned from the wall of Lewis form to entrance of outlet.

The meshes are moving with Lewis form without deformation to keep the mesh quality. The

underwater o�set of Lewis form is given as (Kashiwagi, 2003)

x = M {(1 + a1) sin θ − a3 sin 3θ} (2.21a)

z = −M {(1− a1) cos θ + a3 cos 3θ} (2.21b)

with

a1 =
H0 − 1

2(M/d)
, a3 =

H0 + 1

2(M/d)
− 1

M

d
=

3(H0 + 1)−
√

(H0 + 1)2 + 8H0(1− 4σ/π)

4

where x, z and θ ∈= [−π/2, π/2] are the underwater o�sets of Lewis form and corresponding

angle, respectively. M is a magni�cation factor. B and d are breadth and draft, respectively.

H0 = B/2
d is a ratio of half breadth to draft. σ = S

Bd is an area coe�cient corresponding to

the block coe�cient of a ship. The geometric coe�cients of Lewis form used in this study are

B/2 = 1.0m, d = 1.0m and σ = 0.95. The o�set above the free surface is generated by mirroring

with respect to z = 0.
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Di�erent moving frequencies and swaying amplitudes have been considered and are given in Table

2.8.

Table 2.8. Motion frequency and amplitudes of Lewis form.

Item
Frequency (ω)

2.4 rad/s 4.2 rad/s 7.0 rad/s

Swaying amplitude (As) 0.118 m 0.055 m 0.025 m

Wavelength (λ) 10.70 m 3.494 m 1.258 m

Wave amplitude (A) 0.102 m 0.089 m 0.050 m

Wave steepness (kA) 0.06 0.16 0.25

The motion amplitudes are selected to have enough computational cells in a wavelength and a

wave height using far-�eld wave amplitudes and wavelength. The snappyHex mesh discretization

is used to describe the body surface. The mesh re�nements in x- and z-directions are conducted

to match λ/∆x ≥ 100 and A/∆z ≥ 10. Then, the local re�nement near the body surface is

applied. The computational meshes of ω = 4.2rad/s with Lpure = 1λ and Loutlet = 2.5λ are

shown in �gure 2.17.

(a) Half domain (b) Mesh near to the body

Figure 2.17. The computational meshes of swaying 2D Lewis form; ω = 4.2rad/s, Lpure = 1λ

and Loutlet = 2.5λ.

2.5.2 Comparison of di�erent outlets

From the results of the previous parametric study, the parameters rx = 1.02, C1 = 20 and µadd =

100µwater are selected for the di�erent outlets of mesh stretching, linear damping source and

increased viscosity, respectively. The target functions of relaxation schemes are set to no waves

and linear potential �ow. To determine the size of pure and outlet zones, the relaxation schemes

are �rstly tested with di�erent zone sizes. The linear potential �ow of 2D Lewis form is available

by Ursell-Tasai's multipole expansion (Ursell, 1949; Tasai, 1960, 1961). Wheeler stretching is

applied to describe the velocity pro�le with changing wave elevation. This comparison attempts

to compare the reduction limit of outlet zones for di�erent outlets. The domains are constructed

between z ∈ [−d−0.75λ, 2m] and zone length changes with respect to wavelength. The considered
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domain sizes are given in Table 2.9. The mesh size near the body surface is kept in similar size

for each frequency. When the length of pure and outlet zones is reduced, the mesh resolution of

each domain is maintained by shortening length and excluding the computational meshes in the

far-�eld.

Table 2.9. The meshes used for the parametric study

Mesh name Lpure Loutlet
Ncell(ω =

2.4rad/s)

Ncell(ω =

4.2rad/s)

Ncell(ω =

7.0rad/s)

P150R35 1.5λ 3.5λ 317,094 350,024 202,022

P100R35 1.0λ 3.5λ 273,996 313,784 172,666

P050R35 0.5λ 3.5λ 239,802 277,738 136,892

P025R35 0.25λ 3.5λ 219,020 254,010 131,968

P100R25 1λ 2.5λ 291,678 320,090 173,736

P100R20 1λ 2.0λ 283,824 323,276 174,260

P100R15 1λ 1.5λ 270,782 308,766 160,890

From the measured force time series acting on the body surface, the added mass and radiation

damping are extracted by Fourier transform. Normalized added mass and radiation damping

coe�cients are de�ned as

a′22 =
a22

ρ(B/2)2
, b′22 =

b22

ρω(B/2)2
, (2.22)

where a22 and b22 are the added mass and radiation damping de�ned by

1

T

ˆ t

t−T
F2(τ)eiωτdτ = As(ω

2a22 + iωb22), (2.23)

where F2(τ) is the horizontal force, T is the period.

The radiation forces for moving frequency ω = 4.2rad/s with domain of Lpure = 1λ and Loutlet =

3.5λ are plotted in �gure 2.18.

(a) Added mass (b) Radiation damping

Figure 2.18. Radiation force time series with respect to target �ows, Lpure = 1λ and

Loutlet = 2.5λ for ω = 4.2rad/s.
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It is noticeable that the radiation forces converge faster when the target function is set to potential

�ow, which is more like outgoing waves. They converge 1.4-2 times(average 1.6 times) faster for

given convergence tolerance (1%) in simulation time. The large domain which has a pure zone

Lpure = 12.5λ (≈ 20cgT ; cg = dω
dk is a group velocity) and an outlet zone Loutlet = 5.0λ with

same mesh quality is used as another reference because the wave steepness (kA) varies between

0.06 and 0.25, which are in range of nonlinear waves. This implies that the computed radiation

forces may not match with values using linear potential �ow due to nonlinearity.

The radiation forces computed by linear potential theory, long domain and target �ows of no

waves with di�erent domain sizes are summarized in Table 2.10.

Table 2.10. Radiation coe�cient of pure zone size (Relaxation to no waves).

Coef. a′22 b′22

ω [rad/s] 2.4 4.2 7.0 2.4 4.2 7.0

Analytic 1.304 0.136 0.365 2.169 0.798 0.156

Long Domain 1.297 0.144 0.388 2.162 0.780 0.148

P150R35 1.279 0.129 0.386 2.190 0.779 0.146

P100R35 1.283 0.129 0.380 2.194 0.781 0.146

P050R35 1.278 0.129 0.391 2.192 0.781 0.146

P025R35 1.312 0.146 0.382 2.136 0.743 0.140

P100R25 1.281 0.115 0.375 2.194 0.788 0.149

P100R20 1.276 0.103 0.372 2.209 0.802 0.154

P100R15 1.276 0.096 0.368 2.248 0.832 0.162

The di�erence of radiation forces between linear potential �ow and long domain becomes larger

as the wave steepness increases. Also, the computed forces with no waves converge to values of

the long domain as the domain increases.

The relative errors with pure zone sizes for relaxation schemes are shown in �gure 2.19a.

(a) Pure zone size (b) Outlet zone size

Figure 2.19. Relative errors with respect to the size of domain.
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The results show that the solutions are not much sensitive to the pure zone size and the relative

errors of both relaxation schemes (to no waves and to potential �ow) are in the range of long

domain. The relative errors between linear wave theory with di�erent outlets are plotted in �gure

2.19b. The relative errors of all outlets decrease as the outlet zone becomes larger and get close

to the relative error of long domain. And the results show that the solution is more sensitive

to the reduction of outlet zone rather than that of the pure zone. When the target function is

similar to outgoing waves, the pure and outlet zone can be reduced.

The radiation forces of the di�erent outlets with �xed lengths of domain which are Lpure = 1.0λ

and Loutlet = 2.0λ are tabulated in Table 2.11.

Table 2.11. Radiation coe�cient of di�erent outlets (Lpure = 1.0λ and Loutlet = 2.0λ).

Coef. a′22 b′22

ω [rad/s] 2.4 4.2 7.0 2.4 4.2 7.0

Analytic 1.304 0.136 0.365 2.169 0.798 0.156

Long Domain 1.297 0.144 0.388 2.162 0.780 0.148

Relax to no waves 1.276 0.103 0.372 2.209 0.802 0.154

Relax to potential �ow 1.316 0.141 0.392 2.185 0.798 0.151

Linear damping source 1.270 0.121 0.384 2.263 0.782 0.148

Increased viscosity - 0.154 0.388 - 0.842 0.147

The increased viscosity outlet (µadd = 100µwater) does not damp the radiation waves properly,

the force time series has modulation and increases dramatically due to re�ection. Therefore, the

computed radiation forces are taken from meaningful simulation results. It is thought that the

increased viscosity should be determined based on wave frequency.

In summary, when the target function is similar to outgoing waves, the domain and simulation

time both can be reduced. The other outlets are also good choices when relatively large domain

(Lpure ≥ 0.5λ and Loutlet ≥ 3λ) are used.

2.6 Conclusion

In the preliminary study, a parametric study of propagating waves with viscous �ow model solving

RANSE based on FVM is conducted. This parametric study shows that the time integration

scheme for wave-propagation problem should have at least second-order accuracy to keep the

wave amplitude and its phase. The convection schemes a�ect the order of convergence and

the stability of simulation. High-order convection schemes give good results but the simulation

becomes unstable as time goes.

As the outlets need di�erent parameters to absorb waves well at the boundary, parametric studies

on di�erent outlets are conducted and the representative cases are compared with each other.

The considered outlets are listed as the stretched mesh, increased viscosity, momentum sources

and relaxation schemes. It is thought that the di�erent outlets which are properly tuned would
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give good results but it is di�cult to tune outlet parameters of mesh stretching, linear damping

source and increased viscosity even if there are some suggestions by other researchers.

The relaxation scheme with properly given target �ows that are similar to the outgoing waves,

gives stable and good results compared to the others. In the benchmark test of swaying Lewis

form, the computational domain and outlet zones can be reduced when the relaxation zone with

target �ow of outgoing wave is used. Furthermore, the simulation time to obtain the converged

solution decreases. Though, relaxation zone larger than 2 wavelengths is necessary to obtain

similar results of relatively large computational domain. The preliminary study con�rms that

two-way coupling can reduce both computational domain and simulation time. To succeed in

coupling two �ow models, two things are required

• E�cient evaluation of outgoing waves in the relaxation zones from potential �ow model.

• Enhanced relaxation scheme to minimize the e�ect of weight function.
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3 Potential �ow: Incident waves

The boundary value problem for an incident wave is recalled. Perfect �uid with irrotational

�ow is assumed to introduce the incident wave potential. The incident wave potential satis�es

Laplace's equation

∇2ΦI = 0, x ∈ Ω.

where ΦI is the velocity potential, and Ω is the �uid domain. The �at sea bottom condition is

given as
∂ΦI

∂z
= 0, on z = −h, (3.1)

where h is water depth. Overturning of waves is not considered, therefore the incident wave

elevation (ΞI) is a single-valued function

ΞI = ΞI(x, y; t), (3.2)

where x and y are horizontal coordinate, t is time. The nonlinear kinematic and dynamic free

surface boundary conditions for incident waves are given as

∂ΞI
∂t

+
∂ΦI

∂x

∂ΞI
∂x

+
∂ΦI

∂y

∂ΞI
∂y

+
∂ΦI

∂z
= 0

∂ΦI

∂t
+

1

2
∇ΦI · ∇ΦI + gΞI = 0

, on z = ΞI .

The lateral (or in�nity) boundary condition for incident waves are di�erent for wave model and

will be discussed in the following section.

3.1 Regular waves

The simplest potential theory on 2D regular waves, which is called Airy waves, assumes that

the wave height is small compared to its wavelength, and therefore the linearized free surface

boundary condition is imposed on the mean free surface (Airy, 1845). Later, the potential

theory is expanded with a perturbation series approach, which is known as Stokes expansion,

with respect to wave steepness (kA) to apply nonlinear free surface boundary conditions (Stokes,

1847). After his works, the perturbation theory based on Stokes expansion have been extended

for deep and �nite water depth (Wilton, 1914; De, 1955). As the order of perturbation increases,

free surface boundary conditions become complex and can be solved by the help of computer up

to 117-th order (Schwartz, 1974).

Instead of using the velocity potential, Rienecker and Fenton (1981) introduced a stream function

theory by Fourier series expansion to solve the nonlinear 2D regular wave. The wave elevation

and stream function in Fourier series are given as

ΞI(x; t) = ηI(x)e−iωt =

A0 +

NA∑
j=1

Aj cos kjx

 e−iωt, (3.3)

ΨI(x, z; t) = ψI(x, z)e
−iωt =

B0z +

NB∑
j=1

Bj
sinh kj(z + h)

cosh kjh
cos kjx

 e−iωt, (3.4)
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where ΨI is an incident wave stream function, Aj and Bj are the modal amplitudes of Fourier

modes, kj is a modal wavenumber. NA andNB are the number of truncated Fourier series. As the

stream function of constant value represents the streamline, variation of stream function between

two isolines is equal to �ow rate (Q). Consequently, the bottom and free surface boundary

conditions are simply given as

ψI(x, z = −h) = 0, ψI(x, z = ΞI) = −Q. (3.5)

The �uid velocity is calculated from the stream function as

uxI (x, z; t) =
∂ΨI

∂z
=

B0z +

NB∑
j=1

kjBj
cosh kj(z + h)

cosh kjh
cos kjx

 e−iωt, (3.6)

uzI(x, z; t) = −∂ΨI

∂x
=

B0z +

NB∑
j=1

kjBj
sinh kj(z + h)

cosh kjh
sin kjx

 e−iωt, (3.7)

where uxI and uzI are horizontal and vertical �uid velocity by incident wave, respectively. The

incident wave pressure (pI) is given by Bernoulli equation

pI
ρ

= R− gz − 1

2

[
(uxI )2 + (uzI)

2
]
, (3.8)

where R is Bernoulli constant. The important dimensionless parameters in regular waves are

the wave steepness kH and Ursell number Ur = Hλ3

h3
(Ursell, 1953). Ursell number becomes

important when the water depth is limited. The limitation of regular wave theory in a sense of

application is given by a combination of two dimensionless parameters in Le Méhauté's diagram

(Le Méhauté, 1976) in �gure 3.1. The stream function theory covers the regular wave up to wave

breaking, and consequently is adopted in the present study for the generation of regular waves.

Fenton (1988) published a Fortran algorithm calculating the stream function waves. Recently,

Ducrozet et al. (2019) published an open-source program based on stream function wave theory

with a self-adjusting algorithm to cover all wave steepness and Ursell number combinations with

desired error tolerance.

3.2 Irregular waves and waves in wave tank

3.2.1 Linear theory and related research on irregular waves

The simplest method to generate irregular waves is the superposition of linear Airy waves with

random phases. 2D irregular waves with each of regular wave amplitudes are given in

ΦI(x; t) =

Nwave∑
i=1

gAIi
ωi

cosh |ki| (z + h)

cosh |ki|h
e−i(ki·x−ωit+δi), (3.9)

where ωi = g |ki| tanh(|kih|) is i-th wave frequency, ki is a directional wave number, Nwave is

the number of waves and δi is a random phase, respectively. AIi is i-th wave amplitudes which

is given by wave spectrum

AIi =
√

2S(ωi)∆ωi, (3.10)
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Figure 3.1. Le Méhauté's diagram, (Kraaiennest, 2009)

The wave spectrum (S(ω)) has various forms. The commonly used wave spectra are Pierson-

Moskowitz and JONSWAP which were invented for unlimited and limited fetch sea, respectively

(Pierson and Moskowitz, 1964; Hasselmann et al., 1973). Ochi-Hubble wave spectrum, which has

two peaks by the combination of JONSWAP, is used to describe west Africa sea state (Ochi and

Hubble, 1976). For three dimensional irregular waves, the directional spreading function, which

is denoted as D(ω|θ) is multiplied to wave spectrum as

AIi =
√

2S(ωi)D(ωi|θi)∆ωi∆θi, (3.11)

of which, D(ω|θ) satis�es ˆ θmax

θmin

D(ω|θ)dθ = 1,

of which, the spreading angle θi is between θmin and θmax. Half-cosine 2s power directional

spreading function, which is modi�ed version of cosine 2l power, is commonly used in nowadays

(Pierson et al., 1955; Longuet-Higgins et al., 1963). Goda (1999) summarized wave spectra and

directional spreading functions.

The linear superposition of Airy waves assumes that each wave component is independent, but

in reality interferences between waves exists. Goda (1983) analyzed the wave measurement at

Caldera port in Costa Rica. He showed the sea spectrum was exhibiting the secondary peak due

to the interaction of waves and nonlinearities are noticeable in shallow water. Though the second

order wave spectrum model is proposed by Tick (1963); Hamada (1965), the superposition model

is not adopted to describe a higher-order interaction between waves. In addition, the superpo-

sition of regular waves needs a discretization of sea spectrum that gives a huge computational
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burden to reconstruct irregular waves in viscous �ow grid.

To overcome the limits of linear superposition theory, the direct simulation with nonlinear free

surface boundary conditions has been studied. Engsig-Karup et al. (2009) applied the �nite-

di�erence method based fully nonlinear potential �ow model to simulate 3D irregular waves. As

the computational meshes are discretized in a manner of �nite di�erence, numerical errors due

to discretization are involved. Ducrozet et al. (2007, 2016) applied a pseudo-spectral method to

simulate the 3D irregular waves with fully nonlinear free surface boundary condition. Moreover,

Ducrozet et al. (2012) extended this methodology to the numerical wave tank problem by adding

extra velocity potential in the same principle of pseudo-spectral. It is called a Higher-order

spectral method (HOS) because its basis functions are expanded in a pseudo-spectral way. The

fast Fourier transform (FFT) reduces the computational burden, furthermore, the treatment of

spatial gradient is easier than other numerical methods. In the present study, HOS wave model

is adopted to simulate irregular waves.

3.2.2 Nonlinear irregular waves: Open-ocean

The higher-order spectral method has been initiated by Dommermuth and Yue (1987); West

et al. (1987). Cartesian coordinates are applied with rectangular computation domain with its

horizontal lengths, Lx and Ly along x and y directions, respectively. The origin O is located

at the corner of domain on the mean free surface z = 0. In the open ocean, the domain is

horizontally periodic, and has a �at bottom. The free surface boundary condition is constructed

by introducing the surface velocity potential Φ̃I(x, y; t) = ΦI(x, y,ΞI(x, y); t) de�ned on the free

surface as

∂Φ̃I

∂t
+ gΞI = Q(ΞI , Φ̃I , w) = −1

2
∇Φ̃I · ∇Φ̃I +

1

2
(1 +∇ΞI · ∇ΞI)w

2, (3.12)

∂ΞI
∂t

= P(ΞI , Φ̃, w) = (1 +∇ΞI · ∇ΞI)w −∇Φ̃I · ∇ΞI , (3.13)

where w = ∂Φ
∂z is the vertical velocity. The surface velocity potential and wave elevation are

calculated by solving the above equations. The periodic lateral and �at sea bottom boundary

conditions are given in

ΦI(0, y, z; t) = ΦI(Lx, y, z; t), ΞI(0, y; t) = ΞI(Lx, y; t),

ΦI(x, 0, z; t) = ΦI(x, Ly, z; t), ΞI(x, 0; t) = ΞI(x, Ly; t)
(3.14)

and
∂ΦI

∂z
= 0, z = −h. (3.15)

As the domain is limited in horizontal lengths and water depth, the velocity potential is expanded

with the linear set of mode functions φI,mn(x, y, z) which satisfy the periodic and sea bottom

boundary conditions

ΦI(x, y, z; t) =
∞∑
m=0

∞∑
n=0

AImn(t)φI,mn(x, y, z) (3.16)
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with

φI,mn(x, y, z) =
cosh kmn(z + h)

cosh kmnh
eik

x
mxeik

y
ny (3.17)

where AImn(t) are the amplitudes of modes. kxm = m 2π
Lx

= m∆kx, kyn = n 2π
Ly

= n∆ky and

k2
mn = (kxm)2 + (kyn)2 are the modal wavenumbers for x, y and z directions, respectively. Though

the basis functions satisfy the lateral, sea bottom and linearized free surface boundary conditions,

the wavenumbers are not eigenvalues. Therefore, the problem is solved in a pseudo-spectral way.

The open ocean conditions are approximated by applying periodicity conditions on the side of

a rectangular domain. Fourier series are applied to express the surface velocity potential and

incident wave elevation

Φ̃I(x, y; t) =

Mx∑
m=0

Ny∑
n=0

Bφ
mn(t)eik

x
mxeik

y
ny, (3.18)

ΞI(x, y; t) =

Mx∑
m=0

Ny∑
n=0

BΞ
mn(t)eik

x
mxeik

y
ny, (3.19)

whereMx and Ny are the number of truncated Fourier modes. Because the free surface boundary

conditions, given in equations (3.12) and (3.13), are nonlinear, Stokes's expansion is applied on

the incident velocity potential and wave elevation. The perturbation series expansion with wave

steepness (kH) are given as

ΦI(x, y, z; t) =

MHOS∑
m=1

Φ
(m)
I (x, y, z; t), (3.20)

where MHOS is a HOS order that represents the nonlinearity order. Unknown wave elevation

position needs an iterative Taylor series expansion at z = 0 with respect to wave elevation

Φ
(1)
I (x, y, 0, t) = Φ̃I(x, y; t), (3.21)

Φ
(m)
I (x, y, 0, t) = −

m−1∑
k=1

(ΞI)
k

k!

∂Φ
(m−k)
I

∂zk
(x, 0, t), for m ≥ 2. (3.22)

The free surface boundary condition for ΦI on z = ΞI is transformed into the simple boundary

condition for Φ
(m)
I on z = 0. As the nonlinear boundary conditions are given explicitly, m-th

order velocity potentials Φ
(m)
I are solved by applying the modal functions in equation (3.16).

Initialization of wave �elds for Ξ(x, y; t = 0) and Φ̃(x, y; t = 0) are necessary for propagating

waves in HOS-ocean model. Both regular and irregular waves can be used to initialize the wave

�eld. As a regular waves, the nonlinear stream function wave theory is used in HOS model, and

the linear superposition of irregular waves is used to initialize the wave �elds for irregular waves.

At the initial condition, the magnitudes of modes for irregular waves are given in

1

2

∣∣BΞ
mn(t = 0)

∣∣2 = S(kx, ky)∆kx∆ky =
1

k

∂ω

∂k
S(ω)D(ω|θ)∆kx∆ky, (3.23)

where ∆kx and ∆ky are modal wave number discretization in x and y directions. By considering

random phase (δθmn), the wave elevation modal amplitudes are determine by

BΞ
mn(t = 0) = <

[
eiδ

θ
mn
∣∣BΞ

mn(t = 0)
∣∣] . (3.24)
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The initial mode amplitudes of velocity potentials are derived from linearized free surface bound-

ary condition

Bφ
mn(t = 0) = −iωmn

g
BΞ
mn(t = 0). (3.25)

It must be noticed that simulating the nonlinear HOS wave model with the initial condition

which is given by linear superposition model may lead to instability (Ducrozet et al., 2016).

A ramping function (f ramp(t)), allowing a smooth transition from linear to nonlinear sea state,

is used as a multiplication fact for the nonlinear terms in free surface boundary condition

∂Φ̃I

∂t
+ gΞI = f ramp(t)Q(ΞI , Φ̃I , w), (3.26)

∂ΞI
∂t
− w(1) = f ramp(t)

(
P(ΞI , Φ̃I , w)− w(1)

)
, (3.27)

with

f ramp(t) = 1− e−(t/Tramp)n
ramp

. (3.28)

where Tramp and nramp are a transition time and ramp parameter, respectively. w(1) is the linear

vertical velocity.

The details on mathematical formulation and procedures are explained in (Ducrozet et al., 2007,

2016; Bonnefoy et al., 2009).

3.2.3 Nonlinear waves: Numerical wave tank(NWT)

The HOS model can be formulated for a 3D rectangular wave tank equipped with wavemaker

at rest position x = 0, and surrounded by vertical walls. The wave absorbing beach is placed at

the end of wave tank. The kinematic boundary condition on the wavemaker is given in

D

Dt
(x−Xwm(y, z; t)) = 0, on x = Xwm(y, z; t), (3.29)

where Xwm(y, z; t) is a displacement of wavemaker. The above equation is rewritten as

∂Xwm

∂t
=
∂ΦI

∂x
− ∂Xwm

∂y

∂ΦI

∂y
− ∂Xwm

∂z

∂ΦI

∂z
, on x = Xwm(y, z; t). (3.30)

The vertical wall condition is given as

∂ΦI(Lx, y, z; t)

∂x
= 0,

∂ΦI(x, 0, z; t)

∂y
=
∂ΦI(x, Ly, z; t)

∂y
= 0.

(3.31)

To solve the boundary value problem, ΦI(x, y, z; t) and ΞI(x, y; t) are decomposed into

ΦI(x, y, z; t) = ΦH(x, y, z; t) + ΦL(x, y, z; t), (3.32)

ΞI(x, y; t) = ΞH(x, y; t) + ΞL(x, y; t), (3.33)

49



3. Potential �ow: Incident waves

where ΦH(x, y, z; t) and ΦL(x, y, z; t) are the harmonic and local velocity potentials. The lateral

boundary conditions for ΦL(x, y, z; t) are given as

∂ΦL

∂x

∣∣∣∣
x=X

=
∂Xwm

∂t
+
∂Xwm

∂y

∂ΦL

∂y
+
∂Xwm

∂z

∂ΦL

∂z
,

∂ΦL

∂x

∣∣∣∣
x=Lx

= 0,

∂ΦL

∂y

∣∣∣∣
y=0

= 0,
∂ΦL

∂y

∣∣∣∣
y=Ly

= 0,

(3.34)

The perturbation series expansion of the wavemaker boundary condition needs a vertically ex-

tended domain with arti�cial height hadd, depicted in �gure 3.2.

Figure 3.2. The extended HOS-NWT domain (Ducrozet et al., 2012).

The extended domain consists of three zones: (1) original domain is mapped into z′ = −1 to

z′ = 0. (2) The mirror of original domain with respect to z′ = (hadd− 1)/2. This zone is de�ned

between z′ = hadd−1 and z′ = hadd. (3) A smoothly varying surface domain between original and

mirror domain, from z′ = 0, z′ = hadd−1. The displacement of wavemaker is applied z′ ∈ [−1, 0]

and z′ = [hadd − 1, hadd] with symmetry. Between two zones, the wave motions are extrapolated

with polynomial functions. The arti�cial height is taken to be hadd = 3. For the local velocity

potential, the symmetric condition with respect to z′ = (hadd − 1)/2 is applied, instead of free

surface boundary condition. The perturbation series is also applied to local velocity components

upto third order as

ΦL(x, y, z′; t) =

3∑
m=0

Φ
(m)
L (x, y, z′; t), (3.35)

m-th order potential is expanded with the pseudo-spectral method as

Φ
(m)
L (x, y, z′; t) =

Ny∑
n=0

Nadd∑
p=0

Badd
np (t)φL,mn(x, y, z′) (3.36)

with

φL,mn(x, y, z′) = cos(kyny) cos
(
kaddp (z′ + 1)

) cosh kaddnp (Lx − x)

cosh kaddnp Lx
, (3.37)
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3. Potential �ow: Incident waves

where kyn = nπ
Ly
, kaddp = pπ

hadd+1 and kaddnp =
√

(kyn)2 + (kaddp )2. The local velocity potential can

be solved with the Taylor series expansion with respect to the nonlinear wavemaker boundary

condition at x = 0.

The non-homogeneous wavemaker boundary condition at x = 0 is satis�ed by local velocity

potential, the lateral boundary condition for harmonic velocity potential is given by

∂ΦH

∂x

∣∣∣∣
x=X

= 0,
∂ΦH

∂x

∣∣∣∣
x=Lx

= 0,

∂ΦH

∂y

∣∣∣∣
y=0

= 0,
∂ΦH

∂y

∣∣∣∣
y=Ly

= 0.

(3.38)

The harmonic velocity potential and wave elevation in perturbation series

ΦH(x, y, z′; t) =

MHOS∑
m=0

Φ
(m)
H (x, y, z′; t), (3.39)

ΞI(x, y; t) =

MHOS∑
m=0

Ξ
(m)
I (x, y; t), (3.40)

andm-th order harmonic velocity potentials and wave elevations are expressed with eigenfunction

expansion as

Φ
(m)
H (x, y, z′; t) =

Mx∑
m=0

Ny∑
n=0

BΦ
mn(t)φH,mn(x, y, z′), (3.41)

Ξ
(m)
I (x, y; t) =

Mx∑
m=0

Ny∑
n=0

BΞ
mn(t) cos(kxmx) cos(kyny), (3.42)

with

φH,mn(x, y, z′) = cos(kxmx) cos(kyny)
cosh(kmn(z′ + 1))

cosh kmn
(3.43)

where kxm = mπ
Lx

and kmn =
√

(kxm)2 + (kyn)2 are eigenvalues of wave tank. It is solved by applying

nonlinear free surface boundary conditions, considering absorbing beach by a modi�cation of

pressure p
ρ = D(x)w = D(x)∂Ξ

∂t

∂ΦH

∂t
+ gΞI = −1

2
∇ΦH · ∇ΦH +

1

2
(1 +∇ΞI · ∇ΞI) (uzI)

2

−∇ΦI · ∇ΦL −
1

2
∇ΦL · ∇ΦL −

∂ΦL

∂t
−D(x)

∂Ξ

∂t
(3.44)

∂ΞI
∂t

= (1 +∇ΞI · ∇ΞI)w −∇ΦI · ∇ΞI + uzL. (3.45)

Note that the nonlinear terms involve the local velocity potentials. The details of formulation

and numerical algorithm are explained in (Ducrozet et al., 2012).

3.2.4 Reconstruction of nonlinear irregular waves in viscous model

The nonlinear models based on HOS for irregular waves have been developed and validated

for several years (Ducrozet et al., 2007; Bonnefoy et al., 2009; Ducrozet et al., 2012, 2016).
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3. Potential �ow: Incident waves

Those HOS wave solvers are released as open-source codes, which anyone can develop, use and

distribute under the terms of GNU General Public Licence (GPLv3). As the pseudo-spectral

method is used, the free surface grid is discretized with equal spacing to apply FFTs. Therefore,

the reconstruction of wave �elds is necessary to deliver �ow quantities to the viscous �ow model.

The reconstructed nonlinear �ows are able to be used for the initialization of domain and the

boundary.

A HOS wrapper program, which is called as Grid2Grid, has been developed to reconstruct the

wave �elds from the results of HOS computation (Choi et al., 2018). Grid2Grid applies an

inverse FFTs and a quick B-spline module to reconstruct the nonlinear wave �elds for arbitrary

simulation time and space (Frigo and Johnson, 2005; Williams, 2018). The simulated nonlinear

irregular waves by HOS provide the time histories of mode amplitudes. By applying inverse

FFTs with vertical functions, f(z) = cosh kmn(z+h)
cosh kmnh

and fadd(z′) = cos kaddp (z′ + 1), the exact

nonlinear wave �elds are reconstructed in rectilinear grid at HOS simulation time t = tHOS .

As the rectilinear grid does not change with respect to time, the continuous HOS wave �elds

in discrete time are reconstructed via interpolation. B-spline interpolation at arbitrary points,

x1, x2, · · · , xN are evaluated with known interpolation nodes xi1 , xi2 , · · · , xiN and their function

values f(xi1 , xi2 , · · · , xiN )

f(x1, x2, · · · , xN ) =

Nmod+1∑
i1,i2,··· ,iN=−Nmod

f(xi1 , xi2 , · · · , xiN )

N∏
j=1

b
(p)
ij (xj) (3.46)

where Nmod = Ninterp/2, p = Ninterp − 1, and Ninterp is an interpolation order. b
(p)
ij (xj) is

B-spline function de�ned by

b
(0)
ij (xj) =

1 if xji < xj < xji+1 ,

0 otherwise
(3.47)

b
(p)
ij (xj) =

xj − xji
xji+p − xji

b
(p−1)
ij (xj) +

xji+p+1 − xj
xji+p+1 − xji+1

b
(p−1)
i+1,j (xj), p ≥ 1. (3.48)

The B-spline function with respect to p is shown in �gure 3.3. The reconstructed HOS wave

�elds have 3 spatial and time variables.

Figure 3.3. The basis functions, b(p)ij (xj).
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3. Potential �ow: Incident waves

The computation algorithm does not calculate the basis functions, b(p)ij (xj), but evaluates the

function value by recursive way. The computational algorithm is called De Boor's algorithm (De

Boor, 1978). The cubic spline interpolation is used for evaluating �uid velocity, pressure and

wave elevation with respect to spatial and temporal variables.

3.3 Validation on the generation of nonlinear waves in the viscous �ow solver

The generation of stream function wave theory in viscous �ows is tested and validated in Chapter

2.1. The generation of HOS nonlinear waves in viscous �ows is important to simulate realistic

irregular waves, to investigate its e�ects on the �oating body and to regenerate the experimental

waves in the numerical simulation. The HOS waves in viscous �ow solver are regenerated by open-

source library Grid2Grid (Choi et al., 2018). The time series of mode amplitudes are obtained

to reconstruct HOS waves by inverse FFTs and interpolation module. The �ow quantities of

nonlinear incident waves are possibly calculated for a particular position and time where the

speci�c nonlinear phenomenon occurs.

For the validation, foamStar, which is based on multiphase solver with the VOF model, is used

(Seng, 2012; Monroy et al., 2016). The relaxation schemes, described in section 2.3.1 is used.

The reconstructed nonlinear incient waves are used to initialize the computational domain and

to give the target values in the viscous �ow solver.

3.3.1 Validation with HOS simulations

The generation of HOS wave models in the viscous �ow model is validated with HOS simulations.

Gatin et al. (2017) simulated the nonlinear 3D irregular waves based on HOS-ocean (open sea

waves) in a multiphase �ow solver, however the scheme was not tested with waves generated in

a wave tank (HOS-NWT). In the present study, the generation of both HOS wave theories in

viscous �ow solver is validated.

The considered wave conditions for validation are given in Table 3.1. For HOS-NWT 3D regular

waves, the oblique wave of propagation angle, θ = 60◦ is considered.

Table 3.1. HOS wave condition for validation

Wave Type Value
HOS-Ocean HOS-NWT

2D 3D 2D 3D

Regular Wave
T [s] - - 0.702 0.702

H [m] - - 0.0431 0.0288

Irregular Waves

Tp [s] 0.702 1.0 1.0 0.702

Hs[m] 0.0288 0.10 0.05 0.0384

γ [-] 3.3 3.3 3.3 3.3
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3. Potential �ow: Incident waves

The computational domain of viscous solver is depicted in �gure 3.4.

Figure 3.4. The computational domain of viscous �ow solver for generation of HOS waves.

The length of relaxation zones is two times of wavelength (λ or λp) and the same length is used

for pure viscous �ow zone where no weight function is applied. The same principle is adopted

for the 3D waves. The snapshots of 3D regular/irregular wave simulation with viscous solver are

shown in �gures 3.5. The relaxation zones are colored with transparent grey.

(a) HOS-Ocean 2D Irregular waves

(b) HOS-NWT 2D Regular waves

(c) HOS-Ocean 2D Irregular waves (d) HOS-NWT 3D Regular waves

Figure 3.5. Simulation of nonlinear HOS waves in viscous �ow model.
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3. Potential �ow: Incident waves

The waves generated at inlet relaxation zones are propagating to the pure viscous �ow domain.

After traveling across the pure viscous �ow domain, waves enter the outlet relaxation zones. For

the HOS-NWT 3D regular waves, the re�ection waves due to the lateral wall are well shown in

simulation.

The measured wave time series in viscous �ow are compared with the results of HOS simulation

in �gure 3.6.

Figure 3.6. Generation of nonlinear HOS waves in viscous �ow solver and comparison with

HOS wave model (top : HOS-Ocean 2D, 3D irregular waves, middle : HOS-NWT 2D

regular/irregular waves, bottom:HOS-NWT 3D regular/irregular waves)
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3. Potential �ow: Incident waves

The measured wave elevation at the center of viscous �ow domain shows a good agreement with

the results of HOS wave theory. The discrepancies between viscous �ow and HOS simulation

come from

• The computational meshes need to be �ne su�ciently to describe the waves, especially for

irregular waves which have short/long waves with various wave heights.

• Interpolation errors in the wrapper program could provide an error source in viscous �ow.

The cubic-spline interpolated velocity in HOS grid may not satisfy the mass conservation

(Li, 2018). Therefore, the extra sources may appear in momentum/pressure equation.

• HOS is based on a psuedo-spectral method that may lead to high-frequency components.

The zero-padding on spectral quantities is used to remove this phenomenon. It may lose

the wave energy.

• Relaxation scheme with weight function generates undesired waves in the relaxation zones.

Introduced weight function appears as source terms in VOF transport and momentum

equations, and is able to give an extra error for wave propagation problem. Peri¢ et al.

(2018b) investigated the e�ect of weight function and showed that the wave re�ection is

inevitable with the relaxation scheme.

• Other factors like numerical damping, �uid viscosity, numerical errors, ...

3.3.2 Validation with HOS simulations and Experiments

Extreme waves corresponding to the 1000 year return period of irregular waves in the Gulf of

Mexico (GOM) is regenerated by the proposed reconstruction procedure in the viscous �ow

model. The results is validated with HOS simulation and experiments.

The wave condition is given in Table 3.2. HOS-NWT 2D model is used to simulate extreme waves.

The same con�guration of computational doamin described in �gure 3.4 is used for numerical

setup. The convergence of HOS-NWT model is conducted with respect to the number of modes

and the order of HOS.

Table 3.2. Extreme wave condition

Item Value

Peak period (Tp) 15.5 s

Signi�cant wave height (Hs) 17.5 m

Peak enhancement factor (γ) 3.3

Wave spectrum JONSWAP

The wave breaking events are identi�ed during HOS simulation with a criterion de�ned by a

ratio of local energy �ux velocity to local crest velocity (Barthelemy et al., 2018)

Fwave/E

cp
=
uwave
cp

=
1

cp

∂ΦI

∂x

∣∣∣∣
z=ΞI

≥ 0.75. (3.49)
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3. Potential �ow: Incident waves

where Fwave is a local energy �ux in wave propagation direction and E is local energy density.

The ratio is approximated to the water particle velocity under the crest, uwave. cp is a local phase

velocity. The breaking criterion is taken from Tian et al. (2012). The complexity of evaluating

the local phase velocity for all computational domain and time are explained in (Sei�ert et al.,

2017). The breaking model considers the local energy dissipations appearing as Laplacian term

in nonlinear free surface boundary conditions as

∂Φ̃I

∂t
+ gΞI = −1

2
∇Φ̃I · ∇Φ̃I +

1

2
(1 +∇ΞI · ∇ΞI) (uzI)

2 + 2νeddy∇ · ∇Φ̃I , (3.50)

∂ΞI
∂t

= (1 +∇ΞI · ∇ΞI)u
z
I −∇Φ̃I · ∇ΞI + 2νeddy∇ · ∇ΞI , (3.51)

with eddy viscosity

νeddy = αbr
HbrLbr
Tbr

, (3.52)

where Tbr is a breaking duration time from when the wave crest begins to fall until the surface

disturbance front is no longer obvious, Lbr is a distance from wave breaking to the obvious surface

disturbance ends, Hbr is a falling crest height, αbr is a parameter and the value αbr = 0.02 is

used by Tian et al. (2010). The wave breaking model indroduced in HOS is validated with

experimental measurement in (Sei�ert and Ducrozet, 2018). Wave breaking events are recorded

during the HOS simulation of extreme waves and shown in �gure 3.7 as markers. At the moments

of wave breaking, the wave heights are measured and colored di�erently in the �gure 3.7. The

wave breaking event, occurs at x/Lw ≈ 5 and t/Tp ≈ 85, is selected for benchmark case.

Figure 3.7. The wave breaking event in HOS simulation

The experiments were conducted in the 3D ocean wave tank in Ecole Centrale de Nantes(ECN),

and its dimensions are L×B × h = 46.4× 29.7× 5.0m with absorbing beach of length 9.7m at

ends. The �ap-type wavemakers, which have 3m depth and can move independently, allow us to
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3. Potential �ow: Incident waves

generate various type of waves. The speci�cation of wave tank is shown in �gure 3.8. The waves

are scaled with ratio 1/100 in experiments and the re-generation of waves are restricted near

to the time of selected wave breaking event to minimize the wave re�ection. Three probes are

aligned at the distance 20.81m of the wavemaker with horizontal interval 2.3m (and consequently

at the di�erent transverse direction in the tank).

Figure 3.8. Speci�cation of wave tank in Ecole Centrale de Nantes(ECN)

The time and mesh discretization considered in viscous �ow are given in Table 3.3. Note that the

computational mesh denoted as normal is set from the result of preliminary test on the incident

waves in Chapter 2.1. The measured wave elevation at the breaking point are compared in �gure

3.9 with respect to discretization. The results show that a small di�erence is shown for a coarse

mesh with others. Results are slightly di�erent after wave breaking event, but they give good

results for overall simulation time. Possible numerical errors has discussed in previous section

3.3.1. The extreme event in simulation and experiment are shown in �gure 3.10. A small spilling

breaker is observed in the front crest of waves in simulation and experiments. In the experiment,

3D e�ects along horizontal directions are observed.

Table 3.3. Time and mesh discretizations used for the simulation of extreme waves

Mesh type λp/∆x Hs/∆z ∆x/∆z Tp/∆t

coarse 62.5 18.4 6.5 300

normal 125 36.8 6.5 600

�ne 250 73.5 6.5 1,200

very �ne 500 73.5 3.25 2,400
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3. Potential �ow: Incident waves

Figure 3.9. Convergence test on the simulation of extreme waves

Figure 3.10. Observed extreme wave events in experiment and simulation
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3. Potential �ow: Incident waves

The measured wave elevation in experiments is compared with the results of HOS and CFD

(viscous �ow model with relaxation with HOS) in �gure 3.11. To minimize the 3D e�ects due to

wave absorption in the experiment, the waves in experiments were generated near to the time of

extreme event.

Figure 3.11. Comparision of wave elevation time series for extreme wave condition.
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Both CFD and HOS show good agreements with each other, however the di�erences between

experiment and simulations exist though the experimental result has 3D e�ects in horizontal

direction. The possible errors are:

• Perturbation series of HOS-NWT wave theory.

• Simple wave breaking model in HOS (events appearing before the one simulated).

• Wave maker transfer function to regenerate the HOS waves in experiments. HOS-NWT

model uses a linear transfer function.

• The re�ection by wave absorber, 3D e�ects and di�erent water depths in experiments.

3.4 Conclusion

Potential �ow theories on nonlinear incident waves are summarized. Stream function wave theory

for regular waves is reviewed in view of boundary value problem and the eigenfunction expansion.

HOS wave theories based on the pseudo-spectral way is summarized for irregular waves and waves

in NWT. The reconstruction of HOS wave �elds in viscous �ow is introduced in the present study

based on inverse FFT and B-spline interpolation.

The proposed reconstruction procedure is validated with HOS simulation for di�erent HOS mod-

els. Furthermore, a nonlinear wave breaking event predicted by the simple wave breaking model

in HOS simulation is simulated in the viscous �ow model. Time and space limited simulation

has been conducted on breaking event. The experiment has been conducted to validate the pro-

cedure at the wave tank of Ecole Centrale de Nantes. The result shows a good agreement with

the results of HOS simulation and experimental measurement.
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4 Potential �ow: Complementary waves with an arbitrary match-

ing surface

The linear potential �ow model for complementary waves generated by the existence of the body

is considered in this chapter.

4.1 Boundary value problem

The complementary waves are generated by wave-structure interaction and they propagate in

perfect �uid medium in the presence of a free surface. The �uid domain and boundaries are

depicted in �gure 4.1. The grey color de�nes the �uid domain of interest. At t = 0 no com-

plementary waves exist in the �uid domain of interest. The �uid is surrounded by boundary

surfaces, such as the matching surface (SM ), the free surface (SF ) and the surface at in�nity

(S∞). The body is located inside the matching surface.

Figure 4.1. Domain de�nition for complementary potential �ow with matching surface.

The perfect �uid and irrotational �ow hypothesis are assumed, in order to introduce the velocity

potential. The complementary potential (ΦC) satis�es the Laplace's equation

∇2ΦC = 0, for x ∈ Ω. (4.1)

where Ω represents the �uid domain. On the matching surface, complementary �uid velocity can

be decomposed into the irrotational and vortical velocity by Helmholtz decomposition theorem

(Arfken et al., 1995)

uC = ∇ΦC + vC , on x ∈ SM . (4.2)
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4. Potential �ow: Complementary waves with an arbitrary matching surface

where uC is the complementary �uid velocity obtained by the viscous �ow model. ∇ΦC and vC

are complementary irrotational and vortical velocities, respectively. In the present study, the

vortical velocity vC is assumed to be su�ciently small on the matching surface as

vC ≈ 0, on x ∈ SM . (4.3)

Therefore, the following boundary condition is imposed on the matching surface as

∇ΦC = uC , on x ∈ SM . (4.4)

The linearized free surface conditions on the mean free surface are given as

∂2ΦC

∂t2
+ g

∂ΦC

∂z
= 0,

∂ΞC
∂t
− ∂ΦC

∂z
= 0,

on z = 0, (4.5)

The radiation condition on the surface at in�nity is given as

∇ΦC = 0, for x ∈ S∞. (4.6)

4.2 Poincaré's velocity representation

4.2.1 Poincaré's velocity representation for source

The boundary integral equation for the complementary velocity potential is given as

− 4πΦC (x) =

‹
S

[G(x, ξξξ) {n · ∇ξΦC (ξξξ)} − ΦC (ξξξ) {n · ∇ξG (x, ξξξ)}] dS(ξξξ), (4.7)

where G(x, ξξξ) is the Green function. x and ξξξ are the �eld and source points de�ned as

x = (x, y, z), and ξξξ = (ξ, η, ζ). (4.8)

n is a unit normal vector to the closed boundary surfaces S and it points inside of the �uid

domain. ∇ξ is the spatial derivative with respect to source point coordinate

∇ξ =

(
∂

∂ξ
,
∂

∂η
,
∂

∂ζ

)
. (4.9)

The �uid velocity at �eld point is obtained by applying the gradient with respect to �eld point

coordinate (∇x) de�ned as

∇x =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (4.10)

to the equation (4.7) as

− 4π∇xΦC (x) =

‹
S
{n · ∇ξΦC (ξξξ)}∇xG(x, ξξξ)− ΦC (ξξξ)∇x {n · ∇ξG (x, ξξξ)} dS(ξξξ). (4.11)

The above expressions denote that the �uid velocity at the �eld point can be calculated by the

distribution of sources and dipoles on the boundary surfaces. The �uid velocity at the �eld point

can be decomposed as

− 4π∇xΦC (x) = ∇xψ −∇xχ, (4.12)
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where ∇xψ and ∇xχ are the contributions of sources and dipoles given by

∇xψ =

‹
S
{n · ∇ξΦC (ξξξ)}∇xG(x, ξξξ)dS, (4.13)

and

∇xχ = −
[
uxd, uyd, uzd

]T
=

‹
S

ΦC (ξξξ)∇x {n · ∇ξG (x, ξξξ)} dS. (4.14)

The contribution of dipoles can be given alternatively (see Appendix 2 in Noblesse et al. (1997))[
uxd, uyd, uzd

]T
= −
‹
S
{∇ξΦC (ξξξ)× n} × ∇xG (x, ξξξ) dS(ξξξ). (4.15)

for a Green function satisfying the relationships

(Gx, Gy, Gz) = (−Gξ,−Gη,−Gζ) , (4.16)

where the subscripts denote the derivative with respect to coordinate. Therefore, the �uid

velocity can be expressed in compact form

∇xΦC(x) =
1

4π

‹
S

[{n · ∇ξΦC (ξξξ)}∇ξG(x, ξξξ) +∇ξG (x, ξξξ)× {∇ξΦC (ξξξ)× n}] dS(ξξξ) (4.17)

The above velocity representation is called Poincaré's velocity representation in (Hunt, 1980;

Noblesse, 2001). Note that the factor 4π in equation (4.17) is divided in Noblesse (2001) due to

de�nition of Green function. Comparing (4.17) to the original velocity representation in (4.12),

the spatial derivatives on Green function are moved to the velocity potential.

Therefore, the expression is less singular than the case of original integral equation. The �uid

velocity at the �eld point is explicitly expressed by de�nition of the velocity potential, e.g.,

∇ξΦC = uC(xξ). It means that the dipole contribution multiplied by unknown potential value

(ΦC) is replaced by equivalent source contributions multiplied by a known value (e.g., tangen-

tial velocity, ∇ξΦC × n) at the boundary surface. Therefore, the system matrix obtained by

discretizing the equation (4.7) does not need to be solved to get the velocity potential on the

boundary surface.

However the velocity potential, which is necessary for evaluating the pressure, is not obtained

from this velocity representation. To overcome this, Noblesse and Yang (2004) integrated the

Poincaré's velocity representation to get the velocity potential at the �eld point.

4.2.2 Poincaré's velocity representation for image source and free surface term

The Green function for deep water and free surface �ow has a generic form of

G(x, ξξξ) =
1

r1
+GF = GS +Gh +GW , (4.18)

where, GS is the source given by

GS =
1

r1
, r1 =

√
R2 + (z − ζ)2, R2 = (x− ξ)2 + (y − η)2, (4.19)
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and GF is a function satisfying the Laplace equation and the boundary condtions on the sea

bottom, free surface and surface at in�nity. It is usually composed with two terms as

GF = Gh +GW , (4.20)

where Gh is function satisfying the homogeneous Neumann or Dirichlet condition at the mean

free surface. It is taken as the image source or sink located at z = −ζ above the plane of mean

free surface for deep water. GW is a wave function introduced to satisfy free surface and far-�eld

boundary conditions.

The contribution of dipoles in equation (4.14) can be given as (see Appendix A in Noblesse

(2001)) [
uxd, uyd,−uzd

]T
= −
‹
S
{∇ξΦC (ξξξ)× n} × ∇xGF (x, ξξξ) dS(ξξξ). (4.21)

for the Green function (GF ) satisfying the relationships(
GFx , G

F
y , G

F
z

)
=
(
−GFξ ,−GFη , GFζ

)
(4.22)

Therefore, two alternative expressions given in equations (4.15) and (4.21) lead to the velocity

representation given as

uC(x) = uSC(x) + uFC(x) (4.23)

The velocity components uSC and uFC are expressed in the form of

4πuSC(x) =

‹
S

[
{n · ∇ξΦC (ξξξ)}∇ξGS(x, ξξξ)− {∇ξΦC (ξξξ)× n} × ∇ξGS (x, ξξξ)

]
dS(ξξξ), (4.24)

4πûFC(x) =

‹
S

[
{n · ∇ξΦC (ξξξ)}∇ξGF (x, ξξξ)− {∇ξΦC (ξξξ)× n} × ∇ξGF (x, ξξξ)

]
dS(ξξξ), (4.25)

where û is an operator de�ned as

û = (u, v,−w). (4.26)

A generic velocity representation for free surface �ows can be introduced (Noblesse, 2001)

4π

uCvC
wC

 =

‹
S

(∇ξΦC · n)G+
ξ + (∇ξΦC × n)ζ G+

η − (∇ξΦC × n)η G+
ζ

(∇ξΦC · n)G+
η + (∇ξΦC × n)ξ G+

ζ − (∇ξΦC × n)ζ G+
ξ

(∇ξΦC · n)G−ζ + (∇ξΦC × n)η G−ξ − (∇ξΦC × n)ξ G−η

 dS, (4.27)

by de�ning G± as

G± = GS ±GF . (4.28)

The surface integral given in equation 4.27 can be decomposed into three surface integrals for

problem described in �gure 4.1 as
‹
S
{·} dS =

¨
SM

{·} dS +

¨
SF

{·} dS +

¨
S∞

{·} dS. (4.29)

Surface integral on the matching surface (SM ) is necessary to impose boundary condition. The

integral along S∞ is zero thanks to time domain radiation condition that complementary terms

are zero in the far-�eld (∇ΦC → 0). However, the free surface integral
˜
SF
{·} dS needs to be

transformed into a proper line integral because it is de�ned from matching surface to in�nity.
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4. Potential �ow: Complementary waves with an arbitrary matching surface

4.2.3 Generic representation for free surface integral

The wave Green function for deep water is given by

G = GS +GF , (4.30)

where GS = 1
r1

is source and GF can be selected by sign of image source as

GF =


− 1

r2
+H

1

r2
+ F

,
1

r2
=

1√
R2 + Z2

, with Z = z + ζ, (4.31)

where 1
r2

is the image source. H and F are the corresponding wave terms. The generic Green

function for deep water can be given by substituting above equation into equation (4.28) as

G± =


1

r1
∓ 1

r2
±H

1

r1
± 1

r2
± F

. (4.32)

On the mean free surface, z = 0, the generic Green function satis�es the relationships

(G+, G+
ξ , G

+
η , G

+
ζ ) = (H,Hξ, Hη, Fζ)

(G−, G−ξ , G
−
η , G

−
ζ ) = −(F, Fξ, Fη, Hζ)

, z = 0, (4.33)

by using the relationships of source and image source on z = 0[
1

r1
− 1

r2

]
ζ=0

= 0, and
∂

∂ζ

[
1

r1
+

1

r2

]
ζ=0

= 0. (4.34)

Therefore, the integral over the free surface in the generic velocity representation is given in

¨
SF

ΦnG
+
ξ + (∇ξΦ× n)ζ G+

η − (∇ξΦ× n)η G+
ζ

ΦnG
+
η + (∇ξΦ× n)ξ G+

ζ − (∇ξΦ× n)ζ G+
ξ

ΦnG
−
ζ + (∇ξΦ× n)η G−ξ − (∇ξΦ× n)ξ G−η

 dS = −
¨
SF

 ΦζHξ + FζΦξ

ΦζHη + FζΦη

ΦξFξ + ΦηFη − ΦζHζ

 dS.
(4.35)

where Φn = ∇ξΦ ·n. The above equation is introduced by Noblesse (2001) as generic free surface

integral representation.

He suggested the velocity representation for the cases of free surface problems listed as:

• Case of rigid free surface boundary condition: ∂Φ
∂z = 0 on z = 0.

• Case of soft free surface boundary condition: Φ = 0 on z = 0.

• Steady ship waves.

• Time-harmonic wave radiation-di�raction without forward speed.

• Time-harmonic ship waves.

However, the velocity representation for unsteady time domain free surface �ows has never been

suggested nor studied.
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4.3 Poincaré's velocity representation in time domain free surface �ow

For the convenience, the complementary velocity potential ΦC is replaced by Φ and the comple-

mentary �uid velocity uC is replaced by u in this section.

The Green's identity with time derivatives of velocity potential gives a boundary integral equation

with respect to Φτ (see Appendix A.1 in Bingham (1994))

− 4πΦτ (x, τ) =

‹
S

[
Φnτ (ξξξ, τ)G(x, ξξξ, t− τ)− Φτ (ξξξ, τ)Gn(x, ξξξ, t− τ)

]
dS(ξξξ), (4.36)

with time domain Green function for deep water

G(x, ξξξ, t− τ) =
1

r1
− 1

r2
+H(x, ξξξ, t− τ), (4.37)

with

H(x, ξξξ, t− τ) = 2

ˆ ∞
0

ekZ
[
1− cos

(√
gk(t− τ)

)]
J0(kR)dk. (4.38)

Note that the factor 4π is taken in the present study because the �eld point is not located on

the boundary surface. Poincaré's velocity representation given in equation (4.27) is derived by

manipulating the spatial derivatives on the boundary integral equation, the time derivative of

�uid velocity can also be established as

4π

u
x
τ (x, τ)

uyτ (x, τ)

uzτ (x, τ)

 =

¨
SM∪SF∪S∞

Φnτ (ξξξ, τ)G+
ξ (x, ξξξ, t− τ) + (∇ξΦτ (ξξξ, τ)× n)ζ G+

η (x, ξξξ, t− τ)

Φnτ (ξξξ, τ)G+
η (x, ξξξ, t− τ) + (∇ξΦτ (ξξξ, τ)× n)ξ G+

ζ (x, ξξξ, t− τ)

Φnτ (ξξξ, τ)G−ζ (x, ξξξ, t− τ) + (∇ξΦτ (ξξξ, τ)× n)η G−ξ (x, ξξξ, t− τ)

− (∇ξΦτ (ξξξ, τ)× n)η G+
ζ (x, ξξξ, t− τ)

− (∇ξΦτ (ξξξ, τ)× n)ζ G+
ξ (x, ξξξ, t− τ)

− (∇ξΦτ (ξξξ, τ)× n)ξ G−η (x, ξξξ, t− τ)

 dS(ξξξ), (4.39)

the �uid domain is surrounded by the matching surface(SM ), free surface(SF ) and surface at

in�nity(S∞). The contribution of in�nity surface integral for �uid velocity at �eld point is zero

by radiation condition

∇ξΦ(ξξξ)→ 0, on ξξξ ∈ S∞. (4.40)

The notation of Green function is replaced for the sake of convenience by

G =

G+, if the velocity component is horizontal, e.g. (ux, uy)

G−, if the velocity component is vertical, e.g. (uz)
(4.41)

Then, the acceleration of the �uid is given in vectorial form

4πuτ (x, τ) =

¨
SM∪SF

[Φnτ (ξξξ, τ)∇ξG(x, ξξξ, t− τ) +∇ξG(x, ξξξ, t− τ)× {∇ξΦτ (ξξξ, τ)× n}] dS(ξξξ),

(4.42)

The matching surface is not moving with respect to time. Applying the integral by parts in time

to the right-hand-side in equation (4.42)¨
S
{Φnτ∇ξG +∇ξG × (∇ξΦτ × n)} dS(ξξξ)

=
d

dτ

¨
S
{Φn∇ξG +∇ξG × (∇ξΦ× n)} dS(ξξξ)−

¨
S
{Φn∇ξGτ +∇ξGτ × (∇ξΦ× n)} dS(ξξξ)

(4.43)
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Then, the acceleration of the �uid is given as

4πuτ (x, τ) =
d

dτ

¨
SM∪SF

{Φn∇ξG +∇ξG × (∇ξΦ× n)} dS(ξξξ)

−
¨
SM∪SF

{Φn∇ξGτ +∇ξGτ × (∇ξΦ× n)} dS(ξξξ).

(4.44)

After integrating in time, the �uid's velocity at �eld point is given with initial condition and

time convolution integral

4π {u(x, t)− u(x, t0)} =

¨
SM∪SF

{Φn(ξξξ, t)∇ξG(x, ξξξ, 0) +∇ξG(x, ξξξ, 0)× (∇ξΦ(ξξξ, t)× n)} dS(ξξξ)

−
¨
SM∪SF

{Φn(ξξξ, t0)∇ξG(x, ξξξ, t− t0) +∇ξG(x, ξξξ, t− t0)× (∇ξΦ(ξξξ, t0)× n)} dS(ξξξ)

−
ˆ t

t0

dτ

¨
SM∪SF

{Φn(ξξξ, τ)∇ξGτ (x, ξξξ, t− τ) +∇ξGτ (x, ξξξ, t− τ)× (∇ξΦ(ξξξ, τ)× n)} dS(ξξξ).

(4.45)

Terms involving ∇ξΦ(ξξξ, t0) in the integrals and u(x, t0) vanish due to the initial condition that

the complementary �uid velocity is zero over boundary surfaces and �uid domain at initial time,

t = t0. Therefore, the velocity representation with two surface contributions is given to be

4πu(x, t) =

¨
SM∪SF

{Φn(ξξξ, t)∇ξG(x, ξξξ, 0) +∇ξG(x, ξξξ, 0)× (∇ξΦ(ξξξ, t)× n)} dS(ξξξ)

−
ˆ t

t0

{¨
SM∪SF

{Φn(ξξξ, τ)∇ξGτ (x, ξξξ, t− τ) +∇ξGτ (x, ξξξ, t− τ)× (∇ξΦ(ξξξ, τ)× n)} dS(ξξξ)

}
dτ.

(4.46)

4.3.1 Contribution of the matching surface integral

The contribution of the matching surface integral in time domain Poincaré's velocity represen-

tation is de�ned as

uM (x, t) =

¨
SM

{Φn(ξξξ, t)∇ξG(x, ξξξ, 0) +∇ξG(x, ξξξ, 0)× (∇ξΦ(ξξξ, t)× n)} dS(ξξξ)

−
ˆ t

t0

{¨
SM

{Φn(ξξξ, τ)∇ξGτ (x, ξξξ, t− τ) +∇ξGτ (x, ξξξ, t− τ)× (∇ξΦ(ξξξ, τ)× n)} dS(ξξξ)

}
dτ.

(4.47)

The time domain Green function for deep water given in equation (4.37) satis�es the relationships

∇ξG± (x, ξξξ, 0) = ∇ξ {R(x, ξξξ)±R∗(x, ξξξ)} (4.48)

and

∇ξG±τ (x, ξξξ, t− τ) = ±∇ξHτ (x, ξξξ, t− τ) (4.49)

where the source and image source are denoted as R(x, ξξξ) = 1/r1 and R∗(x, ξξξ) = −1/r2.

The matching surface integral can be decomposed into three velocity contributions

uM (x, t) = uR(x, t) + uR∗(x, t) + uH(x, t) (4.50)
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where

uR(x, t) =

u
x
R

uyR
uzR

 =

¨
SM

{Φn(ξξξ, t)∇ξR(x, ξξξ) +∇ξR(x, ξξξ)× (∇ξΦ(ξξξ, t)× n)} dS(ξξξ) (4.51)

ûR∗(x, t) =

 uxR∗
uyR∗
−uzR∗

 =

¨
SM

{Φn(ξξξ, t)∇ξR∗(x, ξξξ) +∇ξR∗(x, ξξξ)× (∇ξΦ(ξξξ, t)× n)} dS(ξξξ)

(4.52)

ûH(x, t) =

 uxH
uyH
−uzH

 = −
ˆ t

t0

¨
SM

{Φn(ξξξ, τ)∇ξHτ (x, ξξξ, t− τ)

+∇ξHτ (x, ξξξ, t− τ)× (∇ξΦ(ξξξ, τ)× n)} dS(ξξξ)dτ (4.53)

Each of the velocity components represents the surface integral contribution of source, image

source, and wave terms.

4.3.2 Contribution of the free surface integral

The contribution of the free surface integral is given by

uF (x, t) =

¨
SF

{Φn(ξξξ, t)∇ξG(x, ξξξ, 0) +∇ξG(x, ξξξ, 0)× (∇ξΦ(ξξξ, t)× n)} dS(ξξξ)

−
ˆ t

t0

dτ

¨
SF

{Φn(ξξξ, τ)∇ξGτ (x, ξξξ, t− τ) +∇ξGτ (x, ξξξ, t− τ)× (∇ξΦ(ξξξ, τ)× n)} dS(ξξξ).

(4.54)

The free surface is the region from the waterline of matching surface to in�nity. The transforma-

tion to waterline integral is necessary for its evaluation. Using the general representation for free

surface integral discussed in section 4.2.3, the velocity contribution of the free surface integral is

given by

uF (x, t) = u
(0)
F (x, t) + u

(t)
F (x, t) (4.55)

with the current time free surface integral contribution

u
(0)
F (x, t) = −

¨
SF

 Fζ(x, ξξξ, 0)Φξ(ξξξ, t)

Fζ(x, ξξξ, 0)Φη(ξξξ, t)

Fξ(x, ξξξ, 0)Φξ(ξξξ, t) + Fη(x, ξξξ, 0)Φη(ξξξ, t)

 dS(ξξξ). (4.56)

The convolution integral is given by

u
(t)
F (x, t) =

ˆ t

t0

¨
SF

 Hξτ (x, ξξξ, t− τ)Φζ(ξξξ, τ) + Fζτ (x, ξξξ, t− τ)Φξ(ξξξ, τ)

Hητ (x, ξξξ, t− τ)Φζ(ξξξ, τ) + Fζτ (x, ξξξ, t− τ)Φη(ξξξ, τ)

Fξτ (x, ξξξ, t− τ)Φξ(ξξξ, τ) + Fητ (x, ξξξ, t− τ)Φη(ξξξ, τ)−Hζτ (x, ξξξ, t− τ)Φζ(ξξξ, τ)

 dS(ξξξ)dτ.

(4.57)
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The linearized free surface boundary conditions for velocity potential and Green function for

time domain free surface �ow are given in

Φττ + gΦζ = 0, Hττ + gFζ = 0, on ζ = 0. (4.58)

Using the free surface boundary conditions, the x-component in the convolution integral given

in (4.57) is modi�ed as belows

HξτΦζ + FζτΦξ = (FζΦξ)τ +HξτΦζ − FζΦξτ

= (FζΦξ)τ − (FζΦτ )ξ −
1

g
(HξτΦτ )τ .

(4.59)

Likewise, the y-component is expressed as the following

HητΦζ + FζτΦη = (FζΦη)τ − (FζΦτ )η −
1

g
(HητΦτ )τ . (4.60)

The z-component is transformed by using ∇2F = 0

FξτΦξ + FητΦη −HζτΦζ = (FξΦξ + FηΦη)τ − FξΦξτ − FηΦητ −HζτΦζ

= (FξΦξ + FηΦη)τ − (FξΦτ )ξ − (FηΦτ )η +
1

g
(HζτΦτ )τ .

(4.61)

Substituiting equations (4.59), (4.60) and (4.61) into (4.57)

u
(t)
F (x, t) =

ˆ t

t0

dτ

¨
SF

 (FζΦξ)τ
(FζΦη)τ

(FξΦξ + FηΦη)τ

 dS − ˆ t

t0

dτ

¨
SF

 (FζΦτ )ξ
(FζΦτ )η

(FξΦτ )ξ + (FηΦτ )η

 dS

− 1

g

ˆ t

t0

dτ

¨
SF

 (HξτΦτ )τ
(HητΦτ )τ
− (HζτΦτ )τ

 dS,
(4.62)

The Reynolds transport and Stokes theorems on the free surface are given as

¨
SF (t)

∂f

∂t
dS =

d

dt

¨
SF (t)

fdS −
˛
C(t)

fU2D
n dl, (4.63)

and ¨
SF (t)

fxdS =

˛
C(t)

tyfdl,

¨
SF (t)

fydS = −
˛
C(t)

txfdl (4.64)

where C(t) = CM ∪C∞ is the closed line of free surface. CM is waterline of matching surface and

C∞ is the closed curve at in�nity. U2D
n = u · n2D is the transport velocity at line. t = (tx, ty, 0)

is the unit vector tangent to the boundary curve of the free surface. It is oriented clockwise along

the curve of matching waterline and anticlockwise along the curve at in�nite distance. Applying

Reynolds transport and Stokes theorems on the convolution integral in equation (4.62) allows us
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to obtain

u
(t)
F (x, t) =

¨
SF

 Fζ(x, ξξξ, 0)Φξ(ξξξ, t)

Fζ(x, ξξξ, 0)Φη(ξξξ, t)

Fξ(x, ξξξ, 0)Φξ(ξξξ, t) + Fη(x, ξξξ, 0)Φη(ξξξ, t)

 dS

−
ˆ t

t0

dτ

˛
C(t)

 Fζ(x, ξξξ, t− τ)Φξ(ξξξ, τ)

Fζ(x, ξξξ, t− τ)Φη(ξξξ, τ)

Fξ(x, ξξξ, t− τ)Φξ(ξξξ, τ) + Fη(x, ξξξ, t− τ)Φη(ξξξ, τ)

U2D
n dl

−
ˆ t

t0

dτ

˛
C(t)

 tyFζ(x, ξξξ, t− τ)

−txFζ(x, ξξξ, t− τ)

tyFξ(x, ξξξ, t− τ)− txFη(x, ξξξ, t− τ)

Φτ (ξξξ, τ)dl

− 1

g

˛
C(t)

 Hξτ (x, ξξξ, 0)

Hητ (x, ξξξ, 0)

−Hζτ (x, ξξξ, 0)

Φτ (ξξξ, t)dl +
1

g

ˆ t

t0

dτ

˛
C(t)

 Hξτ (x, ξξξ, t− τ)

Hητ (x, ξξξ, t− τ)

−Hζτ (x, ξξξ, t− τ)

Φτ (ξξξ, τ)U2D
n dl.

(4.65)

Substituting equations in (4.56) and (4.65) into (4.55), the velocity contribution of free surface

integral is given in compact form

uF (x, t) = −
ˆ t

t0

dτ

˛
C(t)

 FζΦξ

FζΦη

FξΦξ + FηΦη

U2D
n dl −

ˆ t

t0

dτ

˛
C(t)

 tyFζ

−txFζ
tyFξ − txFη

Φτdl

+
1

g

ˆ t

t0

dτ

˛
C(t)

 Hξτ

Hητ

−Hζτ

ΦτU
2D
n dl.

(4.66)

The radiation and kinematic free surface boundary condition gives an explicit velocity expression

uF (x, t) = −
ˆ t

t0

dτ

ˆ
CM

 FζΦξ

FζΦη

FξΦξ + FηΦη

U2D
n dl + g

ˆ t

t0

dτ

ˆ
CM

 tyFζ

−txFζ
tyFξ − txFη

ΞC(ξξξ, τ)dl

−
ˆ t

t0

dτ

ˆ
CM

 Hξτ

Hητ

−Hζτ

ΞC(ξξξ, τ)U2D
n dl, (4.67)

where ΞC(ξξξ, t) is the complementary wave elevation on waterline of matching surface. Note that

the free surface integral representation needs both the complementary �uid velocity and wave

elevation on the waterline.
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4.3.3 Summary: Poincaré's velocity represenation in time domain free surface �ow

The complementary velocity potential and �uid velocity are denoted here with subscript C . The

gradient of velocity potential is replaced by �uid velocity as

∇ξΦC = uC , (4.68)

The normal and tangential �uid velocities are written in the following form

unC = uC · n, wC = uC × n, (4.69)

The complementary �uid velocity at �eld point by Poincaré's velocity representation is given by

four velocity contributions

4πuC(x, t) = uR(x, t) + uR∗(x, t) + uH(x, t) + uF (x, t) (4.70)

and each of the velocity representations is given explicitly with �ow values at the boundary

surface as follows

uR (x, t) =

¨
SM

{unC(ξξξ, t)∇ξR(x, ξξξ) +∇ξR(x, ξξξ)×wC(ξξξ, t)} dS, (4.71)

ûR∗ (x, t) =

¨
SM

{unC(ξξξ, t)∇ξR∗(x, ξξξ) +∇ξR∗(x, ξξξ)×wC(ξξξ, t)} dS, (4.72)

ûH (x, t) = −
ˆ t

t0

dτ

¨
SM

{unC(ξξξ, τ)∇ξHτ (x, ξξξ, t− τ) +∇ξHτ (x, ξξξ, t− τ)×wC(ξξξ, τ)} dS,

(4.73)

ûF (x, t) = −
ˆ t

t0

dτ

ˆ
CM

∇ξF (x, ξξξ, t− τ)× {uC(ξξξ, τ)× ez}U2D
n dl

+ g

ˆ t

t0

dτ

ˆ
CM

{∇ξF (x, ξξξ, t− τ)× t}ΞC(ξξξ, τ)dls

−
ˆ t

t0

dτ

ˆ
CM

∇ξHτ (x, ξξξ, t− τ)ΞC(ξξξ, τ)U2D
n dl. (4.74)

The operator û is de�ned in (4.26) as

û = [ux, uy,−uz] .

The transport velocity on the waterline is equal to zero, the contribution of the free surface is

simply given as

ûF (x, t) = g

ˆ t

t0

dτ

ˆ
CM

{∇ξF (x, ξξξ, t− τ)× t}ΞC(ξξξ, τ)dl. (4.75)
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4.4 Time domain Green function for deep water

4.4.1 Time domain Green function for Poincaré's velocity representation

The time domain Green function of the free surface �ow for unsteady problem satis�es the

Laplace equation

∇2G(x, ξξξ, t) = δ(x− ξξξ)δ(t− τ), for x ∈ Ω; t ≥ 0 (4.76)

and the linearized free surface boundary condition

∂2G

∂t2
+ g

∂G

∂z
= 0, on z = 0, (4.77)

the radiation and sea bottom condition

|∇xG| → 0, as r →∞; ∀t ≥ 0, (4.78)

with the initial conditions

G(x, ξξξ, 0) = 0,
∂G(x, ξξξ, 0)

∂t
= 0, for x ∈ Ω. (4.79)

The solution of above initial-boundary value problem is given by Brard (1948)

G(x, ξξξ, t) =
1

r1
− 1

r2
+ 2

ˆ ∞
0

{
1− cos

(√
gkt
)}

ekZJ0 (kR) dk (4.80)

The Bessel function integral relation is given as [using the equation 6.621 in (Gradshteyn and

Ryzhik, 2007)] ˆ ∞
0

e−αxJ0(x)dx =
1√

1 + α2
, α > 0. (4.81)

The image source is replaced by integral of Bessel and exponential functions

1

r2
=

ˆ ∞
0

ekZJ0 (kR) dk. (4.82)

where Z = z+ ζ. Substituting the integral relation into equation (4.80), the time domain Green

function can be expressed with image source having a positive sign as

G(x, ξξξ, t) =
1

r1
+

1

r2
− 2

ˆ ∞
0

cos
(√

gkt
)
ekZJ0 (kR)dk. (4.83)

Following the generic Green function de�ned in equation (4.32), the wave terms in time domain

free surface Green functions are given as

H(x, ξξξ, t) = 2

ˆ ∞
0

{
1− cos

(√
gkt
)}

ekZJ0 (kR) dk, (4.84)

F (x, ξξξ, t) = −2

ˆ ∞
0

cos
(√

gkt
)
ekZJ0 (kR) dk. (4.85)
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4.4.2 Evaluation of time domain Green functions

The evaluation of two wave terms given in equations (4.84) and (4.85) are necessary for Poincaré's

velocity representation with arbitrary matching surfaces. Many pieces of research have been

dedicated to the time derivatives of �rst wave term denoted as Hτ for e�cient and accurate

computation. Beck and Liapis (1987) decomposed the computational domain of variables and

applied a series expansion and numerical quadrature for di�erent domain. Newman (1992)

presented an algorithm based on Beck and Liapis (1987). Later, Clément (1998) announced a

new theorem showing that the time domain Green function is the solution of 4-th order ordinary

di�erential equation. Instead of computing the Green function itself, he solved the ordinary

di�erential equation for the evaluation of Green function and its derivatives with Runge-Kutta

4-th order scheme. Chuang et al. (2007) proposed a time-marching Frobenius method to evaluate

the Green function analytically. Li et al. (2015) suggested a precise integration (PI) method to

solve the ordinary di�erential equation. Recently, Bingham (2016) compared the accuracy and

e�ciency of computation algorithms based on the interpolation of tabulated data, solving the

ordinary di�erential equations by Runge-Kutta 4-th order scheme, time-marching Frobenius

method, and PI method. He reported that the interpolation with tabulated data is faster than

solving the ordinary di�erential equations with 5-6 digits of accuracy. Also, the time-marching

Frobenius method is about two times faster than the Runge-Kutta scheme.

Nevertheless, the velocity representation needs two expressions of wave term and their derivatives

which are

H(x, ξξξ, t) = 2

ˆ ∞
0

{
1− cos

(√
gkt
)}

ekZJ0 (kR) dk,

F (x, ξξξ, t) = 2

ˆ ∞
0

ekZ cos
(√

gkt
)
J0(kR)dk.

Previous researchers have focused on the �rst term Hτ (x, ξξξ, t − τ), but no study has been con-

ducted for the second expression F (x, ξξξ, t− τ) because F has never been applied in time domain

BEM to the author's knowledge. It is convenient to express wave terms with two real variables.

The wave terms with nondimensional spherical coordinates, µ = −(z + ζ)/r2 and τ = t/
√
g/r2

are given by

Hτ (x, ξξξ, t) = −2

√
g

r3
2

H̃τ (µ, τ), F (x, ξξξ, t) =
2

r2
F̃ (µ, τ) (4.86)

where

H̃τ (µ, τ) =

ˆ ∞
0

√
λe−µλJ0

(
λ
√

1− µ2
)

sin
(
τ
√
λ
)
dλ, (4.87)

F̃ (µ, τ) =

ˆ ∞
0

e−µλJ0

(
λ
√

1− µ2
)

cos
(
τ
√
λ
)
dλ. (4.88)

Clément (1998) showed that the �rst integral(H̃τ (µ, τ)) and its derivatives fall into the same

kind of integral and they all satisfy the 4-th order ordinary di�erential equation.

In present study, Clément's ordinary di�erential equation is extended to include the other wave

term.
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Proposition 1 Let ν and l be two real parameters, τ and µ are two real variables with 0 ≤ µ ≤ 1.

The functions Aν,l and Bν,l de�ned by

Aν,l(µ, τ) =

ˆ ∞
0

λle−µλJν

(
λ
√

1− µ2
)

sin
(
τ
√
λ
)
dλ, (4.89)

Bν,l(µ, τ) =

ˆ ∞
0

λle−µλJν

(
λ
√

1− µ2
)

cos
(
τ
√
λ
)
dλ (4.90)

are the solutions of the di�erential equation

∂4Wν,l

∂τ4
+ µτ

∂3Wν,l

∂τ3
+

{
τ2

4
+ µ (3 + 2l)

}
∂2Wν,l

∂τ2
+ τ

(
l +

5

4

)
∂Wν,l

∂τ
+
{

(l + 1)2 − ν2
}
Wν,l = 0,

(4.91)

where

Wν,l(µ, τ) = Aν,l(µ, τ) or Bν,l(µ, τ).

Proof) Clément (1998) proved that the function Aν,l(µ, τ) is a solution of ordinary di�erential

equation

A
(4)
ν,l + µτA

(3)
ν,l +

{
τ2

4
+ µ (3 + 2l)

}
A

(2)
ν,l + τ

(
l +

5

4

)
A

(1)
ν,l +

{
(l + 1)2 − ν2

}
Aν,l = 0

where superscript (·) represents the derivatives with respect to τ .

Applying the derivative with respect to τ again on the ordinary di�erential equation leads to

A
(5)
ν,l + µτA

(4)
ν,l +

[
τ2

4
+ µ

{
3 + 2

(
l +

1

2

)}]
A

(3)
ν,l

+τ

{(
l +

1

2

)
+

5

4

}
A

(2)
ν,l +

{(
l +

3

2

)2

− ν2

}
A

(1)
ν,l = 0.

Substituting the following relation between Aν,l and Bν,l

∂Aν,l(µ, τ)

∂τ
= Bν,l+ 1

2
(µ, τ, )

into the ordinary di�erential equation given above, the ordinary di�erential equation with respect

to Bν,l+ 1
2
is derived as

B
(4)

ν,l+ 1
2

+ µτB
(3)

ν,l+ 1
2

+

[
τ2

4
+ µ

{
3 + 2

(
l +

1

2

)}]
B

(2)

ν,l+ 1
2

+ τ

{(
l +

1

2

)
+

5

4

}
B

(1)
ν,l +

{(
l +

3

2

)2

− ν2

}
Bν,l+ 1

2
= 0.

Because l is arbitrary real, Bv,l is the solution of this ordinary di�erential equation.

Furthermore, the spatial derivatives of two integrals fall into the same integral kind given before.
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The interpolation based on tabulated data is e�cient compared to solving the ordinary di�erential

equation (Bingham, 2016). However, the development of algorithms based on tabulation method

for two wave terms and their derivatives need huge e�orts to get accuracy and e�ciency in same

time.

In the present study, the wave terms and their gradients are evaluted by solving the ordinary

di�erential equation. The initial condition of Aν,l is given by Clément (1998) by

A
(2k)
ν,l (µ, 0) = 0, A

(2k+1)
ν,l (µ, 0) = (−1)k+νΓ

(
l +

2k + 3

2
− ν
)
P νl+k+1/2(µ), k = 0, 1, 2, · · ·

(4.92)

where Γ(x) is Gamma function, P νl (x) is Legendre function of the �rst kind (Abramowitz and

Stegun, 1965). The initial conditions for Bν,l and its derivatives with respect to τ are given by

B
(2k)
ν,l (µ, 0) = (−1)k

ˆ ∞
0

λl+ke−λµJν

(
λ
√

1− µ2
)
dλ, B

(2k+1)
ν,l (µ, 0) = 0, k = 0, 1, 2, · · ·

(4.93)

Using the integral relation of Bessel function with the exponential and polynomial (equation

6.625.6 in (Gradshteyn and Ryzhik, 2007))ˆ ∞
0

e−t cos θJµ(t cos θ)tνdt = Γ(ν + µ+ 1)P−µν (cos θ), for < [ν + µ] > 1, 0 ≤ θ ≤ π

2
.

The initial condition for even order derivatives of Bν,l are given by

B
(2k)
ν,l (µ, 0) = (−1)k+νΓ(l + k − ν + 1)P νl+k(µ)

= (−1)k+ν(l + k − ν)!(1− µ)
ν
2
dν

dµν
Pl+k(µ).

The initial conditions for Hτ are given in Clément (1998) by using above relationships. The

initial conditions for Hτ and F are therefore given by

H̃τ (µ, 0) = 0, H̃
(1)
Rτ (µ, 0)= 1, H̃(2)

τ (µ, 0) = 0, H̃
(3)
Rτ (µ, 0)= −2µ.

and

F̃ (µ, 0) = 1, F̃ (1)(µ, 0)= 0, F̃ (2)(µ, 0) = −µ, F̃ (3)(µ, 0)= 0.

In a similar way, the initial condition of horizontal and vertical gradients of Hτ and F are given

by

H̃Rτ (µ, 0) = 0, H̃Zτ (µ, 0) = 0,

H̃
(1)
Rτ (µ, 0) = 3µ

√
1− µ2, H̃

(1)
Zτ (µ, 0) = 3µ2 − 1,

H̃
(2)
Rτ (µ, 0) = 0, H̃

(2)
Zτ (µ, 0) = 0,

H̃
(3)
Rτ (µ, 0) = −(15µ2 − 3)

√
1− µ2, H̃

(3)
Zτ (µ, 0) = −15µ3 + 9µ,

and

F̃R(µ, 0) =
√

1− µ2, F̃Z(µ, 0) = µ,

F̃
(1)
R (µ, 0) = 0, F̃

(1)
Z (µ, 0) = 0,

F̃
(2)
R (µ, 0) = −3µ

√
1− µ2, F̃

(2)
Z (µ, 0) = −3µ2 + 1,

F̃
(3)
R (µ, 0) = 0, F̃

(3)
Z (µ, 0) = 0.
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To solve the ordinary di�erential equation, the time marching Frobenius method proposed by

Chuang et al. (2007) is adopted in the present study. The 4-th order ordinary di�erential equation

is given in (4.91) as

W
(4)
ν,l + µτW

(3)
ν,l +

(
τ2

4
+ αµ

)
W

(2)
ν,l + βτW

(1)
ν,l + γWν,l = 0

where

α = 3 + 2l, β = l +
5

4
, γ = (l + 1)2 − ν2.

The solution of the ordinary di�erential equation of next time step τ is expanded with the power

series of the previous time step τ0 as

Wv,l(τ) =

∞∑
n=0

an (τ − τ0)n . (4.94)

Substituting the power series expanded solution into the ordinary di�erential equation, the �rst

four coe�cients are given as

a0 = Wν,l(µ, τ0), a1 = W
(1)
ν,l (µ, τ0), (4.95)

a2 =
1

2
W

(2)
ν,l (µ, τ0), a3 =

1

6
W

(3)
ν,l (µ, τ0). (4.96)

By de�ning the variable coe�cients of the ordinary di�erential equation as

κ1 = 1, κ2 = µ, κ3 = µτ0, κ4 =
1

4
, κ5 =

1

2
τ0, (4.97)

κ6 =
1

4
τ2

0 + αµ, κ7 = β κ8 = βτ0, κ9 = γ. (4.98)

The recursion relations of an for n ≥ 4 is given as

an+4 = − 1

λn+4
(λn+3an+3 + λn+2an+2 + λn+1an+1 + λnan) , for n ≥ 0,

with

λn+4 = κ1(n+ 4)(n+ 3)(n+ 2)(n+ 1),

λn+3 = κ3(n+ 3)(n+ 2)(n+ 1),

λn+2 = κ2(n+ 2)(n+ 1)n+ κ6(n+ 2)(n+ 1),

λn+1 = κ5n(n+ 1) + κ8(n+ 1),

λn = κ4n(n− 1) + κ7n+ κ9.

Therefore, the next time step solution Wν,l(τ) is given by the summation of coe�cients with the

desired accuracy. The evaluated wave terms and their derivatives are plotted in �gure 4.2.
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4. Potential �ow: Complementary waves with an arbitrary matching surface

(a) H̃τ (µ, τ) (b) F̃ (µ, τ)

(c) Horizontal gradient, H̃τR (d) Vertical gradient , H̃τZ

(e) Horizontal gradient, F̃R (f) Vertical gradient, F̃Z

Figure 4.2. Time domain Green function and their derivatives, H̃τ (µ, τ) and F̃ (µ, τ).
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4.5 Validation and discussion

4.5.1 A heaving hemisphere on the mean free surface

The Humle's heaving hemisphere is considered to validate the proposed Poincaré's velocity rep-

resentation with matching surface (Hulme, 1982). The analytical solution of surface-piercing

hemisphere is given by Hulme (1982) for surging and heaving motion. A heaving hemisphere on

the mean free surface is shown in �gure 4.3.

Figure 4.3. A heaving hemisphere on the mean free surface.

Spherical polar coordinates(r, ϕ, α) and cylindrical polar coordinates(R, θ, z) de�ned by

x = R cos θ, y = R sin θ, z = −r cosϕ, R = r sinϕ, (4.99)

are used.

When the hemisphere motion is given in Aheave sinωt where Aheave and ω are motion amplitude

and frequency, respectively, velocity potential is given in series of multipoles as

ΦR = ωAheave<
[
φRe

−iωt] , (4.100)

with radiation potential (φR) in frequency domain

φR = c0a
2

(
ψs0 +

∞∑
n=1

cna
2nψs2n

)
(4.101)

where cn denotes the multipole strengths and ψ2n are the wave-free potentials by multipoles

which are given in

ψ0 =
1

r1
+ πik

∞∑
n=0

(−kr)n

n!
Pn(µ)− k

∞∑
n=0

(−1)n
∂

∂ν

{
(kr)ν

nu!
Pν(µ)

}
ν=n

, (4.102)

ψ2n =
P2n(µ)

r2n+1
+

k

2n

P2n−1(µ)

r2n
, (4.103)
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where µ = cosϕ, k = ω2/g, Pν(µ) are Legendre polynomials given by

P0(µ) = 1,

P1(µ) = µ,

(n+ 1)Pn+1(µ) = (2n+ 1)µPn(µ)− nPn−1(µ), for n ≥ 1.

(4.104)

The body boundary condition is given by

∂φR
∂r

= cosϕ, on r = a, for ϕ ∈ [0, π/2]. (4.105)

Subtituting the velocity potential into body boundary condition

F (µ, ka)−
∞∑
n=1

cn {kaP2n−1(µ) + (2n+ 1)P2n(µ)} =
P1(µ)

c0
, (4.106)

with F (µ, ka) = a2 ∂ψ0

∂r . After integrating above expression with respect to ϕ over [0, 1] gives

ˆ 1

0
F (µ, ka)dµ− ka

∞∑
n=1

cnI0,2n−1 =
1

2c0
, (4.107)

where the integrals of Legendre functions are de�ned by

Im,n =

ˆ 1

0
Pm(µ)Pn(µ)dµ. (4.108)

Recalling the body boundary condition given in equation (4.106) leads to:

F (µ, ka)−
∞∑
n=1

cn {kaP2n−1(µ) + (2n+ 1)P2n(µ)}

= 2P1(µ)

(ˆ 1

0
F (µ, ka)dµ− ka

∞∑
n=1

cnI0,2n−1

) (4.109)

After manipulating previous equation, multiplying P2m(µ) and integrating with respect to µ over

(0, 1), we can obtain the equations for multipole strengths

2m+ 1

4m+ 1
cm + ka

∞∑
n=1

{I2m,2n−1 − 2I2m,1I0,2n−1} cn = J2m − 2J0I2m,1 (4.110)

with

Jm =

ˆ 1

0
F (µ, ka)Pm(µ)dµ

= −Im,0 − ka
∞∑
n=1

(−ka)n

(n− 1)!

∂Im,ν
∂ν

∣∣∣∣
ν=n

+ ka
∞∑
n=0

(−ka)n

n!
[n {ψ(n+ 1) + πi− ln ka} − 1] Im,n

(4.111)

where ψ(x) = d
dx ln (Γ(x)) = Γ′(x)

Γ(x) is digamma function. Note that digamma function in Hulme

(1982) is mistyped, e.g. written as φ(n). After solving the algebraic equations (4.109), c0 is

determined by equation (4.107). The computed radiation forces are compared in �gure 4.4 with

the results of Hulme (1982).

80



4. Potential �ow: Complementary waves with an arbitrary matching surface

(a) Added mass (b) Radiation damping

Figure 4.4. Nondimensionalized radiation forces acting on heaving hemisphere.

4.5.2 Con�guration of benchmark test

The schematic view of benchmark test is depicted in �gure 4.5. The �uid velocity and wave

elevation on the matching surface and waterline are calculated from analytic solution. They are

used to calculate the �uid velocity at �eld point from Poincaré's velocity representation. The

�uid velocity at �eld point calculated by velocity representation is compared with the analytical

solution.

Figure 4.5. Benchmark test.
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Poincaré's velocity representation with arbitrary matching surface is validated with following

cases:

• Discretization of matching surface: The �eld point is located underwater, the hemi-

sphere shaped matching surface is re�ned to see the convergence.

• Discretization of convolution time di�erence: The �eld point is located underwater,

the convolution time di�erence is re�ned with hemisphere shaped matching surface.

• Di�erent heaving frequencies: The �eld point is located underwater at �xed position,

the heaving frequency of hemisphere is changed.

• Di�erent matching surfaces: The �eld point is located underwater at �xed position,

various shaped matching surfaces are applied.

• Field point is located on z = 0: When the �eld point is located on z = 0, the �uid

velocity reconstructed by Poincaré's velocity representation will be discussed.

4.5.3 Discretization of matching surface

Hemisphere shaped matching surfaces with a radius of 2a are shown in �gure 4.6. The heaving

hemisphere is located inside of this matching surface. The �uid velocities at two �eld points,

kR = 3.19, kz = −0.637 and kR = 23.54, kz = −0.637 are reconstructed by Poincaré's velocity

representation, respectively. The reconstructed �uid velocity are compared with the analytical

solution in �gures 4.7 and 4.8. In the �gures, A(f) is the amplitude of f .

(a) Npanel = 28, Nline = 8 (b) Npanel = 165, Nline = 20

(c) Npanel = 781, Nline = 44 (d) Npanel = 3381, Nline = 92

Figure 4.6. Discretized matching surfaces of hemisphere shape.

82



4. Potential �ow: Complementary waves with an arbitrary matching surface

Figure 4.7. The reconstructed velocity with respect to matching surface discretization at

kR = 3.19 and kz = −0.637 (left : time series, right : mwFFT, top : horizonal velocity, bottom

: vertical velocity)

Figure 4.8. The reconstructed velocity with respect to matching surface discretization at

kR = 23.54 and kz = −0.637 (left : time series, right : mwFFT, top : horizonal velocity,

bottom : vertical velocity)
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The reconstructed velocity converges to the analytic solution as the mesh is re�ned for �eld point

kR = 3.19. For the discretized matching surfaces of Npanel = 165, 781 and 3381, the relative

errors are 1.1% 0.2% and 0.05%, respectively. The relative errors of the �uid velocity �eld point

kR = 23.54 with Npanel = 3381 increases up to 2.5%.

The obtained results show good agreement with analytical solution. Poincaré's velocity rep-

resentation gives good convengence with respect to mesh discretization. When the �eld point

locates far from the matching surface, matching surface and its waterline need to be discretized

su�ciently.

4.5.4 Discretization of convolution time step

The convolution time step sizes are varied for T/∆τ = 16, 32, 64, 128 with the spherical matching

surface of Npanel = 781. The moving window for convolution integral is set to 4.1T . The �uid

velocity at kR = 3.19, kz = −0.637 calculated by Poincaré's velocity representation is compared

with the analytical solution in �gure 4.9.

Figure 4.9. The reconstructed velocity with respect to convolution time di�erence ∆τ at

kR = 3.19 and kz = −0.637 (left : time series, right : mwFFT, top : horizonal velocity, bottom

: vertical velocity)

In the result of mwFFT, 1.3% of error is shown for vertical velocity component with re�ned

convolution time di�erence T/∆τ = 128. It is thought that su�cient discretizations with respect

to mesh and convolution time steps are necessary to obtain accurate results.
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4.5.5 Di�erent heaving frequencies

Three di�ererent heaving frequencies, ω = 1.0, 2.5 and 4.0 rad/s, have been considered for

validation. Fluid velocities are reconstructed at �xed �eld point R = 5.0m and z = −1.0m. The

spherical matching surface with the number of panels, Npanel = 781 is used. The convolution

time step is ∆τ = 0.01s and the convolution integral is calculated over 15s.

Time series of reconstructed velocities are compared with the analytical solution in �gure 4.10.

Figure 4.10. The reconstructed velocity with respect to di�erent heaving frequency ω at

R = 5.0m and z = −1m (left : horizontal velocity, right : vertical velocity)

After the initial evolution of memory e�ects, the reconstructed velocities show good agreement

with analytical solution. The amplitudes of reconstructed velocities for di�erent frequencies have

relative errors less than the value of 0.6%.

In the results, we can verify that the reconstructed waves by Poincaré's velocity representation

are propagating with di�erent speed. This is the e�ects of dispersion on the speed of the waves.
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4.5.6 Di�erent matching surfaces

A set of di�erent matching surfaces such as hemisphere, bottom-opened circular cylinder, ellipsoid

and parallel-pipe shown in �gure 4.11, are considered to check the sensitivity of the proposed

velocity representation to the geometry of the matching surface. The convolution time step of

∆τ = 0.01s is used and the convolution integral is calculated over 15s.

Time series and mwFFT of reconstructed �uid velocity at �eld point (kR = 3.19, kz = −0.6370)

are compared with the analytical solution in �gure 4.12. The reconstructed velocity with closed

matching surfaces have relative errors of less than 0.4% and the velocity with bottom-opened

circular cylinder has a relative error of 1%.

The results are summarized as follows:

• The proposed velocity representation is validated for arbitrary matching surfaces. For

submerged �eld point, the reconstructed velocity shows good agreements with analytical

solution.

• For a matching surface deep su�ciently, the proposed velocity representation works even

when the bottom surface is opened. When the source point is deeply submerged and the

distance between �eld and source points is large enough, the time domain Green function

has very small value and the �uid velocity at the source point is negligible.

(a) Hemisphere (Npanel = 781, Nline = 44 ) (b) Circular cylinder (Npanel = 816, Nline = 51)

(c) Ellipsoid (Npanel = 688, Nline = 68) (d) Parallel-pipe (Npanel = 1120, Nline = 80)

Figure 4.11. Di�erent matching surfaces.
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4. Potential �ow: Complementary waves with an arbitrary matching surface

Figure 4.12. Reconstructed velocity with respect to di�erent matching surfaces at kR = 3.19

and kz = −0.637 (left : time series, right : mwFFT, top : horizontal velocity, bottom : vertical

velocity)

4.5.7 Singular behavior and discussion

When the �eld point is located on the mean free surface(z = 0), the reconstructed velocity shown

in �gure 4.13 has a singular behavior.

Figure 4.13. A singular behavior of reconstructed �uid velocity and its components with

respect to integral contributions.
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4. Potential �ow: Complementary waves with an arbitrary matching surface

Two velocity contributions may cause this singular behavior:

• Contribution of harmonic component (uH) has a highly oscillatory unstable velocity pro�le

when convolution integral is partially evaluated with a moving window interval. It becomes

smooth after the moving window convolution time interval(T0) passes the simulation time

t > T0.

• Contribution of free surface component (uF ) has a highly oscillatory unstable velocity

pro�le when the convolution integral is partially evaluated with moving integral interval

as: ˆ t

t−T0
{·} dτ (4.112)

where T0 is moving window convolution time interval. The contribution of free surface

integral is unstable after simulation time t > T0, e.g., t− T0 > 0.

This singular behavior is thought to be similar to the singular behavior of waterline integral in

the time domain problem (Bingham, 1994). When source and �eld points move towards mean

free surface, the nondimensionalized spatial variable of the time domain Green function is given

by

µ =
z + ζ

r2
→ 0. (4.113)

The time domain Green functions and their spatial derivatives, shown in �gure 4.2, have the

diverging behaviors when µ = 0. At the limit µ = 0, the time domain Green function H̃τ (µ, τ)

is expressed in the combination of Bessel functions (Wehausen and Laitone, 1960):

H̃τ (0, τ) =
πτ

2
√

2

{
J1/4

(
τ2

8

)
J−1/4

(
τ2

8

)
+ J3/4

(
τ2

8

)
J−3/4

(
τ2

8

)}
τ2

8
, (4.114)

and it is bounded but has diverging behavior for τ →∞:

− τ√
2
≤ H̃τ (0, τ) ≤ τ√

2
. (4.115)

The diverging behavior of time domain Green function with the limited number of discretized

constant panels make the reconstructed velocity unstable. Numerical singularity due to the

discretization of panels and diverging behavior of time domain Green function for µ = 0 is

depicted in �gure 4.14.

To verify that the mesh and waterline discretizations causes the singular behavior, the waterline

segements are discretized into subline segments. Nsubline = 21 means that one original line

segment is discretized into 21 sub-line segments. Reconstructed horizontal and vertical velocities

with respect to waterline discretization are shown in �gure 4.15.

Results show that the waterline discretization helps to remedy the singular behavior of recon-

structed �uid velocity on the mean free surface. However, highly oscillatory behavior of �uid

velocity does not be cured by discretizing waterline segment.
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4. Potential �ow: Complementary waves with an arbitrary matching surface

Figure 4.14. Understanding of numerical singularity due to the discretization of matching

surface and waterline with time domain Green function.

Figure 4.15. Understanding of numerical singularity due to the discretization of matching

surface and waterline with time domain Green function.
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Remarks on singular behavior

When both �eld and source points are located on the mean free surface, the time domain Green

function and its derivatives fall into the integral type
ˆ ∞

0
kpJ0(kR)

{
cos t
√
gk

sin t
√
gk

}
dk, (4.116)

where p is polynomial order. The time domain Green function has a diverging behavior when p

is large and the oscillating band of Green function increases with p. Therefore, it is necessary to

reduce the order of polynomial p on a mathematical point of view.

Derivating above integral with respect to time and space, the polynomial order (p) increases by

0.5 and 1, respectively, as shown below:

∂

∂t

ˆ ∞
0

kpJ0(kR)

{
cos t
√
gk

sin t
√
gk

}
dk =

√
g

ˆ ∞
0

kp+0.5J0(kR)

{
− sin t

√
gk

cos t
√
gk

}
dk, (4.117)

∂

∂R

ˆ ∞
0

kpJ0(kR)

{
cos t
√
gk

sin t
√
gk

}
dk =

ˆ ∞
0

kp+1J ′0(kR)

{
cos t
√
gk

sin t
√
gk

}
dk. (4.118)

It means that derivating the time domain Green function gives poor results in numerical simu-

lation.

When the surface and time integrals are applied to Poincaré's velocity representation, the order

of polynomial (p) in time domain Green function is reversely reduced by 1 and 0.5, respectively.

Therefore, a circular cylindrical shaped matching surface is introduced in the next Chapter

5. Integrating Poincaré's velocity representation along cylindrical matching surface makes the

velocity representation less singular.

4.6 Conclusion

Poincaré's velocity representation, based on a modi�cation of the boundary integral equation,

is introduced. Consequently, the velocity representation becomes weakly singular and the �uid

velocity at the �eld point is given explicitly from the normal and tangential velocity at boundary

surfaces.

The velocity representation is applied to the unsteady time-domain problem with the linearized

free surface boundary condition without forward speed. The free surface integral is transformed

into a waterline integral by Reynolds transport and Stokes theorems. As a result, the �uid

velocity at �eld point is given by the distribution of �uid velocities and wave elevations on the

matching surface and waterline explicitly. It is shown that the various forms of wave term in

the time domain Green functions satisfy the same 4-th order di�erential equations proposed by

Clément (1998). Initial conditions of wave terms are suggested to solve the ordinary di�erential

equation with respect to τ . A time-marching Frobenius method proposed by Chuang et al. (2007)

is applied to calculate the wave terms.

The heaving hemisphere is considered as a benchmark test to validate the proposed velocity

representation Hulme (1982).
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When the �eld point is located underwater, the proposed Poincaré's velocity representation is

show good agreements with analytical solution. It is validated for the cases of the discretization

of matching surface, discretization of convolution time step size, di�erent heaving frequency and

various shaped matching surface.

However, a singular behavior of reconstructed velocity appears when the �eld point is located on

mean free surface (z = 0). Discretization of matching surface and its waterline with diverging

behavior of time domain Green function causes this singular problem.

It has been shown that integrating the time domain Green function along matching surface or

its waterline makes the problem weakly singular. In the following Chapter 5, a circular cylin-

drical matching surface with pseudo-spectral method based on Fourier-Laguerre appoximation

is introduced.
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5. Potential �ow: Complementary waves with a vertical circular cylindrical matching surface

5 Potential �ow: Complementary waves with a vertical circular

cylindrical matching surface

The velocity representation given in the previous section is formulated for an arbitrary matching

surface and its waterline. The discretization of matching surface and waterline into panels and

line segments causes numerical di�culties when the �eld point is located on the mean free surface,

due to the singular behavior of the time domain Green function. Futhermore, discretization

requires multiple summations with respect to panels, line segments and convolution integral. It

needs also huge computation time and resources.

The matching surface does not necessarily need to be arbitrarily shaped. Even if the �uid

velocity is possibly computed by discretized panels and line segments, it is numerically favorable

to use an analytical shape as the matching surface. Applying the surface integral to the velocity

representation over an analytic matching surface can reduce the computational cost and minimize

the singular behavior.

The complementary waves which are generated by the body without forward speed propagate

in all directions. In the far-�eld, the complementary waves can be approximated by Fourier

series. Therefore, a vertical circular cylindrical matching surface, which has a radius larger than

body dimension, is introduced in the present study. The body is located inside the matching

surface. On the matching surface and its waterline, the �uid velocities and wave elvations are

approximated into Fourier-Laguerre series.

5.1 A vertical circular cylindrical matching surface

The coordinates with cylindrical matching surface are depicted in �gure 5.1. The �eld point

P = (r, θ, z) is located at the outside of matching surface, r > a, z < 0. The source point

Q = (a, θ′, ζ) is on the vertical circular cylindrical matching surface with radius of a. By the law

of cosines, the distance between the source and �eld points (R) is given by

R2 = a2 + r2 − 2ar cos(θ − θ′),

R = 2a sin
|θ − θ′|

2
, if r = a.

(5.1)

A vector in cartesian coordinates is transformed into cylindrical coordinates using

f =

f
x

fy

fz

 =

cos θ −a sin θ 0

sin θ a cos θ 0

0 0 1


f

r

fθ

fz

 (5.2)

where the superscript is a corresponding directional vector component.

The normal unit vector on the cylindrical matching surface is given by

n = cos θ′ex + sin θ′ey + 0 · ez = 1 · êr + 0 · êθ + 0 · ez (5.3)
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(a) 3D view (b) Bird's eye view

Figure 5.1. The coordinates with a vertical circular cylindrical matching surface

where êx, êy and êz are unit basis vectors with respect to cartesian coordinates. êr and êθ are

unit basis vector with respect to cylindrical coordinates. The normal �uid velocity is given by

unC = uC · n = cos θ′uξC + sin θ′uηC , (5.4)

and the tangential velocity is given by

wC = uC × n = wξCex + wηCey + wζCez, (5.5)

with

wξC = −uζC sin θ′, wηC = uζC cos θ′, wζC = uξC sin θ′ − uηC cos θ′. (5.6)

The gradients in cylindrical coordinates are de�ned by

∇xf = frêr + fθêθ + fzez, ∇ξf = faêr + fθ′ êθ + fζez (5.7)

with

(fr, fθ, fz) =

(
∂f

∂r
,
1

r

∂f

∂θ
,
∂f

∂z

)
, (fa, fθ′ , fζ) =

(
∂f

∂a
,

1

a

∂f

∂θ′
,
∂f

∂ζ

)
. (5.8)

Applying coordinates transformation in equation (5.2), the derivatives of Green functions are

given by

Rξ = cos θ′Ra − sin θ′Rθ′ , Rη = sin θ′Ra + cos θ′Rθ′ , (5.9)

R∗ξ = cos θ′R∗a − sin θ′R∗θ′ , R∗η = sin θ′R∗a + cos θ′R∗θ′ , (5.10)

Hξ = cos θ′Ha − sin θ′Hθ′ , Hη = sin θ′Ha + cos θ′Hθ′ , (5.11)

Fξ = cos θ′Fa − sin θ′Fθ′ , Fη = sin θ′Fa + cos θ′Fθ′ . (5.12)
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Substituting above relationships into velocity representation in equations (4.71), (4.72), (4.73)

and (4.74) and applying surface integral along vertical circular cylindrical matching surface givesu
x
C

uyC
uzC

 =

u
x
R + uxR∗ + uxH + uxF
uyR + uyR∗ + uyH + uyF
uzR + uzR∗ + uzH + uzF

 , (5.13)

where each of velocity components with vertical circular cylindrical matching surface is given by

• Rankine source contributionu
x
R

uyR
uzR

 =

ˆ 0

−∞

ˆ 2π

0

Ra cos θ′unC −Rθ′ sin θ′unC +Ra sin θ′wζC +Rθ′ cos θ′wζC −Rζw
η
C

Ra sin θ′unC +Rθ′ cos θ′unC −Ra cos θ′wζC +Rθ′ sin θ′wζC +RζwξC
RζunC +Rawθ

′
C −Rθ′waC

 adθ′dζ
(5.14)

• Image source contribution uxR∗
uyR∗
−uzR∗

 =

ˆ 0

−∞

ˆ 2π

0

R
∗
a cos θ′unC −R∗θ′ sin θ′unC +R∗a sin θ′wζC +R∗θ′ cos θ′wζC −R∗ζw

η
C

R∗a sin θ′unC +R∗θ′ cos θ′unC −R∗a cos θ′wζC +R∗θ′ sin θ′w
ζ
C +R∗ζw

ξ
C

R∗ζunC +R∗awθ
′
C −R∗θ′waC

 adθ′dζ
(5.15)

• Harmonic contribution uxH
uyH
−uzH

 = −
ˆ t

t0

ˆ 0

−∞

ˆ 2π

0

Hτa cos θ′unC −Hτθ′ sin θ
′unC +Hτa sin θ′wζC +Hτθ′ cos θ′wζC −Hτζw

η
C

Hτa sin θ′unC +Hτθ′ cos θ′unC −Hτa cos θ′wζC +Hτθ′ sin θ
′wζC +Hτζw

ξ
C

Hτζu
n
C +Hτaw

θ′
C −Hτθ′w

a
C


adθ′dζdτ

(5.16)

• Free surface contributionu
x
F

uyF
uzF

 = −
ˆ t

t0

ˆ 2π

0

Fζ cos θ′(gΞC)

Fζ sin θ′(gΞC)

Fa(gΞC)

 adθ′dτ (5.17)

with

waC = wξC cos θ′ − wηC sin θ′, (5.18)

wθ
′
C =

1

a

(
wξC sin θ′ + wηC cos θ′

)
. (5.19)

5.2 Fourier-Laguerre and Fourier approximations

5.2.1 Fourier-Laguerre approximation of �uid velocity

Fluid velocities at �eld point and matching surface are expanded with Fourier-Laguerre series byu
x
C

uyC
uzC

 ≈ N∑
q=−N

M∑
q=0

U
x
pq

Uypq
Uzpq

 eiqθLp(−sz), (5.20)
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and 
unC
wξC
wηC
wζC


r=a

≈
N∑

n=−N

M∑
m=0


Cnmn
Wξ
mn

Wη
mn

Wζ
mn

Lm (−sζ) einθ
′
. (5.21)

where U , C and W are Fourier-Laguerre coe�cients for �uid velocity at �eld point, normal and

tangential velocities at matching surface, respectively. The series expansion are truncated with

the number of Fourier modes, N , and Laguerre modes,M . Lm(−sζ) is Laguerre function de�ned

by

Lm(−sζ) = e
s
2
ζLm(−sζ), (5.22)

where Lm(−sζ) is Laguerre polynomial

Lm(x) =
ex

m!

dm

dxm
(
e−xxm

)
=

1

m!

(
d

dx
− 1

)m
xm, (5.23)

where s is an user-de�ned parameter. The Laguerre functions for di�erent m are depicted in

�gure 5.2.

Figure 5.2. Laguerre functions Lm(−sζ).

The Laguerre function for m = 0 reduces to an exponential function

L0(−sζ) = e
s
2
ζ . (5.24)

The user-de�ned parameter s is selected to be two times the representative wave number (s = 2k0)

for a good approximation. For regular waves, the representative wave number is easily selected

with k0 = ω2/g. In the case of irregular waves, the representative wave number is taken from

the wave number of peak wave periods (k0 = kp).
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The orthogonalities of Laguerre functions and Fourier series are given as
ˆ 0

−∞
Lm(−sζ)Lp(−sζ)dζ =

1

s
δmp, (5.25)

and ˆ 2π

0
ei(n−l)θdθdθ = 2πδnl, (5.26)

where δmn is a Kronecker delta given by

δmn =

1 m = n

0 m 6= n
. (5.27)

In a previous research, Hamilton and Yeung (2011) applied Fourier-Chebyshev series on the

velocity potential for �nite water depth problems, while Liang and Chen (2017); Liang et al.

(2018) applied Fourier-Laguerre series for deep water cases.

To evaluate the Fourier-Laguerre coe�cients, the surface integral with Fourier-Laguerre function

is applied to equation (5.21) as

ˆ 0

−∞

ˆ 2π

0


unC
wξC
wηC
wζC


r=a

Lp(−sζ)e−ilθ
′
adζdθ′

=

ˆ 0

−∞

ˆ 2π

0

N∑
n=−N

M∑
m=0


Cnmn
Wξ
mn

Wη
mn

Wζ
mn

Lm (−sζ)Lp(−sζ)ei(n−l)θ
′
adζdθ′

(5.28)

The orthogonalities given in equations (5.25) and (5.26) are applied to evaluate the coe�cients

used for approximation as
Cnmn
Wξ
mn

Wη
mn

Wζ
mn

 =
s

2π

ˆ 2π

0

ˆ 0

−∞


unC
wξC
wηC
wζC


r=a

Lm (−sζ) e−inθ
′
dζdθ′. (5.29)

5.2.2 Fourier approximation of wave elevation

The wave elevation on the waterline is approximated by Fourier series with Fourier coe�cient En

[gΞC ]r=a ≈
N∑

n=−N
Eneinθ

′
. (5.30)

Fourier coe�cients for wave elevation are calculated by applying an integral over waterline to

(5.30) by ˆ 2π

0
[gΞC ]r=a e

−ilθ′adθ′ ≈
ˆ 2π

0

N∑
n=−N

Enei(n−l)θ
′
adθ′. (5.31)
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Using the orthogonality given in equation (5.26)

En =
1

2π

ˆ 2π

0
[gΞC ]r=a e

−inθ′dθ′. (5.32)

5.3 Elementary functions

5.3.1 The elementary functions for the circular cylindrical matching surface inte-

gral

Right-hand-sides of velocity representation given in equations (5.14), (5.15) and (5.16) are given

by surface integral on the �ow quantities with Green function. The harmonic velocity contribu-

tion are expressed with multiple integrals including the convolution and surface integrals on the

�ow component over the matching surface with Green function as

f(r, θ, z, t) =

ˆ t

t0

ˆ 2π

0

ˆ 0

−∞
f(a, θ′, ζ, τ)G(x, ξξξ, t− τ)adζdθ′dτ, (5.33)

where f(r, θ, z) is the �ow component at �eld point, f(a, θ′, ζ) is the �ow component at the

matching surface. Fourier-Laguerre expansions on �ow components are given by

f(r, θ, z, t) =
∞∑

q=−∞

∞∑
p=0

Cpq(r, t)e
iqθLp(−sz), (5.34)

f(a, θ′, ζ, τ) =
∞∑

n=−∞

∞∑
m=0

Cmn(a, τ)einθ
′Lm(−sζ). (5.35)

Substituting equations (5.34) and (5.35) into equation (5.33)

∞∑
q=−∞

∞∑
p=0

Cpq(r, t)e
iqθLp(−sz) =

∞∑
n=−∞

∞∑
m=0

ˆ t

t0

Cmn(a, τ)

×
ˆ 2π

0

ˆ 0

−∞
einθ

′Lm(−sζ)G(x, ξξξ, t− τ)adζdθ′dτ,

(5.36)

Multiplying by e−iq
′θLp′(−sz) and integrating with respect to θ′ from 0 to 2π and z from −∞

to 0
ˆ 2π

0

ˆ 0

−∞

∞∑
q=−∞

∞∑
p=0

Cpq(r, t)e
i(q−q′)θLp(−sz)Lp′(−sz)dzdθ =

∞∑
n=−∞

∞∑
m=0

ˆ t

t0

Cmn(a, τ)

×
ˆ 2π

0

ˆ 0

−∞

ˆ 2π

0

ˆ 0

−∞
ei(nθ

′−q′θ)Lm(−sζ)Lp′(−sz)G(x, ξξξ, t− τ)adζdθ′dzdθdτ.

(5.37)

Using the orthogonalities in equations (5.25) and (5.26), the Fourier-Laguerre coe�cient at the

�eld point is explicitly given by

Cpq(r, t) =
as

2π

∞∑
n=−∞

ˆ t

t0

Cmn(a, τ)

×
ˆ 2π

0

ˆ 2π

0

ˆ 0

−∞

ˆ 0

−∞
einθ

′
e−iqθLm(−sζ)Lp(−sz)G(x, ξξξ, t− τ)dζdzdθ′dθdτ.

(5.38)
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In the previous section, it is shown that the time domain Green function can be expressed with

Fourier series. The Green function in Fourier series is given by

G(r, θ, z, a, θ′, ζ, t− τ) =
∞∑

l=−∞
eil(θ−θ

′)Gl(r, z, a, ζ, t− τ), (5.39)

where Gl(r, z, a, ζ, t − τ) are the Fourier components of Green function. Substituting above

expression into (5.38) and applying orthogonalitygiven in equation (5.26), we obtain

Cpn(r, t) =
∞∑

n=−∞

ˆ t

t0

Camn(a, τ)Sn,mp(r, a, t− τ)dτ, (5.40)

where Sn,mp(r, a, t− τ) are the surface elementary functions

Sn,mp(r, a, t− τ) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Gn(r, z, a, ζ, t− τ)dζdz. (5.41)

5.3.2 The elementary functions for the circular waterline integral

The right-hand-sides of equation (5.17) are given by a waterline integral on a �ow quantities

associated with the Green function. The �ow component at the �eld point is expressed as

g(a, θ, z, t) =

ˆ t

t0

ˆ 2π

0
g(a, θ′, ζ = 0, τ)G(x, ξξξ; t− τ)adθ′dτ, (5.42)

where g(a, θ, z; t) is the �ow component at the �eld point, g(a, θ′, 0; τ) is the �ow component on

the waterline of matching surface. Fourier-Laguerre and Fourier expansions on g(a, θ, z; t) and

g(a, θ′, 0; τ) are given by

g(a, θ, z, t) =

∞∑
q=−∞

∞∑
p=0

Dpq(r, t)e
iqθLp(−sz), (5.43)

g(a, θ′, ζ = 0, τ) =

∞∑
n=−∞

Dn(a, τ)einθ
′
, (5.44)

Substituting these two expansions into equation (5.42)
∞∑

q=−∞

∞∑
p=0

Dr
pqe

iqθLp(−sz) =

∞∑
n=−∞

ˆ t

t0

Dn(τ)

ˆ 2π

0
einθ

′
G(x, ξξξ; t− τ)adθ′dτ, (5.45)

Multiplying e−iq
′θLp′(−sz) and integrating with respect to θ from 0 to 2π and z from −∞ to 0

ˆ 2π

0

ˆ 0

−∞

∞∑
q=−∞

∞∑
p=0

Dpq(r, t)e
i(q−q′)θLp(−sz)Lp′(−sz)dθdz =

∞∑
n=−∞

ˆ t

t0

Dn(a, τ)

×
ˆ 2π

0

ˆ 0

−∞

ˆ 2π

0
ei(nθ

′−q′θ)Lp′(−sz)G(x, ξξξ; t− τ)adθ′dzdθdτ,

(5.46)

Using the orthogonal relationships given in equations (5.25) and (5.26), the Fourier-Laguerre

coe�cient at �eld point is given by

Dpq(r, t) =
as

2π

∞∑
n=−∞

ˆ t

t0

Dn(a, τ)

ˆ 2π

0

ˆ 2π

0

ˆ 0

−∞
einθ

′
e−iqθLp(−sz)G(x, ξξξ; t− τ)dzdθ′dθdτ.

(5.47)
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Substituting the Green function given by Fourier-series in equation (5.39) into the above equation,

we obtain

Dpn(r, t) =

∞∑
n=−∞

ˆ t

t0

Dn(a, τ)Fn,p(r, a, t− τ)dτ, (5.48)

where Fn,p(r, a, t− τ) are the waterline elementary functions

Fn,p(r, a, t− τ) = 2πas

ˆ 0

−∞
Lp(−sz)Gn(r, z, a, ζ = 0, t− τ)dz. (5.49)

5.4 Elementary functions for the time domain Green function

5.4.1 Green function in circular cylindrical coordinates

The source and image source are expressed with Bessel function integrals as

R(x, ξξξ) =
1

r1
=

1√
R2 + (z − ζ)2

=

ˆ ∞
0

e−k|z−ζ|J0(kR)dk,

R∗(x, ξξξ) = − 1

r2
= − 1√

R2 + (z + ζ)2
= −

ˆ ∞
0

ek(z+ζ)J0(kR)dk.

(5.50)

Applying Graf's addition theorem on Bessel function

J0(kR) =
∞∑

l=−∞
Jl(kr)Jl(ka)eil(θ−θ

′), (5.51)

Therefore, source and image source can be expressed by Fourier series

R(x, ξξξ) =
∞∑

l=−∞
eil(θ−θ

′)Rl(r, z, a, ζ), (5.52)

R∗(x, ξξξ) =

∞∑
l=−∞

eil(θ−θ
′)R∗l (r, z, a, ζ). (5.53)

with their Fourier components

Rl(r, z, a, ζ) =

ˆ ∞
0

e−k|z−ζ|Jl(kr)Jl(ka)dk, (5.54)

R∗l (r, z, a, ζ) = −
ˆ ∞

0
ek(z+ζ)Jl(kr)Jl(ka)dk. (5.55)

The wave terms in Fourier series are given by

H(x, ξξξ, t− τ) = 2

ˆ ∞
0

ek(z+ζ)J0(kR)
{

1− cos
(√

gk(t− τ)
)}

dk

=
∞∑

l=−∞
eil(θ−θ

′)Hl(r, z, a, ζ, t− τ), (5.56)

F (x, ξξξ, t− τ) = −2

ˆ ∞
0

ek(z+ζ)J0(kR)
{

cos
(√

gk(t− τ)
)}

dk

=

∞∑
l=−∞

eil(θ−θ
′)Fl(r, z, a, ζ, t− τ), (5.57)
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where

Hl(r, z, a, ζ, t− τ) = 2

ˆ ∞
0

ek(z+ζ)Jl(kr)Jl(ka)
{

1− cos
(√

gk(t− τ)
)}

dk, (5.58)

Fl(r, z, a, ζ, t− τ) = −2

ˆ ∞
0

ek(z+ζ)Jl(kr)Jl(ka)
{

cos
(√

gk(t− τ)
)}

dk. (5.59)

5.4.2 Surface elementary functions for the source

Fourier-series expansion of the source is given in equation (5.52) as:

R(r, a, θ, θ′, z, ζ) =

∞∑
l=−∞

eil(θ−θ
′)Rl(r, a, z, ζ),

with its Fourier components

Rl(r, a, z, ζ) =

ˆ ∞
0

e−k|z−ζ|Jl(kr)Jl(ka)dk.

Spatial derivatives of the source can be expressed with Fourier-series as

∇ξR(r, a, θ, θ′, z, ζ) =
∞∑

l=−∞
eil(θ−θ

′)
(
Ra,lêr +Rθ′,lêθ +Rζ,lez

)
, (5.60)

where vector components are given by

Ra,l =

ˆ ∞
0

ke−k|z−ζ|Jl(kr)J
′
l (ka)dk, (5.61)

Rθ′,l = − il
a

ˆ ∞
0

e−k|z−ζ|Jl(kr)Jl(ka)dk, (5.62)

Rζ,l =

ˆ ∞
0

∂

∂ζ

(
e−k|z−ζ|

)
Jl(kr)Jl(ka)dk =

ˆ ∞
0

z − ζ
|ζ − z|

ke−k|z−ζ|Jl(kr)Jl(ka)dk. (5.63)

Substituting the Fourier components into equation (5.41), the surface elementary functions for

derivatives of source are given by

SRa,n,mp(s; r, a) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Ra,n(r, z, a, ζ)dζdz

= 2πa

ˆ ∞
0

kZ(1)
mp(s; k)Jn(kr)J ′n(ka)dk, (5.64)

SRθ′,n,mp(s; r, a) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Rθ′,n(r, z, a, ζ)dζdz

= −2πni
ˆ ∞

0
Z(1)
mp(s; k)Jn(kr)Jn(ka)dk, (5.65)

SRζ,n,mp(s; r, a) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Rζ,n(r, z, a, ζ)dζdz

= 2πa

ˆ ∞
0

kZ(2)
mp(s; k)Jn(kr)Jn(ka)dk, (5.66)
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where Z(1)
mp(s; k) and Z(2)

mp(s; k) are de�ned here by the vertical integral functions of �rst and

second kind

Z(1)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

−∞
e−k|z−ζ|Lm(−sζ)Lp(−sz)dζdz, (5.67)

Z(2)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

−∞

z − ζ
|ζ − z|

e−k|z−ζ|Lm(−sζ)Lp(−sz)dζdz, (5.68)

respectively.

5.4.3 Surface elementary functions for the image source

Fourier-series expansion of the image sources is given in equation (5.53) as

R∗(r, a, θ, θ′, z, ζ) =

∞∑
l=−∞

eil(θ−θ
′)R∗l (r, a, z, ζ)

with its Fourier components

R∗l (r, a, z, ζ) = −
ˆ ∞

0
ek(z+ζ)Jl(kr)Jl(ka)dk.

Fourier series expansion of the spatial derivatives of the image sources is given by

∇ξR∗(r, a, θ, θ′, z, ζ) =
∞∑

l=−∞
eil(θ−θ

′)
(
R∗a,lêr +R∗θ′,lêθ +R∗ζ,lez

)
, (5.69)

where vector components are given by

R∗a,l = −
ˆ ∞

0
kek(z+ζ)Jl(kr)J

′
l (ka)dk, (5.70)

R∗θ′,l =
il
a

ˆ ∞
0

ek(z+ζ)Jl(kr)Jl(ka)dk, (5.71)

R∗ζ,l = −
ˆ ∞

0
kek(z+ζ)Jl(kr)Jl(ka)dk. (5.72)

Substituting the Fourier components into equation (5.41), the surface elementary functions for

spatial derivatives of the image source are given by

SR∗a,n,mp(s; r, a) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)R∗a,n(r, z, a, ζ)dζdz

= −2πa

ˆ ∞
0

kZ(3)
mp(s; k)Jn(kr)J ′n(ka)dk, (5.73)

SR∗θ′,n,mp(s; r, a) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)R∗θ′,n(r, z, a, ζ)dζdz

= 2πni
ˆ ∞

0
Z(3)
mp(s; k)Jn(kr)Jn(ka)dk, (5.74)

SR∗ζ,n,mp(s; r, a) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)R∗ζ,n(r, z, a, ζ)dζdz

= −2πa

ˆ ∞
0

kZ(3)
mp(s; k)Jn(kr)Jn(ka)dk, (5.75)
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where Z(3)
mp(s; k) are de�ned as the vertical integral functions of third kind

Z(3)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

−∞
ek(z+ζ)Lm(−sζ)Lp(−sz)dζdz. (5.76)

5.4.4 Surface elementary functions for the harmonic component

The time derivative of wave term in the Green function expanded with Fourier series is given in

equation (5.56) as

Hτ (r, a, θ, θ′, z, ζ, t) =
∞∑

l=−∞
eil(θ−θ

′)Hτl(r, a, z, ζ, t), (5.77)

and its Fourier components

Hτl(r, a, z, ζ, t) = 2
√
g

ˆ ∞
0

k
1
2 ek(z+ζ)Jl(kr)Jl(ka) sin(

√
gkt)dk. (5.78)

Spatial derivatives of wave term in Green function can be expressed with Fourier series

∇ξHτ =

∞∑
l=−∞

eil(θ−θ
′)
(
Hτa,lêr +Hτθ′,lêθ +Hτζ,lez

)
, (5.79)

with

Hτa,l = 2
√
g

ˆ ∞
0

k
3
2 ek(z+ζ)Jl(kr)J

′
l (ka) sin(

√
gkt)dk, (5.80)

Hτθ′,l = −2
√
g
il
a

ˆ ∞
0

k
1
2 ek(z+ζ)Jl(kr)Jl(ka) sin(

√
gkt)dk, (5.81)

Hτζ,l = 2
√
g

ˆ ∞
0

k
3
2 ek(z+ζ)Jl(kr)Jl(ka) sin(

√
gkt)dk. (5.82)

Substituting the Fourier components into equation (5.41), the surface elementary functions for

derivatives of the harmonic term are given by

SHa,n,mp(s; r, a, t) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Hτa,n(r, z, a, ζ)dζdz

= 4πa
√
g

ˆ ∞
0

k
3
2Z(3)

mp(s; k)Jn(kr)J ′n(ka) sin(
√
gkt)dk, (5.83)

SHθ′,n,mp(s; r, a, t) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Hτθ′,n(r, z, a, ζ)dζdz

= −4πni
√
g

ˆ ∞
0

k
1
2Z(3)

mp(s; k)Jn(kr)Jn(ka) sin(
√
gkt)dk, (5.84)

SHζ,n,mp(s; r, a, t) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Hτζ,n(r, z, a, ζ)dζdz

= 4πa
√
g

ˆ ∞
0

k
3
2Z(3)

mp(s; k)Jn(kr)Jn(ka) sin(
√
gkt)dk. (5.85)
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5.4.5 Waterline elementary functions

The wave term F in Fourier series is given in equation (5.57) as

F (r, a, θ, θ′, z, ζ, t) =
∞∑

l=−∞
eil(θ−θ

′)Fl(r, a, z, ζ, t)

with its Fourier components

Fl(r, a, z, ζ, t) = −2

ˆ ∞
0

ek(z+ζ)Jl(kr)Jl(ka) cos(
√
gkt)dk.

Spatial derivatives of the wave term can be expressed with Fourier series

∇ξF =

∞∑
l=−∞

eil(θ−θ
′)
(
Fa,lêr + Fθ′,lêθ + Fζ,lez

)
, (5.86)

where its Fourier components are given by

Fa,l = −2

ˆ ∞
0

kek(z+ζ)Jl(kr)J
′
l (ka) cos(

√
gkt)dk, (5.87)

Fθ′,l =
2il
a

ˆ ∞
0

ek(z+ζ)Jl(kr)Jl(ka) cos(
√
gkt)dk, (5.88)

Fζ,l = −2

ˆ ∞
0

kek(z+ζ)Jl(kr)Jl(ka) cos(
√
gkt)dk. (5.89)

Substituting above Fourier components into equation (5.49), the waterline elementary functions

for derivatives of the wave term are given by

FFa,n,p(s; r, a, t) = 2πas

ˆ 0

−∞
Lp(−sz)Fa,n(r, z, a, ζ = 0, t− τ)dz

= −4πa

ˆ ∞
0

kZ(4)
p (s; k)Jn(kr)J ′n(ka) cos(

√
gkt)dk, (5.90)

FFθ′,n,p(s; r, a, t) = 2πas

ˆ 0

−∞
Lp(−sz)Fθ′,n(r, z, a, ζ = 0, t− τ)dz

= 4πni
ˆ ∞

0
Z(4)
p (s; k)Jn(kr)Jn(ka) cos(

√
gkt)dk, (5.91)

FFζ,n,p(s; r, a, t) = 2πas

ˆ 0

−∞
Lp(−sz)Fζ,n(r, z, a, ζ = 0, t− τ)dz

= −4πa

ˆ ∞
0

kZ(4)
p (s; k)Jn(kr)Jn(ka) cos(

√
gkt)dk, (5.92)

where Z(4)
p (s; k) are the vertical integral function of the fourth kind de�ned by

Z(4)
p (s; k) = s

ˆ 0

−∞
ekzLp(−sz)dz. (5.93)
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5.4.6 The vertical integral functions

The vertical integral functions are de�ned in equations (5.67), (5.68), (5.76) and (5.93) as

Z(1)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

−∞
e−k|z−ζ|Lm(−sζ)Lp(−sz)dζdz,

Z(2)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

−∞

z − ζ
|ζ − z|

e−k|z−ζ|Lm(−sζ)Lp(−sz)dζdz,

Z(3)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

−∞
ek(z+ζ)Lm(−sζ)Lp(−sz)dζdz,

Z(4)
p (s; k) = s

ˆ 0

−∞
ekzLp(−sz)dz.

The vertical integral functions of the �rst and second kind can be decomposed into two sub-

integrals as

Z(1)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

z
ek(z−ζ)Lm(−sζ)Lp(−sz)dζdz + s

ˆ 0

−∞

ˆ z

−∞
e−k(z−ζ)Lm(−sζ)Lp(−sz)dζdz

(5.94)

Z(2)
mp(s; k) = s

ˆ 0

−∞

ˆ 0

z
ek(z−ζ)Lm(−sζ)Lp(−sz)dζdz − s

ˆ 0

−∞

ˆ z

−∞
e−k(z−ζ)Lm(−sζ)Lp(−sz)dζdz

(5.95)

Using a recursion relationship of Laguerre functions

∂

∂ζ
Lm(−sζ) =

∂

∂ζ
Lm−1(−sζ) + sLm−1(−sζ). (5.96)

the recursion relationship of integral is given as followsˆ z

−∞
e−k(z−ζ)Lm(−sζ)dζ =

Lm(−sz)− Lm−1(−sz)(
k + s

2

) +

(
k − s

2

)(
k + s

2

) ˆ z

−∞
e−k(z−ζ)Lm−1(−sζ)dζ

(5.97)

ˆ 0

z
ek(z−ζ)Lm(−sζ)dζ =

Lm(−sz)− Lm−1(−sz)(
k − s

2

) +

(
k + s

2

)(
k − s

2

) ˆ 0

z
ek(z−ζ)Lm−1(−sζ)dζ (5.98)

with the integral values when m = 0ˆ z

−∞
e−k(z−ζ)L0(−sζ)dζ =

e
sz
2

k + s
2

,

ˆ 0

z
ek(z−ζ)L0(−sζ)dζ =

e
sz
2 − ekz

k − s
2

, (5.99)

Two sub-integrals are given by

ˆ 0

−∞

ˆ z

−∞
e−k(z−ζ)Lm(−sζ)Lq(−sz)dζdz =


−(k− s2)

|p−m|−1

(k+ s
2)
|p−m|+1 m > p

1
s

1
k+ s

2
m = p

0 m < p

,

ˆ 0

−∞

ˆ 0

z
ek(z−ζ)Lm(−sζ)Lq(−sz)dζdz =


0 m > p

1
s

1
k+ s

2
m = p

−(k− s2)
|p−m|−1

(k+ s
2)
|p−m|+1 m < p

.
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Consequently, the vertical integral functions of �rst and second kinds are expressed as

Z(1)
mp(s; k) =


2

(k + s
2)

m = p

−s
(
k − s

2

)|m−p|−1(
k + s

2

)|m−p|+1
m 6= p

, (5.100)

Z(2)
mp(s; k) =


0 m = p

(−s)sgn(m− p)
(
k − s

2

)|m−p|−1(
k + s

2

)|m−p|+1
m 6= p

. (5.101)

Using the integral relationship of Laguerre function multiplied by exponential function
ˆ 0

−∞
ekζLm(−sζ)dζ =

(k − s
2)m

(k + s
2)m+1

, (5.102)

The vertical integral functions of third and fourth kinds are given by

Z(3)
mp(s; k) = s

(k − s
2)m+p

(k + s
2)m+p+2

, (5.103)

Z(4)
p (s; k) = s

(k − s
2)p

(k + s
2)p+1

. (5.104)

Note that the vertical integral functions have the following symmetry and antisymmetry prop-

erties

Z(i)
mp(s; k) = Z(i)

pm(s; k), i = 1, 3 (5.105)

and

Z(2)
mp(s; k) = −Z(2)

pm(s; k) (5.106)

Consequently, the elementary functions also have the following symmetry or antisymmetry rela-

tionship with respect to Laguerre mode m and p:

Sn,mp(s; r, a, t) = Sn,pm(s; r, a, t), when the integral involves Z(1,3)
mp (s; k), (5.107)

Sn,mp(s; r, a, t) = −Sn,pm(s; r, a, t), when the integral involves Z(2)
mp(s; k). (5.108)

Therefore, the vertical derivative of source elementary function has an antisymmetry relationship,

and the other elementary functions satisfy the symmetry relationship with respect to m and p.

Using the symmetry and antisymmetry properties, the computational e�orts for calculating the

elementary functions can be reduced.

105



5. Potential �ow: Complementary waves with a vertical circular cylindrical matching surface

5.5 Poincaré's velocity representation with a vertical circular cylindrical match-

ing surface

5.5.1 Integrals involving cosine, sine functions or normal and azimuth directional

components

The velocity contributions given in equations (5.14), (5.15), (5.16) and (5.17) include cos θ′ and

sin θ′. Therefore, the integrals involving cos θ′ and sin θ′ are necessarily as given by

s

2π

ˆ 2π

0

ˆ 0

−∞
f(a, θ′, ζ)

{
cos θ′

sin θ′

}
Lm (−sζ) e−inθ

′
dζdθ′, (5.109)

and

1

2π

ˆ 2π

0
f(a, θ′, 0)

{
cos θ′

sin θ′

}
e−inθ

′
dθ′. (5.110)

The coe�cients of Fourier-Laguerre and Fourier series on the matching surface are given by

Cmn =
s

2π

ˆ 2π

0

ˆ 0

−∞
f(a, θ′, ζ)Lm (−sζ) e−inθ

′
dζdθ′, (5.111)

Dn =
1

2π

ˆ 2π

0
g(a, θ′, 0)e−inθ

′
dθ′. (5.112)

Using the relationships of trigonometric functions

cos θ′ =
eiθ
′
+ e−iθ

′

2
, sin θ′ =

eiθ
′ − e−iθ′

2i
, (5.113)

the integrals can be given by the Fourier coe�cients of n− 1 and n+ 1 modes as

s

2π

ˆ 2π

0

ˆ 0

−∞
f(a, θ′, ζ)

{
cos θ′

sin θ′

}
Lm (−sζ) e−inθ

′
dζdθ′ =

1

2

{
Cmn+1 + Cmn−1

i(Cmn+1 − Cmn−1)

}
, (5.114)

and

1

2π

ˆ 2π

0
f(a, θ′, 0)

{
cos θ′

sin θ′

}
e−inθ

′
dθ′ =

1

2

{
Dn+1 +Dn−1

i(Dn+1 −Dn−1)

}
. (5.115)

The normal and azimuth directional vector components are given by coordinates transformations

given in equation (5.2)

fa = cos θ′f ξ − sin θ′fη, fθ
′

=
1

a

(
sin θf ξ + cos θfη

)
.

Using the relationships given in (5.113), the integrals involving normal and azimuth directional
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vector component can be given by

Camn =
s

2π

ˆ 2π

0

ˆ 0

−∞
fa(a, θ′, ζ)Lm(−sζ)e−inθ

′
dζdθ′

=
1

2

(
Cξmn+1 + Cξmn−1 − iCηmn+1 + iCηmn−1

)
(5.116)

Cθ
′
mn =

s

2πa

ˆ 2π

0

ˆ 0

−∞
fθ
′
(a, θ′, ζ)Lm(−sζ)e−inθ

′
dζdθ′

=
1

2

(
iCξmn+1 − iCξmn−1 + Cηmn+1 + Cηmn−1

)
(5.117)

Da
n =

1

2π

ˆ 2π

0
fa(a, θ′, 0)e−inθ

′
dθ′

=
1

2

(
Dξ
n+1 +Dξ

n−1 − iDη
n+1 + iDη

n−1

)
(5.118)

Dθ′
n =

1

2πa

ˆ 2π

0
fθ
′
(a, θ′, 0)e−inθ

′
dθ′

=
1

2

(
iDξ

n+1 − iDξ
n−1 +Dη

n+1 +Dη
n−1

)
(5.119)

where Cξmn, C
η
mn, D

ξ
n, D

η
n are Fourier-Laguerre and Fourier coe�cients involving f ξ and fη

de�ned by

Cξmn =
s

2π

ˆ 2π

0

ˆ 0

−∞
f ξ(a, θ′, ζ)Lm(−sζ)e−inθ

′
dζdθ′,

Cηmn =
s

2π

ˆ 2π

0

ˆ 0

−∞
fη(a, θ′, ζ)Lm(−sζ)e−inθ

′
dζdθ′,

Dξ
n =

1

2π

ˆ 2π

0
f ξ(a, θ′, 0)e−inθ

′
dθ′,

Dη
n =

1

2π

ˆ 2π

0
fη(a, θ′, 0)e−inθ

′
dθ′.

5.5.2 Poincaré's velocity representation with elementary functions

The �uid velocity at �eld point in Fourier-Laguerre series obtained by using elementary functions

and �ows in Fourier-Laguerre series are given byu
x
C

uyC
uzC

 =
1

4π

N∑
n=−N

M∑
p=0

U
x
pn

Uypn
Uzpn

 einθLp(−sz), (5.120)

where Uxpn, U
y
pn and Uzpn are Fourier-Laguerre coe�cients of the �uid velocity at �eld point and

superscripts are corresponding direction respectively. Fourier-Laguerre coe�cients of the �uid

velocity have four contributions given by

Uxpn = URxpn + URx∗pn + UHxpn + UFxpn , (5.121)

Uypn = URypn + URy∗pn + UHypn + UFypn , (5.122)

Uzpn = URzpn + URz∗pn + UHzpn + UFzpn . (5.123)
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The terms in right-hand-side of above equations correspond to contributions of source, image

source, harmonic and waterline integrals, respectively. These contributions are summarized as

follows:

• Source and image source contributions

URxpn + URx∗pn =
1

2

N∑
n=−N

M∑
m=0

[
(
Cnmn+1 + Cnmn−1 + iWz

mn+1 − iWz
mn−1

)
(SRa,n,mp + SR∗a,n,mp)

+
(
Wz
mn+1 +Wz

mn−1 − iCnmn+1 + iCnmn−1

)
(SRθ′,n,mp + SR∗θ′,n,mp)

− 2Wy
mn(SRζ,n,mp + SR∗ζ,n,mp)], (5.124)

URypn + URy∗pn =
1

2

N∑
n=−N

M∑
m=0

[
(
iCnmn+1 − iCnmn−1 −Wz

mn+1 −Wz
mn−1

)
(SRa,n,mp + SR∗a,n,mp)

+
(
Cnmn+1 + Cnmn−1 + iWz

mn+1 − iWz
mn−1

)
(SRθ′,n,mp + SR∗θ′,n,mp)

+ 2Wx
mn(SRζ,n,mp + SR∗ζ,n,mp)], (5.125)

URzpn + URz∗pn =
N∑

n=−N

M∑
m=0

[Cnmn(SRζ,n,mp − SR∗ζ,n,mp) +Wθ′
mn(SRa,n,mp − SR∗a,n,mp)

−Wa
mn(SRθ′,n,mp − SR∗θ′,n,mp)], (5.126)

where Wa
mn and Wθ′

mn are Fourier-Laguerre coe�cients of normal and azimuth directional

components of tangential velocity. Using the equations (5.116) and (5.117), they are given

by

Wa
mn =

s

2π

ˆ 2π

0

ˆ 0

−∞
waLm(−sζ)e−inθ

′
dζdθ′

=
1

2

(
Wx
mn+1 +Wx

mn−1 − iWy
mn+1 + iWy

mn−1

)
(5.127)

Wθ′
mn =

s

2π

ˆ 2π

0

ˆ 0

−∞
wθ
′Lm(−sζ)e−inθ

′
dζdθ′

=
1

2

(
iWx

mn+1 − iWx
mn−1 +Wy

mn+1 +Wy
mn−1

)
(5.128)

• Harmonic contributions

UHxpn = −1

2

N∑
n=−N

M∑
m=0

ˆ t

t0

[
(
Cnmn+1 + Cnmn−1 + iWz

mn+1 − iWz
mn−1

)
SHa,n,mp − 2Wy

mnSHζ,n,mp

+
(
Wz
mn+1 +Wz

mn−1 − iCnmn+1 + iCnmn−1

)
SHθ′,n,mp]dτ, (5.129)

UHypn = −1

2

N∑
n=−N

M∑
m=0

ˆ t

t0

[
(
iCnmn+1 − iCnmn−1 −Wz

mn+1 −Wz
mn−1

)
SHa,n,mp + 2Wx

mnSHζ,n,mp

+
(
Cnmn+1 + Cnmn−1 + iWz

mn+1 − iWz
mn−1

)
SHθ′,n,mp]dτ, (5.130)

UHzpn =
N∑

n=−N

M∑
m=0

ˆ t

t0

[CnmnSHζ,n,mp +Wθ′
mnSHa,n,mp −Wa

mnSHθ′,n,mp]dτ. (5.131)
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• Waterline contributions

UFxpn = −1

2

N∑
n=−N

ˆ t

t0

(En+1 + En−1)FFζ,n,pdτ, (5.132)

UFypn = − i
2

N∑
n=−N

ˆ t

t0

(En+1 − En−1)FFζ,n,pdτ, (5.133)

UFzpn = −
N∑

n=−N

ˆ t

t0

EnFFa,n,pdτ. (5.134)

5.6 Evaluation of elementary functions

5.6.1 Elementary functions involving semi-in�nite integrals

The surface and waterline elementary functions involve the integrals

ˆ ∞
0

kν

{
Z(i)
mp(s; k)

Z(4)
p (s; k)

}
× Jn(kr)

{
J ′n(ka)

Jn(ka)

}
×

{
cos t
√
gk

sin t
√
gk

}
dk, i = 1, 2, 3. (5.135)

where Z(i)
mp(s; k) and Z(4)

mp(s; k) are the vertical integral functions discussed in section 5.4.6. They

are written again

Z(1)
mp(s; k) =


2

(k + s
2)

m = p

−s
(
k − s

2

)|m−p|−1(
k + s

2

)|m−p|+1
m 6= p

,

Z(2)
mp(s; k) =


0 m = p

(−s)sgn(m− p)
(
k − s

2

)|m−p|−1(
k + s

2

)|m−p|+1
m 6= p

.

and

Z(3)
mp(s; k) = s

(k − s
2)m+p

(k + s
2)m+p+2

, Z(4)
p (s; k) = s

(k − s
2)p

(k + s
2)p+1

.

All vertical integral functions can be expressed as functions of k as

(k − s
2)q

(k + s
2)r

, q < r, (5.136)

where q and r are integer.

The derivative of the Bessel function of the �rst kind can be given by a Bessel function of the

�rst kind with di�erent order as (Abramowitz and Stegun, 1965)

J ′n(x) =
1

2
{Jn−1(x)− Jn+1(x)} , (5.137)

J ′n(x) = −Jn+1(x) +
n

x
Jn(x). (5.138)
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Therefore, the surface and waterline elementary functions need the evaluation of semi-in�nite

integrals with respect to k

Ipqrmn(s; r, a, t) =

ˆ ∞
0

kp
(k − s

2)q

(k + s
2)r

Jm(kr)Jn(ka)

{
cos t
√
gk

sin t
√
gk

}
dk. (5.139)

where p is a real number. q and r are integers. s is a positive real number (s > 0). m and n

are integers. r and a are real positive numbers satisfying r > a. t is a positive real number with

t ≥ 0.

5.6.2 Semi-in�nite integrals

The integrals given in equation (5.139) are rewritten by applying the change of variable x = ka

Ipqrmn(s; r, a, t) = ar−p−q−1

ˆ ∞
0

xp
(x− σ)q

(x+ σ)r
Jm (αx) Jn(x)

{
cos τ

√
x

sin τ
√
x

}
dx (5.140)

with the following parameters

σ =
sa

2
, α =

r

a
, τ = t

√
g/a. (5.141)

The �eld point (r) being located outside of vertical circular cylindrical matching surface of radius

(a) and time being always positive, then

α ≥ 1, τ ≥ 0. (5.142)

The evaluation of two semi-in�nite integrals involving two Bessel and trigonometric functions

given in following equations are necessary

Ic,mn(α; τ) =

ˆ ∞
0

f(x)Jm(αx)Jn(x) cos τ
√
xdx, (5.143)

Is,mn(α; τ) =

ˆ ∞
0

f(x)Jm(αx)Jn(x) sin τ
√
xdx, (5.144)

with the function

f(x) = xp
(x− σ)q

(x+ σ)r
. (5.145)

The integral can be split into three integrals de�ned by

ˆ ∞
0
{·} dx =

ˆ 1
4

0
{·} dx+

ˆ xc

1
4

{·} dx+

ˆ ∞
xc

{·} dx. (5.146)

where xc is the semi-in�nite integral bound and will be discussed later.

5.6.3 Integrals near zero and intermediate interval

The integral near zero is given by{
I(0)
c,mn

I(0)
s,mn

}
=

ˆ 1
4

0
f(x)Jm(αx)Jn(x)

{
cos τ

√
x

sin τ
√
x

}
dx. (5.147)
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Applying the change of variable, x = u2 leads to

ˆ 1
4

0
f(x)Jm(αx)Jn(x)

{
cos τ

√
x

sin τ
√
x

}
dx = 2

ˆ 1
2

0
uf(u2)Jm(αu2)Jn(u2)

{
cos τu

sin τu

}
du. (5.148)

The original and transformed integrands given in the above equation are compared in �gure 5.3.

In the �gure 5.3, the original integrand shows a highly oscillatory behaviour near x = 0. It gives

(a) Jm(ax)Jn(bx)

(
cos(c

√
x)

sin(c
√
x)

)
(b) uJm(au2)Jn(bu2)

(
cos(cu)

sin(cu)

)

Figure 5.3. The behavior of oscillatory integrands near to zero.

poor results when a direct numerical integration is applied. On the contrary, the transformed

integrand shows a relatively smooth behavior near u = 0. A numerical integration for transformed

integrand gives a reliable result for small u. The integral upper bound is set to x = 1
4 , u = 1

2 by

numerical test. The adaptive 3-point Gaussian quadrature with discretized integral integral

∆u = min

(
0.2π

max(α+ 1, τ + 0.001)
, 0.05

)
(5.149)

is applied to calculate the integral from x = 0 to x = 1
4 .

The integrals having intermediate interval from x = 1
4 to xc are de�ned by{

I(i1)
c,mn

I(i1)
s,mn

}
=

ˆ xc

1
4

f(x)Jm(αx)Jn(x)

{
cos τ

√
x

sin τ
√
x

}
dx, (5.150)

The numerical integration by applying 3-point adaptive Gaussian quadrature with discretized

interval ∆x = ∆u is used. The choice of integral upper bound xc will be discussed later.

5.6.4 Evaluation of semi-in�nite integral by splitting oscillatory functions

Computing a semi-in�nite integral of an oscillatory function with slowly decaying amplitude is

more complicated than for a monotonic function. Blackemore et al. (1976) compared numerical

methods, evaluating the semi-in�nite integral of an oscillatory function. They concluded that
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the integration, then summation algorithm provided good results over a wide range of functions.

The e�ciency of the numerical algorithm increases by using an accelerator. The accelerator is

numerical algorithm extrapolating an in�nite summation from �nite summation.

Lucas and Stone (1995) applied the integration, then summation algorithm on the integral in-

volving a single Bessel function with various accelerators, e.g, Euler transform, ε-algorithm and

mW-transform with a di�erent sub-integral interval (Davis and Rabinowitz, 1988; Shanks, 1955;

Wynn, 1956; Sidi, 1988; Lyness, 1985). They showed that all accelerators enhanced numerical

e�ciency and concluded that mW-transform with successive zeros of the Bessel function gives

better results than others. Following previous works, Lucas (1995) applied the same idea on

the integral involving two Bessel functions. Two Bessel functions are split into two oscillatory

functions and zeros are found by asymptotic forms of oscillatory functions.

The present study extended their idea for the case of the integral involving two Bessel function

multiplied by sine or cosine functions. The integrals involving two Bessel functions multiplied

by sine or cosine functions are de�ned by{
I∞c,mn(α, τ)

I∞s,mn(α, τ)

}
=

ˆ ∞
xc

f(x)Jm(αx)Jn(x)

{
cos τ

√
x

sin τ
√
x

}
dx. (5.151)

Using the asymptotic forms of Bessel function for large arguments given by (Abramowitz and

Stegun, 1965)

Jn(x) =

√
2

πx
cos
(
x− nπ

2
− π

4

)
, (5.152)

Yn(x) =

√
2

πx
sin
(
x− nπ

2
− π

4

)
, (5.153)

and the relationships of trigonometric functions given by

cos(A±B) = cosA cosB ∓ sinA sinB, (5.154)

sin(A±B) = sinA cosB ± sinB cosA, (5.155)

the oscillatory terms in the integrand are split into four functions

Jm(αx)Jn(x) cos τ
√
x =

1

4

4∑
i=1

J (i)
mn(α, τ ;x), (5.156)

Jm(αx)Jn(x) sin τ
√
x =

1

4

4∑
i=1

Y(i)
mn(α, τ ;x) (5.157)

where J (i)
mn and Y(i)

mn are the oscillatory functions de�ned as

J (1)
mn(α, τ ;x) = J−mn(α;x) cos τ

√
x+ Y −mn(α;x) sin τ

√
x, (5.158)

J (2)
mn(α, τ ;x) = J−mn(α;x) cos τ

√
x− Y −mn(α;x) sin τ

√
x, (5.159)

J (3)
mn(α, τ ;x) = J+

mn(α;x) cos τ
√
x+ Y +

mn(α;x) sin τ
√
x, (5.160)

J (4)
mn(α, τ ;x) = J+

mn(α;x) cos τ
√
x− Y +

mn(α;x) sin τ
√
x, (5.161)
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and

Y(1)
mn(α, τ ;x) = J−mn(α;x) sin τ

√
x− Y −mn(α;x) cos τ

√
x, (5.162)

Y(2)
mn(α, τ ;x) = J−mn(α;x) sin τ

√
x+ Y −mn(α;x) cos τ

√
x, (5.163)

Y(3)
mn(α, τ ;x) = J+

mn(α;x) sin τ
√
x− Y +

mn(α;x) cos τ
√
x, (5.164)

Y(4)
mn(α, τ ;x) = J+

mn(α;x) sin τ
√
x+ Y +

mn(α;x) cos τ
√
x, (5.165)

with

J±mn(α;x) = Jm(αx)Jn(x)∓ Ym(αx)Yn(x), (5.166)

Y ±mn(α;x) = Jm(αx)Yn(x)± Ym(αx)Jn(x). (5.167)

Using the asymptotic forms of Bessel functions in equations (5.152) and (5.153), the asymptotic

forms of oscillatory functions are given by

J (1)
mn(α, τ ;x) ∼ 2

πx
√
α

cos
{

(α− 1)x+ τ
√
x− π

2
(m− n)

}
, (5.168)

J (2)
mn(α, τ ;x) ∼ 2

πx
√
α

cos
{

(α− 1)x− τ
√
x− π

2
(m− n)

}
, (5.169)

J (3)
mn(α, τ ;x) ∼ 2

πx
√
α

cos
{

(α+ 1)x− τ
√
x− π

2
(m+ n+ 1)

}
, (5.170)

J (4)
mn(α, τ ;x) ∼ 2

πx
√
α

cos
{

(α+ 1)x+ τ
√
x− π

2
(m+ n+ 1)

}
, (5.171)

and

Y(1)
mn(α, τ ;x) ∼ 2

πx
√
α

sin
{

(α− 1)x+ τ
√
x− π

2
(m− n)

}
, (5.172)

Y(2)
mn(α, τ ;x) ∼ − 2

πx
√
α

sin
{

(α− 1)x− τ
√
x− π

2
(m− n)

}
, (5.173)

Y(3)
mn(α, τ ;x) ∼ − 2

πx
√
α

sin
{

(α+ 1)x− τ
√
x− π

2
(m+ n+ 1)

}
, (5.174)

Y(4)
mn(α, τ ;x) ∼ 2

πx
√
α

sin
{

(α+ 1)x+ τ
√
x− π

2
(m+ n+ 1)

}
. (5.175)

The behaviour of split oscillatory functions follows a sinusoidal function for large x. The phase

function is given by

ϑ = α±x± τ
√
x+ γ. (5.176)

where α± = α ± 1 and γ is function of m and n. Therefore, the phase functions corresponding

to the oscillatory functions are de�ned by

ϑ(1) = α−x+ τ
√
x+ γA, for J (1)

mn and Y(1)
mn, (5.177)

ϑ(2) = α−x− τ
√
x+ γA, for J (2)

mn and Y(2)
mn, (5.178)

ϑ(3) = α+x− τ
√
x+ γB, for J (3)

mn and Y(3)
mn, (5.179)

ϑ(4) = α+x+ τ
√
x+ γB, for J (4)

mn and Y(4)
mn, (5.180)

where

γA = −π
2

(m− n), γB = −π
2

(m+ n+ 1). (5.181)
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The behavior of the phase functions is plotted with respect to x in �gure 5.4.

Figure 5.4. The phase function of oscillatory functions along x-axis

The �gure shows that ϑ(i) for i = 1, 4 always increases with respect to x, but ϑ(i) for i = 2, 3 has

a minimal value when

dϑ(i)

dx

∣∣∣∣∣
x=xs

= α∓ − τ

2
√
xs

= 0 for i = 2, 3. (5.182)

The value of xs minmizing ϑ(i) for i = 2, 3 is given by

xs =
1

4

( τ

α∓

)2
. (5.183)

The phase functions, ϑ(i) for i = 2, 3, decrease until x ≤ xs and increase for x ≥ xs. Near

xs where the phase changes slowly, the oscillatory functions, J (i)
mn and Y(i)

mn for i = 2, 3, look

stationary. Therefore, xs is de�ned here as a stationary point of oscillatory functions in the

present study.

Lucas (1995) reported a similar phenomenon as initial poor behavior of J+
mn. It is understood

that initial poor behavior happens when the phase function of J+
mn is equal to zero.

The semi-in�nite integral is separated into the summation of sub-integrals with proper integral

intervals. The zeros or maxima/minima of oscillatory functions are used in the integration, then

summation algorithm but �nding maxima/minima of arbitrary oscillatory functions given in

equations (5.158)-(5.165) are not easy. Therefore, zeros are used as integral interval for sub-

integral in the present study.

Finding the zeros of oscillatory functions, J (i)
mn,Y(1,4)

mn for i = 1, 4, is relatively easy. After �nding

the �rst zero by direct searching with marching interval

∆x =
π

4α∓
. (5.184)

The next zero guess is taken from phase function, ϑ(i) for i = 1, 4. The next zero guess, x∗j+1, is

estimated by increasing the phase by π as

α∓x∗j+1 + τ
√
x∗j+1 = α∓xj + τ

√
xj + π, (5.185)
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It gives an explicit expression of next zero guess

x∗j+1 =

−τ +
√
τ2 + 4α∓

(
α∓xj + τ

√
xj + π

)
2α∓

2

. (5.186)

From the next zero guess x∗j+1, the Newton-Raphson method with the initial guess of x(0)
j+1 = x∗j+1

is used to compute the next zero as

x
(n+1)
j+1 = x

(n)
j+1 −

dϑ(i)(x
(n)
j+1)

dx
, i = 1, 4. (5.187)

The next zero, xj+1, is taken from the converged value x(n+1)
j+1 . Numerical tests show that the

Newton-Raphson method converges within 3-4 steps with accuracy O(10−12).

Finding the zeros of oscillatory functions, J (i)
mn,Y(i)

mn for i = 2, 3, is complicated due to the

existence of a stationary point. The phase of the stationary point is given by

ϑs = ϑ(i)(xs), for i = 2, 3. (5.188)

After �nding the �rst zero by direct searching, the next zero guess is given by

α±x∗i+1 − τ
√
x∗i+1 =


α±xi − τ

√
xi, |ϑi − ϑs| < 1.5π,

α±xi − τ
√
xi − π, xi ≤ x0, and |ϑi − ϑs| ≥ 1.5π,

α±xi − τ
√
xi + π, xi ≥ x0, and |ϑi − ϑs| ≥ 1.5π.

(5.189)

It also gives an explicit expression of the next zero guess

x∗i+1 =



(
τ+

√
τ2+4α±(α±xi−τ

√
xi)

2α±

)2

,
∣∣xi − x0

∣∣ < 1.5π,(
τ−

√
τ2+4α±(α±xi−τ

√
xi−π)

2α±

)2

, xi ≤ x0, and
∣∣xi − x0

∣∣ ≥ 1.5π,(
τ+

√
τ2+4α±(α±xi−τ

√
xi+π)

2α±

)2

, xi ≥ x0, and
∣∣xi − x0

∣∣ ≥ 1.5π.

(5.190)

It is straightforward to apply the Newton-Raphson method to �nd zeros of oscillatory functions

as

x
(n+1)
j+1 = x

(n)
j+1 −

dϑ(i)(x
(n)
j+1)

dx
, i = 2, 3. (5.191)

Some of the zeros near the stationary points are not detected by the above procedures. In that

case, the zeros are found by applying direct searching with marching interval given in equation

(5.184). After �nding the �rst zero after stationary point, the extrapolation procedure is applied

to accelerate the evaluation.

The procedures of decomposed oscillatory functions are plotted in �gure 5.5. The behaviours of

stationary point are observed for the functions, J (i)
mn,Y(i)

mn for i = 2, 3, and the singular behaviors

are also shown due to Bessel function of the second kind which has a singular behavior at x = 0

lim
x→0+

Ym(x) = −∞. (5.192)
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Figure 5.5. The oscillatory functions, Jmn and Ymn, for m = n = 0 and α = 4, τ = 20.

The singular behaviour of Bessel function near to origin provides a criterion for assessing the

integral bound (xc)

xc = max
(ym,1
α

, yn,1

)
(5.193)

with an approximated �rst zero of Bessel function of the second kind

yν,1 =

0.89357697, ν = 0,

ν + 0.9315768ν
1
3 + 0.260351ν−

1
3 + 0.01198ν−1 − 0.006ν−

5
3 − 0.001ν−

7
3 , ν ≥ 1.

(5.194)

Finally, the semi-in�nite integral is split into four integrals as

I∞c,mn(α, τ) =
1

4

4∑
i=1

I(i)
c,mn(α, τ), (5.195)

I∞s,mn(α, τ) =
1

4

4∑
i=1

I(i)
s,mn(α, τ), (5.196)

where eight integrals are de�ned by

I(i)
c,mn(α, τ) =

ˆ ∞
xc

f(x)J (i)
mn(α, τ ;x)dx,

I(i)
s,mn(α, τ) =

ˆ ∞
xc

f(x)Y(i)
mn(α, τ ;x)dx

, i = 1, 2, 3, 4. (5.197)
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The successive zeros of oscillatory functions can be found after the �rst zero x0 has been searched

from the lower integral bound, xc. Then, the semi-in�nite integral is expressed as

I(i)
c,mn =

ˆ x0

xc

f(x)J (i)
mn(α, τ ;x)dx+

ˆ x1

x0

f(x)J (i)
mn(α, τ ;x)dx+

ˆ x2

x1

f(x)J (i)
mn(α, τ ;x)dx+ · · ·

=

ˆ x0

xc

f(x)J (i)
mn(α, τ ;x)dx+R(i)

c,∞, for i = 1, 4, (5.198)

I(i)
s,mn =

ˆ x0

xc

f(x)Y(i)
mn(α, τ ;x)dx+R(i)

s,∞ for i = 1, 4, (5.199)

with the in�nite series summation of sub-integral

R(i)
c,∞ = lim

K→∞

K∑
k=0

a
(i)
2k , R(i)

s,∞ = lim
K→∞

K∑
k=0

b
(i)
2k , for i = 1, 4, (5.200)

where series terms are given by

a
(i)
k =

ˆ xk+2

xk

f(x)J (i)
mn(α, τ ;x)dx,

b
(i)
k =

ˆ xk+2

xk

f(x)Y(i)
mn(α, τ ;x)dx.

, for i = 1, 4. (5.201)

Integrals involving J (i)
mn and Y(i)

mn for i = 2, 3 are expressed with sub-integrals considering the

stationary point (xs)

I(i)
c,mn =

ˆ x0

xc

f(x)J (i)
mn(α, τ ;x)dx+ S(i)

c +R(i)
c,∞ for i = 2, 3,

I(i)
s,mn =

ˆ x0

xc

f(x)Y(i)
mn(α, τ ;x)dx+ S(i)

s +R(i)
s,∞ for i = 2, 3,

(5.202)

with the �nite and in�nite series summations

S(i)
c =

l∑
k=0

a
(i)
2k , R(i)

c,∞ = lim
K→∞

K∑
k=0

a
(i)
2(l+1)+2k for i = 2, 3, (5.203)

S(i)
s =

l∑
k=0

b
(i)
2k , R(i)

s,∞ = lim
K→∞

K∑
k=0

b
(i)
2(l+1)+2k for i = 2, 3. (5.204)

where series terms are given by

a
(i)
k =

ˆ xk+2

xk

f(x)J (i)
mn(α, τ ;x)dx

b
(i)
k =

ˆ xk+2

xk

f(x)Y(i)
mn(α, τ ;x)dx

, for i = 2, 3. (5.205)

The summation index l is chosen in order to have xl > xc. The in�nite series summations R(i)
c;∞

and R(i)
s;∞ are split into

R(i)
c;∞(j) =

j∑
k=0

a
(i)
2k +

∞∑
k=j+1

a
(i)
2k , i = 1, 2, 3, 4, (5.206)

R(i)
s;∞(j) =

j∑
k=0

b
(i)
2k +

∞∑
k=j+1

b
(i)
2k , i = 1, 2, 3, 4. (5.207)
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where the right-hand-sided terms
∑∞

k=j+1 a
(i)
2k and

∑∞
k=j+1 b

(i)
2k are able to be extrapolated with

successive series terms a(i)
2k and b(i)2k by using ε-algorithm (Wynn, 1956). The ε-algorithm extrap-

olates the in�nite series summation with a polynomial multiplied by a decaying exponential.

The following error criterion with a successive increment of j is used to obtain the integral with

desired accuracy(εI)

1− εI ≤
R

(i)
c,s;∞(j)

R
(i)
c,s;∞(j − 2)

≤ 1 + εI , and 1− εI ≤
R

(i)
c,s;∞(j)

R
(i)
c,s;∞(j − 1)

≤ 1 + εI , j ≥ 2. (5.208)

The integration procedures of oscillatory functions are depicted in �gures 5.6 and 5.7. The series

terms a(i)
2k and b(i)2k are evalulated by sub-integrals having the integral interval from xi to xi+2.

With the successive move of sub-integration, the extrapolation errors shall be reduced. The

starting points of extrapolation depend on the oscillatory functions.

Figure 5.6. The evaluation procedure of semi-in�nite integral involving J (i)
mn and Y(i)

mn for

i = 1, 4.

Figure 5.7. The evaluation procedure of semi-in�nite integral involving J (i)
mn and Y(i)

mn for

i = 2, 3.
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Two benchmark functions, which have highly oscillatories but slowly decaying behaviors, are

tested with extrapolation. The results are given in Tables 5.1 and 5.2.

Table 5.1. Evaluated integral values of benchmark function 1 with extrapolation algorithm

Integral
Direct integral

(with zeros)

Integral with

extrapolation
Error(%)

ˆ ∞
0

e−0.01xJ0(3x)J0(x) cos 10
√
xdx 1.249865× 10−1 1.249862× 10−1 -0.00024

ˆ ∞
0

e−0.01xJ0(3x)J0(x) sin 10
√
xdx 2.209661× 10−2 2.209660× 10−2 -0.00005

Computation time 0.084 s 0.044 s -

Table 5.2. Evaluated integral values of benchmark function 2 with extrapolation algorithm

Integral
Direct integral

(with zeros)

Integral with

extrapolation
Error(%)

ˆ ∞
0

xe−0.01xJ0(3x)J0(x) cos 10
√
xdx 4.828753× 10−1 4.828750× 10−1 -0.00006

ˆ ∞
0

xe−0.01xJ0(3x)J0(x) sin 10
√
xdx −2.588788× 10−2 −2.588785× 10−2 -0.00012

Computation time 0.176 s 0.068 s -

The relative errors of integral values evaluated by using extrapolation are calculated with the

reference integral values. The reference integral values are calculated by numerical quadrature

without extrapolation. An absolute integral error criterion of 10−9 is used for calculating refer-

ence integral values. The relative errors for benchmark test functions are less than 2.4× 10−4%.

Note that the relative errors can be further reduced by adjusting the desired accuracy (εI) in

equation 5.208.

The results show that the evaluated semi-in�nite integral with extrapolation gives good results

and the computation is accelerated. It is more evident when f(x) has a slowly decaying behavior.

It must be noticed that the numerical algorithm with split oscillatory functions can be applicable

for an arbitrary but monotonic behavior function. The numerical algorithm is able to be used

by selecting the starting point of extrapolation for functions having monotonic behaviours for

large x.
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5.6.5 Evaluation of semi-in�nite integral by steepest descent method

An alternative way of evaluating the semi-in�nite integrals based on the steepest descent method

has been suggested (Chen and Li, 2019; Li et al., 2019a). The integrands in equation (5.151) have

highly oscillatory behaviours when the variable τ is large (Li and Chen, 2018). The computational

time of algorithm based on split oscillatory functions for large τ is slightly longer than the case

of small τ . The procedure proposed by Chen and Li (2019); Li et al. (2019a) is summarized in

this section.

The semi-in�nite integral of two Bessel functions multiplied by sinusoidal functions given in

equation (5.151) are wirtten again

I∞c,mn(α, τ) =

ˆ ∞
xc

f(x)Jm(αx)Jn(x) cos τ
√
xdx,

I∞s,mn(α, τ) =

ˆ ∞
xc

f(x)Jm(αx)Jn(x) sin τ
√
xdx.

Introducing the complex integral

I∞mn(α; t) = I∞c,mn(α; t)− iI∞s,mn(α; t) =

ˆ ∞
xc

f(x)Jm(αx)Jn(x)e−iτ
√
xdx, (5.209)

and the relationship between Hankel and Bessel functions

Jm(αx) =
1

2

[
H(1)
m (αx) +H(2)

m (αx)
]
, Jn(x) =

1

2

[
H(1)
n (x) +H(2)

n (x)
]
, (5.210)

let us obtain for the integrand

I∞mn(α; τ) =
1

4

ˆ ∞
xc

f(x)
[
H(1)
m (αx)H(1)

n (x) +H(2)
m (αx)H(1)

n (x)

+H(1)
m (αx)H(2)

n (x) +H(2)
m (αx)H(2)

n (x)
]
e−iτ

√
xdx.

(5.211)

The oscillatory parts of Hankel functions can be decomposed from asymptotic forms of Hankel

function as (Abramowitz and Stegun, 1965)

H(1)
m (αx) = Ĥ(1)

m eiαx, H(2)
m (αx) = Ĥ(2)

m e−iαx, (5.212)

H(1)
m (x) = Ĥ(1)

m eix, H(2)
m (x) = Ĥ(2)

m e−ix. (5.213)

where Ĥ(1)
m and Ĥ(2)

m are the amplitude functions of Hankel functions. And the exponential terms

corrspond to oscillatory parts of Hankel functions. Using the above equations, the semi-in�nite

integral can be decomposed into four integrals

I∞mn(α; τ) = I∞,Amn (α; τ) + I∞,Bmn (α; τ) + I∞,Cmn (α; τ) + I∞,Dmn (α; τ), (5.214)

with

I∞,Amn (α; τ) =

ˆ ∞
xc

f(x)Ĥ(1)
m (αx)Ĥ(1)

n (x)ei[(α+1)x−τ
√
x]dx, (5.215)

I∞,Bmn (α; τ) =

ˆ ∞
xc

f(x)Ĥ(1)
m (αx)Ĥ(2)

n (x)ei[(α−1)x−τ
√
x]dx, (5.216)

I∞,Cmn (α; τ) =

ˆ ∞
xc

f(x)Ĥ(2)
m (αx)Ĥ(1)

n (x)ei[−(α−1)x−τ
√
x]dx, (5.217)

I∞,Dmn (α; τ) =

ˆ ∞
xc

f(x)Ĥ(2)
m (αx)Ĥ(2)

n (x)ei[−(α+1)x−τ
√
x]dx. (5.218)
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The integrals are further simpli�ed as

I∞,A(α+; τ) =

ˆ ∞
xc

fA(x)ei[α
+x−τ

√
x]dx, I∞,B(α−; τ) =

ˆ ∞
xc

fB(x)ei[α
−x−τ

√
x]dx, (5.219)

I∞,C(α−; τ) =

ˆ ∞
xc

fC(x)e−i[α
−x+τ

√
x]dx, I∞,D(α+; τ) =

ˆ ∞
xc

fD(x)e−i[α
+x+τ

√
x]dx, (5.220)

with

fA(x) = f(x)Ĥ(1)
m (
[
α+ − 1

]
x)Ĥ(1)

n (x), fB(x) = f(x)Ĥ(1)
m (
[
α− + 1

]
x)Ĥ(2)

n (x) (5.221)

fC(x) = f(x)Ĥ(2)
m (
[
α− + 1

]
x)Ĥ(1)

n (x), fD(x) = f(x)Ĥ(2)
m (
[
α+ − 1

]
x)Ĥ(2)

n (x) (5.222)

where parameters α± = α ± 1 are used. The exponential terms in integrands have phase func-

tions similar to ϑ in equation (5.176). Function f(x) is multiplied by amplitude functions of

Hankel functions Ĥ(1)
m (x) and Ĥ

(2)
m (x). Because the amplitude functions Ĥ(1)

m (x) and Ĥ
(2)
m (x)

are smoothly changing with respect to x > 0, the functions fA, fB, fC and fD have smooth

behaviors. The oscillatory phase function in exponential term is transformed into

α±x± τ
√
x =

[
x

(
2α±

τ

)2

± 2
√
x

(
2α±

τ

)
+ 1

](
τ2

4α±

)
−
(
τ2

4α±

)
. (5.223)

Introducing the integral variable

u =
√
x

(
2α±

τ

)
, or inversely x =

1

4

( uτ
α±

)2
, (5.224)

the semi-in�nite integrals are given by

I∞,A = e−iτ
+

ˆ ∞
u+c

gA(u)eiτ
+(u−1)2du, I∞,B= e−iτ

−
ˆ ∞
u−c

gB(u)eiτ
−(u−1)2du, (5.225)

I∞,C = eiτ
−
ˆ ∞
u−c

gC(u)e−iτ
−(u+1)2du, I∞,D= eiτ

+

ˆ ∞
u+c

gD(u)e−iτ
+(u+1)2du, (5.226)

with smoothly behaving functions

gA(u) = fA
(
u2τ+

α+

)
2uτ+

α+
, gB(u)= fB

(
u2τ−

α−

)
2uτ−

α−
, (5.227)

gC(u) = fC
(
u2τ−

α−

)
2uτ−

α−
, gD(u)= fD

(
u2τ+

α+

)
2uτ+

α+
. (5.228)

The integral parameters are given by

u±c =
√
xc

2α±

τ
> 0, τ± =

τ2

4α±
≥ 0. (5.229)

Therefore, the four di�erent integrals fall into two types of integral given by

II =

ˆ ∞
uc

g(u)e−iκ(u+1)2du, (5.230)

III =

ˆ ∞
uc

g(u)eiκ(u−1)2du. (5.231)
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Evaluation of the second integral type is separated into

III =

III0 , when uc ≥ 1,

III0 + IIII , when uc < 1,
(5.232)

with

III0 =

ˆ ∞
uc

g(u)eiκ(u−1)2du, uc ≥ 1, (5.233)

IIII =

ˆ 1

uc

g(u)eiκ(u−1)2du, uc < 1. (5.234)

Integral type I in the complex plane

The integral type I is given in equation (5.230) as

II =

ˆ ∞
uc

g(u)e−iκ(u+1)2du

Applying the change of integral variable, w = (u+ 1)2, this integral is transformed into

II =

ˆ ∞
w+
c

g (
√
w − 1)

2
√
w

e−iκwdw (5.235)

with a lower bound, w+
c = (uc + 1)2. The closed contour integral of integral type I is shown in

�gure 5.8. The integrand does not have singularity inside of closed contour, the integral along

closed contour given by using Cauchy theorem as

II + II∞ + IIi = 0. (5.236)

Figure 5.8. Closed contour I integration path in complex w-plane and mapped integration

path in complex u-plane.

The in�nite integral II∞ can be written as

II∞ = lim
ρ→∞

ˆ θc

0

g
(√

ρeiθ − 1
)

2
√
ρeiθ

e−iκρe
iθ
ρdθ

= lim
ρ→∞

ˆ θc

0

g
(√

ρeiθ − 1
)

2
√
ρeiθ

e−iκρ cos θeκρ sin θρdθ

(5.237)
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where the complex variable w = ρeiθ is used. θc is integral bound will be discussed soon. The

above integral is zero when the real part of exponential function is negative from Jordan's Lemma

(Brown and Churchill, 2004). Because κ and ρ are positive, sin θ should be negative, in other

words, θ should be in range θ ∈ [−π
2 , 0] to make II∞ be zero. Consequently, the closed contour

passes through quadrant 4 of the complex w plane.

The steepest descent path is determined by putting the imaginary part of integrand in equation

(5.237) as zero. Therefore, the integral path of IIi is set to be θc = −π
2 .

Using Cauchy's theorem in equation (5.236), the integral along real w axis can be evaluated by

steepest descent method as

II = −IIi = −e−iκw
+
c
i
2

ˆ ∞
0

g
(√

w+
c − iw − 1

)
√
w+
c − iw

e−κwdw (5.238)

The semi-in�nite integral involves the exponential factor, e−κw, the numerical evaluation of above

integral is straightforward and converges fastly for large κ, where κ is proportional to τ2

α2 .

Integral type II in the complex plane

The second integral type with lower integral bound uc ≥ 1 is given in equation (5.230) as

III0 =

ˆ ∞
uc

g(u)eiκ(u−1)2du.

Applying the change of variable, w = (u − 1)2, this integral is transformed into the following

form

III0 =

ˆ ∞
wc

g(
√
w + 1)

2
√
w

eiκwdw (5.239)

with lower integral bound w+
c = (uc − 1)2. The contour of integration path for second integral

type is depicted in �gure 5.9. There is no singularity inside closed contour, the integral along

closed path is given by using Cauchy's theorem

III0 + III0∞ + III0i = 0. (5.240)

Figure 5.9. Closed contour II integration path in complex w-plane and mapped integration

path in complex u-plane.
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The integral III0∞ can be expressed as

III0∞ = lim
ρ→∞

ˆ θc

0

g(
√
ρeiθ + 1)

2
√
ρeiθ

eiκ(ρeiθ)ρdθ

= lim
ρ→∞

ˆ θc

0

g(
√
ρeiθ + 1)

2
√
ρeiθ

eiκρ cos θe−κρ sin θρdθ.

(5.241)

where the complex variable w = ρeiθ is used. The above integral is zero when the real part

of exponential argument is negative. Therefore, θ should be in range θ ∈ [0, π2 ] to make the

integral be zero by using Jordan's Lemma. The steepest descent path is determined by making

the imaginary part of exponential argument in above integrand to be zero, e.g. θc = π
2 .

The integration along real w-axis can be given by using Cauchy's theorem in equation (5.240) as

III0 = −III0i = eiκwc
i
2

ˆ ∞
0

g(
√
wc + iw + 1)√
w1 + iw

e−κwdw. (5.242)

Integral type III in the complex plane

A supplementary integral is necessary when the lower integration bound uc is lower than 1 for

integral type II. The integral type III is given in equation (5.234) as

IIII =

ˆ 1

uc

g(u)eiκ(u−1)2du

Applying the change of variable, w = (u− 1)2, the integral is transformed into

IIII =

ˆ 0

w−c

(
−g(1−

√
w)

2
√
w

)
eiκwdw (5.243)

with lower bound w−c = (uc − 1)2.The contour integration path is depicted in �gure 5.10. No

singularity is located inside the closed integration path, then the integral along closed path can

be given as the below:

IIII + IIIIi0 + IIII∞ + IIIIi1 = 0. (5.244)

Figure 5.10. Closed contour III integration path in complex w-plane and mapped integration

path in complex u-plane.
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where the integration IIII∞ can be expressed as

IIII∞ = lim
wI→∞

ˆ w−c

0

(
−g(1−

√
w + iwI)

2
√
w + iwI

)
eiκ(w+iwI)dw

= lim
wI→∞

ˆ w−c

0

(
−g(1−

√
w + iwI)

2
√
w + iwI

)
eiκwe−κwIdw.

(5.245)

The real part of exponential function in above integral should be negative to make the integral

zero. Therefore, wI should be positive. When wI is positive in�nity, above integral is zero by

using Jordan's Lemma. Two integrals along vertical paths are given by

IIIIi0 = − i
2

ˆ ∞
0

g
(

1−
√
iw
)

√
iw

e−κwdw, (5.246)

and

IIIIi1 = eiκw
−
c
i
2

ˆ ∞
0

g
(

1−
√
w−c + iw

)
√
w−c + iw

e−κwdw. (5.247)

Therefore, the integration along the real w axis can be calculated by evaluating two integrals

along the vertical axis

IIII =
i
2

ˆ ∞
0

g
(

1−
√
iw
)

√
iw

e−κwdw − eiκw
−
c
i
2

ˆ ∞
0

g
(

1−
√
w−c + iw

)
√
w−c + iw

e−κwdw. (5.248)

It must be noticed that the contour integrations along the vertical axis are introduced to provide

the complete sets of steepest descent method evaluating oscillatory functions. The integration

interval for integral type III is de�ned along the real axis w, and it is �nite from w−c to 1. There

is no numerical di�culty to evaluate the integral type III along real axis w. In the present

study, the numerical quadrature is directly applied on equation (5.243) instead of evaluating two

semi-in�nite integrals though they involve exponential factors in the integrands.

Choice of lower integral bound xc

Functions gA(u), gB(u), gC(u), gD(u) de�ned in equations (5.227) and 5.228 can be expressed

by

gT (u) = fT
(
u2τ∗

α∗

)
2uτ∗

α∗
, T = A,B,C,D. (5.249)

with functions fT (x) can be expressed as

fT (x) = f (x) Ĥ(i)
m ([α∗ ± 1]x) Ĥ(j)

m (x) , i, j = 1 or 2. (5.250)

where the change of variable x = 1
4

(
uτ
α∗

)2 is used. The original function f (x) is given in equation

5.140 as

f(x) = xp
(x− σ)q

(x+ σ)r
. (5.251)

Therefore, the functions gT (u) can be expressed in the forms below with denominator

gT (u) =
hT (u)(

1
4
u2τ2

α2 + σ
)r (5.252)
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where hT (u) corresponds to the terms related to the nominator of original function f (x), two

Hankel funtions and change of variable.

Functions gT (u) are singular when the denominator is equal to zero. Therefore, the poles are

given by:

u = iu±p , with u±p = ±2α
√
σ

τ
. (5.253)

The poles u = iu±p locate outside of contour integrals I and II, but u = iu−p can be located

inside the contour integral III depicted in �gure 5.10. Value of u2 is given by mapping function

iu2 = 1−
√
w−c + iw. (5.254)

Splitting real and imaginary parts gives the relationship

w−c = 1− u2
2, and w = −2u2. (5.255)

Introducing w−c = (1− uc)2, the location of pole is obtained as

u2 = −
√
uc(2− uc). (5.256)

To construct a closed contour integration without pole inside, we use the fact that u2 satis�es

u−p > u2. With the relation u−p = −uc
√

σ
xc

the criterion of lower integral bound is given by

xc > σ

(
uc

2− uc

)
. (5.257)

The lower integral bound xc = σ
(

uc
2−uc

)
is a motononically increasing function for 0 < uc ≤ 1 and

has a maximum value of 1 when uc = 1. It provides a choice of xc > σ. Futhermore, integrals

involving Hankel functions H(1)
m (z) = Jm(z) + iYm(z), H(2)

m (z) = Jm(z) − iYm(z) provide the

criterion for the lower integral bound due to singular behavior of Ym(z) near z = 0. Therefore,

the lower integration bound is selected by

xc = max
(
σ,max

(ym,1
α

, yn,1

))
. (5.258)

where ym,1 is the approximated �rst zero of Ym(z) given in equation (5.194).

5.6.6 Remarks on elementary functions

The numerical evaluation of elementary function proposed in the present study is based on direct

numerical quadrature. The computation algorithm could be optimized by constructing sets of

approximation functions with decomposed regions, which are commonly used for the evaluation of

wave Green function in linear potential codes (Chen, 2004; Lee, 1995; Babarit and Delhommeau,

2015).

It is presumed that the ODEs of time domain Green function may help to evaluate the elementary

functions. Furthermore, it probably can accelerate for computation of convolution integrals.
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The ODE for wave term of time domain Green function in spatial and time variable is given by

(Clément, 1998)(
R2 + Z2

) ∂4Hτ

∂τ4
− Zτ ∂

3Hτ

∂τ3
+

(
1

4
τ2 − 4Z

)
∂2Hτ

∂τ2
+

7

4
τ
∂3Hτ

∂τ3
+

9

4
Hτ = 0. (5.259)

When the �eld points are not on the matching surface(R2 + Z2 > 0)

∂4Hτ

∂τ4
+
τ

2

U
UZ

∂3Hτ

∂τ3
+

(
τ2

4
U + 2

U
UZ

)
∂2Hτ

∂τ2
+

7

4
τU ∂

3Hτ

∂τ3
+

9

4
UHτ = 0, (5.260)

where U(R,Z) represent the square of source function

U(R,Z) =
1

R2 + Z2
. (5.261)

If integrals over circular cylindrical surface with weight function on ODEs are evaluated an-

alytically, ODEs for elementary functions can be derived. If ODEs and initial conditions for

elementary functions are available, elementary functions can be evaluated by solving the ODEs

rather than using the numerical quadrature. Furthermore, Clément (1998) suggested the idea

that convolution integrals involving the Green function can be updated by simply integrating

ODEs. If ODEs for elementary functions are derived, the convolution integrals involving the

elementary functions given by
ˆ t

t0

f(τ)Sa,θ′;n,mp(t− τ)dτ,

ˆ t

t0

f(τ)Fa,θ′;n,p(t− τ)dτ, (5.262)

where Sa,θ′;n,mp(τ) and Fa,θ′;n,p(τ) are the elementary functions. If ODEs are available for

elementary functions, the computation of convolution integrals can be accelerated, and a better

accuracy is also expected for the convolution integral.

In the present study, the convolution integral is evaluated by direct summation with simulation

time step.

5.6.7 Summary on the evaluation of elementary functions

Elementary functions having two Bessel functions and trigonometric function are de�ned by

Ic,mn(α; t) =

ˆ ∞
0

f(x)Jm(αx)Jn(x) cos τ
√
xdx,

Is,mn(α; t) =

ˆ ∞
0

f(x)Jm(αx)Jn(x) sin τ
√
xdx.

They are evaluated by splitting the integral interval into several sub-integrals
ˆ ∞

0
{·} dx =

ˆ 1
4

0
{·} dx+

ˆ xc

1
4

{·} dx+

ˆ ∞
xc

{·} dx.

The �rst integral is transformed with the change of variable u2 = x due to the highly oscillatory

behavior near to origin, giving
ˆ 1

4

0
f(x)Jm(αx)Jn(x)

{
cos τ

√
x

sin τ
√
x

}
dx = 2

ˆ 1
2

0
uf(u2)Jm(αu2)Jn(u2)

{
cos τu

sin τu

}
du.
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The numerical quadrature is applied to evaluate above integral and the integral along interme-

diate interval from 1
4 to xc with discretization integral ∆u = ∆x = min

(
0.2π

max(α+1,τ+0.001) , 0.05
)
.

The numerical quadrature used in present study is the 3-point adaptive Gaussian quadrature.

Two numerical algorithms have been suggested for evaluation of semi-in�nite integrals from xc

to in�nity.

• Split oscillatory functions

Irregularly oscillatory functions are split into interpretable oscillatory functions. Semi-

in�nite integrals of split functions are transformed into in�nite summation of sub-integrals,

which corresponds to �nite integral between zeros. In�nite summation is extrapolated from

�nite summation of series with Wynn's ε-algorithm (Wynn, 1956).

• Steepest descent method

Oscillatory functions are transformed into the complex plane. Using Jordan's Lemma,

steepest descent paths are found for corresponding integrals. Integrals involve exponen-

tial factors having negative real arguments. The exponential factors having negative real

arguments make the integrand decay to zero fastly. The implementation of numerical

quadrature is straightforward due to this decaying behavior. The argument of exponential

factor is proportional to τ2/α2, implying that numerical e�ciency increases for large τ

and/or small α.

In computational procedure of steepest descent method, transformed function into complex do-

main has its phase function:

α±x± τ
√
x =

[
x

(
2α±

τ

)2

± 2
√
x

(
2α±

τ

)
+ 1

](
τ2

4α±

)
−
(
τ2

4α±

)
,

It involves the denominator of τ . It makes the accuracy and e�ciency of the steepest descent

method being poor for small τ/α compared to the split oscillatory functions algorithm. Therefore,

the following criterion is adopted to select algorithm evaluating semi-in�nite integral


τ

α
< 0.4, Split oscillatory functions,

τ

α
≥ 0.4, Steepest descent method.

(5.263)

Computed harmonic and waterline elementary functions with two numerical algorithms are shown

in �gures 5.11 and 5.12. The elementary functions are calculated by steepest descent method

for
τ

α
≥ 0.4. The results from two numerical algorithms evaluating elementary functions are in

good agreement with each other.
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Figure 5.11. Computed harmonic elementary functions with two numerical algorithms,

r = 8.694, a = 2.5, s = 3.26,m+ p = 0, (left: n = 0, right: n = 1).
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Figure 5.12. Computed waterline elementary functions with two numerical algorithms,

r = 8.694, a = 2.5, s = 3.26, p = 1, (left: n = 1, right: n = 2).
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5.7 Reconstruction of wave elevation and �uid velocity above the mean free

surface

The complementary �uid velocity at the �eld point is calculated by equation (5.120). The com-

plementary wave elevation can be computed using the kinematic free surface boundary condition

by
∂ΞC
∂t

= uzC(r, θ, 0; t) =
1

4π

N∑
n=−N

M∑
p=0

Uzpneinθ, (5.264)

A Crank-Nicolson scheme is applied to calculate the wave elevation for time integration. After the

complementary wave elevation has been reconstructed, a pseudo-Wheeler stretching is applied

on the Laguerre function for the extrapolation of velocity for z > 0 by using Laguerre function

(Wheeler, 1970) u
x
C

uyC
uzC

 =
1

4π

N∑
n=−N

M∑
p=0

U
x
pn

Uypn
Uzpn

 einθLp(−sz′), (5.265)

with coordinates transformation similar to Wheeler stretching for deep water

z′ = z − ΞC . (5.266)

Laguerre functions for z′ > 0 increase exponentially which give large �uid velocities in the air

zone. Therefore the value of Laguerre functions is limited to 2 as follows:

Lp(−sz′) =

f limitz = 2, if Lp(−sz′) > 2,

Lp(−sz′), otherwise.
(5.267)

The behavior of Laguerre functions above the mean free surface is shown in �gure 5.13.

Figure 5.13. Behavior of Laguerre functions for z′ > 0.
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5.8 Reconstruction of complementary wave �ow in viscous �ow model

The proposed velocity representation with a vertical circular cylindrical matching surface is

valid when the �eld point is located outside the matching surface, e.g., r > a. The evaluation

of elementary functions and convolution integrals on the computational mesh of the viscous �ow

model are time-consuming tasks.

Instead of evaluating the �ow components at each �eld point from elementary functions, A B-

spline interpolation scheme on the structural grid can be used for calculating the complementary

�uid velocity and wave elevation at arbitrary point. A cylindrical interpolation grid is intro-

duced to construct complementary �uid velocity and wave elevation by using Poincaré's velocity

representation.

The procedure of calculating complementary �uid velocity and wave elevation is depicted in

�gure 5.14. The complementary �uid velocities on the matching surface and wave elevations on

the waterline of the matching surface are obtained. The complementary �uid velocities at the

Gauss points are interpolated from complementary �uid velocities on the matching surface.

The Fourier-Laguerre coe�cients of complementary �uid velocities in equation (5.29) are calcu-

lated by applying Fast Fourier Transform (FFT) and the integral along vertical axis ζ. Fourier

coe�cients of wave elevation in equation (5.32) are computed by using FFT. The coe�cients are

given by 
Cnmn
Wξ
mn

Wη
mn

Wζ
mn

 =
s

2π

ˆ 2π

0

ˆ 0

−∞


unC
wξC
wηC
wζC


r=a

Lm (−sζ) e−inθ
′
dζdθ′.

and

En =
1

2π

ˆ 2π

0
[gΞC ]r=a e

−inθ′dθ′.

Fourier-Laguerre coe�cients of complementary �uid velocity at �eld points are calculated by

using Poincaré's velocity representation given in equation (5.121) as

Uxpn = URxpn + URx∗pn + UHxpn + UFxpn ,

Uypn = URypn + URy∗pn + UHypn + UFypn ,

Uzpn = URzpn + URz∗pn + UHzpn + UFzpn .

The vertical component of complementary �uid velocity on the mean free surface is calculated

by applying inverse Fourier-Laguerre series.

uzC(r, θ, 0; t) =
1

4π

N∑
n=−N

M∑
p=0

Uzpneinθ,

The complementary wave elevation is reconstructed from kinematic free surface boundary con-

dition as

ΞC(r, θ = 0; t) =

ˆ t

0
uzC(r, θ, 0; τ)dτ. (5.268)
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The complementary wave �eld is reconstructed by applying inverse FFT. The complementary

�uid velocity on the interpolation grid is calculated by applying inverse Fourier-Laguerre series

with pseudo Wheeler stretching asu
x
C

uyC
uzC

 =
1

4π

N∑
n=−N

M∑
p=0

U
x
pn

Uypn
Uzpn

 einθLp(−sz′),
with z′ = z − ΞC .

The complementary �uid velocity and wave elevation are now reconstructed in 3D interpolation

grid, as shown in �gure 5.14b.

The reconstructed complementary �uid velocity and wave elevation on 3D cylindrical interpola-

tion are used to interpolate the velocity and wave elevation at arbitrary position. A cubic spline

interpolation, as explained in section 3.2.4, is used to evaluate the complementary �uid velocity

and wave elevation at arbitrary point.

(a) Reconstucted complementary wave �eld in Fourier space

(b) Reconstruction of 3D complementary wave �eld by inverse Fourier transform

Figure 5.14. Reconstruction of complementary �uid velocity and wave elevation on a

cylindrical grid by using a Poincaré's velocity representation.
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5.9 Validation and discussion

5.9.1 Benchmark tests

Here we use the same type of benchmark test as the one previously used for the Poincaré's

velocity representation with arbitrary matching surface. Two complementary wave problems

representing radiation-di�raction problems are considered.

• The radiation problem of a heaving hemisphere introduced in previous section 4.5.1 (Hulme,

1982).

• The di�raction problem of a wave di�raction by a vertical circular cylinder (McCamy and

Fuchs, 1954).

In the wave di�raction problem, circular cylindrical coordinates are used. The linear inci-

dent wave potential can be expressed in cylindrical coordinates by Graf's addition theorem

(Abramowitz and Stegun, 1965)

ΦI = <
[
− igA

ω

cosh k0(z +H)

cosh k0H
eik0xe−iωt

]
= <

[
− igA

ω

cosh k0(z +H)

cosh k0H

∞∑
m=0

εmimJm(k0R) cosmθe−iωt

]
,

(5.269)

where A is incident wave amplitude. ω is wave frequency. H is water depth. εm = 1 for m = 0

and εm = 2 for m > 0. k0 is the modal wavenumber satisfying linear dispersion relationship

ω2 = gk0 tanh k0H. (5.270)

The di�raction potential should satify the body boundary condition given by

∂ΦD

∂R
= −∂ΦI

∂R
, on R = acylinder, (5.271)

where ΦD is the di�raction potential and acylinder is the radius of cylinder.

The di�raction potential satisfying the above body boundary condition is given by eigenfunction

expansion

ΦD = <

[
igA
ω

cosh k0(z +H)

cosh k0H

∞∑
m=0

εmim
J ′m(k0acylinder)

H ′m(k0acylinder)
Hm(k0R) cosmθe−iωt

]
. (5.272)

The di�raction problem considered in the present study has various Fourier components. In

constrast, the radiation problem has only one Fourier component. Force acting on the cylinder

and wave elevation along waterline of cylinder are shown in �gures 5.15 and 5.16.
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Figure 5.15. Horizontal force acting on

vertical circular cylinder, H = 10a (Malenica,

1994).

Figure 5.16. Wave elevation along waterline

of vertical circular cylinder, H = a, ω
2

g a = 2

(Kim and Yue, 1989).

5.9.2 Fourier-Laguerre approximation

The complementary �uid velocity on the vertical circular cylindrical matching surface needs to

be approximated by Fourier-Laguerre series with coe�cients in Poincaré's velocity representa-

tion. The approximated complementary �uid velocities with Fourier-Laguerre series are given in

equation (5.21) as 
unC
wξC
wηC
wζC


r=a

≈
N∑

n=−N

M∑
m=0


Cnmn
Wξ
mn

Wη
mn

Wζ
mn

Lm (−sζ) einθ
′
.

where Cnmn, W
ξ
mn, Wη

mn and Wζ
mn are Fourier-Laguerre coe�cients.

It is necessary to evaluate the Fourier-Laguerre coe�cients for arbitrary function f(a, θ′, ζ) de-

�ned on the matching surface. Let the scalar function de�ned on the matching surface can be

approximated with Fourier-Laguerre series as

f(a, θ′, ζ) ≈
M∑
m=0

N∑
n=0

CmnLm(−sζ)einθ
′
, (5.273)

where Cmn is Fourier-Laguarre coe�cients of function f(a, θ′, ζ).

Using the orthogonal relationships of Laguerre and trigonometric functions given in equations

(5.25) and (5.26), the coe�cient is given by

Cmn =
s

2π

ˆ 0

−∞

ˆ 2π

0
f(a, θ′, ζ)Lm(−sζ)e−inθ

′
dζdθ′ (5.274)
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Integral along θ′ can be evaluated easily by using Fast Fourier Transform(FFT). The integral

along vertical axis ζ is de�ned by
ˆ 0

−∞
h(ζ)Lm(−sζ)dζ =

ˆ 0

−∞
h(ζ)e

s
2
ζLm(−sζ)dζ =

ˆ ∞
0

h(−u)Lm(su)e−
s
2
udu

=

ˆ ∞
0

ĥ (x) e−xdx

(5.275)

with

h(ζ) =
s

2π

ˆ 2π

0
f(a, θ′ζ)e−inθ

′
dθ′, and ĥ(x) =

2

s
h

(
−2x

s

)
Lm(2x). (5.276)

The semi-in�nite integral along x-axis can be evaluated by using Gauss-Laguerre quadrature.

Gauss points and associated weights can be used to evaluate semi-in�nite integral as (Abramowitz

and Stegun, 1965) ˆ ∞
0

ĥ(x)e−xdx ≈
NGauss∑
i=1

wiĥ(xi), (5.277)

where xi and wi are i-th Gauss point(abscissas) and weight. NGauss is the number of Gauss

points. Gauss points is taken from i-th zero of Laguerre polynomial LNGauss(x) and the weights

of Gauss-Laguerre quadrature (wi) are given by

wi =
(NGauss!)

2xi
(NGauss + 1)2[LNGauss+1(xi)]2

. (5.278)

Gauss points and weights are obtained by using subroutine cdgqf of IQPACK (Elhay and Kaut-

sky, 1987).

Gauss points may be located outside of computational domain because the depth of computa-

tional domain is limited. Therefore, extrapolation of scalar function f(a, θ′, ζ) is necessary to

evaluate Gauss-Laguerre quadrature.

Let Gauss points(ζi), which is physical axis transformed from mathematical axis xi, are located

in the computational domain with function values fi. Exponential function is used to extrapolate

f(ζ) as

f(ζ) ≈ aebz, (5.279)

where a and b are arbitrary real and b should be equal or greater than zero. If all fi are positive

or negative, a and b can be evaluated by applying the least squre method as[
± ln a

b

]
=
(
AT
lsAls

)−1
AT
lsbls, (5.280)

with

Als =


1 ζ1

1 ζ2

...
...

1 ζNselected

 , bls =


ln (±f1)

ln (±f2)
...

ln (±fNselected)

 . (5.281)

where Nselected is the number of exsiting Gauss points inside of computational domain. Signs of

ln a and ln(fi) depend on the sign of function value fi.
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When some of fi has di�erent sign, e.g., some of fi are positive and some of fi are negative, a

nonlinear least square method is needed to evaluate a and b. A global nonlinear optimization

algorithm based on iterative random search procedure with adaptive movement is applied to

minimize the approximation error de�ned by (Corana et al., 1987)

E(a, b) =

Nselected∑
i=1

(
fi − aebzi

)2
, a, b ∈ R, b ≥ 0. (5.282)

where E(a, b) is approximation error. Initial values of a and b for nonlinear optimization al-

gorithm are given by a and b obtained in previous time step. Benchmark tests on nonlinear

algorithm for arbitrary function with exponentially decaying behavior are shown in �gure 5.17.

The values of arbitrary function fi are distributed with respect to z ∈ [−10, 0], as plotted with

circle in �gure 5.17. fi have positive and negative sign. Extrapolated function by using nonlinear

optimization algorithm is plotted as rigid black line in �gure 5.17. They are following the global

tendencies of distributed fi along z axis. The results show that extrapolation for arbitrary

functions for z < 0 works well.

Figure 5.17. Benchmark tests on approximation of exponential function by using nonlinear

optimization algorithm.

After applying least square method, Fourier-Laguerre coe�cients can be evaluated by

Cmn =
s

Nθ′

Nθ′−1∑
j=0

Nselected∑
i=1

wifi,j+1 +

NGauss∑
i=Nselected+1

wifi,j+1

 e−2πin(j/Nθ′ ), (5.283)

where fi,j = f(a, θ′j , ζi, ) are �ow quantities obtained at Gauss points x = (a, θj , zi). Gauss points

are determined from abiscissa of Gauss-Laguerre quadrature and uniformly distributed Fourier

points. The complementary �uid velocities on the matching surface for heaving hemisphere is

approximated by Fourier-Laguerre series and shown in �gure 5.18. The number of Fourier and

Laguerre modes used for approximation are NFourier = 2 and NLaguerre = 1, respectively. The

number of Gauss points used for approximation is 128.
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(a) x-directional velocity

(b) y-directional velocity

(c) z-directional velocity

Figure 5.18. Fourier-Laguerre approximation on �uid velocity generated by heaving

hemisphere.
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These results show that �uid velocities on the matching surface are well approximated by Fourier-

Laguerre series.

Fourier-Laguerre approximation of �uid velocity is tested by increasing the number of Fourier-

Laguerre modes and Gauss points. Approximation errors of �uid velocity are de�ned byε
x
u

εyu

εzu

 =
1

NGauss

NGauss∑
i=1

(uxaprx,i − uxanalytic,i)2

(uyaprx,i − u
y
analytic,i)

2

(uzaprx,i − uzanalytic,i)2

 (5.284)

where superscripts denote the directional component. uaprx and uanalytic are approximated �uid

velocity and analytical �uid velocity at i-th Gauss point, respectively. Approximation errors of

�uid velocity with respect to di�erent numbers of Fourier-Laguerre modes and Gauss points are

shown in �gure 5.19 during one period of heaving motion.

Sudden changes of approximation errors, as shown in 5.19, happen when the calculation switches

between linear and nonlinear approximation algorithms. As the number of modes and Gauss

points increases, the approximation error decreases. Results con�rm that the approximation of

�uid velocity by Fourier-Laguerre series show good agreements with analytical solution, and that

the approximation errors can be reduced by increasing the number of Gauss points.

(a) x-directional velocity (b) y-directional velocity

(c) z-directional velocity

Figure 5.19. Fourier-Laguerre approximation errors of �uid velocity with respect to number

of Gauss points and modes.
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5.9.3 Poincaré's velocity representation for radiation-di�raction problem

Radiation problem: Heaving hemisphere

Hulme's heaving hemisphere, as explained in section 4.5.1, is considered as a benchmark radiation

problem. The complementary �uid velocity and wave elevation at Gauss points are calculated by

the analytical solution. The Poincaré's velocity representation with cylindrical matching surface

is used to reconstruct the complementary �uid velocity and wave elevation at the �eld point.

Figure 5.20 shows complementary �uid velocity and wave elevation calculated by the analytical

solution and the Poincaré's velocity representation when the �eld point is located on the mean

free surface, x = (r, θ, z) = (8, π4 , 0). A(f) denotes the �rst-harmonic amplitude of f . The sphere

of radius 1m has a heaving frequency ω = 2.0 rad/s and heave motion amplitude of 2.0m. Time

step used for simulation is ∆t = 0.01s. The matching surface has a radius a = 2m. The numbers

of Fourier and Laguerre modes used for Poincaré's velocity representation are NFourier = 6 and

NLaguerre = 3, respectively.

Figure 5.20. Reconstructed complementary wave elevation and velocity on the mean free

surface for heaving hemisphere, (r, θ, z) = (8.0, π4 , 0), ω = 2.0 rad/s. From top to bottom : wave

elevation, x−, y− and z-component velocity, respectively.
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5. Potential �ow: Complementary waves with a vertical circular cylindrical matching surface

After the initial ramp and when the memory e�ect due to convolution integral has converged,

the complementary wave elevation and �uid velocity show good agreements with results of the

analytic solution. Results of moving window FFT show that �rst-harmonic amplitudes of recon-

structed �uid velocity and wave elevation have relative errors less than 1.04%.

Figure 5.21 shows complementary �uid velocity and wave elevation �elds calculated by the ana-

lytical solution and Poincaré's velocity representation. The absolute error is taken by subtracting

the analytical solution from the value of Poincaré's velocity representation. The �uid velocity

above the mean free surface is not calculated and Wheeler stretching is not applied for com-

parison. The reconstructed wave �elds by using Poincaré's velocity representation show good

agreements with the analytical solution.

(a) Wave elevation �eld

(b) Horizontal velocity �eld (c) Vertical velocity �eld

Figure 5.21. Wave �elds calculated by using the analytical solution and Poincaré's velocity

representation for heaving hemisphere problem.
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Di�raction problem: Di�raction by a vertical circular cylinder

Wave di�raction by a vertical circular cylinder in regular waves is considered here. Similarly

to the radiation problem, the complementary �uid velocity and wave elevation at Gauss points

are calculated by the analytical soution described in section 5.9.1. The Poincaré's velocity

representation with a cylindrical matching surface is used to reconstruct the complementary

�uid velocity and wave elevation at the �eld point.

Figure 5.22 shows the complementary wave elevation and velocities at the �eld point x =

(r, θ, z) = (5, π4 , 0). The radial frequency and amplitude of regular waves are ω = 2.0 and

0.8m, respectively. The water depth is equal to 8m and the radius of vertical circular cylinder

is 1m. The radius of the matching surface for Poincaré's velocity representation is a = 2m. The

numbers of Fourier and Laguerre modes are NFourier = 6 and NLaguerre = 3, respectively. Time

step is set to be ∆t = 0.01s.

Figure 5.22. Reconstructed complementary wave elevation and velocity on the mean free

surface for cylinder di�raction, (r, θ, z) = (5.0, π4 , 0), ω = 2.0 rad/s. From top to bottom : wave

elevation, x−, y− and z-component velocity, respectively.
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5. Potential �ow: Complementary waves with a vertical circular cylindrical matching surface

Results show good agreements with the analytical solution. The �rst-harmonic amplitudes ob-

tained by applying moving window FFT and they are compared in the right side of �gure 5.22.

The relative errors of reconstructed �ow are less than 1.08%.

Figure 5.23 shows the complementary �uid velocity and wave elevation �elds and their absolute

errors. The complementary wave elevation and velocity �elds reconstructed from Poincaré's

velocity representation show good agreements with the analytical solution. The wave �elds for

di�raction problem have more than one Fourier mode.

(a) Wave elevation �eld

(b) Horizontal velocity �eld (c) Vertical velocity �eld

Figure 5.23. Wave �elds calculated by using the analytical solution and Poincaré's velocity

representation for cylinder di�raction problem.
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Convergence test on the number of Fourier and Laguerre modes

The complementary wave elevation and velocity on the mean free surface are reconstructed with

respect to the di�erent number of Fourier-Laguerre modes. The wave di�raction by the vertical

circular cylinder is used because the waves di�racted by cylinder have many Fourier components.

Figure 5.24 shows the complementary wave elevation and velocity reconstructed by Poincaré

velocity representation with respect to di�erent number of Fourier modes (NFourier). The number

of Laguerre modes is kept to be NLaguerre = 3. The results show that the horizontal velocity

components are convergent slowly with respect to the number of Fourier modes. Meanwhile, the

vertical velocity and wave elevation show good agreements with the analytical solution even if

the number of Fourier modes are small.

Figure 5.25 shows the complementary wave elevation and velocity with respect to di�erent num-

ber of Laguerre modes (NLaguerre). The number of Fourier modes is kept to be NFourier = 5. The

results show that the reconstructed �ow quantities are not sensitive to the number of Laguerre

modes. The optimal choice of s gives good approximations of Laguerre functions to the velocity

pro�le along the matching surface.

(a) Complementary wave elevation (ΞC) (b) Complementary x-velocity (uxC)

(c) Complementary y-velocity (uyC) (d) Complementary z-velocity (uzC=

Figure 5.24. Complementary wave elevation and velocity with the di�erent number of Fourier

modes. Cylinder di�raction problem (r, θ, z) = (5.0, π4 , 0), ω = 2.0 rad/s.
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5. Potential �ow: Complementary waves with a vertical circular cylindrical matching surface

(a) Complementary wave elevation (ΞC) (b) Complementary x-velocity (uxC)

(c) Complementary y-velocity (uyC) (d) Complementary z-velocity (uzC)

Figure 5.25. Complementary wave elevation and velocity with the di�erent number of

Laguerre modes. Cylinder di�raction problem (r, θ, z) = (5.0, π4 , 0), ω = 2.0 rad/s.

Remarks of benchmark tests on radiation and di�raction problems

In numerical computation, following error sources are identi�ed

• s parameter in Laguerre function a�ects on Fourier-Laguerre approximation of comple-

mentary velocity. A bad selection of s needs large number of Laguerre modes for good

approximation.

• Truncation of Fourier-Laguerre modes and limited number of Gauss points shall give large

approximation errors.

• Convolution integrals with moving window convolution time interval generate numerical

errors. The moving window convolution time interval has to be long enough.
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5.10 Conclusion

A Poincaré's velocity representation has been formulated with a circular cylindrical matching

surface. The surface integral is analytically applied to Poincaré's velocity representation along

the matching surface. The complementary �uid velocities and wave elevation are developed in

Fourier-Laguerre and Fourier series, respectively. The time domain Green functions are expressed

in Fourier series. The analytical integration along the matching surface and the matching wa-

terline enhances the numerical stability. Furthermore, it reduces the computational burden in

reconstructing three-dimensional wave �elds. However, complex elementary functions, which are

surface integral of the time domain Green function and Fourier-Laguerre modes, appear in the

formulation. In the �nal formulation, the complementary �uid velocity at �eld point is given by

convolution integrals of �ow at matching surface and elementary functions.

Numerical algorithms to compute the elementary functions have been proposed. The �rst ap-

proach transforms the semi-in�nite integral into an in�nite series summation of sub-integrals.

The in�nite series summation is evaluated by the extrapolation using continuous sets of �nite

summation. The second approach extends an integral variable in the real domain into the com-

plex domain. Semi-in�nite integrals along the real axis are evaluated by steepest descent method.

Evaluation of elementary functions is validated by comparing two algorithms.

The wave elevation is reconstructed by integrating the vertical velocity on the mean free surface.

After the reconstruction of the wave elevation, Wheeler stretching with Laguerre function is used

to extrapolate the �uid velocity above mean free surface. 3D cubic spline interpolation is used

to calculate the wave elevation and the �uid velocity at arbitrary points.

Finally, the complementary wave problems, which are referred to the radiation and di�rac-

tion problems, are considered for validation. A heaving hemisphere is considered for radiation

problem (Hulme, 1982). Wave di�raction by a vertical circular cylinder is used for di�raction

problem (McCamy and Fuchs, 1954). Numerical results show that the proposed Poincaré's veloc-

ity representation shows very good agreements with the analytical solution. Three-dimensional

complementary wave �elds are reconstructed with the limited number of Fourier-Laguerre modes,

and they show good agreements with the wave �elds calculated by the analytical solution.
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6 Viscous �ow: Multi-phase SWENSE with Level-set

6.1 Two-phase �ow model

6.1.1 Two-phase mixture model (used in interFoam)

The continuity and Navier-Stokes equations for an incompressible air are written as

∇ · ua = 0 (6.1)

∂(ρaua)

∂t
+∇ · (ρauaua) = −∇pa + ρag +∇ ·

(
µa
(
∇ua +∇uTa

))
, (6.2)

and the equations for incompressible water are given by

∇ · uw = 0 (6.3)

∂(ρwuw)

∂t
+∇ · (ρwuwuw) = −∇pw + ρwg +∇ ·

(
µw
(
∇uw +∇uTw

))
, (6.4)

where subscript w or a denotes �uid which is considered as w for water and a for air. ρ and µ

are the density and viscosity of the �uid, p is pressure and g is gravitational acceleration vector.

In the Volume Of Fluid method (VOF), α is introduced as the ratio between the water occupied

in the cell volume and the total cell volume. For example, α = 1 means that the cell is fully

submerged and α = 0 represents a dry cell. The mixture quantities can be given with α as

ρ = αρw + (1− α)ρa,

µ = αµw + (1− α)µa,
(6.5)

and
u = αuw + (1− α)ua,

p = αuw + (1− α)pa
(6.6)

where ρ, µ, u and p represent mixture density ,viscosity, velocity and pressure, respectively.

Two-phase Navier-Stokes equations are then rewritten as the equations for single mixture

∇ · u = 0, (6.7)

∂(ρu)

∂t
+∇ · (ρuu)−∇ · (µ∇u) = −∇p+ ρg +∇u · ∇µ+ σκ∇α. (6.8)

The surface tension force σκ∇α is introduced due to the existence of the interface between water

and air. The �uid velocity u and pressure p are the mixture �ow quantities. The gravitational

force is replaced by introducing the dynamic pressure for numerical modeling of body boundary

condition (Rusche, 2002)

pd = p− ρg · x, (6.9)

and the momentum equation is rewritten as

∂(ρu)

∂t
+∇ · (ρuu) = −∇pd − g · x∇ρ+∇ ·

(
µeff

(
∇u +∇uT

))
+ σκ∇α. (6.10)
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The Navier-Stokes equations considering two �uids as one mixture have been commonly used in

academic and industrial �elds due to easy numerical modeling (Hirt and Nichols, 1981; Damián,

2013; Jacobsen et al., 2012; Paulsen et al., 2014). Recently, Vuk£evi¢ (2016) stated that the

numerical evaluation of the gradient of dynamic pressure with a density gradient

∇pd + g · x∇ρ, (6.11)

is not equal to zero for a hydrostatic case where it should be zero. It gives source in the momentum

equation, therefore a spurious air velocity appears near the interface during the simulation. The

spurious air velocity is factored by density variance of water and air, the �ow �eld near the

interface becomes violent and unstable. The density gradient in the momentum equation gives

a large numerical value on the interface due to the density jump from one �uid to the other.

The jump is smoothed and the interface smears when the color function advects. Solving the

two phase �ow with single �uid (mixture) makes the numerical modeling easier and the equation

looks intuitive.

6.1.2 Two-phase mixture model with interface condition (used in present study)

An alternative two-phase �ow model imposes the stress balance across the interface to prevent

spurious air velocity near the interface. Navier-Stokes equations for air are rewritten as

∂ua
∂t

+∇ · (uaua) = − 1

ρa
∇pa + g +∇ ·

(
νa
(
∇ua +∇uTa

))
, (6.12)

and the equations for water are given by

∂uw
∂t

+∇ · (uwuw) = − 1

ρw
∇pw + g +∇ ·

(
νw
(
∇uw +∇uTw

))
. (6.13)

Kinematic condition that �uid particles on the interface move together giving a velocity condition

on the interface

uw = ua, ⇔ JuK = ua − uw = 0, on x ∈ Sf (6.14)

where the jump operator JfK = fa − fw is de�ned at the air/water interface Sf . The jump

operator represents the di�erence of f quantities across the interface. It enables us to express

the �uid veloicty for two �uids as the mixture �uid velocity in computational domain.

The dynamic condition condition on the interface represents the stress balance on the �uid

particles across the interface (Kang et al., 2000; Carrica et al., 2007; Lervåg, 2008)

JpI + 2µDK · nf = −(σκnf +∇iσ), on x ∈ Sf (6.15)

where nf denotes the interface normal vector and ∇i is a gradient along interface coordinates.

∇iσ represents Marangoni e�ect. It becomes important when two �uids have a big temperature

di�erence. Huang et al. (2007) conducted the dimensional analysis on the interface conditions

and showed that the contribution of viscosity terms in interface condition is proportional to the
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inverse of Reynolds number. Therefore, the contribution of viscosity terms can be considered

negligible for naval application. Therefore, above equation can be approximated as

JpIK · nf = 0, on x ∈ Sf . (6.16)

The interface normal vector (nf ) is arbitrary and the stress balance condition on the interface

simpli�es in the pressure boundary condition for naval application as

JpK = 0, on x ∈ Sf . (6.17)

Two-phase Navier-Stokes equations with interface boundary conditions are summarized as follows

• Mass conservation

∇ · u = 0,

• Momentum equation

∂u

∂t
+∇ · (uu) = −∇p

ρ
+ g +∇ ·

{
ν
(
∇u +∇uT

)}
,

• Kinematic interface condition

JuK = 0, on x ∈ Sf

• Pressure balance (Dynamic condition) on the interface

JpK = 0, on x ∈ Sf

Comparing the derived momentum equation and pressure interface condition with the mixture

momentum equation (6.10), the pressure jump condition appears in right-hand-side of mixture

momentum equation as density gradient. The surface tension which is neglected in stress balance

is given in mixture momentum equation.

6.2 Interface modeling

The Level-Set (LS) function for interface modeling which is categorized as an Eulerian method is

used in the present study. LS function is the signed distance function from the interface de�ned

by

ψ(x) =


−d, if x ∈ Ωa,

0, if x on the interface Sf ,

d, if x ∈ Ωw

(6.18)

where d denotes the distance from interface. Ωa and Ωw represent air and water �uid domains,

respectively. The LS function has a positive value when the cell is submerged. The volume

fraction α can be calculated from LS function as

α(x) =
1

2
[sgn {ψ(x)}+ 1] . (6.19)
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The above equation results in α �eld having a sudden change across the interface, which is not

desirable when the continuous viscosity e�ects need to be accounted for in the simulation. VOF

with user-de�ned interface thickness (εinter) can be introduced to smooth change of the α �eld

near the interface

α(x) =
1

2

{
tanh

(
ψ(x)

εinter
√

2

)
+ 1

}
. (6.20)

Mixture density and viscosity are calculated from the equation 6.5. The LS function transport

equation is written by
∂ψ

∂t
+ u · ∇ψ = 0. (6.21)

The signed distance function is not bounded, the LS function after solving the above transport

equation is not bounded. Therefore, conservation of �uid mass should be checked during the

entire simulation.

After solving the LS function transport equation, redistancing of LS function in the entire �uid

domain is used to keep a sharp interface (Chang et al., 1996; Sussman et al., 1998; Di Mascio

et al., 2007). Re-distancing of LS function is usually conducted to make LS function satisfy the

Eikonal equation

|∇ψ| = 1.

A pseudo-time τ is introduced to get the steady state solution of Eikonal equation as

∂ψ̃

∂τ
+ sgn(ψ)

(∣∣∣∇ψ̃∣∣∣− 1
)

= 0.

Solving the Eikonal equation needs extra sub-iteration within the time step.

In the present study re-distancing of LS function in the entire �uid domain is done by re-

calculating the distance from the nearest interface in equation 6.18 at each time step.

6.3 Functional decomposition

A variant version of the Navier-Stokes equations which is called Spectral Wave Explicit Navier-

Stokes Equations (SWENSE) has been introduced for wave-structure interaction problem (Fer-

rant et al., 2003). The SWENSE method is based on the hypothesis that the functional quantity

of total �ow can be decomposed into incident and complementary parts as

χ = χI + χC (6.22)

where χ, χI and χC are quantities from respectively total, incident and complementary �ows.

It is assumed that the incident �ow is already available from a nonlinear potential �ow model

for incident waves. The incident �ow components are subtracted from original Navier-Stokes

equations by supposing that the incident �ow satis�es Euler equations. Then, equations for

the complementary �ow can be reconstructed. In this way, a numerical (CFD) computation is

performed for the complementary �ow only, the total �ow being reconstructed from (6.22). Thus

procedure has numerical advantages:
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• The incident �ow components are not a�ected by the viscous �ow solver.

• The absorption of complementary waves is easier.

• The computational mesh needs to be re�ned in the vicinity of the body only, savings in

computer resources.

The SWENSE method has been validated for single phase �ows by Luquet et al. (2003); Gentaz

et al. (2004); Monroy (2010); Reliquet (2013). Recently, Vuk£evi¢ (2016) applied SWENSE

method to decompose �uid velocity and LS function. Li (2018) decomposed velocity and pressure

in a two-phase �ow solver with the original VOF equation.

The present work aims at decomposing the �uid velocity, pressure and LS function into the

incident and complmentary �ow components by combining the ideas of Vuk£evi¢ (2016) and Li

(2018). The �uid velocity, pressure and LS function are decomposed as

u =uI + uC , ⇔ uC =u− uI , (6.23)

p = pI + pC , ⇔ pC = p− pI , (6.24)

ψ =ψI + ψC , ⇔ ψC =ψ − ψI , (6.25)

where u, p and ψ are �uid velocity, pressure and LS function, respectively. Subscripts I and C

denote quantities of incident and complementary �ows, respectively.

6.3.1 Governing equations

The decomposition of the continuity equation is written as

∇ · uC = −∇ · uI = 0. (6.26)

Vuk£evi¢ (2016) remarked that though the divergence of the incident velocity �eld is theoretically

zero, it does not vanish when it is mapped into �nite volume discretization. To keep the order

of the numerical discretization, he kept the term (−∇ · uI) in his formulation. In the present

study, only ∇ · uC = 0 is kept. because −∇ · uI is thought to give an extra error source in the

pressure equation.

Euler equations for incident �ow are written as

∂uI
∂t

+∇ · (uIuI) = −1

ρ
∇pI + g. (6.27)

Nonlinear potential �ow models for incident �ow explained in Chapter 3 are limited to the water

domain. Incident �ow needs to be extended up to the air domain to apply multi-phase �ow. The

incident �uid velocity and pressure can be extended by using hyperbolic function used in the

potential �ow model for incident waves. However, the extrapolation of incident pressure with

hyperbolic function results in large values in the air zone which can lead to numerical instability

during simulation. To overcome this, Li (2018) scaled the incident pressure by mixture density

p∗I =
ρ

ρw
pI , (6.28)
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where p∗I is pseudo mixture incident pressure. Euler equations can be rewritten with p∗I as

∂uI
∂t

+∇ · (uIuI) = −1

ρ
∇p∗I +

pI
ρw

∇ρ
ρ

+ g, (6.29)

The second term in right-hand-side, pI
ρw
∇ρ
ρ , is equal to zero in both water and air regions, it only

has a non-zero value on the interface. The momentum equations for complementary �ow can be

given by (Li, 2018)

∂uC
∂t

+∇ · (uuC) + uC · ∇uI = −1

ρ
∇pC −

pI
ρw

∇ρ
ρ

+∇ ·
(
ν
(
∇uC +∇uTC

))
. (6.30)

The transport equation for complementary LS function is given by

∂ψC
∂t

+∇ · (uψC) = −∂ψI
∂t
−∇ · (uψI) . (6.31)

The re-distancition of the complementary LS function is calculated by subtracting the incident

wave LS function from distance as

ψC = sgn(d)− ψI . (6.32)

6.3.2 Interface conditions

Interface boundary conditions need to be formulated with respect to complementary terms. The

kinematic free surface boundary condition is given by

JuK = JuI + uCK = 0, on x ∈ Sf . (6.33)

Assuming that the incident velocity is continuous across the interface by Wheeler stretching, e.g.,

JuIK = 0. The kinematic free surface boundary condition for complementary velocity is given by

JuCK = 0, on x ∈ Sf . (6.34)

The pressure jump condition is given by

JpK = JpI + pCK = 0, on x ∈ Sf . (6.35)

The incident pressure pI is replaced by pseudo incident pressure given in equation (6.28). The

jump condition for complementary pressure is given by (Li, 2018)

JpCK = −Jp∗IK = −pI
JρK
ρw

= pI
ρw − ρa
ρw

. (6.36)

The pressure jump term is shown in the right-hand-side term. Compared to Vuk£evi¢ (2016),

pressure jump condition in the present study incorporates the incident wave pressure, including

hydrostatic pressure. For the calm water case, the same pressure jump condition is obtained

pI = ρwg · x.
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6.3.3 Summary of functional decomposition

Govening equations for complementary �ow are summarized as below:

• Continuity equation for complementary �ow

∇ · uC = 0.

• Momentum equations for complementary �ow

∂uC
∂t

+∇ · (uuC) + uC · ∇uI = −1

ρ
∇pC −

pI
ρw

∇ρ
ρ

+∇ ·
(
ν
(
∇uC +∇uTC

))
.

• LS function transport equation for complementary �ow

∂ψC
∂t

+∇ · (uψC) = −∂ψI
∂t
−∇ · (uψI) .

• Redistancing ψC
ψC = sgn(d)− ψI ,

where d is the distance from nearest interface.

Interface boundary conditions for complementary �ow are summarized as below:

• Kinematic interface condition for complementary �ow

JuCK = 0.

• Pressure jump condition for complementary �ow

JpCK = pI
ρw − ρa
ρw

.

6.4 Domain decomposition: Relaxation

Relaxation scheme described in section 2.3.1 is used to relax the complementary LS function

and velocity into target quantities. Explicit relaxation scheme which blends computed comple-

mentary quantities and target quantities with weight function in the relaxation zone is adopted.

Complementary �ow is relaxed as

χC = (1− w)χC + wχTargetC , (6.37)

where χC is the complementary quantity, χTargetC is the target quantity and w is a weight function.

In the literature, the target quantity has been set to zero due to the lack of solution (Jacobsen

et al., 2012; Seng, 2012; Vuk£evi¢, 2016; Li, 2018).

In present study, Poincaré's velocity representation is used to calculate target complementary

quantities in the relaxation zone. Complementary �uid velocity and LS function are relaxed as

uC = (1− w)uC + wuPoincaré
C , (6.38)

ψC = (1− w)ψC + wψPoincaré
C . (6.39)

where uPoincaré
C and ψPoincaré

C are the target complementary �uid velocity and LS function com-

puted by Poincaré's velocity representation.
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6.5 Extrapolation of �ows up to air zone

The SWENSE method in multi-phase �ow requires the evaluation of incident �ows in air zone

which is not available in potential �ow model. Wheeler stretching can be used to extrapolate

incident �ow, however hyperbolic characteristics of waves in vertical direction generates large

velocity and pressure for large z. It causes undesirable results in numerical discretization espe-

cially for discretizing the incident wave quantities in air zone. Li (2018) set constant values for

incident �ow above limited height to prevent numerical errors due to large value. Nevertheless,

their gradients still have the discontinuities at limited height.

In the present study, incident wave quantities are extrapolated by using cubic polynomials to

prevent discontinuities of incident �ow and its gradient in the air zone.

6.5.1 Extrapolation by cubic polynomials

Let the �ow quantity and its gradient are given at z = Ξ + href and z = Ξ + href + hthickness as

f(Ξ + href ) = f0,
df(Ξ + href )

dz
= f ′0, (6.40)

f(Ξ + href + hthickness) = f1
df(Ξ + href + hthickness)

dz
= f ′1. (6.41)

where href is a reference height from interface to start extrapolation. hthickness is the height

interval for cubic polynomials. Introducing cubic polynomials with normalized coordinate ζ̃

de�ned between ζ̃ ∈ [0, 1] as

g(ζ̃) = aζ̃3 + bζ̃2 + cζ̃ + d, (6.42)

where a, b, c and d are coe�cients. ζ̃ is a normalized coordinate de�ned by

ζ̃ =
z − Ξ + href
hthickness

. (6.43)

Boundary conditions for cubic polynomials g(ζ̃) can be given as

g(0) = f0,
dg(0)

dζ̃
= g′0 = hthicknessf

′
0, (6.44)

g(1) = f1
dg(1)

dζ̃
= g′1 = hthicknessf

′
1. (6.45)

Using boundary conditions, coe�cients of cubic polynomials are determined as

a =
{

2(g0 − g1) + (g′0 + g′1)
}
, (6.46)

b = −
{

3 (g0 − g1) + 2
(
g′0 + g′1

)
− g′1

}
, (6.47)

c = g′0, (6.48)

d = g0. (6.49)
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6.5.2 Application to �ow properties and discussion

Boundary conditions for incident velocities are given by

u0 = uI(ΞI + href ), u′0 =
duI(ΞI + href )

dz
(6.50)

u1 = u(ΞI + href + hthickness) = uwind, u′1 =
duI(ΞI + href + hthickness)

dz
= 0. (6.51)

The dynamic part of the incident pressure is de�ned by subtracting the hydrostatic pressure as

pI,d = pI − ρg · x, (6.52)

where pI,d is the dynamic incident pressure and ρg · x is the hydrostatic pressure. Boundary

conditions for the dynamic incident pressure are given by

p0 = pI,d(ΞI + href ), p′0 =
dpI,d(ΞI + href )

dz
, (6.53)

p1 = 0, p′1 =
dpI,d(href )

dz
= 0, (6.54)

If vertical gradients of incident velocity and dynamic pressure are available from the incident

potential �ow model, extrapolations of �uid velocity and dynamic incident pressure are straight-

forward.

Extrapolated �uid velocity by cubic polynomials does not satisfy mass conservation in the air

zone. If horizontal �uid velocity and its horizontal gradient at z = ΞI + href are slowly varying,

the total continuity error due to extrapolation can be estimated as

εcontinuity
∆x∆y

≈
ˆ ΞI+href+hthickness

ΞI+href

∇ · u(z)dz

≈
ˆ ΞI+href+hthickness

ΞI+href

du(z)

dz
dz

= |uwind − uI(ΞI + href )| .

(6.55)

The estimated continuity error is constant with respect to hthickness and proportional to the

di�erence of �uid velocity between incident waves and wind. The local continuity error on the

local cell therefore decreases as hthickness increases. Extrapolation improves numerical stability

and prevents large �ux in the air zone due to discontinuity of velocity.

Bu�er zone with thickness href is introduced to have a distance from interpolation region to

interface because of mentioned continuity error in air. Extrapolated velocity is shown in �gure

6.1. Velocity �elds with air extrapolation for nonlinear regular waves are shown in �gure 6.2. No

discontinuity of �uid velocity is seen when the extrapolation is applied.
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Figure 6.1. Velocity extrapolation up to air zone with cubic polynomials.

Figure 6.2. Comparison of |uI | �eld with/without velocity extrapolation up to air zone by

cubic polynomials(black line denotes the interface).
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6.6 Finite volume discretization

The numerical discretization of governing equations for two-phase interface �ows is presented

in this section. Collocated Finite Volume (FV), second-order discretization on the arbitrary

polyhedral (unstructured) grid is used (Jasak, 1996). Computational domain is discretized into

computational cells and each of these cells is treated as a control volume having averaged quan-

tities within cell. The geometrical description of computational cell with owner index P is shown

in �gure 6.3. Computational cell has its own volume (VP ) and has the faces connected with

Figure 6.3. Finite volume cell in polyhedral shape, (Tukovic and Jasak, 2012).

neighbor cells (cell index; N) or boundary surfaces. The surface area vector (sf ) is de�ned as

a vector normal to the corresponding face with its magnitude equal to the surface area. The

distance vector (df = xN − xP ) is de�ned as the distance from owner cell P to neighbor cell

N . General FV discretization on collocated grids is well described in Jasak (1996). Special

FV discretization considering the pressure conditions on the interface is also given by Vuk£evi¢

(2016). These pressure conditions need a special FV discretization technique, which is called

Ghost Fluids Method (GFM).

Numerical discretization of governing equations and terms related to pressure proposed by Vuk£e-

vi¢ (2016) is brie�y reproduced in this section.

6.6.1 Discretization of momentum equations

Momentum equations given in (6.30) are rearranged as

∂uC
∂t

+∇ · (uuC)−∇ · (ν∇uC) = −1

ρ
∇pC −

pI
ρw

∇ρ
ρ
− uC · ∇uI +∇uC · ∇ν,

Following the discretization notation of Rusche (2002), momentum equations without pressure

gradient are discretized by{
∂uC
∂t

+∇ · (uuC)−∇ · (ν∇uC)

}i
=

{
− pI
ρw

∇ρ
ρ
− uC · ∇uI +∇uC · ∇ν

}e
, (6.56)
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where {·}i and {·}e denote the implicit and explicit discretization, respectively. The discretization

of momentum equations in FV grid is given by

aP (uC)P +
∑
f

aN (uC)N = suC , (6.57)

where (·)P and (·)N denote averaged quantities at owner (P ) and neighbor (N) cells, respectively.

aP and aN represent the diagonal and o�-diagonal terms of momentum equations, respectively.

suC is the source term of the momentum equations which includes:

• The old time contribution of local term in momentum equations.

• Nonlinear de�ered correction of convection term.

• Non-orthogonal correction of FV discretization.

• Incident �ow terms coming from SWENSE method.

Deferred correction of convection terms and non-orthogonal correction are well explained in

(Jasak, 1996; Moulkalled et al., 2015).

6.6.2 Discretization of pressure equation

To satisfy the continuity equation, complementary pressure and velocity are coupled (Patankar

and Spalding, 1972). Predicted complementary velocity from the momentum equation is written

as (
u′C
)
P

=
1

aP
H {(uC)P } = − 1

aP

∑
f

aN (uC)N − suC

 (6.58)

The pressure gradient, excluded from previous discretization of momentum equations, is now

added to predicted velocity as

(uC)P =
(
u′C
)
P
− 1

aP

(
1

ρ
∇(pC)P

)
, (6.59)

Right-hand side term is called pressure corrected velocity. Complementary velocity should satisfy

the continuity equation as

∇ · (uC)P = 0, (6.60)

Therefore, the equation for complementary pressure is given by

∇ ·
[

1

aP

(
1

ρ
∇(pC)P

)]
= ∇ ·

[
1

aP
H {(uC)P }

]
, (6.61)

Applying FV discretization and Gauss's divergence theorem of volume integral over VP above

equation gives

∑
f

(
1

aP

(
1

ρ
∇(pC)P

))
f

· dsf =
∑
f

(
1

aP
H {(uC)P }

)
f

· dsf . (6.62)
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where (·)f denotes the quantity at face center. When the computational cell is small, the quantity

at face center is interpolated from adjacent cell centers as

∑
f

(
1

aP

)
f

(
1

ρ
∇(pC)P

)
f

· dsf =
∑
f

(
1

aP
H {(uC)P }

)
f

· dsf . (6.63)

where (·)f is interpolated at face center from cell centered value. The above equation gives

the algebraic equations for complementary pressure at cell center. After solving the pressure

equation, the complementary velocity is corrected by equation (6.58) and the total �ux is also

calculated by

Ff = sf · (uC + uI)f = sf ·

{(
1

aP
H {(uC)P }

)
f

−
(

1

aP

)
f

(
1

ρ
∇(pC)P

)
f

+ (uI)f

}
. (6.64)

The incident velocity should be also evaluated at face centers to give the total �ux.

6.6.3 Discretization of LS function transport equation

The complementary LS function transport equation is discretized using implicit and explicit

operators by {
∂ψC
∂t

+∇ · (uψC)

}i
=

{
−∂ψI
∂t
−∇ · (uψI)

}e
, (6.65)

and it gives the discretized equation for complementary LS function as

aψP (ψC)P +
∑
f

aψN (ψC)N = sψ, (6.66)

where aψP and aψN are diagonal and o�-diagonal terms. The total LS function is calculated after

solving the above equation as

(ψ)P = (ψI)P + (ψC)P , (6.67)

Interface location is calculated from total LS function (ψ = 0). The distance from the interface

to the cell center (P ) is calculated for each computational cell. Re-distancing of complementary

LS function is computed by subtracting incident LS function from signed distance by

(ψC)P = sgn {(d)P } − (ψI)P . (6.68)

6.6.4 Extrapolation of pressures by Ghost Fluid Method

The FV discretization of pressure terms appears in momentum and pressure equations. Interface

boundary conditions for complementary pressure are considered by using Ghost Fluid Method

(GFM). Layout of �nite volume cells with the interface is depicted in �gure 6.4. Interface between

water and air is plotted with blue dashed line. Red colored lines denote interface faces. Interface

cells are denoted with red cross at center. Interface cells are determined by

(ψ)P (ψ)N < 0. (6.69)
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Figure 6.4. Finite volume cells and interface crossing the computational domain.

Wet cell P and dry cell N share an interface face sff . The dimensionless distance parameter

de�ning the interface location by LS function is given by

λf =
(ψ)P

(ψ)P − (ψ)N
, (6.70)

The location of the interface is de�ned by using the dimensionless distance parameter (λf ) as

xf = (x)P + λfdf . (6.71)

The pressure jump condition on the interface is given by

J(pC)P K = pC,a − pC,w = pI
ρw − ρa
ρw

= HI
(6.72)

where pC,a and pC,w are the complementary pressures near the interface at air and water sides.

HI = pI
ρw−ρa
ρw

is the pressure jump on the interface. The complementary pressure values near

the interface at each �uid domain are expressed with jump conditions

pC,w =
ρa
ρw
pC,a −

HI
ρw

, (6.73)

pC,a =
ρw
ρa
pC,w +

HI
ρa
. (6.74)
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The relation of pressure gradient for extrapolation

The pressure boundary condition is imposed on the air/water interface. Because the interface

between two �uids is not always located on a computational cell or face center, the pressure

extrapolation from the computational cell or face center to the position of interface is necessary.

Applying the kinematic boundary condition on the momentum equations gives

rDu

Dt

z
=

r
−1

ρ
∇p+∇ · (ν∇u) +∇u · ∇ν + g

z
= 0, on x ∈ Sf (6.75)

It states that the acceleration of two �uid particles on the interface is equal to each other. After

neglecting the viscosity terms, the jump condition for pressure gradient is derived as

r1

ρ
∇p

z
=

r
∇ · (ν∇u) +∇u · ∇ν

z

= 0.

, on x ∈ Sf (6.76)

The pressure is decomposed into incident and complementary parts as in equation (6.23). Density

scaling of incident pressure gives the continuous ∇pI/ρ across the interface (Li, 2018). Therefore,
the jump condition for complementary pressure gradient is given by

r1

ρ
∇pC

z
= 0, on x ∈ Sf . (6.77)

The pressure extrapolation using above relations is proposed by Vuk£evi¢ (2016) in the procedure

of Finite Volume (FV) discretization.

Pressure extrapolation from wet owner cell (P ) to the dry neighbor cell (N)

When owner cell is wet and neighbor cell is dry, pressure gradient condition on the interface is

given by r∇pC
ρ

z
=
∇pC,a
ρa

−
∇pC,w
ρw

=
1

ρa

(pC)N − pC,a
1− λf

− 1

ρw

pC,w − (pC)P
λf

= 0,

(6.78)

Using equations (6.73), (6.74) and (6.78), pressure near the interface can be expressed with

pressure values at cell centers with pressure jump term as

pC,w = λf
ρa
ρ̃w

(pC)N + (1− λf )
ρa
ρ̃w

(pC)P − λf
HI
ρ̃w

, (6.79)

pC,a = λf
ρw
ρ̃w

(pC)N + (1− λf )
ρw
ρ̃w

(pC)P + (1− λf )
HI
ρ̃w

, (6.80)

with

ρ̃w = λfρw + (1− λf ) ρa. (6.81)

Extrapolated pressure at ghost dry cell center N from wet cell center P can be given by

(pC,w)GCN = pC,w +
1− λf
λf

{pC,w − (pC)P }

=
ρa
ρ̃w

(pC)N +

(
1− ρw

ρ̃w

)
(pC)P −

HI
ρ̃w

.

(6.82)
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Pressure extrapolation from dry owner cell (P ) to the wet neighbor cell (N)

Similar to the previous case, when owner cell is dry and neighbor cell is wet, the pressure gradient

condition on the interface is given by

r∇pC
ρ

z
=

1

ρa

pC,a − (pC)P
λf

− 1

ρw

(pC)N − pC,w
1− λf

= 0, (6.83)

Substituting the equations (6.73) and (6.74) into (6.83) yields the pressures near the interface as

pC,a = λf
ρw
ρ̃a

(pC)N + (1− λf )
ρw
ρ̃a

(pC)P + λf
HI
ρ̃a
, (6.84)

pC,w = λf
ρa
ρ̃a

(pC)N + (1− λf )
ρa
ρ̃a

(pC)P − (1− λf )
HI
ρ̃a
, (6.85)

with

ρ̃a = λρa + (1− λ) ρw. (6.86)

Similarly to the previous case, the extrapolated pressure on the ghost wet cell center (N) from

dry cell center (P ) is given by

(pC,a)
GC
N = pC,a +

1− λf
λf

{pC,a − (pC)P }

=
ρw
ρ̃a

(pC)N +

(
1− ρa

ρ̃a

)
(pC)P +

HI
ρ̃a
.

(6.87)

The procedure of pressure extrapolation is well explained in Vuk£evi¢ (2016).

6.6.5 FV discretization with extrapolated pressures

The gradient of the complementary pressure at cell center P is calculated by Gauss's divergence

theorem

(∇pC)P =
1

VP

∑
f

sf (pC)f , (6.88)

Each of face components contributes to the pressure gradient. At face center, the complementary

pressure is calculated by linear interpolation based on distance as

(pC)f = fx (pC)P + (1− fx) (pC)N , (6.89)

where fx = fP/ |df | is a distance weight. fP is the distance from cell center P to face center f .

When the owner cell is wet and the neighbour cell is dry, the complementary pressure at neighbour

is replaced by the extrapolated complementary pressure obtained by GFM

(pC)GCf = fx (pC)P + (1− fx) (pC,w)GCN . (6.90)

where (pC,w)GCN is the extrapolated pressure from wet cell by the GFM de�ned in equation (6.82).

When the owner cell is dry and the neighbour cell is wet, the complementary pressure at the

neighbour cell is replaced by the extrapolated complementary pressure by GFM as

(pC)GCf = fx (pC)P + (1− fx) (pC,a)
GC
N . (6.91)
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where (pC,a)
GC
N is the extrapolated pressure from dry cell by the GFM de�ned in equation (6.87).

The pressure gradient of interface cell is evaluated by replacing the complementary pressure at

face center by the extrapolated complementary pressure by GFM

(∇pC)P =
1

VP

∑
f

sf (pC)f −
∑
fSf

sf (pC)f +
∑
fSf

sf (pC)GCf

 . (6.92)

The same procedure can be applied for other gradient discretization by replacing complementary

pressure at interface face. Laplacian operator in pressure equation also requires special FV

discretization considering interface condition. Interpolated density
(

1
ρ

)
f
is necessary to construct

the pressure equation in (6.63). Continuous ∇pCρ across interface enables us to extrapolate density

by GFM (
1

ρ

)GC
f

=


1

ρw
, when the owner cell P is wet, (ψ)P ≥ 0.

1

ρa
, when the owner cell P is dry, (ψ)P < 0.

(6.93)

The pressure Poisson equation is rewritten with interpolated density at face center as∑
f

(
1

aP

)
f

(
1

ρ

)
f

(∇pC)f · dsf =
∑
f

(
1

aP
H {(uC)P }

)
f

· dsf , (6.94)

The left-hand side is divided into orthogonal and non-orthogonal components (Jasak, 1996)∑
f

(
1

aP

)
f

(
1

ρ

)
f

(∇pC)f · dsf =
∑
f

(
1

aP

)
f

(
1

ρ

)
f

∆f · (∇pC)f

+
∑
f

(
1

aP

)
f

(
1

ρ

)
f

kf · (∇pC)f

(6.95)

where the surface vector sf is divided into two vectors

sf = ∆f + kf . (6.96)

The vector ∆f is taken to be parallel with df . kf is a non-orthogonal vector component kf =

sf −∆f . The choice and e�ects of non-orthogonal correction are well discussed in Jasak (1996).

The non-orthogonal correction term is calculated by previous outer iteration or time step by

deferred correction and it is taken into account as the source term. Rewritten complementary

pressure equation is given as∑
f

(
1

aP

)
f

(
1

ρ

)
f

∆f · (∇pC)f =
∑
f

(
1

aP
H {(uC)P }

)
f

· dsf

−
∑
f

(
1

aP

)
f

(
1

ρ

)
f

kf · (∇pC)of .

(6.97)

Left-hand side is given by complementary pressures at neighbor N and owner P center∑
f

(
1

aP

)
f

(
1

ρ

)
f

∆f · (∇pC)f =
∑
f

(
1

aP

)
f

(
1

ρ

)
f

|sf |
|df |
{(pC)N − (pC)P } (6.98)

163



6. Viscous �ow: Multi-phase SWENSE with Level-set

On the interface face, complementary pressure at neighbor cell center N is replaced by extrapo-

lated pressure

∑
f

(
1

aP

)
f

(
1

ρ

)
f

|sf |
|df |
{(pC)N − (pC)P } =

∑
f

(
1

aP

)
f

(
1

ρ

)
f

|sf |
|df |
{(pC)N − (pC)P }

−
∑
fSf

(
1

aP

)
f

(
1

ρ

)
f

|sf |
|df |
{(pC)N − (pC)P }

+
∑
fSf

(
1

aP

)
f

(
1

ρ

)GC
f

|sf |
|df |

{
(pC,i)

GC
N − (pC)P

}
, i = w, a.

(6.99)

Above equation constructs the system matrix with respect to pressure at each cell center. The

diagonal contribution of interface face Sf is given by interface cell P as,

apCP = −



(
1

aP

)
f

|sf |
|df |

ρw
ρ̃w
, if the owner cell P is wet, neighbor cell N is dry,

(
1

aP

)
f

|sf |
|df |

ρa
ρ̃a
, if the owner cell P is dry, neighbor cell N is wet.

(6.100)

and the o�-diagonal contribution

apCPN =



(
1

aP

)
f

|sf |
|df |

ρa
ρ̃w
, if the owner cell P is wet, neighbor cell N is dry,

(
1

aP

)
f

|sf |
|df |

ρw
ρ̃a
, if the owner cell P is dry, neighbor cell N is wet.

(6.101)

The pressure jump terms appear as the extra source term as

QpCP =


−
(

1

aP

)
f

|sf |
|df |
HI
ρ̃w

, if the owner cell P is wet, neighbor cell N is dry,

(
1

aP

)
f

|sf |
|df |
HI
ρ̃a
, if the owner cell P is dry, neighbor cell N is wet.

(6.102)

Vuk£evi¢ (2016) showed that the o�-diagonal contributions of pressure equation are symmetric

but the extra source term arising from pressure jump is antisymmetric. The details on the FV

discretization with interface condition is well described in Vuk£evi¢ (2016) with di�erent notation

on the inverse density β = 1
ρ .
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6.7 Boundary conditions

Solving the Navier-Stokes equation requires initial and boundary conditions. For the wave-

structure problem, the initial conditions are set to be incident wave �elds without scattering

waves. There are several types of boundaries (1) body/wall(bottom) (2) inlet/outlet and (3)

atmosphere.

On the body surface

• The boundary condition for scattering �uid velocity is set to

uC = ub − uI (6.103)

where ub is the velocity of the body surface. The impermeable no-slip body boundary

condition is achieved.

• The fixedFluxPressure boundary condition is imposed on the pressure. The pressure

gradient is adjusted by velocity �ux which is speci�ed with velocity boundary condition.

Complementary �uid velocity on the boundary face is written by

(uC)f =

(
1

aP
H(uC)

)
f

−
(

1

aP

)
f

(∇pC)f (6.104)

Applying the inner product with the surface vector sf = |sf |nf gives

(uC)f · sf =

(
1

aP
H(uC)

)
f

· sf −
(

1

aP

)
f

(∇pC)f · sf (6.105)

Therefore, the pressure boundary condition is given in

(∇pC)f · nf =
(aP )f
|sf |

((
1

aP
H(uC)

)
f

· sf − (uC)f · sf

)

=
(aP )f
|sf |

(
F
H/A
f − Ff

) (6.106)

where

F
H/A
f =

(
1

aP
H(uC)

)
f

· sf , Ff = (uC)f · sf . (6.107)

F
H/A
f is the �ux predicted by momentum equation and Ff is the �ux calculated by the

velocity boundary condition.

• Zero gradient condition is imposed to complementary LS function to prevent extra LS

function �ux.
∂ψC
∂n

= 0. (6.108)

inlet/outlet zones

Relaxation to total waves represents that the quantities computed by viscous �ow model are

relaxed to total waves including nonlinear incident waves with linear complementary waves.

Linear complementary waves are computed by Poincaré's velocity representation.
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• Complementary velocity is blended with zero or values of potential theory if it is available.

uC =

(1− w)uC , relaxation to nonlinear incident waves,

(1− w)uC + wuPoincaré
C , relaxation to total waves

(6.109)

• The fixedFluxPressure boundary condition is imposed on the pressure that determined

by velocity boundary condition, likewise body boundary condition.

(∇pC)f · nf =
(aP )f
|sf |

(
F
H/A
f − Ff

)
(6.110)

• Complementary LS function is blended with zero or complementary wave elevation com-

puted by potential theory.

ψC =

(1− w)ψC , relaxation to nonlinear incident waves,

(1− w)ψC + wψPoincaré
C , relaxation to total waves

(6.111)

Atmostphere

• The pressureInletOutlet boundary condition which is a combined boundary condi-

tion imposing a zero normal gradient for out�ow and velocity obtained from boundary

cell�center for in�ow is imposed for complementary velocity.

n · ∇uC = 0, for out�ow.

uC = (uC)BC , for in�ow.
(6.112)

where (uC)BC is the velocity obtained from boundary cell�center.

• Following pressure condition is imposed at atmosphere boundary as

pC = p0 − 0.5ρ |uC|2 (6.113)

where the reference pressure, p0 is set to zero.

• At atmosphere boundary surfaces normal to z-plane, ∇ψ ≈ ∇ψI ≈ 1. Boundary condition

for complementary LS function at atmosphere is given by

n · ∇ψC = 0. (6.114)
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6.8 Comparison with Vuk£evi¢ (2016) and Li (2018)

The present study is based on the previous works of Vuk£evi¢ (2016) and Li (2018). Previous

and present works can be summarized as:

Vuk£evi¢ (2016)

• Fluid velocity and interface quantity are decomposed in incident and complementary parts

in framework of SWENSE.

• Pressure is not decomposed and is coupled with complementary velocity.

• All incident wave terms survive in FV discretization to keep the order of the numerical

discretization.

• Transport equation for Level-Set (LS) function is derived from Phase-Function (PF) trans-

port equation. Self-adjusting terms controlling the di�usion and compression of interface

are considered.

Li (2018)

• Fluid velocity and pressure are decomposed into incident and complementary parts in the

framework of SWENSE.

• Incident �ow terms appearing in Euler equations are canceled in momentum equations,

therefore they do not appear in FV discretization.

• Volume Of Fluid (VOF) is used for interface modeling. Boundedness of VOF is kept,

however VOF is not decomposed into incident and complementary parts.

Present work

• Fluid velocity, pressure, and interface quantity are decomposed in incident and comple-

mentary parts in framework of SWENSE.

• Incident �ow terms appearing in Euler equations are canceled in momentum equations,

therefore they do not appear in FV discretization.

• Transport equation for Level-Set (LS) function is used for interface modeling. However,

incident LS function terms are not canceled but given as the source terms of complementary

LS function transport equuation. Re-distanding of complementary LS function is applied

by calculating the distance from nearest interface.

• Incident �uid velocity and pressure are extrapolated up to air zone using cubic polynomi-

als. Incident �uid velocity and pressures and their gradient have smooth pro�les in the

computational domain for multi-phase �ow.
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6.9 Validation and discussion

6.9.1 Wave propagation in NWT

Incident wave propagation in a numerical wave tank is considered as benchmark test case. The

same computational mesh and wave conditions as described in the section 2.2 are used. Relax-

ation zones of length 1.5λ are de�ned at ends of computation domain as the inlet and outlet for

generation and absorption of waves. Length and height of total computational domain are 10λ

and 2H. Mean free surface is located on z = 0.

Extrapolation of incident wave velocity and pressure above free surface

Incident velocity in the air by Li (2018) is evaluated by putting the height limit (1.5ΞI) as

uI(x, y, z; t) =

uI(x, y, z; t), for z ≤ 1.5ΞI ,

uI(x, y, 1.5ΞI ; t), for z > 1.5ΞI .
(6.115)

The same principle is applied for pI/ρw. In the present study, the incident �uid velocity and

pressure are extrapolated up to air zone by combining Wheeler stretching and cubic polynomi-

als. The magnitude of the incident wave velocity �eld with extrapolation by cubic polynomials

is compared in �gure 6.5. Air velocity without extrapolation by cubic polynomials is �xed to the

constant velocity above the certain height (z = 1.5ΞI). Incident velocity at z = 1.5ΞI is calcu-

lated by applying Wheeler stretching on the incident wave model. Meanwhile, the extrapolation

by cubic polynomials permits incident velocity up to air to have a smooth transition from water

velocity to the wind velocity.

(a) |uI | �eld without extrapolatation by cubic polynomials

(b) |uI | �eld with extrapolatation by cubic polynomials

Figure 6.5. Magnitude of incident wave �eld (uI) with and without extrapolation by cubic

polynomials up to air, Black line denotes ψ ∈ [−0.01, 0.01].
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Figures 6.6 shows |uC | �elds in the middle of the computational domain at the simulation time

t = 1T . Spurious air velocity appears in both �elds but the air velocity without extrapolation

reaches large values in the at atmosphere, near the upper limit of the domain. A sudden change

of complementary velocity is observed at z = 1.5ΞI when the air velocity is �xed to the constant

velocity. As the vertical gradient of the incident wave velocity ∂uI
∂z is not continuous at z = 1.5ΞI ,

the complementary velocity has an extra velocity at z = 1.5ΞI to satisfy the continuity equation.

This sudden change of uC gives a large velocity �ux when solving the complementary LS function

transport and momentum equations. As large �ux exists near the interface, the complementary

LS function are a�ected by uC . The air velocity �eld with the extrapolation by cubic polynomials

has also extra velocity above the interface, however its value and gradients change smoothly along

the vertical direction. Therefore, computed LS function �eld is reliable when the extrapolation

by cubic polynomials is applied.

(a) |uC | �eld without cubic polynomials

extrapolation

(b) |uC | �eld with cubic polynomials

extrapolation

Figure 6.6. Magnitude of complementary velocity �eld (uC) with and without extrapolation

by cubic polynomials up to air at t = 1T , T/∆T = 400, Black line denotes ψ ∈ [−0.01, 0.01].

Redistancing Level-set

Complementary LS function (ψC) �elds without and with redistancing are plotted in �gure

6.7. ψC-�elds should be zero theoretically for propagating waves in NWT, however ψC-�elds

without redistancing have errors near to interface, and errors evolve as the simulation time goes.

Generated errors appear in the total computational domain not from the relaxation zones. When

the FV discretization is applied to the ψC-transport equation{
∂ψC
∂t

+∇ · (uψC)

}i
=

{
−∂ψI
∂t
−∇ · (uψI)

}e
,

Numerical time di�erential and convection schemes are applied to the incident wave terms in the

right-hand-side terms. Time and spatial discretizations of incident wave terms have numerical

discretization errors and they are given as extra source terms in the ψC-transport equation. It

has been tried with complementary LS function transport equation without incident wave terms

given by {
∂ψC
∂t

+∇ · (uψC)

}i
= {−∇ · (uCψI)}e ,
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However, the combination of complementary �ux with incident LS function −∇· (uCψI) induces
large extra source on near to interface, the simulation becomes unstable.

Figure 6.7. Complementary LS function �elds with/without redistancing ψC , the black line

denotes ψ ∈ [−0.01, 0.01].

Futhermore, the extrapolated incident wave velocity above the interface is non-physical and

has large values. The combination of opposite signed large velocities near crest and trough

and the convection scheme makes ψC above the interface unstable. Measured time series and

�rst-harmonics of wave elevation at the middle of the computational domain are compared in

�gure 6.9. The �rst harmonic amplitude without redistanding ψC show �uctuating behaviors

for simulation time. On the contrary, the �rst harmonic amplitude with redistancing ψC show

consistent results during the simulation. Numerical discretization errors can be listed as the

below:

• Discretization of equation for incident LS function by low order numerical scheme may not

satisfy the incident LS function transport equation.

• When the incident LS function is calculated from the wave theory, the signed distance
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function is calculated as the vertical distance from wave elevation ψI = −z + ΞI . As the

incident LS function is de�ned to be the signed distance from the nearest interface, it may

generate extra errors.

• Numerical FV discretization of the pressure jump and continuous pC/ρ across the interface

conditions is considered by GFM. However, the numerical discretization of the pressure

jump condition generates an extra �ux due to the pressure jump on the interface. This

extra �ux can a�ect the complementary LS function transport equation.

These error sources appear in right-hand-side terms and they are cumulated during the simula-

tion. Redistancing of LS function is thought to cancel the cumulated error sources during the

simulation.

Figure 6.8. Wave elevation time series at the middle of computational domain with/without

redistancing ψC .

(a) First-harmonic amplitude (b) First-harmonic phase di�erence

Figure 6.9. First-harmonic amplitudes and phase di�erences of wave elevation with/without

redistancing ψC .
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Mesh and time convergence tests

Spatial and temporal discretizations given in Table 6.1 are tested. Representative Courant(Co)

and Reynolds numbers (Re∆) are de�ned in equation 2.5. A Crank-Nicolson time scheme with

cCN = 0.95 is used for all local terms. Convection terms of LS function transport equations

are discretized by van Leer scheme (van Leer, 1974). A �rst-order upwind scheme is used to

discretize the convection terms in momentum equations.

Table 6.1. Spatial and temporal discretization for SWENSE-LS convergence test.

Case λ/∆x H/∆z T/∆t Co Re∆

Mesh025-dt100 25 5 100 0.171 8,836

Mesh030-dt120 30 6 120 0.171 7,363

Mesh040-dt160 40 8 160 0.171 5,523

Mesh050-dt200 50 10 200 0.171 4,418

Mesh100-dt400 100 20 400 0.171 2,209

Mesh200-dt800 200 40 800 0.171 1,105

Mesh100-dt200 100 20 200 0.684 2,209

Mesh100-dt800 100 20 800 0.086 2,209

Mesh100-dt1600 100 20 1600 0.043 2,209

Wave elevation time series measured at the center of computational domain are compared in

�gures 6.10 and 6.11 with respect to Co and Re∆ discretizations. The results show that the

measured wave elevation converges to the analytic solution, and the wave amplitudes are well

preserved with respect to Co and Re∆ discretizations.

Figure 6.10. Wave elevation time series with respect to Co discretization.
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Figure 6.11. Wave elevation time series with respect to Re discretization.

First-harmonic amplitudes and phase di�erences of wave elevation with respect to Co and Re∆

discretizations are shown in �gures 6.12 and 6.13. When coarse time and space discretization

are used, the �rst-harmonic amplitudes of wave elevation show unstable results compared to the

simulation case with a �ne discretization.

Figure 6.14 shows the convergence of �rst-harmonic amplitudes during t ∈ [25T, 40T ] with respect

to Co and Re∆ discretizations. The procedure of Eça and Hoekstra (2014) is applied to estimate

the order of convergence (p). The obtained convergence orders for Co and Re∆ discretization

are p = 1.2 and 2.0, respectively.

(a) First-harmonic amplitudes (b) First-harmonic phase di�erences

Figure 6.12. First-harmonic wave amplitudes and phase di�erences with respect to Co

discretization.
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(a) First-harmonic amplitudes (b) First-harmonic phase di�erences

Figure 6.13. First-harmonic wave amplitudes and phase di�erences with respect to Re∆

discretization.

(a) First-harmonic amplitude (b) First-harmonic phase di�erence

Figure 6.14. Convergence of �rst-harmonic wave amplitude with respect to Co and Re∆

discretizations.

A non-zero mean shift of the wave elevation is observed during the simulation. Moving averages

of wave elevation time series for one wave period are shown in �gure 6.15. Results show that

redistancing ψC can generate a mean shift of wave elevation compared to the simulation case

without redistancing ψC . It it thought to be due to a mass loss when redistancing the LS

function. The mass loss due to redistancing Level-Set function have been reported by Sussman

et al. (1994).

The mean shift of wave elevation decreases as time and space discretizations are re�ned. Redis-

tancing technique adopted in present study is based on the calculation of the distance from the

nearest interface.
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(a) Co discretization (b) Re discretization

Figure 6.15. Moving averages of wave elevation with respect to Co and Re∆ discretization

and ψC redistancing.

Comparison with other viscous �ow solvers

Viscous �ow solvers based on Navier-Stokes (NS) with VOF interface modeling (foamStar) and

SWENSE with VOF interface modeling by Li (2018) are considered for comparison. An arti�cial

compression term is commonly added to the VOF-transport equation in order to counteract the

interface smearing
∂α

∂t
+∇ · (uα) + cα∇ · (unα(1− α)) = 0, (6.116)

where cα is an interface compression coe�cient and un is the �uid velocity normal to the interface.

The VOF compression term cα∇ · (unα(1− α)) only acts when α ∈ (0, 1).

Wave elevation time series at the center of the computational domain are compared in �gure 6.16.

Wave elevation calculated by solving Navier-Stokes equations with VOF interface modeling show

a decaying behavior for simulation time, and a small phase shift is seen. Wave elevations simu-

lated by solving SWENSE with VOF interface modeling depend on arti�cial VOF compression

term. When a small VOF compression coe�cient cα = 0.3 is used, wave elevations show a de-

caying behavior with a large phase shift. Meanwhile, wave elevations computed by the present

method show consistent results compared to other viscous �ow solvers.

First-harmonic amplitudes and phase di�erence between analytical solution are compared in

�gure 6.17. Wave amplitudes computed by solving Navier-Stokes equations with VOF interface

modeling show decaying behavior during simulation time. Results simulated by solving SWENSE

with VOF interface modeling with cα = 0.3 are poor compared to the other viscous �ow solvers.

When cα = 1.0 is used for SWENSE with VOF interface modeling, �rst-harmonic amplitudes

larger than 1 are obtained until t < 32T and decay after t = 32T . First-harmonic amplitudes

and phase di�erences calculated by solving SWENSE with LS function for interface modeling

show a good and consistent behaviour compared to other viscous �ow models.
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Figure 6.16. Comparison of wave elevation time series with other viscous solvers.

(a) First-harmonic amplitude (b) First-harmonic phase di�erence

Figure 6.17. Comparision of wave elevation �rst harmonics with other viscous solvers.
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6.9.2 Regular wave di�raction by a vertical circular cylinder

Experiments on a vertical circular cylinder in regular wave are considered. The con�guration of

experiments conducted by Huseby and Grue (2000) is depicted in �gure 6.18. A thin cylinder

with radius r = 0.03m is �xed in wave tank of depth H = 0.6m. Incident regular waves of

frequency f = ω
2π = 1.425 Hz with various wave height (H) are generated by a wavemaker.

In the present study, simulations are conducted in wave steepness range kH ∈ [0.12, 0.48]. A

cylindrical computation mesh with radius of 2λ = 1.537m and height 0.8m is considered. A re-

laxation zone with the length of 1.5λ is de�ned from the far-�eld boundary. The pure CFD zone

is 0.5λ from cylinder wall to relaxation zone following previous work (Li, 2018). The computa-

tional domain is discretized with cell length ratio in the radial direction by ∆Rmax/∆Rmin = 40.

The number of cells in the radial direction is NR = 40. The mesh is discretized uniformly in

θ-direction with Nθ = 30. Three mesh blocks are considered in the vertical direction. The

underwater block is de�ned in z ∈ [−0.6H,−0.75H] with cell height ratio ∆zmax/∆zmin = 50,

and number of cells Nz1 = 25 is used. The free surface block is de�ned in z ∈ [−0.75H, 0.75H].

This part of the domain is discretized uniformly with Nz2 = 40. The air block is de�ned in

z ∈ [0.75H, 0.2m]. Here the mesh uses a cell height ratio ∆zmax/∆zmin = 12 with number of

cells Nz3 = 15. The computational mesh used for the simulation case kH = 0.48 is shown in

�gure 6.19. The time step is set to T/∆t = 800. Total number of cells used for computation is

Ncell = 190, 000.

Figure 6.18. Con�guration of experiments for thin cylinder in regular waves by Huseby and

Grue (2000).

Figure 6.19. Computational mesh used for thin cylinder in regular waves, kH = 0.48.
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Figure 6.20 shows the force time series with respect to di�erent wave steepnesses. Magni�ed

force time series shows that nonlinear components increase with wave steepness. Total wave

�elds around cylinder at the simulation time t = 30T are compared in �gure 6.21 with respect to

di�erent wave steepnesses. This �gure shows that complementary waves around cylinder increase

with wave steepness.

Figure 6.22 shows total wave elevations around cylinder for simulation time. Complementary

waves generated by a vertical cylinder are clearly veri�ed.

Figure 6.20. Time series of horizontal force acting on the cylinder for di�erent wave steepness

(kH).
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(a) kH = 0.12 (b) kH = 0.20

(c) kH = 0.30 (d) kH = 0.48

Figure 6.21. Total wave �eld around cylinder at t = 30T for di�erent wave steepness (kH).

(a) t = 30T (b) t = 30T +
1

4
T

(c) t = 30T +
2

4
T (d) t = 30T +

3

4
T

Figure 6.22. Total wave �eld around cylinder at 4 instants, kH = 0.48.
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First and higher harmonics of the horizontal force acting on cylinder are compared in �gure 6.23.

Analytical solution on the vertical circular cylinder in regular waves is available up to third-order.

McCamy and Fuchs (1954) introduced linear theory based on the eigenfunction expansion, Kim

and Yue (1989) presented the second order velocity potential on the vertical circular cylinder and

Chau and Taylor (1992) suggested the complete expression for second order problem. Malenica

and Molin (1995) extended the eigen-function expansion up to third-order problem. Huseby

and Grue (2000) conducted the experiments with di�erent cylinder radii (a=3cm, 4cm). Special

attention was given to remove the second-order free waves due to the wave maker. Measurement

is taken before high-harmonic free waves reach the cylinder. They compared the force harmonics

amplitudes (
∣∣F (n)

∣∣) and phases (ϑ(F (n))), where (n) denotes the harmonic order. Amplitudes of

force harmonics are normalized as follows:∣∣F (n)
∣∣

ρga3

(
a

H/2

)n
. (6.117)

Horizontal force harmonics calculated by present method is compared with others (Ferrant, 1998;

Shao and Faltinsen, 2014; Li, 2018). Shao and Faltinsen (2014) evaluated the force harmonics

by Harmonic Polynomial Cell (HPC) method and Li (2018) calculated forces by �nite vomume

method based on multi-phase SWENSE and VOF procedure for interface modeling. Computed

force harmonics by present study show good results with others.

First-harmonic amplitudes and phases have similar tendencies with what shown in Li (2018).

However, small amplitude di�erences are observed for small kH that should have the similar

value with analytical solution. Second-harmonic amplitudes and phases show similar results with

Li (2018). Third-harmonic amplitudes and phases are slightly di�erent for small kH compared

to others and analytic solution. Fourth-hamonic amplitude and phase show similar results with

Ferrant (1998) and Shao and Faltinsen (2014).

Force harmonics calculated by proposed method show good results even if a relative coarse

discretization (Ncell = 190, 000) is used.
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Figure 6.23. Harmonics of horizontal force acting on the cylinder.
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6.10 Conclusion

The SWENSE method is applied to multi-phase �ow with Level-Set function for the interface

modeling. Kinematic and dynamic interface boundary conditions in multiphase �ow are reviewed.

Navier-Stokes equations and interface boundary conditions are reformulated with respect to the

complementary �ow by combining previous works by Vuk£evi¢ (2016) and Li (2018).

Pressure related terms are discretized by considering the interface boundary conditions in the

framework of Finite Volume (FV). A FV discretization procedure based on Ghost Fluid Method

(GFM) proposed by Vuk£evi¢ (2016) is used to consider the pressure boundary conditions on the

interface. The incident pressure including the dynamic pressure of incident waves and hydrostatic

pressure is used for the pressure jump condition (Li, 2018). Both pressure jump conditions

proposed by Vuk£evi¢ (2016) and Li (2018) are same for calm water case.

The extrapolation of incident velocity and dynamic part of incident wave pressure with cubic

polynomials is proposed in the present work. It provides smooth transitions of incident wave

quantities up to air zone without any complex algorithm and with fast computation. Nev-

ertheless, the extrapolation with cubic polynomials generates mass continuity error in the air

zone. Numerical simulations showed that the extrapolation of the incident �ow up to air zone is

necessary for multi-phase �ow simulation based on the SWENSE approach.

Redistancing Level-Set (LS) function by calculating the distance from the nearest interface is

used in the present study. The numerical discretization of incident �ow terms in LS equation

generates errors which are cumulated in simulation time. Redistancing LS is thought to remove

cumulated errors due to the discretization of incident �ow terms. Then, a negligible mass loss is

observed during the simulation.

Spatial and time discretization tests were conducted to check the order of convergence. Further-

more, a comparison with other viscous �ow solvers was conducted for wave propagation. Results

showed that the proposed viscous �ow solver gives better results during simulation compared to

others.

At last, a benchmark test on the wave di�raction by a thin cylinder is conducted. Amplitudes and

phase of force harmonics are compared with analytical solution, experiments and other numerical

computations. Although a small number of computation cells is used for the simulation, the

results calculated by the proposed viscous �ow solver show similar results compared with other

computations.
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7 Two-way coupling of potential and viscous �ows

The computational algorithm solving a problem of wave-structure interaction by considering the

two-way coupling between potential and viscous �ow models are introduced. It is based on the

hypothesis that total �ow can be decomposed into the incident and complementary is assumed.

In the present study, the following principles are used:

• Total �ow can be decomposed into the incident and complementary parts.

• The incident parts are calculated from the nonlinear potential �ow models for incident

waves in a whole computational domain.

• The complementary parts in the vicinity of a structure are solved by viscous �ow model

based on SWENSE method.

• The complementary parts in the far-�eld are modeled by Poincaré's velocity representation

based on linear potential theory.

Based on the above principle, the functional decomposition (FD) and domain decomposition

(DD) are applied as the coupling methodology as:

• Functional decomposition (FD) is applied for both potential and viscous �ow models.

Because the nonlinear potential �ow model for incident waves is available in a whole �uid

domain, the complementary parts are considered as the main concerns for the computation.

The governing equations and boundary conditions for potential and viscous �ow models

are reformulated for complementary �ow. Poincaré's velocity representation is used for

potential �ow and SWENSE method is applied for viscous �ow.

• Domain decomposition (DD) is considered to decompose the computational domain

of potential and viscous �ow models for complementary parts. The viscous �ow model

based on SWENSE with LS function for interface modeling calculates the complementary

waves in the vicinity of a structure. The complementary waves in the region of far-�eld are

modeled by Poincaré's velocity representation based on linear potential theory.

Two-way coupling between potential and viscous �ow models for complementary �ow assumed

that the �uid velocity and wave elevation across the �ow models are continuous. Each of the

�ow models is updated as follows:

• Viscous �ow model to potential �ow model

The complementary �uid velocity and wave elevations on the matching surface are obtained

from the viscous �ow model. Fourier-Laguerre and Fourier coe�cients of complementary

velocity and wave elevation are calculated, respectively. The complementary velocity and

wave elevation �elds in the relaxation zones are constructed by using Poincaré's velocity

representation.

• Potential �ow model to viscous �ow model

The target values of complementary velocity and Level-Set function in the relaxation

zone are calculated from the complementary velocity and wave elevation �elds by using

Poincaré's velocity representation. The relaxation scheme, which blends the calculated

quantity with the target quantity, is used to update the viscous �ow model.
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7.1 Computation algorithm

A segregated algorithm is used to solve the wave-structure interaction problem considering cou-

pling viscous and potential �ow models. The �uid velocities and wave elevations computed by

potential and viscous solvers are coupled and they are imposed as the boundary conditions of

each �ow model at the same computational time.

Figure 7.1 shows the computation algorithm solving the wave-structure interaction problem.

Viscous �ow model and potential �ow model are initialized at the beginning of the algorithm.

Figure 7.1. Global computational algorithm of two-way coupling between potential and

viscous �ows.
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7.1.1 Initialization of the potential �ow

Figure 7.2 shows the initialization procedure of potential �ow model. The nonlinear potential

�ow model for di�erent incident waves is initialized:

• Regular waves: Stream function theory is used. The modal amplitudes for �uid velocity

and wave elevation of regular waves are computed in this step.

• Irregular waves/Propagating waves in NWT: HOS model is used. The input parameters and

numerical results of HOS wave simulation are read. Initial 3D wave �eld for interpolation

is constructed.

Potential �ow model for complementary waves is initialized by computing the elementary func-

tions of source, image source, harmonic terms and waterline. After calculating the elementary

functions necessary for Poincaré's velocity representation, 3D cylindrical grid is constructed for

the interpolation of complementary velocity and wave elevation in the relaxation zone.

Figure 7.2. Initialization of incident and complementary potential �ows.
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7.1.2 Update of potential �ow

Figure 7.3 shows the update procedure of the potential �ow model in the time loop.

Figure 7.3. Update procedure of the potential �ow models for the incident and

complementary waves in the time loop.

Updating the potential �ow model for incident waves depends on the wave type. The following

procedures are used to update regular or irregular incident waves.

• Regular waves: Time is updated to change the phase function of the stream function

theory. Fluid velocity, wave elevation and dynamic pressure of incident waves are updated

by new phase function. Wave elevation and stream function of regular waves were given in

equations (3.3) and (3.4) as

ΞI(x; t) = ηI(x)e−iωt, ΨI(x, z; t) = ψI(x, z)e
−iωt.

where t is time, and it is updated with new simulation time.

• Irregular waves/Propagating waves in NWT: Time-varying mode amplitudes of HOS wave

model are updated by the results of HOS simulation. The velocity potential for Open-ocean
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was given in equation (3.16) as

ΦI(x, y, z; t) =

∞∑
m=0

∞∑
n=0

AImn(t)φI,mn(x, y, z)

and the velocity potential for NWT was given in equation (3.32) as

ΦI(x, y, z; t) = ΦH(x, y, z; t) + ΦL(x, y, z; t)

where ΦH and ΦL are the harmonic and local velocity potentials given in (3.36) and (3.41)

as

ΦH(x, y, z′; t) =

Mx∑
m=0

Ny∑
n=0

BΦ
mn(t)φH,mn(x, y, z′),

ΦL(x, y, z′; t) =

Ny∑
n=0

Nadd∑
p=0

Badd
np (t)φL,mn(x, y, z′)

where AImn(t), BΦ
mn(t) and Badd

np (t) are time-varying mode amplitudes of HOS wave model.

Fluid velocity, wave elevation and dynamic pressure of incident waves are reconstructed on

the computational grid by applying inverse Fourier transform. The reconstructed 3D wave

�elds are used to construct 3D incident wave �eld in the viscous �ow model by using cubic

spline interpolation.

The complementary �elds obtained by the potential �ow solver are updated by following proce-

dure:

• Fluid velocities and wave elevations of complementary waves on the matching surface and

waterline are obtained from the viscous �ow model. The principle of Wheeler stretching

is applied to obtain the �uid velocity of complementary waves on the matching surface

because the wave elevations of viscous �ow model are not calculated on the mean position.

The vertical position of Gauss point (ζi) is given in case of calm water, the vertical position

of Gauss point is moved with respect to total wave elevation

ζ ′i = ζi − Ξ, (7.1)

where ζ ′i is a new vertical position of Gauss point adapted to the total wave elevation

(Ξ). Fluid velocities of complementary waves at Gauss points are interpolated from �uid

velocities on the matching surface. It should be noted that the weight of Gauss-Laguerre

quadrature is not changing, but the vertical location of the Gauss point is moved with

respect to total wave elevation.

• Fourier-Laguerre coe�cients of complementary �uid velocity are computed on the match-

ing surface. Fourier coe�cients of complementary wave elevation are computed on the

matching waterline.

• Poincaré's velocity representation is used to calculate Fourier-Laguerre coe�cients of the

complementary �uid velocity at the �eld point. The elementary functions and Fourier-

Laguerre coe�cients of complementary �uid velocity and Fourier coe�cients of comple-

mentary wave elevations are used.
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• The vertical component of the complementary �uid velocity is computed at the �eld point

on the free surface. Complementary wave elevation at �eld point is computed by integrating

the vertical complementary �uid velocity.

• The complementary �uid velocity at the �eld points is computed by applying Wheeler

stretching and Fourier-Laguerre series.

• Constructed complementary �uid velocity and wave elevation at the �eld points are used

to interpolate the complementary �ows for viscous �ow model.

7.1.3 Update of viscous �ow

Figure 7.4 shows the computational procedure to update the viscous �ow model. The PIMPLE

algorithm, which is a combination of PISO (Pressure Implicit with Splitting of Operator) and

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations), is used to solve the segregated

equations for an unsteady problem.

Figure 7.4. Updating the viscous �ow in time loop.
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The viscous �ow model is updated by following the computational procedure:

• The dynamics of the body is solved by using a mechanical solver if a �oating body is consid-

ered. The computational mesh of the viscous �ow model is updated from the displacement

of the body surface.

• Flow quantities related to the incident waves are updated. Fluid velocity, wave elevation

and dynamic pressure of incident waves are updated from the incident wave model.

• The incident Level-Set (LS) function (ψI) is calculated by using wave elevation (ΞI) as

ψI(x, y, z; t) = −z + ΞI(x, y; t).

• Flow quantities related to the complementary waves in the relaxation zone are updated from

Poincaré's velocity representation. The complementary �uid velocity and wave elevation

in the relaxation zones are updated.

• The complementary LS function in the relaxation zone is calculated by using the comple-

mentary wave elevation as

ψPoincaré
C (x, y, z; t) = ΞC(x, y; t).

where ψPoincaré
C is the complementary LS function obtained from Poincaré's velocity repre-

sentation.

• The transport equation of complementary LS function (ψC), as given below, is solved in

the computational mesh of the viscous �ow model.

∂ψC
∂t

+∇ · (uψC) = −∂ψI
∂t
−∇ · (uψI)

After solving ψC-transport equation, the complementary LS function is re-distanced by

(ψC)P = sgn((d)P )− (ψI)P ,

where d is the distance from the nearest interface(free surface) to cell center(P ).

• The relaxation scheme is applied to the complementary LS function in the relaxation zones

as

ψC = (1− w)ψC + wψPoincaré
C ,

where w ∈ [0, 1] is the weight function de�ned in the relaxation zones.

• PISO loop is used to solve uC and pC equations with interface conditions. The governing

equations for uC and pC are given by

∂uC
∂t

+∇ · (uuC)−∇ · (νeff∇uC) = − pI
ρw

∇ρ
ρ
− uC · ∇uI +∇uC · ∇νeff ,

and

∇ ·
{

1

aP

(
1

ρ
∇(pC)P

)}
= ∇ ·

[
1

aP
H {(uC)P }

]
.

The interface conditions are given by

JuCK = 0, JpCK = pI
ρw − ρa
ρw

,
r1

ρ
∇pC

z
= 0.

The Ghost Fluid Method is applied to solve the equations for uC and pC by considering

the interface boundary conditions.
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• The relaxation scheme is applied to the complementary �uid velocity in the relaxation

zones as

uC = (1− w)uC + wuPoincaré
C .

• Turbulence model is solved after the PISO loop. In the present study, the turbulence model

is not considered. In other words, a laminar �ow is assumed.

• If the solutions are converged in the PIMPLE loop, the update of viscous �ow is done.

7.2 Benchmark test 1: A vertical circular cylinder in regular waves

7.2.1 Description

A bottom-mounted vertical circular cylinder in regular waves is considered for the benchmark

test case. Di�erent wave frequencies are used for incident regular waves. The magnitude of

waves di�racted by the cylinder increases as the wavelength of incident waves becomes shorter.

The test cases are selected from the previous study on the wave di�raction theory by Malenica

and Molin (1995) (M&M theory). They calculated the third-order harmonic forces acting on a

vertical circular cylinder. Perturbation series with respect to wave steepness is applied to the

velocity potential and wave elevation. The third-hamonic component magnitude of horizontal

forces acting on the vertical circular cylinder are compared with experimental results (Moe,

1993). Nevertheless, the third harmonic components measured in experiments show a scattered

distribution, that is why the �rst, second and third harmonic components of horizontal forces

calculated from M&M theory can be used as reference values (Malenica, 1994).

The horizontal forces on the bottom-mounted vertical circular cylinder in regular waves can be

decomposed into the harmonic components as (Malenica and Molin, 1995)

Fx(t) = <
[
F (1)
x e−iωt + F (2)

x e−2iωt + F (3)
x e−3iωt

]
+ F̄ (2)

x + · · · , (7.2)

where F (1)
x , F (2)

x and F
(3)
x are the �rst harmonic, second harmonic(sum-frequency) and third

harmonic components of horizontal force. F̄
(2)
x is a mean drift force which corresponds to a

second order di�erent-frequency component. Analytical solution of force harmonics can be found

in the literature: the �rst harmonic by McCamy and Fuchs (1954), the second harmonic by Kim

and Yue (1989); Chau and Taylor (1992) and the third harmonic by Malenica and Molin (1995).

Mean drift force acting on the structure is given by Pinkster (1980). In the present study, the

mean drift forces are calculated by using Higher-Order Boundary Element Method(HOBEM)

(Hong et al., 2005).

The conditions of regular waves considered in the present study are given in Table 7.1. The

modal wave number (k0) is selected to be in the range k0acylinder ∈ [0.5, 2.0] satisfying a deep

water condition that the half of wavelength is smaller than the water depth. The modal wave

number is calculated by using a linear dispersion relationship as

ω2 = k0h tanh(k0h) (7.3)
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where ω = 2π
T is wave frequency, T is wave period. λ0 = 2π

k0
is the modal wavelength. Wave

height is selected to keep the wave steepness, k0H2 = 0.25.

Table 7.1. Wave conditions for a vertical circular cylinder in regular wave.

k0acylinder
Wave period

(T )

Wave height

(H = 2A)

Wavelength

(λ0 = 2π
k0
)

Wave

steepness

(k0H2 )

[-] [s] [m] [m] [-]

0.50 2.837 1.000 12.566 0.25

0.75 2.316 0.667 8.376 0.25

1.00 2.006 0.500 6.283 0.25

1.25 1.794 0.400 5.027 0.25

1.50 1.638 0.333 4.189 0.25

1.75 1.516 0.286 3.590 0.25

2.00 1.419 0.250 3.142 0.25

The force harmonics and mean drift components of horizontal force are extracted from the

CFD solution by applying moving window FFT. The force harmonics and mean drift forces are

nondimensionalized by:
F

(m)
x

ρga3
cylinder(A/acylinder)

m
(7.4)

where m is the order of force harmonics. A is wave amplitude.

7.2.2 Computational domain

Figure 7.5 shows the con�guration of the benchmark test case. A bottom-mounted vertical

circular cylinder having a radius of acylinder = 1m is located in regular waves. Water depth

is h = 10acylinder = 10m. The computational domain of the viscous �ow solver is de�ned

surrounding the vertical circular cylinder, as colored grey in �gure 7.5. The radius and height

of the computational domain of the viscous �ow solver are LCFD and h + hair, respectively.

The relaxation zone is de�ned from the far-�eld boundary with its length Lrelax. The pure zone

where no relaxation scheme is applied has a length Lpure = LCFD − Lrelax. The computational

domain of the potential �ow model for complementary waves is constructed to cover at least

the relaxation zone of viscous �ow model, as outlined with a solid black line in �gure 7.5. The

complementary �uid velocity and wave elevation are obtained from viscous �ow model at Gauss

points colored red in �gure 7.5.

With two-way coupling, the viscous solver needs the target solution for each nodes of the re-

laxation zone. The potential solver based on Poincaré's velocity representation computes the

complementary �ows on the interpolation grid. Therefore, the interpolation grid should cover

the whole relaxation zone of the viscous �ow domain. The schematic view of the interpolation

grid for potential �ow model is depicted in Figure 7.6.
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Figure 7.5. Computational domain of viscous and potential �ow models for benchmark test

case on a vertical circular cylinder in regular waves.

Figure 7.6. Interpolation grid of Poincaré's velocity representation for complementary �ows.
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The cylindrical-shaped interpolation grid is de�ned in r ∈ [rmin
Poincaré, r

max
Poincaré], z ∈ [zwaterPoincaré, z

air
Poincaré]

and θ ∈ [0, 2π]. The interpolation grid is discretized uniformly in a radial direction with dis-

cretization number (N r
Poincaré). In the vertical direction, the grid is decomposed into the under-

water zone (z ≤ 0) and the air zone (z > 0). The underwater zone is discretized with the number

of N z1 with a cell height ratio rz1 in the vertical direction. The air zone is also discretized in

the vertical direction with the number of N z2
Poincaré with a cell height ratio rz2. The cell height

ratios are de�ned as

rz1Poincaré =
max(hz1Poincaré)

min(hz1Poincaré)
, rz2Poincaré =

max(hz2Poincaré)

min(hz2Poincaré)
. (7.5)

where hz1Poincaré and hz2Poincaré are the cell height of the underwater and air zone, respectively.

The cells having the minimum height are located on the mean free surface to give a dense mesh

distribution near to the free surface. Interpolation grid is uniformly distributed in θ-direction

with the number of N θ
Poincaré.

7.2.3 Coupling between viscous �ow solver based on SWENSE with LS function

and potential �ow solver

Numerical setting

The viscous �ow solver based on SWENSE with LS function for interface modeling is used.

Results with and without two-way coupling are compared. Two computational meshes are used

for the viscous �ow solver and relative information is given in Table 7.2.

Table 7.2. Computational domains of viscous �ow model based on SWENSE with LS function

for the vertical circular cylinder in waves.

Item Mesh1 Mesh2

LCFD acylinder + 2.5λ0 acylinder + 1.5λ0

Lrelax 2λ0 1λ0

Lpure acylinder + 0.5λ0 acylinder + 0.5λ0

Ncell 360,000 360,000

a 2acylinder 2acylinder

Interpolation grid
r ∈ [a+ 0.3λ0, LCFD + 0.2λ0],

z ∈ [−H − 1m, 3.5m]

r ∈ [a+ 0.3λ0, LCFD + 0.2λ0],

z ∈ [−H − 1m, 3.5m]

N r
Poincaré and N

θ
Poincaré 120 and 128 80 and 128

N z1
Poincaré and N

z2
Poincaré 300 and 50 300 and 50

rz1Poincaré and r
z2
Poincaré 5 and 3 5 and 3

dcouple 0.5λ0 0.5λ0

The domain lengths are set to be LCFD = acylinder + 2.5λ0 and LCFD = acylinder + 1.5λ0 for

Mesh1 and Mesh2, respectively. A relaxation zone is de�ned in the far-�eld region, as colored

yellow in �gure 7.7. The length of relaxation zones are set to be Lrelax = 2λ0 and Lrelax = 1λ0
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for Mesh1 and Mesh2 respectively. The pure zone has same length in Mesh1 and Mesh2. The

computational meshes of viscous �ow solver for the case of k0acylinder = 1.0 are shown in �gure

7.7. The same number of computational cells, Ncell = 360, 000, is used for mesh re�nement.

(a) Mesh1 (b) Mesh2

Figure 7.7. Computational meshes of viscous �ow model based on SWENSE with LS function

for the case of kacylinder = 1.0.

The radius of the matching surface used to update the potential �ow model is set to be a =

2acylinder. The information of interpolation grid used in the benchmark test are summarized in

Table 7.2. The number of Fourier and Laguerre modes used for Poincaré's velocity representa-

tion are Nfourier = 6 and Nlaguerre = 3, respectively. Distance between matching surface and

relaxation zone is dcouple = 0.5λ0.

In the relaxation zone, the complementary �ows are relaxed to zero when no coupling is applied

or to the complementary �ows calculated by potential �ow solver when the coupling is considered.

Complementary wave �eld

Figure 7.8 shows the complementary wave elevations in the computational domain of the viscous

�ow model at simulation time t = 12T, 12.4T and 12.8T . Incident waves are propagating from

left to right. Relaxation zone is de�ned in the far-�eld region of the computational domain, from

red-circle to the ends of domain in �gure 7.8. The matching surface of radius a = 2.5acylinder is

is located at blue circle in �gure 7.8.

The complementary wave elevation �elds without considering the two-way coupling between

potential and viscous �ows are shown in �gures 7.8a, 7.8c and 7.8e. The complementary wave

elevations only exist in the vicinity of the circular cylinder where no relaxation scheme is applied.

In the relaxation zone, the complementary wave elevation is relaxed to zero. Therefore no

complementary waves are propagating up to the region of far-�eld.

The complementary wave elevation �elds when the two-way coupling is considered are shown in

�gures 7.8b, 7.8d and 7.8f. The complementary waves exist both in the vicinity of the circular

cylinder and the region of far-�eld. A smooth transient of complementary wave elevation between

pure and relaxation zone is shown in the �gures.
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(a) without coupling, t = 12T (b) with coupling, t = 12T

(c) without coupling, t = 12.4T (d) with coupling, t = 12.4T

(e) without coupling, t = 12.8T (f) with coupling, t = 12.8T

Figure 7.8. Complementary wave elevation �elds with respect to application of two-way

coupling for the case of k0acylinder = 1.0 (Left: without coupling, right: with coupling).
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The horizontal force acting on the vertical circular cylinder

Figure 7.9 shows the time series of horizontal forces acting on the vertical circular cylinder. The

horizontal forces are compared with respect to the di�erent computational meshes of viscous �ow

model and two-way coupling between viscous and potential �ows. The magnitude of total forces

and behaviours are not changed signi�cantly with respect to the computational meshes and two-

way coupling. The time series of forces are slightly changed when the di�erent computational

meshes are used for the case of large wavenumber, k0acylinder ≥ 1. Two-way coupling between

potential and viscous �ows also slightly a�ects the time series of forces.

(a) k0acylinder = 0.5 (b) k0acylinder = 1.0

(c) k0acylinder = 1.5 (d) k0acylinder = 2.0

Figure 7.9. Horizontal force time series with respect to the computational meshes and the

application of two-way coupling (Viscous �ow model based on SWENSE with LS function and

Poincaré's velocity representation is used for two-way coupling).
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Force harmonics and mean drift forces are extracted by using moving window FFT. They are

compared in �gure 7.10 with respect to di�erent computational meshes of viscous �ow model

and two-way coupling between potential and viscous �ows. The analytical values for the �rst ,

second and third harmonics of horizontal forces are obtained from potential �ow theory based

on perturbation series (Malenica, 1994), as given by black lines in �gures 7.10a, 7.10c and 7.10d.

Reference values for the mean drift forces are calculated by using HOBEM (Hong et al., 2005),

as given by black line in �gure 7.10b.

Figure 7.10a shows the �rst harmonic of horizontal forces compared with the analytical solu-

tion. The �rst harmonics show good agreements with the analytical solution obtained from the

potential �ow theory. When no coupling is applied, the �rst harmonics obtained from di�erent

computational meshes are slightly di�erent for the cases of k0acylinder ≥ 0.75. The �rst harmon-

ics obtained from di�erent computational meshes by applying two-way coupling show consistent

values for the cases of k0acylinder ≤ 1.25.

Figure 7.10b shows the mean drift force in the horizontal direction. They are similar compared

with the results of HOBEM(numerics) except the case with small computational domain and

without two-way coupling. It seems that the two-way coupling helps to assess the mean drift

force on the structure in a small computational domain.

Figure 7.10c shows the second harmonic of horizontal forces. The second harmonics show sim-

ilar behaviour with the analytical solution from potential �ow theory. With two-way coupling,

the second harmonics are slightly better compared to the simulation results without two-way

coupling.

Figure 7.10d shows the third harmonic of horizontal forces. The third harmonics of horizontal

forces for all simulations have similar tendencies with the analytical solution, but the poor

results are obtained on the magnitude of forces for all simulations. Especially for the cases of

large wavenumbers k0acylinder > 1, the simulation results are di�erent.

The following things are summarized from the results.

• SWENSE with LS function for interface modeling with a relatively large computational

domain gives good results up to second-order forces.

• Two-way coupling between viscous and potential �ow model gives slightly better results

for the �rst- and second harmonics and mean drift forces in a small computational domain.

However, poor results are obtained for third-order harmonics.

• Nevertheless, the third harmonics obtained from the simulation have tendencies similar

to the analytical solution, the large di�erences between analytical solution and simulation

results are shown.
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(a) First harmonic, F (1) (b) Mean drift force, F̄ (2)

(c) Second harmonic, F (2) (d) Third harmonic, F (3)

Figure 7.10. Harmonics of horizontal force acting on vertical circular cylinder. Horizontal

forces are calculated by viscous �ow model based on SWENSE with LS function. Poincaré's

velocity representation is used for two-way coupling.
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7.2.4 Comparison and discussion

Considered computations

The viscous �ow solvers with and without two-way coupling are applied. The computations

considered are listed as below:

• Viscous �ow solver based on NS+VOF with and without two-way coupling

Viscous �ow solver based on Navier-Stokes equations and VOF interface modeling is used.

In the relaxation zone, the functional quantities of total �ows are relaxed to the target

functional quantities as quantities calculated by incident waves as

u = (1− w)u + wuTarget, (7.6)

α = (1− w)α+ wαTarget, (7.7)

where uTarget and αTarget are the target �uid velocity and VOF.

When the coupling is not applied, the target �uid velocity and VOF are set to be the

functional quantities of incident waves as

uTarget = uI , αTarget = αTarget,I , (7.8)

where uI is the �uid velocity computed by incident waves, αTarget,I is VOF calculated by

using the wave elevation of incident waves.

Meanwhile, the target �uid velocity and VOF changes when the two-way coupling is applied

as

u = (1− w)u + w(uI + uPoincaré
C ), (7.9)

α = (1− w)α+ wαTarget,Total, (7.10)

where uPoincaré is complementary �uid velocity computed by Poincaré's velocity representa-

tion, αTarget,Total is VOF calculated by using total wave elevation(Ξ). Total wave elevation

in the relaxation zone is given by a superposition of incident wave and complementary

waves

Ξ = ΞI + ΞPoincaré
C , (7.11)

To update the potential �ow solver, the complementary �uid velocity and wave elevation

on the matching surface are obtained by subtracting the incident �ow parts as

uC = u− uI ,

ΞC = Ξ− ΞI ,
at Gauss points on matching surface and waterline, (7.12)

where uI and ΞI are �uid velocity and wave elevation calculated by incident waves at Gauss

points, respectively.

• Viscous �ow solver based on SWENSE+LS with and without two-way coupling

Viscous �ow model based on SWENSE with LS function for interface modeling is used.

In the relaxation zone, the complementary �ows are relaxed to the complementary �ows
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computed by Poincaré's velocity representation as

uC = (1− w)uC + wuTarget
C ,

ψC = (1− w)ψC + wψTarget
C ,

The target complementary �uid velocity and LS functions are determined by application

of two-way coupling as

uTarget
C =

0 without coupling

uPoincaré
C with coupling

, ψTarget
C =

0 without coupling

ψPoincaré
C with coupling

where uPoincaré
C and ψPoincaré

C are the complementary �uid velocity and LS function calcu-

lated by using Poincaré's velocity representation.

Computational domain

Some information of computational domains are summarized in Table 7.3. The radius of viscous

�ow domains is LCFD = acylinder+3.0λ0 and acylinder+1.5λ0 for MeshL and Mesh2, respectively.

The relaxation zone is de�ned in the far-�eld region with its length Lrelax = 1.5λ0 and 1λ0 for

MeshL and Mesh2, respectively. The numbers of computational cells are in the range of 3millions

and 0.36millions for MeshL and Mesh2, respectively. The simulation time step is T/∆t = 1600

and 1000 for MeshL and Mesh2, respectively. Figure 7.11 show the computational grid of MeshL

for the simulation case of kacylinder = 1.0. The computational grid for Mesh2 is already shown

in �gure 7.7b.

The radius of matching surface is a = 2acylinder. Some information of interpolation grid is given

in Table 7.3. Two-way coupling is only applied when Mesh2 is used in the viscous �ow solver.

The distance between the matching surface and relaxation zone is dcouple = 0.5λ0. The numbers

of Fourier and Laguerre modes are Nfourier = 6 and Nlaguerre = 3, respectively.

Table 7.3. Computational domains used for the comparison of two-way coupling with various

viscous �ow models.

Item MeshL Mesh2

LCFD acylinder + 3.0λ0 acylinder + 1.5λ0

Lrelax 1.5λ0 1λ0

Lpure acylinder + 1.5λ0 acylinder + 0.5λ0

Ncell 2,808,000 - 3,132,000 360,000

a 2acylinder 2acylinder

Interpolation grid -
r ∈ [a+ 0.3λ0, LCFD + 0.2λ0],

z ∈ [−H − 1m, 3.5m]

N r
Poincaré and N

θ
Poincaré - 80 and 128

N z1
Poincaré and N

z2
Poincaré - 300 and 50

rz1Poincaré and r
z2
Poincaré - 5 and 3

dcouple - 0.5λ0
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Figure 7.11. Computational grid of MeshL for the simulation case of kacylinder = 1.0

Total wave �eld

Total wave elevation �elds in the vicinity of the circular cylinder are compared in �gure 7.12.

Incident waves are propagating from left to right. The relaxation zone is de�ned in the far-�eld,

from red circle to the end. The matching surface is given as the blue circle.

Figure 7.12a shows total wave elevation �eld computed by solving Navier-Stokes (NS) equations

and VOF interface modeling in MeshL without coupling. In the �gure, the total waves di�racted

by the vertical circular cylinder are propagating to the far-�eld. The amplitudes of total wave

elevation in the vicinity of the vertical circular cylinder are smaller than the simulation case with

Mesh2 due to numerical dissipation.

Figures 7.12b and 7.12d show the total wave elevation �elds calculated by viscous �ow solvers

without two-way coupling in Mesh2, Figure 7.12b by viscous �ow solver based on NS equations

with VOF interface modeling and Figure 7.12d by viscous �ow solver based on SWENSE with

LS function for interface modeling. They show that the total wave elevations in the relaxation

zone are blended to the incident waves.

Figures 7.12c and 7.12e show the total wave elevation �elds calculated by viscous �ow models

with two-way coupling in Mesh2, Figure 7.12c by viscous �ow model based on NS equations and

VOF interface modeling, and Figure 7.12e by viscous �ow model based on SWENSE with LS

function. The total waves di�racted by the cylinder are propagating in the relaxation zone and

a smooth transient of wave elevation across the pure and relaxation zone are presented.

The results can be summarized as follows:

• Total wave �elds in the vicinity of the vertical circular cylinder are similar.

• The viscous �ow solver based on NS equations and VOF interface modeling needs more

re�ned mesh than the computational mesh used in the present study.

• When the two-way coupling is used, the waves di�racted by the structure are propagating

up to far-�eld. A smooth transition of complementary waves across the relaxation and

pure zone are presented.
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(a) NS and VOF without two-way coupling(Large

domain), large domain

(b) NS and VOF without two-way coupling,

small domain

(c) NS and VOF with two-way coupling, small

domain

(d) SWENSE and LS without two-way coupling,

small domain

(e) SWENSE and LS with two-way coupling,

small domain

Figure 7.12. Total wave elevation �elds with respect to two-way coupling for the case of

k0acylinder = 1.0.
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Horizontal force acting on the vertical circular cylinder

Horizontal force harmonics and mean drift forces acting on the vertical circular cylinder are

compared in �gure 7.13 with respect to the two-way coupling for di�erent viscous �ow models.

(a) First harmonic, F (1) (b) Mean drift force, F̄ (2)

(c) Second harmonic, F (2) (d) Third harmonic, F (3)

Figure 7.13. Horizontal force harmonics and mean drift forces with respect to the two-way

coupling for di�erent viscous �ow models.
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Figure 7.13a shows the �rst harmonics of horizontal forces. The �rst harmonics calculated by

solving SWENSE with LS function show better results for small wavenumbers than the simulation

solving NS equations and VOF interface modeling. Nevertheless, the e�ects of two-way coupling

on the �rst harmonics are small, the �rst harmonics approach to the analytical solution when

the two-way coupling is considered.

Figure 7.13b shows the horizontal mean drift forces. The mean drift forces calculated by viscous

�ow models without two-way coupling show big di�erences, especially for the simulation cases

of k0acylinder=1,1.25. When the two-way coupling is considered, the mean drift forces show better

results than the simulation without considering two-way coupling.

Figure 7.13c shows the second harmonics of horizontal forces. The second harmonics obtained

from all simulations follow the analytical solution. When the two-way coupling is considered,

the second harmonics show better results than the simulation cases without considering two-way

coupling.

Figure 7.13d shows the third harmonics of horizontal force. Third harmonics by SWENSE and

NS viscous �ow models without considering two-way coupling show similar tendency. When the

two-way coupling is applied, the results are more divergent than the simulation cases without

considering two-way coupling for large wavenumbers.

Di�erences of force harmonics and mean drift forces are summarized in Table 7.4. Relative

di�erences of horizontal force with the solution potential �ow model are de�ned by

ε
F

(m)
x,i

=
1

Nk0acylinder

Nk0acylinder∑
i=1

F (m)
x,i − F

(m)
x,i,potential

F
(m)
x,i,potential

2
1
2

, (7.13)

where ε
F

(m)
x,i

is a relative di�erence of m−th harmonics of horizontal force with respect to po-

tential �ow result. Nk0acylinder is the number of simulated wavenumbers. F (m)
x,i is m-th harmonic

component of horizontal force obtained by simulation with i-th k0acylinder. F
(m)
x,i,potential is m-th

harmonic components calculated by potential �ow theory at i-th k0acylinder.

When the two-way coupling is applied, the relative di�erences of force harmonics are reduced for

�rst- and second harmonics and mean drift forces. Meanwhile, the relative di�erences of third

harmonics increases when the two-way coupling is considered.

Table 7.4. Relative di�erences of force harmonics acting on vertical circular cylinder with

respect to viscous �ow models and two-way coupling.

Simulations / Force harmonics ε
F

(1)
x

ε
F̄

(2)
x

ε
F

(2)
x

ε
F

(3)
x

NS+ VOF without coupling (large domain) 0.0443 0.0481 0.2814 0.1317

NS + VOF without coupling (small domain) 0.0449 0.0662 0.1133 0.1285

NS + VOF with coupling (small domain) 0.0410 0.0363 0.0736 0.1368

SWENSE + LS without coupling (small domain) 0.0355 0.0605 0.0928 0.0972

SWENSE + LS with coupling (small domain) 0.0300 0.0485 0.0522 0.1425
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Computational cost

Computational costs for simulating the wave di�raction by the vertical circular cylinder are

compared. The computational costs are de�ned by computational time multiplied by the number

of processors used for computation as

Cost = tproc ×Nproc, (7.14)

where tproc is a computational time, Nproc is the number of processors used for parallel com-

putation. In the present study, Nproc = 12 is used for both viscous �ow solvers based on NS

equations and SWENSE in the small computational domain. In the large domain, the number of

processor Nproc = 120 is used for computation. Figure 7.14 shows the normalized computational

costs by the computational cost of the viscous �ow solver based NS equations and VOF interface

modeling without two-way coupling in the small computational domain.

The computational cost of the viscous �ow solver based on the NS equation and VOF interface

modeling in the large computational domain is about 21.6 times of reference case. Viscous �ow

solver based on SWENSE with LS function is faster than the viscous �ow solver based on NS

equations and VOF interface modeling. VOF transport equation is solved by an algorithm called

MULES, which solves the transport equation by using FCT-scheme (Boris and Book, 1973; Zalesak,

1979), in OpenFOAM framework. MULES needs the nonlinear iteration for calculating the �ux

limiter on each internal faces. Therefore, the computational costs are larger than solving the

LS-transport equation.

Computational costs are increased when the two-way coupling is applied. Extra computational

costs for two-way coupling are listed as below:

• Computation of convolution integrals in Poincaré's velocity representation needs extra com-

putational time. It can be reduced by applying parallel computation.

• Interpolating the complementary �uid velocity and wave elevation in the relaxation zone

are computational burden.

• Approximation of complementary �ows on the matching surface by Fourier-Laguerre series

and Fourier series needs a short computational time compared to other procedures.

Figure 7.14. Computational cost.
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7.2.5 Summary of benchmark test 1

Two-way coupling strategy between viscous and potential �ows is applied for a problem of wave

di�raction by a bottom mounted vertical circular cylinder in regular waves. Two-way coupling

strategy is also applied for the viscous �ow solver based on SWENSE with LS function. The

simulations are conducted for various regular wave frequency keeping the wave steepness.

The complementary waves di�racted by the vertical circular cylinder propagates up to far-�eld

with two-way coupling. Total wave �elds obtained from the simulations with two-way coupling

shows that the di�racted waves are propagating in the relaxation zone that are similar to the

total wave �elds obtained from the simulation in the large computational domain.

Horizontal forces acting on the vertical circular cylinder are compared by extracting its harmonics

and mean drift forces. The simulations by considering two-way coupling give good results for the

�rst harmonics, second harmonics and mean drift forces which correspond to the second-order

component. In the potential theory, the linear wave distribution along the waterline contributes

mainly on the second order forces (Pinkster, 1980). When the two-way coupling is applied the

di�erences of �rst and second order forces with the solution potential �ow model are reduced

because the linear parts of complementary waves in the relaxation zone are well treated.

However, the third harmonics obtained from the simulation by considering two-way coupling are

worst than those obtained without two-way coupling. The potential �ow model for complemen-

tary �ows based on linear theory may not appropriate to obtain the third order components

which are given by the combination of second and �rst order components.

The two-way coupling strategy is applied also for the viscous �ow solver based on NS equations

and VOF and the results are compared. The same conclusion is drawn from the simulation

results.

The computational costs are increased when the two-way coupling is applied. The computa-

tional costs are increased by 84% (=1.38/0.75) for the viscous �ow solver based on SWENSE

with LS function. When the viscous �ow solver based on NS equations and VOF is used, the

computational costs are increased by 56%.

7.3 Benchmark test 2: Calm buoy in waves

A Catenary Anchor Leg Mooring (CALM) buoy is considered to demonstrate the ability of

coupling methodology between the viscous �ow model based on SWENSE with LS interface

modeling and the potential �ow model Poincaré velocity representation.

7.3.1 Description

The experiments on a �xed Catenary Anchor Leg Mooring (CALM) buoy in regular and irregular

waves were carried out in 3D ocean wave tank in Ecole Centrale de Nantes (Rousset and Ferrant,

2005; Monroy et al., 2011; Li, 2018). Speci�cations of wave basin in Ecole Centrale de Nantes
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was given in section 3.3. The buoy is a truncated vertical circular cylinder with a thin skirt

near to the bottom. The buoy model and the picture of the installed buoy in the wave basin are

shown in �gure 7.15. Geometrical dimensions of the buoy are given in Table 7.5. The horizontal

and vertical forces acting on the buoy and the wave elevations are measured in experiments.

The conditions of regular and irregular waves are given in Table 7.6. Stream function theory is

used to generate regular waves. The irregular waves are re-generated in the simulation by using

the reconstruction procedure of HOS wave model explained in section 3.2. HOS-NWT model for

2D propagating waves is used for HOS wave model.

(a) Buoy model (b) Wave gauge position

(c) Buoy model installed in the wave basin

Figure 7.15. A CALM Buoy model.

Table 7.5. Geometrical dimensions of the CALM buoy model.

Item Value

Calm buoy radius (abuoy) 0.460m

Height overall 0.560m

Skirt radius (askird) 0.550m

Skirt thickness 0.004 m

From bottom to the skirt 0.04 m

Draft 0.25 m
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Table 7.6. Wave conditions considered in the experiments on the CALM buoy model.

Wave Type

Regular waves Irregular waves

Item Value Item Value

Wave height(H) 0.16 m Signi�cant wave height(Hs) 0.12 m

Wave period(T ) 1.80 s Peak wave period(Tp) 2.00 s

- - Peak enhancement factor(γ) 3.0

- - Wave spectrum JONSWAP

Figure 7.16 shows a con�guration of the computational domain of viscous and potential �ow

models for complementary waves. The same con�guration of the previous benchmark test is

used. The body in the computational domain of the viscous �ow model is only replaced.

The computational domain of viscous �ow model is composed of relaxation and pure zones.

The relaxation and pure zones are colored yellow and grey in �gure 7.16, respectively. In the

relaxation zone, the complementary �ow is relaxed to the complementary �ows calculated by

Poincaré's velocity representation when the two-way coupling is considered.

The matching surface is located at a = 2.5askirt. The complementary �uid velocity and wave

elevations at Gauss points are obtained from the viscous �ow model to update the complementary

waves in the relaxation zones. Gauss points are shown as red points in �gure 7.16.

Figure 7.16. Computational domain of viscous and potential �ow models for CALM buoy.
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7.3.2 Regular waves

Numerical setup

Figure 7.17 shows the computational mesh for viscous �ow model. The relaxation zone is de�ned

in the region of far-�eld, as colored grey in �gure 7.17a. The computational mesh is re�ned in

the vicinity of buoy model, as shown in �gure 7.17b. The boundary faces of buoy model are

shown in �gure 7.17c.

Information of computational domain is given in Table 7.7. The length of computional domain

for the viscous �ow model is LCFD = askirt + 2λ. The relaxation zone is de�ned from far-�eld

boundary with its length Lrelax = 1.5λ. The pure zone, where relaxation scheme is not applied,

has a length Lpure = askirt + 0.5λ. The computational cells of Ncell = 473, 136 is used for

simulation.

The matching surface to update the potential �ow model is located with its radius a = 2.5askirt.

The same con�guration of interpolation grid for Poincaré's velocity representation, as explained

in section 7.2.1, is used. The information of interpolation grid is given in Table 7.7. The numbers

of Fourier and Laguerre modes used for Poincaré's velocity representation are Nfourier = 6 and

Nlaguerre = 3, respectively. The distance from the matching surface to the relaxation zone is

dcouple = 1.15m.

(a) Global view

(b) Side view (c) Discretized boundary faces of buoy

model

Figure 7.17. Computational mesh used for the viscous �ow model.
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Table 7.7. Computational domain of the buoy model in regular waves.

Item Value Remarks

LCFD 10.1 m askirt + 2λ

Lrelax 7.575 m 1.5λ

Lpure 2.525 m askirt + 0.5λ

Ncell 473,136 -

a 1.375 m 2.5askirt

Interpolation grid
r ∈ [2.4m, 11.0m],

z ∈ [−1.6m, 0.6m]
Cover whole relaxation zone.

N r
Poincaré and N

θ
Poincaré 80 and 128 -

N z1
Poincaré and N

z2
Poincaré 300 and 100 -

rz1Poincaré and r
z2
Poincaré 3 and 3 -

dcouple 1.15 m 0.5λ− 1.5askirt

Wave �elds

Figure 7.18 shows complementary wave elevation �elds with respect to the application of two-way

coupling. Relaxation zone is de�ned in outer-region of red-circle. Matching surface is located

inside of relaxation zone, as plotted red circle in �gure 7.18. Complementary waves propagate

up to far-�eld and smooth transient across the relaxation and pure zones are shown when the

coupling is applied.

Figure 7.19 shows the total wave elevations measured at wave gauge positions in simulation and

experiment. Total wave elevation computed by considering two-way coupling shows better agree-

ments with experimental results comparing with the simulation without considering coupling.

(a) t = 10T (b) t = 10.5T

Figure 7.18. Complementary wave �elds with respect to two-way coupling for the calm buoy

in regular wave.
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Figure 7.19. Wave elevations measured at the positions of wave gauges for the buoy model in

regular wave

The magnitudes of �rst-harmonics obtained from simulations are compared with the experiment

in Table 7.8 with results of Li et al. (2019b). When the two-way coupling is applied, the di�rences

between simulation and experiments are reduced. Even if a small number of cell (Ncell) is used,

the coupling gives good results compared with results of Li et al. (2019b).

Table 7.8. Harmonics of wave elevation measured at wave gauges.

Case
Gauge #1

(Ξ(1)/A)

Gauge #2

(Ξ(1)/A)

Gauge #3

(Ξ(1)/A)

Average

Di�er-

ence

Experiment
1.140

± 0.0032

1.122

± 0.0027

0.969

± 0.0040
-

ISIS-CFD-IWG

(Li et al. (2019b), NCell = 2.4M)

1.201

(5.33%)

1.189

(5.93%)

1.009

(4.12%)
5.13 %

SWENSE+VOF w/o coupling

(Li et al. (2019b), NCell = 0.72M)

1.196

(4.89%)

1.180

(5.13%)

1.013

(4.54%)
4.85 %

SWENSE+LS w/o coupling

(Present study, NCell = 0.47M)

1.240

(8.71%)

1.226

(9.25%)

1.062

(9.58%)
9.18 %

SWENSE+LS with coupling

(Present study, NCell = 0.47M)

1.184

(3.80%)

1.174

(4.62%)

1.035

(6.77%)
5.06 %
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Forces acting on the buoy model

Figure 7.20 shows horizontal and vertical forces acting of buoy model. The forces obtained

by considering two-way coupling show better agreements with experimental results than the

simulation results without considering two-way coupling.

(a) Horizontal force Fx

(b) Vertical force Fz

Figure 7.20. Horizontal and vertical forces acting on buoy model in regular waves

Force-harmonics and horizontal mean drift force are extracted by applying moving window FFT,

as given in Table 7.9 with results of Li et al. (2019b).

First-harmonic components of horizontal forces obtained from simulations have di�erences of

less than 5%. When the two-way coupling is applied, the di�erence between simulation and

experiment is reduced.

Horizontal mean drift force obtained from the simulation without considering two-way coupling

has an di�erence of 16.8% with respect to the result of the experiment. When the two-way

coupling is considered in simulation, the di�erence of 4.17% is obtained. It recon�rms the results
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of benchmark case on the vertical cylinder discussed in section 7.2.4 that the two-way coupling

helps to assess horizontal mean drift forces acting on the structure.

Second-harmonic components of horizontal forces calculated by simulations have di�erences of

less than 9%. An di�erence obtained by applying two-way coupling is smaller than the simulation

without considering two-way coupling.

First-harmonic components of vertical forces computed by simulations have large di�erences

compared with horizontal force. The di�erence between experiments and simulation is also

reduced when the two-way coupling is considered.

Table 7.9. Harmonics of forces acting on buoy model.

Case
F

(1)
x

ρgAV
2
3

F̄
(2)
x

ρgA2V
1
3

F
(2)
x

ρgA2V
1
3

F
(1)
z

ρgAV
2
3

Experiment 0.907 0.302 0.802 0.779

ISIS-CFD-IWG

(Li et al. (2019b), NCell = 2.4M)

0.939

(3.55%)

0.289

(-4.24%)

0.887

(10.6%)

0.758

(-2.66%)

SWENSE+VOF w/o coupling

(Li et al. (2019b), NCell = 0.72M)

0.921

(1.53%)

0.313

(3.48%)

0.817

(1.84%)

0.765

(-1.70%)

SWENSE+LS w/o coupling

(Present study, NCell = 0.47M)

0.952

(5.02%)

0.360

(19.08%)

0.877

(9.27%)

0.857

(10.01%)

SWENSE+LS with coupling

(Present study, NCell = 0.47M)

0.926

(2.17%)

0.314

(3.89%)

0.774

(-3.56%)

0.818

(5.04%)

Computational cost

The computational times spent for the simulations are summarized in Table 7.10. The buoy

model in regular waves is simulated for 15 wave periods t ∈ [0, 15T ]. The same number of

processors are used for the simulations.

The computational time is increased by 80.4% when the two-way coupling is considered. The

increased percentage of computational time is similar to the increased percentage of the bench-

mark test on the vertical circular cylinder. In the previous benchmark test, the computational

time increases by 84% with viscous solver based on SWENSE and LS interface modeling.

Table 7.10. Computational cost for the simulation of CALM buoy in regular waves.

Case Computational time

SWENSE+LS without coupling 129,394s

SWENSE+LS with coupling 233,397s (1.804)
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7.3.3 Irregular waves

Numerical setup

The computational mesh of viscous �ow model is shown in �gure 7.21. Relaxation zone is de�ned

in far-�eld region of computational domain, as colored grey in �gure 7.21a. The computational

mesh is re�ned near to the buoy model. The side view near to the buoy model is shown in �gure

7.21b. The boundary faces of the buoy model is shown in 7.21c.

The computational domain of viscous �ow model has a length askirt + 1.92λp where λp is a

wavelength of peak wave period of wave spectrum in Table 7.6. Length of relaxation zone is

Lrelax = 1.5λp.

When the two-way coupling is considered, the matching surface has a radius of a = 2.5askirt. The

information of interpolation grid for Poincaré's velocity representation is summarized in Table

7.6. Distance from the matching surface to the relaxation zone is dcouple = 1.823m. The number

of Fourier and Laguerre modes used for Poincaré's velocity representation are Nfourier = 6 and

Nlaguerre = 3, respectively.

Numerical simulation starts at the simulation time t = 25T to observe extreme event. The

irregular waves in computational domain of viscous �ow is generated by using the reconstruction

procedure in section 3.2.4.

(a) Global view

(b) Side view (c) Discretized boundary faces on buoy

surface

Figure 7.21. Computational mesh of viscous �ow model for the buoy model in irregular waves.
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Table 7.11. Computational domain of the buoy in irregular waves.

Item Value Remarks

LCFD 12.5664 m askirt + 1.92λp

Lrelax 9.368 m 1.5λp

Lpure 3.198 m askirt + 0.42λp

Ncell 644,016 -

a 1.375 m 2.5askirt

Interpolation grid
r ∈ [3.0m, 13.0m],

z ∈ [−1.6m, 0.6m]
Cover whole relaxation zone.

N r
Poincaré and N

θ
Poincaré 80 and 128 -

N z1
Poincaré and N

z2
Poincaré 300 and 100 -

rz1Poincaré and r
z2
Poincaré 3 and 3 -

dcouple 1.823 m 0.42λp − 1.5askirt

Wave �elds

Figure 7.22 shows total wave elevation measured at the positions of wave gauges in simulations

and experiment. The wave elevations calculated by simulations have small di�erences with

respect to the application of two-way coupling. The wavelength of peak wave period is relatively

longer than the size of the buoy model. Therefore the complementary waves generated by the

buoy model is small. The wave elevations at the positions of wave gauges have small di�erences

because the complementary waves are small.

Total wave elevations obtained from simulations are following the behaviour of wave elevation

measured in the experiments. The time series of wave elevation near to the time of the extreme

event (t ≈ 31.2T ) are magni�ed on the right. The wave elevations are globally similar to the

wave elevations measured in the experiment, but the di�erences are shown.

The di�erences between simulations and experiment can be listed as

• The incident waves simulated by HOS-NWT model have small discrepancies with the in-

cident waves generated in the experiments.

• Transfer function of wavemaker in HOS simulation is based on linear theory and minor

compensation is applied for second order component.

• Wave re�ections exist at the wavemaker and absorbing beach in the wave tank. HOS-NWT

model also uses a numerical beach model to absorb propagating waves. Wave re�ections

both in experiment and simulation may give the di�erence, especially when the size of the

wave tank is limited. Experiment on the irregular waves needs a long measurement time.

Therefore the wave re�ections exist in the experiment.
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Figure 7.22. Wave elevations measured from wave gauges for the buoy model in irregular

waves.
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Forces acting on the buoy model

Figure 7.23 shows the horizontal and vertical forces acting on the buoy model. The force time

series obtained from simulations are globally following the behaviours of experimental measure-

ments. Forces near to the time of the extreme event are magni�ed in the sub-�gures located at

the right. When the two-way coupling is considered, the force time-series are slightly di�erent

from the results of the simulation without two-way coupling after the extreme event. Never-

theless, the di�erence exists after the extreme event. The force time series obtained from both

simulation are similar. It is understood that the generated complementary waves are relatively

small. They show similar behavior in global simulation time.

The main di�erence between simulation and experiments come from incident waves.

Figure 7.23. Horizontal and vertical forces acting on buoy model in regular waves
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Computational cost

Computational times for simulating the buoy model in irregular waves are summarized in Table

7.12. The number of processors, Nproc = 22, is used for simulations. When the two-way coupling

is applied, the computational time is increased by 48.5%.

Table 7.12. Computational cost for the simulation of CALM buoy in irregular waves.

Case Computational time

SWENSE+LS without coupling 202,972s

SWENSE+LS with coupling 301,424s (1.485)

7.3.4 Summary of benchmark test 2

A CALM buoy model in regular and irregular waves is simulated by considering the two-way

coupling between potential and viscous �ows. The SWENSE and LS interface modeling is used

for viscous �ow model and Poincaré's velocity representation based on linear theory is used for

the potential �ow model.

When the two-way coupling is applied the �rst harmonics of horizontal and vertical forces acting

on the buoy model show better results than the simulation without considering two-way coupling.

The second-harmonic and horizontal mean drift forces obtained by considering two-way coupling

have smaller di�erences than the simulation without two-way coupling.

The complementary waves generated due to the existence of structure is small, the two-way

coupling a�ects small on the wave elevations and forces acting on the structure.

The computational costs are increased by 80% for the simulation of structure in the regular wave,

and 49% for the simulation of structure in the irregular wave.

7.4 Closure

The computational algorithm solving a problem of wave-structure interaction by considering the

two-way coupling between potential and viscous �ow models has been introduced.

Fully nonlinear potential �ow models compute the �ow quantities related to incident waves. The

stream function theory is used for regular wave. HOS wave model is used for irregular waves.

The reconstruction based on cubic-spline interpolation is used to generate irregular waves in the

viscous �ow model.

The complementary waves in the far-�eld region are modeled by Poincaré's velocity represen-

tation based on linear potential theory. The complementary �uid velocity and wave elevations

on the matching surface are obtained from the viscous �ow model to update the complementary

wave �eld in the relaxation zone.

The viscous �ow model based on SWENSE with LS function for interface modeling calculates

the complementary waves in the vicinity of a structure. The complementary �uid velocity and
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LS function are relaxed to the corresponding target quantities calculated by Poincaré's velocity

representation in the relaxation zone de�ned in the region of far-�eld.

The benchmark test on the bottom-mounted vertical circular cylinder was conducted. Two

viscous �ow models and two-way coupling are considered. Another viscous �ow model is based on

Navier-Stokes equations and VOF interface modeling. The wave �elds computed by considering

the two-way coupling show that the di�racted waves are going out in the relaxation zone that is

shown in the calculation with a large computational domain.

Harmonic components of force acting on the vertical circular cylinder are compared. When

the two-way coupling is applied, the errors of �rst- and second-order forces are reduced. The

distribution of linear wave elevation along the waterline contributes mainly on the second-order

forces. The complementary waves are well treated in the relaxation zones by linear potential

�ow theory. Therefore the errors of second-order forces can be reduced.

However, the third-harmonics obtained by considering two-way coupling are poor than the case

without considering two-way coupling. The potential �ow model for complementary �ows based

on linear theory may not appropriate to obtain the third-order components.

Finally, the benchmark test on the CALM buoy model in regular and irregular waves are con-

ducted. In the regular wave test, the errors of wave elevation and forces are reduced when the

two-way coupling is applied. Notably, the horizontal mean drift force shows a good result. In

the irregular wave test, the generated complementary waves by buoy model are small. The two-

way coupling has little e�ects on the numerical results. The incident wave model in numerical

simulation gives the main di�erence between experiment and numerical simulation.

The computational cost increases when the two-way coupling is applied. When the viscous �ow

model based on SWENSE with LS function for interface modeling is used, the computational

times are increased about 80% for the case of regular wave and 40% for the case of irregular

waves. The computational time increases 56% for the case of regular wave when the viscous �ow

model based on Navier-Stokes with VOF interface modeling is considered.
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8 Conclusion and perspectives

In the present work a numerical model is developped to solve the wave-structure interaction

problem by considering a two-way coupling between potential and viscous �ow models, the

latter being considered only in the vicinity of the body.

Flow quantities are decomposed into incident and complementary parts. In the functional de-

composition used, the incident waves are computed without considering the structure and once

it is known only the complementary �ow need to be solved both in the potential and viscous

�ow models. The potential �ow models for nonlinear incident waves is detailed.

A domain decomposition strategy is applied for the complementary �ow. In the vicinity of

structure the viscous �ow model is based on a two-phase Spectral Wave Explicit Navier-Stokes

Equation (SWENSE) method, with a Level-Set function introduced for interface modeling. In

the far-�eld, the complementary �ow is calculated by using a linear potential �ow model based on

Poincaré's velocity representation. This is done with new theoretical developments with respect

to the existing literature. The complementary �uid velocity and wave elevation are used to

couple potential and viscous �ow models. The matching surface for potential �ow model and

the relaxation scheme for viscous �ow model are applied to update each �ow solver.

During the PhD various software package were updated or developped for the broad subject of

numerical computations about wave structure interaction.

• Grid2Grid (newly developped from exisiting package): Fast library for reconstrusting

HOS �ow �eld in CFD grid (Choi et al., 2018)

• POIVRE (newly developped): Library for calculating the complementary �ow based on

the Poincaré's velocity representation

• foamStar (updated): Multiphase �ow model based on Navier-Stokes and VOF

• foamStarSWENSE (Level-Set version is newly introduced): Multiphase �ow model based

on SWENSE and LS function

On each separated subject, improvements have been documented and quality results were achieved.

However in the �nal applications involving functional and domain decompositions with a 2-way

coupling approach, the complexity of the algorithm is increased and it is still to be understood

how e�cient this will be in practical case.

8.1 Summary

8.1.1 Literature survey on the coupling methodology in a marine application

Literature survey on potential and viscous �ow models in marine application is proposed. A

focus is given on the coupling between potential and viscous �ows. One- and two-way couplings

are distinguished. The methodology of coupling are categorized into Functional Decomposition

(FD) and Domain Decomposition (DD). Associated research on coupling is explained by way of

coupling and coupling methodology.
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8.1.2 Preliminary study on the coupling of potential and viscous �ows

The preliminary study on the two-way coupling was conducted to investigate the feasibility of

coupling between potential and viscous �ow models. OpenFOAM based multi-phase viscous �ow

solver is used. The viscous �ow model is based on the Navier-Stokes equations and the Volume

Of Fluid (VOF) method for interface modeling. The parametric tests on the viscous �ow model

were conducted to set the proper parameters for propagating waves.

The benchmark tests are devised by using multiple outlet conditions. The outlets considered

in the present study are the stretched mesh, increased viscosity in the outlet, linear momentum

source, and relaxation schemes with di�erent target �ows. The relaxation scheme blends the

viscous �ows with the target �ows in the relaxation zone. The target �ows for propagating

waves are no waves, incident wave and modi�ed incident wave. The modi�ed waves are an

adaptation of incident waves by measuring the wave elevation in front of the outlet.

The benchmark tests were carried out for propagating waves in numerical wave tank (NWT)

and a swaying 2D Lewis form. The results show that the relaxation to the propagating waves in

the outlet zone gives good results compared to others. The size of the computational domain

and simulation time both can be reduced when the two-way coupling is applied. An e�cient

potential �ow model with good relaxation schemes are necessary for two-way coupling.

8.1.3 Potential �ow: Incident waves

The nonlinear incident wave models on the regular and irregular waves are summarized. The

stream function theory for regular waves (Rienecker and Fenton, 1981) and HOS wave models

for irregular waves and waves in NWT (Ducrozet et al., 2007, 2012) are brie�y reviewed.

The reconstruction procedure of nonlinear waves simulated by HOS wave model is proposed in

the present study. B-spline interpolation on HOS grid is used to compute nonlinear waves at

the arbitrary space and time. The generation of nonlinear HOS waves in viscous �ow solver is

validated with numerical simulation for various HOS wave models.

The nonlinear irregular waves corresponding to the 1000 year return period waves in the Gulf of

Mexico (GOM) are regenerated in viscous �ow solver. The simple wave breaking model is used

to capture the extreme event during HOS simulation. The viscous �ow model is used to simulate

the extreme event with limited computational domain and simulation time. The simulation

results show good agreements with the results of HOS simulation and experiments.

8.1.4 Potential �ow: Complementary waves

A new Poincaré's velocity representation for unsteady free surface �ow in deep water is proposed

based on linear potential theory. The contribution of dipoles in the Boundary Integral Equation

(BIE) is replaced by an equivalent source contribution with tangential velocity on the boundary

surface. The complementary �uid velocity at �eld point can be obtained by the distribution of
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�uid velocity on the matching surface and wave elevation on the waterline of matching surface.

It is proved that two expressions of the time-domain Green function for deep water in velocity

representation are the solutions of Clément's 4-th order Ordinary Di�erential Equation(ODE)

(Clément, 1998). The computational algorithm based on time-marching Frobenius method pro-

posed by Chuang et al. (2007) is used to calculate the time-domain Green function. Proposed

velocity representation can be applied for the arbitrary matching surface with a heaving hemi-

sphere. However, the singular behaviour is observed when the �eld point moves towards the

mean free surface due to diverging behavior of time-domain Green functions.

A circular cylindrical matching surface is introduced to remedy the singular behavior. Co-

ordinates transformation from Cartesian to circular cylindrical coordinates are applied to the

velocity components and Green function. A pseudo-spectral method using the Fourier-Laguerre

and Fourier series is applied. Fluid velocity at the �eld points is expressed by a combination of

Fourier and Fourier-Laguerre coe�cients and elementary functions. The elementary functions

are the resultants of surface or line integral of the Green function with modal function. Two

numerical algorithms evaluating the elementary functions are proposed. Benchmark tests val-

idate the velocity representation with the circular cylindrical matching surface on the heaving

hemisphere and wave di�raction by a vertical circular cylinder.

8.1.5 Viscous �ow: Multi-phase SWENSE with Level-set

The methodology of spectral wave explicit Navier-Stokes equations (SWENSE) is applied for the

multi-phase �ow with Level-set interface modeling. The method of SWENSE for multi-phase

�ows have been studied by Vuk£evi¢ (2016) and Li (2018). Vuk£evi¢ (2016) applied the functional

decomposition on the �uid velocity and LS function to reconstruct the governing equations with

respect to complementary �ows. However, the terms corresponding to the Euler equation are

saved. He used Ghost Fluid Method (GFM) to solve the multi-phase �ow problem by considering

the pressure jump condition on the interface. Li (2018) introduced an extended mixture pressure

up to air zone to cancel the terms related to the Euler equation. He presented many versions of

SWENSE for multi-phase �ow with a method of Volume Of Fluid (VOF) for interface modeling.

In the present study, the works done by Vuk£evi¢ (2016) and Li (2018) are combined. The

Navier-Stokes equations are reformulated into SWENSE by using the extended mixture pressure

proposed by Li (2018). The interface between two �uids is modeled by LS function. Functional

decomposition is applied to the LS function (Vuk£evi¢, 2016). The original LS function transport

equation with a simple re-distancing the LS function is used instead of using the LS function

equation in Vuk£evi¢ (2016). The numerical discretization by GFM is applied to solve the

multiphase �ow problem with a pressure jump condition (Vuk£evi¢, 2016).

The benchmark tests ware conducted to validate the viscous �ow model. The viscous �ow model

gives good results for propagating waves in Numerical Wave Tank (NWT) compared to other

viscous �ow models. Nevertheless, a small loss of mass is observed when the coarse mesh and

large time di�erence are used for simulation. The mass loss is reduced as the mesh and time

di�erence are re�ned.
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The wave di�raction by a vertical circular cylinder is considered for second benchmark test

(Huseby and Grue, 2000). The proposed viscous �ow model gives good results on the force-

harmonics when coarse computational meshes are used.

8.1.6 Two-way coupling of potential and viscous �ows

A segregated computational algorithm is suggested to solve the problem of wave-structure in-

teraction by considering the two-way coupling between potential and viscous �ow models. The

domain and functional decompositions are applied for coupling methodology.

Functional decomposition (FD) is applied to decompose the �ow quantities of potential and

viscous �ow models into the incident and complementary parts. The incident waves are calculated

by nonlinear potential �ow model. Poincaré's velocity representation based on linear potential

theory is used to calculate the complementary waves in the far-�eld. The SWENSE method is

applied in a viscous �ow model to solve the complementary �ows in the vicinity of the structure.

Domain decomposition (DD) is used to couple complementary �ows calculated by potential and

viscous �ow models. The complementary �uid velocity and wave elevation on the matching

surface are obtained from the viscous �ow model. The obtained �ows are used to update the

complementary �ows in the relaxation zone by using Poincaré's velocity representation. In the

relaxation zone, the complementary �uid velocity and LS function of viscous �ow model are

relaxed to the target values which are updated by using potential �ow model.

The coupling strategy is applied for a vertical circular cylinder in regular waves and the CALM

buoy model in waves. Simulations with two-way coupling between potential and viscous �ow

models give better results on the wave elevations, �rst-order and second-order forces acting on

the structure. The computational time increases when the two-way coupling is applied.

8.2 Conclusion

Two-way coupling between potential and viscous �ow models are proposed in the present study.

The potential �ow models for the incident and complementary �ows and the viscous �ow model

based on SWENSE and LS interface modeling are explained. Benchmark tests validate each

�ow models and show good agreements. It is assumed that the wave elevation and �uid velocity

across the �ow models are continuous. To couple the potential and viscous �ow models, the

methodologies of functional decomposition (FD) and domain decomposition (DD) are applied

for potential and viscous �ows.

Functional decomposition (FD) is applied for potential and viscous �ow models. The functional

quantities of the total �ow into the incident and complementary parts. The nonlinear potential

�ow for incident waves is assumed to be available in a whole �uid domain and satis�es the

Euler equations. The linear potential �ow model based on Poincaré's velocity representation for

complementary �ow is proposed. The availability of nonlinear incident waves leads to use of a

223



8. Conclusion and perspectives

Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method as the viscous �ow model

only to consider the complementary �ow.

Domain decomposition (DD) is used to decompose the computational domain. The nonlinear

incident waves from the nonlinear potential �ow model are available in the whole computational

domain. It makes us divide the computational domain of potential and viscous �ow models only

for complementary waves. In the vicinity of structure, the viscous �ow model based on SWENSE

is used. The linear potential �ow model for complementary �ow is applied in the far-�eld region.

To couple potential and viscous �ow models, the continuous wave elevation and �uid velocity

across the computational domain are assumed. In the matching surface, the complementary

�uid velocity and wave elevation are used to update the complementary �ow �eld in the far-

�eld region by using Poincaré's velocity representation. In the far-�eld, the relaxation scheme is

used to blend the computed complementary �ow with the target �ow calculated from Poincaré's

velocity representation.

A segregated algorithm solving the wave-structure problem by considering two-way coupling is

presented. The benchmark tests are carried out for a bottom-mounted vertical circular cylinder

in regular waves and a �xed buoy model in regular and irregular waves. Results of the benchmark

tests show that the two-way coupling can improve the wave elevations and the forces acting on

the structure. Especially, the horizontal mean drift forces acting on the structure are enhanced

signi�cantly when the two-way coupling is adopted. However, the two-way coupling gives poor

results on the third-harmonics of forces. When the complementary waves are small, the two-way

coupling does not a�ect the results. When the two-way coupling is applied, the computational

costs are increased by 80% for regular wave simulation and 40% for irregular wave simulation.

8.3 Proposals for future work

8.3.1 Poincaré's velocity representation for unsteady free surface �ow with forward

speed

Poincaré's velocity representation in a marine application has been studied for steady and time-

harmonic problems by Noblesse et al. (1997); Noblesse (2001); Noblesse and Yang (2004). The

velocity representation is extended to the unsteady free surface problem without forward speed in

the present study. The velocity representation for unsteady wave-structure interaction problem

with forward speed may be derived with Neumann-Kelvin free surface boundary condition. It

can be used to couple viscous �ow model for evaluating the added resistance of ship in waves.

8.3.2 Coupling between linear potential �ow model and other �ow models

The proposed velocity representation may be used to couple with the viscous �ow model based

on SWENSE and VOF interface modeling by Li (2018). The elementary function introduced in

the present study can be applicable for boundary integral equation. The �ow model used to solve
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wave-structure interaction in the vicinity of structure can be replaced by nonlinear potential �ow

models such as Rankine Panel Method (RPM) or Finite Element Method (FEM).

8.3.3 Evaluation of mean drift forces acting on blunt body

Two-way coupling between potential and viscous �ow models show good results on the horizontal

mean drift forces acting on the structure. The mean drift forces on the blunt body such as shuttle

tanker and FPSO are signi�cant and important to design a mooring system. The proposed two-

way coupling strategy can enhance the simulation based on the viscous �ow model to assess

mean drift forces, especially for the blunt body in beam sea condition.
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Résume étendu

Introduction générale

Un modèle numérique prenant en compte le couplage bidirectionnel entre les modèles de �uide

parfait potentiel loin de la structure et de �uide visqueux au voisinage de celle-ci est présenté

pour résoudre le problème de l'interaction houle-structure.

L'écoulement total est décomposé en un écoulement incident et un écoulement complémentaire

(di�racté). En pratique, les variables (vitesses, pression) du problème sont la somme d'un terme

incident et d'un terme complémentaire. Pour les ondes incidentes, le modèle d'écoulement po-

tentiel utilisé est non-linéaire et peut être utilisé dans l'ensemble du domaine �uide. Pour l'écou-

lement complémentaire le domaine de calcul est divisé en deux parties distinctes. Au voisinage

de la structure, cet écoulement complémentaire est résolu en utilisant un modèle �uide réel

basé sur la méthode SWENSE (Spectral Wave Explicit Navier-Stokes Equation) qui consiste

à écrire les équations RANS (Reynolds Averaged Navier-Stokes) pour les variables complémen-

taires, les termes incidents apparaissant alors comme des termes de forçage. Loin de la structure,

l'écoulement complémentaire est traité avec un modèle de �uide parfait potentiel basé sur la

représentation de Poincaré.

La présente étude se résume comme suit :

• Les modèles de �uide parfait potentiel et de �uide visqueux utilisés dans les applications

marines sont brièvement passés en revue. Les couplages existants pour ces modèles sont

également présentés. Une étude préliminaire est réalisée pour étudier la faisabilité du cou-

plage entre les modèles d'écoulement potentiel et visqueux. Les premiers résultats montrent

que le couplage bidirectionnel avec un bon schéma de relaxation peut améliorer les résultats

numériques.

• Les modèles de �uide parfait potentiel pour les ondes incidentes non-linéaires sont présentés.

Une nouvelle procédure de reconstruction des ondes non-linéaires dé�nies via une méthode

�uide parfait potentiel HOS (High Order Spectral) sur un maillage de domaine �uide adapté

à un modèle de �uide visqueux via une interpolation B-spline est présentée et validée à

l'aide de comparaison entre simulation numérique et expérience.

• Un nouveau modèle potentiel linéarisé basé sur la représentation de Poincaré est proposé

pour l'écoulement complémentaire instationnaire loin de la structure. La vitesse complé-

mentaire du �uide au point considéré peut être explicitement calculée avec la fonction de

Green instationnaire par des combinaisons de vitesses de �uide et d'élévations de surface

libre. Un algorithme de calcul pour di�érents types de fonction de Green dans le domaine

temporel est également présenté. La représentation de Poincaré proposée est validée avec

une solution analytique et montre un bon accord lorsque le point de calcul est situé sous la

surface libre. Cependant, un comportement singulier est observé lorsque le point du calcul

est situé sur la surface libre moyenne.

• Une surface de couplage cylindrique circulaire à axe vertical avec une méthode pseudo-
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spectrale basée sur la série de Fourier-Laguerre est introduite pour remédier au compor-

tement singulier constaté précédemment. La vitesse complémentaire du �uide au point

considéré est donnée par les coe�cients de Fourier-Laguerre de la vitesse du �uide et les

coe�cients de Fourier de l'élévation de la houle avec les fonctions élémentaires correspon-

dantes. Les fonctions élémentaires représentent les intégrales de surface de la fonction de

Green et de la fonction de forme. Les procédures numériques pour calculer les fonctions

élémentaires sont présentées. La vitesse complémentaire du �uide et l'élévation de la houle

sont reconstruites en utilisant l'étirement de Wheeler. La méthode proposée est validée avec

une solution analytique et montre un bon accord y comprsi sur la surface libre moyenne.

• Un modèle d'écoulement de �uide visqueux basé sur la méthode SWENSE pour un écou-

lement multi-phase avec une fonction Level-set pour la mise à jour de l'interface est pré-

senté. Ce modèle combine les développements numériques spéci�ques proposés par Vuk£evi¢

(2016) et Li (2018). Il s'agit d'une part de la décomposition de la vitesse du �uide, la pres-

sion et de la fonction Level-set en composantes incidentes et complémentaires ainsi que la

prise en compte des conditions aux limites sur l'interface air-eau à l'aide de la méthode

Ghost Fluid (GFM pour Ghost Fluid Method). Une procédure simple d'extrapolation de

la vitesse de l'écoulement incident et de la pression dynamique est introduite pour assurer

la stabilité numérique. Les résultats de la simulation de propagation de houle seule et d'un

cylindre circulaire vertical en houle régulière montrent un bon accord avec les résultats

expérimentaux correspondants.

• La procédure de calcul du couplage bidirectionnel entre les modèles d'écoulements de �uide

potentiel et visqueux est �nalement testée. Un cylindre circulaire vertical soumis à une

houle régulière et une bouée �xe soumise à des houles régulières et irrégulières sont utilisés

pour étudier les e�ets du couplage entre les modèles d'écoulements de �uide potentiel

et visqueux. Les résultats de la simulation montrent que le couplage bidirectionnel peut

améliorer les résultats, notamment pour les forces de dérive.

Résumé par chapitre

1. Introduction

L'intérêt du couplage entre les modèles d'écoulements de �uide potentiel et visqueux est expliqué

pour le problème d'interaction houle-structure. Les modèles d'écoulements de �uide potentiel et

visqueux couramment utilisés pour des applications en ingénierie navale et o�shore sont passés en

revue. Les méthodologies des couplages �uide visqueux-�uide potentiel existants sont également

présentées et expliquées. Ces méthodologies se répartissent entre décomposition fonctionnelle

(FD ; functional decomposition) et décomposition de domaine (DD ; domain decomposition).

Dans le travail présenté, les méthodologies FD et DD sont utilisées pour coupler des modèles

d'écoulement potentiel et visqueux. Sur la base de l'hypothèse selon laquelle la houle totale peut

être décomposée en houle incidente et houle complémentaire, les quantités d'intérêt des modèles

d'écoulements de �uide potentiel et visqueux sont décomposées en une somme de termes incident

240



et complémentaire. Etant donné que le modèle d'écoulements en �uide parfait potentiel non-

linéaire pour les ondes incidentes est disponible pour l'ensemble du domaine �uide, la méthode

DD est appliquée uniquement aux parties complémentaires des modèles de �uides potentiel et

visqueux. Au voisinage de la structure, le modèle d'écoulement visqueux basé sur la méthode

SWENSE est utilisé et le modèle d'écoulement potentiel basé sur la représentation de Poincaré

est introduit pour décrire les ondes complémentaires dans le champ lointain.

Les équations qui régissent chacun des deux modèles de �uide sont résumées et le contexte général

de l'étude expliqué.

2. L'étude préliminaire sur le couplage des écoulements potentiel et visqueux

Une étude préliminaire sur le couplage entre les modèles d'écoulements de �uide potentiel et

visqueux est menée. Le modèle d'écoulement de �uide visqueux basé sur les équations de Navier-

Stokes (approche RANS) avec une modélisation d'interface Volume Of Fluid (VOF) est considéré.

Une série d'études paramétriques avec ce modèle est réalisée pour trouver une con�guration

numérique appropriée au problème de propagation de houle. Cette étude montre que le schéma

d'intégration en temps du problème de propagation de houle devrait avoir au moins une précision

de second ordre pour conserver l'amplitude et la phase de la houle. Les schémas de convection

a�ectent l'ordre de convergence et la stabilité de la simulation. Les schémas de convection d'ordre

élevé donnent de bons résultats mais conduisent à une instabilité de la simulation.

La propagation de la houle en bassin (sans interaction avec une structure) et le problème de

radiation pour une forme de Lewis 2D sont considérés comme des essais préliminaires pour le

couplage. Les tests sont e�ectués en modi�ant le traitement numérique dans la zone extérieure

du domaine �uide. Les cas considérés sont l'étirement horizontal des mailles, l'augmentation

de la viscosité, l'utilisation de coe�cients d'amortissement dans les équations de quantité de

mouvement ou d'un schéma de relaxation. Dans la zone extérieure du domaine �uide ou zone de

relaxation, le schéma de relaxation fait tendre progressivement les quantités d'intérêt calculées

vers les quantités cibles souhaitées (pas de houle, houles incidente ou totale calculées par le

modèle potentiel ...).

Les résultats numériques montrent que le schéma de relaxation avec des quantités cibles similaires

aux ondes sortantes donne des résultats stables et satisfaisants par rapport aux autres. En outre,

le temps de simulation nécessaire pour obtenir la solution convergée diminue lorsque le schéma

de relaxation est considéré avec des quantités cibles correctement dé�nies. Cela con�rme que le

couplage entre les modèles d'écoulement potentiel et visqueux peut réduire à la fois le domaine

de calcul et le temps de simulation. En conclusion, une évaluation e�cace des ondes sortantes

par un modèle d'écoulement potentiel et un schéma de relaxation amélioré sont nécessaires pour

réussir le couplage entre les deux modèles d'écoulement.
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3. L'écoulement potentiel : Houle incidente

Les modèles de houle incidente non-linéaire pour des houles régulières et irrégulières sont résumés.

Pour la houle régulière, le modèle adopté (Rienecker and Fenton, 1981) s'appuie sur la fonction

de courant développée en série de Fourier. La librairie open-source pour les ondes régulières non-

linéaires appelé CN-Stream développé par Ducrozet et al. (2019) est utilisé pour la génération

d'ondes incidentes régulières.

La méthode HOS pour les houles irrégulières en mer ouverte (HOS-ocean) ou en bassin limité

(HOS-NWT) est ensuite rappelée (Ducrozet et al., 2007, 2012, 2016).

La librairie open-source pour la reconstruction des houles HOS sur un maillage quelconque est

publiée sous licence GPL (Choi et al., 2018)

La procédure de reconstruction proposée est validée avec un modèle d'écoulement de �uide

visqueux basé sur la modélisation des équations RANS par des schémas discrets de type volumes

�nis ainsi qu'une résolution découplée en vitesses-pression et la mise à jour de l'interface par une

procédure VOF. Les ondes HOS sont générées dans le modèle à écoulement visqueux et validées

par simulation HOS pour di�érents modèles HOS. Ceux-ci montrent un bon accord les uns avec

les autres. De plus, un cas de vagues extrêmes correspondant à la période de retour de 1000

ans dans le Golfe du Mexique (GOM ; Gulf of Mexico) est pris en compte pour validation. Un

événement de déferlement est prédit à l'aide d'un modèle simple inclus dans le modèle HOS.

L'événement extrême simulé dans le modèle à écoulement visqueux est validé avec la simulation

et les expériences HOS. L'accord entre ces di�érents résultats est satisfaisant.

4. L'écoulement potentiel : Houle complémentaire sur une surface arbitraire

Une nouvelle représentation de la vitesse de Poincaré pour un écoulement à surface libre en

profondeur in�nie est proposée dans le cadre de la théorie de �uide parfait potentiel linéarisé. La

contribution des dipôles dans l'équation intégrale de frontière (BIE ; Boundary Integral Equation)

est remplacée par une contribution source équivalente avec une vitesse tangentielle à la surface

de la frontière. La vitesse du �uide complémentaire au point du calcul peut être calculée par la

distribution de la vitesse du �uide sur la surface correspondante et de l'élévation de la houle sur

la ligne de �ottaison de la surface correspondante.

Deux types de fonction de Green dans le domaine temporel doivent être évaluées pour la repré-

sentation de la vitesse de Poincaré pour un écoulement de surface libre instable. Il est prouvé

que les deux types de la fonction de Green dans le domaine temporel et leurs dérivées spatiales

sont les solutions de l'équation di�érentielle ordinaire (ODE ; Ordinary Di�erential Equation)

du 4ème ordre de Clément (Clément, 1998). Ces éléments (fonctions de Green et leurs dérivées)

sont calculés en utilisant une méthode de Frobenius à avance temporelle proposée par Chuang

et al. (2007).

La représentation de vitesse proposée est validée avec la solution analytique de l'écoulement
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autour d'un hémisphère perçant la surface libre et en mouvement forcé (Hulme, 1982). La vitesse

du �uide et l'élévation de la vague sur la surface correspondante ainsi que la fonction de Green

dans le domaine temporel sont utilisées pour reconstruire la vitesse complémentaire à partir

de la représentation de la vitesse de Poincaré. La vitesse complémentaire reconstruite par la

représentation de vitesse de Poincaré est comparée à la solution analytique.

Lorsque le point de champ est situé sous la surface libre moyenne, les tests de référence suivants

sont e�ectués :

• L'étude de convergence en temps montre que les vitesses complémentaires reconstruites

convergent correctement avec la diminution du pas de temps. Lorsque la discrétisation est

su�sante, la vitesse relative reconstituée a une erreur relative inférieure à 1%.

• Lorsque le point où on évalue le champ complémentaire est �xe, la fréquence de mouve-

ment de l'hémisphère est modi�ée. Les résultats montrent un bon accord avec la solution

analytique. Lorsque la discrétisation est su�sante, la vitesse complémentaire reconstruite

présente des erreurs relatives inférieures à la valeur de 1%.

• Di�érentes surfaces de couplage, telles que un hémisphère, un cylindre circulaire ouvert par

le bas, un ellipsoïde ou un cube fermé sur sa partie inférieure sont utilisées pour véri�er la

sensibilité de la représentation de vitesse proposée à la géométrie de la surface de couplage.

Après calcul, la vitesse complémentaire reconstruite a des erreurs relatives inférieures 1%.

Il est véri�é que la représentation de vitesse proposée fonctionne même lorsque la surface

inférieure est su�samment ouverte pour une surface correspondante su�samment profonde.

Cependant, un comportement singulier apparaît lorsque le point de calcul de la vitesse est situé

sur la surface libre moyenne (z = 0). Deux contributions de vitesse sont identi�ées pour générer

ce comportement singulier :

• La contribution de la composante harmonique a un pro�l de vitesse hautement instable

lorsque l'intégrale de convolution est partiellement évaluée avec un intervalle de type fenêtre

glissante.

• La contribution de la composante de surface libre a un pro�l de vitesse hautement oscillant

lorsque l'intégrale de convolution est partiellement évaluée avec un intervalle de type fenêtre

glissante.

Ce comportement singulier est dû au comportement divergent de la fonction de Green lorsque

les points de calcul et de la source sont situés sur la surface libre moyenne (z = ζ = 0). En e�et,

le comportement hautement oscillant de la vitesse du �uide ne peut être corrigé en ra�nant

la discrétisation de la ligne de �ottaison. Pour �nir, la nécessité d'intégrer la représentation de

Poincaré le long de la surface de couplage cylindrique verticale est expliquée.

5. L'écoulement potentiel : Houle complémentaire sur une surface de couplage

cylindrique circulaire verticale

La représentation de vitesse de Poincaré est formulée avec une surface de couplage cylindrique

circulaire. La vitesse complémentaire et l'élévation de surface libre sont approximées respective-

ment par les séries de Fourier-Laguerre et de Fourier. Après avoir intégré la représentation de
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la vitesse de Poincaré le long de la surface de couplage cylindrique circulaire avec la vitesse du

�uide et l'élévation de la houle multipliées par la fonction de Green dans le domaine temporel,

la vitesse complémentaire au point d'intérêt peut être calculée par les coe�cients des séries de

Fourier-Laguerre et de Fourier de la vitesse complémentaire et de l'élévation de la houle sur la

surface de couplage multipliée par des fonctions élémentaires.

Les fonctions élémentaires sont dérivées de l'intégrale de surface des séries de Fourier-Laguerre

et de Fourier avec la fonction de Green dans le domaine temporel. Elles impliquent l'intégrale

utilisant les fonctions de Bessel multipliées par une fonction sinus ou cosinus. Des algorithmes

numériques adaptés sont présentés pour calculer les fonctions élémentaires. Après avoir calculé

l'intégrale oscillante jusqu'à la borne d'intégration dé�nie, deux approches permettent d'évaluer

l'intégrale semi-in�nie de cette borne à l'in�ni. Les détails des deux approches s'expliquent comme

suit :

• Division des fonctions oscillantes

L'idée d'évaluer l'intégrale impliquant les fonctions de Bessel proposée par Lucas and Stone

(1995); Lucas (1995) est développée ici. Les fonctions oscillantes irrégulières sont divisées

en fonctions oscillantes elles-mêmes transformées en une somme in�nie de sous-intégrales

avec des zéros. Cette somme in�nie est calculée à l'aide de l' ε-algorithme de Wynn (Wynn,

1956).

• Méthode à directions de descente

Les intégrales semi-in�nies sont évaluées en appliquant une méthode à directions de des-

cente Liang et al. (2018); Li et al. (2019a). Les fonctions oscillatoires sont transformées dans

le plan complexe. L'intégrale le long du contour fermé dans le plan complexe est obtenue

en appliquant le théorème de Cauchy. Le chemin d'intégration le plus e�cace est trouvé en

prenant les parties imaginaires de l'argument exponentiel à zéro. Finalement, les intégrales

le long du chemin de descente le plus e�cace impliquent les facteurs exponentiels ayant des

arguments réels négatifs qui permettent de faire tendre l'intégrand rapidement vers zéro.

Les fonctions élémentaires sont évaluées en utilisant les approches proposées. Deux approches

montrent un bon accord entre elles.

L'élévation de houle complémentaire au point considéré est reconstruite en utilisant la condition

cinématique à la surface libre. La vitesse verticale sur la surface libre moyenne est intégrée en

fonction du temps pour calculer l'élévation de la houle complémentaire. Un pseudo-étirement de

Wheeler est appliqué sur la fonction de Laguerre pour l'extrapolation de la vitesse au-dessus de

la surface libre moyenne (z > 0). La valeur de la fonction de Laguerre au-dessus de la surface

libre moyenne est limitée a�n d'empêcher de trop fortes valeurs de la vitesse dans l'air.

La reconstruction de la vitesse complémentaire et de l'élévation de surface libre en un point

donné est obtenue en utilisant une interpolation B-spline. Après avoir reconstitué la vitesse

complémentaire du �uide et l'élévation de surface libre sur la grille cylindrique circulaire 3D,

l'interpolation B-spline est utilisée pour calculer la vitesse complémentaire du �uide et l'élévation

de surface libre en un point donné.
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L'approximation de Fourier-Laguerre de la vitesse complémentaire sur la surface de couplage est

testée. Les vitesses complémentaires approximées sont en bon accord avec la solution analytique.

Un hémisphère perçant la surface libre en mouvement forcé et la di�raction d'une houle incidente

régulière par un cylindre circulaire vertical sont utilisés comme tests de validation. Les vitesses

complémentaires reconstruites et les élévations de houle montrent un bon accord avec la solution

analytique. Aucun comportement singulier n'apparaît dans les résultats.

6. L'écoulement visqueux : Multi-phase SWENSE avec fonction Level-set

La méthodologie SWENSE est appliquée pour l'écoulement multi-phase avec une modélisation

d'interface de type Level-set (LS). Le modèle utilisé dans ce travail de thèse combine les travaux

antérieurs de Vuk£evi¢ (2016) et de Li (2018). Vuk£evi¢ (2016) a appliqué la décomposition

fonctionnelle sur les variables de vitesse du �uide et fonction LS pour reconstruire les équations

du problème relatives aux écoulements complémentaires. De plus, les termes incidents ne sont

pas simpli�és par le fait que l'écoulement incident vérife les équations d'Euler mais recalculés

systématiquement. Il a utilisé la méthode GFM pour résoudre le problème d'écoulement multi-

phase en prenant en compte la condition de saut de pression sur l'interface. Li (2018), pour sa

part, introduit une pression de mélange étendue jusqu'à la zone occupée par l'air, au-dessus de

l'interface, pour annuler les termes liés au champ incident. Il a présenté di�érentes versions de

SWENSE pour l'écoulement multi-phase avec une méthode de Volume Of Fluid (VOF) pour la

modélisation de l'interface.

Dans la présente étude, les équations RANS sont reformulées en SWENSE en utilisant la pression

de mélange étendue proposée par Li (2018). L'interface entre deux �uides est modélisée par la

fonction LS. Une décomposition fonctionnelle est appliquée à la fonction LS suivant (Vuk£evi¢,

2016). Par conséquent, la vitesse du �uide, la pression et la fontion LS sont décomposées en

parties incidentes et complémentaires.

Les termes liés à la pression sont discrétisés en considérant les conditions sur l'interface dans le

cadre d'une approche de type Volumes Finis (FV ; Finite Volume). La procédure de discrétisation

FV basée sur la méthode GFM proposée par Vuk£evi¢ (2016) est utilisée pour prendre en compte

la condition de pression sur l'interface. La pression incidente, y compris la pression dynamique

de la houle incidente et la pression hydrostatique, est utilisée pour dé�nir le saut de pression

Li (2018). Les conditions de saut de pression proposées par Vuk£evi¢ (2016) et Li (2018) sont

identiques pour les cas d'écoulements en eau calme.

L'équation de transport de la fonction LS d'origine avec une simple redistanciation est utilisée

dans la présente étude. La discrétisation numérique des termes de l'écoulement incident dans

l'équation de la fonction LS génère des sources d'erreur qui se cumulent au cours des simulations

mais que la redistanciation de la fonction LS permet de diminuer largement. Finalement, la perte

de masse observée est négligeable.

L'extrapolation de la vitesse incidente et de la partie dynamique de la pression de la houle

incidente avec des polynômes cubiques est proposée dans les travaux actuels. Elle permet des
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transitions en douceur des quantités relatives à la houle incidente jusqu'à la zone au-dessus de

l'interface sans algorithme complexe et avec un calcul rapide. Même si cette technique ne satisfait

pas la continuité de masse dans la zone aérienne, la simulation multi-phase SWENSE devient

stable.

Les houles qui se propagent dans le bassin numérique (NWT ; Numerical Wave Tank) sont prises

en compte dans le cas de référence. Le modèle d'écoulement de �uide visqueux proposé donne de

bons résultats par rapport à d'autres modèles de �uide visqueux. Néanmoins, une faible perte

de masse est observée lorsqu'un maillage grossier et un pas de temps important utilisés pour la

simulation. La perte de masse est réduite à mesure que le maillage est ra�né et le pas de temps

diminué.

La di�raction de la houle incidente par un cylindre circulaire vertical est considérée pour le

deuxième test (Huseby and Grue, 2000). Les amplitudes et les harmoniques en amplitude et

en phase pour les e�orts sont comparés à la solution analytique, aux expériences et à d'autres

calculs numériques. Les résultats calculés par le modèle d'écoulement visqueux proposé montrent

des résultats similaires à ceux d'autres calculs.

7. Couplage bidirectionnel des écoulements potentiel et visqueux

L'algorithme de calcul résolvant un problème d'interaction houle-structure en considérant le

couplage bidirectionnel entre les modèles d'écoulement potentiel et visqueux est introduit. Il

repose sur l'hypothèse selon laquelle le l'écoulement total peut être décomposé en incident et

supposé complémentaire. Dans la présente étude, les principes suivants sont utilisés :

• L'écoulement total peut être décomposé en parties incidentes et complémentaires.

• Les parties incidentes sont calculées à partir des modèles d'écoulement potentiel non-linéaire

pour les houles incidentes dans l'ensemble du domaine �uide considéré.

• Les parties complémentaires au voisinage d'une structure sont résolues par un modèle

d'écoulement visqueux basé sur la méthode SWENSE.

• Les parties complémentaires dans le champ lointain sont modélisées par la représentation

de vitesse de Poincaré basée sur la théorie d'écoulement potentiel linéarisé.

Sur la base du principe ci-dessus, la décomposition fonctionnelle (FD) et la décomposition de

domaine (DD) sont appliquées en tant que méthodologie de couplage :

• La décomposition fonctionnelle (FD) est appliquée à la fois aux modèles d'écoule-

ment potentiel et visqueux. Parce que le modèle d'écoulement potentiel non-linéaire pour

les ondes incidentes est disponible dans l'ensemble du domaine �uide entier, les parties

complémentaires constituent le coeur du problème à résoudre. Les équations principales et

les conditions aux limites pour les modèles d'écoulement potentiel et visqueux sont refor-

mulées pour un écoulement complémentaire. La représentation de la vitesse de Poincaré

est utilisée pour un écoulement potentiel et la méthode SWENSE est utilisée pour un

écoulement visqueux.
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• La décomposition domaine (DD) est considéré comme décomposant le domaine de

calcul des modèles d'écoulement potentiel et visqueux pour les parties complémentaires.

Le modèle d'écoulement visqueux basé sur la modélisation d'écoulement de �uide visqueux

SWENSE et de la fonction LS calcule les ondes complémentaires au voisinage d'une struc-

ture. Les ondes complémentaires dans la région du champ lointain sont modélisées par la

représentation de vitesse de Poincaré basée sur la théorie du potentiel linéaire.

Le couplage bidirectionnel entre les modèles d'écoulement potentiel et visqueux pour un écou-

lement complémentaire suppose que la vitesse du �uide et l'élévation de la houle soient des

fonctions continues au passage d'un modèle à l'autre. Chacun des modèles est mis à jour comme

suit :

• Modèle d'écoulement visqueux vers modèle d'écoulement potentiel

La vitesse du �uide complémentaire et les élévations des vagues sur la surface de couplage

correspondante sont obtenues à partir du modèle d'écoulement visqueux. Les coe�cients

de Fourier-Laguerre et de Fourier pour, respectivement, la vitesse complémentaire et l'élé-

vation de la houle sont calculés. Les champs complémentaires de vitesse et d'élévation des

vagues dans les zones de relaxation sont construits à l'aide de la représentation de vitesse

de Poincaré.

• Modèle d'écoulement potentiel vers modèle d'écoulement visqueux

Les valeurs cibles de la vitesse complémentaire et de la fonction Level-set dans la zone de

relaxation sont calculées à partir des champs complémentaires de vitesse et d'élévation de

la vague en utilisant la représentation de vitesse de Poincaré. Le schéma de relaxation, qui

associe la quantité calculée à la quantité cible, est utilisé pour mettre à jour le modèle

d'écoulement visqueux.

Deux cas de test de référence sont considérés pour validation :

• Un cylindre circulaire vertical en houle régulière est simulé en considérant le cou-

plage entre les modèles d'écoulement potentiel et visqueux. Le couplage bidirectionnel est

appliqué à divers modèles d'écoulement visqueux. L'un est basée sur la modélisation multi-

phase SWENSE avec la fonction LS pour la gestion de l'interface proposée dans la présente

étude. L'autre est basé sur le modélisation des équations RANS avec un modèle VOF pour

la gestion de l'interface. La comparaison est faite en comparant le champ d'élévation de

houle, les harmoniques des amplitudes des e�orts et le coût de calcul.

Les ondes complémentaires générées par le cylindre se propagent jusqu'à la �n de la zone

de relaxation lorsque la méthode de couplage est prise en compte. Il est montré que les

harmoniques en amplitude des e�orts au premier et second ordre sont légèrement amélio-

rées si le couplage est appliqué. En particulier, les forces de dérive moyennes horizontales

agissant sur le cylindre sont améliorées. Cependant, les coûts de calcul augmentent lorsque

le couplage est appliqué. Le coût de calcul augmente d'environ 84% pour SWENSE avec la

modélisation d'interface LS et de 56% pour RANS avec la modélisation d'interface VOF.

• Une bouée �xe en houle régulière et irrégulière est ensuite considérée. Les résultats

de la simulation sont comparés aux résultats expérimentaux. Dans le test de bouée dans

la houle régulière, les élévations de surface libre obtenues pour di�érentes sondes à houle
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et comparées aux expériences montrent des erreurs moins importantes lorsque le couplage

est appliqué. Les harmoniques en amplitude des e�orts au premier et deuxième ordre et

les forces de dérive moyennes sont améliorées lorsque le couplage est appliqué. Dans le test

de la houle irrégulière, un e�et de couplage négligeable est observé car les houles complé-

mentaires sont de faible amplitude. Les coûts de calcul augmentent lorsque le couplage est

appliqué d'environ 80% et 49% pour les cas de simulation de houle régulière et irrégulière,

respectivement.

En conclusion, le couplage bidirectionnel entre les modèles d'écoulement potentiel et visqueux

fonctionne lorsque les houles complémentaires sont su�samment importantes. L'élévation de la

houle et les e�orts aux premier et deuxième ordres -en particulier les forces de dérive- agissant

sur la structure peuvent être améliorées si l'on considère le couplage bidirectionnel. Cependant,

les coûts de calcul augmentent d'environ 80% pour les cas de houle régulière et de 50% pour les

cas de houle irrégulière.

8. Conclusion et perspectives

Le couplage bidirectionnel entre les modèles d'écoulement de �uide parfait potentiel et visqueux

est proposé dans la présente étude. Les modèles d'écoulement potentiel pour des écoulements

incidents et complémentaires ainsi que le modèle d'écoulement visqueux basé sur SWENSE avec

la fonction LS pour la modélisation de l'interface sont expliqués. Les tests de référence valident

chaque modèle d'écoulement et montrent un bon accord avec les résultats de référence disponibles.

On suppose que l'élévation de surface libre et la vitesse du �uide dans les modèles d'écoulement

sont continues. Pour coupler les modèles des écoulements potentiels et visqueux, les méthodologies

de décomposition fonctionnelle (FD) et de décomposition de domaine (DD) sont appliquées.

La décomposition fonctionnelle (FD) est appliquée aux modèles d'écoulement potentiel et vis-

queux. Les quantités d'intérêt totales sont décomposés en parties incidente et complémentaire.

L'écoulements potentiel non-linéaire pour les houles incidentes est supposé disponible dans tout

le domaine �uide et satisfait les équations d'Euler. Le modèle potentiel linéarisé basé sur la re-

présentation de la vitesse de Poincaré pour un écoulement complémentaire est proposé. D'autre

part, le fait de disposer d'un modèle de houle incidente non-linéaire conduit à l'utilisation de

la méthode SWENSE pour prendre en compte l'écoulement complémentaire dans le cadre d'un

modèle de �uide visqueux.

La décomposition de domaine (DD) est utilisée pour décomposer le domaine de calcul. Les

ondes incidentes non-linéaires du modèle d'écoulement de potentiel nonlinéaire sont disponibles

dans tout le domaine de calcul. Cela nous oblige à diviser le domaine de calcul des modèles

d'écoulement potentiel et visqueux uniquement pour les ondes complémentaires. Au voisinage

de la structure, le modèle d'écoulement visqueux basé sur SWENSE est utilisé et le modèle

d'écoulement potentiel linéarisé pour un écoulement complémentaire est appliqué dans la région

du champ lointain.

Pour coupler les modèles d'écoulement potentiel et d'écoulement visqueux, on accepte l'hypothèse
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de l'évolution continue de l'élévation de surface libre et de la vitesse du �uide dans le domaine de

calcul. Sur la surface de couplage considérée, la vitesse du �uide complémentaire et l'élévation de

la houle sont utilisées pour mettre à jour le champ d'écoulement complémentaire dans la région

du champ lointain à l'aide de la représentation de la vitesse de Poincaré. Dans le champ lointain,

le schéma de relaxation est utilisé pour fusionner le champ complémentaire calculé avec le champ

cible calculé à partir de la représentation de la vitesse de Poincaré.

Un algorithme résolvant le problème d'interaction houle-structure en considérant un couplage

bidirectionnel est présenté. Les tests de référence sont e�ectués pour un cylindre circulaire vertical

soumis à une houle incidente régulière et une bouée �xe soumis à des houles incidentes régulière

et irrégulière. Les résultats des tests de référence montrent que le couplage bidirectionnel peut

améliorer les élévations de surface libre et les e�orts agissant sur la structure. En particulier, les

e�orts de dérive moyennes horizontales agissant sur la structure sont considérablement améliorés

lorsque le couplage bidirectionnel est adopté. Cependant, le couplage bidirectionnel donne des

résultats médiocres sur la troisième harmonique des e�orts. Lorsque les houles complémentaires

sont ptites, le couplage bidirectionnel n'a�ecte pas les résultats. Lorsque le couplage bidirectionnel

est appliqué, les coûts de calcul sont augmentés de 80 % pour la simulation en houle régulière et

de 40 % pour la simulation en houle irrégulière.

Pour les travaux futurs, les sujets de recherche suivants peuvent être mentionnés :

• Représentation de la vitesse de Poincaré pour un écoulement de surface libre

pour le navire avec vitesse d'avance

La représentation de la vitesse de Poincaré dans une application marine a été étudiée pour

résoudre des problèmes stationnaires et périodiques par Noblesse et al. (1997); Noblesse

(2001); Noblesse and Yang (2004). La représentation de la vitesse pour le problème d'inter-

action houle-structure avec vitesse d'avance peut être réalisée avec la condition limite de

surface libre de Neumann-Kelvin. Un tel modèle peut être utilisé pour coupler un modèle

d'écoulement visqueux a�n d'évaluer la résistance ajoutée du navire dans la houle.

• Couplage entre le modèle d'écoulement potentiel linéaire et d'autres modèles

d'écoulement

La représentation de vitesse proposée peut être utilisée pour coupler le modèle d'écoulement

visqueux basé sur la modélisation d'interface SWENSE et VOF par Li (2018). La fonction

élémentaire introduite dans la présente étude peut être applicable à l'équation intégrale

de frontière. Le modèle d'écoulement utilisé pour résoudre l'interaction houle-structure au

voisinage de la structure peut être remplacé par des modèles d'écoulement à potentiel

non-linéaire tels que la méthode des singularités de type Rankine (RPM ; Rankine Panel

Method) ou la méthode des éléments �nis (FEM ; Finite Element Method).

• Evaluation des e�orts de dérive moyennes agissant sur un corps non-pro�lé

Le couplage bidirectionnel entre les modèles d'écoulement potentiel et visqueux donne de

bons résultats sur les forces de dérive moyennes horizontales agissant sur la structure,

forces qui sont importantes dans la conception des systèmes d'amarrage pour des navires-

citernes ou des FPSO. Il serait donc intéressant d'étudier le comportement à la mer de

telles structures via le couplage bidirectionnel mis en place dans ce travail.

249
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Résumé: Ce travail propose une méthodologie 
de couplage bidirectionnel entre un modèle 
Navier-Stokes et un modèle fluide parfait 
potentiel pour des applications d’ingénierie 
marine et particulièrement d’interaction houle-
structure. 
Les quantités d’intérêt sont décomposées comme 
la somme d’un terme d’écoulement incident et un 
terme d’écoulement complémentaire. Un modèle 
potentiel  non- l inéaire (HOS : High-Order 
Spectral) est utilisé pour l’écoulement incident. 
L’écoulement complémentaire est traité par des 
modèles de fluide visqueux et de fluide parfait 
potentiel. Le modèle fluide visqueux est basé sur 
les équations SWENS (Spectral Wave Explicit 
Navier-Stokes) et une formulation de type Level-
Set pour la prise en compte de l’interface; ce

modèle est utilisé dans un domaine proche de la 
structure marine étudiée. Le modèle de fluide 
potentiel est un modèle linéarisé basé sur une 
description de Poincaré. Cette description est 
utilisée pour effectuer de nouveaux 
développements où la surface de couplage est un 
cylindre circulaire, ce qui permet de résoudre les 
problèmes de divergence numérique rencontrés 
initialement sur la surface libre. Les variables 
utilisées pour le couplage entre les deux modèles 
sont la vitesse du fluide et l’élévation de surface 
libre. 
Le couplage proposé est validé pour des cas de 
diffraction-radiation et l’accord avec les résultats 
de référence est bon. En particulier, les efforts du 
1er et du 2ème ordre sont bien restitués.
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coupling; Poincaré’s velocity representation; SWENSE; OpenFOAM

Abstract: The present study proposes a two-way 
coupling methodology between potential and 
viscous flow models for a marine application. A 
hypothesis that the functional quantities of total 
flow can be decomposed into the incident and 
complementary parts is assumed. The nonlinear 
potential flow model for incident flow is available. 
Therefore the complementary flow is only 
concerned in the potential and viscous flow 
models. The computational domain for 
complementary flow is decomposed. In the 
vicinity of structure, the viscous flow model based 
on Spectral Wave Explicit Navier-Stoke 
Equations (SWENSE) is used. A linear potential 
flow model based on Poincaré velocity 
representation is applied to simulate the 
complementary wave in the far-field. The fluid 
velocity and wave elevation are used to couple 
the potential and viscous flow models.

A preliminary study on the coupling is conducted 
and the necessity to a fast evaluation of potential 
flow is raised. The nonlinear potential flow 
models for incident waves are summarized and 
the reconstruction procedure in the viscous flow 
solver is proposed and validated with the 
simulation and experiments. A new Poincaré’s 
velocity representation for time domain free 
surface flow is introduced with a circular 
cylindrical matching surface. The proposed 
representation is validated with the linear 
radiation-diffraction problem and the results show 
good agreements. The viscous flow solver based 
on SWENSE method with Level-Set interface 
modeling is proposed. The potential and viscous 
flow models are coupled and the results show 
that the coupling can enhance the first- and 
second-order forces acting on the structure.
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