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This thesis is developed under the concept of constructibility in urban systems. Constructibility 

Research Institute (IRC), ESTP Paris has proposed the new concept of constructibility, in order 

to integrate performance-based approaches and process management methods. IRC develops 

its entire research themes based on constructability.  

IRC defines the term of constructibility as an approach that aims to provide a reasoned 

insurance, from the beginning as to the achievement of the objectives of any construction 

project throughout its life cycle (Gobin, 2010). Constructibility is a new discipline that offers 

several methods and approaches in order to control the risks of a change in performance and 

provides a concrete response to the construction industry as well as their complexities. This 

concept originates from two terms of buildability and constructability which aims to reach and 

guarantee performance level of constructions and the process of modeling (Contrada, 2019). 

Buildability is described as the practice to be adopted by the designer for the purpose of 

facilitating the building construction (CIRIA, 1983). The term constructability enhance 

buildability extending the practice of sharing knowledge to the whole construction lifecycle 

(CII, 1986).  

Cities are complex dynamic systems and several factors can affect the successful progress of 

the process of urban modeling. In the process of urban modeling, the model should respect 

several constraints and rules which may result in increasing its complexity. It is worth noting 

that this complexity of the cities can influence the performance of the modeling. Our proposed 

method in constructibility framework aims to improve our understanding of the urban growth 

simulations by representing the impacts of constructions and environmental constraints on 

urban sprawl. The purpose of this research is to give different images of the city of tomorrow 

for applying it to urban management and help the public policies decision making and 

constructibility can increase the performance level of the modeling in this process. 
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Résumé 

L'urbanisation est principalement due à la croissance démographique, à l'exode rural vers villes 

et au changement de mode de vie. Ce processus augmente les terres artificielles, qui affectent 

la biodiversité, les écosystèmes, le climat urbain et réduit les terres pour l'agriculture et les 

espaces naturels. 

L'objectif de cette thèse est de proposer des solutions pour simuler divers scénarios 

d'urbanisation afin d'améliorer la prise de décision en matière de politiques publiques. Pour ce 

faire, le modèle SLEUTH est utilisé afin d’évaluer l’impact des types de bâtiments et des règles 

environnementales sur l’étalement urbain. Dans la méthode utilisée, SLEUTH intègre 

davantage des données topographiques, des données sur les tissus urbains et démographiques, 

y compris des caractéristiques géographiques et des contraintes environnementales. Le 

principal défi de cette recherche est de proposer différents scénarios d'étalement urbain pour 

plusieurs types de règles environnementales tout en tenant compte du besoin des habitants ou 

du moins d'une estimation de la croissance de la population. 

Le modèle SLEUTH est l’un des modèles de simulation d’automates cellulaires bien connus, 

qui correspond à la simulation dynamique de l’expansion urbaine et s’adapte au modèle 

morphologique de la configuration urbaine. SLEUTH, comme beaucoup d'autres méthodes de 

simulation de la croissance urbaine, ne considère que les données historiques. Bien que les 

impacts de la croissance démographique et du tissu urbain soient implicitement pris en compte 

lors de la phase d'étalonnage sur les cartes urbaines historiques, il est impossible d'inclure les 

changements de taux de croissance démographique ou de types de bâtiments dans les 

simulations. De plus, les résultats de SLEUTH se limitent à des données matricielles difficiles 

à interpréter pour les décideurs. Les résultats sont des pixels, sur lesquels une urbanisation est 

supposée se produire, ce qui a peu de sens du point de vue de l’urbanisme. Par conséquent, 

notre recherche vise à diversifier les possibilités de simulation en intégrant explicitement le 

facteur des types de bâtiments en fonction de la croissance de la population et en fournissant 

des modèles de visualisation des résultats de scénarios de croissance urbaine en 2D et même en 

3D. 

Afin d'améliorer les résultats de SLEUTH, différents scénarios de simulation de croissance 

urbaine en 2D ont été définis sur la base du modèle SLEUTH en ajoutant le type de bâtiment et 

l'estimation de la croissance démographique en tant que facteurs du tissu urbain. Chaque 

simulation correspond à des politiques plus ou moins restrictives en espaces considérant ce que 

ces territoires peuvent accueillir en tant que type de bâtiment et en tant que population globale. 

De plus, les simulations peuvent aider l’utilisateur à protéger les terrains souhaités, tels que les 

espaces environnementaux, de l’urbanisation. Ces scénarios montrent la force de la simulation 

du modèle et permettent d’améliorer notre compréhension de l’étalement urbain. 

Trois études de cas de tailles et de populations différentes sont utilisées, Toulouse Métropole, 

Saint Sulpice la Pointe et Rieucros, afin de donner une idée de l'efficacité de la méthode 
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proposée à plusieurs échelles. L'évaluation des résultats indique que la méthode proposée est 

capable d’effectuer différentes simulations correspondant à plusieurs priorités et contraintes 

foncières. Il est utile de voir quels terrains peuvent être protégés (où) et quel type de bâtiment 

peut être utilisé pour limiter l'étalement urbain (combien). Une représentation en 3D de chaque 

simulation de croissance urbaine est fournie afin de faciliter l'interprétation de la simulation 

SLEUTH et de différencier les scénarios. Les résultats permettent d’avoir plusieurs images de 

la ville de demain pour l’appliquer aux politiques urbaines. 

Mots-clés: urbanisation, étalement urbain, simulation, modèle de SLEUTH basé sur des 

scénarios, tissu urbain, constructibilité, SLEUTH-3r, systèmes d'information géographique 

(SIG), politique de la ville 
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Abstract  

The process of urbanization occurs mainly due to population growth, rural exodus to cities and 

life style that often induces the nearly irreversible changes. It increases the artificial lands, 

which affect the biodiversity, ecosystems, urban climate, and reduces land for agriculture and 

natural areas. 

The focus of this thesis is to simulate diverse urbanization scenarios in order to improve 

public policies decision making. To do this, the SLEUTH model is used in order to investigate 

the impacts of building types and environmental rules on urban sprawl. In the method used, the 

SLEUTH model integrates more topographic data, urban tissue and demographic data, 

including geographical features and the environmental constraints. The main challenge in this 

research is to propose different urban sprawl scenarios for different kind of environmental rules 

while taking into account the population demand or at least population growth estimation. 

The SLEUTH model is one of the well-known cellular automata simulation models, which 

matches the dynamic simulation of urban expansion and adapts to morphological model of the 

urban configuration. SLEUTH, like many other urban growth simulation methods, considers 

only the historical data. Although, the impacts of population growth and urban tissue are 

implicitly considered during the calibration phase on the historical urban maps, changes in 

population growth rate or in building types cannot be included in its simulations. Moreover, the 

SLEUTH results are limited to raster data that are difficult to interpret for decision makers. The 

results are some pixels on which urbanization is supposed to occur, which do not make much 

sense from urbanism point of view. Therefore, our research aims to diversify the simulation 

possibilities integrating explicitly factors of building types according to population growth and 

providing visual methods to view urban growth scenario results in 2D and even 3D.  

In order to improve the SLEUTH results, different 2D urban growth simulation scenarios 

have been defined based on the SLEUTH model by adding buildings type and the estimation 

of the population growth as urban fabric factors. Each simulation corresponds to policies that 

are more or less restrictive of spaces considering what these territories can accommodate as a 

type of building and as a global population. In addition, the simulations can help the user to 

protect the desired lands such as the environmental spaces from urbanization. These scenarios 

show the simulation capabilities of the model and make it possible to improve our 

understanding of an urban sprawl simulation. 

Three different case studies with various sizes and populations are used including Toulouse 

metropolitan, Saint Sulpice la Pointe and Rieucros to provide a view of the effectiveness of the 

proposed method on several scales. The results evaluation indicates that the proposed method 

makes different simulations that correspond to different land priorities and constraints. It helps 

to see which land can be protected (where) and how building type can be used to constrain 
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urban sprawl (how much). A 3D representation for each prospective urban growth simulations 

is provided in order to facilitate the interpretation of the SLEUTH simulation and differentiate 

the scenarios. The findings allow having different images of the city of tomorrow for applying 

it to urban policies. 

Keywords: Urbanization, urban sprawl, simulation, scenario-based SLEUTH model, urban 

fabric, Constructability, SLEUTH-3r, Geographical Information Systems (GIS), Urban policy 
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Introduction  

The process of urbanization occurs mainly due to population growth, rural exodus to cities and 

life-style which often induces the nearly irreversible changes because of the land take 

phenomena and increases the artificial lands. It affects the biodiversity, ecosystems, urban 

climate, and agriculture and natural areas. The balance between land protection and 

urbanization is an environmental and social concerns of the public authorities. This can be 

achieved by providing security, welfare and social services to residents, as well as respecting 

the environment and biodiversity. Although, the latter played a significant role in reducing 

pollution and physical and mental needs of the inhabitants as well. The main challenge in this 

research is to propose different urban sprawl scenarios for different kind of environmental rules 

while consider population demand or at least population growth estimation. 

The compact cities preserve the soil, reduce some environmental impacts of urbanization and 

decrease greenhouse gas emissions by reducing travel as well as often decrease the construction 

cost. These objectives can be achieved by densification which increases the height of buildings. 

Land use densification is a specific target of many land use policies in most OECD countries 

(the Organization for Economic Co-operation and Development, 2017), however for many 

reasons it may effects on the urban environment and the population welfare e.g. decreasing the 

residential area, reducing sunlight, runoff problems, creating of heat islands, and reducing the 

amenities associated with open spaces as well as reducing the people privacy  (ESCo, Expertise 

Scientifique Collective, 2017, sections 5, p.78). 

The objective of this thesis is to generate diverse urbanization scenarios in order to improve 

public policies decision making. To do this, SLEUTH modeling improvement is proposed that 

integrates more topographic data, urban tissue and demographic data while respects 

geographical features and the environmental constraints. SLEUTH’s acronym is derived from 

its data input requirements: Slope, Land use, Exclusion, Urban, Transportation and Hillshade. 

This model is used in order to investigate the impacts of building types and environmental rules 

on urban sprawl. 

Many studies, using various modeling approaches and simulation tools have been made in the 

field of urban growth. Among all dynamic and spatially explicit models, those based on Cellular 

Automata (CA) are common for their applications in urban areas. This can be explained by the 

spatially explicit character and dynamic behavior of cellular automata models. Simplicity, 

flexibility, intuitiveness, transparency, the ability to incorporate the spatial, temporal 

dimensions of the processes and capability of modeling complex dynamic systems such as 

urban systems, are some features of CA modeling. CA can be easily integrated with 

Geographical Information Systems (GIS) to have a high spatial resolution model with 



 

6 
 

computational efficiency. In addition, nonlinearity of the iterative process of CA leads to 

regular fractal patterns, i.e. to regular and ordered spatial patterns that generate similar 

geometries at different scales. The SLEUTH model is one of the cellular automata models that 

can simulate the dynamic nature of urban expansion and can be compatible with urban 

environment modeling.   

From geographical point of view, a city appears as an agglomeration of buildings and people, 

essentially different from agricultural lands. A city is composed of the agglomeration of 

geographical and social environment that is formed by structures and residents, and can be 

defined by the occupied space and the social relationships it creates. The constructions as spatial 

objects represent the coalescence and the social environment demonstrate the coherence of the 

city. These spatial and social agglomerations make an interesting indicator to understand the 

scale and the evolution of the cities (Antoni, 2003).  

SLEUTH, like many other urban growth simulation methods, uses the historical data in order 

to calibrate the model. Although the impacts of population growth and urban tissue are 

implicitly considered during the calibration phase of SLEUTH, the changes in population 

growth rate or in building types cannot be included in its simulations. Moreover, the SLEUTH 

results are limited to some raster data that is difficult to interpret for decision makers. The 

results are some pixels on which urbanization is supposed to occur, which do not make much 

sense from urbanism point of view. The research presented in this thesis aims to challenge the 

results of the classical urban growth methods that are often independent from the factors of 

building types and population, and gives an improvement to provide a more reliable method.  

In SLEUTH model, a simulation is made up of a series of growth cycles where each cycle 

represents a year of growth. The rhythm of growth is calibrated by means of historical data and 

the model is based on learning and therefore it will reproduce the same tendency as today (same 

type of building). Therefore, it seems interesting to integrate some new effective factors such 

as estimated population, building types and more topographic data in order to improve the 

number and location of simulated pixels per growth cycle. In order to integrate the demography 

and building types, the buildings are classified to different residential categories considering 

their height and configuration to study the Human Settlement Capacity (HSC). The results of 

the proposed method lead to different simulations that are related to different land priorities and 

constraints.  

In this research, common data (such as topographic, buildings and demography data) are used 

in order to create different types of scenarios according to urban policies, while remaining 

realistic. Integrating the additional data leads hopefully to better parameterization of the model. 

Given that we know the prediction of urban growth is an indeterminate proposition, several 

prospective scenarios based on the new model parametrizations are defined related to different 

urban area (the Toulouse metropolitan, Saint Sulpice la Pointe that is a town around Toulouse, 

and Rieucros as a small community in a rural area), in order to query the simulation ability in 

different scale. These scenarios show the simulation capabilities of the model and make it 

possible to improve our understanding of an urban sprawl simulation. The simulation results of 
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the three different case studies with various sizes and populations provide a good view of the 

scalability of the proposed method and the findings allow having different images of the city of 

tomorrow to choose and reflect on urban policies. In urban modeling, proposing different 

simulation of urban sprawl is fundamental because it shows the possible impact of urban sprawl 

but also the capacity of urban settlement according to different scenario.  

In this thesis, the prospective urban growth simulations are compared while keeping the same 

population growth rate for the desired forecasting date. Moreover, the demographic capacity in 

each scenario in both dense and sprawl cities are calculated and compared. The purpose of the 

thesis is to provide a way to simulate urban growth, with less semantic information loss, and to 

show the differences of sprawl and dense growth, by integrating topographic data, 

demographic, and building types with the CA model. 

Least, a 3D representation for each prospective urban growth simulations is provided to 

facilitate the interpretation of the SLEUTH simulation, to better understand the SLEUTH 

simulation results and to differentiate the scenarios, in order to support the scientists and 

authorities in charge of urban planner and management. 

In this research, we use SLEUTH model that sounds good, but from our perspective it's not 

good enough. SLEUTH produces square areas (raster files) on which urbanization is supposed 

to occur. There is no further information from these new urban areas, and their purposes and 

uses are unclear. In addition, we do not know their meaning in terms of urban fabric. We have 

faced many challenges in this research, though the most critical issue is how to propose different 

urban sprawl scenarios for different kind of environmental rules. In addition, considering 

population demand (or at least population growth estimates) is another important challenge. 

With the objectives mentioned above, the thesis starts with raising the following questions about 

the evolutionary trajectory of urbanization as well as densification: 

 What are the urbanization and densification? 

 Why doing urban sprawl simulation, while we know that all simulations are fictions and 

they are based on some assumptions? 

Achievements 

 Urban sprawl phenomena is a big challenge for the authorities and urban planners.  

 We have proposed a way to improve simulated urban sprawl using topographic data and 

population density for results analysis.   

 The results demonstrate that the urban growth is widely dependent to building type 

(urban fabric) and population growth. Classification of the building types and the 

estimation of the population growth try to provide required amount of urban growth, 

and the protection rules attempt to regulate the location of growth areas. 

In fact, urban growth simulations can be used to see what can happen in the future; how will be 

the housing, population growth and land cover changes and where can occur. These simulations 
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can help us find and protect some areas against artificialization and urbanization. Moreover, 

they can be used to think about future urbanization and make choices on urban policies. 

Thesis Structure 

This thesis consists of 5 chapters intended to explore the optimization of SLEUTH as an urban 

growth cellular automata. The work aims to obtain a better parameterization of urban growth 

in order to demonstrate the impacts of constructions and environmental constraints on urban 

sprawl by integrating more topographic data, urban fabric and demographic data. Major themes 

are developed in this work and an original contribution is proposed. A brief introduction is 

presented at the beginning of each chapter to guide the reader before tackling the main subject. 

In the same spirit, each chapter ends with a discussion of the content. The structure of the thesis 

process flow is illustrated in the figure I. Below, the structure of the thesis is presented with an 

overview of each subsequent chapter. 

 

Figure I.  Structure of the thesis process flow 

Chapter 1 gives a brief overview of urbanization and land artificialization in order to 

understand the strengths and tendencies of the urbanization process. In this chapter, 

determinants and the impacts of urbanization are discussed. In addition, a brief review of the 

state-of-the-art in some academic research and urban planning practices is presented, to explore 

land use pattern and urban simulation techniques. 

Chapter 2 describes the thesis methodology and fundamentals for model construction 

including the reason to choose the model, the scenarios considered, the factors used to optimize 

the model and the implementation of the proposed model. 

Chapter 3 dedicates to the case studies and applications including the implementation of our 

model on three different study areas, providing the results, evaluating them and make a 

discussion of the obtained results. 

Chapter 4 explores the 3D illustration of the urban growth scenarios in order to better 

understand the simulation results, to facilitate the interpretation of the SLEUTH simulation and 

to differentiate the scenarios. In this chapter, first the different 3D modeling tools and 

applications are reviewed. Next, a 3D proposal is represented in order to analyze the simulation 

model regarding to 3D. 

Chapter 5 concludes the thesis by summarizing the results of the preceding research and 

discussing future work required in developing these methods. 
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Annex A represents, a list of methods in the domain of urban growth and land use and land 

cover changes (LUCC) modeling including their use cases, their applications and some of their 

capabilities and limitations. 

Annex B describes the SLEUTH urban growth model process flow. One scenario file is 

represented in detail in this Annex.  

Annex C illustrates the examples of the SLEUTH calibration files that are used to achieve 

dispersion coefficient multiplier and calibration best-fit coefficient. 

Annex D represents the examples of weighting urban patches using predefined urban land use 

models. In this Annex, the examples of four predefined urban land use pattern contain 

concentric zone model, sector model, multiple nuclei model and particular complex model, for 

the study area of Toulouse are provided. 

Annex E describes documentation of the National Institute of Statistics and Economic Studies 

(INSEE) data including the source, the generated information and the list and description of 

variables that are used in the population estimations and the urban fabric scenarios. 
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Chapter 1 : Urbanization and Urban Modeling 

 

Contents 

1.1. Urbanization  

1.2. Urban Modeling  

1.3. Chapter Conclusion 

  

Urbanization is a process that leads to increase the size of cities. It occurs mainly due to 

population growth, rural exodus to cities and life style. The urbanization process often induces 

the nearly irreversible changes and increases the artificial lands. It affects the biodiversity, 

ecosystems, urban climate, and agriculture and natural areas. The balance between housing 

and land protection is one of the environmental and social concerns of the public authorities. 

This should be achieved by providing security, welfare and social services to residents as well 

as respecting the environment and biodiversity. The latter played a significant role in reducing 

pollution and physical and mental needs of the inhabitants as well. 

Cities are shaped by urban expansion, migration, succession according to their geography and 

natural environments. In general, urban growth and mostly urban sprawl generates land 

artificialization and it changes the natural agricultural lands to residential housings. 

Urbanization is one of the most effective factors in expanding the artificialization the territories. 

This is why the tracking and controlling the artificial territories represent an important 

challenge for local authorities facing with objectives of sustainable development.  

Many studies have been done in the field of urban growth, using various modeling approaches 

and simulation tools in order to spatially reconstruct the occupation and changes in land use. 

In this chapter, some different urban land use patterns are overviewed which can be considered 

as predefined patterns. Predefined patterns are static models that describe patterns of urban 

land use in a generic city. These patterns should be created manually for each study area 

according to the land use observations for that area.  

In the last decades, various techniques have been predominantly used to simulate the urban 

growth and land use / land cover changes (LUCC). These techniques, their use cases and their 

applications are widespread. Therefore, choosing a well-fit method among them for a new case 

study is always a challenge for the urban planners and stakeholders. In the researches of this 



 

12 
 

thesis, an overview on some different techniques of urban growth and LUCC modeling is 

presented, which seeks to understand and document the state of the art of different simulation 

techniques and investigate their applications. From all various techniques, the fractal 

modeling, artificial neural network modeling, agent-based modeling and cellular automata 

modeling have been categorized and their use cases, their applications; and their capability 

and limitations are discussed. The classified list of different researches in this field is proposed 

in Annex A that could be used to provide an appropriate view for urban planners in the field of 

urban planning development. Some more used techniques and applications are reviewed in 

detail in this chapter.  

In this chapter, first, a brief overview on urbanization is provided in section 1.1. The urban 

sprawl and artificialized lands, their characteristics and their impacts on environment and the 

human life are reviewed in this section. Then in section 1.2, some land use patterns and different 

techniques of urban growth and LUCC modeling are represented. The chapter is concluded in 

section 1.3. 

1.1. Urbanization  

The size of cities increased all over the world. The process, named urbanization is mainly due 

to population growth, rural exodus to cities and to life style. World urbanization prospects of 

department of economic and social affairs of United Nations (2018) demonstrate that in 2018, 

55 % of the world’s population lived in urban areas and the coming decades the both global 

population growth and urbanization will continue in urban areas. Moreover, those projections 

show that urbanization and the population growth will cause to increase the urbanization to 

more than 66% in 2050 (see figure 1.1).  

 

Figure 1. 1. Proportions of urban and rural world population, from 1950 to 2050; (United Nations, 

2018) 
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Migrating population from rural to urban area has proceeded rapidly during last six decades. 

Suburbanization refers to shifting the residential area to outward. Suburban sprawl 

demonstrates a balance between the forces that are pushing people together in cities and those 

pushing them out. Some researches show that suburbanization has gone so far to form new 

points of concentration outside the downtown (Sridhar, 2007).  

Regarding to definition provided from INSEE (the National Institute of Statistics and Economic 

Studies collects, produces, analyzes and disseminates information on the French economy and 

society), since 1954 in France, an urban unit is generally defined as a municipality or a group 

of municipalities that combines the continuity of buildings where the distance of two buildings 

are less than 200 meters and it has at least 2000 inhabitants. The surrounding commune of an 

urban unit is considered as urban and the other communes are considered as the rural 

communes. Later in 2010, other words are defined called urban centers (Pôles urbains in 

French). The urban centers are the subset of urban units that presents 10 000 jobs and are not 

the crown of other urban centers. Since October 2011, the zoning in urban areas (ZAU) provides 

a vision of the influence areas of cities, in the sense of urban units, on the territory. It divides 

the territory into four major types of spaces. One of them demonstrates mainly the rural spaces 

(e.g. small urban units and rural municipalities) and others represent urban spaces including the 

urban centers, the suburban peripheries and the multi-centric municipalities (INSEE). 

Almost half of the European population lives in urban areas of less than 500,000 inhabitants. 

In fact, according to the provided definitions, Europe is an area of small towns with the distance 

of fifteen kilometers from each other (ESCo, 2017, introduction, p. 9). Nowadays, most of the 

countries cannot avoid the urban population growth and their rate of urbanization is increasing 

rapidly. In France, nearly 55% of urban residents in 1950 lived in one unit while this rate was 

increased to around 80% in 2018 and it will continued to 88% in 2050 that is comparable to 

other industrialized countries (United Nations, 2018) (see figure 1.2). 

 

Figure 1. 2. Total population, urban population and urbanization rates from 1950 to 2050; (United 

Nations, 2018) 
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The long-term growth of real GDP (Gross Domestic Product) per capita can be considered as 

an index to measure the link between urbanization and development. The increasing of the 

agricultural productivities caused the cities developments where the people migrate more and 

more from the rural communes to the path of the communication routes and cities suburbs. 

Later, the Industrial Revolution caused the emergence of industrial firms in existing cities or 

around the required natural resources that attract the workers who had left the agricultural 

sector. This, as a reciprocal phenomenon, on the one hand, led to an exponential increase in 

urban migration and an increase in the size of local markets for goods, services and labor, and, 

on the other hand, attracts more firms. The agglomeration of populations and economic 

activities effect on the price of land. This increasing of the land price causes that the people 

with less income move from the city centers to the edge of the cities and the cities be spread. 

This urban sprawl can happened either by expanding the urban boundaries with new urban 

development adjacent to pre-existing facilities or by the discontinuous sprawl. In the latter case, 

in order to provide a good commute to working place, the populations or firms move to the 

communes close enough to the cities (ESCo, 2017, introduction, p.8 & 9). The apparent 

slowness of urban sprawl, often, hides its real speed and could not be seen in the short term. 

Urban sprawl is a complex cross-sutting phenomenon that each sector brings a different angle 

of observation (e.g. the transport studies identify a link between the progression of the building 

and the network of roads, land surveys show that farmland prices increase as urbanization 

progresses) (Antoni, 2010). 

Urbanization, as a part of artificialization, is the main factor of urban expansion, which occurs 

by increasing the surface area of the city and the extensions of its borders. In some cases, the 

urban expansion happens outside the peripheral areas that are called peri-urban. Peri-urbans are 

closely linked to the urban and they are take place in communes outside the city. In France, the 

urban sprawl affected by peri-urbanization has slowed down before the 2000s, and it is always 

a demographic balances between urban and peri-urban areas and French landscapes (ESCo, 

2017, introduction, p.11). Urbanization as an inevitable phenomenon often induces irreversible 

changes and can impress on biodiversity, ecosystems and urban climate and transforms 

agricultural and natural areas. Tracking and controlling the artificialized lands represent an 

important challenge for local authorities facing with transversal objectives of sustainable 

development and it is a pressing societal demand in environmental matters. Therefore, 

sustainable urban planning and management require reliable land change models, which can be 

used to improve decision-making (see section 1.2).   

1.1.1. The Impacts of Urbanization 

In December 2017, a collective scientific multidisciplinary report on artificialized land and 

artificialization processes including the drivers, impacts and potential responses in the French 

territory was published that was jointly conducted by IFSTTAR (Institut français des sciences 

et technologies des transports, de l'aménagement et des réseaux) and INRA (Institut national 

de la recherche agronomique) (ESCo, 2017). Their researches was requested and supported by 

CGDD/MTES (Commissariat général au développement durable, Ministère de la Transition 

écologique et solidaire), ADEME (Agence de l'environnement et de la maîtrise de l'énergie) 
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and DGPE (Direction générale de la performance économique et environnementale des 

entreprises, Ministère de l'Agriculture et de l'Alimentation). The concept of artificialized land 

is introduced by agronomists to identify changes in the French landscape by identifying various 

land uses and their changes (ESCo, 2017, introduction, p.7; source: Slak and Vidal, 1995). This 

land uses classifications leads to four main distinct types of land use, including agriculture, 

forestry, natural spaces and the artificialized land. Artificialization refers to the process of 

specific land use changes from the agriculture, forestry and natural spaces to the artificialized 

land. Artificialized lands include the constructed areas, the spaces that are affected and shaped 

by human activity and the green spaces associated with them e.g. residential, commercial, 

administrative, educational and industrial constructions, quarries, mines and dumps as well as 

parks and gardens, sports and leisure facilities (Barbe et al., ESCo, 2017, section 1).  

Artificialization, and its effects can be studied from different aspects including the type of land 

cover after artificialization e.g. waterproofing, mineralization and plant cover; the positioning 

of the land in the urban fabric e.g. centers of dense cities, suburbs, zones extending the city's 

borders, peri-urban municipalities, municipalities outside urban influences; and the type of 

activities that take place there e.g. individual or collective housing, industrial activities and their 

nature, tertiary activities, commercial and logistical activities, transport infrastructure (ESCo, 

2017, introduction, p.11). 

1.1.1.1. The Impacts of Urbanization on Environment 

With the growth of urbanization and as result urban sprawl and consequently increasing the 

artificialized lands, air and soil pollutions are increasing. For example, increasing inner city 

travels as well as long distances between home and workplace cause to burn more car fuel. 

Vehicle traffic causes pollution through the creation of airborne particles and toxins as well as 

pollution caused by brake pads. Furthermore, artificialization causes rising the lands occupied 

by mining and industrial sites around the cities that make both soil and air pollution. Mines and 

factories release large amount of dust, carbon monoxide, hydrocarbons and chemicals 

compounds into the air causing massive air pollution. Over the last three decades, the scientists 

have made more research on the impacts of artificialization on physical, chemical and biological 

properties of soils (Cornu et al., ESCo, 2017, sections 2). It turns back to the end of 20th century 

that they study the health and environmental risks of mining and industrial sites. In addition, 

the soil pollution affects urban hydrology. This is essential in the management of water and 

material flows and led to a reconsideration of the role of soils in urban areas. As mentioned 

earlier, attempts to investigate the impacts of increasing urbanization are made for various 

reasons, including environmental reasons e.g. limiting the losses of agricultural land and forest, 

reducing its effects on the lives of inhabitants, animals and plants and lessening the carbon 

impact by reducing the commute. Urbanization has a significant influence on local 

environmental features, vegetation and animal species. It impresses the habitats by 

fragmentation and connectivity between them. In this situation, the infrastructure, industrial 

areas and the mining areas usually have a negative effect on flora and fauna (Cohen et al., ESCo, 

2017, sections 3). It, also affects the physical urban environment, the urban microclimate and 

noise and air pollution where some of these long-term impacts transfer the pollutants into water, 



 

16 
 

soil and the food chain (Musy et al., ESCo, 2017, sections 3). From other impacts of 

urbanization on environmental, we can mentioned the urban heat islands that are another 

concern arising from the expansion of urbanization and come from the heat that is produced by 

industrial and urban areas (Parker, 2006). 

1.1.1.2. The Impacts of Urbanization on Agricultural Lands 

As reviewed before, cities are shaped by various factors that one of them is the migration from 

rural to urban areas. This shifting from the rural to peri-urban or urban areas, on the one hand, 

extends the area of the cities and make the urban sprawl and, on the other hand, causes the loss 

of the agricultural lands with changing to the built on lands. In fact, land take impress 

agriculture in both terms of the production loss and agricultural environment considering the 

low reversibility of agricultural soils that have become polluted and impermeable. Agricultural 

land can easily converted to the artificialized land while the reverse conversion is difficult, 

expensive and takes time. Referring to ESCo (Géniaux et al., ESCo, 2017, sections 4), almost 

70% of urbanization takes place on the very good quality farmland where this category of land 

cover itself accounts for 68% of France territories in 2017. The income from agricultural land 

and the value of land are the other reasons of the land use changes in the agricultural areas. 

1.1.1.3. Policies to Limit Agricultural Land Changes 

Some policies can avoid, limit and compensate the agricultural land changes such as greenbelts, 

zoning, policies to address agricultural production and adjusting taxation on the sale of 

agricultural land. A green belt consists of a natural area that designated by public authority to 

be protected from urbanization (Baumont and Guelton, ESCo, 2017, sections 4). The green 

belts exist in several countries such as United Kingdom (Baumont and Guelton, ESCo, 2017, 

sections 4; source: Schone, 2010). They aims to limit urban sprawl by promoting settlement in 

already equipped areas, reduce the impact on agricultural areas, and avoid peripheral 

displacement in rural areas (Baumont and Guelton, ESCo, 2017, sections 4; source: Gelan et 

al., 2008). Green belts can effect on the restriction of buildings and their price, the improvement 

of environmental amenities on and around the site and the effects of supply scarcity in relation 

to demand. The verification of these effects was carried out in France (Baumont and Guelton, 

ESCo, 2017, sections 4; source: Geniaux and Napoléone, 2011) and demonstrates the protective 

effect of a strict environmental zone and nearby, while the attractiveness is reinforced on a 

larger scale. At the same time, the scarcity effect causes prices to rise and changes housing 

demand by pushing it to other locations (Baumont and Guelton, ESCo, 2017, sections 4; source: 

Wu et al., 2004).  

1.1.2. Urbanization in France 

Between 1950 and 2018, the world urban growth rates were positive in almost all countries of 

the world (United Nations, 2018). In the last 30 years, the consumption of space per inhabitant 

has been multiplied by two or three in most French cities. However, the development and the 
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sprawl of the cities, their demographic growth and their economic developments will certainly 

not be sustainable in the long term and at such a sustained pace (Youssoufi and Antoni, 2009). 

The public policies of the household location and the urban planning strategies attempts to 

manage the housing demand. In these policies, various factors are considered such as the 

housing price and the distance from the center, household density and spatial distribution and 

the transport policy. In most cases, the price of housing decreases when the distance from the 

city center increases, and vice versa. On the other hand, the density decreased with distance 

from the center and the housing area per person increased. Public policies can also play an 

important role in the form of land acquisition and development projects (Aguilera and Bonin, 

ESCo, 2017, sections 5).  

In addition to the urbanization determinants discussed before in this chapter, such as population 

growth and migrating population from rural to urban area, there are some other particular 

factors that impact the amount of urbanization in France. In urban planning, the development 

of natural amenities can limit the environmental impacts of urbanization. However, natural 

amenities may attract people. They also effect on extensive development of second homes. The 

natural and climatic amenities, water-related recreation, and the amenities associated with 

sports as well as the growth in the proportion of forest cover are some other factors that have a 

great impact on local population growth and increases incoming migration. Local population 

growth leads the extensive development of second homes and more facilities. France is a 

destination for international migrants due to the vastness, water resources, climate diversity, 

and historical, cultural and investment attractions. This international migration, in turn, causes 

the demand for residential land and thus, the expansion of the urbans and peri-urbans. The 

development of these spaces should optimize the accessibility to the facilities and to the zones 

of leisure while avoiding a fragmentation of the natural and agricultural zones. Therefore, the 

public policy should take into account the housing and the facilities demand while limiting the 

environmental impacts and the spatial extension of urban areas (Aguilera and Bonin, ESCo, 

2017, sections 5). The development of peri-urban spaces should optimize the accessibility to 

the facilities and to the zones of leisure while avoiding a fragmentation of the natural and 

agricultural zones (Frankhauser et al. 2007). 

In France, like in other post-industrialized countries, the relationship between population 

growth and the expansion of urban spaces is not linear. Indeed, the increasing of the housing 

demand is often more than population growth. This comes from the life style and the 

characteristics of French households in terms of housing choice such as the preference of living 

in the detached houses or detached single-family homes, the lack of large houses and large 

apartments in the city centers or downtown (that leads to the preference for suburban areas), 

and the desires of children to live in separate homes from parents (Aguilera and Bonin, ESCo, 

2017, sections 5).  

Public transport policies are other factors that play a complex role in urban planning and 

development. Public transportation is one of the factors of reducing pollution and overall energy 

consumption. However, in the same time, it gives the possibility to the people to live with more 
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distance from the center, which leads to urban sprawl (Aguilera and Bonin, ESCo, 2017, 

sections 5). Construction of infrastructure and transportation networks are also important 

factors of the land artificialization. Based on the SOeS - MTES (Service de l'Observation et des 

Statistiques, Ministère de la Transition Ecologique et Solidaire) report, 20,970 km2 equivalent 

to 3.8% of the French mainland dedicated to rail and road networks in 2012 (Thévenin and F-

Mannone, ESCo, 2017, sections 6). Moreover, the economic importance in sector of housing 

and transportation construction is significant and millions of people directly and indirectly are 

employed in this sector with more than 1.3 million jobs in France, which does not always incite 

to limit this activities (Aguilera and Bonin, ESCo, 2017, sections 5). 

1.1.2.1. Urbanization Measurements 

The measurement of artificialized lands refers to the surfaces including the built land used, 

paved or stabilized land, artificial green spaces and the spaces that are affected and shaped by 

human activity and the urban footprints that defines the outline of urban expansion. There are 

different methods of measuring land-use changes including remote sensing, the statistical 

surveys, the value-adding to administrative files and databases and the retrospective or 

predictive modeling approaches (Barbe et al., ESCo, 2017, section 1).  

According to CLC (Corine Land Cover) source, 5.5 % of France territory in 2012 was classified 

as artificial land while according to the Ministry of Agriculture (Teruti-Lucas source), this 

amount is almost 9.3 % in 2014 where more than 30% of them were artificial grassy lands (see 

tables 1.1 and 1.2). The differences of amounts come from their different ways of data 

extraction. Teruti-Lucas is a statistical data that is based on the original association of aerial 

photographs constituting the survey frame and field surveys by investigators and whereas CLC 

is an exhaustive source that is derived from the visual interpretation of satellite images but has 

some threshold. As mentioned before, urbanization as a major driver of artificialization, 

represents a large part of the artificial land. CLC shows that in 2012, 75% of artificialized lands 

were located in the continuous or non-continuous urban fabric, and the others contain the areas 

such as the railways and road networks, the industrial or commercial areas and the facilities 

(ESCo, 2017, introduction, p.8). 

Housing along with economic activities and transport infrastructure are the main activities that 

take place on artificialized lands. Housing took 42% of the artificialized areas in 2014 and 

almost half of the newly artificialized areas from 2006 to 2014 were for individual or collective 

housing (Teruti-Lucas, source; ESCo, 2017, sections 5). Housing cause the urban sprawl and 

peri-urbanization, while at the same time the density of the urban areas are also increasing 

(Aguilera and Bonin, ESCo, 2017, sections 5). As illustrated in table 1.1, according to the 

Corine Land Cover, the land artificialization in France has increased 20% from 1990 to 2012, 

where 8% occurred from 1990 to 2000, 7% from 2000 to 2006 and the over 3% from 2006 to 

2012. The statistics indicates the expansion of urbanization, which covers nearly 2.3 million 

hectares in 2012 mention that the urban areas increasing rate was 2 % between 2006 and 2012 

(Ruas et al., ESCo, 2017, section 1). 
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Table 1. 1. Distribution of the area of mainland France by nature of occupancy according to Corine 

Land Cover 2006 (corrected data) and 2012. (ESCo, 2017, section 1, p. 20; Source: SOeS, MTES) 

 2006 2012 

 Mha % % Mha % % 

Continuous urban fabric 0.044 1.5 0.1 0.044 1.5 0.1 

Discontinuous urban fabric 2.208 74.8 4.0 2.253 74.3 4.1 

Industrial zones, commercial & 

public installations 
0.359 12.2 0.7 0.385 12.7 0.7 

Transport infrastructure 0.103 3.5 0.2 0.109 3.6 0.2 

Other economic activities 0.098 3.3 0.2 0.098 3.2 0.2 

Green spaces and recreational areas 0.141 4.8 0.3 0.143 4.7 0.3 

Artificialized land 2.953 100.0 5.4 3.032 100.0 5.5 

Agricultural land 32.696   59.6 32.619   59.5 

Forested and natural land 19.202   35.0 19.192   35.0 

Total surface 54.851   100.0 54.843   100.0 

As mentioned above, according to Teruti-Lucas source, in 2014, almost 9.3 % of France lands 

in 2014 were artificialized. This source is also indicates an increase in the amount of artificial 

lands from 1984 to 2014. Table 1.2 illustrates the distribution of the area of mainland France 

by nature of occupancy obtained from Teruti-Lucas source. It shows that, in 2014, 1 million 

hectares out of 5.1 million hectares of the artificialized lands, were built-on lands, 2.5 million 

hectares of them were linear or non-linear coated and stabilized surfaces, e.g. the road or rail 

infrastructure, municipal roads and car parks, and the rest were other artificialized lands 

including the grassed and non-vegetated lands (Ruas et al., ESCo, 2017, section 1). 

Table 1.2. Distribution of the area of mainland France by nature of occupancy according to Teruti-Lucas 

surveys 2006 and 2014. (ESCo, 2017, section 1, p. 22; Source: SSP (Service de la Statistique et de la 

Prospective) – MAA (Ministère de l'Agriculture et de l'Alimentation)) 

 2006 2014 

 
Mha % % Mha % % 

Built-on land 0.756 16.5 1.4 0.923 18.1 1.7 

Coated or stabilized surfaces 2.159 47.3 3.9 2.456 48.1 4.5 

non-linear areas 0.719 15.7 1.3 0.841 16.5 1.5 

linear areas 1.441 31.5 2.6 1.615 31.6 2.9 

Other artificial lands 1.653 36.2 3.0 1.725 33.8 3.1 

Grassed land 1.465 32.1 2.7 1.583 31.0 2.9 

Unvegetated land 0.188 4.1 0.3 0.142 2.8 0.3 

Total artificialized land 4.568 100.0 8.3 5.104 100.0 9.3 

Agricultural land 28.591  52.1 28.029  51.0 

Forested land 17.042  31.0 17.033  31.0 

Other uses 4.718   8.6 4.752   8.7 

Total surface 54.919   100.0 54.919   100.0 

Although, the two source above give some information about the artificial land and the 

urbanization areas, neither Corine Land Cover nor Teruti-Lucas could not provide more precise 
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information in terms of the increase the artificialization in peri-urban and rural areas (Barbe et 

al., ESCo, 2017, section 1, p.24). In Europe the urban sprawl often occur with the extension of 

urban areas on the periphery of the zones already built rather than more distant areas and also 

by the peri-urban development, however the concentration of populations and employments are 

in urban areas. In the context of biodiversity loss and climate changes, Europe is very concerned 

by the continuous increase of its artificialized soils. Similar to France, the rate of land take in 

Europe increased 2.7% from 2000 and 2006 according to the Corine Land Cover statistics 

(107,800 ha per year). Given the statistics presented above, it seems necessary to optimize the 

land take measurement to obtain the information more precise within urban, peri-urban and 

rural areas and to differentiate the types of artificial land covers and their relations. 

1.1.2.2. Avoid or Reducing the Effects of Urbanization 

According to ESCo (2017, section 8), the term of artificialization is not defined in French law, 

which makes a legal controversies over it. In fact, there is no general policy against it, except 

in some agricultural land or the natural protected environments such as national parks. 

Therefore, ESCo attempts to provide some effective mechanisms to prevent, reduce and 

compensate of artificialized lands. In order to prevent artificialization, there is always some 

propositions such as stopping to promote new settlements on new artificialized land. ESCo 

(2017, section 8) provides some other propositions as follow: 

 Zoning as an efficient way make it possible to control the residential densities and the 

land market effectively.  

 Approval of law and taxation for the particular sensitive areas such as rural areas, 

agricultural lands and the coastlines can efficiently help to avoid urbanization, and 

artificialization in general, in these areas.  

 Rehabilitation and densification of the current urban areas can be another way to prevent 

urbanization, however, the required space for amenities should also be considered in 

densification process. 

To reduce and compensate the effects of artificialization, which come partly from urbanization, 

ESCo (2017, section 8) gives some suggestions such as: 

 Studying the characteristics of the soils and environment over which the transformation 

is projected. This requires more investment in water, soil and environment consulting.  

 Recycling the artificial lands in order to rehabilitate of polluted sites and soils.  

 Limiting the sealing surfaces in urban areas e.g. increasing the soil's absorption capacity 

in the car parks surfaces and paving stones. 

In rural code and forest code there are some agricultural and forestry compensation mechanism, 

respectively. However, there is no specific compensation mechanisms neither for the 

artificialized land nor for their impacts such as biodiversity, hydrology, soil pollution and urban 

climate, in France (ESCo, 2017, section 8).  
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In addition to the mechanisms discussed above, urban growth management strategies (GMS) 

(Pollock P., 2008) are needed to keep a balance between housing and land protection. GMS 

attempts to manage the growth rate of the cities by considering some factors such as: 

 The amount, type, extent, rate, and quality of urban development, 

 Protection of natural spaces, sufficient and affordable housing, delivery of utilities, 

preservation of buildings and places of historical value, and sufficient places for the 

conduct of business, 

 Impact fees (e.g. transportation improvements, new parks, and expansion of schools),  

 Application of zoning to reduce the cost of service delivery such as fire protection and 

emergency medical response services , 

 Preventing suburban densities from affecting a large area, 

Youssoufi and Antoni (2009) proposed two solutions to answer the demand for housing relative 

to the increase of the number of households, in the case of an agglomeration like Besançon as 

follow: 

 Occupying vacant dwellings or invest urban spaces in rehabilitation if the supply is 

sufficient. This can revitalizes urban spaces that are sometimes abandoned without any 

spreading effect. However, it probably cannot completely provide the housing demands.  

 Opening the urbanization of non-built spaces in any possible spaces (that may happen 

often in the periphery). This solution may satisfy demand, however, it increases the 

consumption of residential space and encourages urban sprawl. 

1.2. Urban Modeling 

Given the phenomenon of urbanization, the urban planning process seems inevitable. Urban 

planners use different models of urban growth and land use change for various tasks such as 

estimating population growth, land use changes, analyzing their impacts, and creating 

demographic and geographic urban patterns. In this section, we review some different land use 

patterns, different techniques of simulating urban growth and land use and their applications.  

The predictive or prospective models of urban growth and land use changes attempt to represent 

different scenarios of the urban expansions in terms of space consumption, the urban sprawl 

configuration, density and demography, and the socio-economic and environmental effects of 

urbanization (Barbe et al., ESCo, 2017, section 1, p.16). 

Urban sprawl and urban growth are somehow related and the cities mainly get bigger by 

expanding around their peripheries. Although, sometimes cities get bigger by increasing their 

central densities leading to the formation of a compact city. In general, cities grow in various 

forms and different factors have impact on the urban growth such as economic, environmental 

and social factors (Ewing, 1994; Tabourin, 1995; Galster et al., 2001, Gober et Burns, 2002, 

Antrop, 2004). These factors make the cities develop by different patterns. Figure 1.3, illustrates 

five different patterns considered as the urban sprawl patterns (Galster et al., 2001).  
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Figure 1. 3. Urban sprawl physical patterns; (Galster et al., 2001) 

In most classical urban models, cities spread continuously by expansion of their borders through 

the concentric circle zones where the density decrease with the distance to the center. However, 

this continuous growth can occur along the linear attractive zones such as the roads or/and the 

rivers which makes the linear strip development. In case of non-continuous urban pattern, the 

growth often happens as a fragmented and disjointed peri-urban development. This fragmented 

development, which is the case of most European cities as well as French cities, leads to sprawl 

development where the buildings are dispersed in the middle of agricultural, forested or natural 

areas like the scattered pattern (Coisnon and Oueslati, ESCo, 2017, section 5). The fragmented 

development can take place in the form of satellite clusters or the discrete strip development 

over the entire periphery of the city or dispersed areas similar to polynucleated and leapfrogging 

pattern (see figure 1.3). 

1.2.1. Land Use Patterns 

Land use patterns can give a view of the form of cities. Urban patterns often contain spatial 

structure of the urban area such as buildings, open spaces and human activities. In general, the 

physical form of cities is shaped by their social and topographic features, etc., which leads to 

the creation of different urban areas such as residential, industrial and commercial. Land use 

and urban growth patterns give an idea to forecast the effects of human behavior as well as 

natural phenomenon and vice versa. The knowledge on the urban growth patterns and land use 

change is essential for the stakeholders including city planners, resource managers, 

environmentalists, and policy makers. This information allows them to engage in 

knowledgeable and productive planning, policy, and informed decision making (Hedge et al., 

2008). In this section, three famous urban land use models including concentric zone model, 

sector model and multiple nuclei model are defined. These classical land use patterns were 

developed to generalize the urban land use patterns of the industrial cities of United States that 

we call hereafter predefined patterns. Predefined patterns are static models that should be 

created manually for each study area according to the land use observations for that area. In this 
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thesis, a method of producing land use pattern is proposed that can be adapted to any study area 

and automatically updated considering the current land use. This pattern, hereinafter referred to 

as the active pattern, is presented in next chapter (section 2.4.1.3). 

1.2.1.1. Concentric Zone Model 

The Concentric zone model is a theoretical model to explain urban social structures that applied 

on Chicago by Burgess (R. E. Park et al., 1925). Burgess theorized that social structures extend 

outward from the one central business area. This model depicts the use of urban land as a set of 

concentric rings where each ring devoted to a different land use. Figure 1.4 illustrates the 

general form of the model. 

                                                                                 

Figure 1. 4. Concentric zone model (R. E. Park et al., 1925) 

The center ring is central business district that is the most accessible location in the city. The 

second zone is considered as wholesale and light manufacturing. The transition area includes 

rooming houses and mostly the workers who work in the second zone and the low-income 

families are living there. Working class zone is established for middle class families to escape 

the transitional second zone to maintain convenient access to their work. The fifth Zone 

contains the more expensive apartments, hotels and single-family homes. The last zone is for 

commuters and consists of suburbs or satellite cities that are located around transportation 

routes. The concentric zone model represents the population density decrease towards outward 

zones. The relation between economic status and distance from the center is visible in this 

model. The concentric zone model represent the older and compact city of Chicago (R. E. Park 

et al., 1925). This model is based on cities of U.S. of early 20 century and does matched neither 

the foreign cities, nor the modern cities.  

In general, the household income and their social preferences can shape the residential urban 

zones. In the cities where the citizens, with similar social preferences, have different incomes, 

low-income households live in a central circle close to the employment center. In these cases, 

the middle and higher income households inhabit in the zone around and farther from center in 

the more expensive apartments and single-family homes. But if their socio-economic 

preferences are different, the households with different incomes live in or around the center. In 

non-homogeneous spaces, the residential zones depend to the presence of natural, historical or 

modern amenities or the social neighborhoods. In some cities like Paris or other European 
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metropolises, which have these attractive spaces in the center, the higher income households 

live in the center and the zone of the disadvantaged households is located in more distance from 

the center. The residential zoning in these European metropolises is different from the industrial 

cities of United States that presented in concentric zone (Baumont and Guelton, ESCo, 2017, 

section 5). 

1.2.1.2. Sector Model  

Homer Hoyt (1939) developed the sector or wedge-shaped model on 1939, which is a modified 

version of the concentric zone model. He found that most major cities are developed around the 

nexus of several important transport facilities such as railroads, seaports, and the other 

transportation routes that emanate from the city's center. This model takes into account 

transportation developments where the city expands outwards, but along railways, highways, 

and water. Figure 1.5 illustrates the sector model pattern.  

                                                                            

Figure 1. 5. Sector model (H. Hoyt, 1939) 

The core of the city is the central business district. The second sector contains of the wholesales 

and light manufacturing. In general, the low-income households are in close proximity to 

railroad lines, and commercial establishments are along business thoroughfares. In sector 

model, the city tends to grow in wedge-shaped patterns, connected to the central business 

district and centered on major transportation routes. Sectors of middle and higher income 

households located away from industrial sites. The commuter zone can be consider all around 

the sectors.  

1.2.1.3. Multiple Nuclei Model 

Many cities did not fit the traditional concentric zone or sector model. Harris and Ullman (1945) 

proposed a model in which the growth of a city depends on different centers of each specific 

area called nuclei. The multiple nuclei model considers the increasing of car ownership and 

transportation access and so the greater movement. 

In this model, the areas with similar activities are gathered; therefore, the land use is similar in 

adjacent areas. Figure 1.6 illustrates the multiple nuclei model. In this model, the central 
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business district is the major center of commerce and the model can still develop multiple 

smaller business districts. Light manufacturing and wholesaling located along transport routes. 

Mostly the newer and modern cities with large land area in U.S. (e.g. Houston and Los Angeles) 

can be considered as the multiple nuclei pattern. 

                                                                                      

Figure 1. 6. Multiple nuclei model; (Harris & Ullman,, 1945) 

1.2.2. Sustainable Urban Modeling: An Overview on Different Techniques of Simulating 

Urban Growth and Land Use / Land Cover Change 

Many recent studies, using diverse modeling approaches and simulation tools of varying 

complexity have been conducted in the field of urban growth. A significant number of 

researches have been carried out on urban growth and land use changes, including the linear 

and non-linear behavior of urban systems. Researches show that the urban growth is a dynamic 

system and therefore it is highly complex and non-linear in nature (Pumain and Reuillon, 2017). 

From all existing approaches, the cellular automata modeling (Clarke et al., 1996; Clarke et al., 

2001), agent-based modeling (Robinson et al., 2012; Arsanjani et al., 2013), artificial neural 

network modeling (Pijanowski et al., 2009; Mohammady et al., 2014) and fractal modeling 

(Herold et el., 2002; Triantakonstantis, 2012) are the most used in the last two decades. Among 

all dynamic models spatially explicit, those based on CA are more common for their 

applications in urban areas. CA can be integrated with GIS to have a high spatial resolution 

model with computational efficiency. The CA models are used to simulate urban growth and 

land use changes (Al-shalabi et al., 2013; Deng et al., 2015; Nourqolipour et al., 2014), project 

future scenarios of urban landscape (Maeda et al., 2011; Yin et al., 2011) and investigate urban 

ecological security (Gong et al., 2009; Mao et al., 2013).  

The prospective modeling of urban growth and LUCC is rapidly expanding practice designed 

to inform decision-makers about the possible impacts in terms of space consumption, future 

forms of urban sprawl and their socio-economic and environmental consequences. Analyses of 

past changes are a prerequisite for exploring future urbanization using spatial simulation 

models. Most of these models, use the historical land cover data in order to simulate the future 

urbanization. The calibration process of the model analyses the past land use changes. Next, the 

model validation is performed by simulating urbanization over a past period. In validation 

process the results and the observed data are compared. In most of the researches the models 
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are based cellular automata (CA) approaches e.g. SLEUTH and CA-Markov model (Barbe at 

al., ESCo, 2017, section 1). In most of urban growth and LUCC simulations, the impacts of 

population growth and building types are implicitly considered during the calibration phase, 

however, changes in population growth rates or urban tissue are usually not included in their 

simulations. This makes it difficult to use the results in order to make reasonable decision for 

sustainable urban planning and management.   

In this section, some techniques that are used in the domain of urban growth and LUCC 

modeling including fractal modeling, artificial neural network modeling, agent-based modeling 

and cellular automata modeling are represented and a classified list of different researches and 

their applications are prepared. The classified list could be used to provide an appropriate view 

for urban planners in the field of urban planning development (see Annex A). The methodology 

of our survey is based on a literature review on the articles that are concentrated on simulating 

the urban growth and LUCC model. The objective is to provide an appropriate view in the field 

of urban modeling by presenting and classifying the different simulation techniques. The urban 

and LUCC modeling techniques, their use cases and their applications are widespread, so many 

scientific articles, project reports as well as online resources have been studied. During the 

screening and review process, it was found that each method has some general characteristics 

that make it possible to fit better to a study area according to the availability of data, the use 

case, application and operation. For some of articles, the required data, their constraints, and 

their interoperability to other data and systems e.g. RS (Remote Sensing) data, GIS are also 

presented.  

1.2.2.1. Fractal Modeling 

Mandelbrot (1983) has firstly developed the fractal geometry. Unlike Euclidean geometry, the 

mathematical objects in fractal geometry can take intermediate dimensions. Frankhauser (1990) 

has investigated the application of fractals in urban structures, e.g. spatial distribution of 

buildings or different uses. In this research, he introduced the fractal growth processes, their 

simulation and growth dimensions regarding the urban growth simulation. Analysis of the built-

up area of some agglomerations at the scale of the metropolitan areas shows that urban tissues 

follow an internal order that corresponds to a fractal geometry (Frankhauser, 1994). Fractals 

are dynamic objects and their self-similarity and scale dependency can characterize the 

complexity of spatial objects (Barredo et al., 2003). The geometry of the fractals depends on an 

evolutionary process. As mentioned before, urban areas can be considered as complex dynamic 

systems. The spatial patterns of urban areas can be determined by land use dynamics within the 

self-organized urban system. Despite urban fabric irregular form, it is possible to describe their 

development using fractal analysis, by comparing the fractal behavior of an urban fabric at 

different dates (Frankhauser, 2005).  

Herold et al. (2002) used the landscape metrics including the fractal dimension, in order to 

detect urban land use changes. Triantakonstantis (2012) applied fractals and theory of Chaos 

for urban growth prospective modeling in the touristic village of Pogonia Etoloakarnanias, 

western Greece, where a large percentage of urban growth of 57.5% has been occurred during 
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8 years from 2003 to 2011. Chaos theory focuses on the behavior of dynamical systems that are 

highly sensitive to initial conditions. Small differences in these conditions yield widely 

diverging outcomes especially for dynamical systems. The Sierpinski carpet is used to find 

areas suitable for urban development (see figure 1.7). The Sierpinski carpet is a fractal 

construction developed by Sierpinski in 1916. The construction of the Sierpinski carpet begins 

with a square. The square is divided to a 3-by-3 grid to have 9 equal sub-squares, abstracting 

the middle one. The same procedure is then applied recursively to the remaining eight sub 

squares and these continue (see figure 1.7a). After Sierpinski carpet abstraction iterations, the 

remaining areas have the potential to be urbanized considering their fractal distributional 

principle. Several shapes of Sierpinski carpets were tested. After fifth iteration of Sierpinski 

carpet tessellation, the most appropriate shape was found for their case study. The model has 

produced an accuracy percentage of 70.6% for training set and 81.8% for validation set where 

the majority of buildings were situated within Sierpinski carpet (see figure 1.7b). 

    

                                           (a)                                                           (b) 

Figure 1. 7. a: Sierpinski carpet construction, b: Design of fractal urban growth model development in 

the touristic village of Pogonia Etoloakarnanias, western Greece; (Triantakonstantis, 2012) 

1.2.2.2. Artificial Neural Networks Modeling  

Many dynamic systems and forecasting time series have used artificial neural networks (ANN) 

modeling (Vemuri and Rogers, 1994). In some researches, this technique is used as a tool for 

simulating urban growth pattern that is complex, non-linear and dynamic process system. ANN 

models are knowledge-based models that use a machine learning approach to quantify and to 

model complex behavior of urban development. ANN uses a process of learning from the 

provided samples, which works well in dealing with imprecise data (Weisner and Cowen, 1997; 

Pijanowski et al., 2002; Tayyebi et al., 2009; Tayyebi et al., 2011).  

Weisner and Cowen (1997) have applied ANN and GIS for modeling urban growth in sub-

regions of a metropolitan area, considering the spatiotemporal database of single-family 
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residential building permits for an eleven-year period. This model assumes that the time of 

occurrence and magnitude of urban growth in a sub-region of a metropolitan area is a function 

of the development already occurred in the sub-region and within the neighboring areas. Indeed, 

ANN models the time series of nonlinear dynamic systems by mapping the state of the system 

at time t, x(t), to some future state, x(t + Δt) where the networks are composed of input layers, 

intermediate layers and output layers. Each layer can apply any function to the previous layer 

in order to produce an output, and the hidden layer transforms the inputs into something that 

the output layer can use.  Spatial temporal database of this research defines tessellation regular 

hexagons covering two counties of Columbia SC study area. Using regular hexagon 

tessellations makes the neighborhoods relations, shapes and sizes uniform throughout the 

surface (see figure 1.8). The building data from the years 1981 and 1989 are used as training 

set and the test set contains the data from 1990 and 1991. By comparing this model to a linear 

regression model, ANN performs more accurate as a non-linear model of dynamic urban 

systems. 

                        

(a) 

                

(b) 

Figure 1. 8. a: hexagonal ANN, b: ANN neighborhood; (Weisner and Cowen, 1997) 

Mohammady et al. (2014) used ANN for urban growth modeling in Sanandaj metropolitan, 

Iran. The dataset is the collection of the Landsat imageries of 2000 and 2006 including the 

distance to principle roads, distance to residential areas, elevation, slope, distance to green 

spaces and distance to region centers. They have integrated the Remote Sensing (RS) data and 

GIS to ANN. Percent Correct Match (PCM) is a way to evaluate an urban development model 

(Pontius and Schneider, 2001) and figure of merit is a method to evaluate resemblance between 
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actual and simulated map (Pontius et al., 2008). If simulated map has a high goodness of fit to 

actual map, figure of merit will be high. These two evaluation methods are used in this research. 

They show that the accuracy of urban growth modeling for the case study region is at a 

reasonable level. Overall accuracy and kappa coefficient of these imageries were 92.57% and 

89.17% for 2000 and 94.71% and 92.68% for 2006, respectively. 

1.2.2.3. Agent Based Modeling 

Multi-agent system is a combination of multiple agents. An agent is something that perceive 

and act on environment (Russell and Norvig, P. 54, 2003). Basically, agents are computational 

entities that are able to communicate and to act in a sort of autonomous way while all interacting 

in a shared environment. In 1995, Ferber has provided a coherent overview on multi-agent 

systems. Multi-agent systems are based on the idea that it is possible to represent the behavior 

of the entities. Multi-agent systems provide a new solution to the concept of modeling and 

simulation in the environmental sciences, offering the opportunity to directly represent 

individuals, their behaviors and their interactions. For example, in a multi-agent population 

model, individuals will be represented directly in the form of agents and the quantity of 

individuals of a given species will be the result of confrontations, e.g. co-operation, struggle 

and reproduction, of the behavior of all the individuals of the system. The multi-agent systems 

allow to model the complex situations whose global structures emerge from interactions 

between individuals. The multi-agent system simulations are able to consider both quantitative 

parameters and qualitative parameters such as individual behaviors. Many sciences such as 

physics, chemistry, biology, ecology, geography and social sciences use multi-agent 

simulations in order to explain and forecast natural phenomena (Ferber, 1995).  

The agent-based models can be used to simulate the effects of the non-linear behavior of 

individuals on land change and the complex urban systems. Agent-based model is suited to 

overcome the problem of some other models in the inability of integrating human, social and 

economic factors (Manson, 2005; Crooks et al., 2008; Rousseaux et al., 2011; Robinson et al., 

2012). Since agent-based models are linked to the possibility of representing movement 

independently of scale, they can be used as a micro-simulation technology for a wide range of 

spatial applications in order to simulate the urban growth and land use changes.    

As mentioned, an urban system is a dynamic complex system. Perret et al. (2010) have 

presented a multi-agent system, which is a hierarchy of topographic agents, to model the urban 

dynamics as a complex system. The high-level evolution rules control the dynamics of the 

model considering the environment of each sub-system. They combined the rules with a 

constraint-based approach in order to achieve the target values fixed by the rules. 

Arsanjani et al. (2013) have made an effort to monitor the spatiotemporal patterns of Tehran 

(Iran) in order to distinguish the biophysical, social, and economic driving forces of the recent 

expansions as the major predictors of future growth and modeling urban growth based on the 

simulation capabilities of agent-based model. They have used a geo-simulation approach that 

couples agent-based modeling with multi criteria analysis for the period between 1986 and 2006 
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in order to simulate spatiotemporal patterns of urban growth. They have collected a set of 

environmental features (e.g., land use map of 1986, 1996, 2006, topography, recreation areas, 

and the transport network), socio-economic data (e.g., population and land and housing prices), 

and temporal multi-spectral satellite images (see table 1.3). Because of rapid population growth 

and urbanization in some developing countries such as Iran, land developers are involved in the 

construction of massive housing projects. Therefore, to control urban growth, three different 

types of agents are presented, including developer agents, government agents, and resident 

agents. The interactions of the agents are combined through overlay functions within a 

geographic information system. Then, Markov chain model and a concise statistical 

extrapolation are used to determine the amount of probable future expansion in Tehran for 2016 

and 2026. To evaluate the results of this expansion, the model is estimated using data of 2011 

and then validated based on urban expansion in 2013. Kappa indices of 0.8463 and 0.8241 are 

obtained respectively from the simulated map of urban developments for 2011 for each 

approach. One advantage of the agent-based models is the ability to integrate human, social and 

economic factors and to consider the interactions of the behavior of individuals on different 

scales. This capability make it possible to produce more accurate simulation, comparing to other 

methods. By analyzing the obtained results, they found that the behavior of developer agents 

can affect the results. They proposed to simulate the urban growth in the greater metropolitan 

area in order to retain the effectiveness of the agents. 

Table 1. 3. Description of the collected geospatial and socio-economic data; (Arsanjani et al., 2013) 

Data type Dataset Source 

(1) Environmental features Building blocks  

Suburb cities  

Transport network 

Public parks 

Protected parks 

River stream  

Tehran districts  

Land use maps (1986, 1996, 2006)  

Digital elevation model 

Tehran GIS Center, 

Iranian National 

Cartographic Center 

(2) Sosio-economic data 

Population 

Land price 

House price 

Iranian National 

Cartographic Center, 

Own survey 

(1) Satellite images 

Landsat images (Path/Row:164/35; 

June 1986, July 1996, July 2006, 

June 2011) U.S. Geological Survey 

Curie et al., (2011) have applied an agent-based simulation on densification of urban system 

from the morphological view using a formalization of island densification process. First, they 

developed and tested the basic densification methods (industrial zones, collective and 

individual housing). Then, they combined the developed elementary methods to produce mixed 

densification methods using different types. Finally, they make it possible to emphasize the 

importance of mixed densities in simulation and the lack of specialized densification methods 

for certain types.  

Fosset et al., (2016) have used agent based modeling in order to simulate individual daily 

mobility within an urban environment and simulated the evolving traffic and its impact on air 
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quality. The aim of this model is to explore the impact of individual behaviors on the dynamics 

of the city and the impact of global measures on individual behaviors.  Moreover, their model 

focuses on LEZ (Low Emission Zone) impact pollution and population. 

1.2.2.4. Cellular Automata (CA) Modeling 

Cellular automata models are bottom-up and discrete dynamic spatial models, which 

are originally discovered by Ulam and von Neumann in 1940, in order to understand the 

behavior of complex systems. A cellular automata is a discrete model that is used in different 

sciences such as computer science, mathematics, physics and microstructure modeling 

(Wolfram, 1983). The cellules are very simple agents and are usually located in a regular grid 

of cells that covers a space. Each cell have a finite number of states. The state of a cell at time 

(t+1) depends on the state of the cell at time (t) and its neighbors states. There are some 

transition rules that represent the process of changing each cell state according to the current 

state of the cell and the states of the cells in its neighborhood (Schiff, 2011; Santé et al., 2010). 

Tobler (1970; 1979) used the cellular space for geographic modeling. He developed a 

demographic model that could be used for forecasting. This model describes only population 

growth with particular emphasis on the geographical distribution of this growth. Afterward, 

CA-based models are widely applied for the simulating spatial dynamics (Couclelis, 1985; 

White and Engelen, 1993; Batty and Xie, 1994; Itami, 1994). CA can be well integrated with 

GIS and RS data. These integrations have been used in urban sprawl mechanisms, urban 

planning theories and urbanization effects (Clarke et al., 1996; Wagner, 1997; Clarke and 

Gaydos, 1998; Batty et al., 1999; Clarke et al., 2001; Li and Yeh, 2001; Li and Yeh, 2002). 

In general, CA models represent the temporal as well as spatial process of changes. They 

dynamically update their transition rules, coupled either loosely or strongly with GIS. They 

have good spatial visualization capacity as well as the computational effectiveness. The CA 

models are used in order to simulate urban growth, sprawl and LUCC (Dubos-Paillard et al., 

2003; Cheng and Masser, 2003; Alkheder et al., 2008; He et al., 2008; Almeida et al., 2008; 

Mitsova et al., 2011; Deng et al., 2015; Nourqolipour et al., 2014; Dubos-Paillard and Langlois, 

2018, Antoni et al., 2019), project future scenarios of urban landscape (Barredo et al., 2003; 

Han et al., 2009; He et al., 2011; Maeda et al., 2011; Yin et al., 2011) and investigate urban 

ecological security (Gong et al., 2009; Mao et al., 2013). 

Santé et al. (2010) has reviewed some cellular automata models applied to simulate of real-

world urban processes. The main characteristics of urban CA models are as follows: 

 Transition rules: These rules represent the processes of the model (e.g. strict transition 

rules, transition potential or probability, urban shape and form, artificial intelligence and 

fuzzy logic). 

 Objective: e.g. descriptive models, predictive models, prescriptive models and multiple 

land use. 

 Cell space: It is defined as a grid of cells with different resolution. 

 Cell states: e.g. as non-urban and urban or active functions and passive functions. 
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 Neighborhood: It can be represented as a collection of cells based on adjacency (e.g. 

size and type). 

 Growth constraint: It can be divided to the constraints that endogenously generated by 

the CA model and external constraint related to the other factors. 

 Integration with other models: To calculate growth constraints, to define transition rules 

or to calibrate the model in order to improve the efficiency of the model in real-world 

processes.  

 Calibration: It is used in obtaining the values of the transition rule parameters with the 

most accurate reproduction of the past evolution of land uses (e.g. methods based on 

trial and error and methods based on statistical techniques). 

 Validation: The most used validation techniques are the ratio of simulated to real 

number of cells (or clusters) for a given land use, overall accuracy i.e. the percentage of 

correctly classified pixels, regression analysis between simulation results and real data, 

and confusion matrix and kappa index. 

According to the characteristics of CA models, Badariotti et al., (2007) have proposed a 

formalization based on graph frame of geographic cellular automatons, which allows to model 

the irregular and dynamic neighborhood of spatial entities. This formalization represents 

dynamics based on two types of proximities: an aerial proximity, based on Euclidean distance, 

and a functional proximity by the network. They have also proposed a cellular automation 

model to simulate the effect of different proximity in urban growth process which ameliorate 

the understanding of the role of proximities in urban dynamics. These criteria point out the three 

aspects of neighborhoods in the city, which play an important role in the structuring of urban 

space namely; built areas density, Euclidean distance from each cell to road network, and 

network distance to urban center (Moreno et al., 2012).  

Feng et al. (2011) have applied a dynamic urban growth CA-based model using particle swarm 

optimization (PSO-CA) approaches with inertia weight in Fengxian District of Shanghai 

Municipality, eastern China. They have simulated the spatio-temporal process of urban growth 

from 1992 to 2008 at 30 meters spatial resolution. In order to reduce the simulation uncertainties 

and improve its locational accuracy in urban modeling, they introduced the incorporation of 

swarm intelligence that stochastically optimize the transition rules. They compared their model 

to the logistic-CA model by using the error budget method (see figure 1.9).  
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Figure 1. 9. A comparison of the PSO-CA and the logistic-CA model; (Feng et al., 2011) 

The reference data are the classified map from the 2008 satellite imagery that demonstrate PSO-

CA model outperform. The model was applied in different spatial scale to investigate the effects 

of the spatial resolution on the model (see figure 1.10). 

 

Figure 1. 10. The simulation accuracies of the PSO-CA model at different spatial scales using overall 

accuracy and kappa coefficient; (Feng et al., 2011) 

The essential nature of CA modeling is to identify the complex nonlinear boundaries between 

urban and non-urban rural areas and their evolution over time.  Kernel methods have been used 

to retrieve CA transition rules by mapping the original data into a high dimensional feature 

space. Yang et al. (2008) applied a Support Vector Machine-Cellular Automata (SVM-CA) 

model which is a type of kernel method to achieve higher accuracy and to overcome the 

limitations of neural networks and some constraint of CA models (e.g. harmful effects of inter-

correlations between different driving factors). SVMs are sensitive to outliers and generally 

require more training time, especially if the dataset has many features (Resler et al., 2014).  

Feng et al. (2015) proposed a GIS based cellular automata model that uses the Least Squares 

Support Vector Machine (LS-SVM) rules. This model is a modified version of SVMs, which is 

able to generate a direct solution by solving a set of linear equations instead of representing the 

optimization problem as one of quadratic programming. LS-SVM model can dynamically 

update the transition rules for each iteration of the model without needs of any arbitrary 

definition of a transition probability threshold. Using data from 1992 to 2008, Feng et al. (2015) 

made a simulation of urban growth in the Qingpu–Songjiang area of Shanghai, China. The 

proposed LS-SVM model consists of three modules including the LS-SVM model training, land 

use change decision rules and land map visualization. The LS-SVM model-training module 
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learns the CA transition rules. Based on the result from the LS-SVM model and subject to basic 

protective farmland constraints, the land use change decision rules module determines whether 

a nonurban cell will be converted to an urban cell or not. The map visualization module uses 

ArcGIS to visualize land change. 

Kamusoko and Gamba (2015) proposed Random Forest-Cellular Automata (RF-CA) model, 

which combines RF and CA models for Harare Metropolitan Province, Zimbabwe. The RF 

models can handle a large database including the thousands of input numerical and categorical 

variables while quantify each input variable into an importance measure. Compared to other 

machine learning classifiers, these models require less training time. The RF models are robust 

in dealing with outliers and noises (Rodriguez-Galiano et al., 2012). Random forest uses 

bootstrap aggregate sample bagging to build many individual decision trees for a final 

prediction or classification (Mellor et al., 2013). Kamusoko and Gamba (2015) calculated 

multiple-step transition rates from land use/cover maps of 1984, 2002 and 2008. They simulated 

the land use/cover up to 2013, using multiple-step transition rates and a transition potential map 

based on the CA model. To validate the RF-CA model, the Kappa simulation, figure of merit, 

and components of agreement and disagreement statistics are calculated. They compared the 

RF-CA model with SVM-CA and Logistic Regression-Cellular Automata (LR-CA). In table 

1.4, the validation statistics for all simulation models are shown. Figure 1.11, illustrates the 

components of agreement and disagreement for RF-CA using bootstrap aggregate, SVM-CA 

simulated land use map and LR-CA simulated land use map. 

Table 1. 4. Compare the validity of simulation models; (Kamusoko and Gamba, 2015) 

Model KSimulation KTranslocation KTransition 
Figure of Merit 

(%) 

RF-CA 0.51 0.51 0.99 47 

SVM-CA 0.39 0.4 0.98 39 

LR-CA −0.22 −0.22 0.99 6 

 

Figure 1. 11. Components of agreement and disagreement for RF-CA using bootstrap aggregate, 

SVM-CA simulated land use map; and LR-CA simulated land use map (Kamusoko and Gamba, 2015) 
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Youssoufi and Antoni (2009) have applied three models including a potential, a cellular 

automata and a fractal model for the commune of Saône, located in the peri-urban area of 

Besançon in order to identify potentially developable spaces according to four urban planning 

constraints such as: 

1. Ensure good accessibility to the urban and rural areas; 

2. Avoid the fragmentation of built-up areas, natural or agricultural, in order to preserve 

the ecosystems and surrounding landscapes by maintaining a sustainable agricultural 

activity; 

3. Avoid the creation of new roads; 

4. Preserve or develop the installation of green flows within built-up areas to ensure the 

ventilation of dense central areas. 

They have divided the study area to the cells of 80 meters resolution, and each cell has one of 

four states of built, non-built, service or road. The comparison of the three simulations shows 

that there is no strict overlap between the results from each of the models. The models have 

simulated the most interesting areas to be urbanized considering the constraints, however their 

configurations are very different.  

1.2.2.4.1. SLEUTH CA Model  

SLEUTH is an inductive pattern-based model that uses cellular automata and terrain mapping. 

This model applies of some growth rules to address UGM (Urban Growth Model) and DLM 

(Deltatron Land use Model) and evaluate the resulting growth rate. This model is widely used 

to simulate the urban growth (Clarke, 2008; Project Gigalopolis, 2018). SLEUTH’s acronym is 

derived from its data input requirements: Slope, Land use, Exclusion, Urban, Transportation 

and Hillshade (See figure 1.12). As shown in Figure 1.12, several historical maps such as urban 

and transportation are needed for the SLEUTH model calibration. 

 

Figure 1. 12. SLEUTH inputs data; (Clarke, K.C., 2008) 
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The cell state is determined and updated based on four growth rules including the spontaneous 

new growth, diffusive or new spreading center growth, edge growth and road-influenced 

growth, which occur sequentially (See figure 1.13).  

 

Figure 1. 13. State of cells according to four growth rules of SLEUTH; (Clarke, K.C., 2008) 

The simulation rules are controlled by five coefficients including dispersion (diffusion), breed, 

spread, slope and road gravity coefficients. These parameters are defined in calibration process 

by comparing simulated land cover changes to the historical data of the study area.  

1.2.2.4.2. Advantages of SLEUTH 

The SLEUTH has been developed for modeling and forecasting the urban growth based on 

historical trends. This cellular automata-based model could explore the land cover change in 

order to model the urban dynamics within the area (Clarke, 1997). It can be used in a wide array 

of input data resolutions and can be applied to any geographic system at any extent and 

resolution, however the accuracy of the results will vary for different resolutions (Rafiee et al., 

2009).  

SLEUTH is an open source model that is available to all researchers and engineers who are 

interested in working with this model (project Gigapolis, 2018). Furthermore, there are some 

forums which help the users in their experiments. Another advantage of this model is that the 

different versions for various applications of this model has been developed by the researchers 

and developers, so it integrated improvements over the years. 

1.2.2.4.3. Limitation of SLEUTH 

The SLEUTH model forecasting accuracy in the near future is higher than those occurring in 

the more distant future, however it also depends on the historical data that are used for 

calibration (Chaudhuri and Clarke, 2014). This problem comes from the fact that the model has 

tendency to replicate the trend while the actual rate of change of growth may vary. Another 

limitation of the model is its scale dependency. The accuracy of the SLEUTH model depends 

on the spatial scale of the input data.  

The SLEUTH results are limited to some raster data. The SLEUTH results are the raster 

graphics images with graphics interchange format (.gif file) consists of the combination of some 
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pixels (cells) on which urbanization is supposed to occur and it is difficult to interpret for 

decision makers. 

The basic version of the model has some other limitation such as the required number of 

historical data, the restrictions of the memory and the problem of road search algorithm which 

leads time and memory consumption. The modified version of SLEUTH improves some 

limitations, which are explained more in Chapter 2. Moreover, SLEUTH tends towards edge 

growth, so it could not generate an appropriate level of dispersed growth. These limitations 

have been resolved or improved in the latest versions called SLEUTH-3r (SLEUTH 

3.0beta_p01 Version R) (Jantz et al., 2010). 

In SLEUTH, the rhythm of growth is calibrated by means of historical data. Therefore, it will 

produce the forecasting urban maps with the same tendency as today. As the model is based on 

historical maps, the impacts of population growth and urban tissue are implicitly considered 

during calibration. However, the changes in population growth rate or in building types cannot 

be included in its simulations. 

In SLEUTH modeling the users have often some difficulty to properly calibrate and integrate 

the relevant variables. In calibration process, there is no clear consensus for choosing the 

appropriate matrices from the provided parameters (Silva and Clarke, 2002; Yang and Lo, 2003; 

Jantz et al., 2004; Dietzel and Clarke, 2007; Jantz et al., 2010). Different metrics and parameters 

that are often used in calibration process are discussed in Chapter 2. 

1.2.2.4.4. Some Evolutions and Applications of SLEUTH   

Dietzel and Clarke (2007) have developed an Optimal SLEUTH Metric (OSM) during the 

calibration phase. In OSM thirteen parameters are processed in order to determine the best 

goodness of fit measure of the run to the known historical input data. Guan and Clarke (2010) 

have developed a parallel version of SLEUTH called pSLEUTH that used an open source 

general-purpose parallel raster processing programming library (pRPL). pRPL make it possible 

to improve the computational performance of the model during the simulation and the 

calibration process by reducing the computation time for the calibration process with multiple 

processors. Actually in parallelizing model, the data parallelism and data task hybrid parallelism 

are used with both static and dynamic tasking as the load-balancing strategy (Chaudhuri et al., 

2013). Goldstein et al. (2004) have developed the Genetic Algorithm (GA). The GA algorithm 

is used a new calibration mechanism instead of the traditional brute force that decrease in 

calibration time as well as keeping the goodness of fit (Chaudhuri and Clarke, 2013). Jantz et 

al. (2010) developed a new version of SLEUTH called SLEUTH-3r. In this version, four 

limitations of the model are resolved including the SLEUTH tendency towards edge growth, 

the inappropriate fit-statistics, the memory restrictions and the inability of the model to simulate 

the areas where growth is more likely to occur (Jantz and Goetz, 2005; Jantz et al., 2010). The 

improvements of this version make it suitable to be used in this thesis. The SLEUTH-3r will be 

represented in detail in the next chapter. All these modifications and evolutions of this model 

makes it popular, and nowadays it is used in many applications. SLEUTH-3r could be used as 
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a scenario-dependent model that aims to increase performance efficiency of model e.g. 

modifications to address scale sensitivity, calibration statistics, decreasing memory 

requirements and improving processing speed.  

Jantz et al., (2010) used the SLEUTH-3r model in order to execute prospective scenario 

composed by sub-periods showing different spatial dynamics. Their simulations could 

determine the contribution of each urban growth patterns with respect to the scenario 

hypothesis. They defined a scenario that could add attractive factors to urban growth simulation.  

Caglioni et al. (2006) have done a research on SLEUTH model coefficients growth. They have 

compared the growth coefficients values obtained from various case studies to describe 

different kinds of urban development. The coefficients, their combinations and their effects on 

each other and on the growth simulation are the most significant approach in simulation 

configuration and controlling urban dynamics. Combination of different parameter values could 

describe the urban dynamics for an urban complex typology. These combinations could results 

to recently developed metropolis, urban sprawl, well-established city, strongly restricted zone 

and metropolis with satellite cities. 

KantaKumar et al. (2011) used the SLEUTH, GIS and RS data to anticipate urban growth in 

Pune Metropolitan Area. The 38 years (1973-2011) of multi-temporal data is used for the urban 

growth prediction in 2030. For the model calibration, the brute force method has been adopted 

to sequentially narrow down the ranges of coefficient values with respect to the increasing 

spatial resolution of datasets in three phases containing the coarse, fine and final calibration. 

Brute force calibration tests all possible combinations of the coefficient. At the end of each 

calibration run, the model produced 13 least squares regression metrics (e.g. population, cluster, 

edges and average slope).  

The SLEUTH model is one of the cellular automata models, which model the dynamic 

simulation of urban expansion and could be adapted for 3D modeling of the urban environment. 

Da Silva et al. (2016 & 2018) made a research on SLEUTH cellular-automata to achieve a 

primary BIM-based 3D urban growth model. They developed new roads to connect the 

simulated urban footprints, which are partitioned into different building types before 3D 

visualization. 

1.3. Chapter Conclusion 

The balance between housing and land protection is one of the environmental and social 

concerns of the public authorities. Public policies are based on providing housing according to 

the demands while considering the effects of urbanization. Urban growth modeling attempts to 

represent different scenarios of the urban expansions in terms of space consumption, the urban 

sprawl configuration, density and demography, and the socio-economic and environmental 

effects of urbanization. A prospective simulation is interesting to explain the determinants of 

urbanization or to study the effects of new policies on artificialization. 
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Urban simulation techniques are willing to solve the various problems of urban growth 

modeling including the spatial resolution, the velocity of simulation processing times and the 

accuracy of urban growth simulations. Among all dynamic models and spatially explicit, those 

based on CA are more common for their applications in urban areas. This can be especially 

explained by the spatially explicit character and dynamic of cellular automata and easy 

integration with RS data in these models. CA can be easily integrated with GIS to have a high 

spatial resolution model with computational efficiency. In addition, nonlinearity of the iterative 

process of CA leads to regular fractal patterns, i.e. to regular and ordered spatial patterns that 

generate similar geometries at different scales. In this chapter, some previous works in the field 

of 2D urban growth have been reviewed.  

In the course of urban modeling, many methods and algorithms have been used to forecast 

urban expansion, some of which are presented in this chapter. This chapter aims to give a 

general review from some of the existing approaches of urban growth modeling and compares 

their capability and limitations. The reliability and the accuracy of the model is depended on 

different factors and the results are not directly comparable due to the largely dependency on 

the land-use pattern of each area. Furthermore, the ability of the model to adapt to different 

real-world urban situations, data requirements and the availability of the software have to be 

considered in order to choose a suitable model. However, the micro simulation such as cellular 

automata simulation techniques, especially SLEUTH, offer greater potential for representing 

and simulating the complexity of the dynamic process, due to the increasing of computational 

power and greater availability of the spatial data.  

SLEUTH uses the historical data in order to calibrate the model and therefore, it implicitly 

considers the impacts of population growth and urban tissue during the calibration phase of 

SLEUTH. But the changes in population growth rate or in building types cannot be included in 

its simulations. In addition, the interpretation of the SLEUTH results are difficult, because the 

results are limited to some cells (raster data). The objective of this research is to represent the 

impacts of constructions and environmental constraints on urban sprawl during an urban growth 

simulations. In next chapter, we represent the methodology and fundamentals of our proposed 

method in order to provide a more reliable modeling by improving the SLEUTH results that are 

often independent from the factors of building types and population. We add common data such 

as topographic data, buildings and demography data to the model in order to create different 

types of scenarios according to urban policies, while remaining realistic. The results of the 

proposed method lead to different simulations that are related to different land priorities and 

constraints. 
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Chapter 2 : Methodology and Fundamentals for 

Model Construction 

 

Contents 

2.1. Simulation Methodology to Investigate the Effects of Environmental Constraints 

and Constructions on Urban Sprawl  

2.2. SLEUTH Urban Growth Model Structure 

2.3. Urban Growth Modeling Considering Environmental Constraints Scenarios 

2.4. Impacts of Constructions and Demography on Urban Sprawl Simulation  

2.4.1. Determinants and Impacts of Building Types on Urban Sprawl 

2.4.2. Determinants and Impacts of Population Growth on Urban Sprawl 

2.5. Urban Fabric Scenarios and Urban Configuration  

2.6. 3D Representation of Prospective Urban Growth Simulations 

2.7. Chapter conclusion   

 

Almost all urban growth and LUCC techniques use the historical geographic features such as 

urban, road and excluded maps to simulate the prospective maps. They can produce different 

results by varying the growth coefficients. However, in most of them, the changes of urban 

fabrics and their determinants such as changes in population growth rate or in building types 

are not considered explicitly, which renders it difficult to use the results in order to make 

reasonable decision for sustainable urban planning and management. The SLEUTH model is 

one of the CA models, which is used in this thesis and like many other urban growth simulation 

methods, considers only the historical data. Although, the impacts of population growth and 

urban tissue are implicitly considered during the calibration phase on the historical urban 

maps, changes in population growth rate or in building types cannot be included in its 

simulations. The proposed method tries to give more reliable urban growth simulation results 

by integrating the topographic data, buildings and the demography. The aim is to be able to 

propose a set of different simulations that correspond to different land priorities and constraints 

and to use common data (such as topographic data, buildings and demography) in order to 

improve the realism of each simulation and their adequacy with the real world.  

This chapter focuses on the method that are applied in Chapter 3 and Chapter 4. This chapter 

discusses the principles of the proposed method, and in Chapters 3 and 4 the implementation 
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and results are presented and discussed. In this chapter, the methodology that is used in this 

thesis is briefly reviewed in section 2.1. In section 2.2, the SLEUTH urban growth CA model, 

its structure and its required data are described. In section 2.3, the environmental-based 

scenarios are defined. Determinants of construction types and demography, and their impacts 

on urban sprawl simulation are discussed in section 2.4. In section 2.5, the urban fabric 

scenarios are represented. In section 2.6, the objectives to 3D representation of the model are 

introduced. The process of creating of fictive 3D buildings and 3D illustration results are 

provided in Chapter 4. The chapter is concluded in section 2.7. 

2.1. Simulation Methodology to Investigate the Effects of Environmental Constraints 

and Constructions on Urban Sprawl 

In our research, SLEUTH urban growth model is used for simulating different scenarios from 

2017 to 2050 for three different case study. A growth cycle is the basic unit of SLEUTH 

execution and therefore each scenario is composed of 33 growth cycle.  

In the proposed method, first, different urban growth scenarios considering environmental 

constraints are defined. For the environmental scenarios, it is needed to defined different 

environmental constraints by altering the exclusion and attractiveness rates of some natural or 

artificial geographic features. These scenarios simulate various prospective urban growth 

considering different limitation rates of urbanization in particular spaces such as vegetation 

areas and forest. In addition, the scenarios simulate urban growth according to attractive areas. 

Attractive areas describe the spaces which urbanization is desired to occur, such as along roads 

and rivers. The exclusions and attractiveness are integrated into the model by altering the 

excluded input maps (see section 2.3).  

The SLEUTH results are limited to raster data that are difficult to interpret for decision makers. 

The results are some pixels on which urbanization is supposed to occur, which do not make 

sense from urbanism point of view. Therefore, the proposed model aims to diversify the 

simulation possibilities integrating explicitly factors of building types according to population 

growth and providing visual methods to view urban growth scenario results in 2D and even 3D.  

In most cases, the main factors of urban growth are population growth and lifestyle resulting to 

more residential surface per person (Aguilera and Bonin, ESCo, 2017, sections 5). However, 

the SLEUTH simulations are based on the historical data and the model does not considers the 

altering rate of demographic data and construction types. Thus, the urban fabric determinants 

such as population growth rate or building types are not considered explicitly in the model. This 

make it difficult to use the results in order to make reasonable decision for sustainable urban 

planning and management (see section 2.4).  

In the method proposed in this thesis, two more data (building types and population) are added 

and different scenarios, called urban fabric scenarios, are defined to have various images of the 

city of tomorrow, respecting the several land priorities and limitations. In order to integrate the 

demography and life style, the buildings are classified to six different residential categories 
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considering their height and configuration in order to study the Human Settlement Capacity 

(HSC). This classification is based on the classification of different building types of a city 

provided by department of planning and environment of NSW (New South Wales) government 

of Australia (NSW Government, Australia, 2017). The historical demographic data and 

artificial geographical features, e.g. human settlement, are used and a relation between the 

building types and the capacity is defined. Then, the new simulated urban patches are classified 

according to the defined building classes, and a land use pattern is generated (see section 2.4.1). 

Next, the intermediate population for the study area is estimated (see section 2.4.2). According 

to the expected population growth and the building types, some fictive urban fabric scenarios 

called primary urban fabric scenarios are assumed and compared in order to better understand 

how this land could be used and how many inhabitants could live in these new areas. Based on 

the results the new urban fabric scenarios called final urban fabric scenarios are defined to 

enrich the simulations (see section 2.5). Figure 2.1, illustrates the proposed method procedure. 

 

Figure 2. 1. The proposed method procedure 

In fact, in order to improve the SLEUTH simulation results, first we estimate the population 

per area to estimate the quantity of population per type of building (per unit). Afterwards, 

knowing the population rate at different dates, we forecast the approximate rate of the 

population for the desired future date. Finally, by analyzing the urban fabric scenarios, we can 

evaluate the quantity of population per type of building for n simulation cycles. We can also 

evaluate the required number of growth cycles (so the urban sprawl extension) to locate a 

certain quantity of population per type of buildings.  

For each urban fabric scenario, a 3D representation is provided in order to facilitates the 

interpretation of the SLEUTH simulation and differentiate the scenarios (see section 2.6 and 

Chapter 4). In 3D illustrations, we rely on the existing data (e.g. positioning of the current 

buildings). In the process of making 3D models of prospective urban fabric scenarios, in order 
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to go from pixels to buildings shapes, some constraints are considered such as the distances 

from the roads, rivers, excluded areas and the current buildings as well as the distances between 

the new simulated buildings. Having the number of the new building and their height (that gives 

the number of floors), the population capacity of the scenarios are recalculate and the result are 

analyzed (see chapter 4). 

2.2. SLEUTH Urban Growth Model Structure 

SLEUTH is developed in order to simulate the spatial expansion of urban spaces. SLEUTH is 

available on the Gigalopolis project website as an open access program (project Gigapolis, 

2018). As illustrated in figure 2.2 the SLEUTH model is a popular urban growth and land use 

change model (Chaudhuri et al., 2013). Figure 2.2 shows the worldwide application of 

SLEUTH model extracted from the published applications of SLEUTH until 2012. After 2012, 

this model has been widely used by many researchers in many study area in different countries, 

also in France (Doukari et al. 2016; Da Silva et al., 2016; Aguejdad et al. 2016; Da Silva et al., 

2018). Looking at the publication page of the Gigapolis website, we can find other applications 

of the model after 2012. 

 

Figure 2. 2. Worldwide Application of SLEUTH Land Use Change Model extracted from the 

published applications of SLEUTH until 2012 (Chaudhuri et al., 2013) 

The SLEUTH is coded in C and runs on UNIX. As mentioned in the last chapter, the acronym 

for SLEUTH is derived from its input data included Slope, Land use, Exclusion areas from 

urbanization, Urban areas, Transportation network and Hillshade. SLEUTH has two sub-

models within deltatron land use model and urban growth model. The requirement of land use 
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input map for modeling the urban growth is optional. In SLEUTH, a scenario file controls the 

variables during a model execution including coefficient, random number seed, the number of 

Monte Carlo iteration, data output and color table settings. SLEUTH urban growth model 

process flow and one of the used scenario files is represented in detail in Annex B. The 

SLEUTH structure is illustrated in figure 2.3 (Chaudhuri et al., 2013). 

 

Figure 2. 3. Structure of the SLEUTH model (Chaudhuri et al., 2013) 

SLEUTH belongs to a model based on an empirical and spatially explicit approach. It contains 

three different process flow modes where each mode has variations on how simulations are 

executed. The SLEUTH modes are as follow: 

 Testing process flow for test mode, 

 Calibration process flow that is needed to customize the model for area of study. The 

calibration requires a historical dataset to replicate past urban development trends 

(Clarke et al., 1997, Candau, 2002, Jantz and Goetz, 2005, Caglioni et al., 2006), 

 Prediction process flow for prediction mode. 

2.2.1. Growth Cycle 

A cycle of simulation called growth cycle is the basic unit of SLEUTH execution. The growth 

cycle starts by giving a unique value to each of the coefficients and then each of the growth 

rules are applied. Afterwards, the growth rate is evaluated.  If the growth rate exceeds or falls 

below a specific critical threshold, the value of these prediction coefficients may increase or 

decrease by self-modification to simulate accelerated or depressed growth (see figure 2.4). 
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Figure 2. 4. SLEUTH growth cycle 

2.2.2. Growth Coefficients 

Five coefficients are used to control how the simulation rules are applied. The values of these 

coefficients are between 0 and 100 and they are defined in calibration process by comparing 

simulated land cover change to the historical data of the study area (project Gigapolis, 2018). 

 Dispersion coefficient determines the number of cells created by spontaneous growth 

and controls the number of times a pixel randomly selected for possible urbanization. It 

is also applied to road_influenced growth to control how many pixels, make up a random 

walk along the transportation network on a road trip. 

 Breed coefficient corresponds to the probability that a spontaneous growth cell becomes 

a new spreading center. In the similar process, it is applied to road_influenced growth 

too. 

 Spread coefficient is the probability of continuous growth created by edge growth that 

specifies the probability that any pixel of a spreading center will generate an additional 

urban pixel in its neighborhood. 

 Slope coefficient determines the suitability of urbanization and affects all growth rules. 

The resistance of the slopes makes it possible to take into account the influence of slopes 

on urbanization. 

 Road gravity coefficient specifies the maximum distance to the road where the 

urbanization can take place. 

2.2.3. Growth Rules 

SLEUTH is a cellular automaton model that functions based on a probabilistic and self-adaptive 

process (Clarke et al., 1997). It is based on a Boolean logic since each cell of the image 

corresponds only two possible states, the urban state or non-urban state. The state of these cells 

is determined and updated according to four spatial rules of urban expansion performed 

sequentially including the spontaneous growth, creation of new centers, continuity of the 

existing urban and along roads (Candau, 2002). 
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2.2.3.1. Spontaneous Growth 

Spontaneous growth assigns the probability of randomly changing the state of a cell from non-

urbanized become urbanize in any time step. Dispersion coefficient determines the spontaneous 

and the slope coefficient determines the weighted probability of the local slope (see figure 2.5). 

The spontaneous growth can be defined by (project Gigapolis, 2018): 

                 U(i,j,t+1) = f1[dispersion_coefficient , slope_coefficient , U(i,j,t), random],            (2-1) 

where, U(i,j,t+1) describe a new urbanized cell at time t+1 and U(i,j,t) is a given cell at 

coordinate (i,j) at time t. 

 

Figure 2. 5. Spontaneous growth example (Project Gigalopolis, 2018) 

2.2.3.2. New Spreading Center Growth 

An urban spreading center is defined as a location with three or more adjacent urbanized pixels. 

New spreading centers determines whether any of the new spontaneously urbanized cells will 

become new urban spreading centers. The breed coefficient, for each new urbanized cell 

investigate if the neighbors of the new spreading center cell can be transform to urban pixel. 

The slope coefficient also control the cell state transition availability by checking the local slope 

of the cell (see figure 2.6). This growth rule can be expressed by (project Gigapolis, 2018): 

           U'(i,j,t+1) = f2[breed-coefficient, U(i,j,t+1), random],                                                    (2-2) 

where, U'(i,j,t+1) is a new spreading center, (k,l) are nearest neighbors to (i,j) and U(i,j,t+1) is 

a new spontaneous urbanized cell. 

 

Figure 2. 6. New spreading center growth example (Project Gigalopolis, 2018) 
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2.2.3.3. Edge Growth 

Edge-growth dynamics define the probability for a non-urban cell that has at least three 

urbanized neighboring cells, to become urbanized affected by the spread coefficient, given it is 

possible to build on the cell considering slope coefficient (see figure 2.7). The edge growth can 

be represented by (project Gigapolis, 2018): 

              U(i,j,t+1) = f3[spread_coefficient, slope_coefficient, U(i,j,t), U(k,l), random],           (2-3) 

where, U(i,j,t+1) describe a new urbanized cell at time t+1, U(i,j,t) is a given cell at coordinate 

(i,j) at time t and (k,l) are nearest neighbors to (i,j). 

 

Figure 2. 7. Edge growth example (Project Gigalopolis, 2018) 

2.2.3.4. Road Influenced Growth 

The road-influenced growth is related to the existing transportation network and the new urban 

pixels obtained from previous steps. First, new urban cells are selected and the model verify the 

existence of a road in their given maximal radius and place a temporary urban cell at the closest 

point to the selected cell on the road. Afterwards, the temporary urban cell conducts a random 

walk along the road and its final spot considered as a new urban spreading center. The number 

of steps is specified by dispersion coefficient. Then, the model checked the feasibility of 

changing the state of the neighbors of the temporary urbanized cell. Later, if two adjacent cells 

to this newly urbanized cell that are randomly chosen are also available for urbanization, the 

model will change their states (see figure 2.8). The road influenced growth can be expressed by 

(project Gigapolis, 2018): 

                   U'(k,l,t+1) = f4.1[U(i,j,t+1), road_gravity_coefficient, R(m,n), random],           (2-4-1) 

where, U'(k,l,t+1) defines the temporary urbanized cell on the road, i, j, k, l, m, and n are cell 

coordinates, and R(m,n) defines a road cell.  

                   U''(i,j,t+1) = f4.2[U'(k,l,t+1), dispersion_coefficient, R(m,n), random],             (2-4-2) 

where, U''(i,j,t+1) defines the random walk on the road, (i,j) are road cells neighboring (k,l).  

                     U'''(i,j,t+1) = f4.3[ U''(p,q,t+1), R(m,n), slope_coefficient, random],                (2-4-3) 
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where, U'''(i,j,t+1) defines the new adjacent urban spreading center and (p,q) determines the 

location of the temporary urbanized cell at the end of the random walk. 

                     U''''(i,j,t+1) = f4.4[ U'''(p,q,t+1), slope_coefficient, random ],                          (2-4-4) 

where, U''''(i,j,t+1) define the two additional adjacent urbanized cells and  (i,j) and (k,l) belong 

to the nearest neighborhood of (p,q). 

 

Figure 2. 8. Road influenced example (Project Gigalopolis, 2018) 

2.2.4. Self-Modification 

The self-modifying function enables SLEUTH model to adjust the values of coefficients at each 

cycle of the simulation, which is usually one year. Otherwise, SLEUTH would reproduce the 

same number of urbanized cells at a linear growth rate. Depending on the rate of change that 

may exceed or fall below a specific critical threshold, the value of these prediction coefficients 

may increase or decrease to simulate accelerated or depressed growth (Jantz and Goetz, 2005). 

The self-modification limits are defined in scenario file of the SLEUTH (see Annex B). These 

limits, which are specified by two critical_low and critical_hight constants, affect the growth 

coefficients (see figure 2.9). 
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Figure 2. 9. Self-modification   (Project Gigalopolis, 2018) 

2.3. Urban Growth Modeling Considering Environmental Constraints Scenarios 

As discussed in chapter one, urbanization impacts on the physical, chemical and biological 

properties of soils and in general on the environment. In this research, different environmental 

urban growth scenarios are provided in order to investigate the impacts of environmental rules 

on urban sprawl. For simulation modeling the version of SLEUTH-3r is used according to the 

available data and the case studies. In this section, first, the modifications of this version to 

SLEUTH basic version are represented. Next, the procedure of urban growth scenarios 

considering environmental constraints including the calibration, forecasting and the 

environmental scenarios generation is explained. 

2.3.1. SLEUTH-3r Modifications to the SLEUTH 

As discussed before, the basic version of the SLEUTH has some constraints. The SLEUTH-3r 

provided by Jantz et al. (2010), made effort to overcome some of these limitations. In this 

version four restrictions are improved including: 

(1) SLEUTH tends towards edge growth, so it could not generate an appropriate level of 

dispersed growth. 

(2) Most of the fit statistics used for calibration are least squares regression scores (r2) that 

measure the relation between a simulated area and observed urbanization area. Therefore, 

four input map for calibration is needed to cover four points in time for regression equation 

including a map to initialize the model and three additional for the control points. Moreover, 
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using the r2 statistic without additional information such as the y-intercept of the linear 

regression equation, model may appears to work well but with over- or under-estimating 

growth rates or patterns. 

(3) SLEUTH utilizes computer memory inefficiently. 

(4) In SLEUTH, usually the excluded area are defined but the attractive area are missed in its 

simulation. 

In SLEUTH original code, the number of spontaneous urbanization attempts that comes from 

the dispersion value (DV) depends on the calibrated value for the dispersion coefficient (DC), a 

constant number as dispersion coefficient multiplier (DM), and the number of pixels in the image 

diagonal. While in SLEUTH-3r, DM is no longer a constant, which allows the user to modify 

this multiplier value interactively. 

                                                                                                           (2-5) 

DV is the dispersion value, DC is the dispersion coefficient, DM is the dispersion coefficient 

multiplier (in the original version of SLEUTH the DM is a constant number equal to 0.005), R 

is the number of rows and C is the number of columns. To find the appropriate value of DM the 

growth coefficients have to be set to produce the maximum level of spontaneous new growth. 

The dispersion set to one hundred and other coefficients set to zero and the model perform in 

the calibration mode. Different value for DM are tested to find the appropriate value. This 

desired value can be obtained when the model capture or even over-estimate, the number of 

urban clusters which is represented by the cluster fractional difference metric. 

The fit statistics are improved by a new metric table files created in SLEUTH-3r. This table 

includes the difference and ratio measures that directly compare the modeled variable to the 

observed variable for all control dates. The added metrics contains the algebraic, ratio and 

fractional changes in the modeled value relative to the observed value can be used in calibration, 

when fewer than three control points are available. 

The road search algorithm is improved in this version. Contrary to the previous version, this 

version creates a data structure containing only the coordinates of the road network points that 

are road cells. In addition, it makes a new data structures for multiple grids that list nonzero cell 

coordinates and modify the procedures that treat these grids so that they do not need to check 

for zero-valued cells and only treat non-zero cells (see figure 2.10). In the new version the 

memory usage model is also modified.  

All these modifications and improvements, make this model more and more suitable to be used 

in this thesis. 
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                                              (a)                                                                  (b) 

Figure 2. 10. a: Illustration of the search algorithm in the original SLEUTH (Jantz et al., 2010);         

b: Illustration of the search algorithm in the original SLETH-3r 

2.3.2. Calibration of the SLEUTH-3r Model and Determining the Goodness of Fit 

The calibration process is executed by running a calibration scenario file. During the calibration 

process, the model tries to find a set of values for the five parameters including dispersion, 

breed, spread, road growth and slope. These values make the model be able to accurately 

simulate land-cover changes within the study area (see figure 2.11).  

 

Figure 2. 11. Calibration, concept and procedure 

The best-fit coefficients are obtained from the fit statistics provide in a new metric table file 

(ratio_pe_0.log) during calibration process. An appropriate goodness of fit of the coefficients 

values can precise and optimize the model significantly. Before executing the calibration 

process it is needed to calculate the dispersion coefficient multiplier. The dispersion coefficient 

multiplier is calculated for each environmental scenario separately.  
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The SLEUTH has three calibration steps contains coarse, fine and final and after it is possible 

to derive forecasting coefficients. In SLEUTH-3r the calibration could be done in one step as a 

coarse calibration. Our model performs using four historical urban extent maps, four historical 

transport maps, slope and hillshade maps, and the excluded maps for each environmental 

scenario. In calibration process, first an initial value for each coefficient is defined. The values 

for each parameter ranged from 1 to 100 by increments of 25 (i.e. 1, 25, 50, 75, and 100).  

Running SLEUTH in calibrate mode will perform brute force Monte Carlo runs through the 

historical data and the combinations of the 3125 unique parameter are tested. The calibration 

provide a list of metrics.  

In basic SLEUTH model, thirteen parameters are often provided to determine the goodness of 

fit for each outcome (see table 2.1). In this model, first the coarse calibration is performs and 

the results are examined in order to find the goodness of fit for each of the parameter sets 

(Dietzel and Clarke, 2007). Then, the metrics evaluations, specify the parameter sets for the 

fine step that usually give narrower range of parameters. The same process continue for the 

final and derive forecasting coefficients steps. The best-fit of the parameters from the third 

calibration are used in forecasting urban growth. For choosing the best matric from the provided 

parameters, there is no clear consensus as to which metrics are the appropriate ones to use 

during the calibration process (Dietzel and Clarke, 2007). Lee-Sallee metric is one of the 

metrics that is widely used (Lee and Sallee, 1970). This metric is the ratio of the intersection 

and the union of the simulated and actual urban areas. Silva and Clarke (2002) used only the 

Lee-Sallee metric in their modeling. Other metrics are also used in order to determine the sets 

of parameter that describe the replication of the historical datasets. These metrics often use the 

compare statistic and population statistics e.g. Yang and Lo (2003) used a weighted sum of all 

the metrics in the calibration process, while Jantz et al. (2004) examined and applied the 

compare, population, and Lee-Sallee statistics metrics during their modeling (Dietzel and 

Clarke, 2007). 
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Table 2. 1. Metrics that can be used to evaluate the goodness of fit of the basic SLEUTH model (Dietzel 

and Clarke, 2007) 

Metric  

Name 
Description 

Product All other scores multiplied together 

Compare 
Modeled population for final year/actual population for final year, or IF Pmodeled > 

Pactual {1 − (modeled population for final year/actual population for final year)}. 

Pop  
Least squares regression score for modeled urbanization compared to actual urbanization 

for the control years 

Edges 
Least squares regression score for modeled urban edge count compared to actual urban 

edge count for the control years 

Clusters 
Least squares regression score for modeled urban clustering compared to known urban 

clustering for the control years 

Cluster 

Size 

Least squares regression score for modeled average urban cluster size compared to 

known average urban cluster size for the control years 

Lee-Salle 
A shape index, a measurement of spatial fit between the model’s growth and the known 

urban extent for the control years 

Slope 
Least squares regression of average slope for modeled urbanized cells compared to 

average slope of known urban cells for the control years 

% Urban 
Least squares regression of percent of available pixels urbanized compared to the 

urbanized pixels for the control years 

X-Mean 
Least squares regression of average x_values for modeled urbanized cells compared to 

average x_values of known urban cells for the control years 

Y-Mean 
Least squares regression of average y_values for modeled urbanized cells compared to 

average y_values of known urban cells for the control years 

Rad 
Least squares regression of standard radius of the urban distribution, i.e. normalized 

standard deviation in x and y 

F-Match 
A proportion of goodness of fit across landuse classes. {#_modeled_LU 

correct/(#_modeled_LU correct + #_modeled_LU wrong)} 

SLEUTH-3r creates new metric table that could be find in ‘ratio_pe_0.log’ file generated in the 

calibration process (see table 2.2). This table includes difference and ratio metrics that directly 

compare the modeled variable with the observed variable for all control dates (Jantz et al., 

2010). In the calibration process the SLEUTH-3r calculates three value for each metric 

parameter for each run and for each control year including the algebraic difference between the 

observed value and modeled value, the ratio of the modeled value to the observed value, and 

the fractional change in the modeled value relative to the observed value (Jantz et al., 2010). 

The metrics of the table 2.1 can be used when at least four control points are available. However, 

the new fit metrics made by SLEUTH-3r model, can be used in calibration process even when 

at fewer than three control points are available (Jantz et al., 2010).  

 

 

 



 

55 
 

Table 2. 2. New fit metrics available in SLEUTH-3r (Jantz et al., 2010) 

Fit statistic Definition 

Pixels 
Modeled urban pixels compared to actual urban pixels for each control year. Referred to 

as ‘‘population” and as ‘‘area” in SLEUTH’s output files 

Edges  Modeled urban edge pixels compared to actual urban edge pixels for each control year 

Clusters  

Modeled number of urban clusters compared to actual urban clusters for each control 

year. Urban clusters are areas of contiguous urban land. In cell space, clusters can consist 

of a single pixel or multiple, contiguous urban pixels. Contiguity is determined using the 

eight-neighbor rule 

Cluster size 

(mn_cl_sz) 

Modeled average cluster size compared to actual average urban cluster size for each 

control year. This is not an area-weighted mean 

Slope 

(avg_slope) 

The average slope for modeled urban pixels compared to actual average slope for urban 

pixels for each control year 

% Urban  
The percent of available pixels urbanized during simulation compared to the actual 

urbanized pixels for each control year 

X-mean  
Average x-axis values for modeled urban pixels compared to actual average x-axis values 

for each control year 

Y-mean  
Average y-axis values for modeled urban pixels compared to actual average y-axis values 

for each control year 

Radius  
Average radius of the circle that encloses the simulated urban pixels compared to the 

actual urban pixels for each control year 

In calibration procedure of this thesis, two metrics of the pixel fractional difference (PFD) and 

the clusters fractional difference (CFD), that are proposed by Jantz et al., (2010), are used. PFD 

makes direct comparisons between the numbers of urban pixels in the control maps and the 

corresponding simulated maps. Obtaining an accurate fit for this metric ensured that the overall 

amount of development would be matched. The CFD focuses on the frequency of clusters in 

the urban system and compares the number of urban clusters. The accurate metrics indicate that 

the model could create the urban form and could avoid the dispersed settlement patterns (Jantz 

et al., 2010).  

In this research, the set of parameters are selected that could achieve the best goodness of the 

fit in both PFD and CFD with less ratio of differences (see Annex C). For the initial run 25 

Monte Carlo trial is used. After obtaining the range of the desired value, another execution by 

setting 100 Monte Carlo trial is done. Since the input excluded maps of the environmental 

scenarios are different, for each environmental scenario the calibration process is run in order 

to achieve its best fit coefficient for the forecasting process. 

Annex C, represents the process of computing the dispersion coefficient multiplier and five best 

fit growth coefficients. A portion of the table of the "ratio_pe_0.log" file is shown as an example 

in this Annex. 
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2.3.3. Defining our Environmental-based Scenarios 

SLEUTH model has the possibility of generating different scenarios of land use changes by 

setting the composition of SLEUTH input layers. For this thesis, five different environmental-

based scenarios are defined with different level of environmental protection. Four of them are 

scenarios level 0 to level 3, where the upper scenarios preserve more the environment (e.g. 

green lands and the forests), and  last scenario is defined as an attraction-based scenario that, in 

addition to excluded areas, also integrates areas of attraction into the simulation algorithm. 

Therefore, the last scenario can simultaneously consider both the exclusion and attraction areas 

of growth. These scenarios are created by changing the excluded areas and defining attractive 

areas. This leads to the production of new excluded and/or attractive maps.  

The excluded/attractive maps have the pixel value range from 0 to 100. In excluded/attractive 

maps provided for these scenarios, the value of 50 indicates theoretically open areas for 

development in the calibration process. This value of 50 indicates a neutral weight for 

development. This makes it possible to define the more desirable areas for urbanization in 

excluded and attractive maps by giving the value more or less than 50 respectively. Therefore, 

in these maps, the areas that have the value more than 50 are less likely to be developed and the 

lands more likely to be developed have the value less than 50. This makes to improve the overall 

performance of the model by allowing the inclusion of growth attractors (e.g. areas expected 

for population growth). The value 100 indicates the protected areas that are 100% excluded 

from the possible urban growth or any changes.  

International Union for the Conservation of Nature (Union Internationale pour la conservation 

de la nature - UICN) has defined six categories of areas protection including strict nature 

reserves or wilderness areas, national parks, monuments or natural elements, habitat or species 

management area, protected landscapes or seascapes, protected areas for the sustainable use of 

natural resources (Martinez, C., 2007).  

All the data used for exclusion area in environmental-based scenarios are extracted from 

database of the French National Geographic Institute (Institut Géographique National - IGN) 

IGN data base. In BD TOPO database provided by IGN, vegetation coverage data contains the 

parks, closed forests including wood land, closed coniferous forest, closed deciduous forest, 

mixed closed forest and tree area, and open forest, hedge, woody heath, peupleraie, orchard and 

vine. In creating the environmental scenarios, vegetation coverage are divided to three different 

areas (1) national parks, (2) closed forests areas (wood land, closed coniferous forest, closed 

deciduous forest, mixed closed forest and tree area), and (3) open forest, hedge, woody heath, 

peupleraie, orchard, vine. In the scenarios provided in this thesis, the first areas are 100% 

protected from urbanization, in all scenarios. The second areas are more resistant to 

urbanization and the last area is less resistant. This means in urbanization process it is more 

probable to change the third area than the second one. Following, we present five different 

environmental-based scenarios.  
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2.3.3.1. Scenario Protection Level 0 (Nearly No Environmental Protection - NEP) 

In the Nearly No Environmental Protection (NEP) scenario, the excluded areas are fully 

protected from urban growth. They are excluded 100% of the possible urban growth. They take 

the value of 100 and the others take the value of 50 for the entry of SLEUTH into NEP during 

the calibration and forecasting process. The value of 50 means they are neutral from the 

exclusion or attraction (see table 2.3). In this scenarios, there is nearly no protection for the 

environmental zone except for the following areas: 

- Remarkable buildings, cemeteries, airfields and sport grounds 

- Railways stations, triage areas  

- Activity areas (administrative, culture and leisure, education, water management, 

industrial or commercial, health, sports and transport) 

- Water surfaces 

- National parks 

2.3.3.2. Scenario Protection Level 1 (Limited Environmental Protection - LEP) 

In Limited Environmental Protection (LEP) scenario, excluded areas are totally protected from 

urban growth, considered 100% excluded from the possible urban growth, and have got the 

value 100 for SLEUTH input. Closed forests and some woodlands that have been extracted 

from the database of the IGN are added to exclude areas. Non-exclusion zones with a value of 

50 indicate a neutral weight for development (see table 2.3). The excluded areas in this scenario 

are as follow: 

- Remarkable buildings, cemeteries, airfields and sport grounds 

- Railways stations, triage areas  

- Activity areas (administrative, culture and leisure, education, water management, 

industrial or commercial, health, sports and transport) 

- Water surfaces 

- National parks 

- Closed forests areas (wood land, closed coniferous forest, closed deciduous forest, 

mixed closed forest and tree area) 

2.3.3.3. Scenario Protection Level 2 (Moderate Environmental Protection - MEP) 

In this scenario, the open forests and green areas derived from the IGN database are generated 

as a separate layer with a value of 75 and represent the 50% probability of exclusion from urban 

growth. The other excluded areas that are fully protected from urban growth, took the value of 

100 for the input of SLEUTH in Moderate Environmental Protection (MEP) scenario. Non-

exclusion zones with a value of 50 indicate a neutral weight for development (see table 2.3). 

The excluded areas are described below: 

- Remarkable buildings, cemeteries, airfields and sport grounds 

- Railways stations, triage areas  
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- Activity areas (administrative, culture and leisure, education, water management, 

industrial or commercial, health, sports and transport) 

- Water surfaces 

- National parks 

- Closed forests areas (wood land, closed coniferous forest, closed deciduous forest, 

mixed closed forest and tree area) 

- Open forest, hedge, woody heath, peupleraie, orchard and vine 

2.3.3.4. Scenario Protection Level 3 (Extreme Environmental Protection - EEP) 

In the Extreme Environmental Protection (EEP) scenario, the exclusion layer of open forests 

and green areas has a value of 100, demonstrating extreme protection of sensitive environmental 

terrains with a 100% probability of exclusion from urban growth, and other cells have taken the 

value of 50 in the simulation algorithm (see table 2.3). The excluded areas considered in this 

scenario are including: 

- Remarkable buildings, cemeteries, airfields and sport grounds 

- Railways stations, triage areas  

- Activity areas (administrative, culture and leisure, education, water management, 

industrial or commercial, health, sports and transport) 

- Water surfaces 

- National parks 

- Closed forests areas (wood land, closed coniferous forest, closed deciduous forest, 

mixed closed forest and tree area) 

- Open forest, hedge, woody heath, peupleraie, orchard and vine 

2.3.3.5. Attraction-based Scenario Protection Level 1 (Attraction-based Limited 

Environmental Protection - ALEP) 

The excluded areas of Attraction-based Limited Environmental Protection (ALEP) scenario are 

similar to the LEP scenario and are 100% protected from the urbanization (see table 2.3). The 

excluded areas in this scenario are as follow: 

- Remarkable buildings, cemeteries, airfields and sport grounds 

- Railways stations, triage areas  

- Activity areas (administrative, culture and leisure, education, water management, 

industrial or commercial, health, sports and transport) 

- Water surfaces 

- National parks 

- Closed forests areas (wood land, closed coniferous forest, closed deciduous forest, 

mixed closed forest and tree area) 

In addition to the excluded layer, three other layers are also created to define the attraction 

zones in this scenario as follow:  



 

59 
 

1) The first layer contains concentric zones of attraction. This layer is combination of 

several concentric attraction zones with different radius. The number of concentric 

zones and their radius can be considered according to the demands of the user and 

specifications and characteristics of a case study such as scale, area, the population and 

the density of the buildings. The corresponding values of the concentric attraction zones 

are given the different values less than 50.  

2) Another attraction layer specifies the urbanization attraction along the water surfaces 

such as rivers and the lakes. This layer is given the values less than 50. 

3) The last layer determines the attraction areas around railway stations which take the 

values less than 50.  

It should be noted that the values of the areas located in the intersection of the last two layers 

and the concentric attraction zones, should be considered as more attraction areas. This means 

if an area locates in concentric attraction zones and near to a river or to the railway station, this 

area has a cumulative attraction for urbanization. The values assigned to the attraction zones 

are different. These values and the way to determine the attraction zones are described in detail 

per study area in the chapter 3. 

Table 2. 3. The percentage of the environment protection for excluded areas and the attractive areas 

considered in the environmental protection scenarios 

 National 

parks (%) 

Remarkabl

e building 

& areas 

(%) 

Railways 

stations, 

triage areas 

(%) 

Activity 

areas (%) 

Water 

surfaces 

(%) 

Closed 

forests 

(%) 

Open 

forests & 

green 

areas (%) 

Attraction 

areas   

Scenario Protection 

Level 0 (NEP) 
100 100 100 100 100 0 0 - 

Scenario Protection 

Level 1 (LEP) 
100 100 100 100 100 100 0 - 

Scenario Protection 

Level 2 (MEP) 
100 100 100 100 100 100 50 - 

Scenario Protection 

Level 3 (EEP) 
100 100 100 100 100 100 100 - 

Attraction-based 

Scenario Protection 

Level 1 (ALEP) 

100 100 100 100 100 100 0  

2.3.4. Model Forecasting  

The prediction scenario file control the forecasting process of the SLEUTH. The model is 

initialized with the growth coefficient best fit values that were derived during calibration. In the 

scenario file, forecasting start and the target dates are defined. The difference of these two dates 

gives the number of the growth cycle. The model in this mode generate an urban growth map 

for each growth cycle. The prediction mode is performed 100 Monte Carlo runs. The slope 

sensitivity and the critical low and high values of the self-modifications are set and different 

execution of the model is done in order to simulate the different environmental scenarios. 

SLEUTH outputs consist of the statistics, logs, images, uncertainty maps and the animations, 

where each of them can help the user to analyse and evaluate the obtained results.  
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2.3.5. Model Evaluation and Investigation the Impacts of Urbanization Determinants on 

Model 

The results of SLEUTH model provide a series of simulated urban growth cycles. All these 

results are made according to the historical data of the study area which are learned by the 

model during the calibration process. The model uses four historical urban maps consisting of 

2000, 2008, 2012 and 2017 urban maps. To evaluate the accuracy of the model, it is first run 

with the input urban map of 2000 and run the model to forecast the prospective urban map for 

2017. A brute-force search is used to systematically enumerate all urban pixels to check the 

goodness-of-fit of urban growth projections. The algorithm compares between the observed and 

the simulated pixels. The overall accuracy (OA) is calculated to measure the overall proportion 

of the pixels that change correctly to the total number of cells. After evaluating the results the 

model is run with the input urban map of 2017 to forecast the urban growth for 2050. 

The SLEUTH results are limited to raster data that are difficult to interpret for decision makers. 

The results are some pixels on which urbanization is supposed to occur, which do not make 

sense from urbanism point of view.  

In addition, SLEUTH model uses the historical data and the impacts of population growth and 

urban tissue are implicitly considered during the calibration phase on the historical urban maps. 

However, the changes in population growth rate or in building types cannot be included in its 

simulations. 

2.4. Integrate the Type of Buildings and Demography on Urban Sprawl Simulation  

In order to improve the SLEUTH results, different 2D urban growth simulation scenarios have 

been defined based on the SLEUTH model by adding buildings type and the estimation of the 

population growth as urban fabric factors. Each simulation corresponds to policies that are more 

or less restrictive of spaces considering what these territories can accommodate as a type of 

building and as a global population. In addition, the simulations can help the user to protect the 

desired lands such as the environmental spaces from urbanization. These scenarios show the 

simulation capabilities of the model and make it possible to improve our understanding of an 

urban sprawl simulation (see figure 2.12).  

 

Figure 2. 12. Process of creating the urban fabric scenarios 
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2.4.1. Determinants and Impacts of Building Types on Urban Sprawl  

In this section, the building type classification, extraction of the numbers and height of existing 

buildings for each class and making an active land use pattern are discussed. Considering the 

land use patterns, the building classification, will give weight to the urban patches. The weight 

is defined as the value of the average height of the buildings that are located in the same zone 

in land use pattern. The current buildings could give us the prospective view for the futures 

building. The building classification are considered in generating the urban fabric simulation 

scenarios. 

2.4.1.1. Building Type Classification 

Department of planning and environment of NSW Government of Australia, is defined and 

classified clearly the different building types of a city (NSW Government, Australia, 2017). 

These building types are used as elements classifications of the study area to create the land use 

patterns. 

The single dwellings are often the buildings with 1 to 2 floors in height (i.e. h =3m~5m) that 

contain single detached dwellings and dual occupancies (see figure 2.13). 

 

Figure 2. 13. Single dwellings (NSW Government, Australia, 2017) 

Low-rise housing contain townhouse and terrace housing and small-scale residential apartment 

buildings with 2 to 4 floors and the height of 6m to 12m (see figure 2.14). 

 

Figure 2. 14. Low-rise housing (NSW Government, Australia, 2017) 

As illustrates in the figure 2.15, the shop top housing are generally the buildings with 3 to 5 

floors in height (i.e. h =14m~17m).  In these buildings, the ground floor consists of shops and 

retail stores and the residential apartments are located above them. Some areas with heights up 

to eight floors can also be considered in this class (e.g. corner sites and deep blocks). 
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Figure 2. 15. Shop top housing (NSW Government, Australia, 2017) 

The medium-rise housing and medium/high-rise housing are two next classes that both are 

residential apartment buildings. The medium rise housing are the buildings with 5 to 7 floors 

with height of 18m~25m and the medium/high rise housing contains the buildings with 8 to 9 

floors with height of 26m~29m (see figure 2.16). 

   

Figure 2. 16. Medium-rise housing and medium/high-rise housing (NSW Government, Australia, 

2017) 

The high-rise housing are contains of three categories, the 9 to 12 floors, 13 to 18 floors and 19 

to 25 floors. In general, the heights of these types of buildings are 30m~59m. The residential 

towers generally have a low-rise podium at street level that may include a mix of retail, 

residential and commercial uses (see figure 2.17). 
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Figure 2. 17. High-rise housing (NSW Government, Australia, 2017) 

2.4.1.2. Classifying the Existing Buildings 

Due to the building type classification, the structure elements of the study areas should be 

classified. To do that, the information of the two layers of undifferentiated and industrial 

buildings are taken into account. These two layers contains the significant factors that impact 

urban sprawl. This information is derived from BD TOPO of IGN database. As mentioned in 

section 2.3.3, other structure elements of the city such as remarkable buildings and activity 

areas are considered in excluded area. For both undifferentiated and industrial buildings, 

buildings over 3m height and over 50m2 are intended. From our territory experimental, the 

buildings that have the height less than 3m are ignored because they could not be considered 

neither as a residential buildings nor industrial. Figure 2.18 illustrates the meaning of the height 

attribute of the buildings. The building height corresponding to the difference between the 

highest z of the building perimeter and a point at the foot of the building. The height is rounded 

to the meter (Content description of BD TOPO version 2.1, IGN).   

 

Figure 2. 18. Meaning of height attribute, content description (Content description of BD TOPO 

version 2.1, IGN) 
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In undifferentiated buildings, for each type of building class, the numbers and the height of the 

buildings are extracted and an average height for each type is calculated. Estimating the 

buildings height for the new urban area is needed in order to detect three-dimensional changes 

and to estimate urban densification. The industrial buildings are classified to commercial 

buildings, industrial buildings, agricultural buildings, greenhouses and silos. For each class an 

average value of height is calculated. Since the green houses and silos are often located out of 

the urban zones they are ignored from industrial fields. The results of this process is presented 

in chapter three for each study area separately.  

2.4.1.3. Creating Building Type Matrix (Active Land Use Model)  

In this section, we create a building type matrix that aims to compute the probability that each 

new pixel will belong to the building classes. This building type matrix can be used as an active 

land use pattern to classify the new urban patches according to existing buildings. 

As discussed before, the predefined land use models have to be created manually for each study 

area. Therefore, these patterns are rough for the forecasting urban growth. Unlike the predefined 

land use models, the proposed active model can be applied for different study areas. Having the 

current urban area and the simulated growth area, the model can create an accurate pattern. 

To create the active land use pattern the building classification discussed before is used. We 

collect, different urban maps that are classified by buildings height and create a 3D matrix of 

building types. In building type matrix, of each map corresponds to one type of building with 

specific height. Figure 2.19 illustrates the building type matrix of active Land use pattern. The 

figure corresponds to Toulouse study area. For Toulouse case study, the building type matrix 

consists of 9 layers of 1658*1422 pixels.    

 

Figure 2. 19. Building type matrix that is used in active land use pattern. The 3D matrix includes 9 

maps. Each map corresponds to one type of building with specific height. The value of each layer is 

the average heights of the buildings with regards to the building type classification. 
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The next step is to generate a map of the growth area. The difference of the simulated urban 

map and the current urban map gives the forecasted growth area. Figure 2.20 shows an example 

of this process for Toulouse study area. The current urban map is for 2017 and the prospective 

urban map is for 2050. 

 

Figure 2. 20. Urban map of 2017, prospective urban growth map of 2050 and the simulated growth 

area during the 33 years growth cycle for Toulouse. 

The urban patches in the growth area map represent the new pixels created during the simulation 

process. These pixels do not contain a value of the height and they have to be classified. To 

classify the new urban pixels, it is necessary to calculate the likelihood of each value for each 

pixel, considering the neighbors values. The first step to calculate the likelihood is to check the 

first loop of neighbors around the new urban pixels in the 3D matrix. If in the first loop of 

neighbors, all the pixels were null, the process will continue and the second and third loops of 

neighbors will be checked. Figure 2.21 illustrates a sample of this step. It indicates how the 

maps that have the pixels with the value of the height in the neighbors are chosen. 

 

Figure 2. 21. Checking the first loop of neighbors around the new urban pixels in building type matrix 

http://anteater.geog.ucsb.edu/gig/About/bkStrCycle.html
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After choosing the required map in 3D matrix, it is the time to calculate the likelihood of each 

value for each pixel as follow: 

                    

    (2-6) 

In equation 2-6,  is the likelihood for height value to be given to new urbanized pixel, P is a 

local value of the percentage, V is the number of pixels that have height value more than zero 

in each map, N is the number of chosen maps, and i, j and k are the number of first, second and 

third neighbors loop respectively.   

As determined in the equation, in this step after choosing the required map in building type 

matrix, all three loops of neighbors have to be taken in to account. Figure 2.22 illustrates a 

sample of calculating the likelihood of each value for each pixel. 

 

Figure 2. 22. Calculating the likelihood of each value for each pixel in the building type matrix 

In sample above, three height values are calculated for the new urban pixel including 4m, 7m 

and 15m heights with the likelihood 53.5%, 36% and 10.5% respectively. Therefore, it exists 

53.5% probability of constructing individual dwellings, 36% to create low-rise housing and 

15.5% to make shop top housing in this new urbanized pixel.  

2.4.2. Determinants and Impacts of Population Growth on Urban Sprawl 

As mentioned before the SLEUTH model does not consider explicitly population in its 

simulation. In order to simulate different land priorities and constraints, we proposed to 

integrate the demography and life style to achieve distinguished residential categories and study 

the Human Settlement Capacity (HSC). 

2.4.2.1. Demographic Data 

The used data to obtain the demographic information is derived from the INSEE database which 

gives the population information per area. This base includes 18 variables on the age structure 

of individuals, household characteristics e.g. tenant, owner, and income for December 31, 2010. 
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The documentation of the INSEE data including the source, the generating information and the 

list and description of variables are described in the Annex E. For each study areas a population 

map is created from the INSEE database with regards to the total number of individuals per 

pixel. Using the population map that gives the ratio of individuals per pixel and the total 

population of study area, the number of inhabitants per building classes are calculated. This is 

done by integrating the number of individuals per pixel (derived from the generated INSEE 

maps), the building classes and the number and kinds of the existing buildings (derived from 

the IGN - BD TOPO). The population maps and the calculation of the number of inhabitants 

for each building classes per study area are provided in chapter 3. 

2.4.2.2. Population Growth Estimation 

After calculating the number of inhabitants for each building type, now it is the time to estimate 

the population growth in order to calculate the quantity of required buildings and therefore, 

define the urban fabric scenarios.  

The SLEUTH simulation results are definitely needed to be evaluate by the population density. 

To estimate the population growth, first the value of the compound annual population is 

calculated as follow (Jantz et al., 2010):   

                                                                                                         (2-7) 

where, G is compound annual population growth rate and P is successive population for the 

years of ty and tyʹ.  

After the calculation of the compound annual population growth rate for a study area during the 

desired number of the growth cycles. The annual and total percentage of the increased 

population is estimated, considering the actual population. Having the population and 

compound annual population rate, the average population for the coming years is estimated as 

follow: 

                                                                                          (2-8) 

In equation 2-8 the Pʹ is the average estimate of population. P indicates successive population 

values, ty & tyʹ are the year intervals, tx is the desired year and G is compound annual population 

growth rate. 

2.5. Urban Fabric Scenarios and Urban Configuration 

Having the building classes, the simulated urban growth and the estimated mean population, in 

this section, the suitable growth cycle is rated to achieve the desired urban fabrics. The proposed 

urban model aims to compare the determinants of the urbanization and its measurement in 
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different scenarios of urban sprawl. In order to achieve this purpose different primary urban 

fabric scenarios are defined. These scenarios are fictive and they do not correspond to reality 

but they help to better understand how this land could be used and how many inhabitants could 

live in these new areas. These scenarios are defined based on building classification and the 

observation of the existing building. They help to have a basic perspective on defining the final 

scenarios. For example, for Toulouse study area, we have initially consider the urban fabric 

scenarios with one or combination of single dwellings and medium rise housing and four 

scenarios are defined as follow: 

1) Sprawl urban: The first scenario considered that all new urban patches filled with single 

dwellings.  

2) Medium dense urban: In second scenario, it is assumed that in 50% of the new simulated 

urban areas, single dwellings will be built and in the other 50% the medium rise housing.  

3) Medium/High dense urban: The third scenario presumed the 30% of single dwellings 

and other 70% medium rise housing  

4) High dense urban: The forth scenario defined to accommodate just medium rise 

housing.  

Table 2.4 illustrates primary urban fabric scenarios that are defined for Toulouse study area, as 

well as the rate of the combination of each building type in each scenario. 

Table 2. 4. Primary urban fabric scenarios for Toulouse study area. 

Primary urban fabric scenarios Single dwelling (%) Medium rise housing (%) 

Sprawl urban scenario 100 0 

Low dense urban scenario 50 50 

Medium dense urban scenario 30 70 

Medium/high dense urban scenario 0 100 

For each scenario, the simulated urban growth results from SLEUTH are tested considering the 

specific population increased. After, the amount of the accommodation of the people is 

calculated for each scenario. It is clear that the sprawl urban scenario can accommodate less 

number of population while in the high dense scenario, many more people can be placed and 

therefore the city will be less spread. The primary urban fabric scenarios consist of different 

densities from sprawl to high dense urban. Considering the amount of population that could be 

accommodate for each scenario and the estimated population for the target date, the final urban 

fabric scenarios are defined. In the final scenarios it is necessary to test the SLEUTH results for 

different growth cycle to find out which growth cycle would match better the desired urban 

fabric. These procedure is done for all the environmental scenarios. The results show that 

changing urban fabric scenarios has a strong impact on the limitation of urban sprawl, thus 

saving agricultural and natural landscapes. They also help us to understand how different urban 

fabrics impact the urban sprawl. The urban fabric scenarios of three study areas are produced 

and the results are represented and analyzed in chapter 3. 
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2.6. 3D Representation of Prospective Urban Growth Simulations 

A 3D representation for each prospective urban growth simulations is provided in order to 

facilitates the interpretation of the SLEUTH simulation and differentiate the scenarios. The 

findings allow having different images of the city of tomorrow for applying to urban policies. 

In 3D modeling process, the land use achieved from 2D modeling will be rectified with regards 

to the location of the existing buildings and the geographic features of the study area. Finally, 

another growth analyses will be done considering these modifications. The 3D representation 

of the model, its process and results are discussed in chapter 4. 

2.7. Chapter Conclusion  

Nowadays, urban sprawl phenomena is a big challenge for the authorities and urban planners. 

This chapter presents a methodology to evaluate the SLEUTH results and to investigate the 

effects of environmental constraints and constructions on urban sprawl. In this chapter, the 

process of the SLEUTH-3r model execution is explained.  

In order to give more flexibility in urban sprawl simulation, the environmental-based scenarios 

are defined, and by adding the building type factor and demographic factor, different urban 

fabric scenarios are generated. Therefore, in this research two type of scenarios are provided as 

follow: 

1. Environmental-based scenarios: to represent the impacts of environmental constraints 

on urban sprawl. 

2. Urban fabric scenarios (consists the primary and final urban fabric scenarios): to 

represent the impacts of population and constructions on urban sprawl as well as 

environmental constraints. 

The SLEUTH model is executed with regards to the environmental constraints that are 

integrated by environmental-based scenarios in the model. Although, we defined 

environmental-based scenarios in our simulation and the results respect some environmental 

constraints, but the SLEUTH results are limited to some raster data that is difficult to interpret 

for decision makers. They are some pixels on which urbanization is supposed to occur. 

Moreover, SLEUTH model uses the historical data, and the impacts of population growth and 

urban tissue are implicitly considered during the calibration phase on the historical urban maps. 

However, the changes in population growth rate or in building types cannot be included in its 

simulations.   

To overcome these problems, a building classification is defined and existing buildings are 

classified according to their height. The new urban pixels are also classified according to 

probabilities that are calculated from the nearest neighbor height. This is done in order to study 

the Human Settlement Capacity (HSC). The population growth is estimated for the target date. 

Integrating the population growth and the building classification of the new urban pixels with 

the SLEUTH results, different urban fabric scenarios are generated. A set of different 

simulations that related to different land priorities and constraints are proposed. We have 
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defined the primary urban fabric scenarios with different urban densities from sprawl to high 

dense. The final urban fabric scenarios are defined based on the results that are obtained from 

primary scenarios and by taking in account the amount of population that could be 

accommodate for each scenario, and the population growth estimation for the simulation date. 

These final scenarios can give good view of the urban growth with deferent level of sprawl. 

Proposing different simulation of urban sprawl is fundamental because it shows the possible 

impact of urban sprawl but also the capacity of urban settlement according to different scenario. 

The implementations of the model on three different study area with different scales and their 

results are presented and discussed in Chapter 3. The results help us to understand how different 

urban fabrics impact the urban sprawl. 
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Chapter 3 : Application of the Model to Diversify the 

Simulations of Urban Sprawl 
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SLEUTH is an urban growth model that uses cellular automata, terrain mapping and land 

cover deltatron modeling to address urban growth. This chapter presents the applications of 

the model to simulating urban growth. Furthermore, the Impacts of environmental constraints, 

construction and population on urban sprawl in three different areas contain urban metropolis, 

peri-urban and rural area are discussed and evaluated. For each study area, different scenarios 

are simulated that show the capabilities of the model and make it possible to improve our 

understanding of an urban sprawl simulation. The simulation results of three different study 

areas with various sizes and populations provide a good view of the scalability of the proposed 

method and the findings allow having different images of the city of tomorrow to choose and 

reflect on urban policies.  

In this chapter, general presentation of the study areas, the reasons for their selections, and 

their scales and resolutions are represented in section 3.1. The implementation of the model on 

Three study areas including Toulouse metropolitan, Saint Sulpice la Pointe (a town around 

Toulouse), and Rieucros (a small community in a rural area) are represented in the section 3.1 

to 3.3 respectively. A comparison and discussion of the model is provided on section 3.4. The 

chapter is concluded in section 3.5. 

3.1. General Presentation of Study Areas 

The model is applied on three study areas including Toulouse metropolitan, Saint Sulpice la 

Pointe and Rieucros, in order to evaluate the scalability of the model. In selection of the case 

studies the historical urban growth rate, population growth and the size of them are considered 

as well as availability of the data. These areas have grown faster than many of the surrounding 

areas in recent years. They have different scales in terms of density, type of building, population 

and urban features.  

Toulouse study area is the fourth largest and populous city in France. Toulouse had highest 

increasing of the urbanization area and highest population growth rate between 2006 and 2011 

of any French metropolitan area with more than 300,000 inhabitants. As discussed in Chapter 

2, the undifferentiated buildings (provided as shape file in BD-TOPO of IGN) are used to create 

the urban maps for SLEUTH input. The SLEUTH input maps are the raster files, so the vector 

data is converted to the raster data and the map of 1658×1422 pixels with the pixel size of 

52m×52m (~2700 m2) are extracted (study area ~ 637515 ha). The pixel size is obtained by 

experiments. We take the pixel size so that it can cover the whole study area with full pixel size 

while taking into account the computational complexity and performance. We noted that the 

SLEUTH calibration process is long and requires a lot of space in RAM for numerous internal 

cell arrays. The calibration time depends to the size of maps and the number of required 

iterations which can be from some minutes to some hours. Therefore, the smaller size of pixel 

for Toulouse is not desirable in the data processing process. Larger size for pixels can make the 

process of creating the 3D buildings difficult. As we will see in Chapter 4, different urban 

constraints (e.g. distances from current buildings and distances from the roads and rivers ) are 

considered in process of creating the 3D scenarios and the larger pixels can make problem 

facing to constraints. In addition the coarse size of the pixels reduce the accuracy of the model. 
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Saint Sulpice la Pointe is the second study area that is a town around Toulouse. Saint Sulpice 

la Pointe is exist as a part of the first study area (i.e. Toulouse) that could help to verify the 

scalability of the model. The extent of the study area is 3600 ha and the input maps have the 

size of 200×200 pixels that feature a cell size of 30m×30m (900 m2). In Saint Sulpice la Pointe, 

the average area of existing buildings is smaller than Toulouse study area. Furthermore, the 

extent of the study area is much less than Toulouse. Therefore, we have chosen smaller size for 

the pixels without much affecting the model complexity. Since Saint Sulpice la Pointe is also 

exist in the Toulouse study area, the effect of different pixel sizes on the simulations can be 

compared.  

The last case study is Rieucros, which is a small community in a rural area. Choosing the study 

area in extent of Rieucros can give different view of urban growth modeling. The extent of this 

study area is 400 ha and the input maps have the size of 100×100 pixels with the cell size of 

20m×20m (400 m2). The same way as before is used to choose the pixel size. 

3.2. Developing Different Simulation Scenarios to Illustrate the Impacts of Environmental 

Constraints, Construction and Population on the Growth of a Metropolis - Toulouse 

Metropolis 

In 1950, around 45% of the people in France lived in rural place and 55% lived in cities. The 

urban population in France is increased to more than 75% in 2014 and it is anticipated to growth 

to more than 85% for 2050 (see figure 3.1) (United Nations, 2018). 
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Figure 3. 1. France population profile, 1950 - 2050 (United Nations, 2018) 
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The study area of this section is Toulouse, the fourth most populous commune in France, which 

is the capital of the French department of Haute-Garonne and the region of Occitanie, located 

in south-west of France (43°36′16″ North, 1°26′38″ East). The extent of Toulouse study area is 

637515 ha and it is bigger than the city of Toulouse including some parts of five other 

departments around Toulouse i.e. departments Gers (32), Tarn-et-Garonne (82), Tarn (81), 

Aude (11) and Ariège (9) (see figure 3.2).  

 

 

Figure 3. 2. Location and extent of the urban area of Toulouse 

https://en.wikipedia.org/wiki/Departments_of_France
https://en.wikipedia.org/wiki/Haute-Garonne
https://en.wikipedia.org/wiki/Regions_of_France
https://en.wikipedia.org/wiki/Occitanie
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Toulouse contains of 342 municipalities. From 1990 to 2006 the population has been grown, 

due to 14 000 newcomers per year. This demographic growth leaded to increase of urbanization 

area around 1 300 ha per year over the same period. The population growth rate between 2006 

and 2011 was +1.34% per year. This growth rate is the highest growth rate of any French 

metropolitan area with 300,000 inhabitants or more; however, it is slightly lower than the 

growth rate registered between the 1999 and 2006 censuses (United Nations, 2018). In 2018, 

the population of the metropolitan area was more than 1.33 million inhabitants. Table 3.1 shows 

the percentage of the urban population residing in Toulouse urban agglomeration with 300,000 

inhabitants or more derived by united nation in 2018. 

Table 3. 1. Percentage of the urban population residing in Toulouse, (United Nations, 2018) 

Location 1950 1960 1970 1980 1990 2000 2010 2020 2030 

Toulouse urban population 

residing (%) 
0.6 0.8 0.9 1.1 1.1 1.3 1.4 1.6 1.6 

3.2.1. Data and Materials - Toulouse 

As mentioned in Chapter 2, we use SLEUTH-3r as an urban growth model that uses the input 

data including slope, land use, exclusion, urban, transportation and hillshade that we call 

hereafter ‘map’. These maps are indeed matrices of parameter values. Geospatial database and 

geographic information systems are used to create initial spatial data and used during the 

simulation. All these input maps have the size of 1658×1422 pixels that feature a cell size of 

52m×52m (~2700 m2). The desirable number of each type of maps depends on the needed 

calibration accuracy for the prospective model and it will discussed in the next chapter.  

The Geospatial database that is used as input topographic data is composed of the maps of 2000, 

2008, 2012 and 2017 from IGN BD TOPO. Slope and hillshade maps are derived from Digital 

Elevation Model (DEM) of RGE ALTI with a spatial resolution of 5m, provided by IGN. Urban 

areas, excluded areas and transportation maps are generated automatically from BD TOPO and 

BD ORTHO from IGN. Urban map is classified into two classes of urban and nonurban. 

Population and census on district zone are taken from INSEE database of 2011. Figure 3.3 

illustrates the population map created from INSEE. In this figure, each pixel has the resolution 

of 200×200 meters which corresponds to the number of individual living there. We use this 

map and the total amount of population in Toulouse study area (which both derived from 

INSEE) to calculate the distribution of the population in study area and calculate the number of 

inhabitants per pixel and finally per building (considering the building class). The number of 

inhabitants for each type of building represented in table 3.9 (section 3.2.4.3). 
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Figure 3. 3. Population map (INSEE, 2011) 

In this chapter, different 2D urban growth prospective scenarios are defined. Each scenario 

needs its specific layer input maps. Therefore, the different types of each input maps are 

presented and it will be explain how the scenario input maps are generated.  

To create the urban map, two building classes of IGN data are used which contains 

Bati_indifferencie, Bati_industriel. For undifferentiated and industrial, the only buildings with 

more than 3m height and more than 50m2 surface are considered. As discussed in the chapter 

2, this is done due to the height classification of the constructions. The buildings that have the 

height less than 3m and the area less than 50m2 are ignored (see chapter 2). In the created map, 

only the buildings are considered but there are always some surfaces around the buildings (e.g. 

yards, corridors and protected spaces between the buildings), where new buildings could not be 

built there. To avoid these, different erodes for dilation-erosion are applied. According to the 

experimental results, an appropriate value of dilation-erosion that can fill the space between the 

adjacent buildings, and surround them is a value close to the SLEUTH input pixel size. 

Therefore, dilation-erosion at 50m is applied on each historical urban data (i.e. 2000, 2008, 

2012, and 2017) and a raster file (.gif) is extracted to be used as input urban map of SLEUTH 

model. Figure 3.4 illustrates the urban map of 2017. 
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Figure 3. 4. Toulouse urban map contains the undifferentiated and industrial buildings, 2017, IGN 

The slope, hillshade, urban, transportation and excluded maps are illustrated in figure 3.5. We 

used SLEUTH as an environmental scenario dependent model to simulate the urban growth 

with respect to environmental constraints. The constraints are considered in the model by 

altering the excluded maps. The excluded maps have some exclusion areas with the pixel value 

range from 51 to 100, which make them less likely to be developed. In next section the 

environmental constraints scenarios and the ways to create the excluded and attraction maps 

are represented. 
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Figure 3. 5. Slope, hillshade, transportation, urban and exclusion maps of Toulouse 

3.2.2. Environmental Constraints Scenarios - Toulouse 

In our research, different scenarios are defined in order to challenge the environmental 

protection and to improve the urban sprawl simulation results. Each scenario corresponds to 

different explicit priorities. None of the results will ever occur in the real world but they shape 

the possibilities and are useful for decision-making.   

SLEUTH model has the possibility of generating different scenarios of urban growth by 

changing the composition of SLEUTH input layers. In a SLEUTH model, the maps of exclusion 

and attraction are essential. The excluded maps define the places where the city does not have 
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the right to extend such as parks and the maps of attraction describe the places or objects that 

attract urbanization e.g. along the roads. The exclusion and attractive maps are generated by 

using topographic data. These maps give the opportunity to determine five different 

environmental protection scenarios as follow:  

 Scenario Protection Level 0 (Nearly No Environmental Protection - NEP) 

 Scenario Protection Level 1 (Limited Environmental Protection - LEP) 

 Scenario Protection Level 2 (Moderate Environmental Protection - MEP) 

 Scenario Protection Level 3 (Extreme Environmental Protection - EEP) 

 Attraction-based Scenario Protection Level 1 (Attraction-based Limited Environmental 

Protection - ALEP) 

The excluded areas in SLEUTH identify with their pixel values. Here, we define the pixel 

values from 0 to 100 where 100 means that those pixels are protected 100% from the possible 

urban growth and the value of zero represents free zones to build. The value of 50 indicates a 

neutral weight for development. Between 100 and 50 is a relative exclusion whereas under 50 

means that there is an attraction (see table 2.3).  

 

 

 

The changes of land use occupation for the years 2006 and 2014 in Midi-Pyrénées region 

derived from Teruti-Lucas source is represented in table 3.2. This table offers a view on the 

land occupation, the amount of the urbanization and artificialization (e.g. forested lands, 

artificialized area, and water surfaces) in the region of the study area between 2006 and 2014, 

which demonstrates the need of environmental protecting in future urban development. 
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Table 3. 2. Changes in physical occupation between 2006 and 2014 in Midi-Pyrénées region (309080 

points), Teruti-Lucas 

Type of 

occupation 

in 2014 

Surfaces 

Type of occupation in 2006 

Built 

surfaces 

 Coated 

or 

stabilized 

surfaces 

Other 

artificial 

lands 

Agricultur

al lands 

Forested 

lands 
Landes 

Natural 

bare 

lands 

Water 

surfaces 

Prohibited 

areas 

Built 

surfaces 

Surface (ha) 42 258 2 699 3 777 7 189 1 259 3 606 179 - - 

Half confidence 

interval 
6 262 1 380 1 641 2 307 959 1 691 362 - - 

Coated or 

stabilized 

surfaces 

Surface (ha) 1 439 119 414 6 655 10 453 6 124 2 706 180 - - 

Half confidence 

interval 
1 025 10 138 2 249 2 820 2 075 1 404 363 - - 

Other 

artificial 

lands 

Surface (ha) 2 879 4 326 95 646 17 503 4 509 6 486 1 261 - 1 806 

Half confidence 
interval 

1 681 1 822 10 235 3 832 1 875 2 234 959 - 3 624 

Agricultural 

lands 

Surface (ha) 542 7 926 10 843 2 280 471 28 844 28 990 1 437 1 262 - 

Half confidence 
interval 

628 3 634 2 831 42 516 4 679 5 275 1 009 959 - 

Forested 

lands 

Surface (ha) 536 3 058 2 882 17 663 1 382 713 24 354 721 539 536 

Half confidence 
interval 

811 1 548 1 483 3 955 40 800 4 466 869 628 942 

Landes 
Surface (ha) 538 1 442 2 878 42 911 23 433 191 450 1 260 360 - 

Half confidence 

interval 
513 1 146 1 427 7 512 4 588 16 192 1 580 513 - 

Natural 

bare lands 

Surface (ha) - 181 544 1 618 1 437 538 104 207 182 - 

Half confidence 

interval 
- 363 628 1 057 1 132 601 13 463 363 - 

Wetlands  
Surface (ha) - 542 895 2 353 1 623 544 179 40 378 - 

Half confidence 

interval 
- 628 959 1 392 1 294 628 181 7 358 - 

Prohibited 

areas 

Surface (ha) - - - 359 909 730 - - 2 728 

Half confidence 
interval 

- - - 513 1 494 1 450 - - 4 052 

 

3.2.2.1. Scenario Protection Level 0 (Nearly No Environmental Protection - NEP) 

In Nearly No Environmental Protection (NEP) scenario, the excluded areas are fully protected 

from urban growth. They are excluded 100% of the possible urban growth. They take the value 

of 100 and the others take the value of 50 for the entry of SLEUTH into NEP during the 

calibration and forecasting process. The excluded areas considered in this scenario are 

illustrated in figure 3.6. These areas include the remarkable buildings, cemeteries, airfields, 

sport grounds; railways stations, triage areas; activity areas (administrative, culture and leisure, 

education, water management, industrial or commercial, health, sports and transport) and 

national parks; that are shown in red and the water surfaces represented in blue in the figure. 

The national parks are protected 100% in all scenarios.  
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NEP exclusion map 

   

 

Figure 3. 6. NEP exclusion map generated for Toulouse, 2017. In all excluded maps, the common areas 

between urbanized and excluded areas are considered as urbanized areas. 
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3.2.2.2. Scenario Protection Level 1 (Limited Environmental Protection - LEP) 

For Limited Environmental Protection – (LEP) scenario, the excluded areas are fully protected 

from urban growth, considered as 100% exclusion from possible urban growth and have given 

the value of 100 and non-exclusion zones with a value of 50 indicate a neutral weight for 

development (see figure 3.7). As mentioned in chapter 2, in this scenario, the excluded map 

includes all parks, protected areas and water bodies have made from the database of the IGN 

for 2017 including the remarkable buildings, cemeteries, airfields, sport grounds; railways 

stations, triage areas; activity areas (administrative, culture and leisure, education, water 

management, industrial or commercial, health, sports and transport) and national parks that are 

shown in red, the water surfaces represented in blue and the closed forests areas (wood land, 

closed coniferous forest, closed deciduous forest, mixed closed forest and tree area) in dark 

green in the figure3.7.  
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LEP exclusion map 

 

 

Figure 3. 7. LEP exclusion map generated for Toulouse, 2017. In all excluded maps, the common 

areas between urbanized and excluded areas are considered as urbanized areas. 
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3.2.2.3. Scenario Protection Level 2 (Moderate Environmental Protection - MEP) 

In the Moderate Environmental Protection (MEP) scenario, open forests and green areas 

derived from the IGN database are generated as a separate layer with a value of 75 and represent 

the 50% probability of exclusion from urban growth. The areas that are fully protected from 

urban growth, took the value of 100 and the non-exclusion zones have gotten a value of 50 

similar to the previous scenario (see figure 3.8). The excluded map contains all parks, protected 

areas and water bodies have made from the database of the IGN for 2017 including the 

remarkable buildings, cemeteries, airfields, sport grounds; railways stations, triage areas; 

activity areas (administrative, culture and leisure, education, water management, industrial or 

commercial, health, sports and transport) and national parks that are shown in red, the water 

surfaces represented in blue, the close forest areas (wood land, closed coniferous forest, closed 

deciduous forest, mixed closed forest and tree area) in dark green and the open forest, hedge, 

woody heath, peupleraie, orchard, vine in light green in the figure. 
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MEP exclusion map 

 

  

Figure 3. 8. MEP exclusion map generated for Toulouse, 2017. In all excluded maps, the common 

areas between urbanized and excluded areas are considered as urbanized areas. 

 

3.2.2.4. Scenario Protection Level 3 (Extreme Environmental Protection - EEP) 



 

87 
 

The Extreme Environmental Protection (EEP) scenario, is similar to the MEP scenario, but the 

exclusion layer of open forests and green areas has a value of 100, demonstrating extreme 

protection of sensitive environmental terrains with a 100% probability of exclusion from urban 

growth, and other cells have taken the value of 50 in the simulation algorithm. Figure 3.9, 

illustrates the EEP exclusion map generating procedure. The excluded areas are also similar to 

the MEP scenario includes all parks, protected areas and water bodies have made from the 

database of the IGN for 2017 including the remarkable buildings, cemeteries, airfields, sport 

grounds; railways stations, triage areas; activity areas (administrative, culture and leisure, 

education, water management, industrial or commercial, health, sports and transport) and 

national parks that are shown in red, the water surfaces represented in blue, the close forests 

areas (wood land, closed coniferous forest, closed deciduous forest, mixed closed forest and 

tree area) in dark green and the open forest, hedge, woody heath, peupleraie, orchard, vine in 

light green in the figure. 
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EEP exclusion map 

 

 

Figure 3. 9. EEP exclusion map generated for Toulouse, 2017. In all excluded maps, the common 

areas between urbanized and excluded areas are considered as urbanized areas. 
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3.2.2.5. Attraction-based Scenario Protection Level 1 (Attraction-based Limited 

Environmental Protection - ALEP) 

The Attraction-based Limited Environmental Protection (ALEP) scenario can automatically 

consider a tendency for the growth area to be occurred in the desired places. In this scenario, 

we imagine that a city center is more attractive for the inhabitants. We defined four concentric 

zones with different attraction rates, which make more attraction to the center of the city and 

less in periphery. The water surfaces and railway stations are also considered as attraction areas 

for dwelling. As previously mentioned, in the excluded/attraction maps, the pixels with the 

values less than 50 could make the attraction. The excluded input map of this scenario, is 

combination of four different layers: 

1. The layer of concentric zones of attraction has four zones of attraction with radius of 

7.5, 15, 22.5 and 30 km from the center of the city. The corresponding values of the 

zones are 10, 20, 30 and 40 from the center of the city and the others are 50. The first 

radius is defined in such a way that it can cover the dense part of the city from the center. 

The radiuses are defined based on the observation of the density and the agglomeration 

of the buildings and being homogeneous. The concentric zones of attraction are created 

from global view of the study area, however we can make them locally for each small 

agglomeration around the center as well. 

2. Zhuang and Zhao (2014), have done a research on effects of land and building usage on 

population, land price and passengers in station areas. They have made their research 

on the annual data on land and buildings usage within a radius of 0 to 400 meters for 

railway stations and 400m to 800m for subway stations. In general, the areas that are 

located in these distances have priority development.  

In this research, we have considered the distance less than 400m (i.e. ~364 meters) for 

the attraction area according to the resolution of the maps and the urban situation. The 

areas with the attraction of the railway stations have the values 5, 15, 25, 35, 45 with 

respect to the concentric zones of attraction. They are areas with distances of seven 

pixels (~ 364m) around railways stations, which is about 7 to 10 minutes of walking 

from a railway station. 

3. The areas with the attraction of the water surface have the values 5, 15, 25, 35, 45 with 

respect to the concentric zones of attraction. They are areas with distances of seven 

pixels (~ 364m) around water surfaces, which is about 7 to 10 minutes of walking from 

water surfaces.   

4. The last layer is the exclusion zone, that here the excluded map LEP is used. 

The EEP exclusion map generating procedure is illustrated in figure 3.10. In this figure, "v" 

represents the pixel value and "r" the radius of a concentric zone. 
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ALEP exclusion/attraction map 

     

 

Figure 3. 10. ALEP exclusion/attraction map generated for Toulouse, 2017. In all excluded maps, the 

common areas between urbanized and excluded areas are considered as urbanized areas. 



 

91 
 

3.2.3. 2D Urban Growth Simulations - Toulouse 

The simulation is based on the growth rules i.e. spontaneous growth, new spreading centers, 

edge growth and road-influenced growth. In SLEUTH model, five coefficients of dispersion, 

breed, spread, slope and road gravity, are affected on how the growth rules are applied. These 

coefficients are calculated by calibration process on historical maps. Each scenario is calibrated 

independently with its own excluded/attraction input map. The objective in calibration process 

is to calibrate each scenario from the past in order to obtain the new urban zone such as present. 

As mentioned in chapter two, in SLEUTH-3r, the dispersion coefficient multiplier is no longer 

a constant, which allows the user to modify this multiplier value interactively. Table 3.3 

illustrates the dispersion coefficient multiplier obtained for Toulouse study area. The dispersion 

coefficient multiplier is calculated for each environmental scenario separately using the 

historical urban and transportation maps of 2000, 2008, 2012 and 2017 as the input maps of the 

SLEUTH model in coarse calibration mode. Section 1 of Annex C, represents the process of 

finding the dispersion coefficient multiplier. 

Table 3. 3. Dispersion coefficient (DM) multiplier per environmental protection scenario, Toulouse. 

Scenarios Dm_multi 

Scenario protection level 0 (NEP) 0,003 

Scenario protection level 1 (LEP) 0,004 

Scenario protection level 2 (MEP) 0,004 

Scenario protection level 3 (EEP) 0,004 

Attraction-based scenario protection level 1 (ALEP) 0,0035 

The SLEUTH model includes three processes of calibration, forecasting and self-modification. 

In calibration process, the user initializes a value for each coefficient. To find the best-fit 

coefficient values, the process of SLEUTH coarse calibrations performs Monte Carlo number 

of times through the historical data using the brute force method. The urban and transportation 

maps that are used in calibration mode consist the maps of 2000, 2008, 2012 and 2017. Different 

Monte Carlo iteration was tested in this search. However, twenty five Monte Carlo iteration is 

found sufficient to quantify the spatial variability resulting from random processes. 

The historical maps that are used in coarse calibration have the resolution of the data is 1/4 of 

their full size. In the initial coarse calibration step, the whole range from 1 to 100 for all five 

coefficients is explored using large increments of 25. These values for each coefficient are 1, 

25, 50, 75 and 100. Therefore, the combinations of the 3125 unique parameter are tested. The 

coarse calibration provides a list of metrics that is sufficient for finding the best-fit coefficients. 

As discussed in chapter 2, two metrics of the pixel fractional difference (PFD) and the clusters 

fractional difference (CFD) are used to find the best-fit coefficients. In fact, the accurate fit for 

these metric ensured that the model could create the urban form and the overall amount of 

development would be matched (Jantz et al., 2010). Table 3.4 represents the calibration 

accuracy results which provide the best-fit coefficients for each environmental scenario of 



 

92 
 

Toulouse study area. The process of computing the best-fit coefficients during the calibration 

is represented in section 2 of Annex C. The best-fit coefficients values are then used in 

forecasting process of simulation.  

Table 3. 4. Best-fit coefficient values driven from calibration process of SLEUTH-3r, Toulouse  

Coefficient values 

Scenarios Dispersion Breed Spread Slope 
Road 

gravity 

Scenario protection level 0 (NEP) 100 25 25 75 100 

Scenario protection level 1 (LEP) 100 1 25 25 50 

Scenario protection level 2 (MEP) 100 1 25 25 100 

Scenario protection level 3 (EEP) 100 1 25 25 1 

Attraction-based scenario protection 

level 1 (ALEP) 100 1 25 100 1 

In forecasting process, the model is first run with the input urban map of 2000 to obtain the 

prospective urban map for 2017. In this case, it is possible to evaluate the accuracy of the model 

with different scenarios comparing to real urban map of 2017. The critical slope threshold in 

SLEUTH is often considered between 15% and 21%. In this research, we take the construction 

slope threshold of 15% to find the more desirable area for urban developing. The simulated 

urban maps for 2017 are illustrated in figure 3.11, figure 3.12 and figure 3.13. 
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Figure 3. 11. Historical urban maps of 2000 and 2017 and prospective urban maps that are simulated 

by different environmental protection scenarios for 2017, Toulouse 
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Figure 3. 12. Comparison of urban patches simulated by different environmental protection scenarios, 

2017, Toulouse 

 

Simulated urban growth 2017 (EEP) Simulated urban growth 2017 (ALEP) 

Simulated urban growth 2017 (LEP) 

Simulated urban growth 2017 (NEP) 

Simulated urban growth 2017 (MEP) 

Urban 

Non-urban 

Observed urban 2000 (Toulouse) 

Zoomed area 



 

95 
 

 

 

Figure 3. 13. Comparison of the historical urban patch and corresponding prospective patch that is 

simulated by SLEUTH-3r through environmental protection scenario level 3 (EEP), Toulouse 

As illustrated in figure 3.13, a visual comparison of the results shows that SLEUTH could 

simulate urban growth in some area successfully (Red circles), however in some area the 

simulation is not well done (green circle). Therefore, we calculate the goodness-of-fit of the 

simulated maps in order to evaluate the model accuracy. 

A brute-force search is used to systematically enumerate all urban pixels to check the goodness-
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change and persistence. The overall accuracy (OA) is calculated to measure the overall 

proportion of the pixels that change correctly to the total number of cells. Table 3.5, illustrates 

the results of simulated urban maps for 2017 and compare them to the real urban map of 2000 

and 2017.  

Table 3. 5. Urban growth simulated results obtained from different environmental protection scenarios 

and the comparison of the results to the observed map of 2017, Toulouse. 

Results -  2017 

Scenarios 

Observed 

urban area in 

2000 (pixels) 

Increased 

urban area 

(pixels) 

Urban growth 

rate (%) 

Urban area 

increased (ha) 

Total urban 

area (ha) 

Growth 

goodness-of-fit 

(%) 

Scenario protection level 0 

(NEP) 
127881 43918 25,56 11858 46386 81,48 

Scenario protection level 1 

(LEP) 
127881 43689 25,46 11796 46324 82,19 

Scenario protection level 2 

(MEP) 
127881 43521 25,39 11751 46279 82,28 

Scenario protection level 3 

(EEP) 
127881 43179 25,24 11658 46186 82,3 

Attraction-based scenario 

protection level 1 (ALEP) 
127881 47940 27,27 12944 47472 83,3 

Observed urban area in 

2017 
171432 43551 25,40 11759 46287 100 

As shown, five different results are obtained due to the different scenarios. Comparison of the 

simulation results of all scenarios shows that the simulated urban areas will be reduced if the 

environment is more protected. The evaluations demonstrate that the attraction-based scenario 

protection level 1, has the most rate of goodness-of-fit with the highest growth rate, while the 

scenario level 2 obtains more precise growth rate comparing to the real urban 2017. Although 

the growth rate of the scenario level 3 is lower than the actual rate, it is the most accurate of all 

the scenarios given the growth rate. However, the attraction-based scenario protection level 1, 

has the possibility of directing the urban sprawl towards the desired attractive areas. 

Afterwards, we have prepared the scenario files to produce the forecasting urban growth 

simulation for 2050. The model is run with the input urban map of 2017 (the real one, not the 

simulated) to obtain the prospective urban map for 2050 by different scenarios. The simulation 

results of 2050 are illustrated in figure 3.14 and figure 3.15. Table 3.6 represents the simulated 

prospective urban growth results for 2050. 
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Figure 3. 14. Urban map of 2050 and prospective urban maps for 2050, Toulouse 
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Figure 3. 15. Comparison of urban patches simulated by different environmental protection scenarios, 

2050, Toulouse 
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Table 3. 6. Urban growth simulated results obtained from different environmental protection scenarios 

for 2050, Toulouse. 

Results -  2050 

Scenarios 

Existing Urban 

Area in 2017  

(pixels) 

Urban growth 

rate  

(%) 

Urban area 

increased  

(ha) 

Total urban area 

(ha) 

Scenario protection level 0 

(NEP) 
171432 37,89 28238 74525 

Scenario protection level 1 (LEP) 171432 36,97 27150 73436 

Scenario protection level 2 (MEP) 171432 36,49 26600 72886 

Scenario protection level 3 (EEP) 171432 36,35 26432 72719 

Attraction-based scenario 

protection level 1 (ALEP) 
171432 37,04 27236 73523 

The table 3.6 demonstrates that in urban growth simulation for 2050, the simulated urban areas 

are reduced in the scenarios that are more environmental protected. Although, in Table 3.5 

(urban growth simulation for 2017), the urban growth rate of the attraction-based scenario 

protection level 1 is higher than the other scenarios, this growth rate for the simulation of 2050 

is slightly decreased and it comes lower than scenario Level 0 (but it's still more than other 

scenarios). This indicates that for growth cycles from 2000 to 2017, there are more free areas 

to convert from non-urban pixels to urban pixels, thus, the attraction-based scenario produces 

more urban pixels. However, in the 2050 simulation, with less urban pixels being produced in 

attractive areas, less attractive areas remain. In addition, it should be considered that the 

protected spaces in attraction-based scenario protection level 1 are more than scenario Level 0, 

which affects the amount of urban pixels produced. 

Despite the simulation results illustrated in table 3.5, the future growth will definitely be 

different due to the population growth, urban planning, land prices and other factors; and might 

be closer to the other scenarios. As discussed before, the SLEUTH simulation results are some 

pixels that are difficult to interpret. Even though these simulations are interesting, they are 

under-defined and stay abstract because there are plenty of ways to fill the new urban areas 

produced by the simulation model. In order to be able to understand and to use these 

simulations, we propose to try to see what could mean these new urban areas in terms of 

building types, what would be its capacity of human settlement and how does it fit with 

demographic forecasting. Hence, in the next section we propose to use population growth and 

building type to try to improve the results.  
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3.2.4. Urban Fabric Scenarios - Toulouse 

The form and the configuration of a city is related to its geography and natural environment. 

The urban expansion is the consequence of the life style and increased population via newborn 

generation, migration and succession. Urban sprawl could be constrained by the authorities in 

order to protect the environment and prevent the risk through urban planning. In the following, 

we try to see the kind of buildings (called the urban fabric) that could fill the simulated urban 

areas and for each scenario to see the quantity of population could include. However, this is a 

simplification of reality because not all population increasing are located in this new urban area, 

but it allows comparing the scenarios. 

The SLEUTH model is based on calibrating from the historical data. Therefore, in its 

forecasting simulation, it simulates the same type of building that are observed today. 

Accordingly, it is interesting to integrate some effective factors such as demography and 

building types to the model. In order to improve the SLEUTH results, different urban fabric 

scenarios are defined by adding buildings type and the estimation of the population growth as 

urban fabric factors. Each simulation corresponds to policies that are more or less restrictive of 

spaces considering what these territories can accommodate as a type of building and as a global 

population. These scenarios lead to different simulations that are related to different land 

priorities and constraints and make it possible to improve our understanding of an urban sprawl 

simulation. In order to integrate the demography and building types, the buildings are classified 

to different residential categories considering their height and configuration to study the Human 

Settlement Capacity (HSC). 

As mentioned in chapter 2, in our research, new method of land use planning is presented. This 

urban land use pattern can be applied for different study area. Having the existence urban area 

and the growth area, we propose to create new building patterns in the growth area. To create 

these patterns, we first need to use a building type classification. 

3.2.4.1. Building Type Classification  

The building classification of Toulouse is done considering the land use planning and the urban 

fabrics of the city and according to the classification that is defined in chapter 2 (section 2.4.1). 

To classify the structural elements of our study area, the information of two kinds of buildings 

are considered, including undifferentiated and industrial buildings. This information derived 

from BD TOPO of IGN database. In undifferentiated buildings, for each types of urban objects, 

the numbers and the height of the buildings are extracted and an average height for each type 

is calculated. The industrial buildings are classified to commercial buildings, industrial 

buildings, agricultural buildings, greenhouses and silos. For each class an average value of 

height is calculated. The green houses and silos are ignored from industrial fields of 

classification because of their low effects on urban planning. Table 3.7 and table 3.8 represent 

the classification of the current situation of the Toulouse industrial and undifferentiated 

buildings, respectively. We can see single dwellings and low-rise housings are occupied a large 
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area of Toulouse. All other types of building are around 5% of total build areas (see figure 

3.16). 

 

Table 3. 7. Number, area and height of undifferentiated buildings according to our building 

classification, Toulouse 

Building class 
Number of 

buildings 

Total Area Average height 

(m) 
m² % 

Single dwellings 225 969 34 628 683 47,80% 4 

Low-rise housing 183 221 33 844 432 46,71% 8 

Shop top housing 5 352 2 432 630 3,36% 15 

Medium-rise housing 2 223 1 195 725 1,65% 20 

Medium/high-rise housing 208 148 571 0,21% 27 

High-rise housing 307 201 323 0,28% 36 

 

 Table 3. 8. Number, area and height of industrial buildings, Toulouse 

Building class 
Number of 

buildings 

Total Area Average height 

(m) 
m² % 

Industrial 23 061 15497619 80,19% 9 

Commercial 970 1 916 498 9,92% 8 

Agricultural 1 486 828 934 4,29% 7 

Greenhouse 1 197 985 696 5,10% 5 

Silo 378 96 859 0,50% 14 
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Figure 3. 16. Illustration of the average heights and the average surfaces of undifferentiated buildings 

classified according to building types, Toulouse 
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3.2.4.2.Creating Building Type Matrix and Urban Weighting the Patches  

After classifying the current building according to building type classification, we calculate the 

probability that each new pixel will belong to the building classes. Therefore, we use the 

building type matrix for this study area. The different urban classes of 2017 classified by 

buildings types and height are collected and a multi-layer matrix consists of different class is 

created in which, each layer corresponds to one type of building with specific height. 

The difference of the simulated urban growth and real urban map of 2017 (results obtained in 

section 3.2.3) give the forecasted grown area, during the desired growth cycle. The urban 

patches in the grown area represent the new pixels created during the simulation process. 

Therefore, these pixels have no information of urban fabric configuration and should be 

classified. To classify the new urban pixels, first we have to find out what is the likely type of 

building in each new pixel. In the proposed pattern, the probability of building type for each 

pixel is calculated considering the likeness to the neighbors. The algorithm is not based on 

neighborhood likeness, but we use this probability in creating the combination of the buildings 

in the urban fabric scenarios. The first step to calculate the likelihood is to check the first loop 

of neighbors around a new urban pixel in the created matrix. If all the pixels were null in the 

first loop of neighbors, the survey will go to the second and third loops of neighbors. 

Afterwards, it is the time to calculate the likelihood of each class for each pixel. The used 

equation and procedure is explained in Chapter 2 (section 2.4.1.3). Later, having the 

demography the number of people in correspond pixels will calculated. 

3.2.4.3. Demography and Population Management 

As discussed before, the SLEUTH simulation results are definitely needed to be evaluate by the 

population density. In this section, we rate the suitable growth cycle to achieve the desired 

urban fabrics according to the building classes, the simulated urban growth and the mean 

population. 

To interpolate population, first we estimate the compound annual population rate as explained 

in chapter 2 (section 2.4.2.2). The average population growth rate estimated during 1999 and 

2011 is around 1.34% per year. This growth rate is used to estimate the forecasting population 

growth. 

Afterwards, having the population count and compound annual population rate, we estimate the 

intermediate population for the coming years. The compound annual growth rate of the 

population is calculated for simulated urban growth of 2050 means in 33 growth cycles starting 

in 2017. This estimated rate, gives 55% of the population increased, given the number of the 

actual population of 1.35 million inhabitants in 2017. 

To create urban fabric scenarios, you need to know how many buildings are needed to 

accommodate the projected population. Therefore, we calculate the number of inhabitant for 

each type of buildings in 2011 (the available data from INSEE, see section 3.2.1), and the used 
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space of each inhabitant. We assume the similar rate of residential space per person for 

forecasting date, according to building types.  

Our study area in not limited to the city of Toulouse and it cover some small towns and 

surrounding counties. Thus, we use the data squared from INSEE (see annex E). These data can 

be used to create a population map for the entire study area. It gives a population map with the 

squares of 200×200 meters in which, the range of population amount is provided (figure 3.3). 

We extract this data with the resolution of the other maps (i.e. 52 × 52m) and compare it with 

the urban maps. For homogeneity between the urban map and the population map, only the 

population areas that cover the urban map are considered. In other hand, we have the 

information of the number and type of buildings as well as the estimation of total number of 

inhabitant. These information help to estimate the number of inhabitants per building. This 

statistical estimation is not accurate, however, it can give the general information about the link 

between the numbers of inhabitants and buildings. It is noted that among undifferentiated 

buildings there are some buildings such as secondary houses, haunted buildings and touristic 

buildings that no one lives there permanently. These buildings affect the amount of estimated 

average number of inhabitants. Table 3.9 illustrates the estimation of the number of inhabitant 

per building type for undifferentiated buildings in Toulouse study area. 

Table 3. 9. Estimation of the average number of inhabitant for each type of buildings, Toulouse 

Building class 
Estimated average number of 

inhabitants 

Single dwellings 3 

Low-rise housing 5 

Shop top housing 10 

Medium-rise housing 21 

Medium/high-rise housing 43 

High-rise housing 83 

3.2.4.4. Implementation, Results and Discussion  

Next, we define four different urban fabric scenarios. These primary scenarios are fictive and 

they do not correspond to reality but they help to better understand how this land could be used 

and how many inhabitants could live in these new areas. The four scenarios are as follow:  

1) Sprawl urban: The first scenario considered that all new urban patches filled with single 

dwellings.  

2) Medium dense urban: Second scenario, assumed that single dwellings placed in 50% of 

the new simulated urban areas and others 50% filled by medium rise housing.  

3) Medium/High dense urban: The third scenario presumed the 30% of single dwellings 

and other 70% medium rise housing  

4) High dense urban: The forth scenario defined to accommodate just medium rise 

housing.  
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For each scenario, we assay the simulated urban growth results from SLEUTH having the 

specific population increased. For each pixel, the number of inhabitants is estimated from the 

building classification of urban land use pattern and the population map driven from INSEE. 

Table 3.10, illustrates the comparison of all these scenarios. As it shows, we cannot 

accommodate enough people in the sprawl urban scenario during the 33 growth cycles, while 

in the high dense scenario, many more people can be placed and therefore less spread. However, 

we have produced different scenarios with different densities from sprawl to high dense urban 

but none of those gives the estimated population growth rate of 55% for 33 simulated growth 

cycles. 

Table 3. 10. Comparing the population growth of four different primary urban fabric scenarios, 

Toulouse 

Increased population 

per urban fabric 

scenarios in 2050 

Sprawl urban fabric 

scenario 

Medium dense urban 

fabric scenario 

Medium/high dense 

urban fabric scenario 

High dense urban 

fabric scenario 

100% single 

dwelling 

50% single dwelling 

& 50% medium rise 

housing 

30% single dwelling 

& 70% medium rise 

housing 

100% medium rise 

housing 

Scenario protection 

level 0 (NEP) 
296 328 22% 1 185 312 88% 1 540 906 114% 2 074 296 154% 

Scenario protection 

level 1 (LEP) 
279 036 21% 1 116 144 83% 1 450 987 107% 1 953 252 145% 

Scenario protection 

level 2 (MEP) 
273 351 20% 1 093 404 81% 1 421 425 105% 1 913 457 142% 

Scenario protection 

level 3 (EEP) 
269 130 20% 1 076 520 80% 1 399 476 104% 1 883 910 140% 

Attraction-based 

scenario protection 

level 1 (ALEP) 
288 423 21% 1 153 692 85% 1 499 800 111% 2 018 961 150% 

Therefore, we tried to find out which growth cycle would match better the desired urban fabric, 

and thus we applied other growth cycles. These new scenarios called final urban fabric 

scenarios. As represented in table 3.11, the 13th, 18th and 23rd growth cycles give the best 

results for the medium dense, medium/high dense and high dense urban fabric scenarios 

respectively with the population growth of around 55%. In order to find the urban fabric similar 

to today's expansion tendency, we define another urban fabric scenario called low dense urban 

for the 33rd growth cycle. In this scenario, 35% of new simulated urban areas are considered 

as single dwellings, 40% as low-rise housing and the remaining 25% as medium rise housing. 

These building class percentages are closer to the existing urban fabric of Toulouse 

metropolitan. In all scenarios represented in table 3.11, the urban growth environmental 
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protection level 2 and level 3 taking the best goodness-of-fit and in attraction-based scenario 

protection level 1 the urban sprawl is more directed to the attractive areas. The SLEUTH results 

of different urban fabric scenarios (different growth cycles) for NEP (scenario protection level 

0) are shown in figure 3.17, as an example to illustrates the visual difference of the urban sprawl. 

Table 3. 11. Urban fabric scenarios comparison according to the growth cycle to have similar rate of 

increased population. The gray column represents the population increasing of low dense urban fabric 

scenario during 33-growth cycle that is closer to the existing urban fabric, Toulouse 

Increased population 

per urban fabric 

scenarios in 2050 

Sprawl urban 

fabric scenario 

Low dense urban 

fabric scenario 

Medium dense urban 

fabric scenario 

Medium/high dense 

urban fabric 

scenario 

High dense urban 

fabric scenario 

100% single 

dwelling 

35% single dwelling 

& 40% low-rise & 

25% medium rise 

housing 

50% single dwelling 

& 50% medium rise 

housing 

30% single dwelling 

& 70% medium rise 

housing 

100% medium rise 

housing 

33th growth cycle 33th growth cycle 23th growth cycle 18th growth cycle 13th growth cycle 

Scenario 

protection level 0 

(NEP) 

296 328 22% 819 841 61% 804 480 60% 804 648 60% 768 831 57% 

Scenario protection 

level 1 (LEP) 
279 036 21% 772 000 57% 769 140 57% 775 429 57% 743 190 55% 

Scenario protection 

level 2 (MEP) 
273 351 20% 756 271 56% 752 748 56% 761 389 56% 735 210 54% 

Scenario protection 

level 3 (EEP) 
269 130 20% 744 593 55% 744 660 55% 754 042 56% 724 731 54% 

Attraction-based 

scenario protection 

level 1 (ALEP) 
288 423 21% 797 970 59% 804 252 60% 815 786 60% 795 690 59% 
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Figure 3. 17. Simulated urban growth that are used in urban fabric scenarios, Toulouse 
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Figure 3.18, illustrates the urban land use simulated per growth cycle for each prospective urban 

growth scenarios. In this figure, the grown amounts from the dense city to sprawl city for the 

same population growth rate is obvious. We kept the 55 % population growth where the land 

occupations vary from around 100 km2 to 280 km2 where the differences of them represents the 

loss of the natural and environmental resources. It shows that changing the urban fabric 

scenarios has a very strong impact on the limitation of urban sprawl, thus saving agricultural 

and natural landscapes. 

  

Figure 3. 18. Urban sprawl via the urban fabric scenarios to locate 55% urban population growth, 

Toulouse 
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3.3. Developing Different Simulation Scenarios to Illustrate the Impacts of 

Environmental Constraints, Construction and Population on the Growth of a town 

- Saint Sulpice la Pointe peri-urban 

The second study area is Saint Sulpice la Pointe, a peri-urban that is located in the department 

of Tarn, in east of Toulouse (43°46′30″ North, 1°41′14″ East) (see figure 3.19). The extent of 

the study area is 3600 ha. Saint Sulpice la Pointe had 8934 inhabitants in 2016 and its average 

population growth rate between 2009 and 2016 was +1.73% per year (Legal populations, 

INSEE, 2016).  

 

 
Figure 3. 19. Location and extent of the urban area of Saint Sulpice la Pointe study area 
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3.3.1. Data and Materials - Saint Sulpice la Pointe 

We use SLEUTH for the simulations of this study area like the Toulouse. Geospatial database 

and geographic information systems are applied to create the input maps. All the input maps 

have the size of 200×200 pixels that feature a cell size of 30m×30m (~900 m2). Similar to 

Toulouse, the Geospatial database that is used as input data consists the maps of 2000, 2008, 

2012 and 2017 as follow: 

 Slope and hillshade maps are derived from Digital Elevation Model (DEM) of RGE 

ALTI with a spatial resolution of 5m, provided by IGN.  

 Urban areas, excluded areas and transportation maps are generated automatically from 

BD TOPO and BD ORTHO from IGN. Urban map is classified into two classes of urban 

and nonurban.  

 Population and census on district zone are taken from INSEE database of 2011.  

Different 2D urban growth prospective scenarios are defined as well and each scenario needs 

its specific input maps. Two layers of undifferentiated and industrial buildings with more than 

3m height and more than 50m2 surface from BD TOPO (IGN data base) are used to create the 

urban maps (see chapter 2). Similar to previous study area, a dilation-erosion (30m) according 

to the pixel size is applied to fill the spaces between adjacent buildings. The input maps are 

illustrated in figure 3.20. Different environmental dependent scenarios are defined by altering 

the excluded maps according to the environmental constraints. 

3.3.2. Environmental Constraints Scenarios - Saint Sulpice la Pointe 

As discussed before, five different environmental protection scenarios are defined by altering 

the excluded map including (see sections 2.3.3 chapter 2 and 3.2.2 chapter 3): 

 Scenario Protection Level 0 (Nearly No Environmental Protection - NEP) (see figure 

3.21) 

 Scenario Protection Level 1 (Limited Environmental Protection - LEP) (see figure 3.22) 

 Scenario Protection Level 2 (Moderate Environmental Protection - MEP) (see figure 

3.23) 

 Scenario Protection Level 3 (Extreme Environmental Protection - EEP) (see figure 3.24) 

 Attraction-based Scenario Protection Level 1 (Attraction-based Limited Environmental 

Protection - ALEP) (see figure 3.25) 

Each pixel of the excluded maps have a value. In environmental protection scenarios, we 

generate the pixel values from 0 to 100. Value 100 indicates a pixel that is 100% protected from 

the possible urban growth and the value of zero shows free zones to build. The value of 50 

represents a neutral weight for development. Between 100 and 50 is a relative exclusion 

whereas under 50 means that there is an attraction (see table 2.3).  
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Figure 3. 20. Slope, hillshade, transportation, urban and exclusion maps of Saint Sulpice la Pointe 
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NEP exclusion map 

    

 

Figure 3. 21. NEP exclusion map generated for Saint Sulpice la Pointe, 2017. The excluded areas 

include the remarkable buildings, cemeteries, airfields, sport grounds; railways stations, triage areas; 

activity areas (administrative, culture and leisure, education, water management, industrial or 

commercial, health, sports and transport) and national parks; that are shown in red and the water surfaces 

that are represented in blue. They take the value of 100 and the others take the value of 50. 
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LEP exclusion map 

 

 

Figure 3. 22. LEP exclusion map generated for Saint Sulpice la Pointe, 2017. The excluded areas 

indicate the remarkable buildings, cemeteries, airfields, sport grounds; railways stations, triage areas; 

activity areas (administrative, culture and leisure, education, water management, industrial or 

commercial, health, sports and transport) and national parks that are shown in red, the water surfaces 

represented in blue and the closed forests areas (wood land, closed coniferous forest, closed deciduous 

forest, mixed closed forest and tree area) in dark green. They take the value of 100 and the others take 

the value of 50. 
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MEP exclusion map 

 

 

Figure 3. 23. MEP exclusion map generated for Saint Sulpice la Pointe, 2017. The excluded map 

contains all parks, protected areas and water bodies have made from the database of the IGN for 2017 

including the remarkable buildings, cemeteries, airfields, sport grounds; railways stations, triage areas; 

activity areas (administrative, culture and leisure, education, water management, industrial or 

commercial, health, sports and transport) and national parks that are shown in red, the water surfaces 

represented in blue, the close forest areas (wood land, closed coniferous forest, closed deciduous forest, 

mixed closed forest and tree area) in dark green (value 100) and the open forest, hedge, woody heath, 

peupleraie, orchard, vine in light green (value 75).  
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EEP exclusion map 

 

 

Figure 3. 24. EEP exclusion map generated for Saint Sulpice la Pointe, 2017. The excluded map 

contains the remarkable buildings, cemeteries, airfields, sport grounds; railways stations, triage areas; 

activity areas (administrative, culture and leisure, education, water management, industrial or 

commercial, health, sports and transport) and national parks that are shown in red, the water surfaces 

represented in blue, the close forest areas (wood land, closed coniferous forest, closed deciduous forest, 

mixed closed forest and tree area) in dark green and the open forest, hedge, woody heath, peupleraie, 

orchard, vine in light green. All excluded areas take the value of 100 and the others take the value of 50. 
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ALEP exclusion/attraction map 

     

 

Figure 3. 25. ALEP exclusion/attraction map generated for Saint Sulpice la Pointe, 2017. Four 

concentric zones with different attraction rates, make attraction force to the center. The areas in distances 

of seven pixels (~ 210m) around water surfaces are considered as attraction areas for dwelling as well. 

The LEP exclusion map is used for the excluded areas. 
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3.3.3. 2D Urban Growth Simulations - Saint Sulpice la Pointe 

Table 3.12 represents the dispersion coefficients and table 3.13 illustrates the best-fit 

coefficients that are obtained for Saint Sulpice la Pointe. Annex C, represents the process of 

computing the dispersion coefficient multiplier and the calibration. 

Table 3. 12. Dispersion coefficient (DM) multiplier per environmental protection scenario, Saint Sulpice 

la Pointe 

Scenarios Dm_multi 

Scenario protection level 0 (NEP) 0,0006 

Scenario protection level 1 (LEP) 0,0006 

Scenario protection level 2 (MEP) 0,0006 

Scenario protection level 3 (EEP) 0,0006 

Attraction-based scenario protection level 1 (ALEP) 0,0005 

Table 3. 13. Best-fit coefficient values driven from calibration process of SLEUTH-3r, Saint Sulpice la 

Pointe 

Coefficient values 

Scenarios Dispersion Breed Spread Slope 
Road 

gravity 

Scenario protection level 0 (NEP) 100 1 25 75 100 

Scenario protection level 1 (LEP) 100 25 25 100 100 

Scenario protection level 2 (MEP) 100 1 25 75 1 

Scenario protection level 3 (EEP) 100 25 25 100 1 

Attraction-based scenario protection 

level 1 (ALEP) 100 1 25 100 1 

In forecasting process, the model is first run with the input urban map of 2000 to obtain the 

prospective urban map for 2017 in order to evaluate the accuracy of the model with different 

scenarios comparing to real urban map of 2017. The construction slope threshold of 15% is 

considered as critical slope (see section 3.2.3).  

These scenarios lead to obtain five different results. The simulated urban maps for 2017 are 

illustrated in figures 3.26. The comparison of the results and evaluation to the observed map 

are presented in table 3.14 (see also figure 3.27). 
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Figure 3. 26. Historical urban maps of 2000 and 2017 and prospective urban maps that are simulated 

by different environmental protection scenarios for 2017, Saint Sulpice la Pointe 
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Figure 3. 27. Comparison of the historical urban patch and corresponding prospective patch that is 

simulated by SLEUTH-3r through environmental protection scenario level 3 (EEP), Saint Sulpice la 

Pointe 
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Table 3. 14. Urban growth simulated results obtained from different environmental protection scenarios 

and the comparison of the results to the observed map of 2017, Saint Sulpice la Pointe 

Results -  2017 

Scenarios 

Observed 

urban area in 

2000 (pixels) 

Increased 

urban area 

(pixels) 

Urban growth 

rate (%) 

Urban area 

increased (ha) 

Total urban 

area (ha) 

Growth 

goodness-of-fit 

(%) 

Scenario protection level 0 

(NEP) 
2304 984 29,93 89 296 75,67 

Scenario protection level 1 

(LEP) 
2304 908 28,27 82 289 77,77 

Scenario protection level 2 

(MEP) 
2304 879 27,62 79 286 78,35 

Scenario protection level 3 

(EEP) 
2304 767 24,98 69 276 80,27 

Attraction-based scenario 

protection level 1 (ALEP) 
2304 1147 33,24 103 311 73,98 

Observed urban area in 

2017 
3395 1091 32,14 98 306 100 

The results show that by increasing the amount of protected area, the rate of growth is decrease. 

By comparing the goodness of the fit we can find that the attraction-based scenario produced 

more urban area and closer to the observed urban area of 2017. The best fit is achieved by 

scenario protection level 3. This scenario produced less growth rate (24.98%) but with the best 

goodness-of-fit (80.27%). Therefore, comparing the results are used both to examine the impact 

of environmental rules in forecasting growth and to obtain more accurate goodness of the fit. 

Next, we give the maps apply the model with the input urban map of 2017 (the observed maps) 

to obtain the prospective maps of 2050. The results of the simulation for 2050 are illustrated in 

figure 3.28 and the table 3.15 illustrates the simulated prospective urban growth results for 

2050. 
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Figure 3. 28. Urban map of 2050 and prospective urban maps for 2050, Saint Sulpice la Pointe 
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Table 3. 15. Urban growth simulated results obtained from different environmental protection scenarios 

for 2050, Saint Sulpice la Pointe. 

Results -  2050 

Scenarios 

Existing Urban 

Area in 2017  

(pixels) 

Urban growth 

rate  

(%) 

Urban area 

increased  

(ha) 

Total urban area 

(ha) 

Scenario protection level 0 (NEP) 3395 44,05 241 546 
Scenario protection level 1 (LEP) 3395 43,41 234 540 
Scenario protection level 2 (MEP) 3395 40,82 211 516 
Scenario protection level 3 (EEP) 3395 38,34 190 496 

Attraction-based scenario protection 

level 1 (ALEP) 3395 45,23 252 558 

Similar to the simulation results of 2017, the simulated urban areas are reduced in the scenarios 

that are more environmentally protected in 2050. There are always less open nonurban spaces 

to be developed in 2050 comparing to 2017, thus the growth rate for the simulation of 2050 is 

slightly decreased in attraction-based scenario. After achieving the results for 2050, it is needed 

to see what could mean these new urban areas in terms of urban fabric. Therefore, in next 

section we define the urban fabric scenarios in order to interpret the meaning of the new pixels 

in term of building types and the capacity of human settlement in these scenarios. 

3.3.4. Urban Fabric Scenarios - Saint Sulpice la Pointe 

In this section we first classify the current buildings according to defined building types 

(Chapter 2, section 2.4.1). We use undifferentiated buildings that are derived from BD TOPO 

of IGN database. Table 3.16 illustrates the number and occupied surfaces of the existing 

buildings of the Saint Sulpice la Pointe with regard to building type classification. It shows that 

near to the 69.80% of the current buildings are single dwellings and the low-rise buildings are 

29.76%, while the shop top buildings are only 0.44 %. After classifying the current buildings, 

we create the building type matrix contains the information corresponds to the types of building.  

Table 3. 16. Number, area and height of undifferentiated buildings according to our building 

classification, Saint Sulpice la Pointe. 

Building class 
Number of 

buildings 

Total Area 
Average height 

(m) 
m² % 

Single dwellings 2 782 420 239 69,80% 4 

Low-rise housing 1 189 179 156 29,76% 8 

Shop top housing 6 2 674 0,44% 15 

In 2016, according to INSEE data, 8934 inhabitants were living in Saint Sulpice la Pointe (Legal 

populations, INSEE, 2016). The population growth rate that is calculated for this study area is 
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equal 1.73% per year. Based on this rate the average population growth rate of the population 

for 2050 shows the increasing of 79% (see Chapter 2, section 2.4.2.2). 

Similar to the first study area we estimate the number of inhabitant per building. Table 3.17 

illustrates the estimation of the number of inhabitants per building type for undifferentiated 

buildings in Saint Sulpice la Pointe (see section 3.2.4.3). The estimated averages are based on 

the total population and the number of existing buildings. This estimation aims to give an idea 

about the number of individuals per buildings and help to define the link between building types 

and the population. However, Saint Sulpice la Pointe is also present in the study area, we re-

estimate the average number of inhabitant. The estimated average number of inhabitants per 

building are different to previous study area. The difference is because here we are in local level 

and the average can be closer to reality. 

Table 3. 17. Estimation of the average number of inhabitants for each type of buildings, Saint Sulpice 

la Pointe. 

Building class 
Estimated average number of 

inhabitants 

Single dwellings 2 

Low-rise housing 3 

Shop top housing 6 

The process of creating the urban fabric scenarios is similar to Toulouse study area. These 

scenarios are defined based on the combinations of single dwelling and shop top housing. Table 

3.18 represents the comparison of all these scenarios for the primary urban fabric scenarios. 

Table 3. 18. Comparing the population growth of four different primary urban fabric scenarios, Saint 

Sulpice la Pointe. 

Increased population 

per urban fabric 

scenarios in 2050 

Sprawl urban fabric 

scenario 

Medium dense urban 

fabric scenario 

Medium/high dense 

urban fabric scenario 

High dense urban 

fabric scenario 

100% single 

dwelling 

50% single dwelling 

& 50% shop top 

housing 

30% single dwelling 

& 70% shop top 

housing 

100% shop top 

housing 

Scenario protection 

level 0 (NEP) 
5 346    60% 10 692    120% 12 830    144% 16 038    180% 

Scenario protection 

level 1 (LEP) 
5 208    58% 10 416    117% 12 499    140% 15 624    175% 

Scenario protection 

level 2 (MEP) 
4 684    52% 9 368    105% 11 242    126% 14 052    157% 

Scenario protection 

level 3 (EEP) 
4 222    47% 8 444    95% 10 133    113% 12 666    142% 

Attraction-based 

scenario protection 

level 1 (ALEP) 
5 608    63% 11 216    126% 13 459    151% 16 824    188% 
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As it is illustrated in table 3.18, among primary urban fabric scenarios, sprawl urban fabric 

scenario could not provide desired amount of the population increasing rate and all 

environmental-based scenarios make less than 79%. Other urban fabric scenarios also passed 

this rate. Therefore, we define final urban fabric scenarios considering other results of SLEUTH 

in different growth cycles (table 3.19). In final scenarios, the SLEUTH results of 18, 23 and 28 

growth cycles, provide the desirable rate of population. The combination of the buildings in 

both medium dense urban fabric scenario and medium/high dense urban fabric scenario are 50% 

single dwelling and 50 % shop top housing while they are produced with different growth cycles. 

We also create another urban fabric scenario with 33 growth cycle and the combination of 45% 

single dwelling, 45% low-rise and 10% shop top housing which gives the population rate 

around 79%. 

Table 3. 19. Urban fabric scenarios comparison according to the growth cycle to have similar rate of 

increased population. The gray column represents the population increasing of low dense urban fabric 

scenario during 33-growth cycle that is closer to the existing urban fabric, Saint Sulpice la Pointe. 

Increased population per urban 

fabric scenarios in 2050 

Low dense urban fabric 

scenario 

Medium dense urban 

fabric scenario 

Medium/high dense 

urban fabric scenario 

High dense urban 

fabric scenario 

45% single dwelling & 

45% low-rise & 10% 

shop top housing 

50% single dwelling & 

50% shop top housing 

30% single dwelling & 

70% shop top housing 

100% shop top 

housing 

33th growth cycle 28th growth cycle 23th growth cycle 18th growth cycle 

Scenario protection level 0 

(NEP) 
7 618    85%  8 892  100%  7 236    81%  8 460    95% 

Scenario protection level 1 

(LEP) 
7 421    83%  8 664    97%  7 052    79%  8 100    91% 

Scenario protection level 2 

(MEP) 
6 675    75%  7 924    89%  6 456    72%  7 470    84% 

Scenario protection level 3 

(EEP) 
6 016    67%  7 100    79%  5 728    64%  6 522    73% 

Attraction-based scenario 

protection level 1 (ALEP) 7 991    89%  9 424    105%  7 724    86%  8 946    100% 

 

As shown in table 3.19, low dense urban fabric scenario accommodate (nearly) the number of 

inhabitants through environmental scenario protection level 2 (75%). The rate of 79% for 

medium dense urban fabric scenario is obtained through scenario protection level 3 and for 

medium/high dense urban fabric scenario via scenario protection level 1. High dense urban 

fabric scenario could accommodate more population while less sprawl. 
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3.4.  Developing Different Simulation Scenarios to Illustrate the Impacts of 

Environmental Constraints, Construction and Population on the Growth of a small 

community - Rieucros rural area 

The last study area is Rieucros, a small community in a rural area that is located in the 

department of Ariege in south of Toulouse (43°05′07″ North, 1°46′04″ East) (see figure 3.29). 

The extent of the study area is 400 ha with 686 inhabitants (Legal populations, INSEE, 2016).  

 

 

Figure 3. 29. Location and extent of the urban area of Rieucros study area 
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3.4.1. Data and Materials - Rieucros  

Geospatial database and geographic information systems are applied to create the input maps. 

All the input maps have the size of 100×100 pixels that feature a cell size of 20m×20m (~400m2). 

Similar to Toulouse, the Geospatial database that is used as input data consists the maps of 2000, 

2008, 2012 and 2017 as follow: 

 Slope and hillshade maps are derived from Digital Elevation Model (DEM) of RGE 

ALTI with a spatial resolution of 5m, provided by IGN.  

 Urban areas, excluded areas and transportation maps are generated automatically from 

BD TOPO and BD ORTHO from IGN. Urban map is classified into two classes of urban 

and nonurban.  

 Population and census on district zone are taken from INSEE database of 2011.  

Using SLEUTH, different 2D urban growth prospective scenarios are defined. The 

undifferentiated buildings with more than 3m height and more than 50m2 surface from BD 

TOPO (IGN data base) are used and a dilation-erosion (20m) according to the pixel size is 

applied to create the urban maps (see chapter 2). Figure 3.30 illustrates the SLEUTH input data 

for Rieucros study area. The databases and the procedures are as previous study areas. 

3.4.2. Environmental Constraints Scenarios - Rieucros 

Similar to previous study area, five different environmental protection scenarios are defined by 

altering the excluded map including (see sections 2.3.3 chapter 2): 

 Scenario Protection Level 0 (Nearly No Environmental Protection - NEP) (see figure 

3.31) 

 Scenario Protection Level 1 (Limited Environmental Protection - LEP) (see figure 3.32) 

 Scenario Protection Level 2 (Moderate Environmental Protection - MEP) (see figure 

3.33) 

 Scenario Protection Level 3 (Extreme Environmental Protection - EEP) (see figure 3.34) 

 Attraction-based Scenario Protection Level 1 (Attraction-based Limited Environmental 

Protection - ALEP) (see figure 3.35) 

Each pixel of the excluded maps have a value between 0 and 100 where, value 100 indicates 

100% protection from the possible urban growth and the value of zero shows free zones to build. 

The value of 50 represents a neutral weight for development. Between 100 and 50 is a relative 

exclusion whereas under 50 means that there is an attraction (see table 2.3).  
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 Figure 3. 30. Slope, hillshade, transportation, urban and exclusion maps of Rieucros 
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NEP exclusion map   

 

Figure 3. 31. NEP exclusion map generated for Rieucros, 2017. The excluded areas include the 

remarkable buildings, cemeteries, airfields, sport grounds; activity areas (administrative, culture and 

leisure, education, water management, industrial or commercial, health, sports and transport) and 

national parks; that are shown in red and the water surfaces that are represented in blue. They take the 

value of 100 and the others take the value of 50. 
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LEP exclusion map 

 

 

Figure 3. 32. LEP exclusion map generated for Rieucros, 2017. The excluded areas indicate the 

remarkable buildings, cemeteries, airfields, sport grounds; activity areas (administrative, culture and 

leisure, education, water management, industrial or commercial, health, sports and transport) and 

national parks that are shown in red, the water surfaces represented in blue and the closed forests areas 

(wood land, closed coniferous forest, closed deciduous forest, mixed closed forest and tree area) in dark 

green. They take the value of 100 and the others take the value of 50. 
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MEP exclusion map 

 

Figure 3. 33. MEP exclusion map generated for Rieucros, 2017. The excluded map contains all parks, 

protected areas and water bodies have made from the database of the IGN for 2017 including the 

remarkable buildings, cemeteries, airfields, sport grounds; activity areas (administrative, culture and 

leisure, education, water management, industrial or commercial, health, sports and transport) and 

national parks that are shown in red, the water surfaces represented in blue, the close forest areas (wood 

land, closed coniferous forest, closed deciduous forest, mixed closed forest and tree area) in dark green 

(value 100) and the open forest, hedge, woody heath, peupleraie, orchard, vine in light green (value 75).  
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EEP exclusion map

 

Figure 3. 34. EEP exclusion map generated for Rieucros, 2017. The excluded map contains the 

remarkable buildings, cemeteries, airfields, sport grounds; activity areas (administrative, culture and 

leisure, education, water management, industrial or commercial, health, sports and transport) and 

national parks that are shown in red, the water surfaces represented in blue, the close forest areas (wood 

land, closed coniferous forest, closed deciduous forest, mixed closed forest and tree area) in dark green 

and the open forest, hedge, woody heath, peupleraie, orchard, vine in light green. All excluded areas 

take the value of 100 and the others take the value of 50. 
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ALEP exclusion/attraction map 

 

 

Figure 3. 35. ALEP exclusion/attraction map generated for Rieucros, 2017. Four concentric zones with 

different attraction rates, make attraction force to the center. The areas in distances of seven pixels 

(~140m) around water surfaces are considered as attraction areas for dwelling as well. The LEP 

exclusion map is used for the excluded areas. 
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3.4.3. 2D Urban Growth Simulations - Rieucros 

The dispersion coefficients multiplier and the best-fit coefficients that are calculated for this 

study area are represented in table 3.20 and table 3.21 respectively. The process of obtaining 

the coefficients are presented in Annex C. 

Table 3. 20. Dispersion coefficient (DM) multiplier per environmental protection scenario, Rieucros 

Scenarios Dm_multi 

Scenario protection level 0 (NEP) 0,0002 

Scenario protection level 1 (LEP) 0,0002 

Scenario protection level 2 (MEP) 0,0002 

Scenario protection level 3 (EEP) 0,0002 

Attraction-based scenario protection level 1 (ALEP) 0,0002 

 

 

Table 3. 21. Best-fit coefficient values driven from calibration process of SLEUTH-3r, Rieucros 

Coefficient values 

Scenarios Dispersion Breed Spread Slope 
Road 

gravity 

Scenario protection level 0 (NEP) 100 1 25 100 1 

Scenario protection level 1 (LEP) 75 25 25 100 100 

Scenario protection level 2 (MEP) 75 1 25 100 1 

Scenario protection level 3 (EEP) 100 25 25 100 100 

Attraction-based scenario protection 

level 1 (ALEP) 75 50 25 100 1 

 

To test and evaluate the model, we first run the model with the input maps of 2000 to simulate 

the growth for 2017, for all five scenarios of environmental protection. The simulated urban 

maps for 2017 are illustrated in figure 3.36. Figure 3.37 illustrates the simulated urban map of 

2017, observed urban maps of 2000 and 2017 as well as their Ortho-photos. The comparison of 

the results is provided in table 3.22. 
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Figure 3. 36. Historical urban maps of 2000 and 2017 and prospective urban maps that are simulated 

by different environmental protection scenarios for 2017, Rieucros 
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Figure 3. 37. Comparison of the historical urban patch and corresponding prospective patch that is 

simulated by SLEUTH-3r through environmental protection scenario level 3 (EEP), Rieucros 
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Table 3. 22. Urban growth simulated results obtained from different environmental protection scenarios 

and the comparison of the results to the observed map of 2017, Rieucros 

Results -  2017 

Scenarios 

Observed 

urban area in 

2000 (pixels) 

Increased 

urban area 

(pixels) 

Urban growth 

rate (%) 

Urban area 

increased (ha) 

Total urban 

area (ha) 

Growth 

goodness-of-fit 

(%) 

Scenario protection level 0 

(NEP) 
255 109 29,95 4 15 74,18 

Scenario protection level 1 

(LEP) 
255 163 39,00 7 17 67,70 

Scenario protection level 2 

(MEP) 
255 141 35,61 6 16 70,96 

Scenario protection level 3 

(EEP) 
255 118 31,64 5 15 73,73 

Attraction-based scenario 

protection level 1 (ALEP) 
255 296 53,72 12 22 53,36 

Observed urban area in 

2017 
458 203 44,32 18 41 100 

Normally, as environmental protection increases, the growth rate of the growth areas should be 

reduced, but this value is increased at level 1 compared to level 0. This is because the scenarios 

are calibrated independently. In this calibration process different coefficients are extracted, 

however the process of calibration is similar. In this process we search for the coefficients that 

could give values for two metrics of the pixel fractional difference (PFD) and the clusters 

fractional difference (CFD) that cover the growth amount. Comparing the goodness of the fit 

show that scenario protection level 1 has produced the closer amount to observed map of 2017. 

The scenario protection level 0 simulate less urban growth rate (29.95%), but its simulation 

areas are closer to observed map with goodness-of-fit of 74.18% (comparing amount and 

accuracy). 

Afterwards, we have generate the prediction scenario files to produce the forecasting urban 

growth simulation for 2050. We run the model with the input urban map of 2017 (observed) to 

obtain the prospective urban map for 2050 for different scenarios. The simulation results of 

2050 are illustrated in figure 3.38 and table 3.23 represents the simulated prospective urban 

growth results for 2050. 
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Figure 3. 38. Urban map of 2050 and prospective urban maps for 2050, Rieucros 
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Table 3. 23. Urban growth simulated results obtained from different environmental protection scenarios 

for 2050, Rieucros. 

Results -  2050 

Scenarios 

Existing Urban 

Area in 2017  

(pixels) 

Urban growth 

rate  

(%) 

Urban area 

increased  

(ha) 

Total urban area 

(ha) 

Scenario protection level 0 (NEP) 458 47,48 17 35 

Scenario protection level 1 (LEP) 458 58,51 26 44 

Scenario protection level 2 (MEP) 458 55,79 23 41 

Scenario protection level 3 (EEP) 458 45,67 15 34 
Attraction-based scenario protection 

level 1 (ALEP) 458 67,90 39 57 

 

After obtaining the simulated results for 2050, we should create the urban fabric scenarios to 

see what could mean these new urban areas in terms of building types and the capacity of human 

settlement.  

3.4.4. Urban Fabric Scenarios - Rieucros 

The process of creating the urban fabric scenarios is similar to previous study area. We classify 

the current buildings (undifferentiated data of IGN, BDTOPO) according to defined building 

types (Chapter 2, section 2.4.1) and extract the number and occupied surfaces of the existing 

buildings (see table 3.24). This study area consists of two type of building including single 

dwellings (42.1%) and low-rise buildings (57.9%). Later, the building type matrix is created 

according to these two building types. 

Table 3. 24. Number, area and height of undifferentiated buildings according to our building 

classification, Rieucros. 

Building class 
Number of 

buildings 

Total Area 
Average height 

(m) 
m² % 

Single dwellings 187 28 205 42,10% 4 

Low-rise housing 134 38 798 57,90% 8 

The population of Rieucros is 686 inhabitants (Legal populations, INSEE, 2016), the annual 

growth rate is 1.70% and the average population growth rate for 2050 shows the increasing of 

77% of growth. For this amount the estimated average of inhabitants per building type is 

illustrated in table 3.25. 
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Table 3. 25. Estimation of the average number of inhabitant for each type of buildings, Rieucros. 

Building class 
Estimated average number of 

inhabitants 

Single dwellings 2 

Low-rise housing 3 

Next, we define the urban fabric scenarios based on the combinations of single dwelling and 

low-rise housing. Table 3.26 shows the population growth that is obtained from five different 

primary urban fabric scenarios from sprawl to high dense. 

Table 3. 26. Comparing the population growth of five different primary urban fabric scenarios, Rieucros. 

Increased 

population per 

urban fabric 

scenarios in 2050 

Sprawl urban 

fabric scenario 

Medium dense 

urban fabric 

scenario 

Medium/high 

dense urban fabric 

scenario 

High dense 

urban fabric 

scenario 

Too high dense 

urban fabric 

scenario 

100% single 

dwelling 

80% single 

dwelling & 20% 

low-rise housing 

50% single 

dwelling & 50% 

low-rise housing 

30% single 

dwelling & 70% 

low-rise housing 

100% low-rise 

housing 

Scenario 

protection level 0 

(NEP) 

1 022    149% 1 124    164% 1 278    186% 1 380    201% 1 533    223% 

Scenario protection 

level 1 (LEP) 
1 292    188% 1 421    207% 1 615    235% 1 744    254% 1 938    283% 

Scenario protection 

level 2 (MEP) 
1 156    169% 1 272    185% 1 445    211% 1 561    227% 1 734    253% 

Scenario protection 

level 3 (EEP) 
770    112% 847    123% 963    140% 1 040    152% 1 155    168% 

Attraction-based 

scenario protection 

level 1 (ALEP) 

1 938    283% 2 132    311% 2 423    353% 2 616    381% 2 907    424% 

The primary urban fabric scenarios are created from SLEUTH simulated map of 33 growth 

cycles. As illustrated in table 3.26, all primary scenarios passed the desired amount of the 

population increasing estimated for 2050 (77%). The primary scenarios gives an idea for 

defining the final urban fabric scenarios. Therefore, we tried to find out which growth cycle 

would match better the desired urban fabric. The final scenarios, are defined as low dense, 

medium dense and medium/high dense urban fabrics that obtained from the 23th, 18th and 13th 

growth cycles of the SLEUTH simulations table (3.27).  
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Table 3. 27. Urban fabric scenarios comparison according to the growth cycle to have similar rate of 

increased population. The gray column represents the population increasing of low dense urban fabric 

scenario during 33-growth cycle that is closer to the existing urban fabric, Rieucros. 

Increased population per urban 

fabric scenarios in 2050 

Low dense urban fabric 

scenario 

Medium dense urban fabric 

scenario 

Medium/high dense urban 

fabric scenario 

100% single dwelling 
80% single dwelling & 

20% low-rise housing 

50% single dwelling & 

50% low-rise housing 

23th growth cycle 18th growth cycle 13th growth cycle 

Scenario protection level 0 

(NEP) 
570    83% 471    69% 380    55% 

Scenario protection level 1 (LEP) 812    118% 667    97% 528    77% 

Scenario protection level 2 (MEP) 748    109% 612    89% 470    69% 

Scenario protection level 3 (EEP) 478    70% 409    60% 328    48% 

Attraction-based scenario protection 

level 1 (ALEP) 1 200    175% 1 012    148% 758    110% 

  

As illustrated in table 3.27, the medium/high dense urban fabric can accommodate 77% of 

population growth through scenario protection level 1. The two other urban fabric scenarios are 

more sprawl, however they can accommodate the desired number of inhabitants with more 

environmental protection level. 

3.5. The Impacts of Pixel Size and Calibration on Sustainability of Model 

Choosing the best pixel size is a challenge in CA urban modeling. The pixel size can affect the 

densification of the simulated area. In this research, we have applied the forecasting urban 

growth (SLEUTH) on three study areas with different scales. The input maps of SLEUTH are 

the raster data with the pixel size of 52m×52m for Toulouse, 30m×30m for Saint Sulpice la 

Pointe and 20m×20m for Rieucros. As discussed before, the urban maps are generated from 

undifferentiated buildings of BD-TOPO IGN with the surfaces more than 50m2, which are the 

shape files (vector data) that are extracted to raster data for using in SLEUTH. The pixel sizes 

of these raster files, can impress the simulation efficiency. 

 In some districts, only one or some individual buildings that have much less area than 

the pixel size makes it an urban pixel. For example, in Toulouse study area a building 

with an area well below the pixel surface make an urban pixel with 2700 m2. Therefore, 

these pixels are considered as urban area (as an input map of SLEUTH) and the 

densification cannot occur there, which causing the city to be sprawl. It should be noted 

that we cannot ignore the small buildings because they exist as a reality that can affect 

the urbanization. 
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 Choosing a small pixel size, especially for a large study area such as Toulouse, can 

cause other problems. The smaller pixel size cannot cover large buildings that often 

exist in big cities. In addition, due to the size of the study area the model computation 

time and required memory will greatly increase especially in calibration process.  

 The impact of pixel size in transportation maps is also noteworthy. The roads affect the 

urbanization, which is properly considered in SLEUTH, however the model considers 

the pixel width as the width of the roads.  

Therefore, we have applied different study areas in different scale to see the impacts of the pixel 

size as well. Although, Saint Sulpice la Pointe exist in Toulouse study area, we simulate the 

urban growth for this area separately. Figure 3.39 illustrates Saint Sulpice la Pointe in both 

simulation with pixel size of 52m*52m (according to Toulouse study area) and 30m*30m 

(according to Saint Sulpice la Pointe study area), which shows the impacts of pixel size and 

scalability as well. 

The process of choosing the best fit coefficients in calibration is not definite and there is no 

clear consensus to choose the appropriate ones to use during the calibration process. In 

calibration, we calculate some metrics in order to find the best coefficients of growth. These 

metrics are evaluated to find the best goodness of the fit in one or some metrics with less ratio 

of differences. This process is done separately for each environmental-based scenario, which 

make to find different coefficients and the model gives various results. In addition, we have 

defined different environmental protection scenarios. In these scenarios, except the exclusion 

map, we use same input maps in SLEUTH simulations. We cannot directly compare the results 

that are obtained, according to different exclusion maps, from different scenarios, however the 

impact of the environmental rules on urban growth simulation in different scenarios can be 

compared and evaluated. Therefore, we do not have control on simulation results, thus we 

propose to verify the impacts of the population growth and building types on the simulation 

results. 
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Figure 3. 39. Urban growth simulation of Saint Sulpice la Pointe study area according to two different 

pixels size 
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3.6. Chapter Conclusion 

In this chapter, we have applied the SLEUTH model on in three different areas contain urban 

metropolis (Toulouse), peri-urban (Saint Sulpice la Pointe) and (Rieucros) rural area in order 

to verify the impacts of environmental constraints, construction and population on urban 

sprawl. We use three different pixel sizes (for three study areas) to verify the impacts of pixel 

size in SLEUTH simulation results. The results show that the size of the pixel has great 

influence on simulation of the urban sprawl.  

We have integrated the prospective spatial data, urban fabrics and demography to improve the 

forecasted urban sprawl and to obtain more reliable urban growth simulation results for the 

desired target date. Two types of scenarios for each study area including the environmental 

protection scenarios and urban fabric scenarios are defined and set of different simulations that 

are related to different land priorities and constraints have proposed. 

Different forms of dense city and sprawl city are generated during the prospective urban growth 

simulation and compared while keeping the same population growth rate. We have improved 

the realism of each simulation and their adequacy with the real world by using common data 

such as topographic data, buildings and demography. We have showed the urban growth is 

widely dependent to building type and demography as the urban fabric factors, and different 

growth cycles might give the similar results by altering the scenarios. The urban fabric scenarios 

demonstrate the capacity of urban settlement according to different scenario.  

In next chapter we create the fictive 3D buildings according to our building classification and 

the urban fabric scenarios. Next, the 3D representation of the urban fabric scenarios are 

provided in order to visualize the scenarios and better understand the SLEUTH simulations. 
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Chapter 4 : Creation of Fictive 3D Buildings to 

Facilitate the Interpretation of Simulation Results 

and Differentiate Scenarios 

 

Contents 

4.1. 3D City Generating Applications and Procedure 

4.2. From Pixel to 3D Building Representation 

4.3. 3D Visualization of the City of Tomorrow 

4.4. Chapter Conclusion  

 

In previous chapters, the objective was to simulate different urban fabric scenarios for our 

urban growth forecasting model by explicitly integrating two variables of building classes and 

population density into the model. In this chapter, we generate the fictive 3D buildings and 

provide the 3D representation of the urban fabric scenarios, in order to visualize the scenarios 

and better understand the SLEUTH simulations. 

As discussed earlier, the SLEUTH results are limited to some pixels on which urbanization is 

supposed to occur. These pixels have to be transformed into 3D building representations, while 

respecting the building classification as well as urban fabric scenarios. Therefore, the pixels 

have to first create the footprints of the buildings, and next, take the value of the heights.  

To create a building from a pixel, we transform the pixel from raster data to building footprints. 

In the process of transformation of a pixel to building footprints, different considerations and 

constraints are taken into account such as the direction of the footprints and the distances to 

urban objects and geographic features. Thereafter, appropriate heights are added to these 

footprints. The height depends on building classification and probability of the height of 

adjacent buildings considering the urban fabric scenarios. Finally, a 3D representation is 

carried out. 

Although the provided 3D model is a primary and simple model, the 3D representations of 

scenarios allow having different images of the city of tomorrow for supporting the scientists 

and authorities in charge of urban planner and management. 
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In this chapter, 3D city modeling procedures and some 3D modeling tools and applications are 

reviewed briefly in section 4.1. The procedure of transforming a pixel to a 3D representation 

of a building is describe in section 4.2. The 3D visualization of the urban fabric scenarios are 

provided in section 4.3. The chapter is concluded in section 4.4. 

4.1. 3D Urban Generating Applications and Procedure  

In previous chapters, we have used a CA model and simulated the forecasting urban growth for 

our study areas. We have integrated urban fabric factors (i.e. building types and demography 

data) to improve the simulation. In this chapter, we aim to create the 3D building representations 

from the pixels and next, illustrate the 3D view of the urban fabric scenarios in order to 

differentiate the scenarios and understand the urban sprawl simulated by each scenario.  

The distance from the constraints and the neighborhoods of geographical objects are not 

explicitly considered in CA model. Therefore, we use the topographic objects such as buildings, 

rivers, excluded areas and the current buildings and make a set of constraints. Considering these 

constraints we create the footprints of the buildings and then we give them the value of the 

height according to the urban fabric scenarios.  

In recent years, governments, municipalities and companies have shown great interest in 

building virtual models of cities in 3D, for different purposes such as communication, 

management of urban heritage, the urban planning projects and simulation modeling in terms 

of noise, solar, pollution, climate change, flooding and urban sprawl (Servières and Gesquière, 

MAGIS, 2019). A 3D city models are used to represent the urban surfaces and the important 

objects attached to them including the buildings and the environment (Zhu et al., 2009; Billen 

et al., 2012; Billen et al., 2014; Pedrinis and Gesquière, 2017). They are used for a variety of 

different situations, including 3D reconstruction and semantic models (Julin et al., 2018).  

Although the main uses of 3D GIS is geo-visualization, they are also used for many other 

applications (Shiode, 2000; Kolbe and Gröger, 2003; Biljecki et al., 2015; Servières and 

Gesquière, MAGIS, 2019). In practical applications, different projects have different 

requirements for various reasons. For example, some projects have a small scope, require 

accurate models, and pay less attention to time and efficiency, while other projects, involving 

large areas, focus on creating effective and large-scale models in a limited time.  

In order to select the most appropriate technique for 3D modeling, some factors should be 

considered such as data availability, the performance accuracy, efficiency, speed and human 

capital and costs. There are many different techniques to generate a 3D city model such as 3D 

building creation from urban footprints (Ledoux and Meijers, 2011; Pedrinis and Gesquière, 

2017) and 3D reconstruction and data integration that are used in merging photogrammetry or 

laser scanning with GIS data (Haala and Kada, 2010; Kapoor et al. 2010; Hervy et al., 2012; 

Billen et al., 2012; EL Meouche et al. 2013; Tomljenovic et al. 2015). Photogrammetry and 

remote sensing have always focused on how to create fast, accurate and realistic 3D models of 

ground terrain and various features through the captured 2D image data (Kobayashi, 2006). In 

3D modeling, photographic measurement method can obtain geometric information of many 

features of the digital city model framework, like spatial location, terrain fluctuations, size and 
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height of features. In addition, a large amount of available texture information can be obtained 

from image data by manual or automatic processing.  

Interoperability of a 3D city model and integration with other models is defined according to 

some standard exchange formats in 3D GIS, such as IFC and CityGML.  

IFC is a neutral and open data format of an international standard (ISO 19739) developed by 

buildingSMART in order to facilitate interoperability exchange in the fields of architecture, 

engineering and construction (AEC) industry. IFC is an object-based file format with a data 

model that is commonly used in BIM based projects to facilitate the software interoperability 

(BuildingSMART, 2019). IFC works well in building modeling, though it has some lacks in 

building sectors such as incomplete implementation (e.g. extrusion, Boolean operations) or uses 

that are not really oriented towards the field of infrastructure (e.g. pre-stressing) (Benning, 

2017).  

CityGML is an Open Geospatial Consortium (OGC) standard based on the Geography Markup 

Language, which represents the geometrical, semantical, topological, and visual aspects of a 

3D city model (Cox et al., 2004; Gröger et al., 2012; Billen et al., 2012; Pedrinis and Gesquière, 

2017; Biljecki et al., 2017; Biljecki, 2017; Servières and Gesquière, MAGIS, 2019). It covers 

all relevant features within urban areas including buildings and infrastructures. The features are 

organized into modules such as building, transportation, water bodies, tunnel and bridge. In 

CityGML the features are represented in five discrete Levels of Detail (LoD) from zero to four 

(see figure 4.1). The geometric and semantic details increased in each level and reflects specific 

application requirements. The LoDs facilitate data visualization and analysis of GIS data. 

Although, each feature can be displayed simultaneously in different LoDs, while these features 

are in the same in a LoD, data integration and interoperability are facilitated (Biljecki, 2017). 

The LoD1 are often used for visualisation, however thay are also used in many applications, 

such as solar potential estimation, flood simulation, satellite visibility prediction and shadow 

estimation (Biljecki et al., 2015; Biljecki et al., 2017). 

 

Figure 4. 1. The five LoDs of the OGC CityGML (Gröger et al., 2012) 

Isikdag and Zlatanova (2009) indicated that the IFC models contain all necessary information 

to generate CityGML models in different LoDs. They have defined some rules to make a 

transformation framework between CityGML and IFC models for geometric transformation 

and semantic matching. Hijatzi et al. (2011) made a web based tool that integrated IFC data 
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into a 3D GIS environment. It could support the navigation and visualization functionalities and 

some analysis operations such as routing and network analyses. Even though, IFC and 

CityGML are two data exchange standards that are used in 3D modeling domain, they have 

some semantic and geometrical differences as follow (Gröger and Plümer, 2012): 

 CityGML can be used in all relevant urban elements such as the buildings and 

infrastructures, while IFC is still more used for modeling the buildings. 

 In CityGML, the building elements are defined as what are observed, like the walls for 

each single room. IFC defines the construction elements such as walls identified for a 

whole building. 

 As spatial properties definition, CityGML uses boundary representation and focuses on 

buildings usage and observation. IFC additionally applies the Constructive Solid 

Geometries (CSG) and sweep geometries. 

 In IFC, the objects are defined with one LoD. In CityGML they are represented in 

different LoDs. 

 IFC is used to build a building model whereas CityGML to represent a whole city. 

It should be mentioned that in this research the 3D buildings are created as the simple shape 

files and we would like to develop this model based on a data exchange standard in subsequent 

work.  

Nowadays, many tools exist in order to produce a 3D model in different field such as industrial, 

mechanical, electronic, architectural, film, television and games. In this section, some more 

common 3D tools are compared and their advantages and disadvantages are discussed including 

Maya, 3ds Max, Auto CAD, Sketch Up, Unity, City Engine and ArcGIS. Although there are 

some other BIM 3D modeling tools (such as Revit, Rhino, Archicad), they are rarely used in 

the study areas of a city scale because they are mainly used for modeling the new buildings. 

 Maya is a well-known 3D computer animation platform software with powerful modeling, 

strong rendering effects, outstanding performance, and focus on the details of the model. It 

is used in high-demand, professional-level film and television advertisements, game 

character animation, and movie 3D effects. As the software does not focus on polygon 

modeling and it is relatively difficult to use, it is rarely used in digital city modeling (Tang, 

2014). 

 3ds Max is a classic computer-aided design set that integrates 3D modeling, animation and 

rendering. It has a wide range of applications, including film and television effects, 

character animation, game development and multimedia production as well as industrial, 

mechanical, architectural design. 3ds max has a complete set of modeling tools including 

ability to effectively modify the plane or surface object model, provides 2D and 3D texture 

programs for fast and personalized texture processing. It supports a variety of flexible and 

efficient rendering processing techniques. It has a scalability, compatibility, and numerous 

plugins, which facilitate the practical application of various fields. In 3ds Max the terrain 

overlay is not supported (Neng Chen et al. 2014). 

 AutoCAD is currently one of the most widely used two-dimensional design tools. Its 

graphic drawing and editing capabilities are powerful. In the version of AutoCAD R10, 3D 
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modeling ability is added to enable the design, rendering and editing of 3D models. The 

main advantages of AutoCAD 3D include easy to use, high accuracy of graphic position, 

data exchange interface such as SCR, DXF, and development environment such as 

AutoLisp and ARX and its ability for the users to customize the environment and functions 

according to their own needs (Autodesk, 2019). However, its processing tools are relatively 

weak. Therefore, in practical applications, it is still based on two-dimensional graphics. 

 SketchUp is a 3D design software that is especially suitable for 3D building design. It 

consists of a set of design tools that directly face the design process rather than the 

performance. SketchUp can easily and quickly create and modify 3D models and share 

models under certain conditions. Other advantages of SketchUp include the ability to create 

large-scale 3D scenes and high efficiency in modeling (SketchUp, 2019). This tool is not 

powerful in rendering the features and the model fineness is not high.   

 Unity 3D is a multi-platform integrated game development tool that can easily create 

interactive content such as 3D video games, landscape visualization and real-time 3D 

animation. It integrates scene editing, graphics rendering, terrain and vegetation creation, 

physical effects, audio and video, lighting, shades. The unity 3D script is compatible with 

a variety of development languages and it has GUI class library resources. It also supports 

multiple platforms and has a dazzling 3D rendering effect. One of the biggest features of 

the Unity 3D game engine is the powerful script editor MonoDevelop. This provides a good 

development environment for later implementation of the visualization system (Zhao et al. 

2013). 

 City Engine can quickly create 3D scenes with 2D GIS data. The software is compatible 

with a variety of 3D data formats, and can achieve perfect support for ArcGIS, enabling 

many existing basic GIS data to quickly realize 3D modeling without conversion. City 

Engine can be used in digital cities, urban planning, rail transit, power, pipelines, 

construction, defense, simulation, game development and film production (Singh et al. 

2013). 

In this research, the term of 3D city model refers to virtual city model. In this chapter, the 3D 

buildings are created by giving the third dimension to 2D footprints of the buildings. The third 

dimension indicates the height of a building that is obtained from the urban fabric scenarios 

according to the building class and population density. The buildings are illustrated in block 

models with flat roof structure similar to LoD1 of CityGML to illustrate the differences between 

the scenarios. We use ArcGIS 10.6 for our 3D modeling process. GIS based applications let us 

creating the 3D buildings and analyzing geographic information. The objective here is not to 

create a 3D city model, but to illustrate the 3D representation of the urban fabric scenarios while 

respecting a set of constraints. 

4.2. From Pixel to 3D Building Representation 

As discussed before, the SLEUTH results are limited to some raster data that is difficult to 

interpret for decision makers. The results are some pixels on which urbanization is supposed to 

occur, which do not make much sense from urbanism point of view. Therefore, we propose to 

transform the pixels into 3D building representations, while respecting the building 

https://fr.wikipedia.org/wiki/Autodesk
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classification and urban fabric scenarios and to place different types of building in all of the 

available spaces and according to the chosen urban fabric scenarios. 

In order to visualize the scenarios in three-dimensional space, first, the pixels need to be 

transformed from raster data to building footprints. The number of the buildings that can be 

located in each pixel depends to pixel size and the surface of the buildings. An average surface 

for each building type are calculated based on the average surface of current buildings in each 

study area. Afterwards, appropriate heights are added to these footprints. The height is based 

on the urban fabric scenarios. In the process of transformation of the pixel to a building 

footprints, different considerations and constraints are taken into account such as the direction 

of the footprints and the distances to urban objects and geographic features. The distance of the 

new building to the urban objects and geographic features (e.g. current buildings, roads, 

railways, rivers, vegetation, cemeteries, airfields, activity areas) are obtained from the average 

distances of the existing buildings to them.  

 

Figure 4. 2. The 3D building representation procedure 

As it is illustrated in figure 4.2, in order to create the 3D building model, the pixels have to first 

change to polygons that indicate the buildings footprints, and take the value of heights. To 

transform a pixel to a polygon, first the SLEUTH output maps (the raster data that are derived 

from SLEUTH simulation for each urban fabric scenario) should be georeferenced and 

converted to vector data. This provides the polygons instead of each pixel, which simplify the 

processing (see section 4.2.1).  

In the next step, each polygon is oriented along its nearest road section. Afterwards, the 

polygons are divided to smaller squares depending to their sizes. Each polygon is divided to 

four squares for Rieucros and Saint Sulpice la Pointe and sixteen squares for Toulouse. This is 

because in our algorithm the position of the building respects certain distances from urban 

objects and geographic features. If these distances are not observed, the polygon will be 
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removed. Therefore, by dividing a polygon into smaller squares, we decrease the risk of losing 

the whole polygon. Furthermore, these small squares will be used in creating more than one 3D 

building in a big polygon. For example, in case of Toulouse a polygon has the area of 2700m2, 

while the buildings footprints are much less according to the building classification and the 

scenarios (see section 4.2.2).  

The urban objects and the geographic features define some constraints for a polygon. These 

constraints cause the configuration of the polygons to be adjusted. We have defined two type 

of constraints including linear constraints (e.g. roads, rivers and railways) and discrete 

constraints (e.g. cemeteries, airport, and existing buildings). The difference of these two 

constraints are on the calculation of the average distance of the current buildings to them that 

will define later in section 4.2.3. As discussed before, the pixels were turned along their nearest 

road sections. This overlaps the polygons that are adjacent each other. Therefore, in this step 

the overlaps and the parts of the polygons that are close to the constraints will remove. 

In next step, the small squares that are identified a polygon are assembled considering the urban 

fabric scenario and building class. As defined in previous chapter, each urban fabric scenario 

consists one or more type of building. Different surfaces for each building class are defined 

according to the average area of the current buildings in that class. Therefore, the surface of the 

building with regards to scenarios should be considered in the process of assembling the small 

squares. Finally, the surfaces are set according to the scenarios by making an erosion to achieve 

the desired footprints for each building (see section 4.2.4). 

The process of calculation the building heights is also done, in parallel to footprints generation. 

According to each scenarios this process is different. For scenarios that consist of one type of 

building class (e.g. single dwellings only), we only need to give the height of that building class 

to the building footprints. But for complex scenarios, the process is different. In this cases, we 

first calculate the surface of each building footprint. In the cases that the surfaces are too small 

that cannot be in the upper building class, we give the height according to their surfaces. Others 

footprints take the height of the nearest neighbors, until the rate of the building classes that are 

defined in each scenario will be filled. The process of giving height to the building foot prints 

will be explained in detail in section 4.2.5. 

4.2.1. From Pixel to Polygon 

The SLEUTH outputs include the non-geo-referenced raster that contains three types of pixels 

representing the current urban area, new urban area and null pixels. The purpose of this step is 

to geo-reference this raster data with respect to BD-TOPO vector data. Since SLEUTH 

generates the new buildings, they are not part of the BD-TOPO data. This process is based on 

a polynomial transformation that uses a first-order polynomial built on the control points and a 

least-squares adjustment algorithm. It renders the Root Mean Square deviations (RMS) as a 

control index, which in general, must be below the size of a pixel. For example, in Saint Sulpice 

la Pointe the pixels size are 30m×30m and RMS is acceptable (see figure 4.3).  
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Figure 4. 3. An example of geo-referencing the SLEUTH output map Saint Sulpice la Pointe (EEP 

simulation scenario, 2050) 

Later, the raster data is converted to vector data to facilitate the processing. In fact, we extract 

raster data from shape files (vector data) for creating the input maps of SLEUTH and now we 

do the inverse function. Before that, it is necessary to carry out a filter, which eliminates the 

null pixels. Otherwise, the model will consider the centers of all the pixels of the grid. To do 

this, we used the tool Set Null in the toolbox (Conditional Spatial Analyst tools) (see figure 

4.4). 
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Figure 4. 4. A schema of eliminating the null pixels 

4.2.2. Positioning the Building footprints 

After preparing the output of the SLEUTH model for 3D procedure, in this section, the 

generated polygons, should be rotated along the closest road section (Perret et al. 2010; Curie 

et al., 2011). The orientation is done based on the size of a polygon and the coordinates of its 

center (Xc, Yc). The orientation is made with respect to the nearest road section. In fact, the 

roads are divided into small sections, then their directing coefficient (Cd) is calculated with 

equation bellow: 

                                                    Cd =
Ye−Ys

Xe−Xs
                                                            (4-1) 

where (Xs,Ys) and (Xe,Ye) are the start and the end coordinates of the section, respectively. 

Then the angle of orientation of the road section is calculated according to the horizontal axis 

in two cases: 

Case 1, if Xe-Xs = 0 (section parallel to vertical axis): 

                                                                    Ɵ = π/2                                                              (4-2) 

Case 2, if not: 

                                                                Ɵ = arctan (Cd)                                                      (4-3) 

Finally, the squares are oriented using this angle by associating each oriented polygon to a local 

coordinate system and considering the coordinates of the corners of the polygons in the overall 

reference. Therefore, the solution becomes a simple change of reference in the plane (only 1 

rotation + 2 translations). The rotation according to Z is as follows: 

                                                       Rz = [
cos Ɵ − sin Ɵ 0
sinƟ cos Ɵ 0
0 0 1

]                                            (4-4) 

As illustrated in figure 4.5, the two translations of the center are Xc according to X and Yc 

according to Y.                                                 
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Figure 4. 5. Orientation of a polygon, R1 and R2 are the local and overall references respectively 

The change is made according to the following equation. The angle calculated in the 

counterclockwise direction. 

                                                      {
𝑋 = 𝑋𝑐 + 𝑥 cosƟ − 𝑦 sinƟ
𝑌 = 𝑌𝑐 + 𝑥 sinƟ + 𝑦 cosƟ

                                          (4-5) 

Where (x, y) are the coordinates of the corners expressed in local coordinate system and (X, Y) 

their associates in global coordinate system. 

                                                   {
𝑋 = 𝑋𝑐 + (

𝑅

2
) (cosƟ − sinƟ)

𝑌 = 𝑌𝑐 + (
𝑅

2
) (sinƟ + cosƟ)

                                       (4-6) 

Afterwards, we change the sign of the cosine and sine for the coordinates of four corners. 

 

Corner 1: 

                                   {
𝑥 =

𝑅

2

𝑦 =
𝑅

2

            {
𝑋1 = 𝑋𝑐 + (

𝑅

2
) (cosƟ − sinƟ)

𝑌1 = 𝑌𝑐 + (
𝑅

2
) (sinƟ + cosƟ)

                         (4-7) 

 

Corner 2: 

                                   {
𝑥 =

𝑅

2

𝑦 = −
𝑅

2

           {
𝑋2 = 𝑋𝑐 + (

𝑅

2
) (cosƟ + sinƟ)

𝑌2 = 𝑌𝑐 + (
𝑅

2
) (sinƟ − cosƟ)

                      (4-8) 
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Corner 3: 

                                 {
𝑥 = −

𝑅

2

𝑦 = −
𝑅

2

           {
𝑋3 = 𝑋𝑐 + (

𝑅

2
) (− cosƟ + sinƟ)

𝑌3 = 𝑌𝑐 + (
𝑅

2
) (−sinƟ − cosƟ)

                     (4-9) 

 

Corner 4: 

                                     {
𝑥 = −

𝑅

2

𝑦 =
𝑅

2

           {
𝑋4 = 𝑋𝑐 + (

𝑅

2
) (−cosƟ − sinƟ)

𝑌4 = 𝑌𝑐 + (
𝑅

2
) (−sinƟ + cosƟ)

                   (4-10) 

 

Pixel orientation process is automated using Python code using the Arcpy package (see figure 

4.6). 

 

Figure 4. 6. Python code used for orientation 

For our study areas, we used three different resolution of 20m×20m (Rieucros), 30m×30m 

(Saint Sulpice la Pointe) and 52m×52m (Toulouse). Whereas, based on the building 

classification, the defined area of the buildings are smaller than the area of the polygons (see 

table 4.1.).  

Table 4. 1. Number and the area of the current buildings classified based on the building types 

  Rieucros Saint-Sulpice-la-Pointe Toulouse 

Building classes 
Number of 

buildings 

Average 

Area (m2) 

Number of 

buildings 

Average 

Area (m2) 

Number of 

buildings 

Average 

Area (m2) 

Single dwelling 187 151 2 782 151 225 969 153 

Low-rise housing 134 290 1 189 151 183 221 185 

shop top housing   - - 6 446 5 352 455 

Medium-rise housing   - -  - - 2 223 538 

medium/high-rise housing   - - -  - 208 714 

High-rise housing   - -  - - 307 656 
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In order to both, considering the constraints and preserving the surfaces of the polygons as much 

as possible, the polygons are divided into the smaller squares. Therefore, if constraints drive 

the model to delete a polygon, the algorithm will delete a small square, which meet the 

restrictions, instead of whole polygon. To facilitate the process of dividing the polygon to the 

smaller squares, we follow divide and conquer strategy. For the case studies of Rieucros and 

Saint Sulpice la Pointe, the polygons are divided to 4 squares and for the Toulouse study area, 

the polygons are divided to 16 squares by double division out of 4 squares. Subdivision is done 

by frequently using the dichotomy of each side of the square. The process of division is done 

by the following method that is illustrated in figure 4.7. The python code has been made to 

automate this process as well (see figure 4.8). 

 

Figure 4. 7. An example of subdividing a polygon to smaller squares 

 

Figure 4. 8. Python code used for subdividing a polygon 

4.2.3. Configuration the Building footprints 

After orienting a polygon, some overlap between them to other layers of land occupation occur. 

In addition, it is necessary to define a distance between a polygon (which will define the new 

buildings representation) and different land occupation entities. The adjustment and positioning 

of new buildings follow the layout of the old buildings. Therefore, we apply the situation of 

existing buildings on the polygons in order to create new buildings that would respect the 

distance between buildings, distance to the river, and railways.  
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Two types of constraints are taken into account.  

 The constraints that have a linear distribution in space including vegetation, water, roads 

and railways. 

 The discrete constraints that can be modeled by points or small areas including 

remarkable buildings, cemeteries, airfields and sport grounds, activity areas, industrial 

or commercial areas and existing buildings.  

The logic that is considered for these two types of constraints bases on finding the nearest 

neighbor and respecting the distances similar to it. The only difference is the definition of the 

notion 'nearest' between linear and discrete constraints. 

To explain the method of defining linear constraints, we use the following example of the river. 

This method is essentially based on a double geo-processing buffer as follow: 

 First, we measure the distance from the nearest existing building to the river (Dr) then 

we make a buffer of ten times of this distance (10 × Dr). We assume all the buildings 

close to the sections of the river are at this distance (second buffer), which means the 

buildings that are at the edge of the river. 

 The average distance of these buildings from the river is then calculated (the average 

distance of the buildings located in the second buffer). This average is considered as a 

minimum distance for new buildings off the river bank. 

For other linear constraints, the similar procedure is done. In these cases the distance of the 

nearest building to each road section is measured and it is considered as an average distance for 

new buildings. Figure 4.9 illustrates the sample of the linear constraints definition. 

 

Figure 4. 9. Definition of river proximity constraint 
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To apply linear constraints to the polygon, the algorithm makes a second buffer with a distance 

equal to the average distance and remove the intersection of this buffer with the polygon. As 

mentioned earlier, one of the advantages of dividing polygons into smaller squares is that when 

we want to remove the intersection of polygons with a buffer, only the small squares that are 

within a buffer constraint are eliminated. When only a part of a polygon intersects with the 

buffer, this subdividing can help the model not to lose the polygon completely. In addition, a 

threshold for the intersection of a square to a buffer is defined. This threshold is equal to 30% 

of a square area that intersects with the buffer. This means, if a buffer overlaps more than 70% 

with a square, that square is deleted. 

The discrete constraints are defined by the undifferentiated buildings, industrial buildings and 

some special spaces (i.e. excluded area, remarkable buildings, cemeteries, airfields, activity 

areas). In order to taking into account the distance of a polygon from the discrete constraints, it 

is needed to measure the distance of the current buildings from each other and from other 

discrete constraints. After obtaining the average distance for the current buildings, this distance 

is applied to the nearest discrete constraints for each polygon. Therefore, a buffer of the average 

distance is generated that defines the constraint of the existence of a building or special place. 

Afterwards, the same argument for eliminating intersections as for linear constraints applies to 

discrete constraints. 

As discussed, in orientation each polygon rotates parallel to the closest road section. In the cases 

that are located two polygons next together, if the road orientation change, one polygon overlaps 

with part of the other. Therefore, this part of the overlap should be deleted from one of the 

polygons. The amount of overlap is depend on the angle of change of road direction from one 

section to another. The higher the road turning, the greater the overlap. In this step, the division 

of pixels plays an important role and the small square from one polygon, which overlap with 

another is removed. Therefore, we have created distances between the polygons while avoiding 

the problem of the superposition (see figure 4.10). 

 

Figure 4. 10. Removed overlap areas of the polygons 
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4.2.4. Building Footprints Generation 

After considering the required distance from the constraints, in this section we create the 

building footprints. In previous section the polygons were divided to small squares. Here, in 

order to generate the footprints these squares are assembles according to the building type 

classification and the urban fabric scenarios.  

As illustrated in table 4.2, we make identifiers for the polygons and the small squares, while 

dividing them that identify the polygons (N°2), the big squares (N°3) and the small squares (N° 

4). Therefore, each polygon is divided to four squares (for Rieucros and Saint Sulpice la Pointe 

study area) and sixteen squares (for Toulouse study area). These identifiers can help us to 

reconstruct the polygon. In addition, they make it possible to identify the position of the squares 

of the same level of division (N°1) and are used to create buildings footprints (see figure 4.11). 

Table 4. 2. Pixel identifiers description 

 

 

 

 

 

 

 

Figure 4. 11. An example of the polygons and the squares identifiers, case study of Toulouse 

N° Label Description 

1 name 

L : left 

R :right 

D :down 

U :up 

2 polygon 
identifier of a polygon (Toulouse, Saint 

Sulpice la Pointe and  Rieucros) 

3 big square 
identifier of a big square (Toulouse and 

Saint Sulpice la Pointe) 

4 small  square 
identifier of the squares of subdivision 

(Toulouse) 
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The idea is to build buildings footprints with the surfaces remains among the small squares. We 

have defined maximum of different areas (Smax) for the new building footprints with regards 

to the building classification, the urban fabric scenarios and the size of the polygons (see table 

4.3).  

Table 4. 3. Area of the new building foot prints buildings classified based on the building types 

  Smax (m2) 

Study area 
Single 

dwelling 

Low-rise 

housing 

shop top 

housing  

Medium-

rise 

housing  

Rieucros 144 224 - - 

Saint Sulpice la 

Pointe 
121 250 400 - 

Toulouse 196 272 - 441 

The squares are assembled according to Smax of each study area. This Smax classification is 

also used in the urban fabric scenario with mixed building classes. For make the footprints of 

buildings we should first assemble small squares (with same IDs), while checking if the total 

area exceeds the maximum defined area relative to each scenario (Smax). If the area of the 

assembled squares be less than Smax, the whole polygon will represent one building. Then, we 

build a layer that contains only the polygons whose surfaces exceed Smax. For these polygons, 

we return to the state of the decomposition using a simple function "clip" of ArcGIS. We gathers 

the two small squares which belong to the same subpixel (the square of the first division) but 

which are both to the left or to the right of the set of small squares of the sub-pixel, i.e. LU 

(Left/Up) with LD (Left/Down) and RU (Right/Up) with RD (Right/ Down).  

This combination is chosen because in our algorithm we assume the width of a building locates 

on the side of the road. Since the polygons are oriented towards the road, the sub-squares facing 

the road are chosen in such a way that they carry the 'U' (Up). In the case that we assemble the 

two squares that bring 'U' together and the two others bring 'D' together, we will have a house 

facing the road and one behind the other (see figure 4.12). Therefore, the both buildings will 

have access to nearest road.  

 



 

161 
 

 

Figure 4. 12. Assembling sub pixels respecting the roads 

Afterwards, we make the union of three sectors: 

 Left part: which contains the left part of the polygons that have the area larger than 

Smax 

 Right part: which contains the right side of the polygons that have the area larger than 

Smax 

 InfSmax: which contains polygons that have a surface less than Smax 

 

4.2.5. Positioning Building Representations according to Urban Fabric Scenarios 

The urban fabric scenarios are based on one or the combination of the building types 

considering the density of population. After assembling the squares, we define different 

possible types of footprints considering an erosion to each polygon according to their surfaces 

and the urban fabric scenarios (see figure 4.13, figure 4.14 and figure 4.15). Therefore, we 

obtain the desired surface for the building footprints as well as respecting the Smax and the 

distances between the new buildings. Defining different footprints is used in next step to create 

the 3D representation of the scenarios. 
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Figure 4. 13. Create the building footprints by making different erosion to each polygon according to 

the scenarios, Rieucros 

  

Figure 4. 14. Create the building footprints by making different erosion to each polygon according to 

the scenarios, Saint Sulpice la Pointe  
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Figure 4. 15. Create the building footprints by making different erosion to each polygon according to 

the scenarios, Toulouse 

There is often a relation between the height of the buildings, their number of floors and their 

footprints area as well as population density (Biljecki, 2017). In this section, we calculate 

different probabilities for each polygon according to its neighborhood building class. These 

gives the information of the possible height for the new buildings. The process of finding height 

for a new buildings respect different scenarios. For uniform scenarios, we add an extrusion 

value to our model. Given the scenarios where it is necessary to have mixed height values 

according to predefined percentages associated with each height (the percentages of different 

building types that are defined by urban fabric scenarios), we use an algorithm that combines 

the random aspect and a statistical interpolation (see figure 4.17). 

According to urban fabric scenarios, we have maximum three types of buildings that have three 

different heights (two types in Rieucros and three types in Toulouse and Saint Sulpice la 

Pointe). In our algorithm, we ordered the buildings in ascending order of their surfaces 

(SB1<SB2<SB3). For each building type of B1, B2 and B3, their percentages of combination 

in the scenarios are defined by Prs1, Prs2 and Prs3, respectively. P1, P2 and P3 indicate the 

average height probabilities for each building. The average height probability for each building 

is calculated from the nearest current building height to it. To do this, it is needed to classify 

the new building according to the distance to the neighbor as follow (see figure 4.16):  
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 Class1: New buildings that have at least one neighbor that is part of the current buildings 

on a circle (r1) 

 Class2: New buildings that have at least one neighbor that is part of the current buildings 

on a limited ring between the small circle (r1) and the large circle (r2) 

 Class3: New buildings that have no neighbors that are part of the current buildings on a 

circle (r2) 

The values r1 and r2 are the radius that are calculated from the distance nearest neighbor of 

each existing building and apply the quintile classification. We calculate the distance between 

the new building and the current buildings, which is in the spaces that is defined by the class 

(DIS), then the inverse distance (IDIS) and the sum of the inverse distance (SIDIS). Then, we 

calculate the influence weight of the type of each building on the type of the new building 

(building with height equal Hi). Finally, we deduce the total probability for each type associated 

with this building and we obtain a new Pi which give the probability of the building with height 

Hi. 

 

Figure 4. 16. Searching for the nearest neighbor  

In next step, we divide the buildings in three class according to their types associated with a 

scenario. We calculate the initial percentage (Pri) of each type for the variable percentage (Pr): 

 The buildings that have the surface SB1 associated with the height, H1 (Pr1 = Pri1, 

Prs1) 

 The buildings that have the SB2 surface associated with the height, H2 (Pr2 = Pri2, 

Prs2) 

 The buildings that have the surface SB3 associated with the Height H3 (Pr3 = Pri3, Prs3) 

Therefore, three different percentages for each type of building are calculated including:  

 Initial percentage: fixed 
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 Variable percentage: variable 

 Desired percentage: goal 

Then, we try to adjust the current percentage so that it is very close to the percentages entered 

by the user of the model according to the following diagram (see figure 4.17): 

 

Figure 4. 17. The algorithm of calculating the probability of the height for each building according to 

the building types and urban fabric scenario 

4.3. 3D Visualization of the City of Tomorrow 

After, generating the footprints and estimating their related height, in this section we illustrate 

the 3D representation of the model for each scenario. In order to visualize the 3D model of the 

city, we first create the Digital Elevation Model (DEM) using BD Topo data altitudes (IGN). 

We use a standard process of rasterization and 3D interpolation with Arcgis and obtained a 

DEM in IGN69 altimetry system. Afterwards, we use the "InterpolateShape" tool in the surface 

feature section (3D analysis on Arcgis) to associate third dimension with new buildings. The 

results are displayed in ArcScene by making an extrusion of the various layers including new 

buildings using the height calculated in the previous section. Figures 4.18, 4.19 and 4.20 

illustrate the 3D representations of the urban fabric scenarios of Rieucros study area for the 

environmental protection scenario level 3 (EEP). These figures show the different urban sprawl 

obtained for the urban fabric scenarios. 
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Figure 4. 18. 2D and 3D views, medium/high dense fabric scenario (13 growth cycle), Rieucros 

 

 

 

Figure 4. 19. 2D and 3D views, medium dense urban fabric scenario (18 growth cycle), Rieucros 
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Figure 4. 20. 2D and 3D views, low dense urban fabric scenario (23 growth cycle), Rieucros 

 

4.4. Chapter Conclusion  

In this chapter, the SLEUTH results (pixels) are transformed into 3D building representations 

with regards to the urban fabric scenarios. We have transformed the pixel from raster data to 

building footprints. In this process we have consider different constraints such as the direction 

of the footprints and the distances to urban objects and geographic features. Afterward the 

probability of the appropriate heights depending to building classifications are calculated 

according to the urban fabric scenarios and added to these footprints and the results are 

displayed in ArcScene.  

Although the provided 3D model is a primary and simple model, 3D representations of 

scenarios allow having different images of the city of tomorrow for applying it to urban policies 

and supporting the scientists and authorities in charge of urban planner and management 
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Chapter 5 : Conclusion and Perspectives 

 

In final chapter, we review the research contributions of the thesis and discuss possible 

perspective work directions. This research proposes some urbanization scenarios by applying 

SLEUTH model improvement that integrates more topographic data, urban fabric and 

demographic data. SLEUTH’s acronym is derived from its data input requirements including 

Slope, Land use, Exclusion, Urban, Transportation and Hillshade. The proposed method 

investigates the impacts of building types and environmental rules on urban sprawl, in order to 

help the public policies decision making. 

 The main objectives of this work include: 

1. Representing the impacts of constructions and environmental constraints on urban 

sprawl. 

2. Generating diverse urbanization scenarios, which lead:  

 to show the possible impact of urban sprawl. 

 to study the Human Settlement Capacity (HSC). 

 to improve our understanding of an urban sprawl simulation. 

 to give different images of the city of tomorrow to choose and reflect on urban 

policies. 

 to improve public policies decision making. 

3. Challenging the results of the classical urban growth methods that are often independent 

from the factors of building types and population, and give an improvement to provide 

a more reliable method. 

4. Providing a way to simulate urban growth, with less semantic information loss, and to 

show the differences of sprawl and dense growth. 

With these objectives, this Ph.D. attempts to response of the following questions about the 

evolutionary trajectory of urbanization as well as densification: 

 What are the urbanization and densification? 

The balance between housing and land protection is one of the environmental and social 

concerns of the public authorities. Public policies are based on providing housing 

according to the demands while considering the effects of urbanization and 

densification. Urban growth modeling attempts to represent different scenarios of the 

urban expansions in terms of space consumption, the urban sprawl configuration, 



 

170 
 

density and demography, and the socio-economic and environmental effects of 

urbanization. A prospective simulation is interesting to explain the determinants of 

urbanization or to study the effects of new policies on artificialization. 

 

 Why doing urban sprawl simulation, while we know that all simulations are fictions and 

they are based on some assumptions? 

Urban growth simulations can be used to see what can happen in the future, and how 

will be the housing, population growth and land cover changes and where can occur. 

These simulations can help us find and protect some areas against urbanization. 

Moreover, they can be used to think about future urbanization and make choices on 

urban politics. 

Thesis Contributions 

The main contributions of this thesis are as follows: 

1. SLEUTH model has the possibility of generating different scenarios of land use changes 

by setting the composition of SLEUTH input layers. As discussed before, five different 

environmental-based scenarios are defined with different level of environmental 

protection. Four of them are scenarios level 0 to level 3, where the upper scenarios 

preserve more the environment (e.g. green lands and forests), and last scenario is defined 

as an attraction-based scenario that, in addition to excluded areas, also integrates areas 

of attraction into the simulation algorithm. The proposed environmental scenarios lead 

to simulate the forecasting urban growth while respecting geographical features and the 

environmental constraints. 

2. A building type classification is defined. The numbers and height of existing buildings 

are extracted and the current buildings are classified according to building type 

classification. The current buildings give us the prospective view for the futures 

building. The new urban pixels are also classified according to probabilities that are 

calculated with regard to their nearest neighbor (current buildings). 

3. SLEUTH model does not consider explicitly population in its simulation. For the current 

buildings the number of inhabitants are estimated and for the prospective urban growth 

the average estimate of population is calculated. 

4. Based on estimated population growth and building type classification, the primary 

urban fabric scenarios consist of different densities from sprawl to high dense urban are 

defined. 

5. Considering the amount of population that could be accommodate for each scenario and 

the estimated population for the target date the final urban fabric scenarios are specified. 

6. Fictive 3D buildings are generated and 3D representation of the urban fabric scenarios 

are provided, in order to facilitate the interpretation of simulation results, differentiate 

the scenarios and better understand the SLEUTH simulations. 
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Urban sprawl phenomena is a big challenge for the authorities and urban planners. Urban 

simulation techniques are willing to solve the various problems of urban growth modeling. 

Among all dynamic models the Cellular Automata (CA) models are more common for their 

applications in urban areas and they can be easily integrated with RS data and GIS. SLEUTH 

as a CA model offers great potential for simulating the dynamic nature of urban expansion and 

can be compatible with urban environment modeling. SLEUTH uses the historical data in order 

to calibrate the model. In this model, the impacts of population growth and urban tissue are 

implicitly considered during the calibration phase, however, the changes in population growth 

rate or in building types cannot be included in its simulations. In addition, the results of 

SLEUTH model are limited to some raster data that is difficult to interpret for decision makers. 

The results are some pixels on which urbanization is supposed to occur. These results do not 

make much sense from urbanism point of view. This Ph.D. provides a method to evaluate the 

SLEUTH results and to investigate the effects of environmental constraints and constructions 

on urban sprawl. In our research, the version SLEUTH-3r is used and different types of 

scenarios are defined according to urban policies.  

The Geospatial database that is used as input topographic data is composed of the maps of 2000, 

2008, 2012 and 2017. Slope and hillshade maps are derived from Digital Elevation Model 

(DEM) of RGE ALTI with a spatial resolution of 5m, provided by IGN. Urban areas, excluded 

areas and transportation maps are generated automatically from BD TOPO and BD ORTHO 

from IGN. Population and census on district zone are taken from INSEE database of 2011.  

In this research, the SLEUTH model is applied on three study areas including Toulouse 

metropolitan, Saint Sulpice la Pointe and Rieucros, in order to evaluate the scalability of the 

model. We use three different pixel sizes (for three study areas) to verify the impacts of pixel 

size in SLEUTH simulation results. The results show that the size of the pixel has great 

influence on simulation of the urban sprawl.  

In calibration process of SLEUTH, the growth coefficients are calculated in order to simulate 

the prospective urban growth with the same tendency as today. The metrics that are used for 

choosing the best-fit coefficients are calculated separately in calibration process for each 

scenario according its input maps. The process of choosing the best fit coefficients in calibration 

is not definite. There are different ways to find the appropriate coefficients that do not 

necessarily lead to a single answer. Therefore, several results can obtain from different 

scenarios that is difficult to control them. 

The environmental-based scenarios are created by altering exclusion maps of the input data of 

SLEUTH. Afterwards, by adding the building type and demographic factors, different urban 

fabric scenarios are generated in order to give more flexibility in urban sprawl simulation. 

Integrating the additional data leads hopefully to better parameterization of the model. Given 

that we know that prediction of urban growth is an indeterminate proposition, several 

prospective scenarios based on the new model parametrizations are defined related to different 

urban area (the Toulouse metropolitan, Saint Sulpice la Pointe that is a town around Toulouse, 

and Rieucros as a small community in a rural area), in order to query the simulation ability in 
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different scale. These scenarios show the simulation capabilities of the model and make it 

possible to improve our understanding of an urban sprawl simulation. The simulation results of 

the three different case studies with various sizes and populations provide a good view of the 

scalability of the proposed method. A 3D representation for each prospective urban growth 

simulations is provided to facilitate the interpretation of the SLEUTH simulation, to better 

understand the SLEUTH simulation results and to differentiate the scenarios, in order to support 

the scientists and authorities in charge of urban planner and management. The findings allow 

having different images of the city of tomorrow to choose and reflect on urban policies. 

Considering the specific population increased, the urban fabric scenarios provide four different 

type of urban growth including sprawl urban, medium dense urban, medium/high dense urban 

and high dense urban. The results show that changing the urban fabric scenarios has a strong 

impact on the limitation of urban sprawl, thus saving agricultural and natural landscapes. They 

also help us to understand how different urban fabrics impact the urban sprawl. 

In this research, different urban sprawl scenarios for different kind of environmental protection 

rules while taking into account the population demand or at least population growth estimation 

are defined. Some new effective factors including estimated population, building types and 

more topographic data are integrated to our model in order to improve the number and location 

of simulated pixels per growth cycle. Classification of the building types and the estimation of 

the population growth try to provide required amount of urban growth, and the protection rules 

attempt to regulate the location of growth areas. We have demonstrated that the urban growth 

is widely dependent to those factors and different growth cycles might give the similar results 

by altering the scenarios. Proposing different simulation of urban sprawl shows the possible 

impact of urban sprawl and the capacity of urban settlement according to different scenario as 

well. To conclude, we can say that the proposed method in this research can remarkably 

improve our understanding of an urban sprawl simulation. 

Perspective 

In the course of this Ph.D., we have faced to some challenges and questions. These queries lead 

us to further improvement and future works. 

Zoning: In this research, the SLEUTH model is used to simulate different study areas including 

a metropole, a town and a small commune in a rural area. In large cities, the building types and 

density of downtown and their suburbs are different. In general, the density decreases from the 

city centers towards the edges of the cities. In addition, there are few lands that are available to 

build in the centers. Zoning of the study area in the calibration phases of SLEUTH model could 

improve the results of the simulation and increase the accuracy of the model. Although, in this 

research, zoning is used in attraction-based environmental protection scenario for all the study 

areas, it can be considered in calibration mode, as well.  

Effects of road networks: As discussed in this research, the road network affects the SLEUTH 

results through the road gravity coefficient and road influenced growth rule. This means that 
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simulated urban expansion is influenced by the road network. The SLEUTH model, initially 

simulates the urban pixels for the first growth cycle and iteratively continues the process 

(considering the simulated urban map of the previous growth cycle) until achieving the target 

date. Although, the SLEUTH updates the urban map for each growth cycle in order to simulate 

the urban growth for the next step, the role of the new roads in this process has been overlooked. 

For this purpose, we have designed an algorithm, which aims to update automatically the 

transportation map to connect the simulated urban patches to the existing roads network. The 

shortest way is considered to connect the urban area to the road network, while avoiding to pass 

through protected or urbanized areas. When it is faced with protected or urbanized areas, it 

launches again at the end of the detour to finish the path. The algorithm runs frequently and the 

roads update in each period. This algorithm is a combination of two interactive process: the 

houses that are constructed influenced by roads gravity (roads creates houses) and the roads 

that are constructed to connect the new houses (houses creates roads). The results are presented 

in the EDUBIM (Da Silva et al., 2018), however, the algorithm is still in infancy.  

Therefore, updating the road network for each growth cycle during the modeling could 

influence the amount of the urban pixels and simulated urban expansion. Moreover, it can 

improve the process of building creation (chapter 4). In the 3D modeling of this research, when 

we want to adjust the polygons to a road section (in orientation step), the new roads can help to 

orient the polygons to the forecasting road networks that are closer to them. The can affect also 

in dividing the pixels and positioning the buildings.  

Modeling the non-residential 3D buildings: The 3D buildings that are created in this research 

are the undifferentiated buildings. The accuracy of the model can be improved by calculating 

the average estimate of employments and therefore obtaining the required amount of 

commercial and industrial buildings. Moreover, by estimating the population growth separately 

for different ages, we can define the scenarios that simulate the educational buildings and the 

sport activity areas, as well. 

Pixel resolution: By the pixel resolution of this research (52*52m, 30*30m and 20*20m), each 

pixel, often in largest pixels, represents more than one building. This means that in one pixel 

might be many buildings from different building class. For the future work, it could be 

considered the SLEUTH input maps with smaller pixel size (in case of availability of the data). 

In this case each building can be represented by one pixel or more. Later, the pixels that are 

belong to a building can be joined together, to represent the whole building (similar to section 

4.2.4, chapter 4). Therefore, the scalability of the model and accuracy of the simulation can be 

increased. Moreover, when the model is faced to constraints, the small pixels can be eliminated 

which affects the amount and precision of the simulated urban areas.  

As discussed in the report, in our model the pixels are divided to small squares size (for the 

study areas of Toulouse and Saint Sulpice la Pointe) in order to create buildings from the pixels. 

The pixel division is done also to limit deletion of urban pixels in places that overlap with 

restrictions or to observe the distance between pixels to restrictions or other urban objects. The 

maps with larger resolution can be used as in SLEUTH modeling, however, they greatly 

increase the running time of the algorithm. 
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Creating 3D buildings with more details: The 3D buildings represented in this research are 

the block models with flat roof structure (equivalent to LoD1 of CityGML). In the future works, 

buildings could be developed in more LoDs. Considering the new polygons achieved in chapter 

4, the 3D buildings with more LoDs can be created based on CityGML standards and construct 

the 3D building representations according to the footprints of the polygons (Pedrinis and 

Gesquière, 2017). Developing a 3D model based on CityGML can facilitate the data exchanges 

as well (Billen et al., 2012; Chaturvedi et al., 2017). 

Creation of the 3D buildings with respecting urban regulations: Local Urban Planning 

schemes (LUPs) aim to regulate the development of a city. Therefore, the urban plans are 

designed according to the scale of a city or a building as well as their displacement, orientations 

or other subjects while respecting LUP. The city issues have complex relations, which make it 

difficult to respect different aspects of the city in modeling (He et al., 2014; Brasebin et al., 

2016).  

He et al. (2014) have proposed to generate 3D building layouts that comply with LUP rules, 

while optimizing urban indicators. Their model respects some of the urban planning articles as 

well as considering the distance to parcel borders, distance between buildings, parcel coverage 

ratio, floor area ratio, angle to parcel borders and building height.  

In creation of the buildings (in chapter 4), the adjustment and positioning of new buildings 

follow the layout of the existing buildings. In addition, the average distance from new buildings 

to existing buildings and to other urban objects is calculated and considered in the creation of 

new buildings. In the future works, we can develop a model that respect to some of the articles 

that are provided by the urban planning code in France (similar to works of He et al. (2014) and 

Brasebin et al. (2016)), although, they have worked on a small study area. 

Applications of urban fabric scenarios: Except the effect of different urban fabric scenarios 

on environment and the impacts of constructions and environmental constraints on urban 

sprawl, the urban fabric scenarios that are presented in this research can be used in other 

applications. As an example, the amount of the energy consumption can be estimated according 

to dense and sprawl urban growth. The estimation of consuming energy can be achieved with 

regards to building classes, residential surfaces and the population growth in different scenarios, 

which can be used by decision makers for the future urban development. As another example, 

the traffic rate can be estimated according to the population and urban fabric scenarios, as well. 

This can help to calculate the pollution that can be produced according to different scenarios of 

dense and sprawl development.  
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Annex A: Classified List of Researches and Applications of 

Simulating Urban Growth and Land Use / Land Cover 

Change 

As mentioned in Chapter one, some distinct applications used as land use and urban simulation 

techniques have been identified. The more used urban growth and LUCC modeling techniques 

could be divided into four categories including fractal modeling, artificial neural network 

modeling, agent-based modeling and cellular automata modeling. Here, based on the categories 

defined before, a list of different simulation techniques as well as their required data, their 

constraints, their interoperability to other data and systems (e.g. RS data, GIS) are presented. 

The list of documented applications is illustrated in table A1.  The classified list could be useful 

for the urban planners and researchers to choose the best method for their use case and could 

provide an appropriate view for urban planners in the field of urban planning development. 

Table A. 1. Examples of the applications of urban growth and LUCC models, divided into four groups 

including fractal modeling, artificial neural network modeling, agent-based modeling and cellular 

automata modeling. 

Research title Application 
 

Fractal modeling: The fractals are the dynamic objects that their self-similarity and scale 

dependency can define the complexity of spatial objects (section 1.2.2.1) 

1 The Use of Remote Sensing and Landscape 

Metrics to Describe Structures and Changes 

in Urban Land Uses (Herold et el., 2002) 

In order to detect urban land use changes, the 

landscape metrics contain the fractal dimension are 

used.  

2 Urban Growth Prediction Modeling Using 

Fractals and Theory of Chaos 

(Triantakonstantis, 2012) 

The fractals urban growth and theory of Chaos are 

used for prediction modeling in the touristic village 

of Pogonia Etoloakarnanias, western Greece. 
 

Artificial neural network modeling: ANN models use a machine learning approach to quantify and 

to model complex behavior of urban development (section 1.2.2.2) 

3 Artificial Neural Networks: Forecasting 

Time Series (Vemuri and Rogers, 1994) 

In this research, the time series and the 

forecasting problem contains forecasting the 

behavior of multivariate time series using neural 

networks have been explored. 

4 Modeling urban dynamics with artificial 

neural networks and GIS (Weisner and 

Cowen, 1997) 

The GIS and ANN as spatial analytic tools are 

integrated in order to model the urban growth in 

sub-regions of a metropolitan area. Comparing to 

a linear regression model, ANN performs more 

accurate as a non-linear model of dynamic urban 

systems. 
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Table A.1. (Continued)      

Research title Application 

5 Using neural networks and GIS to forecast 

land use changes: a land transformation 

model (Pijanowski et al., 2002) 

The Land Transformation Model (LTM), GIS and 

ANN have been used in order to forecast land use 

changes of Michigan's Grand Traverse Bay 

Watershed; and the impact of some factors such 

as roads, highways, residential streets, rivers, 

Great Lakes coastlines, recreational facilities, 

inland lakes and agricultural density have been 

reviewed on urbanization patterns. 

6 Urban Expansion Simulation Using 

Geospatial Information System and 

Artificial Neural Networks (Tayyebi et al., 

2009) 

The GIS, ANN, Remote Sensing (RS), socio-

economic and environmental variables have been 

used to simulate an urban expansion model which 

parameterized for Tehran Metropolitan Area; and 

the impacts of some factors such as road, building 

area, service center, green space, elevation, 

aspect and slope on urbanization have been 

reviewed. 

7 An urban growth boundary model using 

neural network parameterization: An 

application to Tehran (Tayyebi et al., 2011) 

An urban growth boundary model (UGBM) is 

presented that has used ANN, GIS and RS to 

simulate the complex geometry of the urban 

boundary of Tehran, Iran. Seven predictor 

variables of urban boundary geometry of the 

study area including the roads, green spaces, 

slope, aspect, elevation, service stations, and 

built-area were used in this model. 

8 Urban growth modeling using an artificial 

neural network, a case study of Sanandaj 

city, Iran (Mohammady et al., 2014) 

The ANN, GIS and RS data set are used in this 

research in order to model the urban growth in 

Sanandaj metropolitan, Iran. The data set that has 

been used contains the distance to principle roads, 

distance to residential areas, elevation, slope, 

distance to green spaces and distance to region 

centers. 

 

Agent-based modeling: Agent-based models are used to simulate the effects of the non-linear 

behavior of individuals on land change and the complex urban systems (section 1.2.2.3) 

9 Agent-based modeling and genetic 

programming for modeling land change in 

the Southern Yucatán Peninsular Region of 

Mexico (Manson, 2005) 

The use of genetic programming as a 

computational intelligence technique is shown in 

order to model a decision making considering the 

social and environmental drivers of land change 

in simulation modeling in the Southern Yucatán 

Peninsular Region of Mexico. 
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Table A.1. (Continued)  

Research title Application 

10 Key challenges in agent-based modeling for 

geospatial simulation (Crooks et al., 2008) 

The Agent-based modeling (ABM) and its 

challenges have been described. The challenges 

are included the purpose for which the model is 

built; the extent to which the model is rooted in 

independent theory; the extent to which the model 

can be replicated; the ways the model might be 

verified, calibrated and validated; the way model 

dynamics are represented in terms of agent 

interactions; the extent to which the model is 

operational; and the way the model can be 

communicated and shared with others. These 

challenges are investigated with a pedestrian 

model for emergency evacuation, a hypothetical 

model of residential segregation model and an 

agent-based residential location model on 

London. 

11 Modeling the impacts of land system 

dynamics on human well-being: Using an 

agent-based approach to cope with data 

limitations in Koper, Slovenia (Robinson 

et al., 2012) 

In this research, the utility theory, logistic 

regression, and cellular automaton-like rules are 

integrated to represent the decision-making 

strategies of different agents. The purpose of this 

study is to evaluate the impact of land-use and 

land-cover changes on human well-being in the 

Municipality of Koper, Slovenia, by investigation 

on the provision of highly productive agricultural 

soil, the extent of noise pollution, and quality-of-

life measurements.  

12 Spatiotemporal simulation of urban 

growth patterns using agent-based 

modeling (Arsanjani et al., 2013) 

They have integrated socioeconomic data, RS and 

GIS in order to provide a geo-simulation 

approach that couples agent-based modeling with 

multi criteria analysis and simulate 

spatiotemporal patterns of urban growth in 

Tehran, Iran. 
 

Cellular automata modeling: CA models are bottom-up and discrete dynamic spatial models that 

could be used in urban sprawl mechanisms, urban planning theories and urbanization effects 

(section 1.2.2.4) 

13 Cellular automata and fractal urban form: 

a cellular modeling approach to the 

evolution of urban land use patterns 

(White and Engelen, 1993) 

In this paper, a CA model is developed in order to 

simulate the spatial structure of urban land use 

over time. The model produced fractal land-use 

structures for the urbanized area and for each 

individual land-use type. 

14 From cells to cities (Batty and Xie, 1994) A general class of CA models is proposed for 

urban simulation. The model is used to simulate 

the historical ‘cell’ city of Savannah, Georgia. 
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Table A.1. (Continued)  

Research title Application 

15 Methods and techniques for rigorous 

calibration of a cellular automation model 

of urban growth (Clarke et al., 1996) 

In this research, the different calibration methods 

that used in CA simulation of the spatial extent of 

urban growth are explored. 

16 Cellular automata and geographic 

information systems (Wagner, 1997) 

The GIS and CA are integrated and the 

advantages of this integration are discussed. 

17 Loose-coupling of a cellular automaton 

model and GIS: Long-term growth 

prediction for the San Francisco and 

Washington/ Baltimore (Clarke and 

Gaydos, 1998) 

The calibration and prediction results of two 

rapidly growing study areas (San Francisco Bay 

region in California and Washington/Baltimore 

corridor in the Eastern United States) are 

presented and compared and the role of GIS in the 

model is discussed. 

18 Modeling urban dynamics through GIS-

based cellular automata (Batty et al., 1999) 

The generic problem of modeling within GIS is 

introduced and a range of hypothetical urban 

simulations that illustrate the diversity of model 

types is presented. 

19 Calibration of cellular automata by using 

neutral networks for the simulation of 

complex urban systems (Li and Yeh, 2001) 

In this research, a CA model is used to simulate 

the complex urban systems. They have used 

ANN, in both calibration and simulation process. 

20 Geographic Information Systems and 

Environmental Modeling (Clarke et al., 

2001) 

The modeling frameworks, paradigms and 

approaches of GIS, spatial data processing and 

environmental modeling are reviewed. 

21 Neural-network based cellular automata 

for simulating multiple land use changes 

using GIS (Li and Yeh, 2002) 

A new method of simulating the evolution of 

multiple land uses based is presented. In this 

method, the CA is integrated to neural networks 

in order to calculate conversion probabilities for 

competing multiple land uses. GIS is used to 

obtain site attributes and training data, and to 

provide spatial functions for constructing the 

neural network.  

22 Modeling Dynamic Spatial Processes: 

Simulation of Urban Future Scenarios 

through Cellular Automata (Barredo et al., 

2003) 

In this research, the land use factors are integrated 

to CA in order to simulate the urban land use 

scenarios for the city of Dublin. 

23 Urban growth pattern modeling: a case 

study of Wuhan city, PR China (Cheng and 

Masser, 2003) 

In this research, a spatial data analysis method 

including exploratory data analysis and spatial 

logistic regression technique is presented to 

model the major factors of urban growth, which 

can visually explore the spatial impacts of 

variables and can provide a systematic 

confirmatory approach for comparing them. 
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Table A.1. (Continued)  

Research title Application 

24 Cellular automata for simulating land use 

changes based on support vector machines 

(Yang et al., 2008) 

In order to achieve higher accuracy and overcome 

some constraint of CA models, a Support Vector 

Machine-Cellular Automata (SVM-CA) model 

has been developed for the Shenzhen City, China. 

25 A decade of Cellular Urban Modeling with 

SLEUTH: Unresolved Issues and 

Problems (Clarke, 2008) 

The SLEUTH cellular automaton urban model is 

introduced, the applications are reviewed and 

some model improvements and sensitivity tests 

are mentioned. 

26 Fuzzy inference guided cellular automata 

urban growth modeling using multi-

temporal satellite images (Alkheder et al., 

2008) 

In this research, a fuzzy inference guided CA 

approach is developed to model the growth of the 

city of Indianapolis. 

27 Modeling dynamic urban expansion 

processes incorporating a potential model 

with cellular automata (He et al., 2008) 

An urban expansion dynamic model is developed 

that incorporates a potential model into a CA 

model for Beijing, China.  

28 Using neural networks and cellular 

automata for modeling intra-urban land-

use dynamics (Almeida et al., 2008) 

The CA simulation model and a supervised back‐
propagation neural network are used in order to 

simulate intra‐urban land‐use change model. 

29 Application of an integrated system 

dynamics and cellular automata model for 

urban growth assessment: A case study of 

Shanghai, China (Han et al., 2009) 

An integrated system dynamics and CA model in 

socio-economic driving forces analysis and in 

urban spatial pattern evaluation for Shanghai city 

in China is presented. 

30 Urban ecological security assessment and 

forecasting, based on a cellular automata 

model: a case study of Guangzhou China 

(Gong et al., 2009) 

In this paper, a forecasting model for ecological 

security based on CA has been developed by 

using preliminary spatial data from an ecological 

security assessment of Guangzhou in China. 

31 Cellular Automata Models for the 

Simulation of Real-world Urban 

Processes: A Review and Analysis (Santé 

et al., 2010) 

Some urban CA models that applied to real-world 

cases are reviewed and compared in this research.  

32 Designing and implementing a regional 

urban modeling system using the SLEUTH 

cellular urban model (Jantz et al., 2010) 

In this research, a new scenario-dependent 

version of SLEUTH is presented. In this version, 

some modifications are done in order to increase 

performance efficiency of model including 

modifications to address scale sensitivity, 

calibration statistics, decreasing memory 

requirements and improving processing speed. 
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Table A.1. (Continued)  

Research title Application 

33 A cellular automata model of land cover 

change to integrate urban growth with 

open space conservation (Mitsova et al., 

2011) 

A Markov chain model of land cover change at a 

regional scale is developed in order to integrate 

protection of environmentally sensitive areas into 

urban growth projections.  

34 Detecting land-use/land-cover change in 

rural-urban fringe areas using extended 

change-vector analysis (He et al., 2011) 

An extended change-vector analysis (CVA) 

approach that incorporates textural change 

information into the traditional spectral-based 

CVA is proposed in order to detect land-use/land-

cover changes in rural–urban fringe areas. 

35 Dynamic modeling of forest conversion: 

simulation of past and future scenarios of 

rural activities expansion in the fringes of 

the Xingu National Park, Brazilian 

Amazon (Maeda et al., 2011) 

In this research, a spatially explicit dynamic 

model of land cover and land use change is used 

in order to simulate the expansion of agricultural 

and cattle raising activities within a watershed 

located in the fringes of the Xingu National Park, 

aiming to identify the role of driving forces of 

change in the study area. 

36 Forecasting Urban Growth Based on GIS, 

RS and SLEUTH Model in Pune 

Metropolitan Area (KantaKumar et al., 

2011) 

The SLEUTH model, GIS and RS are integrated 

to anticipate urban growth in Pune Metropolitan 

area. The Brute force method has been adopted in 

calibration mode to sequentially narrow down the 

ranges of coefficient values with respect to the 

increasing spatial resolution of datasets in the 

three phase containing the coarse, fine and final 

calibration.  

37 Modeling Dynamic Urban Growth Using 

Cellular Automata and Particle Swarm 

Optimization Rules (Feng et al., 2011) 

A dynamic urban growth CA model is developed 

by using particle swarm optimization (PSO-CA) 

approaches with inertia weight in Fengxian 

District of Shanghai Municipality, eastern China. 

38 Multiple scenario analyses forecasting the 

confounding impacts of sea level rise and 

tides from storm induced coastal flooding 

in the city of Shanghai China (Yin et al., 

2011) 

In this paper, two scenario-based model contain 

sea level rise and storm surge flooding along the 

Shanghai coast are developed by using previously 

developed inflow calculating and flood routing 

models. 

39 Random forest classification of 

Mediterranean land cover using multi-

seasonal imagery and multi-seasonal 

texture (Rodriguez-Galiano et al., 2012) 

The machine learning, multi-temporal Landsat 

satellite image, texture variables, and spectral 

bands are used to quantify the urban growth 

annually. The Random Forest classification 

system has been used to determine and select the 

most important textural features. Incorporating 

the geostatistical texture in Random Forest 

classifiers leads to increase in accuracy. 
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Table A.1. (Continued)  

Research title Application 

40 Cellular automata-based model for 

developing land use ecological security 

patterns in semi-arid areas: a case study of 

Ordos, Inner Mongolia China (Mao et al., 

2013) 

A CA model is developed to optimize the land use 

patterns in semi-arid areas in Northern China in 

the context of ecological security and land use 

suitability. 

41 The performance of random forests in an 

operational setting for large area 

Sclerophyll forest classification (Mellor et 

al., 2013) 

In this research, a Random Forest classifier using 

multi-spectral satellite sensor imagery for large 

area feature classification is developed in order to 

evaluate the mapping and monitoring forest 

extent.  

42 A GIS-based model to analyze the spatial 

and temporal development of oil palm land 

use in Kuala Langat district (Nourqolipour 

et al., 2014) 

CA model, multi-criteria evaluation (that used to 

provide transition rules of CA iterations), and 

Markov chain analysis (that used to assign a 

transition probability to each single pixel at the 

time steps) are integrated in order to simulate the 

oil palm expansion. 

43 Predicting Functional Role and 

Occurrence of Whitebark Pine (Pinus 

albicaulis) at Alpine Treelines: Model 

Accuracy and Variable Importance (Resler 

et al., 2014) 

In order to predict whitebark pine's functional 

role, four different modeling approaches 

including the general linear models, classification 

and regression trees, random forests, and support 

vector machines are applied and their prediction 

accuracy and variable importance are compared 

in this research. 

44 Modeling Urban Growth with GIS Based 

Cellular Automata and Least Squares 

SVM Rules: A Case Study in Qingpu–

songjiang Area of Shanghai, China (Feng 

et al., 2015) 

In the proposed model, the Least Squares SVM 

(LS-SVM) rules are integrated to CA and GIS in 

order to generate a direct solution by solving a set 

of linear equations instead of representing the 

optimization problem as one of quadratic 

programming. This model can dynamically 

update the transition rules for each iteration of the 

model without needs of any arbitrary definition of 

a transition probability threshold. 

45 Simulation of land use/land cover change 

and its effects on the hydrological 

characteristics of the upper reaches of the 

Hanjiang Basin (Deng et al., 2015) 

In order to simplify the structure of simulation 

models and evaluate the impact of land use/cover 

change on surface runoff and evapotranspiration 

an ANN-based CA model is developed in this 

research. This model can effectively reflect the 

complex relations between the spatial variables 

and significantly reduce the simulation time. 
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Table A.1. (Continued)  

Research title Application 

46 Simulating Urban Growth Using a 

Random Forest-Cellular Automata (RF-

CA) Model (Kamusoko and Gamba, 2015) 

In this research, a random forest-cellular 

automata (RF-CA) model is developed to 

simulate the urban growth of Harare Metropolitan 

Province, Zimbabwe. The proposed model can 

handle a large database including the thousands 

of input numerical and categorical variables 

while quantify each input variable into an 

importance measure.  

47 Modélisation paramétrique 3D et multi-

échelle du développement résidentiel : 

exemple du modèle SLEUTH3D (3D 

parametric and multiscale modeling of 

residential development: example of 

model SLEUTH3D) (Da Silva et al., 2018) 

They have developed a primary 3D simulation 

model of residential development SLEUTH3D. 

In proposed model, the transportation map is 

automatically updated to connect the simulated 

urban patches to the existing roads network. 

48 SLEUTH urban and land use change 

model (Project Gigalopolis, 2018) 

The Gigalopolis project provides an open source 

CA urban and land use change model. 
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Annex B: SLEUTH Urban Growth Model Process Flow 

and the Scenario File Description  

 

Contents 

B.1.Data Set Preparation 

B.2.Scenario File Example - Toulouse Protection Scenario Level 3 (Extreme 

Environmental Protection - EEP) 

B.3.Process Control and Model Execution 

 

B.1. Data Set Preparation 

 

Create Geographic Temporal Database: 

 

 Source data: historical maps (2000, 2008, 2012 and 2017) 

o Slope (from Digital Elevation Model (DEM) of RGE ALTI with a spatial 

resolution of 5m, provided by IGN) 

o Land use (from BD TOPO and BD ORTHO from IGN) 

o Excluded (from BD TOPO and BD ORTHO from IGN) 

o Urban (from BD TOPO and BD ORTHO from IGN) 

o Transportation (from BD TOPO and BD ORTHO from IGN) 

o Hillshade (from Digital Elevation Model (DEM) of RGE ALTI with a spatial 

resolution of 5m, provided by IGN) 

 

 Geo-registration   

o extent (lat, long) 

 

 Resolution 

o Toulouse metropolitan  52m*52m  

o Saint Sulpice la Pointe  30m*30m 

o Rieucros  20m*20m 
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 Naming Convention: input data  GIF image format 

o Slope data GIF: format:  <location>.slope.[<user info>].gif 

o Land use data GIFs: format:  <location>.landuse.<date>.[<user info>].gif  

o Excluded data GIFs: format:  <location>.excluded.[<user info>].gif 

o Urban data GIFs: format:  <location>.urban.<date>.[<user info>].gif  

o Road data GIFs: format:  <location>.roads.<date>.[<user info>].gif 

o Background data GIF format:  <location>.hillshade.[<user info>].gif 

B.2. Scenario File 

A scenario file contains all necessary data for run such as: 

 Sets all parameters, constants 

 Sets echo options 

 Controls colors, etc. 

 #comments to guide 

Below, the Toulouse protection scenario level 3 (EEP) as an example in predict mode is 

represented. 

B.2.1. Master Control 

# FILE: 'scenario file' for SLEUTH land cover transition model  

#       (UGM  v3.0)  

#       Comments start with #  

#  

#   I. Path Name Variables  

#  II. Running Status (Echo)  

# III. Output ASCII Files  

#  IV. Log File Preferences  

#   V. Working Grids  

#  VI. Random Number Seed  

# VII. Monte Carlo Iteration  

#VIII. Coefficients  

#      A. Coefficients and Growth Types  

#      B. Modes and Coefficient Settings  

#  IX. Prediction Date Range  

#   X. Input Images  

#  XI. Output Images  

# XII. Colortable Settings  

#      A. Date_Color  

#      B. Non-Landuse Colortable  

#      C. Land Cover Colortable  
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#      D. Growth Type Images  

#      E. Deltatron Images 

#XIII. Self Modification Parameters  

B.2.2. Basic Settings 

# I.PATH NAME VARIABLES  

#   INPUT_DIR: relative or absolute path where input image files and  

#              (if modeling land cover) 'landuse.classes' file are  

#              located.  

#   OUTPUT_DIR: relative or absolute path where all output files will  

#               be located.  

#   WHIRLGIF_BINARY: relative path to 'whirlgif' gif animation program.  

#                    These must be compiled before execution.  

INPUT_DIR=../input/Toulouse/ 

OUTPUT_DIR=../output/Toulouse_pre/EEP_ 2050/ 

WHIRLGIF_BINARY=../Whirlgif/whirlgif  

 

# II. RUNNING STATUS (ECHO)  

#  Status of model run, monte carlo iteration, and year will be  

#  printed to the screen during model execution.  

ECHO(YES/NO)=yes  

 

# III. Output Files  

# INDICATE TYPES OF ASCII DATA FILES TO BE WRITTEN TO 

OUTPUT_DIRECTORY.  

#  

#   COEFF_FILE: contains coefficient values for every run, monte carlo  

#               iteration and year.  

#   AVG_FILE: contains measured values of simulated data averaged over  

#             monte carlo iterations for every run and control year.  

#   STD_DEV_FILE: contains standard deviation of averaged values  

#                 in the AVG_FILE.  

#   MEMORY_MAP: logs memory map to file 'memory.log'  

#   LOGGING: will create a 'LOG_#' file where # signifies the processor  

#            number that created the file if running code in parallel.  

#            Otherwise, # will be 0. Contents of the LOG file may be  

#            described below.  

WRITE_COEFF_FILE(YES/NO)=yes 

WRITE_AVG_FILE(YES/NO)=yes 

WRITE_STD_DEV_FILE(YES/NO)=yes  

WRITE_MEMORY_MAP(YES/NO)=YES 

LOGGING(YES/NO)=YES 
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B.2.3. Log Control 

# IV. Log File Preferences  

# INDICATE CONTENT OF LOG_# FILE (IF LOGGING == ON).  

#   LANDCLASS_SUMMARY: (if landuse is being modeled) summary of input  

#                      from 'landuse.classes' file  

#   SLOPE_WEIGHTS(YES/NO): annual slope weight values as effected  

#                          by slope_coeff  

#   READS(YES/NO)= notes if a file is read in  

#   WRITES(YES/NO)= notes if a file is written  

#   COLORTABLES(YES/NO)= rgb lookup tables for all colortables generated  

#   PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=  

#   TRANSITION_MATRIX(YES/NO)= pixel count and annual probability of  

#                              land class transitions  

#   URBANIZATION_ATTEMPTS(YES/NO)= number of times an attempt to urbanize  

#                                  a pixel occurred  

#   INITIAL_COEFFICIENTS(YES/NO)= initial coefficient values for  

#                                 each monte carlo  

#   BASE_STATISTICS(YES/NO)= measurements of urban control year data  

#   DEBUG(YES/NO)= data dump of igrid object and grid pointers  

#   TIMINGS(0:off/1:low verbosity/2:high verbosity)= time spent within  

#     each module. If running in parallel, LOG_0 will contain timing for  

#     complete job.  

LOG_LANDCLASS_SUMMARY(YES/NO)=yes  

LOG_SLOPE_WEIGHTS(YES/NO)=yes  

LOG_READS(YES/NO)=no 

LOG_WRITES(YES/NO)=no 

LOG_COLORTABLES(YES/NO)=no 

LOG_PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=1  

LOG_TRANSITION_MATRIX(YES/NO)=yes 

LOG_URBANIZATION_ATTEMPTS(YES/NO)=no  

LOG_INITIAL_COEFFICIENTS(YES/NO)=YES  

LOG_BASE_STATISTICS(YES/NO)=yes  

LOG_DEBUG(YES/NO)= yes 

LOG_TIMINGS(0:off/1:low verbosity/2:high verbosity)=1 

B.2.4. Monte Carlo Iterations/Working Grids 

# V. WORKING GRIDS  

# The number of working grids needed from memory during model execution is 

 

# designated up front. This number may change depending upon modes. If  

# NUM_WORKING_GRIDS needs to be increased, the execution will be exited 

# and an error message will be written to the screen and to 'ERROR_LOG' 
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# in the OUTPUT_DIRECTORY. If the number may be decreased an optimal   

# number will be written to the end of the LOG_0 file.  

NUM_WORKING_GRIDS=12 

 

# VI. RANDOM NUMBER SEED  

# This number initializes the random number generator. This seed will be 

# used to initialize each model run.  

RANDOM_SEED=9407 

 

# VII. MONTE CARLO ITERATIONS  

# Each model run may be completed in a monte carlo fashion.  

#  For CALIBRATION or TEST mode measurements of simulated data will be 

#  taken for years of known data, and averaged over the number of monte   

#  carlo iterations. These averages are written to the AVG_FILE, and   

#  the associated standard diviation is written to the STD_DEV_FILE.   

#  The averaged values are compared to the known data, and a Pearson 

#  correlation coefficient measure is calculated and written to the   

#  control_stats.log file. The input per run may be associated across  

#  files using the 'index' number in the files' first column.  

#  

MONTE_CARLO_ITERATIONS=100 

B.2.5. Dispersion (diffusion) Coefficient Multiplier  

# The following auxiliary values for Version D have been set to have 

# no effect on computation. 

AUX_DIFFUSION_MULT=0.004 

AUX_DIFFUSION_COEFF=1 

AUX_BREED_COEFF=1 

# The following auxiliary values for Version D have been set so that 

# the corresponding variables will have been initializaed. 

WRITE_RATIO_FILE(YES/NO)=yes 

WRITE_SLOPE_FILE(YES/NO)=yes 

WRITE_XYPOINTS_FILE(YES/NO)=yes 

B.2.6. Calibration Instructions 

# VIII. COEFFICIENTS  

# The coefficients effect how the growth rules are applied to the data. 

# Setting requirements: 

#    *_START values >= *_STOP values 

#    *_STEP values > 0 

#   if no coefficient increment is desired: 

#    *_START == *_STOP 
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#    *_STEP == 1  

# For additional information about how these values affect simulated 

# land cover change see our publications and PROJECT GIGALOPOLIS 

#  site: (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm).  

#  A. COEFFICIENTS AND GROWTH TYPES  

#     DIFFUSION: affects SPONTANEOUS GROWTH and search distance along the  

#                road network as part of ROAD INFLUENCED GROWTH.  

#     BREED: NEW SPREADING CENTER probability and affects number of ROAD  

#            INFLUENCED GROWTH attempts.  

#     SPREAD: the probabilty of ORGANIC GROWTH from established urban 

#             pixels occuring.               

#     SLOPE_RESISTANCE: affects the influence of slope to urbanization. As 

#                       value increases, the ability to urbanize 

#                       ever steepening slopes decreases.  

#     ROAD_GRAVITY: affects the outward distance from a selected pixel for 

#                   which a road pixel will be searched for as part of 

#                   ROAD INFLUENCED GROWTH. 

# 

B.2.7. Calibration Settings 

#  B. MODES AND COEFFICIENT SETTINGS  

#     TEST: TEST mode will perform a single run through the historical  

#           data using the CALIBRATION_*_START values to initialize  

#           growth, complete the MONTE_CARLO_ITERATIONS, and then conclude 

#           execution. GIF images of the simulated urban growth will be  

#           written to the OUTPUT_DIRECTORY.  

#     CALIBRATE: CALIBRATE will perform monte carlo runs through the  

#                historical data using every combination of the 

#                coefficient values indicated. The CALIBRATION_*_START   

#                coefficient values will initialize the first run. A   

#                coefficient will then be increased by its *_STEP value,   

#                and another run performed. This will be repeated for all 

#                possible permutations of given ranges and increments.  

#     PREDICTION: PREDICTION will perform a single run, in monte carlo  

#                 fashion, using the PREDICTION_*_BEST_FIT values  

#                 for initialization. 

 

CALIBRATION_DIFFUSION_START= 100 

CALIBRATION_DIFFUSION_STEP= 1 

CALIBRATION_DIFFUSION_STOP= 100 

 

CALIBRATION_BREED_START=     1 

CALIBRATION_BREED_STEP=      1 
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CALIBRATION_BREED_STOP=      1 

 

CALIBRATION_SPREAD_START=    25 

CALIBRATION_SPREAD_STEP=     1 

CALIBRATION_SPREAD_STOP=     25 

 

CALIBRATION_SLOPE_START=     25 

CALIBRATION_SLOPE_STEP=      1 

CALIBRATION_SLOPE_STOP=      25 

 

CALIBRATION_ROAD_START=      1 

CALIBRATION_ROAD_STEP=       1  

CALIBRATION_ROAD_STOP=       1 

 

PREDICTION_DIFFUSION_BEST_FIT= 100 

PREDICTION_BREED_BEST_FIT= 1 

PREDICTION_SPREAD_BEST_FIT= 25 

PREDICTION_SLOPE_BEST_FIT= 25   

PREDICTION_ROAD_BEST_FIT= 1 

B.2.8. Input 

# IX. PREDICTION DATE RANGE  

# The urban and road images used to initialize growth during  

# prediction are those with dates equal to, or greater than,  

# the PREDICTION_START_DATE. If the PREDICTION_START_DATE is greater  

# than any of the urban dates, the last urban file on the list will be  

# used. Similarly, if the PREDICTION_START_DATE is greater  

# than any of the road dates, the last road file on the list will be  

# used. The prediction run will terminate at PREDICTION_STOP_DATE.  

#  

PREDICTION_START_DATE=2017  

PREDICTION_STOP_DATE=2050 

 

# X. INPUT IMAGES  

# The model expects grayscale, GIF image files with file name  

# format as described below. For more information see our  

# PROJECT GIGALOPOLIS web site:  

# (www.ncgia.ucsb.edu/project/gig/About/dtInput.htm).  

#  

# IF LAND COVER IS NOT BEING MODELED: Remove or comment out  

# the LANDUSE_DATA data input flags below.  

#  

#    <  >  = user selected fields  
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#   [<  >] = optional fields  

#  

# Urban data GIFs  

#  format:  <location>.urban.<date>.[<user info>].gif  

#  

#  

URBAN_DATA= toulouse.urban.2000.gif  

URBAN_DATA= toulouse.urban.2008.gif  

URBAN_DATA= toulouse.urban.2012.gif  

URBAN_DATA= toulouse.urban.2017.gif  

#  

# Road data GIFs  

#  format:  <location>.roads.<date>.[<user info>].gif  

#  

ROAD_DATA= toulouse.roads.2000.gif  

ROAD_DATA= toulouse.roads.2008.gif  

ROAD_DATA= toulouse.roads.2012.gif  

ROAD_DATA= toulouse.roads.2017.gif  

#  

# Landuse data GIFs  

#  format:  <location>.landuse.<date>.[<user info>].gif  

#  

LANDUSE_DATA= toulouse.landuse.2000.gif  

LANDUSE_DATA= toulouse.landuse.2017.gif  

#  

# Excluded data GIF  

#  format:  <location>.excluded.[<user info>].gif  

#  

EXCLUDED_DATA= toulouse.excluded.[EEP].gif  

#  

# Slope data GIF  

#  format:  <location>.slope.[<user info>].gif  

#  

SLOPE_DATA= toulouse.slope.gif  

#  

# Background data GIF  

#  format:   <location>.hillshade.[<user info>].gif  

#  

BACKGROUND_DATA= toulouse.hillshade.gif 

B.2.9. Output 

# XI. OUTPUT IMAGES  

#   WRITE_COLOR_KEY_IMAGES: Creates image maps of each colortable.  
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#                           File name format: 'key_[type]_COLORMAP'  

#                           where [type] represents the colortable.  

#   ECHO_IMAGE_FILES: Creates GIF of each input file used in that job.  

#                     File names format: 'echo_of_[input_filename]'  

#                     where [input_filename] represents the input name.  

#   ANIMATION: if whirlgif has been compiled, and the WHIRLGIF_BINARY  

#              path has been defined, animated gifs begining with the  

#              file name 'animated' will be created in PREDICT mode.  

WRITE_COLOR_KEY_IMAGES(YES/NO)=yes  

ECHO_IMAGE_FILES(YES/NO)=yes 

ANIMATION(YES/NO)= yes 

B.2.10. Color Tables 

# XII. COLORTABLE SETTINGS  

#  A. DATE COLOR SETTING  

#     The date will automatically be placed in the lower left corner  

#     of output images. DATE_COLOR may be designated in with red, green,  

#     and blue values (format: <red_value, green_value, blue_value> )  

#     or with hexadecimal begining with '0X' (format: <0X######> ).  

#default DATE_COLOR= 0XFFFFFF white  

DATE_COLOR=     0XFFFFFF #white  

 

#  B. URBAN (NON-LANDUSE) COLORTABLE SETTINGS  

#     1. URBAN MODE OUTPUTS  

#         TEST mode: Annual images of simulated urban growth will be  

#                    created using SEED_COLOR to indicate urbanized areas. 

 

#         CALIBRATE mode: Images will not be created.  

#         PREDICT mode: Annual probability images of simulated urban  

#                       growth will be created using the PROBABILITY  

#                       _COLORTABLE. The initializing urban data will be  

#                       indicated by SEED_COLOR.  

#  

#     2. COLORTABLE SETTINGS  

#          SEED_COLOR: initializing and extrapolated historic urban extent 

 

#          WATER_COLOR: BACKGROUND_DATA is used as a backdrop for 

  

#                       simulated urban growth. If pixels in this file   

#                       contain the value zero (0), they will be filled  

#                       with the color value in WATER_COLOR. In this way,  

#                       major water bodies in a study area may be included  

#                       in output images.  
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#SEED_COLOR= 0XFFFF00 #yellow  

SEED_COLOR=  249, 209, 110 #pale yellow  

#WATER_COLOR=  0X0000FF # blue  

WATER_COLOR=  20, 52, 214 # royal blue 

B.2.11. Forecast Image 

#     3. PROBABILITY COLORTABLE FOR URBAN GROWTH  

#        For PREDICTION, annual probability images of urban growth  

#        will be created using the monte carlo iterations. In these  

#        images, the higher the value the more likely urbanizaion is.  

#        In order to interpret these 'continuous' values more easily  

#        they may be color classified by range.  

#  

#        If 'hex' is not present then the range is transparent.  

#        The transparent range must be the first on the list.  

#        The max number of entries is 100.  

#          PROBABILITY_COLOR: a color value in hexadecimal that indicates 

#                             a probability range.  

#            low/upper: indicate the boundaries of the range.  

#  

#                  low,  upper,   hex,  (Optional Name)  

PROBABILITY_COLOR=   0,    1,         , #transparent  

PROBABILITY_COLOR=   1,    10, 0X00ff33, #green 

PROBABILITY_COLOR=   10,   20, 0X00cc33, #  

PROBABILITY_COLOR=   20,   30, 0X009933, # 

PROBABILITY_COLOR=   30,   40, 0X006666, #blue 

PROBABILITY_COLOR=   40,   50, 0X003366, # 

PROBABILITY_COLOR=   50,   60, 0X000066, #  

PROBABILITY_COLOR=   60,   70, 0XFF6A6A, #lt orange 

PROBABILITY_COLOR=   70,   80, 0Xff7F00, #dark orange 

PROBABILITY_COLOR=   80,   90, 0Xff3E96, #violetred 

PROBABILITY_COLOR=   90,  100, 0Xff0033, #dark red 

B.2.12. Land Use Color Table 

#  C. LAND COVER COLORTABLE  

#  Land cover input images should be in grayscale GIF image format.  

#  The 'pix' value indicates a land class grayscale pixel value in  

#  the image. If desired, the model will create color classified  

#  land cover output. The output colortable is designated by the  

#  'hex/rgb' values.  

#    pix: input land class pixel value  

#    name: text string indicating land class  
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#    flag: special case land classes  

#          URB - urban class (area is included in urban input data  

#                and will not be transitioned by deltatron)  

#          UNC - unclass (NODATA areas in image)  

#          EXC - excluded (land class will be ignored by deltatron)  

#    hex/rgb: hexidecimal or rgb (red, green, blue) output colors  

#  

#              pix, name,     flag,   hex/rgb, #comment  

LANDUSE_CLASS=  0,  Unclass , UNC   , 0X000000  

LANDUSE_CLASS=  1,  Urban   , URB   , 0X8b2323 #dark red   

LANDUSE_CLASS=  2,  Range   ,       , 0Xee9a49 #tan  

LANDUSE_CLASS=  3,  Forest  ,       , 0X006400 

B.2.13. Growth Rule Image 

#  D. GROWTH TYPE IMAGE OUTPUT CONTROL AND COLORTABLE  

#  

#  From here you can control the output of the Z grid  

#  (urban growth) just after it is returned from the spr_spread()  

#  function. In this way it is possible to see the different types  

#  of growth that have occured for a particular growth cycle.  

#  

#  VIEW_GROWTH_TYPES(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  GROWTH_TYPE_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  GROWTH_TYPE_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_GROWTH_TYPES(YES/NO)=yes  

GROWTH_TYPE_PRINT_WINDOW=0,0,0,0,2000,2060  

PHASE0G_GROWTH_COLOR=  0xff0000 # seed urban area  

PHASE1G_GROWTH_COLOR=  0X00ff00 # diffusion growth  

PHASE2G_GROWTH_COLOR=  0X0000ff # NOT USED  

PHASE3G_GROWTH_COLOR=  0Xffff00 # breed growth  

PHASE4G_GROWTH_COLOR=  0Xffffff # spread growth  
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PHASE5G_GROWTH_COLOR=  0X00ffff # road influenced growth 

B.2.14. Deltatron Behavior 

#************************************************************  

#  

#  E. DELTATRON AGING SECTION  

#  

#  From here you can control the output of the deltatron grid  

#  just before they are aged  

#  

#  VIEW_DELTATRON_AGING(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  DELTATRON_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  DELTATRON_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_DELTATRON_AGING(YES/NO)=YES  

DELTATRON_PRINT_WINDOW=0,0,0,0,2000,2060 

DELTATRON_COLOR=  0x000000 # index 0 No or dead deltatron  

DELTATRON_COLOR=  0X00FF00 # index 1 age = 1 year  

DELTATRON_COLOR=  0X00D200 # index 2 age = 2 year  

DELTATRON_COLOR=  0X00AA00 # index 3 age = 3 year  

DELTATRON_COLOR=  0X008200 # index 4 age = 4 year  

DELTATRON_COLOR=  0X005A00 # index 5 age = 5 year 

B.2.15. the constants 

# XIII. SELF-MODIFICATION PARAMETERS  

#       SLEUTH is a self-modifying cellular automata. For more   

#       information see our PROJECT GIGALOPOLIS web site 

#       (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm)  

#       and publications (and/or grep 'self modification' in code).  

ROAD_GRAV_SENSITIVITY=0.01  

SLOPE_SENSITIVITY=0.1 
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CRITICAL_LOW=0.0000097  

CRITICAL_HIGH=1.9999999  

CRITICAL_SLOPE=15.0  

BOOM=1.1 

BUST=0.90 

B.3. Model Execution 

To run the model, in the scenario directory: 

 grow.exe <mode> <scenario file> 

Allowable modes are: 

- calibrate 

- restart 

- test 

- predict  
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Annex C: Coefficients and Calibration 

 

Contents 

C.1. Dispersion Coefficient Multiplier 

C.2. Best-Fit Coefficient 

 

In this Annex, an example of the ‘ratio_pe_0.log’ file used for calculation of dispersion 

coefficient multiplier and for best fit coefficients are represented. A portion of the table of the 

"ratio_pe_0.log" file is shown as an example in this Annex. 

C.1. Dispersion Coefficient Multiplier 

As discussed in chapter 2, the number of spontaneous urbanization attempts that comes from 

the dispersion value (DV) depends on the calibrated value for the dispersion coefficient (DC), a 

constant number as dispersion coefficient multiplier (DM), and the number of pixels in the image 

diagonal. We have mentioned that the dispersion coefficient multiplier is no longer a constant 

in SLEUTH-3r (Jantz et al., 2010). This allows the user to modify this multiplier value 

interactively. To find the appropriate value of DM, the dispersion set to 100 and other 

coefficients set to zero and the model perform in the calibration mode. This allows the growth 

coefficients to produce the maximum level of spontaneous new growth. We have tested 

different value for DM with 100 Monte Carlo iteration. We have taken the DM value which 

make the model to captures or even over estimates the number of urban clusters (cluster 

fractional difference metric). In basic SLEUTH model, the default value of dispersion multiplier 

is a constant equal to 0.005. The number of tested value for each scenario is between three to 

five times of test. Tables C.1 to C.15 illustrate the dispersion coefficient multiplier obtained 

from ‘ratio_pe_0.log’ files for Toulouse, Saint Sulpice la Pointe and Rieucros study area 

respectively, each according to the environmental protection scenarios separately.  
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Table C. 1. Dispersion coefficient multiplier, scenario protection level 0 (Nearly No Environmental 

Protection - NEP), Toulouse 

Dispersion coefficient multiplier = 0.003 (MONTE_CARLO_ITERATIONS=25) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -206.120 0.977 -0.023 393.280 1.156 0.156 

100.00 1.00 1.00 1.00 1.00 2012 -169.160 0.981 -0.019 578.320 1.226 0.226 

100.00 1.00 1.00 1.00 1.00 2017 -1382.640 0.871 -0.129 723.680 1.267 0.267 

 

Table C. 2. Dispersion coefficient multiplier, scenario protection level 1 (Limited Environmental 

Protection - LEP), Toulouse 

Dispersion coefficient multiplier = 0.004 (MONTE_CARLO_ITERATIONS=25) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -154.320 0.983 -0.017 452.720 1.180 0.180 

100.00 1.00 1.00 1.00 1.00 2012 -93.400 0.990 -0.010 662.560 1.258 0.258 

100.00 1.00 1.00 1.00 1.00 2017 -1277.720 0.881 -0.119 837.360 1.309 0.309 

 

Table C. 3. Dispersion coefficient multiplier, scenario protection level 2 (Moderate Environmental 

Protection - MEP), Toulouse 

Dispersion coefficient multiplier = 0.004 (MONTE_CARLO_ITERATIONS=25) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -174.400 0.980 -0.020 431.800 1.172 0.172 

100.00 1.00 1.00 1.00 1.00 2012 -119.160 0.987 -0.013 633.080 1.247 0.247 

100.00 1.00 1.00 1.00 1.00 2017 -1304.000 0.878 -0.122 805.040 1.298 0.298 
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Table C. 4. Dispersion coefficient multiplier, scenario protection level 3 (Extreme Environmental 

Protection - EEP), Toulouse 

Dispersion coefficient multiplier = 0.004 (MONTE_CARLO_ITERATIONS=25) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -182.440 0.979 -0.020 432.960 1.172 0.172 

100.00 1.00 1.00 1.00 1.00 2012 -127.000 0.986 -0.014 638.680 1.249 0.249 

100.00 1.00 1.00 1.00 1.00 2017 -1325.360 0.8764 -0.124 801.560 1.296 0.296 

 

Table C. 5. Dispersion coefficient multiplier, attraction-based scenario protection level 1 (Attraction-

based Limited Environmental Protection - ALEP), Toulouse 

Dispersion coefficient multiplier = 0.0035 (MONTE_CARLO_ITERATIONS=25) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -104.480 0.988 -0.012 447.960 1.178 0.178 

100.00 1.00 1.00 1.00 1.00 2012 -17.920 0.998 -0.002 658.760 1.257 0.257 

100.00 1.00 1.00 1.00 1.00 2017 -1172.480 0.891 -0.109 836.040 1.309 0.309 

 

Table C. 6. Dispersion coefficient multiplier, scenario protection level 0 (Nearly No Environmental 

Protection - NEP), Saint Sulpice la Point 

Dispersion coefficient multiplier = 0.0006 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -380.830 0.862 -0.138 56.340 1.175 0.175 

100.00 1.00 1.00 1.00 1.00 2012 -362.650 0.869 -0.131 77.840 1.241 0.241 

100.00 1.00 1.00 1.00 1.00 2017 -939.770 0.723 -0.277 101.220 1.309 0.3095 
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Table C. 7. Dispersion coefficient multiplier, scenario protection level 1 (Limited Environmental 

Protection - LEP), Saint Sulpice la Point 

Dispersion coefficient multiplier = 0.0006 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -384.660 0.8604 -0.139 55.460 1.172 0.172 

100.00 1.00 1.00 1.00 1.00 2012 -369.210 0.867 -0.133 75.440 1.234 0.234 

100.00 1.00 1.00 1.00 1.00 2017 -947.890 0.721 -0.279 97.730 1.299 0.299 

 

Table C. 8. Dispersion coefficient multiplier, scenario protection level 2 (Moderate Environmental 

Protection - MEP), Saint Sulpice la Point 

Dispersion coefficient multiplier = 0.0006 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -388.170 0.8592 -0.141 53.590 1.166 0.166 

100.00 1.00 1.00 1.00 1.00 2012 -373.630 0.865 -0.135 73.420 1.227 0.227 

100.00 1.00 1.00 1.00 1.00 2017 -954.030 0.719 -0.281 95.440 1.292 0.292 

 

Table C. 9. Dispersion coefficient multiplier, scenario protection level 3 (Extreme Environmental 

Protection - EEP), Saint Sulpice la Point 

Dispersion coefficient multiplier = 0.0006 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -390.010 0.858 -0.141 52.620 1.163 0.163 

100.00 1.00 1.00 1.00 1.00 2012 -377.780 0.863 -0.136 71.590 1.222 0.222 

100.00 1.00 1.00 1.00 1.00 2017 -959.590 0.717 -0.282 93.120 1.285 0.285 
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Table C. 10. Dispersion coefficient multiplier, attraction-based scenario protection level 1 (Attraction-

based Limited Environmental Protection - ALEP), Saint Sulpice la Point 

Dispersion coefficient multiplier = 0.0005 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -376.490 0.863 -0.137 55.470 1.172 0.172 

100.00 1.00 1.00 1.00 1.00 2012 -356.790 0.871 -0.129 75.980 1.235 0.235 

100.00 1.00 1.00 1.00 1.00 2017 -931.280 0.726 -0.274 97.040 1.297 0.297 

 

Table C. 11. Dispersion coefficient multiplier, scenario protection level 0 (Nearly No Environmental 

Protection - NEP), Rieucros 

Dispersion coefficient multiplier = 0.0002 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -6.780 0.976 -0.024 5.380 1.082 0.082 

100.00 1.00 1.00 1.00 1.00 2012 -88.270 0.760 -0.240 12.090 1.186 0.186 

100.00 1.00 1.00 1.00 1.00 2017 -167.450 0.634 -0.366 19.090 1.294 0.294 

 

Table C. 12. Dispersion coefficient multiplier, scenario protection level 1 (Limited Environmental 

Protection - LEP), Rieucros 

Dispersion coefficient multiplier = 0.0002 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -6.930 0.975 -0.025 5.130 1.078 0.078 

100.00 1.00 1.00 1.00 1.00 2012 -89.500 0.757 -0.243 11.150 1.172 0.172 

100.00 1.00 1.00 1.00 1.00 2017 -169.560 0.630 -0.370 17.930 1.276 0.276 
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Table C. 13. Dispersion coefficient multiplier, scenario protection level 2 (Moderate Environmental 

Protection - MEP), Rieucros 

Dispersion coefficient multiplier = 0.0002 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -7.390 0.973 -0.027 5.010 1.076 0.076 

100.00 1.00 1.00 1.00 1.00 2012 -89.820 0.756 -0.244 11.190 1.172 0.172 

100.00 1.00 1.00 1.00 1.00 2017 -170.420 0.628 -0.372 17.660 1.272 0.272 

 

Table C. 14. Dispersion coefficient multiplier, scenario protection level 3 (Extreme Environmental 

Protection - EEP), Rieucros 

Dispersion coefficient multiplier = 0.0002 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -8.470 0.970 -0.030 4.600 1.070 0.070 

100.00 1.00 1.00 1.00 1.00 2012 -91.340 0.752 -0.248 10.630 1.164 0.164 

100.00 1.00 1.00 1.00 1.00 2017 -171.580 0.625 -0.375 17.400 1.268 0.268 

 

Table C. 15. Dispersion coefficient multiplier, attraction-based scenario protection level 1 (Attraction-

based Limited Environmental Protection - ALEP), Rieucros 

Dispersion coefficient multiplier = 0.0002 (MONTE_CARLO_ITERATIONS=100) 

diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

100.00 1.00 1.00 1.00 1.00 2008 -1.610 0.994 -0.006 7.330 1.111 0.111 

100.00 1.00 1.00 1.00 1.00 2012 -79.520 0.784 -0.216 15.520 1.239 0.239 

100.00 1.00 1.00 1.00 1.00 2017 -155.920 0.660 -0.340 23.920 1.368 0.368 
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C.2. Best-Fit Coefficients 

SLEUTH-3r creates new metric table that could be find in ‘ratio_pe_0.log’ file generated in the 

calibration process (see table 2.2, chapter 2). As mentioned in chapter 2, two metrics of the 

pixel fractional difference (PFD) and the clusters fractional difference (CFD) are used in 

calibration procedure of this thesis. PFD makes direct comparisons between the numbers of 

urban pixels in the control maps and the corresponding simulated maps. Obtaining an accurate 

fit for this metric ensured that the overall amount of development would be matched. The CFD 

focuses on the frequency of clusters in the urban system and compares the number of urban 

clusters. The accurate metrics indicate that the model could create the urban form and could 

avoid the dispersed settlement patterns (Jantz et al., 2010). In this research, the set of parameters 

are selected that could achieve the best goodness of the fit in both PFD and CFD. The 

parameters that have the minimum differences in cluster and pixel ratio are considered as the 

best-fit parameters. For the initial run 25 Monte Carlo trial is used. After obtaining the range of 

the desired value, another execution by setting 100 Monte Carlo trial is done. Since the input 

excluded maps of the environmental scenarios are different, for each environmental scenario 

the calibration process is run in order to achieve its best fit coefficient for the forecasting 

process. 

 

Table C. 16. Calibration coefficients, scenario protection level 0 (Nearly No Environmental Protection 

- NEP), Toulouse 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2669 100 25 25 75 100 2017 2611.142 1.243 0.243 336.285 1.124 0.124 

 

Table C. 17. Calibration coefficients, scenario protection level 1 (Limited Environmental Protection - 

LEP), Toulouse 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2532 100 1 25 25 50 2017 1734.57 1.161 0.161 444.428 1.164 0.164 
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Table C. 18. Calibration coefficients, scenario protection level 2 (Moderate Environmental Protection 

- MEP), Toulouse 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2534 100 1 25 25 100 2017 1690.571 1.157 0.157 458.428 1.169 0.169 

 

Table C. 19. Calibration coefficients, scenario protection level 3 (Extreme Environmental Protection - 

EEP), Toulouse 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2530 100 1 25 25 1 2017 1691.00 1.157 0.157 441.48 1.163 0.163 

 

Table C. 20. Calibration coefficients, attraction-based scenario protection level 1 (Attraction-based 

Limited Environmental Protection - ALEP), Toulouse 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2545 100 1 25 100 1 2017 2345.85 1.218 0.218 157.571 1.058 0.058 

 

Table C. 21. Calibration coefficients, scenario protection level 0 (Nearly No Environmental Protection 

- NEP), Saint Sulpice la Point 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2544 100 1 25 75 100 2017 17.400 1.074 0.074 -0.04 0.999 -0.0006 
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Table C. 22. Calibration coefficients, scenario protection level 1 (Limited Environmental Protection - 

LEP), Saint Sulpice la Point 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2674 100 25 25 100 100 2017 21.60 1.092 0.092 -0.04 0.99 -0.0006 

 

Table C. 23. Calibration coefficients, scenario protection level 2 (Moderate Environmental Protection 

- MEP), Saint Sulpice la Point 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2540 100 1 25 75 1 2017 4.92 1.021 0.021 0.04 1.0006 0.0006 

 

Table C. 24. Calibration coefficients, scenario protection level 3 (Extreme Environmental Protection - 

EEP), Saint Sulpice la Point 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2670 100 25 25 100 1 2017 4.64 1.019 0.019 -0.04 0.99 -0.0006 

 

Table C. 25. Calibration coefficients, attraction-based scenario protection level 1 (Attraction-based 

Limited Environmental Protection - ALEP), Saint Sulpice la Point 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2545 100 1 25 100 1 2017 22.40 1.09 0.09 -6.52 0.89 -0.10 
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Table C. 26. Calibration coefficients, scenario protection level 0 (Nearly No Environmental Protection 

- NEP), Rieucros 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2545 100 1 25 100 1 2017 3.44 1.08 0.08 2.04 1.15 0.15 

 

 

Table C. 27. Calibration coefficients, scenario protection level 1 (Limited Environmental Protection - 

LEP), Rieucros 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2049 75 25 25 100 100 2017 4.00 1.10 0.102 1.40 1.107 0.107 

 

Table C. 28. Calibration coefficients, scenario protection level 2 (Moderate Environmental Protection 

- MEP), Rieucros 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

1920 75 1 25 100 1 2017 3.08 1.078 0.078 1.96 1.15 0.15 

 

Table C. 29. Calibration coefficients, scenario protection level 3 (Extreme Environmental Protection - 

EEP), Rieucros 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2674 100 25 25 100 100 2017 3.76 1.096 0.096 1.16 1.089 0.089 
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Table C. 30. Calibration coefficients, attraction-based scenario protection level 1 (Attraction-based 

Limited Environmental Protection - ALEP), Rieucros 

MONTE_CARLO_ITERATIONS=100 

run diffusion breed spread slp_resst road_grav control area area area cluster cluster cluster 

number coeff coeff coeff coeff coeff year diff ratio fract diff ratio fract 

2170 75 50 25 100 1 2017 33.36 1.855 0.855 1.52 1.116 0.116 
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Annex D: Weighting Urban Patches Using Predefined 

Urban Land Use Models 

 

Contents 

D.1. Toulouse concentric zone model 

D.2. Toulouse sector model 

D.3. Toulouse multiple nuclei model 

D.4. Toulouse particular complex model 

 

In this Annex, three famous urban land use models, concentric zone model, sector model and 

multiple nuclei model are defined and applied on Toulouse. These models were developed to 

generalize the patterns of urban land use of the industrial cities of United States and they are 

not correspond to the geographic and social situation of Toulouse. The point is only to show 

how to make different patterns and weighting them. 

Next, another land use model matched to Toulouse land use is created and applied. All these 

models will give weight to the urban patches. The weight is defined as the value of the average 

height of the buildings in urban area that locate in the same zone in land use pattern. 

D.1. Toulouse Concentric Zone Model  

The first step of weighting urban patches is creating the land use pattern. The pattern is an image 

containing different rings. Each ring has its own color (value). The value of the pixels that have 

similar color are the same. The next step is preparing the 2D prospective urban map and 

applying the urban land use model on it. Figure D.1 shows the concentric zone model prepared 

and applied on the Toulouse 2D prospective map of 2030. The different values of the weighted 

urban growth map represent the land use of each zone. The defined weights corespond to the 

average values of the height of the buildings in same zone. Assuming a height for the buildings 

in each zone will carry out to a very simple 3D model. 
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Figure D. 1. Giving weight to the urban area using concentric zone model, Toulouse 

D.2. Toulouse Sector Model  

The process of the weighting urban patches by sector model is similar to the concentric zone 

model. Therefore, the first step is creating the sector model pattern defining different value for 

each sector. These values correspond to the average height of the buildings in this sector. The 

second step is preparing the 2D prospective urban map. The last step is applying the urban land 

use pattern on the prospective urban map inorder to find out the land use of the growth urban 

area (see figure D.2). 

 

 

 

Concentric zone sample pattern 2D prospective urban map, 2030 

Weighted urban growth in 

different zones, 2030 

Weighted urban growth map, 2030 
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Figure D. 2. Giving weight to the urban area using sector model, Toulouse 

D.3. Toulouse Multiple Nuclei Model  

Similar to the previous predefined land use models, the weighting urban patches start by 

creating the multiple nuclei pattern. Each nuclei has its own value correspond to the average 

height of the buildings in that nucleus. Afterwards, the 2D prospective urban map have to be 

simulated. The weighting urban patches process finished by applying the urban land use pattern 

on the prospective urban map in order to find out the land use of the growth urban area (see 

figure D.3). 

 

Sector sample pattern 2D prospective urban map, 2030 

Weighted urban growth in 

different zones, 2030 

Weighted urban growth map, 2030 
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Figure D. 3. Giving weight to the urban area using multiple nuclei model, Toulouse 

D.4. Toulouse Particular Complex Model  

This proposed model is based on the multiple nuclei model. The pattern is created for Toulouse 

considering the information of the height. Using the building classification discussed on chapter 

2, six different maps are created for the undifferentiated buildings and three maps for the 

industrial buildings as follow (see figure D.4): 

Undifferentiated buildings: 

 Individual dwellings, h = 4m 

 Low-rise housing, h = 7m 

 Shop top housing, h = 15m 

 Medium height housing, h = 20m 

 Medium / high rise housing, h = 27m 

 High-rise housing, h = 36m 

Industrial buildings: 

 Agricultural building, h = 8m 

 Industrial building, h = 9m 

 Commercial building, h = 10m  

Multiple nuclei sample pattern 

 

2D prospective urban map, 2030 

Weighted urban growth in 

different zones, 2030 

Weighted urban growth map, 2030 
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Figure D. 4. The urban maps with different height that used to create particular complex pattern 

The process of weighting urban patches particular complex model starts by creating the pattern. 

The pattern has different height values due to the building classification. The second step is 

simulating the 2D prospective urban map. Applying the 2D prospective map on particular 

complex pattern leads to weighted urban growth map. Figure D.5 illustrates the results of 

weighted urban map of Toulouse for 2030. The weighted urban growth map can be used for 

classifying the new urban pixels. 

 

 

 

 

 

 

 

 

Figure D. 5. Giving weight to the urban area using particular complex pattern for Toulouse 

In all patterns presented in this Annex, if we want to classify a new urban pixel, we have only 

one choice for it. For example, if a prospective urban pixel is located in the zones of single 

dwelling, means that this pixel could only be a house. However, using the new technique for 

creating a land use pattern that proposed in chapter 2 (Active Land Use Model), we will have 

different choices (with their probabilities) for each building class, which gives a great advantage 

for précising the urban patterns. 

 

 

Particular complex pattern 

Particular complex pattern 2D prospective urban map, 2030 Weighted urban growth map, 2030 
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Annex E: INSEE Data Documentations  

 

Contents 

E.1. Number of inhabited 

E.2. List and description of variables - Table of tiles 

E.3. List and description of variables - Table of rectangles 

 

E.1. Number of Inhabited 

- The data provided from a specific exploitation of tax files aimed at giving each household 

a precise geographic position. The squared population data is consistent with the data 

disseminated by the localized tax revenue source: 

o Populations not referenced to the housing tax are not present: homeless people, 

communities; 

o Students are usually located at the home of their parents; 

o The concept of principal residence can be significantly different. 

- Localized tax revenues (RFL) are based on the exhaustive files of the personal income tax 

returns and the housing tax provided to INSEE by the General Tax Directorate. INSEE 

reconciles these two files in order to estimate the tax revenue at finely localized 

geographical levels, while preserving the confidentiality of the data. 

- This database includes 18 variables on the age structure of individuals, household 

characteristics (renter / owner, etc.) and income as of December 31, 2010. 

- The data comes in two alternative forms: a DBF dBase file and a MapInfo MIF / MID 

transport map. 

- The square estimates are in the form of two datasets, one with a resolution of 1 km, the 

other with a resolution of 200 m. 

- The projection system used on the metropolis is the "Lambert Azimutal Equal Area (code 

EPSG 3035)" which conforms to the European recommendations within the framework of 

the INSPIRE directive 

E.2. List and Description of Variables - Table of Tiles 

- The geographical identifiers of the tile 

- The number of inhabited tiles in the rectangle to which the tile belongs 

- The geographical identifiers of the rectangle to which the tile belongs 
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- The number of individuals of the tile 

E.3. List and Description of Variables - Table of Rectangles 

- The total number of individuals 

- The total number of households (i.e. of main residences) 

- The total number of individuals aged 0 to 3 years 

- The total number of individuals aged 4 to 5 years 

- The total number of individuals aged 6 to 10 years 

- The total number of individuals aged 11 to 14 

- The total number of individuals aged 15 to 17 

- The total number of individuals aged 25 and over 

- The total number of households of 5 or more 

- The total number of households present for 5 years or more in their current dwelling 

- The total number of households in collective housing 

- The cumulative surface area of the main residences, in square meters 

- The sum of tax revenues per individuals 

- The total number of individuals aged 65 and over 

- The total number of individuals aged 75 and over 

- The total number of households of a person 

- The total number of owner households 

- The total number of households whose tax revenue is below the low threshold 
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