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Résumé

L’objectif de la thèse est de développer une méthode adaptée au problème d’optimisation
de la production d’hydrocarbures. Il s’agit d’une optimisation conjointe de la production
d’hydrocarbures et du coût du forage (à l’aide par exemple d’une fonction objective de
type Net Present Value) pour le développement d’un champ pétrolier ou gazier. On
recherche ainsi une configuration optimale du schéma de production modélisé par des
variables à valeurs entières, le nombre de puits injecteurs et producteurs, le nombre de
branches, complétées par des variables continues comme la position des puits dans le
réservoir, la longueur des branches, etc. Les fonctions à optimiser et les contraintes sont
calculées à partir des réponses d’un simulateur d’écoulement des fluides dans le réservoir,
coûteux en temps de calcul : les réponses à optimiser sont les quantités d’huile, d’eau et
de gaz produits, les quantités d’eau et/ou de gaz injecté (pour faciliter la production). La
fonction objectif et les contraintes sont considérées comme des réponses d’un simulateur
boîte noire et peuvent nécessiter plusieurs heures ou plusieurs jours en temps de calcul.

Au cours de cette thèse, nous nous sommes intéressés à différentes méthodes d’op-
timisation, et une étude bibliographique a permis d’identifier les méthodes adaptées
à notre application. Le problème étant un problème de type boîte noire, nous avons
étudié en particulier des méthodes d’optimisation sans dérivées, telles que les méthodes
de recherche directe dont nous avons évalué les performances pour l’optimisation du
placement, du nombre et du type de puits verticaux sur plusieurs cas de modèle de
réservoir, de dimension et réalisme différents. Nous avons également étudié des méthodes
basées sur un modèle de substitution par krigeage, populaire en optimisation continue,
et avons utilisé une adaptation aux variables mixtes. Nous avons aussi travaillé sur le
développement d’une nouvelle méthode de région de confiance étendue aux variables
mixtes et l’avons évaluée sur deux cas simplifiés de placement de puits.

Après ce travail transverse sur différentes méthodes d’optimisation adaptées au cas
boîte noire MINLP, nous proposons une méthodologie prenant en compte les caractéris-
tiques de la fonction objectif, issue des résultats d’un simulateur boîte noire, tout en
utilisant les méthodes MINLP classiques. Pour cela nous proposons d’optimiser le place-
ment et le nombre de puits, ainsi que le nombre de branches, avec une méthode de
résolution en deux étapes, en résolvant successivement deux sous-problèmes. La pre-
mière étape consiste à résoudre un problème boîte noire MINLP avec une méthode de
recherche directe (étudiée dans la première partie de la thèse), en optimisant le nombre
et le type de puits verticaux.

Dans la seconde étape, nous définissons un problème MINLP à partir des données
issues de la simulation de la solution à puits verticaux obtenue à la première étape.
Dans ce nouveau problème MINLP, nous optimisons la trajectoire des puits en ajoutant
de nouvelles branches aux puits producteurs verticaux existants. Les inconnues sont la
position de leurs extrémités, et la production d’hydrocarbure est estimée sans utiliser le
simulateur d’écoulement. Plusieurs modèles pour ce problème ont été écrits et évalués
sur des cas tests de différentes dimensions en utilisant les solveurs BONMIN et SCIP.



vi

Abstract

The aim of this thesis is to develop an adapted method to the hydrocarbon production
optimization problem. It is a joint optimization of the hydrocarbon production and the
drilling costs (using for instance an objective function of type Net Present Value) for
the development of petroleum or gas field. Hence we search an optimal configuration
of the production scheme which is modeled by integer variables, the number of injector
and producer wells, the number of branches, completed by continuous variables as the
well location in the reservoir, the length of the branches, etc. The functions to optimize
and the constraints are computed from the outputs of a reservoir fluid flow simulator,
costly in computational time: the outputs to optimize are the quantities of produced oil,
water and gas, and the quantities of injected (to facilitate the production). The objective
function and the constraints are considered as the outputs of a Black-Box simulator and
can necessitate several hours or several days in computational time.

During this thesis, we considered different optimization methods, and a bibliographic
study allowed us to identify methods suitable for our applications. The problem is a
Black-Box optimization problem, hence we studied in particular derivative free opti-
mization methods, such as direct search methods. We evaluated the performances of
these methods for the optimization of the location, the number and the type of verti-
cal wells on several reservoir model cases, of different dimension and realism. We also
studied methods based on a substitution models with kriging, popular in continuous
optimization, and used an adaptation to mixed variables. We also worked on the devel-
opment of a new Trust Region method extended to mixed variables and evaluated it on
two simplified cases of well placement.

After this transversal work on different optimization methods adapted to the Black-
Box MINLP case, we propose a methodology taking in account the characteristics of the
objective functions, computed from the outputs of a Black-Box fluid flow simulator, while
using classical MINLP methods. To do so, we propose a two-step resolution method,
by successively solving two sub-problems. The first step consists in solving a Black-Box
MINLP problem with a direct-search method (studied in the first part of the thesis), by
optimizing the number the type of vertical wells.

In the second step, we define a MINLP problem from the outputs of the simulation of
the vertical well solution that was obtain at the first step. In this new MINLP problem,
we optimize the well trajectory by adding new branches to the existing vertical producer
wells. The unknowns are their extremities locations, and the hydrocarbon production
is estimate without using the fluid flow simulator. We wrote several models for this
problem, and evaluated them on test cases of different dimensions by using the solvers
BONMIN and SCIP.
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Introduction

Mixed-integer nonlinear optimization problems (MINLP) are defined as optimization
problems whose variables have the constraint to take integer (or discrete) values, and
for which the objective function and the constraints are described by functions that can
be linear or non linear. These optimization problems appear in various applications at
IFP énergies nouvelles, a public-sector research, innovation and training center active
in the fields of energy, transport and environment. Among these applications are the
optimization of petroleum transportation network, topological optimization in mechan-
ics, setting optimization of experimental scheme (e.g., the choice of injection mode in
motor calibration), optimization of production well placement in reservoir engineering,
or optimization of injection scheme for geological storage of CO2.

MINLP optimization problems are considered as particularly complex problems (Bu-
rer and Letchford [19], D’Ambrosio and Lodi [28]): this complexity lies in the strongly
combinatorial aspect induced by integer variables and nonlinearities of the objective
function and the constraints. Although MINLP optimization has benefited from the
advances of the last thirty years in nonlinear optimization (NLP) and in mixed linear
optimization (MILP), the size of the problems of this type globally solvable in an accept-
able computational time by the current methods remains limited, and resolution time
can drastically increase with the number of integer variables, and with the number and
type of nonlinear functions. In addition, the problem becomes even more complex when
one of the objective or constraint functions are Black-Box. In that case, the optimiza-
tion problem is a Black-Box MINLP problem and its solving is even more complicated
(Belotti et al. [14]).

In this thesis, we propose to develop a method adapted to the optimization problem of
hydrocarbon production (Bouzarkouna et al. [17], Echeverría Ciaurri et al. [30], Ermolaev
and Kuvichko [32]). It deals with a joint optimization of hydrocarbon production and
drilling costs (using for instance an objective function of type Net Present Value) for the
development of petroleum or gaseous field. Hence we seek an optimal configuration of
the production scheme. The integer variables are the number of injector and producer
wells, the number of branches, completed by continuous variables such as the wells and
the branches location in the reservoir, the length of the branches, etc. The functions to
optimize and the constraints are generally computed from the outputs of a reservoir fluid
flow simulator, costly in computational time: the outputs to optimize are the quantities
of produced oil, water and gas, and the quantities of injected water and gas (to facilitate
the production). Localization constraints and number of wells constraints are added to
the problem.
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2 INTRODUCTION

The application and its main difficulties are presented in the first chapter: the diver-
sity of the variables and their number (number depending on the values taken by some
integer variables), but also the Black-Box characteristic of the functions to optimize
(nonlinearity, non-convexity), the computational cost of these functions and the size of
these problems. We introduce also in this chapter several synthetic cases, with different
levels of complexity and realism: A first mono-dimensional simplified test case, for which
the study and the implementation were made to rapidly evaluate optimization methods,
and a second more realistic and relatively simplified 2D case. The third introduced case
is the PUNQ-S3 case (Floris et al. [35]), a 3D case widely used for the evaluation of
optimization in reservoir characterization. Finally we present a second 3D case, derived
from the SPE10 reservoir case (Project [64]). These last cases will allow us to evaluate
the methods developed during this thesis on cases relatively realistic. Geologic notions,
used in the methodology presented in the third chapter, and in fluid flow simulation are
also presented in the first chapter.

In a second chapter, we focus on the optimization of the number and the location of
vertical wells. We first present a direct-search method and the NOMAD solver (Le Diga-
bel [48]), for which we evaluate the capacities through different test cases, first by using
a 1D case, then the PUNQ-S3 case. We then present an optimization method using a
substitution model based on a kriging method adapted to mixed variables, coupled to
the Efficient Global Optimization (EGO, Jones et al. [44]), that we evaluate on a mono-
dimensional case. Finally we introduce a new Trust-Region method adapted to mixed
variables, and we evaluate it on a 1D case, then on a 3D case derived from the SPE10
case.

In the third chapter, we present the methodology that we elaborated and developed
during the thesis for the optimization of the location and the number of wells and the
number of branches. The methodology consists in two steps, each of which solving a
subproblem. In the first step a Black-Box MINLP optimization problem is solved to find
the placement of vertical wells. The solution of the first step is then analyzed to define
the input of the second MINLP subproblem, which optimizes the design of the branches
for each well. This second subproblem is treated through three different models. The
methodology is tested and evaluated on a 2D case.



Introduction en français

Les problèmes d’optimisation non linéaire mixte en variables entières et réelles (MINLP)
sont des problèmes d’optimisation pour lesquels certaines variables sont contraintes à
prendre des valeurs entières (ou discrètes) et la fonction objective et les contraintes
sont décrites par des fonctions qui peuvent être linéaires ou non linéaires. Ces prob-
lèmes d’optimisation apparaissent dans diverses applications à IFP énergies nouvelles,
un organisme public de recherche, d’innovation industrielle et de formation intervenant
dans les domaines de l’énergie, du transport et de l’environnement. Parmi ces applica-
tions nous pouvons citer l’optimisation de réseaux de conduites pétrolières, l’optimisation
topologique en mécanique, l’optimisation de réglages de dispositifs expérimentaux (par
exemple, le choix des modes d’injection en calibration des moteurs), l’optimisation du
placement des puits pour la production en ingénierie de réservoir et l’optimisation du
dispositif d’injection en stockage géologique du CO2.

Les problèmes d’optimisation MINLP sont considérés comme des problèmes partic-
ulièrement difficiles (Burer and Letchford [19], D’Ambrosio and Lodi [28]) : cette com-
plexité provient de l’aspect fortement combinatoire induit par les variables entières et
des non-linéarités de la fonction objective et des contraintes. Bien que l’optimisation
MINLP ait bénéficié des grandes avancées des 30 dernières années en optimisation non
linéaire (NLP) et en optimisation mixte linéaire (MILP), la taille des problèmes de ce
type solubles de manière globale en un temps de calcul acceptable par les méthodes
actuelles reste limitée, le temps de résolution pouvant augmenter drastiquement avec le
nombre de variables entières, ainsi qu’avec le nombre et la complexité des fonctions. Une
difficulté peut s’ajouter au problème quand l’une des fonctions objectif ou de contraintes
est dite “boîte-noire”, le problème d’optimisation est alors dis “boîte-noire” MINLP, et
sa résolution est plus compliquée encore (Belotti et al. [14]).

Dans cette thèse, nous proposons de développer une méthode adaptée au prob-
lème d’optimisation de la production d’hydrocarbures (Bouzarkouna et al. [17], Echever-
ría Ciaurri et al. [30], Ermolaev and Kuvichko [32]). Il s’agit d’une optimisation conjointe
de la production d’hydrocarbures et du coût du forage (à l’aide d’une fonction objective
de type NPV, Net Present Value) pour le développement d’un champ pétrolier ou gazier.
On recherche ainsi une configuration optimale du schéma de production. Les variables
à valeurs entières sont donc le nombre de puits injecteurs et producteurs, le nombre
de branches, complétés par des variables continues comme la position des puits et des
branches dans le réservoir, la longueur des branches, etc. Les fonctions à optimiser et les
contraintes sont généralement des réponses d’un simulateur d’écoulement dans le réser-
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voir, coûteux en temps de calcul : quantités d’huile, d’eau et de gaz produits, quantités
d’eau et/ou de gaz injecté (pour faciliter la production), ces quantités étant cumulées
sur la durée de production. Des contraintes de localisation dans le réservoir, et des
contraintes sur le nombre de puits s’ajoutent au problème.

L’application et ses principales difficultés sont présentées dans le premier chapitre :
la diversité des variables et leur nombre (nombre dépendant des valeurs prises par cer-
taines variables entières) mais aussi le caractère “boîte-noire” des fonctions à optimiser
(non-linéarité, non-convexité), le coût de calcul de ces fonctions et la taille de ces prob-
lèmes. Nous introduisons également dans ce chapitre plusieurs cas test synthétiques,
ayant différent niveau de complexité et de réalisme. Un premier cas test simplifié mono-
dimensionnel, dont l’étude et l’implémentation ont pour but d’évaluer rapidement des
méthodes d’optimisation, et un second cas 2D plus réaliste et relativement simplifié. Le
troisième cas introduit est le cas PUNQ-S3, un cas 3D largement utilisé pour l’évaluation
des méthodes d’optimisation en caractérisation de réservoir, enfin nous présentons un
second cas 3D, dérivé du cas SPE10 (Project [64]). Ces derniers cas nous permettrons
d’évaluer les méthodes développées dans le cadre de cette thèse sur des cas relativement
réalistes. Des notions en géologie, utilisées dans les méthodes présentées dans le troisième
chapitre, et simulation d’écoulement sont également présentées dans ce premier chapitre.

Dans un second chapitre nous nous intéressons à l’optimisation du nombre et du
placement de puits verticaux. Nous présentons d’abord une méthode de recherche directe
(logiciel NOMAD, Le Digabel [48]), dont nous évaluons les capacités à travers différents
cas tests, tout d’abord en utilisant un cas 1D, puis le cas PUNQ-S3. Enfin nous testons le
solveur sur le cas 3D dérivé du cas SPE10 en ajoutant à la simulation une contrainte sur
la production. Nous présentons ensuite une méthode d’optimisation utilisant un modèle
de substitution basé sur le modèle de krigeage et adapté aux variables mixtes, couplé à
l’algorithme Efficient Global Optimization (EGO, Jones et al. [44]), que nous testons sur
un cas mono-dimensionnel. Enfin nous introduisons une nouvelle méthode de région de
confiance adaptée aux variables mixtes, et l’évaluons sur un cas 1D, puis sur un cas 3D
dérivé du cas SPE10.

Dans le troisième chapitre, nous présentons la méthodologie que nous avons mis
en place au cours de la thèse pour l’optimisation du placement, du nombre de puits
et du nombre de branches. La méthodologie se déroule en deux étapes, en résolvant
successivement deux sous-problèmes. Dans un premier temps un problème d’optimisation
Black-Box MINLP pour puits verticaux est résolu, puis la solution obtenue est analysée
pour définir les données du second problème MINLP, optimisant le nombre et la position
de branches. Ce deuxième sous-problème est traité au travers de trois différents modèles,
dont nous détaillons les variables, paramètres et contraintes. La méthodologie est testée
et évaluée sur un cas test 2D.



Chapter 1

Context

1.1 Introduction

As oil reserves are declining, a strong effort is underway in the petroleum industry to
propose efficient extraction techniques with a view to increase oil field production. In
this context, developing efficient simulation-based optimization methods for well place-
ment and monitoring is a key challenge. Thanks to intelligent fields or Smart fields
(AbdulKarim et al. [2], van den Berg et al. [75]), a large amount of information can
be used to improve the knowledge of the reservoir, in particular to improve numerical
models for generating oil production forecasts. These models, calibrated with history
matching (Le Ravalec et al. [50], Oliver et al. [62], Schulze-Riegert and Ghedan [69]),
have better forecasting capabilities, and can be used to make decisions related to the
development of oil fields.

One of these decisions is the location and geometry (i.e., trajectory) of wells. In
industry the decision to drill a well or not, and its location, is taken based on the so-called
professional judgment of reservoir engineers. It requires the knowledge of both geological
and engineering influencing parameters. Considering that the effects of those parameters
are non linear, and evolve with time, it is unlikely that the reservoir engineer’s experience
will suffice to determine the best well configuration, even though the provided solutions
yield satisfying production results. Although finding the provably best well configuration
is also an excessively hard task for today’s technology, optimization methods can lead
to an improved configuration. Optimizing the number of wells, their trajectory, and
their type (injector or producer) is a difficult problem and can be very costly in terms
of reservoir fluid flow simulations. Optimizing well location has been observed to yield
non-smooth cost functions (Bouzarkouna et al. [17], Isebor et al. [42]). Hence, in optimal
well placement one should perform some kind of global search in order to avoid being
trapped in local minima.

Different aspects of the well placement problem have received varying degrees of
attention in the literature. The number of wells is one of these aspects, it can be fixed
and given by the users (Bouzarkouna et al. [18]) or can be a variable of the optimization
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problem as in Echeverría Ciaurri et al. [30]. Another important aspect in the optimization
problem are the different ways of describing a well. Aliyev and Durlofsky [9] simply
consider vertical wells, since this geometry requires fewer variables than deviated lateral
wells (Humphries and Haynes [41]). Onwunalu and Durlofsky [63] study nonconventional
wells, while the number of producer wells is fixed, the number of their lateral branches
is optimized. Bouzarkouna et al. [18] optimize the location of a fixed number of wells
composed of a fixed number of lateral segments, where wells are not necessarily rectilinear
and can have branches. In reservoir engineering, a fundamental aspect is to account for
uncertainties to reduce investment risks. Busby and Sergienko [20] propose a robust
optimization of the well placement while accounting for geological uncertainties of the
reservoir model (see also Busby et al. [21], Shirangi and Durlofsky [71], Wang et al. [78]).
Chang et al. [22] propose a multi-objective optimization under geological uncertainties
by maximizing the mean and minimizing the variance of the production values. The
last aspect, mentioned here, in the optimization of oil production, is the well control,
i.e., deciding the production rate of the injector or producer well, during the production
time frame. A joint optimization of the number of wells and their control is proposed in
Aliyev and Durlofsky [9], Forouzanfar and Reynolds [36], Humphries and Haynes [41].

Derivative Free Optimization (DFO) methods such as evolutionary algorithms and
Direct Search methods are the most common methods to solve well placement problem.
In Onwunalu and Durlofsky [63], an evolutionary algorithm, Particle Swarm Optimiza-
tion (PSO, introduced by Kennedy and Eberhart [45] and inspired from the movement
of birds or insects during migrations), are used for the optimization of the type and
location of the wells. Forouzanfar and Reynolds [36] use a gradient based optimization.
Direct search methods are also used to effectively solve this type of problem, as in Echev-
erría Ciaurri et al. [30], but these can be costly in computational time. Thus, recently
several papers study methods coupling evolutionary algorithms and Mesh Adaptive Di-
rect Search (MADS) methods. Aliyev and Durlofsky [9], Humphries and Haynes [41],
Isebor et al. [42] combine the PSO stochastic method with MADS. Bouzarkouna et al. [18]
implement “the covariance matrix adaptation evolution strategy” (CMA-ES) method in
order to optimize the trajectory of a fixed number of wells, and couple the method with
local metamodels, i.e., the objective function is replaced by different metamodels built
for each well or set of wells. In Busby et al. [21] response surface models are built with
kriging, and optimized under uncertainties with robust Efficient Global Optimization.
Adjoint-based methods are used in Zandvliet et al. [79] to optimize the position of wells
under production constraints. Generally, reducing computational time is a challenging
aspect: Ermolaev and Kuvichko [32] work on the structure of the matrix, whereas Bellout
et al. [12], Shirangi and Durlofsky [71] focus on parallelization.

The aim of this thesis is to optimize both the well placement and the number of
wells and their trajectories. As including integer variables can lead to formulations that
are computationally expensive to solve, we do not associate other aspects of reservoir
engineering to the optimization problem, and thus choose a deterministic approach.
The second chapter of this thesis is focused on Derivative Free Optimization methods,
methods that are well-suited for solving Black-Box MINLP optimization problem and we
propose a new trust region method for the optimization of the number, type and location
of unilateral wells. In the third chapter, we propose a new approach for the optimization
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of the number and location of branches for vertical producer wells, using both DFO
methods and exact methods in MINLP optimization. The well placement optimization
problem, its characteristics, and several reservoir models used for the evaluation of the
optimization methods are presented in the remaining of this chapter.

1.2 Problem formulation

1.2.1 The problem statement

The formulation of the well placement decisions as an optimization problem requires an
objective function. For a given well configuration, a reservoir fluid flow simulator eval-
uates the predictions of produced oil and gas volumes, and the predictions of produced
and injected water and gas volumes. The objective function is computed from the pre-
dictions of the fluid flow simulator which is a Black-Box simulator: we do not have access
to an analytic formula of the objective function, so we have a Black-Box optimization
problem. The significant difficulty of Black-box problems is that we have no knowledge
of the continuity, differentiability or convexity of the objective function. The variables
of the problem describe the wells configuration: continuous variables are used for the
location and the length of the wells and their branches (if any), and binary variables are
used to characterize the type (injector/producer), status (drilled/not drilled), and the
number of branches and their status.

The Mixed Integer Non Linear Programming (MINLP) optimization problem is the
following:





max
x,y

f(x, y),

x ∈ X ⊆ R
p

y ∈ {0, 1}q

g(x, y) ≤ 0

(1.1)

1.2.2 Objective function

The objective function depends on the petroleum optimization scheme. The two main
possibilities are to maximize the quantity of produced oil, or to evaluate the revenue with
the Net Present Value function (NPV). The NPV function is generally more accurate
because it takes into account more information such as oil revenue, water management
and drilling costs.
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1.2.2.1 The Net Present Value (NPV) function

The Net Present Value (NPV) for a well configuration (x, y) is defined as follows

fNP V (x, y) =
NI+NP∑

n=1

1
(1 + RD)T Dn

yn(CF ln log(ln) + CD) (1.2)

+
T∑

t=1

NP∑

n=1

yn(CP O
t qP O

tn − C
P W
t qP W

tn − CP G
t qP G

tn )

−
T∑

t=1

NP +NI∑

n=NP +1

yn(CIW
t qIW

tn + CIG
t qIG

tn ),

where

• NI and NP are respectively the number of injector and producer wells,

• CD is the drilling cost and CF ln log(ln) accounts for the extra cost related to the
length of well n (namely ln),

• yn is the status of well n, 1 if the well is drilled, 0 if it is not drilled,

• qP O
tn , qP W

tn , qP G
tn , qIW

tn and qIG
tn are cumulative quantities for, respectively, produced

oil, produced water, produced gas (for producer well n) and injected water, injected
gas (for injector well n). They are computed by a reservoir fluid flow simulator
corresponding to well configuration described by the variables (x, y) at a production
period t.

• RD is a discount factor (it implies that a stronger weight in the NPV function is
assigned to wells that are drilled early in the production time frame) and TDn is
the period where well n is drilled,

• CP O
t , CP W

t , CP G
t , CIW

t and CIG
t are positive weights associated with each term for

production period t, and T is the number of production period.

1.2.2.2 Variant of NPV function: Simplified NPV function

The NVP function can be simplified by considering only the production of oil and water
and the injection of water are considered, can be used. The function accounts for a fixed
drilling cost, and production and injection cost are fixed for the whole production time
frame. This function is used in the second chapter for the evaluation of optimization
methods on a simplified test case. The function is a special case of the function (1.2)
with the parameters values given in Tab. 1.1.

fNP V (x, y) =
NI+NP∑

n=1

ynC
D (1.3)

+
NP∑

n=1

yn(CP OqP O
n − CP W qP W

n )−
NP +NI∑

n=NP +1

yn(CIW qIW
n ).
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Table 1.1: NPV function, parameter values

Parameters Values

CP G
t 0 $/m3

CIG
t 0 $/m3

CF
t 0 $/m

RD 0

1.2.2.3 Variant of NPV function: NPVmax

We introduce here a variant of the usual NPV function, which considers an unknown
number of production periods. For each evaluation, instead of taking the NPV value
at the end of the production time frame T , we maximize the NPV value in function of
the number of production periods. By using the objective function (1.4), we obtain a
well solution configuration and a time period production where the NPV function has
reached its maximum. This function is used in the second chapter for the evaluation of
an optimization method.

fNP V (x, y) =
NI+NP∑

n=1

yn(CF ln log(ln) + CD) (1.4)

+ max
T




T∑

t=1

1
(1 + R)t




NP∑

n=1

yn(CP OqP O
tn − C

P W qP W
tn )−

NP +NI∑

n=NP +1

yn(CIW qIW
tn )





 .

where R is a discount factor (it implies that early oil production is assigned a stronger
weight in the NPV function than the late production).

1.2.3 Constraints

The optimization problem (1.1) can have constraints represented by:

g(x, y) ≤ 0. (1.5)

Several constraints can be introduced, and (1.5) is satisfied if they are all satisfied. We
can have constraints on continuous variables to guaranty the behavior of the fluid flow
simulator for the well configuration (x, y):

(x1
n, . . . , x

p
n) ∈ [xL, xU ] ⊆ R

p, (1.6)

dist(xn, xm) > P,∀n,m ∈ {1, . . . , NP +NI}, n < m, (1.7)

where

• [xL, xU ] ⊆ R
p are the bounds of the reservoir,
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• dist(xn, xm) is a function giving the distance between wells n and m.

Constraints on integer variables are also introduced:

NP ≤
NP∑

n=1

yn ≤ NP , (1.8)

NI ≤
NP +NI∑

n=1+NP

yn ≤ NI , (1.9)

N ≤
NP +NI∑

n=1

yn ≤ N, (1.10)

where

• NP , NI , N ∈ N are respectively the minimum number of producer wells, injector
wells, and total number of wells,

• NP , NI , N ∈ N are respectively the maximum number of producer wells, injector
wells, and total number of wells.

Breaking-Symmetry-Constraints can be used to avoid equivalent simulations, by or-
dering the first continuous coordinate of wells of a same type.

x1
n ≤ x1

n + 1,∀n ∈ 1, NP − 1, (1.11)

x1
n ≤ x1

n + 1,∀n ∈ 1 +NP , Np +NI − 1. (1.12)

A useful constraint is the water cut constraint: we apply a reactive control on each
producer to avoid producing too much water which impacts negatively on the NPV. We
set a reactive control by shutting off producers when the water cut is higher than a
given threshold. The water cut is the ratio between the water rate produced and the
sum of water and oil rates produced. In this manuscript, we consider the threshold

CP W
t

CP Ot +CP W
t

≤ 0.91. With this reactive control, a reservoir will produce until the last well
is shut in.

1.3 Reservoir model

A reservoir is composed of one (or more) subsurface rock formations containing liq-
uid and/or gaseous hydrocarbons, of sedimentary origin. The reservoir rock is porous
(contains empty volume) and permeable, and the structure is bounded by impermeable
barriers which trap the hydrocarbons. Rocks are characterized by different properties, as
their porosity, permeability. The capacity of a fluid (composed of water, hydrocarbons
or gas) to move through a porous media, depends on the fluid, on the rock media, on
other present fluids, and on the gravity. Given a reservoir model, i.e., the set of data
that characterize a reservoir, a fluid flow simulator can evaluate the production of a field
by solving an equations system.
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1.3.1 Notions in reservoir modeling

In this section we give several definitions useful in reservoir modeling (Cossé [27]).

1.3.1.1 Definitions

Definition 1.1 An oil field consists of a reservoir in a shape that will trap hydrocarbons

and that is covered by an impermeable or sealing rock, it is an accumulation, pool or

group of pools of oil in the subsurface.

Definition 1.2 A porous medium (or a porous material) is a material containing pores

(voids). It is characterized by its porosity, φ equal to the ratio of the pores volume on

the total volume. Porosity generally depends of the pressure P , in that case, the rock is

compressible and its compressibility cr is equal to:

1
φ

dφ
dP

Definition 1.3 Isotropy is the property of directional uniformity in material such that

physical properties do not vary in different directions. The contrary notion is the anisotropy.

Definition 1.4 Fluids in the pores can be composed of several phases: the “water” phase,

the “liquid hydrocarbon” phase and the “gaseous hydrocarbon” phase. These phases have

their own rate flow. Saturation Sα of α phase is the ratio of the pore volume occupied by

α phase.
∑

α

Sα = 1.

1.3.1.2 The equations system

In this section we present the fluid flow equations system. Details on the solving with
finite volume scheme can be found in Eymard et al. [33] and the implementation in
Aarnes et al. [1].
We note “w” the “water” phase, “o” the “liquid hydrocarbon” phase, and “g” the “gaseous
hydrocarbon” phase, Ω the reservoir domain, and [0, T ] the production time.
Unknowns of the equations system are Sα, Pα, Vα, α ∈ {g, w, o}, respectively saturation,
pressure and velocity for α phase.

∂φSw

∂t
(x, t) + div(Vw)(x, t) = hw(x, t), x ∈ Ω, t ∈ [0, T ], (1.13)

∂φSo

∂t
(x, t) + div(Vo)(x, t) = ho(x, t), x ∈ Ω, t ∈ [0, T ], (1.14)
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where hα are source-terms due to the wells.
Initials conditions and boundary conditions (given quantities at t = 0 and on the bounds
of the domain) have to be added to these equations.

1.3.1.2.a “Capillary pressure” law

The difference of pressure between phases is a known function, noted Pc, which depends
on water saturation .

Pw(x, t)− Po(x, t) = Pc(x, Sw(x, t)), x ∈ Ω, t ∈ [0, T ] (1.15)

1.3.1.2.b Darcy’s law

Darcy’s law allows to link the velocity Vα to the pressure gradient of each phase α.

Vα = −fα(Sw)K(∇Pα − ραg), in Ω× [0, T ], (1.16)

where
ρα is the volumic mass of the component of phase α,
g is the gravity vector,
and fα is a function that depends on the water saturation, the nature of component α,
and takes into account pressure, viscosity and relative permeability.

1.3.1.3 Bi-phasic domain

Velocity Vα is replaced by its expression which is given by Darcy’s law (1.16), in (1.13)
and (1.14).

∂φSw

∂t
− div(fw(s)K(∇P − ρwg)) = 0, in Ω× [0, T ], (1.17)

∂φSo

∂t
− div(fo(s)K(∇P − ρog)) = 0, in Ω× [0, T ], (1.18)

Vw = −fw(Sw)K(∇Pw − ρwg), in Ω× [0, T ], (1.19)

Vo = −fo(Sw)K(∇Po − ρog), in Ω× [0, T ]. (1.20)

with fw = krw

µw
, fo = kro

µo
,

the relative permeability of fluid α, krα,
the viscosity of fluid α, µα.

Depending on the model complexity, kr and µ can be function of the point x.
Unknowns of the equations system are saturations Sα, pressures Pα and velocity Vα.
Initials and boundary conditions complete the equations system and allow its solving.



1.4. RESERVOIR MODEL TEST CASES 13

1.4 Reservoir model test cases

In this section four test cases are presented. They offer different levels of realism, com-
plexity and size. Three optimization methods are tested to compare and illustrate their
effects and advantages. The first case is a simplified 1 dimension toy problem imple-
mented to evaluate the difficulties of the optimization problem. The second case is a
relatively simple reservoir model based on a two-dimensional discretization. The third
and fourth test cases are 3D reservoir models, the PUNQ-S3 case, a synthetic problem,
well known in petroleum industry, and a reservoir model derived from the SPE10 case.

1.4.1 Mono-dimensional toy problem

In order to evaluate different optimization methods for our application, without being
penalized by computational time, we developed a fluid flow simulation code in porous
environment using a simplified equations system. The equations system is solved with
MATLAB, using IMplicit Pressure Explicit Saturation (IMPES) discretization scheme.
The program simulates the flow of water and oil with injector and producer wells on a
1 dimensional reservoir of 100 grid blocks with a dimension of 10 m. It is possible to
choose the location and the number of wells in the reservoir. The study of the equations
system, with simplifying hypotheses, was necessary for the setting of the case. In Lizon
and Sinoquet [53] we build up two different cases. The permeability profiles along the
1D reservoir are shown in Fig. 1.1, for the case of heterogeneous permeability at the
top of the figure, and for homogeneous permeability at the bottom of the figure. The
choice of the finite difference stepsize for derivative estimation was also studied. Tab. 1.2
summarizes information of the case.

Figure 1.1: Permeability maps of the two studied cases.
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Table 1.2: 1D case information model

Grid domain Grid Block Dimension Simulator

100× 1 Dx = 10 m MATLAB implementation

1.4.2 A two-dimensional case

The present case is a relatively simple reservoir model based on a two-dimensional dis-
cretization. The reservoir corresponds to an anticline trap with an aquifer at the bottom
to ensure pressure support. The reservoir model has 830 × 1 × 50 grid blocks, and the
dimensions of each grid block are DX = 2.5 m, DY = 10 m, and DZ = 1 m. The
resulting porosity and permeability models are shown in Figure 1.2 and Figure 1.3. The
fluid flow simulator used is PumaFlowT M [65]. Tab. 1.3 summarizes information of the
case.

The reservoir presents two facies with volume fractions 40% and 60%. The mean and
variance of the corresponding porosities are 0.4 and 0.005 for the first facies and 0.2
and 0.001 for the second one. A facies realization is first generated using a Fast Fourier
Transform Moving Average (FFTMA) algorithm (Le Ravalec et al. [49]) and the Trun-
cated Gaussian method (Chiles [23], Matheron et al. [57]) with a Gaussian variogram
characterized by a horizontal range of 1250 m and a vertical range of 5 m. Thereafter,
the two resulting facies are populated with porosity values applying again the FFTMA
algorithm. The porosity realizations for each facies are characterized by an exponential
variogram. The porosity model is converted into a permeability model using determin-
istic relationships between the logarithm of permeability K and porosity φ. For the
first facies, the relation is log(K) = 5φ + 0.4, and for the second facies, the relation is
log(K) = 7φ+ 0.3.

Table 1.3: 2D case information model

Grid domain Grid Block Dimension Simulator

830× 1× 50 Dx = 2.5 m Dy = 10 m Dz = 1 m PumaFlowT M
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Figure 1.2: Porosity map Figure 1.3: Permeability map (log).

1.4.3 A three-dimensional case, the PUNQ-S3 case

The PUNQ-S3 case (Floris et al. [35]), where PUNQ stands for Production forecasting
with UNcertainty Quantification, is a 3D synthetic reservoir model derived from a real
field of the North Sea Brent reservoir operated by Elf Exploration and Production. The
problem was initially set up as a test case for the comparative study of inverse method
for history matching. This case is a small synthetic case well known in industry. The
geological model consists of a grid of 19 × 28 × 5 cells (axes (x, y, z)), including 1761
active cells. The cell size is of 180m in x and y directions, and 18m in z direction. The
model is composed of 5 geological layers with given permeability and porosity properties
shown in Fig. 1.5. In Fig. 1.4 the PUNQ-S3 reservoir anticline geometry is represented.
The fluid flow simulator used is PumaFlowT M (PumaFlowT M [65]). Tab. 1.4 summarizes
information of the case.

Table 1.4: PUNQ case information model

Grid domain Grid Block Dimension Simulator

19× 28× 5 Dx = 180 m Dy = 180 m Dz = 18 m PumaFlowT M

PUNQ-S3 case can also be used to evaluate optimization methods for well placement
problem, as in Bouzarkouna et al. [17], where the evolutionary algorithm CMA-ES is
proposed for the determination of an optimal well configuration (with a fixed number of
wells).
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Figure 1.4: PUNQ-S3 case geometry Bouzarkouna et al. [17].

Figure 1.5: 5 layers of PUNQ-S3 case: porosity and permeability maps.
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1.4.4 A three-dimensional case, the SPE10 case

This case is derived from the SPE10 reservoir case Project [64]. We consider a subpart of
the whole reservoir, the Upper Ness sequence (see Fig. 1.6) composed of 50 layers of 2 ft
with 60 × 220 cells of dimension 20 ft × 10 ft. In order to reduce the computational
time of the simulation, the grid is upscaled to a grid of dimension 30 × 110 × 25, with
each cell of dimension 40 ft × 20 ft × 4 ft. The conditions at the injector well are an
injecting rate of 5000 bbl/day (reservoir conditions), and a maximum injection bottom
hole pressure of 10000 psi. The bottom hole pressure for producers is of 4000 psi.
Two fluid flow simulators are used, PumaFlowT M [65] and a MATLAB implementation
(Lie [51], Toolbox [73]). Tab. 1.5 summarizes information of the case.

Table 1.5: SPE10 case information model.

Grid domain Grid Block Dimension Simulators

30× 110× 25 Dx = 40 ft Dy = 20 ft Dz = 4 ft PumaFlowT M

MRST Toolbox [73]

In Fig. 1.6 we represent the permeability in log(m2) (left: horizontal, right: vertical)
of the SPE 10 reservoir model. Only upper Ness sequence is represented and considered.

Figure 1.6: Permeability in log(m2) (left: horizontal, right: vertical) of the SPE 10

reservoir model for the upper Ness sequence.
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Chapter 2

Unilateral well placement

The well placement problem requires the use of a fluid flow simulator seen as a black
box, implying the availability of objective function values but no derivative information.
The methods of interest in this case are Derivative Free Optimization methods (DFO)
Conn et al. [26]. They use exclusively objective function values evaluated during the
optimization, without substituting the objective function gradient by approximations
(e.g., with finite difference). The objective is to solve an optimization problem, without
knowledge on the derivatives of the objective function and constraints.

Quite a number of DFO methods have been developed over the years. Three groups
are significant for our purpose: the Direct Search methods, the Sampling methods and
the model based methods.

Direct Search methods, as the Pattern-Search method (Hooke and Jeeves [40]), evalu-
ate and compare the objective function in points chosen depending on geometric criteria.
The method is extended with Generalized Pattern Search (GPS) which allows a global
convergence (Torczon [74]), and is improved with Mesh Adaptive Direct Search (MADS)
by using dense search directions to ensure and accelerate the global convergence (Abram-
son et al. [6], Audet and Dennis Jr. [11]) .

Sampling methods or metaheuristics consist in exploring the domain of the feasible
points. Sampling methods are usually inspired from natural systems in physics, (Simu-
lated annealing), in biology, as in Genetic algorithms with the notion of natural selection
introduced by Darwin at the 18th century. Some methods are also inspired from ethology,
as Particle Swarm Optimization algorithms (Kennedy and Eberhart [45]) and ant colony
optimization algorithms (Colorni et al. [24], Dorigo [29]), that were first implemented for
combinatorial optimization and then adapted for continuous optimization Bilchev and
Parmee [15]. Metaheuristics are generally iterative stochastic algorithms, they research
a feasible solution while learning the characteristics of the problem to find an estimation
of the better solution.

We can also find optimization methods using substitution models, known as surro-
gates, that replace the objective function by an estimation, cheaper in computational
time to evaluate, such as Kriging methods, and other response surface as Radial Basis
functions, Cosso, Sparce Grid, and Trust region methods. Trust region methods are one

19
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the most important algorithm in solving NLP problems. They have several advantages
including that they are based on quadratic models, useful for the information about the
curvature function.

Other mixed integer DFO methods for engineering can be mentioned, such as García-
Palomares et al. [39], J. [43], Laguna et al. [46], Liuzzi et al. [52], Müller et al. [59, 60],
Newby and Ali [61], Vicente [76].

As DFO methods are well adapted for the optimization of Black-Box functions such as
the NPV function, we selected and studied three of these methods. In a first section, we
present a general algorithm for direct search methods, and present and test the NOMAD
solver in which these methods are implemented. In a second section, we present a
surrogate model based on a kriging method for mixed variables. A Derivative Free Trust
Region method for mixed variables is proposed in the third section. We use and evaluate
the methods by solving the well placement problem, for vertical or rectilinear wells, on
different reservoir model cases, the simplified 1D case (see Section 1.4.1), and two 3D
cases, the PUNQ-S3 (see Section 1.4.3), and the SPE10 test case (see Section 1.4.4).

2.1 Pattern-Search

Pattern-Search, introduced by Hooke and Jeeves [40], is a directed direct-search method.
It uses a sampling, in a finite number of points, of the objective function. At each
iteration, a predefined number of points is evaluated, these values allowing to determine
the next points to be evaluated. A set of direction with adapted properties is used
to guide the optimization. This method uses meshes of different sizes on which the
functions values are evaluated and kept in memory. First proofs of convergence for NLP
problems can be found in Torczon [74]. The method was adapted for the MINLP case by
Audet and Dennis Jr [10], and Abramson [3] added a notion of filter for the handling of
constraints with GPS methods. Constrained MINLP problems are studied in Abramson
et al. [5] with GPS methods, and in Abramson et al. [6] with MADS. These methods are
implemented in the NOMAD solver uses these methods.

2.1.1 Algorithm

Each iteration of the Pattern-Search algorithm has two steps, the search step and the
poll step. The search step is used to find a point such as its objective function gives a
better value than the current point noted xk. If such a point is found, the search step is
successful, otherwise a the poll step is used to find a better point by evaluating points in
a mesh centered on the current point. The iteration is successful if one of the two steps
gives a better point. At the end of the iteration, αk, the current size of the mesh, is
updated according to the failure or success of the iteration. D is the set of poll directions.
In GPS methods D must be a positive basis to ensure the convergence: each element of
the variable domain R

n can be expressed as a unique nonnegative linear combination of
vectors in D. In MADS methods the set D must be a positive spanning set, i.e., several
nonnegative linear combinations of its elements must span the variables domain R

n.
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Directed Direct-Search Algorithm

Initialization

Choose x0, α0 > 0, 0 < β1 ≤ β2 < 1 and γ ≥ 1. Let D be a set of positive basis,
and let αtol be the smallest mesh size. Let k = 0.

While the mesh size αk ≥ αtol.

(1.) Search Step

Try to compute a point that satisfies f(x) < f(xk) by evaluating the objective
function in a finite number of points. If a better point is found, xk+1 = x, the
iteration and the search step are successful, Go to the Mesh Update Step.

(2.) Poll step

Choose a positive basis Dk from the set D. Order the set of poll points P =
{xk +αkd | d ∈ Dk}. Start the evaluations of f at poll points given the chosen
order. If an evaluated poll point xk + αkdk satisfies f(xk + αkdk) < f(xk),
the polling is stopped, xk+1 = xk + αkdk, the iteration and the poll step is
successful. Otherwise, the iteration (and the poll step) failed, and xk+1 = xk.

(3.) Mesh Update

If the iteration is successful, the mesh size remains unchanged or increases:
αk+1 ∈ [αk, γαk]. Otherwise, the mesh size is reduced: αk+1 ∈ [β1αk, β2αk].
k = k + 1.

Pattern-Search methods are expensive in function evaluations. Mesh Adaptive Direct
Search (MADS), by Audet and Dennis Jr. [11], uses more diversified sets of directions
for the poll step. The well placement problem is a MINLP problem with constraints, so in
the next two sections, we explain how to handle mixed integer variables and constraints
in MADS methods.

2.1.1.1 Handling mixed integer variables

We aim at solving the following MILP problem:





min f(x, y)
x ∈ X ⊆ R

n

y ∈ Y ⊂ N
p,

(2.1)

where x ∈ X ⊆ R
n is a continuous variable, and y ∈ Y ⊂ N

p an integer variable.
In Audet and Dennis Jr [10], the Mesh Adaptive Direct Search methods are generalized
to mixed integer variables. A mixed integer neighborhood is proposed to define a local
optimality of a point (x, y).
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Point (x, y) ∈ X × Y is a local minimizer of f with respect to a set of neighborhood
N (uc, ui) ⊂ X × Y if there exists ε > 0 such as f(x, y) ≤ f(vc, vi) for all (vc, vi) in the
set

X ∩
⋃

(tc,ti)∈N (x,y)

(
B(tc, ε)× ti

)

where B(tc, ε) is a ball of radius ε around tc.
During exploration step and poll step, the integer part of the neighborhood set to evaluate
optimality depends on the size of the mesh at iteration k.

2.1.1.2 Handling constraints




min f(x)
C(x) ≤ 0
x ∈ X ⊆ R

n

(2.2)

Filter algorithms treat the optimization problem as bi-objective: minimize the objec-
tive function f and a nonnegative aggregate constraint violation function h.
Function h is defined as:

h(x)

{
= 0 ⇔ C(x) ≤ 0,
> 0 ⇔ C(x) > 0.

hX(x) = h(x) + ψX(x) with ψX the indicator function of X:

ψX(x) =

{
0 if x ∈ X,
ψX(x) = +∞ else.

Notion of dominance needs to be introduced: x ≺ x′ if and only if f(x) ≤ f(x′) and
h(x) ≤ h(x′) with either f(x) < f(x′) or h(x) < h(x′).

x � x′ implies x ≺ x′ or f(x) = f(x′) and h(x) = h(x′).
A filter F is a finite set of infeasible points of X and is defined such a way that no

pair (x, x′) in the filter are in the relation x ≺ x′. Then a point x′ is said to filtered if
either x′ � x for some x ∈ F , or if hX(x′) ≥ hmax, with hmax a positive upper bound on
feasibility, or if x′ is feasible and f(x′) ≥ fF , with fF the least objective function value
found that far at a feasible point. Otherwise the point x′ is unfiltered.

At iteration k, the set of filtered points Fk is written as follow:

Fk =
⋃

x∈Fk

{x′|x′ � x} ∪ {y|hX(x′) ≤ hmax} ∪ {x
′|hX(x′) = 0, f(x′) ≥ fF}

The exploration and poll steps presented in Section 2.1.1 are successful if unfiltered
points are found. At the end of the iteration, unfiltered points are added to the filter
Fk+1 and the dominated points are removed.

In MADS methods, Audet and Dennis Jr. [11] combine aspects of filter algorithms
to handle the constraints, and a “barrier” approach to maintain feasibility with respect
to X.
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2.1.2 The NOMAD solver

NOMAD is a solver, developed and implemented by Le Digabel [48]). The implemented
algorithms are MADS and Generalized Pattern-Search (GPS) for Black-Box under con-
straints non linear optimization.

2.1.2.1 Available methods

In NOMAD, it is possible to choose the optimization algorithm between MADS and
GPS; it is also possible to determine the set of poll directions.

The constraints can be handled in different ways. Some constraints have to be satis-
fied to allow the evaluation of the objective function. Other constraints can be violated
and the objective function can still be evaluated, so the search space can be explored.
NOMAD allows the definition of constraints that can be relaxed or not.

The user can also implement a search step with a strategy adapted to his problem.
Another advantage is the handling of “hidden constraints”. When a point is rejected

by the simulation, NOMAD avoids the neighborhood of this point. Substitution models,
provided by the user, can be used by NOMAD in the poll step to order the most promis-
ing points before evaluating the “true” function. Discrete variables can be handled in
NOMAD. Other available algorithms are adapted for the bi-objective optimization, for
parallel executions. A Variable Neighborhood Search (VNS) algorithm to escape local
minima is also available. Also, an opportunistic strategy can be chosen, it consists in
terminating the evaluations of a list of points at a given step of the algorithm as soon as
an improved value is found.

2.1.2.2 Use of NOMAD solver

NOMAD can be used in two different modes: batch and library. The batch mode is
intended for a basic and simple use of the MADS method, while the library mode allows
more flexibility. For example, in batch mode, users must define their separate Black-Box
program that will be called with system calls by Nomad. In library mode users may define
their Black-Box function as a C++ code that will be directly called by Nomad without
system calls and temporary files. NOMAD is more adapted to Black-Box problems. The
use of NOMAD requires to know well the problem in order to choose the suitable method
amongst the available ones.

2.1.3 Applications of NOMAD

The NOMAD solver is used on challenging Black-Box location problems, such as ground-
water supply and remediation in Fowler et al. [38], and the measure of snow water
equivalent (an important factor for hydroelectric power generation) in Alarie et al. [8].
NOMAD is also used for optimization problems in thermal insulation (Abramson [4]). In
this section, we use and evaluate the NOMAD solver capabilities on the well placement
problem with three reservoir test cases.
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2.1.3.1 Application on a 1D Case

The NOMAD solver uses Pattern-Search methods and can be used for Black-Box MINLP
optimization. We use the MATLAB Opti toolbox.
The NOMAD solver allows us to solve MINLP optimization problems by using the Mixed
Variable Programming algorithm. Wells are represented by two variables. In this section,
we solve an MINLP optimization problem on a 1 dimensional test case presented in 1.4.1,
for each permeability pattern (heterogeneous and homogeneous) given in Fig. 1.1.
The Black-Box MINLP optimization problem is written as:





min−NPV (x, y)
x ∈ [xL, xU ] ⊆ R

n+m

y ∈ {0, 1}n+m

g(x, y) ≤ 0

(2.3)

with the design variables x ∈ R
n+m, and y ∈ {0, 1}n+m representing respectively

the locations of the wells and their status (active or not). n = 2 is the fixed number
of producer wells and m = 2 the fixed number of injector wells. xL, xU are the bound
vectors for [1, 1000]n+m. The resulting optimization problem deals with 4 continuous
variables and 4 binary variables.
We introduce symmetry breaking constraints to avoid obtaining two different solutions,
which are symmetrical therefore equivalent: wells of a same type are ordered according
to their coordinates. The number of active wells is the effective number of wells in
the well configuration. We introduce lower and upper bounds for the number of active
injector and producer wells. The considered NPV function is defined in Section 1.3 and
its parameters are defined in Tab. 2.1.

Table 2.1: NPV function, parameter values.

Parameters Values

CP O 100 $/m

CP W 5 $/m

CIW 4 $/m

CD 1/6 $

We launch the NOMAD solver from different starting points. The choice of the initial
point is important: by giving a “bad” configuration from the start, the solution found
is better in comparison to the initial NPV value, but solutions obtained by fixing the
number of wells for each possible combination of binary (see Appendix A) are better. At
this point we can remark that some configurations were evaluated several times uselessly
because coordinates of inactive wells were modified.
We want to see if solutions found on NLP problems (the number of wells are fixed),
represented in Appendix A, could be improved with NOMAD. We use as initial point the
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two wells solution (1 injector, 1 producer) obtained by the fmincon MATLAB function
from optimization toolbox and add to it two inactive wells (1 injector, 1 producer).
The results are deceiving, the optimal solution found is usually the initial configuration.
The reason is the inefficiency of the search step: sets of evaluated variables with 3 or
4 active wells did not provide better NPV function value, 4 wells configurations were
rejected. Then we activate the wells that were added to the initial configuration (wells
in blue in Fig. 2.1, Fig. 2.2, Fig. 2.3 and Fig. 2.4), and we obtain similar solutions
in comparison to fmincon. The method demands 300 to 400 functions evaluations, this
is much better than the fmincon function which required sometimes more than 100
evaluations for a single iteration. The starting point and solution of different runs of
NOMAD are represented in Fig. 2.1 and Fig. 2.2 for the heterogeneous permeability
pattern, and in Fig. 2.3 and Fig. 2.4 for the homogeneous pattern. The location of the
wells in blue on the top configuration are providing from the optimization with fmincon.
To this configuration, one active well is added in Fig. 2.1 and FIG2.3, and two active
wells in Fig. 2.2 and Fig. 2.4. Under the starting configuration, we can observe the
solution found by the NOMAD solver. In Fig. 2.1 and Fig. 2.2, we can observe that
NOMAD improves the NPV function without obtaining a different number of active
wells. In the homogeneous case, the 3 active wells starting configuration is improved by
inactivating a producer well (see Fig. 2.3), and the 4 active wells starting configuration
is improved by inactivating a injector well (see Fig. 2.4).

Figure 2.1: Optimization, initial configuration: 1 injector active well and 2 producer

active wells, heterogeneous permeability.
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Figure 2.2: Optimization, initial configuration: 4 active wells, heterogeneous permeabil-

ity.

Figure 2.3: Optimization, initial configuration: 1 injector active well and 2 producer

active wells, homogeneous permeability.

Figure 2.4: Optimization, initial configuration: 4 active wells, homogeneous permeability.
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The results given by NOMAD are promising, but an adaptation of the software, to our
application, is necessary. It could be interesting to implement a search step adapted to
our application, e.g., modify coordinates of a well only if this well is active. This may
avoid to evaluate several different configurations but equivalent because active wells are
the same, which is uselessly costly in terms of evaluations and in simulation time.
Otherwise, the search step modifies first only continuous variables, and then modifies
discrete variables. This is another aspect that would be interesting to add in our own
search step: modify simultaneously continuous and binary variables. Another thing to
explore is the use of surrogate models to substitute the cost function. The surrogate
model being less costly to evaluate, the computational time decreases.

2.1.3.2 Application on a 3D Case: the PUNQ-S3 case

Now that we tested NOMAD on a 1D toy problem, we test it on a 3D test case, more
complex. First we define the NPV function to optimize, then the constraints.

2.1.3.2.a The NPV function

The implemented NPV function is the function (1.2) presented in Section 1.2.2. Values
of the objective function parameters for the test case PUNQ S3 are detailed in Tab. 2.2.

Table 2.2: NPV function parameters.

Parameters Values

C∗
t C∗/(1 + 0.1)t

CD −1 $

CF −200 $/m

CP O 600 $/m3

CP W −42 $/m3

CIW −24 $/m3

RD 0

2.1.3.2.b Constraint definition

Bound constraints on optimization variables are introduced with the aim to limit the
research domain and to define an adapted variable normalization. Binary variables,
indicating if a well is closed or not, remain unchanged whereas continuous variables,
associated to the coordinates of the well trajectory extremities, are normalized by:

xnorm = 2x/(u− l),
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with l and u the lower and upper bounds of the constraints variable x, respectively.
Well length is also bounded to an interval, typically:

180m ≤ l ≤ 1000m.

To avoid solutions that are non physical, or even that cannot be simulated, the following
constraints are introduced:

I. Well trajectory must be in the reservoir. In the studied case, the reservoir is defined
by its width and a grid of points giving the height of the top reservoir.

II. Well trajectories must not cross themselves, which can be translated by the follow-
ing tests on trajectories taken 2 by 2:

• are trajectories [A1;A2] and [B1;B2] coplanar ?
We compute the cross product A1A2 ⊗B1B2.
If ‖A1A2⊗B1B2‖ > 0 and < A1B1, A1A2⊗B1B2 >≥ 0, then the 2 trajectories
are coplanar,

• in the case of coplanar trajectories, the sign of s(s − 1) is tested with s =<
A1B1 ⊗B1B2, A1A2 ⊗B1B2 > /‖A1A2 ⊗B1B2‖.
If s(s− 1) < 0 then the 2 trajectories do not cross.

To avoid the abortion of the simulation, we check that these constraints are satisfied and
in case of violation the associated wells are closed.

2.1.3.2.c Optimization on 4 vertical wells (run1)

A first optimization is done with 4 vertical wells: the 12 optimization parameters are
lateral coordinates of each well and their status (open or closed). It results in 8 continuous
variables and 4 binary variables.

The solution is represented in Fig. 2.5: the 4 wells are open, the producer wells get
closer of the top of the anticline, and the injector wells are located in periphery. The
NPV function increases from a value of 2.109$ to 1.2 1010$ (see Fig. 2.6). The evolution
of iterates is represented in Fig. 2.7 and we can remark two important results, the status
active or inactive of the wells varied during the optimization, and the region explored by
the algorithm for continuous variables. Producer wells P1 and P2, represented by squares,
explore mainly the top of the reservoir, while injector wells I1 and I2, represented by
circles, explore the bottom of the reservoir. More than 600 simulations were necessary
to obtain this solution (the stopping criteria of minimal threshold was reached), with 4.5
hours of execution time.
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Figure 2.5: Initial and final location of optimized wells (run 1).

Figure 2.6: Evolution of the best objective NPV function along iterations of optimization

(run1).
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Figure 2.7: Movements of wells during optimization iterations (run1). A crossed symbol

indicates that the well is closed. In blue: the initial solution, in red: final solution.
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2.1.3.2.d Optimization of 4 non vertical wells (run2)

A second optimization on 4 wells (28 variables) with non vertical lateral trajectories
is launched, starting from the obtained solution by the optimization of 4 vertical wells
(Fig. 2.8). The configuration obtained as the solution (Fig. 2.9) corresponds to 4 open
wells with 2 practically horizontal wells, 1 injector well and 1 producer well whereas the
2 other trajectories are more vertical. Fig. 2.12 illustrates the different trajectories taken
by the wells during the optimization, again we can note that producer wells, represented
by squares, explore mainly the top of the reservoir, while injector wells, represented
by circles, explore the bottom of the reservoir. These trajectories are represented in
Fig. 2.11 for the 200 first iterations of the optimization, thus we can observe more clearly
the different locations taken by the wells and see that the status active or inactive of
the wells varied during the optimization. The gain in terms of NPV function between
the solution of 2 optimizations (vertical well and non vertical lateral well) is of 3.8 109$.
More than 1100 simulations were necessary to reach the convergence of the algorithm,
with 8 hours of execution time.

Figure 2.8: Initial location of well for the optimization (run2): solution of optimization

(run1).
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Figure 2.9: Solution of optimization (run2).

Figure 2.10: Evolution of the best objective NPV function along iterations of optimiza-

tion (run2).
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Figure 2.11: Trajectories of wells during the 200 first optimization iteration (run2).

Dashed line indicates that the associated well is closed. In blue: the initial solution.
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Figure 2.12: Trajectories of wells during optimization iteration (run2). Dashed line

indicates that the associated well is closed. In blue: the initial solution, in red: the final

solution.

2.1.3.3 Test on a 3D case

In this section we use the NOMAD solver on a 3D case, presented in Section 1.4.4. We
optimize the location of vertical wells, and the number of vertical producer wells. The
maximum number of producer well considered is 4, and we optimize the location of one
vertical injector well. We use the NPVmax function, presented in Section 1.4, and give
the parameters values in Tab. 2.3. The Optimization is made with a maximum bottom
hole pressure of 4000 psi at producer wells, and an injection rate of 5000 bbl/day. The
maximum time production is 10 years, and the production is subject to a water cut
constraint (see Section 1.2.3).
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The optimization problem is written as:





min−NPV (x, y)
x ∈ [xL, xU ] ⊆ R

p

y ∈ {0, 1}q

g(x, y) ≤ 0

(2.4)

where x = {x1
P 1, x

2
P 1, x

1
P 2, x

2
P 2, x

1
P 3, x

2
P 3, x

1
P 4, x

2
P 4, x

1
I , x

2
I}, (x1

P i, x
2
P i) are the two coordi-

nates necessary to define vertical producer well i = 1 . . . 4, and (x1
I , x

2
I) are the coordi-

nates of the injector well,
y = {y1, y2, y3, y4} are binary values associated with the status of the producer well

(0: inactive well, 1: active well), xL and xU are the bound vectors for x1 and x2.
The resulting optimization problem deals with 10 continuous variables and 4 binary

variables.
480 evaluations of the objective function were necessary to solve the optimization

problem with NOMAD, with 7 days of execution time.

Table 2.3: NPV function, parameters values.

Parameters Values

CP O 50 $/bbl

CP W 5 $/bbl

CIW 5 $/bbl

CF 45 $/ft

CD 1e7 $

R 0.1

Tab. 2.4 summarizes the different results obtained for each well configuration: the
reference configuration, presented in Section B.3, the starting point of the optimization,
and the solution of the optimization. The reference configuration and the starting point
have both 4 active producer wells, whereas the solution has only one producer. Despite
this single producer well, the cumulative volume of produced oil is greater than the
volume of the reference configuration. The cumulative volume of produced water is a bit
more of half the starting point water produced volume. As the injecting rate is fixed,
the total volume of injected water depends of the production time frame, 7 years for the
starting point, and the solution, 6 years for the reference configuration.
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Table 2.4: NPV function values.

Starting point Solution Reference configuration

Number of active producers 4 1 4

NPV value 50.73e6 $ 160.49e6 $ 115.63e6 $

Total cumulative produced oil 4.62e6 bbl 5.96e6 bbl 5.32e6 bbl

Total cumulative produced water 8.49e6 bbl 4.91e6 bbl 5.70e6 bbl

Total cumulative injected water 12.87e6 bbl 12.87e6 bbl 11.03e6 bbl

Period of maximum production 7 years 7 years 6 years

In Fig. 2.13 we can see the evolution of the value of the best NPV value at each
simulation. In Fig. 2.14, the NPV function for each year of production is represented
for the starting point, the optimization solution and the reference configuration.
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Figure 2.13: Best NPV during optimization.
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Figure 2.14: NPV function.

2.1.3.3.a Starting point

In Fig. 2.15 we represented the cumulative water production for each producer wells of
the starting configuration. Well P3 (in red) started to produce water in the first year of
production, and its production stopped after 5 years of production. This is due to the
water cut constraint that was not satisfied any more (see Fig. B.4 in Appendix B), thus
the well was shut in. In Fig. 2.16, we can also see that the oil production was stopped
for Well P3 after 5 years. We can observe in Fig. 2.16 that the increase of oil production
of wells P1, P2 and P4 was higher after five years, which is not a good well configuration
because a stronger weight in the NPV function is associated to early production than to
late production.
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Figure 2.15: Cumulative water production of the starting point of the optimization (1

injector well and 4 producer wells).
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Figure 2.16: Cumulative oil production of the starting point of the optimization (1

injector well and 4 producer wells).

2.1.3.3.b Optimization solution

The cumulative water production of the optimization solution is represented in Fig. 2.17.
Water production started for in the third years of production, and we can observe an
higher increase after 6 years, which is the time production of the NPVmax function.
Fig. 2.18 shows that half of the oil production was accumulated in the 4 first years.
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Figure 2.17: Cumulative water production of the solution configuration the optimization

(1 injector well and 1 producer well).
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Figure 2.18: Cumulative oil production of the solution configuration the optimization (1

injector well and 1 producer well).

2.1.3.3.c Reference configuration

We consider the reference configuration case: 4 producer wells at each corner of the
domain, and 1 injector well at the center. Cumulative water production in Fig. 2.19 and
cumulative oil production in Fig. 2.20. In Fig. 2.19 we represented the cumulative water
production for each producer wells of the reference configuration. The water production
of Well P4 (in black) stopped after 9 years (the water cut constraint that was not satisfied
any more (see Fig. B.12 in Appendix B), thus the well was shut in. In Fig. 2.20, we
can also see that the oil production was stopped for Well P4 (in black) after 9 years.
Fig. 2.20 shows that half of the oil production was simulated in the 3 first years.
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Figure 2.19: Cumulative water production of the reference configuration the optimization

(1 injector well and 4 producer wells).
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Figure 2.20: Cumulative oil production of the reference configuration the optimization

(1 injector well and 4 producer wells).

2.1.4 Conclusion

We used the NOMAD solver, in which are implemented MADS methods, to optimize the
number and the location of vertical or rectilinear wells on several reservoir model cases.
The NOMAD solver was first evaluated on the 1D case (see Section 1.4.1) for two perme-
ability patterns. For each of these permeability case, we used two optimization starting
points and we obtained different NPV function solution values and configurations with
different number of active wells. Hence depending on the initialization, the optimization
with NOMAD can be trapped in local minima.

The NOMAD solver was also tested on the PUNQ-S3 case (see Section 1.4.3), and
optimized the number and location of 4 vertical wells. A good solution was obtained in
600 simulations. Starting from this solution, a second problem optimizing the number
and location of rectilinear wells allows to obtain a better configuration in 1100 simula-
tions. Hence the first simple problem allow to obtain a good initial guess for the second
more advanced problem.

Finally, we optimized the location and number of vertical producer wells and the
location of 1 injector well on the SPE10 test case (see Section 1.4.4). The solution, with
a well configuration of 1 producer well and 1 injector, is obtained in 7 days and 480
simulations. This solution is better than the reference point of 4 wells (with 4 producer
wells at each corner of the reservoir and one single centered injector wells), in terms of
NPV function and of oil production. We can observe here the necessity to include the
number of wells in the optimization, since it allow to obtain configuration that reduce
the drilling costs and increase the oil production.

NOMAD allows to obtain satisfying results for the optimization of the placement and
number of wells, even though the method requires numerous evaluations of the objective
function which is costly in CPU time, thus it could be interesting to couple the algorithm
with substitution models.
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2.2 Kriging and Efficient Global Optimization (EGO)

In this section we treat the optimization problem by using surrogate models. To min-
imize the number of expensive evaluations, the objective function is replaced by an
approximation model, computed from a limited sample of simulated points. First we
present a kriging method adapted for mixed variables, then we present two optimization
algorithms, a basic optimization approach, and the well-known EGO (Efficient Global
Optimization) algorithm proposed by Jones et al. [44].

2.2.1 General surrogate model for mixed quantitative and qual-

itative variables

We propose to use the popular kriging method approach to approximate the objective
function by the mean function of an underlying stochastic process. Zhou et al. [80]
proposed an adapted kriging approach for mixed variables.

Let w = (x, z) an input vector, where x = (x1, . . . , xI) is a vector in R
I and represents

the quantitative factors, and z = (z1, . . . , zJ) is a vector of J qualitative factors. Each
component zj, with j ∈ {1, . . . , J}, has bj levels that are categorical and not supposed
ordinal. We note C the set of all level combinations for qualitative factor C = {c1, . . . , cm},

where m =
J∏

j=1
bj. Then we note w = (x, c) with c ∈ C, and consider the following model:

y(w) = f t(w)β + ε(w) (2.5)

where

• f(w) = (f1(w), . . . , fp(w)) is a set of p regression functions,

• β = (β1, . . . , βp) is a vector of unknown coefficients,

• ε(w) is a stationary Gaussian process with mean 0, variance σ2, and a parametrized
covariance function.

ε(w) is the residual of the regression model f t(w)β in Expression (2.5). A valid correla-
tion structure for this model is:

cor(ε(w), ε(w′)) = cor(εc(x), εc′(x′)) = τc,c′R(x, x′). (2.6)

where εc(x) = ε(x, c), τc,c′ = τc′,c is the cross-correlation between categories c and c′, and
R(x, x′) is the a correlation function for quantitative values. A common choice for R is
the Gaussian correlation function, leading to Expression (2.7):

cor(ε(w), ε(w′)) = τc,c′

I∏

i=1

exp
(
−φi(xi − x

′
i)

2
)
, (2.7)

where the unknown roughness parameters φi are grouped in Φ = {φi}.
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In order to have a valid correlation function, the m × m matrix T = {τr,s} has to
be positive symmetric definite with unit diagonal elements (Qian et al. [67]), to be
nonsingular. Nevertheless, the optimal tuning of {τr,s} is a difficult problem which can
be efficiently simplified by using a hypersphere decomposition (introduced for financial
applications by Rebonato and Jaeckel [68]). It consists in 2 steps, first a Cholesky
decomposition is applied to T , T = LLt, where L is a lower triangular matrix with strictly
positive diagonal elements. In the second step, each row vector (lr,1, . . . , lr,r) of matrix
L is modeled as coordinates of a surface point in an r-dimensional unit hypersphere:





lr,s =
s−1∏
j=1

sin(θr,j) cos(θr,s), for s = 1, . . . , r − 1,

lr,r =
r−1∏
j=1

sin(θr,j).
(2.8)

where θr,s ∈]0, π[. This restriction leads to strictly positive elements of matrix Θ = {θr,s}
in (2.8). Thanks to trigonometric properties, it is easy to verify that the product LLt

will be symmetrical with diagonal elements equal to 1.
It requires less parameters to compute one matrix for each qualitative variable than to
use one for all the combinations between all variables as in (2.7). The expression of the
correction function becomes:

cor(ε(w), ε(w′)) =
J∏

j=1

τ j

zj ,z′
j

I∏

i=1

exp
(
−φi(xi − x

′
i)

2
)

(2.9)

The number of parameters Θ required in Expression (2.7) is (m− 1)(m− 2)/2, whereas

the number of parameters needed in Equation (2.9) is
J∑

j=1
(bj − 1)(bj − 2)/2.

The unknown parameters of Model (2.5) are Φ, Θ, β, and σ2. Given a sample
W = {w1, . . . , wn} of n inputs values, maximum likelihood is used to estimate these
parameters, the resulting estimators are Φ̂,Θ̂, β̂, and σ̂2. Then a non-biased estimator is
given by expression (2.10):

ŷ(w) = f(w)β̂t + r̂(w)R̂−1(y − Fβ̂). (2.10)

where

• r̂(w) = (cor(ε(w), ε(w1)), . . . , cor(ε(w), ε(wn))) is a vector composed of the corre-
lations between w and each sample value,

• R̂ is the estimated correlation matrix of R using equation (2.7),

• F is a n × p matrix of the regression values f(wi) = (f1(wi), . . . , fp(wi)) for each
wi in W , i = 1 . . . , n,

• ŷ(w) is the prediction of the model for the value w.

To implement and test the model, we use the MATLAB toolbox DACE (Lophaven
et al. [56]) for the computation of the quantitative correlation part. For the qualitative
part, a matrix T is computed for each combination of the qualitative values.
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2.2.2 Model quality evaluation

The model quality is estimated with two values: the Q2 expressed in (2.11) and the
RMSE (Root Mean Square Error) expressed in (2.12). Both take into account errors
between simulated points and observed points, and Q2 gives more weight to the points
closed from the mean of the observed points.

Q2 = 1−

∑
w∈W

(ŷ(w)− y(w))2

∑
w∈W

((y(w)−mean(y(w)))2)
, (2.11)

where ŷ is the estimation of the model, y the values, and W is the validation sample on
which the model is evaluated.

RMSE =

√√√√√

∑
w∈W

(ŷ(w)− y(w))2

|W |
. (2.12)

2.2.3 Kriging model evaluation on a mixed integer NPV func-

tion

In this section we evaluate the efficiency of the kriging method on NPV function asso-
ciated with the 1D reservoir model presented in Section 1.4.1. Models are built with
Gaussian correlations, and constant regression function. We use different size of sample
to build the kriging models to evaluate its accuracy, depending on the sizes of the experi-
mental plan. After building the different samples for the construction of the models, and
for its validation, we rejected points that did not satisfy constraints of distance between
wells. So, the actual size of the samples is not the initial size.

The different configurations for the number and type of well are the categories of the
function. We can have at most 3 wells, and at least 1 well of each type. There are only
three different possible categories, one composed of two wells (1 injector, 1 producer), and
two others composed of three wells, (1 injector, 2 producer and 2 injector, 1 producer).

We use sliced Latin Hypercube design based on Qian [66]. This design is a Latin
Hypercube Sample (LHS) for the continuous factors and is sliced into groups of smaller
Latin Hypercube designs associated with different categorical levels. In this case, we
generate a sliced Latin hypercube design with m slices, where each slice of n runs corre-
sponds to one category. We do not use the same size of LHS for each category. We have
three categories, which do not require the same amount of information to be modeled.
We note n2 the size of sample of 2 wells, and n3 the size of sample of 3 wells.

We build models from sliced LHS samples composed of 3 concatenated LHS: the first
slice is a LHS of size 50 for the configuration of two wells, and the two other slices are
LHS of size 100 for the two configurations of 3 wells. We use also a sliced LHS for the
validation of the model. We evaluate the kriging model on the validation sliced LHS,
the results for each slices are represented in Appendix C.2, and summarized in Tab. 2.5
and Tab. 2.6.
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2.2.3.1 Validation of the kriging model build from the sliced LHS, sample

of size n2 = 50, and n3 = 100

Here we test the kriging model built from the sliced LHS of 250 points on the validation
sliced LHS. In Fig. 2.21 we can see that several points have residuals more than 1000,
which means the model prediction was not accurate on these points. Crossplot is dis-
played in Fig. 2.22, and we can see that they are some irregular points, but most of the
predictions are reliable.
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Figure 2.21: Residuals of the validation

sliced LHS, estimation with kriging model

built with a sliced LHS n2 = 50, n3 = 100.
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Figure 2.22: Crossplot, tested on the val-

idation sliced LHS, model built with a

sliced LHS n2 = 50, n3 = 100.



2.2. KRIGING AND EFFICIENT GLOBAL OPTIMIZATION (EGO) 45

Table 2.5: Q2 and RMSE results of quantitative and qualitative model, model built from

sliced LHS n2 = 50, n3 = 100.

Validation sample Sliced LHS Slice 1 Slice 2 Slice 3

1 producer 1 producer 2 producer

1 injector 2 injector 1 injector

Q2 model built from corre-

sponding slice

− 0.994 0.79 0.46

Q2 model built from sliced

LHS

0.76 0.99 0.89 0.27

RMSE model built from corre-

sponding slice

− 156 829 1225

RMSE model built from sliced

LHS

924 181 727 1425

2.2.3.1.a Test on the 3 sliced LHS, sample of size n2 = 100 and n3 = 200

Here we test the kriging model built from the sliced LHS of 500 points on the validation
sliced LHS. In Fig. 2.23 we can see that most of the validations points have residuals
under of 1000. Crossplot is displayed in Fig. 2.24, and we can see that they are some
irregular points as in the model built from 250 points (see Fig. 2.22).
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Table 2.6: Q2 and RMSE results of quantitative and qualitative model, model built from

sliced LHS n2 = 100, n3 = 200.

Validation sample Sliced LHS Slice 1 Slice 2 Slice 3

1 producer 1 producer 2 producer

1 injector 2 injector 1 injector

Q2 model built from corre-

sponding slice

− 0.991 0.97 0.88

Q2 model built from sliced

LHS

0.89 0.951 0.82 0.87

RMSE model built from corre-

sponding slice

− 386 305 580

RMSE model built from sliced

LHS

620 457 767 601
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Figure 2.23: Residuals of the validation

sliced LHS, estimation with kriging model

built with a sliced LHS n2 = 100, n3 =

200.
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Figure 2.24: Crossplot, tested on the val-

idation sliced LHS, model built with a

sliced LHS n2 = 100, n3 = 200.

A large number of points is required to build a reliable model, but the models we
obtained can give us an acceptable approximation, that can be used to guide the opti-
mization.
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2.2.4 Optimization with kriging

In this section, we present two optimization algorithms based on kriging models, a basic
optimization approach, and the known EGO algorithm of Jones et al. [44]. Then we test
and compare the two algorithms by maximizing the NPV function on the 1D reservoir
model.

2.2.4.1 Optimization with kriging: a basic algorithm

A first idea to optimize with surrogate kriging models, is simply to successively optimize
the model using NOMAD (see Section 2.1.2), and update the model with the solution of
the optimization.

Optimization Algorithm

0. Initialization

Let W0 be the initial sample,M0 be the kriging model obtained from the sample W0.
Let ǫ, and let maxiter be the maximum number of iterations. Note (x∗, c∗) the best
current solution, and f ∗ its associated objective function value.

1. Iteration k: Maximize the model

Solve optimization problem, and note (xk, ck) its solution, and f̂k its objective function
value: 




min
x,c
Mk(x, c)

x ∈ X ⊆ R
n

c ∈ C.

Compute f(xk, ck).

If f(xk, ck) < f∗, then let (xk, ck)→ (x∗, c∗), and f(xk, ck)→ f ∗.

If |f(xk, ck) − f̂k| > ǫ or k < maxiter Go to the Update Model Step. Otherwise
algorithm stopping criteria has been reached.

2. Update Model Let Wk+1 = Wk ∪ (xk, ck).

The basic optimization algorithm presented in Section 2.2.4.1 assumes the accuracy of a
model built up with a limited number of function evaluations, and might get trapped in
a local minimum.

2.2.4.2 Optimization with kriging: EGO algorithm

Efficient Global Optimization (EGO) algorithm, proposed by Jones et al. [44], allows
optimization with surrogate models while compromising between the prediction of the
model and the associated estimated error. At each iteration, we aim at maximizing the
expected improvement. This optimization problem helps for the decision of improving
the approximation (by evaluating a point where prediction error is high) or exploit the
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approximation of the model (by evaluating a point where the approximation model is
low). This optimization problem is solved with NOMAD.
Improvement in a new point is defined as:

I(x, c) =

{
(f ∗ − f(x, c)) if f(x, c) < f∗,
0 else.

(2.13)

where f ∗ is the current best objective function value.
Expected improvement is then:

E(I) =

{
(f ∗ − f̂)Φf∗−f̂

σ̂
+ σ̂Φ′ f∗−f̂

σ̂
if σ̂ > 0,

0 if σ̂ = 0.
(2.14)

2.2.4.3 Numerical results

In this section we optimize the well configuration in a 1D reservoir model (see 1.4.1) for
a maximum number of 3 wells, and at least one well of each type (producer, injector)
using the NPV function defined in Section 1.2.2.2. We use the two algorithms defined in
Section 2.2.4.1 and Section 2.2.4.2. We use two kriging models, built from different size
of sliced LHS, composed of 250 and 500 points.

The MINLP formulation of the well placement is the following (we minimize -NPV
which is equivalent to maximize NPV)





min−NPV (x, y)
x ∈ [xL, xU ] ⊆ R

n+m

c ∈ {0, 1}n+m

g(x, c) ≤ 0

(2.15)

with the quantitative variable x ∈ R
n+m, and the binary variable, considered as a

qualitative variable, c ∈ {0, 1}n+m representing respectively the locations of the wells
(n = 2 is the fixed number of producer wells and m = 2 the fixed number of injector
wells) and their status (active or not), xL, xU are the bound vectors for [1, 1000]n+m.
The resulting optimization problem deals with 4 quantitative variables and 4 qualitative
variables. Additional constraints are introduced in order to force the number of injector
and producer wells to be larger than 1, and the maximal number of wells to be 3.

2.2.4.3.a Optimization test: basic algorithm

In Fig. 2.25 and Fig. 2.26 we represent the different locations of the wells during the
optimization process for respectively kriging model built from 250 and 500 points. Red
points represent the kriging points and blue squares the well location. We can observe
that the optimization process did not explore the entire domain, but only some subsets
of the variable space.
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Figure 2.25: Well locations, represented by blue squares, during the basic algorithm

optimization process associated with kriging model built from 250 points. The red stars

represent the location of kriging points.

Figure 2.26: Well locations, represented by blue squares, during the basic algorithm

optimization process associated with kriging model built from 500 points. The red stars

represent the location of kriging points.

In Fig. 2.27 and Fig. 2.28 we represent the NPV function value of the wells configura-
tion in red, and the corresponding approximated value in blue circles, during the basic
algorithm optimization process associated respectively with kriging model built from
250 and 500 points. In green is represented the best NPV value and its corresponding
approximated value.

The best NPV value is equal to 6475 with the model built with 250 points, and is
equal to 6325 for with other model. Those values are found after, respectively, 160 and
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42 algorithm iterations, hence a total of reservoir simulator evaluations of respectively
410 and 542. The first conclusion of these first runs is that using a model built from a
larger number of kriging points might not help to obtain better NPV function, and it
only increases the number of preliminary simulations to build the kriging model.
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Figure 2.27: Estimated values (in blue circles) and associated NPV (in red) values during

the basic algorithm optimization using model built from 250 points. The best NPV value

(in green) of 6475 is obtained after 150 iterations.
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Figure 2.28: Estimated values (in blue circles) and associated NPV (in red) values during

the optimization using model built from 500 points. The best NPV value (in green) of

6325 is obtained after 42 iterations.
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2.2.4.3.b Optimization test: EGO algorithm

In Fig. 2.29 and Fig. 2.30 we represent the different locations of the wells during the
optimization, and the corresponding approximated values of the model.

Figure 2.29: Well locations, represented by blue squares, during the EGO optimization

process associated with kriging model built from 250 points. The red stars represent the

location of kriging points.

Figure 2.30: Well locations, represented by blue squares, during the basic algorithm

optimization process associated with kriging model built from 500 points. The red stars

represent the location of kriging points.

In Fig. 2.31 and Fig. 2.32 we represented the NPV function value of the wells configu-
ration during the EGO optimization process associated respectively with kriging model
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built from 250 and 500 points. Best NPV values, 6775 for the optimization using krig-
ing model built with 250 points, and 6675 using kriging model built with 500 points,
were found after respectively 25 and 170 algorithm iterations, hence a total of reservoir
simulator evaluation of respectively 275 and 670.
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Figure 2.31: NPV value during the optimization with EGO algorithm using model built

from 250 points. The best NPV value (in green) of 6775 is obtained after 25 iterations.
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Figure 2.32: NPV value during the optimization with EGO algorithm using model built

from 500 points. The best NPV value (in green) of 6625 is obtained after 170 iterations.
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2.2.4.3.c Conclusion on numerical results

Figure 2.33: NPV solutions obtained by each method of optimization

In Fig. 2.33 we can compare the results of optimization for the two algorithms with
a 3 wells configuration solution obtained with NOMAD alone (a constraint to have
three wells was also included). The two lower results are obtained by using the basic
optimization algorithm presented in Section 2.2.4.1 associated with kriging models built
from two different initial sliced LHS. We see that the variable space is less explored during
optimization using the model built from 250 points than during optimization with the
model built from 500 points. Also the model built with 250 point requires 1 day of
NPV function evaluation, in comparison the 500 points model requires 1-2 day of NPV
function evaluation.The different well configurations between the two results suggest
that a local minimum was reached with optimization using the model built from 500.
We can also see in Fig. 2.33 that similar results are obtained by solving the optimization
problem with NOMAD, and by using EGO algorithm associated with the kriging model
built from 250 points: NPV values and wells configurations are similar. The number of
simulations necessary to reach the best NPV value with EGO algorithm was of 275 (250
kriging points + 25 iterations, equivalent to 1 day of execution time), while more than
300 simulations were required with NOMAD alone. However the optimization with EGO
did not end before the maximum authorized number of iterations was reached. The use
of EGO algorithm and a 500 points sample is less effective, the best NPV obtained is
lower than the best value obtained with NOMAD alone. Configurations of active wells
were not the same, with a total of 670 simulations (2 days of execution time) to reach the
best NPV value. We remark that the results of the EGO algorithm with the 250 points
kriging sample also gives a better NPV function value, in fewer iterations, than the 3
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wells solution obtained with NOMAD on the same problem in Section 2.1.3.1 represented
in Fig. 2.1, with similar configurations (2 producer wells, and 1 injector well between
them). From these results, we can say that using a large sample to build a kriging model
for optimization purposes is not more effective, and is obviously more costly. These
optimization run show that the EGO algorithm is well adapted for the well placement
problem. We also observe that this method is more efficient than NOMAD for this 1D
case.

2.2.5 Conclusion

In this section we presented a kriging model adapted for quantitative and qualitative
variables. We tested this method to approximate the NPV function on a 1D reservoir.
First results show that we do not need a larger number of data points to build a model
that can guide the optimization. Then we presented two algorithms for solving optimiza-
tion problem using kriging, a basic approach and the EGO algorithm that maximizes the
expected improvement at each iteration. We tested and compared the two algorithms by
maximizing the NPV function associated to the 1D reservoir model (see Section 1.4.1.
We obtained similar results using NOMAD or the EGO algorithm. The results with EGO
are slightly better in terms of objective function value and in terms of total number of
reservoir simulations. However the difference is not significant enough and the results
may depend on the starting point or the initial kriging sample. The method was tested
on a 1D reservoir case, with a limited number of wells described by only one quantitative
variable and one qualitative variable. For larger dimension cases, the size of the problem,
and the number of simulations to reach convergence, may increase exponentially. Hence
the method should be limited to vertical wells, to reduce the number of quantitative
variables to one per well. However, this is encouraging to continue the exploitation of
the quantitative and qualitative kriging method, and test the optimization with EGO
and smaller initial kriging samples. We could also consider to compute in parallel the
evaluation of these samples. To limit the number of simulations due to the size of the
problem and applied efficiently the method on larger dimension reservoir case, the EGO
algorithm should be apply as a search step in NOMAD and and thus allow to benefit
from the advantage of the two methods.

2.3 A trust region method for Black-Box MINLP

In this section we propose to extend the popular Derivative Free Trust Region (DFTR)
method to mixed variables optimization problems, the new approach is a joint work with
A. R. Conn (IBM Watson). We test the method on the 1D reservoir model, and the 3D
SPE10 reservoir model case.
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2.3.1 Black-box MINLP formulation

The problem formulation we address is the following




min
x,y

f(x, y)

x ∈ [xL, xU ] ⊆ R
p

y ∈ {0, 1}q

(2.16)

where x ∈ R
p, y ∈ {0, 1}q are decision variables,

f : Rn → R a Black-box function of x, y (with n = p+ q) which is supposed to be at
least twice differentiable in every argument,

xL, xU ∈ R
p are bounds for the continuous variables.

Formulation (2.16) arises in simulation optimization settings, where an expensive simu-
lator takes as input a certain number of continuous, x, and integer, y, values and then
produces a function value, f(x, y), as output.

Like all such methods, see for example Conn et al. [25, 26], Langouët et al. [47] our
Derivative Free Trust Region method aims at iteratively improve an existing current fea-
sible point (xk, yk) at iteration k of the Black-Box problem by optimizing an approximate
modelMk of (2.16) valid in a set Rk ∈ R

n, which is called the trust region. We assume
that Mk is itself a Mathematical Program (MP), and we denote by fM its objective
function. The new candidate point (x̃, ỹ) is the solution of (MP) restricted to Rk, so it
is not necessarily locally optimal with respect to (2.16). To quantify the quality of this
solution, we use the quality criterion defined in the next section.

2.3.2 Quality of the new candidate point

Define
ρ = f(x̃,ỹ)−f(xk,yk)

fM(x̃,ỹ)−fM(xk,yk)
(2.17)

as a quality measure for solution (x̃, ỹ).
Computing ρ requires, (i) an (expensive) evaluation of f(x, y), i.e., a call to the

simulator, and, (ii) Mk will be defined in such a way that the denominator in (2.17) is
always non positive.

Solution (x̃, ỹ) is considered as “good”, “ok” or “bad” according to ρ being in certain
intervals:

• if ρ is close or larger than 1, i.e., ρ ∈ [1 − ǫgood,+∞[: the model is either locally
very close to the original problem, or that the decrease in objective function value
of the original problem (2.16) is higher than the corresponding decrease in fM. So
(x̃, ỹ) is “good”

• if ρ ∈ [ǫok, ǫgood[ then (x̃, ỹ) is just “ok”. The improvement in the model engenders
a moderate improvement in the original problem.

• if ρ ∈ [−∞, ǫok[ then (x̃, ỹ) is “bad” since an improvement in the model yields a
tiny improvement or a worsening in the original problem.
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2.3.3 The trust region

The trust region Rk is centered at current iterate (xk, yk) and is defined in different way
for x and y: a ball centered in xk defined with a l∞-norm: a box [x, x] = xk−∆k, x

k +∆k,
and a “local branching” constraint that defines the neighborhood of yk, see Fischetti and
Lodi [34], by limiting the number of flips in binary variable values to K

∑
j:yk

j
=0

yj +
∑

j:yk
j

=1

(1− yj) ≤ K. (2.18)

The left hand side represents the Hamming distance with respect to yk, the most natural
measure in a discrete space.

The size of the trust region is modified accordingly to the concordance between the
improvement predicted by model Mk and the actual improvement measured by ρ:

• if the new candidate point is good, we accept it and the trust region Rk is enlarged
and centered at this new point,

• if the new candidate point is just acceptable (“ok”), we accept it, and center the
trust region at the new point but keep its size,

• if the new candidate point is “bad”, we keep the trust region centered at the
previous point (xk, yk) and decrease its size.

In all cases, the model is updated with the new point (xk, yk) and the associated simulated
objective function f(xk, yk) .

2.3.4 The model

The aim of the modelM is to provide an approximation of the original problem (2.16),
which should be accurate within the trust region R. We assume that the objective
function fM of M approximates f . Since f is a Black-Box function and we have no
access to derivatives, we can only use previous points {xl, yl, fl |l < k} (where fl =
f(xl, yl) ∀l < k) to construct an approximation fM.

The model of the objective function f is a linear or quadratic function interpolating
the known values of f (the model can also be obtained by regression) fM(x, y) = α +
βTx+ γTy + 1

2
(x, y)T Γ(x, y),

with α ∈ R, β ∈ R
p, γ ∈ Rq,Γ a symmetric matrix of Rn×n.

In order to construct this model, we solve the auxiliary problem which computes
the (n+1)(n+2)/2 coefficients in (α, β, γ,Γ) by imposing the interpolation of simulated
values at previous iterations {(xl, yl, fl = f(xl, yl)|l < k}

fM(xl, yl) = fl.
If k = (n+ 1)(n+ 2)/2, this problem is equivalent to solve a linear system.
If k < (n+ 1)(n+ 2)/2, we solve the following problem

min
α,β,γ,Γ

||Γ||2F
fM(xl, yl) = fl∀l

(2.19)

by minimizing the Frobenius norm of the Hessian of fM : ||Γ||2F =
∑

1≤i,j≤n
Γ2

i,j to solve

the under-determination.
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2.3.5 Proposed algorithm: Derivative Free trust Region method

for MINLPs

The proposed Derivative Free Trust Region algorithm for MINLP is the following:

• Initialization

Choose the initial setup points, x and y, δcompare and ∆max > 0, x0 is the best
initial point w.r.t. f . Choose ∆ and related constants: ǫgood = 0.9 and ǫok = 0.01
Choose the stopping criteria (e.g., δmin = 10e−5)

• Main Iteration

STEP 0. Build surrogate model M0.

STEP 1. Solve the trust region sub-problem for y fixed at the current value y0. The
bounds for the trust region sub-problem are determined by the intersection
of the trust region (which is an l1 sphere, i.e., simple bounds) and the simple
bounds of the problem. There are 3 outcomes,

a) No significant movement but ∆ is less than δmin,
b) No significant movement but ∆ is greater than δmin,
c) Significant movement and trust region sub-problem has converged.

STEP 2. Compute ρ = f(x̃,ỹ)−f(xk,yk)
fMk

(x̃,ỹ)−fMk
(xk,yk)

.

STEP 3. Trust region management.

a) if ρ ≥ ǫok and ρ < ǫgood: Not a very good ρ but true function did not
increase. New x becomes the incumbent.

b) if not a good ρ: If the function improved, the new x becomes the best
point.

c) If ρ ≥ ǫok: Good or very good ρ: true function and model decreased. New
x becomes the best point.

d) if |ρ| ≥ ǫok: Reduce ∆ by a factor of two (essentially zero movement).
Update the surrogate model.

STEP 4. Solve the approximate problem for x and y within the trust region R and
subject to local branching constraint.
If a new x becomes the best point after computing ρ we attempt to also
improve y.

1) Build a new surrogate model.
2) Solve the new trust region sub-problem for both x and the relaxed y.

There are three possible outcomes,

a) y does not change in which case there is no need to continue since we
have already solved that problem, or will in the next iteration,

b) y changes and the step is successful initially in which case we set ∆ back
to its original value because this is like a new problem,
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c) y changes but the step is unsuccessful initially in which case we set ∆
back to its prior value.

STEP 5. Stopping criteria.

If (x, y) barely changes and ∆ is small enough, STOP.

If ∆ < δmin STOP.

2.3.6 Basis for convergence of the algorithm

Salient features of the proposed algorithm are contained in STEP 0., STEP 2., STEP 3.
for fixed y.

STEP 0. aims to do at least as well as (a fixed fraction of) the Cauchy point (the
Cauchy point is the minimum of the model in the “steepest descent” direction within the
trust region). This is a crucial point to guide the convergence of the trust region algo-
rithms, see Conn et al. [26]. This model-based sub-problem can be solved by a classical
derivative based nonlinear optimization method (here, we use IPOPT, an interior point
solver, see Wächter [77])

STEP 3. appropriate management of the size of the trust region as described in
Section 2.3.3.

Check consistency between fM and f Section 2.3.2.
In STEP 4. solving the sub-problem in x and y starting from a point at least as good

as the Cauchy point for fixed y should guarantee to obtain a better value for the model
than the value for this Cauchy point, but maybe not for f . This model-based MIQP is
solved by SCIP, see Achterberg [7].

Iterating and adding new simulations for (x, y) should improve the model and help
to converge to a (local) solution. The next section describes how we force the method
to continue the exploration after reaching a local optimum.

2.3.7 No-good cuts or how to avoid redundant space explo-

ration

Suppose that the following situation occurs

• the model can be trusted in the current region,

• (x′, y′) is the current best point,

• but the current point cannot be improved.

In this case, the typical trust region method for continuous nonlinear problems would
stop and provides the local minimum (x′, y′). In the MINLP case, we propose a different
approach. In particular, we want to force the algorithm to explore a different part
of the y-space because there could be interesting unexplored parts. Thus, the local
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constraint (2.18) is relaxed and the so-called no-good cut, i.e., a reverted local branching
cut, is adjoined

∑
j:y∗

j
=0
yj +

∑
j:y∗

j
=1

(1− yj) ≥ K∗ + 1 (2.20)

where (y∗;K∗) represent the center and the radius of the region we consider as suf-
ficiently explored. Note that, we will have a bunch of constraints (2.20), one for each
sufficiently explored region.

As soon as a new current point is found, we can also restore back the local branching
constraint (2.18).

Ideally we would like to use no-good cuts to mimic the pruning process of the branch-
and-bound, i.e:

• we find the incumbent solution and we cannot improve it with the current trust
region,

• the best solution we can end with the current trust region is worse than the in-
cumbent,

• infeasibility: no feasible solution can be found with the current trust region (it can
happen because of the presence of one or more no-good cuts).

Note that in all the cases above we suppose we trust the model. We end when the
intersection of the no-good cuts is empty or a termination criterion is reached.

2.3.8 Application

2.3.8.1 Application on the 1D case

We first evaluate the method on a one dimensional case (see Section 1.4.1), on the
heterogeneous case.

The MINLP formulation of the well placement is the following (we minimize -NPV
which is equivalent to maximize NPV)





min−NPV (x, y)
x ∈ [xL, xU ] ⊆ R

n+m

y ∈ {0, 1}n+m

g(x, y) ≤ 0

(2.21)

with the design variables x ∈ R
n+m, and y ∈ {0, 1}n+m representing respectively the

locations of the wells (n = 2 is the fixed number of producer wells and m = 2 the fixed
number of injector wells) and their status (active or not), xL, xU are the bound vectors
for [1, 1000]n+m.

The considered NPV function is defined in Section 1.3 and its parameters are defined
in Tab. 2.7.
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Table 2.7: NPV function, parameters values.

Parameters Values

CP O 100 $/m

CP W 5 $/m

CIW 4 $/m

CD 1/6 $

The resulting optimization problem deals with 4 continuous variables and 4 binary
variables. Additional constraints are introduced in order to force the distance between
wells and the minimal number of injector and producer well to be larger than 1.

We compare the results obtained with the Derivative Free Trust Region algorithm
adapted for mixed variables with the results obtained with NOMAD using Mesh Adaptive
Direct Search methods (see Section 2.1.2).

The results on the 1D well placement problem are presented in Fig. 2.34. The
convergence obtained with the Derivative Free Trust Region method is faster than the
one obtained with NOMAD with a similar objective function value after convergence.
These preliminary results are encouraging despite the simplicity of the example. Even
on such a simple example, the efficiency of the method has been illustrated.
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Figure 2.34: Comparison of the results obtained with the proposed method (Derivative

Free Trust Region method for MINLP problems) and NOMAD (direct search method)

for the simple well placement problem.

2.3.8.2 Application on the 3D case SPE10

The potential of the method has been evaluated by applying the method on the three
dimensional case SPE10 (see Section 1.4.4). The reservoir simulator used is a MATLAB
implementation (Lie [51], Toolbox [73]). We consider a production of 10 years with one
injector well and between 1 to 4 producer wells. The objective of the study is to optimize
the number of producer wells and their location and the location of the injector well to
maximize the Net Present Value of the field in Section 1.2, or similarly to minimize its
opposite value.

2.3.8.2.a Problem formulation




min−NPV (x, y)
x ∈ [xL, xU ] ⊆ R

p

y ∈ {0, 1}q

g(x, y) ≤ 0

(2.22)

With x = {x1
P 1, x

2
P 1, x

1
P 2, x

2
P 2, x

1
P 3, x

2
P 3, x

1
P 4, x

2
P 4, x

1
I , x

2
I}, (x1

P i, x
2
P i) are the two coordi-

nates necessary to define vertical producer well i = 1 . . . 4, and (x1
I , x

2
I) are the coordinates

of the injector well.
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y = {y1, y2, y3, y4} are binary values associated with the status of the producer well
(0: inactive well, 1: active well), xL and xU are the bound vectors for x1 and x2. The
resulting optimization problem deals with 10 continuous variables and 4 binary variables.

Additional constraints, g(x, y) are introduced in order to force the distance between
wells to be larger than a minimal distance (10 nonlinear constraints on x (and constrain
the number of producer wells to be larger than 0 and smaller than 5 (2 linear constraints).

The objective function is the NPV function (see Section 1.2), and the parameters
used are indicated in Tab. 2.8.

Table 2.8: NPV function, parameter values

Parameters Values

CP O 50 $/bbl

CP W 5 $/bbl

CIW 5 $/bbl

CF 45 $/ft

CD 1e6 $

R 1

The results obtained with the Derivative Free Trust Region method are compared
with results of optimization with NOMAD using MADS methods (see Section 2.1).

Different options of TR method are compared with NOMAD in Fig. 2.35:

• basic TR: without local branching (2.18) and without no good cut (2.20) for binary
variables,

• with no good cut,

• with no good cut and local branching.

We observe for the 3 different options of the proposed TR algorithm a faster conver-
gence than NOMAD towards a better solution. As expected, despite none configuration
with 4 producer wells were evaluated, the no good cut constraint allows a better explo-
ration than the basic algorithm. The combination of this option with the local branching
gave the best result as shown in Fig. 2.35. The associated solution is a configuration
with one producer well as shown in Fig. 2.36.
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Figure 2.35: Evolution of objective function (top) and number of producer wells (bottom)

along optimization processes. Comparison of NOMAD and our Derivative Free Trust

Region method (run with 3 different tunings).
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Figure 2.36: Comparison of solutions obtained with NOMAD and with our Derivative

Free Trust Region method (run with 3 different tunings). The initial configuration is

displayed in the top left hand corner.

2.3.8.3 Conclusion

We proposed and tested an approach to extend the Derivative Free Trust Region methods
to mixed variables optimization problems. The method gave promising results on two
test cases of reservoir models, however the method still need improvement to explore
more the subset of binary variables. The project is still in study within the context of
the collaboration with A. R. Conn (IBM Watson), a prototype with other options and
the handling of constraints is in progress.
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2.4 Discussion on the 1D case numerical results

In this section we discuss the results of each method presented in the chapter that were
applied on the 1D case with the heterogeneous pattern (see Section 1.4.1). Tab. 2.9
indicates the maximum number of wells, the maximum number of well of each type,
the best NPV function value, the number of wells in the solution configuration, and the
number of evaluations for the NOMAD solver, the EGO algorithm used with the kriging
model build from the 250 points model, and the Derivative Free Trust Region method.
We can see that the best NPV function is obtained with the NOMAD solver, however
the Derivative Free Trust Region method obtains a slightly less good NPV function with
a hundred less number of evaluations. The NPV results for the EGO algorithm with the
kriging model are lower, but the maximum number of active wells for this method was
of 3, and we can see that wells configuration solution for the two other methods have 4
active wells. This difference of number active wells can explain the lower NPV function
for EGO with the kriging model. The method could be tested for a higher number
of wells, but it would require additive simulations for the Kriging model construction
sample. However, the EGO algorithm showed its effectiveness, since only 25 simulations
of EGO (and 250 evaluations for the kriging sample) were necessary. Thus the number
of evaluations for each combination of number of wells could be reduced for the kriging
model construction sample.
In this 1D case, we can see that similar NPV results were obtained for the NOMAD
solver and the Derivative Free Trust Region, but in terms of number of evaluations the
Derivative Free Trust Region method is more effective. The EGO algorithm with the
kriging method obtained lower NPV results, but with a different number maximum of
active wells, and the method should be compared in same conditions of active wells.

Table 2.9: Optimization with NOMAD, EGO algorithm with the kriging model (250

points), and the Derivative Free Trust Region on the 1D case with the heterogeneous

permeability (see Section 1.4.1).

NOMAD EGO & Kriging DFTR

Maximum injector wells 2 2 2

Maximum producer wells 2 2 2

Maximum total of wells 4 3 4

Best NPV function value 7097 $ 6775 $ 7059 $

Number of active wells 4 3 4

Number of evaluations 300 275 200
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2.5 Conclusions

In this chapter, we described three derivative free optimization methods, adapted to
the well placement problem. We first described GPS and MADS methods, implemented
in the NOMAD solver, and used it to optimize the number and location of vertical
or rectilinear wells on several reservoir model cases, the simplified 1D case (see Sec-
tion 1.4.1), and two 3D cases, the PUNQ-S3 (see Section 1.4.3), and the SPE10 test case
(see Section 1.4.4) and obtain satisfying results. However the method requires numerous
evaluations of the objective function which is costly in CPU time, thus it could be in-
teresting to couple the algorithm with surrogates. In the second section we presented a
kriging method for qualitative and quantitative variables function, and evaluate its ac-
curacy by estimate the NPV function on the 1D test case. The estimations of the NPV
functions present some irregularities on the boundary, and a large number of evaluations
is required to have a precise estimation. However the model can be used to guide the op-
timization. We presented two optimization algorithms using the model, a basic approach
and the EGO algorithm, and tested it on the NPV function. The basic algorithm did
not give bad optimization results, but using EGO algorithm allowed to reach a better
NPV function value than the best value found by the NOMAD solver on the same case.
Similar results were obtained by using NOMAD or the EGO algorithm, this is encourag-
ing to continue the exploitation of the quantitative and qualitative kriging method, as to
combine methods, such as using the Expected Improvement as a search step in NOMAD,
as it is done in Talgorn et al. [72]. In the last section we proposed a Derivative Free
Trust Region adapted for Black-Box MINLP problems. We tested the method on the
1D case, and the 3D SPE10 case, and obtained promising results. However the method
still need improvement to better explore the subset of integer variables, and to handle
the constraints. The project is still in study within the context of the collaboration with
A. Conn (IBM Watson).



Chapter 3

Well placement and trajectory

optimization

In the well placement problem, optimizing the number of branches can be very costly
in evaluations because of the variables used to describe the location and the status of
the branches. In specific cases, the number of authorized simulations can be limited,
and applying existing Black-Box MINLP method is then ineffective. Thus it is neces-
sary to propose methods adapted to the well placement problem that account for this
aspect. In this chapter, we propose a new methodology suited to the optimization of
well placement and geometry. Starting from a vertical well configuration obtained from
a first optimization, we aim at finding the potential branches that can be drilled from
existing wells in order to increase oil production or the NPV function. This method is
composed of two consecutive optimization problems. We first solve a Black-Box MINLP
problem for vertical well placement. Then in an intermediate step, we analyze the ob-
tained solution and define the inputs of a second convex MINLP optimization problem
for well branching. In the second optimization problem, in order to reduce the number of
Black-Box simulations, we use instead an estimation of the oil production. The method
is investigated with three different models, then we apply the methodology to a 2D case,
as presented in Lizon et al. [54, 55].

3.1 Optimization of vertical wells: type and location

The first step of the methodology consists in obtaining an acceptable and feasible so-
lution for the well location problem. In the first optimization, we limit the number of
optimized variables by considering a limited number of wells and only vertical trajecto-
ries. The optimized objective function is the Net Present Value (NPV) previously defined
in Section 1.2.2.
Maximizing this objective function with respect to the number of active wells (produc-
ers and injectors), their location and their length, is a Black-Box MINLP optimization

67
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problem coupled with a computationally expensive simulator, namely the reservoir fluid
flow simulator. Since we use the NPV function, which is generally non-smooth and non-
convex, and without available gradient information, minimization requires derivative-free
global optimization methods ([17, 31, 42, 63]) as explained in the previous chapter in
Section 2.1. This step provides a first optimized configuration with producer and injec-
tor vertical wells. The outputs of the reservoir fluid flow simulation obtained with this
configuration are analyzed to determine the areas where oil is not produced.

3.2 Optimization of well trajectory: branching prob-

lem

In this second step we start from a vertical well configuration, given as the solution
of the first optimization problem described in Section 3.1. The aim is to improve oil
production, or NPV function, by adding branches to the existing vertical wells. To do
so, we introduce a branch sub-problem: given a well configuration without branches,
we aim at finding the potential branches that can be drilled from each well. We focus
on branches from producer wells only. The vertical injection wells obtained in the first
optimization solution are fixed and kept unchanged in this phase.

In order to obtain an efficient methodology and reduce computational time, we do
not use reservoir fluid flow simulations. We consider instead an estimation of the oil
production based on the quantity of oil remaining in the cells belonging to all areas
connected to the producer wells by a branch. The objective function is computed from
this estimation. An additional constraint is introduced to account for the branch con-
struction cost, which in turn depends on the branch length, to avoid well configuration
with an unacceptable drilling cost.

3.2.1 Input data: Analysis of optimized vertical well configu-

ration

In practice, reservoir engineers make the decision to add wells or branches based on the
analysis of the outputs of the fluid flow simulator. The commonly considered criteria are
physical attributes such as oil saturation or oil thickness.
We combine this pragmatic approach with optimization in order to better determine the
trajectory of wells with branches. We analyze the outputs of the simulator and attribute
a score to distinguish regions of the field: a high score means that an area has good
drilling potential. For simplicity, we focused on a single attribute called HuφSo which is
the product of the utility thickness (Hu), the porosity (φ), and the oil saturation (So).
HuφSo quantifies the volume of oil still not produced.
An example of a two-dimensional map, obtained with HuφSo is displayed in Fig. 3.1.
This map is obtained from the outputs of a reservoir fluid flow simulation after producing



3.2. OPTIMIZATION OF WELL TRAJECTORY: BRANCHING PROBLEM 69

the field for 4 years with one vertical well located at the center of the reservoir presented
in Section 1.4.2. In this map, we observe that there is still unproduced oil.

The input data of the second MINLP optimization problem are the location of groups
of cells where oil is not produced, and the quantities of the chosen attribute within the
group of cells.

3.2.1.1 Physical attributes

The outputs of the fluid flow simulator are analyzed. They give an estimation of the
quantity of attribute at a chosen time of the simulation on the whole domain: a value is
assigned to each cell of the grid, as displayed in Fig. 3.2, and Fig. 3.1.

Figure 3.1: HuφSo map associated with a

single vertical well configuration on a 2D

case (see Section 1.4.2).

Figure 3.2: Oil saturation for initial verti-

cal well configuration after 4 years of pro-

duction.

3.2.1.2 Analysis

The first idea could be to use each cell with a value above a chosen amount, but we can see
that some cells have a high HuφSo but are spatially close to cells with low HuφSo values.
Clearly, such cells are not as interesting as zones with more homogeneous and relatively
high HuΦSo values. Moreover, taking all cells with high enough values would lead to a
high complexity optimization problem. In order to reduce the number of variables, and
to avoid isolated cells, scores are computed for groups of cells. Such groups of cells are
called areas in the remaining of this chapter.

Another property that could be taken into account in the definition of high potential
areas is the connectivity between cells. Based on connectivity consideration, we can
introduce here forbidden zones, i.e., parts of the reservoir that cannot physically be
drilled or that we do not want to drill because, in general, they are not well connected.

From this analysis, we determine the input data to be used within the following step
of the proposed methodology, which is the branching optimization problem.
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3.3 Mathematical models

In this section, we present several models used for the conception of branches. Different
views for adding branches to wells were possible, and we tested several convex MINLP
problems, i.e., MINLP problems with convex objective function and constraint functions.
In the first model, (see Section 3.3.2), branches produced only oil located in cells closed
to their extremities. In models 2 and 3, oil is produced along the whole branches. In
Model 2 (see Section 3.3.3), branches are defined relatively to a well, but the model is
valid in only two dimensions, whereas in Model 3 (see Section 3.3.4) their coordinates
are defined in the whole domain. The definition and handling of budget and drilling
constraints are also different in the three models.

3.3.1 Common notation

Notation commonly used in the proposed mathematical models show sets in Greek letters,
input data and parameters in upper case, and variables in lower case. As variables and
bounds depend on the models, we present in this section only sets and parameters:
Sets:

• Φ: set of wells in the initial solution.

• Π: set of areas of the reservoir representing the cells with a high score at the end
of the he simulation with the initial well configuration.

• ∆ = {1, . . . , D}: considered space dimensions (D ≤ 3).

Indexes:

• i: index for area i ∈ Π.

• n: index for well n ∈ Φ.

• d: index for domain dimensions d ∈ ∆.

Parameters:

• D: number of space dimensions considered (D ≤ 3).

• Xid: dth coordinate of the center of oil area (i ∈ Π, d ∈ ∆).

• Oi: volume of oil contained by oil area i (i ∈ Π).

• [0, Ed]: oil reservoir domain for dimension d (d ∈ ∆). The domain is a rectangular
cuboid of top corner (0), and E are the coordinates of the diagonally opposed
corner.

• L, L, and H: minimum and maximum lengths of a branch, and maximum length
of all branches built. The third parameter is necessary to limit the construction
cost based on the target budget.
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• R: maximum distance between oil area and branch end, i.e., maximum distance of
a point in Π with respect to the branch reference point.

• Vnd: coordinates of the top of well n for dimension d (d ∈ ∆, n ∈ Φ).

• Wn: height of well n (n ∈ Φ), we assume that there are vertical wells only.

• C: profit for a unit of oil produced.

• F : drilling cost per branch length.

In the next sections, some additional parameters and variables will be introduced for
the different model formulations.

3.3.2 Model 1, a 3D model

In this section, we introduce the concept of cluster for modeling purposes. A cluster is
a set of oil areas that are “close enough” to be reached by a single branch (close enough
has to be understood in terms of connectivity). The mathematical model below can be
used to aggregate areas into clusters and to determine how to reach a cluster with a
branch from a well, with an acceptable construction cost. We define the end of a branch
as a cluster reference point, i.e., a point that is close enough to each area of the cluster
(the branch obtained can be expected to produce a significant amount of the oil in the
cluster).

3.3.2.1 Sets

• Γ = {1, . . . , K}: set of clusters.

Indexes:

• j: index for cluster j ∈ Γ.

Parameters:

• B: maximum number of branches per well.

• K: maximum number of clusters.

3.3.2.2 Variables

Continuous:

• zjd: d-th coordinate of the reference point for cluster j (j ∈ Γ, d ∈ ∆).

• wjn: height of the junction point on well n connecting cluster j through a branch
(j ∈ Γ, n ∈ Φ).
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• sjn: square of the distance between the reference point of cluster j and the junction
point of well n (j ∈ Γ, n ∈ Φ).

Binary:

• qjn: activation of connection between cluster j and well n (j ∈ Γ, n ∈ Φ): [1 if
active, 0 otherwise].

• xij: inclusion of oil area i in cluster j (i ∈ Π, j ∈ Γ): [1 if included, 0 otherwise].

• yj: activation of cluster j (j ∈ Γ), an inactive cluster is not linked to any well: [1
if active, 0 otherwise].

(Vn1, Vn2)

(Vn1, Vn2 +Wn)

•
(Xi1, Xi2)

•

• •

•

• •

•

•

×
(zj1, zj2)

×
(Vn1, Vn2 + wjn)

×
(z′1, z′2)

Figure 3.3: Branch and cluster modeling (in two dimensions) for Model 1.

In Fig. 3.3 we represent the cluster modeling. Well n represented by a vertical
segment with its coordinates. Oil areas are represented by black dots, and are indexed
in Π. One oil area, which coordinates are indicated on the figure, is not part of a cluster.
The other oil areas are part of two clusters, Cluster j represented as a circle and Cluster
′ represented as a dashed circle. Only Cluster j is linked by a branch to the well, which
means only areas in Cluster j are produced in the represented configuration.

Some additional parameters and variables will be introduced later to formulate the
optimization as a convex MINLP problem.
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3.3.2.3 Simple Bounds

Simple bounds on continuous variables are defined to ensure that the well configurations
obtained are specified within the physical domain considered.

0 ≤ wjn ≤ Wn ∀j ∈ Γ, n ∈ Φ, (3.1)

0 ≤ zjd ≤ Ed ∀j ∈ Γ, d ∈ {1, 2}, (3.2)

0 ≤ sjn ≤ ||Ed||
2
2 ∀j ∈ Γ, n ∈ Φ. (3.3)

3.3.2.4 Constraints

• Inequalities (3.4) represent a budget constraint. As anticipated at the beginning
of this section, this constraint is introduced to limit the cost associated with the
branches. The bilinear terms qjnsjn will be reformulated at the end of the section
to obtain a linear constraint plus auxiliary variables and linear constraints.

∑

j∈Γ,n∈Φ

qjnsjn ≤ H2, (3.4)

• Equations (3.5) represent bound inequalities on the branch length:

qjnL
2 ≤ qjnsjn ≤ qjnL

2
∀j ∈ Γ,∀n ∈ Φ, (3.5)

• Each area i is assigned at most to one cluster:
∑

j∈Γ

xij ≤ 1 ∀i ∈ Π, (3.6)

• We ensure that area i is assigned to cluster j only if this cluster is active:

xi ≤ yj ∀i ∈ Π, j ∈ Γ, (3.7)

• Cluster j is not active if no area is assigned to it:

yj ≤
∑

i∈Π

xij j ∈ Γ, (3.8)

• Cluster j can be connected to well n only if this cluster is active:

qjn ≤ yj ∀n ∈ Φ, j ∈ Γ, (3.9)

• The maximum number of branches for each well is B:
∑

j∈Γ

qjn ≤ B ∀n ∈ Φ, (3.10)

• If cluster j is active, it can be connected to at most one well:
∑

n∈Φ

qjn ≤ yj ∀j ∈ Γ, (3.11)
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• As mentioned earlier, the oil-bearing areas have to be close enough to the reference
point of a cluster to be assigned to it. In such a case, we can expect that a
significant amount of the oil contained in these areas is produced through the
branch corresponding to the cluster. Equations (3.12) ensure that, if area i is
assigned to cluster j, the distance between the cluster reference point and the area
cannot be larger than R:

∑

d∈{1,2}

(Xid − zjd)2 ≤ R2 +M(1− xij) ∀j ∈ Γ, i ∈ Π, (3.12)

• Here we represent an angle constraint between the well mainbore and a branch
(if cluster j is connected to well n). Note that since all wells are vertical, forcing
the height of the well junction point to be greater than the height of the cluster
reference point is the same as setting a 90o upper bound on the branch angle:

zj2 ≤ Vn2 + wjn + (1− qjn)E2 ∀j ∈ Γ, n ∈ Φ, (3.13)

• Equation (3.14) is related to the square distance between cluster reference point j
and its junction point on well n:

sjn ≥ (Vn1 − zj1)2 + ((Vn2 + wjn)− zj2)2 ∀j ∈ Γ, n ∈ Φ, (3.14)

• Equations (3.15) establish symmetry breaking constraints, i.e., they impose an or-
der for the lateral coordinates of the clusters. These symmetry breaking constraints
do not remove any feasible solution (they keep only one configuration when several
are equivalent). This limits the feasible space of the solution to be explored by the
optimization algorithm considered:

zj1 ≤ zk1 ∀j < k ∈ Γ. (3.15)

3.3.2.5 Objective function

The proposed model aims at maximizing the total amount of oil produced. Formally,
this quantity can be estimated through the quadratic objective function:

max
x,q

∑

i∈Π,j∈Γ,n∈Φ

xijqjnOi,

which accounts for the oil associated with areas belonging to a connected cluster.

3.3.2.6 Reformulations

We can simplify a number of constraints with the help of auxiliary variables: rjn and
ujni replace the bilinear terms qjnsjn (j ∈ Γ, n ∈ Φ) and xijqjn, (j ∈ Γ, n ∈ Φ, i ∈ Π)
respectively. The variable rjn is the square of the distance between a connected cluster
j and well n (if cluster j is not connected, rjn = 0). The binary variable ujni indicates
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that area i belongs to cluster j which is connected to well n (if oil area i is not produced,
ujni = 0).

The relation between the original and the new variables is given by the following
linear constraints:

rjn ≤ sjn +M(1− qjn) ∀j ∈ Γ, n ∈ Φ, (3.16)

rjn ≥ sjn −M(1− qjn) ∀j ∈ Γ, n ∈ Φ, (3.17)

rjn ≥ qjnL
2

∀j ∈ Γ, n ∈ Φ, (3.18)

rjn ≤ qjnL
2 ∀j ∈ Γ, n ∈ Φ, (3.19)

ujni ≤ qjn ∀n ∈ Φ, j ∈ Γ, i ∈ Π, (3.20)

ujni ≤ xij ∀n ∈ Φ, j ∈ Γ, i ∈ Π, (3.21)

ujni ≥ qjn + xij − 1 ∀n ∈ Φ, j ∈ Γ, i ∈ Π. (3.22)

where M is defined as the square of the maximum distance between two points in the
reservoir.

According to Equations (3.16), (3.17), (3.18) and (3.19), if cluster j is connected to
well n (i.e., qjn = 1), then the corresponding branch length cannot be larger than L and
smaller than L. If cluster j is not connected to well n (i.e., qjn = 0), Equations (3.18)
and (3.19) imply rjn = 0, and (3.16) and (3.17) are satisfied.

In terms of the new variables, the budget constraint (3.4) can be rewritten as the
linear constraint: ∑

j∈Γ,n∈Φ

rjn ≤ H2.

In addition, the objective function is now linear:

max
u

∑

i∈Π,j∈Γ,n∈Φ

ujniOi.

Constraints (3.5) are also rewritten as linear constraints, which are constraints (3.18)
and (3.19).

As a consequence, the optimization problem formulated in terms of the new variables
is a convex MINLP.

It is important to note that in the above formulation we impose no restriction on the
crossing or proximity of branches. These constraints are very important in practice but
would complicate the problem considerably, and transform it into a non convex MINLP,
which is much harder to solve.

This first model generates a lot of constraints, and cannot be applied in a case of
large number of inputs. In the next section, two other models are presented, and the
concept of cluster does not appear. Oil areas are not distributed into clusters before
forming branches.

3.3.3 Model 2, a 2D model

To obtain an efficient model, we implement a second model restricted to D = 2 dimen-
sions. In this model we add branches to wells considering that a branch produces an oil
area, if this area is located in a given radius.



76 CHAPTER 3. WELL PLACEMENT AND TRAJECTORY OPTIMIZATION

3.3.3.1 Sets

• Γ = {1, . . . , K}: set of branches.

Indexes:

• j: index for branch j ∈ Γ.

Parameters:

• K: maximum number of branches allowed for each well.

• C: profit for a unit of oil produced.

• F : drilling cost per length of branch.

• P : distance between two branches of a same well.

• Q: minimal lateral distance between two branches of a different wells.

• h: identify if the total length of branches is part of the objective function or
considered as a constraint [1 if objective function, 0 if constraint].

3.3.3.2 Variables

Continuous:

• wjn: height of the j-th branch’s junction of well n (n ∈ Φ, j ∈ Γn).

• zjnd: d-th coordinate of the ending point of the j-th branch of well n with respect
to the junction given by (Vnd, wjn) (n ∈ Φ, j ∈ Γn, d ∈ ∆ \ {2}).

• gjnd: absolute value of d-th coordinate of the ending point for j-th branch of well
n with respect to the junction given by (Vnd, wjn) (n ∈ Φ, j ∈ Γn, d ∈ ∆).

• sjn: square of the distance between the starting and the ending point for j-th
branch of well n (j ∈ Γn, n ∈ Φ).

• δ+
jkn1, δ

−
jkn1, δ

+
jkn2, δ

−
jkn2: slack variables (n ∈ Φ, j, k ∈ Γn, j > k).

Binary:

• xijn: identify if i is reached (and produced) by j-th branch of well n [1 if produced,
0 otherwise] (i ∈ Π, n ∈ Φ, j ∈ Γn).

• yjnd: sign of variable zjnd j [1 if positive, 0 otherwise] (n ∈ Φ, j ∈ Γn, d ∈ ∆, d 6= 2).

• ujkn: identify if zjn1 and zkn1 have the same sign [1 if opposite, 0 otherwise] (n ∈ Φ,
j, k ∈ Γn, j > k).

• ujkn1: identify the sign of (gjn1 − gkn1) [1 if positive, 0 otherwise] (n ∈ Φ, j, k ∈
Γn, j > k).
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• ujkn2: identify the sign of ((wjn + zjn2) − (wkn + zkn2)) [1 if positive, 0 otherwise]
(n ∈ Φ, j, k ∈ Γn, j > k).

(Vn1, Vn2)

(Vn1, Vn2 +Wn)

•
(Xi1, Xi2)

•

• •

•

• •

•

•

×
(V1, V2 + wjn)

×
(V1 + wjn + zjn1, V2 + zjn2)

Figure 3.4: Branch modeling for Model 2.

In Fig. 3.4, we represent the branch modeling for the second proposed model. We can see
that branch j on well n is represented by 3 coordinates, its height junction wjn, zjn1 and
zjn2, its relative coordinates starting from the junction on well n. In this figure, branch
j on well n is on the positive side of x axes, which means that the variable yjn1 = 1.

3.3.3.3 Simple Bounds

Simple bounds on continuous variables can be defined as follows:

0 ≤ wjn ≤ Wn ∀j ∈ Γn, n ∈ Φ, (3.23)

−L ≤ zjnd ≤ L ∀n ∈ Φ, j ∈ Γn, d ∈ ∆, d 6= 2, (3.24)

0 ≤ zjn2 ≤ L ∀n ∈ Φ, j ∈ Γn, d ∈ ∆, (3.25)

0 ≤ sjn ≤ 2L
2

∀j ∈ Γn, n ∈ Φ. (3.26)

3.3.3.4 Constraints

The set of constraints is presented in the following subsection. Variables gjnd, ujnd, ujknd

appear in equations above: their definition will be presented later in the section. We
first present the equations directly linked to the branches and oil production:
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• Equation (3.27) represents a budget constraint. As in the previous model, this
constraint is introduced to limit the cost associated with the branches. If parameter
h = 0, the constraint is active. The total sum of the length of each branch must
be less than a fixed budget.

∑

n∈Φ

∑

j∈Γn

sjn ≤ H2(1− h) +Mh ∀n ∈ φ, j ∈ Γn, (3.27)

• By means of Equations (3.28) each area i is assigned at most to one branch.

∑

n∈Φ:i∈Πn

∑

j∈Γn

xijn ≤ 1 ∀i ∈ ∪
n∈Φ

Πn, (3.28)

• Equation (3.29) forces the variable sjn to have the same value of the length of
branch j of well n.

sjn =
∑

d∈∆

z2
jnd ∀j ∈ Γn, n ∈ Φ, (3.29)

• Equations (3.30) ensure that the branch length satisfy bounds.

sjn ≤ L2 ∀j ∈ Γn, n ∈ Φ, (3.30)

• Equations (3.31) establish symmetry breaking constraints, i.e., they impose an
order for the coordinates d = 2 of the clusters.

wjn ≥ wkn ∀n ∈ Φ, j > k ∈ Γn, (3.31)

• Equation (3.32) forces variable zjnd to have an absolute value between L and R,
and forces variable yjn to have the value of 1 if coordinate zjn1 is positive, 0 if
negative.

− L(1− yjn1) +Ryjn1 ≤ zjn1 ≤ Lyjn1 −R(1− yjn1) ∀n ∈ Φ, j ∈ Γn, (3.32)

• Equations (3.33) impose a distance between junctions of branches j and k if they
are on the same side of well n.

wjn − P +Mujkn ≥ wkn ∀n ∈ Φ, j > k ∈ Γn, (3.33)

• Constraints (3.34) check that oil area i is at a distance less than R + zjn1 of well
n and is active if zjn1 has a positive sign (that is when yjn1 is equal to 1). If not,
xijn is equal to 0. ∀n ∈ Φ, j ∈ Γn, i ∈ Πn :

−M(1− yjn1) + Vn1xijn ≤ Xi1xijn ≤ Vn1xijn + zjn1 +
s

1

2

jnR

zjn2

+M(1− yjn1) (3.34)
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• Constraints (3.35) check that oil area i is at a distance less than R + zjn1 of well
n and is active if zjn1 has a negative sign (that is when yjn1 is equal to 0). If not,
xijn is equal to 0.

−Myjn1−
s

1

2

jnR

zjn2

+Vn1xijn+zjn1 ≤ Xi1xijn ≤ Vn1xijn+Myjn1 ∀n ∈ Φ, j ∈ Γn, i ∈ Πn,

(3.35)

• Equations (3.36) and (3.37) check that oil area i is in branch j of well n given
the second coordinate. We project coordinate Xi1 on branch j, and (see Fig. 3.5)
compute coordinate X̃i2 using the intercept theorem in elementary geometry: if
a given line passes through the two sides of the given triangle and parallel to the
third side, then it cuts the sides proportionally. The intercept theorem allows us to
compute the value a and to subtract it the value b (which can be easily computed)
to obtain the distance c. Equations (3.36) and (3.37) ensure that oil area i can be
produced only if the difference Xi2 − X̃i2 (distance c in Fig. 3.5) is less than R.

∀n ∈ Φ, j ∈ Γn, i ∈ Πn :

zjn2(Xi1 − Vn1) + (wjn + Vn2)gjn1 − s
1

2

jnR−M(1− xijn)gjn1 ≤ Xi2gjn1, (3.36)

Xi2gjn1 ≤ zjn2(Xi1 − Vn1) + (wjn + Vn2)gjn1 + s
1

2

jnR +M(1− xijn)gjn1. (3.37)

• Equations (3.39), (3.40) (3.41) (3.42), check that the distance between branches of a
same well is at least P . We use again the intercept theorem to compute the distance
between projection of branches extremities. Variables ujknd allow to differentiate
the cases (see Fig. 3.6 to Fig. 3.9) that can appear when two branches are on a
same side of a well. Equations (3.38) eliminate the case where two branches cross
themselves (see case in Fig. 3.7). These constraints are active only if branches are
on the same side of the well.

∀n ∈ Φ, j > k ∈ Γn :

ujkn1 − ujkn2 ≥ ujkn,(3.38)

wjn + zjn2 − wkn − zkn2 −
zjn2

zjn1

(zjn1 − gkn1) ≥ P −M(ujkn + ujkn1 + ujkn2),(3.39)

(wjn − wkn − zjn2) + gjn1
zkn2

gkn1

≥ P −M(ujkn + (1− ujkn1)),(3.40)

gkn1 −
gjn1

zjn2

(zkn2 + wkn − wjn) ≥ P −M(ujkn + ujkn2)(3.41)

gkn1

zkn2

(zjn2 + wjn − wkn)− gjn1 ≥ P −M(ujkn + (1− ujkn2)).(3.42)

• Equation (3.43) keeps a minimal lateral distance of Q between branches of different
wells.

(Vm1 + zjm1)− (Vn1 + zkn1) ≥ Q ∀m = n+ 1 ∈ Φ, j ∈ Γm, k ∈ Γn. (3.43)
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×
Vn1

×Vn2

×
Vn1 + zjn1

×
Vn2 − wjn − zjn2

×Vn2 − wjn

zjn1

zjn2

wjn

×Xi2

X̃i2

Xi1

c

b

a

Figure 3.5: Production constraints.

Equations (3.44) and (3.45) gave to variable gjn1 the absolute value of zjn1

−M(1− yjn1) + zjn1 ≤ gjn1 ≤ zjn1 +M(1− yjn1) ∀n ∈ Φ, j ∈ Γn, (3.44)

−Myjn1 − zjn1 ≤ gjn1 ≤ −zjn1 +Myjn1 ∀n ∈ Φ, j ∈ Γn. (3.45)

Equations (3.46),(3.47),(3.48) and (3.49) force variable ujkn to be 1 if branches j and k
are on the same side of well n.

yjn1 − ykn1 + ujkn ≥ 0 ∀n ∈ Φ, j, k ∈ Γn, j > k, (3.46)

ykn1 − yjn1 + ujkn ≥ 0 ∀n ∈ Φ, j, k ∈ Γn, j > k, (3.47)

yjn1 + ykn1 − ujkn ≥ 0 ∀n ∈ Φ, j, k ∈ Γn, j < k, (3.48)

yjn1 + ykn1 + ujkn ≤ 2 ∀n ∈ Φ, j, k ∈ Γn, j > k. (3.49)

In the next equations a new variable δjknd, n ∈ Φj > k ∈ Γ, d ∈ ∆ provides a bound
that allows to compute binary variables ujknd.

gjn1 − gkn1 + δ+
jkn1 − δ

−
jkn1 = 0 ∀n ∈ Φ, j > k ∈ Γn, (3.50)

0 ≤ δ+
jkn1 ≤Mujkn1 ∀n ∈ Φ, j > k ∈ Γn, (3.51)

0 ≤ δ−
jkn1 ≤M(1− ujkn1) ∀n ∈ Φ, j > k ∈ Γn, (3.52)

(wjn + zjn2)− (wjn + zkn2) + δ+
jkn2 − δ

−
jkn2 = 0 ∀n ∈ Φ, j > k ∈ Γn, (3.53)

0 ≤ δ+
jkn2 ≤Mujkn2 ∀n ∈ Φ, j > k ∈ Γn, (3.54)

0 ≤ δ−
jkn2 ≤M(1− ujkn2) ∀n ∈ Φ, j > k ∈ Γn. (3.55)

Equations (3.50) (3.51) (3.52) force variable ujkn1 to be 1 if the absolute value of zjn1

is greater than zjkn1. Equations (3.53) (3.54) (3.55) force variable ujkn2 to be 1 if the
absolute value of zjn2 is greater than zjkn2.
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wjn

zjn2

wkn

zkn2

zj1

zk1

Figure 3.6: ujk1 = 0, ujk2 = 0.

wjn
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wkn

zkn2

zj1
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Figure 3.7: ujk1 = 0, ujk2 = 1.
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Figure 3.8: ujk1 = 1, ujk2 = 0.

wjn
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wkn

zkn2

zj1
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Figure 3.9: ujk1 = 1, ujk2 = 1.

3.3.3.5 Objective function

A “low” NPV function can be proposed if parameter h is fixed at 1. If h = 0, the model
maximizes the total amount of oil produced. Formally, this quantity can be estimated
through the linear objective function

max
x,s

∑

n∈Φ,i∈Π,j∈Γn

xijnOiC − h
∑

n∈Φ,j∈Γn

sjnF

which accounts for the oil associated with produced areas, and the length of branches.
The model gives satisfying results in 2D as we can see in its application in Sec-

tion 3.4.2), but cannot be generalized to the third dimension. Too many additive
variables and constraints would be involved, in particular for the handling of crossing
branches. In the next section, we propose another model that can be applied in 3D.

3.3.4 Model 3, a 3D model

In this section, we present a 3D model for the branching problem.
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3.3.4.1 Sets

• Γ = {1, . . . , K}: set of branches.

Indexes:

• j: index for branch j ∈ Γ.

Parameters:

• K: maximum number of branches allowed for each well.

• D: minimum distance between two junctions of the same well.

• P : minimum distance between two branches of two distinct wells.

3.3.4.2 Variables

Continuous:

• wjn: the junction point of the j-th branch of well n with coordinates (wjnd)d∈∆

(n ∈ Φ, j ∈ Γn).

• zjn: the ending point of the j-th branch of well n with coordinates (zjnd)d∈∆ (n ∈ Φ,
j ∈ Γn).

• sjn: square of the distance between the starting and the ending point for j-th
branch of well n (n ∈ Φ, j ∈ Γn).

• λijn: used to define a point in [wjn, zjn] (n ∈ Φ, j ∈ Γn) and compute its distance
to area i (i ∈ Πn) (closest point to i).

Binary:

• xijn: identify if i is reached (and produced) by j-th branch of well n [1 if produced,
0 otherwise] (i ∈ Π, n ∈ Φ, j ∈ Γn).

• ajn: identify if the j-th branch of well n is active [1 if active, 0 otherwise]. A branch
is active if its produce at least one area.

Some additional variables will be introduced later to reformulate the problem.

3.3.4.3 Simple Bounds

• Vn2 ≤ wjn2 ≤ Wn + Vn2, ∀j ∈ Γn, n ∈ Φ,

• wjnd = Vnd, ∀n ∈ Φ, j ∈ Γn, d ∈ ∆ \ {2},

• Vn2 ≤ zjn2 ≤ L+Wn + Vn2, ∀n ∈ Φ, j ∈ Γn,

• −L+ Vnd ≤ zjnd ≤ L+ Vnd, ∀n ∈ Φ, j ∈ Γn, d ∈ ∆ \ {2},
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• 0 ≤ sjn ≤ min{||E||22, L
2}, ∀j ∈ Γn, n ∈ Φ,

• max{0, Vnd} ≤ zjnd ≤ min{Ed, Vnd + L}, ∀j ∈ Γn, n ∈ Φ, d ∈ ∆ \ {2},

• max{0, Vn2 − L} ≤ zjn2 ≤ min{E2, Vn2 +W [n] + L}, ∀j ∈ Γn, n ∈ Φ,

• λijn ∈ [0, 1], ∀n ∈ Φ, i ∈ Πn, j ∈ Γn.

(Vn1, Vn2)

(Vn1, Vn2 +Wn)

•
(Xi1, Xi2)

•

• •

•

• •

•

•

×
(wjn1, wjn2)

×
(zjn1, zjn2)

Figure 3.10: Branch modeling (in two dimensions) for Model 3.

In Fig. 3.10, we represent the branch modeling for the third proposed model. Branch j
on well n is represented by the coordinates of its junction point wjnd on well n, and its
branch’s extremity point zjnd.

3.3.4.4 Constraints

• The total length of built branches must not exceed the maximum length H
∑

n∈Φ

∑

j∈Γn

sjn ≤ H2. (3.56)

• The distance square sjn is equal to the Euclidean distance square between wjn and
zjn if branch j of well n is active (i.e., if ajn = 1). If branch j is not active, sjn is
equal to 0.

∀j ∈ Γn, n ∈ Φ, sjn ≤ ajnL
2, (3.57)

∀j ∈ Γn, n ∈ Φ, sjn ≥ ||zjn − wjn||
2
2 − (1− ajn)L2. (3.58)
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(We have replaced = by ≥ to have a convex formulation as we are minimizing s).

• Every (center) oil area is at most reached (and produced) by one branch

∀i ∈ ∪
n∈Φ

Πn,
∑

n∈Φ:i∈Πn

∑

j∈Γn

xijn ≤ 1. (3.59)

• The j-th branch of well n is active if it produce at least one point

∀i ∈ ∪
n∈Φ

Πn, xijn ≤ ajn. (3.60)

• The distance between a center oil area and its producing branch must not exceed
R

∀n ∈ Φ, i ∈ Πn, j ∈ Γn, ||Xi− (λijnwjn + (1−λijn)zjn)||22 ≤ R2xijn +M(1−xijn).
(3.61)

• The distance between two branches of two different wells must be at least P if they
are both active

∀n,m ∈ φ,m > n, j ∈ Γn, k ∈ Γm, f(wjn, zjn, wkm, zkm) ≥ P (−1 + ajn + akm),
(3.62)

where

f(wjn, zjn, wkm, zkm) =





min d1

d1 = ||α1wjn + (1− α1)zjn − (α2wkm + (1− α2)zkm)||22
d1 ≥ 0, α1, α2 ∈ [0, 1].

(3.63)

• The distance between two branches of a same well must be at least D

∀n ∈ φ, j, k ∈ Γn, k > j, f(wjn, zjn, wkn, zkn) ≥ D(−1 + ajn + akn), (3.64)

where

f(wjn, zjn, wkn, zkn) =





min d2

d2 = ||β1wjn + (1− β1)zjn − (β2wkn + (1− β2)zkm)||22
d2 ≥ 0, β1, β2 ∈ [0, 1].

(3.65)
We also have symmetry breaking constraints.

• j − 1-th branch of a well is active only if j-th branch is active

∀j, k ∈ Γn, k = j − 1 ajn ≥ akn. (3.66)

• The 2-th coordinate of the junction point of branches of a same well are ordered

∀j, k ∈ Γn, k = j − 1 wjn2 ≥ wkn2. (3.67)

• If point i is not produced, the value of λ is set to 0

∀i ∈ ∪
n∈Φ

Πn, xijn ≤ λijn. (3.68)
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3.3.4.5 Objective function

The objective is to maximize the amount of produced oil by the additional built branches.
This is given by: ∑

n∈Φ,i∈Π,j∈Γn

xijnOiC −
∑

n∈Φ,j∈Γn

sjnF. (3.69)

3.3.4.6 Reformulation

We can simplify some constraints, by introducing auxiliary variables. In Equations (3.59)
we replace the term (wjnd − zjnd) by the variable rjnd (n ∈ Φ, j ∈ Γn, d ∈ ∆). Then
the product λijnwjnd + (1 − λijn)zjnd becomes λijnrjnd + zjnd. The product λijnrjnd is
isolated in variable uijnd (n ∈ Φ, i ∈ Πn, j ∈ Γn, d ∈ ∆), and we use variable qijnd

(n ∈ Φ, i ∈ Πn, j ∈ Γn, d ∈ ∆) for the sum of the terms uijnd and zijnd. Theses
reformulations correspond to the following constraints :

rjnd = wjnd − zjnd n ∈ Φ, j ∈ Γn, d ∈ ∆, (3.70)

uijnd = λijnrjnd n ∈ Φ, i ∈ Πn, j ∈ Γn, d ∈ ∆, (3.71)

qijnd = uijnd + zjnd n ∈ Φ, i ∈ Πn, j ∈ Γn, d ∈ ∆, (3.72)

||Xi − qijnd||
2
2 ≤ R2xijn +M(1− xijn) ∀n ∈ Φ, i ∈ Πn, j ∈ Γn. (3.73)

Bounds can be provided for the auxiliary variables:

− L ≤ ujnd ≤ L j ∈ Γn, d ∈ ∆ \ {2}, (3.74)

−L ≤ ujn2 ≤ 0 j ∈ Γn. (3.75)

−L ≤ rjnd ≤ L j ∈ Γn, d ∈ ∆ \ {2}, (3.76)

−L ≤ rjn2 ≤ 0 j ∈ Γn. (3.77)

0 ≤ qijnd ≤ max{wjnd, zjnd} j ∈ Γn, d ∈ ∆. (3.78)

To help the optimization, in addition to the equality Constraints (3.71), we add
McCormick approximation constraints (McCormick [58]).

uijn2 ≥ −Lλijn ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, (3.79)

uijn2 ≥ rjn2 ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, (3.80)

uijn2 ≤ rjn2 + λijnL− L ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, (3.81)

uijn2 ≤ 0 ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, (3.82)

uijnd ≥ −λijnL ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, d ∈ ∆ \ {2}, (3.83)

uijnd ≥ rjndλijnL− L ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, d ∈ ∆ \ {2}, (3.84)

uijnd ≤ λijndL ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, d ∈ ∆ \ {2}, (3.85)

uijnd ≤ rjnd − λijnL+ L ∀i ∈ ∪
n∈Φ

Πn, j ∈ Γn, d ∈ ∆ \ {2}. (3.86)
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3.3.4.7 Solving the problem

In this section, we aim at solving the optimization problem defined in the previous
sections. We maximize the objective function (3.69) under several constraints.
Constraints(3.56) to (3.61) and constraints (3.66) to (3.86) are regrouped in the set of
constraints C. The problem can be written as follows:

max
x,s

∑

n∈Φ,i∈ ∪
n∈Φ

Π,j∈Γn

xijnOiC −
∑

n∈Φ,j∈Γn

sjnF,

s.t C

f(wjn, zjn, wkm, zkm) ≥ P 2(−1 + ajn + akm) ∀n,m ∈ φ,m > n, j ∈ Γn, k ∈ Γm, (3.87)

f(wjn, zjn, wkn, zkn) ≥ D2(−1 + ajn + akn) ∀n ∈ φ, j, k ∈ Γn, k > j,(3.88)

where

f(wjn, zjn, wkm, zkm) =

{
min ||α1wjn + (1− α1)zjn − (α2wkm + (1− α2)zkm)||22
α1, α2 ∈ [0, 1],

f(wjn, zjn, wkn, zkn) =

{
min ||β1wjn + (1− β1)zjn − (β2wkn + (1− β2)zkn)||22
β1, β2 ∈ [0, 1].

To solve the optimization problem given by Model 3, we propose an iterative row
generation algorithm. The approach is to solve iteratively a master problem PM , and
slave problems Ps(wjn, zjn, wkm, zkm) and Ps(wjn, zjn, wkn, zkn). We first define an initial
master problem PM given by:





max
∑

n∈Φ,i∈ ∪
n∈Φ

Π,j∈Γn

xijnOiC −
∑

n∈Φ,j∈Γn

sjnF

s.t C
(PM)

Then we introduce the two slave problems and , and first we present the slave problem
related to Equation (3.87). The problem as continuous variables α1, and α2, and its
parameters are wjn, zjn, wkm, and zkm.





min
α1,α2

f(wjn, zjn, wkm, zkm)

f(wjn, zjn, wkm, zkm) = ||α1wjn + (1− α1)zjn − (α2wkm + (1− α2)zkm)||22
α1, α2 ∈ [0, 1].

(Ps(wjn, zjn, wkm, zkm))
The slave problem related to Equation (3.88), with continuous variables β1 and β2, and
parameters wjn, zjn, wkm, and zkm, is written as follows:





min
β1,β2

f(wjn, zjn, wkn, zkn)

f(wjn, zjn, wkn, zkn) = ||β1wjn + (1− β1)zjn − (β2wkn + (1− β2)zkn)||22
β1, β2 ∈ [0, 1].

(Ps(wjn, zjn, wkn, zkn))
Initially, we solve the master problem PM , and let (w, z, a) be its optimal solution.
Then, for all active branch j of well n and active branch k of well m such that n < m,
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we solve the problem Ps(wjn, zjn, wkm, zkm), and let (α̂1, α̂2) be its solution, and f1 its
solution value. If f1 < P 2 then we add to problem PM the constraint:

||α̂1wjn + (1− α̂1)zjn − (α̂2wkm + (1− α̂2)zkm)||22 > P 2(−1 + ajn + akm). (S1)

Similarly, for all active branches j and k of well n such that j < k, we solve the problem
Ps(wjn, zjn, wkn, zkn), and let (β̂1, β̂2) be its solution, and f2 its solution value. If f2 < D2

then we add to problem PM the constraint:

||β̂1wjn + (1− β̂1)zjn − (β̂2wkm + (1− β̂2)zkm)||22 > D2(−1 + ajn + akn). (S2)

We repeat the process until the values f1 and f2 respectively generated by solving prob-
lems Ps(wjn, zjn, wkm, zkm) and Ps(wjn, zjn, wkm, zkm) are respectively greater than P 2

and D2. The optimal solution of the whole optimization problem is then (w, z, a), solu-
tion of the master problem PM .

The algorithm defined below presents this row generation method applied to our
problem.

Algorithm

Initialization
Let P the minimum distance between two branches of a distinct wells, and D the mini-
mum distance between two branches of a same well. Let feas← 0

(1.) Solve master problem PM and let (w, z, a) be its solution. Let feas← 1.

(2.) For each (n,m) ∈ Φ, n < m do

For each j ∈ Γn, k ∈ Γm, do

If ajn = 1 and akm = 1 Solve problem Ps(wjn, zjn, wkm, zkm) and let be
(α̂1, α̂2) its solution and f1 its solution value

If f1 < P 2, Let feas← 1, Add to problem PM the constraint S1

||α̂1wjn + (1− α̂1)zjn− (α̂2wkm + (1− α̂2)zkm)||22 > P 2(−1 + ajn + akm)

(3.) For each n ∈ Φ, do

For each (j, k) ∈ Γn, j < k do

If ajn = 1 and akn = 1, Solve problem Ps(wjn, zjn, wkn, zkn) and let be
(β̂1, β̂2) its solution and f2 its solution value

If f2 < D2, Let feas← 0, Add to problem PM the constraint S2

||β̂1wjn + (1− β̂1)zjn− (β̂2wkm + (1− β̂2)zkm)||22 > D2(−1 + ajn + akn)

(4.) If feas = 1 the solution of master problem PM is the solution of the optimization
problem. Else Go to Step (1.).

We apply this algorithm in Section 3.4.3 on a small simple 3D case. Different software
are used to solve the master problem and the slave problems.
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3.4 Applications

In this section we test Model 1 and 2 (presented in Section 3.3.2 and 3.3.3) on the 2D case
(see Section 1.4.2). Model 1 is used to optimize the trajectory of a single well, located
in the center of the reservoir, the obtained results were presented in Lizon et al. [54].
The two steps of the methodology presented in the chapter are applied by optimizing
the number and location of vertical producer wells with NOMAD. Then we use Model 2
to optimize the trajectory of the obtained wells. Then we test Model 3 on a small case
with 2 vertical wells.

3.4.1 Optimization of well trajectory with Model 1

The initial configuration considered here consists in a single vertical producer located
at the top of the anticline. Fig. 3.1 represents the HuφSo values after a production
time-frame of 4 years. The cumulative produced oil is 45.39 thousand cubic meters (285
Mbbl).

Figure 3.11: Map of high production potential areas.

In order to limit the number of variables in the model, we selected the high production
potential areas, by using an approximation ofHuφSo based on a cubic spline interpolation
using not-a-knot end conditions by using the interp2 MATLAB function with the “spline”
method, for areas of 2× 20 cells. We kept areas with an HuφSo score above 2.75, these
areas are represented in Fig. 3.11.

The mathematical model presented in Section 3.3.2 is written in AMPL, A Math-
ematical Programming Language, (Fourer et al. [37]), an algebraic modeling language
widely used in the MINLP community. The input parameters of Model 1 are the max-
imum number of clusters, K = 10, the maximum length of any branch, L = 250 m,
and the maximum number of branches, B = 5. We solve the optimization problem with
Basic Open-Source NonLinear Mixed Integer Programming (BONMIN), a MINLP solver
(Bonami et al. [16]), using Branch-and-Bound method. We obtain a feasible solution in
2 hours.

Fig. 3.12 shows the optimized well trajectory where 5 branches were added. In
Fig. 3.13 this solution is superposed to the HuφSo values associated with the initial
vertical well configuration. The oil saturation after 4 years of production for the initial
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Figure 3.12: Optimized well trajectory

with high production potential areas.

Figure 3.13: Optimized well trajectory

with initial HuφSo map.

Figure 3.14: Oil saturation for initial ver-

tical well configuration after 4 years of

production.

Figure 3.15: Oil saturation for optimized

well trajectory with 5 branches after 4

years of production.

vertical well and for the optimized configuration with 5 branches are represented in
Fig. 3.14 and 3.15. The improvement oil recovery is obvious.

The cumulative produced oil with the new configuration with 5 branches is equal to
51.59 thousand cubic meters (324 Mbbl). This means an improvement of 13.7% with
respect to the initial configuration with one vertical well.

Despite the addition of branches, we can observe in Fig. 3.15, that there is still oil
not produced in regions too far to be reached by a branch. Thus, we should revise the
model and add the possibility to add vertical production wells when an area is too far
from existing wells. Also in this model, oil is produced only at the extremities of the
branch, which is not realistic since the production should be considered along the whole
length of the branches.

3.4.2 Optimization with NOMAD + Model 2

In this section we apply the proposed methodology with Model 2 (see Section 3.3.3) on
a 2D case presented in Section 1.4.2.
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3.4.2.1 Optimization of vertical wells configuration with NOMAD

We first use NOMAD for the first step of the optimization of the location and the number
of vertical producer wells. We optimization the location and the status active/inactive
of 4 vertical producer wells, and we optimize the location of one vertical injector well.
We use the NPV function 1.2, with parameters values given in Tab. 3.1. The production
time-frame is of 6 years.

Table 3.1: NPV function, parameter values

Parameters Values

CP O 600 $/m3

CP W 42 $/m3

CF 1000 $/m

CD 1e6 $

R 0.1

In Fig. 3.16 we can see the evolution of the value of the best NPV value at each
simulation for the 100 first evaluations. It took 664 evaluations to reach convergence,
with 5 days of execution time. In Fig. 3.17, we can see the HuφSo map of solution
configuration with 2 vertical wells, the configuration will be initial point of the second
step of the methodology. The solution NPV value is of 74.6M$.
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Figure 3.16: Best NPV during optimization
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Figure 3.17: Solution of vertical well optimization HuφSo map.

3.4.2.2 Optimization of wells trajectory with Model 2

For the second step of the optimization, we use the mathematical model presented in
Section 3.3.3, written in AMPL. The input parameters of Model 2 are the maximum
number of branches per well, B = 4, the maximum length of any branch, L = 700 m.
The optimization problem is solved with SCIP [70], and a feasible solution is obtained
in 2 hours.

In order to limit the number of variables in the problem, we selected the high produc-
tion potential areas, by using an approximation of HuφSo (initial values are represented
in Fig. 3.17) based on a cubic spline interpolation using not-a-knot end conditions by
using the interp2 MATLAB function with the “spline” method, for areas of 2× 20, cells
and we kept areas with an HuφSo score above 2.75. These areas are represented in
Fig. 3.18. In Fig. 3.19 we show the optimized well trajectory where 5 branches were
added. The oil saturation after 6 years of production for the initial vertical well and
for the optimized configuration with 5 branches are represented in Fig. 3.20 and 3.21.
The improvement oil recovery is obvious. The corresponding NPV value is of 78.4M$,
which is an improvement of 5%. As in the optimization with Model 1 (see Section 3.4.1),
we can observe in Fig. 3.21, that there is still oil not produced in regions too far to be
reached by a branch.

Figure 3.18: Map of high production po-

tential areas.

Figure 3.19: Optimized well trajectory

with high production potential areas.
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Figure 3.20: Oil saturation for initial ver-

tical well configuration after 6 years of

production.

Figure 3.21: Oil saturation for optimized

well trajectory with 5 branches after 6

years of production.

3.4.3 Optimization with Model 3

In this section we test Model 3 presented in Section 3.3.4 and the algorithm in Sec-
tion 3.3.4.7. The model and the algorithm are written in AMPL (Fourer et al. [37]). We
test Model 3 on a small case composed of 2 vertical wells, declined in 2D and 3D. The
optimal solution is known (-16.61), and the problem is fast to solve. The input param-
eters of Model 3 are the maximum number of branches per well, B = 2, the maximum
length of any branch, L = 700, The minimum distance between branches of a same well
D = 11, and between branches of distinct wells P = 300. In order to perform the algo-
rithm presented in Section 3.3.4.7, we use SCIP, BONMIN and COUNNE Belotti et al.
[13], to solve the master problem PM , and the slave problems (Ps(wjn, zjn, wkm, zkm))
and (Ps(wjn, zjn, wkn, zkn)). For each problem the limit time of optimization is set at 1
hour.
The solution value f ∗ of the optimization problem, the optimization time, and the num-
ber of master problems that were solved are represented in Tab. 3.2 for each solver and
each case (2D and 3D). We can see that SCIP was the most efficient to solve the 3D
case. BONMIN was able to solve both cases with optimal solutions. BONMIN gener-
ated a larger number of master problems, when SCIP only solved 1 master problem.
This means that the first master problem solution found by SCIP satisfied already the
constraints and thus solving the slave problems did not generate new constraints. A non
optimal solution was found for the 3D case by COUENNE in more than 1 hour. The first
master problem was solved in 1 hour (which was the limit time), with a best objective
value -16.770219 and a best possible value -16.770528. As these values were lower than
the optimal objective function value (-16.61), solving the slave problems generated con-
straints. Then, COUENNE found an optimal solution for the second master problem.
The solution value -16.22 is not the known optimal solution value. This is explained by
one of the slave problems that was an infeasible problem for COUENNE, thus it may
have generated too restrictive constraints.
From these runs, COUENNE is the least adapted to solve the problem with this row
generation algorithm, SCIP is the fastest to solve the problem, but BONMIN is more
reliable as it founds optimal solutions in both cases. Runs with COUENNE showed that
caution must be taken when we solve the slave problems.
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Table 3.2: Optimization with Model 3, using BONMIN, SCIP, and COUENNE

BONMIN SCIP COUENNE

Case Time PM f ∗ Time PM f ∗ Time PM f ∗

solved solved solved

2D 4 min 2 -16.61 1 sec / error 12 min 3 error

3D 22 min 7 -16.61 1 sec 1 -16.61 1h05 4 -16.22

In order to test Model 3 on a case with a larger number of parameters and variables,
we solved the problem defined in Section 3.4.2.2 and solved with Model 2 (presented
in Section 3.3.4), but the solvers were not able to find a feasible result. To solve this
problem efficiently we should design an algorithm dedicated to the problem. Having
access to all feasible solutions of the master problem may be an help to solve the whole
problem. Also we could generate a master problem for each well, and then solve the
slave problems.

3.5 Conclusions

In this chapter we proposed an innovative methodology for well placement and well tra-
jectory optimization by optimizing both the number of wells and the number of branches.
In the relatively simple cases we considered, the methodology allowed to obtain a good
improvement of the oil production and the NPV function.

Model 1, a 3D model presented in Section 3.3.2 forms cluster of oil before producing
them at the extremities of the branches. However, forming clusters during the optimiza-
tion can be costly in terms of constraints and variables. The model was tested on a 2D
reservoir case, by proceeding only to the second step of the methodology. We obtain an
improvement of 13 % of the oil production. We can note that the second step of the
methodology can be applied alone if a good vertical wells configuration can be provided.

We presented a second 2D model, Model 2, in Section 3.3.3, which produces oil
along the branches. We tested the whole methodology on the 2D reservoir model case
(see Section 1.4.2). The second step of the methodology allowed to obtain an good
improvement of 5 % of the NPV comparing to the NPV obtained in Step 1. We did not
investigate a 3D model, because generalizing the model to the third dimension would
have been too costly in constraints.

In Section 3.3.4 we presented a 3D model, Model 3, which produces oil along branches
without considering oil clusters. The model was solved for a very simple 3D case, but
its application to more realistic cases would require the design of a tailored algorithm.
Computational time for solving the problem may be reduced by defining a problem for
each well and solve then iteratively, or in parallel.

For the very simple 2D cases we considered, we analyzed the fluid flow simulator
outputs corresponding to the end of the production time, however it may be interesting
to compute scores at different production periods, e.g., when the oil production starts to
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decline. Also for a better estimation of the oil production, we could solve the problem
iteratively to improve the estimation of the radius of each branches.

We could also review the problem to as to have the possibility to add vertical pro-
duction wells if remaining oil cannot be reached by a branch associated with an existing
well. In this case much attention should be brought to the management of the number
and relative location of branches for each well.

Another enhancement of the approach presented in this chapter could be related
to the connectivity measure we considered (a distance criterion in this work). Alter-
native measures could be determined using the permeability field distribution, or a
simplified/fast-to-evaluate fluid flow simulator.



Conclusions and outlooks

Conclusions

The aim of this thesis was to establish a methodology dedicated to the optimization of
the number of wells and the trajectory of wells. Three methods were proposed for the
optimization of the number and the location of rectilinear wells. One new method for
the optimization of the number of wells and the number of branches was developed and
tested.

• We first presented GPS and MADS methods, and the NOMAD solver in which
these methods are implemented. The solver capabilities are evaluated for the op-
timization of vertical or deviated well number and position on different reservoir
models, a 1D case and two 3D cases (the PUNQ-S3 case and the case derived from
SPE10). The solver gives satisfactory results. However, depending on the opti-
mization initialization, it can lead to local minima. The method remains costly in
objective function evaluations, with numerous objective function evaluations being
necessary for algorithm convergence. Moreover we also observed useless simulations
during the optimization: the algorithm tested solutions with different coordinates
for inactive wells.

• In the second method, we developed a substitution model appropriate for quan-
titative and qualitative variables, based on the kriging method (Zhou et al. [80]).
The model predictability has been evaluated by estimating the NPV function value
on a 1D reservoir model, for cases of different number and type of wells, and, even
though the model has irregularities on the boundaries, we obtained estimations of
sufficient quality to guide the optimization. To do so, we proposed two optimization
algorithms:

– a basic approach in which each iteration consists in minimizing the kriging
model and updating it by adding the new point,

– the EGO algorithm (Efficient Global Optimization, Jones et al. [44]), where
the new point to be evaluate maximizes the expected improvement. This is
a compromise between the model improvement and the minimization of the
objective function.

The two algorithms are tested for the optimization of the NPV function associated
with the 1D case reservoir model by using two samples of different size (250 and 500
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points) for the kriging model construction. The best results are obtained with the
EGO algorithm, using the smallest construction sample. These results are slightly
better than the one obtained with NOMAD, in terms of NPV function value and
in terms of reservoir fluid flow simulator evaluations. Hence the kriging model is
adapted to guide the well placement optimization without necessitating a sample
of large size.

• The third method is a new Derivative Free Trust Region algorithm for Black-Box
problems extended to binary variables. We developed an algorithm with different
options for the handling of binary variables. The method is evaluated on the
optimization of vertical wells on 1D case and a 3D case, and encouraging results
have been obtained. The handling of binary variables still needs improvement since
the binary variable set is not sufficiently explored. This is due to the model built
during the optimization, which works better in continuous variables than in binary
variables, thus a better point with different binary values is hard to find. The
handling of constraints needs to be set up.

• Finally, a new two-step optimization method is proposed and developed, taking
into account the characteristics of the Black-Box objective function, the result of a
Black-Box simulator, and using classical MINLP methods. The first step consists
in solving a Black-Box method that optimizes the placement and the number of
vertical wells with the NOMAD solver (presented in the second chapter). In the
second step we define a second MINLP problem from the previous step problem
solution outputs. In this new MINLP problem, the hydrocarbon production is
optimized by adding branches to vertical producer existing wells, the unknowns
being the branches extremities position. The obtained configuration is evaluated by
the Black-Box simulator, allowing to validate the problem solution. To perform this
second step, three models of different MINLP problems for the branches conception
are proposed.

– A first 3D model, Model 1, identifies clusters of unproduced oil. Branches
produce oil in clusters located at the branches extremities. This model is
evaluated on a relatively simple 2D case without performing the first step of
the methodology. The initial configuration with one vertical well located on
the reservoir center is chosen, and solving the problem generated by the model
allows to improve oil production by 13% with the addition of 5 branches.

– The second model, Model 2, produces oil along the branches, which is more
realistic, but was only designed for 2D cases. The proposed methodology is
tested on the same previous 2D reservoir case: the first step, optimizing the
number and location of vertical producer wells, allowed to obtain a 2 wells
configuration. The second step, using the 2D model, adds a total of 5 branches
to the 2 wells and allows an improvement of 5% of the NPV function. This
model, and the above 3D model are effective, but their solution process is too
long. Model 1 optimize the location of the center of clusters and the branch
extremities, and Model 2 generates numerous constraints due to its design.
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– A third 3D model, producing along the branches, is presented. An iterative
row generation algorithm is proposed for its solving, and good results are
obtained on a very simple non 3D case. However Model 3 requires a tailored
algorithm to be applied efficiently to realistic cases.

Outlooks

Direct-search methods implemented in the NOMAD solver showed their effectiveness on
the well placement problem, but still required too many objective function evaluations
due to the algorithm convergence. However coupling the search step with substitution
models could reduce the number of simulations. In order to perform this coupling, we
propose to use the substitution model based on the kriging method extended to mixed
variables (second chapter) to guide the optimization method. We could then set up our
own search step in NOMAD, and use the substitution model and the EGO algorithm to
identify new points to evaluate, as in Talgorn et al. [72]. The model would be built from
points previously evaluated.

The MINLP problem solving methodology used in the third chapter could also be
improved. It needs several (sometimes useless) iterations, particularly in the third pro-
posed model. Designing a new algorithm for solving the third model will be the subject of
future works, rather than directly using solvers such as BONMIN or SCIP. It could also
be possible to proceed to several successive problem solving by varying the branch radius
parameter and thus getting a good estimation of the production radius. We also observed
unproduced oil that could not be reached by branches, hence adding new vertical wells
in second step could improve the oil production.

The configuration output analysis obtained in first step could also be improved by
accounting for the connectivity of the unproduced oil localization relating to the existing
wells. As adding branches to wells can increase the water production, it is important to
take this production into account in the second step. This could be done by adding water
saturated areas to the problem but this approach has two main disadvantages: firstly
this would increase the size of the problem, and secondly the oil production estimation
we use is too uncertain to use another production parameter. Thus in order to account
for water production, a method could be to generate several feasible solutions of the
MINLP problem, and use a simplified simulator based for instance on the connectivity
computation (simulation by stream lines), for their evaluation. The simplified simulator,
with rapid execution, would enable to approximate the water generated by each config-
uration. The configuration with the best compromise between water and oil production
would then be evaluated using the Black-Box simulator.

The second step of the methodology could be used alone for the optimization of well
trajectory by letting experienced reservoir engineers choose the initial configuration, for
instance in the case of reservoir models for which a fluid flow simulation takes several
hours, and for which applying direct-search methods would be too costly in computa-
tional time.

Above research may find other applications in helping the decision making process,
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for closing a producer well, opening an injector well or even turning a producer well
which productivity is not profitable any more (very low oil production) into a injector
well. This could be done by introducing an additive optimization variable correspond-
ing to the period of closure/opening/conversion. The same kind of formulation could
also allow the optimization of the drilling order, by obtaining intermediate producing
configurations (with a reduced number of wells), before the final optimal configuration.
Finally, the operating conditions (well pressure and rate) could be taken into account in
the optimization.



Conclusions et perspectives en

français

Conclusions

L’objectif de cette thèse était d’établir une méthodologie dédiée à l’optimisation du nom-
bre de puits et de leur trajectoires. Nous avons proposé trois méthodes pour l’optimisation
du nombre et de l’emplacement des puits verticaux ou déviés. Une nouvelle méthode
pour l’optimisation du nombre de puits et le nombre de branches a été développée et
évaluée.

• Nous avons présenté tout d’abord une méthode de Pattern-Search, méthode de
recherche directe, ainsi que le logiciel NOMAD, dans lequel ces méthodes sont
implémentées. Les possibilités du logiciel sont évaluées pour l’optimisation de la
position et du nombre de puits verticaux ou déviés, sur différents modèles de réser-
voir, un cas 1D et et deux cas 3D (cas PUNQ-S3 et cas dérivé de SPE10). Le solveur
donne des résultats satisfaisants, bien que, selon l’initialisation de l’optimisation,
l’on puisse être bloqué dans des minima locaux. La méthode reste toutefois coû-
teuse en évaluation de la fonction objectif, de nombreuses évaluations de la fonction
objectif étant nécessaire pour la convergence de l’algorithme ; de plus nous avons
également observé des simulations inutiles au cours de l’optimisation : l’algorithme
faisant varier les coordonnées d’un puits inactif.

• Pour la seconde méthode nous avons développé un modèle de substitution, adapté
pour les variables quantitatives et qualitatives, basé sur le krigeage (Zhou et al.
[80]). La prédictivité du modèle a été évaluée en estimant la valeur de la fonction
NPV sur un modèle de réservoir 1D, pour des cas à nombre et type de puits
variables, et bien que comportant des irrégularités sur les bords, nous avons obtenu
des estimations de qualité suffisante pour guider l’optimisation. Pour cela, deux
algorithmes d’optimisation utilisant le modèle de krigeage ont été proposés :

– une approche basique dont chaque itération consiste à minimiser le modèle et
le mettre à jour en y ajoutant le nouveau point obtenu,
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– l’algorithme EGO (Efficient Global Optimization, Jones et al. [44]), où le nou-
veau point à évaluer maximise l’espérance de gain, compromis entre l’amélioration
du modèle et la minimisation de la fonction objectif.

Les deux algorithmes sont testés pour l’optimisation de la fonction NPV associée
au cas de modèle de réservoir 1D en utilisant deux échantillons de différente taille
(250 et 500 points) pour la construction du modèle de krigeage. L’optimisation
en utilisant le plus grand échantillon de points initiaux (nécessitant évidemment
un grand nombre d’évaluations initiales) n’a pas mené à une meilleure solution,
et a dans certains cas entrainé l’algorithme dans des minima locaux. L’approche
d’optimisation basique permet d’obtenir des résultats intéressants, mais est aussi
coûteuse en évaluations de la fonction objectif que le solveur NOMAD sur le cas,
voire plus dans le cas du grand échantillon de points pour la construction du mod-
èle initial. De plus il est possible d’être piégé dans un minimal local en minimisant
le modèle de substitution. L’optimisation avec l’algorithme EGO, en utilisant
l’échantillon de plus petite taille pour la construction du modèle, donne des résul-
tats légèrement meilleurs que ceux obtenus avec NOMAD en terme de valeur de
fonction NPV ainsi qu’en nombre total d’évaluations du simulateur d’écoulement.
Le modèle de krigeage est ainsi adapté pour guider l’optimisation du placement de
puits sans nécessiter un échantillon de très grande taille.

• Nous proposons également une nouvelle méthode d’optimisation par région de con-
fiance pour les problèmes dit “boîtes-noires” étendue aux variables binaires, et
avons développé un algorithme, avec différentes options pour la gestion des vari-
ables entières. La méthode est évaluée sur l’optimisation de la position de puits
verticaux sur un cas 1D et un cas 3D, et des résultats encourageants sont obtenus. Il
est nécessaire d’améliorer la gestion des variables entières en permettant de mieux
explorer l’ensemble des possibilités. La gestion des contraintes est à mettre en
place.

• Enfin, une nouvelle méthode d’optimisation en deux étapes est proposée et de-
veloppée, prenant en compte les caractéristiques de la fonction objectif, issue des
résultats d’un simulateur “boîte-noire”, tout en utilisant les méthodes MINLP clas-
siques. La première étape consiste à résoudre un problème “boîte-noire” MINLP,
optimisant le placement et le nombre de puits verticaux, avec le solver NOMAD,
présenté dans le deuxième chapitre. Dans la seconde étape nous définissons un
second problème MINLP à partir des données issues de la simulation de la con-
figuration solution du problème de l’étape précédente. Dans ce nouveau problème
MINLP, la production d’hydrocarbure est optimisée en ajoutant des branches aux
puits producteurs verticaux existants, les inconnus étant la position des extrémités
de ces branches. La configuration obtenue est évaluée par le simulateur “boîte-
noire”, permettant ainsi de valider la solution du problème. Pour réaliser cette
deuxième étape, trois modèles de différents problèmes MINLP pour la conception
des branches sont proposés.

– Un premier modèle 3D, identifiant des clusters d’huile non produite et pro-
duisant ces clusters à l’extrémités de branches, est évalué sur le cas 2D inpiré
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du cas SPE10. La configuration initiale comporte un puits vertical localisé
arbitrairement au centre du réservoir, et la résolution du problème généré
par le modèle permet d’améliorer la production d’huile de 13% en ajoutant 5
branches.

– Le deuxième modèle produit l’huile le long des branches ce qui est plus réal-
iste, mais a été conçu seulement pour les cas 2D. La méthodologie proposée
est testée sur le même cas de réservoir 2D que précédemment : la première
étape, optimisant le nombre et la position des puits producteurs verticaux
avec NOMAD, a permis d’obtenir une configuration à 2 puits verticaux. La
seconde étape, en utilisant le modèle 2D, ajoute un total de 5 branches aux
2 puits, et permet une augmentation de 5% de la fonction NPV. Ce modèle,
et le modèle ci-dessus sont efficaces, mais leur résolution est trop longue, le
premier modèle cherchant à la fois la position du centre des clusters et des
extrémités des branches, et le second problème de par sa conception génère
de nombreuses contraintes.

– Un troisième modèle, généralisé au cas 3D et produisant le long des branches,
est présenté mais requiert un algorithme adapté à sa résolution pour pouvoir
être appliqué efficacement à un cas réaliste.

Perspectives

Les méthodes de recherche directe de type Pattern-Search, implémentées dans le logiciel
NOMAD, ont montré leur efficacité sur le problème de placement de puits, mais nécessite
encore de trop nombreuses évaluations de la fonction objectif, dues à la convergence
de l’algorithme : le couplage de l’étape de recherche avec des modèles de substitution
pourrait permettre de diminuer le nombre de simulations. Pour réaliser ce couplage, nous
proposons d’utiliser le modèle de substitution basé sur la méthode de krigeage étendue
aux variables mixtes (deuxième chapitre) pour guider l’optimisation. Ainsi on pourrait
mettre en place notre propre étape de recherche dans NOMAD, et utiliser le modèle
de substitution et l’algorithme EGO pour identifier les nouveaux points à évaluer. Le
modèle serait construit en utilisant les points déjà évalués.

Afin d’améliorer la méthodologie proposée dans le troisième chapitre, les possibilités
seraient d’améliorer la résolution du problème d’optimisation de la seconde étape qui
nécessite beaucoup d’itérations et parfois sans obtenir de résultats, notamment dans le
cas du troisième modèle proposé. L’élaboration d’un algorithme pour la résolution du
troisième modèle présenté dans le troisième chapitre fera l’objet de prochains travaux,
plutôt que d’utiliser directement des solveurs tels que BONMIN ou SCIP. Il serait égale-
ment possible de procéder à plusieurs résolutions successives du problème en faisant
varier le paramêtre du rayon des branches afin d’avoir une bonne estimation de leur
rayon de production.

L’analyse de la configuration obtenue en première étape pourrait egalement être
améliorée en tenant en compte la connectivité de la localisation de l’huile non produite
par rapport aux puits existant. L’ajout de branches aux puits pouvant augmenter la
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quantité d’eau produite, il est important de prendre en compte les coûts liés à cette pro-
duction dans la seconde étape. Cela pourrait se faire en incluant les zones saturées en eau
aux données du problème d’optimisation MINLP, mais augmenterait d’une part la taille
du problème, et d’autre part l’approximation de la production d’huile utilisée est trop
incertaine pour y ajouter cette donnée. Ainsi pour pouvoir prendre en compte la pro-
duction d’eau, une méthode pourrait être de générer plusieurs solutions admissibles du
problème MINP, et d’utiliser un simulateur simplifié, basé par exemple sur le calcul des
connectiviés (simulation par ligne de courant), pour leur évaluation. Le simulateur sim-
plifié, à l’exécution rapide, permet d’obtenir une approximation de la production d’eau
générée par chaque configuration, et de choisir d’évaluer avec le simulateur “boîte-noire”
les configurations offrant le meilleur compromis entre production d’eau et huile.

La seconde étape de la méthodologie pourrait être utilisée seule pour l’optimisation
de la trajectoire de puits, en choisissant la configuration de départ avec les connaissances
de l’ingénieur de réservoir, par exemple pour des cas de modèle de réservoir dont la
simulation d’écoulement prend plusieurs heures, et pour lesquels appliquer les méthodes
de recherche directes seraient trop couteux en temps de calcul.

Concernant l’application, différents problèmes d’optimisation pourraient être envis-
agés par la suite, la décision de fermer un puits producteur ou d’ouvrir un puits injecteur,
voir de transformer un puits producteur en un puits injecteur dans le cas d’une rentabilité
moindre du puits (production très faible d’huile) pourrait être introduite en optimisant
une variable supplémentaire correspondant à la date de fermeture/ouverture/conversion.
On peut aussi envisager d’optimiser l’ordre de forage des puits, en obtenant des configu-
rations opérationnelles intermédiaires (avec un nombre réduit de puits) avant la config-
uration optimale finale. Enfin, les conditions de fonctionnement des puits (débits et/ou
pressions aux puits) pourraient également être prises en compte dans l’optimisation.



Nomenclature

List of symbols

φ Porosity

HuφSo Oil utility thickness

IG Injected Gas (superscript)

IO Injected Oil (superscript)

IW Injected Water (superscript)

K Permeability

n index of well (subscript)

NI Number of Injector wells

NP Number of Producer wells

PG Produced Gas (superscript)

PO Produced Oil (superscript)

PW Produced Water (superscript)

S Saturation

t index of period of production (subscript)

List of acronyms

BB MINLP Black-Box Mixed Integer Non Linear Programming

BHFP Bottom Hole Fluid Pressure

BONMIN Basic Open-source Nonlinear Mixed INteger programming (software)

COUENNE Convex Over and Under ENvelopes for Nonlinear Estimation (software)

DFO Derivative Free Optimization
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DFTR Derivative Free Trust Region (algorithm)

EGO Efficient Global Optimization (algorithm)

GPS Geralized Pattern Search (algorithm)

LHS Latin Hypercube Sample

MADS Mesh Adaptive Direct Search (algorithm)

MINLP Mixed Integer Non Linear Programming

NLP Non Linear Programming

NOMAD Nonlinear Optimization by Mesh Adaptive Direct Search (software)

NPV Net Present Value

RMSE Root Mean Square Error

SCIP Solving Constraint Integer Programs (software)



Appendix A

Optimization on a 1 dimensional

case with continuous variables

In this section, we solve an NLP optimization problem on a 1 dimensional test case,
presented in 1.4.1.

The Black-Box NLP optimization problem is written as:




min−NPV (x)
x ∈ [xL, xU ] ⊆ R

n+m

g(x) ≤ 0
(A.1)

with the design variables x ∈ R
n+m. n is the fixed number of producer wells and m

the fixed number of injector wells. xL, xU are the bound vectors for [1, 1000]n+m. The
resulting optimization problem deals with n + m continuous variables. The considered
NPV function is defined in Section 1.3, with binary variables fixed at 1 for each well,
and its parameters are defined in Tab. A.1.

Table A.1: NPV function, parameter values.

Parameters Values

CP O 100 $/m

CP W 5 $/m

CIW 4 $/m

CD 0 $

We use the fmincon MATLAB function from the optimization toolbox to optimize the
NPV function for different values of n ∈ {1, 2} and m ∈ {1, 2}. We use an interior
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point method, and the gradient is computed with finite difference method studied in the
rapport Lizon and Sinoquet [53]). As the number of wells is fixed, we do not take into
account the drilling cost of a well Cwell.

Optimization is done on two different domains, their permeabilities are represented in
Fig. 1.1. For these two domains, different cases are runned:

• 1 injector well, 1 producer well (see Fig. A.1 for heterogeneous case and Fig. A.5
for homogeneous)

• 2 injector well, 1 producer well (see Fig. A.2 for heterogeneous case and Fig. A.6
for homogeneous)

• 1 injector well, 2 producer well (see Fig. A.3 for heterogeneous case and Fig. A.7
for homogeneous)

• 2 injector well, 2 producer well (see Fig. A.4 for heterogeneous case and Fig. A.8
for homogeneous)

Figure A.1: Optimization with 1 producer well and 1 injector well, heterogeneous per-

meability.

By optimizing on the 1D domain with 1 injector well and 1 producer well, we would
expect to obtain a solution configuration with one well at each extremity of the domain.
We can see in Fig. A.1 that it is not the case. This can be explained by the important cost
in water injected and produced associated to the one well at each extremity configuration.
The permeability of the environment, non uniform, can also explain this result. The
production time can also come into play: on lower period, the water production can be
less high, and therefor the related costs can be less important.



107

Figure A.2: Optimization with 2 producer well and 1 injector well, heterogeneous per-

meability.

In Fig. A.2, the optimization with 3 wells, 2 producers, 1 injector, give a solution that
seem intuitively the best: both producer wells are at each extremity of the domain, and
the injector well is at the center.

Figure A.3: Optimization with 1 producer well and 2 injector well, heterogeneous per-

meability.

In figure Fig. A.3, it seems that the optimization kept the initial order of the wells: the
two injector wells are close, and the producer well is more far-off. The NPV function
value is twice less important the one obtained for the optimization of two injector wells,
and one injector well (see Fig. A.2). This configuration is in fact very costly in water.
This solution is in all likelihood a local optimum.
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Figure A.4: Optimization with 2 producer well and 2 injector well, heterogeneous per-

meability.

We can observe in Fig. A.4 that the optimization of the position of two injector wells
and two producer well give us a NPV function value lightly better than the one obtained
for the optimization of two producers and two injectors (see Fig. A.2), but it requires
the drilling of a additional well, which represent a cost that was not taken into account
in that case.

Figure A.5: Optimization with 1 producer well and 1 injector well, homogeneous perme-

ability.

We now observe in Fig. A.5 the results of the optimization of the location of one injector
well and one producer well. In this case the permeability of the domain is uniform. As
in the heterogeneous permeability case, it is not the “intuitive” solution that is obtained.
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Figure A.6: Optimization with 2 producer well and 1 injector well, homogeneous perme-

ability.

In Fig. A.6, we can see that result for the placement of two producer well, and one
injector well. The configuration is similar to the one obtained in the heterogeneous case
(see Fig. A.2), with different NPV values, which is not surprising seeing as geological
properties of the domain are different.

Figure A.7: Optimization with 1 producer well and 2 injector well, homogeneous perme-

ability.

In Fig. A.7, the same problem as in Fig. A.3 is observed for the optimization of the
placement of 2 injector wells, and 1 producer well: the order of the well remains un-
changed, which could be a local optimum. Initial points has to be chosen carefully, or
we can launch optimizations with several initial points.
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Figure A.8: Optimization with 2 producer well and 2 injector well, homogeneous perme-

ability.

The optimization of two injector wells and two producer wells, in homogeneous environ-
ment (see Fig. A.8) does not obtain result as good (in terms of NPV function value)
than with the two producer 1 injector well configuration (see Fig. A.6), as it was the
case in the heterogeneous permeability environment.
These cases of optimization allow us to illustrate the importance of the choice of initial
points, and the influence of the environment in which the wells are located. A method
of type multi-start (launch of several local optimizations associated to different initial
points) could avoid to be stocked in a wrong configuration because of a bad choice
of initial point. We can also see the interest of optimization with integer value, since
different solutions gave similar NPV values. Otherwise, fmincon is costly in number of
evaluations, a hundred of evaluations is sometimes required for one iteration.



Appendix B

SPE10 case

In this section, we represent the Bottom Hole Fluid Pressure (BHFP), i.e., the well
pressure for injector and producer wells for the starting and the solution configurations
of the optimization from Section 2.1.3.3, and a reference configuration. Cumulative water
injection quantities are also represented and are similar because the water injection rate
was fixed (see Fig. B.3, Fig. B.7 and Fig. B.11).

B.1 Starting point

BHFP for injector wells and producers wells are displayed in Fig. B.1 and Fig. B.2,
respectively. Cumulative water injection is displayed in Fig. B.3, and Fig. B.4 represents
Water cut for producer wells. We can observe in Fig. B.3 that the water constraint was
not satisfied for well P3 (in red) after 4 years, and for well P2 (in green) after 9 years
of production. Thus the BHFP is constant for producer wells P1 (in blue) and P4 (in
black) in Fig. B.9.
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Figure B.1: Injection Bottom Hole Pressure of the starting point of the optimization (1

injector well and 4 producer wells).
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Figure B.2: Production bottom Hole pressure of the starting point of the optimization

(1 injector well and 4 producer wells).
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Figure B.3: Cumulative water injection of the starting point of the optimization (1

injector well and 4 producer wells).
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Figure B.4: Water cut for production wells of the starting point of the optimization (1

injector well and 4 producer wells).
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B.2 Optimization solution

BHFP for injector wells and producers wells are respectively displayed in Fig. B.5 and
Fig. B.6. Cumulative water injection is displayed in Fig. B.7. We can observe in
Fig. B.8 that the water cut constraint was satisfied during the whole production time
frame. Thus the BHFP is constant for the producer well in Fig. B.5.
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Figure B.5: Injection bottom Hole pressure of the solution configuration the optimization

(1 injector well and 1 producer wells).

1 2 3 4 5 6 7 8 9 10
3999

3999.5

4000

4000.5

4001
BHFP 

Year

P
si

 

 

Well P1

Figure B.6: Production bottom Hole pressure of the solution configuration the optimiza-

tion (1 injector well and 1 producer wells).
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Figure B.7: Cumulative water injection of the solution configuration the optimization (1

injector well and 1 producer wells).
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Figure B.8: Water cut for production wells of the solution configuration the optimization

(1 injector well and 1 producer wells).

B.3 Reference configuration

BHFP for injector wells and producers wells are respectively displayed in Fig. B.9 and
Fig. B.10. Cumulative water injection is displayed in Fig. B.11, and Fig. B.12 represents
Water cut for producer wells. We can observe in Fig. B.11 that the water constraint
was not satisfied for well P4 (in black) after 8 years, and for well P2 (in green) after 9
years of production. Thus the BHFP is constant for producer wells P1 (in blue) and P3
(in red) in Fig. B.9.
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Figure B.9: Injection bottom Hole pressure of the reference configuration the optimiza-

tion (1 injector well and 4 producer wells.)
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Figure B.10: Production bottom Hole pressure of the reference configuration the opti-

mization (1 injector well and 4 producer wells).
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Figure B.11: Cumulative water injection of the reference configuration the optimization

(1 injector well and 4 producer wells).
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Figure B.12: Water cut for production wells of the reference configuration the optimiza-

tion (1 injector well and 4 producer wells).



Appendix C

Kriging model evaluation on NPV

function

C.1 Kriging model of the NPV function with respect

to quantitative parameters

To evaluate the efficiency of the kriging method, we tested the method on the 1D reservoir
model presented in Section 1.4.1 for different configurations in terms of number and type
of wells. Models are built for 2 and 3 wells, with at least one injector well, and one
producer well.

Models are built with Gaussian correlations, and constant regression functions. We
used different sizes of samples to build the kriging models to evaluate the accuracy of
the model depending of the sizes of the experimental plan. After building the samples
for the models and the tests, to respect the constraint of distance between wells, we had
to reject some points which do not respect this constraint. So, the actual size of the
sample is not the initial size.

To evaluate the models, we use two values, Q2 and RMSE (Root Mean Square Error)
defined in Section 2.2.2. We visualize errors by representing crossplots: we represent the
values of the model and the observed points.

C.1.1 Test on the NPV function with 2 wells: 1 producer, 1

injector

In this section the kriging model presented in Section 2.2.1 is tested on the NPV function
associated with 1D reservoir model with 2 wells, 1 producer well and 1 injector well. We
built kriging model from LHS of size 50, 75 and 100, and evaluate their quality on a LHS
of size 30 and a grid of size 10× 10.
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In Fig. C.1, Fig. C.3 and Fig. C.5 we represented crossplots and indicated the
values of Q2 and RMSE for kriging model built from a LHS respectively of size 50, 75
and 100 and tested on LHS of size 30. In Fig. C.2, Fig. C.4 and Fig. C.6 we represented
crossplots and indicated the values of Q2 and RMSE for kriging model built from a LHS
respectively of size 50, 75 and 100 and tested on a grid of size 10 × 10. By observing
the crossplots, we can see that the models estimations are more precise on the LHS than
on the grid. This can be explained by the grid structure that give several configuration
having wells with a small distance between them, and because of the discretization model,
when two wells are closed some discontinuities in NPV function can be observed.
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Figure C.1: Crossplot, model built with

an LHS sample n = 50, tested on a LHS.
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Figure C.2: Crossplot, model built with

sample n = 50, tested on a grid.
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Figure C.3: Crossplot, model built with

sample n = 75, tested on a LHS.
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Figure C.4: Crossplot, model built with

sample n = 75, tested on a grid.
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Figure C.5: Crossplot, model built with

sample n = 100, tested on a LHS.
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Figure C.6: Crossplot, model built with

sample n = 100, tested on a grid.

In Fig. C.7, Fig. C.9 and Fig. C.11, we represented histograms of residual of kriging
models built from LHS, respectively of size 50, 75 and 100, for each point of LHS of size
30. In Fig. C.8, Fig. C.10 and Fig. C.12, we represented residual of kriging models
built from LHS, respectively of size 50, 75 and 100, for each point of grid of size 10× 10.
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Figure C.7: Residual, model built with an

LHS sample n = 50, tested on a LHS.
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Figure C.8: Residual, model built with

sample n = 50, tested on a grid.
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Figure C.9: Residual, model built with

sample n = 75, tested on a LHS.
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Figure C.10: Residual, model built with

sample n = 75, tested on a grid.
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Figure C.11: Residual, model built with

sample n = 100, tested on a LHS.
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Figure C.12: Residual, model built with

sample n = 100, tested on a grid.

Histograms show acceptable residuals, and we can see that, for models built from sample
of size 50 and 75, the estimations on the LHS are better than estimations on the grid.
Estimated values on the LHS and grid with the model built from a sample of 100 points
have similar results, with most of the residuals smaller than 800.

Table C.1: Q2 and RMSE with respect to the size of the sample, test on a LHS

size of sample 50 75 100

Q2 0.994 0.991 0.965

RMSE 156 193 386
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Table C.2: Q2 and RMSE with respect to the size of the sample, test on a grid.

size of sample 50 75 100

Q2 0.989 0.972 0.984

RMSE 208 340 260

In Tab. C.1 and Tab. C.2, we can see that using a large number of observed points
does not give better results on the Q2 value. For the 3 models, Q2 results are good.
In Tab. C.2, we can see that RMSE for the model built from 100 points is larger than
the RMSE for the model built from 50 points, this is explained by the residuals of the
models, we can see in Fig. C.7 that residuals of the model built from 50 points are
smaller than the residuals of the model built from 100 points in Fig. C.11. Similarly, in
Tab. C.2, model built from 75 points give an RMSE larger than the model built from
50 points.

In Fig. C.13, Fig. C.14 and Fig. C.15, we represented in green the NPV function
of the kriging points (that were used to build the model). The models were tested on a
LHS of size 30, and we represented in red the real NPV value of these points, and in blue
the estimation of the model. We can see that there is more difference between the true
function and the model when the two wells values are closed from the boundaries 0, due to
boundary irregularities, and when the two values are similar due two the discontinuities
of the NPV discretization model.

Figure C.13: Simulated and modeled points of LHS 30, and kriging points of LHS 50.
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Figure C.14: Simulated and modeled points of LHS 30, and kriging points of LHS 75.

Figure C.15: Simulated and modeled points of LHS 30, and kriging points of LHS 100.

In Fig. C.16, Fig. C.17 and Fig. C.18, we represented in green the NPV function
of the kriging points (that were used to build the model). The models were tested on
a grid of size 10 × 10 and we represented in red the real NPV value of these points,
and in blue the estimation of the model. In these three figures we can see that the red
surface representing the true function and the blue one representing the estimation are
of same shape, this show us that the model has a very similar trend to the NPV function.
More irregularities are shown in Fig. C.18, probably due to errors of estimation on the
boundaries. The 1D reservoir is considered as “closed” on boundaries, so the trend of
the NPV function on boundaries is different.
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Figure C.16: Simulated and modeled points of grid 100, and kriging points of LHS 50.

Figure C.17: Simulated and modeled points of grid 100, and kriging points of LHS 75.

Figure C.18: Simulated and modeled points of grid 100, and kriging points of LHS 100.

Tests on the LHS and the grid gave good results, with some irregular points, but the
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models built for two wells give a good indication of the behavior of the function, and a
large number of evaluations is not necessary to obtain good results.

C.1.2 Test on the NPV function with 3 wells

In this section the kriging models presented in Section 2.2.1 are tested on the NPV
function on reservoir model 1D with 3 wells. Two configurations of wells are tested, 1
producer well and 2 injector wells, and 2 producer wells and 1 injector well.

C.1.2.1 NPV function with 3 wells, 1 producer, 2 injector

In this section we test models for a well configuration of 1 producer well and 2 injector
wells. We built kriging model from LHS of size 100, 150 and 200, and evaluate their
quality on a LHS of size 30. In Fig. C.19, Fig. C.21 and Fig. C.23 we represented
crossplots and indicated the values of Q2 and RMSE for kriging model built a LHS
respectively of size 50, 75 and 100 and tested on LHS of size 30. Crossplots of models
build with LHS of size 100 and 150 show us that these models are less precise than the
model built with 200 points. In Fig. C.20, Fig. C.22 and Fig. C.24, we represented
residual of kriging models built from LHS, respectively of size 50, 75 and 100, for each
point of LHS of size 30. We can observe that the biggest error of estimation is more
than 2000 for the model of 100 points, more than 1500 for model of 150 points, and less
of 1000 for model of 200 points.
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Figure C.19: Crossplot, model built with

sample n = 100.
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Figure C.20: Residual, model built with

sample n = 100.
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Figure C.21: Crossplot, model built with

sample n = 150.
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Figure C.22: Residual, model built with

sample n = 150.
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Figure C.23: Crossplot, model built with

sample n = 200.

0 500 1000
0

2

4

6

Error

N
u

m
b

er
 o

f 
va

lu
es

Figure C.24: Residual, model built with

sample n = 200.

Table C.3: Q2 and RMSE with respect to of the size of the sample (1 producer, 2

injector).

size of sample 100 150 200

Q2 0.79 0.86 0.97

RMSE 829 666 305
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We can see in Tab. C.3 the results of Q2 and RMSE. Q2 results are better when
using a larger number of points, and residuals are smaller. The most accurate model is
obtained with a sample of 200 points.

In Fig. C.25, Fig. C.26 and Fig. C.27 we tested model built from the LHS of size
100 on grid of size 10× 10 corresponding to 1 injector well and 1 producer well, with re-
spectively a fixed injector well of coordinates 30, 430 and 930. The red surface represents
the true function, the blue surface represents the modeled points. Blue circles represent
the error between the simulated and the modeled points, their size are proportional to
the error. We can observe larger residuals in Fig. C.25 and Fig. C.27, it may be because
of the coordinate of the fixed well, close to the boundaries (30 and 930).

Figure C.25: Simulated and modeled points of grid 10× 10, one fixed injector well with

coordinate equal to 30.

Figure C.26: Simulated and modeled points of grid 10× 10, one fixed injector well with

coordinate equal to 430.



C.1. QUANTITATIVE KRIGING MODEL OF THE NPV FUNCTION 127

Figure C.27: Simulated and modeled points of grid 10× 10, one fixed injector well with

coordinate equal to 930.

In Fig. C.25, Fig. C.26 and Fig. C.27, coordinates of producer and injector vary,
and we fixed the value of a second injector well, for 3 value: 30, 430 and 930. The
red surface is the simulated NPV function, the blue surface is the approximated NPV
function obtained with the model build with 100 points, and size of the approximated
points depends of the value of the error between the two functions. We can see that they
have globally the same shape, they do not fit at each point, particularly on extremities
of the domain where we can observe most of largest residual.

C.1.2.2 NPV function with 3 wells, 2 producer, 1 injector

In this section we test models for a well configuration of 2 producer wells and 1 injector
well. We built kriging model from LHS of size 100, 150 and 200, and evaluate their
quality on a LHS of size 30. In Fig. C.28, Fig. C.30 and Fig. C.32 we represented
crossplots and indicated the values of Q2 and RMSE for kriging model built a LHS
respectively of size 50, 75 and 100 and tested on LHS of size 30. Crossplots show that
models built with LHS of size 100 and 150 are more precise than the model built with
200 points. In Fig. C.29, Fig. C.31 and Fig. C.33, we represented residual of kriging
models built from LHS, respectively of size 50, 75 and 100, for each point of LHS of size
30. We can observe that the largest error of estimation is about 4000 for the model of
100 points, about 1500 for model of 150 points. For model of 200 points, one point has
a residual of 2100, and all other points have residuals smaller than 1000.
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Figure C.28: Crossplot, model built with

sample n = 100.
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Figure C.29: Residual, model built with

sample n = 100.
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Figure C.30: Crossplot, model built with

sample n = 150.

0 500 1000 1500
0

2

4

6

Error

N
u

m
b

er
 o

f 
va

lu
es

Figure C.31: Residual, model built with

sample n = 150.
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Figure C.32: Crossplot, model built with

sample n = 200.
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Figure C.33: Residual, model built with

sample n = 200.

Table C.4: Q2 and RMSE with respect to the size of the sample (2 producer, 1 injector).

size of sample 100 150 200

Q2 0.46 0.89 0.88

RMSE 1225 555 580

We can see in Tab. C.4 the results of Q2 and RMSE. Q2 results are better when
using larger number of points, but we can observe that we obtain similar results by
using a sample of 150 and 200 points. By observing the residuals, we can say that the
error is larger with models built from larger size. We have also see that residuals for
configuration2 with 2 producer wells and 1 injector well were bigger than the residuals
of the configurations with 2 injector wells and 1 producer well, this may be because of
the difference of the effects of a type of well in the NPV function. colorred

C.1.3 Conclusion

In this section we evaluated the kriging model for quantitative variables NPV functions.
For 2 wells, the kriging model is of good quality. In order to build a more accurate model
for 3 wells configurations, we need a sample with a large number of wells, and we could
see that residuals are larger when wells are on boundaries. We could also observe that
the estimations were better for configuration with 2 producer wells and 1 injector well,
than for configuration with 1 producer well and 2 injector wells. This is due to different
effects that producer or injector wells can have on the NPV function. However large
samples of points are not necessary to have a kriging model with a trend similar to the
NPV function.
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C.2 Kriging model of the NPV function with respect

to quantitative and qualitative parameters

In this section we evaluate the efficiency of the kriging method on NPV function asso-
ciated with the 1D reservoir model presented in Section 1.4.1 with qualitative variables.
Two models built from sliced LHS sample of different size are used (see Section 2.2.3).

C.2.1 Sample of size n2 = 50, and n3 = 100

In this section, we build a model from sliced LHS sample composed of 3 concatenated
LHS, one of size 50 for the configuration of two wells, and LHS of size 100 for the two
configurations of 3 wells. The model is first tested on several LHS, first on the 2 wells
configuration LHS, then on a 3 wells configurations LHS.

C.2.1.1 Test on a LHS associated with a 2 wells configuration

We test here a model built from 250 points on a LHS of size 30. In Fig. C.34 we represent
the residuals of the estimated points. We can see in Fig. C.35 that the estimation value
is not very distant from the true function.
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Figure C.34: Residual, model built with

sample n2 = 50, n3 = 100, tested on the 2

wells LHS.
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Figure C.35: Crossplot, model built with

sample n2 = 50, n3 = 100, tested on the 2

wells LHS.

C.2.1.2 Test on a LHS associated with a 3 wells configuration (2 injector, 1

producer) and (2 producer, 1 injector)

We test here a model built from 250 points on LHS of size 75 for two configurations.
In Fig. C.36 and Fig. C.38 we represent the residuals of the estimated points for re-
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Figure C.38: Residual, model built with

sample n2 = 50, n3 = 100, tested on the 3

wells (2 prod, 1 inj) LHS.
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Figure C.39: Crossplot, model built with

sample n2 = 50, n3 = 100, tested on the 3

wells (2 prod, 1 inj) LHS.

spectively configuration of two injector wells and one produced well, and configuration
of one injector well and two producer wells. We can see in Fig. C.37 and Fig. C.37 that
the estimation value is not very close to the true function. Errors are larger on the LHS
with 2 producer wells.
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Figure C.36: Residual, model built with

sample n2 = 50, n3 = 100, tested on the 3

wells (1 prod, 2 inj) LHS.
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Figure C.37: Crossplot, model built with

sample n2 = 50, n3 = 100, tested on the 3

wells (1 prod, 2 inj) LHS.
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C.2.2 Sample of size n2 = 100, and n3 = 200

In this section, we build models from a sliced LHS sample composed of 3 concatenated
LHS, one of size 100 for the configuration of two wells, and LHS of size 200 for the two
configurations of 3 wells. The model is first tested on several LHS, first on the 2 wells
configuration LHS, then on a 3 wells configurations LHS.

C.2.2.1 Test on a LHS associated with a 2 wells configuration

We test here a model built from 500 points on a LHS of size 30.
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Figure C.40: Residual, model built with

sample n2 = 100, n3 = 200, tested on the

2 wells LHS.
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Figure C.41: Crossplot, model built with

sample n2 = 100, n3 = 200, tested on the

2 wells LHS.

C.2.2.2 Test on a LHS associated with a 3 wells configuration (2 injector, 1

producer) and (2 producer, 1 injector)

In Fig. C.42 and Fig. C.44 we represent the residuals of the estimated points for re-
spectively configuration of two injector wells and one produced well, and configuration
of one injector well and two producer wells. We can see in Fig. C.43 and Fig. C.43 that
the estimation value is not very close to the true function. Errors are bigger on the LHS
with 2 producer wells.
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Figure C.42: Residual, model built with

sample n2 = 100, n3 = 200, tested on the

3 wells (1 prod, 2 inj) LHS.
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Figure C.43: Crossplot, model built with

sample n2 = 100, n3 = 200, tested on the

3 wells (1 prod, 2 inj) LHS.
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Figure C.44: Residual, model built with

sample n2 = 100, n3 = 200, tested on the

3 wells (2 prod, 1 inj) LHS.
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Figure C.45: Crossplot, model built with

sample n2 = 100, n3 = 200, tested on the

3 wells (2 prod, 1 inj) LHS.



134 APPENDIX C. KRIGING MODEL EVALUATION ON NPV FUNCTION



Bibliography

[1] J. E. Aarnes, T. Gimse, and K. Lie. An introduction to the numerics of flow in
porous media using matlab. In Geir Hasle, Knut-Andreas Lie, and Ewald Quak,
editors, Geometric Modelling, Numerical Simulation, and Optimization, pages 265–
306. Springer Berlin Heidelberg, 2007.

[2] A. AbdulKarim, T. A. Al-Dhubaib, E. Elrafie, and M. O. Alamoudi. Overview of
saudi aramco’s intelligent field program. In SPE Intelligent Energy Conference and
Exhibition, Jaarbeurs, Utrecht, The Netherlands, March 23-25. SPE, 2010.

[3] M. A. Abramson. Pattern Search Algorithms for Mixed Variable General Con-
strained Optimization Problems. PhD thesis, Rice University, 2002.

[4] M. A. Abramson. Mixed variable optimization of a load-bearing thermal insulation
system using a filter pattern search algorithm. Optimization and Engineering, 5(2):
157–177, 2004.

[5] M. A. Abramson, C. Audet, and J. E. Dennis Jr. Filter pattern search algorithms for
mixed variable constrained optimization problems. Pacific Journal of Optimization,
3(3):477–500, 2007.

[6] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston. Mesh adaptive
direct search algorithms for mixed variable optimization. Optimization Letters, 3
(1):35–47, 2009.

[7] T. Achterberg. Scip: solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.

[8] S. Alarie, C. Audet, V. Garnier, S. Le Digabel, and L. A. Leclaire. Snow water
equivalent estimation using blackbox optimization. Pacific Journal of Optimization,
9(1):1–21, 2013.

[9] E. Aliyev and L. J. Durlofsky. Multilevel field-development optimization using a
sequence of upscaled models. Society of Petroleum Engineers Journal, 2015.

[10] C. Audet and J. E. Dennis Jr. Pattern search algorithms for mixed variable pro-
gramming. Siam J. Optim., 11(3):573–594, 2001.

[11] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained
optimization. Society for Industrial and Applied Mathematics, 17:188–217, 2006.

135



136 BIBLIOGRAPHY

[12] M. C. Bellout, D. Echeverría Ciaurri, L. J. Durlofsky, B. Foss, and J. Kleppe. Joint
optimization of oil well placement and controls. Computational Geosciences, 16(4):
1061–1079, 2012.

[13] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds
tighteningtechniques for non-convex minlp. Optimization Methods Software, 24(4-5):
597–634, August 2009.

[14] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. Mixed-
integer nonlinear optimization. Acta Numerica, 22:1–131, 5 2013.

[15] G. Bilchev and I. C. Parmee. The ant colony metaphor for searching continuous
design spaces. Lecture Notes in Computer Science, 993:25–39, 1995.

[16] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird,
J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework
for convex mixed integer nonlinear programs. Discrete Optimization, 5(2):186–204,
2008.

[17] Z. Bouzarkouna, D. Y. Ding, and A. Auger. Using evolution strategy with meta-
models for well placement optimization. CoRR, abs/1011.5481, 2010.

[18] Z. Bouzarkouna, D. Y. Ding, and A. Auger. Well placement optimization with the
covariance matrix adaptation evolution strategy and meta-models. Computational
Geosciences, 16(1):75–92, 2012.

[19] S. Burer and A. N. Letchford. Non-convex mixed-integer nonlinear programming:
A survey. Surveys in Operations Research and Management Science, 17(2):97 – 106,
2012.

[20] D. Busby and E. Sergienko. Combining probabilistic inversion and multi-objective
optimization for production development under uncertainty. In ECMOR European
Conference on the Mathematics of Oil Recovery,12th, Oxford, UK, 6-9 september
2010, 2010.

[21] D. Busby, S. Da Veiga, and S. Touzani. A workflow for decision making under
uncertainty. Computational Geosciences, 18(3-4):519–533, 2014.

[22] Y. Chang, Z. Bouzarkouna, and D. Devegowda. Multi-objective optimization for
rapid and robust optimal oilfield development under geological uncertainty. Com-
putational Geosciences, 19(4):933–950, 2015.

[23] J.-P. Chiles. Simulation of a nickel deposit: problems encountered and practical
solutions. In Geostatistics for natural resources characterisation, Part 2, pages
1015–1039, 1984.

[24] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies.
In Proceedings of ECAL91 - European Conference on Artificial Life. Elsevier Pub-
lishing, 1991.



BIBLIOGRAPHY 137

[25] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-region methods. mps-siam series
on optimization. In SIAM Philadelphia, 2000. Oxford, UK, 6-9 september 2010.

[26] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free
Optimization. Society for Industrial and Applied Mathematics (MPS-SIAM Series
on Optimization), Philadelphia, PA, USA, 2009.

[27] R. Cossé. Techniques d’exploitation pétrolière. Le gisement. 1988.

[28] C. D’Ambrosio and A. Lodi. Mixed integer nonlinear programming tools: an up-
dated practical overview. Annals of Operations Research, 9:329–349, 2013.

[29] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico
di Milano, Italie, 1992.

[30] D. Echeverría Ciaurri, O. J. Isebor, and L. J. Durlofsky. New approaches for gener-
ally constrained production optimization with an emphasis on derivative-free tech-
niques. CoRR, 2010.

[31] D. Echeverría Ciaurri, O. J. Isebor, and L. J. Durlofsky. Application of derivative-
free methodologies to generally constrained oil production optimisation problems.
International Journal of Mathematical Modelling and Numerical Optimisation, 2(2):
134–161, 2011.

[32] A. I. Ermolaev and A. M. Kuvichko. HPC-based optimal well placement. In ECMOR
XIII-13th European Conference on the Mathematics of Oil Recovery, 2012.

[33] R. Eymard, T. Gallouet, and R. Herbin. Finite volume methods. Handbook of
Numerical Analysis, Techniques of Scientific Computing, 7:713–1020, 2006.

[34] M. Fischetti and A. Lodi. Local branching. Math. Program., 98(1-3):23–47, 2003.

[35] F. J. T. Floris, M. D. Bush, M. Cuypers, F. Roggero, and A-R. Syversveen. Meth-
ods for quantifying the uncertainty of production forecasts: A comparative study.
Petroleum Geoscience, 7:87–96, 2001.

[36] Fahim Forouzanfar and A.C. Reynolds. Joint optimization of number of wells,
well locations and controls using a gradient-based algorithm. Chemical Engineering
Research and Design, 92(7):1315 – 1328, 2014.

[37] R. Fourer, D. M. Gay, and Brian W. Kernighan. AMPL: a modeling language
for mathematical programming. Pacific Grove, CA : Thomson/Brooks/Cole, 2nd
edition, 2003.

[38] K. R. Fowler, J. P. Reese, C. E. Kees, J. E. Dennis Jr., C. T. Kelley, C. T.and Miller,
C. Audet, A. J. Booker, G. Couture, R. W. Darwin, M. W. Farthing, D. E. Finkel,
J. M. Gablonsky, G. Gray, and T. G. Kolda. Comparison of derivative-free optimiza-
tion methods for groundwater supply and hydraulic capture community problems.
Advances in Water Resources, 31(5):743–757, 2008.



138 BIBLIOGRAPHY

[39] U. M. García-Palomares, E. Costa-Montenegro, R. Asorey-Cacheda, and F. J.
González-Castaño. Adapting derivative free optimization methods to engineering
models with discrete variables. Optimization and Engineering, 13(4):579–594, 2012.

[40] R. Hooke and T. A. Jeeves. “direct search” solution of numerical and statistical
problems. J. ACM, 8(2):212–229, April 1961.

[41] T. D. Humphries and R. D. Haynes. Joint optimization of well placement and control
for nonconventional well types. Journal of Petroleum Science and Engineering, 126:
242 – 253, 2015.

[42] O. J. Isebor, D. Echeverría Ciaurri, and L. J. Durlofsky. Generalized field develop-
ment optimization using derivative-free procedures. Society of Petroleum Engineers
Journal, 2014.

[43] Müller J. Miso: mixed-integer surrogate optimization framework. Optimization and
Engineering, 2015. To appear.

[44] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

[45] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948.
IEEE, 1995.

[46] M. Laguna, F. Gortázar, M. Gallego, A. Duarte, and R. Martí. A black-box scatter
search for optimization problems with integer variables. Journal of Global Opti-
mization, 58(3):497–516, 2014.

[47] H. Langouët, F. Delbos, D. Sinoquet, and S. Da Veiga. A derivative free optimiza-
tion method for reservoir characterization inverse problem. In ECMOR European
Conference on the Mathematics of Oil Recovery,12th, Oxford, UK, 6-9 september
2010, 2010.

[48] S. Le Digabel. Algorithm 909: Nomad: Nonlinear optimization with the mads
algorithm. ACM Trans. Math. Softw., 37(4):44:1–44:15, 2011.

[49] M. Le Ravalec, B. Noetinger, and L. Y. Hu. The FFT moving average (FFT-MA)
generator: An efficient numerical method for generating and conditioning gaussian
simulations. Mathematical Geology, 32(6):701–723, 2000.

[50] M. Le Ravalec, E. Tillier, S. Da Veiga, G. Enchery, and V. Gervais. Advanced
integrated workflows for incorporating both production and 4d seismic-related data
into reservoir models. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, 67(2):
207–220, 2012.

[51] K. Lie. An Introduction to Reservoir Simulation Using MATLAB - User Guide
for the Matlab Reservoir Simulation Toolbox (MRST). Sintef ICT, Department of
Applied Mathematics, 2014.



BIBLIOGRAPHY 139

[52] G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free methods for mixed-integer con-
strained optimization problems. Journal of Optimization Theory and Applications,
164(3):933–965, 2015.

[53] C. Lizon and D. Sinoquet. Optimisation non linéaire mixte en variables entières et
réelles : application au problème de placement des puits en ingénierie de réservoir.
Rapport 62863, IFPEN, 2013.

[54] C. Lizon, C. D’Ambrosio, M. Le Ravalec, L. Liberti, and D. Sinoquet. A mixed-
integer nonlinear optimization approach for well placement and geometry. 2014.

[55] C. Lizon, C. D’Ambrosio, and L. Liberti. Méthode non linéaire mixte en variables
entières et réelles pour le placement et la géométrie des puits en ingénierie de réser-
voir. 2015.

[56] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard. DACE - a matlab kriging
toolbox, version 2.0. Technical report, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, Richard Petersens Plads, Building 321,
DK-2800 Kgs. Lyngby, 2002.

[57] G. Matheron, H. Beucher, C. de Fouquet, and A. Galli. Conditional simulation of
the geometry of fluvio-deltaic reservoirs. In Ann. Techn. Conf. and Exhib., Dallas,
TX, SPE 16753, 1987.

[58] G. P. McCormick. Computability of global solutions to factorable nonconvex pro-
grams: Part I-convex underestimating problems. Mathematical programming, 10(1):
147–175, 1976.

[59] J. Müller, C. A. Shoemaker, and R. Piché. So-mi: A surrogate model algorithm for
computationally expensive nonlinear mixed-integer black-box global optimization
problems. Computers & Operations Research, 40(5):1383 – 1400, 2013.

[60] J. Müller, C. A. Shoemaker, and R. Piché. So-i: a surrogate model algorithm for
expensive nonlinear integer programming problems including global optimization
applications. Journal of Global Optimization, 59(4):865–889, 2014.

[61] E. Newby and M. M. Ali. A trust-region-based derivative free algorithm for mixed
integer programming. Computational Optimization and Applications, 60(1):199–229,
2015.

[62] D. S. Oliver, A. C. Reynolds, and N. Liu. Inverse theory for petroleum reservoir
characterization and history-matching. In Cambridge University Press, New York,
USA, 2008.

[63] J. E. Onwunalu and L. J. Durlofsky. Application of a particle swarm optimiza-
tion algorithm for determining optimum well location and type. Computational
Geosciences, 14:183–198, January 2010.

[64] SPE Comparative Solution Project. URL http://www.spe.org/web/csp/

datasets/set02.htm.



140 BIBLIOGRAPHY

[65] PumaFlowT M . PumaFlow Reservoir Simulator Reference Manual. BeicipFranlab,
2012.

[66] P. Z. G. Qian. Sliced latin hypercube designs. Journal of the American Statistical
Association, 107(497):393–399, 2012.

[67] P. Z. G Qian, H. Wu, and C. F. J. Wu. Gaussian process models for computer
experiments with qualitative and quantitative factors. Technometrics, 50(3):383–
396, 2008.

[68] R. Rebonato and P. Jaeckel. The most general methodology to create a valid cor-
relation matrix for risk management and option pricing purposes. Journal of risk,
2(2):17–27, 1999.

[69] R. Schulze-Riegert and S. Ghedan. Modern techniques for history-matching. In 9th
International Forum on Reservoir Simulation, Abu Dhabi, UEA, December 9-13,
2007.

[70] SCIP. URL http://scip.zib.de/scip.shtml.

[71] M. G. Shirangi and L. J. Durlofsky. Closed-loop field development optimization
under uncertainty. 2015.

[72] B. Talgorn, S. Le Digabel, and M. Kokkolaras. Statistical surrogate formulations
for simulation-based design optimization. Journal of Mechanical Design, 137(2):
21405–1–021405–18, 2015.

[73] MATLAB Reservoir Simulation Toolbox. URL http://www.sintef.no/

projectweb/mrst/.

[74] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7
(1):1–25, 1997.

[75] F. van den Berg, R. K. Perrons, I. Moore, and G. Schut. Business value from
intelligent fields. In SPE Intelligent Energy Conference and Exhibition, Jaarbeurs,
Utrecht, The Netherlands, March 23-25. SPE, 2010.

[76] L. N. Vicente. Implicitly and densely discrete black-box optimization problems.
Optimization Letters, 3(3):475–482, 2009.

[77] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization
with Applications in Process Engineering. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 2002.

[78] H. Wang, D. E. Ciaurri, and L. J. Durlofsky. Optimal well placement under un-
certainty using a retrospective optimization framework. SPE Reservoir Simulation
Symposium, 2011.

[79] M. J. Zandvliet, M. Handels, G. M. Van Essen, D. R. Brouwer, and J.D. Jansen.
Adjoint-based well-placement optimization under production constraints. Society of
Petroleum Engineers Journal, 13(4):392–399, 2008.


