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Chapter 1

Context, Objectives and

Contributions

1.1 Introduction to Cryptography

The terms Cryptography, from the Greek kryptòs (secret) and graphein (writing), and

Cryptanalysis, denote two branches of a science named Cryptology, or science of the

secret. Cryptography initially refers to the art of encrypting messages, which means

writing meaningful messages in such a way to appear nonsense to anyone unaware

of the encryption process. The readable message is referred to as plaintext, while the

unintelligible output of the encryption is referred to as ciphertext. In general, cryp-

tography aims to construct protocols to secure communication, while cryptanalysis

studies the resistance of cryptographic techniques, developing attacks to break the

cryptosystems’ security claims. These two complementary domains evolve in par-

allel, since the evolution of attack techniques allows conceiving more resistant cryp-

tographic algorithms, and inversely the resistance of such algorithms requires the

conception of more sophisticated attacks.

The art of cryptography is very ancient, probably as ancient as the language, but

only the development of information technology made cryptology take the shape of

a proper science, sometimes referred to as Modern Cryptology. The last is seen as a

branch of different disciplines, such as applied mathematics, computer science, elec-

trical engineering, and communication science. Modern cryptosystems exploit al-

gorithms based on mathematical tools and are implemented as computer programs,

or electronic circuits. Their goal is to provide security functionalities for commu-

nications that use insecure channels, for example the Internet. In particular, modern

cryptosystems are designed in order to ensure at least one of the four following in-

formation security properties:

a. confidentiality: the transmitted message must be readable only by a chosen pool

of authorised entities;
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b. authenticity: the receiver can verify the identity of the sender of a message;

c. non-repudiation: the sender of a message cannot deny having sent the message

afterwards;

d. data integrity: the receiver can be convinced that the message has not been

corrupted during the transmission.

Two branches of cryptography may be distinguished: the symmetric cryptogra-

phy and the asymmetric cryptography. The first one historically appeared before and

is based on the hypothesis that the two communicating entities share a common se-

cret, or secret key; for this reason this is also called secret key cryptography. The second

one, introduced around 1970, allows any entity to encrypt a message in such a way

that only a unique chosen other entity could decrypt it; this is also called public key

cryptography.

A general principle in cryptography, nowadays widely accepted by cryptogra-

phy researchers, is the one given by Kerckhoff in 19th century: it states that cryp-

tosystems should be secure even if everything about the system, except the key, is

public knowledge. Following this principle, today many industrials and govern-

mental agencies exploit, for their security services, cryptosystems based over stan-

dardised algorithms. Such algorithms are of public domain, thus have been tested

and tried to be broken by a large amount of people, before, during and after the stan-

dardisation process. Resistance to many attempts of attacks is actually the strengths

of standard algorithms.

Low-level cryptographic routines, called primitives, are often used as building

blocks to construct cryptographic protocols. We provide hereafter a description of a

standard primitive, the symmetric AES, whose implementation will be the target of

all experiments described in this thesis.

1.1.1 Description of AES

The Advanced Encryption Standard (AES) has been standardised in 2001 by the United

States governmental agency National Institute of Standards and Technology (NIST),

through the Federal Information Processing Standards Publication 197 (FIPS PUB 197)

[NIS]. It is a block cipher, meaning that the encryption and decryption of the AES

are functions that take as input a string (respectively the plaintext or the ciphertext)

of fixed length over the binary alphabet. Indeed, the AES operates on blocks of 128

bits.1 There exist three versions of AES, characterized by the size of the used key:

1When a block cipher is used to encrypt a plaintext of different size, the plaintext is chunked into
blocks of the appropriate one, and each block is encrypted accordingly to a so-called mode of operation.
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FIGURE 1.1: State array input and output. Source: [NIS].

128, 192 or 256 bits. The encryption is done by rounds. The number of executed

rounds depends on the key size (10 rounds for 128 bits, 12 for 192 and 14 pour 256).

The basic processing unit in AES algorithm is a byte. For AES internal operations,

bytes are arranged on a two-dimensional array called the state, denoted s. Such a

state has 4 rows and 4 columns, thus contains 16 bytes. The byte lying at the i-th

row, j-th column of s will be denoted by si,j for i, j ∈ {0, 1, 2, 3}. The 16 input bytes

and the 16 output bytes are indexed column-wise as shown in Fig. 1.1. Each ele-

ment si,j of the state is mathematically seen as an element of the Rjindael finite field,

defined as GF (28) = Z/2Z[X]/P (X) where P (X) = X8 + X4 + X3 + X + 1. Five

functions are performed during the AES, named KeySchedule, AddRoundKey, Sub-

Bytes, ShiftRows and MixColumns. At high level the AES algorithm is described

hereafter:

Key Expansion: derivation of round keys from secret key through the KeySched-

ule function

Round 0:

AddRoundKey

Rounds 1 to penultimate:

SubBytes

ShiftRows

MixColumns

AddRoundKey

Last Round:

SubBytes

ShiftRows

AddRoundKey

A description of the five functions is provided hereafter.
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FIGURE 1.2: AddRoundKey (top) and SubBytes (bottom) operate
over the state byte by byte, independently. Source: [NIS].

AddRoundKey

Each byte of the state is combined with the corresponding byte of the round key

via an addition over the Rjindael field GF (28), i.e. a bitwise exclusive OR (XOR)

operation ⊕.

SubBytes

The SubBytes transformation is a non-linear byte invertible substitution that oper-

ates independently on each byte of the State using a substitution table (called Sbox).

The SubBytes is composed of the following two functions:

• the inversion in GF (28) where the element {00} is mapped to itself

• the affine transformation which maps each byte bi to:

bi ⊕ b(i+4)mod 8
⊕ b

(i+5)mod 8
⊕ b

(i+6)mod 8
⊕ b

(i+7)mod 8
⊕ ci , (1.1)

where ci is the ith bit of {63} = (01100011)2.

ShiftRows

The bytes in the last second, third and fourth rows of the State are cyclically shifted

over 1, 2, and 3 byte(s) respectively.

MixColumns

Each column of the State is treated as a four-term polynomial. They are considered

as polynomials over the Rjindael field GF (28) and multiplied modulo X4 + 1 with a

fixed polynomial a(X) = {03}X3 + {01}X2 + {01}X + {02}.
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FIGURE 1.3: ShiftRows operates over the State rows. MixColumns
operates over the State columns. Source: [NIS].

KeySchedule

To lighten notations, the KeySchedule is described for the 128-bits cipher, which al-

lows to fix many parameters to the value 4. For the 192-bits and 256-bits such param-

eters have to be fixed respectively to 6 and 8. The key round of the initial round of

AES coincides with the secret encryption key K = (k0,0, k0,1, . . . , k0,3, k1,0, . . . , k1,3, . . . , k3,3).

The i-th round key is given by

Ki = (k4i,0, k4i,1, . . . , k4i,3, k4i+1,0, . . . , k4i+1,3, . . . , k4i+3,3),

where k4i+a,b is calculated, for i > 0, a ∈ {0, . . . 3} and b ∈ {0, . . . , 3}, as follows:


k4i+a,b = k4i+a−4,b ⊕ k4i+a−1,b if a 6= 0

k4i+a,b = k4i+a−4,b ⊕ Sbox(k
4i+a−1,(b+1)mod 4

)⊕ Rcon(a) if a = 0 and b = 0

k4i+a,b = k4i+a−4,b ⊕ Sbox(k
4i+a−1,(b+1)mod 4

) if a = 0 and b 6= 0 ,

whereRcon(a) = {02}a−1 in the Rjindael finite field,2 and Sbox is the substitution

table used for the SubBytes transformation.

1.2 Secure Components

As we have seen in the previous section, modern cryptography proposes solutions

to secure communications that ask for electronic computations and repose their se-

curity over some secret keys. Keys are represented as long bit strings, very hard

to be memorised by users. Thus, keys need to be stored in a secure medium, and

never delivered in clear over insecure channels. Smart cards (or smartcards) were

historically conceived as a practical solution to such a key storage issue: they con-

sist in small devices a user can easily carry around with, which not only store secret

keys, but also are able to internally perform cryptographic operations, in such a way

2where {02} = (00000010)2 is represented by the polynomial x
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that they can be involved in secure communication protocols, that do not require

the delivering of the secret keys. The registrations of a first patent describing mem-

ory cards by Roland Moreno in 1974 [Mor74], and of a second one describing cards

equipped with microcontrollers by Michel Ugon in 1977 [Ugo77] are often referred

to in order to date the smart card invention, finally produced for the first time in

1979. Smart cards are pocket-sized plastic-made cards equipped with a secure com-

ponent, which is typically an integrated circuit containing some computational units

and some memories.

Today, about 40 years after its invention, they still have a huge diffusion, both

in terms of applicative domains and in terms of quantity of exemplars. Indeed,

they serve as credit or ATM cards, healthy cards, ID cards, public transport pay-

ment cards, fuel cards, identification and access badges, authorization cards for pay

television, etc. Slightly changing the card support, we find other applications of the

same kind of integrated circuits, for example the mobile phone SIMs (Subscriber Iden-

tity Module) and the electronic passports. In terms of quantity, a marketing research

[Abi] found out that in 2014 8.8 billion smart cards have been sold, i.e. the same

order of magnitude of the global population.

In addition to smart cards, the recent growing and variation of security needs

lead to the development and specification of other kinds of secure solutions, for

example the Trusted Platform Module (TPM), which is a secure element providing

cryptographic functionalities to a motherboard, or completely different solutions

based on software layers, that are today in great expansions. An example is pro-

vided by the Trusted Execution Environment (TEE), which is a software environment

of the main processor of a smartphone or tablet, designed to assure resistance to

software menaces.

1.2.1 Embedded Cryptography Vulnerabilities

1.2.1.1 Side-Channel Attacks

Until the middle of the nineties, the security of embedded cryptosystems was con-

sidered, in the public domain, as equivalent to the mathematical security of the em-

bedded cryptographic algorithm. In classical cryptanalysis, an attacker usually has

the knowledge of the algorithm (in accordance to Kerckhoff’s principle) and of some

inputs and/or outputs. Starting from these data, his goal is to retrieve the secret key.

This attack model considers the algorithm computation as a black box, in the sense

that no internal variable can be observed during execution, only inputs and/or out-

puts. With his seminal paper about Side-Channel Analysis in 1996, Paul Kocher
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TABLE 1.1: Classification of Harware Attacks

Passive Active
Invasive
Semi-Invasive (SCAs) (FAs)
Non-Invasive SCAs FAs

showed that such a black-box model fails once the algorithm is implemented over a

physical component [Koc96]: an attacker can indeed inspect its component during

the execution of the cryptographic algorithm, monitor some physical quantities (e.g.

the execution time [Koc96] or the instantaneous power consumption [KJJ99]) and

deduct information about internal variables of the algorithm. Depending on the at-

tacked algorithm, making inference over some well chosen internal variables (the so-

called sensitive variables of the algorithm) is sufficient to retrieve the secret key. After

these first works, it was shown that other observable physical quantities contained

leakages on sensitive information; for example the electromagnetic radiation emanat-

ing from the device [GMO01; QS01] and the acoustic emanations [GST14]. More-

over, if until few years ago it was thought that only small devices, equipped with

slow microprocessors and with small-sized architecture, such as smart cards, were

vulnerable to this kind of Side-Channel Attacks, the last cited recent work about

acoustic emanations, together with other works exploiting electromagnetic fluctu-

ations, pointed out that much faster and bigger devices, i.e. laptops and desktop

computers, are vulnerable as well [Gen+15; GPT15; Gen+16].

1.2.1.2 A Classification of the Attacks against Secure Components

The Side-Channel Attacks outlined in previous paragraph, and which are the main

concern of this thesis, belong to a much bigger family of hardware attacks that can

be performed to break cryptographic devices’ security claims. A classification for

hardware attacks is briefly outlined in Tab. 1.1. They are commonly classified on the

base of two criteria: on one hand we can distinguish passive and active attacks, on

the other hand we can distinguish invasive, semi-invasive and non-invasive attacks.

Passive attacks: in passive attack, the device run respecting its specifications.

The attacker observes its behaviour without provoking any alteration;

Active attacks: in active attacks a special manipulation is performed in order

to corrupt the normal behaviour of the device.

Invasive attacks: in invasive attacks, the device is unpackaged and inspected

at the level of the component technology. The circuit can be modified/broken,

signals can be accessed via a probing station, etc. There is no limits to the

manipulations an attacker can do to the component;
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Semi-invasive attacks: as in invasive attacks the device is unpackaged, but in

contrast to them, no direct electrical contact to the chip is done;

Non-invasive attacks: in non-invasive attacks the device is not modified and

only accessible interfaces are exploited.

In the literature, the term Side-Channel Attacks (SCAs)3 commonly refers to

the passive non-invasive attacks. Nevertheless, the techniques proposed under the

name of SCAs, that always require the acquisition of some signals, might also in-

clude attacks where the device is unpacked, in order to improve the signal ampli-

tude. In this sense, SCAs belong to the semi-invasive group of attacks as well. Sim-

ilarly, active non-invasive attacks are often referred to as Fault Injection Attacks, that

might also be run in a semi-invasive way.

Beyond hardware attacks, there exists a second class of attacks that menaces the

security of cryptographic devices: the software attacks. In contrast with hardware

attacks, software attacks exploit vulnerabilities that are not related to the physical

implementation of the cryptographic functionalities of the device: they are not based

on hypotheses about the material execution of the cryptographic algorithms, but ex-

ploit vulnerabilities of the software interfaces. A typical example of software attack

consists in charging malware code into the device, enabling access to data and in-

structions contained in memories (RAM or ROM), in order to retrieve, modify or

destroy information they hold. In last years, together with the growing complexity

of secure devices, attacks become more and more sophisticated and the boundary

between hardware and software attack is more and more blurred. Moreover com-

bined software/hardware attacks are being developed, e.g. [BICL11].

1.2.2 Certification of a Secure Hardware - The Common Criteria

In previous paragraphs we have evoked the great diffusion of the cryptographic

devices and the existence of a wide range of attacks exploiting vulnerabilities com-

ing from the way cryptography is embedded. These two factors imply a great risk

related to the production and commercialisation of such devices, and justify the im-

portance and necessity to ensure reliability on their security claims. This necessity

lead to the arise of several guidelines and standards for their evaluation. The in-

ternational standard ISO/IEC 15408, also known as Common Criteria for Information

Technology Security Evaluation (abbreviated as Common Criteria or simply CC) repre-

sents one of the strongest efforts in standardisation, unifying in 1999 three previ-

ously existing standards:

3Commonly, the acronym SCA stands for "Side-Channel Analysis". Nevertheless, in this thesis it
will stand for "Side-Channel Attacks".
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FIGURE 1.4: The actors of French Certification Scheme

• the Trusted Computer System Evaluation Criteria (TCSEC - United States - 1983)

• the Information Technology Security Evaluation Criteria (ITSEC - France,Germany,

Netherlands, United Kingdom - 1990)

• the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC - Canada -

1993).

1.2.2.1 The actors

The CC define four actors of the evaluation process of a secure component:

• The Developer, who conceives a product and wishes to sell it as a certified

secure product. He sends a request for evaluation to the certification body

and, once the request is accepted, he contacts an evaluation laboratory;

• The ITSEF is the IT Security Evaluation Facility; in France it is named Centre

d’Evaluation de la Securité des Technologies de l’Information (CESTI). It is an eval-

uation laboratory, in possession of a certification body agreement, which per-

forms the security tests to assess the resilience of the product;

• The Certification Body is often a governmental organism, the Agence National

de la Securité des Systèmes d’Information (ANSSI) in France, or the Bundesamt für

Sicherheit in der Informationstechnik (BSI) in Germany, for example. It ensures

the quality of the evaluation and delivers a certificate to the developer;

• The end user, who buys the product and follows its security guidelines.

1.2.2.2 The Target of Evaluation and the security objectives

To start the certification process, the developer compiles a document called Security

Target (ST). Such a document begins specifying the (part of the) device subjected to
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TABLE 1.2: Evaluation Assurance Levels

EAL Description

EAL1 Functionally tested
EAL2 Structurally tested
EAL3 Methodically tested and checked
EAL4 Methodically designed, tested and reviewed
EAL5 Semi-formally designed and tested
EAL6 Semi-formally verified design and tested
EAL7 Formally verified design and tested

evaluation, the so-called Target of Evaluation (TOE), then lists its Security Functional

Requirements (SFR), choosing among those proposed by the CC. In practice, and to

ease the redaction of the ST, the choice of the SFRs is not open, but guided by the

typology of the component. In particular, the CC propose a catalogue of Protection

Profiles, associated with the required SFRs. For example "smartcard" or "TEE " desig-

nate some precise Protection Profiles. They differ in various aspect, and their main

difference until now is that TEE are not required to be resistant to hardware attacks,

but only software ones. the recent alerts about combined software/hardware attacks

developed in last years, may lead to an extension of the solely software vulnerability

analysis towards a larger requirement.

1.2.2.3 Evaluation Assurance Level and Security Assurance Requirements

In CC seven Evaluation Assurance Level (EAL) are defined. They determine the quan-

tity and complexity of the tasks the evaluator has to effectuate, thus specifying the

insurance strength. The EAL are defined in insurance increasing order, so that the

EAL1 has the lowest verification exigences while EAL7 has the highest ones. In Ta-

ble 1.2 the objectives given by the CC for each EAL are resumed.

During the process of evaluation, the SFRs of the TOE have to be verified ac-

cording to the claimed EAL. To this end, the evaluation is divided into six classes

of Security Assurance Requirement (SAR). Five of this classes are the so-called confor-

mity classes, and one is the vulnerability assessment class. Each class is sub-divided

in several families (excepted the vulnerability assessment class, which only contains

one family), and the evaluators are charged to check each requirement correspond-

ing to these families. The Table 1.3 resumes the SAR classes and their families. For

each family a grade is assigned following precise specifications detailed in CC, and

the obtention of a certain EAL depends on the grades obtained for each family,

as reported in Table 1.4. An EAL can also be augmented, meaning that the prod-

uct achieves all the required SAR grades to obtain a certain EAL and some upper

grades for certain families. For example, smart cards are usually protected at level
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TABLE 1.3: Security Assurance Requirements

Class Family Description

Development

ADV_ARC Security architecture
ADV_FSP Functional specification
ADV_IMP Implementation representation
ADV_INT TOE Security Functions internals
ADV_SPM Security policy modelling
ADV_TDS TOE design

Guidance Documents
AGD_OPE Operational user guidance
AGD_PRE Preparative procedures

Life-cycle support

ALC_CMC Configuration Management capabilities
ALC_CMS Configuration Management scope
ALC_DEL Delivery
ALC_DVS Development security
ALC_FLR Flaw remediation
ALC_LCD Life-cycle definition
ALC_TAT Tools and techniques

ST evaluation

ASE_CCL Conformance claims
ASE_ECD Extended components definition
ASE_INT ST introduction
ASE_OBJ Security objectives
ASE_REQ Security requirements
ASE_SPD Security problem definition
ASE_TSS TOE summary specification

Tests

ATE_COV Coverage
ATE_DPT Depth
ATE_FUN Functional tests
ATE_IND Independent testing

Vulnerability assessment AVA_VAN Vulnerability analysis

EAL4+AVA_VAN5+ALC_DVS2, and chips for e-passport application are usually

protected at level EAL5+AVA_VAN5+ALC_DVS2. In case of banking smart cards,

the card also needs to respect the EMVco norms, being EMVco a consortium of six

companies (Visa, MasterCard, JCB, American Express, China UnionPay, and Dis-

cover) that manages private certification schemes for banking cards, payment termi-

nal and automated teller machines.

1.2.2.4 The AVA_VAN family and the Attack Potential

The AVA_VAN is the solely family of the vulnerability assessment SAR. The goal of

such a SAR is to make the connection between the conformity of the TOE, verified

via the analysis of its documentation, and the efficiency of its protections and coun-

termeasures. This is the step of the evaluation in which the actual resilience of the

TOE against the penetration tests is measured. In this phase the attacks outlined in
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TABLE 1.4: Required grades for the obtention of each EAL.

Family
Assurance Components by EAL

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

ADV_ARC 1 1 1 1 1 1
ADV_FSP 1 2 3 4 5 5 6
ADV_IMP 1 1 2 2
ADV_INT 2 3 3
ADV_SPM 1 1
ADV_TDS 1 2 3 4 5 6

AGD_OPE 1 1 1 1 1 1 1
AGD_PRE 1 1 1 1 1 1 1

ALC_CMC 1 2 3 4 4 5 5
ALC_CMS 1 2 3 4 5 5 5
ALC_DEL 1 1 1 1 1 1
ALC_DVS 1 1 1 2 2
ALC_FLR
ALC_LCD 1 1 1 1 2
ALC_TAT 1 2 3 3

ASE_CCL 1 1 1 1 1 1 1
ASE_ECD 1 1 1 1 1 1 1
ASE_INT 1 1 1 1 1 1 1
ASE_OBJ 1 2 2 2 2 2 2
ASE_REQ 1 2 2 2 2 2 2
ASE_SPD 1 1 1 1 1 1
ASE_TSS 1 1 1 1 1 1 1

ATE_COV 1 2 2 2 3 3
ATE_DPT 1 1 3 3 4
ATE_FUN 1 1 1 1 2 2
ATE_IND 1 2 2 2 2 2 3

AVA_VAN 1 2 2 3 4 5 5
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Sec. 1.2.1 are taken into account, and the so-called attack potential of such attacks is

stated. The attack potential is a notion appearing in CC whose aim is to reflect the

realism of succeeding a certain attack, and thus its realistic dangerousness. Indeed

in the context of physical attacks, many possible attack paths require unrealistic con-

ditions, amounts of time and/or money to be actually performed on the field and do

not represent in reality a great risk. For example, invasive attacks such as probing

attacks which appears in theory the most dangerous ones, ask in general for some

very expensive instruments, a huge expertise, much time and many broken samples

before succeeding. Their attack potential can thus result not so wondering. For this

evaluation phase, the evaluator is in charge to prepare a testing plan. This is a list

of the possibly dangerous attack paths, basing on a code analysis, and on the state-

of-the-art attacks list in general provided by working groups dedicated to the secure

component considered. Once the testing plan is ready, he practically tests each at-

tack. For each succeeded attack he fills a cotation table in order to assign a score to

the attack, on the basis of several criteria. The goal of the cotation table is to provide

a metric enabling to compare very different kinds of attacks. The guidelines for the

cotation table are given by the Common Methodology for Information Technology Secu-

rity Evaluation (CEM).

In the case of smart cards, the evaluation systematically includes the AVA_VAN5

grade, thus the testing plan is asked to be as complete as possible. The state-of-

the-art of the attacks is periodically upgraded by the JIL4 Hardware Attacks Subgroup

(JHAS), a subgroup of the working committee Senior Officials Group Information Sys-

tems Security (SOG-IS) which coordinates the standardisation of CC. Moreover, the

JHAS produces the Application of Attack Potential to Smartcards [Lib13] of the JIL,

which is an interpretation of the CEM in the special case of smart cards. The co-

tation table factors specified by the JHAS are detailed in Table 1.5. The evaluation is

divided in two parts, an identification part, that reflects the difficulty in finding the

attack path, and an exploitation part, that reflects the difficulty in actually performing

the attack. The total score of an attack is the sum of scores assigned to each factor. To

obtain the AVA_VAN5 grade every successful attack tested by the evaluators must

have been rated at least 31.

1.2.2.5 The Evaluation Technical Report

The evaluation ends with the redaction by the evaluators of an Evaluation Technical

Report (ETR), which is transmitted to the certification body. The last analyses the

ETR and, if the security claims of the TOE are verified, issues a certificate. The ETR

4Joint Interpretation Library
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TABLE 1.5: Factors of the Attack Potentials for Smartcards

Factors Identification Exploitation

Elapsed Time
<one hour 0 0
<one day 1 3

<one week 2 4
<one month 3 6
>one month 5 8

Expertise
Layman 0 0

Proficient 2 2
Expert 5 4

Multiple Expert 7 6

Knowledge of the TOE
Public 0 0

Restricted 2 2
Sensitive 4 3
Critical 6 5

Very critical hardware design 9 NA

Access to TOE
<10 samples 0 0
<30 samples 1 2
<100 samples 2 4
>100 samples 3 6

Equipement
None 0 0

Standard 1 2
Specialized 3 4

Bespoke 5 6
Multiple Bespoke 7 8

Open Samples
Public 0 NA

Restricted 2 NA
Sensitive 4 NA
Critical 6 NA
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is kept confidential. Concerning the penetration testing of a certified smart card, the

ETR contains all the cotation tables of the succeeded attacks. If the component is

certified, it means that the score of those attacks was higher than 31, and such vul-

nerabilities are kept as residual vulnerabilities. The ETR is strictly reviewed annually

by the evaluators in charge of the surveillance of the certificate. For the penetration

testing, the evaluators are in particular asked each year to verify that the cotation of

the attacks presented in the ETR did not drop.

1.3 This thesis objectives and contributions

Among the factors observable in the cotation table 1.5 we find open samples, inter-

pretable as device with known secrets. Indeed, for an evaluation scope it is sometimes

possible for an ITSEF to have access to a device identical to the TOE but where the

evaluator can fix or access certain variables, for example some random numbers

used by cryptographic algorithm, or load specific software. An evaluator may use

this possibility in order to launch executions in which he is aware of the complete

execution flow, including operations, manipulated internal variables (internally gen-

erated random ones as well) and register accesses. In this way he can understand

and characterise the relations between the internal behaviour of the device and the

physical observations, before performing a proper attack.

In the context of Side-Channel Attacks, when such a characterisation phase is

possible, we talk about profiling attacks. Due to the favourable condition of this at-

tacks, they are commonly considered the most dangerous ones, allowing a sort of

worst-case security analysis. This thesis is mainly focused over such a profiling sce-

nario. Indeed, we will address the problems an evaluator deals with when he is in

such a favourable case and he wonders how to optimally exploit such a character-

isation phase in order to be able to extract as much information as possible for the

acquired signals, in the exploitation phase. One of these issues is the selection of

the so-called Points of Interest (PoI), strictly linked to the more general problem of

dimensionality reduction.

1.3.1 The Preliminary Purpose of this Thesis: Research of Points of Inter-
est

To perform a Side-Channel Attack, the monitoring of unintentional channels leaking

from the attacked device is usually performed through an oscilloscope that samples

continuous analog signals and turns them into discrete digitalised sequences. Such

sequences are often referred to as traces. To allow a deep inspection of the device, the
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sampling rate of the oscilloscope needs to be high, leading very often to a high di-

mensionality of such traces. Nevertheless, it is expected that only a limited number

of time samples are relevant for an SCA: those that are statistically dependent on the

sensitive variable that is exploited to run the attack. Such time samples are called

Points of Interest (PoIs). In the literature a few different statistics were proposed and

exploited to select such PoIs in a preliminary attack phase, in order to reduce both

time and memory complexity of the attacks. A brief overview of such statistics is

proposed in Sec. 2.10.2. The preliminary purpose of this thesis was to propose new

methods to research and characterise the PoIs, in order to ameliorate and possibly

optimise the preliminary attack phase consisting in their selection.

1.3.2 Dimensionality Reduction Approach

Beyond the use of point-wise statistics to identify the PoIs, an axe of research was

launched in SCA context, importing from the Machine Learning domain more gen-

eral techniques for dimensionality reduction of data, passing from the feature selec-

tion to the so-called feature extraction approach. Around 2014, linear methods were

drawing a raising attention, consisting in techniques to conveniently exploit linear

combinations of many time samples. The first contributions we proposed belong to

this axe of research: in Chapter 4 we describe the two mainly deployed techniques,

the Principal Component Analysis and the Linear Discriminant Analysis, and tackle

some open issues about their application to SCA context. The solutions proposed in

the thesis have been presented at CARDIS 2015 [CDP15] and published in the pro-

ceedings of this international conference.

Nowadays every device needing to obtain an AVA_VAN5 grade is equipped of

specific countermeasures against SCAs. A brief overview of some classic and pub-

lic principles providing efficient countermeasure is provided in Sec. 2.11. Among

them, the masking, or sharing, countermeasures may be considered the most effective

ones. Beyond the formal proofs of their efficiency provided in the literature [ISW03;

PR13; Bar+15], they are the ones that most likely require a strong adaptation of the

attack strategy in order to be defeated. Indeed, when an effective masking scheme is

implemented, each sensitive variable of the original computation is split into shares

randomly drawn, in such a way that any proper subset of shares is statistically in-

dependent of the sensitive variable itself. Computation of cryptographic primitives

is done accessing only the random shares, with intermediate steps computing only

the shares of the result. This forces the attacker to work with the joint distribu-

tions of the signal at the time samples where the shares are being accessed. In other

words, point-wise statistics to retrieve PoIs are completely inefficient in presence of
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a masking countermeasure, since each time sample is by itself statistically indepen-

dent from any sensitive variable. Moreover, interesting joint distributions have to

be studied at their higher-order statistical moments to retrieve sensitive-data depen-

dencies, implying that any linear method to combine time samples is inefficient as

well. To sum up, the issue of selecting PoIs or applying dimensionality reduction to

side-channel traces protected by masking presents challenging difficulties. Such a

hardness is mitigated when the attacker is able to perform a profiling phase during

which he has the knowledge of the random values assigned to the shares during

execution. In practice it is not always the case, so in this thesis we tackle the issue

when such knowledge is absent, and we propose in Chapter 5, on the basis of a work

presented at CARDIS 2016 [CDP16], to deploy Kernel Fisher Discriminant Analysis

(KDA) as a solution. This is an extension of the LDA dimensionality reduction tech-

nique, allowing applying some strategy to non-linearly combine time samples.

1.3.3 Towards Machine Learning and Neural Networks Approach

As a general observation about the track we followed during this thesis, we started

from the problem of identifying the PoIs in a signal, that is classically tackled by

means of pure statistical tools, such as hypothesis tests, then enlarged both the ob-

jectives and the methodologies. Indeed we observed that what mainly influences

the successfulness of a Side-Channel Attack is the quality of the way information is

extracted from data. Extracting information concerns approximating probability dis-

tributions that allow distinguishing different secret values. The first SCAs proposed

in the literature acted in a point-wise fashion, i.e. were related to data distributions

in single time samples of the acquisitions. In this sense the selection of such time

samples, the PoIs, played a fundamental role and were a preliminary objective of

these researches. As soon as one steps back to the final objective, i.e. defining and

well approximating distinguishable distributions, the fact of completely discard a

great part of time samples, selecting only a few of them, seems a waste. Convenient

ways to combine time samples might turn into some resulting features whose distri-

butions might have a greater distinguishability. This observation lead to a one-step

back objective: determine such convenient ways. In this sense, we explored feature

extraction tools, in order to preprocess data and turn rough data into compact ones

whose distributions were distinguishable. Linear tools were analysed in a first time

(PCA and LDA in particular), then non-linear tools (the KDA) were investigated to

satisfy a necessary condition in order to deal with masked implementations.

Aware of the fact the the just cited tools are in the middle ground between clas-

sical multivariate statistics and the Machine Learning domain, we started exploring

such a domain, that is today in fast development. The wide interest for Machine
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Learning is today justified by the trend of sense and analyse data of huge dimension

for an always increasing variety of applications. To do so, more and more com-

plex models have been explored, too complex to be treated with a formal statistical

asset. The Machine Learning asset carries with him some intrinsic non-optimality,

formalised by the so-called No Free Lunch theorem, briefly stated in Sec. 3.1.6, but is

today demonstrating its capacities. We observe that Side-Channel Attacks belong to

the kind of applications that might take advantage of Machine Learning tools, since

they act by sensing and analysing data of high dimension. For this reason, in last

years, a transfer from Machine Learning to the application domain of SCA started,

and our researches make part of such a flow.

The study of nowadays privileged tools in Machine Learning allowed us mak-

ing a further step back toward the SCAs objective. Instead of look for a convenient

preprocessing of data, whose output distributions have discriminant abilities, we

switched to look for models that directly approximate the distributions from rough

data. This approach is proper to a branch of Machine Learning, called Deep Learn-

ing. The Deep Learning paradigm suggests to integrate the whole learning phase

(in our case the whole processing leading to the discriminant distributions approx-

imation) in a unique process, integrating in it any preprocessing. This is done con-

sidering multi-layered models, in particular Neural Networks, on which we finally

focused. They are non-linear models, implying that they are able to eventually

deal with side-channel traces protected by masking countermeasure. Moreover,

some special structures of Neural Networks, the so-called Convolutional Neural

Networks (CNNs), originally conceived for image recognition application, fit well to

handle other kinds of classic countermeasures: those improving trace desynchroni-

sation, or misalignment (see Sec. 2.11). In Chapter 6, on the basis of the publication

presented at CHES 2017 [CDP17], we discuss about the advantages of exploiting

such CNNs in SCA context.

Beyond the application of the CNNs we discuss in Chapter 6, we believe that

many kinds of side-channel scenarios, and especially profiling contexts, may be

rephrased as Machine Learning tasks and many researches already carried out for

other applications should be exploited to understand if they represent or not a dan-

ger in embedded security domain, leading to powerful Side-Channel Attacks.

The next two chapters aim to briefly introduce preliminaries about these two vast

domains: in Chapter 2 a brief introduction to side-channel attack is provided, while

Chapter 3 describes some basic notions of Machine Learning.
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Chapter 2

Introduction to Side-Channel

Attacks

A Kansas City Shuffle is

when everybody looks right,

you go left.

— Mr. Goodkat — "Lucky

Number Slevin"

2.1 Notations and Probability and Statistics Recalls

Basic Notations. In this thesis we use calligraphic letters as X to denote sets, the

corresponding upper-case letter X to denote random variables (random vectors ~X

if with an arrow) over X , and the corresponding lower-case letter x (resp. ~x for

vectors) to denote realisations of X (resp. ~X). The cardinality of a set X is denoted

by |X |. Matrices will be denoted with bold capital letters, both Latin M and Greek Σ.

When the vectors’ orientation minds, they are understood as column vectors. The i-

th entry of a vector ~x is denoted by ~x[i], while the transposed of a vector ~x is denoted

as ~xᵀ. We will use the transposed mark to refer to row vectors ~xᵀ. In general the ith

observation of a random vector X will be denoted by xi. More precisely, xi refers to

the realisation of the ith random variableXi, whereX1, . . . , XN is a sequence of i.i.d.

random variables distributed asX . In order to lighten verbosity, we will always omit

to precise it in the following. Observations will sometimes be grouped into datasets

D = {x1, . . . , xN}. Throughout this thesis, the finite set Z = {s1, . . . , s|Z|} will be

often considered: it will always denote the possible values for a sensitive variable Z

(see later). Its elements are sometimes encoded via a so-called one-hot-encoding: to

each element sj a |Z|-dimensional vector ~sj is associated, with all entries equal to 0

and the j-th entry equal to 1: sj → ~sj = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0). We will denote by s

a generic element of Z , in contexts in which specifying its index i is unnecessary.



22 Chapter 2. Introduction to Side-Channel Attacks

Probability Notations. The probability of a random variable X taking value in a

subset U ⊂ X is denoted by Pr(X ∈ U), or simply by Pr(U) if not ambiguous. When

U is reduced to a singleton U = {x} the same probability is denoted by Pr(X =

x) or simply by Pr(x) if not ambiguous. If X is a discrete variable pX denotes its

probability mass function (pmf for short), such that Pr(X ∈ U) =
∑

x∈U pX(x). The

same symbol pX is used to denote the probability density function (pdf for short)

if X is a continuous variable, such that Pr(X ∈ U) =
∫
U pX(x)dx, for U ⊂ X . The

symbol E[f(X)], or equivalently EX [f(X)], denotes the expected value of a function

f of the random value X , under the distribution of X . In the same way, symbols

Var(X) and VarX(X) denote the variance of X .

When two random variables X and Y are considered, their joint probability is

denoted by Pr(X = x, Y = x), or simply by Pr(x, y) if not ambiguous, and their

joint probability density (or mass) function is denoted by pX,Y (x, y). The condi-

tional probability of X assuming the value x given an outcome y for Y is denoted

by Pr(X = x | Y = y), or simply by Pr(x | y) if not ambiguous. The conditional

probability density (or mass) function of X given an outcome y for Y is denoted by

pX | Y=y(x). Finally, the covariance of the two variables is denoted by Cov(X,Y ).

Bayes’ Theorem. We recall some basic probability rules. For every x ∈ X and for

every y ∈ Y we have what follows:

• Symmetry of joint probabilities: pX,Y (x, y) = pY,X(y, x);

• Marginal probabilities from joint ones: pX(x) =
∑

Y=y pX,Y (x, y) (where the sum

has to be intended as an integral if Y is a continuous variable);

• Product rule: pX,Y (x, y) = pY | X=x(y)pX(x);

These rules are sufficient to demonstrate, in the case of discrete random variables

X,Y , a key stone of probability theory, the Bayes’ theorem:

pX | Y=y(x) =
pY | X=x(y)pX(x)

pY (y)
; (2.1)

the marginal probability function pX is referred to as prior probability of X , and

describes the distribution of X without taking into account the variable Y . The con-

ditional probability pX | Y=y is referred to as posterior probability of X , and gives the

distribution of X once the outcome y of Y is taken into account. Notions of mea-

sure’s theory are needed to show that Bayes’ theorem is valid and keeps unchanged

in case of continuous random variables and in cases in which one of the two in-

volved variables is discrete and the other one is continuous. The interested reader

might refer to [Fel08].
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The Gaussian distribution. The Gaussian or normal distribution is a widely used

model for the distribution of continuous variables. We use the symbolX ∼ N (µ, σ2)

to denote a random variableX that follows a Gaussian distribution with parameters

µ ∈ R and σ2 ∈ R+. For a D-dimensional random vector ~X we use the symbol X ∼
N (~µ,Σ) to denote a vector that follows a multivariate Gaussian distribution with

parameter ~µ ∈ RD and Σ ∈ RD×D positive-definite. The density of the Gaussian

distribution is completely determined by the value of its two parameters. It is given

by the following expressions, respectively in unidimensional and multidimensional

cases:

pX(x) =
1√

2πσ2
exp−1

2

(
x− µ
σ

)2

, (2.2)

p ~X(~x) =
1√

2π det(Σ)
exp−1

2
(~x− ~µ)ᵀ Σ−1(~x− ~µ) . (2.3)

The expected value of a Gaussian distribution coincides with the parameter µ for the

univariate case and with ~µ for the multivariate one. The parameter σ2 coincides with

the variance of the univariate distribution, while Σ coincides with the covariance

matrix of the multivariate one.

Basics of Statistics. The word statistics refers to a branch of mathematics that aims

to analyse, describe or interpret observed data. Differently, the word statistic refers

to any measure obtained applying a function to some observed data. Let D =

{x1, . . . , xN} be a dataset of observations of a random variable X . We might dis-

tinguish two sub-branches in statistics: the descriptive statistics, and the inferential

statistics. In descriptive statistics, data are described by means of more or less com-

plex statistics (in the sense of measures), the most common of them being the arith-

metic mean:

x =
1

N

N∑
i=1

xi . (2.4)

In inferential statistics, data are considered as sample observations of random

variables and the data analysis aims at modelling the distribution of such variables.

Dealing with random variables, inferential statistics exploit the probability theory

framework and theorems. Statistics of data (in the sense of measures) play an im-

portant role in inferential statistics as well, usually aiming to estimate some random

variable parameters. In this case they are called estimators and will be denoted by a

hat: for example, Ê[X] denotes an estimator for the expected value of X and V̂ar(X)

denotes an estimator for the variance of X . The most classical estimator for the ex-

pected value is the arithmetic mean x. It has several valuable properties, for example

it is unbiased, in the sense that, considering the arithmetic mean random variable X ,

its expected value E[X] coincides with the true value of E[X]. Moreover, it is the

maximum-likelihood estimator of µ under the Gaussian distribution assumption: for
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data that are independent among each other and drawn from a Gaussian distribu-

tion, the arithmetic mean of the observed dataD is the value that must be assigned to

the parameter µ that maximises the probability of observing the data D. A common

unbiased estimator for the variance is the following so-called sample variance:

V̂ar =
1

N − 1

N∑
i=1

(xi − x)2 ; (2.5)

when the observed random variable follows a Gaussian distribution, such an esti-

mator differs from the maximum-likelihood one, in which the factor 1
N−1 is substi-

tuted by 1
N . In the same way, acting with Gaussian random vectors, the maximum-

likelihood estimator of the covariance matrix is biased, and differs from the common

unbiased one for a multiplicative factor.

Various approaches exist to make statistical inference. The two main ones are the

frequentist approach and the Bayesian one. The frequentist inference is an approach

that draws conclusions exclusively from sample data. It makes use of methodologies

like the statistical hypothesis testing and the confidence interval. In the frequentist

approach, parameters that define the distribution of the analysed random variable

are priorly considered as fixed and unknown, and are estimated or tested on the sole

basis of the observation of the sample data D. A second approach is the Bayesian

inference, for which parameters that describe the analysed random variable are ad-

mitted to be probabilistic: in Bayesian inference, before the observation of sample

data, the parameters have a prior distribution that reflects the knowledge and be-

lief of the data-scientist about them. The observation of data leads to an update

procedure, based on the Bayes’ theorem, that allows such probability distribution

of parameters to become more and more appropriate, each time exploiting the new

available information. For both approaches, the maximum-a-posteriori is an optimal

statistical principle and is widely exploited to choose parameters, in the frequentist

approach, or to update parameters’ probability distributions in the Bayesian one.

Often, in the frequentist approach, the maximum-a-posteriori estimator for a param-

eter coincides with the maximum-likelihood one. Up-to-now, and to the best of our

knowledge, only one attempt has been done to exploit the Bayesian inference in

the Side-Channel Attack context [Pau08], without any significant follow-up. We will

not use such a framework in this thesis. We leave this track opened for future works,

briefly discussing its suitability for Side-Channel Attacks domain in Chapter 7.
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2.2 Side-Channel Attacks: an Overview

Side-Channel Attacks belong to the cryptanalysis domain, since they aim to break

cryptographic security systems. Usually their goal is to retrieve a secret parameter

of a cryptographic algorithm, typically a secret key. They distinguish from classic

mathematical cryptanalysis techniques by the fact that they are based on information

gained from the physical implementation of a cryptosystem, rather than theoretical

weaknesses in the algorithms. The possibility to physically observe the electronic

device that performs the cryptographic computations, allows Side-Channel Attacks

to go beyond the cryptographic complexity that ensures resistance against classical

cryptanalysis strategies. Indeed, no matter the size of the secret variables manipu-

lated by the algorithm and the algebraic complexity of the encrypting/decrypting

operations, a physical implementation of any algorithm always handles variables

of a relatively small bounded size, which depends on the hardware architecture of

the cryptographic device. For example, in an 8-bit architecture an AES with 128-

bit-sized key will be necessarily implemented as multiple partial computations over

8-bit blocks of data. In classical cryptanalysis, the typical attacker model faces to a

black-box that performs the cryptographic algorithm: an attacker may make queries

to the black-box, asking for ciphertexts of given plaintexts or viceversa. The black-box

acts as a function that outputs the asked value, but does not provide any information

about partial computations. On the contrary, a side-channel attacker is said to face to

a grey-box model: he has a way to obtain noisy information about partial computa-

tions. This allows him to follow a divide-and-conquer strategy: if his goal is to retrieve

the full 128-bit AES key, he will smartly divide his problem into the recovery of small

parts of such keys at time, called key chunks,1 making the complexity of the attack

significantly drop.

Since the seminal paper by Paul Kocher in 1996 [Koc96], the side-channel anal-

ysis domain has developed fast, together with its flourish literature. Without be-

ing exhaustive, the last literature includes: proposals for new kind of exploitable

signals, proposals for useful statistical tools, new attacks strategies and routines,

analysis of side-channel vulnerabilities of well-specified cryptographic algorithms,

side-channel countermeasures, formal proofs of countermeasures’ security claims,

discussions about tools and metrics to compare side-channel attacks and strategies,

reports of real-case successful attacks, and a few attempts to unify the side-channel

literature under some comprehensive frameworks. The contributions we present in

this thesis may be resumed as proposals for useful statistical tools for some specific

1or subkeys when they coincide to a byte of key for the AES algorithm
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attack contexts. The aim of the following part of this section is not to provide a com-

prehensive state-of-the-art of the side-channel domain, but to provide the reader

with the necessary concepts to understand our contributions, and to get a view of

the contexts in which they can provide improvements to the state-of-the-art. To this

aim we propose a brief overview of the main properties that define and characterise

a side-channel attack among others. To describe a side-channel attacks, we identified

the following characteristics:

• the physical nature of the exploited signals,

• the chosen sensitive variables,

• the strategy family,

• the shape of the attack,

• and the attacker knowledge.

In the following sections we will briefly describe these points, dwelling on as-

pects that mainly concern our contributions, i.e. the advanced attack strategy and the

concept of profiling attack.

2.3 Physical Nature of the Exploited Signals

As already introduced in Sec. 1.2.1.1, an SCA may exploit signals obtained by the

observation of different kinds of side channels. Mainly exploited physical quantities

are the power consumption, the electromagnetic emanation, the elapsing time and

the acoustic emanation. In order to lighten the discussion, in the following we will

always only mention the power consumption, nevertheless the same principles and

techniques are generalisable to other sources of signals, in particular to the electro-

magnetic emanation [Le07].

2.4 Sensitive Variables

Physical signals are acquired via appropriate instrumentation, and collected into vec-

tors called traces (or acquisitions). They will be denoted by ~xi and considered as ob-

servations of a random real vector ~X , where each coordinate corresponds to a time

sample of the acquired signal. They are then interpreted as noisy observations of the

intermediate variables handled by the device during the execution. An attacker is in

particular interested to the so-called sensitive variables: they are quantities handled

during the processing, that depend somehow on a secret parameter of the imple-

mentation, and not only on public variables, as a plaintext or an algorithm constant.
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Side-channel analysis acts clearing traces from noise, in such a way to determine

with the highest possible precision the association between a trace (or a set of traces)

and the value taken by the target sensitive variable Z during its (their) acquisition.

For an attack, a single or several sensitive variables may be targeted, and its/their

algebraic relation with the secret key serves to complete the attack. Actually, sensi-

tive variables would be more appropriately called sensitive targets, since they might

not be variable. Some typical examples of sensitive variables include:

• Z = K with K a secret key chunk - this is the most direct choice for a sensitive

target, nevertheless it is often not variable, since in some cases a device always

manipulates the same key for a given embedded primitive. When the target is

not variable we are performing a simple attack (see Sec. 2.5.1);

• a cryptographic variable that depends on a sufficiently small key chunk and

a part of a known input variable E: Z = f(K,E) - this is the most classical

choice to perform a so-called differential or advanced SCA (see 2.9);

• any function of a cryptographic variable. Sometimes, as for example we will

see in Chapter 5 (see Sec. 5.4.3) it can be interesting not to target a variable but

a non-injective function of a variable, e.g. its Hamming weight. The Hamming

weight operation will be denoted by HW(·) and is the operation that counts

the number of 1’s in the binary string representing the entry. Thus, an example

of sensitive variable is HW(f(K,E)); when the identity function is applied we

are in the previous case;

• an operation (ex: Z ∈ {square,multiply})

• a register (ex: Z is the register used to store results of intermediate operations

in a Montgomery ladder implementation of RSA [RSA78; JY02])

In this thesis we will try as much as possible to abstract from the form of the sen-

sitive variable, thinking of any entity Z that assumes values in a finite set Z =

{s1, . . . , s|Z|} and whose value permits an attacker to make inference on a secret

parameter of the implemented algorithm.

2.5 The Strategy Family

The wide range of attack strategies, together with their still-evolving taxonomy,

makes the task of group attack strategies very hard. We propose here a simplified

grouping into three strategy families:

• the Simple Attacks,
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FIGURE 2.1: Simple attack against RSA implementation. Source:
[Koc+11].

• the Collision Attacks,

• the Advanced Attacks.

We highlight the fact that such a grouping is not sharp and impermeable in literature.

2.5.1 Simple Attacks

In simple attacks, the relevant information is obtained directly from the observation

of trace patterns, without necessarily applying statistical tools and often at the naked

eye. Such a direct analysis is sometimes referred to as Simple Power Analysis (SPA).

The sensitive variable coincides in general with the secret key (or a chunk of it).

Typical targets for SPA attacks are cryptographic devices in which some operations

requires variable timing instructions, or in which the execution flow depends on the

key. For example, in software implementations, branching to different instructions

may occur when a secret key chunk has a specific value. A typical example of leaks

allowing simple attacks is depicted in Fig. 2.1: the depicted trace shows the power

consumption of a device performing squares and multiplications while computing

modular exponentiation to implement the RSA algorithm. Multiplications consume

more than squares and patterns are recognizable to the eye. The sequence of pat-

terns directly reveals the secret key. A characteristic of simple attacks is that they do

not require in general to observe the variation of the side-channel signals under the
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variation of the algorithm entries, thus they are sometimes referred to as one-trace

attacks, since the observation of a single trace may be sufficient to perform them.

In literature the terms simple attacks and one-trace attacks are sometimes considered

equivalent, as e.g. in [Cla+12]. Anyway, we aim to include in the simple attacks family

those attacks for which many observations are acquired with fixed entry parameters

and by consequence in which the observed leakage always corresponds to a fixed

value of Z. The attacker may exploit several acquisitions in mainly two ways: he

computes their average before performing the attack (as done for example in the

simple attack proposed by Mangard in 2002 [Man02], and ameliorated in 2014 by

Clavier et al. [CMW14]), aiming to reduce the noise influence, or he performs the

attack on each acquisition (expecting each gives the same outcome) and then applies

a function to the several outcomes (e.g. majority vote) to guess the right value. In

the next chapter, Section 3.1.1, we will describe some classic examples of machine

learning tasks. Here we point out the fact that simple attacks exactly correspond to

resolving a classification task in side-channel context.

2.5.2 Collision Attacks

Collision attacks were introduced by Schramm et al. in 2003 [SWP03] as a side-

channel generalisation of classic cryptanalysis collision attacks, typically used to

break cryptographic hash functions. They deduce information about the secret val-

ues of a block cipher from the presence or the absence of an internal collision during

the encryption (or decryption). A collision has to be intended as the fact that, while

processing different inputs, an internal computation acts over the same operand, or

outputs the same value. To perform a collision attack, the side-channel attacker is

thus not required to interpret side-channel signals to perfectly understand which

operation is executed and over which operands. The assumption is weaker: the at-

tacker is supposed to be able to state if two signals (or portions of signals) correspond

or not to the same operation. In the seminal work [SWP03], as in several further de-

velopments as [LMV04; Sch+04; Bog07; Bog08], sets of several acquisitions under

well-chosen entries are exploited to establish, through statistical tools, e.g. correla-

tion estimators, whether a collision is present. In the same year 2003, Fouque and

Valette [FV03] proposed a collision attack in a context declared by authors more

favourable than block ciphers, i.e. operations like modular exponentiation.2 In this

context, authors proposed an attack strategy based on the observation and com-

parison of only two acquisitions. In analogy with simple attacks, often labelled as

"one-trace", collision attacks are thus somehow categorised as "two-traces"attacks,

even if this connotation is not always pertinent. In particular, collisions might be

searched in different parts of the same trace, i.e. in a horizontal fashion (see Sec. 2.6),

2or scalar multiplication in the elliptic curve setting
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leading collision attacks to be applicable with a single trace, e.g. as done in [Cla+10]

to attack an RSA implementation protected against simple attacks. However, as we

highlighted at the beginning of this section, the terms about side-channel strategies

are still not unambiguous in literature, for example, in the summarising work pro-

posed by Kocher et al. in 2011 [Koc+11], collision attacks are considered as a variant

of simple attacks. Moreover, as for simple attacks, an attacker may exploit several

couples of signals (traces or traces’ windows) in order to reduce the noise impact

and better establish the presence or not of a collision. Again in analogy with sim-

ple attacks, and in the same way we observed that simple attacks perfectly rephrase

the machine learning task of classification, we observe that collision attacks are in a

strong analogy with another classical machine learning task, i.e. the verification task,

that will be as well introduced in Sec. 3.1.1.

2.5.3 Advanced Attacks

As described above, SPA leads to simple attacks when large-scale side-channel vari-

ations (even visible at the naked eye) depend on secret values, and low noise is

present. In contrast to SPA, the so-called Differential Power Analysis (DPA) refers

to techniques that exploit a statistical approach to reveal key-dependent lower-scale

side-channel variations. DPA techniques enables the so-called advanced attacks. Com-

pared to simple attacks, advanced attacks require a less detailed knowledge of the

implementation, and are able to succeed even dealing with acquisitions containing

a considerable amount of noise. The term Differential refers to the fact that the ap-

proach exploits the small differences in the behaviour of the device while handling

varying sensitive variables. By consequence, several acquisitions, under varying val-

ues for the chosen sensitive variable, have to be observed to perform an advanced

attack, in contrast to simple attacks. Intuitively, the small differences get larger by

means of averaging over an eventually considerable amount of acquisitions. The

higher the noise that hides informative differences, the more acquisitions are needed

to clear it and make information emerge. Interestingly, the first DPA tool (or distin-

guisher, as will be introduced below) that was proposed to perform an advanced

attack, was the so-called Difference of Means (DoM) (the method were proposed by

[KJJ99], but the name given by [CRR03]), in which differences where exactly looked

for by subtraction. A more detailed description of the advanced attacks is provided

in Sec. 2.9.



2.6. The Shape of the Attack 31

FIGURE 2.2: Vertical (left) and horizontal (right) attack. Source:
[Cla+10].

2.6 The Shape of the Attack

In [Cla+10] a distinction between vertical and horizontal attacks is proposed, adopted

in several posterior publications, e.g. [Bau+13] which proposes horizontal approach

to attack secure implementations of RSA, or [Bat+16] in which an horizontal ap-

proach is used to counteract a masking countermeasure (see Sec. 2.11.2). Vertical

attacks are intended as techniques analysing the same sample time regions of sev-

eral side-channel traces, while horizontal attacks analyse many portions of a single

trace, as depicted in Fig. 2.2. In typical scenarios, horizontal attacks are associated

to simple SCAs (see e.g. Fig. 2.1), while vertical ones are associated to advanced

SCAs. Collision attacks might be vertical or horizontal depending on whether col-

lisions are looked for in a same execution or in more than one execution. Anyway,

simple attacks exploiting many acquisitions to reduce the noise impact have a ver-

tical behaviour, and advanced attacks may be performed in an horizontal manner

as done e.g. in [Bat+16]: it is allowed by the fact that, in many cryptographic algo-

rithms, several different intermediate computations depend on the same sensitive

variable, thus the last variable may be observed varying by observing those com-

putations, all performed in a unique execution. This kind of approach exploits the

algebraic dependency between several intermediate variables. This concept is at the

basis of another special class of SCAs, the so-called Algebraic Side-Channel Attacks
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[RS09; RSVC09; OWW13; OWW14; VGS14]. Algebraic SCAs combine profiling SCA

(see 2.10) with classical cryptanalysis techniques, i.e. without necessarily exploit-

ing divide-and-conquer strategy, but retrieving the whole key secret at once solving

algebraic systems in which plaintexts, ciphertext and potentially all observable in-

termediate variable are involved. They act in a horizontal manner, and may need

more than one acquisition to get a unique key candidate. To conclude, the nice no-

tion of rectangular attacks, introduced in [Bau+13], and denoting attacks that both

exploit several portions of a signal and take advantage of several acquisitions, prob-

ably describes the great majority of the modern attacks.

2.7 The Attacker Knowledge

Many aspects of the attacker knowledge on the target implementation may influ-

ence his approach. For example the level of knowledge of the implementation de-

tails may allow or not to perform a simple attack. In an evaluation context, we may

assume that an evaluator has open access to implementation details. Nevertheless,

we are here interested in distinguish two particular attack scenarios that influence

his knowledge about the physical behaviour of the device: the profiling and the non-

profiling attacks. As anticipated in Sec. 1.3, when a device with known secrets is

available to make a prior characterisation of the leaking signals of a device, we talk

about profiling attacks. When this is not the case, we talk about non-profiling attacks.

Anyway, many different profiling scenarios may be distinguished. For example, an

evaluator (or attacker) may be authorised or not to partially (or totally) deactivate

the countermeasures running on its device with known secrets. For example, in

presence of a masking countermeasure (see Sec. 2.11.2), the evaluator (or attacker)

may or not be authorised to fix the masks values (hence deactivate the countermea-

sure) or at least to read their randomly drawn values. This kind of deactivation in

general eases the characterisation of the physical signals. Profiling attacks are the

mainly concern of this thesis, and are deeper introduced in Sec. 2.10.

2.8 Efficiency of the SCAs

In order to measure the efficiency of an SCA, different security metrics have been

proposed, the most exploited one being the success rate of order o (SRo) and the guess-

ing entropy (GE). Referring to the formalization proposed by [SMY09], a key recov-

ery side-channel attack outputs a vector of key candidates,3 called guessing vector

3In this thesis we will always target a key chunk and we will use such metrics to evaluate the
efficiency of an attack in recovering such key chunks. When a full-key recovery attack is run, some
algorithms to merge key chunks’ outcomes and obtain the full key enumeration and a complete key
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~g = [~g[1], . . . , ~g[|K|]], in which such candidates are sorted in decreasing order with

respect to a score (or their likelihood if the score has a probabilistic meaning) after

the attack phase. Being k? the right candidate, its rank is given by:

Rank(k?) = i such that ~g[i] = k?. (2.6)

Then, the success rate of order o of an attack is given by the probability for the

right key candidate to be ranked among the first o candidates:

SRo = Pr[Rank(k?) ≤ o] . (2.7)

The success rate of an attack is usually estimated empirically: the attack is re-

peated a large number of times, and the empirical SRo is given by the ratio between

the number of successes (attacks for which the right key is ranked among the first o

ones) and the total number of attacks.

The guessing entropy [SMY09] is defined as the expected rank of the right key:

GE = E[Rank(k?)] . (2.8)

This is also generally estimated in an empirical way, by performing the attack

many times independently, then computing the average of the obtained ranks.

2.9 Advanced Attacks

An advanced attack can be summarised in the following five steps:

• choose a sensitive variable Z = f(K,E),

• acquire side-channel traces (~xi)i=1,...,N making entries (ei)i=1,...,N vary,

• define a leakage model, i.e. a function L(Z) modelling the side-channel leakage

for a given sensitive variable value (examples are given in Sec. 2.9.1),

• for every key chunk hypothesis k ∈ K predict the side-channel leakage

Lk,i = L(f(k, ei)) , (2.9)

• statistically compare the hypothetical predictions to the observed side-channel

acquisitions, by means of a distinguisher ∆ (examples are given in Sec. 2.9.2):

∆k = ∆((~xi)i=1,...,N , (Lk,i)i=1,...,N ) , (2.10)

rank estimation are deployed. This domain is out the scope of this thesis. The interested reader should
refer to [Gro18] and to previous works referred in its complete bibliography.
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• deduce the key chunk candidate from scores ∆k, in general coinciding with

the key hypothesis that maximises (or minimises) the scores.

2.9.1 Leakage Models

Classical leakage models come from the fact that, in CMOS technology (which is

used to realise the majority of existing integrated circuits), peaks of power consump-

tion are observable when the output of the gates transition from either a "0" to "1"

or a "1" to "0" logic state. For an internal variable Z, examples of classical leakage

models L(Z) are the following deterministic functions of Z:

• mono-bit model: the value of one bit of Z,

• Hamming weight model: the Hamming weight HW(Z),

• Hamming distance model: the Hamming distance between Z and another inter-

mediate variable Z ′, defined as HD(Z,Z ′) = HW(Z ⊕ Z ′), supposing e.g. that

one of the two variable overwrites the other into the same logic states (thus,

the number of switched bits is counted),

• linear model: a linear combination of the bits of Z, supposing that some states

influence the power consumption more than others,

• identity model: the value of Z itself.

When a leakage model is considered, it is understood that the variable ~X is a

noised observation of L(Z). The noise distribution is a critical component of the at-

tack efficiency. Thus, some efforts to better specify the form of the noise in such a

model have been done in the SCA literature, leading to perform analysis with some

noisy leakage models. The most classical noisy leakage model is the one introduced by

[Cha+99], where noise is assumed as an addend of the deterministic function L(Z),

is assumed to follow a Gaussian distribution, and is quantified by its standard devi-

ation. A more general model was proposed in [PR13], where noise is quantified as a

statistical distance, called bias, between the distribution of Z and the conditional dis-

tribution ofZ given ~X . In this thesis we do not need to consider a precise description

of the noise. Despite the fact that some of the proposed techniques present optimal-

ity features in presence of Gaussian hypothesis, we will not endorse the Gaussian

model. The unique assumption that is done is the following, that we believe be a

common point of many models in literature. The first-order moments of the condi-

tional variables ~X | Z = s are different for at least two different values of s. When a

(deterministic) leakage model L(Z) is considered, it is understood that it coincides

with such first moments, i.e. L(s) = E[ ~X | Z = s]. In general it is meant that the noise

has no impact over the first-order moments of the acquisition, but only eventually

over the quality of their estimations.
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2.9.2 Distinguishers

The underlying core hypothesis that brought to the development of the advanced

SCA is the following. Given a set of side-channel traces, i.e. a set of realisations of a

random variable ~X , the attacker computes the realisations Lk,i (via (2.9)) of a second

random variable Lk for each key hypothesis. For the correct key hypothesis, the

two random variables ~X and Lk are statistically dependent, while for the wrong key

hypothesis they are independent (or at least apparently independent, as pointed out

in Rem. 2.1). The goal of a distinguisher is to detect the dependencies between the

two random variables, thus distinguishing the right key hypothesis from the wrong

ones. The selected key candidate is the one that shows an higher dependency value

between the predicted leakages and the actual ones.

Remark 2.1. Actually the assumption of wrong keys being independent from the ac-

quired signal, sometimes referred to as wrong key randomization hypothesis [Har96] is

too strong: a dependency always exists between the wrong key candidate hypothet-

ical leakages and the actual ones. In literature it has firstly been evidenced under

the name of ghost peaks in [BCO04], then explicitly affirmed in later works [Riv08;

FLD12], finally even exploited to gain information on the right key by observing

the attacks’ ranking on the wrong ones [Lom+14a]. Anyway, such a dependency

is usually hard to detect statistically: deterministic functions that link wrong key

hypothesis to the correct ones are those that compose the cryptographic algorithm,

thus may be chosen algebraically complex and highly non-linear. For example, let

us consider Z = Sbox(K ⊕ E) as sensitive variable for an AES implementation, and

choose the identity leakage model. Let k? be the right key chunk and k̂ be a wrong

candidate. The right leakage predictions Lk?,i = Sbox(k? ⊕ ei) and the wrong ones

Lk̂,i = Sbox(k̂ ⊕ ei) are linked by the following deterministic relation:

Lk̂,i = Sbox(Sbox−1(Lk?,i)⊕ k? ⊕ k̂) ,

implying that, if a statistical dependence exists between the random variables Lk?

and ~X , then Lk̂ and ~X are statistically dependent, as well. Anyway, such a depen-

dency is hard to detect, allowing the right key easier emerge from statistical analysis

than the wrong ones. Interestingly, this observation encourages to choose, for ad-

vanced attacks, sensitive variables which are related to the secret key via non-linear

functions. For example, this is the reason why the typical AES targeted operation is

the SubBytes, and not the AddRoundKey.

Among the most popular side-channel distinguishers, many look only for linear

dependencies, e.g. the Difference of Means (DoM) and the Correlation Power Analy-

sis (CPA). The DoM is the one exploited in [KJJ99] with a mono-bit model (implying

that Lk takes only two values, 0 and 1), then generalised for other leakage models in
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[BK02; MDS02]. The DoM has the following form:

∆DoM
k = Ê[ ~X | Lk = 0]− Ê[ ~X | Lk = 1] . (2.11)

The CPA distinguisher, proposed by [BCO04], also detects linear dependencies.

It exploits an estimation ρ̂ of Pearson correlation-coefficient: ∆CPA
k = ρ̂( ~X,Lk).

Other kinds of more general distinguishers (e.g. the Mutual Information Analy-

sis (MIA) [Gie+08; Bat+11] and the Kolmogorov-Smirnov test-based ones [VCS09])

look for a wider range of dependencies. With the KS distinguisher, the probability

distributions of ~X and Lk are globally compared, and the key for which the two

distributions looks closer to each other is selected. The MIA distinguisher consists

in an estimation of mutual information between ~X and Lk: ∆MIA
k = Î( ~X,Lk). It

is an information-theoretic measure that expresses the quantity of information one

obtains on ~X by observing Lk. The great generality of the MIA distinguisher comes

at the cost of two drawbacks. First, a considerable practical inefficiency, due to the

fact that the computation of the mutual information requires the estimation of some

continuous probability densities, which requires in turn a considerable amount of

attack traces. Second, as anticipated in Rem. 2.1, the MIA distinguisher, if provided

with some perfect probability densities estimations, is by definition prone to identify

statistically dependence between wrong key hypotheses and actual leakages, lead-

ing to unsuccessful attacks, unable to distinguish the right hypothesis among the

wrong ones.

Finally, a last widely exploited distinguisher is the Maximum-Likelihood one

(ML) [CRR03], sometimes referred to as Bayesian distinguisher [MOS11]. It selects

the key candidate that better explains the observed acquisition, in terms of proba-

bility: ∆ML
k = Pr( ~X | Lk). It is the optimal distinguisher, in the sense that it max-

imizes the probability of a successful attack [HRG14]. The optimality comes at the

cost of the requirement for the knowledge of the conditional probability distribution

Pr( ~X | Lk), which can only be estimated via a preliminary profiling phase. Indeed,

this distinguisher is only available in profiling attacks.

Various works in literature have proposed comparison among the common dis-

tinguishers. For instance, Doget et al. [Dog+11] show that some distinguishers are

equivalent among them, in the sense that they are obtained from a same distin-

guisher under different leakage models (in particular the DoM and the CPA). Man-

gard et al. [MOS11] showed that, even when fed with the same leakage model, some

classical different distinguishers (in particular the CPA and the ML ones) perform
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in the same way (in terms of success rate) when the noise variance of the acquisi-

tions is sufficiently high. Heuser et al. [HRG14] exploited a communication theory

flavoured side-channel modelisation, to specify in which special and unrealistic con-

texts the common distinguishers introduced below are equivalent to the optimal one.

Differently from the simple attacks and the collision attacks, we did not identified

for advanced attacks an analogous task in machine learning domain. Nevertheless,

we will observe how in the profiling context, considering the ML distinguisher, an

advance attack translates into multiple classification tasks (each classifying a trace

with respect to the correct Z value) whose outcomes collaborate to precise the key

candidate.

Remark 2.2. When acquisition noise is low, the classification of traces with respect

to Z values may have a high accuracy. If Z and K are related through a bijective

relation, the assignation of the right Z value is sufficient to retrieve K, via a single

observation. This turns an advanced attack into a simple one.

2.10 Profiling Side-Channel Attacks

A profiling attack is divided into two distinct phases. The first one, called profiling

phase or characterisation phase exploits so-called profiling traces. Profiling traces are

acquisitions taken under known values for the sensitive variable Z, so the attacker

collects couples (~xi, zi)i=1,...,Np for which the correct association trace/sensitive vari-

able is known. The second phase of a profiling attack is the proper attack phase, dur-

ing which the attacker observes a new set of acquisitions, under an unknown secret

key, and takes advantage of the previous characterisation to infer over it. Through-

out this thesis, and each time a profiling attack scenario is supposed, we will refer

to elements of Z as labels, each one identifying a class of traces. We will say that

acquired traces associated to a same value s ∈ Z belong to the same class, identified

by the label s. We will say as well that such traces are labelled by the value s. By

abuse we will also refer to the class s to denote the class of traces labelled by s. In

such a context,Ns will denote the number of profiling traces belonging to the class s.

As we will see in Chapter 3, in machine learning domain the analogous of pro-

filing attacks context is studied under the name of supervised machine learning. In

supervised machine learning, couples (~xi, zi)i=1,...,Np are available and are called

training examples. The profiling phase is referred to as training or learning and the

attack phase is assimilable to the so-called test phase. The main difference between

a machine learning test phase and a side-channel attack phase is that in the former

one the examples are processed independently from each other, while in the latter
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the examples have something in common (typically a fixed secret key) and are used

synergetically to guess it. If no example is available we talk about unsupervised ma-

chine learning, that we can consider analogous to the non-profiling SCAs branch.

All attack strategies, simple, collision and advanced, may be performed in a pro-

filing way. In the advanced scenarios, the profiling phase may be exploited to esti-

mate from data the leakage model L, as a preliminary step for an attack based over

any distinguisher. Anyway, in a profiling attack the optimal attack distinguisher is

the ML one, which is the one that leads to the Template Attack introduced hereafter.

2.10.1 Template Attack

Introduced in 2002 by Chari [CRR03], the so-called Template Attack (TA) is the most

well-established strategy to run a profiling SCA. The idea of the TA is based over

the construction of a so-called generative model: in probability, statistics and machine

learning “approaches that explicitly or implicitly model the distribution of inputs as

well as outputs are known as generative models, because by sampling from them

it is possible to generate synthetic data points in the input space.” [Bis06]. In TA

the attacker observes the couples (~xi, zi)i=1,...,Np and exploits them to estimate the

class-conditional densities:

p ~X | Z=z(~x) , (2.12)

eventually the prior densities p ~X(~x), pZ(z), and finally the a-posteriori density, by

means of Bayes’ theorem:

pZ | ~X=~x(z) =
p ~X | Z=z(~x)pZ(z)

p ~X(~x)
. (2.13)

In the attack phase the attacker acquires new traces that he only can associate to

the public parameter E, obtaining couples (~xi, ei)i=1,...,Na . Then, making the usual

assumption that each acquisition is an independent observation of ~X , he associates

to each hypothesis k ∈ K a score dk given by the joint a-posteriori probability that

follow;

dk =

Na∏
i=1

pZ | ~X=~xi
(f(k, ei)) , (2.14)

which is computed by exploiting estimates (2.13). Finally, his best key candidate k̂ is

the one maximizing such a joint probability:

k̂ = argmax
k

dk . (2.15)
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Remark 2.3. Since the marginal probability density p ~X(~xi) of (2.13) does not depend

on key hypothesis, it is usually neglected. Moreover, in many cases the variable Z

follows a uniform distribution, so its probability mass function pZ(z) appearing in

(2.13) does not influence the ranking of key hypothesis. It is often neglected as well.

These facts make the TA distinguisher, driven by the maximum-a-posteriori principle,

coincide with the ML one as defined in Sec. 2.9.2: dk = ∆ML
k = Pr( ~X | Lk).

Remark 2.4. As already observed in Rem. 2.2, in the special case of a simple attack,

i.e. Na = 1, in which Z = K, the problem becomes a classical machine learning

classification problem (as we will discuss over in Chapter 3): the attacker wants to

classify the unique attack trace, i.e. assign to it a class label (the key). In such a case,

the choice proposed by (2.15) is known as Bayes (optimal) classifier.4 It is proven to be

the optimal choice to reduce the misclassification error [Bis06].

This approach has the theoretical optimality that comes from the maximum-a-

posteriori criterion. The crucial point is the estimation of the class-conditional densi-

ties (2.12): the efficiency of the attack strongly depends on the quality of such esti-

mates.

2.10.1.1 The Curse of Dimensionality

The estimation of probability densities from data samples is one of the task affected

by the so-called curse of dimensionality. This expression, invented by Richard Bellman

in 1961 [Bel15], refers to several phenomena that affect the analysis of data when data

are highly multi-dimensional. Side-channel traces, lying in a D-dimensional space,

where D � 3 is the number of time samples, are highly multi-dimensional. The es-

timation problem comes from the exponential augmentation of the volume in which

data points may be, or in other words the exponential increasing of the number of

configurations a data may have. It requires the observation of a raising number of

samples in order to explore and assign a probability measure to the whole volume.

For example, to maintain the same estimation quality achievable observing N data

sampled from a 1-dimensional variable, one should observe ND data samples for a

D-dimensional variable. To deal with this unacceptable requirement, two ways have

been chosen in side-channel contexts. First, as we will see in Sec. 2.10.1.2, the classi-

cal template attack is performed under a multi-variate Gaussian hypothesis on data.

In this way the probability measure of the unexplored volume is regressed by the

Gaussian distribution, and only the mean and the covariance matrix are estimated

from data, in general via the maximum-likelihood estimators. These estimations are

done accepting their decreasing precision with the dimensionality growing. Second

4The term optimal distinguishes it from the so-called Bayes naive classifier, which introduces an inde-
pendence assumption between data vector coordinates. The efficiency of a Bayes naive classifier has
been analysed in SCA context in 2017 [PHG17].
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(Sec. 2.10.2), dimensionality reduction techniques are priorly applied: selection of

points of interest or feature extraction techniques.

2.10.1.2 The Gaussian Hypothesis.

A well-established choice to construct class-conditional densities estimations (2.12)

is the one applied in Gaussian TA [CRR03]: it consists in making a class-conditional

multivariate Gaussian distribution assumption:

~X | Z = s ∼ N (~µs,Σs) , (2.16)

and exploits the profiling traces to estimate the parameters ~µs, i.e. the mean vector

of the Gaussian distributions, and Σs, i.e. the covariance matrices.

Remark 2.5. This assumption is the same that is done for classification problems,

bringing to the Quadratic Discriminant Analysis technique, that we will describe in

Chapter 3.

Many options and choices influence the implementation of a TA: the suppression

or not of the marginal densities in (2.13), the use of the unbiased estimator or the

maximum-likelihood estimator for the covariance matrices, or the addition of an

homoscedasticity assumption (assume that all class-covariance matrices are equal).

This last assumption, proposed in 2014 in SCA literature [CK14b], allows exploiting

all profiling traces to estimate a unique so-called pooled covariance matrix, instead of

using traces belonging to each class to estimate each covariance matrix separately.

The pooled estimation gains in accuracy.

Remark 2.6. The homoscedasticity assumption is the same that is done for classifica-

tion problems, bringing to the Linear Discriminant Analysis technique, which we will

introduce in Chapter 3 and more deeply analyse in Chapter 4.

Other choices that mainly influence the TA efficiency are those related to the PoI

selection, or more generically to the dimensionality reduction issue, which our first

contributions focus on.

2.10.2 Points of Interest and Dimensionality Reduction

Side channel traces are usually acquired by oscilloscopes with a very high sampling

rate, which permits a powerful inspection of the component behaviour, but at the

same time produces huge-dimensional data, consisting in thousands, or even mil-

lions of points. Nevertheless, on one hand often only a relatively small part of these

time samples is informative, i.e. statistically depends, independently or jointly, on a

sensitive target variable. These informative points are called Points of Interest (PoI).
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On the other hand, given the continuous nature of the sampled the side-channel sig-

nals, it is realistic to assume that the information that PoIs bring is somehow redun-

dant, and may be extracted into some smaller-sized form. The dimensionality reduc-

tion of the traces is a fundamental pre-processing phase to get efficient and effective

SCAs, not too expensive in terms of memory and time consumption. The problem

of performing an opportune dimensionality reduction goes hand in hand with the

research of PoIs: a convenient dimensionality reduction should enhance the contri-

bution of such PoIs while reducing or nullifying the one provided by non-interesting

points. The goal of researches in this context is to study and develop techniques to

characterise PoIs and to apply convenient dimensionality reduction techniques, that

allow reducing the size of the acquisitions while keeping the exploitable informa-

tion held by data high enough to allow an SCA to succeed. Representing the side

channel traces as column vectors x in RD, the compressing phase might be seen as

the application of a function ε : RD → RC , with C < D, called extractor throughout

this thesis. The first extractors proposed in SCA literature where actually some se-

lectors of time samples, i.e. functions that operate a simple subsampling of the traces

on the base of the computation of some sample-wise statistics τ(t), whose aim is to

quantify a sort of signal strength. Several proposals exist for such a signal-strength

estimate, among them the most deployed ones are those coming from the classi-

cal distinguishers, computed under the right key hypothesis, e.g. the Difference of

Means (DoM) [CRR03], the analogous but better specified Sum of Differences (SoD)

[RO05], and the CPA. Other highly deployed estimate are the Sum of Squared Dif-

ferences (SoSD) [GLRP06], the Signal-to-Noise Ratio (SNR) [MOP08; LPR13] and the

Sum of Squared t-differences SoST, corresponding to the t-test [GLRP06]. All these

statistics are close, and exploit the sample mean per class of the traces, given by:

~µs = Ê[ ~X | Z = s] =
1

Ns

∑
i : zi=s

~xi . (2.17)

A notable difference among them is that only the last two ones, SNR and SoST, also

take the following variances per class into account:

~%s = V̂ar( ~X | Z = s) =
1

Ns − 1

∑
i : zi=s

(~xi − ~µs)2 , (2.18)

where the estimation of the variance V̂ar of a vector has to be intended entry-wise.

Table 2.1 gives explicit formulas to compute such state-of-the-art sample-wise statis-

tics. Once the chosen signal strength estimate τ is computed, it can be used as in

a hypothesis test to reject the hypothesis that the sample mean values at time t are

equal. The instants t in which such a hypothesis is rejected correspond to the PoIs,
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TABLE 2.1: Statistics proposed as signal strength estimate to operate
a selection of time samples.

Name of the estimate Definition

SoD
τ(t) =

∑
s1,s2∈Z
s1 6=s2

(~µs1(t)− ~µs2(t))

SoSD
τ(t) =

∑
s1,s2∈Z
s1 6=s2

(~µs1(t)− ~µs2(t))2

SoST (version [GLRP06]) τ(t) =

∑
s1,s2∈Z
s1 6=s2

(~µs1(t)− ~µs2(t))2

~%s1
Ns1

+
~%s2
Ns2

SoST (version [BDP10]) τ(t) =

∑
s1,s2∈Z
s1 6=s2

(~µs1(t)− ~µs2(t))2

~%s1 + ~%s2

SNR τ(t) =
V̂ar(~µZ(t))

Ê[~%Z(t)]
(2.19)

since the variation of the signals in such instants seems to depend on the class be-

longingness. The construction of the subsampling ε is done on the basis of such a

test, for example by selecting all time samples for which τ(t) is higher than a certain

threshold.

As anticipated in Sec. 1.3.2, in this thesis we did not go deeper in the study of

such sample-wise PoI selection methods, exploring directly other dimensionality re-

duction approaches. Anyway, throughout the thesis, we will often refer to the SNR

statistic, as a good indicator of the sample-wise information.

2.11 Main Side-Channel Countermeasures

To counteract SCAs, strategies that aim at making leakages independent from the

processed sensitive data have to be implemented. We can distinguish two broad

groups of such countermeasures: those that aim at hiding the data and those that

are designed to mask the data. The two approaches may even be combined.
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2.11.1 Hiding

The main characteristic of a hiding countermeasure is that is does not change the

intermediate data values that are processed in the cryptographic algorithm, but it

only attempts in hiding its processing. Hiding is typically, but not only,5 achieved

in by randomising the power consumption. A random power consumption can be

obtained by randomly changing the time at which the targeted sensitive variable is

processed. In this way the attacker acquires side-channel traces that are desynchro-

nised or misaligned with respect to their interesting part. This temporal misalign-

ment reduces the effectiveness of an attacker’s statistical analysis. Possible ways for

randomising the power consumption are the random insertion of dummy instruc-

tions [CK09; CK10] and the shuffling of the operations [VC+12], at a software level.

At the hardware level they may be the randomization of the instruction stream by

means of non deterministic processors [IPS02; MMS01], or the enhancement of a

jittering effect over the clock, via a clock with unstable frequency, or via an asyn-

chronous logic style [Moo+02; Moo+03]. Such methods may also be combined.

The most common approach an attacker usually chooses to face up temporal

misalignment, consists in applying realigning preprocessing techniques, such as in-

tegration [Man04; MOP08], pattern matching [Nag+07] or more sophisticated signal-

processing techniques [WWB11]. Defeating differently misalignment countermea-

sures is one of the main motivations that lead us to investigate Convolutional Neural

Networks, as we will discuss in Chapter 6.

2.11.2 Masking

Masking countermeasures derive from the idea of applying secret-sharing methods

to counteract side-channel attacks. Secret-sharing methods consist in strategies to

distribute a secret message amongst a group of participants. Each participant re-

ceives a piece of information, called share and the original message can only be re-

constructed if a sufficient number of participants collaborate, putting in common the

knowledge of a sufficient number of shares. The idea of applying secret-sharing to

counteract SCAs was first proposed by Chari et al. [Cha+99] and Goubin and Patarin

[GP99]. In this case the sensitive variables of the cryptographic algorithm are consid-

ered as secret messages to distribute. Since 1999, several masking schemes have been

proposed, attacked and ameliorated to protect various cryptographic algorithms, for

example [Mes00a; AG01; ISW03; BGK04; Osw+05; SP06; RP10; Mor+11; Cor+13;

Bil+14; DC+15; GR17; JS17]. When a masking scheme is properly implemented,

it guarantees that every sensitive variable Z is randomly split into multiple shares
5Strategies to attempting making power consumption constant, such as the use of dual-rail

precharge logic cells, also belong to the hiding group of countermeasures [PM05].
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M1,M2, . . . ,Md in such a way that a relation

Z = M1 ? · · · ? Md (2.20)

holds for a group operation ? (e.g. the exclusive or for the most popular Boolean

masking already proposed in the seminal papers [Cha+99; GP99]). The soundness of

the masking countermeasure is implied by the fact that, in the noisy leakage model,

the complexity of recovering information by SCA on a bit shared into several pieces

grows exponentially with the number d of shares.6 This fact was enlighten by Chari

et al. in 1999 [Cha+99], then complemented by Prouff and Rivain in 2013 [PR13]. As

a consequence of such an exponential complexity behaviour, the number d of shares

plays the role of a security parameter for a masking scheme and the method is usu-

ally referred to as (d − 1)th-order masking, since it involves (d − 1) random values,

called masks and one value determined by the sensitive variable and the relation

(2.20), which is sometimes referred to as masked variable. The shares are manipulated

by distant parts of the circuit (especially if the countermeasure is implemented at

a hardware level) or at different times (especially for software implementations of

the countermeasure). In this way an attacker, who is obliged to retrieve information

coming from a sufficient number of shares to obtain some Z-dependent information,

has to acquire many portions of signal to combine.

Attacks against the masking countermeasure are known as Higher-Order Side-

Channel Attacks (HOSCA), where the order usually refers to the number of in-

dependent information an attacker has to join to succeed. In general, to defeat a

(d−1)th-order masking countermeasure, a dth-order attack has to be run. In the first

literature about HO-SCA (for instance [Mes00b; WW04; JPS05; Osw+06] the order

corresponded to the number of time samples of the signal the attacker combined to

mount the attack, and the common idea was to compute some combining function of

the d time samples and compare the outcome with some key-dependant predictions.

Among the proposed combining functions, the centred product of the d points were

showed to be the most efficient, at least under a Hamming Weight power consump-

tion model [PRB09]. Actually, and for example when the countermeasure is imple-

mented in hardware and shares are manipulated in parallel, sometimes the number

of time samples to combine differs from the number d of shares [Pee+05; SPQ05]. So

the definition of dth-order SCA has mutated in time (see for instance a different for-

malization in [PS08]). Today it is most-widely accepted to define a dth-order attack

as an attack that looks for key-discriminant information in some dth-order statistical

6The exponential basis being proportional to the noise standard deviation.
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moment of the signal, while the number of time samples of the signals that par-

ticipate to such a statistic defines the multivariability of the attack [Gie+10; Bat+11;

Car+14]. For example a 2nd-order attack against a parallel implementation may be

univariate if a single time sample is used to derive key-dependent information. In

general for attacks against software implementations, a dth-order attack is usually

d-variate. In such a case the research of interesting d-tuples of time samples still

raises the complexity of the attacks. Even in the favourable case in which a profiling

attack is allowed, two cases must be distinguished: the attacker has or not access to

the masks values during profiling. In the former case the attacker can use the shares

as target sensitive variables during the profiling phase, looking for PoIs for each one

of them. Thus, the PoI research complexity grows only linearly with the number d of

shares. In the latter case the attacker cannot infer independently over each share and

classical tools for PoIs research are inefficient. This issue is the main motivation that

leads us to consider solutions based over the Kernel Discriminant Analysis (KDA)

tool, as we will discuss in Chapter 5.
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Chapter 3

Introduction to Machine Learning

3.1 Basic Concepts of Machine Learning

Machine Learning (ML) is a field of computer science that groups a variety of meth-

ods whose aim is giving computers the ability of learning. The more cited definition

of learning has been provided by Mitchell in 1997 [TM97]: “ A computer program is

said to learn from experience E with respect to some task T and performance mea-

sure P, if its performance on T, as measured by P, improves with experience E.”

The ML methods methods essentially come from applied statistics, and are charac-

terised by an increased emphasis on the use of computers to statistically estimate

complicated functions. This allows ML to tackle tasks that would be too difficult

to solve with algorithms entirely designed and specified by human being. An ML

algorithm is often said to “learn from data”, in the sense that it is able to improve an

algorithm’s performance at some task via a data observation experience.

3.1.1 The Task, the Performance and the Experience

The task. The task T is usually described in terms of how the ML system should

process an example (or data point). An example is one datum ~x ∈ RD, which is in turn

a collection of features ~x[i], with i = 1, . . . D. In SCA context an example might be a

side-channel trace, which is in turn a collection of time samples, that constitute its

features. Some common ML tasks include these three examples:

• Regression: the computer is asked to approximate a mapping function from

some input variables to some continuous output variables, e.g. approximate

F : RD → R.

• Classification: the computer is asked to specify which class or category an input

belongs to, being Z the set of the possible classes. The learning algorithm is

thus asked to construct a function F : RD → Z . We remark that this task is

similar to the regression one, except for the form of the output, since in general

Z is a discrete finite set, and not continuous. A slightly variant solution to

the classification task consists in constructing a function F : RD → {0, 1}|Z|, if
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elements of Z are expressed via the one-hot encoding (see 2.1). Another variant

of the classification task consists in finding a function F defining a probability

distribution over classes.

• Verification: the computer is asked to state whether or not two given inputs are

instances of a same class or category. For example, it may be asked to state

if two hand-written signatures have been produced by the same person. The

learning algorithm is thus asked to construct a function F : RD ×RD → {0, 1}.
A variant of such a task consists in finding a functionF defining the probability

of each pair of inputs being instances of a same class.

The functions constructed by an ML algorithm somehow describe and characterise

the data form and distribution, thus are often referred to as models.

The performance measure. The performance measure P designs a quantification

of the ability of the learning algorithm. Depending on the task T, a specific perfor-

mance measure P can be considered. For tasks as classification or verification the

more common measure is the accuracy of the model, i.e. the proportion of inputs

for which the model produces the correct output. Equivalently, the error rate may

be used as a performance measure P, i.e. the proportion of inputs for which the

model produces an incorrect output. For the regression task the more common per-

formance measure P is the so-called Mean Squared Error (MSE): it is computed by

averaging over a finite set of examples, the squares of the differences between the

correct outputs and the ones predicted by the model.

One of the crucial challenges of ML is that we are usually interested in how well a

learning algorithm performs in producing a model that fits new, unseen data. For

this reason, the performances of an ML algorithm are usually evaluated over a so-

called test set, i.e. a set of examples that have not been used for the learning (or

training) phase.

The experience. The experience E describes the way data and information are ac-

cessed by the learning algorithm during learning. In this context we principally

distinguish two families of learning algorithms:

• the supervised learning algorithms access to a dataset of examples, each asso-

ciated in general to a target or label. The term supervised reflects the fact that

the learning is somehow guided by an instructor that knows the right answer

over the learning dataset;

• the unsupervised learning algorithms access to a dataset, without any associated

target. They try to learn useful properties of the structure of the dataset.
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In general, the nature of the task is strictly related to the kind of experience the

learner is allowed; for example the classification or regression tasks are considered

as supervised tasks, while examples of unsupervised tasks include clustering and

data representation or dimensionality reduction. For example, the Principal Component

Analysis, that will be discussed in Chapter 4 in the context of SCA, is a dimensional-

ity reduction algorithm that might be seen as an unsupervised algorithm that learns

a representation of data. We will see in Chapter 4 that for SCA context a supervised

version of the PCA has been proposed as well.

3.1.2 Example of Linear Regression

The regression task is not of high interest for the rest of this thesis, but is the most

direct example to keep in mind in order to understand some basic ML concepts, such

as the underfitting and the overfitting (see 3.1.4). Let us introduce a linear regression

model to tackle the regression task: we want to construct a linear function F : RD →
R, that takes an input ~x and outputs ŷ = ~wᵀ~x, where ~w ∈ RD is a vector of parameters

that have to be learned by a learning algorithm in order to well describe some data.1

Let D· = ( ~X·,Y·) denote a dataset, where · can stand for "train" or "test" depending

on the role of the dataset in the experience, and let |D| denote the size of the dataset,

i.e. the number of examples contained in it. Let us store the examples contained in
~X· into a matrix M· ∈ RD×|D| and the targets contained in Y· into a targets vector

~y· ∈ R|D|. Let a learned model predict targets yi by outputting ŷi = ~wᵀ~xi and let

them be collected in turn into a predicted targets vector ~̂y·. The MSE is given by

MSE· =
1

|D|

∥∥∥~̂y· − ~y·∥∥∥2

2
. (3.1)

The performance measure for the learning algorithm is MSEtest, meaning that

the goal for the learning algorithm is to find a parameter vector ~w which minimises

MSEtest. Nevertheless, such an objective cannot be directly imposed, because the

learning algorithm only experiences over the training set, and not over the test set.

An intuitive way to act, that can be proven to be the maximum-likelihood solution

to the problem, is to minimise MSEtrain instead of MSEtest. This minimization can

be obtained by solving an easy optimization problem. When a learning algorithm

behaves as an optimization algorithm that minimises a given function, such a func-

tion is called cost function, or loss function, or objective function. The solution to such

an optimization problem can be given in closed form, by means of the pseudo-inverse

1An affine model may be considered as well by adding a bias, leading to ŷ = ~wᵀ~x+w0. This model
is equivalently obtained by adding an additional component to ~x, always set to 1 and by writing back
ŷ = ~wᵀ~x with ~w ∈ RD+1.
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matrix M+ of Mtrain, as follows:

M+ = (MtrainMᵀ
train)−1Mtrain (3.2)

~w = M+~ytrain. (3.3)

3.1.3 Example of Linear Model for Classification

As observed in Sections 2.5.1 and 2.9, a strict relationship may be established be-

tween the profiling SCAs and the classification task in ML context. For this reason

we introduce here a very brief overview of how classically the classification task is

tackled, by means of linear models.

Classifying means assigning a label z ∈ Z to an example ~x ∈ RD , or equivalently

divide the input space RD in decision regions, whose boundaries are referred to as

decision boundaries. Making use of a linear model signifies exploiting some hyper-

planes as decision boundaries. Datasets whose classes can be separated exactly by

linear decision boundaries are said to be linearly separable. Following the discussion

kept by Bishop in [Bis06], two different approaches to tackle the classification task

should be distinguished: the direct research for a discriminant function F that as-

signs to an example a label, or the prior construction of a probabilistic model. This

second approach might in turn be distinguished into two options, depending on

whether a generative model (see Sec. 2.10.1), or a discriminative model is constructed

(i.e. only conditional probability densities of outputs given the inputs are modelled).

For this example we consider a probabilistic approach, constructing a generative

model, which is the same approach of Template Attacks (Sec. 2.10.1). This example

will allow on one hand to introduce some interesting functions, such as the logistic

sigmoid and the softmax, that will play a role in the construction of Neural Networks

(see Chapter 6). On the other hand, the example justifies the large exploitations of

generalised linear models in order to construct discriminative functions. Indeed,

linear models come out naturally when adding some assumptions on the data dis-

tributions, as those that will be introduced below.

Constructing a generative probabilistic model implies modelling the class-conditional

probabilities p ~X | Z=sj
(~x) for j ∈ {1, . . . , |Z|} as well as the class priors pZ(sj) and

p ~X(~x). Let us first consider a 2-class context, i.e. Z = {s1, s2}. Then, the posterior

probability for the class s1 is the following:

Pr(s1 | ~x) =
Pr(~x | s1)Pr(s1)

Pr(~x)
= (3.4)

=
Pr(~x | s1)Pr(s1)

Pr(~x | s1)Pr(s1) + Pr(~x | s2)Pr(s2)
. (3.5)
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To compare the two classes, we can evaluate their log-likelihood ratio defined as:

a = log

[
Pr(s1 | ~x)

Pr(s2 | ~x)

]
= log

[
Pr(~x | s1)Pr(s1)

Pr(~x | s2)Pr(s2)

]
. (3.6)

Then we might assign the label the class s1 to ~x if and only if a > 0, which cor-

responds to take as decision boundary the surface defined by Pr(~x | s1)Pr(s1) =

Pr(~x | s2)Pr(s2). We remark that Eq. (3.4) rewrites as:

Pr(s1 | ~x) =
1

1 + e−a
= σ(a) , (3.7)

where the function σ is the so-called logistic sigmoid. This remark translates in the

multi-class case, i.e. |Z| > 2, in the following way: the posterior probability for each

class sj is given by

Pr(sj | ~x) =
Pr(~x | sj)Pr(sj)

Pr(~x)
=

Pr(~x | sj)Pr(sj)∑|Z|
k=1 Pr(~x | sk)Pr(sk)

= s(a)[j] , (3.8)

where a is a |Z|-dimensional vector, whose entries are given by

a[j] = log [Pr(~x | sj)Pr(sj)] , (3.9)

and s is the so-called softmax function, or normalised exponential, that is defined, entry-

wise by:

s(a)[k] =
ea[k]∑|Z|
j=1 e

a[j]
. (3.10)

Let us now introduce two assumptions about the class-conditional densities:

(i) we will suppose that they follow a Gaussian distribution with parameters

µj ,Σj ,

(ii) and that all class-conditional densities share the same covariance matrix Σj =

Σ,

so that

p ~X | Z=sj
(~x) =

1

(2π)D/2|Σ|1/2
e−

1
2

(~x−µj)ᵀΣ−1(~x−µj) . (3.11)

Under these assumptions, and considering probability densities and masses instead

of probability values2 Eq. (3.6) rewrites as:

a = log

[
pZ(s1)

pZ(s2)

]
− 1

2
µᵀ1Σ−1µ1 +

1

2
µᵀ2Σ−1µ2 − ~xᵀΣ−1(µ2 − µ1) = ~wᵀ~x+ w0, (3.12)

2A formal justification of the validity of (3.12) for continuous random variables is out of the scope
of this section.
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where we set

~w =Σ−1(µ1 − µ2)

w0 = log

[
pZ(s1)

pZ(s2)

]
− 1

2
µᵀ1Σ−1µ1 +

1

2
µᵀ2Σ−1µ2.

The quadratic terms in ~x, that appears in the exponent of the Gaussian density (3.11),

have cancelled thanks to the common variance assumption (ii), thus we obtain that

the decision boundary for the 2-class problem, given by a = 0 is a (D−1)-hyperplane

of the input space.3 This way of choosing linear boundaries is known under the

name of Linear Discriminant Analysis. Another way to view the same linear clas-

sification model is in terms of dimensionality reduction: intuitively, in the 2-class

case4 one can see the term ~wᵀ~x in (3.12) as a projection of the input ~x onto a one-

dimensional subspace of RD which is orthogonal to the decision boundary men-

tioned above. Then, the classification of the obtained dimensionality-reduced exam-

ples is done by the means of a real-valued threshold (that would correspond to w0,

in the optimal case). It can be shown that the dimensionality reduction obtained by

the Fisher criterion that we will deploy in Chapter 4, to which we will refer to as LDA

dimensionality reduction by a widely accepted abuse, is equivalent to the dimen-

sionality reduction obtained in this example, under both assumptions (i) and (ii).

Relaxing the assumption (ii) and allowing each class-conditional density p(~x | sj) to

have its own covariance matrix Σj , then the cancellations seen above will no longer

occur, and the discriminant a turns out to be a quadratic function of ~x. This gives

rise to the so-called Quadratic Discriminant Analysis, that we already mentioned in

Chapter 2 for its analogy with Template Attacks.

Assumptions (i) and (ii) also lead to the following expression for the posterior

probability for s1, directly implied by (3.7):

Pr(s1 | ~x) = σ(~wᵀ~x+ w0) . (3.13)

Thus, such a posterior probability is given by the sigmoid acting to a linear function

of ~x. Similarly, for the multi-class case, the posterior probability of class sj is given

by the j-th entry of the softmax transformation of a linear function of ~x. This kind

of generalised linear model can be thus used in a probabilistic discriminant approach,

where the posterior conditional probabilities are directly modelled from data with-

out passing through the estimations of class-conditional densities and priors. Such

a discriminative approach is the one that will be adopted in Chapter 6 when consid-

ering models constructed by Neural Networks.

3An analogous result can be obtained in the multi-class problem.
4again extensible to the multi-class case
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3.1.4 Underfitting, Overfitting, Capacity, and Regularization

Underfitting and Overfitting. As already said, the main challenge of ML is that the

learning algorithms are in general allowed to experience over training data, but the

models they output are asked to fit some unseen test data. Observing the training

data, an ML algorithm sets the model parameters in order to raise the performances

over the training set, or equivalently to minimise the so-called training error. Never-

theless, at the end of the learning process, the model performance is evaluated over

the test set, by measuring the so-called test error. Thus, two factors determine how

well an ML algorithm acts: its ability to reduce the training error, and its ability to

reduce the gap between the training and the test error. When the former ability is not

satisfactory we assist to the underfitting phenomenon: the model is not able to obtain

a low training error, or the ML algorithm is not able to determine model parameters

that make training error to be low. On the other hand, if the latter ability is not sat-

isfactory we assist to the overfitting phenomenon: the gap between the training and

the test error, called generalisation gap, is too large.

Capacity. The property of a model that controls its underfitting or overfitting be-

haviour is the capacity. Roughly speaking, the capacity of a model quantifies the

complexity of the functions it can represent: a model with higher capacity can be

parametrised in such a way to represent a higher complex function. For example, a

linear regression model is able to represent all linear functions. To raise its capacity,

quadratic, cubic or general polynomial terms might be included, passing from a lin-

ear regression model to a polynomial regression one. It allows the model to represent

respectively quadratic, cubic or polynomial functions as well.5

The polynomial regression provides a striking example to understand the un-

derfitting and overfitting phenomena. Consider a problem in which the examples

(xi, yi)i=1,...,N lies in R× R and the true underlying function is quadratic, perturbed

by a small noise. Let the training set contain 4 data points, i.e. N = 4. Figure 3.1

shows the results of a linear, quadratic and cubic regression in such a case: in the

figure, red circles represents the 4 training points, the blue line gives the learned

model and the green points are test example. Above the plots the evaluation of the

MSE over the training and test sets is given. We can observe that the linear predictor

is underfitting, since the line passes quite far from both training and test points and

its training error is quite high. On the contrary, the cubic predictor is overfitting: it

5Another common way to enlarge the capacity of a linear regression model y = ~wᵀ~x, consists in
choosing some basis functions ϕ1, ϕ2, . . . , ϕB and replace ~x with the values ϕ1(~x), ϕ2(~x), . . . , ϕB(~x).
The form of the basis functions will determine the capacity of the model. Basis function regression
includes the linear and the polynomial case.
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perfectly fits the 4 training points (it is the Lagrange polynomial interpolating such

4 points) but shows a huge error in predicting new examples. The quadratic regres-

sion is obviously in this case the model exhibiting the optimal capacity to solve such

a problem.

A very rough way to have an intuition about the capacity of a model is count-

ing the number of its parameters: the capacity in general grows with the number

of parameters. Some formal ways to quantify the capacity of a model have been

provided in ML literature. The most well-known is the Vapnik-Chervonenkis dimen-

sion: it measures the capacity of a classifier as the cardinality of the largest set of

points the model can classify without errors, for any possible assignment of labels.

In practice, quantifying the capacity of a model, especially for complex models as

those constructed by neural networks, is very hard and discouraged. On the other

hand, these kinds of quantifications have enabled statistical learning theory to for-

malise and prove some important intuitions, for example the fact that the general-

ization gap is upper-bounded by a quantity that grows with the model capacity and

that shrinks as the number of training examples increases. In Fig. 3.1(d) we observe

how the cubic model used for regression on quadratic distributed data ameliorates

its performances and reduces the generalization gap despite its excessive capacity,

when trained with more examples. This observation basically justifies on one hand

the attitude adopted in the branch of ML called Deep Learning, and basically based

over multi-layer neural networks, consisting in considering very complex models,

having confidence in the big size of the typically considered training sets. On the

other hand it justifies the interest of Data Augmentation (DA) techniques [SSP+03]

to respond to an eventual lack of data. Some DA techniques will be proposed in

Chapter 6 for the SCA context.

Regularization. In a real-case problem, the optimal capacity necessary to learn

from given data is unknown. In such a case, trying to fit data with a too low capacity

model assures the failure, thus it is always more interesting to oversize the capacity

of the learning model. Choosing an oversized model, we risk to incur in overfitting.

The so-called regularization techniques respond to such a risk, as a widely adopted

alternative to DA: in general they consist in adding constraints to the learning al-

gorithm in order to guide it in choosing a model among a wide set of eventually

fitting models. Going back to the polynomial regression example, one can try to fit

data with a cubic polynomial (thus oversizing the model capacity) and induce the

optimiser algorithm to choose the smallest-degree polynomial fitting data via a reg-

ularization. This can be obtained adding a penalty that depends on the polynomial

degree to the cost function. Applying regularization may make the algorithm be
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(a) Linear (b) Quadratic

(c) Cubic (d) Cubic, more training data

FIGURE 3.1: Examples of underfitting and overfitting over a regres-
sion problem. Linear (a), quadratic (b) and cubic regression for a
truly noised quadratic problem. Red circles are the training examples,
green points are the test ones, the blue line represents the learned so-
lution. Linear (a) regression underfits data, cubic (c) regression over-
fits data. (d) Cubic regression for a noised quadratic problem and
more training examples. The cubic model trained over more data is
better adapted to the truly quadratic data, and overfitting is attenu-

ated.
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less accurate in learning training data, but more likely to correctly operate on new

examples.

3.1.5 Hyper-Parameters and Validation

The hyper-parameters of a model are all the parameters that are priorly set and that are

not learned by the learning algorithm. They define the general form of the model.

In the polynomial regression example the model had a single hyper-parameter: the

degree of the polynomial. It is evident from the example that such a parameter is

somehow forced not to be optimised by the means of the learning algorithm: trying

to reduce the training MSE, the algorithm would choose a sufficient high degree to

interpolate all training points (typically N − 1 if N is the number of training exam-

ples). This would cause overfitting, as shown in Fig. 3.1(c). In general among all

parameters of a model, the hyper-parameters are chosen as those that can not be

learned from data because it would cause overfitting, as in the example, or because

they are too difficult to optimise.

A way to choose a setting for hyper-parameters consists in performing a validation

phase. To do so, the training set is split into two disjoint sets, one still called train-

ing set and the other one called validation set. We can say that as the training set is

used to learn the parameters, the validation set is used to somehow learn the hyper-

parameters. Indeed during or after the training over the training set, the validation

set is used to compute a sort of estimation of the test error, which quantifies the gen-

eralisation ability of the model. In practice the performances of the (partially) trained

model are evaluated over the validation set computing a validation error and hyper-

parameters are updated accordingly, in order to reduce the generalisation gap of the

model. Once the model has been validated, i.e. the hyper-parameters are definitely

set, the real test error is evaluated over the test set. Usually the validation error is an

underestimation of the test error, since hyper-parameters have been set to reduce it.

The validation process just described may strongly depend on the way the training

set have been split to create the validation one. In order to avoid to validate a model

in a strongly data-dependent way, a slightly different process is encouraged in ML

community, named the cross-validation, which we describe in Appendix A.

3.1.6 No Free Lunch Theorem

A so-called No Free Lunch Theorem has been formulated for optimisation and ML

algorithms around 1997 [WM97]. It states that any learning algorithm has the same

test error if averaged over all possible distributions of data. This means that there

cannot exist a universal best ML algorithm: any of them performs in the same way,

when performances are averaged over all possible tasks. Thus, making research
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over some kind of data, for example SCA traces, means trying to understand what

kinds of ML algorithms perform well over such particular kind of data and point

out the eventual interesting hyper-parameters of ML models that are responsible of

the main performance variations.

3.2 Overview of Machine Learning in Side-Channel Context

In 1991 Rivest pointed out for the first time a strong link between the fields of Ma-

chine Learning and Cryptanalysis [Riv91]. Starting from observing that the goal of

cryptanalysis is identifying an unknown encryption function, indexed by a secret

key, and that a classic problem in ML consists as well in learning an unknown func-

tion, he drew a strong correspondence between terminology and concepts of the two

fields.

In the context of Side-Channel Cryptanalysis, ML algorithms started to be in-

vestigated in 2011 [Hos+11]. In this paper the authors formulated for the first time

an attack in terms of classification problem and proposed the Support Vector Ma-

chine (SVM) [CV95; WW98] as technique to solve it. They also equipped the SVM

with a kernel function to allow it to succeed even in case data would not be lin-

early separable. Such an approach is similar to the one we will describe in Chap-

ter 5, to obtain Kernel Discriminant Analysis dimensionality reduction technique

from the Linear Discriminant Analysis. Further works analysed the use of SVM in

SCA context, proposing concrete attack scenarios [HZ12; BLR13]. The technique of

Random Forest [Lio+14] drew attention of the SCA community as well. As the SVM,

it has been used as a classifier and has been evaluated in different works [LBM15;

Ler+15; LBM14]. As in recent years the privileged tools to tackle classification prob-

lem in ML area are the Neural Networks, whose multi-layer configuration has given

name to the so-called Deep Learning domain, such tools have as well been analysed

in SCA context. Networks in the form of Multi-Layer Perceptrons (MLP) have been

proposed as classifiers for side-channel traces in a series of works [MHM13; MZ13;

MMT15; MDM16], while Convolutional Neural Network was firstly introduced in

[MPP16]. A part of this thesis contributions consists in the application of the convo-

lutional paradigm as a way to defeat misalignment countermeasures in side-channel

attacks (see Chapter 6).
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Chapter 4

Linear Dimensionality Reduction

"One side will make you grow taller, and the other side will make you

grow shorter."

"One side of what? The other side of what?" thought Alice to herself.

"Of the mushroom," said the Caterpillar, just as if she had asked it

aloud; and in another moment it was out of sight.

— Lewis Carroll — "Alice’s Adventures in Wonderland"

In this chapter, we explore solutions for dimensionality reduction of side-channel

traces exploiting linear combinations of time samples. The results presented in this

chapter have been published in the proceedings of CARDIS 2015 [CDP15].

4.1 Introduction

Linear dimensionality reduction tools produce a low-dimensional linear mapping of

the original high-dimensional data on the basis of some well-specified criterion. An

abundance of methods has been developed throughout statistics, machine learning,

and applied fields for over a century, and these methods have become indispens-

able tools for analysing high-dimensional, noisy data, such as side-channel traces.

Accordingly, linear dimensionality reduction can be used for visualizing or explor-

ing structures in data, denoising or compressing data, extracting meaningful feature

spaces, and more. A very complete survey about this great variety of linear di-

mensionality reduction techniques has been published in 2015 by Cunningham and

Ghahramani [CG15]. They proposed a generalised optimisation framework for all

linear dimensionality techniques, survey a dozen different techniques, and mention

some important extensions such as kernel mappings.

Among the surveyed methods in [CG15] we find the two ones that are mainly

considered in the SCA literature: the Principal Component Analysis (PCA) and the

Linear Discriminant Analysis (LDA). The PCA has been applied both in an unsuper-

vised way (i.e. non-profiling attacks) [Kar+09; BHW12], and in a supervised way (i.e.
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profiling attacks) [Arc+06; SA08; EPW10; CK14a; CK14b]. As already remarked in

[EPW10], and not surprisingly, the complete knowledge assumed in the supervised

approach hugely raises performances. The main competitor of PCA in the profiling

attacks context is the LDA, that thanks to its classification-oriented flavour (antici-

pated in Sec. 3.1.3), is known to be more meaningful [Bru+15; SA08] than the PCA

for side-channel analysis. Nevertheless, the LDA is often set aside because of its

practical constraints; it is subject to the so-called Small Sample Size problem (SSS), i.e.

it requires a number of observations (traces) which must be higher than the dimen-

sion (size) D of them. In some contexts it might be an excessive requirement, which

may become unacceptable in many practical situations where the amount of obser-

vations is very limited and the traces size is huge.

In 2014 Durvaux et al. proposed the use of another technique for linear di-

mensionality reduction in SCA context [Dur+15], the so-called Projection Pursuits

(PPs), firstly introduced in 1974 by Friedman and Tukey [FT74]. This method es-

sentially works by randomly picking time samples, randomly setting the project-

ing coefficients, and tracking the improvement (or the worsening) of the projection

when modifying them with small random perturbations. The main drawback of the

PPs, pointed out by the authors of [Dur+15] for the SCA context, is their heuristic

nature, since the convergence of the method is not guaranteed and its complexity

is context-dependent. The main advantage is the fact that PPs can deal with any

objective function, which may be adjusted to deal with implementations protected

by masking countermeasure. Thus this technique appears advantageous in higher-

order context, where it is used as a PoI selection tool. Its version for the first-order

attacks, which produces a linear dimensionality reduction, is less interesting than

the non-heuristic PCA and LDA. For this reason we will left PPs technique apart in

this chapter, and describe their higher-order version in Chapter 5.

In SCA literature, one of the open issues for PCA application concerns the choice

of the principal components that must be kept to extract the most useful features for

the SCA scope. As already remarked by Specht et al. [Spe+15], some papers declare

that the leading components are those that contain almost all the useful information

[Arc+06; CK14b], while others propose to discard the leading components [BHW12].

In a specific attack context, Specht et al. compares the results obtained by choosing

different subsets of consecutive components, starting from some empirically chosen

index. They conclude that for their data the optimal result is obtained by selecting

a single component, the fourth one, but they give no formal argumentation about

this choice. Such a result is obviously very case-specific. Moreover, the possibility of

keeping non-consecutive components is not considered in their analysis.



4.2. Principal Component Analysis 63

In Sec. 4.2 the classical PCA technique is described, then the previous applica-

tions of PCA in SCA context are recalled, highlighting the difference between its

unsupervised and supervised variants. Finally our contribution to "the choice of

components open issue" is described: it is based on the Explained Local Variance

(ELV) notion, that we will define and argument in the same section. The reasoning

behind the ELV selection methodology is essentially based on the observation that,

for secure implementations, the leaking information, if existing, is spread over a few

time samples of each trace. This observation has already been met by Mavroeidis et

al. in [Mav+12], where the authors also proposed a components selection method.

As we will see in Sec. 4.2.4, the main difference between their proposal and ours is

that in [Mav+12] the information given by the eigenvalues associated to the PCA

components is completely discarded, while the ELV methodology takes advantage

of such information as well. We will argue about the generality and the soundness of

this methodology and we will show that it can raise the PCA performances, making

them close to those of the LDA, even in the supervised context. This makes PCA

an interesting alternative to LDA in those cases where the LDA is inapplicable due

to the SSS problem. The ELV selection tool has been tested in a successive exper-

imental work [CK18]. Unfortunately, the authors of this work could not observe

an improvement (nor a worsening) using our new selector, because in their specific

case its selection of components were equivalent to the classical one, that will be re-

ferred to as EGV in the following. The LDA technique will be described in Sec. 4.3,

together with the description of the SSS problem and some solutions coming from

the Pattern and Face Recognition communities [BHK97; Che+00; YY01; Hua+02].

Through some experiments depicted in Sec. 4.4 we will conclude about the effec-

tiveness of the PCA-ELV solution. Finally, in Sec. 4.5 we will experimentally argue

about the weakness of all these techniques when data are misaligned.

4.2 Principal Component Analysis

4.2.1 Principles and algorithm description

The Principal Component Analysis (PCA) is a technique for data dimensionality

reduction. The PCA algorithm can be deduced from two different points of view, a

statistical one and a geometrical one. In the former one, PCA aims to project orthogo-

nally the data onto a lower-dimensional linear space, the so-called principal subspace,

such that the variance of the projected data is maximised. In the latter one, PCA

aims to project data onto a lower-dimensional linear space in such a way that the

average projection cost, defined as the mean square distance between the data and

their projections, is minimised. In the following, it is shown how the PCA algorithm
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PCA α
1

FIGURE 4.1: PCA: some 2-dimensional data (blue crosses) projected
into their 1-dimensional principal subspace (represented by the green

line).

is deduced by the statistical definition. The reader interested in the equivalence be-

tween the two approaches can refer to [Bis06, Ch. 12]. An example of 2-dimensional

data projected over their 1-dimensional principal subspace is depicted in Fig. 4.1.

Let (~xi)i=1..N be a set of D-dimensional measurements, as usual considered as

realisations of a D-dimensional zero-mean random vector ~X , and collect them as

columns of a D × N matrix M, so that the empirical covariance matrix of ~X can be

computed as

S =
1

N
MMᵀ . (4.1)

Let us first assume that we have priorly fixed the dimension C < D of the prin-

cipal subspace we are looking for.

Compute the First Principal Component Suppose in a first time that C = 1, i.e.

that we want to represent our data by a unique variable Y1 = ~αᵀ
1
~X , i.e. projecting

data over a singleD×1 vector ~α1, in such a way the variance of the obtained variable

Y1 is maximal. The vector ~α1 that provides such a linear combination is called first

principal component. To avoid misunderstanding we will call j-th principal component

(PC) the projecting vector ~αj , while we will refer to the variable Yj = ~αᵀ
j
~X as the

j-th Principal Variable (PV). Realisations of the PVs are given by the measured data

projected over the j-th PC, for example we can collect, in a vector ~yᵀ1 = ~αᵀ
1M, N

realisations of Y1:

y1[i] = ~αᵀ
1~xi for i = 1, . . . , N . (4.2)

The mean of these realisations will be zero as they are linear combinations of

zero-mean variables, and the variance turns to be estimable as

1

N
~y1~y

ᵀ
1 =

1

N
~αᵀ

1MMᵀ~α1 = ~αᵀ
1S~α1 . (4.3)
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To compute ~α1, we look for the vector that maximises the variance estimate in (4.3).

The maximisation problem by itself is not well posed, because the variance value

is not bounded. In order to let the maximisation problem have a solution, a restric-

tion is thus imposed to the norm of ~α1: ‖~α1‖2 = ~αᵀ
1~α1 = 1. This constrained optimi-

sation problem is handled by making use of the Lagrange multipliers:

Λ(~α1, λ) = ~αᵀ
1S~α1 − λ(~αᵀ

1~α1 − 1) . (4.4)

Computing the partial derivative of Λ with respect to ~αᵀ
1, we obtain:

∂Λ

∂~αᵀ
1

= 2S~α1 − 2λ~α1 . (4.5)

Thus, stationary points of Λ verify:

S~α1 = λ~α1 , (4.6)

which implies that ~α1 must be an eigenvector of S, with λ its correspondent eigen-

value. Multiplying both sides of Eq. (4.6) by ~αᵀ
1 on the left, we remark that

~αᵀ
1S~α1 = λ~αᵀ

1~α1 = λ, (4.7)

which means that the variance of the obtained variable ~y1 equals λ. For this rea-

son ~α1 must be the leading eigenvector of S, the one corresponding to the maximal

eigenvalue.

Compute the Second and Following Principal Components The PCs others than

the first are defined in an incremental fashion by choosing new directions orthog-

onal to those already considered and such that the sum of the projected variances

over each direction is maximal. Explicitly, if we look for two PCs, i.e. C = 2, we look

for a 2-dimensional variable ~Y =
[
~αᵀ
1

~αᵀ
2

]
~X such that the trace of its covariance matrix,

i.e. the sum of variances Var(Y1) + Var(Y2), is maximal. 1

Consider, as in previous case, the Lagrangian of the problem:

Λ = ~αᵀ
1S~α1 + ~αᵀ

2S~α2 − λ1(~αᵀ
1~α1 − 1)− λ2(~αᵀ

2~α2 − 1) . (4.8)

1It can be shown that the same result would be obtained by maximising the so-called generalised
variance of ~Y , which is defined as the determinant of its covariance matrix, instead of its trace.
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PCA α
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 α
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FIGURE 4.2: PCA: some 2-dimensional labelled data (blue crosses and
red circles) projected into their 1-dimensional principal subspaces
(represented by the green line). (a) classical unsupervised PCA, (b)
class-oriented PCA. In (b) black stars represents the 2 classes cen-

troids (sample means).

The partial derivatives of (4.8) with respect to ~αᵀ
1 and ~αᵀ

2 are null under the fol-

lowing conditions:

S~α1 = λ1~α1 (4.9)

S~α2 = λ2~α2 . (4.10)

It means that ~α1 and ~α2 must be eigenvectors of S with corresponding eigen-

values given by λ1 and λ2. Moreover, as before, λ1 and λ2 respectively equal the

estimated variances of the variable components Y1 and Y2, and since the goal is max-

imising the sum of these variables, we choose ~α1 and ~α2 as the two leading vectors

of S. Let us remark that the estimated covariance between Y1 and Y2 is given by

~αᵀ
1S~α2 which equals zero, since ~αᵀ

1~α2 = 0 by orthogonality. In particular the princi-

pal variables are uncorrelated, which is a remarkable property of the PCA.

In the general case of aC-dimensional projection space, it can be shown by induc-

tion that the PCs would correspond to the C leading eigenvectors of the covariance

matrix S.

4.2.2 Original vs Class-Oriented PCA

The classical version of the PCA method is unsupervised. Nevertheless, a profil-

ing attacker is not only provided with a set of traces (~xi)i=1..N , but he also has

the knowledge of the target values handled during each acquisition. We denote

by (~xi, zi)i=1..Np the labelled set of traces . In Fig. 4.2 the same data of Fig. 4.1 have

been grouped into 2 classes. Even if before projection the two groups are clearly sep-

arable, even linearly, after projecting data over the first principal component given
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by the classical PCA algorithm, the separability is lost (Fig.4.2(a)). In the supervised

context, and for the sake of distinguishing the target value assumed by the target

Z in new executions, the idea of the Class-Oriented PCA is to consider as equivalent

all the traces belonging to the same class. To construct the class-oriented PCA, a

noisy leakage model is understood for the variable ~X , with unknown deterministic

part L(Z) (see Sec. 2.9.1). Such a deterministic part is thus estimated through the

empirical mean of the traces belonging to each class s, given by:

~µs =
1

Ns

∑
i : zi=s

~xi ,

where Ns is the number of traces belonging to class s. The class-oriented PCA con-

sists in applying the PCA dimensionality reduction to the set (~µs)s∈Z , instead of ap-

plying it directly to the traces (~xi)i=1,...,Np . This implies that the empirical covariance

matrix will be computed using only the |Z| class-averaged traces (~µs)s∈Z . Equiva-

lently, in case of balanced acquisitions (Ns constant for each class s), it amounts to

replace the empirical covariance matrix S of data in (4.1) by the so-called between-

class or inter-class scatter matrix, given by:

SB =
∑
s∈Z

Ns(~µs − ~x)(~µs − ~x)ᵀ . (4.11)

We remark that SB coincides, up to a multiplicative factor, to the covariance matrix

obtained using the class-averaged traces. Figure 4.2(b) shows how the 2-class toy

data are projected over the first class-oriented PC: in the figure, black stars represent

the class centroids (~µs1 , ~µs2). Projected data are slightly better separated than in

Fig. 4.2(a).

4.2.3 Computational Consideration

Performing PCA (and LDA, as explained later) always implies to compute the eigen-

vector of some symmetric matrix S, obtained by the multiplication of a constant with

a matrix and the transposed same matrix, e.g. S = 1
NMMᵀ . Let M have dimension

D × N , and suppose N � D. This condition is almost always satisfied when per-

forming class-oriented PCA, because in such a case N corresponds to the number of

classes |Z|, and D is the traces’ size. Anyway, for high-dimensional data, i.e. D high,

it can be satisfied even when performing classical PCA. Thus, in such a common

case, theD×D matrix S is far from being a full-rank matrix, since rank(S) ≤ N � D.

Thus, we expect to find at most N eigenvectors. Moreover, often columns of M are

linearly dependent, for example because they are forced to have zero mean, so ac-

tually the rank of S is strictly less than N and we expect to obtain at most N − 1
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eigenvectors.

A practical problem in case of high-dimensional data, is represented by the com-

putation and the storage of the D × D matrix S. This problem can be bypassed

by exploiting the following lemma coming from linear algebra, as proposed by Ar-

chambeau et al. [Arc+06]:

Lemma 1. For any D × N matrix M, the function ~x 7→ M~x is a one-to-one mapping

that maps eigenvectors of MᵀM (N ×N ) onto those of MMᵀ (D ×D).

This lemma allows to compute and store the smaller N ×N matrix S̃ = 1
NMᵀM,

to compute its (N × 1)-sized eigenvectors ~ζi and the relative eigenvalues λi, and

then to convert them into eigenvectors of S, given by ~αi = M~ζi. Observing that by

definition S̃~ζi = 1
NMᵀM~ζi = λi~ζi the lemma is easy to verify:

S~αi =
1

N
MMᵀM~ζi = λiM~ζi = λi~αi . (4.12)

However, it is not guaranteed that the eigenvectors ~αi obtained in this way have

norm equal to 1. Thus, a normalisation step usually follows.

4.2.4 The Choice of the Principal Components

The introduction of the PCA method in SCA context (either in its classical or class-

oriented version) has raised some non-trivial questions: how many principal compo-

nents and which ones are sufficient/necessary to reduce the trace size (and thus the

attack processing complexity) without losing important discriminative information?

Until 2015, the sole attempt to give an answer to the questions above was made

in [CK14b], linked to the concept of explained variance (or explained global variance,

EGV for short) of a PC ~αi:

EGV(~αi) =
λi∑r
k=1 λk

, (4.13)

where r is the rank of the covariance matrix S, and λj is the eigenvalue associated to

the j-th PC ~αj . EGV(~αi) is the variance of the data projected over the i-th PC (which

equals λi) divided by the total variance of the original data (given by the trace of the

covariance matrix S, i.e. by the sum of all its non-zero eigenvalues). By definition of

EGV, the sum of all the EGV values is equal to 1; for this reason this quantity is often

multiplied by 100 and expressed as percentage. Exploiting the EGV to choose among

the PCs consists in fixing a wished cumulative explained variance β and in keeping C

different PCs, where C is the minimum integer such that

EGV(~α1) + EGV(~α2) + · · ·+ EGV(~αC) ≥ β . (4.14)
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FIGURE 4.3: First and sixth PCs in DPA contest v4 trace set (between
time samples 198001 and 199000)

However, if the attacker has a constraint for the reduced dimension C, the EGV no-

tion simply suggests to keep the first C components, taking for granted that the op-

timal way to choose PCs is in their natural order. This assumption is not always con-

firmed in SCA context: in some works, researchers have already remarked that the

first components sometimes extract more noise than information [BHW12; Spe+15]

and it is worth discarding them. For the sake of providing a first example of this be-

haviour on publicly accessible traces, we applied a class-oriented PCA on 3000 traces

from the DPA contest v4 [Par]; we focused over a small 1, 000-dimensional window

in which, in complete knowledge about masks and other countermeasures, informa-

tion about the first Sbox processing leaks (during the first round). In Fig. 4.3 the first

and the sixth PCs are plotted. It may be noticed that the first component indicates

that one can attend a high variance by exploiting the regularity of the traces, given

by the clock signal, while the sixth one has high coefficients localised in a small time

interval, very likely to signalize the instants in which the target sensitive variable

leaks.

A single method adapted to SCA context has been proposed until 2015 to auto-

matically choose PCs [Mav+12] while dealing with the issue raised in Fig. 4.3. It was

based on the following assumption:

Assumption 1. The leaking side-channel information is localised in few points of the

acquired trace.

This assumption is reasonable in SCA contexts where the goal of the security de-

velopers is to minimise the number of leaking points. Under this assumption, the

authors of [Mav+12] use for side-channel attack purposes the Inverse Participation

Ratio (IPR), a measure widely exploited in Quantum Mechanics domain (see for ex-

ample [GMGW98]). They propose to use such a score to evaluate the eigenvectors
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FIGURE 4.4: Cumulative ELV trend of principal components. On the
right a zoom of the plot on the left. Data acquisition described in

Sec. 4.4.

localisation. It is defined as follows:

IPR(~αi) =
D∑
j=1

~αi[j]
4 . (4.15)

The authors of [Mav+12] suggest to collect the PCs in decreasing order with respect

to the IPR score.

The selection methods provided by the evaluation of the EGV and of the IPR are

somehow complementary: the former one is based only on the eigenvalues asso-

ciated to the PCs and does not consider the form of the PCs themselves; the latter

completely discards the information given by the eigenvalues of the PCs, consid-

ering only the distribution of their coefficients. In the next section we describe a

new method, part of the contributions published in [CDP15], that builds a bridge

between the EGV and the IPR approaches. As we will argue, our method, based

on the so-called explained local variance, does not only lead to the construction of a

new selection criterion, but also permits to modify the PCs, choosing individually

the coefficients to keep and those to discard.

4.2.4.1 Explained Local Variance Selection Method

The method we develop in this section is based on a compromise between the vari-

ance provided by each PC (more precisely its EGV) and the number of time samples

necessary to achieve a consistent part of such a variance. To this purpose we in-

troduce the concept of Explained Local Variance (ELV). Let us start by giving some

intuition behind our new concept. Thinking to the observations ~x, or to the class

centroids ~µs in class-oriented PCA case, as realisations of a random variable ~X , we
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FIGURE 4.5: The first six PCs. Acquisition campaign on an 8-bit AVR
Atmega328P (see Sec. 4.4).

have that λi is an estimator for the variance of the random variable ~Xᵀ~αi. Develop-

ing, we obtain

λi =V̂ar(
D∑
j=1

~Xᵀ[j]~αi[j]) =
D∑
j=1

D∑
k=1

ˆCov( ~Xᵀ[j]~αi[j], ~X
ᵀ[k]~αi[k]) = (4.16)

=

D∑
j=1

~αi[j]

D∑
k=1

~αi[k] ˆCov( ~Xᵀ[j], ~Xᵀ[k]) =

D∑
j=1

~αi[j](Sᵀ
j ~αi) = (4.17)

=
D∑
j=1

~αi[j]λi~αi[j] =
D∑
j=1

λi~αi[j]
2 (4.18)

where Sᵀ
j denotes the j-th row of S and (4.18) is justified by the fact that ~αi is an

eigenvector of S, with λi its corresponding eigenvalue. The result of this computa-

tion is quite obvious, since ‖ ~αi ‖= 1, but it evidences the contribution of each time

sample in the information held by the PC. This makes us introduce the following

definition:

Definition 1. The Explained Local Variance of a PC ~αi in a sample j, is defined by

ELV(~αi, j) =
λi~αi[j]

2∑r
k=1 λk

= EGV(~αi)~αi[j]
2 . (4.19)

Let J = {ji1, ji2, . . . , jiD} ⊂ {1, 2, . . . , D} be a set of indexes sorted such that

ELV(~αi, j
i
1) ≥ ELV(~αi, j

i
2) ≥ · · · ≥ ELV(~αi, j

i
D). It may be observed that the sum

over all the ELV(~αi, j), for j ∈ [1, . . . , D], equals EGV(~αi). If we operate such a sum

in a cumulative way following the order provided by the sorted set J , we obtain a

complete description of the trend followed by the component ~αi to achieve its EGV.

As we can see in Fig. 4.4, where such cumulative ELVs are represented, the first 3

components are much slower in achieving their final EGV, while the 4th, the 5th and
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the 6th achieve a large part of their final EGVs very quickly (i.e. by adding the ELV

contributions of much less time samples). For instance, for i = 4, the sum of the

ELV(~α4, j
4
k), with k ∈ [1, . . . , 30], almost equals EGV(~α4), whereas the same sum for

i = 1 only achieves about the 15% of EGV(~α1). Actually, the EGV of the 4th, the 5th

and the 6th component only essentially depends on a very few time samples. This

observation, combined with Assumption 1, suggests that they are more suitable for

SCA than the three first ones. To validate this statement, it suffices to look at the

form of such components (Fig. 4.5): the leading ones are strongly influenced by the

clock, while the latest ones are well localised over the leaking points.

Operating a selection of components via ELV, in analogy with the EGV, requires

to fix the reduced space dimension C, or a threshold β for the cumulative ELV. In the

first case, the maximal ELVs of each PC are compared, and theC components achiev-

ing the highest values of such ELVs are chosen. In the second case, all pairs (PC, time

sample) are sorted in decreasing order with respect to their ELV, and summed until

the threshold β is achieved. Then, only PCs contributing in this sum are selected.

We remark that the ELV is a score associated not only to the whole components,

but to each of their coefficients. This interesting property can be exploited to further

remove, within a selected PC, the non-significant points, i.e. those with a low ELV. In

practice this is done by setting these points to zero. That is a natural way to exploit

the ELV score in order to operate a kind of denoising for the reduced data, making

them only depend on the significant time samples. In Sec. 4.4 (scenario 4) we test

the performances of an attack varying the number of time samples involved in the

computation of the reduced data, and showing that such a denoising processing

might impact significantly.

4.3 Linear Discriminant Analysis

4.3.1 Fisher’s Linear Discriminant and Terminology Remark

Fisher’s Linear Discriminant [Fuk90] is another statistical tool for dimensionality

reduction, which is commonly used as a preliminary step before classification. In-

deed, it seeks for linear combinations of data that characterise or separate two or

more classes, not only spreading class centroids as much as possible, like the class-

oriented PCA does, but also minimising the so-called intra-class variance, i.e. the

variance shown by data belonging to the same class. The terms "Fisher’s Linear Dis-

criminant" and "Linear Discriminant Analysis" (LDA) are often used interchange-

ably, and in particular in SCA literature the Fisher’s Linear Discriminant is almost

always referred to as LDA, e.g. [SA08; Bru+15]. As we anticipated in Chapter 3 -
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LDA α
1

FIGURE 4.6: LDA: some 2-dimensional labelled data (blue crosses
and red circles) projected onto their 1-dimensional discriminant com-

ponent (represented by the green line).

Example 3.1.3, this widely-accepted abuse is due to the fact that under the assump-

tions leading to the LDA classification tools (i.e. Gaussian class-conditional densities,

sharing a common covariance matrix), the solution provided by the Fisher’s Linear

Discriminant (that does not require such assumptions) is the same as the solution

provided by the LDA. From now on, we will use the more common terminology

LDA to refer to the Fisher’s Linear Discriminant.

4.3.2 Description

Applying LDA consists in maximising the so-called Rayleigh quotient:

~α1 = argmax~α
~αᵀSB~α

~αᵀSW~α
, (4.20)

where SB is the between-class scatter matrix already defined in (4.11) and SW is called

within-class (or intra-class) scatter matrix:

SW =
∑
s∈Z

∑
i=1: zi=s

(~xi − ~µs)(~xi − ~µs)ᵀ. (4.21)

Remark 4.1. Let S be the the global covariance matrix of data, also called total scatter

matrix, defined in (4.1); we have the following relationship between SW,SB and S:

S =
1

Np
(SW + SB) . (4.22)

It can be shown that the vector ~α1 which maximises (4.20) must satisfy SB~α1 =

λSW~α1, for a constant λ, i.e. has to be an eigenvector of S−1
W SB. Moreover, for any

eigenvector ~α of S−1
W SB, with associated eigenvalue λ, the Rayleigh quotient equals

such a λ:
~αᵀSB~α

~αᵀSW~α
= λ . (4.23)
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Then, among all eigenvectors of S−1
W SB, ~α1 must be the leading one.

The computation of the eigenvectors of S−1
W SB is known under the name of gen-

eralised eigenvector problem. The difficulty here comes from the fact that S−1
W SB is not

guaranteed to be symmetric. Due to this non-symmetry, ~α1 and the others eigen-

vectors do not form an orthonormal basis for RD, but they are anyway useful for

classification scopes. Let us refer to them as Linear Discriminant Components (LDCs

for short); as for PCs we consider them sorted in decreasing order with respect to

their associated eigenvalue, which gives a score for their informativeness. Analo-

gously to the PCA, the LDA provides a natural dimensionality reduction: one can

project the data over the C first LDCs. In Fig. 4.6 the 2-class toy data used as exam-

ple above, projected over their leading discriminant component, are depicted. The

two classes are kept well separated in the 1-dimensional subspace. As for PCA, this

choice might not be optimal when applying this reduction to side-channel traces.

For the sake of comparison, we test in Sec. 4.4 all the selection methods proposed for

the PCA (EGV, IPR and ELV) in association to the LDA as well.

In the following subsection we will present a well-known problem that affects the

LDA in many practical contexts, and describe four methods that circumvent such a

problem, with the intention to test them over side-channel data.

4.3.3 The Small Sample Size Problem

In the special case in which the matrix SB is invertible, the generalised eigenvalue

problem is convertible in a regular one, as in [SA08]. On the contrary, when SB

is singular, the simultaneous diagonalisation is suggested to solve such a problem

[Fuk90]. In this case one can take advantage by the singularity of SB to apply the

computational trick described in Sec. 4.2.3, since at most r = rank(SB) eigenvectors

can be found.

If the singularity of SB does not affect the LDA dimensionality reduction, we

cannot say the same about the singularity of SW: SCA and Pattern Recognition lit-

eratures point out the same drawback of the LDA, known as the Small Sample Size

problem (SSS for short). It occurs when the total number of acquisitions Np is less

than or equal to the size D of them. The direct consequence of this problem is the

singularity of SW and the non-applicability of the LDA.

If the LDA has been introduced relatively lately in the SCA literature, the Pattern

Recognition community looks for a solution to the SSS problem at least since the
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early nineties. We browsed some of the proposed solutions and chose some of them

to introduce, in order to test them over side-channel traces.

4.3.3.1 Fisherface Method

The most popular among the solutions to SSS is the so-called Fisherface method2

[BHK97]. It simply relies on the combination between PCA and LDA: a standard

PCA dimensionality reduction is performed to data, making them pass from dimen-

sion D to dimension Np − |Z|, which is the general maximal rank for SW. In this

reduced space, SW is very likely to be invertible and the LDA therefore applies.

4.3.3.2 SW Null Space Method

The SW null space method has been introduced by Chen et al. in [Che+00] and

exploits an important result of Liu et al. [LCY92] who showed that the Fisher’s

criterion (4.20) is equivalent to:

~α1 = argmax~α
~αᵀSB~α

~αᵀSW~α+ ~αᵀSB~α
. (4.24)

The authors of [Che+00] point out that such a formula is upper-bounded by 1, and

that it achieves its maximal value, i.e. 1, if and only if ~α is in the null space of SW.

Thus they propose to first project data onto the null space of SW and then to perform

a PCA, i.e. to select as LDCs the first |Z|−1 eigenvectors of the between-class scatter

matrix of data into this new space. More precisely, letQ = [~v1, . . . , ~vD−rank(SW)] be the

matrix of vectors that span the null space of SW. The authors of [Che+00] proposes to

transform the data ~x into ~x′ = QQᵀ~x. Such a transformation maintains the original

dimension D of the data, but let the new within-class matrix S′W = QQᵀSWQQ
ᵀ

be the null D × D matrix. Afterwards, the method looks for the eigenvectors of

the new between-class matrix S′B = QQᵀSBQQ
ᵀ. Let U be the matrix containing its

first |Z| − 1 eigenvectors: the LDCs obtained via the SW null space method are the

columns of QQᵀU .

4.3.3.3 Direct LDA

As the previous, the direct LDA method, introduced in [YY01], privileges the low-

ranked eigenvectors of SW, but proposes to firstly project the data onto the rank

space of SB, arguing the fact that vectors of the null space of SB do not provide any

between-class separation of data. LetDB = V ᵀSBV be the diagonalisation of SB, and

let V ? be the matrix of the eigenvectors of SB that are not in its null space, i.e. whose

2The name is due to the fact that it was proposed and tested for face recognition scopes.
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eigenvalues are different from zero. Let also D?
B denotes the matrix V ?ᵀSBV

?; trans-

forming the data ~x into D?
B

1/2V ?ᵀ~x makes the between-class variance to be equal to

the (|Z| − 1) × (|Z| − 1) identity matrix. After this transformation the within-class

variance assumes the form S′W = D?
B

1/2V ?ᵀS′WV
?D?

B
1/2. After storing the C lowest-

rank eigenvectors in a matrix U?, the LDCs obtained via the Direct LDA method are

the columns of V ?D?
B

1/2U?ᵀ.

4.3.3.4 ST Spanned Space Method

The last variant of LDA that we consider has been proposed in [Hua+02] and is

actually a variant of the Direct LDA: instead of removing the null space of SB as first

step, this method removes the null space of ST = SB + SW. Then, denoting S′W the

within-class matrix in the reduced space, the reduced data are projected onto its null

space, i.e. are multiplied by the matrix storing by columns the eigenvectors of S′W
associated to the null eigenvalue, thus reduced again. A final optional step consists

in verifying whether the between-class matrix presents a non-trivial null-space after

the last projection and, in this case, in effectuating a further projection removing it.

Remark 4.2. Let us remark that, from a computational complexity point of view (see

[Hua+02] for a deeper discussion), the least time-consuming procedure among the

four proposed is the Direct LDA, followed by the Fisherface and the ST Spanned

Space Method, that have a similar complexity. The SW Null Space Method is in gen-

eral much more expensive, because the task of removing the SW null space requires

the actual computation of the (D × D)-dimensional matrix SW, i.e. the computa-

tional trick described in Sec. 4.2.3 is not applicable. On the contrary, the other three

methods take advantage of such a procedure, reducing drastically their complexity.

4.4 Experimental Results

In this section we compare the different extractors (i.e. functions applying a data

dimensionality reduction, see Sec. 2.10.2) provided by the PCA and the LDA in as-

sociation with the different techniques of components selection. Defining an uni-

versal criterion to compare the different extractors is not an easy task, moreover, it

not always makes sense, since it should encompass a lot of parameters, sometimes

opposite, that vary according to the context (amount of noise, specificity of the infor-

mation leakage, nature of the side channel, etc.). For this reason we choose to split

our comparisons into four scenarios. Each scenario has a single varying parameter

that, depending on the attacker context, may wish to be minimised. In each scenario,

we will investigate the relation between each varying parameter and the Guessing

Entropy (GE for short, see Sec. 2.8)) of the obtained attack. Hereafter the definition

of the four scenarios:
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[Scenario 1] varying parameter: number of attack traces Na,

[Scenario 2] varying parameter: number of profiling traces Np,

[Scenario 3] varying parameter: number of projecting components selected C

(it coincides with the number of the extracted new features),

[Scenario 4] varying parameter: number of original time samples implied into

the trace preprocessing computation ]PoI .

For scenarios in which Np is fixed, the value of Np is chosen high enough to

avoid the SSS problem, and the extensions of LDA presented in Sec. 4.3.3 are not

evaluated. This choice of Np will imply that the LDA is always performed in a

favourable situation, which makes expect the LDA to be particularly efficient for

these experiments. Consequentely, for the scenarios in which Np is high, our goal is

to study whether the PCA can be made almost as efficient as the LDA thanks to the

component selection methods discussed in Sec. 4.2.4.

4.4.1 The testing adversary.

Our testing adversary attacks an 8-bit AVR microprocessor Atmega328P and ac-

quires power-consumption traces via the ChipWhisperer platform [OC14].3 The

target device stores a secret 128-bit key and performs the first steps of an AES: the

loading of 16 bytes of the plaintext, the AddRoundKey step and the SubBytes. It has

been programmed twice: two different keys are stored in the device memory dur-

ing the acquisition of the profiling and of the attack traces, to simulate the situation

of two identical devices storing a different secret. The size D of the traces equals

3, 996. The sensitive target variable is one byte of the SubBytes output state, i.e. has

the form Z = Sbox(E ⊕ k?) with variables Z,E and k? being bytes. Since the key

is fixed also during the profiling phase, and both the AddRoundKey and SubBytes

operations are bijective, we expect to detect three interesting regions (as those high-

lighted by PCs 4, 5 and 6, in Fig. 4.5): the reading of the first byte of the plaintext, the

AddRoundKey and the SubBytes. For each class of the 256 classes for Z, we assume

that the adversary acquires the same number Ns of traces, i.e. Np = Ns × 256. We

will denote by C the number of features extracted by the dimensionality reduction

methods, i.e. after the preprocessing the trace size is reduced to C. Then the attacker

performs a Template Attack (see Sec. 2.10.1), using C-variate Gaussian templates.

4.4.2 Scenario 1.

To analyse the dependence between the extraction methods presented in Sections 4.2

and 4.3 and the number of attack traces Na needed to achieve a given GE, we fixed
3This choice has been done to allow for reproducibility of the experiments.
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FIGURE 4.7: Guessing Entropy as function of the number of attack
traces for different extraction methods. All Guessing Entropies are
estimated as the average rank of the right key over 100 independent

experiments.

the other parameters as follows: Ns = 50 (Np = 50 × 256), C = 3 and ]PoI = 3, 996

(all points are allowed to participate in the building of the PCs and of the LDCs).

The experimental results, depicted in Fig. 4.7(a)-(b), confirm that the PCA standard

method has very bad performances compared to supervised techniques, while the

LDA outperforms the others. Concerning the class-oriented PCA, we observe that

its performance is close to that of LDA when combined with the selection methods

ELV (which performs best) or IPR, while it is similar to the one of classic PCA when

associated with the EGV selection.

4.4.3 Scenario 2.

Now we test the behaviour of the extraction methods as function of the number Ns

of available profiling traces per class. The number of components C is still fixed to

3, ]PoI = 3, 996 again and the number of attack traces is Na = 100. This scenario

has to be divided into two parts: if Ns ≤ 15, then Np < D and the SSS problem

occurs. Thus, in this case we test the four extensions of LDA presented in Sec. 4.3.3,

associated to either the standard selection, to which we abusively refer to as EGV,4 or

to the IPR selection. We compare them to the class-oriented PCA associated to EGV,

IPR or ELV. The ELV selection is not performed for the techniques extending LDA,

since for some of them the projecting LDCs are not associated to some eigenvalues

in a meaningful way. On the contrary, if Ns ≥ 16 there is no need to approximate

the LDA technique, so the classical one is performed. Results for this scenario are

shown in Fig. 4.8. It may be noticed that the combinations class-oriented PCA +

ELV/IPR select exactly the same components, for our data, see Fig. 4.8(e) and do

not suffer from the lack of profiling traces. They are slightly outperformed by the

4It consists in keeping the C first LDCs (the C last for the Direct LDA)
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SW Null Space method associated with the EGV, see Fig.4.8(d). The Direct LDA

(Fig. 4.8(b)) method also provides a good alternative, while the other tested methods

do not show a stable behaviour. The results in absence of the SSS problem (Fig.4.8(f))

confirm that the standard PCA is not a good choice for profiling SCAs, even when

provided with more profiling traces. It also shows that among class-oriented PCA

and LDA, the class-oriented PCA converges faster.

4.4.4 Scenario 3.

Let C be now variable and let the other parameters be fixed as follows: Na =

100, Ns = 200, ]PoI = 3, 996. Looking at Fig. 4.9, we might observe that the stan-

dard PCA might actually well perform in SCA context if provided with a larger

number of kept components; on the contrary, a little number of components suffices

to the LDA. Finally, keeping more of the necessary components seems not worsen

the efficiency of the attack, which allows the attacker to choose C as the maximum

value supported by his computational means.

Remark 4.3. In our experiments the ELV selection method only slightly outperforms

the IPR. Nevertheless, since it relies on more sound and more general observations,

i.e. the maximisation of explained variance concentrated into few points, it is likely

to be more robust and less case-specific. For example, in Fig. 4.8(f) it can be remarked

that while the class-oriented PCA + ELV line keeps constant on the value 1 of GE,

the class-oriented PCA + IPR is sometimes higher than 1.

4.4.5 Scenario 4.

This is the single scenario in which we allow the ELV selection method to not only

select the components to keep but also to modify them, keeping only some coeffi-

cients within each component, setting the other ones to zero. We select pairs (com-

ponent, time sample) in decreasing order of the ELV values, allowing the presence of

only C = 3 components and ]PoI different times samples, i.e. each component must

have only ]PoI entries different from 0. Looking at Fig. 4.10 we might observe that

the LDA allows to achieve the maximal guessing entropy with only 1 PoI in each of

the 3 selected components. Actually, adding PoIs worsen its performances, which

is coherent with the assumption that the vulnerable information leaks in only a few

points. Remarkably, this observation shows that in this experimental case, an ap-

proach through PoI selection, instead of PoI extraction, would have been optimal

as well, provided with a good selector of PoIs. Such points are excellently detected

by the LDA. Adding contribution from other points raises the noise, which is then

compensated by the contributions of further noisy points, in a very delicate balance.
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FIGURE 4.8: Guessing Entropy as function of the number of profiling
traces. Figures (a)-(d): methods extending the LDA in presence of
SSS problem; Figure (e): class-oriented PCA in presence of the SSS
problem; Figure (f): number of profiling traces high enough to avoid

the SSS problem.
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FIGURE 4.10: Guessing Entropy as function of the number of time
samples contributing to the extractor computation.

Such a behaviour is clearly visible in standard PCA case: the first 10 points consid-

ered raise the level of noise, that is then balanced by the last 1, 000 points.

4.4.6 Overview of this Study and Conclusions

This study focused on two well-known techniques to construct extractors for side-

channel traces, the PCA and the LDA. The LDA method is more adequate than the

PCA one, thanks to its class-distinguishing asset, but more expensive and not al-

ways available in concrete situations. We deduced from a general consideration

about side-channel traces, i.e. the fact that for secured implementations the vulner-

able leakages are concentrated into few points, a new methodology for selecting

components, called ELV. We showed that the class-oriented PCA, equipped with the

ELV, achieves performances close to those of the LDA, becoming a cheaper and valid

alternative to the LDA. Being our core consideration very general in side-channel

context, we believe that our results are not case-specific.

A second part of the proposed study analysed experimentally some alternatives to

the LDA in presence of SSS problem proposed in Pattern Recognition literature.

Such experiments showed that the Direct LDA and the SW Null Space Method are
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Parameter to minimise
Method Selection Na Np (SSS) N ′p (¬SSS) C

PCA standard EGV - - -
PCA standard ELV - - -
PCA standard IPR - - +

PCA class EGV - - - -
PCA class ELV + F F +
PCA class IPR + F + -

LDA EGV F + F
LDA ELV + + F
LDA IPR + + F

SW Null Space EGV F
SW Null Space IPR +

Direct LDA EGV F
Direct LDA IPR +

Fisherface -
ST Spanned Space -

TABLE 4.1: Overview of the extractors’ performances in tested situa-
tions. Depending on the adversary purpose, given by the parameter
to minimise, a F denotes the best method, a + denotes a method with
performances close to those of the best one and a − is for methods
that show lower performances. Techniques introduced in [CDP15]

are highlighted by a grey background.

promising techniques, exhibiting performances close to the ones given by the ELV-

equipped class-oriented PCA. A synthetic overview of the performed comparisons

in scenarios 1,2 and 3 is depicted in Table 4.1.

4.5 Misaligning Effects

The fact that trace misalignment leads to a drastic drop of the dimensionality reduc-

tion/ template attack routine is well-known. When we are in presence of a misalign-

ment, caused by the implementation of a countermeasure or by the lack of a good

trigger signal for the acquisition, the application of some previous re-synchronization

techniques is recommended (see for instance [CK14c], where the same PCA and

LDA techniques are exploited as template attack preprocessing, after a prior resyn-

chronisation). In this section we experimentally show how the approach based on

linear dimensionality reduction described in this chapter is affected by traces mis-

alignment. To this aim, we simply take the same data and parameters exploited

for Scenario 1 in Sec. 4.4, and artificially misalign them through the jitter simula-

tion technique proposed in Appendix B with parameters sigma= 6, B= 4. Then

we tried to attack them through the 9 methodologies tested in Scenario 1. It may be

noticed in Fig. 4.11 that none of the 9 techniques is still efficient, included the opti-

mal LDA+EGV that lead to minimal guessing entropy with the synchronised traces
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FIGURE 4.11: Degradation of linear-reduction-based template attacks
in presence of misalignment.

using less than 7 attack traces. In this case it cannot lead to successful attack in less

than 3000 traces.
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Chapter 5

Kernel Discriminant Analysis

All models are wrong, but

some are useful.

— George E. P. Box

In this chapter, we tackle the dimensionality reduction problem in the context

of profiling attacks against implementations protected by masking countermeasure.

For such attacks, the attacker might have or not access to the random values drawn

at every execution and used to mask the sensitive variables. If he has such a knowl-

edge, then the dimensionality reduction problem turns to be equivalent to the case of

unprotected implementations. Thus, the classic statistics for the PoIs search and the

linear dimensionality reduction techniques described in the previous chapter are still

applicable and efficient. On the contrary, when the knowledge of the random values

is denied, linear techniques are a priori inefficient: a non-linear function of the PoIs

must be considered in order to construct discriminant features from side-channel

observations. In this chapter we propose to make use of the Kernel Discriminant

Analysis (KDA) technique to construct such a non-linear processing. To this aim we

revisit the contents and the experimental results of the paper presented at CARDIS

2016 [CDP16], in which the KDA has been firstly introduced in the SCA domain. Af-

ter such a publication, the KDA has been compared to other non-linear dimension-

ality reduction techniques in [Ou+17], where manifold learning solutions such as

ISOMAP, Locally Linear Embedding and Laplacian Eigenmaps are proposed. More-

over, a use of the KDA in an unsupervised way to perform a higher-order SCA (as

a key candidate distinguisher and not as a dimensionality reduction technique) has

been proposed at CARDIS 2017 [Zho+17].

5.1 Motivation

When a masking countermeasure is properly applied, it ensures that every sensitive

variable Z is randomly split into multiple shares M1,M2, . . . ,Md in such a way that

a relation Z = M1 ? · · · ? Md holds for a group operation ? (e.g. the exclusive-or
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for the Boolean masking). The value d plays the role of a security parameter and

the method is usually referred to as (d− 1)th-order masking (since it involves d− 1

random values). In many cases, especially for software implementations, the shares

are manipulated at different times, and no time sample therefore shows dependency

on Z: in order to recover such information the attacker is obliged to join information

held by each of the d shares, executing a so-called dth-order SCA. In the great ma-

jority of the published higher-order attacks, the PoI selection during the pre-attack

characterisation phase is either put aside, or made under the hypothesis that the

random shares are known. Actually, the latter knowledge brings the problem back

to the unprotected case: instead of using the values of Z as labels for the profiling

traces, the latter are labelled by the values of the random shares. Here we relax this

hypothesis and we consider situations where the values of the random shares are

unknown to the adversary. We however assume that the adversary can characterise

the leakage before attacking the implementation, by accessing the value of the target

variable Z. These two assumptions put our study in the context of profiling attacks

without knowledge of the masks. The attacker may label the profiling traces by the val-

ues of Z but, with respect to such a labelling, the profiling traces are not linearly

separable, as they were in absence of masking.

5.1.1 Getting information from masked implementations

The SNR estimation defined by (2.1) is an instrument to measure, point by point, the

information held by the first-order moment of the acquisition, i.e. the information

obtainable by observing the variation of the mean of the acquisitions. We refer to

such information as a 1st-order information. In masked implementations, such infor-

mation is null: at any time sample the mean is independent of Z due to the randomi-

sation provided by the shares, namely the quantity E[ ~X|Z = s], seen as a function of

s, is constant, which implies that the SNR is asymptotically null over the whole trace.

When a (d−1)th-order masking is applied, the information about the shared sen-

sitive targetZ lies in some dth-order statistical moments of the acquisition,1 meaning

that for some d-tuples of time samples (t1, . . . , td) the quantityE[ ~X[t1] ~X[t2] · · · ~X[td]|Z =

s] (based on a dth-order raw moment) is not constant as a function of s (equivalently,

E[( ~X[t1] − E[ ~X[t1]]) · · · ( ~X[td] − E[ ~X[td]])|Z = s] is not constant, using the central

moment). We can refer to the information obtainable by observing such variation as

a dth-order information. In order to let the SNR reveal it, and consequently to get the

information being directly exploitable by common attacks, the attacker must pre-

process the traces through an extractor ε that renders the mean of the extracted data

1whence the name dth-order attacks
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dependent on Z, i.e. such that E[ε( ~X)|Z = s] is not constant as a function of s. In this

way, the dth-order information is brought back to a 1st-order one, and the common

assumptions on the side-channel leakage models outlined in Sec. 2.9.1 hold.

Property 1 (SCA efficiency necessary condition). Let us assume that Z is represented

by a tuple of shares Mi manipulated at d different times. Denoting t1, . . . , td the

unique time samples2 where each share is handled, the output of an effective extrac-

tor needs to have at least one coordinate whose polynomial representation over the

variables given by the coordinates of ~X contains at least one term divisible by the

the dth-degree monomial
∏
i=1,...,d

~X[ti] (see e.g. [Car+14] for more information).

Remark 5.1. The use of central moments has been experimentally shown to reveal

more information than the use of the raw ones [Cha+99; PRB09]. Thus we will

from now on suppose that the acquisitions have previously been normalised, so

that Ê(~xi) = ~0 and V̂ar(~xi) = ~1. In this way a centred product coincides with a

non-centred one.

We motivate hereafter through a simplified but didactic example, the need for a

computationally efficient dimensionality reduction technique as preliminary step to

perform a higher-order attack.

5.1.2 Some strategies to perform higher-order attacks

We consider here an SCA targeting an 8-bit sensitive variable Z which has been pri-

orly split into d shares and we assume that a reverse engineering and signal process-

ing have priorly been executed to isolate the manipulation of each share in a region

of ` time samples. This implies that our SCA now amounts to extract a Z-dependent

information from leakage measurements whose size has been reduced to d× ` time

samples. To extract such information three main approaches were proposed in liter-

ature until 2016.

The first one consists in considering d time samples at a time, one per region, and

in testing if they jointly contain information about Z (e.g. by estimating the mutual

information [RGV12] or by processing a Correlation Power Attack (CPA) using their

centred product [Cha+99], etc.). Computationally speaking, this approach requires

to evaluate `d d-tuples (e.g. 6.25 million d-tuples for d = 4 and ` = 50), thus its com-

plexity grows exponentially with d.

The second approach, that avoids the exhaustive enumeration of the d-tuples of

time samples, consists in estimating the conditional pdf of the whole region: to this

scope, a Gaussian mixture model is proposed in literature [LRP07; Lom+14b] and

2not necessary distinct
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the parameters of such a Gaussian mixture can be estimated through the expectation-

maximisation procedure. In [LRP07] 4 variants of the procedure are proposed ac-

cording to a trade-off between the efficiency and the accuracy of the estimations;

the roughest leads to the estimation of 256(d−1)(`d) parameters (e.g. ≈ 3.4 billion

parameters for d = 4 and ` = 50), while the finest one requires the estimation of

256(d−1)(1 + 3·`d
2 + (`d)2

2 − 1) parameters (e.g. ≈ 87 trillion parameters). Once again,

the complexity of the approach grows exponentially with the order d.

The third approach, whose complexity does not increase exponentially with d,

is the application of the higher-order version of the Projection Pursuits (PP) tool for

the PoI selection, proposed in [Dur+15] and already introduced in Sec. 4.1, for which

we give an outline hereafter. As will be discussed in Sec. 5.4.5, its heuristic nature is

the counterpart of the relatively restrained complexity of this tool.

5.1.2.1 Higher-Order Version of Projection Pursuits

The dth-order version of PP makes use of the so-called Moment against Moment Pro-

filed Correlation (MMPC) as objective function. The extractor εPP has the following

form:

εPP (~x) = (~αᵀ~x)d , (5.1)

where ~α is a sparse projecting vector with d non-overlapping windows of coordi-

nates set to 1, in correspondence with the identified PoIs. Actually, as will be dis-

cussed in Sec. 5.4.5, authors of [Dur+15] propose to exploit ~α as a pointer of PoIs,

but do not encourage the use of εPP as an attack preprocessing.

The procedure is divided into two parts: a global research called Find Solution

and a local optimisation called Improve Solution. At each step of Find Solution, d win-

dows are randomly selected to form a draft ~α, thus a draft εPP is built. A part of

the training traces are then processed via εPP and used to estimate the dth-order

statistical moments ~md
s = Ê[εPP ( ~X) | Z = s], for each value of s. Then Pearson’s

correlation coefficient ρ̂ between such estimates and the same estimates issued from

a second part of the training set is computed. If ρ̂ is higher than some threshold Tdet,

the windows forming ~α are considered interesting3 and Improve Solution optimises

their positions and lengths, via small local movements. Otherwise, the ~α is discarded

and another d-tuple of random windows is selected from scratch.

3A further validation is performed over such windows, using other two training sets to estimate ρ̂,
in order to reduce the risk of false positives.



5.2. Feature Space, Kernel Function and Kernel Trick 89

The threshold Tdet plays a fundamental role in the algorithm: it has to be small

enough to promote interesting windows (avoiding false negatives) and high enough

to reject uninteresting ones (avoiding false positives). A hypothesis test is used to

choose a value for Tdet in such a way that the probability of ρ̂ being higher than Tdet
given that no interesting windows are selected is lower than a chosen significance

level.4

5.1.3 Purpose of this Study

The exploitation of the KDA technique in the way we propose in this chapter aims

to exploit interesting d-tuples of time samples like the first strategy described in

Sec. 5.1.2. It however improves it in several aspects. In particular, its complexity

does not increase exponentially with d. Moreover, it may be remarked that such a

first approach allows the attacker to extract interesting d-tuples of points, but does

not provide any hint to conveniently combine them (while the KDA does). This is an

important limitation since finding a convenient way to combine time samples would

raise the SCA efficiency, as already experimentally shown in [Bru+14], for d = 1, 2.

Nevertheless in the SCA literature no specific method has been proposed for the

general case d > 2. The study presented in the coming sections aims to propose a

new answer to this question, while showing that it compares favourably to the PP

approach.

5.2 Feature Space, Kernel Function and Kernel Trick

As described in Sec. 5.1.1, the hard part of the construction of an effective extractor

is the detection of d time samples t1, . . . , td where the shares leak. A naive solution,

depicted in Fig. 5.1, consists in applying to the traces the centred product preprocess-

ing for each d-tuple of time samples, before applying linear dimensionality reduction

techniques. Formally it means immerse the observed data in a higher-dimensional

space, via a non-linear function

Φ: RD → F = R(D+d−1
d ) . (5.2)

Using the ML language the higher-dimensional space F will be called feature space,

because in such a space the attacker finds the features that discriminate different

4Interestingly, the threshold Tdet depends on size of Z and not on the size of the training sets of
traces. This fact disables the classic strategy that consists in enlarging the sample, making Tdet lower,
in order to raise the statistical power of the test (i.e. Prob[ρ̂ > Tdet|ρ = 1]). Some developments
of this algorithm have been proposed [DS15], also including the substitution of the MMPC objective
function with a Moments against Samples one, that would let Tdet decrease when increasing the size of
the training set.
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RD F RCΦ
εPCA

εLDA

FIGURE 5.1: Performing LDA and PCA over a high-dimensional fea-
ture space.

RD F RCΦ
εPCA

εLDA

εKPCA

εKDA

FIGURE 5.2: Applying KDA and KPCA permits to by-pass computa-
tions in F .

classes. Procedures involving a feature space defined as in (5.2) imply the construc-

tion, the storage and the management of
(
D+d−1

d

)
-sized traces; such a combinato-

rially explosion of the size of F is undoubtedly an obstacle from a computational

standpoint.

In ML a stratagem known as kernel trick is available for some linear techniques,

such as Support Vector Machine (SVM), PCA and LDA, to turn them into non-linear

extractors and classifiers, providing an efficient way to implicitly process them into a

high-dimensional feature space. This section gives an intuition about how the kernel

trick acts. It explains how it can be combined with the LDA, leading to the so-called

KDA algorithm, that enables an attacker to construct some non-linear extractors that

concentrate in few points the d-th order information held by the side-channel traces,

without requiring computations into a high-dimensional feature space, see Fig. 5.2.

The central tool of a kernel trick is the kernel function K : RD × RD → R, that has

to satisfy the following property, in relation with the function Φ:

K(~xi, ~xj) = Φ(~xi) · Φ(~xj) , (5.3)

where ~xi and ~xj are data points (i.e. side-channel traces) and · denotes the dot prod-

uct.

Every map Φ has an associated kernel function given by (5.3), for a given set of

data. The converse is not true: all and only the functions K : RD × RD → R that

satisfy a convergence condition known as Mercer’s condition are associated to some

map Φ : RD → RS , for some S. Importantly, a kernel function is interesting only if it

is computable directly from the rough data ~x, without evaluating the function Φ.
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The notion of kernel function is illustrated in the following example.

Example 1. Let D = 2. Consider the function

K : R2 × R2 → R

K : (~xi, ~xj) 7→ (~xi · ~xj)2 , (5.4)

After defining ~xi = [a, b] and ~xj = [c, d], we get the following development of K:

K(~xi, ~xj) = (ac+ bd)2 = a2c2 + 2abcd+ b2d2 , (5.5)

which is associated to the following map from R2 to F ⊂ R3:

Φ(u, v) = [u2,
√

2uv, v2] (5.6)

Indeed Φ(~xi) · Φ(~xj) = a2c2 + 2abcd + b2d2 = K(~xi, ~xj) . This means that to

compute the dot product between some data mapped into the 3-dimensional space

F there is no need to apply Φ: applyingK over the 2-dimensional space is equivalent

(and hence sufficient). This trick leads us to get the short-cut depicted in Fig. 5.2.

In view of the necessary condition exhibited by Property 1, the functionK(~xi, ~xj) =

(~xi · ~xj)d, hereafter named dth-degree polynomial kernel function, is the convenient

choice for an attack against implementations protected with (d − 1)th-order mask-

ing. It corresponds to a function Φ that brings the input coordinates into a feature

space F containing all possible d-degree monomials in the coordinates of ~x, up to

constants. This is, up to constants, exactly the Φ function of (5.2).5

5.3 Kernel Discriminant Analysis

The equation (5.3) shows that a kernel functionK allows to compute the dot product

between elements mapped into the feature space F (5.3). By extension, any proce-

dure that only implies the computation of dot products between elements of F , can

be executed exploiting a kernel function. Starting from this remark, the authors of

[SSM98; SM99] have shown that the PCA and LDA procedures can be adapted to sat-

isfy the latter condition, which led them to define the KPCA and KDA algorithms.

The latter one is described in Sec. 5.3.1. The interested reader will find the formal
5Other polynomial kernel functions may be more adapted if the acquisitions are not free from d′th-

order leakages, with d′ < d. Among non-polynomial kernel functions, we effectuated some experi-
mental trials with the most common Radial Basis Function, obtaining no interesting results. This might
be caused by the infinite-dimensional size of the underlying feature space, that makes the discriminant
components estimation less efficient.
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derivation of KPCA in Appendix C, reported as a way of example of how one can

translate the classical PCA algorithm (and the class-oriented version) in such a way

to never access data, but only dot product between data. The way to derive the KDA

procedure reported below is analogous; the interested reader might refer to [SM99],

or to [BA00] for the multi-class version.

5.3.1 KDA for dth-order masked side-channel traces

Let (~xi, zi)i=1,...,Nt be a set of labelled training side-channel traces, and let K(~x, ~y) =

(~x · ~y)d be the kernel function.

1) Construct a matrix M (acting as between-class scatter matrix):

M =
∑
s∈Z

Ns( ~Ms − ~MT )( ~Ms − ~MT )ᵀ , (5.7)

where Ns denotes as usual the number of training traces belonging to the class

s, ~Ms and ~MT are two N -sized vectors whose entries are given by:

~Ms[j] =
1

Ns

∑
i:zi=s

K(~xj , ~xi) (5.8)

~MT [j] =
1

Nt

Nt∑
i=1

K(~xj , ~xi) . (5.9)

2) Construct a matrix N (acting as within-class scatter matrix):

N =
∑
s∈Z

Ks(I− INs)Kᵀ
s , (5.10)

where I is a Ns × Ns identity matrix, INs is a Ns × Ns matrix with all entries

equal to 1
Ns

and Ks is theNt×Ns sub-matrix of K = (K(~xi, ~xj))i=1,...,Nt
j=1,...,Nt

storing

only columns indexed by the indices i such that zi = s.

3) Regularise the matrix N for computational stability:

N = N + µI (see Sec. 5.4.2); (5.11)

4) Find the non-zero eigenvalues λ1, . . . , λQ and the corresponding eigenvectors

~ν1, . . . , ~νQ of N−1M;
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5) Finally, the projection of a new trace ~x over the `-th non-linear dth-order dis-

criminant component can be computed as:

εKDA
` (~x) =

Nt∑
i=1

~ν`[i]K(~xi, ~x) . (5.12)

For the reasons discussed in Sec. 5.2, the right-hand side of (5.12) may be viewed as

an efficient way to process the `th coordinate of the vector εLDA(Φ(~x))[`] = ~w` ·Φ(~x),

without evaluating Φ(~x). The entries of ~w` are never computed, and will thus be

referred to as implicit coefficients (see Sec. 5.3.2 below). It may be observed that each

discriminant component εKDA
` (·) depends on the training set (~xi, zi)i=1,...,Nt , on the

kernel function K and on the regularisation parameters µ, appearing in (5.11). A

further discussion about µ is proposed in Sec. 5.4.2.

5.3.2 The implicit coefficients

As already said, when the dth-degree polynomial kernel function is chosen as kernel

function, the KDA operates implicitly in the feature space of all products of d-tuples

of time samples. In order to investigate the effect of projecting a new trace ~x over a

component εKDA
` (~x), we can compute for a small d the implicit coefficients that are

assigned to the d-tuples of time samples through (5.12). For d = 2 we obtain that in

such a feature space the projection is given by the linear combination computed via

the coefficients shown below:

εKDA
` (~x) =

D∑
j=1

D∑
k=1

[(~x[j]~x[k]) (

Nt∑
i=1

~ν`[i]~xi[j]~xi[k])︸ ︷︷ ︸
implicit coefficients

] (5.13)

5.3.3 Computational complexity analysis

The order d of the attack does not significantly influence the complexity of the KDA

algorithm. Let Nt be the size of the training trace set and let D be the trace length,

then the KDA requires:

• N2
t

2 D multiplications, N
2
t

2 (D − 1) additions and N2
t

2 D raising to the d-th power,

to process the kernel function over all pairs of training traces

• (D+C) multiplications, (D+C − 2) additions and 1 raising to the d-th power

for the projection of each new trace over C KDA components,

• the cost of the eigenvalue problem, that is O(N3
t ).
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In next sections we discuss the practical problems an attacker has to deal with

when applying the KDA. The argumentation is conducted on the basis of experi-

mental results whose setup is described hereafter.

5.4 Experiments over Atmega328P

5.4.1 Experimental Setup

The target device is an 8-bit AVR microprocessor Atmega328P and we acquired

power-consumption traces thanks to the ChipWhisperer platform [OC14].6 From the

acquisitions we extracted some traces composed of 200 time samples, corresponding

to 4 clock cycles (see Fig.5.7(a) or 5.7(b) upper parts). Depending on the attack imple-

mentation, we ensure that the acquisitions contain either 2,3 or 4 shares respectively

for d = 2, 3 or 4. The shares satisfyM1⊕· · ·⊕Md = Z, whereZ takes values inZ = F8
2

and represents one byte of the output of the first rount SubBytes operation in AES:

Z = Sbox(E ⊕ k?). The goal of the attack is to recover the subkey k?. The plaintext

P is assumed to be known and the Mi are assumed to be unknown random uniform

values. The profiling phase is divided in two sub-phases that exploit two distinct

datasets. The first sub-phase, that we will refer to as KDA training phase, aims at

constructing the dimensionality reduction function by means of the KDA algorithm.

It exploits a KDA training datasetDtrain = ( ~Xtrain,Ytrain) of sizeNt = 8, 960. A known

fixed subkey is used to acquire such a dataset, the plaintexts have been chosen to bal-

ance the number of classes (e.g. Ns = 8,960
256 = 35 for each s ∈ Z = {0, . . . 255} when

traces are labelled via an 8-bit value). We fixed the dimension C at the value 2 (ex-

cept for the 2-class KDA for which we chose C = 1, see Remark 5.3): we therefore

tried to build extractors εKDA(·) = (εKDA
1 (·), εKDA

2 (·)) mapping traces of size 200 sam-

ples into new traces composed of 2 coordinates.7 Afterwards, a bivariate Gaussian

TA (see Sec. 2.10.1) is run. Such an attack demands for a proper profiling phase,

consisting in the estimation of the class-conditional probabilities. Differently from

the approach used with linear techniques in Chapter 4, this estimation is done here

using a second distinct profiling dataset Dprofiling = ( ~Xprofiling,Yprofiling), collecting

Np,s = 1, 000 traces per class (e.g. Np = 1, 000× 256 when profiling is done labelling

traces by an 8-bit value), under a fixed known key. The choice of not reusingDtrain as

profiling dataset for the Gaussian TA has been done in order to reduce the overfitting

risk, discussed in general in Sec. 3.1.4 and that will be discussed in the particular case

6This choice has been done to allow for reproducibility of the experiments.
7As we have seen in Chapter 4, for PCA and LDA methods a good component selection is fun-

damental to obtain an efficient subspace, and that the first components not always represent the best
choice. This is likely to be the case for the KDA as well, but in our experiments the choice of the
two first components εKDA

1 , εKDA
2 turns out to be satisfying, and therefore to simplify our study we

preferred to not investigate other choices.
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FIGURE 5.3: On the left: template attack guessing entropy vs the
number of traces for the attack phase, varying for choices of the con-
stant µ (5.11). On the right: the implicit coefficients assigned to pairs
of time samples for µ3 (upper triangular part) and µ5 (lower triangu-

lar part).

of KDA in Sec. 5.4.2. The extractor εKDA, has a different behaviour when applied to

the traces used to train it and to some new traces: this is inevitable since εKDA, differ-

ently from the linear extractors εPCA and εLDA, uses all training traces has its proper

parameters (5.12). Thus, a new unobserved profiling set is mandatory in order to

obtain an uncorrupted profiling.

As discussed in Remark 5.1, the KDA training traces are normalised. The average

trace and the standard deviation trace used to perform the normalisation are stored

and reused to center the profiling and attack traces before projecting them onto the

KDA components. In this way the profiling and attack traces present a form as

similar as possible to the training ones.

5.4.2 The Regularisation Problem

By construction the matrix N in (5.10) is not positive-definite, which is one of the

reasons why in [SM99], where the application of a kernel trick to LDA is proposed

for the first time, the authors propose the regularisation (5.11) recalled hereafter:

N = N + µI . (5.14)

When applying such a regularisation, the choice of the constant µ is crucial. Be-

yond the form of the kernel function, µ is the unique hyper-parameter of the model

constructed by the KDA algorithm, in the sense explained in Sec. 3.1.5. Its value

cannot be learned from data and has to be priorly fixed somehow. For sure it has to

be large enough to ensure that N turns to a positive-definite matrix, but we exper-

imentally observed that the minimal µ for which the positive-definitiveness of N is

attained is often far from being the one that provides a good extractor. In Fig. 5.3
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(left) we observe the efficiency of a template attack run in combination with a KDA

extractor. The matrix N is positive-definite for µ1 = 10−3 but the value that pro-

vides the best extractor is much higher (namely µ3 = 107). Still raising the value of

µ degrades the quality of the extractor. The right part of Fig. 5.3 shows the implicit

coefficients of the extractor (see (5.13)) obtained under µ3 (upper triangular part)

and under µ5 (lower triangular part). The extractor corresponding to the former

one leads to a successful attack and has high values concentrated over the interest-

ing windows, for example [10..15] and [140..147]; the extractor corresponding to the

latter one leads to an unsuccessful attack and shows lack of localisation around in-

teresting parts of the trace, highlighting the fact that the KDA tool failed in detecting

generalisable class-distinguishing features in this case.

The regularisation (5.11) is a proper regularisation in the sense discussed in Sec. 3.1.4:

it is not only a way to render the problem computationally stable (which explains

why the minimal µ making N positive-definite may not be a good choice), but also

an answer to the overfitting phenomenon. In the case of the KDA the overfitting is

observable when εKDA almost perfectly separates the training traces in their classes,

while failing in separating the profiling and the attack ones. In [SM99] it is shown

that the regularisation (5.11) corresponds to the additional requirement for ~ν to have

a small norm ‖~ν‖2. As every regularisation technique, it makes the method less ac-

curate in the learning phase, but in some cases more likely to correctly operate on

new examples.

Remark 5.2. Another regularisation strategy may be to search for sparse vectors of

implicit coefficients (see (5.13)). This alternative might be more suitable for the side-

channel context, since it would promote localised solutions, i.e. projections for which

only a few d-tuples of time samples contribute to the construction of the extractor

(see Assumption 1 in Chapter 4 for an analogy in 1st-order context). This approach

is left for future developments.

Some heuristics exist to choose the constant µ, e.g. the average of the diagonal

entries [LZO06] or the minimal constant that let N be diagonally dominant (implying

positive-definite). In [CL06] Centeno et al. propose a maximisation strategy to find

the optimal regularisation parameter, based on a probabilistic approach. We did not

apply such heuristics for our study, but we consider them in order to fix a grid of

values for µ to be tested. Then, as explained in Sec. 3.1.5 we chose an approach based

over a validation, in order to fix the final value of µ before performing the attack

phase. To perform such validation, we chose the SNR as performance measure for

the extractor provided by the KDA, and Dprofiling as validation dataset.
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FIGURE 5.4: Comparison between 2-class,3-class, 9-class and 256-
class KDA in 2nd-order context (a) and in 3rd-order context (b). For
2nd-order the KDA is efficient in providing separability between 256
classes, allowing an optimal attack. In 3rd-order context the training
data are not enough to succeed the 256-class learning phase. Decreas-
ing the number of classes to be distinguished raises the efficiency of

the learning problem and thus of the attack.

5.4.3 The Multi-Class Trade-Off

As discussed in Sec. 4.3, the LDA, and by consequence the KDA, looks for a subspace

of the feature space to optimally separate some given classes. The performance of

the KDA algorithm raises with the sizeNt of the training set. Nevertheless, the num-

ber of examples might be bounded by the acquisition context, and even when theNt

can be very high, it may be interesting to minimise it since the KDA complexity is

O(N3
t ). A trade-off must therefore be found between accuracy and efficiency. As-

suming that the size of the training set is fixed to Nt, which controls the efficiency,

a way to gain in accuracy may be found by appropriately adjusting the number of

classes to distinguish: intuitively, the more examples per class, the more accurate

the detection of a separating subspace. Then, if the total number of training traces

is fixed, in order to raise the number of traces per class, a smaller number of classes

must be considered. To do so, a non-injective functionm(·) can be introduced, to cre-

ate a smaller set of labelsm(Z) from the initial setZ . The reduced number of classes,

i.e. the number of labels assigned to the training set after applying the function m,

will be denoted byW (it is the cardinality ofm(Z)). As discussed in Sections 2.4 and

2.9.1, a widely-accepted power-consumption model for side-channel traces is pro-

vided by the Hamming weight (HW) function, thus we consider and experimentally

compare the following choices for sensitive variables:

• 2-class sensitive variable (W = 2)m(s) = 0 if HW(s) < 4

m(s) = 1 if HW(s) ≥ 4
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• 3-class sensitive variable (W = 3)
m(s) = 0 if HW(s) < 4

m(s) = 1 if HW(s) = 4

m(s) = 2 if HW(s) > 4

• 9-class sensitive variable (W = 9)

m(s) = HW(s) .

Remark 5.3. The separating subspace given by the KDA has maximal dimension

(W − 1), i.e. Q ≤ (W − 1) in point 4 of Sec. 5.3.1. When W = 2 a single discriminant

component εKDA
1 is available. In this case we cannot run a bivariate template attack

as we do with other extractors, thus we run a univariate one.

A balanced training set of sizeNt = 9, 000 (instead of 8, 960) has been used to run

the experiments for 2-class, 3-class and 9-class KDA. For the sake of consistency8 be-

tween the pre-processing phase and the attack phase, when a non-injective function

m is applied to the labels of the training set to reduce the number of classes, the same

function is exploited to run the template attack: W templates (one per each class) are

estimated from the profiling set (that containsNp = W×1, 000 traces) and compared

to the attack traces. Thus, results of the experimental comparison of these different

multi-class approaches depicted in Fig. 5.4 are obtained using different template at-

tacks. It may be remarked that asW decreases the efficiency of the attack is supposed

to decrease as well, because each attack trace contributes in distinguishing the right

key k? only from a growing-size set of indistinguishable hypotheses.

In 2nd-order context, it can be observed in Fig. 5.4 that the KDA is provided with

sufficient training traces to succeed a 256-class separation, which allows the finest

characterisation of the leakage, and leads as expected, to the most efficient template

attack. Moving to the 3-rd order context, the available training set is insufficient to

make the multi-class approach succeed; nevertheless, turning the problem into a 2-

class problem turns out to be a good strategy to trade extraction accuracy for attack

efficiency.

8A different approach is analysed in Sec. 5.4.4.
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FIGURE 5.5: Performance of template attacks run over 3-class KDA
subspaces: multi-class, one vs one and one vs all approaches com-

pared.

An idea to avoid an excessive reduction of the number of separable classes W is

given in the ML literature about classifiers: it consists in treating the W -class prob-

lem as multiple 2-class problems. Two different modus operandi exist: the one-vs-

one and the one-vs-all. We converted this classifiers-oriented approaches into some

dimensionality-reduction-oriented ones: applied to our context, the one-vs-one ap-

proach determines for each pair of classes the 1-dimensional subspace that best sep-

arates them and exploits all the obtained subspaces to run an attack (for W classes

we obtain
(
W
2

)
dimensions and we run a

(
W
2

)
-variate template attack). The one-vs-

all approach looks for dimensions that best separate each class from all the others

(obtaining W projections in total).

We tested this approach in the 3-class case: in this way the one-vs-one and the

one-vs-all approaches provide both 3 dimensions that we use to run a 3-variate tem-

plate attack, and that we compare to the 3-class multi-class approach with bivariate

template attack. Our experimental results, summed up in Fig. 5.5, show that no gain

is obtained by the 2-classes strategies.9 We therefore chose to not consider them for

the higher-order experiments.

5.4.4 Asymmetric Preprocessing/Attack Approach

In previous section we appealed a consistency principle to justify the choice of run-

ning a W -class template attack after a W -class KDA extraction. Here we propose a

different reasoning: the consistency principle does not grant that an extractor εKDA

trained with W classes is not able to separate W ′ classes with W ′ > W . As seen

in Sec. 5.3.2, an extractor εKDA always implicitly performs a weighed sum, via the

9We think that is result is quite data-dependant, so the use of such an approach is not discouraged
in general.
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FIGURE 5.6: Left: guessing entropy (over 10 independent tests) for a
2-class and a 9-class 3rd-order template attack. Right: right key rank

of a 2-class and a 9-class 4th-order template attack.

implicit coefficients, of centred products of time samples. If εKDA is effective, the im-

plicit coefficients which have the highest magnitude must correspond to time sam-

ples corresponding to the manipulation of sensitive data (e.g. the variable shares

when masking is applied). This property is not necessarily related to the number of

classes used to train the extractor.

Based on the reasoning above, we experienced the 3rd-order and the 4th-order

attacks in an asymmetric way: as preprocessing we performed a 2-class KDA, which

gave best performances compared to others in the 3rd-order context (Fig. 5.4(b)),

then we performed a 9-class template attack, in order to raise the accuracy of the

profiling and the efficiency of the attack. The results are depicted in Fig. 5.6 and con-

firm that, for our experimental data, this approach is sound: in both cases, using the

same extractor trained with 2 classes and the same attack traces, the 9-class approach

outperforms the 2-class one.

5.4.5 Comparison with Projection Pursuits

To get a fair comparison, we run the PP algorithm (see Sec. 5.1.2.1) over the same

training set used to evaluate the KDA in Sec.5.4. The best results in the 2nd-order

context were obtained with the HW model (i.e. |Z| = 9). In this case Tdet is fixed to

0.7. Since 4 training sets are required, the 9, 000 training traces are split in 4 equally-

sized groups. Experimental observations allowed to fix Wlen = 5, consequently

suggesting minWS = 1, maxWS = 15 and consistent global and local movements

and resizes. Given the heuristic asset of the algorithm, we run it 1, 000 times for

d = 2 and for d = 3. An overview of the global behaviour of the obtained results

is depicted in Figures 5.7(a) and 5.7(b): the lower parts of the figures show the sum

of the 1, 000 outputs of the algorithm. We recall that each coordinate of ~α is set to

1 for the windows identified to be of interest, and to 0 elsewhere, so for each time
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(a) (b)

FIGURE 5.7: (a) Overview of PP outputs in 2nd-order context. (b)
Overview of PP outputs in 3rd-order context.

sample the sum of the values (0 or 1) assigned by the 1, 000 attempts give an intu-

ition about its likelihood to be considered as interesting by the PP method. It can

be observed that in the 2-nd order case (Fig. 5.7(a)) the results are excellent: 100%

of the tests highlight an informative part of the two clock-cycles where the sensitive

shares are manipulated.10 It means that εPP ( ~X) always contains information about

Z and a successful attack can be mounted over such extracted traces. The efficiency

of such an attack depending on many factors, there is no interest in comparing it to

the performances of the template attacks run in 2nd-order context using εKDA and

depicted in Fig. 5.4(a). As it may be observed in Fig. 5.7(b), in the 3-rd order case

the experimental results are completely different: almost no ~α selects the clock-cycle

where the second share is manipulated. Thus in this case the PP approach fails:

εPP ( ~X) does not contain information about Z, so any attack launched over the ex-

tracted traces would fail, while εKDA still allows successful attacks in 3rd-order and

4th-order case, as depicted in Fig. 5.6.

We conclude that the KDA approach is a valuable alternative to the PP one, espe-

cially in contexts where the training set size is bounded and independent from the

order d of the attack.

5.5 Conclusions and Drawbacks

In this chapter we analysed the use of the KDA method to extract small-sized in-

formative features from side-channel acquisitions protected by a (d − 1)th-order

masking countermeasure. The KDA naturally extends the LDA technique to the

generic dth-order context. It requires the choice of a so-called kernel function. We

10It can be observed that the regions selected by εPP correspond to those for which the εKDA exhibits
the highest magnitude implicit coefficients (Fig. 5.3, upper-triangular part on the right)
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proposed to choose a polynomial kernel function, because it perfectly fits the neces-

sary condition to effectively perform a higher-order side-channel attack. Indeed, in

this way the obtained extractor provides the linear combination of all possible dth-

degree monomial in the time coordinates of the traces, which maximises the SNR.

The main obstacle to the problem of PoI selection in higher-order context is that in-

formation lies in a space whose dimension grows combinatorially with d, implying

computational difficulties. Nevertheless, the KDA only implicitly operates in such

a space, by means of a so-called kernel trick, implying that its complexity is inde-

pendent of the sharing order d. This property represents the main advantage of the

KDA. Experiments described in this chapter for 2nd-order, 3rd-order and 4th-order

contexts confirmed that our new approach is effective. Anyway, it however presents

some drawbacks, discussed hereafter.

Regularisation hyper-parameter First of all, to apply the new methodology an at-

tacker has to deal with the choice of a regularisation hyper-parameter. This problem

still appears unsolved in subsequent studies [Zho+17].

Non scalability to big training set The computational cost of the optimisation

problem is affected by the number of side-channel traces it uses for the training.

This obliges the attacker to find a good trade-off between the efficiency of the infor-

mation extraction, its accuracy and the efficiency of the underlying attack, through

a careful choice of the target classification model. Besides the computational cost,

the size of the training set also affects the memory complexity of the dimensionality

reduction model: training traces cannot be forgotten after the training of εKDA but

have to be stored in memory. Bishop assigned to this characteristic of the kernel

machines the adjective memory-based [Bis06, Chapter 6]. Indeed, observing the form

of the KDA extractor (5.12), one can remark that each time sample of each train-

ing trace makes part of the parameters defining it, together with the entries of the

eigenvectors ~ν1, . . . , ~νQ. This might be a surprisingly huge number of parameters:

for example in our experiments, the extractor εKDA : R200 → R2 constructed by ex-

ploiting a 8, 960-sized training set counts (8, 960 + 2)× 200 = 1, 792, 400 parameters.

In 2nd-order context, this number is much higher than the number of implicit co-

efficients assigned to all possible 2nd-degree monomials in time samples, which is(
200+2−1

2

)
= 20, 100.

Misalignment Affection The KDA being an efficient way to perform LDA in a

larger feature space, it suffers from the same weakness than the LDA with regards

to trace misalignment, discussed in Sec. 4.5.
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Two-Phased Approach The approach presented in this chapter (and in Chapter 4

as well) is characterised by being two-phased. Indeed, a preliminary training has

to be done in order to construct the extractor ε, that plays the role of preprocessing

for side-channel traces. Then, such an extractor is applied to the traces and a sec-

ond profiling phase has to be performed in order to construct the generative model

that characterises the Gaussian template attack. In the specific case of KDA, these

two preliminary phases demand the exploitation of two different profiling set, as

discussed in Sec. 5.4.1, which might be a great disadvantage in contexts where pro-

filing acquisitions are bounded. Anyway, there is a general greater disadvantage of

this two-phased approach, which is the fact that the preprocessing part, aiming in

reducing the dimensionality of the samples, inevitably reduces the information held

by side-channel traces, and such a pruning is mainly guided by some prior assump-

tions about the form informative parts of the data takes. For example, the fact that

the polynomial kernel function proposed in this chapter fits with the necessary con-

dition given in Property 1, does not guaranty that a linear combination of dth-degree

monomials is the most efficient preprocessing to extract sensitive information from

the traces. Even when such a linear combination is chosen to maximise a precise

well-chosen criterion, in case of KDA it is chosen to maximise the SNR of projected

data, through the Rayleigh quotient condition, this criterion does not directly coin-

cide with the goal of the attack, i.e. construct a classifier that allows to optimally

distinguish the right secret key of the attacked algorithm from the wrong ones, or

at least that allow to optimally classify the sensitive variable value handled during

the acquisition of the attack traces. This same drawback of dimensionality reduction

techniques is present in any preprocessing strategy, e.g. in realignment techniques:

a preprocessing aiming at realign data has a partial objective (the resynchronisation)

that does not coincide with the final goal of the attack, thus injects a risk of degrad-

ing data quality with respect to the final goal. In our researches about strategies to

avoid this separation between a preprocessing driven by hand-chosen criteria and

a proper model construction, we found out that this necessity is not at all specific

to the SCA context. Indeed, a whole branch of the Machine Learning domain arose

out of this issue and is applied in several applicative fields, namely the so-called

Deep Learning (DL). DL models are conceived to dispense with any hand-crafted

feature extraction, and integrate in a unique optimising process (the learning phase)

any preprocessing with the model construction itself. It seemed mandatory to us to

explore some DL methodologies. In next chapter, we will take advantage of some

DL models to deal with the some hiding countermeasures.
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Chapter 6

Convolutional Neural Networks

Aiutiamoli a fare da soli!
Let’s help them to do themselves!

— Maria Montessori

In this chapter we explore a new strategy to perform profiling SCAs, address-

ing the misalignment issue and endorsing the Deep Learning (DL) paradigm. To

this aim we present results published in [CDP17], where Convolutional Neural Net-

works are proposed to help against misalignment-oriented countermeasures. Ac-

tually, the term Time-Delay Neural Network (TDNN) would be more appropriated

than Convolutional Neural Network. Indeed the TDNNs [LWH90] consist in the

Convolutional Neural Networks applied to one-dimensional data, as side-channel

traces are. Nevertheless, the fame that CNNs reached in last years, and especially

since 2012, where a CNN architecture (the "AlexNet") [KSH12] won the ImageNet

Large Scale Visual Recognition Challenge, a large-impact image recognition contest,

leads to the disappearing of term TDNN from DL literature. Today, to specify the

architecture of a TDNN in the most common DL libraries, one needs to exploit func-

tionalities related to the CNNs’ architecture, specifying e.g. that one of the input

dimensions equals 1. For these reasons we kept the term CNN for our discussion.

6.1 Motivation

The context we choose to study DL techniques, and CNNs in particular, is the one of

cryptographic implementations protected by countermeasures aiming at enhancing

misalignment or desynchronisation in side-channel acquisitions. The latter counter-

measures are either implemented in hardware (e.g. random hardware interruption

or non deterministic processors [IPS02; MMS01], unstable clock [Moo+02; Moo+03])

or in software (e.g. insertion of random delays through dummy operations [CK09;

CK10]). Techniques analysed in previous chapters were applied in contexts where

acquisitions were perfectly synchronous, and are not able to well extend to desyn-

chronised context, as briefly observed in Secs. 4.5 and 5.5.
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Desynchronisation might be seen as a noise component of the acquisitions, as

done in the leakage model proposed in [Cha+99]. Anyway, it raises the noise that

hides sensitive information in the traces. From a statistical point of view, a theo-

retically satisfying answer to such a noise raise is the solely augmentation of the

number of acquisitions: if the attack strategy, in terms of exploited statistical tools,

keeps unchanged, increasing the acquisitions by a factor which is somehow linear

in the misalignment effect, as discussed in [Man04], might suffice to let the attack

be as effective as in the synchronous case. In practice, such an augmentation might

be unacceptable for many reasons. First, an attacker or evaluator might have a time

or memory bound for the acquisition campaign. Second, the attacked device might

implement a security defence denying an unlimited number of executions. Third,

attack routines might suffer, in terms of complexity, more than linearly from a rais-

ing of the number of data to be treated, e.g. the KDA search for a non-linear feature

extraction has a complexity that grows in a cubic way with the number of traces.

The second approach proposed in the SCA literature to deal with misaligned

trace sets consists in applying a realignment preprocessing before the attack. Two re-

alignment techniques families might be distinguished: a signal-processing oriented

one (e.g. [Nag+07; WWB11]), more adapted to hardware countermeasures, and a

probabilistic-oriented one (e.g. [Dur+12]), conceived for the detection of dummy op-

erations, i.e. software countermeasures.

We found in Convolutional Neural Networks the possibility of performing a pro-

filing attack in an end-to-end form, directly extracting sensitive information from

rough data, without applying any realignment preprocessing. We believe that re-

alignments, a well as dimensionality reduction techniques, as discussed in Sec. 5.5,

bring with them the risk of corrupting useful information in data. Indeed a re-

alignment process acts modifying signals with the goal of obtaining some well-

synchronised dataset, making traces be somehow similar to each other. On one

hand it is not trivial to evaluate the accuracy of a realignment, thus to establish if

a performed preprocessing is satisfying. On the other hand, the goal of a realign-

ment is not extracting sensitive and discriminant information from traces. Even if

we were able to affirm that a resynchronisation is somehow perfect, by means of

some special metrics, nothing guaranties that in the attempt of realigning the trace

set the useful information is not discarded. Nowadays, CNNs and DL tools in gen-

eral are standing out, thanks to their good scalability to "big-data"context. One of

their strength is that they are easily parallelisable, and can easily exploit computa-

tional facilities as GPUs (or the so-called TPU - Tensor Processing Units developed

by purpose for NNs), allowing computational accelerations. As we have seen in
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Sec. 3.1.4, the higher amount of data is available, the higher capacity is admissible

for a ML model, without incurring in overfitting; and higher capacity corresponds

to the possibility of learning more complex problems. From this point of view, the

success of NNs in last years is mainly due to the always increasing amount of avail-

able data, and to their scalability. However, even in contexts where a lack of data

may occur, e.g. side-channel contexts in which the number of acquisitions may be

limited, a stratagem exists in ML literature, under the name of Data Augmentation

(DA), that may allow high capacity NNs avoid overfitting and perform well.

6.2 Introduction

Machine Learning approaches often come in a multiplicity of preprocessing phases

such as data realignment, feature selections or dimensionality reduction, followed

by a final model optimisation. This is the case even for the SCA routines that we

considered in previous chapters, or for SCAs that apply realignment preprocessing.

Deep Learning is a branch of Machine Learning whose aim is to avoid any prelim-

inary preprocessing step from the model construction work-flow. For example, in

DL the data dimensionality reduction is not necessarily explicitly performed by a

distinct learned function ε, as done applying PCA, LDA or KDA. On the contrary,

they directly and implicitly extract interesting features, possibly realign data, and

estimate the opportune model to solve the task. The model is searched in a family

of models that are composed by a cascade of parametrisable layers, which may be

optimised in a single global learning process. Such models are called Artificial Neural

Network, or simply Neural Networks (NNs).

Solution for the KDA Drawbacks

By construction, NNs are the ML answer to the drawback of work-flows we anal-

ysed in previous chapters and discussed as two-phased approach drawback in Sec. 5.5.

Actually, NNs are answers to other drawbacks pointed out in the same section.

In particular NNs are not memory-based. This implies that, after the training

phase whose computational complexity is influenced by the size of the training set,

they do not need to access the training set any more. By consequence, the obtained

model is in general faster in processing new data, than techniques obtained via ker-

nel machines, for which the training traces themselves are part of the model param-

eters. This property belongs to the characteristics allowing NNs to be easily scalable

to huge training sets.
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Finally, we pointed out as drawback of techniques analysed in previous chap-

ters their weakness to trace misalignment. Since the CNNs has been developed to

treat difficulties as misalignments, scaling, rotations, etc. usually met in image pro-

cessing, we claim in this chapter, and verify through various experiments, that such

CNNs provide an attack strategy that can keeps effective in presence of misalign-

ment countermeasure.

Organisation of the Chapter

In Sections 6.3 and 6.4, notions of DL are introduced. In particular the common

classification-oriented Multi-Layer Perceptron model is described together with the

common practices to train it. The way we exploit NNs to perform SCAs is described

in Sec. 6.5, while the performance metrics we will use for experiments are given in

Sec. 6.6. A description of the CNN models is provided in Sec. 6.7 while the Data Aug-

mentation techniques that we will exploit are introduced in Sec. 6.8. Finally, three

sections are dedicated to the experiments. We tested the same CNN architecture

against three different targets: in Sec. 6.9.1 it is tested against a software counter-

measure; in Sec. 6.10 it is tested against a simulated hardware countermeasure; in

Sec. 6.11 it is tested against a real-case cryptographic implementation protected by

an enhanced jitter.

6.3 Neural Networks and Multi-Layer Perceptrons

In Chapters 2 and 3 we highlighted a strong analogy between profiling SCAs and

the classical ML classification task. Thus, we are interested in the NNs’ solutions

for the classification task. We recall from Chapters 3 that for the classification task,

the learning algorithm is asked to construct a function F : RD → {0, 1}|Z|, where

elements of Z , i.e. the set of classes, are here expressed via the one-hot encoding (2.1).

The output of such a function is said to be categorical, i.e. Z is a discrete finite set.

A variant of the classification task consists in finding a function F : RD → [0, 1]|Z|

defining a probability distribution over classes. We will prefer this last formulation,

which allows us to easily exploit the classification solution to perform advanced at-

tacks, as well as the simple ones. Often for this task, NNs are exploited to create

discriminative models, i.e. models that directly approximate the latter function F

which is actually viewed as the posterior conditional probability of a label given the

observed trace. This is the use we propose in this chapter, and it is in opposition

to the Template Attack we exploited in previous chapters. Indeed, as described in

Sec. 2.10.1, a TA is based over the construction of generative models, i.e. the approxi-

mation of the templates, which coincide with the conditional probabilities of the trace
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given a label.

Using NNs the function F is obtained by combining several simpler functions,

called layers. An NN has an input layer (the identity over the input datum ~x), an

output layer (the last function) and all other layers are called hidden layers. The out-

put of F is a |Z|-sized vector ~y of scores for the |Z| labels. In general, such a vector

might or not represent the approximation of a probability distribution. In our case it

will. The nature of the NN’s layers, their number and their dimension in particular,

is called the architecture of the NN. All the parameters that define an architecture,

together with some other parameters that govern the training phase, are its hyper-

parameters (see Sec. 3.1.5). The so-called neurons, that give the name to the NNs, are

the computational units of the network and essentially process a scalar product be-

tween the coordinates of its input and a vector of trainable weights (or simply weights)

that have to be trained. Each layer processes some neurons and the outputs of the

neuron evaluations will form new input vectors for the subsequent layer. As we will

see, the trainable weights of a NN are in general those defining the linear operations,

which are scalar products processed by the neurons. Neurons can be implemented to

operate in parallel and are very efficient to be processed and differentiated on GPUs.

The Multi-Layer Perceptrons (MLPs), or Feedforward Neural Networks, are a family

of NN’s architectures, associated with a function F that is composed of multiple lin-

ear functions and some non-linear functions, called activations. The name feedforward

refers to the fact that the information flows from the input to the output, through

the intermediate computations, without any feedback connection in which outputs

of the model are fed back into itself. This is in opposition to the so-called Recurrent

Neural Network structures. The CNNs are a generalisation of the MLPs.

We can express a typical classification-oriented MLP by the following form:

F (~x) = s ◦ λn ◦ σn−1 ◦ λn−1 ◦ · · · ◦ λ1(~x) = ~y , (6.1)

where:

• The λi functions are typically the so-called Fully-Connected (FC) layers and are

expressible as affine functions: denoting ~x ∈ RD the input of an FC, its output

is given by A~x +~b, being A ∈ RD×C a matrix of weights and ~b ∈ RC a vector

of biases. These weights and biases are the trainable weights of the FC layer.

They are called Fully-Connected because each i-th input coordinate is connected

to each j-th output via the A[i, j] weight. FC layers can be seen as a special

case of the linear layers in general feedforward networks, in which not all the
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connections are present. The absence of some (i, j)-th connections can be for-

malised as a constraint for the matrix A consisting in forcing to 0 its (i, j)-th

coordinates.

• The σi are the so-called activation functions (ACT): an activation function is a

non-linear real function that is applied independently to each coordinate of its

input. In general it does not depend on trainable weights. We denote them by

σ since in general they are functions similar to the logistic sigmoid introduced in

3.1.3, which is denoted by σ as well: indeed historically sigmoidal functions,

i.e. real-valued, bounded, monotonic, and differentiable functions with a non-

negative first derivative, were recommended. Nevertheless, the recommended

function in modern neural network literature is the so-called Rectified Linear

Unit (ReLU), introduced by [NH10] and defined as ReLU(~x)[i] = max(0, ~x[i]).

Even if this function is not sigmoidal (indeed, it is not bounded, nor differen-

tiable), the fact of being a non-linear transformation but still piecewise linear,

allows to preserve many of the properties that make linear models easy to op-

timise with gradient-based method.

• s is the softmax1 function (SOFT), already introduced in 3.1.3: s(~x)[i] = e~x[i]∑
j e

~x[j] .

The choice of the softmax function as last layer of a neural network classifier is

the most common one. It allows the model F to be interpreted as a generalisation

of the binary classifier described in (3.13), where the softmax takes the place of the

sigmoid to make the model multi-class and the linear argument is substituted by all

previous layers of F . The previous layers take in charge any preprocessing and are

supposed to predict the unnormalised log probabilities (3.9). The role of the softmax

is thus to renormalise such output scores in such a way that they define a probability

distribution F (~x) ≈ pZ | ~X=~x.

6.4 Learning Algorithm

The weights of an NN are tuned during a training phase. They are first initialized

with random values. Afterwards, they are updated via an iterative approach which

locally applies the (Stochastic) Gradient Descent algorithm [GBC16a] to minimise a

loss function quantifying the classification error of the function F ( ~X) over a training

set.
1To prevent underflow, the log-softmax is usually preferred if several classification outputs must be

combined.
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6.4.1 Training

The training of an NN is said to be full batch learning if the full training database

is processed before one update of the weights. At the opposite, if a single training

input is processed at a time, then the approach is named stochastic. In practice, one

often prefers to follow an approach in between, called mini-batch learning, and to use

small batches, i.e. groups of training inputs, at a time during the learning. In this case

a step of the training consists in:

• selecting a batch of training traces (~xi, zi)i∈I chosen in random order (here I is

a random set of indexes),

• computing the outputs, or scores, of the current model function for the input

batch (~yi = F (~xi))i∈I ,

• evaluating the loss function, which in general involves values ~yi and zi

• computing the partial derivatives of the loss function with respect to each

trainable weight (this is done through a method called back propagation [LeC+12]),

• updating trainable parameters by subtracting from each a small multiple of the

loss gradient (the used multiple is called learning rate).

The size of the mini-batch is generally driven by several efficiency/accuracy fac-

tors which are e.g. discussed in [GBC16b] (e.g. optimal use of the multi-core ar-

chitectures, parallelisation with GPUs, trade-off between regularisation effect and

stability, etc.).

An iteration over all the training dataset during the Stochastic Gradient Descent

is called an epoch. The number of epochs is another hyper-parameter. Intuitively,

running a too low number of epochs may lead to underfitting, while running a too

high number of epochs may lead to overfitting. In our experiments, we chose to ap-

ply the so-called early stopping strategy [Pre12] in order to avoid the need of a prior

tuning of the number of epochs. It consists in choosing a stop criterion that will be

involved during the training. In general, the choice is done on the basis of a stag-

nancy or worsen of the validation accuracies or losses across epochs.

6.4.2 Cross-Entropy

The cross-entropy metric is a classical (and often by default) tool to define the loss

function in a classification-oriented NN [LH05; GBC16a]. It is smooth and decompos-

able, and therefore amenable to optimisation with standard gradient-based meth-

ods. Before providing the definition of cross-entropy in (6.4), we precise the chosen
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form for the loss function. Given a batch of training data (~xi, zi)i∈I and their respec-

tive scores returned by the current model (~yi)i∈I , the loss function is defined as the

following averaged value:

L = − 1

|I|
∑
i∈I

|Z|∑
t=1

~zi[t] log ~yi[t] , (6.2)

where the vector ~zi denotes the one-hot encoding of the realisation zi = sj , i.e. the

vector ~sj = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0) (as defined in Sec. 2.1). There are two ways to

interpret such a choice.

• First, recalling that ~yi may be interpreted as an estimation of the conditional

probability Pr[Z | ~X = ~xi], the maximum-a-posterior principle suggests to

drive the training in such a way that for such an estimate the probability of

the correct label zi is as high as possible. Thus, if we suppose that zi = sj , we

want to maximise ~yi[j] (or equivalently to minimise − log ~yi[j]).2 It may be ob-

served that, thanks to the one-hot encoding, in which all entries of ~sj are null

but the jth one, such a log-likelihood rewrites as

− log ~yi[j] = −
|Z|∑
t=1

~zi[t] log ~yi[t] , (6.3)

which equals the quantity averaged in (6.2).

• The second interpretation of the chosen loss function is linked to the fact that

it actually represents the average of the cross-entropy of pairs of well-chosen

probability mass functions. Let us interpret ~zi = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0) as the

pmf of Z | Z = sj , which corresponds to the exact probability density we want

the network to approximate. Informally speaking, the cross-entropy between

two probability distributions, in our case the probability mass functions de-

fined by ~zi and ~yi, gives a measure of the dissimilarity between them, and is

defined as follows:

H(~zi, ~yi) = H(~zi) +DKL(~zi||~yi) = E~zi [− log ~yi] = −
|Z|∑
t=1

~zi[t] log ~yi[t] , (6.4)

where H denotes the entropy and DKL denotes the Kullback-Leibler diver-

gence [Bis06]. Thus, this is an information-theoretic notion that comes out to

be equivalent to the negative log-likelihood formula given by (6.3).

2We remark that thanks to the softmax function used as last network layer, each coordinate of ~yi is
always strictly positive.
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In conclusion, depending on the point of view, minimising the loss function (6.3),

which is a cross-entropy averaged over the traces contained in a batch, corresponds

to maximising the a-posterior probability of the right label, or to minimise the dissim-

ilarity between the network estimation of a distribution and the right distribution

that we want it to approximate. We chose the loss function (6.2) for our experiments.

However, other metrics may be investigated and can potentially lead to better re-

sults [MHK10; Son+15].

As justified in Sec. 3.1.5, for the experiments proposed in this chapter we will

divide the side-channel profiling set into two subsets: the training one and the vali-

dation one. The training set will be processed by batch and used to update the NN’s

parameters. The validation set is exploited in general at the end of each epoch to

monitor the training, and in particular to watch over the incoming of an overfitting

phenomenon. Remarkably, cross-validation has not been performed to improve the

accuracy of our observation. Instead, we used a side-channel attack set to evaluate

both the ability of the trained model to tackle the classification task, and the perfor-

mance of the obtained attack strategy.

6.5 Attack Strategy with an MLP

The strategy we adopt to perform a SCA, with an MLP, is almost identical to the

classical Template Attack described in 2.10.1. The main difference will be that TA

is based on generative models, while MLPs are used to construct a discriminative

one. Indeed, in TA the templates (2.12) are priorly estimated, while an MLP directly

approximates the posterior probabilities (2.13) F (~x) ≈ pZ | ~X=~x. Once this approxi-

mation is done, the attack strategy proceeds in the same way for both approaches.

The attacker acquires the new attack traces, that he only can associate to the pub-

lic parameter E, obtaining couples (~xi, ei)i=1,...,Na . Then he makes key hypotheses

k ∈ K and, making the assumption that each acquisition is an independent observa-

tion of ~X , he associates to each hypothesis k ∈ K a score dk given by (2.14), that in

terms of the MLP model F rewrites as:

dk =

Na∏
i=1

F (~xi)[f(k, ei)] . (6.5)

Finally, the best key candidate k̂ is the one maximising the joint probability, as in

(2.15)

k̂ = argmax
k

dk . (6.6)
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6.6 Performance Estimation

6.6.1 Maximal Accuracies and Confusion Matrix

The accuracy is the most common metric to both monitor and evaluate a classification-

oriented NN. As already seen in Sec. 3.1.5, the accuracy is defined as the successful

classification rate reached over a dataset. The training accuracy, the validation accuracy

and the test accuracy are the successful classification rates achieved respectively over

the training, the validation and the test sets. At the end of each epoch it is useful to

compute and to compare the training accuracy and the validation accuracy. For our

study, we found interesting to consider the following two additional quantities:

• the maximal training accuracy, corresponding to the maximum of the training

accuracies computed at the end of each epoch,

• the maximal validation accuracy, corresponding to the maximum of the valida-

tion accuracies computed at the end of each epoch.

In addition to the two quantities above, we will also evaluate the performances of

our trained model, by computing a test accuracy. Sometimes it is useful to complete

this evaluation by looking at the so-called confusion matrix (as the one appearing in

the bottom part of Fig. 6.7). Indeed the latter matrix enables for the identification

of the classes which are confused, in case of misclassification. The confusion matrix

corresponds to the distribution over the couples (true label, predicted label) directly

deduced from the results of the classification on the test set. A test accuracy of 100%

corresponds to a diagonal confusion matrix.

6.6.2 Side-Channel-Oriented Metrics

The accuracy metric is perfectly adapted to the machine learning classification prob-

lem, but corresponds in side-channel language to the success rate of a Simple Attack,

as already discussed in Chapter 2. When the attacker can acquire several traces with

varying plaintexts, the accuracy metric is not sufficient alone to evaluate the attack

performance. Indeed such a metric only takes into account the label corresponding

to the maximal score and does not consider the other ones, whereas an SCA does,

through (6.5). To take this remark into account, we will always associate the test ac-

curacy to a side-channel metric defined as the minimal number N? of side-channel

traces that makes the guessing entropy (see 2.8) be permanently equal to 1. In our

experiments, we will estimate such a guessing entropy through 10 independent at-

tacks.
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6.7 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) complete the classical MLP model

with two additional types of layers, in charge of making them robust to misalign-

ment: the so-called convolutional layer based on a convolutional filtering, and the

pooling layer. We describe these two particular layers hereafter.

Convolutional (CONV) layers Convolutional Layers (CONV) are linear layers that

share weights across space. A representation is given in Fig. 6.1; since CNNs have

been introduced for images [LB+95], such representation differs from the most com-

mon one in which layer interfaces are arranged in a 3D-fashion (height, weight and

depth). In Fig. 6.1 we show a 2D-CNN (length and depth) adapted to 1D-data as

side-channel traces are. To apply a CONV to an input of size D × V , where the ini-

tial depth V is one, for 1D-data, nfilter small matrices, called convolutional filters, of

size W × V (where W is called kernel size) are slid over the length dimension of the

input by a chosen amount of units, called stride. The filters form a window, called

patch in ML language, which defines a linear transformation of W × V consecutive

points of the data into new matrices of size 1 × nfilter, arranged in such a way that

nfilter is the depth of the layer output. The length dimension of the output of a con-

volutional layer depends on several parameters: the input length, the stride, and the

padding. The two most common ways to pad the input are called same padding and

valid padding: with the same padding the input is padded with some zeros at the be-

ginning and at the end, in such a way that, for a stride equal to 1, the output has the

same length than the input, for a stride equal to 2 the input length is exactly halved,

for a stride equal to 3 it is exactly divided by 3, etc. The valid padding consists on the

contrary to avoid any kind of padding. Only proper data points are used as input,

and output length is adjusted: typically, for a stride equal to 1, the output length

equals D −W + 1, where D is the input length. The coordinates of the window are

among the trainable weights of the model. They slid over the input, so they are mul-

tiplied by different parts of the datum, but they are constrained to keep unchanged

while sliding, i.e. to behave in the same way no matter the position of the input

entries on the global input datum. This constraint aims to allow the CONV layer to

learn shift-invariant features, i.e. characteristics of the datum for which the position

is not discriminant. Shift-invariant features are largely present in image recognition

context, which drove the development of CNNs. For examples the eyes, the nose

and the mouth of a person in a picture, are discriminant features for the person no

matter their position in the image. The ability at learning shift-invariant features

makes CNNs robust to geometrical deformations [LB+95] or to temporal deforma-

tion when considering side-channel signals. For this reason they are adequate to

counteract misalignment-based countermeasures.



116 Chapter 6. Convolutional Neural Networks

Input

L
en

g
th

=
9

0

1

3

2

0

2

3

1

0

Depth = 1

0 2 1

1 1 3

3 conv. filters

of size 2 × 1

Output

Depth= 3

3 7 11

2 2 6

0 4 2

1

3 7 11

2 2 6

0 4 2

Depth = 3

Input

1

0

0

1

1

1

0

0

0

1

0

1

1

0

0

1

1

1

0

0

0

1

0

1

4 conv. filters

of size 2 × 3

22 8 6 24

Depth= 4

Output

1
FIGURE 6.1: Two convolutional layers. Top: W = 2, V = 1, nfilter = 3,

stride = 1. Bottom: W = 2, V = 3, nfilter = 4.

Pooling (POOL) layers In the most typical example of convolutional layer, i.e. a

layer with stride equal to 1 and same padding, the output size equals the input size

multiplied by nfilter. If many of this kind of convolutional layers are stacked, it leads

to a complexity exponential growing due to the increasing of data size through lay-

ers. To avoid such complexity explosion, the insertion of pooling (POOL) layers is

recommended. POOL layers are non-linear layers that reduce the spatial size (see

Fig. 6.2). As the CONV layers, they make a filter slide across the input. The filter is

1-dimensional, characterised by a length W , and usually the stride is chosen equal

to its length; for example in Fig. 6.2 both the length and the stride equal 3, so that the

selected segments of the input do not overlap. In contrast with convolutional layers,

the pooling filter does not contain trainable weights; they only slid across the input

to select a segment, then a pooling function is applied: the most common pooling

functions are the max-pooling, which outputs the maximum values within the seg-

ment, and the average-pooling, which outputs the average of the coordinates of the

segment.

Discussion The reason why a CONV always applies several filters (i.e. nfilter > 1)

is that we expect each filter to extract a different kind of feature from the input. These
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FIGURE 6.2: Max-pooling layer: W = stride = 3.

extracted features are arranged side-by-side over an additional data dimension, the

so-called depth.3 The hope is that during training, automatically, each filter spe-

cialises over the detection/recognition/modalisation of a different discriminant fea-

ture, and the collection of all discriminant features allows the last network layer con-

cluding a successful classification. As one goes along convolutional layers, higher-

level abstraction features are expected to be extracted. The face recognition problem

provides a simplified didactic example for this concept: we may think to some first

layers’ filters that specialise in detecting some local patterns of borders and surfaces.

Then we may think to a deeper layer that compose such local features and modelise

the angles of eyes’ borders: the pupils, their color,... Then some deeper layers may

compose such feature and modelise the whole eye, which is a more complex feature,

and some deeper layers may compose eyes together with noses’ features coming

from other filters and, going on in this compositional process, modelise the whole

face, and assign to it a very abstract feature, i.e. the name of the person, which is

the goal of the classification task. The fact that many natural data in the works have

such a compositional flavour is one of the justifications inventors of CNNs provide

to explain the success of such a technique.4 Actually, analysing and understanding

the very first low-level features extracted by a self-trained CNN is a very hard task,

and such an impossibility to explain from where discriminant features come out is,

in my opinion, one of the characteristics of the DL domain that leads it to be kept

unconsidered and disliked by a still quite large community of scientists.

Common architecture The main block of a CNN is a CONV layer γ directly fol-

lowed by an ACT layer σ. The former locally extracts information from the input

thanks to its filters and the latter increases the capacity of the model thanks to its

3Ambiguity: Neural Networks with more that one non-linear layer are called Deep Neural Networks,
where the depth corresponds to the number of layers.

4See for example Yann LeCun’s class available at https://www.college-de-france.fr/
site/yann-lecun/course-2016-02-12-14h30.htm

https://www.college-de-france.fr/site/yann-lecun/course-2016-02-12-14h30.htm
https://www.college-de-france.fr/site/yann-lecun/course-2016-02-12-14h30.htm
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non-linearity. After some (σ ◦ γ) blocks, a POOL layer δ is usually added to reduce

the number of neurons: δ ◦ [σ ◦ γ]n2 . This new block is repeated in the network un-

til obtaining an output of reasonable size. Then, some FCs are introduced in order

to obtain a global result which depends on the entire input, and not only on local

features. To sum-up, a common convolutional network can be characterised by the

following formula:5

s ◦ [λ]n1 ◦ [δ ◦ [σ ◦ γ]n2 ]n3 . (6.7)

Layer by layer the network increases the spatial depth through convolution fil-

ters, adds non-linearity through activation functions and reduces the spatial (or tem-

poral, in the side-channel traces case) size through pooling layers. Once a deep and

narrow representation has been obtained, one or more FC layers are connected to it,

followed by a softmax function. An example of CNN architecture is represented in

Fig. 6.3.
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FIGURE 6.3: Common CNN architecture.

6.8 Data Augmentation

As explained in Sec. 3.1.4, ML models are prone to overfitting, especially when their

capacity (see Sec. 3.1.4) is very high, as it is often the case with deep networks. Thus,

it is sometimes necessary to deal with the overfitting phenomenon, by applying

some regularisation techniques. As we will see in Secs. 6.9.1 and 6.10 this will be

the case in our experiments: indeed we will propose a quite deep CNN architecture,

flexible enough to successfully manage the misalignment problems, but trained over

some relatively small training sets. This fact, combined with the high capacity of our

CNN architecture, implies that the model will learn by heart each element of the train-

ing set, without catching the truly discriminant features of the traces.

5where each layer of the same type appearing in the composition is not to be intended as exactly
the same function (e.g. with same input/output dimensions), but as a layer of the same kind.



6.8. Data Augmentation 119

Instead of applying a proper regularisation techniques, we choose to concen-

trate priorly on the Data Augmentation strategy [SSP+03], mainly for two reasons.

First, it is a common practice in side-channel context to increase the number of ac-

quisitions to counteract the misalignment effect. In other terms, misalignment may

provoke a "lack of data"phenomenon on adversary’s side. In the ML domain, such a

lack is classically addressed thanks to the DA technique, and its benefits are widely

proved. For example, many image recognition competition winners made use of

such a technique (e.g. the winner of ILSVRC-2012 [KSH12]). Second, the DA is con-

trollable, meaning that the deformations applied to the data are chosen, thus fully

characterised. It is therefore possible to fully determine the addition of complexity

induced to the classification problem. In our opinion, other techniques add con-

straints to the problem in a more implicit and uncontrollable way, e.g. the dropout

[Hin+12] or the `2-norm regularisation [Bis06].

Data augmentation consists in artificially generating new training traces by de-

forming those previously acquired. The deformation is done by the application of

transformations that preserve the label information (i.e. the value of the handled

sensitive variable in our context). We choose two kinds of deformations, that we

denote by Shifting and Add-Remove.

Shifting Deformation (SHT ?) It simulates a random delay effect of maximal am-

plitude T ?, by randomly selecting a shifting window of the acquired trace, as shown

in Fig. 6.4. Let D denote the original size of the traces. We fix the size of the input

layer of our CNN to D′ = D − T ?. Then the technique SHT ? consists (1) in drawing

a uniform random t ∈ [0, T ?], and (2) in selecting the D′-sized window starting from

the t-th point. For our study, we will compare the SHT technique for different values

T ≤ T ?, without changing the architecture of the CNN (in particular the input size

D′). Notably, T � T ? implies that T ? − T time samples will never have the chance

to be selected. As we suppose that the information is localized in the central part of

the traces, we choose to center the shifting windows, discarding the heads and the

tails of the traces (corresponding to the first and the last T
?−T
2 points).

Add-Remove Deformation (AR) It simulates a clock jitter effect (Fig. 6.5). We will

denote by ARR the operation that consists in two steps:

(1) in inserting R time samples, whose positions are chosen uniformly at random

and whose values are the arithmetic mean between the previous time sample

and the following one,

(2) in suppressing R time samples, chosen uniformly at random.
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The two deformations can be composed: we will denote by SHTARR the appli-

cation of a SHT followed by a ARR.

Discussion The deformations we propose as Data Augmentation techniques are

inspired by the way we modelise the countermeasures’ effects. Actually, we pro-

pose to turn the misalignment problem into a virtue, enlarging the profiling trace set

via a random shift of the acquired traces and the AR distortion that together simulate

a clock jitter effect. Paradoxically, instead of trying to realign the traces, we propose

to further misalign them (a much easier task!). In real-case secure devices evaluation

contexts, the acquisition campaign may sometimes represent a bottleneck in terms

of time. Further proposals and analyses of DA techniques, maybe inspired by other

forms of noise present in side-channel acquisitions, might be interesting tracks for

future researches. Actually, the idea of applying DA in profiling side-channel con-

text appeared independently from our work, in another publication in 2017 [Pu+17],

under the name of Trace Augmentation. In this paper, the augmentation is obtained

with a shifting equivalent to our SH deformation, and it is applied as preliminary

step for the profiling phase of a Gaussian TA. The authors’ goal is to make Gaussian

templates more robust to the discrepancy between profiling acquisitions and attack

ones. Surprisingly, in the paper, authors observe that this augmentation provides

benefits to the attack routine both in case where some discrepancies are present, and

in the ideal case. Data Augmentation seems thus to be a good practice indepen-

dently of the presence or not of specific countermeasures, nor the exploitation or not
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FIGURE 6.6: Left: one leakage protected by single uniform RDI. Right:
two leaking operations protected by multiple uniform RDI.

of DL techniques.

6.9 Experiments against Software Countermeasures

In this section we present two preliminary experiments, performed in order to val-

idate the shift-invariance claimed by the CNN architecture, recalled in Sec. 6.7. In

the first one, a single leaking operation was observed through the side-channel ac-

quisitions, shifted in time by the insertion of a random number of dummy opera-

tions. We will refer to such a countermeasure as Random Delay Interrupt (RDI).

In the second one we targeted two leaking operations each delayed by RDI. We re-

mark that this kind of countermeasure is nowadays considered defeated, e.g. thanks

to resynchronisation by cross-correlation [Nag+07]. In this sense, the experiments

we present in this section are not expected to be representative of real application

cases. The complexity of the state-of-the-art resynchronisation techniques strongly

depends on the variability of the shift. When the latter variability is low, i.e. when at-

tacks are judged to be applicable, multiple random delays are recommended. It has

even been proposed to adapt the probabilistic distributions of the random delays to

achieve good compromises between the countermeasure efficiency and the chip per-

formance overhead [CK09; CK10]. Attacks have already been shown even against

this multiple-RDI kind of countermeasures, e.g. [Dur+12]. The latter attack exploits

some Gaussian templates to classify the leakage of each instruction; the classification

scores are used to feed a Hidden Markov Model (HMM) that describes the complete

chip execution, and the Viterbi algorithm is applied to find the most probable se-

quence of states for the HMM and to remove the random delays. We remark that

this HMM-based attack exploits Gaussian templates to feed the HMM model, and

the accuracy of such templates is affected by other misalignment reasons, e.g. clock

jitter. We believe that our CNN approach proposal for operation classification, is a

valuable alternative to the Gaussian template one, and might even provide benefits
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to the HMM performances, by e.g. improving the robustness of the attack in pres-

ence of both RDI and jitter-based countermeasures. This robustness with respect to

the misalignment caused by the clock jitter will be analysed in Sec. 6.10.

6.9.1 One Leaking Operation

For this experiment, we implemented, on an Atmega328P microprocessor, a uniform

RDI [TB07] to protect the leakage produced by a single target operation. Our RDI

simply consists in a loop of r nop instructions, with r drawn uniformly in [0, 127].

Some acquired traces are reported in the left side of Fig. 6.6, the target peak being

highlighted with a red ellipse. They are composed of 3, 996 time samples, corre-

sponding to an access to the AES-Sbox look-up table stored in NVM. For the train-

ing, we acquired only 1, 000 traces and 700 further traces were acquired as valida-

tion data. Our CNN has been trained to classify the traces according to the Ham-

ming weight of the Sbox output; namely, the target sensitive variable is given by

Z = HW(Sbox(P ⊕ K)). This choice has been done to let each class contain more

than only a few (i.e. about 1, 000/256) training traces. For Atmega328P devices, the

Hamming weight is known to be particularly relevant to model the leakage occur-

ring during register writing (see for example Chapters 4 and 5 or [Bel+15]). Since Z

is assumed to take nine values and the position of the leakage depends on a random

r ranging over 128 values, it is clear that the 1, 000 training traces do not encompass

the full 9 × 128 = 1, 152 possible combinations (z, r) ∈ [0, 8] × [0, 127]. We under-

sized the training set by purpose, in order to establish whether the CNN technique,

equipped with DA, is able to catch the meaningful shift-invariant features without

having been provided with all the possible observations.

For the training of our CNN, we applied the SHT data augmentation, selecting

T ? = 500 and T ∈ {0, 100, T ?}; this implies that the input dimension of our CNN is

reduced to 3, 496. Our implementation is based on Keras library [Cho+15] (version

1.2.1), and we run the trainings over an ordinary computer equipped with a gamers

market GPU, a GeForce GTS 450. For the CNN architecture, we chose the following

structure:

s ◦ [λ]1 ◦ [δ ◦ [σ ◦ γ]1]4, (6.8)

i.e. (6.7) with n1 = n2 = 1 and n3 = 4. To accelerate the training we applied

a technique proposed in 2015 [IS15], consisting in the introduction of a so-called

Batch Normalization layer [IS15] after each pooling δ. The network transforms the

3, 496 × 1 inputs in a 1 × 256 list of abstract features, before entering the last FC

layer λ : R256 → R9. Even if the ReLU activation function [NH10] is classically

recommended for many applications in literature (see Sec. 6.3), we obtained in most
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FIGURE 6.7: One leakage protected via uniform RDI: accuracies vs
epochs and confusion matrices obtained with our CNN for different

DA techniques. From left to right: SH0, SH100, SH500.

TABLE 6.1: Results of our CNN, for different DA techniques, in pres-
ence of an uniform RDI countermeasure protecting. For each tech-
nique, 4 values are given: in position a the maximal training accuracy,
in position b the maximal validation accuracy, in position c the test ac-

curacy, in position d the value of N? (see Sec. 6.6 for definitions).

SH0 SH100 SH500

a b 100% 25.9% 100% 39.4% 98.4% 76.7%
c d 27.0% >1000 31.8% 101 78.0% 7

cases better results using the hyperbolic tangent, defined as:

tanh(x) =
ex − e−x

ex + e−x
. (6.9)

We trained our CNN by batches of size 32. In total the network contained 869, 341

trainable weights. The training and validation accuracies achieved after each epoch

are depicted in Fig. 6.7 together with the confusion matrices that we obtained from

the test set. Applying the early-stopping principle recalled in Sec. 6.4.1, we auto-

matically stopped the training after 120 epochs without decrement of the loss func-

tion evaluated over the validation set, and kept as final trained model the one that

showed the minimal value for the loss function evaluation. Concerning the learning

rate (see Sec. 6.4.1), we fixed the beginning one to 0.01 and reduced it multiplying it

by a factor of
√

0.1 after 5 epochs without validation loss decrement.

Table 6.1 summarises the obtained results. For each trained model we can com-

pare the maximal training accuracy achieved during the training with the maximal

validation accuracy, defined in Sec. 6.6. This comparison gives an insight about the
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risk of overfitting for the training.6 Case SH0 corresponds to a training performed

without DA technique. When no DA is applied, the overfitting effect is dramatic: the

training set is 100%-successfully classified after about 22 epochs, while the test accu-

racy only achieves 27%. The 27% is around the rate of uniformly distributed bytes

showing an Hamming weight of 4.7 Looking at the corresponding confusion matrix

we remark that the CNN training has been biased by the binomial distribution of the

training data, and almost always predicts the class 4. This essentially means that no

discriminative feature has been learned in this case, which is confirmed by the fact

that the trained model leads to an unsuccessful attack (N? > 1, 000). Remarkably,

the more artificial shifting is added by the DA, the more the overfitting effect is at-

tenuated; for SHT with e.g. T = 500 the training set is never completely learnt and

the test accuracy achieves 78%, leading to a guessing entropy of 1 with only N? = 7

traces.

These results confirm that our CNN model is able to characterise a wide range

of points in a way that is robust to RDI.

6.9.2 Two Leaking Operations

Here we study whether our CNN classifier suffers from the presence of multiple

leaking operations with the same power consumption pattern. This situation occurs

for instance any time the same operation is repeated several successive times over

different pieces of data (e.g. the SubBytes operation for a software AES implementa-

tion is often performed by 16 successive look-up table accesses). To start our study

we performed the same experiments as in Sec. 6.9.1 over a second traces set, where

two look-up table accesses leak, each preceded by a random delay. Some examples

of this second traces set are given in the right side of Fig. 6.6, where the two leaking

operations being highlighted by red and green ellipses. We trained the same CNN as

in Sec. 6.9.1, once to classify the first leakage, and a second time to classify the second

leakage, applying SH500 as DA technique. Results are given in Table 6.2. They show

that even if the CNN transforms spatial (or temporal) information into abstract dis-

criminative features, it still holds an ordering notion: indeed if no ordering notion

would have been held, the CNN could no way discriminate the first peak from the

second one.
6The validation accuracies are estimated over a 700-sized set, while the test accuracies are estimated

over 100, 000 traces. Thus the latter estimation is more accurate, and we recall that the test accuracy is
to be considered as the final CNN classification performance.

7We recall that the Hamming weight of uniformly distributed data follows a binomial law with
coefficients (8, 0.5).
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TABLE 6.2: Results of our CNN in presence of uniform RDI protecting
two leaking operations. See the caption of Table 6.1 for a legend.

First operation Second operation
a b 95.2% 79.7% 96.8% 81.0%
c d 76.8% 7 82.5% 6

6.10 Experiments against Artificial Hardware Countermea-

sures

A classical hardware countermeasure against side-channel attacks consists in intro-

ducing instability in the clock. This implies the cumulation of a deforming effect

that affects each single acquired clock cycle, and provokes traces misalignment on

the adversary side. Indeed, since clock cycles do not have the same duration, they

are sampled during the attack by a varying number of time samples. As a conse-

quence, a simple translation of the acquisitions is not sufficient in this case to align

with respect to an identified clock cycle. Some realignment techniques are available

to manage this kind of deformations, e.g. [WWB11]. In this context, our goal is to

show that we can get rid of the realignment pre-processing, letting the CNN deep

structure take it in charge implicitly.

6.10.1 Performances over Artificial Augmented Clock Jitter

In this section we present the results that we obtained over two datasets named

DS_low_jitter and DS_high_jitter. Each one contains 10, 000 labelled traces, used for

the training phase (more precisely, 9, 000 are used for the training, and 1, 000 for the

validation), and 100, 000 attack traces. The traces are composed of 1, 860 time sam-

ples. The two datasets have been obtained by artificially adding a simulated jitter

effect over some synchronised original traces. The original traces were measured

on the same Atmega328P microprocessor used in the previous section. We verified

that they originally encompass leakage on 34 instructions: 2 nops, 16 loads from the

NVM and 16 accesses to look-up tables. For our attack experiments, it is assumed

that the target is the first look-up table access, i.e. the 19th clock cycle. As in the

previous section, the target sensitive variable is Z = HW(Sbox(P ⊕K)). To simulate

the jitter effect we used the technique described in Appendix B, fixing parameters

sigma = 4, B = 2 for the DS_low_jitter dataset, and sigma = 6, B = 4 for the

DS_high_jitter dataset. In the same Appendix B, some traces of DS_low_jitter and

DS_high_jitter are depicted (respectively in Fig. B.1(a) and in Fig. B.1(b)): the cumu-

lative effect of the jitter is observable by remarking that the desynchronisation raises

with time. For both datasets we did not operate any PoI selection, but entered the
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entire traces into our CNN.

We used the same CNN architecture (6.8) as in previous section. We assisted

again to a strong overfitting phenomenon and we successfully reduced it by apply-

ing the DA strategy introduced in Sec. 6.8. This time we applied both the shifting

deformation SHT with T ? = 200 and T ∈ {0, 20, 40} and the add-remove deformation

ARR with R ∈ {0, 100, 200}, training the CNN model using the nine combinations

SHTARR. We performed a further experiment with much higher DA parameters, i.e.

SH200AR500, to show that the benefits provided by the DA are limited: as expected,

too much deformation affects the CNN performances (indeed results obtained with

SH200AR500 will be worse than those obtained with e.g. SH40AR200).

The results we obtained are summarized in Table 6.3. Case SH0AR0 corresponds

to a training performed without DA technique, hence serves as a reference suffer-

ing from the overfitting phenomenon. It can be observed that as the DA parame-

ters raise, the validation accuracy increases while the training accuracy decreases.

This experimentally validates that the DA technique is efficient in reducing overfit-

ting. Remarkably in some cases, for example in the DS_low_jitter dataset case with

SH100AR40, the best validation accuracy is higher than the best training accuracy. In

Fig. 6.8 the training and validation accuracies achieved in this case epoch by epoch

are depicted. It can be noticed that the unusual relation between the training and

the validation accuracies does not only concern the maximal values, but is almost

kept epoch by epoch. Observing the picture, we can be convinced that, since this

fact occurs at many epochs, this is not a consequence of some unlucky inaccurate

estimations. To interpret this phenomenon we observe that the training set contains

both the original data and the augmented ones (i.e. deformed by the DA) while

the validation set only contains non-augmented data. The fact that the achieved

training accuracy is lower than the validation one, indicates that the CNN does not

succeed in learning how to classify the augmented data, but succeeds to extract the

features of interest for the classification of the original data. We judge this behaviour

positively. Concerning the DA techniques we observe that they are efficient when

applied independently and that their combination is still more efficient.

According to our results in Table 6.3, we selected the model issued using the

SH200AR40 technique for the DS_low_jitter dataset and the one issued using the

SH200AR20 technique for the DS_higher_jitter. In Fig. 6.9 we compare their perfor-

mances with those of a Gaussian TA combined with a realignment technique. To

tune this comparison, several state-of-the-art Gaussian TA have been tested. Since

in the experiment the leakage is concentrated in peaks that are easily detected by
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FIGURE 6.8: Training of the CNN model with DA SH100AR40. The
training classification problem becomes harder than the real classifi-
cation problem, leading validation accuracy constantly higher than

the training one.
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FIGURE 6.9: Comparison between a Gaussian template attack,
with and without realignment, and our CNN strategy, over the

DS_low_jitter (left) and the DS_high_jitter (right).

their relatively high amplitude, we use as realignment technique a simple method

that consists in first detecting the peaks above a chosen threshold, then keeping all

the samples in a window around these peaks. Then, for the selection of the PoIs,

two approaches have been applied: first we selected from 3 to 20 points maximis-

ing the estimated instantaneous SNR, secondly we selected sliding windows of 3 to

20 consecutive points covering the region of interest. For the template processing,

we tried (1) the classical approach [CRR03] where a mean and a covariance matrix

are estimated for each class, (2) the pooled covariance matrix strategy proposed in

[CK14b] and (3) the stochastic approach proposed in [SLP05]. The results plotted

in Fig. 6.9 are the best ones we obtained (via the stochastic approach over some

5-sized windows). Results show that the performances of the CNN approach are

much higher than those of the Gaussian templates, both with and without realign-

ment. This confirms the robustness of the CNN approach with respect to the jitter

effect: the selection of PoIs and the realignment integrated in the training phase are

effective.
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TABLE 6.3: Results of our CNN in presence of artificially-generated
jitter countermeasure, with different DA techniques. See the caption

of Table 6.1 for a legend.

DS_low_jitter
a b
c d

SH0 SH20 SH40 SH200

100.0% 68.7% 99.8% 86.1% 98.9% 84.1%
AR0 57.4% 14 82.5% 6 83.6% 6

87.7% 88.2% 82.4% 88.4% 81.9% 89.6%
AR100 86.0% 6 87.0% 5 87.5% 6

83.2% 88.6% 81.4% 86.9% 80.6% 88.9%
AR200 86.6% 6 85.7% 6 87.7% 5

85.0% 88.6%
AR500 86.2% 5

DS_high_jitter
a b

SH0 SH20 SH40 SH200c d

AR0
100% 45.0% 100% 60.0% 98.5% 67.6%
40.6% 35 51.1% 9 62.4% 11

AR100
90.4% 57.3% 76.6% 73.6% 78.5% 76.4%
50.2% 15 72.4% 11 73.5% 9

AR200
83.1% 67.7% 82.0% 77.1% 82.6% 77.0%
64.0% 11 75.5% 8 74.4% 8

AR500
83.6% 73.4%
68.2% 11

6.11 Experiments against Real-Case Hardware Countermea-

sures

As a last (but most challenging) experiment we deployed our CNN architecture to at-

tack an AES hardware implementation over a modern secure smartcard (secure im-

plementation on 90nm technology node). On this implementation, the architecture

is designed to optimise the area, and the speed performances are not the major con-

cern. The architecture is here minimal, implementing only one hardware instance of

the SubBytes module. The AES SubBytes operation is thus executed serially and one

byte is processed per clock cycle. To protect the implementation, several counter-

measures are implemented. Among them, a hardware mechanism induces a strong

jitter effect which produces an important traces’ desynchronisation. The bench is set

up to trig the acquisition of the trace on a peak which corresponds to the processing

of the first byte. Consequently, the set of traces is aligned according to the process-

ing of the first byte while the other bytes leakages are completely misaligned. To

illustrate the effect of this misalignment, the SNR characterising the (aligned) first

byte and the (misaligned) second byte are computed (according to (2.1)) using a set

of 150, 000 traces labelled by the value of the SubBytes output (256 labels). These
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SNRs are depicted in the top part of Fig. 6.10. The SNR of the first byte (in green)

detects a quite high leakage, while the SNR of the second byte (in blue) is nullified.

A zoom of the SNR of the second peak is proposed in the bottom part of Fig. 6.10.

In order to confirm that the very low SNR corresponding to the second byte is only

due to the desynchronisation, the patterns of the traces corresponding to the second

byte have been resynchronised using a peak-detection-based algorithm, quite sim-

ilar to the one applied for the experiments of Sec. 6.10.1. Then the SNR has been

computed onto these new aligned traces and has been plot in red in the top-left part

of Fig. 6.10; this SNR is very similar to that of the first byte. This clearly shows that

(1) the leakage information is contained into the trace but is efficiently hidden by the

jitter-based countermeasure, and that (2) the realignment technique we applied in

this context is effective.

We applied the CNN approach onto the rough set of traces (without any aligne-

ment). First, a 2, 500-long window of the trace has been selected to input CNN. The

window, identified by the vertical cursors in the bottom part of Fig. 6.10, has been

selected to ensure that the pattern corresponding to the leakage of the second byte

is inside the selection. At this step, it is important to notice that such a selection is

not at all as meticulous as the selection of PoIs required by a classical TA approach.

The training phase has been performed using 98, 000 labelled traces; 1, 000 further

traces have been used for the validation set. We performed the training phase over

a desktop computer equipped with an Intel Xeon E5440 @2,83GHz processor, 24Gb

of RAM and a GeForce GTS 450 GPU. Without data augmentation each epoch took

about 200s.8 The training stopped after 25 epochs. Considering that in this case

we applied an early-stopping strategy that stopped training after 20 epochs with-

out validation loss decrement, it means that the final trainable weights are obtained

after 5 epochs (in about 15 minutes). The results that we obtained are summarised

in Table 6.4. They prove not only that our CNN is still effective in presence of the

misalignment caused by the jitter, but also that the DA technique is effective in rais-

ing its efficiency. A comparison between the CNN performances and the best results

we obtained over the same dataset applying the realignment-TA strategy, is pro-

posed in Fig. 6.11. Beyond the fact that the CNN approach slightly outperforms the

realignment-TA one, and considering that both case-results shown here are surely

non-optimal, what is remarkable is that the CNN approach is potentially suitable

even in cases where realignment methods are impracticable or not satisfying. It is of

particular interest in cases where sensitive information does not lie in proximity of

peaks or of easily detectable patterns, since many resynchronisation techniques are

8raising to about 2, 000 seconds when SH20DA200 data augmentation is performed (data are aug-
mented online during training)



130 Chapter 6. Convolutional Neural Networks

FIGURE 6.10: AES hardware implementation protected by jitter-
based misalignment. In green the SNR for the first byte; in blue the
SNR for the second byte; in red the SNR for the second byte after a

trace realignment.

SH0AR0 SH10AR100 SH20AR200

a b 35.0% 1.1% 12.5% 1.5% 10.4% 2.2%
c d 1.2% 137 1.3% 89 1.8% 54

TABLE 6.4: Results of our CNN over the modern smart card with
jitter.

based on pattern or peak detection. If the resynchronisation fails, the TA approach

falls out of service, while the CNN one remains a further weapon in the hands of an

attacker.

6.12 Conclusion

In this chapter, we have proposed an end-to-end profiling attack approach, based on

the CNNs. We claimed that such a strategy would keep effective even in presence

of trace misalignment, and we successfully verified our claim by performing CNN-

based attacks against different kinds of misaligned data. This property represents

a great practical advantage compared to the state-of-the-art Template Attacks, that

require a meticulous trace realignment in order to be efficient. Our strategy based

over CNNs differs from classical TA for mainly two points. First, it makes use of a

discriminative model, instead of a generative one. Second it takes in charge into a

unique training phase all eventual preprocessing phases necessary for the success-

fulness of a TA. Indeed, beyond the trace realignment, that is not necessary for the

CNN approach, it represents as well a solution to the problem of the selection of PoIs
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FIGURE 6.11: Comparison between a Gaussian template attack with
realignment, and our CNN strategy, over the modern smart card with

jitter.

issue: CNNs efficiently manage high-dimensional data, allowing the attacker to sim-

ply select large windows. In this sense, the experiments described in Sec. 6.11 are

very representative: our CNN retrieves information from a large window of points

showing an almost null instantaneous SNR. To tackle the traces misalignment, we

used a quite complex architecture for our CNN, and we clearly identified the risk

of overfitting phenomenon. To deal with this classical issue in ML, we proposed

two Data Augmentation techniques adapted to misaligned side-channel traces. All

the experimental results we obtained have proven that they provide a great benefit

to the CNN strategy. Attacks proposed in this chapter are performed against non-

masked implementation. Nevertheless, since NNs are in general non-linear models,

they naturally well-fit also the higher-order attack context, as discussed in [MPP16]

and in [Pro+18].
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Chapter 7

Conclusions and Perspectives

7.1 Conclusions

In this thesis, we focused over issues related to side-channel profiling attacks, which

play a fundamental role in the context of the evaluation of cryptographic secure de-

vices. The opportunity of performing a characterisation of the device leakages opens

the way to an optimal approach, allowing the estimation of the conditional probabil-

ities needed to identify the target key through maximum-a-posteriori. Nevertheless,

the attempt to estimate the probability distributions of highly multi-dimensional

data is hindered by the curse of dimensionality. Our first efforts were thus focused

over the development of dimensionality reduction techniques, and we proposed two

works on this topic.

First, in Chapter 4, we presented an analysis of linear dimensionality reduction

techniques, that had already been introduced in side-channel context before 2014,

the PCA and the LDA. These techniques extract interesting features from data by

means of linear combinations of time samples. Despite the fact that the LDA is

mainly a technique that allows to build a linear classifier, only its dimensionality

reduction version, known as Fisher’s Linear Discriminant, raised attention in side-

channel context. We followed this trail, and exploited both PCA and LDA as prelim-

inary phases for a Gaussian template attack. In this context, we tackled some open

issues, in particular the problem of the component selections, proposing an auto-

matic criterion to perform the choice, namely the ELV. The obtained results were

published at CARDIS 2015 [CDP15].

In a second work we enlarged the considered models from linear to non-linear

ones, in order to treat the dimensionality reduction issue in presence of masking

countermeasure. We focused on the rarely considered, but commonly met, case in

which the profiling phase does not enable the access to the randomly drawn masks.

In this context we proposed a non-linear generalisation of the LDA method, namely

the KDA equipped with a polynomial kernel function. This KDA extracts features
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from signals through products of time samples (up to a fixed polynomial degree)

and linear combinations. Even in this case, despite the KDA may naturally provide

a non-linear classifier, the KDA application in our study were intended as prelimi-

nary phase of a Gaussian template attacks. The obtained results of this contribution

were published at CARDIS 2016 [CDP16].

The third contribution of this thesis, presented in Chapter 6, explores the Neu-

ral Networks models. Such models are a further generalisation of techniques like

LDA and KDA: they extract features from data by means of several layers of lin-

ear combinations and non-linear functions. Neural Networks are widely used to

build non-linear classifiers. Differently from the LDA classifier, NN ones may be

easily constructed in a multi-class manner, and in such a way that classification

scores have a probabilistic meaning. In this way they are directly suitable for ad-

vanced side-channel attacks. Choosing this kind of construction, we could substi-

tute the typical side-channel profiling routine divided into dimensionality reduction

and Gaussian profiles estimation, with an integrated approach that directly extracts

significant features and estimates a posteriori probabilities. In this case, such an esti-

mation dispensed of the Gaussian hypothesis about data distribution, not justifiable

in general. The estimation is guided by a single optimisation criterion, aiming at re-

ducing the classification error. The optimisation algorithm is not in a closed form as

for the LDA and KDA technique, and there is no guaranties about the existence/u-

niqueness of a solution and about the fact that the learning algorithm is eventually

able to find the solution. Anyway, many ML techniques are funded over the accep-

tance of this intrinsic non-optimality, and face in this way the curse of dimensionality

that prohibits perfect estimations. Anyway, ML techniques demonstrate their valid-

ity in many real applications, including side-channel analysis. In our contribution,

we took advantage of the Convolutional Neural Network models, and we proposed

some Data Augmentation techniques, to tackle hiding countermeasures inducing

misalignment in side-channel acquisitions. The obtained results were published at

CHES 2017 [CDP17].

7.2 Tracks for Future Works

The common thread of this thesis is the constantly growing awareness of the fact

that practical problems we were facing in side-channel domain, were almost iden-

tical to those faced in many other domains. In particular, today an immense and

still expansing number of applicative fields are based on the sensing and the anal-

ysis of a huge quantify of highly multi-dimensional data, and all of them have to
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tackle the curse of dimensionality. The preliminary purpose of these researches was

to deal with the it via a feature selection approach, i.e. the selection of PoIs. Anyway,

discarding the information eventually held by non-selected points seemed a criti-

cal waste to us, and we turned toward a feature extraction approach. We analysed

feature extraction methods involving increasingly complex models. This required a

conversion of side-channel problems from a classical statistical asset into an ML one,

and we believe that this conversion process should be pursued in future works.

A first issue we left open is explicitly related to such a conversion: it is the defini-

tion of a DPA-specific ML task. Indeed, by now we exploited classifiers to perform

advanced side-channel attacks. Nevertheless we observed that the classification task

perfectly matches with the simple attack scenario. Specialised metrics and optimi-

sation criteria (e.g. loss functions, evaluation metrics) should be proposed to tackle

advanced attacks, instead: the final goal of an advanced attack is indeed the identifi-

cation of a secret value by means of several observations, and it does not coincide in

general with the classification of the observations with respect to the sensitive vari-

able labels. Moreover, a Bayesian statistical approach should even be explored in the

attempt of defining a DPA-specific ML strategy. Indeed, a secret key chunk may be

viewed as a discrete parameter for a sort of regression model that describes the side-

channel traces. Before starting an attack, such key chunk parameter has in general

a uniform distribution over its definition set, i.e. any value is equally probable for

the attacker. Applying a Bayesian approach means considering every model param-

eter with the probability distribution modelling the attacker uncertainty over it, and

building a system that updates such distributions as long as the attacker observes

new traces and gains new information. This process should stop once the key chunk

parameter distribution has a sufficiently low entropy, showing high probability con-

centrated over few values. Interestingly, recently a new field is arising, known as

Bayesian Deep Learning (BDL) [Gal16], which provides a deep learning framework,

able to achieve state-of-the-art results, at least in imaging domain, while also mod-

elling uncertainty.

As a second track for future works, we remarked that the classical ML verifica-

tion task perfectly matches with the current collision attacks in side-channel domain.

This topic is not developed in this thesis, but we already focused on the possibility

of exploiting some so-called Siamese Neural Networks, specialised for the verification

task, to perform collision attacks. We obtained some promising preliminary results.

In general, we are convinced of the importance of further exploring DL tech-

niques in side-channel context. At the same time we are aware of the lack of clear
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theoretical foundations that would give guides about the choice of the hyper-parameters

that influence the performances of the DL architectures. For this reason we be-

lieve that researchers should share their efforts in developing and analysing ad hoc

methodologies to tune side-channel-oriented neural networks. To this aim, a publi-

cation appeared in the Cryptology ePrint archive on January 2018 [Pro+18] proposing

a fully-reported set of benchmarks performed over some electromagnetic emanation

acquisitions. The whole acquisitions database were published as well, including all

the sources of the target implementation. We wish this open platform may serve as

a common basis for researchers willing to compare their new architectures or their

improvements of existing models. This kind of public databases have been central

tools in the development of deep learning solutions in many other domains, for ex-

ample in image recognition context.

Finally, in the optic of enhancing cryptanalysis in order to make cryptography

stronger, there is a missing key-stone in this work. We adopted methods to extract

new features from data, by means of complex models, most of all neural networks,

instead of selecting leaking points of interests. Once an evaluator obtains a model

allowing a successful attack, his role should be to point out the vulnerabilities of the

attacked device, eventually explaining their origin. If the attack bases on a model

that exploits abstract features impossible to interpret, such a role is impossible to

play. A methodology to unroll the construction of the abstract feature and under-

stand which part of the cryptographic algorithm execution most contributes to the

success of the attack is indispensable in the optic of strengthening the embedded

security against the powerful increasing deep learning attackers.
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Cross-Validation

In the ML community, several evaluation frameworks are commonly applied to as-

sess the performances of a model or to select the best hyper-parameters for a learning

algorithm. These methods aim to provide an estimator of the performance which

does not depend on the choice of the training set Dtrain (on which the model is

trained) and of the test set Dtest (on which the model is tested) but only on their

size.

The so-called t-fold cross-validation [FHT01] is currently the preferred evaluation

method. Let P be a performance metric, f̂ a model to evaluate, and Dtrain = ( ~X ,Y) a

labelled dataset, the outline of the method is the following:

1. [optional] randomize the order of the labelled traces in Dtrain,

2. split the samples and their corresponding labels into t disjoint parts of equal

size ( ~X1,Y1), . . . , ( ~Xt,Yt). For each i ∈ [1..t], do:

(a) set Dvalidation
.
= ( ~Xi,Yi) and Dtrain

.
= (
⋃
j 6=i

~Xj ,
⋃
j 6=i Yj),

(b) (re-)train1 the model f̂ on Dtrain,

(c) compute the performance metricPi by evaluating the model f̂ onDvalidation,

3. return the mean 1
t

∑t
i=1 Pi.

It is known that the t-fold cross-validation estimator is an unbiased estimator

of the generalisation performance. Its main drawback is its variance which may be

large and difficult to estimate [Bre+96; BG05].

1The model is trained from scratch at each iteration of the loop over t.
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Artificially Simulated Jitter

In order to analyse the behaviour of the techniques studied in this thesis over mis-

aligned side-channel traces, we simulated sometimes a jitter effect to misalign some

well-synchronized traces in a controlled way. When jittering is present, the clock sta-

bility is altered and clock cycles are sampled by a varying number of time samples.

To simulate such effect, the windows containing clock patterns of an acquisition

are selected one by one and passed as input to the following function, described in

python code, in charge to enlarge or reduce them in a random way. The randomness

depends on two parameters sigma and B, being the number of inserted or removed

points be almost normally distributed, with standard deviation given by sigma, but

bounded. The bound is controlled by B by the following rule: the final size of a

window has to be at least 1
B times the original size and at most B times the original

size. The value assigned to newly inserted points is the linear interpolation of the

previous and the following points.

def enlarge_reduce_window (window , sigma , B ) :

Npts = window . shape [ 0 ]

new_window = np . copy (window)

d e l t a P t s = i n t ( np . f l o o r ( np . random . randn ( 1 ) [ 0 ] ∗ sigma ) )

i f ( d e l t a P t s >= 0 ) :

d e l t a P t s = min ( Npts ∗ (B−1) , d e l t a P t s )

f o r i in range ( d e l t a P t s ) :

c u r r _ s i z e = new_window . shape [ 0 ]

pos = i n t ( np . f l o o r ( np . random . rand ( 1 )∗ c u r r _ s i z e ) )

i f pos==0 or pos==curr_s ize −1:

new_window = np . i n s e r t ( new_window ,

pos , new_window[ pos ] )

e l s e :

new_window = np . i n s e r t ( new_window , pos ,

(new_window[ pos−1]+

new_window[ pos ] ) / 2 . 0 )

e l s e :
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d e l t a P t s = max(−Npts∗(1−1/B ) , d e l t a P t s )

f o r i in range(−d e l t a P t s ) :

c u r r _ s i z e = new_window . shape [ 0 ]

pos = i n t ( np . f l o o r ( np . random . rand ( 1 )∗ c u r r _ s i z e ) )

new_window = np . d e l e t e ( new_window , pos )

re turn new_window

This deformation is applied to each clock pattern independently. We remark

that is implies that, for example, the 19th clock cycle of a deformed acquisition

suffers from the cumulation of the 18 previous deformations. For the sake of vi-

sualizing the effect of such a jitter simulation, in Fig. B.1 we depict some traces of

DS_low_jitter B.1(a) and of the DS_high_jitter B.1(b) datasets, used for experiments in

Sec .6.10. They are obtained by perfectly synchronous acquisitions, with parameters

set to sigma = 2, B= 2 for the DS_low_jitter dataset and sigma = 6, B= 6 for the

DS_high_jitter one.
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(a)

(b)

FIGURE B.1: Some traces of the DS_low_jitter dataset (a) and of the
DS_high_jitter dataset (b). A zoom of the part highlighted by the red
rectangles is given in the respectively bottom parts. The interesting

clock cycles are highlighted by the grey rectangular areas.
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Kernel PCA construction

Suppose that we want to perform PCA in the image space of a function Φ that is

associated to a given kernel function K. The kernel version for PCA has been pre-

sented in [SSM98]; as we said in Chapter 5, the important step consists in expressing

the operations needed for the PCA procedure in terms of the dot products between

the mapped data.

Let us assume that data are centered in the feature space, i.e.
∑

i=1,...,Np
Φ(~xi) =

0.1 In this way the empirical covariance matrix SΦ of data in the feature space is

given by:

SΦ =
1

Np

Np∑
i=1

Φ(~xi)Φ(~xi)
ᵀ . (C.1)

We want to find eigenvalues λΦ 6= 0 and eigenvectors ~αΦ ∈ F r {0} such that

SΦ~αΦ = λΦ~αΦ . (C.2)

We remark that such an eigenvector satisfies

~αΦ =
1

λΦNp

Np∑
i=1

Φ(~xi)Φ(~xi)
ᵀ~αΦ (C.3)

=
1

λΦNp

Np∑
i=1

[
Φ(~xi)

ᵀ~αΦ
]

Φ(~xi) = (C.4)

=

Np∑
i=1

Φ(~xi)
ᵀ~αΦ

λΦNp︸ ︷︷ ︸
νi

Φ(~xi) = (C.5)

=

Np∑
i=1

νiΦ(~xi) , (C.6)

1Such a condition is not hard to achieve, even without explicitly pass through the feature space: it
suffices substituting the kernel matrix K by the matrix K̃ = K − 1NpK − K1Np + 1NpK1Np , where
1Np denotes the matrix with each entry equal to 1

Np
. The same kind of matrix has to be computed in

projecting phase, using the test data.
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where the step (C.4) makes use of the associativity of the matrix product and the

commutativity of the scalar-matrix product. Eq. (C.6) tells us that each eigenvector

~αΦ is expressible as a linear combination of the data mapped into the feature space

(Φ(~xi)i=1,...,Np , or equivalently each eigenvector ~αΦ lies in the span of (Φ(~xi)i=1,...,Np).

This observation authorizes to substitute to the problem (C.2), the following equiv-

alent system: 
λΦ(Φ(~x1) · ~αΦ) = Φ(~x1) · SΦ~αΦ

...

λΦ(Φ(~xNp) · ~αΦ) = Φ(~xNp) · SΦ~αΦ

(C.7)

Joining (C.6) and (C.7) we obtain, looking to the first equation of the system:

λΦ(Φ(~x1) ·
Np∑
i=1

νiΦ(~xi)) = Φ(~x1) ·

 1

N

Np∑
i=1

Φ(~xi)Φ(~xi)
ᵀ(

Np∑
i=1

νiΦ(~xi))

 (C.8)

λΦ

Np∑
i=1

νi(Φ(~x1) · Φ(~xi)) = Φ(~x1) ·

 Np∑
j=1

νj
N

 Np∑
i=1

Φ(~xi)Φ(~xi)
ᵀ

Φ(~xj)

 (C.9)

λΦ

Np∑
i=1

νi(Φ(~x1) · Φ(~xi)) = Φ(~x1) ·

 Np∑
j=1

νj
N

Np∑
i=1

Φ(~xi)
ᵀΦ(~xj)︸ ︷︷ ︸

Φ(~xi)·Φ(~xj)

Φ(~xi)

 (C.10)

λΦ

Np∑
i=1

νi(Φ(~x1) · Φ(~xi)) =

Np∑
j=1

νj
N

Φ(~x1) ·
Np∑
i=1

(Φ(~xi) · Φ(~xj))Φ(~xi)

 (C.11)

Npλ
Φ

Np∑
i=1

νi (Φ(~x1) · Φ(~xi))︸ ︷︷ ︸
K[1,i]

=

Np∑
j=1

νj

 Np∑
i=1

(Φ(~xi) · Φ(~xj))︸ ︷︷ ︸
K[i,j]

(Φ(~x1) · Φ(~xi))︸ ︷︷ ︸
K[1,j]

 . (C.12)

Thus, the system (C.7) is equivalent to the follow:
Npλ

Φ
∑Np

i=1 νiK[1, i] =
∑Np

j=1 νj

[∑Np

i=1 K[1, j]K[i, j]
]

...

Npλ
Φ
∑Np

i=1 νiK[Np, i] =
∑Np

j=1 νj

[∑Np

i=1 K[Np, j]K[i, j]
] (C.13)

Let ~ν be the column vector containing the coefficients νi of (C.6). The above

system is expressible in matricial form as


Npλ

Φ[K~ν][1] = [K2~ν][1]
...

Npλ
Φ[K~ν][Np] = [K2~ν][Np] ,

(C.14)

which equals the following equation:
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Npλ
ΦK~ν = K2~ν . (C.15)

It can be shown that solving the last equation is equivalent to solve the following

eigenvector problem

γ~ν = K~ν . (C.16)

Let γ1 ≥ γ2 ≥ · · · ≥ γNp denote the eigenvalues of K, γC being the last different

from zero, and ~ν1, . . . , ~νNp the corresponding eigenvectors. For the sake of obtaining

the corresponding normalized principal components in the feature spaceF , denoted

~αΦ
1 , . . . , ~α

Φ
C , a normalization step is required, imposing for all k = 1, . . . , C

~αΦ
k · ~αΦ

k = 1 , (C.17)

which can be translated into a condition for ~ν1, . . . , ~νC , using (C.6) and (C.16):

1 =

Np∑
i,j=1

~νk[i]~νk[j](Φ(~xi) · Φ(~xj)) = ~νk ·K~νk = γk(~νk · ~νk) (C.18)

Extracting the non-linear principal components of a datum ~x means projecting

its image Φ(~x) onto the eigenvectors ~αΦ
1 , . . . , ~α

Φ
C in F . To do so, we neither need to

explicitly compute Φ(~x) nor ~αΦ
i . Indeed, using (C.6):

~αΦ
k · Φ(~x) =

Np∑
i=1

~νk[i](Φ(~xi) · Φ(~x)) =

Np∑
i=1

~νk[i]K(~xi, ~x) . (C.19)

C.1 Kernel class-oriented PCA

Suppose now that we want to perform a class-oriented PCA in the image space of

a function Φ that is associated to a given kernel function K, i.e. we want to solve,

using a kernel trick, the eigenvalue problem

SΦ
B~α

Φ = λΦ~αΦ , (C.20)

where SΦ
B is the between-scatter matrix in the feature space:

SΦ
B =

∑
s∈Z

Ns(Φ(~x)
s − Φ(~x))(Φ(~x)

s − Φ(~x))ᵀ . (C.21)

Here Φ(~x)
s

= 1
Ns

∑
i=1: zi=s

Φ(~xi) and Φ(~x) = 1
Np

∑Np

i=1 Φ(~xi).

As before, the eigenvectors ~αΦ
i are expressible as linear combination of the data

images on F , i.e. (C.6) is still true:
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~αΦ =

Np∑
i=1

νiΦ(~xi) . (C.22)

Moreover as before, the eigenvector problem (C.20) can be translated in an eigen-

vector problem that gives the coefficients ~ν as solutions. That is:

γM = M~ν , (C.23)

where the matrix M is computed as

M =
∑
s∈Z

Ns( ~Ms − ~MT )( ~Ms − ~MT ) , (C.24)

with ~Ms and ~MT being two N -sized vectors whose entries are given by:

~Ms[j] =
1

Ns

∑
i:zi=s

K(~xj , ~xi) (C.25)

~MT [j] =
1

Nt

Nt∑
i=1

K(~xj , ~xi) . (C.26)

Finally, one the eigenvector ~ν are found, to project a datum ~x onto the corre-

sponding principal component in the feature space we proceed as in the previous

case:

~αΦ
k · Φ(~x) =

Np∑
i=1

~νk[i]K(~xi, ~x) . (C.27)
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Résumé

La cryptographie embarquée sur les composants sécurisés peut être vulnérable à des attaques

par canaux auxiliaires basées sur l’observation de fuites d’information issues de signaux acquis

durant l’exécution de l’algorithme. Aujourd’hui, la présence de nombreuses contremesures peut

conduire à l’acquisition de signaux à la fois très bruités, ce qui oblige un attaquant, ou un évalua-

teur sécuritaire, à utiliser des modèles statistiques, et très larges, ce qui rend difficile l’estimation

de tels modèles. Dans cette thèse nous étudions les techniques de réduction de dimension en

tant que prétraitement, et plus généralement le problème de l’extraction d’information dans

le cas des signaux de grandes dimensions. Les premiers travaux concernent l’application des

extracteurs de caractéristiques linéaires classiques en statistiques appliquées, comme l’analyse

en composantes principales et l’analyse discriminante linéaire. Nous analysons ensuite une

généralisation non linéaire de ce deuxième extracteur qui permet de définir une méthode de pré-

traitement qui reste efficace en présence de contremesures de masquage. Finalement, en général-

isant davantage les modèles d’extractions, nous explorons certaines méthodes d’apprentissage

profond pour réduire les prétraitements du signal et extraire de façon automatique l’information

du signal brut. En particulier, l’application des réseaux de neurones convolutifs nous permet de

mener des attaques qui restent efficaces en présence de désynchronisation.

Mot-clés: canaux auxiliaires, cryptographie embarquée, réduction de dimension, analyse

en composantes principales, analyse discriminante linéaire, analyse discriminante par noyau,

réseaux de neurones

Abstract

Cryptographic integrated circuits may be vulnerable to attacks based on the observation of in-

formation leakages conducted during the cryptographic algorithms’ executions, the so-called

Side-Channel Attacks. Nowadays the presence of several countermeasures may lead to the ac-

quisition of signals which are at the same time highly noisy, forcing an attacker or a security

evaluator to exploit statistical models, and highly multi-dimensional, letting hard the estima-

tion of such models. In this thesis we study preprocessing techniques aiming at reducing the

dimension of the measured data, and the more general issue of information extraction from

highly multi-dimensional signals. The first works concern the application of classical linear fea-

ture extractors, such as Principal Component Analysis and Linear Discriminant Analysis. Then

we analyse a non-linear generalisation of the latter extractor, obtained through the application

of a "Kernel Trick", in order to let such preprocessing effective in presence of masking coun-

termeasures. Finally, further generalising the extraction models, we explore the deep learning

methodology, in order to reduce signal preprocessing and automatically extract sensitive infor-

mation from rough signal. In particular, the application of the Convolutional Neural Network

allows us to perform some attacks that remain effective in presence of signal desynchronisation.

Keywords: side-channel, embedded cryptography, dimensionality reduction, principal com-

ponents analysis, linear discriminant analysis, kernel discriminant analysis, neural networks


	Acknowledgements
	I Context and State of the Art
	Context, Objectives and Contributions
	Introduction to Cryptography
	Description of AES

	Secure Components
	Embedded Cryptography Vulnerabilities
	Side-Channel Attacks
	A Classification of the Attacks against Secure Components

	Certification of a Secure Hardware - The Common Criteria
	The actors
	The Target of Evaluation and the security objectives
	Evaluation Assurance Level and Security Assurance Requirements
	The AVA_VAN family and the Attack Potential
	The Evaluation Technical Report


	This thesis objectives and contributions
	The Preliminary Purpose of this Thesis: Research of Points of Interest
	Dimensionality Reduction Approach
	Towards Machine Learning and Neural Networks Approach


	Introduction to Side-Channel Attacks
	Notations and Probability and Statistics Recalls
	Side-Channel Attacks: an Overview
	Physical Nature of the Exploited Signals
	Sensitive Variables
	The Strategy Family
	Simple Attacks
	Collision Attacks
	Advanced Attacks

	The Shape of the Attack
	The Attacker Knowledge
	Efficiency of the SCAs
	Advanced Attacks
	Leakage Models
	Distinguishers

	Profiling Side-Channel Attacks
	Template Attack
	The Curse of Dimensionality
	The Gaussian Hypothesis.

	Points of Interest and Dimensionality Reduction

	Main Side-Channel Countermeasures
	Hiding
	Masking


	Introduction to Machine Learning
	Basic Concepts of Machine Learning
	The Task, the Performance and the Experience
	Example of Linear Regression
	Example of Linear Model for Classification
	Underfitting, Overfitting, Capacity, and Regularization
	Hyper-Parameters and Validation
	No Free Lunch Theorem

	Overview of Machine Learning in Side-Channel Context


	II Contributions
	Linear Dimensionality Reduction
	Introduction
	Principal Component Analysis
	Principles and algorithm description
	Original vs Class-Oriented PCA
	Computational Consideration
	The Choice of the Principal Components
	Explained Local Variance Selection Method


	Linear Discriminant Analysis
	Fisher's Linear Discriminant and Terminology Remark
	Description
	The Small Sample Size Problem
	Fisherface Method
	SW Null Space Method
	Direct LDA
	ST Spanned Space Method


	Experimental Results
	The testing adversary.
	Scenario 1.
	Scenario 2.
	Scenario 3.
	Scenario 4.
	Overview of this Study and Conclusions

	Misaligning Effects

	Kernel Discriminant Analysis
	Motivation
	Getting information from masked implementations
	Some strategies to perform higher-order attacks
	Higher-Order Version of Projection Pursuits

	Purpose of this Study

	Feature Space, Kernel Function and Kernel Trick
	Kernel Discriminant Analysis
	KDA for dth-order masked side-channel traces
	The implicit coefficients
	Computational complexity analysis

	Experiments over Atmega328P
	Experimental Setup
	The Regularisation Problem
	The Multi-Class Trade-Off
	Asymmetric Preprocessing/Attack Approach
	Comparison with Projection Pursuits

	Conclusions and Drawbacks

	Convolutional Neural Networks
	Motivation
	Introduction
	Neural Networks and Multi-Layer Perceptrons
	Learning Algorithm
	Training
	Cross-Entropy

	Attack Strategy with an MLP
	Performance Estimation
	Maximal Accuracies and Confusion Matrix
	Side-Channel-Oriented Metrics

	Convolutional Neural Networks
	Data Augmentation
	Experiments against Software Countermeasures
	One Leaking Operation
	Two Leaking Operations

	Experiments against Artificial Hardware Countermeasures
	Performances over Artificial Augmented Clock Jitter

	Experiments against Real-Case Hardware Countermeasures
	Conclusion

	Conclusions and Perspectives
	Conclusions
	Tracks for Future Works

	Cross-Validation
	Artificially Simulated Jitter
	Kernel PCA construction
	Kernel class-oriented PCA

	Bibliography


