Je Souhaite

Xavier Standaert

Louis Goubin

Philippe Elbaz-Vincent

Mar- Ios Choudary

Annelie Heuser

Yannick Teglia

Merci À Ilaria

Elizabeth Siemen

Nicolas, Marjia, Adrien, Dahmun, Aurore, Romain, Colin, Joël Sonia Guillaume

Grazie

Davide Fede

Fede Merci À Hélène

Maren Yoan

Devront Traduire

Grazie A Vera

Yvonne Chiara

Gaietta Fausto

Daniela Cumino

Martino E Michele

Nicola Ed Fanny

Caroline Mt

Merci À Jérémie

Jennifer Gaëlle

Grazie Infine A Mamma, Papà

Laura E Carlo

Che Siete I Miei Esempi

Grazie Anche A Clio

Alice Graziano

Samuele E Lorenzo

questi anni non hanno mai mancato occasione

C'est avec grand plaisir que j'utilise cette première page de mon manuscrit pour remercier toutes les personnes qui ont eu un rôle dans ce long parcours qui se termine.

Je veux remercier ceux qui ont permis à ce parcours de commencer et de s'achever, ceux qui m'ont donné confiance, qui m'ont guidée, stimulée, encouragée, fait douter, et pourquoi pas, entravée.

Emmanuel a sans aucun doute joué une grande partie de ces rôles (mais pas tous !). Sa passion pour la recherche est contagieuse et a été un véritable carburant pendant ces années. Je le remercie pour m'avoir guidée, pour tous les échanges enrichissants que nous avons eus, pour ces enseignements, les idées précieuses qu'il a voulu partager avec moi, et ses encouragements qui n'ont jamais manqué.

Je tiens à remercier de tout coeur Cécile, qui m'a accueillie et suivie au quotidien au sein du CESTI. Je la remercie pour sa disponibilité illimitée, sa confiance, ses idées brillantes, et son esprit positif.

List of Tables

Introduction to Cryptography

The terms Cryptography, from the Greek kryptòs (secret) and graphein (writing), and

Cryptanalysis, denote two branches of a science named Cryptology, or science of the secret. Cryptography initially refers to the art of encrypting messages, which means writing meaningful messages in such a way to appear nonsense to anyone unaware of the encryption process. The readable message is referred to as plaintext, while the unintelligible output of the encryption is referred to as ciphertext. In general, cryptography aims to construct protocols to secure communication, while cryptanalysis studies the resistance of cryptographic techniques, developing attacks to break the cryptosystems' security claims. These two complementary domains evolve in parallel, since the evolution of attack techniques allows conceiving more resistant cryptographic algorithms, and inversely the resistance of such algorithms requires the conception of more sophisticated attacks.

The art of cryptography is very ancient, probably as ancient as the language, but only the development of information technology made cryptology take the shape of a proper science, sometimes referred to as Modern Cryptology. The last is seen as a branch of different disciplines, such as applied mathematics, computer science, electrical engineering, and communication science. Modern cryptosystems exploit algorithms based on mathematical tools and are implemented as computer programs, or electronic circuits. Their goal is to provide security functionalities for communications that use insecure channels, for example the Internet. In particular, modern cryptosystems are designed in order to ensure at least one of the four following information security properties: a. confidentiality: the transmitted message must be readable only by a chosen pool of authorised entities; b. authenticity: the receiver can verify the identity of the sender of a message; c. non-repudiation: the sender of a message cannot deny having sent the message afterwards;

d. data integrity: the receiver can be convinced that the message has not been corrupted during the transmission.

Two branches of cryptography may be distinguished: the symmetric cryptography and the asymmetric cryptography. The first one historically appeared before and is based on the hypothesis that the two communicating entities share a common secret, or secret key; for this reason this is also called secret key cryptography. The second one, introduced around 1970, allows any entity to encrypt a message in such a way that only a unique chosen other entity could decrypt it; this is also called public key cryptography.

A general principle in cryptography, nowadays widely accepted by cryptography researchers, is the one given by Kerckhoff in 19th century: it states that cryptosystems should be secure even if everything about the system, except the key, is public knowledge. Following this principle, today many industrials and governmental agencies exploit, for their security services, cryptosystems based over standardised algorithms. Such algorithms are of public domain, thus have been tested

and tried to be broken by a large amount of people, before, during and after the standardisation process. Resistance to many attempts of attacks is actually the strengths of standard algorithms.

Low-level cryptographic routines, called primitives, are often used as building blocks to construct cryptographic protocols. We provide hereafter a description of a standard primitive, the symmetric AES, whose implementation will be the target of all experiments described in this thesis.

Description of AES

The Advanced Encryption Standard (AES) has been standardised in 2001 by the United States governmental agency National Institute of Standards and Technology (NIST), through the Federal Information Processing Standards Publication 197 (FIPS PUB 197) [NIS]. It is a block cipher, meaning that the encryption and decryption of the AES are functions that take as input a string (respectively the plaintext or the ciphertext) of fixed length over the binary alphabet. Indeed, the AES operates on blocks of 128 bits. 1 There exist three versions of AES, characterized by the size of the used key: 128, 192 or 256 bits. The encryption is done by rounds. The number of executed rounds depends on the key size (10 rounds for 128 bits, 12 for 192 and 14 pour 256).

The basic processing unit in AES algorithm is a byte. For AES internal operations, bytes are arranged on a two-dimensional array called the state, denoted s. Such a state has 4 rows and 4 columns, thus contains 16 bytes. The byte lying at the i-th row, j-th column of s will be denoted by s i,j for i, j ∈ {0, 1, 2, 3}. The 16 input bytes and the 16 output bytes are indexed column-wise as shown in Fig. 1.1. Each element s i,j of the state is mathematically seen as an element of the Rjindael finite field, defined as GF (2 8) = Z/2Z[X]/P (X) where P (X) = X 8 + X 4 + X 3 + X + 1.

AddRoundKey

Each byte of the state is combined with the corresponding byte of the round key via an addition over the Rjindael field GF (2 8), i.e. a bitwise exclusive OR (XOR) operation ⊕.

SubBytes

The SubBytes transformation is a non-linear byte invertible substitution that operates independently on each byte of the State using a substitution table (called Sbox).

The SubBytes is composed of the following two functions:

• the inversion in GF (2 8) where the element {00} is mapped to itself

• the affine transformation which maps each byte b i to:

b i ⊕ b (i+4)mod 8 ⊕ b (i+5)mod 8 ⊕ b (i+6)mod 8 ⊕ b (i+7)mod 8 ⊕ c i , (1.1)
where c i is the i th bit of {63} = (01100011) 2 .

ShiftRows

The bytes in the last second, third and fourth rows of the State are cyclically shifted over 1, 2, and 3 byte(s) respectively.

MixColumns

Each column of the State is treated as a four-term polynomial. They are considered as polynomials over the Rjindael field GF (2 8) and multiplied modulo X 4 + 1 with a fixed polynomial a(X) = {03}X 3 + {01}X 2 + {01}X + {02}.

KeySchedule

To lighten notations, the KeySchedule is described for the 128-bits cipher, which allows to fix many parameters to the value 4. For the 192-bits and 256-bits such parameters have to be fixed respectively to 6 and 8. The key round of the initial round of AES coincides with the secret encryption key K = (k 0,0 , k 0,1 , . . . , k 0,3 , k 1,0 , . . . , k 1,3 , . . . , k 3,3).

The i-th round key is given by K i = (k 4i,0 , k 4i,1 , . . . , k 4i,3 , k 4i+1,0 , . . . , k 4i+1,3 , . . . , k 4i+3,3),

where k 4i+a,b is calculated, for i > 0, a ∈ {0, . . . 3} and b ∈ {0, . . . , 3}, as follows: where Rcon(a) = {02} a-1 in the Rjindael finite field,2 and Sbox is the substitution table used for the SubBytes transformation.

         k 4i+a,b = k 4i+a-4,b ⊕ k 4i+a-1,b if a = 0

Secure Components

As we have seen in the previous section, modern cryptography proposes solutions to secure communications that ask for electronic computations and repose their security over some secret keys. Keys are represented as long bit strings, very hard to be memorised by users. Thus, keys need to be stored in a secure medium, and never delivered in clear over insecure channels. Smart cards (or smartcards) were historically conceived as a practical solution to such a key storage issue: they consist in small devices a user can easily carry around with, which not only store secret keys, but also are able to internally perform cryptographic operations, in such a way Chapter 1. Context, Objectives and Contributions that they can be involved in secure communication protocols, that do not require the delivering of the secret keys. The registrations of a first patent describing memory cards by Roland Moreno in 1974 [START_REF] Moreno | Methods of data storage and data storage systems[END_REF], and of a second one describing cards equipped with microcontrollers by Michel Ugon in 1977 [START_REF] Ugon | Portable data carrier including a microprocessor[END_REF] are often referred to in order to date the smart card invention, finally produced for the first time in 1979. Smart cards are pocket-sized plastic-made cards equipped with a secure component, which is typically an integrated circuit containing some computational units and some memories.

Today, about 40 years after its invention, they still have a huge diffusion, both in terms of applicative domains and in terms of quantity of exemplars. Indeed, they serve as credit or ATM cards, healthy cards, ID cards, public transport payment cards, fuel cards, identification and access badges, authorization cards for pay television, etc. Slightly changing the card support, we find other applications of the same kind of integrated circuits, for example the mobile phone SIMs (Subscriber Identity Module) and the electronic passports. In terms of quantity, a marketing research [Abi] found out that in 2014 8.8 billion smart cards have been sold, i.e. the same order of magnitude of the global population.

In addition to smart cards, the recent growing and variation of security needs lead to the development and specification of other kinds of secure solutions, for example the Trusted Platform Module (TPM), which is a secure element providing cryptographic functionalities to a motherboard, or completely different solutions based on software layers, that are today in great expansions. An example is provided by the Trusted Execution Environment (TEE), which is a software environment of the main processor of a smartphone or tablet, designed to assure resistance to software menaces.

Embedded Cryptography Vulnerabilities 1.2.1.1 Side-Channel Attacks

Until the middle of the nineties, the security of embedded cryptosystems was considered, in the public domain, as equivalent to the mathematical security of the embedded cryptographic algorithm. In classical cryptanalysis, an attacker usually has the knowledge of the algorithm (in accordance to Kerckhoff's principle) and of some inputs and/or outputs. Starting from these data, his goal is to retrieve the secret key.

This attack model considers the algorithm computation as a black box, in the sense that no internal variable can be observed during execution, only inputs and/or outputs. With his seminal paper about Side-Channel Analysis in 1996, Paul Kocher showed that such a black-box model fails once the algorithm is implemented over a physical component [START_REF] Paul | Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[END_REF]: an attacker can indeed inspect its component during the execution of the cryptographic algorithm, monitor some physical quantities (e.g. the execution time [START_REF] Paul | Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[END_REF] or the instantaneous power consumption [START_REF] Kocher | Differential power analysis[END_REF]) and deduct information about internal variables of the algorithm. Depending on the attacked algorithm, making inference over some well chosen internal variables (the socalled sensitive variables of the algorithm) is sufficient to retrieve the secret key. After these first works, it was shown that other observable physical quantities contained leakages on sensitive information; for example the electromagnetic radiation emanating from the device [GMO01; QS01] and the acoustic emanations [START_REF] Daniel Genkin | RSA key extraction via low-bandwidth acoustic cryptanalysis[END_REF]. Moreover, if until few years ago it was thought that only small devices, equipped with slow microprocessors and with small-sized architecture, such as smart cards, were vulnerable to this kind of Side-Channel Attacks, the last cited recent work about acoustic emanations, together with other works exploiting electromagnetic fluctuations, pointed out that much faster and bigger devices, i.e. laptops and desktop computers, are vulnerable as well [Gen+15; GPT15; Gen+16].

A Classification of the Attacks against Secure Components

The Side-Channel Attacks outlined in previous paragraph, and which are the main concern of this thesis, belong to a much bigger family of hardware attacks that can be performed to break cryptographic devices' security claims. A classification for hardware attacks is briefly outlined in Tab. 1.1. They are commonly classified on the base of two criteria: on one hand we can distinguish passive and active attacks, on the other hand we can distinguish invasive, semi-invasive and non-invasive attacks.

Passive attacks: in passive attack, the device run respecting its specifications.

The attacker observes its behaviour without provoking any alteration;

Active attacks: in active attacks a special manipulation is performed in order to corrupt the normal behaviour of the device.

Invasive attacks: in invasive attacks, the device is unpackaged and inspected at the level of the component technology. The circuit can be modified/broken, signals can be accessed via a probing station, etc. There is no limits to the manipulations an attacker can do to the component;

Semi-invasive attacks: as in invasive attacks the device is unpackaged, but in contrast to them, no direct electrical contact to the chip is done;

Non-invasive attacks: in non-invasive attacks the device is not modified and only accessible interfaces are exploited.

In the literature, the term Side-Channel Attacks (SCAs)3 commonly refers to the passive non-invasive attacks. Nevertheless, the techniques proposed under the name of SCAs, that always require the acquisition of some signals, might also include attacks where the device is unpacked, in order to improve the signal amplitude. In this sense, SCAs belong to the semi-invasive group of attacks as well. Similarly, active non-invasive attacks are often referred to as Fault Injection Attacks, that might also be run in a semi-invasive way.

Beyond hardware attacks, there exists a second class of attacks that menaces the security of cryptographic devices: the software attacks. In contrast with hardware attacks, software attacks exploit vulnerabilities that are not related to the physical implementation of the cryptographic functionalities of the device: they are not based on hypotheses about the material execution of the cryptographic algorithms, but exploit vulnerabilities of the software interfaces. A typical example of software attack consists in charging malware code into the device, enabling access to data and instructions contained in memories (RAM or ROM), in order to retrieve, modify or destroy information they hold. In last years, together with the growing complexity of secure devices, attacks become more and more sophisticated and the boundary between hardware and software attack is more and more blurred. Moreover combined software/hardware attacks are being developed, e.g. [START_REF] Bouffard | Combined software and hardware attacks on the java card control flow[END_REF].

Certification of a Secure Hardware -The Common Criteria

In previous paragraphs we have evoked the great diffusion of the cryptographic devices and the existence of a wide range of attacks exploiting vulnerabilities coming from the way cryptography is embedded. These two factors imply a great risk related to the production and commercialisation of such devices, and justify the importance and necessity to ensure reliability on their security claims. This necessity lead to the arise of several guidelines and standards for their evaluation. The international standard ISO/IEC 15408, also known as Common Criteria for Information Technology Security Evaluation (abbreviated as Common Criteria or simply CC) represents one of the strongest efforts in standardisation, unifying in 1999 three previously existing standards: • the Information Technology Security Evaluation Criteria (ITSEC -France,Germany, Netherlands, United Kingdom -1990)

• the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC -Canada -1993).

The actors

The CC define four actors of the evaluation process of a secure component:

• The Developer, who conceives a product and wishes to sell it as a certified secure product. He sends a request for evaluation to the certification body and, once the request is accepted, he contacts an evaluation laboratory;

• The ITSEF is the IT Security Evaluation Facility; in France it is named Centre d'Evaluation de la Securité des Technologies de l'Information (CESTI). It is an evaluation laboratory, in possession of a certification body agreement, which performs the security tests to assess the resilience of the product;

• The Certification Body is often a governmental organism, the Agence National de la Securité des Systèmes d'Information (ANSSI) in France, or the Bundesamt für Sicherheit in der Informationstechnik (BSI) in Germany, for example. It ensures the quality of the evaluation and delivers a certificate to the developer;

• The end user, who buys the product and follows its security guidelines.

The Target of Evaluation and the security objectives

To start the certification process, the developer compiles a document called Security Target (ST). Such a document begins specifying the (part of the) device subjected to Semi-formally verified design and tested EAL7

Formally verified design and tested evaluation, the so-called Target of Evaluation (TOE), then lists its Security Functional Requirements (SFR), choosing among those proposed by the CC. In practice, and to ease the redaction of the ST, the choice of the SFRs is not open, but guided by the typology of the component. In particular, the CC propose a catalogue of Protection Profiles, associated with the required SFRs. For example "smartcard" or "TEE " designate some precise Protection Profiles. They differ in various aspect, and their main difference until now is that TEE are not required to be resistant to hardware attacks, but only software ones. the recent alerts about combined software/hardware attacks developed in last years, may lead to an extension of the solely software vulnerability analysis towards a larger requirement.

Evaluation Assurance Level and Security Assurance Requirements

In CC seven Evaluation Assurance Level (EAL) are defined. They determine the quantity and complexity of the tasks the evaluator has to effectuate, thus specifying the insurance strength. The EAL are defined in insurance increasing order, so that the EAL1 has the lowest verification exigences while EAL7 has the highest ones. In Table 1.2 the objectives given by the CC for each EAL are resumed.

During the process of evaluation, the SFRs of the TOE have to be verified according to the claimed EAL. To this end, the evaluation is divided into six classes of Security Assurance Requirement (SAR). Five of this classes are the so-called conformity classes, and one is the vulnerability assessment class. Each class is sub-divided in several families (excepted the vulnerability assessment class, which only contains one family), and the evaluators are charged to check each requirement corresponding to these families. The Table 1.3 resumes the SAR classes and their families. For each family a grade is assigned following precise specifications detailed in CC, and the obtention of a certain EAL depends on the grades obtained for each family, as reported in Table 1. 4. An EAL can also be augmented, meaning that the product achieves all the required SAR grades to obtain a certain EAL and some upper grades for certain families. For example, smart cards are usually protected at level protected at level EAL5+AVA_VAN5+ALC_DVS2. In case of banking smart cards, the card also needs to respect the EMVco norms, being EMVco a consortium of six companies (Visa, MasterCard, JCB, American Express, China UnionPay, and Discover) that manages private certification schemes for banking cards, payment terminal and automated teller machines.

The AVA_VAN family and the Attack Potential

The AVA_VAN is the solely family of the vulnerability assessment SAR. The goal of such a SAR is to make the connection between the conformity of the TOE, verified via the analysis of its documentation, and the efficiency of its protections and countermeasures. This is the step of the evaluation in which the actual resilience of the TOE against the penetration tests is measured. In this phase the attacks outlined in

AGD_OPE 1 1 1 1 1 1 AGD_PRE 1 1 1 1 1 1 ALC_CMC 1 2 3 4 4 5 ALC_CMS 1 2 3 4 5 5 ALC_DEL 1 1 1 1 1 ALC_DVS 1 1 1 2 ALC_FLR ALC_LCD 1 1 1 1 ALC_TAT 1 2 3 ATE_COV 1 2 2 2 3 ATE_DPT 1 1 3 3 ATE_FUN 1 1 1 1 2 ATE_IND 1 2 2 2 2 2 AVA_VAN 1 2 2 3 4 5
Sec. 1.2.1 are taken into account, and the so-called attack potential of such attacks is stated. The attack potential is a notion appearing in CC whose aim is to reflect the realism of succeeding a certain attack, and thus its realistic dangerousness. Indeed in the context of physical attacks, many possible attack paths require unrealistic conditions, amounts of time and/or money to be actually performed on the field and do not represent in reality a great risk. For example, invasive attacks such as probing attacks which appears in theory the most dangerous ones, ask in general for some very expensive instruments, a huge expertise, much time and many broken samples before succeeding. Their attack potential can thus result not so wondering. For this evaluation phase, the evaluator is in charge to prepare a testing plan. This is a list of the possibly dangerous attack paths, basing on a code analysis, and on the state- In the case of smart cards, the evaluation systematically includes the AVA_VAN5 grade, thus the testing plan is asked to be as complete as possible. The state-ofthe-art of the attacks is periodically upgraded by the JIL 1.5. The evaluation is divided in two parts, an identification part, that reflects the difficulty in finding the attack path, and an exploitation part, that reflects the difficulty in actually performing the attack. The total score of an attack is the sum of scores assigned to each factor. To obtain the AVA_VAN5 grade every successful attack tested by the evaluators must have been rated at least 31.

The Evaluation Technical Report

The evaluation ends with the redaction by the evaluators of an Evaluation Technical Report (ETR), which is transmitted to the certification body. The last analyses the ETR and, if the security claims of the TOE are verified, issues a certificate. The ETR by the evaluators in charge of the surveillance of the certificate. For the penetration testing, the evaluators are in particular asked each year to verify that the cotation of the attacks presented in the ETR did not drop.

This thesis objectives and contributions

Among the factors observable in the cotation table 1.5 we find open samples, interpretable as device with known secrets. Indeed, for an evaluation scope it is sometimes possible for an ITSEF to have access to a device identical to the TOE but where the evaluator can fix or access certain variables, for example some random numbers used by cryptographic algorithm, or load specific software. An evaluator may use this possibility in order to launch executions in which he is aware of the complete execution flow, including operations, manipulated internal variables (internally generated random ones as well) and register accesses. In this way he can understand and characterise the relations between the internal behaviour of the device and the physical observations, before performing a proper attack.

In the context of Side-Channel Attacks, when such a characterisation phase is possible, we talk about profiling attacks. Due to the favourable condition of this attacks, they are commonly considered the most dangerous ones, allowing a sort of worst-case security analysis. This thesis is mainly focused over such a profiling scenario. Indeed, we will address the problems an evaluator deals with when he is in such a favourable case and he wonders how to optimally exploit such a characterisation phase in order to be able to extract as much information as possible for the acquired signals, in the exploitation phase. One of these issues is the selection of the so-called Points of Interest (PoI), strictly linked to the more general problem of dimensionality reduction.

The Preliminary Purpose of this Thesis: Research of Points of Interest

To perform a Side-Channel Attack, the monitoring of unintentional channels leaking from the attacked device is usually performed through an oscilloscope that samples continuous analog signals and turns them into discrete digitalised sequences. Such sequences are often referred to as traces.

Dimensionality Reduction Approach

Beyond Nowadays every device needing to obtain an AVA_VAN5 grade is equipped of specific countermeasures against SCAs. A brief overview of some classic and public principles providing efficient countermeasure is provided in Sec. 2.11. Among them, the masking, or sharing, countermeasures may be considered the most effective ones. Beyond the formal proofs of their efficiency provided in the literature [ISW03;

PR13; Bar+15], they are the ones that most likely require a strong adaptation of the attack strategy in order to be defeated. Indeed, when an effective masking scheme is implemented, each sensitive variable of the original computation is split into shares randomly drawn, in such a way that any proper subset of shares is statistically independent of the sensitive variable itself. Computation of cryptographic primitives is done accessing only the random shares, with intermediate steps computing only the shares of the result. This forces the attacker to work with the joint distributions of the signal at the time samples where the shares are being accessed. In other words, point-wise statistics to retrieve PoIs are completely inefficient in presence of a masking countermeasure, since each time sample is by itself statistically independent from any sensitive variable. Moreover, interesting joint distributions have to be studied at their higher-order statistical moments to retrieve sensitive-data dependencies, implying that any linear method to combine time samples is inefficient as well. To sum up, the issue of selecting PoIs or applying dimensionality reduction to side-channel traces protected by masking presents challenging difficulties. Such a hardness is mitigated when the attacker is able to perform a profiling phase during which he has the knowledge of the random values assigned to the shares during execution. In practice it is not always the case, so in this thesis we tackle the issue when such knowledge is absent, and we propose in Chapter 5, on the basis of a work presented at CARDIS 2016 [START_REF] Cagli | Kernel Discriminant Analysis for Information Extraction in the Presence of Masking[END_REF], to deploy Kernel Fisher Discriminant Analysis (KDA) as a solution. This is an extension of the LDA dimensionality reduction technique, allowing applying some strategy to non-linearly combine time samples.

Towards Machine Learning and Neural Networks Approach

As a general observation about the track we followed during this thesis, we started

Notations and Probability and Statistics Recalls

Basic Notations. In this thesis we use calligraphic letters as X to denote sets, the corresponding upper-case letter X to denote random variables (random vectors X if with an arrow) over X , and the corresponding lower-case letter x (resp. x for vectors) to denote realisations of X (resp. X). The cardinality of a set X is denoted by |X |. Matrices will be denoted with bold capital letters, both Latin M and Greek Σ.

When the vectors' orientation minds, they are understood as column vectors. The ith entry of a vector x is denoted by x[i], while the transposed of a vector x is denoted as x . We will use the transposed mark to refer to row vectors x . In general the ith observation of a random vector X will be denoted by x i . More precisely, x i refers to the realisation of the ith random variable X i , where X 1 , . . . , X N is a sequence of i.i.d.

random variables distributed as X. In order to lighten verbosity, we will always omit to precise it in the following. Observations will sometimes be grouped into datasets D = {x 1 , . . . , x N }. Throughout this thesis, the finite set Z = {s 1 , . . . , s |Z| } will be often considered: it will always denote the possible values for a sensitive variable Z (see later). Its elements are sometimes encoded via a so-called one-hot-encoding: to each element s j a |Z|-dimensional vector s j is associated, with all entries equal to 0 and the j-th entry equal to 1: s j → s j = (0, . . . , 0, 1 j , 0, . . . , 0). We will denote by s a generic element of Z, in contexts in which specifying its index i is unnecessary.

Probability Notations. The probability of a random variable X taking value in a subset U ⊂ X is denoted by Pr(X ∈ U), or simply by Pr(U) if not ambiguous. When U is reduced to a singleton U = {x} the same probability is denoted by Pr(X =

x) or simply by Pr(x) if not ambiguous. If X is a discrete variable p X denotes its probability mass function (pmf for short), such that Pr(X ∈ U) = x∈U p X (x). The same symbol p X is used to denote the probability density function (pdf for short)

if X is a continuous variable, such that Pr(X ∈ U) = U p X (x)dx, for U ⊂ X . The symbol E[f (X)],
or equivalently E X [f (X)], denotes the expected value of a function f of the random value X, under the distribution of X. In the same way, symbols

Var(X) and Var X (X) denote the variance of X. Bayes' Theorem. We recall some basic probability rules. For every x ∈ X and for every y ∈ Y we have what follows:

When

• Symmetry of joint probabilities: p X,Y (x, y) = p Y,X (y, x);

• Marginal probabilities from joint ones: p X (x) = Y =y p X,Y (x, y) (where the sum has to be intended as an integral if Y is a continuous variable);

• Product rule: p X,Y (x, y) = p Y | X=x (y)p X (x);
These rules are sufficient to demonstrate, in the case of discrete random variables X, Y , a key stone of probability theory, the Bayes' theorem:

p X | Y =y (x) = p Y | X=x(y) p X (x) p Y (y) ; (2.1)
the marginal probability function p X is referred to as prior probability of X, and describes the distribution of X without taking into account the variable Y . The conditional probability p X | Y =y is referred to as posterior probability of X, and gives the distribution of X once the outcome y of Y is taken into account. Notions of measure's theory are needed to show that Bayes' theorem is valid and keeps unchanged in case of continuous random variables and in cases in which one of the two involved variables is discrete and the other one is continuous. The interested reader might refer to [START_REF] Feller | An introduction to probability theory and its applications[END_REF].

The Gaussian distribution. The Gaussian or normal distribution is a widely used model for the distribution of continuous variables. We use the symbol X ∼ N (µ, σ 2) to denote a random variable X that follows a Gaussian distribution with parameters µ ∈ R and σ 2 ∈ R + . For a D-dimensional random vector X we use the symbol X ∼ N (µ, Σ) to denote a vector that follows a multivariate Gaussian distribution with parameter µ ∈ R D and Σ ∈ R D×D positive-definite. The density of the Gaussian distribution is completely determined by the value of its two parameters. It is given by the following expressions, respectively in unidimensional and multidimensional cases:

p X (x) = 1 √ 2πσ 2 exp - 1 2 x -µ σ 2 , (2.2) p X (x) = 1 2π det(Σ) exp - 1 2 (x -µ) Σ -1 (x -µ) . (2.3)
The expected value of a Gaussian distribution coincides with the parameter µ for the univariate case and with µ for the multivariate one. The parameter σ 2 coincides with the variance of the univariate distribution, while Σ coincides with the covariance matrix of the multivariate one.

Basics of Statistics.

The word statistics refers to a branch of mathematics that aims to analyse, describe or interpret observed data. Differently, the word statistic refers to any measure obtained applying a function to some observed data. Let D = {x 1 , . . . , x N } be a dataset of observations of a random variable X. We might distinguish two sub-branches in statistics: the descriptive statistics, and the inferential statistics. In descriptive statistics, data are described by means of more or less complex statistics (in the sense of measures), the most common of them being the arithmetic mean:

x = 1 N N i=1 x i . (2.4)
In inferential statistics, data are considered as sample observations of random variables and the data analysis aims at modelling the distribution of such variables.

Dealing with random variables, inferential statistics exploit the probability theory framework and theorems. Statistics of data (in the sense of measures) play an important role in inferential statistics as well, usually aiming to estimate some random variable parameters. In this case they are called estimators and will be denoted by a hat: for example, Ê[X] denotes an estimator for the expected value of X and Var(X)

denotes an estimator for the variance of X. The most classical estimator for the expected value is the arithmetic mean x. It has several valuable properties, for example it is unbiased, in the sense that, considering the arithmetic mean random variable X, its expected value E[X] coincides with the true value of E[X]. Moreover, it is the maximum-likelihood estimator of µ under the Gaussian distribution assumption: for data that are independent among each other and drawn from a Gaussian distribution, the arithmetic mean of the observed data D is the value that must be assigned to the parameter µ that maximises the probability of observing the data D. A common unbiased estimator for the variance is the following so-called sample variance:

Var = 1 N -1 N i=1 (x i -x) 2 ;
(2.5)

when the observed random variable follows a Gaussian distribution, such an estimator differs from the maximum-likelihood one, in which the factor 1 N -1 is substituted by 1 N . In the same way, acting with Gaussian random vectors, the maximumlikelihood estimator of the covariance matrix is biased, and differs from the common unbiased one for a multiplicative factor.

Various approaches exist to make statistical inference. The two main ones are the frequentist approach and the Bayesian one. The frequentist inference is an approach that draws conclusions exclusively from sample data. It makes use of methodologies like the statistical hypothesis testing and the confidence interval. In the frequentist approach, parameters that define the distribution of the analysed random variable are priorly considered as fixed and unknown, and are estimated or tested on the sole basis of the observation of the sample data D. A second approach is the Bayesian inference, for which parameters that describe the analysed random variable are admitted to be probabilistic: in Bayesian inference, before the observation of sample data, the parameters have a prior distribution that reflects the knowledge and belief of the data-scientist about them. The observation of data leads to an update procedure, based on the Bayes' theorem, that allows such probability distribution of parameters to become more and more appropriate, each time exploiting the new available information. For both approaches, the maximum-a-posteriori is an optimal statistical principle and is widely exploited to choose parameters, in the frequentist approach, or to update parameters' probability distributions in the Bayesian one.

Often, in the frequentist approach, the maximum-a-posteriori estimator for a parameter coincides with the maximum-likelihood one. Up-to-now, and to the best of our knowledge, only one attempt has been done to exploit the Bayesian inference in the Side-Channel Attack context [START_REF] Pautot | Some Formal Solutions in Side-channel Cryptanalysis-An Introduction[END_REF], without any significant follow-up. We will not use such a framework in this thesis. We leave this track opened for future works, briefly discussing its suitability for Side-Channel Attacks domain in Chapter 7.

Side-Channel Attacks: an Overview

Side-Channel Attacks belong to the cryptanalysis domain, since they aim to break cryptographic security systems. Usually their goal is to retrieve a secret parameter of a cryptographic algorithm, typically a secret key. They distinguish from classic mathematical cryptanalysis techniques by the fact that they are based on information gained from the physical implementation of a cryptosystem, rather than theoretical weaknesses in the algorithms. The possibility to physically observe the electronic device that performs the cryptographic computations, allows Side-Channel Attacks to go beyond the cryptographic complexity that ensures resistance against classical cryptanalysis strategies. Indeed, no matter the size of the secret variables manipulated by the algorithm and the algebraic complexity of the encrypting/decrypting operations, a physical implementation of any algorithm always handles variables of a relatively small bounded size, which depends on the hardware architecture of the cryptographic device. For example, in an 8-bit architecture an AES with 128bit-sized key will be necessarily implemented as multiple partial computations over 8-bit blocks of data. In classical cryptanalysis, the typical attacker model faces to a black-box that performs the cryptographic algorithm: an attacker may make queries to the black-box, asking for ciphertexts of given plaintexts or viceversa. The black-box acts as a function that outputs the asked value, but does not provide any information about partial computations. On the contrary, a side-channel attacker is said to face to a grey-box model: he has a way to obtain noisy information about partial computations. This allows him to follow a divide-and-conquer strategy: if his goal is to retrieve the full 128-bit AES key, he will smartly divide his problem into the recovery of small parts of such keys at time, called key chunks, 1 making the complexity of the attack significantly drop.

Since the seminal paper by Paul Kocher in 1996 [Koc96], the side-channel analysis domain has developed fast, together with its flourish literature. Without being exhaustive, the last literature includes: proposals for new kind of exploitable signals, proposals for useful statistical tools, new attacks strategies and routines, analysis of side-channel vulnerabilities of well-specified cryptographic algorithms, side-channel countermeasures, formal proofs of countermeasures' security claims, discussions about tools and metrics to compare side-channel attacks and strategies, reports of real-case successful attacks, and a few attempts to unify the side-channel literature under some comprehensive frameworks. The contributions we present in this thesis may be resumed as proposals for useful statistical tools for some specific 1 or subkeys when they coincide to a byte of key for the AES algorithm attack contexts. The aim of the following part of this section is not to provide a comprehensive state-of-the-art of the side-channel domain, but to provide the reader with the necessary concepts to understand our contributions, and to get a view of the contexts in which they can provide improvements to the state-of-the-art. To this aim we propose a brief overview of the main properties that define and characterise a side-channel attack among others. To describe a side-channel attacks, we identified the following characteristics:

• the physical nature of the exploited signals,

• the chosen sensitive variables,

• the strategy family,

• the shape of the attack,

• and the attacker knowledge.

In the following sections we will briefly describe these points, dwelling on aspects that mainly concern our contributions, i.e. the advanced attack strategy and the concept of profiling attack.

Physical Nature of the Exploited Signals

As already introduced in Sec. 1.2.1.1, an SCA may exploit signals obtained by the observation of different kinds of side channels. Mainly exploited physical quantities are the power consumption, the electromagnetic emanation, the elapsing time and the acoustic emanation. In order to lighten the discussion, in the following we will always only mention the power consumption, nevertheless the same principles and techniques are generalisable to other sources of signals, in particular to the electromagnetic emanation [START_REF] Le | Analyses et mesures avancées du rayonnement électromagnétique d'un circuit intégré[END_REF].

Sensitive Variables

Physical signals are acquired via appropriate instrumentation, and collected into vectors called traces (or acquisitions). They will be denoted by x i and considered as observations of a random real vector X, where each coordinate corresponds to a time sample of the acquired signal. They are then interpreted as noisy observations of the intermediate variables handled by the device during the execution. An attacker is in particular interested to the so-called sensitive variables: they are quantities handled during the processing, that depend somehow on a secret parameter of the implementation, and not only on public variables, as a plaintext or an algorithm constant.

Side-channel analysis acts clearing traces from noise, in such a way to determine with the highest possible precision the association between a trace (or a set of traces) and the value taken by the target sensitive variable Z during its (their) acquisition.

For an attack, a single or several sensitive variables may be targeted, and its/their algebraic relation with the secret key serves to complete the attack. Actually, sensitive variables would be more appropriately called sensitive targets, since they might not be variable. Some typical examples of sensitive variables include:

• Z = K with K a secret key chunk -this is the most direct choice for a sensitive target, nevertheless it is often not variable, since in some cases a device always manipulates the same key for a given embedded primitive. When the target is not variable we are performing a simple attack (see Sec. 2.5.1);

• a cryptographic variable that depends on a sufficiently small key chunk and a part of a known input variable E: Z = f (K, E) -this is the most classical choice to perform a so-called differential or advanced SCA (see 2.9);

• any function of a cryptographic variable. Sometimes, as for example we will see in Chapter 5 (see Sec. 5.4.3) it can be interesting not to target a variable but a non-injective function of a variable, e.g. its Hamming weight. The Hamming weight operation will be denoted by HW(•) and is the operation that counts the number of 1's in the binary string representing the entry. Thus, an example of sensitive variable is HW(f (K, E)); when the identity function is applied we are in the previous case;

• an operation (ex: Z ∈ {square, multiply})

• a register (ex: Z is the register used to store results of intermediate operations in a Montgomery ladder implementation of RSA [RSA78; JY02])

In this thesis we will try as much as possible to abstract from the form of the sensitive variable, thinking of any entity Z that assumes values in a finite set Z = {s 1 , . . . , s |Z| } and whose value permits an attacker to make inference on a secret parameter of the implemented algorithm.

The Strategy Family

The wide range of attack strategies, together with their still-evolving taxonomy, makes the task of group attack strategies very hard. We propose here a simplified grouping into three strategy families:

• the Simple Attacks, • the Collision Attacks,

• the Advanced Attacks.

We highlight the fact that such a grouping is not sharp and impermeable in literature.

Simple Attacks

In simple attacks, the relevant information is obtained directly from the observation of trace patterns, without necessarily applying statistical tools and often at the naked eye. Such a direct analysis is sometimes referred to as Simple Power Analysis (SPA).

The sensitive variable coincides in general with the secret key (or a chunk of it).

Typical targets for SPA attacks are cryptographic devices in which some operations requires variable timing instructions, or in which the execution flow depends on the key. For example, in software implementations, branching to different instructions may occur when a secret key chunk has a specific value. A typical example of leaks allowing simple attacks is depicted in Fig. 2.1: the depicted trace shows the power consumption of a device performing squares and multiplications while computing modular exponentiation to implement the RSA algorithm. Multiplications consume more than squares and patterns are recognizable to the eye. The sequence of patterns directly reveals the secret key. A characteristic of simple attacks is that they do not require in general to observe the variation of the side-channel signals under the variation of the algorithm entries, thus they are sometimes referred to as one-trace attacks, since the observation of a single trace may be sufficient to perform them.

In literature the terms simple attacks and one-trace attacks are sometimes considered equivalent, as e.g. in [START_REF] Clavier | ROSETTA for single trace analysis[END_REF].

Collision Attacks

Advanced Attacks

As described above, SPA leads to simple attacks when large-scale side-channel variations (even visible at the naked eye) depend on secret values, and low noise is present. In contrast to SPA, the so-called Differential Power Analysis (DPA) refers to techniques that exploit a statistical approach to reveal key-dependent lower-scale side-channel variations. DPA techniques enables the so-called advanced attacks. Compared to simple attacks, advanced attacks require a less detailed knowledge of the implementation, and are able to succeed even dealing with acquisitions containing a considerable amount of noise. The term Differential refers to the fact that the approach exploits the small differences in the behaviour of the device while handling varying sensitive variables. By consequence, several acquisitions, under varying values for the chosen sensitive variable, have to be observed to perform an advanced attack, in contrast to simple attacks. Intuitively, the small differences get larger by means of averaging over an eventually considerable amount of acquisitions. The higher the noise that hides informative differences, the more acquisitions are needed to clear it and make information emerge. Interestingly, the first DPA tool (or distinguisher, as will be introduced below) that was proposed to perform an advanced attack, was the so-called Difference of Means (DoM) (the method were proposed by [START_REF] Kocher | Differential power analysis[END_REF], but the name given by [START_REF] Chari | Template Attacks[END_REF]), in which differences where exactly looked for by subtraction. A more detailed description of the advanced attacks is provided in Sec. 2.9.

The Shape of the Attack

In [START_REF] Clavier | Horizontal Correlation Analysis on Exponentiation[END_REF] a distinction between vertical and horizontal attacks is proposed, adopted in several posterior publications, e.g. [START_REF] Bauer | Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations[END_REF] which proposes horizontal approach to attack secure implementations of RSA, or [START_REF] Battistello | Horizontal side-channel attacks and countermeasures on the ISW masking scheme[END_REF]

The Attacker Knowledge

Many aspects of the attacker knowledge on the target implementation may influence his approach. For example the level of knowledge of the implementation details may allow or not to perform a simple attack. In an evaluation context, we may assume that an evaluator has open access to implementation details. Nevertheless, we are here interested in distinguish two particular attack scenarios that influence his knowledge about the physical behaviour of the device: the profiling and the nonprofiling attacks. As anticipated in Sec. 1.3, when a device with known secrets is available to make a prior characterisation of the leaking signals of a device, we talk about profiling attacks. When this is not the case, we talk about non-profiling attacks.

Anyway, many different profiling scenarios may be distinguished. For example, an evaluator (or attacker) may be authorised or not to partially (or totally) deactivate the countermeasures running on its device with known secrets. For example, in presence of a masking countermeasure (see Sec. 2.11.2), the evaluator (or attacker) may or not be authorised to fix the masks values (hence deactivate the countermeasure) or at least to read their randomly drawn values. This kind of deactivation in general eases the characterisation of the physical signals. Profiling attacks are the mainly concern of this thesis, and are deeper introduced in Sec. 2.10.

Efficiency of the SCAs

In order to measure the efficiency of an SCA, different security metrics have been proposed, the most exploited one being the success rate of order o (SR o) and the guessing entropy (GE). Referring to the formalization proposed by [START_REF] Standaert | A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks[END_REF], a key recovery side-channel attack outputs a vector of key candidates,3 called guessing vector

g = [g[1], . . . , g[|K|]
], in which such candidates are sorted in decreasing order with respect to a score (or their likelihood if the score has a probabilistic meaning) after the attack phase. Being k the right candidate, its rank is given by:

Rank(k) = i such that g[i] = k . (2.6)
Then, the success rate of order o of an attack is given by the probability for the right key candidate to be ranked among the first o candidates:

SR o = Pr[Rank(k) ≤ o] . (2.7)
The success rate of an attack is usually estimated empirically: the attack is repeated a large number of times, and the empirical SR o is given by the ratio between the number of successes (attacks for which the right key is ranked among the first o ones) and the total number of attacks.

The guessing entropy [START_REF] Standaert | A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks[END_REF] is defined as the expected rank of the right key:

GE = E[Rank(k)] . (2.8)
This is also generally estimated in an empirical way, by performing the attack many times independently, then computing the average of the obtained ranks.

Advanced Attacks

An advanced attack can be summarised in the following five steps:

• choose a sensitive variable Z = f (K, E),

• acquire side-channel traces (x i) i=1,...,N making entries (e i) i=1,...,N vary,

• define a leakage model, i.e. a function L(Z) modelling the side-channel leakage for a given sensitive variable value (examples are given in Sec. 2.9.1),

• for every key chunk hypothesis k ∈ K predict the side-channel leakage

L k,i = L(f (k, e i))
, (2.9)

• statistically compare the hypothetical predictions to the observed side-channel acquisitions, by means of a distinguisher ∆ (examples are given in Sec. 2.9.2):

∆ k = ∆((x i) i=1,...,N , (L k,i) i=1,...,N) , (2.10)
rank estimation are deployed. This domain is out the scope of this thesis. The interested reader should refer to [START_REF] Grosso | Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys[END_REF] and to previous works referred in its complete bibliography.

• deduce the key chunk candidate from scores ∆ k , in general coinciding with the key hypothesis that maximises (or minimises) the scores.

Leakage Models

Classical leakage models come from the fact that, in CMOS technology (which is used to realise the majority of existing integrated circuits), peaks of power consumption are observable when the output of the gates transition from either a "0" to "1" or a "1" to "0" logic state. For an internal variable Z, examples of classical leakage models L(Z) are the following deterministic functions of Z:

• mono-bit model: the value of one bit of Z,

• Hamming weight model: the Hamming weight HW(Z),

• Hamming distance model: the Hamming distance between Z and another intermediate variable Z , defined as HD(Z, Z) = HW(Z ⊕ Z), supposing e.g. that one of the two variable overwrites the other into the same logic states (thus, the number of switched bits is counted),

• linear model: a linear combination of the bits of Z, supposing that some states influence the power consumption more than others,

• identity model: the value of Z itself.

When a leakage model is considered, it is understood that the variable X is a noised observation of L(Z). The noise distribution is a critical component of the attack efficiency. Thus, some efforts to better specify the form of the noise in such a model have been done in the SCA literature, leading to perform analysis with some noisy leakage models. The most classical noisy leakage model is the one introduced by [START_REF] Chari | Towards sound approaches to counteract poweranalysis attacks[END_REF], where noise is assumed as an addend of the deterministic function L(Z), is assumed to follow a Gaussian distribution, and is quantified by its standard deviation. A more general model was proposed in [START_REF] Prouff | Masking against side-channel attacks: A formal security proof[END_REF], where noise is quantified as a statistical distance, called bias, between the distribution of Z and the conditional distribution of Z given X. In this thesis we do not need to consider a precise description of the noise. Despite the fact that some of the proposed techniques present optimality features in presence of Gaussian hypothesis, we will not endorse the Gaussian model. The unique assumption that is done is the following, that we believe be a common point of many models in literature. The first-order moments of the conditional variables X | Z = s are different for at least two different values of s. When a (deterministic) leakage model L(Z) is considered, it is understood that it coincides with such first moments, i.e.

L(s) = E[X | Z = s].
In general it is meant that the noise has no impact over the first-order moments of the acquisition, but only eventually over the quality of their estimations.

Distinguishers

The underlying core hypothesis that brought to the development of the advanced SCA is the following. Given a set of side-channel traces, i.e. a set of realisations of a random variable X, the attacker computes the realisations L k,i (via (2.9)) of a second random variable L k for each key hypothesis. For the correct key hypothesis, the two random variables X and L k are statistically dependent, while for the wrong key hypothesis they are independent (or at least apparently independent, as pointed out in Rem. 2.1). The goal of a distinguisher is to detect the dependencies between the two random variables, thus distinguishing the right key hypothesis from the wrong ones. The selected key candidate is the one that shows an higher dependency value between the predicted leakages and the actual ones.

Remark 2.1. Actually the assumption of wrong keys being independent from the acquired signal, sometimes referred to as wrong key randomization hypothesis [START_REF] Harpes | Cryptanalysis of iterated block ciphers[END_REF] is too strong: a dependency always exists between the wrong key candidate hypothetical leakages and the actual ones. In literature it has firstly been evidenced under the name of ghost peaks in [START_REF] Brier | Correlation power analysis with a leakage model[END_REF], then explicitly affirmed in later works [Riv08;

FLD12], finally even exploited to gain information on the right key by observing the attacks' ranking on the wrong ones [START_REF] Lomné | How to estimate the success rate of higher-order side-channel attacks[END_REF]. Anyway, such a dependency is usually hard to detect statistically: deterministic functions that link wrong key hypothesis to the correct ones are those that compose the cryptographic algorithm, thus may be chosen algebraically complex and highly non-linear. For example, let us consider Z = Sbox(K ⊕ E) as sensitive variable for an AES implementation, and choose the identity leakage model. Let k be the right key chunk and k be a wrong candidate. The right leakage predictions L k ,i = Sbox(k ⊕ e i) and the wrong ones

L k,i = Sbox(k ⊕ e i)
are linked by the following deterministic relation:

L k,i = Sbox(Sbox -1 (L k ,i) ⊕ k ⊕ k) ,
implying that, if a statistical dependence exists between the random variables L k and X, then L k and X are statistically dependent, as well. Anyway, such a dependency is hard to detect, allowing the right key easier emerge from statistical analysis than the wrong ones. Interestingly, this observation encourages to choose, for advanced attacks, sensitive variables which are related to the secret key via non-linear functions. For example, this is the reason why the typical AES targeted operation is the SubBytes, and not the AddRoundKey.

Among the most popular side-channel distinguishers, many look only for linear dependencies, e.g. the Difference of Means (DoM) and the Correlation Power Analysis (CPA). The DoM is the one exploited in [START_REF] Kocher | Differential power analysis[END_REF] with a mono-bit model (implying that L k takes only two values, 0 and 1), then generalised for other leakage models in [START_REF] Bevan | Ways to enhance differential power analysis[END_REF][START_REF] Thomas S Messerges | Examining smart-card security under the threat of power analysis attacks[END_REF]. The DoM has the following form:

∆ DoM k = Ê[X | L k = 0] -Ê[X | L k = 1] . (2.11)
The CPA distinguisher, proposed by [START_REF] Brier | Correlation power analysis with a leakage model[END_REF], also detects linear dependencies.

It exploits an estimation ρ of Pearson correlation-coefficient:

∆ CP A k = ρ(X, L k).
Other kinds of more general distinguishers (e.g. the Mutual Information Analysis (MIA) [Gie+08; Bat+11] and the Kolmogorov-Smirnov test-based ones [START_REF] Veyrat-Charvillon | Mutual information analysis: how, when and why?[END_REF]) look for a wider range of dependencies. With the KS distinguisher, the probability distributions of X and L k are globally compared, and the key for which the two distributions looks closer to each other is selected. The MIA distinguisher consists in an estimation of mutual information between X and L k :

∆ M IA k = Î(X, L k).
It is an information-theoretic measure that expresses the quantity of information one obtains on X by observing L k . The great generality of the MIA distinguisher comes at the cost of two drawbacks. First, a considerable practical inefficiency, due to the fact that the computation of the mutual information requires the estimation of some continuous probability densities, which requires in turn a considerable amount of attack traces. Second, as anticipated in Rem. 2.1, the MIA distinguisher, if provided with some perfect probability densities estimations, is by definition prone to identify statistically dependence between wrong key hypotheses and actual leakages, leading to unsuccessful attacks, unable to distinguish the right hypothesis among the wrong ones.

Finally, a last widely exploited distinguisher is the Maximum-Likelihood one (ML) [START_REF] Chari | Template Attacks[END_REF], sometimes referred to as Bayesian distinguisher [START_REF] Mangard | One for all-all for one: unifying standard differential power analysis attacks[END_REF]. It selects the key candidate that better explains the observed acquisition, in terms of probability:

∆ M L k = Pr(X | L k).
It is the optimal distinguisher, in the sense that it maximizes the probability of a successful attack [START_REF] Heuser | Good is not good enough[END_REF]. The optimality comes at the cost of the requirement for the knowledge of the conditional probability distribution Pr(X | L k), which can only be estimated via a preliminary profiling phase. Indeed, this distinguisher is only available in profiling attacks.

Various works in literature have proposed comparison among the common distinguishers. For instance, Doget et al. [START_REF] Doget | Univariate side channel attacks and leakage modeling[END_REF] show that some distinguishers are equivalent among them, in the sense that they are obtained from a same distinguisher under different leakage models (in particular the DoM and the CPA). Mangard et al. [START_REF] Mangard | One for all-all for one: unifying standard differential power analysis attacks[END_REF] showed that, even when fed with the same leakage model, some classical different distinguishers (in particular the CPA and the ML ones) perform in the same way (in terms of success rate) when the noise variance of the acquisitions is sufficiently high. Heuser et al. [START_REF] Heuser | Good is not good enough[END_REF] exploited a communication theory flavoured side-channel modelisation, to specify in which special and unrealistic contexts the common distinguishers introduced below are equivalent to the optimal one.

Differently from the simple attacks and the collision attacks, we did not identified for advanced attacks an analogous task in machine learning domain. Nevertheless, we will observe how in the profiling context, considering the ML distinguisher, an advance attack translates into multiple classification tasks (each classifying a trace with respect to the correct Z value) whose outcomes collaborate to precise the key candidate.

Remark 2.2. When acquisition noise is low, the classification of traces with respect to Z values may have a high accuracy. If Z and K are related through a bijective relation, the assignation of the right Z value is sufficient to retrieve K, via a single observation. This turns an advanced attack into a simple one.

Profiling Side-Channel Attacks

A profiling attack is divided into two distinct phases. The first one, called profiling phase or characterisation phase exploits so-called profiling traces. Profiling traces are acquisitions taken under known values for the sensitive variable Z, so the attacker collects couples (x i , z i) i=1,...,Np for which the correct association trace/sensitive variable is known. The second phase of a profiling attack is the proper attack phase, during which the attacker observes a new set of acquisitions, under an unknown secret key, and takes advantage of the previous characterisation to infer over it. Throughout this thesis, and each time a profiling attack scenario is supposed, we will refer to elements of Z as labels, each one identifying a class of traces. We will say that acquired traces associated to a same value s ∈ Z belong to the same class, identified by the label s. We will say as well that such traces are labelled by the value s. By abuse we will also refer to the class s to denote the class of traces labelled by s. In such a context, N s will denote the number of profiling traces belonging to the class s.

As we will see in Chapter 3, in machine learning domain the analogous of profiling attacks context is studied under the name of supervised machine learning. In supervised machine learning, couples All attack strategies, simple, collision and advanced, may be performed in a profiling way. In the advanced scenarios, the profiling phase may be exploited to estimate from data the leakage model L, as a preliminary step for an attack based over any distinguisher. Anyway, in a profiling attack the optimal attack distinguisher is the ML one, which is the one that leads to the Template Attack introduced hereafter.

(x i , z i) i=1,...,

Template Attack

Introduced in 2002 by Chari [START_REF] Chari | Template Attacks[END_REF], the so-called Template Attack (TA) is the most well-established strategy to run a profiling SCA. The idea of the TA is based over the construction of a so-called generative model: in probability, statistics and machine learning "approaches that explicitly or implicitly model the distribution of inputs as well as outputs are known as generative models, because by sampling from them it is possible to generate synthetic data points in the input space." [START_REF] Christopher | Pattern recognition and machine learning[END_REF]. In TA the attacker observes the couples (x i , z i) i=1,...,Np and exploits them to estimate the class-conditional densities:

p X | Z=z (x) ,
(2.12) eventually the prior densities p X (x), p Z (z), and finally the a-posteriori density, by means of Bayes' theorem:

p Z | X= x (z) = p X | Z=z (x)p Z (z) p X (x) .
(2.13)

In the attack phase the attacker acquires new traces that he only can associate to the public parameter E, obtaining couples (x i , e i) i=1,...,Na . Then, making the usual assumption that each acquisition is an independent observation of X, he associates to each hypothesis k ∈ K a score d k given by the joint a-posteriori probability that follow;

d k = Na i=1 p Z | X= x i (f (k, e i)) , (2.14)
which is computed by exploiting estimates (2.13). Finally, his best key candidate k is the one maximizing such a joint probability:

k = argmax k d k .
(2.15)

Remark 2.3. Since the marginal probability density p X (x i) of (2.13) does not depend on key hypothesis, it is usually neglected. Moreover, in many cases the variable Z follows a uniform distribution, so its probability mass function p Z (z) appearing in (2.13) does not influence the ranking of key hypothesis. It is often neglected as well.

These facts make the TA distinguisher, driven by the maximum-a-posteriori principle, coincide with the ML one as defined in Sec. 2.9.2:

d k = ∆ M L k = Pr(X | L k).
Remark 2.4. As already observed in Rem. 2.2, in the special case of a simple attack, i.e. N a = 1, in which Z = K, the problem becomes a classical machine learning classification problem (as we will discuss over in Chapter 3): the attacker wants to classify the unique attack trace, i.e. assign to it a class label (the key). In such a case, the choice proposed by (2.15) is known as Bayes (optimal) classifier. 4 It is proven to be the optimal choice to reduce the misclassification error [START_REF] Christopher | Pattern recognition and machine learning[END_REF].

This approach has the theoretical optimality that comes from the maximum-aposteriori criterion. The crucial point is the estimation of the class-conditional densities (2.12): the efficiency of the attack strongly depends on the quality of such estimates.

The Curse of Dimensionality

The estimation of probability densities from data samples is one of the task affected by the so-called curse of dimensionality. This expression, invented by Richard Bellman in 1961 [START_REF] Richard E Bellman | Adaptive control processes: a guided tour[END_REF], refers to several phenomena that affect the analysis of data when data are highly multi-dimensional. Side-channel traces, lying in a D-dimensional space, where D 3 is the number of time samples, are highly multi-dimensional. The estimation problem comes from the exponential augmentation of the volume in which data points may be, or in other words the exponential increasing of the number of configurations a data may have. It requires the observation of a raising number of samples in order to explore and assign a probability measure to the whole volume.

For example, to maintain the same estimation quality achievable observing N data sampled from a 1-dimensional variable, one should observe N D data samples for a D-dimensional variable. To deal with this unacceptable requirement, two ways have been chosen in side-channel contexts. First, as we will see in Sec. 2.10.1.2, the classical template attack is performed under a multi-variate Gaussian hypothesis on data.

In this way the probability measure of the unexplored volume is regressed by the Gaussian distribution, and only the mean and the covariance matrix are estimated from data, in general via the maximum-likelihood estimators. These estimations are done accepting their decreasing precision with the dimensionality growing. Second (Sec. 2.10.2), dimensionality reduction techniques are priorly applied: selection of points of interest or feature extraction techniques.

The Gaussian Hypothesis.

A well-established choice to construct class-conditional densities estimations (2.12)

is the one applied in Gaussian TA [START_REF] Chari | Template Attacks[END_REF]: it consists in making a class-conditional multivariate Gaussian distribution assumption:

X | Z = s ∼ N (µ s , Σ s) , (2.16)
and exploits the profiling traces to estimate the parameters µ s , i.e. the mean vector of the Gaussian distributions, and Σ s , i.e. the covariance matrices.

Remark 2.5. This assumption is the same that is done for classification problems, bringing to the Quadratic Discriminant Analysis technique, that we will describe in Chapter 3.

Many options and choices influence the implementation of a TA: the suppression or not of the marginal densities in (2.13), the use of the unbiased estimator or the maximum-likelihood estimator for the covariance matrices, or the addition of an homoscedasticity assumption (assume that all class-covariance matrices are equal).

This last assumption, proposed in 2014 in SCA literature [START_REF] Choudary | Efficient template attacks[END_REF], allows exploiting all profiling traces to estimate a unique so-called pooled covariance matrix, instead of using traces belonging to each class to estimate each covariance matrix separately.

The pooled estimation gains in accuracy.

Remark 2.6. The homoscedasticity assumption is the same that is done for classification problems, bringing to the Linear Discriminant Analysis technique, which we will introduce in Chapter 3 and more deeply analyse in Chapter 4.

Other choices that mainly influence the TA efficiency are those related to the PoI selection, or more generically to the dimensionality reduction issue, which our first contributions focus on.

Points of Interest and Dimensionality Reduction

Side channel traces are usually acquired by oscilloscopes with a very high sampling rate, which permits a powerful inspection of the component behaviour, but at the same time produces huge-dimensional data, consisting in thousands, or even millions of points. Nevertheless, on one hand often only a relatively small part of these time samples is informative, i.e. statistically depends, independently or jointly, on a sensitive target variable. These informative points are called Points of Interest (PoI).

On the other hand, given the continuous nature of the sampled the side-channel signals, it is realistic to assume that the information that PoIs bring is somehow redundant, and may be extracted into some smaller-sized form. The dimensionality reduction of the traces is a fundamental pre-processing phase to get efficient and effective

µ s = Ê[X | Z = s] = 1 N s i : z i =s x i .
(2.17)

A notable difference among them is that only the last two ones, SNR and SoST, also take the following variances per class into account:

s = Var(X | Z = s) = 1 N s -1 i : z i =s (x i -µ s) 2 , (2.18)
where the estimation of the variance Var of a vector has to be intended entry-wise.

Name of the estimate Definition

SoD

τ (t) = s 1 ,s 2 ∈Z s 1 =s 2 (µ s 1 (t) -µ s 2 (t)) SoSD τ (t) = s 1 ,s 2 ∈Z s 1 =s 2 (µ s 1 (t) -µ s 2 (t)) 2 SoST (version [GLRP06]) τ (t) = s 1 ,s 2 ∈Z s 1 =s 2 (µ s 1 (t) -µ s 2 (t)) 2 s 1 Ns 1 + s 2 Ns 2 SoST (version [BDP10]) τ (t) = s 1 ,s 2 ∈Z s 1 =s 2 (µ s 1 (t) -µ s 2 (t)) 2 s 1 + s 2 SNR τ (t) = Var(µ Z (t)) Ê[Z (t)] (2.19)
since the variation of the signals in such instants seems to depend on the class belongingness. The construction of the subsampling is done on the basis of such a test, for example by selecting all time samples for which τ (t) is higher than a certain threshold.

As anticipated in Sec. 1.3.2, in this thesis we did not go deeper in the study of such sample-wise PoI selection methods, exploring directly other dimensionality reduction approaches. Anyway, throughout the thesis, we will often refer to the SNR statistic, as a good indicator of the sample-wise information.

Main Side-Channel Countermeasures

To counteract SCAs, strategies that aim at making leakages independent from the processed sensitive data have to be implemented. We can distinguish two broad groups of such countermeasures: those that aim at hiding the data and those that are designed to mask the data. The two approaches may even be combined.

Hiding

The main characteristic of a hiding countermeasure is that is does not change the intermediate data values that are processed in the cryptographic algorithm, but it only attempts in hiding its processing. Hiding is typically, but not only, 5 achieved in by randomising the power consumption. A random power consumption can be obtained by randomly changing the time at which the targeted sensitive variable is processed. In this way the attacker acquires side-channel traces that are desynchronised or misaligned with respect to their interesting part. This temporal misalignment reduces the effectiveness of an attacker's statistical analysis. Possible ways for randomising the power consumption are the random insertion of dummy instructions [CK09; CK10] and the shuffling of the operations [START_REF] Veyrat-Charvillon | Shuffling against side-channel attacks: A comprehensive study with cautionary note[END_REF], at a software level.

At the hardware level they may be the randomization of the instruction stream by means of non deterministic processors [IPS02; MMS01], or the enhancement of a jittering effect over the clock, via a clock with unstable frequency, or via an asynchronous logic style [START_REF] Moore | Improving smart card security using self-timed circuits[END_REF][START_REF] Moore | Balanced self-checking asynchronous logic for smart card applications[END_REF]. Such methods may also be combined.

The most common approach an attacker usually chooses to face up temporal misalignment, consists in applying realigning preprocessing techniques, such as integration [Man04; MOP08], pattern matching [START_REF] Nagashima | DPA using phase-based waveform matching against random-delay countermeasure[END_REF] or more sophisticated signalprocessing techniques [START_REF] Jasper Gj Van Woudenberg | Improving differential power analysis by elastic alignment[END_REF]. Defeating differently misalignment countermeasures is one of the main motivations that lead us to investigate Convolutional Neural Networks, as we will discuss in Chapter 6.

Masking

Masking countermeasures derive from the idea of applying secret-sharing methods to counteract side-channel attacks. Secret-sharing methods consist in strategies to (2.20), which is sometimes referred to as masked variable. The shares are manipulated by distant parts of the circuit (especially if the countermeasure is implemented at a hardware level) or at different times (especially for software implementations of the countermeasure). In this way an attacker, who is obliged to retrieve information coming from a sufficient number of shares to obtain some Z-dependent information, has to acquire many portions of signal to combine.

Attacks against the masking countermeasure are known as Higher-Order Side-Channel Attacks (HOSCA), where the order usually refers to the number of independent information an attacker has to join to succeed. In general, to defeat a (d -1)th-order masking countermeasure, a dth-order attack has to be run. In the first literature about HO-SCA (for instance [Mes00b; WW04; JPS05; Osw+06] the order corresponded to the number of time samples of the signal the attacker combined to mount the attack, and the common idea was to compute some combining function of the d time samples and compare the outcome with some key-dependant predictions.

Among the proposed combining functions, the centred product of the d points were

showed to be the most efficient, at least under a Hamming Weight power consumption model [START_REF] Prouff | Statistical Analysis of Second Order Differential Power Analysis[END_REF]. Actually, and for example when the countermeasure is implemented in hardware and shares are manipulated in parallel, sometimes the number of time samples to combine differs from the number d of shares [START_REF] Peeters | Improved higher-order side-channel attacks with FPGA experiments[END_REF][START_REF] Standaert | On the masking countermeasure and higher-order power analysis attacks[END_REF]. So the definition of dth-order SCA has mutated in time (see for instance a different formalization in [START_REF] Piret | Security analysis of higher-order Boolean masking schemes for block ciphers (with conditions of perfect masking)[END_REF]). Today it is most-widely accepted to define a dth-order attack as an attack that looks for key-discriminant information in some dth-order statistical 6 The exponential basis being proportional to the noise standard deviation. tool, as we will discuss in Chapter 5.

Chapter 3

Introduction to Machine Learning

Basic Concepts of Machine Learning

Machine Learning (ML) is a field of computer science that groups a variety of methods whose aim is giving computers the ability of learning. The more cited definition of learning has been provided by Mitchell in 1997 [START_REF] Mitchell | Machine Learning[END_REF]: " A computer program is said to learn from experience E with respect to some task T and performance measure P, if its performance on T, as measured by P, improves with experience E."

The ML methods methods essentially come from applied statistics, and are characterised by an increased emphasis on the use of computers to statistically estimate complicated functions. This allows ML to tackle tasks that would be too difficult to solve with algorithms entirely designed and specified by human being. An ML algorithm is often said to "learn from data", in the sense that it is able to improve an algorithm's performance at some task via a data observation experience.

The Task, the Performance and the Experience

The task. The task T is usually described in terms of how the ML system should process an example (or data point). An example is one datum x ∈ R D , which is in turn a collection of features x[i], with i = 1, . . . D. In SCA context an example might be a side-channel trace, which is in turn a collection of time samples, that constitute its features. Some common ML tasks include these three examples:

• Regression: the computer is asked to approximate a mapping function from some input variables to some continuous output variables, e.g. approximate F : R D → R.

• Classification: the computer is asked to specify which class or category an input belongs to, being Z the set of the possible classes. The learning algorithm is thus asked to construct a function F : R D → Z. We remark that this task is similar to the regression one, except for the form of the output, since in general • Verification: the computer is asked to state whether or not two given inputs are instances of a same class or category. For example, it may be asked to state if two hand-written signatures have been produced by the same person. The learning algorithm is thus asked to construct a function F : R D × R D → {0, 1}.

Z
A variant of such a task consists in finding a function F defining the probability of each pair of inputs being instances of a same class.

The functions constructed by an ML algorithm somehow describe and characterise the data form and distribution, thus are often referred to as models.

The performance measure. The performance measure P designs a quantification of the ability of the learning algorithm. Depending on the task T, a specific performance measure P can be considered. For tasks as classification or verification the more common measure is the accuracy of the model, i.e. the proportion of inputs for which the model produces the correct output. Equivalently, the error rate may be used as a performance measure P, i.e. the proportion of inputs for which the model produces an incorrect output. For the regression task the more common performance measure P is the so-called Mean Squared Error (MSE): it is computed by averaging over a finite set of examples, the squares of the differences between the correct outputs and the ones predicted by the model.

One of the crucial challenges of ML is that we are usually interested in how well a learning algorithm performs in producing a model that fits new, unseen data. For this reason, the performances of an ML algorithm are usually evaluated over a socalled test set, i.e. a set of examples that have not been used for the learning (or training) phase.

The experience. The experience E describes the way data and information are accessed by the learning algorithm during learning. In this context we principally distinguish two families of learning algorithms:

• the supervised learning algorithms access to a dataset of examples, each associated in general to a target or label. The term supervised reflects the fact that the learning is somehow guided by an instructor that knows the right answer over the learning dataset;

• the unsupervised learning algorithms access to a dataset, without any associated target. They try to learn useful properties of the structure of the dataset.

In general, the nature of the task is strictly related to the kind of experience the learner is allowed; for example the classification or regression tasks are considered as supervised tasks, while examples of unsupervised tasks include clustering and data representation or dimensionality reduction. For example, the Principal Component Analysis, that will be discussed in Chapter 4 in the context of SCA, is a dimensionality reduction algorithm that might be seen as an unsupervised algorithm that learns a representation of data. We will see in Chapter 4 that for SCA context a supervised version of the PCA has been proposed as well.

Example of Linear Regression

The regression task is not of high interest for the rest of this thesis, but is the most direct example to keep in mind in order to understand some basic ML concepts, such as the underfitting and the overfitting (see 3.1.4). Let us introduce a linear regression model to tackle the regression task: we want to construct a linear function F : R D → R, that takes an input x and outputs ŷ = w x, where w ∈ R D is a vector of parameters that have to be learned by a learning algorithm in order to well describe some data.

1 Let D • = (X • , Y •) denote a dataset,
MSE • = 1 |D| ˆ y • -y • 2 2 . (3.1)
The performance measure for the learning algorithm is MSE test , meaning that the goal for the learning algorithm is to find a parameter vector w which minimises MSE test . Nevertheless, such an objective cannot be directly imposed, because the learning algorithm only experiences over the training set, and not over the test set.

An intuitive way to act, that can be proven to be the maximum-likelihood solution to the problem, is to minimise MSE train instead of MSE test . This minimization can be obtained by solving an easy optimization problem. When a learning algorithm behaves as an optimization algorithm that minimises a given function, such a function is called cost function, or loss function, or objective function. The solution to such an optimization problem can be given in closed form, by means of the pseudo-inverse matrix M + of M train , as follows:

M + = (M train M train) -1 M train (3.2) w = M + y train . (3.3)

Example of Linear Model for Classification

As observed in Sections 2.5.1 and 2.9, a strict relationship may be established be- For this example we consider a probabilistic approach, constructing a generative model, which is the same approach of Template Attacks (Sec. 2.10.1). This example will allow on one hand to introduce some interesting functions, such as the logistic sigmoid and the softmax, that will play a role in the construction of Neural Networks (see Chapter 6). On the other hand, the example justifies the large exploitations of generalised linear models in order to construct discriminative functions. Indeed, linear models come out naturally when adding some assumptions on the data distributions, as those that will be introduced below.

tween
Constructing a generative probabilistic model implies modelling the class-conditional probabilities p X | Z=s j (x) for j ∈ {1, . . . , |Z|} as well as the class priors p Z (s j) and p X (x). Let us first consider a 2-class context, i.e. Z = {s 1 , s 2 }. Then, the posterior probability for the class s 1 is the following:

Pr(s 1 | x) = Pr(x | s 1)Pr(s 1) Pr(x) = (3.4) = Pr(x | s 1)Pr(s 1) Pr(x | s 1)Pr(s 1) + Pr(x | s 2)Pr(s 2) . (3.5)
To compare the two classes, we can evaluate their log-likelihood ratio defined as:

a = log Pr(s 1 | x) Pr(s 2 | x) = log Pr(x | s 1)Pr(s 1) Pr(x | s 2)Pr(s 2) . (3.6)
Then we might assign the label the class s 1 to x if and only if a > 0, which corresponds to take as decision boundary the surface defined by Pr(x | s 1)Pr(s 1) = Pr(x | s 2)Pr(s 2). We remark that Eq. (3.4) rewrites as:

Pr(s 1 | x) = 1 1 + e -a = σ(a) , (3.7)
where the function σ is the so-called logistic sigmoid. This remark translates in the multi-class case, i.e. |Z| > 2, in the following way: the posterior probability for each class s j is given by

Pr(s j | x) = Pr(x | s j)Pr(s j) Pr(x) = Pr(x | s j)Pr(s j) |Z| k=1 Pr(x | s k)Pr(s k) = s(a)[j] , (3.8)
where a is a |Z|-dimensional vector, whose entries are given by

a[j] = log [Pr(x | s j)Pr(s j)] , (3.9)
and s is the so-called softmax function, or normalised exponential, that is defined, entrywise by:

s(a)[k] = e a[k] |Z| j=1 e a[j]
.

(3.10)

Let us now introduce two assumptions about the class-conditional densities:

(i) we will suppose that they follow a Gaussian distribution with parameters µ j , Σ j , (ii) and that all class-conditional densities share the same covariance matrix

Σ j = Σ, so that p X | Z=s j (x) = 1 (2π) D/2 |Σ| 1/2 e -1 2 (x-µ j) Σ -1 (x-µ j) . (3.11)
Under these assumptions, and considering probability densities and masses instead of probability values2 Eq. (3.6) rewrites as:

a = log p Z (s 1) p Z (s 2) - 1 2 µ 1 Σ -1 µ 1 + 1 2 µ 2 Σ -1 µ 2 -x Σ -1 (µ 2 -µ 1) = w x + w 0 , (3.12)
where we set

w =Σ -1 (µ 1 -µ 2) w 0 = log p Z (s 1) p Z (s 2) - 1 2 µ 1 Σ -1 µ 1 + 1 2 µ 2 Σ -1 µ 2 .
The quadratic terms in x, that appears in the exponent of the Gaussian density (3.11), have cancelled thanks to the common variance assumption (ii), thus we obtain that the decision boundary for the 2-class problem, given by a = 0 is a (D-1)-hyperplane of the input space. 3 This way of choosing linear boundaries is known under the name of Linear Discriminant Analysis. Another way to view the same linear classification model is in terms of dimensionality reduction: intuitively, in the 2-class case 4 one can see the term w x in (3.12) as a projection of the input x onto a onedimensional subspace of R D which is orthogonal to the decision boundary mentioned above. Then, the classification of the obtained dimensionality-reduced examples is done by the means of a real-valued threshold (that would correspond to w 0 , in the optimal case). It can be shown that the dimensionality reduction obtained by the Fisher criterion that we will deploy in Chapter 4, to which we will refer to as LDA dimensionality reduction by a widely accepted abuse, is equivalent to the dimensionality reduction obtained in this example, under both assumptions (i) and (ii).

Relaxing the assumption (ii) and allowing each class-conditional density p(x | s j) to have its own covariance matrix Σ j , then the cancellations seen above will no longer occur, and the discriminant a turns out to be a quadratic function of x. This gives rise to the so-called Quadratic Discriminant Analysis, that we already mentioned in Chapter 2 for its analogy with Template Attacks.

Assumptions (i) and (ii) also lead to the following expression for the posterior probability for s 1 , directly implied by (3.7):

Pr(s 1 | x) = σ(w x + w 0) . (3.13)
Thus, such a posterior probability is given by the sigmoid acting to a linear function of x. Similarly, for the multi-class case, the posterior probability of class s j is given by the j-th entry of the softmax transformation of a linear function of x. This kind of generalised linear model can be thus used in a probabilistic discriminant approach, where the posterior conditional probabilities are directly modelled from data without passing through the estimations of class-conditional densities and priors. Such a discriminative approach is the one that will be adopted in Chapter 6 when considering models constructed by Neural Networks.

Underfitting, Overfitting, Capacity, and Regularization

Underfitting and Overfitting. As already said, the main challenge of ML is that the learning algorithms are in general allowed to experience over training data, but the models they output are asked to fit some unseen test data. Observing the training data, an ML algorithm sets the model parameters in order to raise the performances over the training set, or equivalently to minimise the so-called training error. Nevertheless, at the end of the learning process, the model performance is evaluated over the test set, by measuring the so-called test error. Thus, two factors determine how well an ML algorithm acts: its ability to reduce the training error, and its ability to reduce the gap between the training and the test error. When the former ability is not satisfactory we assist to the underfitting phenomenon: the model is not able to obtain a low training error, or the ML algorithm is not able to determine model parameters that make training error to be low. On the other hand, if the latter ability is not satisfactory we assist to the overfitting phenomenon: the gap between the training and the test error, called generalisation gap, is too large.

Capacity.

The property of a model that controls its underfitting or overfitting behaviour is the capacity. Roughly speaking, the capacity of a model quantifies the complexity of the functions it can represent: a model with higher capacity can be parametrised in such a way to represent a higher complex function. For example, a linear regression model is able to represent all linear functions. To raise its capacity, quadratic, cubic or general polynomial terms might be included, passing from a linear regression model to a polynomial regression one. It allows the model to represent respectively quadratic, cubic or polynomial functions as well. 5The polynomial regression provides a striking example to understand the underfitting and overfitting phenomena. Consider a problem in which the examples to respond to an eventual lack of data. Some DA techniques will be proposed in Chapter 6 for the SCA context.

(x i , y i) i=1,...,N lies in R × R
Regularization. In a real-case problem, the optimal capacity necessary to learn from given data is unknown. In such a case, trying to fit data with a too low capacity model assures the failure, thus it is always more interesting to oversize the capacity of the learning model. Choosing an oversized model, we risk to incur in overfitting.

The so-called regularization techniques respond to such a risk, as a widely adopted alternative to DA: in general they consist in adding constraints to the learning algorithm in order to guide it in choosing a model among a wide set of eventually fitting models. Going back to the polynomial regression example, one can try to fit data with a cubic polynomial (thus oversizing the model capacity) and induce the optimiser algorithm to choose the smallest-degree polynomial fitting data via a regularization. This can be obtained adding a penalty that depends on the polynomial degree to the cost function. Applying regularization may make the algorithm be

Hyper-Parameters and Validation

The hyper-parameters of a model are all the parameters that are priorly set and that are not learned by the learning algorithm. They define the general form of the model. The validation process just described may strongly depend on the way the training set have been split to create the validation one. In order to avoid to validate a model in a strongly data-dependent way, a slightly different process is encouraged in ML community, named the cross-validation, which we describe in Appendix A.

No Free Lunch Theorem

A so-called No Free Lunch Theorem has been formulated for optimisation and ML algorithms around 1997 [START_REF] David | No free lunch theorems for optimization[END_REF]. It states that any learning algorithm has the same test error if averaged over all possible distributions of data. This means that there cannot exist a universal best ML algorithm: any of them performs in the same way, when performances are averaged over all possible tasks. Thus, making research over some kind of data, for example SCA traces, means trying to understand what kinds of ML algorithms perform well over such particular kind of data and point out the eventual interesting hyper-parameters of ML models that are responsible of the main performance variations.

Overview of Machine Learning in Side-Channel Context

In 1991 Rivest pointed out for the first time a strong link between the fields of Machine Learning and Cryptanalysis [START_REF] Ronald | Cryptography and machine learning[END_REF]. Starting from observing that the goal of cryptanalysis is identifying an unknown encryption function, indexed by a secret key, and that a classic problem in ML consists as well in learning an unknown function, he drew a strong correspondence between terminology and concepts of the two fields.

In the context of Side-Channel Cryptanalysis, ML algorithms started to be investigated in 2011 [START_REF] Hospodar | Machine learning in side-channel analysis: a first study[END_REF]. In this paper the authors formulated for the first time an attack in terms of classification problem and proposed the Support Vector Machine (SVM) [CV95; WW98] as technique to solve it. They also equipped the SVM with a kernel function to allow it to succeed even in case data would not be linearly separable. Such an approach is similar to the one we will describe in Chap- "Of the mushroom," said the Caterpillar, just as if she had asked it aloud; and in another moment it was out of sight.

-Lewis Carroll -"Alice's Adventures in Wonderland"

In this chapter, we explore solutions for dimensionality reduction of side-channel traces exploiting linear combinations of time samples. The results presented in this chapter have been published in the proceedings of CARDIS 2015 [START_REF] Cagli | Enhancing dimensionality reduction methods for side-channel attacks[END_REF].

Introduction

Linear dimensionality reduction tools produce a low-dimensional linear mapping of the original high-dimensional data on the basis of some well-specified criterion. An abundance of methods has been developed throughout statistics, machine learning, and applied fields for over a century, and these methods have become indispensable tools for analysing high-dimensional, noisy data, such as side-channel traces.

Accordingly, linear dimensionality reduction can be used for visualizing or exploring structures in data, denoising or compressing data, extracting meaningful feature spaces, and more. A very complete survey about this great variety of linear dimensionality reduction techniques has been published in 2015 by Cunningham and Ghahramani [START_REF] John | Linear dimensionality reduction: survey, insights, and generalizations[END_REF]. They proposed a generalised optimisation framework for all linear dimensionality techniques, survey a dozen different techniques, and mention some important extensions such as kernel mappings.

Among the surveyed methods in [START_REF] John | Linear dimensionality reduction: survey, insights, and generalizations[END_REF] we find the two ones that are mainly considered in the SCA literature: the Principal Component Analysis (PCA) and the Linear Discriminant Analysis (LDA). The PCA has been applied both in an unsupervised way (i.e. non-profiling attacks) [Kar+09; BHW12], and in a supervised way (i.e.

profiling attacks) [Arc+06; SA08; EPW10; CK14a; CK14b]. As already remarked in [START_REF] Eisenbarth | Building a Side Channel Based Disassembler[END_REF], and not surprisingly, the complete knowledge assumed in the supervised approach hugely raises performances. The main competitor of PCA in the profiling attacks context is the LDA, that thanks to its classification-oriented flavour (anticipated in Sec. 3.1.3), is known to be more meaningful [START_REF] Bruneau | Less is more[END_REF][START_REF] Standaert | Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages[END_REF] than the PCA for side-channel analysis. Nevertheless, the LDA is often set aside because of its practical constraints; it is subject to the so-called Small Sample Size problem (SSS), i.e.

it requires a number of observations (traces) which must be higher than the dimension (size) D of them. In some contexts it might be an excessive requirement, which may become unacceptable in many practical situations where the amount of observations is very limited and the traces size is huge.

In In SCA literature, one of the open issues for PCA application concerns the choice of the principal components that must be kept to extract the most useful features for the SCA scope. As already remarked by Specht et al. [START_REF] Specht | Improving Non-Profiled Attacks on Exponentiations Based on Clustering and Extracting Leakage from Multi-Channel High-Resolution EM Measurements[END_REF], some papers declare that the leading components are those that contain almost all the useful information [Arc+06; CK14b], while others propose to discard the leading components [START_REF] Batina | Getting More from PCA: First Results of Using Principal Component Analysis for Extensive Power Analysis[END_REF].

In a specific attack context, Specht et al. compares the results obtained by choosing different subsets of consecutive components, starting from some empirically chosen index. They conclude that for their data the optimal result is obtained by selecting a single component, the fourth one, but they give no formal argumentation about this choice. Such a result is obviously very case-specific. Moreover, the possibility of keeping non-consecutive components is not considered in their analysis.

In Sec. 4.2 the classical PCA technique is described, then the previous applications of PCA in SCA context are recalled, highlighting the difference between its unsupervised and supervised variants. Finally our contribution to "the choice of components open issue" is described: it is based on the Explained Local Variance (ELV) notion, that we will define and argument in the same section. The reasoning behind the ELV selection methodology is essentially based on the observation that, for secure implementations, the leaking information, if existing, is spread over a few time samples of each trace. This observation has already been met by Mavroeidis et al. in [START_REF] Mavroeidis | PCA, Eigenvector Localization and Clustering for Side-Channel Attacks on Cryptographic Hardware Devices[END_REF], where the authors also proposed a components selection method.

As we will see in Sec. 4.2.4, the main difference between their proposal and ours is that in [START_REF] Mavroeidis | PCA, Eigenvector Localization and Clustering for Side-Channel Attacks on Cryptographic Hardware Devices[END_REF] the information given by the eigenvalues associated to the PCA components is completely discarded, while the ELV methodology takes advantage of such information as well. We will argue about the generality and the soundness of this methodology and we will show that it can raise the PCA performances, making them close to those of the LDA, even in the supervised context. This makes PCA an interesting alternative to LDA in those cases where the LDA is inapplicable due to the SSS problem. The ELV selection tool has been tested in a successive experimental work [START_REF] Marios | Efficient, Portable Template Attacks[END_REF]. Unfortunately, the authors of this work could not observe an improvement (nor a worsening) using our new selector, because in their specific case its selection of components were equivalent to the classical one, that will be referred to as EGV in the following. The LDA technique will be described in Sec. Through some experiments depicted in Sec. 4.4 we will conclude about the effectiveness of the PCA-ELV solution. Finally, in Sec. 4.5 we will experimentally argue about the weakness of all these techniques when data are misaligned.

Principal Component Analysis

Principles and algorithm description

The Principal Component Analysis (PCA) is a technique for data dimensionality reduction. The PCA algorithm can be deduced from two different points of view, a statistical one and a geometrical one. In the former one, PCA aims to project orthogonally the data onto a lower-dimensional linear space, the so-called principal subspace, such that the variance of the projected data is maximised. In the latter one, PCA aims to project data onto a lower-dimensional linear space in such a way that the average projection cost, defined as the mean square distance between the data and their projections, is minimised. In the following, it is shown how the PCA algorithm is deduced by the statistical definition. The reader interested in the equivalence between the two approaches can refer to [Bis06, Ch. 12]. An example of 2-dimensional data projected over their 1-dimensional principal subspace is depicted in Fig. 4.1.

Let (x i) i=1..N be a set of D-dimensional measurements, as usual considered as realisations of a D-dimensional zero-mean random vector X, and collect them as columns of a D × N matrix M, so that the empirical covariance matrix of X can be computed as

S = 1 N MM . (4.1)
Let us first assume that we have priorly fixed the dimension C < D of the principal subspace we are looking for.

Compute the First Principal Component Suppose in a first time that C = 1, i.e.

that we want to represent our data by a unique variable Y 1 = α 1 X, i.e. projecting data over a single D×1 vector α 1 , in such a way the variance of the obtained variable Y 1 is maximal. The vector α 1 that provides such a linear combination is called first principal component. To avoid misunderstanding we will call j-th principal component (PC) the projecting vector α j , while we will refer to the variable Y j = α j X as the j-th Principal Variable (PV). Realisations of the PVs are given by the measured data projected over the j-th PC, for example we can collect, in a vector

y 1 = α 1 M, N realisations of Y 1 : y 1 [i] = α 1 x i for i = 1, . . . , N . (4.
2)

The mean of these realisations will be zero as they are linear combinations of zero-mean variables, and the variance turns to be estimable as

1 N y 1 y 1 = 1 N α 1 MM α 1 = α 1 S α 1 . (4.3)
To compute α 1 , we look for the vector that maximises the variance estimate in (4.3).

The maximisation problem by itself is not well posed, because the variance value is not bounded. In order to let the maximisation problem have a solution, a restriction is thus imposed to the norm of α 1 : α 1 2 = α 1 α 1 = 1. This constrained optimisation problem is handled by making use of the Lagrange multipliers:

Λ(α 1 , λ) = α 1 S α 1 -λ(α 1 α 1 -1) . (4.4)
Computing the partial derivative of Λ with respect to α 1 , we obtain:

∂Λ ∂ α 1 = 2S α 1 -2λ α 1 . (4.5)
Thus, stationary points of Λ verify:

S α 1 = λ α 1 , (4.6)
which implies that α 1 must be an eigenvector of S, with λ its correspondent eigenvalue. Multiplying both sides of Eq. (4.6) by α 1 on the left, we remark that

α 1 S α 1 = λ α 1 α 1 = λ, (4.7)
which means that the variance of the obtained variable y 1 equals λ. For this reason α 1 must be the leading eigenvector of S, the one corresponding to the maximal eigenvalue.

Compute the Second and Following Principal Components

The PCs others than the first are defined in an incremental fashion by choosing new directions orthogonal to those already considered and such that the sum of the projected variances over each direction is maximal. Explicitly, if we look for two PCs, i.e. C = 2, we look

for a 2-dimensional variable Y = α 1 α 2
X such that the trace of its covariance matrix, i.e. the sum of variances Var(Y 1) + Var(Y 2), is maximal. 1Consider, as in previous case, the Lagrangian of the problem: The partial derivatives of (4.8) with respect to α 1 and α 2 are null under the following conditions:

Λ = α 1 S α 1 + α 2 S α 2 -λ 1 (α 1 α 1 -1) -λ 2 (α 2 α 2 -1) . (4.8) PCA α 1 (a) PCA class α 1 (b)
S α 1 = λ 1 α 1 (4.9) S α 2 = λ 2 α 2 . (4.10)
It means that α 1 and α 2 must be eigenvectors of S with corresponding eigenvalues given by λ 1 and λ 2 . Moreover, as before, λ 1 and λ 2 respectively equal the estimated variances of the variable components Y 1 and Y 2 , and since the goal is maximising the sum of these variables, we choose α 1 and α 2 as the two leading vectors of S. Let us remark that the estimated covariance between Y 1 and Y 2 is given by α 1 S α 2 which equals zero, since α 1 α 2 = 0 by orthogonality. In particular the principal variables are uncorrelated, which is a remarkable property of the PCA.

In the general case of a C-dimensional projection space, it can be shown by induction that the PCs would correspond to the C leading eigenvectors of the covariance matrix S.

Original vs Class-Oriented PCA

The classical version of the PCA method is unsupervised. Nevertheless, a profiling attacker is not only provided with a set of traces (x i) i=1..N , but he also has the knowledge of the target values handled during each acquisition. We denote by (x i , z i) i=1..Np the labelled set of traces . In Fig. 4.2 the same data of Fig. 4.1 have been grouped into 2 classes. Even if before projection the two groups are clearly separable, even linearly, after projecting data over the first principal component given by the classical PCA algorithm, the separability is lost (Fig. 4.2(a)). In the supervised context, and for the sake of distinguishing the target value assumed by the target Z in new executions, the idea of the Class-Oriented PCA is to consider as equivalent all the traces belonging to the same class. To construct the class-oriented PCA, a noisy leakage model is understood for the variable X, with unknown deterministic part L(Z) (see Sec. 2.9.1). Such a deterministic part is thus estimated through the empirical mean of the traces belonging to each class s, given by:

µ s = 1 N s i : z i =s x i ,
where N s is the number of traces belonging to class s. The class-oriented PCA consists in applying the PCA dimensionality reduction to the set (µ s) s∈Z , instead of applying it directly to the traces (x i) i=1,...,Np . This implies that the empirical covariance matrix will be computed using only the |Z| class-averaged traces (µ s) s∈Z . Equivalently, in case of balanced acquisitions (N s constant for each class s), it amounts to replace the empirical covariance matrix S of data in (4.1) by the so-called betweenclass or inter-class scatter matrix, given by:

S B = s∈Z N s (µ s -x)(µ s -x) . (4.11)
We remark that S B coincides, up to a multiplicative factor, to the covariance matrix obtained using the class-averaged traces.

Computational Consideration

Performing PCA (and LDA, as explained later) always implies to compute the eigenvector of some symmetric matrix S, obtained by the multiplication of a constant with a matrix and the transposed same matrix, e. This lemma allows to compute and store the smaller N × N matrix S = 1 N M M, to compute its (N × 1)-sized eigenvectors ζ i and the relative eigenvalues λ i , and then to convert them into eigenvectors of S, given by

α i = M ζ i . Observing that by definition S ζ i = 1 N M M ζ i = λ i ζ i
the lemma is easy to verify:

S α i = 1 N MM M ζ i = λ i M ζ i = λ i α i . (4.12)
However, it is not guaranteed that the eigenvectors α i obtained in this way have norm equal to 1. Thus, a normalisation step usually follows.

The Choice of the Principal Components

The introduction of the PCA method in SCA context (either in its classical or classoriented version) has raised some non-trivial questions: how many principal components and which ones are sufficient/necessary to reduce the trace size (and thus the attack processing complexity) without losing important discriminative information?

Until 2015, the sole attempt to give an answer to the questions above was made in [START_REF] Choudary | Efficient template attacks[END_REF], linked to the concept of explained variance (or explained global variance, EGV for short) of a PC α i : However, if the attacker has a constraint for the reduced dimension C, the EGV notion simply suggests to keep the first C components, taking for granted that the optimal way to choose PCs is in their natural order. This assumption is not always confirmed in SCA context: in some works, researchers have already remarked that the first components sometimes extract more noise than information [START_REF] Batina | Getting More from PCA: First Results of Using Principal Component Analysis for Extensive Power Analysis[END_REF][START_REF] Specht | Improving Non-Profiled Attacks on Exponentiations Based on Clustering and Extracting Leakage from Multi-Channel High-Resolution EM Measurements[END_REF] and it is worth discarding them. For the sake of providing a first example of this behaviour on publicly accessible traces, we applied a class-oriented PCA on 3000 traces from the DPA contest v4 [Par]; we focused over a small 1, 000-dimensional window in which, in complete knowledge about masks and other countermeasures, information about the first Sbox processing leaks (during the first round). In localisation. It is defined as follows:

EGV(α i) = λ i r k=1 λ k , (4
IPR(α i) = D j=1 α i [j] 4 . (4.15)
The authors of [START_REF] Mavroeidis | PCA, Eigenvector Localization and Clustering for Side-Channel Attacks on Cryptographic Hardware Devices[END_REF] suggest to collect the PCs in decreasing order with respect to the IPR score.

The selection methods provided by the evaluation of the EGV and of the IPR are somehow complementary: the former one is based only on the eigenvalues associated to the PCs and does not consider the form of the PCs themselves; the latter completely discards the information given by the eigenvalues of the PCs, considering only the distribution of their coefficients. In the next section we describe a new method, part of the contributions published in [START_REF] Cagli | Enhancing dimensionality reduction methods for side-channel attacks[END_REF], that builds a bridge between the EGV and the IPR approaches. As we will argue, our method, based on the so-called explained local variance, does not only lead to the construction of a new selection criterion, but also permits to modify the PCs, choosing individually the coefficients to keep and those to discard.

Explained Local Variance Selection Method

The method we develop in this section is based on a compromise between the variance provided by each PC (more precisely its EGV) and the number of time samples necessary to achieve a consistent part of such a variance. To this purpose we in- have that λ i is an estimator for the variance of the random variable X α i . Developing, we obtain

λ i = Var(D j=1 X [j] α i [j]) = D j=1 D k=1 Ĉov(X [j] α i [j], X [k] α i [k]) = (4.16) = D j=1 α i [j] D k=1 α i [k] Ĉov(X [j], X [k]) = D j=1 α i [j](S j α i) = (4.17) = D j=1 α i [j]λ i α i [j] = D j=1 λ i α i [j] 2 (4.18)
where S j denotes the j-th row of S and (4.18) is justified by the fact that α i is an eigenvector of S, with λ i its corresponding eigenvalue. The result of this computation is quite obvious, since α i = 1, but it evidences the contribution of each time sample in the information held by the PC. This makes us introduce the following definition:

Definition 1. The Explained Local Variance of a PC α i in a sample j, is defined by

ELV(α i , j) = λ i α i [j] 2 r k=1 λ k = EGV(α i) α i [j] 2 . (4.19) Let J = {j i 1 , j i 2 , . . . , j i D } ⊂ {1, 2, . . . , D} be a set of indexes sorted such that ELV(α i , j i 1) ≥ ELV(α i , j i 2) ≥ • • • ≥ ELV(α i , j i D).
It may be observed that the sum over all the ELV(α i , j), for j ∈ [1, . . . , D], equals EGV(α i). If we operate such a sum in a cumulative way following the order provided by the sorted set J , we obtain a complete description of the trend followed by the component α i to achieve its EGV.

As we can see in Fig. 4.4, where such cumulative ELVs are represented, the first 3 components are much slower in achieving their final EGV, while the 4 th , the 5 th and the 6 th achieve a large part of their final EGVs very quickly (i.e. by adding the ELV contributions of much less time samples). For instance, for i = 4, the sum of the ELV(α 4 , j 4 k), with k ∈ [1, . . . , 30], almost equals EGV(α 4), whereas the same sum for i = 1 only achieves about the 15% of EGV(α 1). Actually, the EGV of the 4 th , the 5 th and the 6 th component only essentially depends on a very few time samples. This observation, combined with Assumption 1, suggests that they are more suitable for SCA than the three first ones. To validate this statement, it suffices to look at the form of such components (Fig. 4.5): the leading ones are strongly influenced by the clock, while the latest ones are well localised over the leaking points.

Operating a selection of components via ELV, in analogy with the EGV, requires to fix the reduced space dimension C, or a threshold β for the cumulative ELV. In the first case, the maximal ELVs of each PC are compared, and the C components achieving the highest values of such ELVs are chosen. In the second case, all pairs (PC, time sample) are sorted in decreasing order with respect to their ELV, and summed until the threshold β is achieved. Then, only PCs contributing in this sum are selected.

We remark that the ELV is a score associated not only to the whole components, but to each of their coefficients. This interesting property can be exploited to further remove, within a selected PC, the non-significant points, i.e. those with a low ELV. In practice this is done by setting these points to zero. That is a natural way to exploit the ELV score in order to operate a kind of denoising for the reduced data, making them only depend on the significant time samples. In Sec. 4.4 (scenario 4) we test the performances of an attack varying the number of time samples involved in the computation of the reduced data, and showing that such a denoising processing might impact significantly.

Linear Discriminant Analysis

Fisher's Linear Discriminant and Terminology Remark

Fisher's Linear Discriminant [START_REF] Fukunaga | Introduction to Statistical Pattern Recognition[END_REF] is another statistical tool for dimensionality reduction, which is commonly used as a preliminary step before classification. Indeed, it seeks for linear combinations of data that characterise or separate two or more classes, not only spreading class centroids as much as possible, like the classoriented PCA does, but also minimising the so-called intra-class variance, i.e. the variance shown by data belonging to the same class. The terms "Fisher's Linear Discriminant" and "Linear Discriminant Analysis" (LDA) are often used interchangeably, and in particular in SCA literature the Fisher's Linear Discriminant is almost always referred to as LDA, e.g. Example 3.1.3, this widely-accepted abuse is due to the fact that under the assumptions leading to the LDA classification tools (i.e. Gaussian class-conditional densities, sharing a common covariance matrix), the solution provided by the Fisher's Linear Discriminant (that does not require such assumptions) is the same as the solution provided by the LDA. From now on, we will use the more common terminology LDA to refer to the Fisher's Linear Discriminant.

Description

Applying LDA consists in maximising the so-called Rayleigh quotient:

α 1 = argmax α α S B α α S W α , (4.20)
where S B is the between-class scatter matrix already defined in (4.11) and S W is called within-class (or intra-class) scatter matrix: Then, among all eigenvectors of S -1 W S B , α 1 must be the leading one.

S W = s∈Z i=1 : z i =s (x i -µ s)(x i -µ s) . (4
The computation of the eigenvectors of S -1 W S B is known under the name of generalised eigenvector problem. The difficulty here comes from the fact that S -1 W S B is not guaranteed to be symmetric. Due to this non-symmetry, α 1 and the others eigenvectors do not form an orthonormal basis for R D , but they are anyway useful for classification scopes. Let us refer to them as Linear Discriminant Components (LDCs for short); as for PCs we consider them sorted in decreasing order with respect to their associated eigenvalue, which gives a score for their informativeness. Analogously to the PCA, the LDA provides a natural dimensionality reduction: one can project the data over the C first LDCs. In Fig. 4.6 the 2-class toy data used as example above, projected over their leading discriminant component, are depicted. The two classes are kept well separated in the 1-dimensional subspace. As for PCA, this choice might not be optimal when applying this reduction to side-channel traces.

For the sake of comparison, we test in Sec. 4.4 all the selection methods proposed for the PCA (EGV, IPR and ELV) in association to the LDA as well.

In the following subsection we will present a well-known problem that affects the LDA in many practical contexts, and describe four methods that circumvent such a problem, with the intention to test them over side-channel data.

The Small Sample Size Problem

In the special case in which the matrix S B is invertible, the generalised eigenvalue problem is convertible in a regular one, as in [START_REF] Standaert | Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages[END_REF]. On the contrary, when S B is singular, the simultaneous diagonalisation is suggested to solve such a problem [START_REF] Fukunaga | Introduction to Statistical Pattern Recognition[END_REF]. In this case one can take advantage by the singularity of S B to apply the computational trick described in Sec. 4.2.3, since at most r = rank(S B) eigenvectors can be found.

If the singularity of S B does not affect the LDA dimensionality reduction, we cannot say the same about the singularity of S W : SCA and Pattern Recognition literatures point out the same drawback of the LDA, known as the Small Sample Size problem (SSS for short). It occurs when the total number of acquisitions N p is less than or equal to the size D of them. The direct consequence of this problem is the singularity of S W and the non-applicability of the LDA.

If the LDA has been introduced relatively lately in the SCA literature, the Pattern Recognition community looks for a solution to the SSS problem at least since the early nineties. We browsed some of the proposed solutions and chose some of them to introduce, in order to test them over side-channel traces.

Fisherface Method

The most popular among the solutions to SSS is the so-called Fisherface method2 [START_REF] Peter | Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection[END_REF]. It simply relies on the combination between PCA and LDA: a standard PCA dimensionality reduction is performed to data, making them pass from dimension D to dimension N p -|Z|, which is the general maximal rank for S W . In this reduced space, S W is very likely to be invertible and the LDA therefore applies.

S W Null Space Method

The S W null space method has been introduced by Chen et al. in [START_REF] Chen | A new LDA-based face recognition system which can solve the small sample size problem[END_REF] and exploits an important result of Liu et al. [START_REF] Liu | A generalized optimal set of discriminant vectors[END_REF] who showed that the Fisher's criterion (4.20) is equivalent to:

α 1 = argmax α α S B α α S W α + α S B α . (4.24)
The authors of [START_REF] Chen | A new LDA-based face recognition system which can solve the small sample size problem[END_REF] point out that such a formula is upper-bounded by 1, and that it achieves its maximal value, i.e. 1, if and only if α is in the null space of S W .

Thus they propose to first project data onto the null space of S W and then to perform

Direct LDA

As the previous, the direct LDA method, introduced in [YY01], privileges the lowranked eigenvectors of S W , but proposes to firstly project the data onto the rank space of S B , arguing the fact that vectors of the null space of S B do not provide any between-class separation of data. Let D B = V S B V be the diagonalisation of S B , and let V be the matrix of the eigenvectors of S B that are not in its null space, i.e. whose eigenvalues are different from zero. Let also D B denotes the matrix V S B V ; transforming the data x into D B 1/2 V x makes the between-class variance to be equal to the (|Z| -1) × (|Z| -1) identity matrix. After this transformation the within-class variance assumes the form S W = D B 1/2 V S W V D B 1/2 . After storing the C lowestrank eigenvectors in a matrix U , the LDCs obtained via the Direct LDA method are the columns of V D B 1/2 U .

S T Spanned Space Method

The last variant of LDA that we consider has been proposed in [START_REF] Huang | Solving the small sample size problem of LDA[END_REF] and is actually a variant of the Direct LDA: instead of removing the null space of S B as first step, this method removes the null space of S T = S B + S W . Then, denoting S W the within-class matrix in the reduced space, the reduced data are projected onto its null space, i.e. are multiplied by the matrix storing by columns the eigenvectors of S W associated to the null eigenvalue, thus reduced again. A final optional step consists in verifying whether the between-class matrix presents a non-trivial null-space after the last projection and, in this case, in effectuating a further projection removing it.

Remark 4.2. Let us remark that, from a computational complexity point of view (see [START_REF] Huang | Solving the small sample size problem of LDA[END_REF] for a deeper discussion), the least time-consuming procedure among the four proposed is the Direct LDA, followed by the Fisherface and the S T Spanned Space Method, that have a similar complexity. The S W Null Space Method is in general much more expensive, because the task of removing the S W null space requires the actual computation of the (D × D)-dimensional matrix S W , i.e. the computational trick described in Sec. 4.2.3 is not applicable. On the contrary, the other three methods take advantage of such a procedure, reducing drastically their complexity.

Experimental Results

In

The testing adversary.

Our testing adversary attacks an 8-bit AVR microprocessor Atmega328P and ac-

Scenario 1.

To analyse the dependence between the extraction methods presented in Sections 4.2 and 4.3 and the number of attack traces N a needed to achieve a given GE, we fixed confirm that the standard PCA is not a good choice for profiling SCAs, even when provided with more profiling traces. It also shows that among class-oriented PCA and LDA, the class-oriented PCA converges faster.

Scenario 3.

Let C be now variable and let the other parameters be fixed as follows: N a = 100, N s = 200, PoI = 3, 996. Looking at Fig. 4.9, we might observe that the standard PCA might actually well perform in SCA context if provided with a larger number of kept components; on the contrary, a little number of components suffices to the LDA. Finally, keeping more of the necessary components seems not worsen the efficiency of the attack, which allows the attacker to choose C as the maximum value supported by his computational means.

Remark 4.3. In our experiments the ELV selection method only slightly outperforms the IPR. Nevertheless, since it relies on more sound and more general observations, i.e. the maximisation of explained variance concentrated into few points, it is likely to be more robust and less case-specific. For example, in Fig. 4.8(f) it can be remarked that while the class-oriented PCA + ELV line keeps constant on the value 1 of GE, the class-oriented PCA + IPR is sometimes higher than 1.

Scenario 4.

This is the single scenario in which we allow the ELV selection method to not only select the components to keep but also to modify them, keeping only some coefficients within each component, setting the other ones to zero. We select pairs (com- Such a behaviour is clearly visible in standard PCA case: the first 10 points considered raise the level of noise, that is then balanced by the last 1, 000 points.

Overview of this Study and Conclusions

This study focused on two well-known techniques to construct extractors for sidechannel traces, the PCA and the LDA. The LDA method is more adequate than the PCA one, thanks to its class-distinguishing asset, but more expensive and not always available in concrete situations. We deduced from a general consideration about side-channel traces, i.e. the fact that for secured implementations the vulnerable leakages are concentrated into few points, a new methodology for selecting components, called ELV. We showed that the class-oriented PCA, equipped with the ELV, achieves performances close to those of the LDA, becoming a cheaper and valid alternative to the LDA. Being our core consideration very general in side-channel context, we believe that our results are not case-specific.

A second part of the proposed study analysed experimentally some alternatives to promising techniques, exhibiting performances close to the ones given by the ELVequipped class-oriented PCA. A synthetic overview of the performed comparisons in scenarios 1,2 and 3 is depicted in Table 4.1.

Misaligning Effects

The fact that trace misalignment leads to a drastic drop of the dimensionality reduction/ template attack routine is well-known. When we are in presence of a misalignment, caused by the implementation of a countermeasure or by the lack of a good trigger signal for the acquisition, the application of some previous re-synchronization techniques is recommended (see for instance [START_REF] Choudary | Template attacks on different devices[END_REF], where the same PCA and LDA techniques are exploited as template attack preprocessing, after a prior resynchronisation). In this section we experimentally show how the approach based on linear dimensionality reduction described in this chapter is affected by traces misalignment. To this aim, we simply take the same data and parameters exploited for Scenario 1 in Sec. using less than 7 attack traces. In this case it cannot lead to successful attack in less than 3000 traces.

Chapter 5

Kernel Discriminant Analysis

All models are wrong, but some are useful.

-George E. P. Box

In this chapter, we tackle the dimensionality reduction problem in the context of profiling attacks against implementations protected by masking countermeasure.

For such attacks, the attacker might have or not access to the random values drawn at every execution and used to mask the sensitive variables. If he has such a knowledge, then the dimensionality reduction problem turns to be equivalent to the case of unprotected implementations. Thus, the classic statistics for the PoIs search and the linear dimensionality reduction techniques described in the previous chapter are still applicable and efficient. On the contrary, when the knowledge of the random values is denied, linear techniques are a priori inefficient: a non-linear function of the PoIs must be considered in order to construct discriminant features from side-channel observations. In this chapter we propose to make use of the Kernel Discriminant Analysis (KDA) technique to construct such a non-linear processing. To this aim we revisit the contents and the experimental results of the paper presented at CARDIS 2016 [START_REF] Cagli | Kernel Discriminant Analysis for Information Extraction in the Presence of Masking[END_REF], in which the KDA has been firstly introduced in the SCA domain. After such a publication, the KDA has been compared to other non-linear dimensionality reduction techniques in [START_REF] Ou | Manifold Learning Towards Masking Implementations: A First Study[END_REF], where manifold learning solutions such as ISOMAP, Locally Linear Embedding and Laplacian Eigenmaps are proposed. Moreover, a use of the KDA in an unsupervised way to perform a higher-order SCA (as a key candidate distinguisher and not as a dimensionality reduction technique) has been proposed at CARDIS 2017 [START_REF] Zhou | A Novel Use of Kernel Discriminant Analysis as a Higher-Order Side-Channel Distinguisher[END_REF].

Motivation

When a masking countermeasure is properly applied, it ensures that every sensitive variable Z is randomly split into multiple shares M 1 , M 2 , . . . , M d in such a way that a relation Z = M 1 • • • M d holds for a group operation (e.g. the exclusive-or for the Boolean masking). The value d plays the role of a security parameter and the method is usually referred to as (d -1)th-order masking (since it involves d -1 random values). In many cases, especially for software implementations, the shares are manipulated at different times, and no time sample therefore shows dependency on Z: in order to recover such information the attacker is obliged to join information held by each of the d shares, executing a so-called dth-order SCA. In the great majority of the published higher-order attacks, the PoI selection during the pre-attack characterisation phase is either put aside, or made under the hypothesis that the random shares are known. Actually, the latter knowledge brings the problem back to the unprotected case: instead of using the values of Z as labels for the profiling traces, the latter are labelled by the values of the random shares. Here we relax this hypothesis and we consider situations where the values of the random shares are unknown to the adversary. We however assume that the adversary can characterise the leakage before attacking the implementation, by accessing the value of the target variable Z. These two assumptions put our study in the context of profiling attacks without knowledge of the masks. The attacker may label the profiling traces by the values of Z but, with respect to such a labelling, the profiling traces are not linearly separable, as they were in absence of masking.

Getting information from masked implementations

The SNR estimation defined by (2.1) is an instrument to measure, point by point, the information held by the first-order moment of the acquisition, i.e. the information obtainable by observing the variation of the mean of the acquisitions. We refer to such information as a 1st-order information. In masked implementations, such information is null: at any time sample the mean is independent of Z due to the randomisation provided by the shares, namely the quantity E[X|Z = s], seen as a function of s, is constant, which implies that the SNR is asymptotically null over the whole trace.

When a (d-1)th-order masking is applied, the information about the shared sensitive target Z lies in some dth-order statistical moments of the acquisition, 1 meaning that for some d-tuples of time samples

(t 1 , . . . , t d) the quantity E[X[t 1] X[t 2] • • • X[t d]|Z =
s] (based on a dth-order raw moment) is not constant as a function of s (equivalently,

E[(X[t 1] -E[X[t 1]]) • • • (X[t d] -E[X[t d]])|Z = s]
is not constant, using the central moment). We can refer to the information obtainable by observing such variation as a dth-order information. In order to let the SNR reveal it, and consequently to get the information being directly exploitable by common attacks, the attacker must preprocess the traces through an extractor that renders the mean of the extracted data 1 whence the name dth-order attacks dependent on Z, i.e. such that E[(X)|Z = s] is not constant as a function of s. In this way, the dth-order information is brought back to a 1st-order one, and the common assumptions on the side-channel leakage models outlined in Sec. 2.9.1 hold.

Property 1 (SCA efficiency necessary condition). Let us assume that Z is represented by a tuple of shares M i manipulated at d different times. Denoting t 1 , . . . , t d the unique time samples2 where each share is handled, the output of an effective extractor needs to have at least one coordinate whose polynomial representation over the variables given by the coordinates of X contains at least one term divisible by the the dth-degree monomial i=1,...,d X[t i] (see e.g. [START_REF] Carlet | Achieving side-channel high-order correlation immunity with leakage squeezing[END_REF] for more information).

Remark 5.1. The use of central moments has been experimentally shown to reveal more information than the use of the raw ones [Cha+99; PRB09]. Thus we will from now on suppose that the acquisitions have previously been normalised, so that Ê(x i) = 0 and Var(x i) = 1. In this way a centred product coincides with a non-centred one.

We motivate hereafter through a simplified but didactic example, the need for a computationally efficient dimensionality reduction technique as preliminary step to perform a higher-order attack.

Some strategies to perform higher-order attacks

We consider here an SCA targeting an 8-bit sensitive variable Z which has been priorly split into d shares and we assume that a reverse engineering and signal process-

256 (d-1) (1 + 3• d 2 + (d) 2
2 -1) parameters (e.g. ≈ 87 trillion parameters). Once again, the complexity of the approach grows exponentially with the order d.

The third approach, whose complexity does not increase exponentially with d, is the application of the higher-order version of the Projection Pursuits (PP) tool for the PoI selection, proposed in [START_REF] Durvaux | Efficient selection of time samples for higherorder DPA with projection pursuits[END_REF] and already introduced in Sec. 4.1, for which we give an outline hereafter. As will be discussed in Sec. 5.4.5, its heuristic nature is the counterpart of the relatively restrained complexity of this tool.

Higher-Order Version of Projection Pursuits

The dth-order version of PP makes use of the so-called Moment against Moment Profiled Correlation (MMPC) as objective function. The extractor P P has the following form:

P P (x) = (α x) d , (5.1)
where α is a sparse projecting vector with d non-overlapping windows of coordinates set to 1, in correspondence with the identified PoIs. Actually, as will be discussed in Sec. 5.4.5, authors of [START_REF] Durvaux | Efficient selection of time samples for higherorder DPA with projection pursuits[END_REF] propose to exploit α as a pointer of PoIs, but do not encourage the use of P P as an attack preprocessing.

The procedure is divided into two parts: a global research called Find Solution and a local optimisation called Improve Solution. At each step of Find Solution, d windows are randomly selected to form a draft α, thus a draft P P is built. A part of the training traces are then processed via P P and used to estimate the dth-order

statistical moments m d s = Ê[P P (X) | Z = s],
for each value of s. Then Pearson's correlation coefficient ρ between such estimates and the same estimates issued from a second part of the training set is computed. If ρ is higher than some threshold T det , the windows forming α are considered interesting3 and Improve Solution optimises their positions and lengths, via small local movements. Otherwise, the α is discarded and another d-tuple of random windows is selected from scratch.

The threshold T det plays a fundamental role in the algorithm: it has to be small enough to promote interesting windows (avoiding false negatives) and high enough to reject uninteresting ones (avoiding false positives). A hypothesis test is used to choose a value for T det in such a way that the probability of ρ being higher than T det given that no interesting windows are selected is lower than a chosen significance level. 4

Purpose of this Study

The exploitation of the KDA technique in the way we propose in this chapter aims to exploit interesting d-tuples of time samples like the first strategy described in Sec. 5.1.2. It however improves it in several aspects. In particular, its complexity does not increase exponentially with d. Moreover, it may be remarked that such a first approach allows the attacker to extract interesting d-tuples of points, but does not provide any hint to conveniently combine them (while the KDA does). This is an important limitation since finding a convenient way to combine time samples would raise the SCA efficiency, as already experimentally shown in [START_REF] Bruneau | Boosting Higher-Order Correlation Attacks by Dimensionality Reduction[END_REF], for d = 1, 2.

Nevertheless in the SCA literature no specific method has been proposed for the general case d > 2. The study presented in the coming sections aims to propose a new answer to this question, while showing that it compares favourably to the PP approach.

Feature Space, Kernel Function and Kernel Trick

As described in Sec. 5.1.1, the hard part of the construction of an effective extractor is the detection of d time samples t 1 , . . . , t d where the shares leak. A naive solution, depicted in Fig. 5.1, consists in applying to the traces the centred product preprocessing for each d-tuple of time samples, before applying linear dimensionality reduction techniques. Formally it means immerse the observed data in a higher-dimensional space, via a non-linear function

Φ : R D → F = R (D+d-1 d) .
(5.2) Using the ML language the higher-dimensional space F will be called feature space, because in such a space the attacker finds the features that discriminate different 4 Interestingly, the threshold T det depends on size of Z and not on the size of the training sets of traces. This fact disables the classic strategy that consists in enlarging the sample, making T det lower, in order to raise the statistical power of the test (i.e. Prob[ρ > T det |ρ = 1]). Some developments of this algorithm have been proposed [START_REF] Durvaux | From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces[END_REF], also including the substitution of the MMPC objective function with a Moments against Samples one, that would let T det decrease when increasing the size of the training set. classes. Procedures involving a feature space defined as in (5.2) imply the construction, the storage and the management of D+d-1 d -sized traces; such a combinatorially explosion of the size of F is undoubtedly an obstacle from a computational standpoint.

In ML a stratagem known as kernel trick is available for some linear techniques, such as Support Vector Machine (SVM), PCA and LDA, to turn them into non-linear extractors and classifiers, providing an efficient way to implicitly process them into a high-dimensional feature space. This section gives an intuition about how the kernel trick acts. It explains how it can be combined with the LDA, leading to the so-called KDA algorithm, that enables an attacker to construct some non-linear extractors that concentrate in few points the d-th order information held by the side-channel traces, without requiring computations into a high-dimensional feature space, see Fig. 5.2.

The central tool of a kernel trick is the kernel function K : R D × R D → R, that has to satisfy the following property, in relation with the function Φ:

K(x i , x j) = Φ(x i) • Φ(x j) , (5.3)
where x i and x j are data points (i.e. side-channel traces) and • denotes the dot product.

Every map Φ has an associated kernel function given by (5.3), for a given set of data. The converse is not true: all and only the functions K : R D × R D → R that satisfy a convergence condition known as Mercer's condition are associated to some map Φ : R D → R S , for some S. Importantly, a kernel function is interesting only if it is computable directly from the rough data x, without evaluating the function Φ.

The notion of kernel function is illustrated in the following example.

Example 1. Let D = 2. Consider the function

K : R 2 × R 2 → R K : (x i , x j) → (x i • x j) 2 , (5.4)
After defining x i = [a, b] and x j = [c, d], we get the following development of K:

K(x i , x j) = (ac + bd) 2 = a 2 c 2 + 2abcd + b 2 d 2 , (5.5)
which is associated to the following map from R 2 to F ⊂ R 3 :

Φ(u, v) = [u 2 , √ 2uv, v 2] (5.6) Indeed Φ(x i) • Φ(x j) = a 2 c 2 + 2abcd + b 2 d 2 = K(x i , x j)
. This means that to compute the dot product between some data mapped into the 3-dimensional space F there is no need to apply Φ: applying K over the 2-dimensional space is equivalent (and hence sufficient). This trick leads us to get the short-cut depicted in Fig. 5.2.

In view of the necessary condition exhibited by Property 1, the function K(x i , x j) = (x i • x j) d , hereafter named dth-degree polynomial kernel function, is the convenient choice for an attack against implementations protected with (d -1)th-order masking. It corresponds to a function Φ that brings the input coordinates into a feature space F containing all possible d-degree monomials in the coordinates of x, up to constants. This is, up to constants, exactly the Φ function of (5.2).5

Kernel Discriminant Analysis

The equation (5.3) shows that a kernel function K allows to compute the dot product between elements mapped into the feature space F (5.3). By extension, any procedure that only implies the computation of dot products between elements of F, can be executed exploiting a kernel function. Starting from this remark, the authors of [SSM98; SM99] have shown that the PCA and LDA procedures can be adapted to satisfy the latter condition, which led them to define the KPCA and KDA algorithms.

The latter one is described in Sec. 5.3.1. The interested reader will find the formal derivation of KPCA in Appendix C, reported as a way of example of how one can translate the classical PCA algorithm (and the class-oriented version) in such a way to never access data, but only dot product between data. The way to derive the KDA procedure reported below is analogous; the interested reader might refer to [START_REF] Schölkopf | Fisher discriminant analysis with kernels[END_REF],

or to [START_REF] Baudat | Generalized discriminant analysis using a kernel approach[END_REF] for the multi-class version.

KDA for dth-order masked side-channel traces

Let (x i , z i) i=1,...,Nt be a set of labelled training side-channel traces, and let K(x, y) = (x • y) d be the kernel function.

1) Construct a matrix M (acting as between-class scatter matrix):

M = s∈Z N s (M s -M T)(M s -M T) , (5.7)
where N s denotes as usual the number of training traces belonging to the class s, M s and M T are two N -sized vectors whose entries are given by:

M s [j] = 1 N s i:z i =s K(x j , x i) (5.8) M T [j] = 1 N t Nt i=1 K(x j , x i) .
(5.9)

2) Construct a matrix N (acting as within-class scatter matrix):

N = s∈Z K s (I -I Ns)K s , (5.10)
where I is a N s × N s identity matrix, I Ns is a N s × N s matrix with all entries equal to 1 Ns and K s is the N t × N s sub-matrix of K = (K(x i , x j)) i=1,...,Nt j=1,...,Nt storing only columns indexed by the indices i such that z i = s.

3) Regularise the matrix N for computational stability:

N = N + µI (see Sec. 5.4.2); (5.11)
4) Find the non-zero eigenvalues λ 1 , . . . , λ Q and the corresponding eigenvectors

ν 1 , . . . , ν Q of N -1 M;
5) Finally, the projection of a new trace x over the -th non-linear dth-order discriminant component can be computed as:

KDA (x) = Nt i=1 ν [i]K(x i , x) .
(5.12)

For the reasons discussed in Sec. 5.2, the right-hand side of (5.12) may be viewed as an efficient way to process the th coordinate of the vector

LDA (Φ(x))[] = w • Φ(x),
without evaluating Φ(x). The entries of w are never computed, and will thus be referred to as implicit coefficients (see Sec.

The implicit coefficients

As already said, when the dth-degree polynomial kernel function is chosen as kernel function, the KDA operates implicitly in the feature space of all products of d-tuples of time samples. In order to investigate the effect of projecting a new trace x over a component KDA (x), we can compute for a small d the implicit coefficients that are assigned to the d-tuples of time samples through (5.12). For d = 2 we obtain that in such a feature space the projection is given by the linear combination computed via the coefficients shown below:

KDA (x) = D j=1 D k=1 [(x[j] x[k]) (Nt i=1 ν [i] x i [j] x i [k])
implicit coefficients] (5.13)

Computational complexity analysis

The order d of the attack does not significantly influence the complexity of the KDA algorithm. Let N t be the size of the training trace set and let D be the trace length, then the KDA requires: • the cost of the eigenvalue problem, that is O(N 3 t).

• N 2 t 2 D multiplications,
In next sections we discuss the practical problems an attacker has to deal with when applying the KDA. The argumentation is conducted on the basis of experimental results whose setup is described hereafter.

Experiments over Atmega328P

Experimental Setup

The target device is an 8-bit AVR microprocessor Atmega328P and we acquired power-consumption traces thanks to the ChipWhisperer platform [START_REF] Flynn | ChipWhisperer: An opensource platform for hardware embedded security research[END_REF]. 6 From the acquisitions we extracted some traces composed of 200 time samples, corresponding 7 Afterwards, a bivariate Gaussian TA (see Sec. 2.10.1) is run. Such an attack demands for a proper profiling phase, consisting in the estimation of the class-conditional probabilities. Differently from the approach used with linear techniques in Chapter 4, this estimation is done here using a second distinct profiling dataset D profiling = (X profiling , Y profiling), collecting N p,s = 1, 000 traces per class (e.g. N p = 1, 000 × 256 when profiling is done labelling traces by an 8-bit value), under a fixed known key. The choice of not reusing D train as profiling dataset for the Gaussian TA has been done in order to reduce the overfitting risk, discussed in general in Sec. 3.1.4 and that will be discussed in the particular case of KDA in Sec. 5.4.2. The extractor KDA , has a different behaviour when applied to the traces used to train it and to some new traces: this is inevitable since KDA , differently from the linear extractors PCA and LDA , uses all training traces has its proper parameters (5.12). Thus, a new unobserved profiling set is mandatory in order to obtain an uncorrupted profiling.

As discussed in Remark 5.1, the KDA training traces are normalised. The average trace and the standard deviation trace used to perform the normalisation are stored and reused to center the profiling and attack traces before projecting them onto the KDA components. In this way the profiling and attack traces present a form as similar as possible to the training ones.

The Regularisation Problem

By construction the matrix N in (5.10) is not positive-definite, which is one of the reasons why in [START_REF] Schölkopf | Fisher discriminant analysis with kernels[END_REF], where the application of a kernel trick to LDA is proposed for the first time, the authors propose the regularisation (5.11) recalled hereafter:

N = N + µI . (5.14)
When applying such a regularisation, the choice of the constant µ is crucial. Beyond the form of the kernel function, µ is the unique hyper-parameter of the model constructed by the KDA algorithm, in the sense explained in Sec. 3.1.5. Its value cannot be learned from data and has to be priorly fixed somehow. For sure it has to be large enough to ensure that N turns to a positive-definite matrix, but we experimentally observed that the minimal µ for which the positive-definitiveness of N is attained is often far from being the one that provides a good extractor. In Fig. 5.3

(left) we observe the efficiency of a template attack run in combination with a KDA extractor. The matrix N is positive-definite for µ 1 = 10 -3 but the value that provides the best extractor is much higher (namely µ 3 = 10 7). Still raising the value of it is not only a way to render the problem computationally stable (which explains why the minimal µ making N positive-definite may not be a good choice), but also an answer to the overfitting phenomenon. In the case of the KDA the overfitting is observable when KDA almost perfectly separates the training traces in their classes, while failing in separating the profiling and the attack ones. In [START_REF] Schölkopf | Fisher discriminant analysis with kernels[END_REF] it is shown that the regularisation (5.11) corresponds to the additional requirement for ν to have a small norm ν 2 . As every regularisation technique, it makes the method less accurate in the learning phase, but in some cases more likely to correctly operate on new examples.

µ
Remark 5.2. Another regularisation strategy may be to search for sparse vectors of implicit coefficients (see (5.13)). This alternative might be more suitable for the sidechannel context, since it would promote localised solutions, i.e. projections for which only a few d-tuples of time samples contribute to the construction of the extractor (see Assumption 1 in Chapter 4 for an analogy in 1st-order context). This approach is left for future developments.

Some heuristics exist to choose the constant µ, e.g. the average of the diagonal entries [START_REF] Li | Using discriminant analysis for multi-class classification: an experimental investigation[END_REF] or the minimal constant that let N be diagonally dominant (implying positive-definite). In [START_REF] Tonatiuh | Optimising kernel parameters and regularisation coefficients for non-linear discriminant analysis[END_REF] Centeno et al. propose a maximisation strategy to find the optimal regularisation parameter, based on a probabilistic approach. We did not apply such heuristics for our study, but we consider them in order to fix a grid of values for µ to be tested. Then, as explained in Sec. 3.1.5 we chose an approach based over a validation, in order to fix the final value of µ before performing the attack phase. To perform such validation, we chose the SNR as performance measure for the extractor provided by the KDA, and D profiling as validation dataset. FIGURE 5.4: Comparison between 2-class,3-class, 9-class and 256class KDA in 2nd-order context (a) and in 3rd-order context (b). For 2nd-order the KDA is efficient in providing separability between 256 classes, allowing an optimal attack. In 3rd-order context the training data are not enough to succeed the 256-class learning phase. Decreasing the number of classes to be distinguished raises the efficiency of the learning problem and thus of the attack.

The Multi-Class Trade-Off

As discussed in Sec. 4.3, the LDA, and by consequence the KDA, looks for a subspace of the feature space to optimally separate some given classes. The performance of the KDA algorithm raises with the size N t of the training set. Nevertheless, the number of examples might be bounded by the acquisition context, and even when the N t can be very high, it may be interesting to minimise it since the KDA complexity is

O(N 3 t).
A trade-off must therefore be found between accuracy and efficiency. Assuming that the size of the training set is fixed to N t , which controls the efficiency, a way to gain in accuracy may be found by appropriately adjusting the number of classes to distinguish: intuitively, the more examples per class, the more accurate the detection of a separating subspace. Then, if the total number of training traces is fixed, in order to raise the number of traces per class, a smaller number of classes must be considered. To do so, a non-injective function m(•) can be introduced, to create a smaller set of labels m(Z) from the initial set Z. The reduced number of classes, i.e. the number of labels assigned to the training set after applying the function m, will be denoted by W (it is the cardinality of m(Z)). As discussed in Sections 2.4 and 2.9.1, a widely-accepted power-consumption model for side-channel traces is provided by the Hamming weight (HW) function, thus we consider and experimentally compare the following choices for sensitive variables:

• 2-class sensitive variable (W = 2)    m(s) = 0 if HW(s) < 4 m(s) = 1 if HW(s) ≥ 4 • 3-class sensitive variable (W = 3)          m(s) = 0 if HW(s) < 4 m(s) = 1 if HW(s) = 4 m(s) = 2 if HW(s) > 4 • 9-class sensitive variable (W = 9) m(s) = HW(s) .
Remark 5.3. The separating subspace given by the KDA has maximal dimension

(W -1), i.e. Q ≤ (W -1) in point 4 of Sec. 5.3.1. When W = 2 a single discriminant component KDA 1 is available.
In this case we cannot run a bivariate template attack as we do with other extractors, thus we run a univariate one.

A balanced training set of size N t = 9, 000 (instead of 8, 960) has been used to run the experiments for 2-class, 3-class and 9-class KDA. For the sake of consistency8 between the pre-processing phase and the attack phase, when a non-injective function m is applied to the labels of the training set to reduce the number of classes, the same function is exploited to run the template attack: W templates (one per each class) are estimated from the profiling set (that contains N p = W ×1, 000 traces) and compared to the attack traces. Thus, results of the experimental comparison of these different multi-class approaches depicted in Fig. 5.4 are obtained using different template attacks. It may be remarked that as W decreases the efficiency of the attack is supposed to decrease as well, because each attack trace contributes in distinguishing the right key k only from a growing-size set of indistinguishable hypotheses.

In 2nd-order context, it can be observed in Fig. 5.4 that the KDA is provided with sufficient training traces to succeed a 256-class separation, which allows the finest characterisation of the leakage, and leads as expected, to the most efficient template attack. Moving to the 3-rd order context, the available training set is insufficient to make the multi-class approach succeed; nevertheless, turning the problem into a 2class problem turns out to be a good strategy to trade extraction accuracy for attack efficiency. An idea to avoid an excessive reduction of the number of separable classes W is given in the ML literature about classifiers: it consists in treating the W -class problem as multiple 2-class problems. Two different modus operandi exist: the one-vsone and the one-vs-all. We converted this classifiers-oriented approaches into some dimensionality-reduction-oriented ones: applied to our context, the one-vs-one approach determines for each pair of classes the 1-dimensional subspace that best separates them and exploits all the obtained subspaces to run an attack (for W classes we obtain W 2 dimensions and we run a W 2 -variate template attack). The one-vsall approach looks for dimensions that best separate each class from all the others (obtaining W projections in total).

We tested this approach in the 3-class case: in this way the one-vs-one and the one-vs-all approaches provide both 3 dimensions that we use to run a 3-variate template attack, and that we compare to the 3-class multi-class approach with bivariate template attack. Our experimental results, summed up in Fig. 5.5, show that no gain is obtained by the 2-classes strategies. 9 We therefore chose to not consider them for the higher-order experiments.

Asymmetric Preprocessing/Attack Approach

In previous section we appealed a consistency principle to justify the choice of running a W -class template attack after a W -class KDA extraction. Here we propose a different reasoning: the consistency principle does not grant that an extractor KDA trained with W classes is not able to separate W classes with W > W . As seen in Sec. 5.3.2, an extractor KDA always implicitly performs a weighed sum, via the implicit coefficients, of centred products of time samples. If KDA is effective, the implicit coefficients which have the highest magnitude must correspond to time samples corresponding to the manipulation of sensitive data (e.g. the variable shares when masking is applied). This property is not necessarily related to the number of classes used to train the extractor.

Based on the reasoning above, we experienced the 3rd-order and the 4th-order attacks in an asymmetric way: as preprocessing we performed a 2-class KDA, which gave best performances compared to others in the 3rd-order context (Fig. 5.4(b)), then we performed a 9-class template attack, in order to raise the accuracy of the profiling and the efficiency of the attack. The results are depicted in Fig. 5.6 and confirm that, for our experimental data, this approach is sound: in both cases, using the same extractor trained with 2 classes and the same attack traces, the 9-class approach outperforms the 2-class one.

Comparison with Projection Pursuits

To get a fair comparison, we run the PP algorithm (see Sec. of the 1, 000 outputs of the algorithm. We recall that each coordinate of α is set to 1 for the windows identified to be of interest, and to 0 elsewhere, so for each time where the second share is manipulated. Thus in this case the PP approach fails: P P (X) does not contain information about Z, so any attack launched over the extracted traces would fail, while KDA still allows successful attacks in 3rd-order and 4th-order case, as depicted in Fig. 5.6.

We conclude that the KDA approach is a valuable alternative to the PP one, especially in contexts where the training set size is bounded and independent from the order d of the attack.

Conclusions and Drawbacks

In this chapter we analysed the use of the KDA method to extract small-sized informative features from side-channel acquisitions protected by a (d -1)th-order masking countermeasure. The KDA naturally extends the LDA technique to the generic dth-order context. It requires the choice of a so-called kernel function. We 10 It can be observed that the regions selected by P P correspond to those for which the KDA exhibits the highest magnitude implicit coefficients (Fig. 5.3, upper-triangular part on the right) proposed to choose a polynomial kernel function, because it perfectly fits the necessary condition to effectively perform a higher-order side-channel attack. Indeed, in this way the obtained extractor provides the linear combination of all possible dthdegree monomial in the time coordinates of the traces, which maximises the SNR.

The main obstacle to the problem of PoI selection in higher-order context is that information lies in a space whose dimension grows combinatorially with d, implying computational difficulties. Nevertheless, the KDA only implicitly operates in such a space, by means of a so-called kernel trick, implying that its complexity is independent of the sharing order d. This property represents the main advantage of the KDA. Experiments described in this chapter for 2nd-order, 3rd-order and 4th-order contexts confirmed that our new approach is effective. Anyway, it however presents some drawbacks, discussed hereafter.

Regularisation hyper-parameter

First of all, to apply the new methodology an attacker has to deal with the choice of a regularisation hyper-parameter. This problem still appears unsolved in subsequent studies [START_REF] Zhou | A Novel Use of Kernel Discriminant Analysis as a Higher-Order Side-Channel Distinguisher[END_REF].

Non scalability to big training set

The computational cost of the optimisation problem is affected by the number of side-channel traces it uses for the training. This obliges the attacker to find a good trade-off between the efficiency of the information extraction, its accuracy and the efficiency of the underlying attack, through a careful choice of the target classification model. Besides the computational cost, the size of the training set also affects the memory complexity of the dimensionality reduction model: training traces cannot be forgotten after the training of KDA but have to be stored in memory. Bishop assigned to this characteristic of the kernel machines the adjective memory-based [Bis06, Chapter 6]. Indeed, observing the form of the KDA extractor (5.12), one can remark that each time sample of each training trace makes part of the parameters defining it, together with the entries of the eigenvectors ν 1 , . . . , ν Q . This might be a surprisingly huge number of parameters: for example in our experiments, the extractor KDA : R 200 → R 2 constructed by exploiting a 8, 960-sized training set counts (8, 960 + 2) × 200 = 1, 792, 400 parameters.

In 2nd-order context, this number is much higher than the number of implicit coefficients assigned to all possible 2nd-degree monomials in time samples, which is

200+2-1 2
= 20, 100.

Misalignment Affection

The KDA being an efficient way to perform LDA in a larger feature space, it suffers from the same weakness than the LDA with regards to trace misalignment, discussed in Sec. 4.5.

Two-Phased Approach

The approach presented in this chapter (and in Chapter 4

as well) is characterised by being two-phased. Indeed, a preliminary training has to be done in order to construct the extractor , that plays the role of preprocessing for side-channel traces. Then, such an extractor is applied to the traces and a second profiling phase has to be performed in order to construct the generative model that characterises the Gaussian template attack. In the specific case of KDA, these two preliminary phases demand the exploitation of two different profiling set, as discussed in Sec. 5.4.1, which might be a great disadvantage in contexts where profiling acquisitions are bounded. Anyway, there is a general greater disadvantage of this two-phased approach, which is the fact that the preprocessing part, aiming in reducing the dimensionality of the samples, inevitably reduces the information held by side-channel traces, and such a pruning is mainly guided by some prior assumptions about the form informative parts of the data takes. For example, the fact that the polynomial kernel function proposed in this chapter fits with the necessary condition given in Property 1, does not guaranty that a linear combination of dth-degree monomials is the most efficient preprocessing to extract sensitive information from the traces. Even when such a linear combination is chosen to maximise a precise well-chosen criterion, in case of KDA it is chosen to maximise the SNR of projected data, through the Rayleigh quotient condition, this criterion does not directly coincide with the goal of the attack, i.e. construct a classifier that allows to optimally distinguish the right secret key of the attacked algorithm from the wrong ones, or at least that allow to optimally classify the sensitive variable value handled during the acquisition of the attack traces. This same drawback of dimensionality reduction techniques is present in any preprocessing strategy, e.g. in realignment techniques:

a preprocessing aiming at realign data has a partial objective (the resynchronisation) that does not coincide with the final goal of the attack, thus injects a risk of degrading data quality with respect to the final goal. In our researches about strategies to avoid this separation between a preprocessing driven by hand-chosen criteria and a proper model construction, we found out that this necessity is not at all specific to the SCA context. Indeed, a whole branch of the Machine Learning domain arose out of this issue and is applied in several applicative fields, namely the so-called Deep Learning (DL). DL models are conceived to dispense with any hand-crafted feature extraction, and integrate in a unique optimising process (the learning phase)

any preprocessing with the model construction itself. It seemed mandatory to us to explore some DL methodologies. In next chapter, we will take advantage of some DL models to deal with the some hiding countermeasures.

Chapter 6

Convolutional Neural Networks

Aiutiamoli a fare da soli! tionalities related to the CNNs' architecture, specifying e.g. that one of the input dimensions equals 1. For these reasons we kept the term CNN for our discussion.

Motivation

The context we choose to study DL techniques, and CNNs in particular, is the one of cryptographic implementations protected by countermeasures aiming at enhancing misalignment or desynchronisation in side-channel acquisitions.]). Techniques analysed in previous chapters were applied in contexts where acquisitions were perfectly synchronous, and are not able to well extend to desynchronised context, as briefly observed in Secs. 4.5 and 5.5.

Desynchronisation might be seen as a noise component of the acquisitions, as done in the leakage model proposed in [START_REF] Chari | Towards sound approaches to counteract poweranalysis attacks[END_REF]. Anyway, it raises the noise that hides sensitive information in the traces. From a statistical point of view, a theoretically satisfying answer to such a noise raise is the solely augmentation of the number of acquisitions: if the attack strategy, in terms of exploited statistical tools, keeps unchanged, increasing the acquisitions by a factor which is somehow linear in the misalignment effect, as discussed in [START_REF] Mangard | Hardware countermeasures against DPA-a statistical analysis of their effectiveness[END_REF], might suffice to let the attack be as effective as in the synchronous case. In practice, such an augmentation might be unacceptable for many reasons. First, an attacker or evaluator might have a time or memory bound for the acquisition campaign. Second, the attacked device might implement a security defence denying an unlimited number of executions. Third, attack routines might suffer, in terms of complexity, more than linearly from a raising of the number of data to be treated, e.g. the KDA search for a non-linear feature extraction has a complexity that grows in a cubic way with the number of traces.

The second approach proposed in the SCA literature to deal with misaligned trace sets consists in applying a realignment preprocessing before the attack. Two realignment techniques families might be distinguished: a signal-processing oriented one (e.g. [Nag+07; WWB11]), more adapted to hardware countermeasures, and a probabilistic-oriented one (e.g. [START_REF] Durvaux | Efficient removal of random delays from embedded software implementations using hidden markov models[END_REF]), conceived for the detection of dummy operations, i.e. software countermeasures.

We found in Convolutional Neural Networks the possibility of performing a profiling attack in an end-to-end form, directly extracting sensitive information from rough data, without applying any realignment preprocessing. We believe that realignments, a well as dimensionality reduction techniques, as discussed in Sec. 5.5, bring with them the risk of corrupting useful information in data. Indeed a realignment process acts modifying signals with the goal of obtaining some wellsynchronised dataset, making traces be somehow similar to each other. On one hand it is not trivial to evaluate the accuracy of a realignment, thus to establish if a performed preprocessing is satisfying. On the other hand, the goal of a realignment is not extracting sensitive and discriminant information from traces. Even if we were able to affirm that a resynchronisation is somehow perfect, by means of some special metrics, nothing guaranties that in the attempt of realigning the trace set the useful information is not discarded. Nowadays, CNNs and DL tools in general are standing out, thanks to their good scalability to "big-data"context. One of their strength is that they are easily parallelisable, and can easily exploit computational facilities as GPUs (or the so-called TPU -Tensor Processing Units developed by purpose for NNs), allowing computational accelerations. As we have seen in Sec. 3.1.4, the higher amount of data is available, the higher capacity is admissible for a ML model, without incurring in overfitting; and higher capacity corresponds to the possibility of learning more complex problems. From this point of view, the success of NNs in last years is mainly due to the always increasing amount of available data, and to their scalability. However, even in contexts where a lack of data may occur, e.g. side-channel contexts in which the number of acquisitions may be limited, a stratagem exists in ML literature, under the name of Data Augmentation (DA), that may allow high capacity NNs avoid overfitting and perform well.

Introduction

Machine Learning approaches often come in a multiplicity of preprocessing phases such as data realignment, feature selections or dimensionality reduction, followed by a final model optimisation. This is the case even for the SCA routines that we considered in previous chapters, or for SCAs that apply realignment preprocessing.

Deep Learning is a branch of Machine Learning whose aim is to avoid any prelim-

Solution for the KDA Drawbacks

By construction, NNs are the ML answer to the drawback of work-flows we analysed in previous chapters and discussed as two-phased approach drawback in Sec. 5.5.

Actually, NNs are answers to other drawbacks pointed out in the same section.

In particular NNs are not memory-based. This implies that, after the training phase whose computational complexity is influenced by the size of the training set,

Organisation of the Chapter

In Sections 6.3 and 6.4, notions of DL are introduced. In particular the common classification-oriented Multi-Layer Perceptron model is described together with the common practices to train it. The way we exploit NNs to perform SCAs is described in Sec. 6.5, while the performance metrics we will use for experiments are given in Sec. 6.6. A description of the CNN models is provided in Sec. 6.7 while the Data Augmentation techniques that we will exploit are introduced in Sec. 6.8. Finally, three sections are dedicated to the experiments. We tested the same CNN architecture against three different targets: in Sec. 6.9.1 it is tested against a software countermeasure; in Sec. 6.10 it is tested against a simulated hardware countermeasure; in Sec. 6.11 it is tested against a real-case cryptographic implementation protected by an enhanced jitter.

Neural Networks and Multi-Layer Perceptrons

In Chapters 2 and 3 we highlighted a strong analogy between profiling SCAs and the classical ML classification task. Thus, we are interested in the NNs' solutions for the classification task. We recall from Chapters 3 that for the classification task, the learning algorithm is asked to construct a function F : R D → {0, 1} |Z| , where elements of Z, i.e. the set of classes, are here expressed via the one-hot encoding (2.1).

The output of such a function is said to be categorical, i.e. Z is a discrete finite set.

A variant of the classification task consists in finding a function F : R D → [0, 1] |Z| defining a probability distribution over classes. We will prefer this last formulation, which allows us to easily exploit the classification solution to perform advanced attacks, as well as the simple ones. Often for this task, NNs are exploited to create discriminative models, i.e. models that directly approximate the latter function F which is actually viewed as the posterior conditional probability of a label given the observed trace. This is the use we propose in this chapter, and it is in opposition to the Template Attack we exploited in previous chapters. Indeed, as described in Sec. 2.10.1, a TA is based over the construction of generative models, i.e. the approximation of the templates, which coincide with the conditional probabilities of the trace given a label.

Using NNs the function F is obtained by combining several simpler functions, called layers. An NN has an input layer (the identity over the input datum x), an output layer (the last function) and all other layers are called hidden layers. The output of F is a |Z|-sized vector y of scores for the |Z| labels. In general, such a vector might or not represent the approximation of a probability distribution. In our case it will. The nature of the NN's layers, their number and their dimension in particular, is called the architecture of the NN. All the parameters that define an architecture, together with some other parameters that govern the training phase, are its hyperparameters (see Sec. 3.1.5). The so-called neurons, that give the name to the NNs, are the computational units of the network and essentially process a scalar product between the coordinates of its input and a vector of trainable weights (or simply weights)

that have to be trained. Each layer processes some neurons and the outputs of the neuron evaluations will form new input vectors for the subsequent layer. As we will see, the trainable weights of a NN are in general those defining the linear operations, which are scalar products processed by the neurons. Neurons can be implemented to operate in parallel and are very efficient to be processed and differentiated on GPUs. We can express a typical classification-oriented MLP by the following form:

F (x) = s • λ n • σ n-1 • λ n-1 • • • • • λ 1 (x) = y , (6.1)
where:

• The λ i functions are typically the so-called Fully-Connected (FC) layers and are expressible as affine functions: denoting x ∈ R D the input of an FC, its output is given by A x + b, being A ∈ R D×C a matrix of weights and b ∈ R C a vector of biases. These weights and biases are the trainable weights of the FC layer.

They are called Fully-Connected because each i-th input coordinate is connected to each j-th output via the A[i, j] weight. FC layers can be seen as a special case of the linear layers in general feedforward networks, in which not all the connections are present. The absence of some (i, j)-th connections can be formalised as a constraint for the matrix A consisting in forcing to 0 its (i, j)-th coordinates.

• The σ i are the so-called activation functions (ACT): an activation function is a non-linear real function that is applied independently to each coordinate of its input. In general it does not depend on trainable weights. We denote them by σ since in general they are functions similar to the logistic sigmoid introduced in 3.1.3, which is denoted by σ as well: indeed historically sigmoidal functions,

i.e. real-valued, bounded, monotonic, and differentiable functions with a nonnegative first derivative, were recommended. Nevertheless, the recommended function in modern neural network literature is the so-called Rectified Linear Unit (ReLU), introduced by [NH10] and defined as ReLU(x

)[i] = max(0, x[i]).
Even if this function is not sigmoidal (indeed, it is not bounded, nor differentiable), the fact of being a non-linear transformation but still piecewise linear, allows to preserve many of the properties that make linear models easy to optimise with gradient-based method.

• s is the softmax1 function (SOFT), already introduced in 3.1.3: j] . The choice of the softmax function as last layer of a neural network classifier is the most common one. It allows the model F to be interpreted as a generalisation of the binary classifier described in (3.13), where the softmax takes the place of the sigmoid to make the model multi-class and the linear argument is substituted by all previous layers of F . The previous layers take in charge any preprocessing and are supposed to predict the unnormalised log probabilities (3.9). The role of the softmax is thus to renormalise such output scores in such a way that they define a probability distribution F (x) ≈ p Z | X= x .

s(x)[i] = e x[i] j e x[

Learning Algorithm

The weights of an NN are tuned during a training phase. They are first initialized with random values. Afterwards, they are updated via an iterative approach which locally applies the (Stochastic) Gradient Descent algorithm [START_REF] Goodfellow | Deep Learning[END_REF] to minimise a loss function quantifying the classification error of the function F (X) over a training set.

Training

The training of an NN is said to be full batch learning if the full training database is processed before one update of the weights. At the opposite, if a single training input is processed at a time, then the approach is named stochastic. In practice, one often prefers to follow an approach in between, called mini-batch learning, and to use small batches, i.e. groups of training inputs, at a time during the learning. In this case a step of the training consists in:

• selecting a batch of training traces (x i , z i) i∈I chosen in random order (here I is a random set of indexes),

• computing the outputs, or scores, of the current model function for the input batch (y i = F (x i)) i∈I ,

• evaluating the loss function, which in general involves values y i and z i

• computing the partial derivatives of the loss function with respect to each trainable weight (this is done through a method called back propagation [START_REF] Yann | Efficient BackProp[END_REF]),

• updating trainable parameters by subtracting from each a small multiple of the loss gradient (the used multiple is called learning rate).

The size of the mini-batch is generally driven by several efficiency/accuracy factors which are e.g. discussed in [START_REF] Goodfellow | Deep Learning. Adaptive computation and machine learning[END_REF] (e.g. optimal use of the multi-core architectures, parallelisation with GPUs, trade-off between regularisation effect and stability, etc.).

An iteration over all the training dataset during the Stochastic Gradient Descent is called an epoch. The number of epochs is another hyper-parameter. Intuitively, running a too low number of epochs may lead to underfitting, while running a too high number of epochs may lead to overfitting. In our experiments, we chose to apply the so-called early stopping strategy [START_REF] Prechelt | Early Stopping -But When?[END_REF] in order to avoid the need of a prior tuning of the number of epochs. It consists in choosing a stop criterion that will be involved during the training. In general, the choice is done on the basis of a stagnancy or worsen of the validation accuracies or losses across epochs.

Cross-Entropy

The cross-entropy metric is a classical (and often by default) tool to define the loss function in a classification-oriented NN [START_REF] Lecun | Loss Functions for Discriminative Training of Energy-Based Models[END_REF][START_REF] Goodfellow | Deep Learning[END_REF]. It is smooth and decomposable, and therefore amenable to optimisation with standard gradient-based methods. Before providing the definition of cross-entropy in (6.4), we precise the chosen form for the loss function. Given a batch of training data (x i , z i) i∈I and their respective scores returned by the current model (y i) i∈I , the loss function is defined as the following averaged value:

L = - 1 |I| i∈I |Z| t=1 z i [t] log y i [t] , (6.2)
where the vector z i denotes the one-hot encoding of the realisation z i = s j , i.e. the vector s j = (0, . . . , 0, 1 j , 0, . . . , 0) (as defined in Sec. 2.1). There are two ways to interpret such a choice.

• First, recalling that y i may be interpreted as an estimation of the conditional probability Pr[Z | X = x i], the maximum-a-posterior principle suggests to drive the training in such a way that for such an estimate the probability of the correct label z i is as high as possible. Thus, if we suppose that z i = s j , we want to maximise y i [j] (or equivalently to minimise -log y i [j]).2 It may be observed that, thanks to the one-hot encoding, in which all entries of s j are null but the jth one, such a log-likelihood rewrites as

-log y i [j] = - |Z| t=1 z i [t] log y i [t] , (6.3)
which equals the quantity averaged in (6.2).

• The second interpretation of the chosen loss function is linked to the fact that it actually represents the average of the cross-entropy of pairs of well-chosen probability mass functions. Let us interpret z i = (0, . . . , 0, 1 j , 0, . . . , 0) as the pmf of Z | Z = s j , which corresponds to the exact probability density we want the network to approximate. Informally speaking, the cross-entropy between two probability distributions, in our case the probability mass functions defined by z i and y i , gives a measure of the dissimilarity between them, and is defined as follows:

H(z i , y i) = H(z i) + D KL (z i || y i) = E z i [-log y i] = - |Z| t=1 z i [t] log y i [t] , (6.4)
where H denotes the entropy and D KL denotes the Kullback-Leibler divergence [START_REF] Christopher | Pattern recognition and machine learning[END_REF]. Thus, this is an information-theoretic notion that comes out to be equivalent to the negative log-likelihood formula given by (6.3).

In conclusion, depending on the point of view, minimising the loss function (6.3), which is a cross-entropy averaged over the traces contained in a batch, corresponds to maximising the a-posterior probability of the right label, or to minimise the dissimilarity between the network estimation of a distribution and the right distribution that we want it to approximate. We chose the loss function (6.2) for our experiments.

However, other metrics may be investigated and can potentially lead to better re-

Attack Strategy with an MLP

The strategy we adopt to perform a SCA, with an MLP, is almost identical to the classical Template Attack described in 2.10.1. The main difference will be that TA is based on generative models, while MLPs are used to construct a discriminative one. Indeed, in TA the templates (2.12) are priorly estimated, while an MLP directly approximates the posterior probabilities (2.13) F (x) ≈ p Z | X= x . Once this approximation is done, the attack strategy proceeds in the same way for both approaches.

The attacker acquires the new attack traces, that he only can associate to the public parameter E, obtaining couples (x i , e i) i=1,...,Na . Then he makes key hypotheses k ∈ K and, making the assumption that each acquisition is an independent observation of X, he associates to each hypothesis k ∈ K a score d k given by (2.14), that in terms of the MLP model F rewrites as:

d k = Na i=1 F (x i)[f (k, e i)] . (6

Performance Estimation

Maximal Accuracies and Confusion Matrix

The accuracy is the most common metric to both monitor and evaluate a classificationoriented NN. As already seen in Sec. • the maximal validation accuracy, corresponding to the maximum of the validation accuracies computed at the end of each epoch.

In addition to the two quantities above, we will also evaluate the performances of our trained model, by computing a test accuracy. Sometimes it is useful to complete this evaluation by looking at the so-called confusion matrix (as the one appearing in the bottom part of Fig. 6.7). Indeed the latter matrix enables for the identification of the classes which are confused, in case of misclassification. The confusion matrix corresponds to the distribution over the couples (true label, predicted label) directly deduced from the results of the classification on the test set. A test accuracy of 100% corresponds to a diagonal confusion matrix.

Side-Channel-Oriented Metrics

The accuracy metric is perfectly adapted to the machine learning classification problem, but corresponds in side-channel language to the success rate of a Simple Attack, as already discussed in Chapter 2. When the attacker can acquire several traces with varying plaintexts, the accuracy metric is not sufficient alone to evaluate the attack performance. Indeed such a metric only takes into account the label corresponding to the maximal score and does not consider the other ones, whereas an SCA does, through (6.5). To take this remark into account, we will always associate the test accuracy to a side-channel metric defined as the minimal number N of side-channel traces that makes the guessing entropy (see 2.8) be permanently equal to 1. In our experiments, we will estimate such a guessing entropy through 10 independent attacks.

Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) complete the classical MLP model with two additional types of layers, in charge of making them robust to misalignment: the so-called convolutional layer based on a convolutional filtering, and the pooling layer. We describe these two particular layers hereafter. Pooling (POOL) layers In the most typical example of convolutional layer, i.e. a layer with stride equal to 1 and same padding, the output size equals the input size multiplied by n filter . If many of this kind of convolutional layers are stacked, it leads to a complexity exponential growing due to the increasing of data size through layers. To avoid such complexity explosion, the insertion of pooling (POOL) layers is recommended. POOL layers are non-linear layers that reduce the spatial size (see Fig. 6.2). As the CONV layers, they make a filter slide across the input. The filter is 1-dimensional, characterised by a length W , and usually the stride is chosen equal to its length; for example in Fig. 6.2 both the length and the stride equal 3, so that the selected segments of the input do not overlap. In contrast with convolutional layers, the pooling filter does not contain trainable weights; they only slid across the input to select a segment, then a pooling function is applied: the most common pooling functions are the max-pooling, which outputs the maximum values within the segment, and the average-pooling, which outputs the average of the coordinates of the segment.

Convolutional (CONV) layers

Discussion

The reason why a CONV always applies several filters (i.e. n filter > 1)

is that we expect each filter to extract a different kind of feature from the input. These extracted features are arranged side-by-side over an additional data dimension, the so-called depth. 3 The hope is that during training, automatically, each filter specialises over the detection/recognition/modalisation of a different discriminant feature, and the collection of all discriminant features allows the last network layer concluding a successful classification. As one goes along convolutional layers, higherlevel abstraction features are expected to be extracted. The face recognition problem provides a simplified didactic example for this concept: we may think to some first layers' filters that specialise in detecting some local patterns of borders and surfaces.

Then we may think to a deeper layer that compose such local features and modelise the angles of eyes' borders: the pupils, their color,... Then some deeper layers may compose such feature and modelise the whole eye, which is a more complex feature, and some deeper layers may compose eyes together with noses' features coming from other filters and, going on in this compositional process, modelise the whole face, and assign to it a very abstract feature, i.e. the name of the person, which is the goal of the classification task. The fact that many natural data in the works have such a compositional flavour is one of the justifications inventors of CNNs provide to explain the success of such a technique. 4 Actually, analysing and understanding the very first low-level features extracted by a self-trained CNN is a very hard task, and such an impossibility to explain from where discriminant features come out is, in my opinion, one of the characteristics of the DL domain that leads it to be kept unconsidered and disliked by a still quite large community of scientists.

Common architecture

The main block of a CNN is a CONV layer γ directly followed by an ACT layer σ. The former locally extracts information from the input thanks to its filters and the latter increases the capacity of the model thanks to its non-linearity. After some (σ • γ) blocks, a POOL layer δ is usually added to reduce the number of neurons: δ • [σ • γ] n 2 . This new block is repeated in the network until obtaining an output of reasonable size. Then, some FCs are introduced in order to obtain a global result which depends on the entire input, and not only on local features. To sum-up, a common convolutional network can be characterised by the following formula: 5

s • [λ] n 1 • [δ • [σ • γ] n 2] n 3 . (6

Data Augmentation

As explained in Sec. 3.1.4, ML models are prone to overfitting, especially when their capacity (see Sec. 3.1.4) is very high, as it is often the case with deep networks. Thus, it is sometimes necessary to deal with the overfitting phenomenon, by applying some regularisation techniques. As we will see in Secs. 6.9.1 and 6.10 this will be the case in our experiments: indeed we will propose a quite deep CNN architecture, flexible enough to successfully manage the misalignment problems, but trained over some relatively small training sets. This fact, combined with the high capacity of our CNN architecture, implies that the model will learn by heart each element of the training set, without catching the truly discriminant features of the traces. 5 where each layer of the same type appearing in the composition is not to be intended as exactly the same function (e.g. with same input/output dimensions), but as a layer of the same kind.

Instead of applying a proper regularisation techniques, we choose to concentrate priorly on the Data Augmentation strategy [START_REF] Simard | Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis[END_REF], mainly for two reasons.

First, it is a common practice in side-channel context to increase the number of acquisitions to counteract the misalignment effect. In other terms, misalignment may provoke a "lack of data"phenomenon on adversary's side. In the ML domain, such a lack is classically addressed thanks to the DA technique, and its benefits are widely proved. For example, many image recognition competition winners made use of such a technique (e.g. the winner of ILSVRC-2012 [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]). Second, the DA is controllable, meaning that the deformations applied to the data are chosen, thus fully characterised. It is therefore possible to fully determine the addition of complexity induced to the classification problem. In our opinion, other techniques add constraints to the problem in a more implicit and uncontrollable way, e.g. the dropout [START_REF] Hinton | Improving neural networks by preventing co-adaptation of feature detectors[END_REF] or the 2 -norm regularisation [START_REF] Christopher | Pattern recognition and machine learning[END_REF].

Data augmentation consists in artificially generating new training traces by deforming those previously acquired. The deformation is done by the application of transformations that preserve the label information (i.e. the value of the handled sensitive variable in our context). We choose two kinds of deformations, that we denote by Shifting and Add-Remove. Add-Remove Deformation (AR) It simulates a clock jitter effect (Fig. 6.5). We will denote by AR R the operation that consists in two steps:

Shifting Deformation (SH

(1) in inserting R time samples, whose positions are chosen uniformly at random and whose values are the arithmetic mean between the previous time sample and the following one,

(2) in suppressing R time samples, chosen uniformly at random. The two deformations can be composed: we will denote by SH T AR R the application of a SH T followed by a AR R . under the name of Trace Augmentation. In this paper, the augmentation is obtained with a shifting equivalent to our SH deformation, and it is applied as preliminary step for the profiling phase of a Gaussian TA. The authors' goal is to make Gaussian templates more robust to the discrepancy between profiling acquisitions and attack ones. Surprisingly, in the paper, authors observe that this augmentation provides benefits to the attack routine both in case where some discrepancies are present, and in the ideal case. Data Augmentation seems thus to be a good practice independently of the presence or not of specific countermeasures, nor the exploitation or not of DL techniques.

Discussion

Experiments against Software Countermeasures

In this section we present two preliminary experiments, performed in order to validate the shift-invariance claimed by the CNN architecture, recalled in Sec. 6.7. In the first one, a single leaking operation was observed through the side-channel acquisitions, shifted in time by the insertion of a random number of dummy operations. We will refer to such a countermeasure as Random Delay Interrupt (RDI).

In the second one we targeted two leaking operations each delayed by RDI. We remark that this kind of countermeasure is nowadays considered defeated, e.g. thanks to resynchronisation by cross-correlation [START_REF] Nagashima | DPA using phase-based waveform matching against random-delay countermeasure[END_REF]. In this sense, the experiments we present in this section are not expected to be representative of real application cases. The complexity of the state-of-the-art resynchronisation techniques strongly depends on the variability of the shift. When the latter variability is low, i.e. when attacks are judged to be applicable, multiple random delays are recommended. It has even been proposed to adapt the probabilistic distributions of the random delays to achieve good compromises between the countermeasure efficiency and the chip performance overhead [CK09; CK10]. Attacks have already been shown even against this multiple-RDI kind of countermeasures, e.g. [START_REF] Durvaux | Efficient removal of random delays from embedded software implementations using hidden markov models[END_REF]. The latter attack exploits some Gaussian templates to classify the leakage of each instruction; the classification scores are used to feed a Hidden Markov Model (HMM) that describes the complete chip execution, and the Viterbi algorithm is applied to find the most probable sequence of states for the HMM and to remove the random delays. We remark that this HMM-based attack exploits Gaussian templates to feed the HMM model, and the accuracy of such templates is affected by other misalignment reasons, e.g. clock jitter. We believe that our CNN approach proposal for operation classification, is a valuable alternative to the Gaussian template one, and might even provide benefits to the HMM performances, by e.g. improving the robustness of the attack in presence of both RDI and jitter-based countermeasures. This robustness with respect to the misalignment caused by the clock jitter will be analysed in Sec. 6.10.

One Leaking Operation

For this experiment, we implemented, on an Atmega328P microprocessor, a uniform For the training of our CNN, we applied the SH T data augmentation, selecting T = 500 and T ∈ {0, 100, T }; this implies that the input dimension of our CNN is reduced to 3, 496. Our implementation is based on Keras library [Cho+15] (version 1.2.1), and we run the trainings over an ordinary computer equipped with a gamers market GPU, a GeForce GTS 450. For the CNN architecture, we chose the following structure: These results confirm that our CNN model is able to characterise a wide range of points in a way that is robust to RDI.

s • [λ] 1 • [δ • [σ • γ] 1] 4 , (6.8)

Two Leaking Operations

Here we study whether our CNN classifier suffers from the presence of multiple leaking operations with the same power consumption pattern. show that we can get rid of the realignment pre-processing, letting the CNN deep structure take it in charge implicitly.

Performances over Artificial Augmented Clock Jitter

In this section we present the results that we obtained over two datasets named We used the same CNN architecture (6.8) as in previous section. We assisted again to a strong overfitting phenomenon and we successfully reduced it by applying the DA strategy introduced in Sec. The results we obtained are summarized in Table 6. According to our results in Table 6.3, we selected the model issued using the their relatively high amplitude, we use as realignment technique a simple method that consists in first detecting the peaks above a chosen threshold, then keeping all the samples in a window around these peaks. Then, for the selection of the PoIs, two approaches have been applied: first we selected from 3 to 20 points maximising the estimated instantaneous SNR, secondly we selected sliding windows of 3 to 20 consecutive points covering the region of interest. For the template processing, we tried (1) the classical approach [START_REF] Chari | Template Attacks[END_REF] where a mean and a covariance matrix are estimated for each class, (2) the pooled covariance matrix strategy proposed in [START_REF] Choudary | Efficient template attacks[END_REF] and (3) the stochastic approach proposed in [START_REF] Schindler | A stochastic model for differential side channel cryptanalysis[END_REF]. The results plotted in Fig. 6.9 are the best ones we obtained (via the stochastic approach over some 5-sized windows). Results show that the performances of the CNN approach are much higher than those of the Gaussian templates, both with and without realignment. This confirms the robustness of the CNN approach with respect to the jitter effect: the selection of PoIs and the realignment integrated in the training phase are effective. As a last (but most challenging) experiment we deployed our CNN architecture to attack an AES hardware implementation over a modern secure smartcard (secure implementation on 90nm technology node). On this implementation, the architecture is designed to optimise the area, and the speed performances are not the major concern. The architecture is here minimal, implementing only one hardware instance of the SubBytes module. The AES SubBytes operation is thus executed serially and one byte is processed per clock cycle. To protect the implementation, several countermeasures are implemented. Among them, a hardware mechanism induces a strong jitter effect which produces an important traces' desynchronisation. The bench is set up to trig the acquisition of the trace on a peak which corresponds to the processing of the first byte. Consequently, the set of traces is aligned according to the processing of the first byte while the other bytes leakages are completely misaligned. To illustrate the effect of this misalignment, the SNR characterising the (aligned) first byte and the (misaligned) second byte are computed (according to (2.1)) using a set of 150, 000 traces labelled by the value of the SubBytes output (256 labels). These SNRs are depicted in the top part of Fig. 6.10. The SNR of the first byte (in green) detects a quite high leakage, while the SNR of the second byte (in blue) is nullified.

A zoom of the SNR of the second peak is proposed in the bottom part of Fig. 6.10.

In order to confirm that the very low SNR corresponding to the second byte is only due to the desynchronisation, the patterns of the traces corresponding to the second byte have been resynchronised using a peak-detection-based algorithm, quite similar to the one applied for the experiments of Sec. 6.10.1. Then the SNR has been computed onto these new aligned traces and has been plot in red in the top-left part of Fig. 6.10; this SNR is very similar to that of the first byte. This clearly shows that

(1) the leakage information is contained into the trace but is efficiently hidden by the jitter-based countermeasure, and that (2) the realignment technique we applied in this context is effective.

We applied the CNN approach onto the rough set of traces (without any alignement). First, a 2, 500-long window of the trace has been selected to input CNN. The window, identified by the vertical cursors in the bottom part of Fig. 6.10, has been selected to ensure that the pattern corresponding to the leakage of the second byte is inside the selection. At this step, it is important to notice that such a selection is not at all as meticulous as the selection of PoIs required by a classical TA approach.

The training phase has been performed using 98, 000 labelled traces; 1, 000 further traces have been used for the validation set. We performed the training phase over a desktop computer equipped with an Intel Xeon E5440 @2,83GHz processor, 24Gb

of RAM and a GeForce GTS 450 GPU. Without data augmentation each epoch took about 200s. 8 The training stopped after 25 epochs. Considering that in this case we applied an early-stopping strategy that stopped training after 20 epochs without validation loss decrement, it means that the final trainable weights are obtained after 5 epochs (in about 15 minutes). The results that we obtained are summarised in Table 6.4. They prove not only that our CNN is still effective in presence of the misalignment caused by the jitter, but also that the DA technique is effective in raising its efficiency. A comparison between the CNN performances and the best results

we obtained over the same dataset applying the realignment-TA strategy, is proposed in Fig. 6.11. Beyond the fact that the CNN approach slightly outperforms the realignment-TA one, and considering that both case-results shown here are surely non-optimal, what is remarkable is that the CNN approach is potentially suitable even in cases where realignment methods are impracticable or not satisfying. It is of particular interest in cases where sensitive information does not lie in proximity of peaks or of easily detectable patterns, since many resynchronisation techniques are based on pattern or peak detection. If the resynchronisation fails, the TA approach falls out of service, while the CNN one remains a further weapon in the hands of an attacker.

Conclusion

In this chapter, we have proposed an end-to-end profiling attack approach, based on the CNNs. We claimed that such a strategy would keep effective even in presence issue: CNNs efficiently manage high-dimensional data, allowing the attacker to simply select large windows. In this sense, the experiments described in Sec. 6.11 are very representative: our CNN retrieves information from a large window of points showing an almost null instantaneous SNR. To tackle the traces misalignment, we used a quite complex architecture for our CNN, and we clearly identified the risk of overfitting phenomenon. To deal with this classical issue in ML, we proposed two Data Augmentation techniques adapted to misaligned side-channel traces. All the experimental results we obtained have proven that they provide a great benefit to the CNN strategy. Attacks proposed in this chapter are performed against nonmasked implementation. Nevertheless, since NNs are in general non-linear models, they naturally well-fit also the higher-order attack context, as discussed in [START_REF] Maghrebi | Breaking Cryptographic Implementations Using Deep Learning Techniques[END_REF] and in [START_REF] Prouff | Study of Deep Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database[END_REF].

Chapter 7

Conclusions and Perspectives

Conclusions

In this thesis, we focused over issues related to side-channel profiling attacks, which play a fundamental role in the context of the evaluation of cryptographic secure devices. The opportunity of performing a characterisation of the device leakages opens the way to an optimal approach, allowing the estimation of the conditional probabilities needed to identify the target key through maximum-a-posteriori. Nevertheless, the attempt to estimate the probability distributions of highly multi-dimensional data is hindered by the curse of dimensionality. Our first efforts were thus focused over the development of dimensionality reduction techniques, and we proposed two works on this topic.

First, in Chapter 4, we presented an analysis of linear dimensionality reduction techniques, that had already been introduced in side-channel context before 2014, the PCA and the LDA. These techniques extract interesting features from data by means of linear combinations of time samples. Despite the fact that the LDA is mainly a technique that allows to build a linear classifier, only its dimensionality reduction version, known as Fisher's Linear Discriminant, raised attention in sidechannel context. We followed this trail, and exploited both PCA and LDA as preliminary phases for a Gaussian template attack. In this context, we tackled some open issues, in particular the problem of the component selections, proposing an automatic criterion to perform the choice, namely the ELV. The obtained results were published at CARDIS 2015 [START_REF] Cagli | Enhancing dimensionality reduction methods for side-channel attacks[END_REF].

In a second work we enlarged the considered models from linear to non-linear ones, in order to treat the dimensionality reduction issue in presence of masking countermeasure. We focused on the rarely considered, but commonly met, case in which the profiling phase does not enable the access to the randomly drawn masks.

In this context we proposed a non-linear generalisation of the LDA method, namely the KDA equipped with a polynomial kernel function. This KDA extracts features from signals through products of time samples (up to a fixed polynomial degree) and linear combinations. Even in this case, despite the KDA may naturally provide a non-linear classifier, the KDA application in our study were intended as preliminary phase of a Gaussian template attacks. The obtained results of this contribution were published at CARDIS 2016 [START_REF] Cagli | Kernel Discriminant Analysis for Information Extraction in the Presence of Masking[END_REF].

Tracks for Future Works

The common thread of this thesis is the constantly growing awareness of the fact that practical problems we were facing in side-channel domain, were almost identical to those faced in many other domains. In particular, today an immense and still expansing number of applicative fields are based on the sensing and the analysis of a huge quantify of highly multi-dimensional data, and all of them have to tackle the curse of dimensionality. The preliminary purpose of these researches was to deal with the it via a feature selection approach, i.e. the selection of PoIs. Anyway, discarding the information eventually held by non-selected points seemed a critical waste to us, and we turned toward a feature extraction approach. We analysed feature extraction methods involving increasingly complex models. This required a conversion of side-channel problems from a classical statistical asset into an ML one, and we believe that this conversion process should be pursued in future works.

A first issue we left open is explicitly related to such a conversion: it is the definition of a DPA-specific ML task. Indeed, by now we exploited classifiers to perform advanced side-channel attacks. Nevertheless we observed that the classification task perfectly matches with the simple attack scenario. Specialised metrics and optimisation criteria (e.g. loss functions, evaluation metrics) should be proposed to tackle advanced attacks, instead: the final goal of an advanced attack is indeed the identification of a secret value by means of several observations, and it does not coincide in general with the classification of the observations with respect to the sensitive variable labels. Moreover, a Bayesian statistical approach should even be explored in the attempt of defining a DPA-specific ML strategy. Indeed, a secret key chunk may be viewed as a discrete parameter for a sort of regression model that describes the sidechannel traces. Before starting an attack, such key chunk parameter has in general a uniform distribution over its definition set, i.e. any value is equally probable for the attacker. Applying a Bayesian approach means considering every model parameter with the probability distribution modelling the attacker uncertainty over it, and building a system that updates such distributions as long as the attacker observes new traces and gains new information. This process should stop once the key chunk parameter distribution has a sufficiently low entropy, showing high probability concentrated over few values. Interestingly, recently a new field is arising, known as Bayesian Deep Learning (BDL) [START_REF] Gal | Uncertainty in deep learning[END_REF], which provides a deep learning framework, able to achieve state-of-the-art results, at least in imaging domain, while also modelling uncertainty.

As a second track for future works, we remarked that the classical ML verification task perfectly matches with the current collision attacks in side-channel domain.

This topic is not developed in this thesis, but we already focused on the possibility of exploiting some so-called Siamese Neural Networks, specialised for the verification task, to perform collision attacks. We obtained some promising preliminary results.

In general, we are convinced of the importance of further exploring DL techniques in side-channel context. At the same time we are aware of the lack of clear theoretical foundations that would give guides about the choice of the hyper-parameters that influence the performances of the DL architectures. For this reason we believe that researchers should share their efforts in developing and analysing ad hoc methodologies to tune side-channel-oriented neural networks. To this aim, a publication appeared in the Cryptology ePrint archive on January 2018 [START_REF] Prouff | Study of Deep Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database[END_REF] proposing a fully-reported set of benchmarks performed over some electromagnetic emanation acquisitions. The whole acquisitions database were published as well, including all the sources of the target implementation. We wish this open platform may serve as a common basis for researchers willing to compare their new architectures or their improvements of existing models. This kind of public databases have been central tools in the development of deep learning solutions in many other domains, for example in image recognition context.

Finally, in the optic of enhancing cryptanalysis in order to make cryptography stronger, there is a missing key-stone in this work. We adopted methods to extract new features from data, by means of complex models, most of all neural networks, instead of selecting leaking points of interests. Once an evaluator obtains a model which can be translated into a condition for ν 1 , . . . , ν C , using (C.6) and (C.16):

1 = Np i,j=1 ν k [i] ν k [j](Φ(x i) • Φ(x j)) = ν k • K ν k = γ k (ν k • ν k) (C.18)
Extracting the non-linear principal components of a datum x means projecting its image Φ(x) onto the eigenvectors α Φ 1 , . . . , α Φ C in F. To do so, we neither need to explicitly compute Φ(x) nor α Φ i . Indeed, using (C.6):

α Φ k • Φ(x) =

C.1 Kernel class-oriented PCA

Suppose now that we want to perform a class-oriented PCA in the image space of a function Φ that is associated to a given kernel function K, i.e. we want to solve, using a kernel trick, the eigenvalue problem

S Φ B α Φ = λ Φ α Φ , (C.20)
where S Φ B is the between-scatter matrix in the feature space: As before, the eigenvectors α Φ i are expressible as linear combination of the data images on F, i.e. (C.6) is still true:

1. 1

 1 Classification of Harware Attacks . 1.2 Evaluation Assurance Levels . 1.3 Security Assurance Requirements . 1.4 Required grades for the obtention of each EAL. 1.5 Factors of the Attack Potentials for Smartcards 2.1 Statistics proposed as signal strength estimate to operate a selection of time samples. 4.1 Linear Methods. Overview of the extractors' performances. 6.1 Results of our CNN, for different DA techniques, in presence of an uniform RDI countermeasure protecting. 6.2 Results of our CNN in presence of uniform RDI protecting two leaking operations. 6.3 Results of our CNN in presence of artificially-generated jitter countermeasure, with different DA techniques. 6.4 Results of our CNN over the modern smart card with jitter. Dedicated to little Ottavio, who stayed with me the whole time during the redaction of this thesis, from the very first to the very last word.

FIGURE 1. 1 :

 1 FIGURE 1.1: State array input and output. Source: [NIS].

 Fivefunctions are performed during the AES, named KeySchedule, AddRoundKey, Sub-Bytes, ShiftRows and MixColumns. At high level the AES algorithm is described hereafter: Key Expansion: derivation of round keys from secret key through the KeySchedof the five functions is provided hereafter.

FIGURE 1

 1 FIGURE 1.2: AddRoundKey (top) and SubBytes (bottom) operate over the state byte by byte, independently. Source: [NIS].

FIGURE 1 . 3 :

 13 FIGURE 1.3: ShiftRows operates over the State rows. MixColumns operates over the State columns. Source: [NIS].

k

 4i+a,b = k 4i+a-4,b ⊕ Sbox(k 4i+a-1,(b+1)mod 4) ⊕ Rcon(a) if a = 0 and b = 0k 4i+a,b = k 4i+a-4,b ⊕ Sbox(k 4i+a-1,(b+1)mod 4)if a = 0 and b = 0 ,

FIGURE 1 . 4 :

 14 FIGURE 1.4: The actors of French Certification Scheme

 the use of point-wise statistics to identify the PoIs, an axe of research was launched in SCA context, importing from the Machine Learning domain more general techniques for dimensionality reduction of data, passing from the feature selection to the so-called feature extraction approach. Around 2014, linear methods were drawing a raising attention, consisting in techniques to conveniently exploit linear combinations of many time samples. The first contributions we proposed belong to this axe of research: in Chapter 4 we describe the two mainly deployed techniques, the Principal Component Analysis and the Linear Discriminant Analysis, and tackle some open issues about their application to SCA context. The solutions proposed in the thesis have been presented at CARDIS 2015 [CDP15] and published in the proceedings of this international conference.

 two random variables X and Y are considered, their joint probability is denoted by Pr(X = x, Y = x), or simply by Pr(x, y) if not ambiguous, and their joint probability density (or mass) function is denoted by p X,Y (x, y). The conditional probability of X assuming the value x given an outcome y for Y is denoted by Pr(X = x | Y = y), or simply by Pr(x | y) if not ambiguous. The conditional probability density (or mass) function of X given an outcome y for Y is denoted by p X | Y =y (x). Finally, the covariance of the two variables is denoted by Cov(X, Y).

FIGURE 2 . 1 :

 21 FIGURE 2.1: Simple attack against RSA implementation. Source: [Koc+11].

FIGURE 2. 2 :

 2 FIGURE 2.2: Vertical (left) and horizontal (right) attack. Source: [Cla+10].

 SCAs, not too expensive in terms of memory and time consumption. The problem of performing an opportune dimensionality reduction goes hand in hand with the research of PoIs: a convenient dimensionality reduction should enhance the contribution of such PoIs while reducing or nullifying the one provided by non-interesting points. The goal of researches in this context is to study and develop techniques to characterise PoIs and to apply convenient dimensionality reduction techniques, that allow reducing the size of the acquisitions while keeping the exploitable information held by data high enough to allow an SCA to succeed. Representing the side channel traces as column vectors x in R D , the compressing phase might be seen as the application of a function : R D → R C , with C < D, called extractor throughout this thesis. The first extractors proposed in SCA literature where actually some selectors of time samples, i.e. functions that operate a simple subsampling of the traces on the base of the computation of some sample-wise statistics τ (t), whose aim is to quantify a sort of signal strength. Several proposals exist for such a signal-strength estimate, among them the most deployed ones are those coming from the classical distinguishers, computed under the right key hypothesis, e.g. the Difference of Means (DoM) [CRR03], the analogous but better specified Sum of Differences (SoD) [RO05], and the CPA. Other highly deployed estimate are the Sum of Squared Differences (SoSD) [GLRP06], the Signal-to-Noise Ratio (SNR) [MOP08; LPR13] and the Sum of Squared t-differences SoST, corresponding to the t-test [GLRP06]. All these statistics are close, and exploit the sample mean per class of the traces, given by:

 distribute a secret message amongst a group of participants. Each participant receives a piece of information, called share and the original message can only be reconstructed if a sufficient number of participants collaborate, putting in common the knowledge of a sufficient number of shares. The idea of applying secret-sharing to counteract SCAs was first proposed by Chari et al. [Cha+99] and Goubin and Patarin [GP99]. In this case the sensitive variables of the cryptographic algorithm are considered as secret messages to distribute. Since 1999, several masking schemes have been proposed, attacked and ameliorated to protect various cryptographic algorithms, for example [Mes00a; AG01; ISW03; BGK04; Osw+05; SP06; RP10; Mor+11; Cor+13; Bil+14; DC+15; GR17; JS17]. When a masking scheme is properly implemented, it guarantees that every sensitive variable Z is randomly split into multiple shares M 1 , M 2 , . . . , M d in such a way that a relation Z = M 1 • • • M d (2.20) holds for a group operation (e.g. the exclusive or for the most popular Boolean masking already proposed in the seminal papers [Cha+99; GP99]). The soundness of the masking countermeasure is implied by the fact that, in the noisy leakage model, the complexity of recovering information by SCA on a bit shared into several pieces grows exponentially with the number d of shares. 6 This fact was enlighten by Chari et al. in 1999 [Cha+99], then complemented by Prouff and Rivain in 2013 [PR13]. As a consequence of such an exponential complexity behaviour, the number d of shares plays the role of a security parameter for a masking scheme and the method is usually referred to as (d -1)th-order masking, since it involves (d -1) random values, called masks and one value determined by the sensitive variable and the relation

 where • can stand for "train" or "test" depending on the role of the dataset in the experience, and let |D| denote the size of the dataset, i.e. the number of examples contained in it. Let us store the examples contained in X • into a matrix M • ∈ R D×|D| and the targets contained in Y • into a targets vector y • ∈ R |D| . Let a learned model predict targets y i by outputting ŷi = w x i and let them be collected in turn into a predicted targets vector ˆ y • . The MSE is given by

 figure, red circles represents the 4 training points, the blue line gives the learned model and the green points are test example. Above the plots the evaluation of the MSE over the training and test sets is given. We can observe that the linear predictor is underfitting, since the line passes quite far from both training and test points and its training error is quite high. On the contrary, the cubic predictor is overfitting: it

 FIGURE 3.1: Examples of underfitting and overfitting over a regression problem. Linear (a), quadratic (b) and cubic regression for a truly noised quadratic problem. Red circles are the training examples, green points are the test ones, the blue line represents the learned solution. Linear (a) regression underfits data, cubic (c) regression overfits data. (d) Cubic regression for a noised quadratic problem and more training examples. The cubic model trained over more data is better adapted to the truly quadratic data, and overfitting is attenuated.

 In the polynomial regression example the model had a single hyper-parameter: the degree of the polynomial. It is evident from the example that such a parameter is somehow forced not to be optimised by the means of the learning algorithm: trying to reduce the training MSE, the algorithm would choose a sufficient high degree to interpolate all training points (typically N -1 if N is the number of training examples). This would cause overfitting, as shown in Fig.3.1(c). In general among all parameters of a model, the hyper-parameters are chosen as those that can not be learned from data because it would cause overfitting, as in the example, or because they are too difficult to optimise.A way to choose a setting for hyper-parameters consists in performing a validation phase. To do so, the training set is split into two disjoint sets, one still called training set and the other one called validation set. We can say that as the training set is used to learn the parameters, the validation set is used to somehow learn the hyperparameters. Indeed during or after the training over the training set, the validation set is used to compute a sort of estimation of the test error, which quantifies the generalisation ability of the model. In practice the performances of the (partially) trained model are evaluated over the validation set computing a validation error and hyperparameters are updated accordingly, in order to reduce the generalisation gap of the model. Once the model has been validated, i.e. the hyper-parameters are definitely set, the real test error is evaluated over the test set. Usually the validation error is an underestimation of the test error, since hyper-parameters have been set to reduce it.

ter 5 ,"

 5 to obtain Kernel Discriminant Analysis dimensionality reduction technique from the Linear Discriminant Analysis. Further works analysed the use of SVM in SCA context, proposing concrete attack scenarios [HZ12; BLR13]. The technique of Random Forest [Lio+14] drew attention of the SCA community as well. As the SVM, it has been used as a classifier and has been evaluated in different works [LBM15; Ler+15; LBM14]. As in recent years the privileged tools to tackle classification problem in ML area are the Neural Networks, whose multi-layer configuration has given name to the so-called Deep Learning domain, such tools have as well been analysed in SCA context. Networks in the form of Multi-Layer Perceptrons (MLP) have been proposed as classifiers for side-channel traces in a series of works [MHM13; MZ13; MMT15; MDM16], while Convolutional Neural Network was firstly introduced in [MPP16]. A part of this thesis contributions consists in the application of the convolutional paradigm as a way to defeat misalignment countermeasures in side-channel attacks (see Chapter 6). One side will make you grow taller, and the other side will make you grow shorter." "One side of what? The other side of what?" thought Alice to herself.

 2014 Durvaux et al. proposed the use of another technique for linear dimensionality reduction in SCA context[START_REF] Durvaux | Efficient selection of time samples for higherorder DPA with projection pursuits[END_REF], the so-called Projection Pursuits (PPs), firstly introduced in 1974 byFriedman and Tukey [FT74]. This method essentially works by randomly picking time samples, randomly setting the projecting coefficients, and tracking the improvement (or the worsening) of the projection when modifying them with small random perturbations. The main drawback of the PPs, pointed out by the authors of[START_REF] Durvaux | Efficient selection of time samples for higherorder DPA with projection pursuits[END_REF] for the SCA context, is their heuristic nature, since the convergence of the method is not guaranteed and its complexity is context-dependent. The main advantage is the fact that PPs can deal with any objective function, which may be adjusted to deal with implementations protected by masking countermeasure. Thus this technique appears advantageous in higherorder context, where it is used as a PoI selection tool. Its version for the first-order attacks, which produces a linear dimensionality reduction, is less interesting than the non-heuristic PCA and LDA. For this reason we will left PPs technique apart in this chapter, and describe their higher-order version in Chapter 5.

 4.3, together with the description of the SSS problem and some solutions coming from the Pattern and Face Recognition communities [BHK97; Che+00; YY01; Hua+02].

PCA α 1 FIGURE 4 .

 14 FIGURE 4.1: PCA: some 2-dimensional data (blue crosses) projected into their 1-dimensional principal subspace (represented by the green line).

FIGURE 4 .

 4 FIGURE 4.2: PCA: some 2-dimensional labelled data (blue crosses and red circles) projected into their 1-dimensional principal subspaces (represented by the green line). (a) classical unsupervised PCA, (b) class-oriented PCA. In (b) black stars represents the 2 classes centroids (sample means).

Figure 4 .

 4 Fig. 4.2(a).

 g. S = 1 N MM . Let M have dimension D × N , and suppose N D. This condition is almost always satisfied when performing class-oriented PCA, because in such a case N corresponds to the number of classes |Z|, and D is the traces' size. Anyway, for high-dimensional data, i.e. D high, it can be satisfied even when performing classical PCA. Thus, in such a common case, the D×D matrix S is far from being a full-rank matrix, since rank(S) ≤ N D. Thus, we expect to find at most N eigenvectors. Moreover, often columns of M are linearly dependent, for example because they are forced to have zero mean, so actually the rank of S is strictly less than N and we expect to obtain at most N -1 eigenvectors. A practical problem in case of high-dimensional data, is represented by the computation and the storage of the D × D matrix S. This problem can be bypassed by exploiting the following lemma coming from linear algebra, as proposed by Archambeau et al. [Arc+06]: Lemma 1. For any D × N matrix M, the function x → M x is a one-to-one mapping that maps eigenvectors of M M (N × N) onto those of MM (D × D).

 .13) where r is the rank of the covariance matrix S, and λ j is the eigenvalue associated to the j-th PC α j . EGV(α i) is the variance of the data projected over the i-th PC (which equals λ i) divided by the total variance of the original data (given by the trace of the covariance matrix S, i.e. by the sum of all its non-zero eigenvalues). By definition of EGV, the sum of all the EGV values is equal to 1; for this reason this quantity is often multiplied by 100 and expressed as percentage. Exploiting the EGV to choose among the PCs consists in fixing a wished cumulative explained variance β and in keeping C different PCs, where C is the minimum integer such that EGV(α 1) + EGV(α 2) + • • • + EGV(α C) ≥ β . (4.14)

FIGURE 4 . 3 :

 43 FIGURE 4.3: First and sixth PCs in DPA contest v4 trace set (between time samples 198001 and 199000)

Fig. 4 .FIGURE 4 . 4 :

 444 FIGURE 4.4: Cumulative ELV trend of principal components. On the right a zoom of the plot on the left. Data acquisition described in Sec. 4.4.

6 FIGURE 4 . 5 :

 645 FIGURE 4.5: The first six PCs. Acquisition campaign on an 8-bit AVR Atmega328P (see Sec. 4.4).

 [START_REF] Standaert | Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages[END_REF][START_REF] Bruneau | Less is more[END_REF]. As we anticipated in Chapter 3 -LDA α 1

FIGURE 4 . 6 :

 46 FIGURE 4.6: LDA: some 2-dimensional labelled data (blue crosses and red circles) projected onto their 1-dimensional discriminant component (represented by the green line).

. 21)

 21 Remark 4.1. Let S be the the global covariance matrix of data, also called total scatter matrix, defined in (4.1); we have the following relationship between S W , S B and S: shown that the vector α 1 which maximises (4.20) must satisfy S B α 1 = λS W α 1 , for a constant λ, i.e. has to be an eigenvector of S -1 W S B . Moreover, for any eigenvector α of S -1 W S B , with associated eigenvalue λ, the Rayleigh quotient equals such a λ: α S B α α S W α = λ . (4.23)

a

 PCA, i.e. to select as LDCs the first |Z| -1 eigenvectors of the between-class scatter matrix of data into this new space. More precisely, let Q = [v 1 , . . . , v D-rank(S W)] be the matrix of vectors that span the null space of S W . The authors of [Che+00] proposes to transform the data x into x = QQ x. Such a transformation maintains the original dimension D of the data, but let the new within-class matrix S W = QQ S W QQ be the null D × D matrix. Afterwards, the method looks for the eigenvectors of the new between-class matrix S B = QQ S B QQ . Let U be the matrix containing its first |Z| -1 eigenvectors: the LDCs obtained via the S W null space method are the columns of QQ U .

 quires power-consumption traces via the ChipWhisperer platform[START_REF] Flynn | ChipWhisperer: An opensource platform for hardware embedded security research[END_REF].3 The target device stores a secret 128-bit key and performs the first steps of an AES: the loading of 16 bytes of the plaintext, the AddRoundKey step and the SubBytes. It has been programmed twice: two different keys are stored in the device memory during the acquisition of the profiling and of the attack traces, to simulate the situation of two identical devices storing a different secret. The size D of the traces equals 3, 996. The sensitive target variable is one byte of the SubBytes output state, i.e. has the form Z = Sbox(E ⊕ k) with variables Z, E and k being bytes. Since the key is fixed also during the profiling phase, and both the AddRoundKey and SubBytes operations are bijective, we expect to detect three interesting regions (as those highlighted by PCs 4, 5 and 6, in Fig. 4.5): the reading of the first byte of the plaintext, the AddRoundKey and the SubBytes. For each class of the 256 classes for Z, we assume that the adversary acquires the same number N s of traces, i.e. N p = N s × 256. We will denote by C the number of features extracted by the dimensionality reduction methods, i.e. after the preprocessing the trace size is reduced to C. Then the attacker performs a Template Attack (see Sec. 2.10.1), using C-variate Gaussian templates.

FIGURE 4 . 7 :

 47 FIGURE 4.7: Guessing Entropy as function of the number of attack traces for different extraction methods. All Guessing Entropies are estimated as the average rank of the right key over 100 independent experiments.

4. 4 . 3

 43 Scenario 2. Now we test the behaviour of the extraction methods as function of the number N s of available profiling traces per class. The number of components C is still fixed to 3, PoI = 3, 996 again and the number of attack traces is N a = 100. This scenario has to be divided into two parts: if N s ≤ 15, then N p < D and the SSS problem occurs. Thus, in this case we test the four extensions of LDA presented in Sec. 4.3.3, associated to either the standard selection, to which we abusively refer to as EGV, 4 or to the IPR selection. We compare them to the class-oriented PCA associated to EGV, IPR or ELV. The ELV selection is not performed for the techniques extending LDA, since for some of them the projecting LDCs are not associated to some eigenvalues in a meaningful way. On the contrary, if N s ≥ 16 there is no need to approximate the LDA technique, so the classical one is performed. Results for this scenario are shown in Fig. 4.8. It may be noticed that the combinations class-oriented PCA + ELV/IPR select exactly the same components, for our data, see Fig. 4.8(e) and do not suffer from the lack of profiling traces. They are slightly outperformed by the S W Null Space method associated with the EGV, see Fig.4.8(d). The Direct LDA (Fig. 4.8(b)) method also provides a good alternative, while the other tested methods do not show a stable behaviour. The results in absence of the SSS problem (Fig.4.8(f))

 ponent, time sample) in decreasing order of the ELV values, allowing the presence of only C = 3 components and PoI different times samples, i.e. each component must have only PoI entries different from 0. Looking at Fig. 4.10 we might observe that the LDA allows to achieve the maximal guessing entropy with only 1 PoI in each of the 3 selected components. Actually, adding PoIs worsen its performances, which is coherent with the assumption that the vulnerable information leaks in only a few points. Remarkably, this observation shows that in this experimental case, an approach through PoI selection, instead of PoI extraction, would have been optimalas well, provided with a good selector of PoIs. Such points are excellently detected by the LDA. Adding contribution from other points raises the noise, which is then compensated by the contributions of further noisy points, in a very delicate balance.

FIGURE 4 . 8 :

 48 FIGURE 4.8: Guessing Entropy as function of the number of profiling traces. Figures (a)-(d): methods extending the LDA in presence of SSS problem; Figure (e): class-oriented PCA in presence of the SSS problem; Figure (f): number of profiling traces high enough to avoid the SSS problem.

FIGURE 4 .

 4 FIGURE 4.9: Guessing Entropy as function of the trace size after reduction.

FIGURE 4 .

 4 FIGURE 4.10: Guessing Entropy as function of the number of time samples contributing to the extractor computation.

4 . 4 ,

 44 and artificially misalign them through the jitter simulation technique proposed in Appendix B with parameters sigma= 6, B= 4. Then we tried to attack them through the 9 methodologies tested in Scenario 1. It may be noticed in Fig.4.11 that none of the 9 techniques is still efficient, included the optimal LDA+EGV that lead to minimal guessing entropy with the synchronised traces

FIGURE 4 .

 4 FIGURE 4.11: Degradation of linear-reduction-based template attacks in presence of misalignment.

 ing have priorly been executed to isolate the manipulation of each share in a region of time samples. This implies that our SCA now amounts to extract a Z-dependent information from leakage measurements whose size has been reduced to d × time samples. To extract such information three main approaches were proposed in literature until 2016.The first one consists in considering d time samples at a time, one per region, and in testing if they jointly contain information about Z (e.g. by estimating the mutual information[START_REF] Reparaz | Selecting Time Samples for Multivariate DPA Attacks[END_REF] or by processing a Correlation Power Attack (CPA) using their centred product[START_REF] Chari | Towards sound approaches to counteract poweranalysis attacks[END_REF], etc.). Computationally speaking, this approach requires to evaluate d d-tuples (e.g. 6.25 million d-tuples for d = 4 and = 50), thus its complexity grows exponentially with d.The second approach, that avoids the exhaustive enumeration of the d-tuples of time samples, consists in estimating the conditional pdf of the whole region: to this scope, a Gaussian mixture model is proposed in literature [LRP07; Lom+14b] and the parameters of such a Gaussian mixture can be estimated through the expectationmaximisation procedure. In[START_REF] Lemke-Rust | Gaussian mixture models for higherorder side channel analysis[END_REF] 4 variants of the procedure are proposed according to a trade-off between the efficiency and the accuracy of the estimations; the roughest leads to the estimation of 256 (d-1) (d) parameters (e.g. ≈ 3.4 billion parameters for d = 4 and = 50), while the finest one requires the estimation of

FIGURE 5 FIGURE 5

 55 FIGURE 5.1: Performing LDA and PCA over a high-dimensional feature space.

2 D

 2 raising to the d-th power, to process the kernel function over all pairs of training traces • (D + C) multiplications, (D + C -2) additions and 1 raising to the d-th power for the projection of each new trace over C KDA components,

to 4 8 2

 48 clock cycles (see Fig.5.7(a) or 5.7(b) upper parts). Depending on the attack implementation, we ensure that the acquisitions contain either 2,3 or 4 shares respectively for d = 2, 3 or 4. The shares satisfy M 1 ⊕• • •⊕M d = Z, where Z takes values in Z = F and represents one byte of the output of the first rount SubBytes operation in AES: Z = Sbox(E ⊕ k). The goal of the attack is to recover the subkey k . The plaintext P is assumed to be known and the M i are assumed to be unknown random uniform values. The profiling phase is divided in two sub-phases that exploit two distinct datasets. The first sub-phase, that we will refer to as KDA training phase, aims at constructing the dimensionality reduction function by means of the KDA algorithm. It exploits a KDA training dataset D train = (X train , Y train) of size N t = 8, 960. A known fixed subkey is used to acquire such a dataset, the plaintexts have been chosen to balance the number of classes (e.g. N s = 8,960 256 = 35 for each s ∈ Z = {0, . . . 255} when traces are labelled via an 8-bit value). We fixed the dimension C at the value 2 (except for the 2-class KDA for which we chose C = 1, see Remark 5.3): we therefore tried to build extractors KDA (•) = (KDA 1 (•), KDA 2 (•)) mapping traces of size 200 samples into new traces composed of 2 coordinates.

FIGURE 5 . 3 :

 53 FIGURE 5.3: On the left: template attack guessing entropy vs the number of traces for the attack phase, varying for choices of the constant µ (5.11). On the right: the implicit coefficients assigned to pairs of time samples for µ 3 (upper triangular part) and µ 5 (lower triangular part).

 degrades the quality of the extractor. The right part of Fig. 5.3 shows the implicit coefficients of the extractor (see (5.13)) obtained under µ 3 (upper triangular part) and under µ 5 (lower triangular part). The extractor corresponding to the former one leads to a successful attack and has high values concentrated over the interesting windows, for example [10..15] and [140..147]; the extractor corresponding to the latter one leads to an unsuccessful attack and shows lack of localisation around interesting parts of the trace, highlighting the fact that the KDA tool failed in detecting generalisable class-distinguishing features in this case. The regularisation (5.11) is a proper regularisation in the sense discussed in Sec. 3.1.4:

FIGURE 5 . 5 :

 55 FIGURE 5.5: Performance of template attacks run over 3-class KDA subspaces: multi-class, one vs one and one vs all approaches compared.

FIGURE 5 . 6 :

 56 FIGURE 5.6: Left: guessing entropy (over 10 independent tests) for a 2-class and a 9-class 3rd-order template attack. Right: right key rank of a 2-class and a 9-class 4th-order template attack.

 5.1.2.1) over the same training set used to evaluate the KDA in Sec.5.4. The best results in the 2nd-order context were obtained with the HW model (i.e. |Z| = 9). In this case T det is fixed to 0.7. Since 4 training sets are required, the 9, 000 training traces are split in 4 equallysized groups. Experimental observations allowed to fix W len = 5, consequently suggesting minW S = 1, maxW S = 15 and consistent global and local movements and resizes. Given the heuristic asset of the algorithm, we run it 1, 000 times for d = 2 and for d = 3. An overview of the global behaviour of the obtained results is depicted in Figures 5.7(a) and 5.7(b): the lower parts of the figures show the sum

FIGURE 5

 5 FIGURE 5.7: (a) Overview of PP outputs in 2nd-order context. (b)Overview of PP outputs in 3rd-order context.

Let's help

 them to do themselves! -Maria Montessori In this chapter we explore a new strategy to perform profiling SCAs, addressing the misalignment issue and endorsing the Deep Learning (DL) paradigm. To this aim we present results published in [CDP17], where Convolutional Neural Networks are proposed to help against misalignment-oriented countermeasures. Actually, the term Time-Delay Neural Network (TDNN) would be more appropriated than Convolutional Neural Network. Indeed the TDNNs [LWH90] consist in the Convolutional Neural Networks applied to one-dimensional data, as side-channel traces are. Nevertheless, the fame that CNNs reached in last years, and especially since 2012, where a CNN architecture (the "AlexNet") [KSH12] won the ImageNet Large Scale Visual Recognition Challenge, a large-impact image recognition contest, leads to the disappearing of term TDNN from DL literature. Today, to specify the architecture of a TDNN in the most common DL libraries, one needs to exploit func-

 inary preprocessing step from the model construction work-flow. For example, in DL the data dimensionality reduction is not necessarily explicitly performed by a distinct learned function , as done applying PCA, LDA or KDA. On the contrary, they directly and implicitly extract interesting features, possibly realign data, and estimate the opportune model to solve the task. The model is searched in a family of models that are composed by a cascade of parametrisable layers, which may be optimised in a single global learning process. Such models are called Artificial Neural Network, or simply Neural Networks (NNs).

 they do not need to access the training set any more. By consequence, the obtained model is in general faster in processing new data, than techniques obtained via kernel machines, for which the training traces themselves are part of the model parameters. This property belongs to the characteristics allowing NNs to be easily scalable to huge training sets.Finally, we pointed out as drawback of techniques analysed in previous chapters their weakness to trace misalignment. Since the CNNs has been developed to treat difficulties as misalignments, scaling, rotations, etc. usually met in image processing, we claim in this chapter, and verify through various experiments, that such CNNs provide an attack strategy that can keeps effective in presence of misalignment countermeasure.

The

 Multi-Layer Perceptrons (MLPs), or Feedforward Neural Networks, are a family of NN's architectures, associated with a function F that is composed of multiple linear functions and some non-linear functions, called activations. The name feedforward refers to the fact that the information flows from the input to the output, through the intermediate computations, without any feedback connection in which outputs of the model are fed back into itself. This is in opposition to the so-called Recurrent Neural Network structures. The CNNs are a generalisation of the MLPs.

sults [MHK10 ;

 MHK10 [START_REF] Song | Direct Loss Minimization for Training Deep Neural Nets[END_REF].As justified in Sec. 3.1.5, for the experiments proposed in this chapter we will divide the side-channel profiling set into two subsets: the training one and the validation one. The training set will be processed by batch and used to update the NN's parameters. The validation set is exploited in general at the end of each epoch to monitor the training, and in particular to watch over the incoming of an overfitting phenomenon. Remarkably, cross-validation has not been performed to improve the accuracy of our observation. Instead, we used a side-channel attack set to evaluate both the ability of the trained model to tackle the classification task, and the performance of the obtained attack strategy.

 3.1.5, the accuracy is defined as the successful classification rate reached over a dataset. The training accuracy, the validation accuracy and the test accuracy are the successful classification rates achieved respectively over the training, the validation and the test sets. At the end of each epoch it is useful to compute and to compare the training accuracy and the validation accuracy. For our study, we found interesting to consider the following two additional quantities: • the maximal training accuracy, corresponding to the maximum of the training accuracies computed at the end of each epoch,

 Convolutional Layers (CONV) are linear layers that share weights across space. A representation is given in Fig.6.1; since CNNs have been introduced for images[START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF], such representation differs from the most common one in which layer interfaces are arranged in a 3D-fashion (height, weight and depth). In Fig.6.1 we show a 2D-CNN (length and depth) adapted to 1D-data as side-channel traces are. To apply a CONV to an input of size D × V , where the initial depth V is one, for 1D-data, n filter small matrices, called convolutional filters, of size W × V (where W is called kernel size) are slid over the length dimension of the input by a chosen amount of units, called stride. The filters form a window, called patch in ML language, which defines a linear transformation of W × V consecutive points of the data into new matrices of size 1 × n filter , arranged in such a way that n filter is the depth of the layer output. The length dimension of the output of a convolutional layer depends on several parameters: the input length, the stride, and the padding. The two most common ways to pad the input are called same padding and valid padding: with the same padding the input is padded with some zeros at the beginning and at the end, in such a way that, for a stride equal to 1, the output has the same length than the input, for a stride equal to 2 the input length is exactly halved, for a stride equal to 3 it is exactly divided by 3, etc. The valid padding consists on the contrary to avoid any kind of padding. Only proper data points are used as input, and output length is adjusted: typically, for a stride equal to 1, the output length equals D -W + 1, where D is the input length. The coordinates of the window are among the trainable weights of the model. They slid over the input, so they are multiplied by different parts of the datum, but they are constrained to keep unchanged while sliding, i.e. to behave in the same way no matter the position of the input entries on the global input datum. This constraint aims to allow the CONV layer to learn shift-invariant features, i.e. characteristics of the datum for which the position is not discriminant. Shift-invariant features are largely present in image recognition context, which drove the development of CNNs. For examples the eyes, the nose and the mouth of a person in a picture, are discriminant features for the person no matter their position in the image. The ability at learning shift-invariant features makes CNNs robust to geometrical deformations [LB+95] or to temporal deformation when considering side-channel signals. For this reason they are adequate to counteract misalignment-based countermeasures. Two convolutional layers. Top: W = 2, V = 1, n filter = 3, stride = 1. Bottom: W = 2, V = 3, n filter = 4.

 Max-pooling layer: W = stride = 3.

. 7)

 7 Fig. 6.3.

 T) It simulates a random delay effect of maximal amplitude T , by randomly selecting a shifting window of the acquired trace, as shown in Fig. 6.4. Let D denote the original size of the traces. We fix the size of the input layer of our CNN to D = D -T . Then the technique SH T consists (1) in drawing a uniform random t ∈ [0, T], and (2) in selecting the D -sized window starting from the t-th point. For our study, we will compare the SH T technique for different values T ≤ T , without changing the architecture of the CNN (in particular the input size D). Notably, T T implies that T -T time samples will never have the chance to be selected. As we suppose that the information is localized in the central part of the traces, we choose to center the shifting windows, discarding the heads and the tails of the traces (corresponding to the first and the last T -T 2 points).

 The deformations we propose as Data Augmentation techniques are inspired by the way we modelise the countermeasures' effects. Actually, we propose to turn the misalignment problem into a virtue, enlarging the profiling trace set via a random shift of the acquired traces and the AR distortion that together simulate a clock jitter effect. Paradoxically, instead of trying to realign the traces, we propose to further misalign them (a much easier task!). In real-case secure devices evaluation contexts, the acquisition campaign may sometimes represent a bottleneck in terms of time. Further proposals and analyses of DA techniques, maybe inspired by other forms of noise present in side-channel acquisitions, might be interesting tracks for future researches. Actually, the idea of applying DA in profiling side-channel context appeared independently from our work, in another publication in 2017[START_REF] Pu | Trace Augmentation: What Can Be Done Even Before Preprocessing in a Profiled SCA?[END_REF],

FIGURE 6 . 6 :

 66 FIGURE 6.6: Left: one leakage protected by single uniform RDI. Right: two leaking operations protected by multiple uniform RDI.

RDI [TB07]

 TB07 to protect the leakage produced by a single target operation. Our RDI simply consists in a loop of r nop instructions, with r drawn uniformly in [0, 127]. Some acquired traces are reported in the left side of Fig.6.6, the target peak being highlighted with a red ellipse. They are composed of 3, 996 time samples, corresponding to an access to the AES-Sbox look-up table stored in NVM. For the training, we acquired only 1, 000 traces and 700 further traces were acquired as validation data. Our CNN has been trained to classify the traces according to the Hamming weight of the Sbox output; namely, the target sensitive variable is given by Z = HW(Sbox(P ⊕ K)). This choice has been done to let each class contain more than only a few (i.e. about 1, 000/256) training traces. For Atmega328P devices, the Hamming weight is known to be particularly relevant to model the leakage occurring during register writing (see for example Chapters 4 and 5 or[START_REF] Belaïd | Improved Side-Channel Analysis of Finite-Field Multiplication[END_REF]). Since Z is assumed to take nine values and the position of the leakage depends on a random r ranging over 128 values, it is clear that the 1, 000 training traces do not encompass the full 9 × 128 = 1, 152 possible combinations (z, r) ∈ [0, 8] × [0, 127]. We undersized the training set by purpose, in order to establish whether the CNN technique, equipped with DA, is able to catch the meaningful shift-invariant features without having been provided with all the possible observations.

FIGURE 6

 6 FIGURE 6.7: One leakage protected via uniform RDI: accuracies vs epochs and confusion matrices obtained with our CNN for different DA techniques. From left to right: SH 0 , SH 100 , SH 500 . TABLE 6.1: Results of our CNN, for different DA techniques, in presence of an uniform RDI countermeasure protecting. For each technique, 4 values are given: in position a the maximal training accuracy, in position b the maximal validation accuracy, in position c the test accuracy, in position d the value of N (see Sec. 6.6 for definitions).

 using the hyperbolic tangent, defined as: tanh(x) = e x -e -x e x + e -x . (6.9) We trained our CNN by batches of size 32. In total the network contained 869, 341 trainable weights. The training and validation accuracies achieved after each epoch are depicted in Fig. 6.7 together with the confusion matrices that we obtained from the test set. Applying the early-stopping principle recalled in Sec. 6.4.1, we automatically stopped the training after 120 epochs without decrement of the loss function evaluated over the validation set, and kept as final trained model the one that showed the minimal value for the loss function evaluation. Concerning the learning rate (see Sec. 6.4.1), we fixed the beginning one to 0.01 and reduced it multiplying it by a factor of √ 0.1 after 5 epochs without validation loss decrement.

DS_low_jitter

 and DS_high_jitter. Each one contains 10, 000 labelled traces, used for the training phase (more precisely, 9, 000 are used for the training, and 1, 000 for the validation), and 100, 000 attack traces. The traces are composed of 1, 860 time samples. The two datasets have been obtained by artificially adding a simulated jitter effect over some synchronised original traces. The original traces were measured on the same Atmega328P microprocessor used in the previous section. We verified that they originally encompass leakage on 34 instructions: 2 nops, 16 loads from the NVM and 16 accesses to look-up tables. For our attack experiments, it is assumed that the target is the first look-up table access, i.e. the 19th clock cycle. As in the previous section, the target sensitive variable is Z = HW(Sbox(P ⊕ K)). To simulate the jitter effect we used the technique described in Appendix B, fixing parameters sigma = 4, B = 2 for the DS_low_jitter dataset, and sigma = 6, B = 4 for the DS_high_jitter dataset. In the same Appendix B, some traces of DS_low_jitter and DS_high_jitter are depicted (respectively in Fig. B.1(a) and in Fig. B.1(b)): the cumulative effect of the jitter is observable by remarking that the desynchronisation raises with time. For both datasets we did not operate any PoI selection, but entered the entire traces into our CNN.

6 . 8 .

 68 This time we applied both the shifting deformation SH T with T = 200 and T ∈ {0, 20, 40} and the add-remove deformation AR R with R ∈ {0, 100, 200}, training the CNN model using the nine combinations SH T AR R . We performed a further experiment with much higher DA parameters, i.e. SH 200 AR 500 , to show that the benefits provided by the DA are limited: as expected, too much deformation affects the CNN performances (indeed results obtained with SH 200 AR 500 will be worse than those obtained with e.g. SH 40 AR 200).

 Fig. 6.8 the training and validation accuracies achieved in this case epoch by epoch are depicted. It can be noticed that the unusual relation between the training and the validation accuracies does not only concern the maximal values, but is almost kept epoch by epoch.Observing the picture, we can be convinced that, since this fact occurs at many epochs, this is not a consequence of some unlucky inaccurate estimations. To interpret this phenomenon we observe that the training set contains both the original data and the augmented ones (i.e. deformed by the DA) while the validation set only contains non-augmented data. The fact that the achieved training accuracy is lower than the validation one, indicates that the CNN does not succeed in learning how to classify the augmented data, but succeeds to extract the features of interest for the classification of the original data. We judge this behaviour positively. Concerning the DA techniques we observe that they are efficient when applied independently and that their combination is still more efficient.

SHFIGURE 6 . 8 :

 68 FIGURE 6.8: Training of the CNN model with DA SH 100 AR 40 . The training classification problem becomes harder than the real classification problem, leading validation accuracy constantly higher than the training one.

FIGURE 6 . 9 :

 69 FIGURE 6.9: Comparison between a Gaussian template attack, with and without realignment, and our CNN strategy, over the DS_low_jitter (left) and the DS_high_jitter (right).

FIGURE 6 .

 6 FIGURE 6.10: AES hardware implementation protected by jitterbased misalignment. In green the SNR for the first byte; in blue the SNR for the second byte; in red the SNR for the second byte after a trace realignment.

 of trace misalignment, and we successfully verified our claim by performing CNNbased attacks against different kinds of misaligned data. This property represents a great practical advantage compared to the state-of-the-art Template Attacks, that require a meticulous trace realignment in order to be efficient. Our strategy based over CNNs differs from classical TA for mainly two points. First, it makes use of a discriminative model, instead of a generative one. Second it takes in charge into a unique training phase all eventual preprocessing phases necessary for the successfulness of a TA. Indeed, beyond the trace realignment, that is not necessary for the CNN approach, it represents as well a solution to the problem of the selection of PoIs

FIGURE 6 .

 6 FIGURE 6.11: Comparison between a Gaussian template attack with realignment, and our CNN strategy, over the modern smart card with jitter.

 The third contribution of this thesis, presented in Chapter 6, explores the Neural Networks models. Such models are a further generalisation of techniques like LDA and KDA: they extract features from data by means of several layers of linear combinations and non-linear functions. Neural Networks are widely used to build non-linear classifiers. Differently from the LDA classifier, NN ones may be easily constructed in a multi-class manner, and in such a way that classification scores have a probabilistic meaning. In this way they are directly suitable for advanced side-channel attacks. Choosing this kind of construction, we could substitute the typical side-channel profiling routine divided into dimensionality reduction and Gaussian profiles estimation, with an integrated approach that directly extracts significant features and estimates a posteriori probabilities. In this case, such an estimation dispensed of the Gaussian hypothesis about data distribution, not justifiable in general. The estimation is guided by a single optimisation criterion, aiming at reducing the classification error. The optimisation algorithm is not in a closed form as for the LDA and KDA technique, and there is no guaranties about the existence/uniqueness of a solution and about the fact that the learning algorithm is eventually able to find the solution. Anyway, many ML techniques are funded over the acceptance of this intrinsic non-optimality, and face in this way the curse of dimensionality that prohibits perfect estimations. Anyway, ML techniques demonstrate their validity in many real applications, including side-channel analysis. In our contribution, we took advantage of the Convolutional Neural Network models, and we proposed some Data Augmentation techniques, to tackle hiding countermeasures inducing misalignment in side-channel acquisitions. The obtained results were published at CHES 2017[START_REF] Cagli | Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures -Profiling Attacks Without Pre-processing[END_REF].

 allowing a successful attack, his role should be to point out the vulnerabilities of the attacked device, eventually explaining their origin. If the attack bases on a model that exploits abstract features impossible to interpret, such a role is impossible to play. A methodology to unroll the construction of the abstract feature and understand which part of the cryptographic algorithm execution most contributes to the success of the attack is indispensable in the optic of strengthening the embedded security against the powerful increasing deep learning attackers.N p λ Φ K ν = K 2 ν . (C.15)It can be shown that solving the last equation is equivalent to solve the following eigenvector problemγ ν = K ν . (C.16) Let γ 1 ≥ γ 2 ≥ • • • ≥ γ Np denotethe eigenvalues of K, γ C being the last different from zero, and ν 1 , . . . , ν Np the corresponding eigenvectors. For the sake of obtaining the corresponding normalized principal components in the feature space F, denoted α Φ 1 , . . . , α Φ C , a normalization step is required, imposing for all k = 1, . . . , C α Φ k • α Φ k = 1 , (C.17)

ν

 k [i](Φ(x i) • Φ(x)) = Np i=1 ν k [i]K(x i , x) . (C.19)

 Nsi=1 : z i =s Φ(x i) and Φ(x) = 1 Np Np i=1 Φ(x i).

TABLE 1

 1

	.1: Classification of Harware Attacks
	Passive Active
	Invasive	
	Semi-Invasive (SCAs) (FAs)
	Non-Invasive SCAs	FAs

TABLE 1

 1

		.2: Evaluation Assurance Levels
	EAL	Description
	EAL1	Functionally tested
	EAL2	Structurally tested
	EAL3	Methodically tested and checked
	EAL4 Methodically designed, tested and reviewed
	EAL5	Semi-formally designed and tested
	EAL6	

TABLE 1

 1

		.3: Security Assurance Requirements
	Class	Family	Description
		ADV_ARC	Security architecture
		ADV_FSP	Functional specification
	Development	ADV_IMP ADV_INT	Implementation representation TOE Security Functions internals
		ADV_SPM	Security policy modelling
		ADV_TDS	TOE design
	Guidance Documents	AGD_OPE AGD_PRE	Operational user guidance Preparative procedures
		ALC_CMC Configuration Management capabilities
		ALC_CMS	Configuration Management scope
		ALC_DEL	Delivery
	Life-cycle support	ALC_DVS	Development security
		ALC_FLR	Flaw remediation
		ALC_LCD	Life-cycle definition
		ALC_TAT	Tools and techniques
		ASE_CCL	Conformance claims
		ASE_ECD	Extended components definition
		ASE_INT	ST introduction
	ST evaluation	ASE_OBJ	Security objectives
		ASE_REQ	Security requirements
		ASE_SPD	Security problem definition
		ASE_TSS	TOE summary specification
		ATE_COV	Coverage
	Tests	ATE_DPT ATE_FUN	Depth Functional tests
		ATE_IND	Independent testing
	Vulnerability assessment AVA_VAN	Vulnerability analysis
	EAL4+AVA_VAN5+ALC_DVS2, and chips for e-passport application are usually

TABLE 1 .

 1 4: Required grades for the obtention of each EAL.

	Family	Assurance Components by EAL EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7
	ADV_ARC		1	1	1	1	1
	ADV_FSP	1	2	3	4	5	5
	ADV_IMP				1	1	2
	ADV_INT					2	3
	ADV_SPM						1
	ADV_TDS		1	2	3	4	5

TABLE 1 . 5 :

 15 Factors of the Attack Potentials for Smartcards Concerning the penetration testing of a certified smart card, the ETR contains all the cotation tables of the succeeded attacks. If the component is certified, it means that the score of those attacks was higher than 31, and such vulnerabilities are kept as residual vulnerabilities. The ETR is strictly reviewed annually

	Factors	Identification Exploitation
	Elapsed Time		
	<one hour	0	0
	<one day	1	3
	<one week	2	4
	<one month	3	6
	>one month	5	8
	Expertise		
	Layman	0	0
	Proficient	2	2
	Expert	5	4
	Multiple Expert	7	6
	Knowledge of the TOE		
	Public	0	0
	Restricted	2	2
	Sensitive	4	3
	Critical	6	5
	Very critical hardware design	9	NA
	Access to TOE		
	<10 samples	0	0
	<30 samples	1	2
	<100 samples	2	4
	>100 samples	3	6
	Equipement		
	None	0	0
	Standard	1	2
	Specialized	3	4
	Bespoke	5	6
	Multiple Bespoke	7	8
	Open Samples		
	Public	0	NA
	Restricted	2	NA
	Sensitive	4	NA
	Critical	6	NA

 To allow a deep inspection of the device, the sampling rate of the oscilloscope needs to be high, leading very often to a high dimensionality of such traces. Nevertheless, it is expected that only a limited number of time samples are relevant for an SCA: those that are statistically dependent on the sensitive variable that is exploited to run the attack. Such time samples are called Points of Interest (PoIs). In the literature a few different statistics were proposed and exploited to select such PoIs in a preliminary attack phase, in order to reduce both time and memory complexity of the attacks. A brief overview of such statistics is proposed in Sec. 2.10.2. The preliminary purpose of this thesis was to propose new methods to research and characterise the PoIs, in order to ameliorate and possibly optimise the preliminary attack phase consisting in their selection.

 Learning is today justified by the trend of sense and analyse data of huge dimension for an always increasing variety of applications. To do so, more and more complex models have been explored, too complex to be treated with a formal statistical asset. The Machine Learning asset carries with him some intrinsic non-optimality, formalised by the so-called No Free Lunch theorem, briefly stated in Sec. 3.1.6, but is today demonstrating its capacities. We observe that Side-Channel Attacks belong to the kind of applications that might take advantage of Machine Learning tools, since they act by sensing and analysing data of high dimension. For this reason, in last years, a transfer from Machine Learning to the application domain of SCA started, and our researches make part of such a flow.

from the problem of identifying the PoIs in a signal, that is classically tackled by means of pure statistical tools, such as hypothesis tests, then enlarged both the objectives and the methodologies. Indeed we observed that what mainly influences the successfulness of a Side-Channel Attack is the quality of the way information is extracted from data. Extracting information concerns approximating probability distributions that allow distinguishing different secret values. The first SCAs proposed in the literature acted in a point-wise fashion, i.e. were related to data distributions in single time samples of the acquisitions. In this sense the selection of such time samples, the PoIs, played a fundamental role and were a preliminary objective of these researches. As soon as one steps back to the final objective, i.e. defining and well approximating distinguishable distributions, the fact of completely discard a great part of time samples, selecting only a few of them, seems a waste. Convenient ways to combine time samples might turn into some resulting features whose distributions might have a greater distinguishability. This observation lead to a one-step back objective: determine such convenient ways. In this sense, we explored feature extraction tools, in order to preprocess data and turn rough data into compact ones whose distributions were distinguishable. Linear tools were analysed in a first time (PCA and LDA in particular), then non-linear tools (the KDA) were investigated to satisfy a necessary condition in order to deal with masked implementations.

Aware of the fact the the just cited tools are in the middle ground between classical multivariate statistics and the Machine Learning domain, we started exploring such a domain, that is today in fast development. The wide interest for Machine

The study of nowadays privileged tools in Machine Learning allowed us making a further step back toward the SCAs objective. Instead of look for a convenient preprocessing of data, whose output distributions have discriminant abilities, we switched to look for models that directly approximate the distributions from rough data. This approach is proper to a branch of Machine Learning, called Deep Learning. The Deep Learning paradigm suggests to integrate the whole learning phase (in our case the whole processing leading to the discriminant distributions approximation) in a unique process, integrating in it any preprocessing. This is done considering multi-layered models, in particular Neural Networks, on which we finally focused. They are non-linear models, implying that they are able to eventually deal with side-channel traces protected by masking countermeasure. Moreover, some special structures of Neural Networks, the so-called Convolutional Neural Networks (CNNs), originally conceived for image recognition application, fit well to handle other kinds of classic countermeasures: those improving trace desynchronisation, or misalignment (see Sec. 2.11). In Chapter 6, on the basis of the publication presented at CHES 2017

[START_REF] Cagli | Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures -Profiling Attacks Without Pre-processing[END_REF]

, we discuss about the advantages of exploiting such CNNs in SCA context.

Beyond the application of the CNNs we discuss in Chapter 6, we believe that many kinds of side-channel scenarios, and especially profiling contexts, may be rephrased as Machine Learning tasks and many researches already carried out for other applications should be exploited to understand if they represent or not a danger in embedded security domain, leading to powerful Side-Channel Attacks.

The next two chapters aim to briefly introduce preliminaries about these two vast domains: in Chapter 2 a brief introduction to side-channel attack is provided, while Chapter 3 describes some basic notions of Machine Learning.

 Anyway, we aim to include in the simple attacks family

	those attacks for which many observations are acquired with fixed entry parameters
	and by consequence in which the observed leakage always corresponds to a fixed
	value of Z. The attacker may exploit several acquisitions in mainly two ways: he
	computes their average before performing the attack (as done for example in the
	simple attack proposed by Mangard in 2002 [Man02], and ameliorated in 2014 by
	Clavier et al. [CMW14]), aiming to reduce the noise influence, or he performs the
	attack on each acquisition (expecting each gives the same outcome) and then applies
	a function to the several outcomes (e.g. majority vote) to guess the right value. In
	the next chapter, Section 3.1.1, we will describe some classic examples of machine
	learning tasks. Here we point out the fact that simple attacks exactly correspond to
	resolving a classification task in side-channel context.

Table 2

 2

.1 gives explicit formulas to compute such state-of-the-art sample-wise statistics. Once the chosen signal strength estimate τ is computed, it can be used as in a hypothesis test to reject the hypothesis that the sample mean values at time t are equal. The instants t in which such a hypothesis is rejected correspond to the PoIs,

TABLE 2

 2

.1: Statistics proposed as signal strength estimate to operate a selection of time samples.

 moment of the signal, while the number of time samples of the signals that participate to such a statistic defines the multivariability of the attack[START_REF] Gierlichs | Revisiting higher-order DPA attacks[END_REF][START_REF] Batina | Mutual information analysis: a comprehensive study[END_REF][START_REF] Carlet | Achieving side-channel high-order correlation immunity with leakage squeezing[END_REF]. For example a 2nd-order attack against a parallel implementation may be univariate if a single time sample is used to derive key-dependent information. In general for attacks against software implementations, a dth-order attack is usually d-variate. In such a case the research of interesting d-tuples of time samples still raises the complexity of the attacks. Even in the favourable case in which a profiling attack is allowed, two cases must be distinguished: the attacker has or not access to the masks values during profiling. In the former case the attacker can use the shares as target sensitive variables during the profiling phase, looking for PoIs for each one of them. Thus, the PoI research complexity grows only linearly with the number d of shares. In the latter case the attacker cannot infer independently over each share and classical tools for PoIs research are inefficient. This issue is the main motivation that leads us to consider solutions based over the Kernel Discriminant Analysis (KDA)

 the profiling SCAs and the classification task in ML context. For this reason we introduce here a very brief overview of how classically the classification task is tackled, by means of linear models.

Classifying means assigning a label z ∈ Z to an example x ∈ R D , or equivalently divide the input space R D in decision regions, whose boundaries are referred to as decision boundaries. Making use of a linear model signifies exploiting some hyperplanes as decision boundaries. Datasets whose classes can be separated exactly by linear decision boundaries are said to be linearly separable. Following the discussion kept by Bishop in

[START_REF] Christopher | Pattern recognition and machine learning[END_REF]

, two different approaches to tackle the classification task should be distinguished: the direct research for a discriminant function F that assigns to an example a label, or the prior construction of a probabilistic model. This second approach might in turn be distinguished into two options, depending on whether a generative model (see Sec. 2.10.1), or a discriminative model is constructed (i.e. only conditional probability densities of outputs given the inputs are modelled).

 For scenarios in which N p is fixed, the value of N p is chosen high enough to avoid the SSS problem, and the extensions of LDA presented in Sec. 4.3.3 are not evaluated. This choice of N p will imply that the LDA is always performed in a favourable situation, which makes expect the LDA to be particularly efficient for these experiments. Consequentely, for the scenarios in which N p is high, our goal is to study whether the PCA can be made almost as efficient as the LDA thanks to the component selection methods discussed in Sec. 4.2.4.

	[Scenario 1] varying parameter: number of attack traces N a ,
	[Scenario 2] varying parameter: number of profiling traces N p ,
	[Scenario 3] varying parameter: number of projecting components selected C
	(it coincides with the number of the extracted new features),
	[Scenario 4] varying parameter: number of original time samples implied into
	the trace preprocessing computation PoI .
	this section we compare the different extractors (i.e. functions applying a data
	dimensionality reduction, see Sec. 2.10.2) provided by the PCA and the LDA in as-
	sociation with the different techniques of components selection. Defining an uni-
	versal criterion to compare the different extractors is not an easy task, moreover, it
	not always makes sense, since it should encompass a lot of parameters, sometimes
	opposite, that vary according to the context (amount of noise, specificity of the infor-
	mation leakage, nature of the side channel, etc.). For this reason we choose to split
	our comparisons into four scenarios. Each scenario has a single varying parameter

that, depending on the attacker context, may wish to be minimised. In each scenario, we will investigate the relation between each varying parameter and the Guessing Entropy (GE for short, see Sec. 2.8)) of the obtained attack. Hereafter the definition of the four scenarios:

TABLE 4 .

 4

				Parameter to minimise	
	Method	Selection N a N p (SSS) N p (¬SSS) C
	PCA standard	EGV	-		-	-
	PCA standard	ELV	-		-	-
	PCA standard	IPR	-		-	+
	PCA class	EGV	-	-	-	-
	PCA class	ELV	+			+
	PCA class	IPR	+		+	-
	LDA	EGV			+	
	LDA	ELV	+		+	
	LDA	IPR	+		+	
	S W Null Space	EGV				
	S W Null Space	IPR		+		
	Direct LDA	EGV				
	Direct LDA	IPR		+		
	Fisherface		-		
	S T Spanned Space		-		

the LDA in presence of SSS problem proposed in Pattern Recognition literature.

Such experiments showed that the Direct LDA and the S W Null Space Method are 1: Overview of the extractors' performances in tested situations. Depending on the adversary purpose, given by the parameter to minimise, a denotes the best method, a + denotes a method with performances close to those of the best one and ais for methods that show lower performances. Techniques introduced in

[START_REF] Cagli | Enhancing dimensionality reduction methods for side-channel attacks[END_REF]

are highlighted by a grey background.

 5.3.2 below). It may be observed that each discriminant component KDA (•) depends on the training set (x i , z i) i=1,...,Nt , on the kernel function K and on the regularisation parameters µ, appearing in(5.11). A further discussion about µ is proposed in Sec. 5.4.2.

Table 6 .

 6 1 summarises the obtained results. For each trained model we can compare the maximal training accuracy achieved during the training with the maximal validation accuracy, defined in Sec. 6.6. This comparison gives an insight about the risk of overfitting for the training. 6 Case SH 0 corresponds to a training performed without DA technique. When no DA is applied, the overfitting effect is dramatic: the training set is 100%-successfully classified after about 22 epochs, while the test accuracy only achieves 27%. The 27% is around the rate of uniformly distributed bytes showing an Hamming weight of 4. 7 Looking at the corresponding confusion matrix we remark that the CNN training has been biased by the binomial distribution of the training data, and almost always predicts the class 4. This essentially means that no discriminative feature has been learned in this case, which is confirmed by the fact that the trained model leads to an unsuccessful attack (N > 1, 000). Remarkably, the more artificial shifting is added by the DA, the more the overfitting effect is attenuated; for SH T with e.g. T = 500 the training set is never completely learnt and the test accuracy achieves 78%, leading to a guessing entropy of 1 with only N = 7 traces.

 We trained the same CNN as in Sec. 6.9.1, once to classify the first leakage, and a second time to classify the second leakage, applying SH 500 as DA technique. Results are given in Table6.2. They show that even if the CNN transforms spatial (or temporal) information into abstract dis-

	criminative features, it still holds an ordering notion: indeed if no ordering notion
	would have been held, the CNN could no way discriminate the first peak from the
	second one.

This situation occurs for instance any time the same operation is repeated several successive times over different pieces of data (e.g. the SubBytes operation for a software AES implementation is often performed by 16 successive look-up table accesses). To start our study we performed the same experiments as in Sec. 6.9.1 over a second traces set, where two look-up table accesses leak, each preceded by a random delay. Some examples of this second traces set are given in the right side of Fig.

6

.6, where the two leaking operations being highlighted by red and green ellipses.

TABLE 6 .

 6 2: Results of our CNN in presence of uniform RDI protecting two leaking operations. See the caption of Table6.1 for a legend. This implies the cumulation of a deforming effect that affects each single acquired clock cycle, and provokes traces misalignment on the adversary side. Indeed, since clock cycles do not have the same duration, they are sampled during the attack by a varying number of time samples. As a consequence, a simple translation of the acquisitions is not sufficient in this case to align with respect to an identified clock cycle. Some realignment techniques are available to manage this kind of deformations, e.g.[START_REF] Jasper Gj Van Woudenberg | Improving differential power analysis by elastic alignment[END_REF]. In this context, our goal is to

	First operation Second operation
	a b 95.2% 79.7% 96.8%	81.0%
	c d 76.8%	7	82.5%	6
	6.10 Experiments against Artificial Hardware Countermea-
	sures			
	A classical hardware countermeasure against side-channel attacks consists in intro-
	ducing instability in the clock.			

TABLE 6 .

 6 3: Results of our CNN in presence of artificially-generated jitter countermeasure, with different DA techniques. See the caption of Table6.1 for a legend.

				DS_low_jitter	
	a b c d	SH 0	SH 20	SH 40	SH 200
	AR 0	100.0% 68.7% 99.8% 86.1% 98.9% 84.1% 57.4% 14 82.5% 6 83.6% 6
	87.7% 88.2% 82.4% 88.4% 81.9% 89.6% AR 100 86.0% 6 87.0% 5 87.5% 6
	83.2% 88.6% 81.4% 86.9% 80.6% 88.9% AR 200 86.6% 6 85.7% 6 87.7% 5
	AR 500					85.0% 88.6% 86.2% 5
				DS_high_jitter	
	a b c d	SH 0	SH 20	SH 40	SH 200
	AR 0	100% 40.6%	45.0% 100% 60.0% 98.5% 67.6% 35 51.1% 9 62.4% 11
	AR 100	90.4% 57.3% 76.6% 73.6% 78.5% 76.4% 50.2% 15 72.4% 11 73.5% 9
	AR 200	83.1% 67.7% 82.0% 77.1% 82.6% 77.0% 64.0% 11 75.5% 8 74.4% 8
	AR 500					83.6% 73.4% 68.2% 11
	6.				

11 Experiments against Real-Case Hardware Countermea- sures

TABLE 6 .

 6 4: Results of our CNN over the modern smart card with jitter.

When a block cipher is used to encrypt a plaintext of different size, the plaintext is chunked into blocks of the appropriate one, and each block is encrypted accordingly to a so-called mode of operation.

where {02} = (00000010)2 is represented by the polynomial x

Commonly, the acronym SCA stands for "Side-Channel Analysis". Nevertheless, in this thesis it will stand for "Side-Channel Attacks".

Joint Interpretation Library

or scalar multiplication in the elliptic curve setting

In this thesis we will always target a key chunk and we will use such metrics to evaluate the efficiency of an attack in recovering such key chunks. When a full-key recovery attack is run, some algorithms to merge key chunks' outcomes and obtain the full key enumeration and a complete key

The term optimal distinguishes it from the so-called Bayes naive classifier, which introduces an independence assumption between data vector coordinates. The efficiency of a Bayes naive classifier has been analysed in SCA context in 2017[START_REF] Picek | Template attack versus Bayes classifier[END_REF].

Strategies to attempting making power consumption constant, such as the use of dual-rail precharge logic cells, also belong to the hiding group of countermeasures[START_REF] Popp | Masked dual-rail pre-charge logic: DPA-resistance without routing constraints[END_REF].

An affine model may be considered as well by adding a bias, leading to ŷ = w x + w0. This model is equivalently obtained by adding an additional component to x, always set to 1 and by writing back ŷ = w x with w ∈ R D+1 .

A formal justification of the validity of (3.12) for continuous random variables is out of the scope of this section.

An analogous result can be obtained in the multi-class problem.

again extensible to the multi-class case

Another common way to enlarge the capacity of a linear regression model y = w x, consists in choosing some basis functions ϕ1, ϕ2, . . . , ϕB and replace x with the values ϕ1(x), ϕ2(x), . . . , ϕB(x). The form of the basis functions will determine the capacity of the model. Basis function regression includes the linear and the polynomial case.

It can be shown that the same result would be obtained by maximising the so-called generalised variance of Y , which is defined as the determinant of its covariance matrix, instead of its trace.

The name is due to the fact that it was proposed and tested for face recognition scopes.

This choice has been done to allow for reproducibility of the experiments.

It consists in keeping the C first LDCs (the C last for the Direct LDA)

not necessary distinct

A further validation is performed over such windows, using other two training sets to estimate ρ, in order to reduce the risk of false positives.

Other polynomial kernel functions may be more adapted if the acquisitions are not free from d thorder leakages, with d < d. Among non-polynomial kernel functions, we effectuated some experimental trials with the most common Radial Basis Function, obtaining no interesting results. This might be caused by the infinite-dimensional size of the underlying feature space, that makes the discriminant components estimation less efficient.

This choice has been done to allow for reproducibility of the experiments.

As we have seen in Chapter 4, for PCA and LDA methods a good component selection is fundamental to obtain an efficient subspace, and that the first components not always represent the best choice. This is likely to be the case for the KDA as well, but in our experiments the choice of the two first components KDA 1 , KDA 2 turns out to be satisfying, and therefore to simplify our study we preferred to not investigate other choices.

A different approach is analysed in Sec. 5.4.4.

We think that is result is quite data-dependant, so the use of such an approach is not discouraged in general.

To prevent underflow, the log-softmax is usually preferred if several classification outputs must be combined.

We remark that thanks to the softmax function used as last network layer, each coordinate of yi is always strictly positive.

Ambiguity: Neural Networks with more that one non-linear layer are called Deep Neural Networks, where the depth corresponds to the number of layers.

See for example Yann LeCun's class available at https://www.college-de-france.fr/ site/yann-lecun/course-2016-02-12-14h30.htm

The validation accuracies are estimated over a

700-sized set, while the test accuracies are estimated over 100, 000 traces. Thus the latter estimation is more accurate, and we recall that the test accuracy is to be considered as the final CNN classification performance.7 We recall that the Hamming weight of uniformly distributed data follows a binomial law with coefficients (8, 0.5).

raising to about 2, 000 seconds when SH20DA200 data augmentation is performed (data are augmented online during training)

Acknowledgements

List of Abbreviations

AES Appendix A

Cross-Validation

In the ML community, several evaluation frameworks are commonly applied to assess the performances of a model or to select the best hyper-parameters for a learning algorithm. These methods aim to provide an estimator of the performance which does not depend on the choice of the training set D train (on which the model is trained) and of the test set D test (on which the model is tested) but only on their size.

The so-called t-fold cross-validation [START_REF] Friedman | The elements of statistical learning[END_REF] is currently the preferred evaluation method. Let P be a performance metric, f a model to evaluate, and D train = (X , Y) a labelled dataset, the outline of the method is the following:

1. [optional] randomize the order of the labelled traces in D train , 2. split the samples and their corresponding labels into t disjoint parts of equal size (X 1 , Y 1), . . . , (X t , Y t). For each i ∈ [1..t], do: It is known that the t-fold cross-validation estimator is an unbiased estimator of the generalisation performance. Its main drawback is its variance which may be large and difficult to estimate [Bre+96; BG05]. 1 The model is trained from scratch at each iteration of the loop over t.

Appendix B

Artificially Simulated Jitter

In order to analyse the behaviour of the techniques studied in this thesis over misaligned side-channel traces, we simulated sometimes a jitter effect to misalign some well-synchronized traces in a controlled way. When jittering is present, the clock stability is altered and clock cycles are sampled by a varying number of time samples.

To simulate such effect, the windows containing clock patterns of an acquisition are selected one by one and passed as input to the following function, described in python code, in charge to enlarge or reduce them in a random way. The randomness depends on two parameters sigma and B, being the number of inserted or removed points be almost normally distributed, with standard deviation given by sigma, but bounded. The bound is controlled by B by the following rule: the final size of a window has to be at least 1 B times the original size and at most B times the original size. The value assigned to newly inserted points is the linear interpolation of the previous and the following points. Appendix C

Kernel PCA construction

Suppose that we want to perform PCA in the image space of a function Φ that is associated to a given kernel function K. The kernel version for PCA has been presented in [START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF]; as we said in Chapter 5, the important step consists in expressing the operations needed for the PCA procedure in terms of the dot products between the mapped data.

Let us assume that data are centered in the feature space, i.e. i=1,...,Np Φ(x i) = 0. 1 In this way the empirical covariance matrix S Φ of data in the feature space is given by:

We want to find eigenvalues λ Φ = 0 and eigenvectors α Φ ∈ F {0} such that

We remark that such an eigenvector satisfies

1 Such a condition is not hard to achieve, even without explicitly pass through the feature space: it suffices substituting the kernel matrix K by the matrix K = K -1N p K -K1N p + 1N p K1N p , where 1N p denotes the matrix with each entry equal to 1

Np . The same kind of matrix has to be computed in projecting phase, using the test data.

where the step (C.4) makes use of the associativity of the matrix product and the commutativity of the scalar-matrix product. Eq. (C.6) tells us that each eigenvector α Φ is expressible as a linear combination of the data mapped into the feature space (Φ(x i) i=1,...,Np , or equivalently each eigenvector α Φ lies in the span of (Φ(x i) i=1,...,Np).

This observation authorizes to substitute to the problem (C.2), the following equivalent system:

Joining (C.6) and (C.7) we obtain, looking to the first equation of the system:

Thus, the system (C.7) is equivalent to the follow:

Let ν be the column vector containing the coefficients ν i of (C.6). The above system is expressible in matricial form as

which equals the following equation:

Moreover as before, the eigenvector problem (C.20) can be translated in an eigenvector problem that gives the coefficients ν as solutions. That is:

where the matrix M is computed as

with M s and M T being two N -sized vectors whose entries are given by:

Finally, one the eigenvector ν are found, to project a datum x onto the corresponding principal component in the feature space we proceed as in the previous case:

Résumé

La cryptographie embarquée sur les composants sécurisés peut être vulnérable à des attaques par canaux auxiliaires basées sur l'observation de fuites d'information issues de signaux acquis durant l'exécution de l'algorithme. Aujourd'hui, la présence de nombreuses contremesures peut conduire à l'acquisition de signaux à la fois très bruités, ce qui oblige un attaquant, ou un évaluateur sécuritaire, à utiliser des modèles statistiques, et très larges, ce qui rend difficile l'estimation de tels modèles.

Abstract

Cryptographic integrated circuits may be vulnerable to attacks based on the observation of information leakages conducted during the cryptographic algorithms' executions, the so-called Side-Channel Attacks. Nowadays the presence of several countermeasures may lead to the acquisition of signals which are at the same time highly noisy, forcing an attacker or a security evaluator to exploit statistical models, and highly multi-dimensional, letting hard the estimation of such models. In this thesis we study preprocessing techniques aiming at reducing the dimension of the measured data, and the more general issue of information extraction from highly multi-dimensional signals. The first works concern the application of classical linear feature extractors, such as Principal Component Analysis and Linear Discriminant Analysis. Then we analyse a non-linear generalisation of the latter extractor, obtained through the application of a "Kernel Trick", in order to let such preprocessing effective in presence of masking countermeasures. Finally, further generalising the extraction models, we explore the deep learning methodology, in order to reduce signal preprocessing and automatically extract sensitive information from rough signal. In particular, the application of the Convolutional Neural Network allows us to perform some attacks that remain effective in presence of signal desynchronisation.

Keywords: side-channel, embedded cryptography, dimensionality reduction, principal components analysis, linear discriminant analysis, kernel discriminant analysis, neural networks