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Introduction

The quantum essence of nature conveys concepts which are far from our every
day experience. Among these, entanglement is one of the most surprising ones.
In a bipartite entangled system, the states of two objects have to be described
with reference to each other, regardless of their spatial separation. A specific
measurement of one object, even if it gives a random outcome, determines the
result of the same kind of measurement carried out on the other object. This
nonlocal correlation cannot be explained by a theory of local hidden variables [1],
as shown within the formalism of Bell inequalities [2] by many experiments in the
past [3, 4, 5] and recently by “loophole-free” tests [6, 7, 8].

The comprehension of entanglement and other quantum phenomena has led to
what we call nowadays the second quantum revolution [9], where the generation,
manipulation and detection of entangled states are fundamental resources to develop
new technologies. In this perspective, several countries have launched large research
programmes. The Chinese programme has already demonstrated satellite-based
Quantum Key Distribution (QKD) protocols [10, 11], while the European Quantum
Flagship initiative has identified four strategic fields of quantum technologies:
quantum communication, quantum simulation, quantum computation and quantum
sensing and metrology. In the private sector, several start-ups have emerged and
multinational companies have started to invest heavily, especially for applications
in quantum communication (e.g. IDQ, Toshiba) and computing (e.g. Rigetti,
IonQ, Google, Microsoft, IBM, Intel).

Nevertheless, the implementation of quantum information protocols for real
world applications is challenging due to the competing tasks involved: quantum
information carriers must be generated, manipulated and detected while being
isolated from the uncontrolled environment. To address this problem, a wide range
of technological platforms are under development, each one with its own assets
and limitations. As instance, trapped ions [12] and superconducting circuits [13]
are emerging as good candidates for quantum computing, while optical lattices
[14] and photonics circuits [15] are promising for quantum simulation. In quantum
metrology and sensing, neutral and Rydberg atoms, trapped ions and solid state
spins (e.g. NV centers in diamonds) are the most attractive [16].

Photonics platforms are extremely adapted to quantum communication: photons
travel at the speed of light and are immune to environmental perturbations, as
they interact very weakly among themselves and with transparent media. Yet,
for the same reason, the manipulation of photons is not straightforward and
usually relies on probabilistic operations, hard to scale. Nonetheless, the possibility
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of processing information using only linear-optical platforms [17], together with
technological developments in integrated photonics, has led to the implementation
of numerous quantum algorithms and simulation protocols [18, 19] on a photonic
chip [20, 21, 22].

In this context, this thesis has contributed to enlarge the panel of possible
applications in quantum information of integrated AlGaAs devices. The first
achievement has been the generation of high-dimensional biphoton frequency-comb
states, made possible by the numerical studies and the experimental characterization
of AlGaAs sources of entangled photons in a monochromatic pump regime. In
addition, the identification of two classes of spectrally different biphoton frequency-
comb states, namely resonant and anti-resonant states, has led to the proposal
and implementation of a manipulation protocol to control the symmetry of the
emitted states. Furthermore, the development of new simulation routines and the
optimization of clean-room techniques has brought to the realization of AlGaAs
waveguides for the emission of light beams carrying spin angular momentum. The
same techniques has led to the design of a similar device for the manipulation of
light orbital angular momentum.

Integrated photon pair sources
In integrated quantum photonics two classes of devices are commonly used to
generate photon pairs: quantum dots and parametric nonlinear sources [23, 24].

Quantum dots are nanometric structures which confine electrons and holes
in the three dimensions of space (hence their name). Since their energy levels
are discrete, they are also known as artificial atoms. The great advantage of
quantum dots is that they emit single photons deterministically and on-demand.
The ground state of a quantum dot can be excited in a biexcitonic state, formed
by two electron-hole pairs. As it decays, two photons are produced on cascade:
while one electron-hole pair recombines, a photon is emitted, leaving the quantum
dot in a single excitonic state; this rapidly decays with the emission of another
single photon. The total energy and momentum of the recombining electron-hole
pair determines the energy and momentum of the emitted photons [25]. Therefore,
quantum dots with different dimensions and electronic structures produce photons
with different spectral properties. Quantum dots can be divided into two categories:
colloidal quantum dots and epitaxial quantum dots.

Colloidal quantum dots are solution-processed nanoscale crystals of semiconducting
materials [26], compatible with room temperature operations [27] and electrically-
driven configurations [28]. Colloidal quantum dots can be synthetized in large
batches and with a high monodispersity by using relatively inexpensive chemical
synthesis, which can be followed by a wide range of chemical post-processes and
thin-film assembly steps. The scalability and flexibility of their synthesis are a
huge advantage for commercial applications, in both imaging and optoelectronic
industries. In these last years, many efforts have been devoted to reduce photobleaching
(permanent unability to fluoresce due to a photochemical alteration) [29] and
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blinking effect (random fluctuations between bright and dark states) [30] affecting
colloidal quantum dots, leading to important advances of their performances as
single photons emitters.

Epitaxial quantum dots, also known as self-assembled quantum dot, are grown
via an epitaxial growth from the vapour phase. Their growth has a random nature,
in the sense that their positions and dimensions cannot be precisely predetermined.
To address this problem, fabrication techniques for their deterministic placing [31]
or methods based on in-situ lithography [32] have been developed. The efforts
done by the community to keep under control the decoherence effects linked
to the cristalline matrix (e.g. charge noise and spin noise [33]) has allowed to
produce entangled photons under both optical [34] and electrical pumping [35].
In order to exploit excitonic states to produce single and entangled photons, the
thermal energy of the system has to be smaller than the binding energy of these
quasiparticles, which imply to work at cryogenic temperatures. Regarding the
coupling with external optical fibers or devices, a high collection efficiency can be
achieved using photonic crystal structures [36] or electrically controlled cavities [37].

Parametric nonlinear sources rely on the interaction of a pump beam with
a nonlinear medium to produce photon pairs. In this case the devices work at
room temperature but the generation process is probabilistic. Depending on the
symmetry of the nonlinear material, Spontaneous Parametric Down Conversion
(SPDC) or Spontaneous Four-Wave Mixing (SFWM) can take place. Nonlinear
materials lacking of inversion symmetry, like lithium niobate (LN) or gallium
arsenide (GaAs), can be used to implement SPDC. In SPDC, a high energy photon
(pump photon) spontaneously decays into two low energy photons (signal and
idler photons) sharing its energy. The process is efficient if the total momentum of
the three interacting photons is conserved. This condition, called phase matching
in a wave description, is not automatically satisfied due to the dispersion of
the nonlinear media, but different solutions have been implemented. The first
demonstrations of SPDC relied on crystals birefringence [38], with pump and
emitted photons propagating along different directions with respect to the crystal
axis. Nowadays, the implementation of a quasi-phase matching [39, 40] technique
is widely adopted in dielectric waveguides. In this scheme the crystal structure
is engineered to obtain a periodical inversion or inhibition of the nonlinearity,
reversing or hindering the effect of the phase mismatch. Quasi-phase matching is
particularly used in dielectric ferroelectric materials, such as periodically poled
lithium niobate (PPLN) waveguides [41], and can also be implemented in the
AlGaAs platform. However, orientation patterned AlGaAs waveguides suffer from
high optical losses (∼ 9dB/cm at 1.55µm) [42]. For this reason, in this thesis we
resort to another strategy to satisfy phase matching, named modal phase matching.
In modal phase matching, pump, signal and idler photons propagate in different
guided modes. As instance, in our AlGaAs waveguide the guided pump photons
are in a Bragg mode, while signal and idler photons in fundamental Gaussian
modes. The waveguide’s design allows to tailor the modes dispersions and to
satisfy momentum conservation over a large bandwidth of the emitted photons
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[43, 44].
SFWM can be implemented in centro-symmetric media, such as silicon. In this

process, two pump photons annihilate to produce a photon pair. When the process
is degenerate, pump photons have the same energy of signal and idler photons.
In this case, and more generally when the SFWM spectra is narrow, the filtering
of the pump beam may be challenging. Since SFWM is a third order nonlinear
process, it is less efficient than SPDC occurring over the same propagation distance.
Yet, SFWM structures with low propagation losses and high finesse allow to extend
the effective nonlinear length and achieve a high generation rate of photon pairs.
Some of the first demonstrations of SFWM in bulk optics relied on optical fiber
loops [45] or silicon ridge waveguides within optical fiber loops [46]. Nowadays,
fully integrated solutions are based on microring resonators [47, 48] having a high
quality factor.

Integrated quantum photonics platforms
Integrated quantum photonics has many key advantages with respect to free
space quantum optics, such as scalable and reconfigurable architectures, small
system footprints and enhanced light-matter interaction. Thanks to significant
developments in the field of classical photonics, several material platforms have
emerged for the realization of a vast range of miniaturized components: pump
sources, non-classical light sources, filters, waveguides, couplers, electro-optic
modulators, quantum memories, detectors, etc.

One of the main challenges on the way towards a large diffusion of quantum
technologies is the development of monolithic or hybrid platforms integrating the
generation, the manipulation and the detection of quantum states of light. This
motivating challenge is leading to continuous progress on a large variety of material
platforms, such as silicon-based platforms, III-V materials, PPLN, silicate glasses,
Hydex, diamond [49].

Silicon-based platforms are at the edge of integrated large-scale quantum
information processing. Silica on silicon (SoS, SiO2/Si) has been the first
platform used to compile a quantum algorithm on a photonic chip [50, 20], while
Silicon on insulator (SOI, Si/SiO2/Si) is widely used in integrated quantum
photonics thanks to the refractive step-index and electrical insulation offered
by the oxide layer. One of the main advantages of silicon-based platforms is
that they inherit the well-developed fabrication processes developed in the CMOS
industry. Besides, silicon electrical and optical properties are favorable for quantum
information processing. Silicon indirect bandgap at 1.12eV and low intrinsic
concentration of carriers make it transparent in the telecom wavelength (1.55µm).
Its strong χ(3) nonlinearity enables SFWM, while its high refractive index allows
waveguides with a small bend radius. Besides, SOI chips are compatible with the
hybrid integration of nanowire superconducting single-photon detectors (SNSPDs),
with almost 90% of quantum efficiency and low dark count rates (≈ 104Hz) [51].
On the other hand, some issues still need to be tackled. Two-photon absorption
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limits the amount of intensity of the pump laser that can circulate in a silicon
waveguide. Besides, due to silicon indirect bandgap, the on-chip integration of the
pump source is challenging and probably requires the hybridization of SOI with
another active material, such as GaAs or InP.

Silicon nitride (SiN, Si3N4/SiO2) is an alternative silicon platform compatible
with SOI and CMOS industry, presenting the advantage that it is exempt from
nonlinear absorption. Therefore silicon nitride can sustain higher laser intensity,
compensating the fact that its nonlinear coefficient χ(3) and refractive indexes are
lower than the ones of silicon. Silicon nitride ring resonators are used to efficiently
generate biphoton frequency-combs states [52, 53], and fast optical switchers have
been realized in silicon nitride waveguides [54, 55].

III-V platforms, such as GaAs and InP, offer additional features compared to
silicon based platforms. Thanks to the direct gap of their electronic band structure,
they are compliant with electrical injection. Moreover, GaAs and many other III-V
alloys lack of inversion symmetry and possess a strong χ(2) nonlinearity, enabling
spontaneous parametric down conversion (SPDC). Finally, the use of III-V ternary
(e.g. AlGaAs, InGaAs) or quaternary (e.g. AlInGaP) alloys permits the realization
of integrated heterostructures. These unique features led to the demonstration of
single-photon sources based on GaAs/InAs quantum dots [56, 37] and of sources of
photon pairs based on AlGaAs, both optically pumped [44, 57] or electrically-driven
[58, 59]. Furthermore, GaAs electro-optic effect enables a fast optical switching
and fine control over modal birefringence [60]. Regarding the integration of the
detection process, GaAs waveguides are compatible with superconducting nanowire
detectors as well [61]. Nowadays, the main issue in III-V based devices is their
linear losses, which are of the same order of magnitude than the ones of SOI-based
devices but higher than the ones of SiN and SoS-based waveguides, limiting the
scale of the possible chips to be used for quantum information processing.

Apart from silicon and III-V based materials, other platforms have distinguished
in integrated quantum optics.

Periodically poled lithium niobate (PPLN) waveguides have been used
to realize the first integrated efficient source of photon pairs [62]. Like lithium
niobate (LN), PPLN waveguides have a high transparency and chemical stability,
together with a strong χ(2) nonlinearity and a large electro-optic effect. In addition,
the periodical poling allows to satisfy and engineer the quasi-phase matching
over distances in the centimeters scale, while the guided regime assures a tight
confinement of the propagating light, enhancing the efficiency of SPDC [41].
Recently, the combination of a PPLN waveguide and standard telecom components
has allowed the realization of a fully guided-wave squeezing experiment [63, 64].
The main limitations of PPLN waveguides are the difficulty of integrating on-chip
the pump laser and the low refractive index which limits the miniaturization.
To address the latter, LN-on-insulator has been recently developed, with the
realization of microdisk [65], microring [66] and photonic crystal [67].

Silicate glasses can be engineered via femtosecond laser direct writing
to obtain integrated waveguides. This fabrication technique is ideal for prototyping
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or large-scale production since it is fast (writing speed in the order of cm/s),
it does not need masks and it is single-step (the processing of the substrate is
not required like in traditional lithographic techniques). The control of the focal
point and the spatio-temporal shaping of the femtosecond laser beam [68] allows
to write three-dimensional photonics circuits [69, 70, 71], planar circuits with a
complex shape [72] and integrated optical waveplates [73, 21]. At present, the
main challenge is to integrate active photonics components, such as pump sources,
electro-optic modulators and single-photon detectors.

Hydex glass is a high index doped silica glass that is processed via standard
clean room techniques. Developed in 2003 by Little Optics, its properties are
a compromise between the low linear losses of silica and the high third order
nonlinearity χ(3) of semiconductors [74]. In addition, like silicon nitride, it has a
two-photon absorption that is negligible (up to 25GW/cm2 [75]). Thanks to these
assets, Hydex microdisk are used to implement SFWM processes and efficiently
generate biphoton frequency combs states of light [76, 77], as well as measuring
ultrafast optical pulses [78].

To conclude, we note the recent developments in diamond-on-insulator
platform [79, 80], which inherits from bulk diamond its electromechanical stability,
high isotopic purity, wide band-gap and low concentration of free electrons. Besides,
in combination with diamond waveguides and photonic crystals, nitrogen vacancy
color centers in diamond are a candidate for the implementation of protocols
coupling photonics and matter qubits [81, 82], leveraging on their bright fluorescence
and the long coherence times (∼ ms) of electrons spin [83].

Encoding quantum information in light degrees of freedom
In photon-based quantum technologies information is encoded and manipulated
using one or more degrees of freedom of light [84]. Photons can carry information
in the electric field oscillation direction (polarization qubits), spatial distribution
(path qubits and orbital angular momentum qubits) and frequency (frequency-bin
qubits), as well as in the source to detector propagation time (time-bin qubits or
energy-time qubits).

Polarization qubits rely on the polarization state of single photons. A qubit
is usually expressed in the horizontal and vertical polarization basis, in the rotated
diagonal and antidiagonal basis or in the left and right circular polarization basis.
Polarization qubits are widely adopted thanks to the relative ease of preparing
and manipulating a polarization entangled biphoton state. As instance, this can
be realized by using a type-II SPDC processes, polarizing beam splitters and
wave plates, available in both free space and integrated devices [85]. Polarization
qubits have been used to demonstrate, alone or in combination with other degrees
of freedom, protocols for quantum simulation [21], computation [86, 87] and
communication [88, 89], such as the famous BB84 scheme for QKD [90]. However,
the feasibility of polarization encoding comes at the price of a two-dimensional
Hilbert space, which limits the quantity of information per photon and thus the
protocols performance (e.g. the achievable rate of secret key sharing in QKD).
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Besides, birefringence and mechanical instabilities of optical fibers hinder the use
of polarization in fibered quantum communication, making it more suitable for
free-space optics.

Orbital angular momentum (OAM) qubits encoding relies on a set of beams
with a helicoidal wavefront that carries an optical vortex along the propagation
axis. The number of wavefront twists per wavelength (i.e. the vortex periodicity
in the phase space) defines the OAM order. This is potentially unbounded,
thus provinding an interesting alternative to polarization encoding for free-space
quantum communication. For example, OAM qubits have been used to demonstrate
QKD protocols with a high key generation rates per photon [91], superdense coding
[92], teleportation based quantum repeaters [93] and quantum memories [94]. OAM
states can be generated by using either free space optics tools (spiral wave plates,
cylindrical lens pairs, spatial light modulators, q-plates, antennas metasurfaces,
etc.), or integrated out-of-plane emitters (microlasers, microring resonators with
angular gratings). In this context, the last part of this thesis is devoted to the
design and realization of an integrated cylindrical mode converter, with potential
applications in the generation and manipulation of OAM.

Spatial mode qubits (or path qubits) are represented by the spatial modes
occupied by photons. In integrated optics, waveguide arrays are a natural
implementation of large-scale path encoding, offering a total control over the
number of paths (waveguides) and their coupling, obtained via directional or
evanescent couplers and phase shifters. Recently, path qubits have been used to
achieve the generation, control and characterization of a high-dimensional bipartite
entanglement state [95], the simulation of the vibrational quantum dynamics of four-
atom molecules [22] and to demonstrate the quantum interference of topological
states of light [72].

Time-bin qubits are implemented by using an unbalanced Mach-Zehnder
interferometer that introduces a short and a long path for the single photon,
corresponding to a short and long arrival time. This protocol requires that the
path difference is longer than the single photon coherence length and fluctuates
less than the photon wavelength. Under these conditions, time-bin encoding can
be used for quantum communication in both free-space and optical fibers, being
robust to fibers depolarization and chromatic dispersion. At the end of last year,
a three-state time-bin decoy QKD protocol has achieved the distribution of secret
keys in optical fibers over more than 400 kilometers [96], while time-bin qubits
quantum memories are currenlty under development [97].

Frequency-bin qubits are encoded in the photons frequency domain. In
its original proposal [98], narrow-band filters were placed before the detectors
to define the frequency-bins: photons which could not be distinguished by the
filters belonged to the same frequency bin. Besides the discretization of the
frequency space, frequency entanglement is the second ingredient of frequency-bin
encoding. While in time-bin encoding entanglement results from the superposition
of short and long paths, in frequency-bin encoding it emerges naturally from the
conservation of energy governing nonlinear parametric processes. As instance, in
SPDC the energies of signal and idler photons are uncertain, but their sum must
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equal the energy of the pump photon. Therefore the use of a monochromatic
pump laser generates a biphoton state with a strong frequency anti-correlation [98].
After its generation, a frequency-bin state can be manipulated straightforwardly by
using electro-optic phase modulators in a single light spatial mode [99], with the
advantage that frequency is immune to the birefringence of optical fibers and does
not require stability. Still, for long-distance fiber-based QKD protocols, chromatic
dispersion may pose a problem, even if its acitve control has been proved over
distances up to 50km [100].

Generation and manipulation of frequency-comb states

In frequency-bin encoding, the frequency space of a biphoton state is divided
into two bins. However, it is possible to use a cavity to filter the joint spectral
amplitude of a biphoton state into many frequency bins and produce a high-
dimensional frequency state. In the literature, this state is referred to as a
two-photon mode-locked state [101], given the stable phase relationship existing
among the various frequency modes, or biphoton frequency-comb state, from the
comb-shaped signal and idler joint spectral amplitude. Frequency-comb state
have been first investigated exploiting SPDC in dielectric crystals [101, 102, 103];
in these works, the comb is generated either by inserting the nonlinear crystal
in a cavity or by putting the cavity after the generation of the state. More
recently, a growing attention has been devoted to the generation of biphoton
frequency-combs in integrated optical micro-resonators implementing SFWM.
This approach overcomes the drawbacks of low scalability and high cost of bulk
systems. Interesting results on the generation and coherent manipulation of high
dimensional frequency states have been obtained in both Hydex [76] and silicon
nitride [52, 53] micro-rings. In this work, we exploit the facets reflectivity of an
AlGaAs ridge waveguide to realize a miniaturized nonlinear cavity and generate
biphoton frequency-combs.

The dimensionality of the emitted frequency-comb depends on the resonator
geometry and the optical properties of the nonlinear source. When the resonator
free spectral range is much smaller than the biphoton bandwidth, a high-dimensional
state can be achieved. Yet, the manipulation of a frequency-comb state imposes a
constraint on the minimal and maximum extension of the resonator free spectral
range. In order to address individual frequency modes, the free spectral range must
be larger than the linewidth of programmable filters; at the same time, the mixing
of adjacent frequency modes requires that the free spectral range is comparable
with the bandwidth of the available electro-optic phase modulators. By using
microring resonators with a free spectral range of 50GHz [104] and 200GHz [77],
the groups of Morandotti and Weiner have demonstrated the coherent control
over frequency-comb states by using off-the-shelf (although at the cutting edge of
technology) telecom components. These demonstrations have potential applications
in both quantum communication and quantum computing. As instance, a high-
dimensional frequency state can lead to quantum communication protocols over
longer distances. Indeed increasing the dimensionality of the state allows to reduce
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the number of photons to encode and transmit information (with respect to qubits-
based protocols). Therefore the effect of propagation losses, one of the main issues
in fibered communication, is partially solved [105]. Alternatively, large-alphabet
QKD protocols can be implemented, with an increase in the key transmission rate
[106].

In quantum computing, the resilience of the frequency degree of freedom to
the environment noise and the availability of telecom components has opened
the way to quantum frequency processing [107]; in this approach a universal
sets of gates is implemented by using a cascade of phase modulators and pulse
shapers, in analogy to phase-shifters and beam splitter in spatial mode-based
quantum processors [108, 109]. The most recent demonstration consists in a one-
way quantum processing protocol based on a time-frequency d-level cluster state
[110].

To conclude, we note that the discretization of the biphoton frequency space in
more than two levels can be used to implement qubit states that can be processed
by realistic noisy machines, such as Gottesman-Kitaev-Preskill (GKP) states [111].
In this case the redundant information of the d-level system is used to perform
error correction codes on the quantum states.



Outline

The manuscript is divided into three parts, preceded by a chapter giving a brief
background on integrated and nonlinear optics and on the optical properties of
GaAs/AlGaAs semiconductor platform.

In the first part we present a theoretical study and the experimental characterization
of an optically pumped AlGaAs source of photon pairs. We show how frequency
and polarization entangled biphoton states are emitted via SPDC (chapter 1).
Studying the phase matching function, we discuss the properties of the biphoton
joint spectral amplitude, underlying its dependence on the source birefringence
and chromatic dispersion (chapter 2). We present an experimental characterization
of the source efficiency carried out as a function of the spatial shaping of the
pump beam, its power, its wavelength and the source temperature (chapter 3).
Additionally, we describe the development of a clean room processing technique to
fabricate dry etched AlGaAs sources and show its application on active samples
(chapter 4).

In the second part of the manuscript we take into account the cavity effect due
to the AlGaAs waveguide facets reflectivity and we propose a scheme to generate
and control the symmetry of broadband biphoton frequency states, acting on the
interplay between cavity effects and relative temporal delay of the photons of the
pair. In chapter 5 we show how resonant and anti-resonant biphoton frequency
states can be generated by tuning the wavelength of the monochromatique pump
beam, while in chapter 6 we demonstrate the proposed method by using Hong Ou
Mandel interferometry.

In the last part, we report our work on the design, fabrication and characterization
of collinear AlGaAs sources for the manipulation of the angular momentum of
light. As a first step, we realize an integrated quarter-wave plate to transform
an input beam, linearly polarized at 45◦, into a circularly polarized beam that
carries spin angular momentum (chapter 7). As a second step, we report our work
on the design and the optimization of the clean room processing of an integrated
cylindrical mode converter for both polarization directions. This device transforms
a HG11 input beam into a LG01 output beam, which carries first order orbital
angular momentum (chapter 8).

We conclude by summarizing the main results of this work, its potential
applications and future developments.



Integrated nonlinear optics in
AlGaAs waveguides

In this introductory chapter we briefly present some basic notions on the material
platform and devices used in this work. We start by recalling the main aspects of
the guided wave regime. We then introduce nonlinear optical processes, with a
focus on second-order processes and a classical treatment of difference frequency
generation. We conclude by presenting the optical properties of GaAs and AlGaAs,
the semiconductor materials that we use to realize our integrated sources.

Integrated optics: waveguides
A waveguide is a structure where the energy of an electromagnetic radiation
is confined along one or two dimensions along the residual dimensions while it
propagates. In this thesis, we are interested in waveguides with a bidimensional
confinement where light propagates along a specific direction, named propagation
direction. The specific waveguide design determines the characteristics of its
guided modes, in terms of frequency (central frequency, bandwidth and dispersion),
polarization (transverse electric or transverse magnetic and birefringence) and
spatial properties (mode profile and modal dispersion).

Ridge waveguide Rib waveguide Buried channel
waveguide

core
cladding

x

y
z

H (TE)

V (TM)

Figure 1 – Some examples of waveguides.

Figure (1) illustrates the most usual waveguide geometries: ridge, rib and
buried channel waveguides. The waveguide core (in dark grey), has a refractive
index that is higher than the surrounding cladding (light grey) and air regions: it
thus bends and confines the propagating beam of light, in analogy to a focusing
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lens. When the converging effect counter-balances the spreading of the propagating
wave due to diffraction, a guided mode is supported in the waveguide [112]. In a
dielectric waveguide, the dimensions of the guiding region are typically comparable
with the wavelength of the propagating field.

We consider a waveguide that confines light along x and y axis and let it
propagate along z axis. For a given frequency ω, the electromagnetic field can be
written as:

E = E(x, y) exp i(ωt− kz) ê
H = H(x, y) exp i(ωt− kz) ĥ

(1)

where k is the propagation constant along z and ê and ĥ the polarization
directions. E(x, y) and H(x, y) are the spatial distributions of the electric and
magnetic fields, determined by the wave equation:

[
∇2 − d2

dz2 +
(
ω2

c2 n
2(x, y)− k2

)]
E(x, y) = 0 (2)

where n(x, y) is the refractive index profile, determined by the waveguide
material composition and structure. If the waveguide is made of homogeneous
dielectric layers, like the rib waveguide in figure (1), equation (2) holds in each
region. At the borders among adjacent regions, the interface conditions of the
electromagnetic field apply. In this manuscript, we will refer to the transverse
electric TE (transverse magnetic TM) polarized modes as H (V) modes to keep
the same notation used by the quantum optics community. The modes supported
by the waveguide are those which are confined. This implies that they do not have
a flow of energy in the transverse plane (zero electromagnetic energy at infinite
distance in the xy plane) and the field distribution reaches a maximum value at
some point in the xy plane (typically within the core). These two conditions are
satisfied only for a limited and discretized number of values of the propagation
constant k :

ω2

c2 n
2(∞) < k2 <

ω2

c2 n
2
core(x, y) (3)

If the waveguide is surrounded by air, n2(∞) = 1, while the refractive index of
the core nc has typically the highest value of the structure.

In the waveguide, where condition (3) is satisfied, the eigenstates of the
transverse wave equation (2) present an oscillatory form in the transverse plane
within the core region. Due to the confinement of the electric field, each guided
mode has its own propagation constant.

On the other hand, externally to the waveguide, where condition (3) is not
satisfied, the eigenstates have a decaying exponential form.

Whenever the external and internal eigenstates match, i.e.. by imposing that
the tangential component of the electric (magnetic) field is continuous at each
dielectric interface, a guided H (V) mode is supported by the waveguide.
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Each guided mode propagates along the waveguide independently. Its propagation
constant is usually expressed in terms of an effective refractive index neff :

k(ω) = ω

c
neff (ω) (4)

which indicates the phase velocity of the mode as it propagates in the waveguide:

vp(ω) = c

neff (ω) (5)

The mode energy propagates at the group velocity vg, which can be expressed
as a function of the mode phase velocity and dispersion:

v−1
g (ω) = dk

dω = v−1
p + ω

c

dneff (ω)
dω (6)

The mode spatial distribution E(x, y) and propagation constant k can be found
analytically in the case of a homogeneous one dimensional waveguide (see equations
(11.2) in reference [112]), or numerically by solving the eigenvalue wave equation
(2) for more complex 2D or 3D structures.

Nonlinear optics
Since the invention of laser in the 60s [113], the availability of intense and coherent
beams of light has opened the way to explore novel interactions between light and
matter, and in particular optical processes in nonlinear media.

The nonlinear interaction between light and matter can be in first approximation
understood by adopting Lorentz model, which describes in a classic way the effect
of an electromagnetic wave acting on a medium. When an electromagnetic wave
interacts with the medium, a dipolar-type interaction occurs between the wave
and the electrons bound to the atoms of the medium. During this interaction, the
wave drives the oscillation of the electrons within the crystal potential.

If the amplitude of the electric field carried by the wave is much lower than
the amplitude of the electric field existing between the electrons their nuclea,
independently on the material nonlinearity, the wave-electron system can be
modeled as a driven harmonic oscillator. This approach provides the medium
linear susceptibility and thus the complex refractive index, as a function of the
wave frequency [114]. On the other hand, when the amplitudes of the two electric
fields are comparable, the oscillator response includes a nonlinear component. The
classical equation of motion of the oscillating electron is [115]:

d2x

dt2
+ 2γ dx

dt
+ ω2

0x+
n∑
i=2

aix
i = F (t)

m
= − e

m
E(t) (7)

The first three contributions describe a damped harmonic oscillator. More
specifically, the first term (d2x/dt2) describes the electron acceleration, the second
term (2γ dx/dt) the damping of its motion (e.g. due to non-radiative interactions)
and the third one (ω2

0x) the elastic restoring force of the nucleus on the electron.
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The last term (∑n
i=2 aix

i) is the sum over the nonlinear components of the restoring
force arising from the anharmonic potential.

Depending on laser intensity and on the crystal geometry, various nonlinear
phenomena have been observed and studied. Non-centrosymmetric crystals
like potassium titanyl phosphate (KTP), lithium niobate (LiNbO3) and gallium
arsenide (GaAs) allow for both even and odd order nonlinear phenomena, while,
for symmetry reasons, only odd order nonlinear phenomena can take place in
centrosymmetric crystals, like silicon (Si), silicon nitride (Si3N4), amorphous glass
(Hydex, etc.), etc.

Our work is based on second-order nonlinear processes in the AlGaAs platform.
In these types of processes, when two waves at ωs and ωi interact with the nonlinear
medium, the anharmonic terms yield to the generation of additional waves at
the frequencies ωs + ωi (Sum Frequency Generation, SFG), ωs − ωi (Difference
Frequency Generation, DFG), 2ωs and 2ωi (Second Harmonic Generation, SHG)
and of a DC signal (optical rectification).

A non-classical frequency mixing process, called Spontaneous Parametric Down
Conversion (SPDC), may also occur when only one of the two waves enters in
the nonlinear medium. In this case, the input wave, called pump, interacts with
vacuum fluctuations, which play the role of the second wave in DFG. Vacuum
fluctuations permeate every quantum state, included the vacuum state, since
they arise from the fundamental quantum-mechanical uncertainty of the electric
field. During this interaction, a pump photon decays (is down converted) into two
photons sharing their energy, called signal and idler. The interaction is known
as parametric since it does not change the properties of the medium. Given the
underlying conservation of total energy and momentum, SPDC generates pairs of
entangled photons with correlation functions depending on the optical properties
(such as birefringence and dispersion) of the nonlinear medium.

We will discuss more extensively SPDC in section (1.2), where we study the
SPDC process occurring in our source. In the following section, we briefly recall
Difference Frequency Generation (DFG). This nonlinear process can be seen as the
classical counterpart of SPDC as it can be described in a purely classical picture
[116, 117].

Difference Frequency Generation
From equation (7) we derive the electron motion and the induced dipole moment
p = ex. The vector sum over the induced dipoles leads to the polarization vector
P = ε0χE, the macroscopic response of the medium to the incoming optical wave
E. Due to the anharmonicity, the polarization includes a nonlinear component in
addition to the linear one: P = PL + PNL.

The evolution of the optical wave E is described by a driven wave equation,
derived from the Maxwell equations in the electric dipole approximation [118]:

∇2E− 1
c2
∂2E
∂t2
− 4π
c2
∂2PL

∂t2
= 4π
c2
∂2PNL

∂t2
(8)
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with c the speed of light in vacuum and ε0 the vacuum permittivity.
The nonlinear polarization PNL(r, t) acts as a driving source which induces

an electromagnetic wave. The relative phase velocity between the driving wave
and the induced wave, given by the medium dispersion (and birefringence if the
two have different polarization), determines if the amplitude of the induced wave
grows or not while it propagates.

If we suppose that two optical waves, named pump (Ep) and signal (Es), enter
in the nonlinear medium, the input field is given by:

E(r, t) = Ep(r, t) + Es(r, t) (9)

For simplicity, we consider pump and signal to be quasi-monochromatic beam
propagating along the z-axis with a specific modal profile:

Ep(r, t) = Re[Ap(r, t) exp(ikpz − ωpt)] ep

Es(r, t) = Re[As(r, t) exp(ik1z − ω1t)] es
(10)

with kp,s the wavevectors, ep,s the directions of oscillation of the electric fields
and Ap,s their envelopes, including the modes transverse spatial profiles (supposed
constant in time) and amplitudes along the propagation direction: Ap,s(r, t) =
Ap,s(x, y)Ap,s(z, t).

Due to PNL, several nonlinear process may take place. For simplicity, we only
consider second-order nonlinear phenomena. In order to keep a light notation, we
suppose the second-order nonlinear optical susceptibility χ(2) to be constant. The
nonlinear polarization response reads:

PNL = ε0χ
(2)E2 = 1

2ε0χ
(2)Re

[
A2
p(r, t)ei2(kpz−ωpt)+

A2
s(r, t)ei2(ksz−ωst)+

2Ap(r, t)As(r, t)ei[(kp+ks)z−(ωp+ωs)t]+
2Ap(r, t)A∗s(r, t)ei[(kp−ks)z−(ωp−ωs)t]+

Ap(r, t)A∗p(r, t) + As(r, t)A∗s(r, t)
]
eNL

(11)

where eNL is the nonlinear polarization oscillation direction. The various
terms indicate SHG for the pump (A2

p(z, t)), SHG for the signal (A2
s(z, t)), SFG

(Ap(z, t)As(z, t)), DFG (Ap(z, t)A∗s(z, t)) and optical rectification (Ap(z, t)A∗p(z, t)+
As(z, t)A∗s(z, t)).

In the following, we focus on DFG and neglect the other nonlinear phenomena,
so that the nonlinear polarization expression simplifies into:

PNL = ε0χ
(2)Re

[
Ap(r, t)A∗s(r, t)ei[(kp−ks)z−(ωp−ωs)t]

]
eNL (12)

Figure (2) illustrates the three interacting waves in DFG. As the pump at ωp
and the signal at ωs drive the charge displacement in the nonlinear medium, they
generate a third wave, called idler, at ωi = ωp − ωs.
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idleri
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Figure 2 – Sketch of the process of Difference Frequency Generation (DFG).

Here we will consider a nonlinear process having a low efficiency, so we suppose
the pump beam to be undepleted: Ap(x, y, z, t) = Ap(x, y, 0, t). For the same
reason, the envelopes of signal and idler increase slowly. Under the Slowly Varying
Envelope Approximation (SVEA), |∂2A/∂z2| << |k∂A/∂z|, the wave equations
(8) for signal and idler fields simplify into two coupled equations for their envelopes.
After integrating over the transverse plane (x, y), they read:dAs/dz = i

2κsA
∗
i exp(i∆kz)

dAi/dz = i
2κiA

∗
s exp(−i∆kz)

(13)

where ∆k = k(ωp)− k(ωs)− k(ωi) is the phase-mismatch between the three
interacting waves, and the coefficients κs,i are proportional to the strength of the
nonlinear interaction:

κs = 8π2

nsλs
χ(2)ρAp

κi = 8π2

niλi
χ(2)ρAp

(14)

with ρ the spatial overlap between the spatial distributions of pump and
signal/idler modes; 0 ≤ ρ ≤ 1, with ρ = 1 for a perfect overlap and ρ = 0 if there
is no overlap.

We observe in equation (13) that, for a fixed pump envelope Ap, at each position
z and instant of time t, the growth of the signal envelope As depends on the value
of the idler envelope Ai and viceversa.

Since Ai(x, y, 0, t) = 0, As(x, y, 0, t) 6= 0, stationary solutions of (13) can be
found using the Manley-Rowe relations [119]:

As(z) = As(0)[cosh(γz) + i∆k(2γ)−1 sinh(γz)]
Ai(z) = iAs(0) sinh(γz)

(15)

with γ2 = (κsκ∗i )2 −∆k2.
Figure (3) illustrates the evolution of the idler envelope as a function of the

propagation distance, normalized to the coherence length Lcoh = π/∆k. Different
scenarios occur depending on the phase mismatch ∆k and the nonlinear coefficient
χ(2). The cases of no phase matching (NPM, blue), modal phase matching for
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Figure 3 – Evolution of the idler envelope in DFG process in the case of no
phase matching (NPM), modal phase matching with a mode overlap of ρ = 0.4
(MPM) and quasi phase matching with a perfect mode overlap (QPM). The idler
envelope has a sinusoidal modulation in NPM, grows exponentially for MPM and
exponentially with a sinusoidal modulation in QPM.

ρ = 0.4 (MPM, red line) and quasi-phase matching for ρ = 1 (QPM, green line)
are presented.

In NPM there is a phase mismatch (∆k 6= 0) and the nonlinear coefficient is
constant (χ(2)(z) = cost). Along the propagation direction, an exchange of energy
between pump and signal/idler alternates. Photons are continuously generated
and annihilated, as described by the oscillation of the complex exponential term
in equation (15). As a result, As(z) oscillates with a periodicity of 2Lcoh.

QPM takes places if the nonlinear material is engineered to have a nonlinear
coefficient χ(2)(z) reversed or inhibited every odd multiples of ∆z = Lcoh. The
medium becomes invariant with respect to periodical (instead of continuous)
translation along the propagation direction and the momentum conservation
transforms into a quasi-phase matching condition. Since the product χ(2) exp(i∆kz)
in equation (13) is positive for every z, As(z) does not decrease during its
propagation. There is an effective positive flow of energy from pump to signal
and idler waves. The modulation of χ(2) is realized by periodical poling in various
crystals [62], or via orientation-patterning in semiconductors like GaAs [120].

In MPM signal and idler envelopes growth exponentially with z because there
is a perfect phase matching. In bulk optics sources, like nonlinear crystals (BBO,
KTP, LiNbO3), the intrinsic birefringence is used to satisfy phase matching. This
often results in non collinear signal and idler beams.

One of the main advantage of integrated photonics is to have signal and idler
propagating in the same spatial mode. When non birefringent materials are used, a
phase matching scheme exploiting modal dispersion, called modal phase matching,
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is a versatile solution to achieve efficient nonlinear conversion.
The device studied in this thesis is an AlGaAs Bragg reflector waveguide,

where the pump mode is a so-called Bragg mode, based on a photonic bandgap
confinement created with Bragg reflectors, while signal and idler are two fundamental
Gaussian modes. The modal dispersion of the pump Bragg mode compensates
the GaAs normal dispersion, allowing for a perfect phase matching over a large
frequency bandwidth [121, 122]. The only limiting factor of this choice is the
overlap integral between the interacting modes, which is typically of the order of
0.4 [123]. The details of our source are presented in the next chapter, in paragraph
(1.1).

Optical properties of GaAs and AlGaAs
GaAs is a III-V semiconductor compound formed by Gallium (Ga) and Arsenide
(As) atoms. GaAs clean room processing is a well established technique. This
material, thanks to its physical properties, enables:

I second-order nonlinear processes (SFG, DFG, SPDC, etc.)

II Electro-optics modulation.

III Laser emission (direct bandgap of Eg = 1.42eV, λg = 870nm).

In this section we briefly review GaAs structure and properties, in the perspective
of its utilization in integrated quantum optic devices.

The GaAs crystals has a non-centrosymmetric zincblende (cubic) lattice belonging
to the 4̄3m symmetry group. Figure (4) presents a sketch of its unit cell.

GaAs crystal is usually grown on its [001] plane, along (001) direction (grey
surface and vector in figure (4)). Once the target growth thickness is achieved,
the crystal is cleaved in a sample of desired dimension. For our devices, GaAs
samples on 2 inches wafer are grown via MBE at C2N by A. Lemaitre. The
cleaving is conventionally performed on the [110] plane (blue surface in figure
(4)) for two main reasons. The first one is that [110] is the weakest surface
according to GaAs electron density distribution and surface polarity [124]. [110]
surfaces present the same electron density distribution, so there is no electrostatic
attraction between them. This is not the case for [111] planes, which alternate to
two kinds of surfaces polarities, (111)A and (111)B, attracting each other [125].
The second reason is that the cleaving along (110) is compatible with the use
of GaAs electro-optics properties to control waveguide birefringence. When the
waveguide longitudinal direction is oriented along (11̄0) (blue vector in figure (4)),
the electric fields of the two orthogonally polarized modes oscillate along (001) and
(1̄1̄0). By applying a DC electric field in the vertical direction (001), it is possible
to induce a difference among the refractive index of the two modes and thus
birefringence. This effect is not achievable when the waveguide is oriented along
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Figure 4 – GaAs crystal structure. The dark arrow along the (001) direction
indicates the MBE growth direction. The blue arrow along the (11̄0) direction
represents the orientation of our waveguide propagation axis with respect to the
crystal lattice.

(100) and the two guided modes are polarized along (001) and (010) directions [126].

As anticipated, since the lattice symmetry lacks of an inversion center, GaAs is
suitable for linear electro-optic effect, piezoelectricity and presents a second-order
nonlinear response. Belonging to the cubic 4̄3m class, the form of its second-order
nonlinear optical tensor can be reduced to [126]:

M =

0 0 0 d14(ωp, ωs, ωi) 0 0
0 0 0 0 d14(ωp, ωs, ωi) 0
0 0 0 0 0 d14(ωp, ωs, ωi)


In general, d14 depends on the frequencies of the three interactings photons

in nonlinear experiments. However, at frequencies far from the material energy
gap, the nonlinear coefficient varies slowly with the frequency. In the numerical
calculation presented in this manuscript, we use the value of d14 measured in
a SHG experiment performed in reference [127] for the fundamental beam at
λs = λi = 1533nm, which is very close to the central degeneracy frequency of the
photon pairs emitted by our source. It has been found d14 = 119pm/V.

Figure (5) reports the GaAs band diagram [128] (panel a) and the real part
of GaAs refractive index as a function of the wavelength (panel b) that we
calculate at 20◦C using Afromowitz model [129]. We see that the electronic band
structure associated to GaAs lattice is characterized by a direct band-gap at room
temperature of Eg = 1.424eV (870nm). For this reason, GaAs is widely used as an
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Figure 5 –
(a) GaAs energy band diagram (data from [128])
(b) GaAs chromatic dispersion (calculated using Afromowitz model [129]).

active medium in solid-state infrared laser diodes.
GaAs chromatic dispersion, calculated via Afromowitz model [129], is normal

in the visible to Mid-Infrared region, with an exception for the frequency range
surrounding its energy gap. In order to take advantage of the already developed
network of optical fibers and off-the-shelf telecom components, we are interested
in a source that emits biphoton states at the telecom wavelength (e.g. within
S,C and L-bands). As instance, we consider a source emitting photon pairs at
1550nm by using pump photons at 775nm via SPDC. This source cannot be based
on bulk GaAs for two reasons. First, since this wavelength corresponds to GaAs
energy gap, pump photons would be absorbed. Second, due to normal dispersion,
the refractive index of the pump photon (red square, n = 3.69) would be much
higher than the refractive index of the degenerate signal and idler photons (blue
dot, n = 3.38), preventing the fulfillment of the the phase matching condition.
The normal dispersion cannot be compensated by birefringence, since GaAs is not
birefringent. On the other hand, it can be compensated by a modal dispersion,
made possible by developing a specific integrated design based on AlGaAs, as we
present in the next chapter.

The lattice similarity between GaAs and AlAs allows to realize heterostructures
to implement a large variety of opto-electronics devices. During the growth of
AlGaAs, part of Ga species are replaced by Aluminum (Al) atoms. The resulting
alloy is AlxGa1-xAs, where x within 0 and 1 determines the alloy between AlAs
and GaAs.

AlxGa1-xAs inherits from GaAs a zincblende crystal structure, with nearly the
same lattice constant. As a consequence, GaAs and AlxGa1-xAs optical properties
are similar, with the advantage that the refractive index as well as the gap of the
latter can be slightly engineered by tuning the relative concentration of Al over
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Figure 6 – AlxGa1-xAs optical properties versus Al concentration.
(a) Refractive index.
(b) second-order nonlinearity.

Figure (6, a) shows the refractive index of AlGaAs as a function of Al
composition and frequency, based on Gehrsitz model [130].

We notice that, for a given frequency, an increase in the percentage of Al atoms
corresponds to a decrease of the refractive index. The reason is that AlAs has a
wider energy gap than GaAs [131].

As a result, during an AlxGa1−xAs growth, it is possible to tune the refractive
index layer by layer by varying the relative percentage of Al with respect to Ga.
In the telecom range (λ = 1550nm), the material refractive index varies in the
range n = [2.9, 3.3], corresponding to a percentage of Al of Al = [0.8, 0]. In our
device, we do not use higher value of Al because the material would undergo a
fast oxidation process, leading to a degradation of its optical properties.

According to Miller’s rule, the second-order susceptibility response is proportional
to the first order susceptibility [132]. Indeed, AlAs has a lower nonlinear coefficient
than GaAs, as confirmed by Ohashi experimental model [133]. In figure (6, b)
we report the second-order nonlinear coefficient (χ2) of AlxGa1-xAs calculated via
Ohashi model.

The variation of the nonlinear coefficient with the Al percentage can be used to
optimize a nonlinear process in some particular geometries: as instance, this has
been exploited by implementing a quasi-phase matching geometry in an AlGaAs
source proposed by our team based on a transverse pump configuration and a
counterpropagative phase matching scheme [134, 135].



Part I
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from design to

experimental characterization





Chapter 1

Working principle and emitted
biphoton state

In this chapter we present the working principle of our source, a Bragg reflector
waveguide based on the AlGaAs platform allowing for a type-II SPDC process.
The three interacting modes are a horizontally polarized Bragg mode (pump) and
the two orthogonally polarized fundamental Gaussian modes (signal and idler).

By evaluating the nonlinear overlap integral of the three interacting modes
with the nonlinear medium, we estimate a conversion efficiency of around 10−8

photon pairs per pump photon.
The quantum state describing each photon pair, named biphoton state, is

derived by following a quantum theory of SPDC. The properties of the biphoton
state depend on the frequency correlations between signal and idler photons,
described by their Joint Spectral Amplitude (JSA).

1.1 Working principle of Bragg reflector waveguides
The first works using modal phase matching in AlGaAs waveguide with the goal
to achieve electrically injected photon pair sources have been done using total
internal reflection modes [136, 137]. That approach presented the disadvantage of
requiring layers of high Al content, leading to a rapid oxidation of the devices.

In 2006, following an idea of Yeh [43, 138], Bragg reflectors started to be
investigated [44, 139]. In these last years, this approach has led to many important
results for the development of quantum sources working at room temperature and
telecom wavelength. In particularly, our group has demonstrated an electrical
driven source of photon pairs [58], as well as indistinguishably and energy-time
entanglement in passive devices [140].

As illustrated in figure (1.1, a), a Bragg reflector waveguide is a ridge waveguide
along the propagation direction (z axis) and a unidimensional photonic crystal
made by two distributed Bragg reflectors along the vertical direction (y axis). This
structure allows to confine and guide, apart from fundamental Gaussian modes,
photons whose electric field has a specific distribution in the transverse (xy) plane,
known as Bragg mode. The confinement of the Bragg mode is done through the
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Figure 1.1 – GaAs device studied in this manuscript.
(a) Sketch of the waveguide indicating the core and cladding regions.
(b) SEM image of the waveguide input facet and flanks.

top and bottom Bragg mirrors. As shown in figure (1.1, a), each mirror consists
of six stacks of alternating high and low refractive index bilayers, corresponding
respectively to a low and high Al concentration. When the composition and
thickness of these layers are properly chosen (tH = λ/(4nH), tL = λ/(4nL), with
λ the pump mode wavelength and nH and nV the high and low refractive index
of Bragg mirror layers), a constructive interference takes places so that a Bragg
mode is supported by the waveguide [141, 142].

Table (1.1) reports the nominal epitaxial structure of our source. The dimensions
and composition of the waveguide layers along the y axis, and thus the corresponding
value of refractive index at the pump, signal and idler degeneracy wavelengths,
are determined in the design phase. This design was conceived by A. Orieux, a
previous PhD student in our group. The vertical profile is designed to support
a (TE) H-polarized Bragg mode at 770.5nm. The two Bragg mirrors surround a
core layer, which confines and guide by total internal reflection two fundamental
Gaussian H and V-polarized modes at telecom wavelength, centered at 1541.5nm.
For more details regarding the choice of Al contents and thicknesses, we refer to
the second chapter of her thesis manuscript [143].

In figure (1.1, b) we present a SEM image of a fabricated ridge waveguide.
Top and bottom ridges widths are approximately 4µm and 10µm. The sidewalls
present an exponential profile due to the isotropy of the wet etching technique
used to fabricate the device.

Given the refractive index mismatch between semiconductors and surrounding
air, AlGaAs waveguides act as Fabry-Perot cavities. In the first part of this thesis
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Layer Cycles ∆y (nm) x (%) n770.5nm n1541nm
Cap 1 250 0 3.692 3.378

Top Bragg 6 276 80 3.122 2.978
114 25 3.487 3.239

Core 1 298 45 3.336 3.142

Bottom Bragg 6 114 25 3.487 3.239
276 80 3.122 2.978

Substrate 1 - 0 3.692 3.378

Table 1.1 – Nominal epitaxial structure of our source.
∆y: layer thickness
x: layer Al composition, as percentage of Al in AlxGa1-xAs
nλ: layer refractive index at the wavelength λ.

(chapters (1-3)) we neglect the cavity effect, which will be studied in chapter (5).

1.1.1 Modal dispersion
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Figure 1.2 – Numerically calculated dispersion of the modal effective index of
pump (H-polarized Bragg mode, in red), signal (H-polarized fundamental Gaussian
mode, in black) and idler (V-polarized fundamental Gaussian mode, in blue).

Figure (1.2) presents the numerical calculation of the pump, signal and
idler modal effective index for photon pairs emitted in the telecom range λ =
(1400− 1600) nm. In this calculation, to save computational energy and time, we
simulate the source in one dimension via a commercial eigenmode solver (Lumerical
MODE) by considering only its profile along y at the center of the waveguide,
i.e. its vertical cut along x = 0µm. This choice is justified by the fact that the
waveguide is large enough to neglect the effect of the confinement along x on the
modal effective index. In this case, the modes are far from a cut-off condition
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induced by the waveguide width and we have verified that the modal effective
index of the 3D structure converge to the ones calculated in the 2D simulation. To
minimize the number of simulations to perform, we calculate the modal effective
index sampling the wavelength with steps of λ = 10 nm. From these sampling
points, we obtain n(λ) by fitting the data with a high order polynomial function.
The fitting operation does not lead to inaccurate results as n(λ) does not present
discontinuities due to the absence of material resonances in this spectral range.

We notice in figure (1.2) that the Bragg mode has an effective index lower
than the H-polarized Gaussian mode and higher than the V-polarized Gaussian
modes in the wavelength range λp ∈ [767.5, 773.5]nm. At degeneracy, the pump
wavelength that satisfies the phase matching condition for the nominal structure
of table (1.1) is 770.5nm, corresponding to a wavelength of 1541nm for signal and
idler photons.

1.1.2 Guided modes involved in the spontaneous parametric
down conversion process and conversion efficiency

In this paragraph we first present the 2D spatial distribution of pump, signal and
idler modes calculated numerically via Lumerical MODE. From the modes spatial
distribution we calculate the SPDC nonlinear overlap integral and we give an
estimation of the SPDC efficiency.
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Figure 1.3 – Numerical simulation of the refractive index of the waveguide layers
calculated at:
(a) λ = 770.5nm (pump wavelength).
(b) λ = 1541nm (signal and idler degeneracy wavelength).

Figure (1.3) presents the refractive index profile at 770.5nm (a) and 1541nm
(b) used in simulations. They have been calculated using the Gehrsitz model [130].
We notice that, as expected by GaAs normal dispersion, the refractive index of
each layer decreases with the wavelength.
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Figure 1.4 – Numerical simulation of the intensity (a) and phase (b) profile of
the H-polarized Bragg mode at λ = 770.5nm.

The intensity (a) and phase (b) profile of the pump mode at λ = 770.5nm are
shown in figure (1.4). Along the y direction, we can distinguish alternating out-of-
phase lobes, typical of a Bragg mode profile [144]. Along the x direction, there are
additional oscillations which arise from the waveguide exponential sidewalls. The
Bragg mode has a horizontal (H) polarization and its calculated effective refractive
index at 770.5nm is np = 3.0895.

Figures (1.5) and (1.6) illustrate the spatial distribution of the H-polarized
(TE) and V-polarized (TM) fundamental Gaussian mode, calculated at 1541nm.

The H-polarized mode has an electric field that is continuous at the interfaces
between high and low refractive index layers, contrary to the electrical field of
V-polarized mode that is not continuous across each step index. Their modal
refractive index are nH = 3.098, nV = 3.081.

We define the normalized nonlinear overlap integral Γ̄ as the product of the
normalized spatial distributions of pump (Ap), signal (AH) and idler (AV ) modes,
weighted by material second order nonlinear coefficient (χ(2)):

Γ̄ =
∫∫

dx dyχ(2)(x, y)Ap(x, y)AH(x, y)AV (x, y) (1.1)

with

1 =
∫∫

dx dy|Ai(x, y)|2 (1.2)

for i = {p,H, V }.
By using the calculated pump (1.4), signal (1.5) and idler (1.6) modes, and the

value of the nonlinear coefficient of each layer of the waveguide, calculated according
to [133] at room temperature (T = 20◦C), we find that Γ̄ = 1.7 · 10−6 V −1.

An estimation of the SPDC efficiency can thus be retrieved from a semi-classical
approach [145, 143]. The average number of signal-idler pairs generated per each
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Figure 1.5 – Numerical simulation of the intensity (a) and phase (b) profile of
the H-polarized fundamental Gaussian mode at λ = 1541nm.
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Figure 1.6 – Numerical simulation of the intensity (a) and phase (b) profile of
the V-polarized fundamental Gaussian mode at λ = 1541nm.
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pump photon is given by:

η = Npair

Np

= 2~ωp ωH ωV
ε0 c3 np nH nV

∆ωFWHM

2π |Γ̄|2L2 (1.3)

where ωp, ωH , ωV are the frequency of pump, signal and idler photons, np, nH ,
nV their effective refractive index, ∆ωFWHM the average linewidth of signal and
idler spectra and L the length of the nonlinear medium.

In the case of our device, L = 2mm; if we choose frequency degenerate SPDC,
then np = 3.0895, nH = 3.098 and nV = 3.081.

The linewidth of signal and idler spectra is found numerically to be ∆ωFWHM =
69THz.

By plugging all these parameters in equation (1.3), we find that:

η = 1.37 · 10−8 photon pairs/pump photon (1.4)
i.e. we need in average 1/η = 7.3 · 107 pump photons to generate one signal-

idler pair.

1.2 Quantum theory of collinear spontaneous parametric
down conversion

The goal of this section is to present a quantum theory of light describing the
generation of photon pairs as well as the correlation properties between the photons
of the pair.

Different approaches can be employed for a quantum theory of SPDC.
A versatile approach tailored for photonic integrated devices, such as ridge

waveguides or microresonators, has been recently proposed by Yang, Liscidini and
Sipe [146]. Their work is based on the quantum scattering theory of light and it
keeps into account the modes spatial distribution and dispersion of the waveguide.
By recurring to a Schrödinger description of the quantum state (i.e. the state
wavefunction evolves in time, while the operators are time-independent [147]),
a full quantum state of the emitted pairs is retrieved, including the possibility
of generation of multiple photon pairs per pump photon. The advantage of this
versatile description is that it can be applied also to SHG, the classical reversed
process of SPDC, or DFG, the classical counterpart of SPDC. Their performances
are directly comparable, as instance the number of generated pairs as a function
of the pump power or of the length of the nonlinear medium [116].

In our work, we are mostly interested in continous-wave and low power pumping
regime, in which the probability of generating multiple pairs per pump photon
is negligible. Therefore we resort to a simpler approach, limited to a low pump
power regime, based on the perturbation theory. We rely on the Heisenberg picture
(i.e. the state wavefunction is constant in time, while the operators acting on it
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evolve [148]), similarly to the first theorical studies on the quantum properties of
the biphoton states carried out by Mandel, Ou and coworkers [149, 150]. More
particularly, we follow the analysis proposed by Guillaume Boucher, a previous
PhD student of our group, in his manuscript [151]. His study describes a counter-
propagating SPDC scheme in an AlGaAs ridge waveguide and comprehends the
spatial distribution and dispersion of the supported modes. In the following, we
adapt this approach for the case of a collinear SPDC scheme in an AlGaAs ridge
waveguide.
We start with the identification of the modes involved in the SPDC process,
expressed in their quantized forms. We proceed by defining the perturbation term
of the linear Hamiltonian, given by the SPDC nonlinear interaction Hamiltonian.
Finally, we determine the biphoton state emitted by the source by solving the
Schrödinger equation including the nonlinear perturbation term.

1.2.1 Interacting modes
SPDC is a nonlinear process with a very low efficiency. In our source, for waveguides
having a typical length of L ≈ 2mm, approximately one pair of photons is generated
every 108 pump photons. Therefore we assume that the pump beam is undepleted
during the process and treat it classically.

Since we are in a guided regime, we assume that the pump beam propagates
along the waveguide propagation direction z in the positive direction, so that its
wavevector is kp = kp(ω)ûz, with k > 0.

We also suppose that the pump mode is horizontally (TE) polarized, along
ûx with respect to the axis reference in figure (1.1), and has a Bragg spatial
distribution, whose amplitude and phase profiles are shown in figure (1.4).

The expression of the pump mode is:

Ep(r, t) = 1√
2π

∫ +∞

0
dk ûx Ep(r, k)ei(kpz−ωkt) + c.c. (1.5)

where c.c. indicates the complex conjugate.
As we are interested in the frequency correlations between the two photons of

the pair, we reformulate the field in its spectral components. In a guided regime,
the mode propagation constant or wavevector k and frequency ω are related via
the modal effective index (4). The integral becomes:

Ep(r, t) = 1√
2π

∫ +∞

0
dω ûx Ep(r, ω)ei(kp(ω)z−ωkt) + c.c. (1.6)

We neglect the probability of generating multiple pairs per pump photon due to
the low SPDC efficiency. Therefore, only single signal-idler pairs will be generated.
We consider that they are orthogonally polarized fundamental Gaussian modes, as
we will show a posteriori once the phase matching condition is derived.

Following the quantization procedure (for more details see (4.3.5) in [152]), we
express the signal and idler modes as a function of creation (â†) and annihilation
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(â) operators:

Ê(r, t) =
√
L

2π
∑
σ

∫ +∞

0
dk ûσ Eσ(r, k)ei(kσz−ωkt)â(k) + h.c. (1.7)

where L is the nonlinear medium length, σ = {H,V } indicates the modes
polarization and h.c. the Hermitian conjugate. The term

√
L arises from the modes

normalization given the continuity condition of k along the propagation direction
(for the moment we neglect the cavity effect induced by the waveguide’s facets
reflectivity). â† and â satisfy the usual commutations relations under a proper
normalization of the modes [146]. Again, we express the field in its frequency
components:

Ê(r, t) =
√
L

2π
∑
σ

∫ +∞

0
dω ûσ

1√
vσg (ω)

Eσ(r, ω)ei(kσ(ω)z−ωkt)â(ω) + h.c. (1.8)

where the term depending on the group velocity, vσg is added to ensure a
canonical form for the creation and annihilation operators in the frequency basis
(see paragraph (V) of reference [146] for more details).

1.2.2 Nonlinear interaction

The nonlinear interaction between the three interacting fields in the medium is
expressed by the following Hamiltonian:

ĤNL(t) = ε0

∫
drχ(2)(r)Êp(r, t)ÊH(r, t)ÊV (r, t) (1.9)

where χ(2)(r) is the second-order nonlinear optical susceptibility of the medium.
In our waveguide based on AlGaAs, χ(2)(r) varies with the relative concentration
of Al and Ga species, as illustrated in figure (6).

The electric fields of pump, signal and idler waves are expressed as a combination
of a frequency positive term E+ and a conjugate frequency negative term E− (the
former included in the c.c. or h.c. terms). E+ contains the creation operator, while
E− the annihilation operator. Thus the product ÊpÊHÊV leads to eight possible
combinations for such operators. Hereafter we consider only the combination
Ê+
p Ê−HÊ−V , in which one pump photon is annihilated and the two orthogonally

polarized signal and idler photons are created. This choice is justified a posteriori
by the conservation of momentum. The nonlinear Hamiltonian simplifies into:

ĤNL(t) = ε0

∫
drχ(2)(r)Ê+

p (r, t)Ê−H(r, t)Ê−V (r, t) (1.10)
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1.2.3 Biphoton state: the Joint Spectral Amplitude (JSA)
The Schrödinger equation of the generated biphoton state depends on the nonlinear
Hamiltonian ĤNL(t) according to:

i~
d
dt |Φ(t)〉 = ĤNL(t) |Φ(t)〉 (1.11)

In low pump regime the output state reads:

|Φ(t)〉 = |0〉+ 1
i~

∫ t

−∞
dtĤNL(t) |0〉 (1.12)

where the initial state is the vacuum state, |Φ(t→ −∞)〉 = |0〉. The output
state is the superposition of the vacuum state and the biphoton state, so we rewrite
it as:

|Φ(t)〉 = |0〉+ β |Ψ〉 (1.13)

with β the probability amplitude of generating the biphoton state |Ψ〉. Since
at the output of our source there are no other nonlinear processes, we can extend
the integration time to infinity. According to the Hamiltonian (1.10), the state
reads:

|Ψ〉 = ε0
iβ~

∫
dt
∫

drχ(2)(r)Ê+
p (r, t)Ê−H(r, t)Ê−V (r, t) |0〉 (1.14)

We plug in the expression of the fields (1.6,1.8), to find:

|Ψ〉 = 1
β

ε0L

i~(2π)3/2

∫∫∫
dωp dω1 dω2

∫
drχ(2)(r)Ep(r, ωp)EH(r, ω1)EV (r, ω2)

1√
vHg (ω1)vVg (ω2)

ei∆kz
( ∫

dte−i∆ωt
)
â†H(ω1)â†V (ω2) |0〉

(1.15)
where ∆ω = ωp − ω1 − ω2 is the difference in frequency between the three

interacting photons, ∆k = kp(ωp) − kH(ω1) − kV (ω2) their difference in linear
momentum, known as phase mismatch. The subscripts p (pump), 1 (signal) and 2
(idler) have been added to indicate the frequency of the three interacting photons.
The integral over time leads to the conservation of energy condition:∫

dte−i∆ωt = 2πδ(∆ω) = 2πδ(ωp − ω1 − ω2) (1.16)

Equation (1.15) simplifies into:

|Ψ〉 =
∫∫

dω1 dω2C(ω1, ω2)â†H(ω1)â†V (ω2) |0〉 (1.17)

where C(ω1, ω2) is the biphoton Joint Spectral Amplitude (JSA). The JSA is a
complex-valued function which gives the probability amplitude that the biphoton
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state is given by a signal photon (H-polarized) at frequency ω1 and an idler photon
(V-polarized) at frequency ω2. Its expression is:

C(ω1, ω2) = 1
β

ε0L

i~(2π)1/2
1√

vHg (ω1)vVg (ω2)∫
drχ(2)(r)Ep(r, ω1 + ω2)EH(r, ω1)EV (r, ω2)ei∆kz

(1.18)

The squared norm of the JSA is the Joint Spectral Intensity (JSI), a real
function which represents the probability density in the frequency space for the
biphoton state, normalized as:

1 =
∫∫

dω1 dω2|C(ω1, ω2)|2 =
∫∫

dω1 dω2C(ω1, ω2)C∗(ω1, ω2) (1.19)

As long as pump, signal and idler modes are supported by the waveguide, their
spatial distribution is approximately constant with their frequency. So we can
write:

Ep(r, ω1 + ω2) ≈ φp(ω1 + ω2)Ep(x, y)
EH(r, ω1) ≈ EH(x, y)
EV (r, ω2) ≈ EV (x, y)

(1.20)

where Φp(ω1 + ω2) is the pump laser frequency distribution, modeled as a
Lorentzian function.

The JSA (1.18) simplifies into:

C(ω1, ω2) = 1
β

ε0
i~(2π)1/2

L√
vHg v

V
g

Γφp(ω1 + ω2)φPM(ω1, ω2) (1.21)

where Γ is the nonlinear overlap defined as:

Γ =
∫∫

dx dyχ(2)(x, y)Ep(x, y)EH(x, y)EV (x, y) (1.22)

Since Ep, EH and EV are field amplitudes ([V · m−1]), the nonlinear overlap
Γ is expressed in unit of [V2 · m]. We note that this differs from the normalized
nonlinear overlap Γ̄ ([V−1]) defined in (1.1) using the normalized fields spatial
distributions ([m−1]).

The JSA, being the spectral density of a wavefunction, has the unit of time
([s] = [Hz−1]), in agreement with the normalization (1.19) and expression (1.21);
the pump spectral amplitude φp has the unit of time ([s]), while the products of Γ
([V2 · m]), L/

√
vHg v

V
g ([s]) and ε0/~ ([m−1 · V−2 · s−1]) is dimensionless, like the

normalization factor β.
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φPM is the phase matching term representing the conservation of momentum
for the three interacting photons. From equation (2.2.18) of reference [114], we
approximate it as a real-valued function:

φPM(ω1, ω2) = sinc(∆kL) (1.23)

In the wave picture, the phase matching condition indicates that the three
interacting waves have to travel at the same speed to assure an efficient (i.e.
irreversible) flow of energy from the pump to the signal and idler waves. When
this mismatch is equal to zero, ∆k = kp(ω1 +ω2)− kH(w1)− kV (ω2) = 0, φPM = 1
and the SPDC process is maximally efficient.

In our collinear device, the condition ∆k = 0 can be achieved only if the three
guided waves are co-propagating, as previously supposed. Besides, according to
the modes dispersion profile illustrated in (1.2), only the use of a Bragg mode as
pump beam and two fundamental Gaussian modes as signal and idler allow to
satisfy the condition ∆k = 0, which justify a posteriori our choice of their spatial
mode profiles.

1.3 Characterization of biphoton states via Hong-
Ou-Mandel interference

The frequency correlations between the two photons of a pair can be revealed via
Hong-Ou-Mandel (HOM) interferometry [153]. In HOM interference, two single
photons enter a beam splitter via different inputs and interfere. According to
their frequency correlations, they may exit from the same output (bunching or
coalescence) or different outputs (anti-bunching or anti-coalescence).

In the case of an entangled biphoton pair, the HOM interference is not simply
the interference of two single photons. More fascinatingly, it is the interference
of the whole biphoton quantum state with itself, i.e. the superposition of the
probability amplitudes corresponding to all the paths available to the biphoton
state [154, 155]. The shape of the interference pattern is determined by the
JSA mirror-symmetry along the ω− = ω1 − ω2 direction with respect to frequency
degeneracy (ω− = 0). In this section we introduce the beam splitter transformation
and present two typical HOM interferograms, for a Gaussian and a sinc-shaped
JSA.

Beam Splitter

The beam splitter is the core of Hong-Ou-Mandel quantum interference.
As figure (1.7) illustrates, a beam splitter is a port with two inputs and two

outputs. When a photon enters in the beam splitter, it has a certain probability
of being transmitted (i.e. to exit from the same channel) and a complementary
probability of being reflected (i.e. to exit from the other channel).

We consider the situation in which two identical photons enter in a beam
splitter from two different inputs (figure (1.8)). From the classical probability
theory we would expect four equally probable outcomes:



36 Working principle and emitted biphoton state

Figure 1.7 – Beam splitter: a port with two inputs and two outputs.
(a) Schematic. A photon in path a can be transmitted on the same path or reflected
into path b. Analogously, a photon in path b can be transmitted or reflected into
path a.
(b,c) Examples of two beam splitters from our lab: (b) a cube beam splitter and
(c) a fibered beam splitter.

Figure 1.8 – Beam splitter outcomes when two photon enter in two different
inputs.

( i ) Both photons are transmitted (figure (1.8, I)).

( ii ) Both photons are reflected (figure (1.8, II)).

(iii) Photon in a is transmitted, photon in b is reflected (figure (1.8, IV)).

(iv) Photon in a is reflected, photon in b is transmitted (figure (1.8, III)).

However, in the case of single photons originating from a SPDC process, nature
follows the rules of quantum physics. Instead of probabilities, we need to consider
the probability amplitudes associated to each of the four paths, since the beam
splitter does not record which one of the four possibility occurs. These amplitudes
are complex terms that interfere with each others, giving results that may be
contrary to common sense expectation.

To understand how the beam splitter acts on the photons probability amplitudes,
we deduce its transformation matrix following references [156, 157]. Given the two
states |a〉 and |b〉, representing one photon at input a and one photon at input
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b (see figure (1.8)) and the transmission and reflection coefficients t and r, the
transformation associated to the beam splitter is:(

a
b

)
→
(
t r
r t

)(
a
b

)

where we define M the beam splitter transformation matrix. We now suppose
that the beam splitter is lossless, which is a good approximation in most experimental
applications. A lossless device has an unitary transformation matrix, which means
that M−1M = M †M = 1, where the matrix elements of M † are as M †

a,b = M∗
b,a.

By imposing: (
t r
r t

)(
r∗ t∗

t∗ r∗

)
=
(

1 0
0 1

)

we find that the following two conditions on the transmission and reflection
coefficients: |t|2 + |r|2 = 1

r∗t+ rt∗ = 0
(1.24)

These conditions imply that the transmission and reflection coefficients are
complex numbers. Their square value gives the probability of reflection and
transmission, respectively. So we write:t = |t|eiθ = |t|

r = |r|eiφ
(1.25)

where we have set θ = 0 for simplicity, without loosing in generality. By
substituting in the second equation in (1.24), we find:

2rt cosφ = 0 (1.26)

that is satisfied for φ = π/2.

From now on we consider the case of a 50/50 beam splitter, in which the
probability of transmission and reflection are the same: |t|2 = |r|2 = 1/2.

The reflection and transmission coefficients of equation (1.25) become:t = 1/
√

2
r = i/

√
2

(1.27)

Therefore, the beam splitter transformation matrix is:

M = 1√
2

(
1 i
i 1

)
(1.28)
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We now apply the beam splitter transformation matrix M in the case of one
single photon in channel a and another single photon in channel b. The initial
quantum state is the path encoded state |a〉 |b〉 and is transformed according to:(

a
b

)
→
(

1 i
i 1

)(
a
b

)
=
(
a+ ib
ia+ b

)
So the state evolution is:

|a〉 |b〉 →
(
|a〉+ i |b〉

)(
i |a〉+ |b〉

)
=
(
|a〉 |b〉︸ ︷︷ ︸

(I)

− |a〉 |b〉︸ ︷︷ ︸
(II)

)
+ i
(
|a〉 |a〉︸ ︷︷ ︸
(III)

+ |b〉 |b〉︸ ︷︷ ︸
(IV)

)

= i
(
|a〉 |a〉︸ ︷︷ ︸
(III)

+ |b〉 |b〉︸ ︷︷ ︸
(IV)

) (1.29)

In equation (1.29) the two probability amplitudes related to the cases (I) and
(II) of figure (1.8). cancel out. This is the bunching phenomena: two identical
photons come out from the same beam splitter output channel.

Link between the Joint Spectral Amplitude and the Hong-Ou-Mandel
interferogram

The analysis of different scenarios of the behaviour of separable photons and
entangled biphoton states in a HOM interferometer is given by two reviews by
Weihs and Zeilinger [158] and Wang [159]. A detailed study of the outcome of a
HOM experiment using the state produced by our device (taking into account also
the effect of the facets reflectivity) will be done in section (6.5).

We will show that in the case of two entangled photons the HOM coincidence
probability (pab(τ)) as a function of the biphoton JSA (C(ω1, ω2)) is:

pab(τ) = 1
2

[
1−Re

[ ∫∫
dω1dω2C

∗(ω1, ω2)C(ω2, ω1)e−i(ω1−ω2)τ
]]

(1.30)

Figure (1.9) illustrates the JSI (C(ω1, ω2)C∗(ω1, ω2)) and the corresponding
HOM outcome in the case of biphoton states having Gaussian and sinc shaped
JSA along ω−, which are two representative cases commonly presented in quantum
optics textbooks. A sinc shaped JSA originates from a nonlinear source having a
phase matching function in the form sinc(αω−), while the Gaussian JSA comes for
instance from the shaping of a biphoton state done by a filter having a Gaussian
spectral profile.

When the JSA is mirror-symmetric, i.e. C(ω1, ω2) = C(ω2, ω1), the HOM
coincidences probability of equation (1.30) is the Fourier Transform of the JSI
along ω1 − ω2. Therefore, a Gaussian JSA (black continuous line in figure (1.9))
corresponds to a Gaussian HOM dip, while a sinc shaped JSA (red dashed line in
figure (1.9)) to a triangle dip. In the paragraphs (2.1.4, 2.1.5) of the next chapter
we will see how the HOM interference pattern transforms when the JSA is not
perfectly mirror-symmetric or has different shapes.
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Figure 1.9 – JSI and corresponding HOM interference pattern of a Gaussian
(black continuous line) and a sinc shaped (red dashed line) biphoton JSA.



Chapter 2

Impact of the source optical
properties on the Joint Spectral
Amplitude

In this chapter we describe the frequency correlation between the two photons of
the pair by analyzing the different terms appearing in the JSA expression (1.21).

We show that the phase matching term is shaped by three main optical
properties of the device. The first one is the modal birefringence, which is the
difference in refractive index between the pump mode and the degenerate signal-
idler modes. The other two are the birefringence and the chromatic dispersion of
the signal and idler modes in the telecom range.

In our study we focus on the CW optical pumping regime. We show that by
tuning the pump frequency we are able to generate an anti-correlated biphoton
state that either possesses a large bandwidth or exists in a coherent superposition
of two distinct frequency channels. The former is a resource for some quantum
communication protocols, like a multi-user Quantum Key Distribution demonstrated
by our group [160]. The latter may be used in a multiple photon pair SPDC
regime to implement Schrödinger cat-like states, a qubit candidate for quantum
information processing [161].

2.1 Joint Spectral Amplitude in (ω+, ω−) basis
In order to investigate the frequency correlations of the quantum state, we neglect
the normalization factor of expression (1.21), so that the JSA expression is:

C(ω1, ω2) = φp(ω1 + ω2)φPM(ω1, ω2) (2.1)
†

One important property of the biphoton state is its mirror symmetry with
respect to the degeneracy frequency. The mirror symmetry determines the state

†A complete expression of the JSA should include the cavity effect for signal and idler photons,
resulting from their reflections at the waveguide input and output facets. If we define fH and fV
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symmetry under particle exchange and thus the result of the interference that is
obtained when the state is sent through a HOM interferometer. In order to reveal
the state mirror symmetry, it is handy to rewrite the JSA in the (ω+,ω−) basis,
rotated by 45◦ respect to (ω1,ω2), according to the transformation:ω+ = ω1 + ω2

ω− = ω1 − ω2
(2.3)

The JSA in the new basis reads:

C(ω+, ω−) = φp(ω+)φPM(ω+, ω−) (2.4)

In order to compare this treatment with the experimental data, we also introduce
λ− = λ1 − λ2, the wavelength difference between the signal and idler photons. We
remind that the frequency and wavelength basis are related by:

λ− = 2πc(ω1 − ω2)
ω1ω2

= 8πc ω−
(ω+ − ω−)(ω+ + ω−)

C.W.pump
≈ 8πc ω−

(ωp − ω−)(ωp + ω−)

2.1.1 Pump spectral profile
The pump spectral profile φp describes the energy distribution of the pump photons
propagating in the device and contributing to the SPDC process. Following the
conservation of energy (ω1 + ω2 = ωp), the pump spectral amplitude depends only
on the variable ω+.

In the CW pumping regime, φp can be modeled along ω+ as a Lorentzian
function, described by a central frequency ωp and a linewidth ∆ωL (FWHM). For
our experiments, we use a CW pumping laser (TOPTICATM Photonics DL pro
780), at ωp = 2465 · 1015THz (λp = 764nm) and ∆ωL < 500kHz. To simplify the
calculations, since ∆ωL is much narrower than the spectral width of the other
features characterizing the JSA (i.e. the cavity free spectral range which we will
discuss in the next chapters), we can approximate the Lorentzian function to a
Dirac delta function:

φp(ω+) = 1
π

∆ωL/2
(ω+ − ωp)2 + (∆ωL/2)2

∆ωL→0
≈ δ(ω+ − ωp) (2.5)

2.1.2 Phase matching function
In this paragraph we illustrate the dependence of the phase matching term φPM on
the optical properties of the device, such as its birefringence, chromatic dispersion

the Fabry-Perot functions of signal and idler photons, the JSA would read:

C(ω1, ω2) = φp(ω1 + ω2)φP M (ω1, ω2)fH(ω1)fV (ω2) = φp(ω1 + ω2)φP M (ω1, ω2)fcav(ω1, ω2)
(2.2)

In this first part of this manuscript we neglect the cavity effect on the JSA, studied in chapter
(5).
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and modal dispersion. In section (1.2.3) we have shown that the expression of the
phase matching function is:

φPM = sinc(∆kL) (2.6)
where L is the device length and ∆k the difference in wavevector among pump,

signal and idler wavevectors. In our collinear source, pump, signal and idler
photons propagate along the same direction. Therefore ∆k is given by:

∆k = kp − ksignal − kidler
= k(ωp)− k(ω1)− k(ω2)

(2.7)

Our source is designed to satisfy a type-II phase matching process, where the
pump is H-polarized, the signal is H-polarized and the idler V-polarized. According
to the dispersion relation of the waveguides modes (equation (4)), we can rewrite
the phase-mismatch as:

∆k = 1
c

[ωpnH,p(ωp)− ω1nH(ω1)− ω2nV (ω2)] (2.8)

which in (ω+,ω−) basis is:

∆k = 1
c

[
ω+nH,p(ω+)−

(
ω+ + ω−

2

)
nH

(
ω+ + ω−

2

)
−
(
ω+ − ω−

2

)
nV

(
ω+ − ω−

2

)]
(2.9)

We now simplify the expression of the phase-mismatch by considering the
dispersion and birefringence properties of the interacting modes. In our source,
figure (1.2) shows that the dispersion can be approximated as a linear function of
the frequency over the bandwidth of interest, i.e. the bandwidth of the emitted
biphoton state.

n(ω + ∆ω) = n(ω) + ∆ωdn
dω

∣∣∣∣
ω

(2.10)

By plugging (2.10) into (2.9), we obtain:

∆k = 1
c

{
ω+nH,p(ω+)−

(
ω+ + ω−

2

)[
nH

∣∣∣∣ω+
2

+ dnH
dω

∣∣∣∣ω+
2

(
ω−
2

)]
+

−
(
ω+ − ω−

2

)[
nV

∣∣∣∣ω+
2

− dnV
dω

∣∣∣∣ω+
2

(
ω−
2

)]} (2.11)

Looking at the dispersion relations (1.2), we also observe that the chromatic
dispersion of each mode is constant and does not depend on polarization within
the considered bandwidth. On the other hand, the pump mode at 775nm has a
frequency close to GaAs band gap, so, following Kramers–Kronig relations, its
chromatic dispersion is higher than the one of the signal and idler modes in the
telecom range. So we write for every ω+/2 within the bandwidth of interest:

dnH
dω

∣∣∣∣ω+
2

= dnV
dω

∣∣∣∣ω+
2

= dn

dω

∣∣∣∣ω+
2

(2.12)
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dnH,p
dω

>
dn

dω
(2.13)

By plugging equation (2.12) into (2.11), we obtain that the wavevector mismatch
is given by the sum of three main contributions:

∆k = ∆kmodal(ω+) + ∆kbirefringence(ω−) + ∆kdispersion(ω−) (2.14)

where ∆kmodal is the modal birefringence mismatch, proportional to the pump
frequency and the modal birefringence ∆nmodal (the difference between the effective
index of the pump photons at ωp = ω+ and the average effective index of the two
orthogonally polarized signal and idler modes at ω+/2):

∆kmodal(ω+) = ω+

c

[
nH,p(ω+)− nH(ω+/2) + nV (ω+/2)

2

]
= ω+

c
∆nmodal(ω+)

(2.15)

∆kbirefringence is the birefringence mismatch, proportional to ω− and ∆n, the
birefringence between signal and idler modes (∆n is a constant since the refractive
index varies linearly with the frequency (2.10) and the dispersion is polarization
independent (2.12)):

∆kbirefringence(ω−) = −
(
ω−
2c

)[
nH

(
ω+

2

)
− nV

(
ω+

2

)]
= −

(
ω−
2c

)
∆n (2.16)

∆kdispersion is the dispersion mismatch, proportional to signal and idler chromatic
dispersion dn/dω and to the square of ω−:

∆kdispersion(ω−) = −
(
ω2
−

2c

)
dn

dω

∣∣∣∣ω+
2

(2.17)

By plugging the three phase mismatch terms (2.15, 2.16, 2.17) into equation
(2.6), we find that the expression of the phase matching term is:

φPM(ω+, ω−) = sinc
{
L

c

[
ω+∆nmodal(ω+)− ω−

(∆n
2 + ω−

2
dn

dω

)]}
(2.18)

Figure (2.1) illustrates the different terms contributing to the expression of
phase matching (2.18) in the modes dispersion profiles. In the following, we study
in detail the impact of the three terms appearing in equation (2.18) and figure
(2.1) on the shape of the phase matching function.
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Figure 2.1 – Numerically calculated dispersion for the three interacting modes:
pump (Bragg, red), signal (H, black) and idler (V, blue) fundamental modes.

2.1.3 Impact of modal birefringence

Among the three contributions to the phase-mismatch, ∆kmodal(ω+) is the only
one depending on the optical properties of the pump Bragg mode. Since it is not
dependent on ω−, it determines the phase matching condition when signal and idler
photons are frequency degenerate (ω− = 0). In the CW pumping monochromatic
regime (ω+ → ωp), at a specific pump frequency, the modal birefringence is a
constant given by:

∆nmodal(ω+)→ ∆nmodal(ωp) = nH,p(ωp)−
nH(ωp/2) + nV (ωp/2)

2
(2.19)

As shown in figure (2.1), due to the fact that the pump mode has a higher
chromatic dispersion than that of the generated modes, a small variation of the
pump wavelength makes that ∆nmodal(ωp) passes from negative to zero to positive.
We define ωp = ωp as the pumping frequency for which ∆nmodal is zero:

∆nmodal(ωp) = nH,p(ωp)−
nH(ωp/2) + nV (ωp/2)

2 = 0⇒ ∆kmodal(ωp) = 0
(2.20)

Experimentally, we find ωp/2 (and thus ωp) by performing a SHG measurement
by injecting a monochromatic telecom laser, polarized along the diagonal direction,
into the waveguide and searching for the optimal resonance wavelength.
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2.1.4 Impact of polarization birefringence and chromatic
dispersion

In this section, we consider a waveguide pumped at the frequency ωp. The
wavevector mismatch is determined only by signal and idler birefringence ∆n and
the chromatic dispersion dn/dω. The phase matching function is thus:

φPM(ωp, ω−) = sinc[(∆kbirefringence + ∆kdispersion)L]

= sinc
[
Lω−
2c

(
∆n+ ω−

dn

dω

)] (2.21)

The term ∆kbirefringence(ω−) (equation (2.16)) is proportional to ω− and to ∆n.
If ∆kbirefringence is different from zero and ∆kdispersion = ∆kmodal = 0, the emitted
biphoton state is centered at ω− = 0 and has a bandwidth inversely proportional
to ∆n.

∆kdispersion(ω−) (equation (2.17)) is proportional to the square of ω− and to
dn/dω. When ∆kdispersion is different from zero while ∆kbirefringence = ∆kmodal = 0,
the biphoton state is centered at ω− = 0 with a bandwidth inversely proportional
to the square root of dn/dω.

In bulk GaAs, the birefringence is zero due to its isotropic crystal lattice.
However, our waveguide has a birefringence induced by its anisotropic geometry.
As shown in figure (1.3), the core is not squared but rectangular, with a thickness
of 0.36µm and an average width of 6-7µm.

The chromatic dispersion derives from the material dispersion, which is normal
in the telecom range where signal and idler are generated. If we define ∆ωFWHM

− as
the biphoton state frequency FWHM, in a narrow band biphoton state, ∆ωFWHM

− dn/dω
is much lower than ∆n and the impact of the chromatic dispersion on the phase
matching function is negligible. Conversely, for a large band biphoton state,
∆ωFWHM

− dn/dω ∼ ∆n, thus the chromatic dispersion changes the shape of the
phase matching function. This is usually the case for a biphoton state emitted by
a Bragg reflection waveguide.

From the numerical calculation presented in figure (2.1), we extract the following
birefringence and dispersion values for our source:

∆n = 7 · 10−3

dn/dω = 1.33 · 10−16 Hz−1 (2.22)

At ωp/2 + ∆ωFWHM
− , we find that the two contributions in equation (2.14) are

comparable and they both need to be taken into account:

|∆kbirefringence(ωFWHM
− )| = 4.17 · 103 m−1

|∆kdispersion(ωFWHM
− )| = 4.00 · 103 m−1 (2.23)

We now analyze the impact of birefringence on the biphoton frequency correlations.
Figure (2.2) reports the phase matching function versus the birefringence. As

the birefringence increases, a branch centered in ω− = −∆n(dn/dω)−1 emerges
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Figure 2.2 – Phase matching function φPM (2.21) versus ω− and the waveguide
birefringence ∆n, calculated using the dispersion (2.22) and optimal pumping
condition (2.20).
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and moves away from the lobe centered in ω− = 0. Therefore, the mirror symmetry
of the phase matching function with respect to ω− reduces.
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Figure 2.3 – HOM interference pattern versus waveguide birefringence ∆n for
the biphoton state having the phase matching function reported in figure (2.2).

The corresponding figure (2.3) shows the HOM interference of the biphoton
emitted as a function of the source birefringence. As the symmetry decreases with
the birefringence, the visibility of the HOM interference reduces. Figure (2.4)
shows the biphoton JSI and HOM interference pattern for different values of ∆n.
In (a, b) the birefringence is zero, the JSI is perfectly symmetric and the HOM
interference has unitary visibility. Regarding the shape of the HOM pattern (b),
we note that it is not a triangular function as we would expect from a sinc-shaped
phase matching term linear in ω− (see figure (1.9)). There are some oscillations
on the side of the central dip, decaying to the baseline value of 0.5 as the delay
increases.

The presence of rebounds arises from dispersion, responsible for a phase
matching function whose argument is proportional to ω2

− instead of ω−: φPM (ω−) ≈
sinc(αω2

−)2.
As birefringence increases, the visibility of the HOM dip decreases. In (c, d)

the birefringence value is the same as the one estimated in our source (2.22) and
the visibility decreases to 0.67.

At higher values of birefringence, the visibility value tends asymptotically to
0.5 (f, h). The reason is that, as the birefringence increases, the phase matching
function has a central lobe that is perfectly mirror symmetric, and a second side
lobe that has no symmetry at all (a, c, e, g). In a HOM interference, only the
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Figure 2.4 – Biphoton JSI and corresponding HOM interference pattern for
a monochromatic pump. The different cases correspond to the phase matching
function reported in figure (2.2), for different values of birefringence:
(a, b) ∆n = 0, (c, d) ∆n = 0.007, (e, f) ∆n = 0.014, (g, h) ∆n = 0.021.
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former half of the biphoton state leads to indistinguishable paths, with the result
that the visibility is halved.

2.1.5 Impact of modal birefringence and chromatic dispersion
In this section we consider the case in which the waveguide birefringence is zero.
At the same time, we relax the hypothesis ωp = ωp (equation (2.20)), so that the
modal phase matching term is generally not null. We also take into account the
linear chromatic dispersion, by considering the case of our source (2.22). In this
case, the phase matching functions reads:

φPM(ωp, ω−) = sinc
[
L

c

(
ωp∆nmodal(ωp)− ω2

−
1
2
dn

dω

)]
(2.24)
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Figure 2.5 – Phase matching term φPM (2.21) as a function of pump frequency,
in ideal zero birefringence condition.

Figure (2.5) illustrates this phase matching function as a function of the pump
frequency. The figure branching feature is easily understood by considering that
the phase matching is maximum equal to one when its argument is zero. Due to
the presence of the dispersion term, which is quadratic in ω−, this is satisfied for
two opposite values of ω−:

ω−,max = ±
√

2ωp∆nmodal(ωp)
(
dn

dω

)−1
(2.25)
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Figure 2.6 – HOM interference pattern versus the pump detuning ω+,
corresponding to the phase matching function reported in figure (2.5).

When nmodal(ωp) > 0, which is verified for pump frequency above the degeneracy
condition (ωp > ωp), two types of photon pairs can be emitted. In the first pair,
the signal photon has frequencies ω1 = ω−+ωp and the idler photon ω2 = ω−−ωp.
Viceversa, the second pair consists of a signal photon at ω2 and an idler photon
at ω1. The absolute frequency difference between the signal and idler photons
increases with ωp. Since ∆nmodal(ωp) is approximately linear with respect to ωp
(for ωp < 2620THz, as illustrated in the dispersion relation of figure (2.1)), the
distance between the biphoton pairs grows linearly with the pump frequency:

∆ω−,max ∝ 2
√
ωp∆nmodal(ωp) ≈ ωp (2.26)

As reported in figure (2.6), while the pump frequency increases and the two
branches move away, the corresponding HOM pattern displays a spatial beating
feature [162]. The frequency of the beating oscillation increases with the pump
frequency and distance between the two branches.

The effect is highlighted in figure (2.7), where we compare the JSI and HOM at
some representative pump frequencies. In panels (a,b) ωp = ωp, so the argument
of the phase matching function (2.24) is proportional to ω2

−. The HOM pattern
shown in (b) is the same as the one in figure (2.4, b).

In panels (c, e, g), while the CW pump frequency increases, the central peak of
the JSI separates into two peaks which move away. The generated two-photon state
is a coherent superposition of two dinstict frequency states with opposite phase.
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Figure 2.7 – biphoton JSI and corresponding HOM interference pattern for
the phase matching function reported in figure (2.5), for different CW pumping
frequencies:
(a, b) ωp = 2444.6THz, (c, d) ωp = 2445.2THz, (e, f) ωp = 2448.1THz, (c, d)
ωp = 2451.0THz.
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These kind of states were originally proposed and demonstrated [163, 164, 165]
as the superposition of two Fock states (or number states) where the number
of photons is unknown, with potential applications in quantum metrology and
quantum information processing [166].

In this case, the two-photon state is the superposition of two single-photon
states. Still, these states may be useful in metrology application thanks to their
unique HOM interference pattern. As we observe in panels (d, f, h), the interference
pattern is composed by many peaks within a beating envelope. The number of
peaks increases with the distance in frequency between the two components of the
states.

We observe that the same HOM interference spatial beating phenomena can
be observed by performing a symmetric frequency filtering on the state in panel
(a). This operation can be achieved by placing two frequency filters at each output
of the HOM beam splitter, with the two filters centered at different frequencies
[162]. The combination of HOM interference and filtering of the biphoton state
has been reinterpreted in terms of engineering of Schrödinger cat-like state by a
PhD student of our group, N. Fabre.

On the other hand, by using a dispersive collinear source, we are able to emit
such a state by simply tuning the CW pump frequency, without the need of any
external filters. The only requirement is that the birefringence of the source is
zero. The experimental confirmation of this proposal is currently being carried
out by our group.

2.2 Complete simulation of the phase matching
function

Now that we have analyzed the phase matching function and seen the effect of
its different terms on the corresponding HOM interference pattern in the case
of a monochromatic pump, we study the specific case of our AlGaAs source.
We calculate numerically the general expression of the phase matching function
(equation (2.6)). We use the calculated dispersion relation in figure (2.1), and
the typical length of our source of L = 2mm. In doing so, we are considering all
the contributions to the phase-mismatch: modal birefringence, birefringence and
chromatic dispersion.
In order to compare these numerical simulations to the results in the previous
paragraphs, we consider photon pairs emitted in the frequency range of ω1,2 =
1222.4 ± 300.0THz (ν1,2 = 194.6 ± 47.7THz ), corresponding to λ1,2 = 1540.9 ±
377.1nm.

However, from an experimental point of view we are mostly interested in signal
and idler photons emitted within a narrower frequency range, corresponding to
the telecom S, C and L-band: ω1,2 = 1224.4± 65THz, or λ1,2 = 1540.9± 83 nm.
Within this frequency range, the photon pairs can be transmitted by the standard
optical fibers and detected by the single-photon APD detectors we use (ID230).
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Figure 2.8 – Numerically simulated phase matching function φPM in the case of
our source, calculated from the dispersion relation shown in figure (2.1).

Figure (2.8) shows the phase matching profile. When signal and idler are
frequency degenerate (i.e. ω− = 0) the maximum of the phase matching function
is found at ωmax+ = 2444.7THz (770.5 nm). For a generic value of ω−, the phase
matching maxima are disposed along a parabolic curve with respect to ω−. As
previously illustrated (equation (2.25)), the parabolic shape stems from the presence
of chromatic dispersion, proportional to the square of ω−.

In addition, the phase matching function is asymmetric due to birefringence.
We can quantify this asymmetry by fitting the region of phase matching maxima
by a second order polynomial. The asymmetry is proportional to the first order
term in the following expression:

ωmax+ (ω−) = 2444.7 THz + 2.1 · 10−3 ω− + 8.9 · 10−17 ω2
− (2.27)

which in wavelength is:

λmax+ (λ−) = 770.5 nm− 6.6 · 10−4 λ− − 2.8 · 10−5 λ2
− (2.28)

As figures (2.9) and (2.10) illustrate, the effect of this asymmetry is to reduce
the visibility of the HOM measurement of the emitted biphoton state. In panel
(b), we see that at the pumping frequency ωp = ωp, the HOM visibility is 0.88.
The effect of the birefringence is even more visible for higher pumping frequencies.
In (c) we see that the state is only partly mirror symmetric and the visibility
in (d) is only 0.48. In (e, g) the states are almost no longer mirror symmetric
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Figure 2.9 – Numerically simulated HOM interference pattern versus the pump
detuning ω+ in the case of our source, corresponding to the phase matching
function reported in figure (2.8).
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Figure 2.10 – Numerically calculated JSI and corresponding HOM interference
pattern in the case of our source, for different CW pumping frequencies:
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and the visibility in (f, h) is lower than 0.2. As a consequence, this value of
birefringence precludes the emission of experimentally detectable cat-like states
whose components are, at the same time, well-separated in frequency and mirror
symmetric.

A reduction of birefringence is necessary to emit mirror-symmetric states which
can be detected with high visibility in a HOM interference experiment. A possible
way to achieve a low birefringence in a Bragg reflector waveguide has been recently
proposed by the group of Weihs [167]. Their proposal is to add two layers with an
increasing refractive index (decreasing Al content) around the core, reducing the
waveguide asymmetry and thus minimizing birefringence.

An alternative is to actively control the birefringence by electro-optic effect in
the source. This solution has already being demonstrated on the GaAs platform
for the manipulation of single and biphoton states [60]. The design and fabrication
process of an integrated biphoton source and electro-optics modulator are currently
under development in our group.



Chapter 3

Experimental characterization of
the device in the CW optical
pumping regime

In this chapter we investigate the source efficiency in the CW pumping regime, both
theoretically and experimentally. As figures of merit, we consider the measured
coincidence rate (Rc), proportional to the source Pair Production Rate (PPR), and
the Coincidences-to-accidental ratio (CAR), the ratio between the true coincidences
due to the photon pairs and the accidental coincidences due to the background
noise.

We measure Rc and CAR in CW monochromatic regime as a function of
the source temperature and the pump beam power, frequency and spatial mode
distribution.

We find that the source performance depends on the phase matching function
and the Fabry-Perot interference of signal, idler and pump photons within the
waveguide.

3.1 Conversion efficiency and Joint Spectral Amplitude
In the following, we consider SPDC in AlGaAs waveguide under CWmonochromatic
pump operation. If we neglect the source cavity effect, the efficiency of the SPDC
is determined by the phase matching function for a given pump frequency:

ηPM(ωp) =
∫∫

ω+ω−δ(ω+ − ωp)|φPM(ωp, ω−)|2

=
∫
ω−|φPM(ωp, ω−)|2

(3.1)

We normalize ηPM to its maximum value, corresponding to an optimal pumping
frequency, i.e. ηPM(ωoptp ) = max{ηPM(ωp)} := 1.

Figure (3.1) reports ηPM(ωp) calculated using the phase matching function
shown in figure (2.8). The SPDC reaches its highest efficiency when the pump
frequency is ωp = ωp = 2444.71THz = 2ωd (λp = 770.5 nm). This corresponds to



58
Experimental characterization of the device in the CW optical

pumping regime

0

0.5

1

2449.48 2447.89 2446.30 2444.71 2443.13

769 769.5 770 770.5 771
η P

M

ωp (Thz)

λp (nm)

Figure 3.1 – SPDC efficiency according to the source phase matching function,
under a CW monochromatic pump regime and neglecting the source cavity effect.

value of the pump frequency presented in equation (2.20), for which the modal
birefringence mismatch is equal to zero.

When we use pump frequencies higher than the optimal frequency ωp (ωp >
2444.71THz, left part in figure (3.1)), the efficiency decreases slowly, reducing to one
half for ∆ωp = 0.79THz (∆λp = −0.25nm) and to one fourth for ∆ωp = 1.91THz
(∆λp = −0.6nm). In this frequency region, the mismatch induced by modal
birefringence is counter-balanced by the mismatch related to the normal chromatic
dispersion.

On the contrary, at pump frequencies shorter than ωp (ωp < 2444.71THz, right
part in figure (3.1)), modal birefringence and chromatic dispersion contributions
to the mismatch are negative, so the efficiency decreases very rapidly to zero and
there are no frequency states available to the photons pairs.

3.2 Setup
Figure (3.2) illustrates the experimental setup used to generate, collect and detect
photon pairs.

A CW diode laser (TOPTICATM Photonics DL pro 780) provides a tunable
monochromatic pump beam within the frequency range of ωp = [2462, 2340]THz
(λp = [765, 805]nm), with a linewidth ∆νp ∼ 100kHz. A small fraction of the pump
beam is sent to an Optical Spectrum Analyzer (OSA, YokogawaTM AQ6370C) to
monitor its wavelength with a precision of ±10pm. The main fraction of the beam
is sent on a in-house made holographic mask (HM). The mask grating is designed
to convert an incoming Gaussian beam into a Bragg mode matching the spatial
distribution shown in figure (1.4). The mask acts on the first order diffraction, so
higher order modes are filtered out.
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Figure 3.2 – Sketch of the experimental setup for the HOM interference. OSA:
optical spectrum analyzer, HM: holographic mask, HWP: half-wave plate, P:
polarizer, TC: temperature controller, F: low-pass filter, FC: fiber coupler, PC:
polarization controller, PBS: polarising beam splitter, D1,D2: single-photon
detectors, TDC: time-to-digital converter.

A polarizer (P) sets the polarization of the pump beam to the horizontal
direction (H-polarized or TE). A half-wave plate (HWP) is placed before the
polarizer to finely control the pump power. The coupling of the pump beam into
the waveguide is achieved through a microscope objective having a high numerical
aperture (NA), compatible with the high-diffracting Bragg beam (NA=0.95, 63X)
[144]. A thermocouple and a Peltier cooler, connected to a PID controller, monitor
and keep the waveguide temperature constant at 20◦C. If not otherwise stated, we
perform all the experiments presented in this thesis at this temperature.

The output coupling is achieved via a second microscope objective (NA=0.65,
40X). A frequency low-pass filter blocks the emitted pump beam, while the photon
pairs are coupled in the fibered part of the setup through a fiber coupler (FC).
Photons are separated by a polarizing beam splitter (PBS) and sent to single-
photon detectors (D). A polarization controller (PC) is used to align photons
polarization axis with the ones of the PBS. Our two single-photon detectors are
free-running InGaAs/InP avalanche photodiodes (idQuantiqueTM ID230). Each
detector efficiency is set to 25% and dead time to 25µs. A time-to-digital converter
(TDC, QuTauTM QuTools) measures the time differences between the detection
events of each detector in a start and stop configuration.

3.3 Characterization of the two-photon emission
To evaluate the performance of AlGaAs sources of photon pairs we consider two
parameters:

• The detected net coincidence rate (Rc,net), the product of the Pair Production
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Rate (PPR, the number of photon pairs emitted by the source per unit of
time) and the setup transmission and detection efficiency for signal and idler
photons (Ts, Ti):

Rc,true = PPR Ts Ti ≈ PPR (Ts)2 (3.2)

The optics elements of our setup (figure (3.2)) have the following transmission
and detection efficiency:

– The free space to fiber collection system, including the output microscope
lens and the fiber coupler (FC), has a collection efficiency of approximately
T couplers ≈ 0.5.

– The fibered setup consists in commercially available fibers (ThorLabsTM
780HP) of approximately 5m length. Their nominal attenuation at the
telecom wavelength (4.0 dB/km, 9.2 · 10−4/m) is negligible with respect
to other optical elements in the setup. Yet, additional transmission
losses arise at the interconnection among adjacent patch fiber cables.
Typically, there are two interconnections along each signal and idler
path, resulting in T fiberss ≈ 0.7.

– Each detector registers only 25% of the incoming single photons (i.e.
in a coincidence measurement one pair out of 16 are detected), so that
ηdetectors = 0.25.

The resulting setup transmission and detection efficiency of a single photon
is estimated to:

Ts = T collections T fiberss ηdetectors = 8.7 · 10−2 (3.3)

and the net coincidence rate is given by:

Rc,net = PPR (T collections T fiberss ηdetectors )2 = PPR· 7.7 · 10−3 (3.4)

• The Coincidence-to-Accidental Ratio (CAR), a signal-to-noise figure of merit
defined as the ratio of true coincidences (i.e. coincidences due to photon
pairs) versus undesired accidental coincidences (i.e. coincidences due to
uncorrelated events). In terms of coincidences rates, the CAR reads:

CAR = Rc,net

Racc

= Rc −Racc

Racc

(3.5)

We explore a pump power regime where the generation of multiple pairs,
originating from the superpoissonian statistic of SPDC, can be neglected. Thus
accidental coincidences are detected when:

1. Each detector registers a dark count.
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2. Each detector registers a photon not originating from SPDC. As instance,
the two photons may originate from the background luminescence of AlGaAs
sources [143].

3. One detector registers a photon originating from SPDC, while the other
detector registers a dark-count or a photon originating from the background
luminescence. This occurs when the complementary photon of the pair was
lost, as it is absorbed during its propagation in the waveguide, not collected
in the fibered setup, scattered at the fibers interconnections or not detected.

Since each detector (idQuantiqueTM ID230) has a rate of dark counts of
d = 20–25Hz, the probability that every second both detectors register a dark
count is negligible compared to the typical coincidence rate signal (Rc,net > 100Hz,
as shown in figure (3.3)). For this reason, we consider the accidental coincidences
as given by the contributions (2) and (3).

1
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−100 −50 0 50 100
t (τTDC)

Coincidence counts over 90s

Figure 3.3 – Example of a coincidence measurement.
Sample: ABQ71_C1_3_G2G12.

In a coincidence measurement the main peak is given mostly by Rc,net while
signal in the remaining time bin correspond to Racc.

Figure (3.3) is an example of a coincidence measurement, carried out on the
sample ABQ71_C1_3_G2G12, for an input pump power of 15mW, a pump wavelength
of λp = 764.55nm and an integration time of 90s. The electronic delay between
the two detectors is set to zero at the coincidences peak and expressed in unit of
the TDC sampling resolution (τTDC = 81ps).

Within the peak, we count 14271 raw coincidences. Out of the peak, we count
366 accidental coincidences over a range of ∆τnoise = 94τTDC , corresponding to
approximately 35 accidental coincidences within the peak. Therefore net and
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accidental coincidence rates are given by:

Rc,net = (14271− 35)/90s = 158Hz
Racc = 35/90s = 0.4Hz

(3.6)

and the corresponding CAR:

CAR = Rc,net/Racc = 395 (3.7)

Effect of pump beam shaping
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Figure 3.4 – Source performances as a function of the pump power when a
holographic mask shapes the pump beam into a Bragg mode (red dots) and in the
absence of mask (blue squares).
Sample: ABQ71_C1_3_G2G12.

Our source works using a modal phase matching scheme based on a pump Bragg
mode (see figure (1.4)). The coupling of the free space pump beam into the Bragg
mode supported by the waveguide is fundamental for an efficient SPDC process
(otherwise the SPDC overlap integral defined in equation (1.1) would be zero).
The excitation of the waveguide Bragg mode can be enhanced by shaping the free
space Gaussian pump beam into a Bragg mode. For this scope, a previous post-doc
of our group designed a holographic mask which converts an input Gaussian beam
into a Bragg mode.

In order to estimate the efficiency of the holographic mask to shape the pump
beam into a Bragg mode, we perform a comparative study. In figure (3.4) we
present experimental results of Rc,net and CAR measurements as a function of
the injected pump power (Pin), in the presence (red) and absence (blue) of the
holographic mask.
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Pin is measured by means of a powermeter placed just before the waveguide
input facet (after the polarizer P in the scheme of figure (3.2)). In this measurement,
performed by the master student Félicien Appas, the pump wavelength is set to
764.66nm, the source temperature to 20◦ and the acquisition time to 30s.

We observe that both Rc and CAR increase by approximately a factor of two
when the mask is used. We conclude that by using the mask the power of the
pump beam that couples into the waveguide Bragg mode doubles and so it does
the efficiency of the SPDC process. The following measurements are carried out in
the presence of the holographic mask.

Pump power dependence
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Figure 3.5 – Source performances as a function of the pump power.
Sample: ABQ71_C1_2_G2G12.

Figure (3.5) reports the measured Rc,net and CAR as a function of Pin using
the sample ABQ71_C1_2_G2G12. The pump wavelength is set to 764.575nm, the
waveguide temperature to 20◦C and the integration time to 30s per acquisition
point. We see that Rc,net is proportional to Pin, in agreement with SPDC equations
(i.e. the rate of produced photon pair is linear up to a saturation to the integral
over signal and idler frequencies of the squared norm of the JSA, reported in
equation (1.18)). Conversely, the CAR is inveresly proportional to Pin. This
behavior is understood since Racc is proportional to P 2

in [168] .

Pump frequency dependence

We proceed by measuring Rc,net and CAR as a function of the pump wavelength
(λp). We use an integration time of 30s per acquisition and a constant input pump
power at 15mW. This measurement was carried out with the master student Giulia
Sinnl and is shown in figure (3.6) .



64
Experimental characterization of the device in the CW optical

pumping regime

0

100

200

764.4 764.5 764.6 764.7764.4 764.5 764.6 764.7
0

100

200

300

λp(mW)

Rc,net(Hz)

λp(mW)

CAR

Figure 3.6 – Source performances as a function of the pump power.
Sample: ABQ71_C1_2_G2G12.

As λp increases, Rc,net and CAR follow a fast oscillatory trend within a
slow asymmetric envelope. The fast oscillatory trend is a sign of a Fabry-Perot
interference. We measure an average oscillation period of ∆λp = 39pm, which
corresponds to the free spectral range of the pump photons (∆ωp = 20GHz at
764.5nm). We deduce that the fast oscillations are due to the waveguide cavity
effect on the pump photons: as the wavelength of the monochromatic pump beam
changes, the amount of the pump power that couples in the waveguide (cavity)
varies due to the Fabry-Perot effect. The optimal pump wavelength which gives
the maximum point of Rc,net may be due to a favorable interplay between pump,
signal and idler Fabry-Perot resonances.

Temperature dependence

In figure (3.7) we present the measurement of Rc,net and CAR as a function of
the source temperature (T ), for a constant pump power of 15mW. The pump
wavelength is set to 764.503nm and the integration time to 20s per acquisition.

Both Rc,net and CAR present an oscillatory behavior with respect to T , further
confirming the waveguide cavity effect observed in the previous measurements: as
the temperature changes, the waveguide (cavity) optical length varies with the
Fabry-Perot resonances of signal, idler and pump photons.

Besides, Rc,net and CAR are two envelopes centered around approximately
19.5◦. The reason is that for lower and higher values of the source temperature
the modes effective index change and the phase matching condition is no longer
satisfied.
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Figure 3.7 – Source performances as a function of its temperature.
Sample: ABQ71_C1_3_G2G12.



Chapter 4

Development of a dry etching
process and application to an
electrically driven source

In this chapter we present the development and optimization of a clean room process
based on electron beam lithography and inductive coupling plasma etching for
the fabrication of AlGaAs waveguides. Contrary to previous fabrication processes
based on photolithography and wet etching, this process is more robust and it
leads to a higher spatial resolution. Thanks to the optimization work presented
in this chapter, we can fabricate vertically etched waveguides with a roughness
in the order of 10nm for an etching depth of 2µm. The robustness and control
offered by this processing protocol has been exploited to fabricate AlGaAs devices
for SAM/OAM manipulation, presented in chapters (7) and (8), and start the
development of dry etched electrical driven sources, presented at the end of this
chapter.

4.1 Motivation
The realization of passive and active integrated optical devices with well-controlled
functionalities, characterized by a high aspect-ratio and many parallel sub-components
(e.g. waveguide arrays), requires a robust clean room process able to precisely
control the shapes of the waveguides.

In the previous works of our group [58, 169, 160], a clean room process based
on photolithography (PL) employing ma-N 2405 resist and chemical wet etching
was used to fabricate AlGaAs sources of entangled photons. The combination
of PL and wet etching provides a fast fabrication process, thanks to the parallel
illumination of the chip offered by the PL technique.

Yet, due to the use of wet etching, this process is not robust.
Firstly, the isotropic nature of wet etching leads to waveguides having decaying

exponential edges. Due to this shape, it may not be straightforward to use wet
etching in the fabrication of more complex photonic circuits (e.g. evanescent
couplers, multi-layered circuits, etc.).
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Moreover, wet etching process depends strongly on the solvent viscosity and
on the soaking speed and orientation. Therefore during the soaking of one sample
(having a typical size of 1cm×1cm), depending on the different zones of its surfaces,
the etching efficiency and the shape of the fabricated waveguides can vary.

For the same reason, the same design is hard to be reproduced among wet
etching processes performed in different times or by different clean room users.
Furthermore, the lack of control on the waveguide design leads to an incertitude
about the geometrically induced birefringence. This parameters needs to be
controlled and minimized to generate a biphoton state with well controlled frequency
correlations, as we have presented in the JSA chapter.

To overtake such limitations, we have optimized a new fabrication process
based on electron beam lithography (EBL) and inductively coupled plasma etching
(ICP). EBL permits to draw on the resist waveguides with a high lateral resolution,
according to the low electrons diffraction-limit. ICP anisotropic etching allows
to obtain vertically shaped ridge waveguides over the typical size of our chip
(1cm× 1cm).

4.2 Fabrication: background

4.2.1 Electron beam lithography
Electron beam lithography (EBL) is a high-resolution and direct-write exposure
method.

Figure 4.1 – EBL system.
(a) Scheme of a typical one.
(b) EBL system used for the fabrication of the devices presented in this thesis.

Figure (4.1, a) illustrates the fundamental parts of an EBL machine. Electrons
are generated by a source kept under vacuum (p ≈ 2 · 10−9mbar), named electron
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gun. They are guided towards the sample through an electron optical system: a
beam aligner, condenser lenses, a stigmator, a pair of deflectors and an objective
lens direct, shape and focus the electron beam on the sample. In addition, there is
a beam blanker to quickly deflect the beam, in order to avoid undesired exposure
of the sample. Inside another chamber under vacuum (p ≈ 2 · 10−5mbar), a
mechanical stage holds the sample and positions it with respect to the electron
beam. A vibration isolation system is necessary to maintain the alignment between
the beam and stage constant during the exposure, while the whole EBL equipment
is controlled through a computer. More details about the EBL single components
are given in [170, 171]

In this work, we use the Raith eLine lithography system of the Ecole Normale
Superiore clean room in Paris, shown in figure (4.1, b).

EBL high-resolution feature derives form the small wavelength associated to
electrons. According to de Broglie expression (λ = h/

√
2mK, with K = eV the

kinetic energy proportional to the applied electrical potential V ), in an electrical
potential difference of V = 10kV, an electron’s wavelength is only 0.12Å, several
order of magnitude smaller than a photon’s wavelength in UV lithography (typically
100 to 400nm). Yet, in EBL there are other phenomena that reduce the resolution.
Firstly, the electron beam column has a limited minimum spot size due to the
repulsion forces among electrons. Moreover, during the exposure, both inelastic
(forward) and elastic (backward) scattering events occur while electrons penetrate
the resist and the underlying material.

In inelastic scattering, an electron interacts with the external shield of an atom.
In the resist, inelastic scattering ionizes the atom, inducing chain scission (in the
case of positive resit) or cross-linking (in the case of negative resist). Besides, it
generates additional electrons, which, in turn, have enough energy to contribute
to the resist exposure (chain scission or cross-linking) process. These electrons,
named secondary electrons, overwhelm in number the beam primary electrons,
and thus are the major cause of the resist exposure.

On the other hand, in a backscattering event, an electron reflects from the
heavy nucleus of an atom, conserving its kinetic energy. When backscattering
events occur in the substrate, electrons return back to the resist. Due to the
combination of elastic and inelastic events, electrons propagate in the resist for
some micrometers before loosing their energy. As instance, for an exposure of
ma-N resist that makes use of a 10kV acceleration potential, an electron has a free
path of at least 10µm.

As a result of backscattering, secondary electrons expose resist area far from
the position of the incident beam. This undesired side effect, called proximity
effect, is the main limitation for EBL resolution. Since the free path of elastically
reflected electrons decreases with their energy and increase with resist thickness,
the proximity effect is reduced for thin resist and high-energy exposures.

Concerning the exposure method, EBL uses a sequential pixel-by-pixel writing.
In analogy to a pencil that draws on a paper, a tightly focused electron beam
scans the surface of the sample covered by the resit. Therefore, the exposure
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pattern can be changed at every lithography without the need of a different mask,
as in PL. Yet, the offered versatility is counter-balanced by a slow speed (0.0001-
1.0 cm2/s, depending on the desired resolution [172]). For this reason, EBL is not
used for industry high volume lithographic processes and it is mainly adopted for
prototyping in academic or industrial research.

4.2.2 Inductively coupled plasma etching

Inductively Coupled Plasma (ICP) is a dry etching technique based on Reactive Ion
Etching (RIE), which uses reactive ions to etch material from a piece of wafer. The
etching is mostly physical: as ions bombards the wafer, they destroy its crystalline
lattice by transferring their high kinetic energy. At the second order, the etching
is also chemical as chemical reactions occur when the different kinds of ions touch
the wafer surface, changing its electrical properties and mechanical resistance.

The advantage of ICP with respect to RIE is that the generation of plasma and
its acceleration are two decoupled processes. The plasma is created by a source of
magnetic field controlled via a RF signal at 2MHz. Thus it is accelerated by a DC
field towards the sample to be etched. ICP plasma is more dissociated into ions
free atoms and radicals than RIE plasma. A faster etching is possible at lower
plasma pressure and a lower ion bombarding energy is required.

We carry out ICP etching by using a Sentech SI500 machine and SiCl4 chemistry.
The ICP procedure consists in three steps: cleaning of the chamber, conditioning
and etching. A cleaning by nitrogen purging assures that the chamber is free from
contaminants or etching species deriving from previous etching processing. The
conditioning lasts for about 15 minutes to stabilize the plasma source and the
RF signal and fill the chamber with the desired etching species. The etching is
constantly monitored by means of an interferometer laser, which points onto the
sample surface, nearby a waveguide ridge. A visible red laser light is sent onto the
sample surface; part of the light is reflected at the sample GaAs surface, while
part travels within the sample until is reflected at the first GaAs-AlGaAs interface.
As these two signals superimpose, they give raise to either positive or destructive
interference, depending on thickness of the inner layer. A sudden drop in the
interferometer signal occurs when an entire layer of GaAs is completely etched.
By counting the number of drops in the interference signal, we are able to know
the etching depth and we manually stop the etching when desired. We measure
the etched depth via a profilometer (Dektak 150) and analyze the quality of the
etching by observing the sample at the scanning electron microscope.

4.3 Fabrication: optimization

4.3.1 Steps

Figure (4.2) shows the fabrication steps of EBL and ICP etching. After cleaving a
piece of wafer of about 1cm2, we follow the following steps:
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(1) Resist spinning, lithography
and developing

(2) ICP etching

Figure 4.2 – Sketch of the fabrication process.

1. Spin coating of the negative resist ma-N 2403. The deposition parameters
are given in table (4.1). By performing an optical or electrical lithography,
followed by the development of the exposed area, we draw an ensemble of
resist-made waveguides (the green stripe).

ma-N 2403 resist deposition
hard baking T= 120◦C for t= 4 min
waiting time t= 30s
TI-prime adhesion promoter vspin = 6000rpm, tspin = 30s, tramp = 3s
ma-N 2403 vspin = 3000rpm, tspin = 30s, tramp = 3s
soft baking T= 90◦C for t= 1 min

Table 4.1 – ma-N 2403 resist deposition parameters.

2. ICP etching to obtain ridge waveguides. We only etch the top Bragg mirror
and do not etch the waveguide core in order to avoid additional roughness
and defects at the surface of the active region, which would lead to unwanted
electron-hole recombination in active devices.

4.3.2 Resist
In this process, we choose to use the negative resist ma-N 2403 [173]. The last
two digits indicate, in micrometers, the expected thickness of the resist after
its spinning on the sample, according to the spin-coating parameters given in
table (4.1). The thickness to be deposited depends on the processed material (e.g.
AlGaAs, Si, etc.) and desired etching depth.

Table (4.2) reports thicknesses and pattern resolutions offered by ma-N series
resists. We notice that, as the resist thickness increases, its patterning resolution
decreases. The resist ma-N 2403 gives the best compromise between resolution
(50nm) and thickness (0.3µm). As instance, for the fabrication of dry AlGaAs
electrical injected sources, we need to etch slightly less than 2.5µm of AlGaAs. If
we use the ICP etching processes developed in our clean room, ma-N resists etch
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Resist label (ma-N) 2401 2403 2405 2410
Film thickness (µm) 0.1 0.3 0.5 1.0
EBL pattern resolution (nm) <50 50 100 150

Table 4.2 – Thickness and resolution of ma-N resists. In red color ma-N 2403
resist, used in the developed process.

approximately 10 times slower than AlGaAs (the precise value depending on the
Al content and the ICP etching parameters), we cannot use ma-N 2401, which
would be completely etched before the end of the etching process.

We note that previous works in our group used ma-N 2405 [169], whose
resolution is two times worse than the one given by ma-N 2403. The reason is that
these processes were developed for AlGaAs optical pumped sources, which require
an etching depth slightly below 5µm and thus the resist ma-N 2405, 0.5µm thick.

4.3.3 Photolithography versus electron beam lithography
We start by comparing the two lithography processes, photo lithography (PL) and
electron beam lithography (EBL), followed by the same ICP etching process. Both
lithographies are carried out using the negative resist ma-N 2403, spin coated
using the standard parameters presented in table (4.1). For PL, we use a hard
contact configuration and ma-N 2403 under UV exposure. In EBL, we write the
negative resist with a dose of 120µC/cm2. Both developments are done using AZ®

726 MIF, a metal ion free developer. The ICP etching is based on a low-powerful
slow recipe and SiCL4 and Ar chemistry.

Figure 4.3 – SEM image of two waveguides fabricated using PL followed by ICP
(left) and EBL followed by ICP (right).
PL sample: D9T167_D6.
EBL sample: D9T167_G1.

Figure (4.3) presents a SEM image of the two waveguides fabricated with
the two processes, after removal of resist and cleaving. We are mostly interested
in comparing the sidewalls roughness. From a SEM imaging we find that the
waveguide fabricated via PL presents a peak-to-dip sidewalls roughness of approximately
150nm, while the one fabricated via EBL a peak-to-dip roughness smaller than
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40nm. Given these preliminary results, we do not consider anymore the PL and
ICP process and we proceed with the optimization of the EBL and ICP processes.

4.3.4 Electron beam lithography
To retrieve the optimal EBL parameters, we perform a dose test. We design a mask
of 10 waveguides, 4µm wide, with increasing dose from 100µC/cm2 to 190µC/cm2.
We set the electron beam aperture to 10µm, an acceleration voltage of 20kV and
a writing field of 1mm. We measure at the Faraday cup an average current of
13.5pA, so we set up a night exposure which takes slightly less than 6 hours.

4µm

Figure 4.4 – Optical microscope image of the resist when the development is
complete, for the lowest exposure dose of 100µC/cm2.

As developer we use AZ® 726 MIF. After dipping the sample in the developer, we
rinse it with water and dry it with nitrogen. By checking at the optical microscope
the waveguides endings, we determine the required development time. In our case,
we focus on the waveguide written at the lowest dose, since it takes the longest
time to develop. As soon as the waveguide ending appears squared and sharp,
the development is complete, as illustrated in figure (4.4). The waveguide width,
measured by optical microscopy, is approximately 4µm, close to the expected value
(within the optical microscopy diffraction-limited resolution). We find that the
development consists in repeating twice the following steps: 10s in AZ® 726 MIF,
5s in H20, 60s in another H20 baker and N2 drying.

Once the developer is removed, we cleave the sample into two pieces to test
two different ICP recipes previously developed in our laboratory.

The first ICP recipe is based on low RF acceleration voltage and power (V =
115V , P = 15W ), low plasma power (20W ) and the etching species SiCl4 and
Ar. The second ICP recipe is uses higher RF voltage and power (V = 180V ,
P = 60W ), twice as much plasma power (40W ) and H2 in addition to the previous
etching species.

We measure an etching rate (time) of 1µm/18.2 min (57 min) for the first recipe
and 1µm/7.5 min (23 min ) for the second one. Thus in the following we refer to
the first recipe as slow recipe and to the second one as fast recipe.

The comparison between the two ICP processes as a function of the employed
dose is shown in figure (4.5). In the case of fast ICP processing (4.5, a), we observe
an important and unacceptable roughness.

The reason is that, in this case, the resist is completely removed before the
end of the fast ICP etching process. The uncovered waveguide edges are hit along
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(b)

Figure 4.5 – SEM images of waveguides fabricated using the fast (a) and slow
(b) ICP recipe for different values of dose D.
(a) Sample: D9T167_C1_2.
(b) Sample: D9T167_C1_1.

the vertical direction by the accelerated plasma ions and the waveguide sidewalls
become very rough.

The slow ICP process (4.5, b) assures a better result. As figure (4.11) shows,
less energetic ions do not completely remove the resist at the waveguide borders,
even if a "roof effect" is still visible. To quantify the roughness level and identify
the optimal dose, we analyze the top-view SEM images of figure (4.5, b) via
ImageJ using Analyze Stripes plugin [174, 175]. We extract the waveguide left
and right edges profiles (the oscillatory white borders in figure (4.5, b)) as curved
lines. Then we calculate the roughness as the lines standard deviation versus
straight and correctly oriented lines. We find that the waveguide fabricated with
a dose of 130µC/cm2 has the lowest roughness of σ = 7.2nm. The other two
waveguides shown in figure (4.5, b) have a standard deviation of σ = 8.0nm for
D = 100µC/cm2 and of σ = 18.7nm for D = 190µC/cm2. We conclude that the
optimal recipe is EBL with a dose of 130µC/cm2 combined with the slow ICP
recipe.
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4.4 Application to an electrically driven source
of entangled photons

4.4.1 Wet etched source
An electrically driven AlGaAs source of entangled photon pairs has been previously
designed, fabricated and demonstrated by our group [58, 59].

(a) (b)

Figure 4.6 – Electrically driven source of entangled photons (from ref. [59]).
(a) Material refractive index, doping profile and Bragg mode distribution along
the waveguide central vertical axis.
(b) MEB image of the waveguide facet.

The design of the structure (figure (4.6, a)) is similar to that of conventional
quantum well laser diodes, except for the lasing mode which is a Bragg mode. The
fabrication process used to fabricate the devices presented in [58, 59] is based on
PL, using ma-N 2405 negative resist, and wet etching, as we can deduce from the
exponential sidewalls edges visible of figure (4.6, b).

Figure (4.7) presents some numerical simulations done on the wet etched source,
before the deposition of upper and lower electrical contacts, showing (a) the input
facet refractive index profile at 775nm and (b) the calculated Bragg mode intensity.
We notice that, due to the exponential sidewalls induced by wet etching, the Bragg
mode has an horizontal extension of about 10µm.

From these numerical simulations, we calculate the overlap integral between
the Bragg mode and the quantum well, situated in the middle of the core region
and having a thickness of 8.5nm. We find Γ = 2.45%. By propagating the Bragg
mode in proximity of a waveguide facet using a 3D FDTD commercial solver, we
also calculate that it has a modal reflectivity of R = 0.86.

Starting from these results, we numerically calculate the carrier transport
and recombination in the hetero-junction by using a home-made software based
on a self-consistent model of the drift-diffusion and Poisson equations. The
chosen parameters are a quantum well radiative recombination coefficient of



4.4 Application to an electrically driven source of entangled photons75

−5 −2.5 0 2.5 5
x (µm)

−2.5

0

2.5

5

y
(µ
m
)

1 3.69

a

−5 −2.5 0 2.5 5
x (µm)

0 1

b

Figure 4.7 – Numerical simulations on a wet etched active waveguide.
(a) Geometry and refractive index profile.
(b) Bragg mode intensity profile at 775nm.

Rrad = 5×10−17m3s−1 and a Shockley-Read-Hall non-radiative time of τSRH = 5ns
[176].

Figure 4.8 – Characterization and simulation of the electricall driven wet etched
waveguide lasing operation (from ref. [59]).
(a) Voltage bias (crosses) and emitted power versus injected current.
(b) Measured (crossed) and calculated (continuous line) threshold current as a
function of the temperature.

The characterization of the lasing emission under electrical pumping of a
representative wet etched waveguide is shown in figure (4.8). Panel (a) reports the
power-current-voltage (PIV) curves, measured under pulsed electrical injection for
a pulse duration of 60ns and a repetition rate of 40kHz.

Panel (b) reports the lasing threshold current (Ith) as a function of the
temperature. The measured values (green crosses) are in agreement with our
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numerical calculations (continuous dark green line), carried out at different values
of temperature. The uncertainty on the simulated Ith (light green stripe) comes
from the uncertainty on the device contact geometrical surface (the product
of the top contact width and the length of the waveguide), estimated to be
S = 1.9(±0.2)× 10−4cm2.
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4.4.2 Dry etched source
In this section we present our results on the application of the new processing
technique applied to active samples having the same nominal epitaxial structure
of the one used in [58, 59].
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Figure 4.9 – Numerical simulation for a dry etched electrically driven source.
(a) Geometry and refractive index profile.
(b) Bragg mode intensity profile at 775nm.

The goal is to obtain an electrically driven waveguide having a vertically
etched ridge. Figure (4.9, a) represents the refractive index profile and the desired
shape, before the deposition of the electrical contacts. The etching must be
performed down to the last layer of the top Bragg mirror and the ridge width set
to approximately 5µm, in order to compare the dry etching processing with the
previously developed wet etching process, whose corresponding waveguides are
shown in figure (4.7, a).

We notice in inset (b) that, in comparison with the wet etched waveguide (4.7,
b), the Bragg mode profile is more confined under the ridge.

Fabrication

The necessary fabrication steps are sketched in figure (4.10). After EBL (1) and
ICP etching (2), we observe the waveguide at the SEM to check that there are no
fabrication issues, that the etching depth is correct and the roughness acceptable.

Figure (4.11) shows a zoom of an ending of one etched waveguide (we note
that the waveguide ending is rounded due to EBL proximity effect; after cleaving,
the waveguide ridge is rectangular).

We can distinguish the individual layers of the top Bragg mirror: low refractive
index layers (dark grey) and high refractive index layers (light grey). We confirm
that we have etched almost completely the top Bragg mirror. We stopped the
etching in the last low refractive index (the number 6 from the top, see figure (4.9)),
placed just above the thin high index layer and the core. The waveguide roughness



78
Development of a dry etching process and application to an

electrically driven source

(1) Resist spinning, lithography
and developing

(2) ICP etching

(4) Contact deposition(3) Insulator deposition
and opening

Figure 4.10 – Sketch of the fabrication process of a dry electrically driven active
sample.

is in the tolerance and the resist, still present at the top of the waveguide, has
covered the underlying sample during the whole etching process.

We continue the fabrication process with the deposition of the upper and lower
electrical contacts. The necessary steps are:

3. Deposition of an insulator layer of Si3N4, followed by an optical lithography
and reactive-ion etching (RIE) to leave an opening for the upper contact
around the waveguide central axis.

4. Evaporation of a Ti/Au (10nm/400nm) upper contact and a Ge/Au/Ni/Au
(15nm/50nm/10nm/200nm) bottom contact. To achieve homogeneous contacts
and deposit on the waveguide sidewalls, during the evaporation the sample
is continuously turned and titled at 40◦ .

Figure (4.12) shows one of the fabricated waveguide, after the steps (3), (4)
presented in figure (4.10) and the cleaving of the input and output waveguide
facets. We can distinguish the top and bottom Bragg mirrors and the top electrode
on the waveguide ridge. The top Bragg mirror is completely etched and the ridge
width is approximately 5µm.
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Figure 4.11 – Ending of a waveguide after step (2) of figure (4.10), processed
using the developed fabrication process (D=130µC/cm2, slow ICP recipe). Sample:
H1Y021_D2_2.

4.4.3 Characterization

Voltage and optical power versus intensity

To evaluate the performance of the fabricated source (sample H1Y021_D1), we
measure the voltage and emitted optical power as a function of the injected current.
We set the holder heat-sink temperature to 20◦C and apply a pulse duration of
200ns with a a repetition rate of 50kHz. The voltage-current curve (red squares,
figure (4.13), left) presents a turn-on voltage of V = 1.94V . This value is close to
the quantum well band-gap (≈ 1.59eV). In accordance with standard diodes, the
voltage-current curve is logarithmic at small forward bias. Yet, for higher bias we
do not observe any knee voltage, sign that the lasing threshold is not reached.

From the size of the top electrode (A ≈ 2mm · 3µm), we calculate the injected
density current. Even at values of density current much higher than for typical
laser diodes, we do not observe the lasing threshold.

Since the lasing process does not occur, the emitted optical power (black dot in
figure (4.13), left) is not linear versus the injected current, but grows exponentially,
as in the case of an electroluminescent luminescent device.

To confirm this, we have plotted the emitted optical power versus injected
electrical power (figure (4.13), right). The optical power results to be linearly
proportional to the injected electrical power, as in the case for luminescent emitters.



80
Development of a dry etching process and application to an

electrically driven source

1um

top
Bragg
mirror

bottom
Bragg
mirror

top 
electrode

Si3N4

Figure 4.12 – SEM image of the facet of the fabricated dry etched source after all
fabrication steps presented in figure (4.10) and cleaving. Sample: H1Y021_D2_2.
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Figure 4.13 – Characterization of the voltage and optical power under electrical
injection.
Left: voltage (red squares) and optical power (black dots) versus injected current.
Right: optical versus electrical power.
Sample: H1Y021_D1.

Voltage and optical power versus injected current as a function of
temperature

The characterization of the the source at different temperature, carried out by the
master student Ulysse Najar, is shown in figure (4.14).
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Figure 4.14 – Optical power versus injected current (left) and electrical power
(right) at different temperatures: 19◦C (squares), 22◦C (dots) and 24◦C (triangles).

The V-I curves (red squares in figure (4.14), left) obtained at various temperature
overlap, so for clarity we only report the one at 24◦C. At lower temperature the
source is more efficient and the emission becomes closer to the one of a diode.
The reason is that a lower temperatures reduces the efficiency of non-radiative
recombination processes.

Since we only explore a small temperature range (19 to 24◦C), it could be
useful to test the device at lower temperatures by means of a cryostat, as done in
[59]. This characterization is planned for the next months.

Discussion: lasing threshold and losses

To understand the reason for which our active sample does not lase, we analyze
the dependence of the gain threshold on different parameters. Following [177], we
find that in QW semiconductor laser, embedded in a cavity long L, the variation
of the optical intensity I after one round-trip is given by:

∆I = 2I[σQW (N2 −N1)L− γ] (4.1)

where σQW is the QW transition cross section, proportional to the QW electron-
hole radiative recombination, N2 −N1 the population inversion between the QW
levels in the conduction and valence band, and γ the total losses experienced by
the light in a half round-trip. These losses divide into absorption (αabs), radiative
(αrad), scattering (αscat) losses and emission losses at the two cavity mirrors, which
have a reflectivity R1 and R2:

γ = (αabs + αrad + αscat)L−
1
2 lnR1 lnR2 (4.2)

The gain threshold in equation (4.1) is established at the critic population
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inversion Nc for which the net gain equals the losses:

gth = σQWNcL = γ (4.3)

In order to minimize the lasing threshold and thus the injected current, the
device must have low level of losses, with ideally zero radiative and scattering
losses and absorption outside the QW. The origin of these losses in our waveguides
is the following:

1. Radiation losses (αrad) are related to the design of the waveguide as they
depend on the mode confinement. In our source the lasing mode is a Bragg
mode, so its radiative losses are determined by the design of the top and
bottom Bragg mirrors. The confinement of the Bragg mode is assured by
chosen design (see the numerical simulation in figure (4.9)).

2. Absorption losses (αabs) are due to photons absorbed by the defects of the
wafer material, outside the quantum well. They depends on the quality of
the growth process.

3. Scattering losses (αscat) are due to surface roughness. Surface imperfections
are created during the etching process. This is highly dependent on the
etching technique (dry or wet). The scattering losses can be modeled
according to Tien’s scattering losses theory [178] resulting proportional
to the squared value of the Bragg wavevector (kBragg) and the sidewalls
roughness variance (σ), and inversely proportional to the waveguide average
width (w):

αscattering ∝ (kBraggσ)2w−1 (4.4)

The dependence of the scattering losses on the modes wavevector and
waveguide width is easy to be understood: modes traveling slower along
narrower waveguides reflect more often during their propagation, thus they
are more sensitive to the surface roughness.

Since the scattering loss depends on the square value of the surface roughness,
it is fundamental to reduce it as much as possible. Notable results have been
obtained in passive GaAs/AlGaAs single-mode rib waveguides fabricated via
reactive ion etching, with α ≈ 0.05cm−1 [179]. However, in our structure we
expect higher propagation losses. The first reason is that the Bragg mode is
less confined than a fundamental Gaussian mode and thus it is more sensitive
to the waveguide sidewalls imperfections. Besides, the rib waveguide studied
in [179] is superficially etched, having an aspect ratio smaller than 10%. In
our Bragg reflector structure, we need to etch almost entirely the top Bragg
mirror to assure that the Bragg mode is properly guided and does not leak
into the substrate. Therefore the amount of imperfections resulting from the
etching process is higher.
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According to these three origins of losses, we make two possible hypothesis for
which our sample does not reach the lasing threshold.

The first hypothesis is that αscattering are too high, although the standard
deviation of the sidewalls roughness is lower than 10nm (see the commentary to
figures (4.5)). In this case, a quick solution is to fabricate waveguides having
a ridge larger than 5µm. According to equation (4.4), this would lead to lower
scattering losses. Besides, to quantify αscattering induced by the dry etched process,
we may compare the results of this process to the ones based wet etching, immune
from roughness.

The second hypothesis is that the doping profile introduced during the MBE
growth does not correspond to the designed structure. To check this hypothesis, we
may carry out capacitance–voltage profiling (C-V profiling) measurements. With
this technique we could estimate the doping profile layer by layer.



Part II

Biphoton frequency-comb states:
generation and manipulation





Chapter 5

Cavity effect on the Joint
Spectral Amplitude

In chapter 2 we described the features of the emitted biphoton and their relation
with the source birefringence and chromatic dispersion without considering the
facets reflectivity. In this chapter we go further and consider the waveguide as an
optical cavity. We show how the cavity effect shapes the JSA into a chessboard-like
pattern, resulting from signal and idler Fabry-Perot frequency-comb resonances
distributions.

We focus on the monochromatic pump regime as a tool to manipulate the state
at the generation stage by tuning the pump beam wavelength. We present two
classes of states, resonant and anti-resonant, which are the basis of the manipulation
protocol presented in chapter 6.

To conclude, we present the experimental reconstruction of the biphoton JSI
via stimulated emission tomography, for both resonant and anti-resonant states,
and discuss how such states can be used as frequency encoded qudits.

5.1 AlGaAs waveguide as a Fabry-Perot cavity
Figure (5.1, a) shows a SEM image of the waveguide from a lateral view. Given that
the effective index of the supported signal (H-polarized) and idler (V-polarized)
modes is approximately n ∼ 3.1 (figure (2.1)), at the waveguide-air interface there
is a step-index of ∆n ∼ 2.1. The Fresnel reflectivity at the waveguide facets
induces a Fabry-Perot effect for the guided modes.

To experimentally verify the presence of the waveguide cavity effect, we measure
the transmission function of the waveguide. We use a CW laser in the telecom
range (Tunics), linearly polarized along either H (signal) or V (idler) directions, and
measure its transmitted power through the device as a function of the wavelength.

Figure (5.2) reports an extract of this measurement at 1519 ± 1nm, for H-
polarized (blue squares) and V-polarized (green dots) photons. The transmitted
power is normalized to half of its average value. The contrast of the Fabry-Perot
fringes (κ = (Tmax − Tmin)/(Tmax + Tmin)) depends on the cavity reflectivity and
propagation losses of the two orthogonally polarized photons [180, 181], which we
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Figure 5.1 –
(a) Waveguide lateral view at the SEM.
(b) Sketch of the waveguide cavity effect for signal and idler photons.
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Figure 5.2 – Normalized power for H-polarized (blue squares) and V-polarized
(green dots) photons transmitted through the waveguide.

respectively indicate as RH , RV and αH , αV . In the framework of Fabry-Perot
cavity description, their dependence on the wavelength is given by:

RHe
−αHLnH(λ) =

1−
√

1− κ2
H

κH

RV e
−αV LnV (λ) =

1−
√

1− κ2
V

κV

(5.1)

From the measurement in figure (5.2) we see that κH > κV . If we suppose that
H and V-polarized photons experience the same propagation losses (αH ∼ αV ), this
implies that RH > RV . To confirm the difference in reflectivity between the two
orthogonal polarizations, we perform a 3D finite-difference time-domain (FDTD)
simulation with a commercial solver (Lumerical) in order to calculate the modal
reflectivity at λ = 1519nm. We suppose that input and output facets are identical
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and their shape corresponds to the one illustrated in figure (1.3). The numerical
simulation confirms that signal (H) reflectivity is higher than idler (V) reflectivity:

Rin
H = Rout

H = RH = 0.297
Rin
V = Rout

V = RV = 0.243
(5.2)

From the Fabry-Perot interference we also infer the cavity free spectral range.
From the data of figure (5.2) we calculate, for both polarization directions, an
average free spectral range (∆λfsr, ∆νfsr) and corresponding cavity round-trip
(τRT ) of:

∆λ1.55µm
fsr = 154pm; ∆νfsr = 20.00GHz; ∆ωfsr = 125.72GHz

τRT = 50.00ps
(5.3)

Since the waveguide is approximately L = 2mm long, we deduce that signal
and idler average group index are approximately ng = c/(2Lνfsr) = 3.75, higher
than the corresponding GaAs material refractive group index of 3.52 [182]. Besides,
we observe the presence of some birefringence, as H-polarized and V-polarized
transmission curves do not overlap.

5.2 Single mode cavity function
In order to illustrate the cavity effect on the biphoton JSA, we start by considering
the effect of the cavity on the spectral profile of signal and idler modes. By treating
them as classical coherent states, we retrieve the cavity filtering function presented
in optics textbooks.

The cavity round-trips corresponding to monochromatic signal and idler modes
having a specific frequency ω are:

τH(ω) = 2LnH(ω)/c
τV (ω) = 2LnV (ω)/c

(5.4)

NL medium cavity

(a)

NL medium in the cavity

(b)

Figure 5.3 – Configurations of NL and cavity:
(a) NL medium followed by cavity.
(b) NL embedded within the cavity.

We distinguish two situations. In the first one, illustrated in figure (5.3, a),
the cavity is placed after the nonlinear medium. In this case we are interested in
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signal and idler modes which are transmitted through the cavity. The transmission
of their electric fields is given by the complex-valued Airy distributions [183]:

f transH (ω) = EinH
EoutH

= (1−RH)eiωτH/2
1−RHeiωτH

f transV (ω) = EinV
EoutV

= (1−RV )eiωτV /2
1−RV eiωτV

(5.5)

In the second situation, shown in figure (5.3, b) the nonlinear medium is
embedded within the cavity. This is the case of our AlGaAs source, since the
waveguide constitutes both the nonlinear medium and the cavity. In this case we
are interested in signal and idler modes which are emitted by the cavity output
facet. The emission of their electric fields is given by [184]:

f emisH (ω) = EcavH
EoutH

=
√

1−RHe
iωτH/2

1−RHeiωτH

f emisV (ω) = EcavV
EoutV

==
√

1−RV e
iωτV /2

1−RV eiωτV

(5.6)

where the factors
√

1−RH,V =
√
TH,V originate from the fact that signal and

idler modes do not undergo a transmission at the cavity input facet.
Figure (5.4) compares transmission (left) and emission function (right), for a

given polarization mode, in case of low (R=0.3, (a) row) and high (R=0.9, (b)
row) reflection coefficients.

Transmission and emission functions are two Fabry-Perot functions sharing the
same periodicity. Photons are transmitted (emitted) by the cavity with unitary
(maximal) efficiency at the resonance condition. If we indicate with L the one-pass
physical length of the cavity, nµ(ω) the group refractive index of the polarized
modes (µ = H, V ) and ω the photon pulsation, the resonance condition reads:

2mπ := ∆φ = k2L = ωm,µnµ(ω)
c

2L (5.7)

with the resonant modes ωm,µ given by:

ωm,µ = m

2π c

nµ(ω)2L

 = mωfsr,µ = m2π/τµ (5.8)

The resonance condition (5.7) implies that the electric field of the resonant
modes acquires a phase of π during one pass through the cavity. Therefore, the
electric field of the transmitted modes accumulates a phase-shift of either 0 or
π ∗, with respect to its phase at the cavity entrance. For this reason, in both
transmission and emission scenarios, adjacent resonant modes are in counter-phase,
as shown in figure (5.4).

We deduce that the cavity modifies the spectral profile of the transmitted or
emitted modes in two ways. First, it redistributes their spectral components by

∗ we use the convention of periodical phase space defined in [0, 2π).
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Figure 5.4 – Comparison of transmission (left) and emission (right) functions:
modulus squared (continuous blue line) and phase (dashed red line), for a reflectivity
of R=0.3 (a) and R=0.9 (b).

enhancing the ones which are multiple of its free spectral range. Second, it modifies
the relative phase among them, with adjacent peaks in counter-phase.

At resonance, transmission and emission cavity functions reach their maximum
values of:

f transmax = 1

f emismax = 1√
1−R

;
(5.9)

Since 0 < R < 1, f emismax > f transmax . The reason for this difference is straightforward:
when the cavity is placed after the source, there is a probability T = 1−R that a
photon is reflected from the input cavity facet and lost. At cavity resonances, the
photon emission is amplified, i.e. it is higher than one. As instance, for R = 0.9
(figure (5.4, b)) the squared emission function reaches the value of 10.

In between two resonant frequencies, transmission and emission functions take
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their lowest value of:
f transmin = 1−R

1 +R

f emismin =
√

1−R
1 +R

;
(5.10)

Again, since 0 < R < 1, f emismin > f transmin . If R→ 1 both amplitudes tend to zero
(the photons do not exit from the cavity), while for R→ 0 both tend to one (there
is no cavity).

We also observe in figure (5.4) that both transmission and emission functions
contrasts increase with the reflectivity. Starting from (5.9) and (5.10), we find:

ctrans = |f trans|2max − |f trans|2min =
 2R

1 +R

2

cemis = |f emis|2max − |f emis|2min =
 2R√

1−R(1 +R)

2 (5.11)

so that the transmission contrast is related to the emission contrast by:

ctrans = (1−R)cemis = Tcemis (5.12)

where the factor (1−R) = T accounts for the additional transmission at the
input cavity facet which the photons need to undergo in the transmission case.

To conclude the analysis, we give an expression of the cavity finesse.
According to the expression of Ismail and colleagues [185], based on the Taylor

criterion and exempt from any approximations on the form of the Airy function,
the free spectral range reads:

∆ωFWHM = ∆ωfsr
2
π

arcsin
1−R

2
√
R

 (5.13)

and the cavity finesse:

F = ∆ωfsr
∆ωFWHM

= π

2

 arcsin
1−R

2
√
R

−1

(5.14)

5.3 Two modes cavity function
After introducing the cavity functions for single photons, we extend the analysis
to biphoton states. In order to describe the case of AlGaAs waveguides (5.1b),
(5.3b)), in the following we only present the biphoton emission cavity function.
Anyway, given that emission and transmission functions are proportional, it is
straightforward to extend this analysis to the biphoton transmission cavity function.
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For sake of brevity, from now on we refer to the biphoton cavity emission
function simply as cavity function. The biphoton cavity function is given by the
product of signal and idler emission functions:

fcav(ω1, ω2) = fH(ω1)fV (ω2) =
√

1−RH

√
1−RV e

i(ω1τH(ω1)+ω2τV (ω2))/2

(1−RHeiτH(ω1)ω1)(1−RV eiτV (ω2)ω2)
(5.15)
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Figure 5.5 – Biphoton cavity emission function for R = 0.27 (a, b) and R = 0.8
(c, d).
(a, c) Modulus squared value.
(b, d) Phase.

Figure (5.5, a, b) represents the cavity function in the case of a non dispersive
and non birefringent low-reflective cavity, with R = RH = RV = 0.27, the average
value of reflectivity of input and output facets in our AlGaAs waveguide. Figure
(5.5, c, d) illustrates the cavity function for an analogous high-reflective cavity,
with R = 0.8.
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In analogy to the classical case (figure (5.4), right), the presence of a cavity
enhances the emission of resonant biphoton modes.

The squared modulus of the cavity function (a,c) is characterized by a chessboard
pattern, resulting from the repetition of the Fabry-Perot pattern (figure (5.4)) along
signal (horizontal direction) and idler (vertical direction) orthogonal frequency
spaces. The biphoton resonances are given by the product of signal and idler single
photon ones. Therefore, for a fixed signal (idler) mode, consecutive biphoton modes
are in counter-phase, as illustrated in figure (5.5, d): if we choose a cut of the
function at a signal resonant mode (e.g. w1 = 1(ωfsr)), the biphoton peaks have a
phase that alternates among 0 (light blue color) and π (red color). This property
will be important for the generation of two different kind of frequency-comb states
under a CW monochromatic pump regime, which we will present in paragraph
(5.4).

In figure (5.5) we distinguish cavity resonances (ω1,2 = 0, 1, 2, 3, 4, 5) and
intermediate frequencies (ω1,2 = 0.5, 1.5, 2.5, 3.5, 4.5), for which the cavity function
is real and takes respectively the maximum and minimum value of:

fcav,max = 1√
1−RH

√
1−RV

fcav,min =
√

1−RH

√
1−RV

(1 +RH)(1 +RV )

(5.16)

If we consider for simplicity an average reflection coefficient, RH = RV = R,
the maximum (minimum) value of the biphoton cavity function (5.15) is simply
the squared value of the maximum (minimum) single mode emission function (5.9):

fcav,max = (fmax)2 = 1
(1−R)

fcav,min = (fmin)2 = 1−R
(1 +R)2

(5.17)

The contrast, following its definition, is slightly higher than the squared modulus
of the single mode emission contrast (cemis) introduced in (5.11):

ccav = |fcav,max|2 − |fcav,min|2 = 8R(1 +R2)
(1−R)2(1 +R)4 = (1 +R2)

2R3 (cemis)2 (5.18)

Along signal (horizontal direction ω1) and idler (vertical direction ω2) frequency
spaces, the linewidth and finesse of the biphoton intensity peaks are given by the
single photon Fabry-Perot linewidths, expressed in (5.13) and (5.14). For this
reason, in figure (5.5) the shape of the intensity chessboard peaks transforms from
a large rhombus to a narrow cross star as the cavity reflectivity increases. This
property may be useful to engineer the biphoton. As instance, Jeronimo-Moreno
and colleagues [184] propose to control the cavity reflection coefficients and free
spectral range to couple the biphoton state with specific atomic system transitions.
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In our work, we are mostly interested in the biphoton frequency correlation
properties, arising from the symmetry of the JSA with respect to the degeneracy
frequency (see chapter (2). For this reason, we express the cavity function (5.15)
in the (ω+, ω−) basis according to transformation (2.3), to obtain:

fcav(ω+, ω−) = fH

(
ω+ + ω−

2

)
fV

(
ω+ − ω−

2

)
=
√

1−RH

√
1−RV exp { i2 [τH(ω++ω−

2 ) + τV (ω+−ω−
2 )]}(

1−RH exp [iτH(ω++ω−
2 )]

)(
1−RV exp [iτV (ω+−ω−

2 )]
) (5.19)

We can simplify this expression in the case of our AlGaAs source, where the
effective index is linear with the frequency (2.10) and the chromatic dispersion is
independent on the polarization direction (2.12). Under these assumptions, we
expand the expression of the two round-trip times:

τH = τH

(
ω+ + ω−

2

)
= 2L

c

[
nH

∣∣∣∣ω+
2

+ ω−
2
dn

dw

]
= τH

∣∣∣∣ω+
2

+ ω−
L

c

dn

dw

τV = τV

(
ω+ − ω−

2

)
= 2L

c

[
nV

∣∣∣∣ω+
2

− ω−
2
dn

dw

]
= τV

∣∣∣∣ω+
2

− ω−
L

c

dn

dw

(5.20)

The expression of the cavity function becomes:

fcav(ω+, ω−) =
√

1−RH

√
1−RV

exp
iω+

4

τH ∣∣∣∣ω+
2

+ τV

∣∣∣∣ω+
2

 exp
iω−2

τH ∣∣∣∣ω+
2

− τV
∣∣∣∣ω+

2

+ ω−
dn

dw



[
1−RH exp

(
iτH

ω+ + ω−
2

)][
1−RV exp

(
iτV

ω+ − ω−
2

)]
−1

(5.21)

5.3.1 Cavity function in the absence of dispersion and
birefringence

In the case of absence of birefringence and dispersion (τH = τV = τ), and for cavity
mirrors reflectivities RH = RV = R, the expression (5.21) simplifies into:

fcav(ω+, ω−) =
(1−R) exp

(
iω+τ/2

)
(

1−R exp {iτ(ω++ω−
2 )}

)(
1−R exp {iτ(ω+−ω−

2 )}
) (5.22)

The numerator term includes a global phase term, proportional to ω+. The
denominator is the product of two sinusoidal functions in ω+/2, translated of
±ω−/2.

Figure (5.6) illustrates the cavity function in the (ω+, ω−) basis, for R = 0.27
and R = 0.8.
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Figure 5.6 – Two photon cavity emission function in (ω+, ω−) for R = 0.27 (a,
b) and R = 0.8 (c, d).
(a, c) Squared absolute value.
(b, d) Phase.

Due to the arguments ω+/2 ± ω−/2 of the sinusoidal function in (5.22), the
periodicity of the cavity function along ω+ and ω− is two times the value of signal
and idler free spectral range. This comes from the definition of this rotated basis
(2.3), which implies that ∆ω+ = ∆ω− = ∆ω1 + ∆ω2, and thus:

ω+,fsr = ω−,fsr = ω1,fsr + ω2,fsr (5.23)

In the absence of birefringence and chromatic dispersion, signal and idler free
spectral range coincide (ω1,fsr = ω2,fsr = ωfsr) and the expression (5.23) simplifies
into:

ω+,fsr = ω−,fsr = 2ωfsr (5.24)

For a constant ω+, we distinguish along ω− two different Fabry-Perot patterns,
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depending on weather ω+ is an even or odd multiple of the cavity free spectral
range.

As reference for the phase profiles shown in figure (5.6 b, d), we choose that
the cavity function at (ω−, (ω+ − ωoffset)/ωfsr) = (0, 0) has a phase of zero.

If ω+ = mωfsr, m even, the Fabry-Perot along ω− has a peak centered in
ω− = 0 and all the peaks share a phase of 0 (e.g. m = 0, 2, 4 in figure). We define
this pattern as resonant state.

If ω+ = nωfsr, n odd, the Fabry-Perot along ω− has two maxima in ω− = ±ωfsr,
with a minimum at ω− = 0. Its peaks share a phase of π (e.g. m = 1, 3, 5 in figure).
We define this pattern as anti-resonant state.

Both states have a multi-peak spectrum as a classical frequency comb and can
be defined as biphoton combs. Resonant and anti-resonant combs are perfectly
symmetric around the degeneracy frequency ω− = 0, but the arrangement of the
resonances with respect to ω− = 0, is different.

In the resonant comb, the resonances are disposed at even multiples of the
cavity free spectral range (ωfsr = 0,±2,±4 in figure (5.6)). Conversely, in the
anti-resonant frequency comb, the resonances correspond to odd multiples of the
cavity free spectral range (ωfsr = ±1,±3,±5 in figure (5.6)).

This difference is essential for the manipulation of the two combs, which we
will present in chapter (6).

5.3.2 Birefringence effect
The effect of birefringence on the cavity function is to translate the chessboard
pattern along the anti-diagonal direction in the (ω+,ω−) space. We consider a
cavity without chromatic dispersion and with birefringence ∆n, defined as:

∆n = nH − nV (5.25)

Signal (H) and idler (V) resonances, introduced in (5.8), are given by:

ωH,m = m

2π c

nH2L


ωV,m = m

2π c

nV 2L

 = m

2π c

(nH + ∆n)2L

 (5.26)

The idler resonances decrease with the birefringence, so that the peaks of the
cavity function fcav(ω1, ω2) translate vertically downwards.

In the (ω+, ω−) space, while birefringence defined as (5.25) increases, fcav(ω+, ω−)
translates along the anti-diagonal, top-left to bottom-right verse.

We illustrate this effect in [186], an animated plot of the cavity function norm
and phase versus the dephasing accumulated between signal and idler modes after
one round-trip, due to birefringence. We see that, while birefringence increases,
idler resonances ωV,m may superpose to lower-order signal resonances, such as
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ωH,m−1 or more ωH,m−k. In these fortuitous cases, the pattern of the birefringent
cavity function is the same as in the case of no birefringence.

However, in general birefringence reduces the mirror-symmetry of fcav(ω1, ω2)
around the degeneracy frequency, i.e. the mirror-symmetry of fcav(ω+, ω−) with
respect to ω− = 0. As signal and idler become more distinguishable, the amplitude
of the interference of the biphoton with itself reduces, and thus the possibility of
manipulate the state. We will illustrate the impact of birefringence to the biphoton
auto-correlation properties in the next chapter, in section (6.6).

5.3.3 Dispersion effect
In the case of a dispersive cavity, signal and idler resonances are given by:

ωH,m = m

2π c

nH(ω)2L


ωV,m = m

2π c

nV (ω)2L

 (5.27)

In the case of a cavity with normal (anomalous) dispersion, the distance among
consecutive resonances, i.e. the free spectral range, decreases (increases) with the
frequency. Being proportional to ω2

−, the dispersion effect becomes important for
large values of ω−, accessible to large-band biphoton states.

5.4 Simulated cavity function for the AlGaAs
source

In this section we calculate the cavity function of our integrated AlGaAs source.
As we proceed numerically, we do not need to make any approximation on the
waveguide dispersion and we use directly equation (5.15). We use the modes
dispersion calculated numerically by using Lumerical MODE (2.1) and their
reflection coefficients at the input and output facets calculated via a 3D-FDTD
simulation (5.2). We suppose the typical length of our sources, 2mm, set during
the cleaving operation.

We present a zoom of the calculated cavity function in figure (5.7). From
equation (5.13), we find that the linewidth of the peaks of the absolute value of
the cavity function (∆ωFWHM ) is half of the free spectral range. From the data of
figure (5.7), we find that the cavity function linewidth is ∆ωintensityFWHM = 0.36∆ωfsr
and finesse F = 2.78. This value is compatible with the resolution of two adjacent
peaks for a 2mm long waveguide.

We also notice that, in comparison with the ideal cavity case in figure (5.6 a,
b), the chessboard patterns is slightly translated to the left with respect to the
ω− = 0 central axis, as a consequence of birefringence. The effects of the cavity
chromatic dispersion are not visible over this narrow ω− frequency range.
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Figure 5.7 – Two photon cavity emission function of our AlGaAs source (ωoffset =
2444.85THz).
(a) Modulus squared.
(b) Phase.

We retrieve the expression of the JSA of the biphoton state emitted by our
source by multiplying the JSA previously found in (2.3) by the cavity term (5.21):

C(ω+, ω−) = φpump(ω+)φPM(ω+, ω−)fcav(ω+, ω−) (5.28)

with the biphoton state normalization:

1 = η =
∫∫

dω−dω+C(ω+, ω−)C∗(ω+, ω−)

=
∫∫

dω−dω+φpumpφ
∗
pumpφPMφ

∗
PMfcavf

∗
cav

(5.29)

In the JSA expression (5.28), we can think of the pump spectral profile
(φpump(ω+)) as a filter that selects specific regions of the phase matching (φPM (ω+, ω−))
and cavity (φPM(ω+, ω−)) functions.

In this section we study the JSA in the CW monochromatic pump regime. In
the commentary of paragraph (5.3.1) emerges the interest of using a monochromatic
pump beam (or, more generally, a pump with a spectral profile narrower than
the linewidth along ω+ of the Fabry-Perot peaks), capable of generating quantum
states that include only 0 phase peaks or π phase peaks. As we will present in
the next chapter, these quantum states can be used for the manipulation of the
state symmetry. We underline that this property is unique of CW monochromatic
pumping and frequency-entanglement. If we consider a large bandwidth optical
beam going through the cavity, its spectral profile would have alternating 0 phase
peaks and π phase peaks (as in figure (5.4)), incompatible with the manipulation
protocol proposed in this work, presented in chapter (6).
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A monochromatic pump spectral profile can be modeled with a Lorentzian
function (2.5). By using the general expression of the phase matching term (2.18),
the JSA reads:

C(ω+, ω−) = φpump(ω+)φPM(ω+, ω−)fcav(ω+, ω−)

= 1
π

∆ωL/2
(ω+ − ωp)2 + (∆ωL/2)2
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(5.30)

and the corresponding biphoton state:

|Ψ〉 =
∫∫

dω+dω−C(ω+, ω−)â†H
(
ω+ + ω−

2

)
â†V
(
ω+ − ω−

2

)
|0〉 (5.31)

Joint Spectral Amplitude in the CW monochromatic pumping regime

If the pump spectral linewidth is much smaller than the linewidth of the Fabry-
Perot peaks along ω+, we can approximate the pump Lorentzian profile to a
Dirac delta distribution centered in ω+ = ωp. This approximation holds for the
monochromatic pump laser (TOPTICATM Photonics DL pro 780) and AlGaAs
waveguide (L ∼ 2mm) used in this work, for which ∆νp ∼ 100kHz << ∆νfsr ∼
20GHz.

By rewriting the pump term as done in (2.5), the biphoton state simplifies into:

|Ψ〉 =
∫
dω−φPM(ωp, ω−)fcav(ωp, ω−)â†H

(
ωp + ω−

2

)
â†V
(
ωp − ω−

2

)
|0〉 (5.32)

so that we can introduce a reduced JSA, that for a given ωp depends only on
ω−:

C(ωp, ω−) = φPM(ωp, ω−)fcav(ωp, ω−) (5.33)
with for a general cavity:

fcav(ωp, ω−) =
√

1−RH

√
1−RV

exp
{
iωp4

[
τH

(
ωp
2

)
+ τV
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2
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(
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)
(5.34)
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If the cavity has no birefringence and dispersion, given RH = RV = R:

fcav(ωp, ω−) =
(1−R) exp

(
iωpτ/2

)
(

1−R exp {iτ(ωp+ω−
2 )}

)(
1−R exp {iτ(ωp−ω−

2 )}
) (5.35)

We see in equation (5.35) that, for a given reflectivity and round-trip time, the
cavity function along ω− depends only on the pump frequency ωp. Following the
commentary to figure (5.6), we focus on two periodical values of pump frequency,
for which the cavity function (5.35) takes real values and its degeneracy frequency
(ω− = 0) is either resonant or anti-resonant with respect to the cavity:

ωp = 2n∆ωfsr, resonant state
ωp = (2n+ 1) ∆ωfsr, anti-resonant state

(5.36)

with n an integer number.
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Figure 5.8 – Resonant and anti-resonant cavity functions, as defined in (5.35,
5.36), for R=0.8 (black) and R=0.27 (grey).

We represent the resonant and anti-resonant cavity functions, for two values of
cavity modal reflectivities, in figure (5.8). The resonant function has a maximum
in ω− = 0 and is positive (phase of 0), while the anti-resonant function has a
minimum in ω− = 0 and is negative (phase of π).

The resonant function has been introduced for the first time by Ou and
coworkers [101], defined as a biphoton mode-locked state. The anti-resonant state
has been introduced by Olindo and colleagues in [187], generated using a slightly
different optics setup, with two individual cavities for signal and idler, both placed
after the nonlinear source. However, to our best knowledge, the anti-resonant
function has never been investigated in the frequency space or proposed as a tool
for the manipulation of the biphoton state symmetry, as we will demonstrate in
the next chapter.
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5.5 Characterization of the biphoton Joint Spectral
Intensity via Stimulated Emission Tomography

To demonstrate that we can generate either resonant or anti-resonant frequency-
comb states, we experimentally reconstruct their Joint Spectral Intensity (JSI).
The JSI is the squared norm of the JSA and gives the probability density that
signal and idler photons are detected at a specific combination of frequencies
(ω1, ω2).

The JSI can be measured in a signal-idler coincidence setup that makes use of
dispersive fibers, which associate signal and idler frequencies to specific arrival times.
However, single-photon detectors have a limited time resolution, in the order of
100ps for APDs (Avalanche PhotoDiodes) and 10ps for SNSPDs (Superconducting
Nanowire Single-Photon Detectors). It follows that this direct method cannot
detect the spectral feature of the JSI with a high resolution.

An alternative approach to reconstruct the JSI is offered by Stimulated Emission
Tomography (SET). SET has been proposed by Liscidini and Sipe in [117],
experimentally demonstrated in our group [188, 151] and nowadays is a widely
used technique in the quantum optics community. The principle of SET is to use
Difference Frequency Generation (DFG) to emulate SPDC. A pump beam and
a monochromatic beam at ωs (named seed), are sent in a nonlinear crystal. An
idler beam is generated via DFG and its intensity spectral profile is acquired by
an Optical Spectrum Analyzer (OSA). Liscidini and Sipe demonstrate that the
spectral power of the idler beam at ω2 is proportional to value of the JSI of a
biphoton in (ωs, ω2) that would be generated via an SPDC process carried out by
using the same pump beam. By sweeping the seed frequency ωs and acquiring
the idler spectra, it is possible to reconstruct the JSI in the whole signal and idler
frequency space. SET offers high spectral resolution and short measurement time.
The spectral resolution limit, instead of being related to the single photon response
time, is set by the OSA. In our case, we use a Yokogawa AQ6370C, which has a
spectral resolution of 20pm. The integration time is reduced because, given a seed
frequency ωs, a single scan of the OSA allows to reconstruct a cut of the JSI along
(ωs, ω2).

Given such advantages, we use the SET technique to reconstruct the JSI of
the biphoton frequency-comb emitted by our source.

5.5.1 Measurement of the Joint Spectral Intensity
Figure (5.9) illustrates the optical setup used to perform the SET. A CW diode
laser (TOPTICATM Photonics DL pro 780) provides a monochromatic pump
beam at 764.335nm (ωp = 2464.43THz) and 38mW. A telecom CW diode laser
(Tunics-PR) is used as seed beam. We scan the seed in the (1528.5nm,1600nm)
range, with steps of 40pm. Pump and seed beams are horizontally polarized by
means of two polarizers (P). After the waveguide, the emitted idler beam and the
transmitted pump and seed beams are collected by means of a microscope lens.
The pump beam is filtered by a chromatic filter (F), while a fibered polarizing



102 Cavity effect on the Joint Spectral Amplitude

Figure 5.9 – Sketch of the experimental setup for the JSI experiment. HM:
holographic mask, HWP: half-wave plate, P: polarizer, PC: polarization controller,
FC: fiber coupler, DM: dichroic mirror, TC: temperature controller, F: low-pass
filter, PBS: polarising beam splitter, OSA: optical spectrum analyzer.

beam splitter (PBS) is used to send the idler beam in the OSA and the seed
beam in the powermeter, to monitor that its power is constant during the whole
experiment. We set the OSA spectral resolution to 20pm and intensity sensitivity
to 1pW (HIGH3 option for Yokogawa AQ6370C).

At each frequency of the seed, we set the OSA to acquire an idler spectra on a
200pm range. To automatize the measurement, before each acquisition our program
centers the OSA scan to the maximum of the idler spectrum. The idler spectra
maxima are inferred from the acquisition of two idler spectra, corresponding to
the seed minimum and maximum wavelengths.

Figure (5.10) shows a zoom of the performed measurement, in the seed range
of (1554nm, 1556nm). We find seed and idler free spectral ranges of ∆ωfsr =
120.6GHz (νfsr = 19.2GHz, λfsr ≈ 150pm at 1555nm), compatible with the
previous measurement (5.3) and simulation (5.7).

We note that SET does not allow to measure the JSI at degenerate seed and
idler wavelengths. The splitting ratio of the PBS in figure (5.9) is not perfect
and a small part of the H-polarized seed power enters in the OSA input, together
with the power of the V-polarized idler beam. When seed and idler wavelengths
superpose, since seed power is much higher than idler one, the seed power hides
the idler power. Experimentally, we find that the measurement can be performed
for idler photons which are at least 1nm apart from the degeneracy point.

To generate a more intense idler beam, we amplify the seed CW laser (figure
(5.9)) by using a telecom C-band amplifier, working in the wavelength range
(1530nm, 1565nm). Since the degeneracy wavelength of our devices (ABQ71_C1
samples) is approximately 1530nm, we inject seeds photons at λseed > 1531nm,
and detect idler photons at λidler < 1529nm.
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Figure 5.10 – Example of a JSI measured via the SET technique, with seed steps
of 10pm (idler resolution of 20pm), and a pump wavelength of 764.335nm.

5.5.2 Resonant and anti-resonant frequency-comb states

By using SET, we experimentally validate the possibility of generating resonant
and anti-resonant states, shown in figure (5.8) and defined in equation (5.35).

In order to find the set of ωp corresponding to resonant and anti-resonant
states (5.36), we first perform a measurement of coincidences while finely tuning
the pump frequency. For a constant pump power within the cavity (assured by
monitoring the pump power after the waveguide), resonant and anti-resonant ωp
correspond to a local maxima in the coincidence rate (see the direct coincidence
measurement of figure (6.25), presented in the manipulation chapter).

Once we identify ωp of resonant and anti-resonant states, we perform SET.
Figure (5.11) shows the two JSI measurements corresponding to the resonant
(lower JSI) and anti-resonant (upper JSI) states. The resonant state is measured
for a pump wavelength of ωp = 2464.431± 0.033THz (λp = 764.335± 0.010nm),
while the anti-resonant for a pump wavelength of ωp = 2464.373± 32THz (λp =
764.353± 0.010nm).

Figure (5.12) is a zoom of this measurement, within the range of λseed ∈
(1539.4, 1540.5)nm, transposed in (ω+, ω−) basis and expressed in unit of signal
and idler free spectral range. We clearly see that the two patterns are out of phase,
corresponding to the resonant (R, top) and anti-resonant (AR, bottom) states.

5.5.3 Qudit state

The quantum state having the JSI reported in figure (5.10) can be seen as the
implementation of a frequency-encoded d-dimensional quantum state (qudit) [77]
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Figure 5.11 – Measured JSI of resonant (λp = 764.335nm ± 10pm) and anti-
resonant (λp = 764.353nm± 10pm) states, measured via SET technique, with seed
steps of 10pm.
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Figure 5.12 – Measured JSI of resonant (R) and anti-resonant (AR) states,
corresponding to λseed ∈ (1539.4, 1540.5)nm in figure (5.11), replotted in (ω+, ω−)
basis.

of the form:

|Ψ〉 =
d∑
i

ai |ωi, ωd−i〉 (5.37)

with (ωi, ωd−i) the peaks positions in signal and idler space, ai the peaks values
and d an integer that defines the biphoton bandwidth (imposed by the phase
matching function, according to the properties of the nonlinear source).

The qudit state can be an useful resource for quantum communication. One
of the main challenges in quantum communication is to deal with the losses
experienced by the photons while they travel in fibers across long distances (e.g.
hundreds of kilometers). A d-level encoding, rather than the qubits two-level
encoding, allows to transfer the same amount of information using a small amount
of carriers, thus reducing the impact of photon losses [105]. As instance, it has
been shown theorically that a Quantum Key Distribution (QKD) protocol based on
d-dimensional carriers offer a secret key rate and robustness to noise that increase
with d [189, 190]. Furthermore, a feasible QuDit QKD protocol has been proposed
in [191], where photon-counting spectrometers and phase modulators are used to
implement frequency and arrival-time measurements on the frequency entangled
modes shared between Alice and Bob.

The second feature of the state (5.37) is that it encodes information in the
frequency degree of freedom. Contrary to polarization encoding, frequency is not
vulnerable to polarization fluctuations occurring in standard (non polarization
maintaining) optical fibers. As a counterpart, the implementation of frequency



106 Cavity effect on the Joint Spectral Amplitude

QKD requires non trivial setup, like the photon-counting spectrometers proposed
in [191], more expensive than the typical setup used in polarization encoding QKD.



Chapter 6

Manipulation of the biphoton
state path symmetry

In this chapter we propose and demonstrate a scheme to generate frequency-comb
biphoton states whose frequency and path components have a specific symmetry
under particle exchange. This scheme is based on a type-II SPDC nonlinear process
pumped by a monochromatic beam, a cavity and a delay line.

We analyze this scheme using three complementary descriptions:

1. Path-frequency, in which we explicitly calculate the wavefunction of the
biphoton state as it propagates through the optical setup.

2. JSA symmetry, where we focus on the symmetry of the biphoton JSA.

3. Time-path, where we use Feynman space-time paths, by extending an analysis
made by Ou in reference [101].

In the last part of the chapter, we implement this scheme by using an AlGaAs
waveguide, which integrates the nonlinear source and the cavity. We demonstrate
symmetry control by performing a HOM interference experiment.

6.1 Background and principle
Biphoton states entangled in more than one degree of freedom (DOF) have already
demonstrated to be useful resources for quantum information [192]. As instance,
for biphoton states containing two degrees of freedom (DOFs), the symmetry of
the first DOF can be manipulated by accessing to the second one of the biphoton
state.

So far, schemes based on either spatial distribution of the pump electric-field
[193] or Orbital Angular Momentum (OAM) [194] have been realized. However,
such schemes are not easily integratable, since spatial filtering and manipulation
are hard to achieve in fully integrated devices such as waveguides and optical
fibers.
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In the prospective of future on-chip miniaturization, frequency is a good
candidate as a manipulating DOF, since it is robust against decoherence and can
be manipulated using on-chip electro-optic modulators and filters. In analogy to
the symmetry manipulation based on the electric field spatial distribution or OAM,
the frequency space has to be discretized to be used as a resource for the state
symmetry manipulation. The discretization of the biphoton frequency space can
be achieved by placing a cavity after or around a nonlinear source (see chapter
(5)). In this work we use a more compact solution exploiting an AlGaAs waveguide
that acts at the same time as the nonlinear material and the cavity.

Figure 6.1 – Scheme for the manipulation of a biphoton frequency-comb state.
An AlGaAs waveguide, implementing a type-II SPDC crystal and a Fabry-Perot
cavity, is used to generate a biphoton frequency-comb state. A polarizing beam
splitter (PBS) separates the two orthogonally polarized photons into two arms
(a, b). A half-wave plate (HWP) makes the two photons indistinguishable in
polarization and a delay line, represented by two movable mirrors in b, introduces
a delay (τ) between the two photons. To read the result of the state manipulation,
a beam splitter (BS) makes the biphoton state interferes with itself. The result of
the interference is measured in a temporal correlation measurement (C) performed
using two single-photon detectors.

The manipulation scheme is shown in the sketch of figure (6.1). We pump an
AlGaAs chip with a monochromatic pump beam at the frequency ωp to generate
a frequency-comb biphoton state, entangled in both frequency and polarization.
Given that signal and idler are orthogonally polarized, the polarization DOF can
be easily transformed by a polarization beam splitter (PBS) into a path DOF. In
our optical setup, the two paths correspond to the interferometers arms, indicated
by a and b. By introducing a length difference among a and b, we introduce
a delay between signal and idler photons. For specific values of this delay, the
wavefunction symmetry in frequency and path can be manipulated.

At time delays τ odd multiple of half the cavity round-trips, the path part
of the resonant (anti-resonant) frequency-comb state is a |Ψ+〉 (|Ψ−〉) Bell state.
Since |Ψ+〉 (|Ψ−〉) is symmetric (anti-symmetric), we refer to this state as bosonic
(fermionic).

To read the outcome of the manipulation scheme, we rely on Hong-Ou-Mandel
interference. The symmetry of the path part of the state determines the behavior
of the biphoton state when it interferes with itself in a beam splitter (BS) in a
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coincidence measurement. A bosonic biphoton condenses on a single path mode:
the two photons exit from the same arm of the beam splitter (bunching). On the
contrary, in the case of a fermionic state, the beam splitter is transparent for the
biphoton state: the two photons exit from different output paths (anti-bunching).

6.2 Path-frequency description
In this section we explicitly calculate the wavefunction of the emitted biphoton
frequency-comb state while it propagates through the HOM setup shown in figure
(6.1). The goal is to illustrate the manipulation of the symmetry and path
components of the state.

Our source emits a biphoton state |Ψ〉 entangled in both polarization |ψpolarization〉
[160] and frequency |ψfrequency〉 via a type-II SPDC process in a CWmonochromatic
pump regime. The frequency distribution of the two entangled photons is described
by the JSA function, which in the following we indicate as CH,V (ω1, ω2).

The source implements collinear SPDC and the photon pairs are emitted along
the direction and sense of propagation of the pump beam, which propagates back
and forth in the waveguide as it is reflected at its input and output facets. We
only collect the photon pairs coming from the waveguide output facet, discarding
the photons emitted from the waveguide input facets. So we post-select only signal
and idler photons that are in the same path mode, namely the waveguide input to
output direction.
By taking into account both polarization and frequency DOFs, following the type-II
phase matching process, the wavefunction of the emitted state reads:

|Ψ〉 = 1√
2

∫∫
dω1dω2CH,V (ω1, ω2)â†H(ω1)â†V (ω2) |00〉

= 1√
2

∫∫
dω1dω2CH,V (ω1, ω2) |H,ω1〉 |V, ω2〉

(6.1)

where â†H(ω1) and â†V (ω2) are the creation operators for signal and idler photons,
respectively.

We observe that when the JSA function CH,V (ω1, ω2) is perfectly mirror
symmetric with respect to the degeneracy frequency (i.e. CH,V (ω1, ω2) = CH,V (ω2, ω1)),
the state (6.1) can be written as a the sum of Bell states |Ψ+〉:

|Ψ〉 =
∫∫
D

dω1dω2CH,V (ω1, ω2)
(
|H,ω1〉 |V, ω2〉+ |V, ω1〉 |H,ω2〉

)

=
∫∫
D

dω1dω2CH,V (ω1, ω2)
∣∣∣Ψ+, ω1, ω2

〉
(6.2)

with:
D = { (ω1, ω2)| ω1 > 0, ω2 > ω1} (6.3)
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Analogously, when CH,V (ω1, ω2) is perfectly mirror anti-symmetric with respect
to the degeneracy frequency, the state can be decomposed into Bell states |Ψ−〉:

|Ψ〉 =
∫∫
D

dω1dω2CH,V (ω1, ω2)
(
|H,ω1〉 |V, ω2〉 − |V, ω1〉 |H,ω2〉

)

=
∫∫
D

dω1dω2CH,V (ω1, ω2)
∣∣∣Ψ−, ω1, ω2

〉)
(6.4)

On the contrary, when CH,V (ω1, ω2) does not possess any mirror symmetry
with respect to degeneracy point (i.e. CH,V (ω1, ω2)CH,V (ω2, ω1) = 0 ∀ (ω1, ω2)),
the state cannot be decomposed in a Bell states basis since it lacks of polarization
entanglement (even if, as long as it satisfies CH,V (ω1, ω2) 6= CH(ω1)CV (ω2), it has
frequency entanglement).

The analysis of these three examples shows us that, in a biphoton state emitted
by a type-II SPDC process, the degree of entanglement and the symmetry of the
polarization state depend on the JSA symmetry on the ω− = ω1 − ω2 direction.

More generally, we can rewrite the state in equation (6.1) using the Bell states
|Ψ+〉,|Ψ−〉 as a basis:

|Ψ〉 = 1√
2

∫∫
dω1dω2

CH,V (ω1, ω2)
2

(
2 |H,ω1〉 |V, ω2〉+

+ |V, ω1〉 |H,ω2〉 − |V, ω1〉 |H,ω2〉
)

= 1√
2

∫∫
dω1dω2

CH,V (ω1, ω2)
2

( ∣∣∣Ψ+, ω1, ω2
〉

+
∣∣∣Ψ−, ω1, ω2

〉) (6.5)

when the JSA is anti-symmetric, the integral in |Ψ+, ω1, ω2〉 is zero and the
state is given by a sum of |Ψ−, ω1, ω2〉 states (equation (6.2)). Viceversa, when the
JSA is symmetric, the integral in |Ψ−, ω1, ω2〉 is zero and the state is given by a
sum of |Ψ+, ω1, ω2〉 states (equation (6.4)).

While taking into consideration this decomposition of the state, we describe its
propagation in the optical setup shown in figure (6.1).

A polarising beam splitter (PBS) separates the two orthogonally polarized
photons into two paths. As instance, let us suppose that the horizontally polarized
photon is transmitted in the path a, while the vertically polarized photon is
reflected in the path b. The associated transformation is:|H〉 → |aH〉|V〉 → i |bV 〉

(6.6)

We suppose that the state (6.1) is entangled in polarization (i.e. CH,V (ω1, ω2)
is symmetric with respect to the degeneracy frequency). In this case, the PBS
transforms the polarization entanglement into path entanglement. The biphoton
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state is now path entangled among the two interferometer arms, the upper arm a
and lower arm b, as labeled in the scheme of figure (6.1). The state is:

|Ψ〉 = |ψpath〉 ⊗ |ψfrequency〉 = i√
2

∫∫
dω1dω2CH,V (ω1, ω2) |aH , ω1〉 |bV , ω2〉

(6.7)
To make the two photons indistinguishable, we place a half-wave plate (HWP) in
the path a to rotate the polarization of the incoming photon by π/2, according to
the transformation: |aH , ω1〉 → |aV , ω1〉

|bV , ω2〉 → |bV , ω2〉
(6.8)

To keep a light notation, we omit the global phase term resulting from this
polarization rotation since it does not affect the symmetry of the biphoton state.
As the two photons are now in the same polarization state, we can omit the
polarization labels and only use the path ones:

|Ψ〉 = i√
2

∫∫
dω1dω2CH,V (ω1, ω2) |a, ω1〉 |b, ω2〉 (6.9)

We introduce an optical delay in arm b, so the two photons are delayed by
τ = t2 − t1:

|a, ω1〉 → e−iω1t1 |a, ω1〉
|b, ω2〉 → e−iω2t2 |b, ω2〉 = e−iω2(t1+τ) |b, ω2〉

(6.10)

The biphoton state after the temporal delay line is:

|Ψ〉 = i√
2

∫∫
dω1dω2e

−i(ω1+ω2)t1e−iω2τCH,V (ω1, ω2) |a, ω1〉 |b, ω2〉 (6.11)

We now suppose to pump the device in CW regime. In this case the condition
ω1 +ω2 = ωp determines a strong anti-correlation along the anti-diagonal direction
ω− = ω1 − ω2. At a fixed pump frequency, the frequency state depends only on
the variable ω−, as we can approximate ω+ → ωp. Thus we express the JSA in the
45◦ rotated frequency basis (ω+,ω−), according to transformation (2.3).

To highlight the role of the cavity, for the moment we ignore the phase matching
contribution by supposing a negligible phase-mismatch ∆k = 0 (i.e. the phase
matching term is unitary over an infinite bandwidth). In the case of our source,
the JSA expressed in (5.30) simplifies into:

CH,V (ω+, ω−) = δ(ω+ − ωp)fcav(ωp, ω−) (6.12)

where we fcav(ωp, ω−) is the cavity emission function defined in (5.35).
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The double integral in equation (6.11) simplifies into a single integral which
depends only on the frequency difference ω−:

|Ψ〉 = i√
2
e−iωp(t1+τ/2)

∫
dω−fcav(ωp, ω−)eiω−τ/2

∣∣∣∣a, ωp + ω−
2

〉 ∣∣∣∣b, ωp − ω−2

〉
(6.13)

To keep a light notation, we rewrite the state vectors neglecting the biphoton
central frequency:

∣∣∣∣a, ωp + ω−
2

〉 ∣∣∣∣b, ωp − ω−2

〉
=
∣∣∣∣a, ωd + ω−

2

〉 ∣∣∣∣b, ωd − ω−
2

〉
→
∣∣∣∣a, ω−2

〉 ∣∣∣∣b,−ω−2
〉

(6.14)
Since the manipulation scheme relies on the discretization of the frequency

space, we start by considering the ideal case, given by a nonlinear cavity with
high-reflecting facets, with R→ 1.

In this case, we can approximate fcav(ωp, ω−) as a train of Dirac deltas functions
along ω−.

The position of the Fabry-Perot peaks depends on the biphoton state resonance
condition with respect to the cavity. We express ω− in unit of the cavity free
spectral range ∆ωfsr, given by:

∆ωfsr = 2π
τRT

(6.15)

with τRT previously defined in expression (5.4).
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Figure 6.2 – Sketch of the JSA in CW pumping regime for two different pump
frequencies. Blue (red) color indicates a positive (negative) amplitude.
(a) Resonant state.
(b) Anti-resonant state.
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Following the definition of ω− (2.3), the distance between consecutive Fabry-
Perot peaks in fcav(ωp, ω−) is 2∆ωfsr.

When the biphoton state is resonant (figure (6.2, a)), peaks are distributed at
odd multiple of ∆ωfsr:

fR(ω−) = 1
2d

d∑
m=−d

δ
(
ω− − 2m∆ωfsr

)
(6.16)

On the contrary, if the biphoton state is anti-resonant (figure (6.2, b)), the
central frequency ω− = 0, namely the degeneracy frequency ω1 = ω2 = ωd, does
not belong to the cavity resonances, which occupy the even multiple of ∆ωfsr
along ω−:

fAR(ω−) = 1
(2d− 1)

d−1∑
m=−d

δ
(
ω− − (2m+ 1)∆ωfsr

)
(6.17)

We remind that we can experimentally generate a resonant state or an anti-
resonant state by tuning the monochromatic pump frequency, as demonstrated in
section (5.5.2).

By substituting the expression of the cavity function (6.16) in (6.13), the state
reads:

|ΨR〉 = ie−iωp(t1+τ/2)

2
√

2d

d∑
m=−d

ei∆ωfsrτm |a,m∆ωfsr〉 |b,−m∆ωfsr〉 (6.18)

On the other hand, by substituting the anti-resonant JSA (6.17), we find:

|ΨAR〉 = ie−iωp(t1+τ/2)
√

2(2d− 1)

d−1∑
m=−d

ei∆ωfsrτ(m+1/2)
∣∣∣∣a,(m+ 1

2

)
∆ωfsr

〉 ∣∣∣∣b,−(m+ 1
2

)
∆ωfsr

〉
(6.19)

We see that the state path symmetry depends on the phases of the complex
exponential in the sum over the frequency modes.

Therefore, for a given cavity free spectral range ∆ωfsr, we can manipulate such
symmetry by playing on two ingredients:

1. The biphoton resonance with respect to the cavity. The resonant condition
gives the state (6.18) and the anti-resonant condition the state (6.19)

2. τ , the time delay in the HOM interferometer.

Under the hypothesis that that the chromatic dispersion is negligible, the time
delay does not depend on the photon frequency τ(ω) = τ .

For the moment, we consider a time delay τ which is multiple of half of the
cavity round-trip. In these conditions, we expect the biphoton state to interfere
with itself, as Ou’s group explained and demonstrated in [101] in the resonant case.
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We further explore Feynman diagrams in section (6.4) and present a complementary
analysis in section (6.3), where we study the delayed biphoton JSA.

At τ = nτRT/2, the phases of the resonant states (equation (6.18)) become:

αR = ∆ωfsrτm = 2π
τRT

n
τRT
2 m = nmπ = (−1)mπ = π (6.20)

where the latter passage follows from the fact that n and m are integer numbers
and we consider a phase cycle of (−π, π) (i.e. −π = π). The state vectors have
the same coefficients, thus the path part of the state (6.18) is symmetric and the
state is bosonic.

On the other hand, the phases of the anti-resonant states (equation (6.19)) are:

αAR = ∆ωfsrτ
(
m+ 1

2

)
= 2π
τRT

n
τRT
2

(
m+ 1

2

)
= n

(
m+ 1

2

)
π (6.21)

For even values of n, this phase is a constant:

αAR = (−1)mπ = π (6.22)

While, for odd values of n, it takes alternating opposite values:

αAR = (−1)mπ2 (6.23)

so that the path part of the anti-resonant state (6.19) presents a fermionic
symmetry.

To summarize, at time delays that are multiples of the cavity round-trip τRT
(τ = τRT , 2τRT , ..), the path path of the state is bosonic independently on the state
resonance condition.

On the other hand, the most fascinating scenario occurs if:

1. The state is anti-resonant (figure (6.2 (b))

2. The time delay is an odd multiple of half of the cavity round-trip τRT/2
(τ = 1/2τRT , 3/2τRT , ..)

In this case, the path state acquires a fermionic symmetry.
We remind that, in both resonant and anti-resonant cases, the biphoton state

emitted by our source (equation (6.2)) has a symmetric JSA, corresponding to a
polarization (path after the PBS) part with a bosonic symmetry. If the time-delay
is an odd multiple of half of the cavity round-trip and the state is anti-resonant,
the path part of the state transforms from bosonic to fermionic. Since the biphoton
wavefunction must be bosonic, the JSA transforms from even to odd, as we show
in section (6.3).
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We underline that the use of a monochromatic pump and the resulting frequency
entanglement are necessary ingredients for the symmetry manipulation.

While the cavity patterns the biphoton frequency space into a chess-like board,
the CW pumping - through the energy conservation underlying the SPDC process -
is responsible for a frequency entangled state, with a strong anti-correlation feature
as shown in figure (6.3, a). In this case, the emitted state is either resonant (blue
color in figure) or anti-resonant (red color in figure), and the manipulation can
take place.
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Figure 6.3 – Sketches of the JSA of frequency entangled and unentangled states.
Blue (red) color indicates a positive (negative) amplitude.
(a) JSA of one entangled resonant state (blue) and JSA of one entangled anti-
resonant state (red). Both can be generated by a monochromatic pump beam.
(b) JSA of an uncorrelated state, generated by a large bandwidth pump.

Conversely, a short-pulse (large bandwidth) pumping regime would generate a
biphoton state with a lower or even zero degree of frequency entanglement (which
can be evaluated in a Schmidt modes decomposition). As instance, we show in
figure (6.3, b) a state that has no frequency entanglement. In this case, the
JSA function is a superposition of both resonant and anti-resonant states. The
biphoton quantum interference at the beam splitter would give both bunching
and anti-bunching, which compensate each other. As instance, this has been
demonstrated in [193], in a manipulation scheme of the polarization DOF based
on the engineering of the pump spatial distribution.

We progress now on the study of the evolution of the state. In the setup sketched
in figure (6.1), we see that after the interferometer delay line, the biphoton state
arrives at the 50/50 beam splitter, where it interferes with itself. This interference
depends on the symmetry under particle exchange of the path component of the
state [158, 157], so that we can consider the beam splitter as a reader of the
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biphoton path symmetry. Indeed, the beam splitter transforms a path symmetric
state (symmetric JSA) into a N00N (N=2) Fock state (|2〉 |0〉 + |0〉 |2〉), and a
path anti-symmetric state (anti-symmetric JSA) into a |1〉 |1〉+ |1〉 |1〉 Fock state.
Following transformation (1.28), the path wavevectors transform according to:

|a〉 →
1√
2(|a〉+ i |b〉)

|b〉 → 1√
2(i |a〉+ |b〉)

(6.24)

Applying the beam splitter transformation to equation (6.11), we find the
expression of the state after the beam splitter:

|Ψ〉 = i√
2

∫∫
dω1dω2e

−i(ω1+ω2)t1e−iω2τCH,V (ω1, ω2)[
i
(
|a, ω1〉 |a, ω2〉+ |b, ω1〉 |b, ω2〉

)
+
(
|a, ω1〉 |b, ω2〉 − |b, ω1〉 |a, ω2〉

)]
= i√

2

∫∫
dω1dω2e

−i(ω1+ω2)t1e−iω2τCH,V (ω1, ω2)
[
i |ψb〉+ |ψf〉

] (6.25)

The two possible outcomes are highlighted. The first is the N00N state with
N=2, which we label as |ψb〉 to indicate its bosonic nature. The second is the
anti-symmetric state, which we call as |ψf〉 to indicate its fermionic nature.

Equation (6.25) shows that the JSA symmetry determines the outcome of the
biphoton interference at the beam splitter. To evaluate the correlation between
the two paths a and b, we post-select the state |Ψ〉 choosing the fermionic state
|ψf〉. The relationships among the eigenvalues of |ψf〉 gives the correlation between
the two output ports of the beam splitter. When the JSA is symmetric, the
coefficients which multiply |a, ω1〉 |b, ω2〉 and |b, ω1〉 |a, ω2〉 are exactly the opposite,
so we expect a zero correlation. The two photons never exit from the same output
port: bunching occurs. On the other hand, when the JSA is anti-symmetric, these
coefficients are identical, so the paths correlation is the highest. If we consider a
normalized JSA, this correlation takes the value of one. We define this scenario
where the two photons always take different paths as anti-bunching.

To experimentally study the correlation between the two path modes, we place
one single-photon detector on the output port a and another single-photon detector
on the output port b (figure 6.1). This measurement scheme cannot detect the
bosonic state |ψb〉 so that it post-selects the state |Ψ〉, which becomes:

|Ψ〉 = i√
2

∫∫
dω1dω2e

−i(ω1+ω2)t1e−iω2τCH,V (ω1, ω2) |ψf〉

= i√
2

∫∫
dω1dω2A(ω1, ω2, τ) |ψf〉

(6.26)

where the term A(ω1, ω2, τ) groups the state dependence on the biphoton JSA
and HOM delay. For simplicity, we suppose that each detector has a flat frequency
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response within the biphoton frequency bandwidth. The operator associated to
the correlation measurement is [195]:

M̂ =
∫
dωaâ

†(ωa) |0〉a 〈0|a â(ωa)
∫
dωbb̂

†(ωb) |0〉b 〈0|b b̂(ωb) (6.27)

The correlation measurement leads to:

pab(τ) = 〈Ψ| M̂ |Ψ〉 =1
8

[ ∫
dω′1

∫
dω′2A

∗(ω′1, ω′2, τ) 〈ψf |
]
M̂
[ ∫

dω1

∫
dω2A(ω1, ω2, τ) |ψf〉

]
=1

8

∫
dω1

∫
dω2

∫
dω′1

∫
dω′2

∫
dωa

∫
dωbA

∗(ω′1, ω′2, τ)A(ω1, ω2, τ)[
δ(ω′1 − ωa)δ(ω′2 − ωb)− δ(ω′1 − ωb)δ(ω′2 − ωa)

]
[
δ(ω1 − ωa)δ(ω2 − ωb)− δ(ω2 − ωa)δ(ω1 − ωb)

]
(6.28)

After substituting A(ω1, ω2, τ), integrating along ωa, ωb, ω′1, ω′2 and using the
normalization of the JSA (|CH,V (ω1, ω2)|2 = |CH,V (ω2, ω1)|2 = 1), we can simplify
the former expression and obtain the well-known HOM correlation probability:

pab(τ) = 1
2

[
1−Re

[ ∫∫
dω1dω2C

∗
H,V (ω1, ω2)CH,V (ω2, ω1)e−i(ω1−ω2)τ

]]
(6.29)

Under the hypothesis of JSA with a mirror symmetry, equation (6.29) further
simplifies into:

pab(τ) = 1
2

[
1−Re

[ ∫∫
dω1dω2|CH,V (ω1, ω2)|2e−i(ω1−ω2)τ

]]
(6.30)

We see in equation (6.30) that the correlation probability depends on the
difference in frequency between signal and idler photons. We rewrite the JSA in
the (ω+, ω−) basis, following the transformation (2.3). Furthermore, we suppose
to be under CW pumping regime. Substituting the expression of the JSA (6.12),
the correlation probability simplifies into:

pab(τ) = 1
2

[
1−Re

[ ∫∫
dω+dω−C

∗(ω+, ω−)C(ω+,−ω−)e−iω−τ
]]

= 1
2

[
1−Re

[ ∫
dω−|fcav(ωp, ω−)|2e−iω−τ

]] (6.31)

where fcav is the cavity transmission function along ω−, at the pumping
frequency ωp. We note that equation (6.31) is a particular case of the HOM
coincidences probability expressed in (1.30) in the case of our source, i.e. a
waveguide-cavity under CW pumping regime.

High reflectivity and infinite bandwidth

In this paragraph we study the influence of the biphoton resonance condition on
the HOM interferometry measurement.
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As done previously, we consider an ideal cavity for which R→ 1, so that |fcav|2
can be written as a train of Dirac delta functions. When the state is resonant, the
analytical solution of the HOM correlation probability reads:

pR,ab(τ) ≈ 1
2

[
1− 1

2d

d∑
m=−d

Re
[ ∫

dω−δ(ω− − 2mω̄)e−iω−τ
]]

= 1
2

[
1− 1

2d

d∑
m=−d

cos(2mω̄τ)
]

= 1
2

[
1− 1

2d

d∑
m=−d

cos
(

4πm τ

τRT

)]
(6.32)

and in the anti-resonant case:

pAR,ab(τ) ≈ 1
2

[
1− 1

2d+ 1

d+1∑
m=−d

Re
[ ∫

dω−δ[ω− − (2m+ 1)ω̄]e−iω−τ
]]

= 1
2

[
1− 1

2d+ 1

d+1∑
m=−d

cos[(2m+ 1)ω̄τ ]
]

= 1
2

[
1− 1

2d+ 1

d+1∑
m=−d

cos
[
2(2m+ 1)π τ

τRT

]]
(6.33)

If the JSA is resonant (m = 2n, figure (6.2, b)), the cosine in equation (6.32)
is equal to 1 for every m, so pab(τ) = 0 and there is photon coalescence. Indeed,
the path part of the biphoton wavefunction at the beam splitter is symmetric. so
bunching occurs.

As before, we consider time delays which are multiple of half of the cavity
round-trip. By plugging τ = τRT (2n + 1)/2 (n ∈ N), for every m, the cosine in
equation (6.32) is equals to one, while the cosine in equation (6.33) is equals to
minus one.

The resulting correlation probability is:

pab

(
τRT (2n+ 1)

2

)
=

0 at resonance (figure (6.2, a))

1 at anti-resonance (figure (6.2, b))
(6.34)

In the case of a delayed resonant (anti-resonant) state we observe a HOM
coalescence (anti-coalescence) pattern, which confirms that bunching (anti-bunching)
occurs.

biphoton resonance Path Symmetry at BS Interference Outcome

Resonant Symmetric Bunching
Anti-resonant Anti-symmetric Anti-bunching

Table 6.1 – biphoton state features and corresponding outcome of the HOM
interference for odd half-cavity round-trip time delays.
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Table (6.1) summarizes the experimental HOM outcome as a function of the
biphoton state resonance condition and related symmetry of the path state at the
beam splitter for a delay of τ = τRT (2n+ 1)/2.

To conclude our path-frequency analysis, we comment briefly on the dimensionality
of the frequency-comb required for the manipulation of the state symmetry. We
can observe that the expressions of the correlation probability (6.32),(6.33) do not
depend on d, the number of comb teeth in the biphoton frequency state, given
that d ≥ 2.

In the bosonic scenario, the presence of a single comb tooth is enough. Indeed,
when the state is resonant (figure (6.2, a)), m = 2n. The trivial case m = 0,
corresponding to the presence of one resonance, is sufficient for the biphoton state
to exist and interference to take place.

In the fermionic scenario, the presence of at least two comb teeth is necessary.
When the state is anti-resonant (figure (6.2, b)), m = 2n + 1, so m ≥ 1, with
m = 1 corresponding to the presence of two resonances. As long as the bandwidth
of the biphoton state is larger than two times the cavity free spectral range, the
discretization of its JSA can take place.

It follows that the manipulation of the state symmetry does not require a
high-dimensional qudit. On the other hand, it is compatible with high-dimensional
frequency-comb states. The only requirements is that the birefringence is negligible
within the biphoton JSA bandwidth. Indeed, birefringence would degrade the
state symmetry and thus the interference visibility, as we will see in section (6.6).

6.3 Joint Spectral Amplitude symmetry description
Previously, we demonstrated how to manipulate the symmetry of the path part
of the state by following the evolution of the total biphoton frequency-comb
wavefunction. In this paragraph we propose a more compact demonstration based
only on the analysis of the wavefunction symmetry. The underlying principle is
that the biphoton wavefunction |Ψ〉 must posses a bosonic symmetry under particle
exchange, since photons, due to their integer spin, are bosonic particles [158]. After
the polarizing beam splitter (PBS in the scheme of figure (6.1)), as indicated in
equation (6.7), the biphoton state includes a frequency and a path component:
|Ψ〉 = |ψpath〉 ⊗ |ψfrequency〉. Therefore, if |ψfrequency〉 is symmetric, |ψpath〉 must be
symmetric as well. Viceversa, when |ψfrequency〉 is anti-symmetric, |ψpath〉 must be
anti-symmetric so that the total wavefunction |Ψ〉 is symmetric. By controlling the
symmetry of |ψfrequency〉, we can tune the symmetry of |ψpath〉, which is responsible
for the behavior of the biphoton state at the beam splitter: a symmetric |ψpath〉
gives bunching, while an anti-symmetric |ψpath〉 anti-bunching. In the following we
show how to control the symmetry of |ψfrequency〉 in a frequency-comb biphoton
state, by delaying one photon with respect to the other and finely tuning the
pumping wavelength with respect to the cavity resonances.

So let consider |ψfrequency〉 emitted by a nonlinear cavity source. As we can
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see in equation (6.37), |ψfrequency〉 is completely described by the biphoton JSA,
CH,V (ω1, ω2). Following the scheme in figure (6.1), we study how the JSA evolves
in the HOM experiment.

To simplify our demonstration, for the moment we also ignore the source
birefringence. In this condition, the JSA is mirror-symmetric along the degeneracy
direction (ω1 = ω2 = ωd), so we rewrite it as: CH,V (ω1, ω2) = CV,H(ω1, ω2) =
C(ω1, ω2). We separate the two photons by means of a PBS and make the
two polarization identical by means of a HWP. Then, we delay the first photon
(identified by the frequency ω1) with respect to the second one (identified by the
frequency ω2), by a time delay τ . While the biphoton Joint Temporal Amplitude
(JTA, the joint probability amplitude which gives the joint probability of detecting
signal and idler photons at time ts and ti) is translated in time, the JSA acquires
a phase proportional to ω1 and the accumulated delay τ :

C(ω1, ω2)→ Cτ (ω1, ω2) = C(ω1, ω2)eiτω1 (6.35)
We suppose that we are operating under CW pumping regime. We rewrite the

JSA in the (ω+, ω−) basis, according to the transformation (2.3). In the new basis,
the JSA reads:

Cτ (ω+, ω−) = C(ω+, ω−)eiτω+/2eiτω−/2 (6.36)
C(ω+, ω−) is the JSA of the state emitted by the cavity source. Its expression

in the (ω+, ω−) basis is given by equation (5.30). In CW pumping regime , we can
approximate φpump(ω+) ≈ δ(ω+ − ωp) and the biphoton state becomes:

|Ψ〉 =
∫∫

dω+dω−δ(ω+ − ωp)φPM(ω+, ω−)fcav(ω+, ω−)eiτω+/2eiτω−/2∣∣∣∣a, ω+ + ω−
2

〉 ∣∣∣∣b, ω+ − ω−
2

〉
=eiτωp/2

∫
dω−φPM(ωp, ω−)fcav(ωp, ω−)eiτω−/2

∣∣∣∣a, ωp + ω−
2

〉 ∣∣∣∣b, ωp − ω−2

〉
(6.37)

We see that the frequency part of the state is described by a reduced JSA,
which, for a given pump frequency, is a function of only ω−:

Cτ (ωp, ω−) = φPM(ωp, ω−)fcav(ωp, ω−)eiτω−/2 (6.38)

Since the symmetry of Cτ (ωp, ω−) determines the photons statistics, let us
analyze it by looking at the symmetry of each contributing term.

The phase matching term φPM(ωp, ω−) is a real function (see chapter (2)).
When the chromatic dispersion is negligible and the modal birefringence is zero, it
is symmetric with respect to ω− (equation (2.24)).

The cavity transmission function fcav(ωp, ω−), defined in (5.34), is a complex-
valued function∗. Under the hypothesis that the source has no birefringence, it is
a symmetric function, independently on the pumping frequency ωp. For simplicity,

∗when we define the parity of a complex-valued function f , we consider both real and imaginary
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in the following we consider the case in which H and V-polarized photons have the
same reflectivity. We also suppose that there is no chromatic dispersion, so the
expression of fcav(ωp, ω−) is given by equation (5.35).

The delay term eiτω−/2 is a complex-valued function as well. Its real part,
cos (τω−/2), is symmetric, while its imaginary part, sin (τω−/2), is anti-symmetric.
The interplay between the symmetric real part and the anti-symmetric imaginary
part allows the manipulation of the JSA symmetry.

The reason is that both fcav(ωp, ω−) and eiτω−/2 are periodic functions. fcav
has a periodicity given by the cavity optical length:

ΩRT = 2π/(τRT/2) (6.39)

While the period of eiτω−/2 depends on the accumulated delay τ :

Ωτ = 2π/(τ/2) (6.40)

As a consequence, when the state is anti-resonant respect to the cavity (see
equation (5.36) and figure (5.8)), by properly choosing the time delay τ , we reveal
the JSA imaginary part, which is anti-symmetric, while filtering out the even real
part, which is symmetric.

The evolution of the JSA with respect to the temporal delay is illustrated in
figure (6.4). The JSA Cτ (ωp, ω−) of a resonant and an anti-resonant state (equation
(6.38)) are illustrated for time delays of τ = 0 (a, b), τ = τRT/2 (c, d), τ = τRT (e,
f) and τ = 3τRT/2 (g, h). In the numerical calculation, we choose a cavity with a
high cavity reflectivity value by setting R = 0.95. For clarity, we only plot a zoom
of the JSA around ω− = 0. Thus the influence of the phase matching term, which
acts as an envelope that is slowly varying with ω−, is not visible.

Following the symmetry of the exponential term eiτω−/2, the real part of the
JSA (in blue) is a symmetric function, while its imaginary part (in red) is an
anti-symmetric function. Depending on the biphoton state resonance and delay
time τ , either the real or imaginary part of the JSA is filtered out.

Even if the cavity is placed before the delay line, we can think that, as R→ 1,
the cavity transmission function samples the exponential delay term. At lower
values of the cavity reflectivity the sampling effect still occurs, but its effect is
smeared along larger peaks in ω−.

On the left (insets (a),(c),(e),(g)), we show the resonant JSA. Its peaks are
disposed along ω− at multiple periods of ΩRT . There, independently on τ , the
exponential function is always real, so the JSA is symmetric.

Conversely, the anti-resonant state has a JSA which is either real (symmetric)
or imaginary (anti-symmetric) depending on τ , as we illustrate on the right (insets
(b),(d),(f),(h)). The reason is that the peaks of the anti-resonant state are placed
along ω− at half-periods of ΩRT . For τ = (2n + 1)τRT/2 (insets (d), (h)), the

parts:
f(x) symmetric (even) ⇔ Re[f(x)] = Re[f(−x)], Im[f(x)] = Im[f(−x)]
f(x) anti-symmetric (odd) ⇔ Re[f(x)] = −Re[f(−x)], Im[f(x)] = −Im[f(−x)]
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cavity samples the imaginary pat of the delay function , so the resulting JSA is
anti-symmetric. Viceversa, for τ = (2n)τRT/2 (insets (b), (f)), the cavity samples
the real part of the exponential function, so the resulting JSA is symmetric.

The same behavior occurs periodically at longer time delays which are either
even or odd multiples of the cavity half round-trip. We retrieve the same results
as in equation (6.34), which we summarize in the following scheme:

at τ = τRT (2n)
2

resonant state→ symmetric JSA→ bunching

anti-resonant state→ symmetric JSA→ bunching

at τ = τRT (2n+ 1)
2

resonant state→ symmetric JSA→ bunching

anti-resonant state→ anti-symmetric JSA→ anti-bunching
(6.41)

By following the evolution of the state spectral symmetry, we find the same
result as in the description of the complete wavefunction in the frequency and
path DOFs (6.34).

We study here the case of a cavity having lower reflectivity. In figure (6.5)
we plot the evolution of the JSA versus the time delay, emitted by a cavity with
R = 0.27. The previous considerations hold, but we expect that the effect of
symmetry manipulation is smeared out. The real and imaginary part of the JSA
have the same order of magnitude and opposite symmetry, so their contributes to
the state symmetry partially cancel out. Bunching and anti-bunching occur with
a probability that is no longer close to one, so the visibility of the HOM dip or
peak decreases.

We illustrate the continuous evolution of the JSA versus the accumulated time
delay in figure (6.6), for a reflectivity of R = 0.95.

In the resonant case (top insets), the JSA is real and symmetric at multiples
of half-cavity round-trip (τ = 0, 0.5τRT , τRT , 1.5τRT , 2τRT ) and imaginary and
anti-symmetric for values of time delay which are in between (τ = 0.25τRT , 0.75τRT ,
1.25τRT , 1.75τRT ).

The JSA of the anti-resonant state (bottom insets) has a periodicity along
τ that is double. In the anti-resonant case, the JSA is real and symmetric at
even multiple of half-cavity round-trip (τ = 0, τRT , 2τRT ), and imaginary and
anti-symmetric at odd multiples of half-cavity round-trip times (τ = 0.5τRT ,
1.5τRT ). The evolution of JSA with a lower reflectivity of R = 0.27 is illustrated
in figure (6.7). As we previously commented, we see that, at a specific time delay,
the JSA does not possess anymore a well-defined symmetry. Real (symmetric)
and imaginary (anti-symmetric) parts have the same order of magnitude, so the
visibility of the HOM replicas lowers.

To conclude our study, we can quantify the JSA symmetry with respect to the
ω− = 0 axis by introducing a parameter s. Since the JSA is a complex-valued



124 Manipulation of the biphoton state path symmetry

-0.3

0

0.3

-0.3

0

0.3

-0.3

0

0.3

-0.3

0

0.3

-0.3

0

0.3

-0.3

0

0.3

-0.3

0

0.3

-1 0 1 -1 0 1
-0.3

0

0.3

C
τ
(ω

p
,ω
−

)
Resonant

(a)

Anti-resonant

(b)

τ = 0

C
τ
(ω

p
,ω
−

)

(c) (d)

τ = 1
2τRT

C
τ
(ω

p
,ω
−

)

(e) (f)

τ = τRT

C
τ
(ω

p
,ω
−

)

ω− (ΩτRT )

(g)

ω− (ΩτRT )

(h)

τ = 3
2τRT

Figure 6.5 – Evolution of resonant (a, c, e, g) and anti-resonant (b, d, f, h) JSA
with respect to the delay time τ , calculated for a cavity reflectivity of R = 0.27.
In blue we indicate the JSA real part, in red the JSA imaginary part.
(a, b) τ = 0, (c, d) τ = τRT /2, (e, f) τ = τRT , (g, h) τ = 3τRT /2.



6.3 Joint Spectral Amplitude symmetry description 125

Re[Cτ (ω−, τ)]

0

1

2
Im[Cτ (ω−, τ)]

R
esonant

τ
(τ
R
T

)

ω−(ΩRT )
−1 0 1

0

1

2

A
nti-resonant

−1 0 1

−0.02 0 0.02

Re[Cτ (ω−, τ)]

0

1

2
Im[Cτ (ω−, τ)]

R
esonant

τ
(τ
R
T

)

ω−(ΩRT )
−1 0 1

0

1

2

A
nti-resonant

−1 0 1

−0.02 0 0.02

Figure 6.6 – JSA evolution versus time delay. R=0.95



126 Manipulation of the biphoton state path symmetry

Re[Cτ (ω−, τ)]

0

1

2
Im[Cτ (ω−, τ)]

R
esonant

τ
(τ
R
T

)

ω−(ΩRT )
−1 0 1

0

1

2

A
nti-resonant

−1 0 1

−0.003 0 0.003

Re[Cτ (ω−, τ)]

0

1

2
Im[Cτ (ω−, τ)]

R
esonant

τ
(τ
R
T

)

ω−(ΩRT )
−1 0 1

0

1

2

A
nti-resonant

−1 0 1

−0.003 0 0.003

Figure 6.7 – JSA evolution versus time delay. R=0.27



6.4 Time-path description 127

function, we define s by keeping into account both the real and imaginary parts of
the JSA:

s =
∫
dω−Re[Cτ (ωp, ω−)]Re[Cτ (ωp,−ω−)] + Im[Cτ (ωp, ω−)] Im[Cτ (ωp,−ω−)]

(6.42)
A normalized JSA gives s = 1 when it is symmetric and s = −1 when it is anti-

symmetric. It is trivial to show that two complex numbers z1 = a1+ib1,z2 = a2+ib2
satisfy the following property:

Re[z1]Re[z2] + Im[z1] Im[z2] = a1a2 + b1b2 = Re[z∗1z2] (6.43)

By applying this property to the definition of s (6.42) and substituting the
delayed JSA (6.38), we find that s gives the HOM correlation probability according
to:

pab(τ) = 1
2[1− s] (6.44)

Interestingly, starting from the study of the JSA symmetry, we retrieve the
equation that describes the HOM interference pattern. We conclude that, for our
biphoton state encoded in both frequency and path (polarization) DOFs, the HOM
pattern is a reader of the symmetry of the frequency part of the state, following
the trail of previous works [158, 159, 196].

6.4 Time-path description
In this paragraph we complete our study by an analysis based on time and path
DOFs.

The expressions (6.18) and (6.19) show that the manipulation of the path
symmetry occurs at time delays that are odd multiples of half of the cavity round-
trip (τ = (2n+ 1)τRT/2). The occurring of biphoton interference at these values
of τ is an unique feature of entangled frequency-comb states, as concluded by
Ou’s group in their seminal work about biphoton mode-locked states [101]. A
nonlinear cavity reflects each photon an unknown number of times before emitting
it. The biphoton state emitted from the cavity is given by the superposition of
many temporal biphoton quantum paths.

Among these paths, some are identical in the sense that they are indistinguishable
from the point of view of the two detectors. Indistinguishable paths interfere with
each other and the resulting amplitude determines the outcome of the two entangled
photons at the beam splitter output.

Ou’s work makes use of Feynman path diagrams to portray the biphoton state
in space-time and illustrate which biphoton quantum paths are indistinguishable
and interfere.

For example, figure (6.8) shows two indistinguishable paths for the time delay
of τ = τRT/2.



128 Manipulation of the biphoton state path symmetry

Figure 6.8 – Feynman space-time paths of two indistinguishable biphoton
probability amplitudes corresponding to the anti-bunching situation. The
waveguide is a nonlinear cavity and emits a SPDC type-II frequency-comb biphoton
Bell state. V-polarized photon (blue) and H-polarized photon (green) are separated
into paths a and b by a PBS (here not indicated). The V-polarized photon in path
b is delayed by τ = τRT /2 with respect to the H-polarized photon in path a.
(I) H-polarized photon is emitted after a round-trip from the waveguide output
facet. Both photons are reflected at the BS.
(II) H and V-polarized photons are emitted at the same instant. Both photons are
transmitted at the BS.
Paths and polarization legends are shown on the left.

In scenario (I), the H-polarized photon is emitted one round trip later than
the V-polarized photon. The V-polarized photon is delayed by τ = τRT/2 in the
interferometer arm b and its polarization is turned by a HWP. At the BS both
photons are reflected, so the detector Da in path a registers a photon count at
τ = τRT − τRT/2 = τRT/2 before that the detector Db detects the other photon in
path b.

Scenario (II) presents two differences compared to scenario (I). Firstly, both
H and V-polarized photons are emitted at the same time from the waveguide.
Secondly, both photons are transmitted at the BS.

Nevertheless, from the detectors point of view, the scenarios (I) and (II) are
indistinguishable: in both of them, the detector Da registers a photon count at an
instant τ = τRT/2 before that the detector Db does. Interference raises from the
indistinguishability of the two paths [101].

By showing that the two paths are indistinguishable, Ou justifies why interference
occurs.

We now use Feynman diagrams to predict the outcome of HOM interference.
In particular, we predict the probability that the biphoton state undergoes

anti-bunching at the beam splitter when the idler photon (V-polarized) is delayed
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by half cavity round-trip with respect to the signal photon (H-polarized). We start
by calculating the probability amplitudes corresponding to scenarios (I) and (II)
of figure (6.8). Therefore, the sum of (I) and (II) probability amplitudes gives the
anti-bunching probability amplitude.

In doing so, we approximate the frequency of the two photons to the biphoton
wavepacket carrier frequency, which is the central (degeneracy) frequency ωpump/2 =
ωd. The beam splitter transforms the probability amplitude according to the
transformation matrix expressed in equation (1.28).

In scenario (I), the single photons probability amplitudes evolve as:|a,H〉
Cavity−−−→ eiωdτRT |a,H〉 R at BS−−−−→ i eiωdτRT |b,H〉

|b, V〉 Delay−−−→ eiωdτRT /2 |b, V〉 HWP−−−→ eiωdτRT /2 |b,H〉 R at BS−−−−→ i eiωdτRT /2 |a,H〉
(6.45)

The biphoton amplitude (I) is the product of the two photons amplitudes:

aI = (i eiωdτRT |b,H〉)(i eiωdτRT /2 |a,H〉) = −eiωdτRT 3/2 |a, b〉 (6.46)

where we omit the polarization label since the two photons are in the same
polarization state.

Similarly, we calculate the probability amplitudes of scenario (II):

|a,H〉
T at BS−−−−→ |a,H〉

|b, V〉 Delay−−−→ eiωdτRT /2 |b, V〉 HWP−−−→ eiωdτRT /2 |b,H〉 T at BS−−−−→ eiωdτRT /2 |b,H〉
(6.47)

The corresponding biphoton amplitude (II) is:

aII = eiωdτRT /2 |a, b〉 (6.48)

The anti-bunching probability amplitude is given by summing up the two
biphoton amplitudes (I) (equation (6.46)) and (II) (equation (6.48)):

aanti−bunching = aI + aII = eiωdτRT /2(1− eiωdτRT ) |a, b〉 (6.49)

Equation (6.49) indicates that the interference outcome depends on the phase
term φ = ωdτRT . This result agrees with equation (6.25), derived in the study of
the evolution of the biphoton state in the frequency-path DOFs.

In this case, we interpret it as follows. When the biphoton wavepacket is
resonant with the cavity, which means that its carrier frequency ωd is a multiple
of the cavity round trip, the phase is:

φresonant = ωdτRT =
(
n

2π
τRT

)
τRT = 2nπ, n ∈ N (6.50)

The two biphoton amplitudes aI and aII have opposite sign due to the reflection at
the beam splitter and their superposition gives aanti−bunching = 0. In other words,
aI (state of both photons reflected) and aII (state of both photons transmitted)
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interfere destructively, as it occurs in the well-known HOM experiment for a zero
time delay (see section (1.3), equation (1.29)).

Thus, two photons in a resonant state can not leave the beam splitter from
opposite output paths. As the beam splitter is lossless there are no other sources
of losses in the system, the two photons must exit the beam splitter by taking the
same path.

Indeed, if we calculate the bunching probability amplitude (by considering two
scenarios (III) and (IV) in which the two photons go out from the same BS port,
i.e. one is transmitted and the other is reflected, contrarily to scenarios (I) and
(II)), we find:

abunching = −i eiωdτRT /2(1 + eiωdτRT ) |a, b〉 (6.51)

where, in this case, there is a (+) sign in the parenthesis instead of a (−)
for at the beam splitter one photon is reflected and the other is transmitted.
Equation (6.51) confirms that, when the biphoton wavepacket is resonant with the
cavity, bunching occurs. The only difference with respect to the well known HOM
interference is that here interference occurs at a non zero time delay: the presence
of the cavity makes the interference possible at multiples of τ = τRT/2.

Let now consider the case in which the biphoton wavepacket is not resonant
with the nonlinear cavity, i.e. the biphoton is anti-resonant.

In the anti-resonant case, the phase φ results:

φanti−resonant = ωdτRT =
(
n

2π
τRT

+ π

τRT

)
τRT = (2n+ 1)π, n ∈ N (6.52)

In this case amplitudes aI and aII interfere constructively and anti-bunching
occurs. The presence of a cavity that is anti-resonant with respect to the biphoton
wavepacket, for a time delay of τ = τRT/2, cancels the effect of the beam splitter,
making it transparent for the incoming biphoton state.

Figure 6.9 – For the anti-resonant (resonant) state, the scheme of cavity and
delay line at τ = τRT /2 is analog to a Mach-Zender interferometer having Φ = 0
(Φ = π).

In other words, as figure (6.9) illustrates, we can think of the system composed
by the cavity and the delay line at τ = τRT/2 as a beam splitter. The complessive
setup is analogous to Mach-Zender interferometers for single photons [197], where
for zero phase delays the first beam splitter cancels the second one.
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The idea that a cavity behaves like a beam splitter agress with a recent proposal
of Ataman [198], which shows that the cavity behaves like a beam splitter for two
counter-propagating single photon having different frequencies, given that their
frequencies difference has a specific value with respect to the cavity free spectral
range.

To conlcude, in this section we have presented an intuitive study of HOM
interference in the time domain for biphoton frequency combs. For a comprehensive
analytical study, we refer to Olindo’s work [187, 199]. There, the cases in which
one cavity or two cavities are present along the interferometer paths a and b are
discussed and an expression of the correlation coincidences rate is given.

6.5 Hong-Ou-Mandel interference pattern
In this section we study the relationship among the HOM interference pattern and
the biphoton JSA, extending the analysis presented in section (1.3).

In CW pumping regime, if the JSA has a perfect mirror symmetry (C(ω−) =
C(−ω−)), the HOM correlation probability is given by the Fourier Transform of
the JSI (|C(ω−)|2):

pab(τ) = 1
2

[
1−Re

[ ∫
dω−|C(ω−)|2e−iω−τ

]]
= 1

2

[
1−Re

[
F
{
|C(ω−)|2

}]]
= 1

2[1−V (τ)]
(6.53)

where C(ω−) = φPM(ωp, ω−)fcav(ωp, ω−) is the JSA along ω−, given by the
product of phase matching and cavity transmission functions. We introduce
V (τ) = Re

[
F
{
|C(ω−)|2

}]
, the real part of the Fourier Transform of the JSI. In the

HOM interference pattern, it corresponds to the difference between the interference
baseline and the correlation probability at a generic time τ .

To understand how the cavity influences the HOM pattern, let us start by
considering the trivial case where the source has no cavity (R = 0). This situation
has been widely studied in the literature [200, p. 260], [201, p. 101]. In the absence
of the biphoton cavity transmission term, C(ω−) = φPM and V (τ) is simply the
Fourier Transform of the squared phase matching function.

As instance, we may consider a Gaussian phase matching term, centered
around the biphoton degeneracy frequency, where ω− = 0. This type of spectral
correlation is usually obtained by the spectral filtering of a biphoton state around
the degeneracy frequency. Alternatively, this phase matching function can be
achieved without the application of any filtering by using a PPKTP crystal having
a custom duty-cycle pattern [202].

We write the phase matching function as:

C(ω−) = φPM(ω−) = 1
4
√

2π√σω−

exp
−1

4

(
ω−
σω−

)2
 (6.54)
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to satisfy the normalization of its corresponding JSI in the frequency space:

∫
dω−|C(ω−)|2 =

∫
dω−C

∗(ω−)C(ω−) =
∫
dω−φ

∗
PM(ω−)φPM(ω−) = 1 (6.55)

The biphoton state bandwidth is the FWHM of its JSI. The biphoton state
with the Gaussian phase matching profile of equation (6.54) has a bandwidth of:

∆ω− = 2
√

2 ln 2σω− ≈ 2.36σω− (6.56)

The JSI is Gaussian, so we expect V (τ), the Fourier Transform of its squared
value, to be Gaussian as well:

V (τ) = Re
[
F
{
|C(ω−)|2

}]
= exp

− (σω−τ)2

2

 = exp
− 1

2

(
τ

στ

)2
 (6.57)

στ is proportional to the HOM dip FWHM, given by ∆τ = 2
√

2 ln 2στ :.
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Figure 6.10 – JSI cut along ω− and corresponding HOM interference pattern
for a biphoton state with a Gaussian phase matching JSA (6.54), without the
presence of the cavity.

We show in figure (6.10) the JSI of the Gaussian phase matching term (6.54)
and the corresponding HOM interference pattern pab(τ) = 1− V (τ).

Following the property of the Fourier transform σω−στ = 1, we can deduce the
biphoton state spectral width ∆ω− from the width of the HOM dip ∆τ :

∆ω− = 8 ln 2
∆τ ≈

5.55
∆τ (6.58)

Not surprisingly, ∆ω− and ∆τ are inversely proportional. We remind that,
under the hypothesis of no birefringence, ∆ω− is two times the bandwidth of signal
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and idler photons. If we consider that they are two wavepackets, their temporal
extensions is inversely proportional to their bandwidth. When ∆ω−/2 is larger,
signal and idler are shorter wavepackets. Therefore, when they are delayed one
compared to the other, they interfere over a shorter time length ∆τ .

Now let study the HOM pattern of a biphoton state with a sinc-shaped JSA.
This is the phase matching function of a longitudinal invariant SPDC nonlinear
medium, as found in equation (1.23). The normalized JSA reads:

C(ω−) = φPM(ω−) =
√

∆nL
4πc sinc

(
L∆n

4c ω−

)
=
√

g

π∆ω−
sinc

(
g
ω−

∆ω−

)
(6.59)

where ∆ω−is the FWHM of the corresponding JSI for g ≈ 0.886π.
The Fourier Transform of the sinc-squared function is the triangular function,

defined as:

V (τ) = Re
[
F
{
|C(ω−)|2

}]
= tri

(∆ω−
2g τ

)
= max

(
0, 1− ∆ω−

2g |τ |
)

(6.60)
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Figure 6.11 – JSI cut along ω− and corresponding HOM interference pattern for
a biphoton state with a sinc phase matching JSA (6.59), without the presence of
the cavity.

Figure (6.11) shows on the left the JSI of the sinc shaped phase matching term
(6.59) and on the right the corresponding HOM interference pattern. We see that
the HOM dip has the shape of an inverted triangle. From equation (6.60), we find
that its FWHM is ∆τ = 2g/∆ω−. The biphoton bandwidth deduced from the
HOM pattern is:

∆ω− = 2g
∆τ ≈

5.57
∆τ (6.61)
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6.5.1 One-pass configuration

In this section we illustrate the HOM pattern of the biphoton state emitted by
our source in the case of the waveguide one-pass configuration, i.e. we suppose
that we apply an anti-reflection coating to the facets and the cavity effect becomes
negligible. As a result, the HOM pattern is determined by the phase matching
function, shown in figure (2.8). We suppose to pump the source in the CW
monochromatic regime at the optimal pump wavelength, corresponding to the
maximum of figure (3.1).
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Figure 6.12 – JSI and corresponding HOM interference pattern for a biphoton
state generated by sources having three different phase matching terms: a sinc
(orange), a rectangle (blue) and our source phase matching (black).

Figure (6.12) compares the JSI cut along ω− and corresponding HOM pattern
of our source (black) with the the case of a rectangular phase matching (blue) and
the previously seen case of sinc phase matching (orange). The JSI of a rectangular
phase matching is still a rectangular function, so its HOM pattern is a sinc function.
As shown in figures (2.8) and (2.10), our source has a JSI with a shape in between
a rect and a sinc-squared function. The resulting HOM pattern (black) consists
in a dip with a smoothed triangular shape, surrounded by two rapidly decaying
oscillations on its sides.

Besides, as also shown in (2.10), the phase matching of our source is not a
perfectly mirror-symmetric function due to the presence of birefringence, expressed
by the contribution (2.16) to the phase-mismatch (2.14). The resulting HOM
pattern has a reduced visibility but does not vary the shape.

We also notice that the biphoton state emitted by our source has a product
of bandwidth ∆ω− and temporal extension ∆τ which is larger respect to the one
of a biphoton state emitted by source with a Gaussian or a sinc shaped phase
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matching. We find numerically:

∆ω− ≈
8.38
∆τ (6.62)

6.5.2 Cavity effect
Starting from the relationship between the HOM pattern and the phase matching
function, we study the HOM pattern modifications related to the presence of the
cavity. The JSA of the emitted state becomes:

C(ωp, ω−) = φPM(ω−)fcav(ωp, ω−) (6.63)

This time, the generalized visibility term V (τ) = Re
[
F
{
|C(ω−)|2

}]
in (6.53),

which determines the shape of the HOM pattern, has as an argument the product
of two functions: the phase matching and the cavity transmission. According to
the convolution theorem of the Fourier Transform, we can express V (τ) as the
convolution of the Fourier Transform of the squared cavity function fcav(ωp, ω−)
with the Fourier Transform of the squared phase matching term φPM(ω−):

V (τ) = Re
[
F
{
|C(ω−)|2

}]
= Re

[
F
{
|fcav(ωp, ω−)|2|φPM(ω−)|2

}]
= Re

[
F
{
|fcav(ωp, ω−)|2

}
∗ F

{
|φPM(ω−)|2

}] (6.64)

where fcav(ωp, ω−) is the cavity function in the CW pumping regime at the
pumping frequency ωp, defined in (5.34).

In order to obtain an analytical expression of the Fourier Transform of the cavity
function, we also neglect dispersion and birefringence (τV (ω) = τH(ω) = τRT ). For
simplicity, we also suppose that the reflectivity is the same for the two polarization
directions (RH = RV = R). The expression of the cavity function is then given by
(5.35). Under the previous assumptions, fcav(ωp, ω−) is a complex-valued function
in ω− that takes only real values in two cases, corresponding to two specific pump
frequencies ωp:

1. The biphoton state is resonant with the cavity, so its degeneracy (central)
frequency is a cavity resonance: ωpτRT/2 = n(2π).

2. The biphoton state is anti-resonant with the cavity, so its degeneracy
(central) frequency is in the middle between two consecutive cavity resonances:
ωpτRT/2 = n(2π) + π.

At these pumping conditions, fcav(ωp, ω−) simplifies into the real-valued function:

fcav(ω−) = ±(1−R)
1 +R2 ∓ 2R cos (ω−τRT/2) (6.65)

with the upper sign indicates the resonant case and the lower sign the anti-
resonant case.
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6.5.3 Low-reflectivity approximation
We cannot use the squared form of expression (6.65) to find an explicit analytical
expression of the Fourier Transform. However, we can approximate it to a sinusoidal
function, whose Fourier Transform is well known. By calculating the average and
contrast values of (6.65), we can approximate it to:

fcav(ω−) = ±(1−R)
1 +R2 ∓ 2R cos (ω−τRT/2) ≈ ±A(R)±C(R)

2 cos (ω−τRT/2) = f̃cav(ω−)

(6.66)
where A(R) and C(R) are the average and contrast factors of fcav. They are

functions of R according to:

A(R) = (1 +R2)
(1 +R)2(1−R) , C(R) = 4R

(1 +R)2(1−R) (6.67)

To quantify the accuracy of this approximation, we introduce the parameter
∆, defined as the variance between the squared functions fcav and f̃cav, normalized
to the average value of the squared functions fcav:

∆ =

〈∣∣∣|f̃cav(ω−)|2 − |fcav(ω−)|2
∣∣∣〉

〈|fcav(ω−)|2〉 (6.68)
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Figure 6.13 – Percentage of accuracy (6.68) of approximation (6.66) respect to
the cavity reflectivity R.

The approximation is accurate when ∆ → 0, for which f̃cav(ω−) → fcav(ω−).
This occurs at low values of R, as figure (6.13) illustrates. In our source, the
average value between H and V-polarized reflectivity is R = 0.27 (RH = 0.297,
RV = 0.243). At this value of the reflectivity, ∆ = 30.4%, so we consider this
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Figure 6.14 – Cavity transmission function in resonant (left) and anti-resonant
(right) cases for R=0.27. The exact function fcav(ω−) is the black continuous line,
while the approximated function f̃cav(ω−) expressed in equation (6.66) is the blue
dashed line.

approximation still acceptable for our analysis.

We confirm that the approximation holds in figure (6.14), where we plot
fcav(ω−) (black continuous line) and f̃cav(ω−) (blue dashed line) for R = 0.27.
Both the resonant (left) and anti-resonant (right) biphoton state are shown. We
also notice that the approximation, following its definition, is more accurate nearby
the Fabry-Perot maxima and minima.

In the expression of the approximating cavity transmission function (equation
(6.66)), we see that its period along ω− is the inverse of half the cavity round-
trip: Ω = 4π/(τRT ) = 2π/(τRT/2). Consequently, we expect to find in the HOM
interference pattern replicas of the Fourier transformed squared phase matching
function, spaced by half-cavity round-trip τ = τRT/2 .

By calculating F
{
|fcav(ωp, ω−)|2

}
≈ F

{
|f̃cav(ωp, ω−)|2

}
from equation (6.64),

we find:

F
{
|f̃cav(ωp, ω−)|2

}
=[(1−R)2(1 +R)4]−1

{
(1 + 4R2 +R4)δ(τ)
± 2R(1 +R2)[δ(τ − τRT/2) + δ(τ + τRT/2)]
+R2[δ(τ − τRT ) + δ(τ + τRT )]

} (6.69)

with “ + ” in the resonant case and “− ” in the anti-resonant one.
As stated in (6.64), the shape of the HOM pattern is determined by the

convolution of expression (6.69) with F
{
|φPM(ω−)|2

}
.
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According to the sifting property of the Dirac delta function

f(t) ∗ δ(t) =
∫ ∞
−∞

f(t)δ(t− T ) dt = f(T ) (6.70)

equation (6.64) becomes:

V (τ) =Re
[
F
{
|f̃cav(ωp, ω−)|2

}
∗ F

{
|φPM(ω−)|2

}]
=[(1−R)2(1 +R)4]−1Re

[
+ (1 + 4R2 +R4)F

{
|φPM(ω−)|2

}
τ=0

± 2R(1 +R2)
[
F
{
|φPM(ω−)|2

}
τ=τRT /2

+ F
{
|φPM(ω−)|2

}
τ=−τRT /2

]
+R2

[
F
{
|φPM(ω−)|2

}
τ=τRT

+ F
{
|φPM(ω−)|2

}
τ=−τRT

]]
(6.71)

where the subscript (i.e. τ = 0) indicates the time delay around which the
corresponding function F

{
|φPM(ω−)|2

}
is centered. We note that, as it occurs

in the HOM interference of a biphoton state generated without the presence of
the cavity, at τ = 0 the HOM pattern is given by F

{
|φPM(ω−)|2

}
. In addition,

thanks to the presence of the cavity, there are replicas of F
{
|φPM(ω−)|2

}
around

τ = τRT/2 and τ = τRT . The replica at half round-trip may be either positive or
negative with respect to V (τ), corresponding to a HOM dip or peak, respectively.
This is coherent with what we found previously (equation (6.34)). When the
biphoton state is resonant (figure (6.14), left), there is bunching, while when it is
anti-resonant (figure (6.14), right) there is anti-bunching.

We also notice that the two replicas do not have the same weight as F
{
|φPM (ω−)|2

}
centered at the origin, for which V0 ∝ (1 + 4R2 +R4) ≈ 1 = R0. The first replica
at half round-trip is weighted by V1 ∝ 2R(1 +R2) ≈ 2R, while the second replica
at the round-trip by V2 ∝ R2. Since R << 1, due to the approximation (6.66), the
visibility of the HOM dip/peak quickly decreases with the replica order.

Finally, we observe that by using this approximating model of the cavity we only
find two replicas of the HOM pattern, which is in agreement with the assumption
of low reflectivity values.

As previously carried out in the absence of the cavity, we calculate V (τ) in the
case of a Gaussian and a sinc-shaped phase matching functions.

For a Gaussian phase matching (6.54), whose squared function Fourier Transform



6.5 Hong-Ou-Mandel interference pattern 139

is expressed in (6.57), we find:

V (τ) =η−1Re

F{|f̃cav(ωp, ω−)|2
}
∗ exp

[
− 1

2

(
τ

στ

)2]
=η−1[(1−R)2(1 +R)4]−1Re

[
+ (1 + 4R2 +R4) exp

[
− 1

2

(
τ

στ

)2]
± 2R(1 +R2)

{
exp

[
− 1

2

(
τ + τRT/2

στ

)2]
+ exp

[
− 1

2

(
τ − τRT/2

στ

)2]}

+R2
{

exp
[
− 1

2

(
τ + τRT
στ

)2]
+ exp

[
− 1

2

(
τ − τRT
στ

)2]}
(6.72)

where η is the normalization factor, defined as:

η =
1 +R4 + 2R2

{
2 + exp

[
− 1

2

(
τ
στ

)2]}
± 4R(1 +R2)

{
exp

[
− 1

8

(
τ
στ

)2]}
(1−R)2(1 +R)4

(6.73)
and the upper (lower) sign indicates the resonant (anti-resonant) biphoton

state. Starting from V (τ), we derive the HOM correlation probability according
to equation (6.53).
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Figure 6.15 – Resonant case: JSI cut along ω− and corresponding HOM
interference pattern for a biphoton state with a Gaussian phase matching (6.54)
and resonant with the cavity.

In figure (6.15) we illustrate the cut of the JSI along ω− and corresponding
HOM pattern. We choose τRT = στ = ∆τ/(2

√
2 ln 2) and R = 0.27. On the left,
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we recognize the JSI cut characterizing a resonant biphoton state: the central
frequency along ω− belongs to the cavity resonances. In the HOM pattern, all
replicas are dips, as we expect in the resonant case described by equation (6.72).
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Figure 6.16 – Anti-resonant case: JSI cut along ω− and corresponding HOM
interference pattern for a biphoton state with a Gaussian phase matching (6.54)
and anti-resonant with the cavity.

The anti-resonant state is illustrated in figure (6.16). Here the central frequency
is anti-resonant with respect to the cavity, so the JSI presents a minima in ω− = 0.
As a consequence, the HOM pattern shows two peaks at τ = ±τRT/2.

We notice that in both resonant and anti-resonant case the central dip is the
same as the central HOM dip that occurs without the presence of the cavity (figure
(6.10)).

We now study the impact of the cavity on the biphoton state having a
sinc-shaped phase matching term, defined in (6.59). The corresponding Fourier
Transformed squared function is the triangle defined in (6.60), so that the generalized
visibility term reads:

V (τ) =η−1Re

F{|f̃cav(ωp, ω−)|2
}
∗ tri

(∆ω−
2g τ

)
=η−1[(1−R)2(1 +R)4]−1Re

[
+ (1 + 4R2 +R4)tri

(∆ω−
2g τ

)
± 2R(1 +R2)

[
tri
(∆ω−

2g (τ + τRT/2)
)

+ tri
(∆ω−

2g (τ − τRT/2)
)]

+R2
[
tri
(∆ω−

2g (τ + τRT )
)

+ tri
(∆ω−

2g (τ + τRT )
)]

(6.74)



6.5 Hong-Ou-Mandel interference pattern 141

where, as previously defined, η is the normalization factor and the upper (lower)
sign indicates the resonant (anti-resonant) biphoton state interference.
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Figure 6.17 – Resonant case: JSI cut along ω− and corresponding HOM
interference pattern for a biphoton state with a sinc phase matching (6.59) and
resonant with the cavity.
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Figure 6.18 – Anti-resonant case: JSI cut along ω− and corresponding HOM
interference pattern for a biphoton state with a sinc phase matching (6.59) and
anti-resonant with the cavity.

For comparison, we study the same cavity as before, with τRT = ∆τ/(2
√

2 ln 2)
and R = 0.27. Figure (6.17) shows the resonant case, while figure (6.18) the
anti-resonant one. The only difference with respect to the Gaussian case is the
shape of the HOM dips and peaks, that is now given by the Fourier Transform
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of the squared sinc phase matching term. As before, the replicas visibility scales
with the value of the cavity reflectivity according to (6.74).

6.5.4 Pumping wavelength effect
In this paragraph we study the intermediate state between resonant and anti-
resonant cases. By tuning the pump laser frequency, we can span continuously the
JSA pattern and change accordingly the quantum state. As the detuning occurs
within a very small frequency bandwidth, of the order of the cavity free spectral
range, the phase matching term can be considered constant, while the cavity
transmission function varies. The expression of the cavity transmission function
is given by equation (5.35) in the case of a cavity with no birefringence and no
chromatic dispersion. When the biphoton state is not resonant or anti-resonant
with the cavity, the expression (5.35) is a complex-valued function and the resulting
JSA contains both symmetric and anti-symmetric components. As consequence,
depending on the relative weights of the two constituents of opposite symmetry,
the wavefunction behaves differently in a HOM experiment.
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Figure 6.19 – Correlation probability of HOM interference versus pump detuning
in the case of a birefringence-less and dispersion-less cavity with low reflectivity
R = 0.27 and sinc-shaped phase matching function.

Figure (6.19) illustrates the simulated HOM pattern for a cavity having a
reflectivity of 0.27 as a function of the pump frequency. ∆ωp = 0, 2/(2π/τRT )
correspond to the resonant case, while ∆ωp = 1/(2π/τRT ) to the anti-resonant one.
We consider a nonlinear medium having a sinc-shaped phase matching function
(figure (6.11)), as we can deduce from the triangularly shaped HOM dips and
peaks along the delay time direction.
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As we are considering a birefringence-less and dispersion-less cavity, the visibility
of the dip at zero time delay is maximal, whereas the low value of reflectivity implies
that the HOM replicas dip and peak have a low visibility: VτRT /2 ≈ 0.5 for the
first replica (at the dip pab(τ = τRT/2) ≈ 0.25, at the peak pab(τ = τRT/2) ≈ 0.75),
and VτRT ≈ 0.1 for the second replica, barely visible.
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Figure 6.20 – Correlation probability of HOM interference versus pump detuning
in the case of a birefringence-less and dispersion-less cavity with high reflectivity
R = 0.9.

We observe a smooth transition as afunction of the pump frequency from peak
to dip. In order to study this dynamic at different time delays, we present a high
reflectivity case (R = 0.9) in figure (6.20).

Thanks to the high reflectivity, we can distinguish many revivals of the HOM
interference, in the form of either dip or peak. Interestingly, we see that, as the
time delay increases, the evolution of the biphoton wavefunction from symmetric to
anti-symmetric occurs with a finer detuning of the pump frequency. In particular,
the frequency of the modulation doubles at every round-trip time.

6.5.5 Reflectivity effect
Previously, within the analytical model approximating the cavity function for low
reflectivity values, we have found that the visibility of the first HOM revival (peak
or dip) is proportional to the cavity reflectivity, while the visibility of the second
order HOM revival is proportional to the squared value of the reflectivity (equation
(6.69)).

We now look for the exact solutions of the HOM interference correlation
probability for resonant and anti-resonant states as function of the reflectivity. We
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do no make any approximation as we proceed numerically by calculating (6.53)
by using the cavity Airy transmission function (equation (6.65)). For simplicity,
we suppose that the reflectivity is the same for the two orthogonally polarized
photons. For the phase matching term, we use the sinc-shaped function shown
in figure (6.11), previously used for the calculations shown in figures (6.17) and
(6.18). We choose a cavity round-trip of τRT = ∆τ/(2

√
2 ln 2), where ∆τ is the

phase matching extension as defined in (6.61).

Resonant
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Figure 6.21 – Correlation probability of HOM interference as a function of the
cavity reflectivity. Resonant (left) and anti-resonant (right) cases are illustrated.

Figure (6.21) illustrates how the HOM interference pattern varies as a function
of the cavity reflectivity R, in the case of resonant and anti-resonant biphoton
state. As expected, in the resonant case there is only bunching (blue color), which
occurs at delay time that are multiples of half-cavity round-trip. The correlation
probability is never higher than the interference baseline value of 0.5 (grey color).
Viceversa, in the anti-resonant scenario, anti-bunching (red color) takes place at
time delay that are odd multiples of half-cavity round-trip.

In the absence of a cavity (R = 0), the HOM pattern shows only a central dip.
On the other hand, in the case of a perfect cavity (R → 1), the HOM pattern
exhibits many revivals of the central dip. The reason is that in a high-reflecting
cavity, the two photons have a high probability of being reflected many times at
the input and output cavity mirrors. In this situation, the probability that one
photon of the pair undergoes one or more additional reflections respect to the
other is important, causing the existence of multiple HOM revivals.

For 0 ≤ R ≤ 1, as the cavity reflectivity increases, the visibility of the HOM
revival dips and peaks increases. Experimentally, at higher reflectivity values,
more dips (peaks) can be detected.

In our AlGaAs ridge waveguide, the average reflectivity for the H and V-
polarized photon is R = 0.27. For this reflectivity value, we might expect to be
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able to detect the first and second order HOM revivals. However, this model does
not take into account the cavity birefringence that reduces the HOM visibility, as
we study in more details in the next section.

6.6 Hong-Ou-Mandel dip visibility versus cavity
birefringence and reflectivity

In this paragraph we consider the more general scenario in which the cavity is
birefringent. Following the previous notation (see chapter (2)), we label:

CH,V (ω1, ω2) = C(ω1, ω2)
CV,H(ω1, ω2) = C(ω2, ω1)

(6.75)

where due to the lack of mirror symmetry:

C(ω1, ω2) 6= C(ω2, ω1) (6.76)

In order to calculate the results of HOM interferometry, we follow the same
steps of paragraph (6.2). We retrieve the expression of the wavefunction at the
output of the polarising beam splitter (PBS) and half-wave plate (HWP, before
interaction with the beam splitter (BS) (see scheme (6.1)).

|Ψ〉 = i√
2

∫∫
dω1dω2e

−iω2τ
(
C(ω1, ω2) |a, ω1〉 |b, ω2〉+

C(ω2, ω1)e−i(ω1−ω2)τ |b, ω1〉 |a, ω2〉
) (6.77)

By applying the transformation (6.24), we find that after the beam splitter:

|Ψ〉 = i

2
√

2

∫∫
dω1dω2e

−iω2τ

[(
C(ω1, ω2) + e−i(ω1−ω2)τC(ω2, ω1)

)
|ψb〉+(

C(ω1, ω2)− e−i(ω1−ω2)τC(ω2, ω1
)
|ψf〉

] (6.78)

with |ψb〉 = i |a, ω1〉 |a, ω2〉+ |b, ω1〉 |b, ω2〉, |ψf〉 = |a, ω1〉 |b, ω2〉− |b, ω1〉 |a, ω2〉.

We consider two single-photon detectors placed on path a and on path b. The
probability of coincidence detection, in the approximation of frequency independent
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detector response, is:

pab(τ) = 〈Ψ| M̂ |Ψ〉

=1
8

[ ∫
dω′1

∫
dω′2A

∗(ω′1, ω′2, τ) 〈ψf |
]
M̂
[ ∫

dω1

∫
dω2A(ω1, ω2, τ) |ψf〉

]
=1

8

∫
dω1

∫
dω2

∫
dω′1

∫
dω′2

∫
dωa

∫
dωbA

∗(ω′1, ω′2, τ)A(ω1, ω2, τ)[
δ(ω′1 − ωa)δ(ω′2 − ωb)− δ(ω′1 − ωb)δ(ω′2 − ωa)

]
[
δ(ω1 − ωa)δ(ω2 − ωb)− δ(ω2 − ωa)δ(ω1 − ωb)

]
(6.79)

where A(ω1, ω2, τ) = e−iω2τ
(
C(ω1, ω2) − e−i(ω1−ω2)τC(ω2, ω1)

)
and M̂ is the

detector operator as defined in (6.27).
By solving the integrals along ωa, ωb, ω′1, ω′2 and using the normalization of

the JSA, we find the same correlation probability as in (6.29). We rewrite it in
the (ω+, ω−) basis and in the case of monochromatic CW-pumping regime as:

pab(τ) = 1
2

{
1−Re

[ ∫∫
dω1dω2C

∗(ω1, ω2)C(ω2, ω1)e−i(ω1−ω2)τ
]}

= 1
2

{
1−Re

[ ∫∫
dω+dω−C

∗(ω+, ω−)C(ω+,−ω−)e−iω−τ
]}

= 1
2

{
1−Re

[ ∫
dω−C

∗(ωp, ω−)C(ωp,−ω−)e−iω−τ
]}

= 1
2

{
1−Re

[
F
{
C∗(ωp, ω−)C(ωp,−ω−)

}]}
(6.80)

The product C∗(ωp, ω−)C(ωp,−ω−) in the last line of equation (6.80) confirms
that the correlation probability measured in a HOM experiment depends on the
symmetry of the JSA. More precisely, it depends on the mirror symmetry of the
JSA respect to the degeneracy frequency direction ω1 = ω2 = ωd, corresponding to
ω− = 0.

We define V0 the visibility of the HOM pattern when the time delay accumulated
between the two photons is zero (τ = 0).

From equation (6.80), we find that V0 corresponds to the contrast between the
correlation probability at zero time delay and the correlation probability at time
delays far from the interference region (τ = τ̃):

V0 = pab(τ̃)− pab(0)
pab(τ̃) = Re

[ ∫
dω−C

∗(ωp, ω−)C(ωp,−ω−)
]

(6.81)

Following this definition, V0 takes values in the range −1 ≤ V0 ≤ 1, depending
on the JSA mirror symmetry. The three limit cases are:

1. V0 = 1, when C(ωp, ω−) is mirror symmetric

2. V0 = 0, when C(ωp, ω−) has no mirror symmetry
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3. V0 = −1, when C(ωp, ω−) is mirror anti-symmetric

We now consider the case of a nonlinear medium and an independent cavity,
as illustrated in figure (5.3, a), and a CW monochromatic regime. The cut of the
JSA along ω− reads C(ωp, ω−) = φPM(ω−)fcav(ωp, ω−). We also suppose that the
phase matching function φPM is symmetric. In the absence of the cavity the HOM
interference has perfect coalescence with V0 = 1.

In the following we show that, in the presence of the cavity, the visibility may
reduce to values as low as V0 = 0, according to birefringence of the cavity. V0,
as defined in (6.81), cannot take values lower than zero because a delay τ 6= 0 is
necessary for the manipulation of the biphoton state statistics.

Non-birefringent cavity

In the case of non birefringent cavity, the resonances of the Fabry-Perot for H and V-
polarization photons are equally distant respect to the degeneracy frequency ωdeg =
ω1 = ω2. The resulting JSA along ω− is perfectly mirror symmetric, as shown in
figure (5.8). Signal and idler photons probability amplitudes are indistinguishable
when they arrive at the beam-splitter and perfect HOM coalescence occurs with
V0 = 1.

We can show this analytically by plugging into the definition of visibility the
expression of the biphoton JSA under CW pumping previously calculated in (5.30)
in the (ω+, ω−) basis.

The visibility is:

V0 = Re
[ ∫

dω−|φPM(ω−)|2fcav(ωp,−ω−)f ∗cav(ωp, ω−)
]

= (1−RH)(1−RV )Re
 ∫ dω−

|φPM(ω−)|2eiω−(τH−τV )

[1−RHe
i
ωp+ω−

2 τH ][1−RV e
−iωp+ω−

2 τV ]
1

[1−RHe
−iωp−ω−

2 τH ][1−RV e
i
ωp−ω−

2 τV ]


(6.82)

where τH = τH

∣∣∣∣ωp+ω−
2

and τV = τV

∣∣∣∣ωp−ω−
2

. The term related to the chromatic

dispersion cancels out, as far as H and V-polarized photons have the same chromatic
dispersion [203, 204, 205]. If the cavity has no birefringence, the two orthogonally
polarized photons have the same round-trip time:

τH(ω) = τV (ω) = τRT (ω) (6.83)

To facilitate the calculation, we suppose that the cavity reflectivity is the same
for the two orthogonal polarization directions:

RH = RV = R (6.84)
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The expression (6.82) simplifies into:

V0 = Re

 ∫ dω−
(1−R)2|φPM(ω−)|2

[1 +R2 − 2R cos(τRT (ωp+ω−
2 )ωp+ω−

2 )]

1
[1 +R2 − 2R cos(τRT (ωp−ω−

2 )ωp−ω−
2 )]

 (6.85)

This expression corresponds to the normalization of the JSI expressed in (5.33)
in the case of no birefringence, so we conclude that V0 = 1: as long as the cavity is
not birefringent, it does not deteriorate the visibility of the central HOM dip at
zero time delay.

Birefringent cavity

In this paragraph we study the dependence of the HOM central dip visibility
upon the cavity birefringence. In first approximation, we neglect the chromatic
dispersion, as we assume that it acts equally on H and V-polarized photons. As
previously, we also assume RH = RV = R .

The general expression of the cavity function in a monochromatic CW pump
regime (5.34) in the case of a birefringent cavity simplifies into:

fcav(ωp, ω−) = (1−R)eiωpτ̃RT /2eiω−∆τRT /2[
1−ReiτH

ωp+ω−
2

][
1−ReiτV

ωp−ω−
2

]
= (1−R)eiωpτ̃RT eiω−∆τRT /2

1 +R2eiωpτ̃RT /2ei∆τRT
ω−

2 −ReiτH
ωp
2

[
eiτH

ω−
2 + e−iτH

ω−
2 ei∆τ

ωp−ω−
2

]
(6.86)

where we introduce the average round-trip time τ̃RT and the difference of
round-trip time ∆τRT between the two polarization directions:

τ̃RT = (τH + τV )/2
∆τRT = τH − τV

(6.87)

The integral of the Airy function (6.86) can not be expressed in an explicit
analytical form. So, as done in (6.66), we focus on the cases of resonant and
anti-resonant states for a low reflecting cavity to have an analytic expression of
the visibility. We keep into account the cavity birefringence by introducing δRT ,
the phase-delay accumulated among two frequency degenerate H-polarized and
V-polarized photons after a cavity round-trip:

δRT (ω) = δH,RT (ω)− δV,RT (ω) = ω(τH − τV ) = 2Lω
c

(nH − nV ) (6.88)
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The cavity function in the low R approximation reads:

f̃cav(ω−) = ±A(R)± C(R)
2 cos (ω−τRT/2 + δRT/2) (6.89)

with the coefficients A(R) and C(R) defined in equation (6.67) and the upper
(lower) sign for the resonant (anti-resonant) state.

The visibility in the case of a birefringent cavity (see (6.81)) is:

Re
[
F
{
f̃ ∗cav(ω−)f̃cav(−ω−)

}]
=[(1−R)2(1 +R)4]−1

{
{1 + 2R2[1 + cos(δRT )] +R4}δ(τ)
± 2R(1 +R2) cos(δRT/2)[δ(τ − τRT/2) + δ(τ + τRT/2)]
+R2[δ(τ − τRT ) + δ(τ + τRT )]

}
(6.90)

We recognize that the visibility of the HOM central dip (τ = 0) is lowered by
the cavity birefringence as V0 ∝ {1 + 2R2[1 + cos(δRT )] +R4}. If δRT 6= m2π, m
integer, 0 ≤ [1 + cos(δRT )] < 2 and the visibility is reduced.

Regarding the first replica at plus or minus half round-trip time (τ = ±τRT/2),
we see that δRT determines if there is bunching or anti-bunching with a periodicity
of mπ, since VτRT /2 ∝ cos(δRT/2). On the contrary, the shape and visibility of the
second replica at plus or minus one round-trip time (τ = ±τRT ) is not changed by
the presence of the birefringence.

2π π 0
δRT
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1
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0

1

Figure 6.22 – Visibility V0 versus cavity reflectivity and phase-delay accumulated
by H-polarized photons compared to the V-polarized one after one round-trip.
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We calculate numerically the impact of the cavity for a general reflectivity
value (0 ≤ R ≤ 1), by using the exact form the the cavity function (6.86).

As expected, we see in Figure (6.22) that for a constant value of R, the
visibility decreases with the birefringence. While the cavity reflectivity increases,
the visibility decreases much more rapidly with the birefringence. As instance, at
R = 0.95, a round-trip phase-delay of δRT = 0.05 is enough to have V0 ≤ 0.1.

In our source, the average reflectivity for H and V-polarized photons is R = 0.27
(5.2). At this reflectivity value, if we suppose that the phase matching function to
be perfectly symmetric, we expect the visibility to be in the range 0.75 ≤ V0 ≤ 1,
with V0 = 0.75 for δRT = π (or odd multiples of π), and V0 = 1 for δRT = 0 (or
even multiple of π).

6.7 Experimental demonstration

6.7.1 Hong-Ou-Mandel interference at zero time delay

Figure 6.23 – Sketch of the experimental setup for the HOM interference. OSA"
optical spectrum analyzer, HM: holographic mask, HWP: half-wave plate, P:
polarizer, TC: temperature controller, F: low-pass filter, FC: fiber coupler, PC:
polarization controller, PBS: polarising beam splitter, BS: beam splitter, D: single-
photon detector, TDC: time-to-digital converter.

In order to perform HOM inteferometry, we have implemented the experimental
setup represented in figure (6.23). The first part on the generation and collection
in fiber of the SPDC type-II photon pairs is described in section (3.2). Here
we focus on the description of the HOM setup, indicated by the dashed line. A
fiber polarization controller (PC) compensates the ellipticity acquired by the two
polarization states of the two photons during their propagation along the first fiber.
The PBS separates the two orthogonally linearly polarized photons, which are
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successively recombined at a 50/50 beam splitter (BS). The difference in optical
lengths between these two arms is controlled by a free space delay line, which
consists in a fixed fiber coupler (FC) and a FC mounted on a motorized stage
(ThorLabsTM MTS50/M-Z8). Each BS output is sent to a free-running InGaAs/InP
Single-Photon Detector (idQuantiqueTM ID230). The detectors efficiency is set to
25% and their dead time to 25µs. A time-to-digital converter (TDC, QuTauTM
QuTools) measures the signal and idler arrival times, allowing the HOM time-
correlation measurement.

Hong-Ou-Mandel at zero time delay

The measurements reported in the following are carried out by using the sample
ABQ71_C1_3, waveguide in group 11, position 2.

For the measurement of the HOM central dip, we set the waveguide holder
temperature to T = 20◦C and the CW laser wavelength at λ = 764.315nm.

We set the integration time at 20s per point, given the average detected
coincidence rate of R = 325 pair/second for time delays far from the HOM dip.
The first step in the calibration of the setup, shown in figure (6.23), is to set
the PCs to make the two entangled photons indistinguishable in polarization.
Afterwards, we set the center of the delay line scan around the zero position, for
which the length of the two interferometers arms is identical. The zero position is
first found approximately by using classical interference and then more accurately
via a rapid HOM measurement.
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Figure 6.24 – HOM measurement for the sample ABQ71_C1_3, waveguide in
group 11 and position 3.
Left: HOM measurement (red square) and numerical simulation (continuous black
line) at zero time delay.
Right: corresponding JSI numerical simulation.

Figure (6.24) reports the results of the HOM measurement in red dots. For
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comparison with the following HOM measurements, we normalize to 0.5 the
detected coincidence counts obtained far from the interference region. The optical
delay between signal and idler photons is expressed in unit of time. Adjacent
points are 6.7fs apart and correspond to a step of 2µm of the free space moving
stage.

The HOM dip shows a raw visibility of 0.86, in agreement with the visibility of
0.88 expected from the numerical simulation (see figure (2.10, b)).

We observe that there are two side bumps around the dip in the HOM pattern,
which corresponds to an intermediate case among the calculated HOM patterns
of figure (2.10 b) and (2.10 d). The measured HOM pattern is a consequence of
modal birefringence (2.20) and chromatic dispersion, as explained in more details
in section (2.2).

Since we are using a CW monochromatic pump, from the HOM pattern we
can retrieve the shape of the biphoton phase matching function [206]. From
the simulated phase matching function in (ω+, ω−) (2.8), we retrieve the pump
frequency ωp = ω+ for which the corresponding simulated HOM pattern is the
best fit of the measured data. The simulated HOM pattern is reported in figure
(6.24) in a continuous black line. The standard deviation between the measurement
data and the fit is σ = 0.0395 . We note that the measured and simulated HOM
patterns are obtained at a different pump frequency. The measurement is carried
out at λpump = 764.315nm, while the calculation at λpump = 770.466nm. This
difference probably arises from the fact that the calculated phase matching is
based on a nominal structure, which may differ from the structure of the measured
waveguide due to epitaxial growth uncertainties.

From the HOM fit, we find that the FWHM of the HOM dip is ∆τ = 52.0±1.7fs
(∆z = 15.9± 0.5µm). The corresponding JSI fit has a FWHM width of ∆ω− =
137.1THz (∆λ = 170.1nm). The product of the biphoton bandwidth and its
temporal extension is 7.12, larger than 5.6, the value for a Gaussian (6.58) and
sinc phase matching phase matching function (6.61).

6.7.2 Hong-Ou-Mandel interference at half round-trip time
delay: preparation

To measure the first HOM replica, two conditions need to be satisfied:

1. Set the pump beam to a specific frequency, for which an either resonant or
anti-resonant biphoton state is generated (see section (6.3)).

2. Set the delay line to a specific position, corresponding to half of the cavity
round-trip (see section (6.4)).

It is not trivial to fulfill the requirements (1) and (2). On the one hand, we
cannot rely on classical interference as no signal is expected at τRT/2. On the
other hand, the expected dip visibility is low (V < 20%), its position is far from
the HOM central peak (z ∼ 6mm) and its width is very small (∆z < 30µm).

For this reason, we have optimized a specific experimental procedure to find
the HOM replica, described in the following.
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1. Set the pump frequency to generate a resonant or anti-
resonant state
We start with the identification of a pump frequency corresponding to a resonant
or anti-resonant state, to measure a dip or a peak, respectively.

In the following, we refer to the set of pump frequencies corresponding to a
resonant (anti-resonant) biphoton state as ωRp (ωARp ).

For a constant pump power within the cavity, when ωp = ωRp or ωp = ωARp , the
pair production rate is maximal. Therefore, if we set the delay line to a position
far from the ones corresponding to HOM interference regions, for ωp = ωRp or
ωp = ωARp we expect a maximum of coincidence rate, while intermediate pump
frequencies would result in a lower rate. Conversely, when ωp is in between two
consecutive ωRp and ωARp values, the pair production rate and the detected rate of
coincidences are minimal.

To have a constant pump laser power within the waveguide, we monitor the
pump power at the output of the waveguide using a power-meter. According to
the measured value, we increase or decrease the pump power injected into the
waveguide. In this way, before each measurement of coincidences we check and set
the power of the pump laser at the output to 40µW for a fixed wavelength.
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Figure 6.25 – Coincidences out of the HOM interference region respect to the
CW pump wavelength. The zero detuning corresponds to λpump = 764.313nm.

Figure (6.25) shows the measurement of coincidence versus the pump frequency.
The pump detuning ∆λpump = 0 corresponds to λpump = 764.313nm.

We observe three local maxima at ∆λpump = 2pm, ∆λpump = 42pm and
∆λpump = 79pm, corresponding to either a set of resonant/anti-resonant/resonant
biphoton states or a set of anti-resonant/resonant/anti-resonant two photon states.
To distinguish between the two sets, we need to perform a HOM interference
experiment. We also see two local minima at 22pm, 57pm, corresponding to pump
biphoton state that are neither resonant nor anti-resonant.
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The average distance between pump wavelengths generating resonant and
anti-resonant states is 38.5pm (∆νfsr = 20.52GHz, ∆ωfsr = 128.97GHz), which
corresponds to the waveguide free spectral range deduced from the transmission
measurements (∆νfsr = 20.00GHz, see results presented in (5.3)).

We also notice that in figure (6.25) the maxima and minima are disposed along
a monotonically increasing envelope function. The reason is that, as we scan the
pump wavelength, we are moving along the positive direction of λ+ in the phase
matching space (negative direction of ω+ in figure (2.8)). The phase-mismatch
decreases while the SPDC efficiency and pair production rate increase, in agreement
with figure (3.1).

2. Set the delay time to half-cavity round-trip
After setting the correct pump frequency, we set the delay line to half of the cavity
round-trip.

An estimation of the cavity round-trip is obtained from the simulated mode
dispersion (2.1) and the physical length of the waveguide, known with some
incertitude from the cleaving process (l = 2± 0.1mm). To find the exact value of
half cavity round-trip, we first launch a HOM interference measurement with a
rough scan (step of 10µm) in the range of ±0.6mm. Once we identify the position
of the HOM replica, we proceed with a finer scan, with steps of 5µm in the ±0.3mm
range and an acquisition time of 30s per each step.
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Figure 6.26 – HOM measurement at the time delay of half the cavity round-trip
versus the detuning of the CW pumping wavelength respect to λpump = 764.313nm.

Figure (6.26) shows the HOM interferograms obtained from these measurements.
The experimental data are indicated by red dots, while black lines and grey
background are used for visualization purpose. We can distinguish the resonance
(∆λpump = 0pm, 90pm), the anti-resonance (∆λpump = 48pm) and the non-
resonance (∆λpump = 24pm, 69pm) conditions.
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We find the HOM dip and peaks at a signal and idler temporal delayed by
τ ∼ 21.3ps (spatially delayed by z ∼ 6.38mm).

6.7.3 Hong-Ou-Mandel interference at half round-trip time
delay: measurement
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Figure 6.27 – HOM measurement at time delay of half the round trip for a
resonant (left) and anti-resonant (right) CW pump wavelength. Red squares:
experimental data. Continuous black line: best experimental fit.

Now that we have identified the parameters of the delay line and pump frequency
necessary for observing the HOM replica, we can launch HOMmeasurements having
a higher sampling, in order to detect the fine shape of the HOM replica.

In figure (6.27) we illustrate two HOM interferograms, obtained by moving
the delay line of steps of 2µm. The experimental data is shown in red dots.
Unlike the previous figure, the black continuous line indicates the best theoretical
fit. The model is based on the numerically calculated JSA of figure (2.8) ,
using ωp = 2π· 388.91THz (λpump = 770.616nm) in the resonant case, and
ωp = 2π· 388.99THz (λpump = 770.463nm) in the anti-resonant case, a waveguide
length of 2mm and facets reflectivities RH = 0.297, RV = 0.243.

At λpump = 764.313nm (figure (6.27), left) we find the HOM dip at τ = 20.96ps
(z = 6.29mm). In this measurement we integrate for 30s per point. Given the high
density of points and limited integration time, we smooth the resulting data by
performing a moving average among the three nearest points.

At λpump = 764.355nm (figure (6.27), right) we measure the HOM peak centered
at 21.02ps (6.30mm) by integrating for 120s per point during an overnight measure.
In this case we do not perform any average of the data.

To compare the two measurements, we normalize to 0.5 the coincidence counts
of the HOM base line R̄. Before the normalization, we check that the number of
the base line counts is sufficiently high to assure a low uncertainty. In the bunching
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measurement (left), R̄ = 425 ± 30 counts, corresponding to an uncertainty of
σR̄/R̄ = 7%. In the anti-bunching measurement (right), R̄ = 1600 ± 50 counts,
corresponding to σR̄/R̄ = 3%.

We also notice an asymmetry in the HOM dip (left) due to the presence of
a narrow peak at higher time delay. In HOM interference, an asynmmetry in
the shape of the dip may be due to third-order dispersion effects occurring along
the fibers [207]. However, we do not individuate any visible asymmetry in the
anti-bunching HOM pattern (right). Thus we are still investigating the origin of
this asymmetry.
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Context and background

In the framework of a collaboration with Ebrahim Karimi (University of Ottawa)
and Peter Banzer (Max Planck Institute for the Science of Light, Erlangen), we have
started a reflection on the possibility of realizing a novel AlGaAs based integrated
device for the generation of a light beam carrying spin angular momentum (SAM)
and orbital angular momentum (OAM).

In the following, after a brief introduction about light angular momentum, we
report on the realization of the SAM device in chapter (7) on the design of the
OAM device in chapter (8).

Angular Momentum of light
In 1619 Kepler observed that a comet tail always points away from the Sun and
explained it by introducing for the first time the concept of radiation pressure
of light [208]. To justify the existence of the radiation pressure of light, in 1862
Maxwell introduced the idea that light possess a linear momentum, which was
experimentally observed by Lebedevin forty years later [209]. Nowadays it is well
known that light carriers a linear momentum p directed along its direction of
propagation k and with an amplitude of p = h/λ per photon, as stated by de
Broglie’s relation. It is also known that, in addition to p, a light beam can carry
angular momentum L, directed as well along the direction of propagation of light
and defined as:

L = r× p (6.91)

According to the definition (6.91), since r belongs to the transverse plane while
L is aligned along the light propagation direction, an angular momentum can
exist only if the light beam has azimuthal momentum in the transverse plane, i.e.
pθ 6= 0. As a propagating e.m. field is formed by the mutually orthogonal vectors
(k,E,H), this implies that at least E or H have a projection in the direction of
propagation as well.

This condition is verified by any optical wave that has a finite extension in
the transverse plane [210], which is always the case for light beams observed and
measured within an optical system of finite apertures.

Therefore any light beam can, in principle, carry angular momentum. In
particular, there are two different kinds of angular momentum:
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I Spin angular momentum (SAM, L = Ls), carried by a circularly polarized
beam. Each photon can carry either Ls = +~ or Ls = −~, corresponding to
the left and right handedness of the circular polarization.

II Orbital angular momentum (OAM, L = Lo), carried by a beam with a
helicoidal phase structure. Each photon can carry a multiple of the angular
momentum quanta, Lo = l~, where |l| is the number of intertwined helices
and the sign of l their handedness.

Figure 6.28 – Effect of a beam carrying Spin angular momentum (SAM, left) or
first order Orbital angular momentum (OAM, right) on a particle placed on the
beam axis. Image from [211].

Figure (6.28) illustrate two light beams carrying SAM (left) and OAM of first
order (right) and their action on a particle.

SAM (left) makes the particle spins around the light propagation axis, while
OAM (right) forces the particle to rotate in a circular orbit along the beam
helicoidal phase structure.

The general definition of angular momentum (6.91) in the case of a light beam
can be rewritten using electric and magnetic spatial fields distributions as:

J = ε0

∫
r× (E×B) d3r (6.92)

The same expression can be derived starting from Noether’s theorem [212, 213],
which returns light angular momentum expressed in SAM and OAM contributions:

J = ε0

∫
(E×A) d3r + ε0

∑
i=x,y,z

∫ (
Ei (r×∇)Ai

)
d3r (6.93)

The first term refers to the possibility of a light beam to carry SAM, while the
second one to twist and to carry OAM.

Orbital Angular Momentum
OAM light beams are natural solutions of the wave equation under paraxial
approximation (weak focusing). Two families of solutions are found, depending on
the choice of the coordinate system.



161

In cylindrical coordinates (r, φ, z), as discovered by Allen and colleagues [214],
Laguerre-Gaussian modes (LG) have a well-defined OAM. They are defined as:

u(r, φ, z) =
CLG
lp

w(z)

(
r
√

2
w(z)

)|l|
exp

(
− r2

w2(z)

)
L|l|p

(
2r2

w2(z)

)

exp
(
−ik r2

2R(z)

)
exp(iψ(z)) exp(−ilφ)

(6.94)

where Llp are generalized Laguerre polynomials, CLG
lp a normalization constant,

w(z) the beam waist at the position z from the focus, R(z) the radius of curvature
of the beam and ψ(z) the Gouy phase.

The LG mode phase profile takes the form of exp (−ilφ), where φ is the
azimuthal coordinate in the transverse plane and l the OAM order, also known
as topological charge. This gives the periodicity and handedness of the helicoidal
wavefront. Along the beam axis (r = 0), the phase is undefined since it takes all
the possible values in [0, 2π). Destructive interference generates an optical vortex,
with the result that the intensity profile of LG modes has a donut shape centered
on the optical axis.

In the following, we refer to LG modes (6.94) having p = 0 and indicate them
as LGm,n where m is a right-handedness topological charge and n a left-handedness
topological charge. As instance, LG10 (LG01) carries OAM of first order and right
(left) handedness, LG20 (LG02) OAM of second order and right (left) handedness,
and so forth.

In Cartesian coordinates (x, y, z), an OAM light beam is described by the
superposition of Hermite–Gaussian modes (HG). Therefore every LG mode is given
by the superposition of some specific HG modes with a specific phase relation
among them. As instance, the first and second order LG modes are given by:

LG10 = HG10 + iHG01

LG01 = HG10 − iHG01

LG20 = HG20 + 3i
2 HG11 − HG02

LG02 = HG20 −
3i
2 HG11 − HG02

(6.95)

We illustrate in figure (6.29) the superposition of two first order HG modes to
give the first order LG modes (first two equations in (6.95)). At top of each row
we represent the modes intensity profile, while in the bottom their corresponding
phase profile. The HG modes are calculated in Matalb using the library [215]
and successively normalized by imposing the integral of their spatial intensity
distribution to one. We may notice the opposite handedness of LG10 and LG01,
since their phase profiles are opposite. Analogously, in figure (6.30) we show how to
combine three HG modes to obtain the second order LG modes (last two equations
in (6.95)). We observe that the intensity profile of LG20 and LG02 are donuts
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Figure 6.29 – First order LG modes given by the superposition of two HG modes,
according to equation (6.95). In each row we show the mode intensity (top) and
phase profile (bottom).
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Figure 6.30 – Second order LG modes given by the superposition of three HG
modes, according to equation (6.95). In each row we show the mode intensity
(top) and phase profile (bottom).
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with a larger hole than LG10 and LG10, while their phase profiles have a double
periodicity, sign that their OAM order is two.

Application and generation of Orbital Angular Momentum
Light Spin and Angular Momentum degrees of freedom have been used in numerous
applications [216]. As instance, biosensing, nanoplasmonics and optical tweezing
take advantage of SAM and OAM beams amplitude, phase and polarization spatial
distribution, while quantum communication and information processing of their
Hilbert space, bidimensional for SAM and potentially infinite in the case of OAM.

There are several ways of generating OAM light beam, in both free space
and integrated optics [217]. In free space, the most common tools are cylindrical
mode converters [214], spiral phase plates [218], computer generated holograms
[219, 220], patterned liquid crystals (q-plates) [221, 222] and structured optics
[223]. Miniaturized devices include plasmonic antennas metasurfaces [224, 225],
sub-wavelength gratings [226] and optical fibers [227].

Integrated optics approaches are based on spiral phase integrated in vertical-
cavity surface-emitting laser [228], microlasers [229], micro-ring resonators with
angular gratings [230] and microemitters [231]. These integrated devices have
the advantages of being broad-band and capable of generating high orders OAM
beams. Yet, they work like antennas, with the emission of OAM beams along a
direction orthogonal to surface, preventing an easy integration with other photonic
circuits. On the contrary, in plane angular momentum emitters would enable an
easy and efficient coupling with on-chip components or external optical fibers.

In the following two chapters we present our work on the realization of novel
AlGaAs-based devices for the emission of SAM and OAM light beams along the
longitudinal direction.

The first device works as an integrated quarter quarter-wave plate, which
converts a beam linearly polarized at 45◦ into a beam that is circularly polarized
and carries SAM.

The second device is the analogous of an integrated cylindrical mode converter,
since it transforms a first order Hermite-Gaussian beam into a first order Laguerre-
Gaussian beam, carrying first order OAM.



Chapter 7

An integrated quarter-wave plate

In this chapter we present the design, fabrication and characterization of an
asymmetric AlGaAs waveguide that works as an integrated quarter-wave plate
(QWP), capable of introducing a phase-delay of π/2 between the guided quasi-
TE and quasi-TM modes at the telecom wavelength. Thanks to the strong
lateral confinement of the sub-wavelength core, these two modes possess a strong
longitudinal field component. An input beam linearly polarized along the diagonal
direction (LP45◦) is transformed into a circularly polarized beam that carries SAM
on the transverse field component and a first order OAM on the longitudinal field
component. We benchmark the device performance by measuring the transmission
losses of quasi-TE and quasi-TM modes and the polarization state of a LP45◦

beam coupling out of the device. Due to the cavity effect, the delay between the
two emitted quasi-orthogonal modes varies sinusoidally in ∆θ = 95.5◦ ± 30◦ at
λ ≈ 1.55µm, in agreement with a birefringent Fabry-Perot cavity model.

7.1 Design

7.1.1 Working principle
A ridge waveguide confines the electromagnetic field within the transverse (x, y)
plane, with the result that a longitudinal electric field component Ez is formed.
The spatial distribution of Ez is given by the following expression [232]:

Ez(x, y) = − iλ

2πneff
∇⊥· E⊥ (7.1)

where ∇⊥· E⊥ is the divergence of the transverse component of the field and
neff its effective refractive index.

The two orthogonally polarized transverse electric (TE) and transverse magnetic
(TM) modes acquire a longitudinal component, becoming quasi-orthogonally
polarised transverse electric (quasi-TE) and transverse magnetic (quasi-TM) modes.
A HG00 (fundamental Gaussian) quasi-TE mode acquires a longitudinal field
component Ez(x, y) with a spatial distribution that is a HG10 mode, while the
longitudinal component of a quasi-TM HG00 mode is a HG01 mode. In a QWP
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scheme, the superposition of a quasi-TE and a quasi-TM modes delayed by
π/2 results in a circularly polarized beam, which carries SAM along the fields
transverse component. Besides, according to HG to LG transformations (6.95) and
the confinement effect (7.1), the field carries OAM of first order in its longitudinal
component.

7.1.2 Guidelines
The subwavelength QWP waveguide must satisfy the following requirements:

1. Support HG00 quasi-TE and quasi-TM modes and delay them by π/2.

2. A high confinement of the guided modes in the transverse plane, so that quasi-
TE and quasi-TM modes possess a high longitudinal component, according
to (7.1).

3. Guide rotational symmetric quasi-TE and quasi-TM modes so that the
amplitudes of their longitudinal components are equal as a consequence of
(7.1) and satisfy the HG to LG transformation (6.95).

According to these requirements, the device must have the following features:

(a) Monomode: support only fundamental quasi-TE and quasi-TM modes.

(b) Efficient, balanced and tolerant input coupling for quasi-TE and quasi-TM
modes.

(c) Low and balanced losses for quasi-TE and quasi-TM modes.

(d) Subwavelength structure, to maximize the ratio of longitudinal to transverse
components of the field.

(e) Squared core, to support rotational symmetric quasi-TE and quasi-TM
modes.

7.1.3 Device structure
The design process is inspired by the study of Liang and coworkers [233], who
propose a hybrid silicon-plasmonic waveguide to realize an integrated QWP. In our
case, we choose to realize our device in the AlGaAs platform, given its potential for
nonlinear application and electrical injection. Besides, we design a purely dielectric
waveguide to avoid the losses induced by the presence of a plasmonic layer.

Our study is carried out by using an approximating analytical model, named
effective index method, and Lumerical MODE solver. The details of the design
optimization study are reported in my internship thesis [234] that I have done in
the same team before starting my thesis. We fulfill all the requirements (a)-(e) by
decoupling them.
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Figure 7.1 – Sketch of the integrated QWP AlGaAs waveguide.For a specific
value of Ls, an incoming light beam linearly polarised at π/4 is transformed into
a light beam circularly polarized, carrying SAM in the field transverse component
(red) and first order OAM in the field longitudinal component (yellow).

The designed device is a ridge waveguide made of 1.08µm thick GaAs core layer
and 1.08µm thick Al0.8Ga0.2As cladding layer, on a GaAs substrate. As illustrated
in the sketch of figure (7.1), it is composed by three different parts, each one with
a specific function.

The input section is large enough (w = 3µm) to allow an easy and tolerant
coupling of an incoming laser beam, linearly polarized at π/4, into the fundamental
quasi-TE and quasi-TM modes supported by the waveguide.

The central section consists of two adiabatic tapers and an asymmetric straight
section (w = 0.55µm). The two adiabatic tapers (300µm long) assure low optical
losses, while the asymmetric straight part assures a monomode working condition
(only fundamental quasi-TE and quasi-TM modes are supported) and induces
birefringence in an isotropic material such as GaAs. Since its width is very close
to the cut-off condition for the quasi-TE mode (wcut−off = 0.50µm), it delays the
quasi-TE modes with respect to the quasi-TM mode, inducing a dephasing of:

∆Φs = 2π
λ

(nqTE − nqTM)Ls (7.2)

where Ls is the length of the straight part and nqTE and nqTM the effective
refractive index of quasi-TE and quasi-TM modes. By setting its length Ls, we
can control the accumulated phase-delay ∆Φ between quasi-TE and quasi-TM
modes. Experimentally, we find that a length of Ls = 52.8µm gives an average
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accumulated dephase of π/2.01 = 89.5◦.

7.1.4 Supported modes and near-field
The output section has a rotational symmetric square cross-section (w = h =
1.08µm) to guide a light beam with a HG00 profile in the field transverse component
and LG01 in the longitudinal component.
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Figure 7.2 – Numerical simulations of the longitudinal component of the real
part of quasi-TM (a) and quasi-TE (b) modes in the waveguide output section.
When the two modes are delayed by π/2, a LG01 mode is formed, indicated by
the donut shaped intensity distribution (c). The fields are calculated at 1550nm.

Figure (7.2) shows a simulation of the real part of the longitudinal component
of the supported modes in the device output section. According to (7.1), the
waveguide micrometer transverse dimension confines and shapes the longitudinal
component of the quasi-TM mode in a HG01 mode (a), and the longitudinal
component of the quasi-TE mode in a HG10 mode (b). The central section
introduces a dephasing term of π/2 between them, so that their superposition is a
LG01 mode, whose instensity profile is illustrated in (c).

Figure (7.3) shows a FDTD simulation of the longitudinal component of the
emitted beam in the near field (z = λ/3 = 517nm from the waveguide output
facet). The helical phase distribution (a) and the corresponding doughnut intensity
profile (b) indicate that the longitudinal field component carries OAM of first
order.

However, the phase vortex disappears as the beam propagates in free space,
due to the lack of confinement. In figure (7.4) we illustrate the result of a FDTD
simulation of the emitted beam. We compare the in plane profile (y = 0) of the
field transverse (a) and longitudinal (b) components, while the beam propagates
from the waveguide output facet (z = 0) in free space. We observe that the
field longitudinal component vanishes during the propagation of the beam, as
the longitudinal intensity values are some dB lower than the transverse intensity
values.
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Figure 7.3 – Numerical simulations of the emitted phase (a) and intensity profile
(b) of the longitudinal field component in the near-field. The field is calculated at
1550nm.
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the waveguide output facet, from a top view. The intensity scale is logarithmic
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7.2 Fabrication

7.2.1 Overview
The AlGAAs wafer was grown by Molecular Beam Epitaxy (MBE) at Laboratoire
de Photonique et de Nanostrucutres (Marcoussis, France) and processed by myself
in Paris Diderot clean room.

Ar SiCl4
e- beam

EBL exposure     Resist 
development

ICP etching Resist removal 
 and cleaving

Figure 7.5 – Sketch of the clean room fabrication steps for the fabrication of the
device.

Figure (7.5) is a sketch of the main clean room steps to fabricate the device.
The process consists of a EBL lithography (ma-N 2403 negative resist) followed by
ICP etching, using the optimized spin-coating, exposure and etching parameters
presented in (4.3).

In the MPQ clean room, the wafer is cleaved in several samples. We pick one of
them and we clean its surface from organic and inorganic impurities using acetone
and isopropanol in ultrasound, then water and oxygen plasma etching.

We spin-coat the negative tone resist ma-N 2403 using the parameter reported
in table (4.1). The fabrication proceeds in École normale supérieure clean room,
where a EBL system (Raith e-Line Plus) exposes the negative resist. This EBL
system allows, in addition to standard exposure, a Fixed Beam Moving Stage
(FBMS) exposure, in which the electronic beam is fixed while the sample is moved.
This procedure enables a rapid exposure of long structures, such as waveguides,
and is not prone to writing field boundary issues. For our device, we use it to
define input and output sections.

We transfer back the sample to the MPQ clean room, where we develop the
resist and perform ICP etching, using a low energy etching based on Ar and SiCl4,
as described in (4.3.4). We measure the etched depth by means of a profilometer
(Dektak 150) and successively we remove the resist. We end the process by setting
the sample length to approximately 2mm via manual cleaving.

Our design [234] is robust with respect to the estimated processing tolerances,
summarized in table (7.1).
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Fabrication step Tolerances Value

MBE growth AlxGa1−xAs composition ∆x = 5%
EBL standard (ma-N 2403) central section width ∆ws = ±20nm
EBL moving stage (ma-N 2403) in, out sections width ∆win,out = ±100nm
ICP etching core thickness ∆tcore = ±50nm
Cleaving device length ∆l = ±100µm

Table 7.1 – Uncertainties of each fabrication step.

7.2.2 Electron beam lithography mask
The design of the mask is carried out via the open source software KLayout and
Raith eLine proprietary software. The mask drawn in KLayout is exported as a
GDS file and imported in eLine. In eLine we add the input and output sections,
which, being FBMS paths, cannot be drawn directly in KLayout and are not
compatible with a GDS standard file.
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Figure 7.6 – Schematic of the first 11 waveguide as designed in the mask. The
central section of the waveguide, in yellow, increases by ∆L = 2.8µm per each
waveguide. The input and output sections, in blue, are FBMS path. The overlap
between the different sections and at the WF boundary of the thin central section
is 0.5µm to avoid the presence of longitudinal gaps after exposure.

A schematic of the first eleven waveguides in the mask is represented in figure
(7.6). In total, we draw 31 waveguides, whose central section has a straight part
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that increases progressively by ∆L = 2.8µm. This range allows to span several
induced phase delay according to (7.2), with ∆Φ = 3.3◦. Therefore, even if
the effective index of quasi-TE and quasi-TM modes do not correspond to the
numerically calculated ones due to the fabrication tolerances (table (7.1)), there is
at least one waveguide that induces the desired phase delay of ∆Φ = π/2 with an
accuracy of ∆Φ = ±3.3◦. The device bandwidth, i.e. the maximum delay that is
possible to induce between two orthogonally polarized modes by coupling the light
in the waveguide with the longest straight section, is ∆ΦBW = ±102.3◦.

The input and output sections, in blue, are 1mm long. They are designed as
FBMS paths, instead of polygons. The standard EBL polygons are represented
in yellow: two tapers, 300µm long, and the thin central section, having a length
varying from 38.8µm to 125.6µm. We may notice that the adjacent sections and
the parts forming the central section overlap by 0.5µm. This overlap avoids the
presence of a gap at the connection between different polygons and at the writing
field (WF) boundaries. More details about how we solve the WF boundary issue
and the choice of these parameters can be found in my master thesis [235].

For a dose of D = 145µC/cm2, the time to expose each FBMS path is
approximately 3 minutes, while the exposure of the standard EBL central section
requires 2 minutes. The exposure of one complete mask of 31 waveguides lasts for
more than 4 hours. We set up the lithography to take place over the night and
expose two masks.

7.2.3 Electron beam lithography process
In this section we report the procedure used for the EBL, developed with Michael
Rosticher, the ENS clean room engineer, to avoid the WF issue and minimize the
stitch error between FBMS and EBL expositions.

1. Preparation of the sample
While we make the EBL chamber ventilate, we prepare the sample in the
photolithography room, where UV light is filtered out. We take the sample
from the gel pack in the alumina case; if its bottom surface is glued to the
gel pack, we can easily unstick it by pushing softly its sides. Then we make a
small scratch onto one corner of the resist. This generates some particles of
dust, necessary in the following gross focusing of the electronic beam on the
sample. As we place the sample on the EBL sample holder, we also remove
the resist underlying the metallic holder clamp, which adheres better to the
GaAs wafer than to the resist surface. We need to avoid any movements of
the sample during the exposure, otherwise the pattern would present blurred
features. Once we transfer the sample holder in the EBL machine and we
close the chamber door, we pump the chamber to vacuum. The chamber
pressure needs to reach p = 2× 10−5mbar and it takes about 20 minutes. In
the meantime we can load the mask in the e-Line software and check that
layers, doses and geometry are set correctly.

2. Activation of beam, detector and pre-focusing
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We open the sample holder map and we drive the electronic beam close to
the sample by moving the stage. We activate the beam by setting the column
acceleration voltage to 20kV and the beam aperture to 10µm. We also check
that the angle of scan is set to zero to avoid misalignment between the EBL
slow scan and the FBMS fast scan. To see the sample, we select the InLens
detector, which measures the reflected primary electrons. If necessary, we
adjust the detector sensitivity by playing on its brightness and contrast. We
are now ready to focus the beam on the sample. We move the beam on the
scratch and look for a small molecule of dust. As it is almost at the same
height of the resist, we use it to pre-focus the beam by adjusting its working
distance, at a magnification of M = 150k.

3. Set origin and angle correction
The sample is identified by the absolute coordinates xy, while electronic
beam movements by the EBL internal coordinate uv, so we need to map xy
to uv. We move beam to the bottom left corner of the sample. For a fine
positioning, we can activate a green cross to indicate the center of the beam.
We read the origin position Oxy and we set it as the origin for the vectors u
and v. Now we correct the angle misalignment between xy and uv. We move
the beam to the sample bottom right corner and we read this position. Thus
we set the direction of the vector u coincident to x and automatically of the
normal vectors v to y. Now we can check the length of the sample along u
and v, which should be approximately 1 × 1cm. Once we know the exact
sample dimensions, we can choose the starting point (u, v) of the exposure of
the mask. The exposed area should be at least 1.5mm far from the sample
sides due to resist edge non-uniformity effects.

4. Beam focusing and writing field alignment
We need to fine focus the beam and correct its stigmatism to improve the
quality of exposure. We unblank (switch off) the beam and we drive it
to a point close to the origin of exposure, where no feature is drawn - e.g.
(1.8mm, 2mm) if origin is (2mm, 2mm). We magnify at M = 230K and
leave the beam switch on for a few seconds on a small area (≈ 100nm) to
expose the resist an draw the so-called contamination dot. By looking at
the shape of the dot, we adjust the beam focus (dot is blurred), stigmatism
(dot is elliptical instead of circular) and alignment (as the beam wobbles,
the contamination dot moves in horizontal or vertical direction). Once the
parameters are correctly set, we should see a sharp and perfectly circular
dot of ≈ 20nm diameter.

5. Stage and beam alignment
To minimize the field stitch errors, we synchronize the beam writing field
in uv to the stage interferometric movements in xy. We draw a row of
contamination dots and position the beam at the center of the last one with
the help of the green cross. By looking at the center of contamination dot,
we align the beam within increasingly small writing fields of 10, 5 and 1µm.
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We repeat this procedure for both EBL and FBMS scans and we save the
new writing field parameters. A good writing field alignment procedure leads
to field stitch errors smaller than 10− 15nm.

6. Measure of the beam current
Before exposing the resist, we need to measure the beam current (I) to
set the area dose (D), the number of electrons per cm2 which exposes the
pattern. The dose is related to the exposure time (t) and exposed area (A)
by D = I · t/A. To measure the current we drive the blanked beam to the
center of a Faraday cup, situated nearby on the sample holder. We measure
the current several times to check that it is stable and we pick its average
value. Reasonable values of the current are I = 30− 38pA for V = 20kV and
10µm aperture.

7. Set the position list and start exposure
The position list includes all the features to expose and the corresponding
doses. We load the focus and alignment beam parameters previously set
for both the FBMS and standard EBL. Then we drag in the position list
the cells of the EBL mask containing the feature to expose. As discussed
in the stitch field error paragraph, the mask is made by one waveguide per
cell to minimize the stitch field error at the passage between the FBMS and
slow EBL scan. Since there are 31 waveguides per mask, we automatize
the creation of the position list in the e-Line software through the following
procedure:

(a) Drag in the position list the parameters for standard EBL exposure
(b) Drag in the position list the first cell. We choose to expose the EBL

layer at a position (u, v)e near the contamination dots. We set its dose
to 145µC and thus the polygon dwell time. We simulate the exposure
time, which is approximately 2 minutes.

(c) Drag in the position list the parameters for FBMS exposure
(d) Drag in the position list the first cell. We choose to expose the FBMS

layer at the same position (u, v)e. We set its dose to 145µC and
thus the FBMS line speed. We simulate the exposure time, which is
approximately 4 minutes.

(e) We select these first 4 lines in the position list and apply to them Filter,
Matrix Copy. We set the transformation matrix as (u, v) = (31, 1),
(∆u,∆v) = (100µm, 0) to generate 31 layers 100µm far each other along
the horizontal direction, like the adjacent waveguides in our complete
mask. We also select the option adjust automatically the working area
and change the name of the created position list lines to expose all the 31
cells. We can check that the operation has succeeded by both simulating
the exposing time of some of them and looking if the waveguides are
centered in their working area.
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(f) If we need to expose a second mask, we repeat the previous operation
with another exposure staring point (u, v)e.

We add at the end of the position list the macro to turn off the beam
automatically when the exposure is over and we start the exposure by
selecting Scan, all.

As we launch the lithography for the night, we come the morning of the
following day to extract the exposed sample from the EBL machine. After the
lithography process it is important not to expose the sample to light, in order
to avoid accidental exposure of the resist ma-N 2403 before the development is
performed.

7.2.4 Fabricated device

Figure 7.7 – Image of one waveguide in the fabricated chip.
(a) Top-view optical microscope image of input, central and output sections.
(b) A scanning electron microscope image of the sidewall of the central section
straight part.

Figure (8.11) shows one among the fabricated waveguides. We can distinguish
from a top-view optimal microscope image (a) the three input, central and output
sections. In the central section, we distinguish the first taper, followed by the
narrow straight part and the second taper. The inset (b) is a side view of the
waveguide central section straight part, observed at the SEM. The measured
width of the central section is 548 ± 20nm, compatible with the nominal width
of 550 ± 20nm. The measured etched height over the sample is 1.09 ± 0.1µm,
compatible with the nominal depth of 1.08µm.
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Figure 7.8 – Measured transmitted power of quasi-TE (blue squares) and quasi-
TM (green dots) modes across the waveguide as a function of the wavelength. From
the contrast of Fabry-Perot fringes and simulated facets reflectivity we find an
average one-way transmission losses of αquasi−TE = 0.8± 0.4cm−1, αquasi−TM =
1.5± 0.4cm−1.

7.3 Characterization

7.3.1 Transmission losses
We measure the optical propagation losses, averaged over the wavelength, via
the Fabry-Perot transmission power technique [181]. As shown in figure (7.8),
we couple in the device a CW laser (Tunics-PR) TE and TM polarized and
measure the power of the transmitted quasi-TE and quasi-TM modes as a function
of the wavelength. The coupling in and out of the waveguide is done using
an input (NA=0.65, M=40X) and an output (NA=0.75, M=60X) microscope
objective lens. We calculate the modes transmission losses from the contrast of
the Fabry-Perot fringes and their reflectivity [181]. The latter are calculated via
a 3D FDTD simulation (Rin

quasi−TE = 0.35, Rout
quasi−TE = 0.41, Rin

quasi−TM = 0.27,
Rout
quasi−TM = 0.41). In the range (1549nm,1551nm), we find that the transmission

losses are αquasi−TE = 0.8± 0.4cm−1 and αquasi−TM = 1.5± 0.4cm−1, on average
over different waveguides on chip.

7.3.2 Polarization state
To benchmark the device polarization manipulation functionality, we couple in
a CW laser (Tunics-PR) linearly-polarized at 45◦ by a half wave-plate, and
acquire the polarization state of the emitted beam via a telecom polarimeter
(PAX5720IR3-T), a device composed of a rotating half wave-plate, a polarizer
and a power meter. Figure (7.9) shows the polarization measurement performed
on the waveguide having a central section straight part long Ls = 52.8µm, at
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Figure 7.9 – Measured polarisation state at λ = 1550nm.
Left: ellipticity (|Ey|/|Ex|) and azimuth (α) of the out-coupled beam elliptical
polarization state.
Right: representation of the average polarization state (green dot on the left).

λ = 1550nm. We perform 30 consecutive measurement of the elliptical polarization
ellipticity (|Ey|/|Ex|) and azimuth (α), then we calculate their average values.
The scattering in the measurements originates from the extinction ratio of the
polarizer in the powermeter (10−2). We find an average ellipticity of 0.67 and
azimuth of 0.61◦, corresponding to a phase delay between quasi-TE and quasi-TM
modes of ∆θ = 89.5◦, very close to the desired delay of ∆θ = 90◦ expected from
the simulations.

The corresponding polarization state is illustrated in (7.9), on the right. The
device does not emit a circularly polarized mode, (unitary ellipticity) because at
this wavelength the quasi-TE mode has higher losses than the quasi-TM due to the
Fabry-Perot cavity effect. As shown in figure (7.8), at 1550nm the quasi-TM mode
is a cavity resonant mode, while the quasi-TE is off-resonance by a phase delay
of ∆θ = 89.5◦. To achieve a perfectly circular state at the specific wavelength of
1550nm, we could counter-balance the difference in cavity transmission between the
two quasi-orthogonal modes by coupling a beam that has a TM component more
important than the TE. From the measured ellipticity, |Ex| = |Ey|/0.67 = 1.5|Ey|,
corresponding to a linearly-polarized beam at 34◦.

7.3.3 Phase delay as a function of the wavelength
Due to the Fabry-Perot cavity effect, the relative delay between quasi-TE and
quasi-TM modes is a function of the wavelength, as shown in figure (7.10). The
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Figure 7.10 – Measured phase delay between the emitted quasi-TE and quasi-TM
modes as a function of the wavelength (black open circle) and calculated phase
delay according to a birefringent Fabry-Perot cavity (green continuous line).

delay between the emitted quasi-TE and quasi-TM modes is ∆θ = 89.5◦ at
1550nm (green dot), while in the range of (1549.7nm, 1550nm) it varies within
∆θ = 95.5◦ ± 30◦ (open circles). This variation is in agreement with a model
of a birefringent Fabry-Perot cavity. The transmitted amplitudes of the two
orthogonally polarized modes trough a birefringent (and dispersion-less) cavity
are given by:

Ex
out = Ex

(1−RTE) exp (i L kTE − α̃TEL)
1−RTE exp (i 2LkTE − α̃TE2L)

Ey
out = Ey

(1−RTM) exp (i L kTM − α̃TML)
1−RTM exp (i 2LkTM − α̃TM2L)

(7.3)

with ∆Φ = L(kTE − kTM) the one-way phase difference between the two
orthogonal modes. In our device ∆Φ is determined by the phase-delay accumulated
in the central section (7.2).

The phase-difference between the two emitted orthogonally polarized modes
depends on the one-way phase difference (∆Φ) and the modes Fabry-Perot
transmission functions, determined by the cavity physical length L, the modes
reflectivities and one-way transmission losses:

∆θ = arg(Ex
out)− arg(Ey

out) = ∆θ(∆Φ, L,RTE, RTM , α̃TE, α̃TM) (7.4)

Figure (7.11) shows the phase delay between the emitted orthogonally polarized
modes (∆θ, continuous lines) versus their one-way phase delay (∆Φ, horizontal
dashed lines) as a function of the wavelength.

We consider ∆Φ = {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}. The cavity is L = 2.69mm
long and the modes have modal reflectivities RTE = 0.34, RTM = 0.38, one-way
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Figure 7.11 – Calculated phase delay between the emitted TE and TM modes
(∆θ) as a function of the wavelength in a birefringent Fabry-Perot cavity (RTE =
0.38, RTM = 0.34, α̃TE = αTE/2 = 0.75cm−1, α̃TM = αTM/2 = 0.40cm−1,
L = 2.69mm, nTE = 3.1). The corresponding one-way phase-delay (∆Φ) is
indicated by a dashed line with the same color.

propagation losses α̃TE = αTE/2 = 0.75cm−1, α̃TM = αTM/2 = 0.40cm−1, and
effective refractive index nTE = 3.1.

We observe that the periodicity of ∆θ does not depend on ∆Φ, but the position
of the cavity resonances changes with ∆Φ. Besides, ∆θ oscillates around the
corresponding ∆Φ. The amplitude of the oscillation increases as ∆Φ approaches
90◦ (green) and is minimum when ∆Φ = 0 (light blue).

Therefore, even when ∆Φ is not exactly 90◦, ∆θ can be 90◦ for some wavelengths.
As instance, for the modal reflectivities and transmission losses of figure (7.11),
∆Φ must be within 60◦ (dashed purple line) and 120◦ (dashed yellow line) in order
to have some wavelengths for which ∆θ is 90◦ (continuous purple and yellow lines).

The experimental data of figure (7.10) agree with this model for ∆Φ = 90◦
(green line), as we show by reporting the green line of figure (7.11) in figure (7.10).

Depending on the application, the Fabry-Perot interference effects can be useful
or undesired. If the device has to work as a wavelength-independent QWP, the
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Fabry-Perot effect is undesired. In this case, an anti-reflection coating can be
applied to the surfaces of input and output facets to minimize it.

Conversely, if the device has to work as a QWP for a specific wavelength which
can be arbitrarily tuned, the Fabry-Perot effect can be used to achieve the desired
phase-delay for a specific wavelength, within the range indicated in figure (7.11).

7.4 Perspectives
This device demonstrates that a waveguide with an asymmetric core can induce a
controlled phase delay between two orthogonally polarised fundamental Guassian
modes.

The same concept could also be applied to different spatial modes launched
into a device with a similar geometry. In that case, phase vortices would also
be imprinted on the transverse field components, hence resulting in a net OAM
carried by the beam emitted from the end facet of the waveguide.

For this reason, our next step is to adapt the design of the device by tailoring
the dispersion of higher order modes, in order to generate OAM beams.



Chapter 8

An integrated cylindrical mode
converter

In this chapter we report the design and the development of the fabrication process
of an asymmetric AlGaAs waveguide that works as a cylindrical mode converter.
The device working principle comes from a discussion with E. Karimi and P. Banzer.
We have worked to its implementation (design and fabrication) on the AlGaAs
platform.

Similarly to the integrated quarter-wave plate presented in the previous chapter,
this device introduces a phase-delay of π/2 between HG01 and HG10 modes, which
can be either TE or TM polarized. As a result, an input beam with a HG11 spatial
mode profile is transformed into a LG01 beam, which carries OAM on the electric
field transverse component.

8.1 Design

8.1.1 Working principle
The device works as a cylindrical mode converter, a free space optics system of
two aligned cylindrical lenses of focal length f sperated by 2

√
f . The astigmatism

introduced by the cylindrical lenses is responsible for a phase shift of π/2 between
HG10 and HG01 beams [214, 236], implementing the operation shown in figure
(6.29).

As the sketch in figure (8.1) shows, we design an integrated cylindrical mode
converter. The devices is similar to the integrated quarter wave-plate presented in
the previous chapter (see the sketch of figure (7.1)).

In this case, the waveguide widths and etching depth along input, central and
output sections are chosen to support and properly delay the first order HG modes,
for both TE and TM polarizations.

Input and output sections are identical and are given by a GaAs squared core
with wcore = hcore = 3µm.

In the central section the core is narrower, with ws = 2.12µm, in order to delay
the first order HG horizontal mode (HG10) with respect to the first order HG
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Figure 8.1 – Sketch of the integrated cylindrical mode converter. For a specific
value of Ls, an incoming light beam with a HG11 spatial distribution (TE or TM
polarized) is transformed into a light beam having a LG01 spatial distribution (TE
or TM polarized), which carries first order OAM in the field transverse component.

vertical mode (HG01), for both TE and TM polarization directions.
An Al0.8Ga0.2As bottom cladding layer with a thickness hclad = 1µm assures

that the modes are properly guided and do not leak into the substrate.
On the top of the core, a cladding layer identical to the bottom cladding layer

is added to preserve the device rotational symmetry: the squared GaAs guiding
core is surrounded by air in the lateral direction and Al0.8Ga0.2As in the vertical
direction.

8.1.2 Input section

Figure (8.2) and (8.3) report the first order HG modes supported in the input (or
output) section at a wavelength of 1.55µm, respectively TE or TM polarized. The
modes are calculated via Lumerical Eigenmode solver. The continuous white line
indicates the borders of core and top and bottom cladding layers. We can see that
the first order modes are well confined within the squared core.

As expected, the HG10 (HG01) mode has a phase discontinuity of π along the
horizontal (vertical) direction with respect to the core central vertical (horizontal)
axis. Given the device rotational symmetry, the coupling of a HG11 TE (TM) mode
assures the equal excitation of HG10 and HG01 TE (TM) modes. The shaping
of the input beam into a HG11 mode can be achieved by means of a SLM or a
holographic-mask.
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Figure 8.2 – Numerically calculated intensity and phase profile of first order TE
modes in the input and output sections.
(a) HG10
(b) HG01

8.1.3 Central section
The central section is made of a straight part and two adiabatic tapers that connect
the former to the device input and output sections.

Straight part

The straight part has the function of introducing a controllable delay between the
HG10 and HG01 modes, while assuring at the same time that the modes do not
leake into the substrate. Both requirements are fulfilled when the core width is
larger than the minimal width corresponding to the modes cut-off.

To find the modes cut-off condition, we calculate via Lumerical eigenmode
solver the modes effective refractive index as a function of the core width, for a
fixed core height of 3µm. Figure (8.4) shows the result of this numerical simulation,
for TE (blue) and TM (green) first order HG modes.
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Figure 8.3 – Numerically calculated intensity and phase profile of first order TM
modes in the input and output sections.
(a) HG10
(b) HG01

Independently on the core width and polarization direction, the refractive index
of HG10 modes (continuous lines) are always lower than the refractive index of
HG01 modes (dashed lines). This difference is due to the fact that the HG01 modes
have a higher overlap with Al0.8Ga0.2As top and bottom cladding layers, having
a refractive index of n = 2.98 at 1.55µm, while the HG10 modes have a higher
overlap with the surrounding air regions, where n = 1.

When the core is squared (ωs = hs = 3µm), the confinement within the core
of the HG10 and HG01 modes is higher, so the difference between their effective
refractive index is minimal (∆nTE = 0.052, ∆nTE = 0.002).

As the core becomes narrower, HG10 modes are less confined and leak in the
surrounding air with a consequent decreasing of their effective index. The cut-off
condition for the TE HG10 mode is at w2 = 1.76µm, while the cut-off condition
for the TM HG10 mode is at w2 = 1.96µm.

To avoid excessive propagation losses, we set the width of the straight part to
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Figure 8.4 – Numerically calculated effective index of HG10 TE (blue continuous
line) and TM (green continuous line) modes and HG01 TE (blue dashed line) and
TM (green dashed line) modes as a function of the central section straight part
width (ws), for hs = 3µm.

ws = 2.12µm, corresponding to the vertical black dashed line in figure (8.4). For
this core width, the modal birefringence between HG01 and HG10 modes, either
TE and TM polarized, is:

∆nTE = nTEHG01 − n
TE
HG10 = 0.035

∆nTM = nTMHG01 − n
TM
HG10 = 0.027

(8.1)

Adiabatic tapers

We design two compact triangularly-shaped input and output tapers (8.1) to
maximize the transmission of the modes from the input section to the straight
part of the central section and hence from there to the output section.

In the design of the integrated quarter-wave plate (sketched in figure (7.1)),
we relied on very long tapers (300µm) to have an adiabatic transmission of the
modes from the input section, 3µm wide, to the straight part of the central section,
0.55µm wide.

In this device, the input section is still 3µm wide, but the straight part is only
slightly narrower, as we set its width to 2.12µm. Therefore we expect that an
adiabatic transmission can be obtained for shorter tapers.

For the study of the tapers adiabaticity we consider the transmission of the
least confined modes, the HG10 modes. Figure (8.5) shows the transmission of the
HG10 TE (blue) and TM (green) modes across a taper as a function of its length.
The calculation is carried out by using Lumerical eigenmode expansion solver. We
find that a taper length of Lt = 10µm assures a transmission higher than 0.99 for
both modes, thus we choose this value.
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Figure 8.5 – Numerically calculated transmission of one taper (input or output
taper) for TE (blue) and TM (green) HG10 modes.

Accumulated phase delay

In the central section, the HG10 mode acquires a delay with respect to the HG01
mode. Since the input and output tapers are identical, the accumulated delay
between either TE or TM first order HG modes can be written as:

∆Φc,u = 2π
λ

[
(∆nuLs + 2

∫ Lt

0
nuHG01(z)− nuHG10(z)dz

]
(8.2)

where u = {TE, TM} indicates the modes polarization, , ∆nu the birefringence
of the straight part given by (8.1) and Ls its length. Since Lt and ∆nu are fixed
parameters, we can tune the accumulated phase delay by increasing Ls.

Figure (8.6) illustrates phase-delay accumulated by TE and TM modes in the
whole central section, according to equation (8.2), as a function of the straight
part length.

We see that first order HG TE modes (blue line) are phase delayed by π/2 for
Ls = 1µm, meaning that the most important contribution to the phase delay is
given by the input and output tapers. A straight part length of 22µm introduces
an additional delay of π, as a delay of 3π/2 is reached for Ls = 23.0µm. TM modes
(green) are phase-delayed by π/2 for Ls = 5.3µm and by 3π/2 for Ls = 34.3µm.

We conclude that a TE LG01 (LG10) mode can be obtained by using a waveguide
having a straight part of length Ls = 1µm (Ls = 23.0µm), while a TM LG01
(LG10) mode can be obtained by using a waveguide having a longer straight part,
with Ls = 5.3µm (Ls = 34.3µm).
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Figure 8.6 – Numerically calculated one pass phase delay accumulated in the
central section between TE HG01 and HG10 modes (blue) and TM HG01 and HG10
modes (green), as a function of the straight part length (Ls).

8.1.4 Output section

When the phase-delay accumulated between the HG01 and HG10 modes along the
central section is π/2, a LG01 mode propagates in the waveguide output section.

Figure (8.7) shows the intensity and phase spatial distribution of the electric
field given by the superposition of TE HG10 and HG01 modes, for a zero phase-delay
(top row) and for a phase-delay of π/2 (bottom row). If they are not delayed, their
superposition gives a HG11 mode, characterized by a phase-discontinuity along the
anti-diagonal direction. When they are delayed by π/2, the resulting mode is a
LG01, characterized by a phase singularity at the center of the core, responsible for
the donut shaped intensity profile. The optical vortex has a negative sign, since
the phase grows anticlockwise.

Analogous results are obtained in the case of the superposition of TM HG10
and HG01 modes, shown in figure (8.8).
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Figure 8.7 – Numerically calculated intensity and phase profile of the injected
TE mode HG11 in the output section, given by HG10 + HG01 exp (i∆Φ), for two
values of phase delay:
(a) ∆Φ = 0
(b) ∆Φ = π/2

8.1.5 Numerical simulation of the emitted far field

Contrary to the quarter-wave plate device presented in the previous chapter, in this
device the optical vortex is carried out by the principal component of the electric
field (the horizontal polarization direction in TE mode, the vertical polarization
direction in TM mode) and so it does not disappear as the modes propagate in
the far field.

Figure (8.9) illustrates the far field of the previously calculated LG01 modes, for
TE (top row) and TM (bottom row) modes. The optical vortex is still present and
the intensity profile has a donut-like shape. Due to the fact that the waveguide
core is squared and not circular, the intensity profile has a 4-fold symmetry, so the
donut shape is slightly more intense along vertical and horizontal axis than along
diagonal and anti-diagonal ones.
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Figure 8.8 – Numerically calculated intensity and phase profile of the injected
TM mode HG11 in the output section, given by HG10 + HG01 exp (i∆Φ), for two
values of phase delay:
(a) ∆Φ = 0
(b) ∆Φ = π/2

8.2 Fabrication
To fabricate the device we rely on the fabrication method used for the quarter-wave
plate device (7.2), based on EBL and ICP dry etching.

8.2.1 Electron beam lithography mask
Figure (8.10) is a schematic of the EBL mask. It includes 35 waveguides, with
the length of the straight section increasing by step of 1µm among consecutive
waveguides.

On the left of the mask, we design a straight waveguide and a waveguide whose
central section includes only the input and output tapers (Ls = 0). By measuring
the phase-delays among two modes in the first three waveguides, we should be
able to quantify the delay introduced by each section.
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Figure 8.9 – Numerically calculated far field of LG01 = HG10 + HG01 exp (i∆Φ),
∆Φ = π/2, in the case of:
(a) TE polarized mode.
(b) TM polarized mode.

8.2.2 Processing

To fabricate the device (8.1) we need to etch 1µm of Al0.8Ga0.2As and 3µm GaAs,
so we use the resist ma-N 2405 (the reasons of this choice are given in paragraph
(4.3.2)).

We choose a dose of 110µC/cm2 for both standard EBL and FBMS EBL. The
lithography of one mask (i.e. the 35 waveguides indicated in figure (8.10)) lasts for
2 hours. We launch a lithography overnight and expose four masks. We develop
each sample for 30 seconds and perform ICP etching following the gentle etching
(4.3.4). The ICP etching lasts for 6.35 hours, with an average etching rate of
11nm/min.
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Figure 8.10 – Schematic of the mask used for the sample processing. The length
of the central section straight part increases by ∆Ls = 1µm from one waveguide to
the next one. The input and output sections, in blue, are FBMS path. The overlap
between the different sections is 0.1µm to avoid the presence of longitudinal gaps
after exposure. On the left of the mask there are a straight waveguide and a
waveguide having a central section consisting only of the two tapers.

8.2.3 Fabricated device

The fabricated device is shown in figure (8.11). From the SEM image of the
waveguide input section (b, left), we deduce that the ma-N 2405 resist (in black)
did not cover the waveguide sidewalls until the ending of the etching process. The
resist edges are completely etched and so are the edges of the top cladding layer
(dark grey) and of the upper part of the core layer (lighter gray). As a result, the
waveguide sidewalls are very rough and the guided modes would have too high
propagation losses, especially the mode HG10.

This fabrication issue is due to the "roof effect" of the ma-N resist, previously
observed for the fabrication of the active laser (see figure (4.5)). In this process,
due to the very long time of the ICP etching (6.35h), the premature etching of the
resist edges prevents the realization of the structures.
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Figure 8.11 – Image of the first waveguide (Ls = 1µm) of the fabricated chip.
(a) Top-view optical microscope image of input, central and output sections.
(b) A SEM image of the waveguide input facet and central section.

8.3 Perspectives
To overcome the resist etching issue, there are two workable solutions. The first
one is to perform the deposition of a hard mask of SiN under the ma-N resist
before its spin-coating. The second solution is to use a resist more resistant to
etching, such as HSQ. In both cases, the first step consists in performing a dose
test to find the new optimal exposure dose.

Here we give the characterization steps that will be necessary to demonstrate
the operation of the device once it will be fabricated. Firstly, we need to measure
the propagation losses of each propagating mode: TE HG01, TE HG10, TM HG01
and TM HG10. To inject these modes in the waveguide, we can use a SLM to
shape the coupling beam into the desired spatial distribution and a polarizer to set
its polarization. From the measurement of the transmitted power and the contrast
of the Fabry-Perot fringes we can deduce the propagation losses of each mode.

Thus, for each polarization direction, we need to couple in the device a HG11
mode and measure the spatial distribution of the emitted mode as a function of
the length of the straight part of the central section.

This measurement can be done using a CCD camera to directly image the
mode. However, this method would not allow to distinguish between LG10 and
LG01 modes, since they both have a donut-shaped intensity distribution profile.

In order to discriminate them, we may perform an interference measurement
by removing a part of the laser beam before injection with an unbalanced beam
splitter and use it as reference. We can then superpose the light emitted by our
device and the reference beam on a screen, taking care that the two beams have
the same intensity. The resulting interference pattern will present fringes which
are a fingerprint of the mode spatial profile, allowing to distinguish even between
LG10 and LG01 modes [237]. This project will be continued by F. Appas, new PhD
student in the QITE team.





Conclusion and Perspectives

This thesis has been devoted to the study of AlGaAs quantum integrated photonics
for the development of novel devices and methods capable of generating and
manipulating high-dimensional states of light, encoding information in either
frequency or angular momentum degrees of freedom. During this investigation,
we performed theoretical studies and established numerical routines, optimized
clean-room processings and performed experimental characterizations. These
complementary tasks have led to the results presented in this manuscript, among
which we highlight the generation and manipulation of broadband biphoton
frequency-comb states, and to the realization of AlGaAs devices for the emission
of beams of light presenting angular momentum.

In the first part of the manuscript we report the study of type-II SPDC process
in an AlGaAs waveguide in a monochromatic pump regime and collinear one-pass
configuration, with a focus on the joint spectral amplitude of the emitted biphoton
state. We show the possibility of generating broadband states of light in the
telecom range, a promising resource for quantum communication protocols. Our
hypothesis are validated via Hong-Ou-Mandel interferometry, performed without
any spectral filtering. The detected interference pattern corresponds to signal
and idler photons with a large bandwidth (λFWHM

s,i = 170nm) and high degree of
indistinguishibility (V = 86%). The evaluation of phase matching also indicates
that the photons indistinguishibility, a prerequisite for many quantum protocols,
can be further increased by reducing the source birefringence. In this perspective,
our group is currently developing AlGaAs electro-optics devices in order to control
it.

In the second part of the manuscript we take into account the cavity effect
due to facets reflectivity. We analyse the generation of two spectrally distinct
classes of biphoton frequency-comb states, namely resonant and anti-resonant
states, based on the fine tuning of the monochromatic pump frequency. Stimulated
Emission Tomography is used to demonstrate our theory by measurements of
the joint spectral intensity of resonant and anti-resonant states. Further, we
demonstrate how the unique spectral properties of these states can be exploited
in a manipulation scheme based only on passive telecom components, namely a
polarizing beam splitter and a delay line. When the two photons of the pair are
delayed by an odd multiple of half the cavity round-trip, the frequency and path
components of the anti-resonant state become anti-symmetric, while the ones of the
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resonant state are still symmetric. The experimental demonstration of this scheme
is done on AlGaAs sources and the successful state manipulation is demonstrated
by Hong-Ou-Mandel interferometry. The generation and manipulation of resonant
and anti-resonant frequency-comb states may bring new functionalities to quantum
information. In this context, a project in partnership with Nokia Bell Labs
and LIP6 laboratories is envisaged for the implementation of novel Quantum
Key Distribution communication protocols. Besides, in collaboration with the
theoreticians of our team, we are showing that frequency-comb states can be
used to implement a frequency-time Gottesman-Kitaev-Preskill (GKP) encoding.
The robustness of this encoding, assured by its compatibility with quantum error
correction codes, makes it a good fit for the processing of quantum information in
noisy machines.

The last part of this work presents the exploration of novel AlGaAs devices
for the emission of light beams carrying spin or orbital angular momentum,
whose unbounded states have potential applications in communication spatial
multiplexing. We demonstrate the realization of an AlGaAs ridge waveguide for
the generation of light beams with tailored phase and polarization distributions,
carrying spin angular momentum. As a step forward, we design a device with a
similar geometry for the generation of a twisted light beam, carrying first order
orbital angular momentum. In the next future, the fabrication and characterization
of this device will be carried out by our team, in the framework of an international
collaboration.
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Abstract
We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a
controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These
modes possess significantly strong longitudinal field components as a direct consequence of their
strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a
linearly polarised input beam is the generation of a field, which is circularly polarised in its
transverse components and carries a phase vortex in its longitudinal component. We believe that
the discussed integrated platform enables the generation of light beams with tailored phase and
polarisation distributions.

Keywords: integrated optics, semiconductor waveguides, light angular momentum, AlGaAs

Integrated photonic circuits are one of the most promising
platforms for large-scale quantum information systems since
they allow for solving critical problems of scalability and
reliability, as witnessed by numerous results obtained in the
fields of quantum communication, computing, simulations
and metrology [1]. In this context, semiconductor materials
are particularly attractive to achieve extremely compact and
massively parallelised devices; among the different platforms
under development, AlGaAs combines the advantages of a
direct band-gap, high second-order susceptibility and strong
electro-optical Pockels effect [2, 3]. These properties have
been exploited to demonstrate a full set of devices for the
generation, manipulation and detection of quantum states of
light [4–7]. The achievement of more complex photonic cir-
cuits requires an accurate tailoring of the properties of the

electromagnetic field, e.g. to perform operations on different
degrees of freedom of light or to control its interaction with
matter qubits associated to single emitters embedded in the
circuit [8–11].

Another property of light attracting growing attention,
which has not been explored yet in integrated photonic cir-
cuits, is its angular momentum that can be subcategorised into
spin and orbital angular momentum (OAM) [12]: spin angular
momentum (SAM) is associated with beams having either the
electric field vector spinning around the propagation axis
(longitudinal SAM) or spinning in the propagation or mer-
idional plane (transverse SAM) [13–15]; OAM is associated
with the transverse structure of beams, having helical or
twisted wavefronts [16]. Both SAM and OAM degrees of
freedom of light have paved the way for numerous
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applications in biosensing, nanoplasmonics [8, 17, 18], opti-
cal tweezing as well as in quantum communications and
information processing using high-dimensional spaces
[19, 20]. Over the last decades, many different techniques
have so far been proposed for generating OAM-carrying
optical beams; most of them can be categorised as: cylindrical
mode converters [21], spiral phase plates [22], computer-
generated holograms (holography) [23, 24], patterned liquid
crystals [25, 26], and structured optics [27]. More recently,
miniaturised devices [28–30], sub-wavelength optics [31],
micro-ring resonators [32], and optical fibres [33–35] capable
of supporting or generating OAM have been designed and
tested. However, a common feature of such devices is the
emission of light carrying OAM in free-space rather than an
on-chip coupling or propagation. A first important step
towards the on-chip generation of OAM (or SAM) would be
the selective phase delay between orthogonal spatial modes
(or polarisation states). In this context, a theoretical proposal
of a device consisting of a hybrid dielectric-plasmonic
waveguide has recently been presented [36]. However, on one
hand plasmonic structures usually come with the cost of
optical losses; moreover the device presented in [36] suffers
from a narrow operation window. More recently, in parallel
with our work, a theoretical proposal to implement wave-
plates using pure dielectric Si waveguides has been presented
[37]. In [36, 37], a phase vortex was imprinted on the long-
itudinal electric field component of the waveguide mode. But
so far, no device has been demonstrated experimentally. In
this work, we propose, fabricate and experimentally demon-
strate a monolithic all-dielectric AlGaAs waveguide that,
starting from a linearly polarised (LP) beam, is capable of
generating a confined circularly polarised mode (SAM) with a
phase-vortex carried by the longitudinal field component. The
SAM of the emitted beam is associated with the relative phase
between waveguide modes induced by an asymmetric bire-
fringent waveguide, while the appearance of strong long-
itudinal field components is a consequence of the light
confinement within the waveguide. In combination with the
aforementioned phase-delay, those longitudinal field compo-
nents exhibit a helical phase-front (phase vortex). Our device
is compatible and adds novel functionalities to the existing set
of AlGaAs-based quantum photonic devices; for example, it
allows for converting a linear into a circular polarisation
opening the way to basis changes for polarisation encoded
qubits. Moreover, this work represents a first step towards
introducing OAM as degree of freedom to be generated and
manipulated directly in integrated photonic circuits.

The device proposed in this work is illustrated in figure 1.
It consists of a waveguide with constant core height
(h= 1.08 μm), insuring single mode excitation, and divided
into three sections, as indicated by black lines and corresp-
onding labels. The input section is large enough (w=3 μm)
to allow easy coupling of an incoming laser beam, LP at 45◦,
into the two quasi-orthogonally polarised transverse electric
(quasi-TE) and transverse magnetic (quasi-TM) modes of the
waveguide. The generation of SAM and of the phase vortex
occurs in the central section, which includes two adiabatic
tapers and a straight section with a width of w= 0.55 μm,

being slightly larger than the quasi-TE mode cut-off condition
(wcut-off=0.50 μm). The latter induces mode dispersion,
used to control the relative delay between quasi-TE and quasi-
TM modes. Indeed, the quasi-TE mode travels faster than the
quasi-TM mode, introducing a phase delay of π/2 for a
specific length of the central section. The design of the central
section has been chosen such that the phase delay through the
length of the straight section can be controlled easily, while
maintaining low optical losses thanks to the two adiabatic
tapers. The output section has a square cross-section
(h=w=1.08 μm) in order to emit a light beam with a
Gaussian-like intensity profile.

The profiles of the quasi-TE and quasi-TM modes and
the effective mode indices along the waveguide for a free-
space wavelength of λ=1.55μm have been investigated
using a commercial eigenmode solver [38]. Neither the input
nor output sections induce a significant phase delay between
the two quasi-orthogonally polarised modes (Δ ninput<
0.008, Δ noutput=0). On the contrary, the effective refractive
indices of the two modes differ significantly in the asym-
metric central section of total length Lc. Here two different
terms contribute to the phase delay, arising respectively from
the birefringence of the two tapers t1, t2 of a length Lt, and of
the straight section, of a length Ls (figure1). The induced
phase delay between quasi-TE and quasi-TM modes can be
expressed as
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Along the tapers, the index difference between quasi-TE and
quasi-TM modes n zt1,2D ( ) increases with the waveguide
asymmetry. The maximum birefringence is reached at the
boundary with the straight section, where Δ ns=0.101
(nquasi−TE=3.020, nquasi−TM=3.121). To assure an adia-
batic passage of light, we set the taper length to Lt=300 μm.
We control the induced phase delay δ with the length Ls of the
straight section. A specific Ls assures the quasi-TM mode to
be delayed by δ=π/2 compared to the quasi-TE mode after
the central section. As the output section shows only negli-
gible birefringence, the device emits a circularly polar-
ised beam.

Note that our design presents two main advantages with
respect to that proposed in [37] based on a similar working
principle. The size of the input and output sections of our
device is much larger thus facilitating in and out-coupling of
light. Moreover, adiabatic tapers have been included to join
different waveguide sections with various widths, thus low
optical propagation losses.

The electromagnetic field confinement within the wave-
guide results in the formation of longitudinal electric field
components Ez, which are an inherent part of the TE and TM
modes of the waveguide. Their spatial distribution in the
cross-section of the waveguide is given by the following
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where Ê ^· is the transverse divergence of the electric
field, and neff is the effective refractive index [39].
Figures 2(a) and (b) show the amplitude and phase profile of

the longitudinal component of the quasi-TE and quasi-TM
modes in the waveguide output section, respectively. As
equation (2) indicates, E⊥and Ez are dephased by 2p∣ ∣.
Hence, the longitudinal field components of the TE and TM
modes are also delayed by δ. The transverse profiles of Ez for
two different phase-delayed superpositions of quasi-TE and
quasi-TM modes are illustrated in figure 2(c). The ratio

Figure 1. Sketch of the integrated AlGaAs device and its generation of angular momentum. An incoming light beam linearly polarised at 45◦

is transformed into a light beam carrying spin angular momentum in the field transverse component (red) and a phase vortex in the field
longitudinal component (yellow).

Figure 2. Numerical simulations of the modulus and phase of the longitudinal electric field component of the (a) quasi-TE and (b) quasi-TM
modes in the waveguide output section. (c) Resulting longitudinal electric field in the output section for two different phase delays
accumulated in the central section.
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between the maximum values of Ez and Ex (Ey) in the output
section is 0.21 (0.19). As quasi-TE and quasi-TM modes are
superposed in the waveguide, an optical vortex can be gen-
erated in the output section, depending on the phase δ accu-
mulated in the central section. If the length of this section is
chosen such that the relative phase is an integer multiple of π,
i.e. δ=nπ where n 0 is a positive integer, Ez exhibits an
antisymmetric distribution with respect to the diagonal. If the
length of the central section is chosen to have n2d = +(
1 2p) , a phase vortex with unit topological charge, exp if( ),
is generated. The longitudinal field, thus, possesses a spiral
phase distribution and a doughnut-shaped intensity profile.
The sign of the phase-vortex can be changed by rotating the
input polarisation by ±π/2. The longitudinal field compo-
nents are still relatively strong in close vicinity to the out-
coupling facet of the waveguide as light propagates in free-
space and where the mode is still spatially confined. Figure 3
shows the simulated near-field electric energy density and
phase distributions of Ez. The field has been calculated at a
distance of 517nm away from the waveguide output facet.
The helical phase distribution and the corresponding dough-
nut intensity profile indicate that the field component Ez

carries a phase vortex because it is still confined. Due to the
very tight confinement of the phase-delayed quasi-TE and
quasi-TM modes, also the transverse field component will
carry a phase-vortex of charge 2 when projected onto the
opposite polarisation handedness (not shown here) [40].
Nonetheless, the conversion efficiency for this OAM gen-
eration is very low, and is not to be discussed here.

The fabrication of our device is straight-forward in com-
parison to hybrid dielectric-plasmonic structures and requires only
standard processes. The sample is grown by molecular beam
epitaxy on a (100)GaAs substrate. It consists of a 3μm thick
cladding layer of Al Ga As0.8 0.2 and a 1.08μm thick core layer of
GaAs. As shown in figure 4, waveguides are fabricated using
electron-beam lithography (EBL; resist: maN−2403, exposure
dose D=145μC cm–2) and inductively coupled plasma etching
(ICP). The chip contains several devices having different lengths

Ls for the central section; the measurements reported in this work
refer to the device having Ls=52.8μm.

Input and output sections are exposed via the fixed beam
and moving stage technique, while the narrower tapers and
delay sections are created via standard EBL exposure. The
ICP etching makes use of SiCl4 and Ar ions, injected into the
chamber by a flow of f=3cm3 min–1 and accelerated by an
RF signal of V= 115V at P=15W. The processing is
completed by cleaving the sample into approximately 2 mm
long waveguides. The fabricated samples are observed with a
scanning electron microscope to inspect the quality. Figure 4
shows the side view of the waveguide delay section, dis-
playing a sidewall roughness of Δw≈±20 nm. The mea-
sured width of the central section is 548nm for a nominal
width of 550nm, while the measured height is 1.09±
μm, to be compared to the nominal one of 1.08 μm.

The optical propagation losses are measured via a standard
Fabry–Perot technique [41]. By using a continuous wave tunable
laser, we measure the transmitted signal at the device output as a
function of the coupled wavelength for both TE and TM modes,
as shown in figure 5. From the contrast of the Fabry–Perot
fringes and the facets reflectivities, calculated numerically via
FDTD (R R0.35, 0.41quasi TE

in
quasi TE
out= =- - , Rquasi TM

in =-

R0.27, 0.41quasi TM
out =- ), we find 0.8 0.4 cmquasi TE

1a = -
-

and 1.5 0.4 cmquasi TM
1a = -

- . These represent typical
values if compared to those obtained in other devices of the
same chip. We believe that these values depends both on con-
finement and flanks’ roughness; since the design of the taper is
adiabatic, we do not expect to have losses coming from its
shape. The total coupling losses can be estimated by taking into
account the mode overlap and the facets reflectivity. This leads
to a total input–output efficiency of 5% for the present device.
Note that the use of an anti-reflection coating and of a laser-
diode-to-fibre-coupler for the input–output coupling would bring
the collection efficiency to 21%.

The experimental setup used for exploring the polarisa-
tion state transformation is sketched in figure 6. A

Figure 3. Numerical simulations of the emitted intensity and phase profile of the longitudinal component Ez in the near-field (distance d=
λ/3=517 nm from the waveguide output facet).
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fundamental Gaussian-shaped laser beam at λ=1.55μm is
polarised at 45◦ by means of a half-wave plate (HWP) and a
linear polariser (LP). The beam is coupled into the waveguide
by using a microscope objective with a numerical aperture of
NA 0.65= and magnification 40X. The out-coupled beam is
collected and collimated with a microscope objective of
NA 0.75, 60X= , and its polarisation state is analyzed by
means of a commercial polarimeter (PAX5720IR3-T), com-
posed of a rotating HWP, a LP and a power meter.

In our measurements, the out-coupled beam is observed
to be elliptically polarised. The polarimeter allows for mea-
suring the ellipse azimuth α (the ellipse major axis angle with
respect to the horizontal axis) and ellipticity ò=b/a, the ratio
of the ellipseʼs minor b to major a axis. Figure 7(a) shows the
results obtained for 30 consecutive measurements at
λ=1.55 μm. The scattering observed in our results is con-
sistent with the extinction ratio (10−2) of the polariser used
for the measurements. The average ellipticity is ò=0.67 and
the azimuth equals to α=0.61°. The resulting polarisation
state is shown in figure 7(b). A perfectly circular polarisation
state (ò= 1) is not achieved because of the different optical

propagation losses and Fabry–Perot resonance wavelengths of
the quasi-TE and quasi-TM modes. The corresponding phase
delay between the emitted quasi-TE and quasi-TM modes is
Δf=89.5° (full green circle in figure 7(c)), while it varies in
the range Δf= 95.5° ± 30° for λ ä [1.5497, 1.5500]μm
(blue circles of figure 7(c)). This behaviour is explained by
considering the waveguide as a Fabry–Perot birefringent cav-
ity. Quasi-TE and quasi-TM modes travel with different group
refractive indices because of the asymmetric boundary condi-
tions, so their Fabry–Perot resonance wavelengths differ and
the phase difference between the two shows sinusoidal beha-
viour. Indeed, our measurements are in good agreement with a
Fabry–Perot birefringent cavity model (continuous black line,
figure 7(c)), based on the calculated facet reflectivity, the
measured optical losses and the cleaved waveguide length.

The performance of the device discussed here can be
further improved by many means. If the polarisation of the
incident light beam is a possible degree of freedom, the
ellipticity of the output state can be controlled for each
wavelength through a linear polariser having its transmission
axis at an appropriate angle θ (instead of θ=45°) with
respect to the horizontal axis. A perfect circular polarisation
state is achievable by compensating the different propagation
losses of TE and TM modes in the waveguide at the specific
working wavelength. At 1550.0 nm, by coupling in LP at
θ=45°, the output ellipticity is ò=0.67 and the azimuth
α=0.61° (figure 7(b)). Therefore, the LP beam should have
E E E1.5TE TM TM= =∣ ∣ ∣ ∣ ∣ ∣, corresponding to θ=34°, to
compensate such losses.

Otherwise, an on-chip tuning of the quasi-TE and quasi-
TM mode phase delay can be obtained utilizing the strong
electro-optical Pockels effect driven by the large second-order
nonlinear susceptibility of GaAs. Indeed, the refractive index
of the material is linearly proportional to the applied electric
field and depends on its orientation with respect to the crystal
axis [42]. This effect has already been successfully used to

Figure 4. (a) Sketch of the main fabrication and processing steps. Dark grey region corresponds to GaAs; light grey to Al Ga As0.8 0.2 . The
waveguides are fabricated with EBL technique and are etched by ICP, using Ar and SiCl4. A scanning electron microscope micrograph of the
sidewall of the delay section of the waveguide is shown on the right inset. (b) A top-view optical microscope image of one waveguide, where
input, central (including two adiabatic tapers and a straight section) and output sections are indicated.

Figure 5. Optical power of the emitted quasi-TE (blue) and quasi-
TM (red) modes as a function of the wavelength. From the contrast
of the Fabry–Perot fringes and the simulated facets reflectivity, we
find 0.8 0.4 cm , 1.5 0.4 cmquasi TE

1
quasi TM

1a a=  = -
-

-
- .
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develop quantum photonic circuits for the manipulation of
single- and two-photon states [43] and could be used in an
analogous way to control the phase delay between the two
quasi-TE and quasi-TM modes propagating in our device by
fabricating an on-chip electro-optical phase shifter. Finally we
note that, if required, the Fabry–Perot oscillations could easily
be eliminated by adding a standard telecom anti-reflection
coating to the waveguide’s facets.

The elliptically (ideally circularly) polarised output state
measured in the far-field is a direct proof of the birefringence-
induced phase-delay in the on-chip waveguide device. Ana-
logously to the effect of spin–orbit coupling induced upon
focusing of a circularly polarised mode in free-space [44], the
strong confinement of such a circularly polarised electric field

in a fundamental mode within the device output section is an
indirect evidence of the presence of a phase vortex in its
longitudinal field component, as proven also by our simula-
tions. It is worth noting here that a direct measurement of a
phase vortex in the longitudinal field component at the
nanoscale is a complex task. A simple observation with a
CCD camera is not possible since the power ratio between the
longitudinal and transverse field components decreases
rapidly with the distance from the output facet. A direct
evidence of the phase vortex would require, for instance,
adapted nanoscale field reconstruction methods [45] or
sophisticated near-field scanning optical microscopy techni-
ques [46], which goes beyond the scope of this paper.

With the discussed device, a controlled phase delay can be
induced between two orthogonally polarised waveguide
modes. Similarly, this concept could also be applied to spatial
modes launched into such on-chip devices. This way, phase
vortices could also be imprinted on the transverse field com-
ponents, hence resulting in a net OAM carried by the generated
beam emitted from the end facet of the waveguide. For this
reason, our next step is to adapt the design of our device and
tailor the input states to control the spatial phase distribution of
higher order modes and to generate OAM beams.

In summary, we have conceived, fabricated and char-
acterised a waveguide that, starting from a LP beam, is capable of
inducing a defined relative phase between quasi-orthogonal
waveguide modes. We have proven this concept by generating a
confined circularly polarised mode (SAM) with a phase-vortex
carried by the longitudinal field component. The device working
principle for both transverse and longitudinal fields can be
summarised as follows: (i) a quarter-wave plate operation, and
(ii) the generation of longitudinal fields due to spatial confine-
ment. Together, however, a longitudinal field possessing a helical
phase-front and thus also a phase vortex of charge ±1 is created.
Our proposed device is highly integratable and may constitute an
interesting platform for on-chip control and manipulation of
quantum states of light, encoded for example in polarisation or
OAM. Therefore, it can be used in micron-scale optical manip-
ulation, data multiplexing and quantum information.
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Abstract: On-chip generation, manipulation and detection of nonclassical states of light are some of
the major issues for quantum information technologies. In this context, the maturity and versatility
of semiconductor platforms are important assets towards the realization of ultra-compact devices.
In this paper we present our work on the design and study of an electrically injected AlGaAs photon
pair source working at room temperature. The device is characterized through its performances
as a function of temperature and injected current. Finally we discuss the impact of the device’s
properties on the generated quantum state. These results are very promising for the demonstration
of electrically injected entangled photon sources at room temperature and let us envision the use of
III-V semiconductors for a widespread diffusion of quantum communication technologies.

Keywords: entanglement production; semiconductor laser; integrated quantum optics

1. Introduction

Integrated quantum photonics is a very active field of quantum information science.
In particular, the maturity of semiconductor technology offers a huge potential to build ultra-compact
devices including generation, manipulation and detection of many quantum bits. In these last
years, spectacular progress has been done on different material platforms, such as AlGaAs,
silicon-on-insulator [1,2], silica-on-silicon [3,4], as well as on their hybrid integration, e.g., with
superconducting detectors [5]. In this context, the direct band gap and electro-optics effect
characterizing III-V semiconductors are important assets for the achievement of electrically injected,
tunable, integrated quantum photonic devices. While quantum dots-based sources working at
cryogenic temperatures have allowed us to reach unprecedented levels of brightness and to tune
the degree of photon indistinguishability [6], spontaneous parametric down-conversion (SPDC) in
AlGaAs has allowed us to produce entanglement on various degrees of freedom with devices working
at room temperature and telecom wavelength (see Section 3).

Recently, the utilization of this platform has led to the demonstration of a completely
integrated electrically injected device consisting of a quantum-well laser emitting photons at 780 nm
that are converted into telecom-wavelength photon pairs by internal spontaneous parametric
down-conversion [7].
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In this paper we study the behavior of this device as a function of temperature and of the injected
current and we discuss the impact of the device’s properties on the generated quantum state.

2. Results

2.1. Design and Fabrication

The challenge in designing such a device lies in simultaneously addressing the electrical injection
of the laser and the efficient down-conversion of laser photons in photon pairs.

In the nonlinear process, the energy and momentum of the photons are conserved—nothing is
exchanged with the crystal. While energy conservation is straightforward, conserving the momentum
requires compensating for the phase velocity mismatch of the three interacting photons, which is
usually done by using birefringent crystals. However, even if GaAs present a high second-order
nonlinearity, which is beneficial for achieving efficient frequency conversion processes (χ(2) around
110 pm/V at 1550 nm [8]), this material lacks natural birefringence. Among different techniques to
achieve phase-matching, the recent development of Bragg reflection waveguides [9,10] represents
a breakthrough, since this strategy allows us to reduce the total aluminum content (thus avoiding
aging problems of the device) and increases the flexibility of effective index engineering. In our
case, two Bragg mirrors provide both a photonic band gap vertical confinement for the laser
mode (a transverse electric Bragg mode) and total internal reflection claddings for the photon-pairs
modes (one TE00 and one TM00). The device’s design is dictated by trade-offs that must optimize
electrical transport, waveguiding and nonlinear interaction at the same time [11]. Figure 1a,b present,
respectively, the simulated intensity profile of the laser Bragg mode and the refractive index and
doping profiles of the resulting design.
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p-doped and n-doped, from 1 × 1017 to 2 × 1018, in order to ensure efficient electrical injection of the 
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Figure 1. (a) Simulated intensity profile for the Bragg mode within the waveguide; (b) Refractive index
and doping profile of the device; the Bragg mode has a higher overlap with the quantum well than the
TE00 mode; (c) SEM image of the sample showing the facet of the sample and the upper electrode with
the thick electrolytic layer.

The sample under study has been grown by molecular beam epitaxy on a (100) GaAs substrate.
It consists of two Al0.8Ga0.2As/Al0.25Ga0.75As Bragg reflectors of six periods each surrounding a
365 nm Al0.45Ga0.55As core. A 8.5 nm Al0.11Ga0.89As quantum well is embedded into the core to ensure
a gain peaked at 780 nm (see Figure 1a). The top and bottom Bragg reflectors are, respectively, gradually
p-doped and n-doped, from 1 × 1017 to 2 × 1018, in order to ensure efficient electrical injection of the
device. An additional highly doped cap layer is added to protect the device and facilitate electrical
injection from the upper contact [12]. The device is processed in a standard waveguide geometry, as
presented in Figure 1c: 5–6 µm wide and 2 µm deep waveguides are defined by wet etching of the
top Bragg reflector. A SiN layer is used for electrical insulation and Ti/Au and Ni/Ge/Au/Ni/Au
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layer sequences are used for the top and bottom contact, respectively. A thick electrolytic Au layer is
used for the top contact, helping heat management. Samples are cleaved into approximately 2 mm
long stripes.

2.2. Optoelectronic Characterization

Figure 2a reports the typical power-current-voltage (PIV) curves as a function of the temperature
of one of our samples under electrical pumping; the pulse duration is 60 ns at a repetition rate of
40 kHz. These curves attest for the lasing emission. We observe that at T = 291 K, the I-V curve shows
a resistance of R = 3.56 Ω and a turn-on voltage of 1.83 V, which is very close to the quantum well band
gap, thus meaning that no current-blocking effects occur at the hetero-interfaces. The P-I curve displays
a threshold current of Ith = 0.274 A, corresponding to threshold density current Jth = 1.5 ± 0.2 kA/cm2

for a contact surface of S = 1.9 (± 0.2) × 10−4 cm2.
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the laser has a threshold of Ith = 0.274 A, a turn on voltage of 1.8 V; (b) Measured (crosses) and 
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The spatial intensity distribution of the emitted laser beam above the threshold is studied by 
imaging the output facet; the recorded near-field and far-field distributions are reported in Figure 

Figure 2. Laser operation. (a) Voltage bias (crosses) and emitted power versus injected current. The
I-V curve is measured at Troom = 291 K, while I-P for T is in the range 202–291 K. At room temperature
the laser has a threshold of Ith = 0.274 A, a turn on voltage of 1.8 V; (b) Measured (crosses) and
calculated (continuous line) threshold current as a function of temperature. The error band around
the calculated threshold corresponds to the uncertainty of the diode surface after the wet etching and
cleaving processes.

As the temperature decreases from Troom = 291 K to T = 202 K, the threshold current decreases
exponentially as shown in Figure 2b, according to Ith ~eT/T0, with T0 = 87.8 K [13].

These experimental results are compared with the numerical simulations we have developed
to design our device; the carrier transport and recombination in the hetero-junction are calculated
using a self-consistent solution of the drift-diffusion and Poisson equations. The optical parameters
of our modeling are the Bragg mode internal losses, whose value α = 35 cm−1 is extracted from
the experimental results obtained by a second-harmonic generation measurement [14]; the overlap
integral between the Bragg mode and the quantum well Γ = 2.45%, calculated with a commercial
eigenmode solver [15]; and the facets modal reflectivity for the Bragg mode R = 0.86, calculated by
Finite-Difference Time-Domain (FDTD). The radiative recombination time in the quantum well is set
to τrad = 5 × 10−17 m3·s−1, while the Shockley-Read-Hall non-radiative recombination processes is
τSRH = 5 ns [16]. The waveguide length and width are L = 2 mm and w = 6 µm, respectively, while the
doping profile and aluminum contents correspond to the nominal values of the epitaxial structure.

Figure 2b shows the good agreement between the experimental and the calculated threshold
current as a function of the temperature in the 216–305 K range, within the uncertainty of the device
contact surface S = 1.9 (± 0.2) × 10−4 cm2.

From the calculated internal resistance of the diode (Rint ≈ 1.5 Ω at room temperature) we evaluate
the quality of the fabricated contacts, which introduce an additional resistance lower than R = 2.0 Ω.
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The spatial intensity distribution of the emitted laser beam above the threshold is studied by
imaging the output facet; the recorded near-field and far-field distributions are reported in Figure 3a,
showing a clear evidence of emission on the Bragg mode. For higher values of injected current the
Bragg mode can be in competition with the fundamental TE00 mode due to index anti-guiding effects
coming from a carrier density increase. This might explain the irregular behavior observed in the I-P
curve; further studies on this point are in progress.
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Figure 3b displays the laser emission intensity spectra as a function of heat-sink temperature,
measured with an Optical Spectrum Analyzer for a laser emitting on the Bragg mode at room
temperature. The general trend corresponds to the theoretical temperature dependence of the quantum
well band gap (0.23 nm/◦C); mode hopping is clearly visible with wavelength jumps of approximately
∆λ ≈ 1.5–2 nm.

We notice that these jumps correspond to more than 35 times the spacing between adjacent
longitudinal modes of our device; indeed, taking into account the laser length and the modal dispersion,
we find ∆λFSR = λ2/2L × (n − λ dn/dλ)−1 ≈ 40 pm [17]. This behavior has already been observed
in AlGaAs laser structures [18]; it seems to be explained by the presence of an additional saturable
source of losses, resulting from deep-level traps induced in the n-type doped Bragg layers by Si donors.
As the traps’ absorption is inversely proportional to the photon density, the standing-wave intensity
profile of the dominant longitudinal mode I(z) determines the periodicity of the optical loss pattern
αtraps(z) = α0/(1 + I(z)/Is) [19]. By integrating along the whole device length, it is possible to show
that the dominant longitudinal mode presents smaller losses than the adjacent modes by a factor
∆α ≈ 0.05 − 0.1α0. In order to verify that our observations are related to this physical process, we
have estimated ∆α, calculating the overlaps of the Bragg mode with each n-doped layer. By assuming
the reflectivity R = 0.86, we find α0 = 5.54 cm−1 at room temperature leading to ∆α ≈ 0.28–0.55 cm−1,
which is compatible with our experimental results (Figure 3b).

The demonstration of the photon pair emission in the telecom range has been done by performing
time correlation measurements under electrical injection in a pulsed regime at 601 mA. The emerging
TE and TM photon pairs, corresponding to a type-II SPDC, are detected with two InGaAs single-photon
avalanche photodiodes (IdQ201) having 20% detection efficiency and a 50 ns gate, synchronized with
the current pulses. A time-to-digital converter is used to analyze the time correlations between
cross-polarized photons, separated by a polarization beam splitter. Figure 4 shows a histogram of the
detection time delays at T = 25 ◦C. The sharp peak emerging from the background is the evidence that
photons are produced by pairs. From these data, taking into account the optical losses along the optical
path, we estimate an internal generation efficiency of the device of ∼10−10 pairs/injected electron.
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Figure 4. Time-correlation histogram of TE/TM photons around 1.57 µm at T = 15 °C. This sample is 
electrically injected with current pulses of 601 mA, a duration of 60 ns and a repetition rate of 40 kHz. 
The data were accumulated during 600 s with a sampling resolution of 162 ps. 

3. Discussion and Conclusions 

In this section we discuss the impact of the performances of our devices on the quality of the 
quantum state of the emitted photons and we give some perspectives. 
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optical losses. We have thus reached a SNR value of 1730, which potentially would bring us to the
condition of achieving a fidelity value of 99% [20].

In order to check the possibility to drive the device in continuous wave (CW) operation, we have
measured the output power as a function of the duty cycle: the observation of a constant peak output
power for a duty cycle up to 66% indicates that a CW operation is possible [12].

In parallel, quantum optics experiments on the photon pairs generated by passive samples
based on the same phase-matching technique have allowed us to demonstrate high values of
indistinguishability [21,22] and entanglement on polarization [23] and energy-time [22]. The quality
of the produced quantum state as well as its compatibility with the telecom network have also
allowed to use these sources in multi-user quantum key distribution protocols using standard dense
wavelength division multiplexers [24]. This approach seems also to be promising for the control of
the frequency correlations of the emitted biphoton state; for example, original designs of AlxGa1−xN
devices have been proposed in which quasi-phase-matching of the waveguide core is used to achieve
phase-matching at the desired wavelength, while the control of waveguide dispersion is used to control
the frequency correlation between the generated photons [25].

In conclusion, Bragg reflection waveguides emerge as an extremely attractive and versatile
platform on which to perform scalable photonics-based quantum information tasks. Their ability
to be electrically driven at room temperature lets us envision the use of III-V semiconductors for a
widespread diffusion of quantum technologies.
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Generation and manipulation of high-dimensional
photonics states with AlGaAs chips

This thesis is devoted to the development of novel integrated devices and
methods for the generation and manipulation of high-dimensional states of
light, encoding information in either frequency or angular momentum degrees
of freedom.

We report on the study of an AlGaAs waveguide implementing type-II
spon-taneous parametric down conversion process in a monochromatic pump
regime, with a focus on the joint spectral amplitude of the emitted biphoton
state. The generation of broadband biphoton states of light in the telecom
range is theoretically proposed and experimentally demonstrated. A Hong-
Ou Mandel interferometry, performed without any spectral filtering, indicates
that signal and idler photons are emitted over a large bandwidth (170nm)
and with a high degree of indistinguishability (V=0.86). By considering the
cavity effect due to waveguide facets reflectivity, we propose the generation of
biphoton frequency-comb states. More specifically, we show that a fine tuning
of the monochromatic pump frequency enables the generation of two classes of
frequency-comb states, resonant and anti-resonant states, and reconstruct their
joint spectral via Stimulated Emission Tomography. We exploit the unique
spectral properties of these states in a manipulation scheme based only on
passive telecom components, namely a polarizing beam splitter and a delay
line. The experimental demonstration of this scheme is done on AlGaAs sources
and the successful state manipulation is demonstrated by Hong-Ou-Mandel
interferometry.

In addition, we demonstrate the realization of an AlGaAs ridge waveguide for
the generation of light beams with tailored phase and polarization distributions,
carrying spin angular momentum, and present the design of a device with a
similar geometry for the generation of a twisted light beam, carrying first order
orbital angular momentum.

Keywords: quantum optics, photonics, spontaneous parametric down con-
version, entanglement, quantum frequency combs, orbital angular momentum,
AlGaAs



Génération et manipulation d’états photoniques de haute
dimension avec des puces AlGaAs

Cette thèse est consacrée au développement de nouveaux dispositifs semi-
conducteurs intégrés et de méthodes pour la génération et la manipulation
d’états lumineux de haute dimension. Nous présentons l’étude d’un guide
d’onde AlGaAs utilisant un processus de conversion paramétrique spontanée
de type II en régime de pompage monochromatique, s’intéressant en particulier
à l’amplitude spectrale jointe de l’état émis. La source fonctionne à température
ambiante, émet des paires de photons dans le domaine des télécommunications et
est compatible avec l’injection électrique. La génération d’états biphotoniques à
large bande est démontrée expérimentalement par la reconstruction de l’intensité
spectrale jointe et par une expérience de Hong-Ou-Mandel indiquant que les
photons signal et complémentaire sont émis sur une large bande spectrale (170
nm) et avec un haut degré d’indiscernabilité (V=0,86). De plus, nous montrons
que l’effet de cavité dû à la réflectivité des facettes des guides d’onde conduit
à la production de peignes de fréquence à deux photons. Cette plateforme est
utilisée pour démontrer une méthode originale de génération et de contrôle de
la symétrie des états peignes exploitant les effets de cavité et un retard imposé
entre les deux photons de chaque paire. Plus spécifiquement, nous montrons
qu’un réglage fin de la fréquence de la pompe permet de générer des états
peignes résonnants et anti-résonants permettant de manipuler la symétrie de
la fonction d’onde. La méthode peut être adaptée et appliquée à une grande
variété de systèmes, massifs ou intégrés, augmentant ainsi leur flexibilité et la
richesse des états générés en vue de la mise en œuvre de nouveaux protocoles
d’information quantique. En outre, nous démontrons la réalisation d’un guide
d’onde AlGaAs pour la génération de faisceaux lumineux portant un moment
angulaire de spin et présentons la conception d’un dispositif pour la génération
d’un faisceau lumineux portant un moment orbital angulaire de premier ordre.

Mots clés: optique quantique, photonique, conversion paramétrique, intri-
cation, état en peigne de fréquences, moment orbital angulaire, AlGaAs
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