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Résumé

Un des dé�s majeurs en traitement radar consiste à identi�er une cible cachée dans un
environnement bruité. Pour ce faire, il est nécessaire de caractériser �nement les propriétés
statistiques du bruit, en particulier sa matrice de covariance. Sous l'hypothèse gaussienne,
cette dernière est estimée par la matrice de covariance empirique (SCM) dont le comporte-
ment est parfaitement connu. Cependant, dans de nombreuses applications actuelles, tels
les systèmes radar modernes à haute résolution par exemple, les données collectées sont de
nature hétérogène, et ne peuvent être proprement décrites par un processus gaussien. Pour
pallier ce problème, les distributions symétriques elliptiques complexes, caractérisant mieux
ces phénomènes physiques complexes, ont été proposées.

Dans ce cas, les performances de la SCM sont très médiocres et les M -estimateurs ap-
paraissent comme une bonne alternative, principalement en raison de leur �exibilité par
rapport au modèle statistique et de leur robustesse aux données aberrantes et/ou aux don-
nées manquantes. Cependant, le comportement de tels estimateurs reste encore mal compris.
Dans ce contexte, les contributions de cette thèse sont multiples.

D'abord, une approche originale pour analyser les propriétés statistiques des M -
estimateurs est proposée, révélant que les propriétés statistiques desM -estimateurs peuvent
être bien approximées par une distribution de Wishart.

Grâce à ces résultats, nous analysons la décomposition de la matrice de covariance en
éléments propres. Selon l'application, la matrice de covariance peut posséder une structure
particulière impliquant valeurs propres multiples contenant les informations d'intérêt. Nous
abordons ainsi divers scénarios rencontrés dans la pratique et proposons des procédures
robustes basées sur des M -estimateurs.

De plus, nous étudions le problème de la détection robuste du signal. Les pro-
priétés statistiques de diverses statistiques de détection adaptative construites avec des
M -estimateurs sont analysées.

En�n, la dernière partie de ces travaux est consacrée au traitement des images radar à
synthèse d'ouverture polarimétriques (PolSAR). En imagerie PolSAR, un e�et particulier
appelé speckle dégrade considérablement la qualité de l'image. Dans cette thèse, nous
montrons comment les nouvelles propriétés statistiques des M -estimateurs peuvent être
exploitées a�n de construire de nouvelles techniques pour la réduction du speckle.

Mots-clés : Estimation robuste, distributions CES, Loi de Wishart, détection du
signal, images PolSAR.
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Abstract

One of the main challenges in radar processing is to identify a target hidden in a dis-
turbance environment. To this end, the noise statistical properties, especially the ones of
the disturbance covariance matrix, need to be determined. Under the Gaussian assumption,
the latter is estimated by the sample covariance matrix (SCM) whose behavior is perfectly
known. However, in many applications, such as, for instance, the modern high resolution
radar systems, collected data exhibit a heterogeneous nature that cannot be adequately de-
scribed by a Gaussian process. To overcome this problem, Complex Elliptically Symmetric
distributions have been proposed since they can correctly model these data behavior.

In this case, the SCM performs very poorly and M -estimators appear as a good alterna-
tive, mainly due to their �exibility to the statistical model and their robustness to outliers
and/or missing data. However, the behavior of such estimators still remains unclear and not
well understood. In this context, the contributions of this thesis are multiple.

First, an original approach to analyze the statistical properties of M -estimators is pro-
posed, revealing that the statistical properties of M -estimators can be approximately well-
described by a Wishart distribution.

Thanks to these results, we go further and analyze the eigendecomposition of the co-
variance matrix. Depending on the application, the covariance matrix can exhibit a par-
ticular structure involving multiple eigenvalues containing the information of interest. We
thus address various scenarios met in practice and propose robust procedures based on M -
estimators.

Furthermore, we study the robust signal detection problem. The statistical properties of
various adaptive detection statistics built with M -estimators are analyzed.

Finally, the last part deals with polarimetric synthetic aperture radar (PolSAR) image
processing. In PolSAR imaging, a particular e�ect called speckle signi�cantly degrades
the image quality. In this thesis, we demonstrate how the new statistical properties of
M -estimators can be exploited in order to build new despeckling techniques.

Keywords: Robust estimation, CES distributions, Wishart distribution, signal de-
tection, PolSAR imaging.
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Introduction

Main objectives in data processing are either to extract some knowledge (information
of interest) from the data set (this is commonly included in the �Data-to-Knowledge�
domain) or to help making a decision (included in the �Data-to-Decision� domain). Among
the main branches of statistical signal processing, a large amount of research activities
are dedicated to estimation, detection, and signal analysis. In estimation problem, one
seeks at estimating either the value(s) of one or more parameters, or some functions of
interest, from a set of measurements (also called observations or data). This thesis focuses
on the �rst class of problem, referred to as parametric estimation problems. In such cases,
these measurements are generally considered as noisy data whose underlying distribution
depends on the parameters to determine. One of the widely assumed statistical models
is the Gaussian, or normal, one, whose distribution is fully characterized by its �rst and
second-order moments. Usually, for signal processing applications, the �rst-order moment,
or mean, is supposed to be known or equal to zero. Thus, the remaining problem consists in
estimating the second-order moments. A complete second-order statistical characterization
of complex random Gaussian vectors is given by covariance and pseudo-covariance matrix.
Furthermore, it is important to keep in mind that the covariance matrix is involved in
many applications beyond the signal processing community: in machine learning (various
problems such as data visualization, data clustering, dimension reduction), in �nance (e.g.
portfolio analysis), in medicine (e.g. genome analysis), etc.

In most applications, it has often been assumed that complex random signals are
proper and circular. A proper complex random variable is uncorrelated with its complex
conjugate, and a circular complex random variable has a probability distribution that is
invariant under rotation in the complex plane. These assumptions are convenient because
they simplify computations and, in many aspects, make complex random signals look and
behave like real random signals. In the context of complex vectors, the property means
that the pseudo-covariance of the observation vectors vanishes. Hence, the only parameter
to estimate is the covariance matrix.

Depending on the data model assumptions, many di�erent algorithms to estimate the
covariance matrix have been proposed. Under the standard Gaussian assumption, the
optimal estimator is the sample covariance matrix (SCM) whose behavior and properties are
perfectly known nowadays. In general, the Gaussian assumption is very convenient because
it permits to derive explicit formulas for adaptive statistical methods. However, it often
happens that real-world data cannot be completely described by normal distributions, i.e.
the model �ts well the majority of observations, while some observations can be considered
as deviations from assumed model. Such atypical data are called outliers and they can be
dangerous for many classical statistical procedures. Consequently, the corrupted data need
more complex models to characterize their behavior. Moreover, according to the underlying
physics, the data may not contain outliers but follow a �more heterogeneous� behavior
than the Gaussian distribution. This is the case, for instance, in image processing where
it is commonly assumed that wavelets coe�cients behave as generalized Gaussian random
variables. On can also mention radar (RAdio Detection And Ranging) processing where
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2 Introduction

the additive disturbance, or clutter, are generally heavy-tailed distributed (K-distribution,
Weibull distribution, etc). A solution arises with complex elliptically symmetric (CES)
distributions that are able to describe a wide range of heavy-tailed distributions. These
distributions can also be useful for the �outliers� case. The CES distributions can be
considered as a generalization of Gaussian distribution since they keep a lot of nice
Gaussian properties. In this context, the second order characteristics are given by the
scatter matrix of the data which is proportional to the covariance matrix, when the latter
exists.

In a non-Gaussian framework, even a small amount of aberrations can signi�cantly
corrupt the covariance matrix estimation if the latter relies on the SCM. Therefore, in
order to ensure a more accurate estimation of the scatter matrix, one needs to reduce
the outliers in�uence or completely reject them during the estimation process. Robust
statistics proposes di�erent solutions to this problem. One of them is given by the
general framework of M -estimation. Similarly to the CES distributions, that can be
viewed as a generalization of the Gaussian model, M -estimation is a generalization of
Maximum Likelihood (ML) estimation. These M -estimators are de�ned by implicit
equations, or �xed-point equations, and can be obtained using iterative reweighting
algorithms. However, the distribution of M -estimators remains unknown because of
their �xed-point design. Therefore, an important challenge is to accurately analyze and
better characterize the behavior ofM -estimators. This is one of the main goals of this thesis.

The knowledge of M -estimators' distribution is essential in various signal processing
applications. One of them is radar signal processing. Radar systems are used for object
detection, tracking and analysis. They use electromagnetic waves that can interact with
objects and ground surface. After a pulse signal is transmitted, the portion of energy,
backscattered to the receiver, is analyzed in order to deduce the presence and the properties
of an object of interest. In such applications, the performances of the corresponding
methods strongly rely on the quality of the covariance matrix estimation and perfor-
mance characterization depends on covariance matrix properties. In this thesis, we deal
with two common problems in radar processing: radar detection and radar image processing.

The classic radar detection problem consists in identifying a useful complex signal
containing the information about the target that is hidden in the clutter or other kind of
disturbance. To that end, several detection statistics have been proposed in the literature.
All of them require the knowledge of the disturbance (or clutter/noise) covariance matrix
that is usually unknown. In order to estimate this matrix, a set of signal-free data referred
to as secondary data is usually available. For a long time, these data have been assumed
to be Gaussian-distributed. Increasing the resolution capabilities of radar systems caused
the high heterogeneity of the data, which brought the need to use robust scatter matrix
estimators to build adaptive detection statistics. Also, the secondary data does not always
contain only signal-free data, but also some data similar to outliers. In general, the
disturbance can be represented as a combination of the clutter caused by the environment
and the white noise generated within the radar system. Moreover, the disturbance is often
composed of a low-rank clutter. In this case, the number of required secondary data can
be signi�cantly reduced. Consequently, an approximate whitening in adaptive detectors
is performed using a projector orthogonal onto the clutter subspace. This projector is
typically estimated using the eigenvalue decomposition of a scatter matrix estimator.
Consequently, in this thesis, we investigate the performances of robust adaptive detectors
in order to improve the detection performances.

Similarly to conventional radars, imaging radars use radio waves to construct an image
of the target scene. An example of imaging radar is Synthetic Aperture Radar (SAR).
Each pixel in a SAR image contains the amplitude and the phase of the backscattered wave
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expressed by a complex value. Moreover, SAR systems can transmit and receive signals
in di�erent orthogonal polarizations. Thus, instead of a simple scalar value, a pixel in
polarimetric SAR (PolSAR) images is described by a complex vector. The value in each
pixel is obtained as a sum of backscattered waves for one resolution cell, introducing the
common phenomena in SAR imagery, called speckle. Speckle reduction is one of essential
steps in SAR image processing. Under the Gaussian assumption, this step has been often
performed by simple averaging of surrounding pixels. However, modern high resolution
SAR systems produce higher variations between neighboring pixels that cannot be described
by the Gaussian model. Consequently, more complex methods are required to deal with
heterogeneous PolSAR data. In this thesis, we analyze how M -estimators can be used in
order to improve the performances of PolSAR despeckling methods.

This thesis is organized as follows. In Chapter 1, the state-of-the-art methods for covari-
ance matrix estimation, signal detection and PolSAR image despeckling are recapitulated.
The �rst part is dedicated to the used data models and the corresponding covariance matrix
estimators. First, the general de�nitions about random complex signals are recalled. Then,
the standard Gaussian context is presented together with the de�nition and properties of
the SCM. This is followed by a brief overview of the CES framework. Finally, the robust
M -estimators are described and some particular cases are detailed. The second part is on
detection theory, where various proposed detectors adapted to the Gaussian framework
are recapitulated. Their properties are analyzed in terms of distribution under several
scenarios, �probability of false alarm-threshold� relationships and detection probability
versus Signal-to-Noise Ratio. Finally, the third part details the SAR technology, SAR
polarimetry principles and reviews the state-of-the-art PolSAR despeckling methods.

The contributions of the thesis are summarized in the remaining four chapters as
described in Figure 0.1. Chapter 2 investigates the statistical properties of M -estimators
and provides the �rst important contribution of this work. M -estimators are given by
�xed-point equations and only their properties in the standard asymptotic regime are
known. In this chapter, we propose to analyze these estimators from another point of
view, i.e., by comparing them with the well-known SCM. For this purpose, the stochastic
representation of CES distributions is rewritten in such a way as to introduce the Gaussian
cores of CES data. Then, a Gaussian-Core Wishart Equivalent (GCWE) of an M -estimator
is de�ned as a theoretical equivalent built with �ctive (in the sense that they cannot be
observed) Gaussian cores of the measured data. Finally, the relationship between two
types of estimators is derived. Generally speaking, the aim of this chapter is to derive a
relationship between the standard Gaussian framework and robust procedures applied to
corrupted data, in order to show that it is always better to use robust methods that o�er
better estimation performances, but keep the statistical properties of the classical Gaussian
tools. Results advocates for robust methods as a perfect trade-o� between robustness and
attractive statistical properties.

Chapter 3 focuses on the estimation of the eigenvalue/eigenvector decomposition (EVD)
of the scatter matrix. The scatter matrix can have various structures containing multiples
eigenvalues and/or multiples blocks of equal eigenvalues. In practice, we can �nd many
examples when this situation occurs, such as already mentioned low-rank detection or
number of sources estimation. In this chapter, the EVD parameters, namely the eigenvalues
and eigenvectors, of M -estimators are analyzed in various asymptotic regimes. Moreover,
this analysis is extended to the principal subspaces obtained from M -estimators. It is
shown that the conclusions of Chapter 2 are also valid in this case. Furthermore, an original
robust method for eigenvalue estimation is developed. The algorithm is based on the idea
to iteratively fuse equal eigenvalues thanks to a robust penalty function. The method is
tested on simulated data and compared to a state-of-the-art method, showing an important
performance improvement.
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Chapter 4 deals with robust signal detection in a non-Gaussian framework. Robust
detectors are de�ned as classical Gaussian-based detection statistics with an M -estimator
plugged-in instead of the traditional SCM. Thanks to the analysis done in Chapter 2, we
de�ne a Gaussian-Core Equivalent Detector (GCED) of a robust detectors. The GCED
of a robust detector corresponds to the same detection statistics built with the GCWE of
the used M -estimator. Similarly to the analysis done in Chapter 2, the robust detectors
are compared to their GCEDs, revealing that they can be well-described by the statistical
properties of their GCEDs. These results are of great interest since they provide new
insights in detection threshold computation and illustrate a direct application of the results
obtained in Chapter 2.

Another possible application is given in Chapter 5. We address the problem of PolSAR
despeckling. Reducing the speckle in PolSAR images correspond to the scatter matrix
estimation of the scattering vector containing the information about di�erent polarization
channels. In non-local means (NLM) methods, the �nal estimation of the scatter matrix
in a target pixel is obtained as a weighted mean computed with the surrounding pixels.
The weights depend on the similarity between the target pixel and its neighbors. Since
the PolSAR data can be modeled by di�erent CES distributions, such as K-distribution or
Weibull distribution, we propose to apply M -estimators in order to pre-estimate the scatter
matrix and search for similar pixels in the image. More precisely, a new statistical method
for weight computation in NLM methods is designed. The dissimilarities are computed using
M -estimators and their new statistical properties derived in Chapter 2. The bene�ts and
drawbacks of such a method are also discussed.



Chapter 1

State of the art

This chapter introduces the general context of the thesis. It is divided into three parts.
The �rst part focuses on the covariance matrix estimation. It starts with a brief

introduction about complex random signals. It should be noted that, even we consider
only the complex case, the same results with slight modi�cations are valid for the real-
valued case. Then, the properties of the well-known SCM under the classical Gaussian
assumption are recalled. Some widely used non-Gaussian models encompassed within
the class of CES distributions are detailed. Finally, the robust alternatives to the SCM
called M -estimators are discussed.

Second part is on signal detection. The problem of detecting a complex signal in a
homogeneous environment is studied. Several detection statistics adapted to the Gaus-
sian background are itemized. Their detection performances are also analyzed.

Finally, the last part deals with PolSAR imagery. First, the principles of SAR
technology are explained. Then, the interest of radar polarimetry is illustrated. Speckle,
common phenomena in (Pol)SAR imagery, is described. Moreover, the relationship
between the PolSAR models and CES distributions is illustrated. This part is concluded
with a brief overview of speckle reduction techniques.
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1.1 Covariance matrix estimation

1.1.1 Introduction

The knowledge of the data second order statistics, usually described by the data
covariance matrix, is of crucial importance in many di�erent areas. For instance, in radar
processing the knowledge of the data covariance matrix is indispensable for the construction
of signal detection statistics. In image processing, where an image is usually assumed as
a random process, this matrix can provide the information about the covariance between
pixels within the image or between the pixels in di�erent images sampled from the same
distribution. The eigenvalue decomposition of the covariance matrix is very useful in image
coding, segmentation, image classi�cation, object recognition, etc. In general, in many signal
processing applications, it is employed in whitening transformation in order to decorrelate
the data. In machine learning, it is often used to represent the data in a more compact way
thanks to the principal component analysis. The covariance matrix is also widely employed
in �nancial economics, especially in portfolio theory where its information helps to maximize
the expected return for a given level of risk. Moreover, the covariance matrix �nds its
application in biomedical data processing such as cardiac signal processing and neuroscience.

However, the true value of this parameter is usually unknown and needs to be estimated.
In recent years, there has been a growing interest in its estimation in a vast amount of liter-
ature on this topic (see e.g., [130, 135, 27, 182, 134, 117, 162, 129] and references therein).
In practice, we dispose of a certain amount of the data used for its estimation. The data are
usually assumed to be independent and identically distributed (i.i.d.). Generally, in most
of signal processing methods the data are modeled by a multivariate zero-mean Gaussian
stochastic process. Multivariate Gaussian, also called normal, distribution plays a vital role
in the theory of statistical analysis [77]. Very often the multivariate observations are only
approximately normally distributed. This approximation is (asymptotically) valid even
when the original data is not multivariate normal, due to the central limit theorem (CLT).
In that case, the classical covariance matrix estimator is the sample covariance matrix
(SCM) whose behavior is perfectly known. Indeed, it follows the Wishart distribution [13]
which is the multivariate extension of the gamma distribution. Thanks to its explicit form,
the SCM is easy to manipulate and therefore widely used in the signal processing community.

Nevertheless, the complex normality sometimes presents a poor approximation of
underlying physics. Data can be corrupted by outliers, missing data or highly heteroge-
neous patterns that can not be described by the Gaussian distribution. For instance, the
noise and interference in communication channels can be spiky and impulsive i.e., have
heavier tails than the Gaussian distribution. Another example can be found in radar
processing. With high resolution in modern radar technology, the Gaussian model becomes
inappropriate for modeling a highly heterogeneous radar clutter. A growing body of litera-
ture has examined the �tting of non-Gaussian models to radar clutter [63, 67, 66, 36, 33, 179].

These models belong to the class of Complex Elliptically Symmetric (CES) distributions
[130], originally introduced for the real case by Kelker [87]. In the context of CES
distributions, the second order statistics are characterized by the scatter matrix which
is proportional to the covariance matrix, when the latter exists. In this framework, the
classical SCM can perform very poorly and does not provide a satisfying estimation of the
scatter matrix.

An alternative is thus, to use more robust estimators, particularly M -estimators.
Although Huber introduced robust M -estimators in [82] for the scalar case, Maronna
provided the detailed analysis of the corresponding scatter matrix estimators in the mul-
tivariate real case in his seminal work [119]. M -estimators correspond to a generalization
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of the well-known Maximum Likelihood estimators (MLE), that have been widely studied
in the statistics literature [94, 5]. In contrast to MLEs where the estimating equation
depends on the probability density function (p.d.f.) of a particular CES distribution,
the weight function in the M -estimating equation can be completely independent of the
data distribution. Consequently, M -estimators presents a wide class of scatter matrix
estimators, including the MLEs, robust to the data model. In [119], it is shown that, under
some mild assumptions, the estimator is de�ned as the unique solution of a �xed-point
equation and that the robust estimator converges almost surely (a.s.) to a deterministic
matrix, equal to the scatter matrix up to a scale quantity (depending on the true statistical
model). Their asymptotic properties have been studied by Tyler in the real case [169]. The
complex extension of M -estimators, more useful for signal processing applications, have
been recently introduced and analyzed in [130, 117].

In the following, we �rst provide the essential de�nitions and the assumptions made in
this thesis. Then, we consider the problem of estimating the second-order statistics in the
Gaussian and non-Gaussian context.

1.1.2 Complex-valued signals

Let z = a + jb be a p-dimensional complex random vector which consists of a pair
of real random vectors a and b. The distribution of z on Cp determines the joint real 2p-
variate distribution of a and b on R2p and conversely. To completely de�ne the second-order
moments of a and b, z is given by its covariance matrix C and pseudo-covariance matrix P.

De�nition 1.1.1. Covariance matrix
The covariance matrix C ∈ H of a complex r.v. z = a + jb is de�ned as

C = E
[
zzH

]
= E

[
aaT

]
+ E

[
bbT

]
+ j

(
E
[
baT

]
− E

[
abT

])
. (1.1)

De�nition 1.1.2. Pseudo-covariance matrix
The pseudo-covariance matrix P ∈ CS of a complex r.v. z = a + jb is de�ned as

P = E
[
zzT

]
= E

[
aaT

]
− E

[
bbT

]
+ j

(
E
[
baT

]
+ E

[
abT

])
. (1.2)

The �rst assumption that we make in this thesis is that the complex signals are circular.
However, it should be pointed out that this assumption is not always true. Some analysis
in this case can be found in [159].

De�nition 1.1.3. Circular symmetry
An r.v. z is circular if

z
d
= ejθz, ∀θ ∈ R. (1.3)

If the distribution f(·) of z exists, it satis�es

f
(
ejθz

)
= f (z) , ∀θ ∈ R. (1.4)

If an r.v. z is circular in the sense de�ned above, then its pseudo-covariance matrix is
equal to zero. This property is used to de�ne the second-order circularity of z.

De�nition 1.1.4. Second-order circularity
An r.v. z is said to be second-order circular or proper if its pseudo-covariance matrix vanishes
P = 0.

In this thesis, we assume that complex signals possess the second-order circularity which
we will refer to as circularity for the sake of simplicity. Consequently, we analyze only the
covariance matrix estimators, assuming that the data pseudo-covariance matrix vanishes. In
the case of non-circularity, the estimation of the pseudo-covariance matrix should be also
considered to obtain full information second-order characteristics.

In order to de�ne asymptotic normality of an estimator that will be highly employed in
this work, we �rst recall the de�nitions of real and complex normal distribution.
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De�nition 1.1.5. Real Normal (RN) distribution
An r.v. z is said to have a real Normal (RN) distribution denoted as x ∼ N (µ,C), if its
p.d.f. is given by

f(x) = (2π)−p/2|C|−1/2 exp

(
− (x− µ)

T
C−1 (x− µ)

2

)
. (1.5)

Analogously, one has the following de�nition.

De�nition 1.1.6. Generalized Complex Normal (GCN) distribution
An r.v. z is said to have a generalized complex Normal (GCN) distribution, denoted as
x ∼ GCN (µ,C,P), if its p.d.f. is given by

f(z) = π−p|C̃|−1/2 exp

(
− (z̃− µ̃)

H
C̃−1 (z̃− µ̃)

2

)
, (1.6)

where z̃ =

(
z
z∗

)
, µ̃ =

(
µ
µ∗

)
and C̃ =

(
C P
P∗ C∗

)
.

If the r.v. z is circular, i.e. P = 0, it has CN distribution. This case will be denoted as
z ∼ CN (µ,C).

Note that the GCN distribution should not to be confused with the complex generalized
Gaussian distribution de�ned in De�nition 1.1.5.

Thanks to the multivariate CLT one has the following de�nition.

De�nition 1.1.7. Asymptotic Normal distribution
Let be (z1, . . . , zn) i.i.d. random vectors with mean µ, �nite covariance matrix C and
pseudo-covariance matrix P. Then, an estimator ẑ has

• an asymptotic RN distribution if

√
n (ẑ− µ)

d→ N (0,C) , (1.7)

• an asymptotic GCN distribution if

√
n (ẑ− µ)

d→ GCN (0,C,P) , (1.8)

when n→∞.

Remark 1.1.1. An important remark is that in most signal applications, such as radar
processing or source localization, the mean is known. The preprocessing of the data is then
applied to remove the mean. Consequently, we assume without loss of generality (w.l.o.g.)
that the mean is equal to zero, i.e. µ = 0. However, when the mean is unknown, it can be
jointly estimated. This analysis falls outside the scope of this thesis.

Thanks to the de�nitions given above, we can now present the classical approach to
second order statistics estimation.

1.1.3 Classical approach: Gaussian assumption

Classical statistical approaches in signal processing assume that the received data is
complex zero-mean CN-distributed.
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Sample Covariance Matrix (SCM)

Applying the maximum likelihood criterion to estimate the covariance matrix of CN-
distributed data, one obtains the sample covariance matrix (SCM), that is su�cient statistics
for in this case.

De�nition 1.1.8. Sample Covariance Matrix (SCM)
Let (z1, . . . , zn) be an n-sample of p-dimensional complex i.i.d. vectors with zi ∼ CN (0,C).
The SCM is given by

Ĉ =
1

n

n∑
i=1

ziz
H
i . (1.9)

When the number of observation is �xed, this estimator has a complex Wishart distri-
bution (scaled by 1/n) de�ned as follows.

De�nition 1.1.9. Complex Wishart (CW) distribution
A matrix W =

∑n
i=1 ziz

H
i , where zi are i.i.d. r.v.'s with zi ∼ CN (0,C), is complex

Wishart-distributed, denoted as W ∼ CWp(n,C). Its p.d.f. is given by

f(W) =
|W|n−p

|C|nΓ̃p(n)
exp

[
−tr

(
C−1W

)]
.

The SCM is also asymptotically GCN-distributed with covariance and pseudo-covariance
matrices given in the following theorem.

Theorem 1.1.1. Asymptotic distribution of SCM
Let (z1, . . . , zn) be an n-sample of p-dimensional complex i.i.d. vectors with zi ∼ CN (0,C).
Then, the asymptotic distribution of the SCM given by Eq. (1.9) is given by

√
nvec

(
Ĉ−C

)
d→ GCN (0,CSCM,PSCM) , (1.10)

where the asymptotic covariance and pseudo-covariance matrices are{
CSCM = CT ⊗C,
PSCM =

(
CT ⊗C

)
K.

(1.11)

Consequently, the properties of SCM are completely known in the CN context. It is
unbiased, consistent and has an asymptotic GCN distribution when the sample size tends
to in�nity. Moreover, when the sample size is �xed it has a scaled CW distribution. Since
it has an explicit form, it is very convenient for theoretical derivations.

Nevertheless, in practice the data is often corrupted, i.e. contain outliers or samples that
follow di�erent patterns. In that case, the CN distribution becomes inadequate and more
complex models are needed. An alternative arises with elliptical distributions de�ned in the
following.

1.1.4 Non-Gaussian context

Complex Elliptically Symmetric Distributions

A natural generalization of CN distribution is given by the class of Complex Elliptically
Symmetric (CES) distributions, that allow heavier and lighter tails than the CN distribution.
In addition to the CN distribution, many other well-known and widely used multivariate
distributions belong to the CES class, such as t-distribution applied in �nancial studies,
K-distribution used in radar clutter modeling, generalized Gaussian distribution employed
in wavelet modeling and image processing, etc. CES distributions are very convenient for
signal modeling since they inherit a lot of nice CN properties. An excellent survey that
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highlights importance of CES distributions in engineering and signal processing applications
is given in [130].

CES distributions are actually the complex extension of real elliptically symmetric (RES)
distributions that were introduced by Kelker[87] and studied by di�erent authors [54, 120,
124, 52, 58]. A generalization of RES distribution was proposed by Frahm in order to allow
the asymmetry [57]. For a brief introduction of RES distributions discussion, we refer the
reader to Appendix B. For more details about RES distributions and their applications
please refer to cited literature. In the following, we present the family of CES distributions
that are of the main interest for our study.

De�nition 1.1.10. Complex Elliptically Symmetric (CES) distribution
An r.v. z is said to have a Complex Elliptically Symmetric (CES) distribution if its char-
acteristic function has the form

Φ(z) = exp{jRe(zHµ)}φ(zHΣz), (1.12)

where φ : R+ → R is the characteristic generator, positive semi-de�nite Hermitian matrix Σ
is the scatter matrix and µ is the mean, or symmetry center. We shall write z ∼ CES(µ,Σ, φ)
to denote this property.

In the absolutely continuous case, z possesses a p.d.f. given by

fz(z) = Cp,g|Σ|−1 g
(

(z− µ)
H

Σ−1 (z− µ)
)
, (1.13)

where g : R+
0 → R+ is the density generator and Cp,g a normalizing constant. Then, we can

write z ∼ CES(µ,Σ, g).
Another de�nition of CES distributions, that is equivalent to De�nition 1.1.10, is given

by the following stochastic representation [187].

Theorem 1.1.2. Stochastic representation theorem
An r.v. z ∼ CES(µ,Σ, φ) with rank(Σ) = k ≤ p if and only if it can be represented as

z
d
= µ +

√
QAu(k), (1.14)

where the non-negative real r.va. Q, called the modular variate, is independent of the r.v.
u(k) that is uniformly distributed on the unit complex k-hypersphere CSk−1 with

CSk−1 =
{
u ∈ Rk : ‖u‖2 = 1

}
, (1.15)

i.e. u(k) ∼ U(CSk−1), and A ∈ Cp×k with Σ = AAH .

Remark 1.1.2. One can note that the couple (Σ, φ(·)) (or equivalently (Σ, g(·)) or (Σ,Q)
does not uniquely identify the p-variate CES distribution. In order to do so, a scale constraint
on φ(·)) or on Σ needs to be imposed in a suitable way. For instance, the constraint E[Q] =
rank(Σ) produces C = Σ.

When the stochastic representation of a CES-distributed r.v. z has some particular
properties, z may belong to a particular subclass of CES distribution. We will now recall
interesting subclasses of CES distributions.

The �rst one are spherical distributions, that represent centered CES distribution with

Σ = I, i.e. z ∼ CES(0, I, g) which gives z
d
=
√
Qu(p). In this case z is called to be unitary

invariant which o�ers another de�nition of spherical distributions.

De�nition 1.1.11. Spherical distribution

A p-dimensional r.v. z is said to be spherically distributed if and only if z
d
= Uz for every

p-dimensional unitary matrix U.
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Another very important subclass of CES-distributions are Complex Compound-Gaussian
(CCG) distributions. They are also referred to as Spherically Invariant Random Vectors
(SIRV) in the signal processing applications [35, 70]. These distributions are widely used for
modeling radar clutter [37, 38, 65, 178, 174]. In fact, with high resolution the necessity to
model a CN distribution with spatially variable power appeared. CCG distributions were
proposed as an solution that o�ers an additional parameter called texture that is used to
model spatial variations of CN-distributed radar speckle.

De�nition 1.1.12. Complex Compound-Gaussian (CCG) distribution
An r.v. z is said to have a Complex Compound-Gaussian (CCG) distribution if it admits
the following representation

z
d
= µ +

√
τg, (1.16)

where the positive real r.va. τ with c.d.f. Fτ , called the texture, is independent of the
Gaussian speckle g ∼ CN (µ,Σ). We denote this case as z ∼ CCG(µ,Σ, Fτ ).

If rank(Σ) = p and if τ possesses a p.d.f., then the p.d.f. of z is given by

fz(z) = π−p|Σ|−1

∫ ∞
0

τ−p exp

(
− (z− µ)

H
Σ−1 (z− µ)

τ

)
fτdτ, (1.17)

where fτ (τ) = F ′τ (τ) is the density of τ .
Another important distribution class are complex angular Gaussian distributions that

represent the distribution of a projection of z ∼ CN (µ,Σ) onto the unit complex p-
hypersphere.

De�nition 1.1.13. Complex Angular Central Gaussian (CACG) distribution
An r.v. za is said to have a Complex Angular Central Gaussian (CACG) distribution if
it admits a stochastic representation za = z/‖z‖, where z ∼ CN (0,Σ). This case will be
denoted za ∼ CACG(0,Σ).

For nonsingular Σ, the p.d.f. of the distribution is given by

fza(z) = Cp|Σ|−1(zHΣ−1z)−p, (1.18)

where Cp is the surface area of CSp−1.
One can note that if the CN distribution is replaced by any central CES distribution

the resulting ACG distribution is the same. Thus, the more appropriate name would be
complex angular elliptical distribution. However, we will keep the used CACG notation.
The important remark is that although the p.d.f. of CACG distribution has the form of a
CES p.d.f., these distributions do not belong to the class of CES distributions since they
can not be represented by the stochastic representation theorem.

In the following we list some examples of CES distributions and discuss their properties.

Examples of CES distributions

Example 1.1.1. Complex Normal (CN) distribution
Complex Normal (or Gaussian) distribution is a particular case of CES distributions for
which g(x) = exp(−x) and Cp,g = π−p. The p.d.f. of z ∼ CN (µ,Σ) can also be obtained
from Eq. (1.6) for P = 0. It admits the corresponding stochastic representation given by
Eq. (1.14) for Q ∼ 1

2χ
2
2p.

Example 1.1.2. Complex t-distribution
The complex multivariate t-distribution with ν > 0 degrees of freedom (DoF), denoted as
Ctν(µ,Σ), is obtained for

g(x) = (1 + 2x/ν)−(2p+ν)/2, (1.19)
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yielding Cp,g = 2pΓ( 2p+ν
2 )/[(πν)pΓ(ν2 )] as the normalizing constant. It admits the corre-

sponding stochastic representation given by Eq. (1.14) for Q ∼ pF2p,ν . This distribution
also belongs to the CCG distributions where τ ∼ IG(ν/2, ν/2), with IG denoting the inverse
Gamma distribution. The distribution has �nite 2nd-order moments for ν > 2. Note that
the case ν → ∞ leads to the CN distribution. The multivariate t-distributions, besides the
CN distribution, encompass also multivariate Laplace distribution (for ν = 1/2) and the
multivariate Cauchy distribution (for ν = 1) which are heavy-tailed alternatives to the CN
distribution.

Example 1.1.3. Complex K-distribution
The complex K-distribution with shape ν > 0, CKν(µ,Σ), is obtained for the density
generator

g(x) = x(ν−p)/2Kν−p(2
√
νx) (1.20)

and the normalizing constant Cp,g = 2ν(ν+p)/2/(πpΓ(p)), where Ki(·) denotes the modi�ed
Bessel function of the second kind of order i. Note that there is no closed form for the p.d.f.
of Q in this case. However, it admits the CCG-representation where τ ∼ Gam(ν, 1/ν).
When ν →∞, the K-distribution yields the CN distribution.

Example 1.1.4. Complex W -distribution
The complex W -distribution with exponent s > 0 and scale b > 0, denoted as CWs,b(µ,Σ),
is obtained for the density generator of the form

g(x) = xs−1 exp(−xs/b) (1.21)

and the normalizing constant Cp,g = sΓ(p)b−(s+p−1)/s/[πpΓ( s+p−1
s )]. It admits the stochas-

tic representation given by Eq. (1.14) for Q d
= G1/s, where G ∼ Gam(p+s−1

s , b). For proper
identi�ability of the couple (Σ, g(·)) it is set to b =

[
pΓ(p+s−1

s )/Γ(p+ss )
]s

which yields to
C = Σ. For s = 1 the CN distribution is obtained. Finally, it should be noted that W -
distribution does not belong to the class of CCG distributions.

Example 1.1.5. Complex Generalized Gaussian distribution
The complex generalized Gaussian (CGG) distribution with exponent s > 0 and scale b > 0,
denoted as CGGs,b(µ,Σ), is obtained for

g(x) = exp(−xs/b) (1.22)

and the normalizing constant Cp,g = sΓ(p)b−p/s/[πpΓ(ps )]. It admits the stochastic repre-

sentation given by Eq. (1.14) for Q d
= G1/s, where G ∼ Gam(ps , b). For proper identi�ability

of the couple (Σ, g(·)) it is set to b =
[
pΓ(ps )/Γ(p+1

s )
]s

which yields to C = Σ. For s = 1 the
CN distribution is obtained, while s = 1/2 yields the complex Laplace distribution. When
s < 1 distributions with heavier tails are produced.

All previously itemized examples of CES distributions are recapitulated in Table 1.1.

Maximum Likelihood Estimators

In the context of CES-distributed data, the SCM does not give good estimation of the
scatter matrix. Assuming a particular data distribution, one can obtain the optimal scatter
matrix estimator maximizing the corresponding likelihood function.

A Maximum Likelihood Estimator (MLE) is obtained maximizing the likelihood function
de�ned as

p ((z1, . . . , zn) |Σ) =

n∏
i=1

p (zi|Σ) (1.23)
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CES Cp,g g(x) f(Q) f(τ)

CN π−p exp(−x) 1/2χ2
2p δa(τ), a ≥ 0

Ctν
2pΓ((2p+ ν)/2)

(πν)pΓ(ν/2)
(1 + 2x/ν)−(2p+ν)/2 pF2p,ν IG

(ν
2
,
ν

2

)
CKν

2ν(ν+p)/2

πpΓ(p)
x(ν−p)/2Kν−p(2

√
νx) no closed form Gam

(
ν,

1

ν

)

CWs,b
sΓ(p)b−(s+p−1)/s

πpΓ((s+ p− 1)/s)
xs−1 exp(−xs/2) Gam1/s

(
p+s−1
s , b

)
×

CGGs,b
sΓ(p)b−p/s

πpΓ(p/s)
exp(−xs/2) Gam1/s

(
p
s , b
)

×

Table 1.1 � Examples of CES distributions; × means that the CES distribution does not
belong to the class of CCG distributions

or equivalently, the log-likelihood function

L (Σ|z) = ln ((p (z1, . . . , zn) |Σ)) =

n∑
i=1

ln (p (zi|Σ)) . (1.24)

Supposing that we have an i.i.d. (z1, . . . , zn) sample where zi ∼ CES(0,Σ, g) the MLE of
the scatter matrix Σ is the matrix that maximizes the following quantity

L (Σ|z) =

n∑
i=1

ln (fz (zi)) = nln (Cp,g)− nln (|Σ|) +

n∑
i=1

ln
(
g
(
zHi Σ−1z

))
. (1.25)

Verifying that the derivative with respect to (w.r.t.) Σ is equal to zero

− n∂ln|Σ|
∂Σ

+

n∑
i=1

1

g(xi)

(
∂g(xi)

∂xi

)(
∂xi
∂Σ

)
= 0 (1.26)

one obtains the MLE

Σ̂ML =

n∑
i=1

−g′(xi)
g(xi)

ziz
H
i , (1.27)

where xi = zHi Σ−1z. The weight function u(x) = −g′(x)/g(x) depends on the density
generator g(·) of the underlying CES distribution.

Robust M-estimators

MLEs perform very well when the data follow an assumed model. However, the data dis-
tribution is sometimes only approximately described by the proposed assumption. Choosing
an appropriate estimator when we do not know the underlying statistical model is even more
challenging problem.

This question gave rise to a particular statistics branch called robust theory. Although
the �rst works in this domain date from the end of nineteenth century, the great expan-
sion happened in sixties and seventies of the last century with fundamental work of Tukey
[166, 167], Huber [82, 83] and Hampel [80, 81]. The theoretical approach to robust statistics
introduced by Huber supposes that the true data distribution is situated in a neighbour-
hood of a stochastic model. In this spirit, robust estimators represent estimators that are
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insensitive to small deviations from the assumed model (usually the CN distribution) and
stay optimal under this setup.

In this section we present complexM -estimators of scatter, whereM stands formaximum
likelihood-type. They were �rst introduced in real case by Maronna [119]. The complex
extension was introduced and analyzed in [130, 117].

De�nition 1.1.14. M -estimator
Let (z1, . . . , zn) be an n-sample of p-dimensional complex i.i.d. vectors with zi ∼
CES(0,Σ, gz). An M -estimator, denoted by Σ̂, is de�ned by the solution of the follow-
ing M -estimating equation

Σ̂ =
1

n

n∑
i=1

u(zHi Σ̂−1zi)ziz
H
i , (1.28)

where u is any real-valued weight function on [0,∞) that respects Maronna's conditions
(introduced by Maronna for real case), ensuring existence and uniqueness of Eq. (1.28). The
conditions have been extended to the complex case by Ollila in [130] and are listed here:

• u is non-negative, non-increasing and continuous on [0,∞).

• Let Ψ(x) = xu(x) and K = supx≥0 Ψ(x). p < K < ∞, Ψ is non-decreasing, and
strictly increasing on the interval where Ψ(x) < K.

• Let P2n(·) denote the empirical distribution of (v1, . . . ,v2n) where vi =(
<(zi)

T ,=(zi)
T
)T

and vn+i =
(
−=(zi)

T ,<(zi)
T
)T

. Then for all linear subspaces
V ∈ R2p, with dim(V ) = 2p− 1, P2n < 1− (2p− 1)/2K.

It is important to note that the weight function is not necessary related to a p.d.f. of any
particular CES distribution or to any p.d.f. Hence, M -estimators constitute a wide class of
scatter matrix estimators that includes the MLEs. Thus, M -estimators can be considered
as a natural generalization of MLEs which are not necessary robust.

We denote Σσ the theoretical scatter matrixM -functional, which is de�ned as a solution
of

E
[
u
(
zHΣ−1

σ z
)
zzH

]
= Σσ. (1.29)

The M -functional is proportional to the true scatter matrix Σ as

Σσ = σ−1Σ, (1.30)

where the scalar factor σ > 0 can be found by solving

E[Ψ(σQ)] = p (1.31)

with Q d
= zHΣ̂−1z.

In [130, 117] it was shown that an M -estimator has the asymptotic GCN distribution
centered around the M -functional given by Eq. (1.30).

Theorem 1.1.3. Asymptotic distribution of M -estimators [117, 130]
Let Σ̂ be an M -estimator as in Eq. (1.28) built from n samples drawn as z ∼ CES (0,Σ, gz).
The asymptotic distribution of Σ̂ is given by as

√
nvec

(
Σ̂−Σσ

)
d→ GCN (0,CM ,PM ) ,

where the asymptotic covariance and pseudo-covariance matrices are{
CM = ϑ1Σ

T
σ ⊗Σσ + ϑ2vec (Σσ) vec (Σσ)

H
,

PM = ϑ1

(
ΣT
σ ⊗Σσ

)
K + ϑ2vec (Σσ) vec (Σσ)

T
.

(1.32)
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The constants ϑ1 > 0 and ϑ2 > −ϑ1/p are given by

ϑ1 = c−2
M aMp(p+ 1),

ϑ2 = (cM − p2)−2(aM − p2)− c−2
M aM (p+ 1),

(1.33)

where
aM = E

[
Ψ2(σQ)

]
,

cM = E [Ψ′(σQ)σQ] + p2.
(1.34)

Remark 1.1.3. Note that for the SCM, under the CN assumption, σ = 1, ϑ1 = 1 and
ϑ2 = 0. However, the SCM can not be classi�ed as an M -estimator since the function
u(x) = 1 does not satisfy Maronna's conditions.

Examples of M-estimators

Hereafter, we present some of widely usedM -estimators both in practical and theoretical
analysis.

Example 1.1.6. Tyler's M -estimator [170, 135, 137]
Tyler's M -estimator is given as the solution of the following equation

Σ̂T =
p

n

n∑
i=1

ziz
H
i

zHi Σ̂−1
T zi

(1.35)

or equivalently as the solution of Eq. (1.28) for u(x) = p/x. Nevertheless, the Tyler's
M -estimator is not exactly an M -estimator since it does not satisfy the second Maronna's
condition. However, it is very useful because of rare property that any CES distribution with
the same scatter matrix leads to the same result (hence �distribution-free�). Also, in order
to obtained a unique solution of Eq. (1.35) one needs to normalize Σ̂T in a suitable way,
e.g. Tr(Σ̂T) = p which gives the estimator of the shape matrix. Note that another common
normalization for the shape matrix estimator is to set |Σ̂T| = 1, but we will keep the �rst
one throughout this thesis.

Consequently, the complex Tyler's M -estimator is an MLE under the assumption that
zi ∼ CN (0, τiV), i = 1, . . . , n, which means that each sample has the same shape matrix V,
but di�erent power (scale) [34, 64]. Moreover, this result is valid, not only for the CN, but
for any CES distribution [128]. Interestingly, the complex Tyler's M -estimator is also the
MLE of the scatter matrix of the CACG distribution [93].

The asymptotic distribution of this estimator can not be directly obtained from Theorem
1.1.3. However, it was analyzed in [137] where the following properties were derived.

Theorem 1.1.4. Asymptotic distribution of the Tyler's M -estimator
Let Σ̂T be de�ned by Eq. (1.35). The asymptotic distribution of ΣT is given by

√
nvec

(
Σ̂T −Σ

)
d→ CN (0,CT,PT) ,

where CT and PT are de�ned by

CT =
p+ 1

p
ΣT ⊗Σ− p+ 1

p2
vec(Σ)vec(Σ)H ,

PT =
p+ 1

p

(
ΣT ⊗Σ

)
K− p+ 1

p2
vec(Σ)vec(Σ)T . (1.36)

Remark 1.1.4. Note that this result has been obtained for the theoretical normalization

Tr
(
Σ−1Σ̂T

)
= p that is not possible in practice since Σ is unknown. This normalization is

equivalent to Tr(Σ̂T) = p only when Σ = I. However, when the normalization Tr(Σ̂T) = p

is employed one has Σ̂T → pΣ/Tr(Σ). The asymptotic distribution in this case can be found
in [130].
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Example 1.1.7. Huber's M -estimator
The complex extension of Huber's M -estimator is de�ned by

Σ̂H =
1

nβ

n∑
i=1

[
ziz

H
i 1zHi Σ̂−1

H zi≤λ

]
+

λ

nβ

n∑
i=1

[
ziz

H
i

zHi Σ̂−1
H zi

1zHi Σ̂−1
H zi>λ

]
, (1.37)

where 1 is the indicator function and λ and β depend on a single parameter 0 < q < 1,
according to

q = F2p(2λ), (1.38)

β = F2p+2 (2λ) + λ
1− q
p

,

where Fp(·) is the cumulative distribution function of a χ2 distribution with p DoF. The
parameters are chosen so that the resulting M -estimator is consistent for the covariance
matrix at the CN distribution. The parameter q represents the percentage of the data to be
treated as homogeneous, i.e. CN-distributed, while 1−q percentage of the data are treated as
outliers. Indeed, one can note that q = 1 yields the SCM, whereas q = 0 yields the Tyler's
M -estimator. Hence, the Huber's M -estimator can be interpreted as a random weighted
combination between the SCM and the Tyler's estimator. In [116] it was shown that the
asymptotic distribution of Σ̂H is given by Theorem 1.1.3 for{

aM =
(
p(p+ 1)F2p+4(2λ) + λ2(1− q)

)
/β2,

cM = pF2p+2(2λ)/β + p2.
(1.39)

Example 1.1.8. Student's M -estimator
Student'sM -estimator is the MLE for the Student's t-distribution. It is given as the solution
of the following equation

Σ̂t =
p+ ν/2

n

n∑
i=1

ziz
H
i

zHi Σ̂−1
t zi + ν/2

, (1.40)

where d > 0 is the DoF parameter, i.e. u(x) = (p + ν/2)/(x + ν/2). The motivation to
analyze this estimator arises from the fact that it presents a trade-o� between the SCM and
Tyler's estimator, but in a di�erent way than the Huber'sM -estimator. Indeed, when ν →∞
the Student's t-distribution leads the Gaussian distribution and the Student's M -estimator
tends to the SCM (u(x) → 1). On the other hand, for ν = 0 Student's M -estimator is
equivalent to the Tyler's one. Finally, Σ̂t is widely used both in theory (as a benchmark)
and in practice which presents strong motivation for understanding its behavior. Note also
that as others M -estimators, it is not always used as a MLE for the t-distribution.

Example 1.1.9. K M -estimator
K M -estimator is the MLE for the K-distribution with shape ν. It is given as the solution
of the following equation

Σ̂K =

√
ν

n

n∑
i=1

Kν−p−1

(
2
√
νzHi Σ̂−1

K zi

)
Kν−p

(
2
√
νzHi Σ̂−1

K zi

) ziz
H
i√

zHi Σ̂−1
K zi

, (1.41)

where uK(x) =
√
νKν−p−1(2

√
νx)

xKν−p(2
√
νx)

satis�es the Maronna's conditions for ν > 0.

Example 1.1.10. Weibull M -estimator
Weibull M -estimator is the MLE for the complex W-distribution with parameters s and b.
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M -estimator u(x) Ψ(x) MLE

Tyler's M -estimator
p

x
p

CN (0, τiV),
CACG(0,Σ)

Huber's M -estimator
1

β
min

(
1,
λ

x

)
1

β
min (x, λ) ×

Student's M -estimator
2p+ ν

2x+ ν

2p+ ν

2x+ ν
x Ctν (0,Σ)

K M -estimator

√
ν

x

Kν−p−1 (2
√
νx)

Kν−p (2
√
νx)

√
νxKν−p−1 (2

√
νx)

Kν−p (2
√
νx)

CKν (0,Σ)

Weibull M -estimator
sxs/b− s+ 1

x
sxs/b− s+ 1 CWs,b (0,Σ)

GG M -estimator
s

b
xs−1 s

b
xs CGGs,b (0,Σ)

Table 1.2 � Examples of M -estimators; × means that the M -estimator can not be
obtained as MLE of any distribution

It is given as the solution of the following equation

Σ̂W =
1

n

n∑
i=1

s/b
(
zHi Σ̂−1

W zi

)s
− s+ 1

zHi Σ̂−1
W zi

ziz
H
i , (1.42)

where Σ̂W satis�es the Maronna's conditions for 0 < s < 1. When s = 1 and b = 1 Weibull
M -estimator yields the SCM as expected since the W -distribution for these parameters is
equivalent to the CN one. For s = 0 Weibull M -estimator is equivalent to the Tyler's
one. Consequently, this estimator can also be presented as a trade-o� between the SCM and
Tyler's M -estimator.

Example 1.1.11. GG M -estimator [134]
GG M -estimator is the MLE for the CGG distribution with parameters s and b. It is given
as the solution of the following equation

Σ̂GG =
s/b

n

n∑
i=1

ziz
H
i(

zHi Σ̂−1
GGzi

)1−s , (1.43)

where Σ̂GG satis�es the Maronna's conditions for 0 < s < 1. When s = 1 and b = 1 one
can note that GG M -estimator yields the SCM as expected since the CCG distribution for
these parameters is equivalent to the CN one. For smaller values of s the CGG distribution
has heavier tails and the corresponding MLE becomes more robust.

Table 1.2 details the weight functions u(x) and objective functions Ψ(x) for the itemized
special cases of M -estimators. Moreover, the last column indicates if the M -estimator can
be obtained as an MLE.

Figure 1.1 plots the corresponding weight function for each M -estimator from Table 1.2.
The data dimension p is set to 10.

First, the weight function for Tyler's M -estimator is plotted in Figure 1.1a. Figure 1.1b
depicts the weight function for Huber's M -estimator for di�erent values of the parameter q.



18 Chapter 1. State of the art

One can note that for small values of q, the Huber's weight function is close to the Tyler's
one, while for high values of q it tends to the SCM weight function, i.e., u(x)→ 1.

Figure 1.1c displays the weight function for the Student'sM -estimator for various values
of the parameter ν. The �gure reveals that for small values of ν the weights tend to the
Tyler's ones, while when ν → ∞, u(x) tends to 1. The same conclusions can be drawn for
the weight function of K M -estimator plotted in Figure 1.1d.

Finally, the weight functions for Weibull and GGM -estimators are plotted in Figures 1.1e
and 1.1f, respectively. From both �gures one can note that for low values of the parameter
s, the weights are close to the ones of the Tyler's M -estimator, while when the parameter s
increases, the weights tend to the ones of the SCM.

From the �gures, we can conclude that each of the studied M -estimators can be consid-
ered as a particular trade-o� between the Tyler's M -estimator and the SCM.

1.1.5 Conclusion

In this section we have the presented general framework of covariance matrix estimation.
When the data is CN-distributed the well-known SCM is used. So far, its behaviour has
been broadly studied o�ering nice theoretical results for computing di�erent parameters in
a huge range of applications. The main drawback of this estimator is that it gives a poor
covariance matrix estimation even when the data is corrupted with a negligible amount of
outliers. In that case, an alternative is to useM -estimators that are robust to the data model
deviations. However, these estimators are given by �xed-point equations and consequently,
it is quite di�cult to directly analyze their statistical properties.

With this in mind, in Chapter 2, we propose a new approach to analyze the behaviour
of M -estimators. The originality of the results comes from a new CES representation in-
troducing Gaussian cores of the data. This representation allows us to de�ne a Gaussian
Core Wishart Equivalent (GCWE) of an M -estimator, which corresponds to the SCM built
with CN-distributed data. The main contribution lies in the correlation analysis between an
M -estimator and the corresponding GCWE establishing a sort of a distance between them,
which �nally o�ers new insights into the statistical properties of M -estimators.

In Chapter 3, the results are extended to the eigenvalues, eigenvectors and principal
subspace of M -estimators. Di�erent applications are considered in order to highlight the
importance of the theoretical results.

Generally speaking, the main goal of the analysis done in this thesis is to show that it
is always better to use robust M -estimators instead of the traditional SCM, since they o�er
high gain in term of scatter matrix estimation in a non-Gaussian framework. On the other
hand, we will see that the loss in term of statistical properties when compared to the SCM
in the Gaussian framework is mostly insigni�cant.

1.2 Signal detection

1.2.1 Introduction

Adaptive detection of signals embedded in Gaussian disturbance is a ubiquitous problem
in statistical signal processing [157]. There is a considerable amount of works dealing with
the design and performance analysis of various detectors adapted to speci�c detection
problems. In general, the problem consists in deciding whether or not the collected target
responses, called primary data, contain useful signals. The target response can have
di�erent forms thanks to speci�c scenarios. For instance, depending on the range resolution
and target size, the response can be contained in one range cell or spread over multiples
cells [173]. The sizes of the collected data depend on the number of sensors and transmitted
pulse signals, resulting in space-time or only temporal/spatial detection. The direction or
steering vector depends on the particular set-up and this parameter is usually assumed to
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Figure 1.1 � Weight functions for M -estimators. From left to right and from top to
bottom: Tyler's M -estimator, Huber's M -estimator, Student's M -estimator, K

M -estimator, Weibull M -estimator, and GG M -estimator, p = 10.

be perfectly known. However, when the true direction is di�erent from the nominal one
(mismatch scenario), an alternative is to model the target as a linear combination of known
basis vectors. This case is known as subspace detection [157, 97, 99]. Moreover, various
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assumptions on the complex amplitude of the primary data can be made. It can be modeled
as an unknown deterministic parameter [90, 92] or random with unknown deterministic or
random module [8].

Various detection statistics adapted to model assumptions have been proposed. These
statistics depend on disturbance parameters that are unknown and need to be estimated.
Two main approaches have been employed depending on the assumed nature of the
disturbance parameters. The �rst one models these parameters as deterministic quantities.
The second one, Bayesian approach [43, 44, 10], models these quantities as unknown
random values, and thus provides detectors that depend on a chosen a priori distribution
for the unknown parameters.

Among the disturbance parameters, the covariance matrix is an essential quantity
used for the whitening transformation during the detection process. Moreover, when the
covariance matrix is unknown the performance of the adaptive detectors strongly relies
on its estimation accuracy. Under the Gaussian assumption, the classical widely used
covariance estimator is the well-known SCM built out of some signal-free samples, called
secondary data. This estimator permits to obtain nice detection performances and to derive
the statistical properties of the detection statistics. However, it has been shown that the
required sample size n of secondary data that provides correct performances of detecting
statistics is n ≈ 2p [149]. Since for large values of p such a number of secondary data is
not available, one needs to use detection techniques for reduced value of n. The methods
such as autoregressive models [151, 133] or random matrix theory techniques [86, 40, 176]
can be used. Another case when the number n can be signi�cantly reduced is when the
disturbance is composed of a Low-Rank (LR) clutter and an Additive White Gaussian Noise
(AWGN) [95, 148, 69, 79]. In this situation, instead of the SCM, the projector orthogonal
onto the clutter subspace constructed with the SCM eigenvectors is usually used in or-
der to remove the clutter from the data [69]. Some other techniques can be found in [146, 18].

In the following, we recall the full and LR detection problems in homogeneous Gaussian
disturbance together with proposed detectors and their properties.

1.2.2 Problem formulation

The considered signal detection problem is equivalent to the binary hypothesis testing.
The issue is to determine if the useful signal is present in a received measurement. Under
the hypothesis H0 the signal contains only the disturbance. Under the hypothesis H1, in
addition to this disturbance, the signal contains the target to be detected. The objective of
a detection process is to determine which of these two assumptions is most likely minimizing
the probabilities of two types of possible errors:

• Type I error - error of the �rst kind presenting the incorrect rejection of a true null
hypothesis, called false alarm,

• Type II error - error of the second kind presenting the failure to reject a false null
hypothesis, called non-detection.

According to Neyman�Pearson criterion, one aims at maximizing the detection probability
(DP), under the constraint that the probability of false alarm (PFA) is not greater than a
pre-speci�ed value. Thus, in order to detect the signal, the value of a detection statistic is
compared to a pre-computed threshold value that is obtained for a given PFA.

This problem has been extensively studied in the context of Gaussian distributed distur-
bance [89, 90, 91, 92, 88]. Several decision statistics have been proposed, such as the Gen-
eralized Likelihood Ratio Test (GLRT) (Kelly's detector) [90], the Adaptive Matched Filter
(AMF or 2-step GLRT) [150], its normalized counterpart (Adaptive Normalized Matched
Filter-ANMF or Adaptive Cosine Estimator-ACE) [39, 97], and the Rao test [118]. The
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associated detectors have been characterized in terms of DP and PFA, as well as constant
false alarm rate (CFAR) properties (see e.g., [132] and references therein) and performance
in mismatched scenarios [68]. In order to detect a signal these detectors require to know
the second-order characteristics of signal-free data. When the data covariance matrix is
unknown, these statistics involve the SCM, built from the CN-distributed noise, as a core
component.

1.2.3 Full rank detection

We consider the problem of detecting a known complex signal vector p, called steering
vector, from the received data z = αp + c, called primary data, where c is the unobserved
complex noise random vector and α is a complex amplitude modeled as an unknown de-
terministic parameter. The problem of detecting the signal p can then be expressed as the
following binary hypothesis test{

H0 : z = c zi = ci, i = 1, . . . , n,

H1 : z = αp + c zi = ci, i = 1, . . . , n,
(1.44)

where the ci are n signal-free i.i.d. measurements, traditionally referred to as the secondary
data, used to estimate the unknown covariance matrix.

Let us recall the main detectors used in the literature. We will focus on their expression
and theoretical analysis. Their statistical properties are analyzed in terms of DP and PFA.
The DP is computed for �xed values of the detection threshold and signal-to-noise ratio
(SNR). By setting SNR to zero, one obtains the value of PFA.

In practice, the detection threshold is obtained for a �xed value of PFA. Then, the DP
is obtained for a given value of SNR. However, in the following we choose the theoretical
approach that is, to �rst provide the expression for the DP of the detector followed by the
corresponding PFA.

Kelly's GLRT

Assuming that the primary and secondary data are CN-distributed with an unknown
covariance matrix C, Kelly [90] has proposed a GLRT

ΛKelly

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2(

pHĈ−1p
)(

n+ zHĈ−1z
) H0

≶
H1

λKelly, (1.45)

where Ĉ is the SCM built with secondary data using Eq. (1.9). In [99] it was shown that

ΛKelly
d
=

K
K + 1

where K d
=

χ2
2(2δb)

χ2
2n−2p+2(0)

with b ∼ β(n− p+ 2, p− 1), where β(a, b) denotes

the following beta distribution

fβ(x; a, b) =
a+ b− 1!

(a− 1)!(b− 1)!
xa−1(1− x)b−1

1[0,1](x). (1.46)

After some derivations, we can obtain the following Pd for ΛKelly

Pd = P
(

ΛKelly

(
Ĉ
)
> λKelly|H1

)
= 1−

∫ 1

0

e−δu

N

∫ λKelly

0

un−p+1(1− u)p−2(1− x)n−p1F1 (n− p+ 2, 1; δux) dxdu,

(1.47)
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where 1F1(·) is the complex con�uent hypergeometric function [3], N =
Γ(n− p+ 1)Γ(p− 1)

Γ(n+ 1)
and δ = α2pHC−1p stands for the SNR. Under H0, the previ-

ous distribution for δ = 0 leads to the Pfa − λKelly relationship

Pfa = P
(

ΛKelly

(
Ĉ
)
> λKelly|H0

)
= (1− λKelly)

n−p+1
, (1.48)

revealing that Kelly's GLRT exhibits the CFAR property.

Adaptive Matched Filter

In [150], Robey proposed another GLRT under the same setup, but considering that the
covariance matrix C is known. The adaptive plug-in version of the detector is then obtained
with the SCM Ĉ and given by

ΛAMF

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2

n
(
pHĈ−1p

) H0

≶
H1

λAMF. (1.49)

One can note that this statistic does not contain the factor in parentheses, found in the
denominator of the Kelly's GLRT (Eq. (1.45)). This term is computationally demanding for
real time systems.

In [99] it was shown that ΛAMF
d
=

χ2
2(2δb)

χ2
2n−2p+2(0)

1

b
leading to the following Pd for this

statistic

Pd = 1−
∫ 1

0

e−δu

N

∫ λAMF

0

un−p+2 (1− u)p−2

(1 + ux)n−p+2 1F1

(
n− p+ 2, 1;

δu2x

1 + ux

)
dxdu.

(1.50)

The Pfa − λAMF relationship for ΛAMF is then given by

Pfa = 2F1(n− p+ 1, n− p+ 2;n+ 1;−λAMF), (1.51)

where 2F1(·) is the hypergeometric function [3].

Adaptive Normalized Matched Filter

ANMF [39, 97], also called adaptive coherence estimator (ACE) [98], has been derived
for partially homogeneous Gaussian noise where the noise of the primary data be scaled by a
unknown factor γ2 relative to the secondary data, i.e. c ∼ CN (0, γ2C) and ci ∼ CN (0,C),

ΛANMF

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2(

pHĈ−1p
)(

zHĈ−1z
) H0

≶
H1

λANMF. (1.52)

The Normalized Matched Filter (NMF) [39] was originally derived assuming that the noise
covariance matrix is known. This statistics is scale-invariant w.r.t. the signal z. Under
H0, this detector is �distribution-free,� meaning that is independent of the noise level or
a particular p.d.f. of the underlying noise CES distribution. Similarly to the AMF, the
adaptive version of the detector is built using the SCM.

The distribution of ΛANMF is given by ΛANMF
d
=

F
F + 1

where F d
=

χ2
2(2δb)

χ2
2n−2p+2(0)

1

1− b
[99], which after some derivations results in the following Pd for a given SNR δ is

Pd = 1−
∫ 1

0

e−δu

N

∫ λANMF

0

un−p+1 (1− u)p−1(1− x)n−p

(1− ux)n−p+2 1F1

(
n− p+ 2, 1;

δux(1− u)

1− ux

)
dxdu.

(1.53)
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Under H0 the p.d.f. of ΛANMF

(
Ĉ
)
is given by [141]

fΛANMF(Ĉ)(u) = M(1− u)n−p2F1(n− p+ 2, n− p+ 2;n+ 2;u)1[0,1](u), (1.54)

where M = (n−p+1)(p−1)
n+1 , resulting in the following PFA

Pfa = (1− λANMF)n−p+1
2F1(n− p+ 2, n− p+ 1;n+ 1;λANMF). (1.55)

If the covariance matrix C is known, the p.d.f. of ΛNMF (called NMF) is given by

fΛNMF(u) = (p− 1)eδ(1− u)p−2
1F1(p, 1;uδ) (1.56)

and the probability of detection Pd for a given SNR δ and for a �xed value of the detection
threshold λNMF is given by [39]

Pd = 1− (p− 1)

∫ λNMF

0

eδ(1− u)p−2
1F1(p, 1;uδ)du. (1.57)

Under H0 ΛNMF follows a beta distribution ΛNMF ∼ β(1, p−1). This results in the following
Pfa − λNMF relationship

Pfa = (1− λNMF)p−1. (1.58)

Rao test

In 2007, De Maio proposed a new detection statistic based on Rao test [118]

ΛRao

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2 /(pHĈ−1p

)
(
n+ zHĈ−1z

)[
1 + 1

nzHĈ−1z− 1
n

|pHĈ−1z|2
pHĈ−1p

] H0

≶
H1

λRao. (1.59)

The distribution of Rao's statistic can be expressed as ΛRao
d
=

Rb
R+ 1

where R d
=

χ2
2(2δb)

χ2
2n−2p+2(0)

. Consequently, we can derive the corresponding detection probability

Pd = 1−
∫ 1

0

e−δu

N

∫ λRao/(u−λRao)

0

un−p+1 (1− u)p−2

(1 + x)n−p+2 1F1

(
n− p+ 2, 1;

δux

1 + x

)
dxdu.

(1.60)

This test also ensures the CFAR property with the following PFA

Pfa = (1− λRao)n (1.61)

and it is invariant to the set of transformation de�ned in [118].

1.2.4 Low-rank detection

In LR detection problem the disturbance is composed of a LR Gaussian clutter and an
AWGN {

H0 : z = c + n zi = ci + ni, i = 1, . . . , n,

H1 : z = αp + c + n zi = ci + ni, i = 1, . . . , n,
(1.62)

where c ∼ CN (0,Σr) is the Gaussian clutter complex vector with rank(Σr) = r � p and
n ∼ CN (0, γ2Ip) is the AWGN . Consequently, the covariance matrix of the secondary data
can be written as Σ = Σr + γ2Ip.
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The eigenvalue decomposition of Σr can be written as

Σr = UrΛrU
H
r with

U = [u1, . . . ,ur] ∈ Upr ,
Λr = diag(λr),

λr = [λ1, . . . , λr] .

(1.63)

The projector Πr onto the clutter subspace and the projector Π⊥r onto the subspace orthog-
onal to the clutter subspace are de�ned as{

Πr = UrU
H
r

Π⊥r = I−Πr = U⊥r
(
U⊥r
)H with U⊥r = [ur+1, . . . ,up] . (1.64)

In order to remove the clutter we can perform an approximative whitening{
H0 : y =

(
U⊥r
)H

z = n0 yi = n0,i, i = 1, . . . , n,

H1 : y =
(
U⊥r
)H

z = αd + n0 yi = n0,i, i = 1, . . . , n.
(1.65)

Among various LR detectors [95, 148, 69, 79, 172, 31], we will focus on the LR-ANMF
de�ned as

ΛLR

(
Π̂⊥r

)
=

∣∣∣pHΠ̂⊥r z
∣∣∣2(

pHΠ̂⊥r p
)(

zHΠ̂⊥r z
) , (1.66)

where Π̂⊥r is the estimate of Π⊥r .

In [69] it has been shown that the distribution of ΛLR

(
Π̂⊥r

)
under the H0 hypothesis

can be approximated with

ΛLR

(
Π̂⊥r

)
≈ A

2
1

A2
(1.67)

with

A1 = s1 −
1

n
x1x2s2,

A2 = |s1|2 + x2
2 −

2

n
x1x3<(s1s2 + x2s2), (1.68)

where x1 =
√

1
2χ

2(2r), x2 =
√

1
2χ

2(2(p− r − 1)), x3 =
√

1
2χ

2(2p), s1 ∼ CN (0, 1), s2 ∼
CN (0, 1) and s3 ∼ CN (0, 1) are i.i.d. variables.

This result has been obtained by a �rst order approximation and thus, does not provide
the exact distribution of LR-ANMF. However, one can note that this distribution does not
depend on the structure of the clutter subspace meaning that the LR-ANMF is approxi-
mately CFAR.

1.2.5 Conclusion

In this section we have presented the signal detection problem in the case of additive
Gaussian disturbance. When the covariance matrix of the secondary data is unknown the
SCM is plugged-in instead. Since the SCM is sensitive to heavy-tailed distributed samples,
this family of Gaussian detectors can exhibit poor performance in non-Gaussian environ-
ments. In this case, a robust detector can be built as a classical Gaussian detector where an
M -estimator of the scatter is plugged-in instead of the SCM.

In this context, in Chapter 4, we provide an accurate statistical performance analysis of
the robust detectors by comparing them to a Gaussian Core Equivalent Detector (GCED).
Thanks to the results obtained in Chapter 2, we derive new properties for robust estimators
and show how they can be useful in detection threshold derivation.
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Figure 1.2 � Principle of the construction of SAR images

1.3 Polarimetric SAR images

1.3.1 Introduction

Synthetic Aperture Radar (SAR) has been widely used in Earth remote sensing for sev-
eral decades. SAR provides high-resolution images that are independent of daylight and
weather conditions and thus, are very convenient for a wide range of applications such as
topography, geology, forestry, oceanography, environment monitoring including civil infras-
tructure monitoring, military surveillance, etc. SAR images are created using radio waves
that are emitted, backscattered and �nally, received and recorded by the radar.

SAR antennas can emit and receive waves with di�erent polarizations, producing po-
larimetric SAR (PolSAR) images. These images are usually given by three combinations
of orthogonally emitted and received polarizations, composing a scattering vector in each
pixel, that is then used similarly to the three color channels in a synthesized image. SAR
polarimetry is employed in the analysis of physical information of a target scene that is based
on the measurements of the polarimetric properties of man-made and natural scatterers.

Because of the coherent processing of the scattered signals, SAR images are susceptible to
present speckle noise that needs to be removed. In the context of PolSAR images, despecking
is equivalent to the covariance matrix estimation of the scattering vector.

In the following, we give a brief overview of SAR technologies together with the basics
of SAR polarimetry. The statistical models for PolSAR images are detailed. Finally, some
despeckling methods are discussed.

1.3.2 Synthetic aperture radar (SAR) imagery

Radar is a system generally used to detect objects and measure their range. Another
application is observation and analysis of ground surface through SAR imagery. An SAR
is an imaging radar �xed on a moving airborne or spaceborne platform. The great ad-
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Figure 1.3 � Scattering mechanisms. From left to right: smooth surface (single bounce), a
man-made structure (double bounce) and the forest canopy (multiples bounces).

vantage of SAR systems, comparing to optical ones, is that they provide high-resolution
two-dimensional images that do not depend on daylight and/or weather conditions. Just
as a conventional radar, an SAR sensor transmits electromagnetic radar waves and collects
the backscattered echoes. The transmitted pulse interacts with the surface and a fraction
of the broadcast energy is received back at the radar antenna. The amplitude and phase of
the backscattered signal depends on the properties of the surface and imaged objects such
as roughness, moisture, geometry, etc.

Figure 1.2 illustrates the common SAR geometry. The platform moves in the azimuth
direction. The direction perpendicular to the radar's moving path is called the slant range.
Thanks to side-looking geometry, an electromagnetic pulse (considered as plane) is repeat-
edly transmitted with a non-null incidence angle in range direction. Consequently, imaging
radars have a two-dimensional resolution: the range resolution that depends on time period
and is inversely proportional to the system bandwidth and the azimuth resolution presenting
the smallest separation between two point targets that can be detected by the radar. The
wavelengths are usually chosen in L, C or X bands.

When the signal reaches the ground it is di�used in one or several directions depending
on the surface properties. Figure 1.3 portrays di�erent scattering mechanisms achieved for
smooth surface, man-made structure and forest cover. In SAR image each pixel corresponds
to an area on the ground, called resolution cell. The resulting signal in a resolution cell is
obtained as the coherent sum of all backscattered signals returned back to the cell. The
strong variations between the resulting amplitudes and phases from pixel to pixel cause a
particular e�ect observed in SAR images called speckle (see Figure 1.4b). The value of
speckle is thus no deterministic, but depends on many scatterers with a random distribution
within a resolution cell.

The speckle is commonly referred to as noise, but it should be noted that it can not be
reduced simply by increasing the transmit signal power. It has a multiplicative character
and its variance grows with the signal intensity. A widely used method for speckle reduction
is multi-look �ltering, which is basically a non-coherent averaging of the intensity image
(square of the modulus of the complex backscattered signal). This method can signi�cantly
smooth the image, but at the cost of a resolution lost.

1.3.3 Polarimetry

Transmitted SAR waves are polarized and some materials can re�ect di�erent polariza-
tions with di�erent intensities. Some others can also convert one polarization into another.
SAR systems can then transmit a mixture of polarizations and use receiving antennas with
a speci�c polarization, in order to collect several signals from the same series of pulses.
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Traditional SAR systems contain a �xed-polarization antenna for both transmission and
reception of radio signals. In such a way, for every resolution cell the SAR sensor mea-
sures a single radar re�ectivity for a speci�c transmitting and receiving polarization. A
consequence of this implementation is that the re�ected wave measures only a couple of
transmitted/received polarization quantity and any additional information about the scat-
tering process contained in the polarization properties of the scattered signal is lost. To
ensure that all the information of the scattered wave is retained, the polarization of the
scattered wave must be measured through a vector measurement process, enabling to use
di�erent polarizations to distinguish between various scattering mechanisms.

The basic concept of SAR polarimetry is given by the 2 × 2 complex scattering matrix
that describes the transformation of the transmitted wave vector into the received wave
vector performed by the scatterer

S =

[
SHH SHV
SV H SV V

]
.

The elements of S are the four complex scattering amplitudes where the subscripts horizontal
(H) or vertical (V) indicate associated received and transmitted polarization. In PolSAR
imagery the absolute phase is in most cases neglected and only the relative phases between
the elements are considered.

The scattering matrix can be measured by transmitting two orthogonally polarized waves
and measuring the scattered waves in two orthogonal polarizations. Most PolSAR systems
operate in the linear H-V basis. By transmitting a H polarized wave and receiving in H and
V polarization the SHH and SHV elements are measured. Then, two remaining coe�cients
SV H and SV V are measured by transmitting a V-polarized wave and receiving in H and V
polarization. In monostatic case, i. e. when the same antenna is receiver and transmitter,
the cross-correlated elements of S are assumed to be equal SHV = SV H . In this case, the
number of independent parameters in S is equal to �ve, i.e. three amplitudes and two
relative phases. Therefore, there are only three complex coe�cients required to characterize
the scattering vector

kL =
[
SHH SV V

√
2SHV

]T
. (1.69)

Alternatively, the scattering vector is replaced by the linear transformation

kP =
1√
2

[SHH + SV V SHH − SV V 2SHV ]
T (1.70)

known as the Pauli representation of the scattering vector [105]. Figure 1.5 gives an example
of a PolSAR image in Pauli basis compared to an SAR intensity image.

In order to fully characterize distributed scatterers one needs to analyze the second-order
characteristics of scattering vectors, that are de�ned as

CL = E
[
kLkHL

]
(1.71)

called covariance matrix, and

CP = E
[
kPkHP

]
(1.72)

called coherency matrix.
The scattering vector in Pauli basis can be represented as

kP =
1√
2

SHH + SV V
SHH − SV V

2SHV

 =
SHH√

2

1
1
0

+
SV V√

2

 1
−1
0

+
2SHV√

2

 0
0√
2

 , (1.73)
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(a) Optical image (b) Single-look image (c) Multi-look image

Figure 1.4 � From left to right: an optical image, the single-look amplitude and the
temporally multi-looked amplitude of an SAR image. The temporal multi-looking reduces
the speckle while preserving the resolution, but it is only valid for temporally stable areas.

leading to the following relationship between the lexical and the Pauli representation

kP =
1√
2

1 1 0
1 −1 0

0 0
√

2

kL, (1.74)

CP =
1

2

1 1 0
1 −1 0

0 0
√

2

CL

1 1 0
1 −1 0

0 0
√

2

 . (1.75)

Another solution to ease the interpretation of the scattering phenomena is to consider a
eigenvalue decomposition of C invariant of the chosen basis proposed by Cloude and Pottier
[30]

C = U

λ1 0 0
0 λ2 0
0 0 λ3

UH , (1.76)

where λ1 ≥ λ2 ≥ λ3 and U = [u1 u2 u3] the respective eigenvectors that can be repre-
sented as

ui =

 cosαiejγi

sinαicosβiejγi

sinαisinβiejγi

 . (1.77)

Thanks to these decompositions, we can extract three important physical features describing
the underlying physical phenomena

• The entropy H ∈ [0, 1]

H = −
3∑
i=1

pi log3 pi with pi =
λi∑3
i=1 λi

, (1.78)

where pi are referred as to the scattering probabilities. The entropy measures the ran-
domness of the scattering process. For instance, when H = 0, there is only one single
mechanism involved, while for H = 1 three pure random mechanisms are involved.

• The anisotropy A ∈ [0, 1]

A =
λ2 − λ3

λ2 + λ3
, (1.79)

provides complementary information. When H > 0, the anisotropy indicates how
many scattering mechanisms are involved.
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(a) SAR intensity image (b) PolSAR image

Figure 1.5 � An example of a SAR intensity image and the corresponding PolSAR image.
The PolSAR image is displayed using an RGB representation based on the Pauli basis.

• The mean scattering angle α ∈ (−π, π]

α =

3∑
i=1

piαi, (1.80)

giving the information about the underlying scattering process. When α = 0, a single
bounce scattering is produced by a rough surface. When α = 1/4 volume scattering is
produced. Finally, the case α = 1/2 corresponds to double bounce scattering.

1.3.4 Modeling

The polarimetric information is extracted through the statistical properties of the data.
Therefore, it is very important to have an accurate statistical model to interpret the infor-
mation about observed area.

Gaussian model for the radar signals have been frequently employed when the spatial
resolution of PolSAR images is moderate [71, 61, 112, 109]. The number of scatterers in a
resolution cell of low resolution data is large and according to the CLT, Gaussian distribution
could give a good approximation of the data distribution, especially in homogeneous areas.
For PolSAR data, the mean value of the complex vector is generally assumed to be zero, and
all the statistical properties are determined by the covariance matrix under the Gaussian
assumption.

In PolSAR imagery, multi-looking despeckling is equivalent to the computation of the
SCM built with surrounding pixels

Σ̂SCM =
1

L

L∑
i=1

kik
H
i , (1.81)

where L is the nominal number of looks (equivalent to the number of pixels used for es-
timation). Since the pixels are correlated and multi-looked data is usually modeled as an
average of independent measurements, the actual number of correlated samples is replaced
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by an equivalent number of independent ones, de�ned as

Le =
E [I]

2

Var [I]
, (1.82)

where I is a single polarization intensity. As explained in the �rst part of this chapter,
the SCM, under the Gaussian assumption, follows a complex Wishart distribution, which is
highly used in literature and applications of PolSAR data [109].

Nowadays, when most of SAR systems operate with considerably higher resolutions than
before, Gaussian distribution fails to describe the �uctuations between resolution cells. This
is principally apparent in heterogeneous areas where the texture can drastically change
between surrounding pixels. Consequently, one needs more complex models in order to
describe these scenarios. The scalar texture model appeared as a logical solution to this
issue. This model, also referred as to SIRV (see De�nition 1.1.12), assume the data is given
as a product of a Gaussian random process with the square root of a nonnegative (random)
scalar variable that contains the information about the texture variation, i.e.

k =
√
τn (1.83)

where τ is the texture parameter with mean value equal to 1, and n is the speckle vector,
following a multivariate CN distribution. Since the texture parameter is supposed to have
unity mean it is only used to model the variation of the radar cross section, while the
intensity information is contained in the speckle component.

Few distributions have been proposed for the random parameter τ in the literature,
resulting in di�erent multivariate models for the scattering vector k. Hereafter we list some
of widely used PolSAR models.

• One of the most used radars texture models is gamma distribution [84, 188] which can
be written as

f(τ ; υ) =
υυ

Γ(υ)
τυ−1 exp (−υτ) (1.84)

in order to ensure the unity mean of τ . This case results in multivarite K-distribution
(see Example 1.1.3). This distribution is often used to model forests and the sea
surface.

• For the beta distribution [15] of the texture parameter the p.d.f. is given by

f(τ ; υ, %) =
Γ(υ)

Γ(%)Γ(υ − %)

υ

%

(
υ

%
τ

)υ−1(
1− υ

%
τ

)%−υ−1

, τ ∈
[
0,
%

υ

]
(1.85)

the scattering vector is assumed to have the W -distribution [3]. Note that this W -
distribution is CCG version of the W -distribution de�ned in Example 1.1.4 which was
introduced particularly for modeling radar data.

• The Normal Inverse Gaussian (NIG) distribution [50] assumes that the texture follows
an inverse Gaussian distribution

f(τ ; υ) =
( υ

2π

)1/2

τ−3/2 exp

(
−1

2

(υ
τ

+ υτ
)

+ υ

)
. (1.86)

The advantage of this distribution is that is able to captures large distribution shape
variation.

• The inverse gamma distribution of the texture parameter [59] which is given by

f(τ ; υ) =
(υ − 1)υ

Γ(υ)
τ−υ−1 exp

(
−υ − 1

τ

)
, (1.87)

is particularly convenient for modeling extremely heterogeneous regions such as urban
areas. The IG-distributed texture leads to the t-distribution for scattering vector (see
Example 1.1.2).
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• If the texture parameter follows a Fisher distribution [165] given by

f(τ ; υ, %) =
Γ(υ + %)

Γ(υ)Γ(%)

υ

%− 1

(
υ

%− 1
τ

)υ−1(
υ

%− 1
τ + 1

)−υ−%
(1.88)

the scattering vector is Kummer-U distributed. Fisher distribution covers a large range
of distributions and thus, is able to model di�erent types of textures.

The aforementioned distributions are only some of the used texture models for PolSAR data.
Beside the scalar texture, other representations such as Multi-Texture Models [53], Finite
Mixture Models [122] and Copula Based Model [121] have been used to describe PolSAR
data. We refer the reader to cited literature for more details about these models. A great
survey on PolSAR statistical models is given in [48].

1.3.5 PolSAR image despeckling

PolSAR �ltering techniques have received much attention over the last three decades and
many di�erent methods have been proposed. These techniques can be generally categorized
into several classes basing on basic principles of the methods. Hereafter, we make a brief
review of existing methods and refer the reader to the cited literature for more details.

• The �rst group are local window �lters, such as the well-known multi-look or boxcar
�lter which computes the value of the center pixel in the window as the average of
all the neighborhood pixels. As we have already explained in Section 1.3.2, this �lter
is simple to apply and can signi�cantly reduce speckle in homogeneous areas, but
degrades the spatial resolution of the image. In [110] the minimization of the mean
square error (MSE) was proposed to estimate the diagonal elements of the scattering
matrix while the extension in [74] suggests estimating the whole matrix. In order to
better preserve edges and image details Lee et al. [108] proposed to locally select the
best window among a few pre-de�ned windows considering Local Linear Minimum
Mean Square Error (LLMMSE). In [175] the authors proposed an intensity-driven
adaptive-neighborhood (IDAN) �lter which selects similar pixels using a region growing
technique. During the estimation, all pixels are given the same weight which causes
a selection bias. The sigma �lter, �rst introduced for single-channel SAR data [107],
was extended to PolSAR [111] generalizing the idea to select similar pixels in the local
window and to �lter the center pixel by the LMMSE estimator. In order to avoid the
introduction of bias during the �ltering process, D'Hondt et al. [49] adapted the idea
of bilateral �lter to PolSAR data where the value of the center pixel is estimated by
the weighted average of all the pixels in a large square window.

• The methods based on partial di�erential equation (PDE) which are well-suited for
Gaussian noise removal have been adapted to PolSAR data in several works. One can
cite [143] where an anisotropic di�usion (AD) �lter was proposed, based on progressive
smoothing of the image starting with the original image and according to the solution
of a given PDE. In [55], the authors proposed a trace-based �lters, an iterative PDE
�lter that perform the �ltering that corresponds to a local convolution by oriented
Gaussian �lters.

• The variational methods employ global regularization information to remove noise in
the images. The main idea is to construct an energy functional composed of a data
�delity term and a regularization term, that signi�cantly smooth the image while
preserve edges. All the pixels are simultaneously processed by minimizing the energy
functional. In [125], Nie et al. proposed a PolSAR TV technique based on the Wishart
model of covariance matrix. In [126] Nie proposed an improvement of this method by
suggesting a new regularization term.

• In recent years a growing interest appeared for machine learning based �ltering meth-
ods. The method introduced in [158] expresses the �ltering problem as an optimization
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problem, which is solved using the stochastic relaxation algorithm called simulated
annealing. In [76], the authors propose a �ltering method based on subspace de-
composition, representing a parameter space as a composition of two subspaces: the
signal subspace and the orthogonal noise subspace. The polarimetric information is
then retrieved from the signi�cant principal component analysis coe�cients. Another
important group of ML-based methods use sparse representation [185] where a high-
dimensional vector can be represented as a linear combination of signals with reduced
dimension. Also, in recent years there has been considerable interest in deep learning
based methods [28, 186].

• Finally, the last group is composed of non-local means based methods. These ap-
proaches rely on patch comparison to select similar samples in the whole image. The
idea was born with the �rst works of Buades et al. [22, 21] and then extended and
adapted to (Pol)SAR images by several authors such as in [47, 25]. In Chapter 5 we
will discuss in details the methodology employed in these techniques and see how it
can be used in PolSAR despeckling.

1.3.6 Conclusion

In this section, we have presented the basic principles of PolSAR imagery. The scalar
texture statistical models for PolSAR data have been reviewed, followed by a brief survey on
despeckling methods. We have seen that PolSAR data can be modeled by the CES distri-
butions de�ned in Section 1.1. In this context, the despeckling of PolSAR data corresponds
to the estimation of the scatter matrix.

In Chapter 5, we will examine in details non-local means methods and a state-of-the-art
technique called NL-SAR. We will see how new properties of M -estimators, introduced in
Chapter 2, can be exploited in PolSAR image despeckling.



Chapter 2

New statistical properties for

M-estimators

This chapter provides an original approach to better understanding the behavior of ro-
bust M -estimators of the scatter matrix. To that end, a Gaussian-core representation,
that is equivalent to the classical stochastic representation, of CES distributions is estab-
lished. Thanks to this representation, the Gaussian-Core Wishart Equivalent (GCWE)
of an M -estimator is de�ned as the SCM built with the Gaussian cores of the CES data.
Then, the asymptotic distribution between an M -estimator and its GCWE is derived,
showing that the behavior of an M -estimator can be better characterized by the Wishart
distribution of its GCWE than with its asymptotic normal properties. Moreover, some
particular cases of M -estimators are analyzed. Finally, Monte Carlo simulations are
provided in order to validate the theoretical results.
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Figure 2.1 � Gaussian-core representation

2.1 Assumed model

In this section, we describe the assumed model of the data and provide de�nitions re-
quired for the analysis done in this thesis.

2.1.1 Gaussian-Core representation

As we have seen in Chapter 1, CES distributions can be represented as a�ne transforms
of a scale mixture of U(CSp−1). Moreover, the CES distributions belonging to the subclass
of CCG distributions can be represented as a�ne transforms of a scale mixture of CN (0, I).
This presents the starting point for the analysis done in this thesis.

In order to better explain the context of the work, we will rewrite the stochastic represen-

tation given by Eq. (1.14) using the fact that for u ∼ U(CSp−1) one has u
d
= g/‖g‖, where

g ∼ CN (0, I). As it can be seen in Figure 2.1, from the general stochastic representation

of a CES-distributed vector one has that u
d
= y/‖y‖ where y ∼ CES(0, I, gy). Then, since

the CN distribution is a particular case of CES distributions, we can set y = g ∼ CN (0, I)

and consequently u
d
= g/‖g‖. Finally, we de�ne the Gaussian core x of a CES-distributed

vector z as x = Ag. Hence, one obtains the following representation.

De�nition 2.1.1: Gaussian cores of CES

Each z ∼ CES(0,Σ, gz) has the following stochastic representation

z
d
=

√
Q
‖g‖

Ag, (2.1)

where g ∼ CN (0, I), Q is a non-negative real random variable, and Σ = AAH is a
factorization of Σ. We refer to x = Ag as the Gaussian core of z.

This representation is completely equivalent to Eq. (1.14), where we choose to represent
the vector u as a ratio of a CN-distributed vector g and its norm. One can note that if√
Q/‖g‖ is independent of g, the r.v. z is CCG-distributed, i.e. it can be represented as by

Eq. (1.16) where τ
d
=
Q
‖g‖2

. In general, the relationship betweenQ and ‖g‖2 is more complex

and can not be described by a simple linear model. However, for particular parameters of a

CES distribution when the CES distribution tends to the CN one, one has Q d→ ‖g‖2.

2.1.2 Gaussian-Core Wishart Equivalent

Once we have de�ned Gaussian cores of CES-distributed data, we can introduce the
Gaussian-Core Wishart Equivalent (GCWE) of an M -estimator.
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As it can be seen in Figure 2.2, we assume that the measurements (z1, . . . , zn) are CES-
distributed and we apply anM -estimator to estimate the scatter matrix. The Gaussian cores
of the observations are then used for a theoretical construction of the SCM that represents
the GCWE of the corresponding M -estimator. Although Σ̂GCWE cannot be obtained in
practice, it is well-known that it follows the complex Wishart distribution for any matrix A
(cf. De�nition 1.1.9). We can now state the following de�nition.

De�nition 2.1.2: Gaussian-Core Wishart Equivalent (GCWE)

Let n i.i.d. measurements (z1, . . . , zn) be drawn as zi ∼ CES (0,Σ, gz) and denote
(x1, . . . ,xn) their Gaussian cores as zi =

√
Qi/‖gi‖xi (cf. De�nition 2.1.1), i = 1, . . . , n.

Let Σ̂ be an M -estimator built with (z1, . . . , zn) using Eq. (1.28). The SCM built from
the Gaussian cores, i.e.

Σ̂GCWE =
1

n

n∑
i=1

xix
H
i (2.2)

is referred to as the GCWE of Σ̂. It is important to notice that this matrix cannot be
computed in practice, but represents a theoretical equivalent.

In the following, we propose to analyze the properties of an M -estimator in the CES
framework by comparing it to the corresponding GCWE.

2.2 Convergence towards GCWE

In this section, we introduce new properties forM -estimators. The asymptotic properties
of the di�erence between an M -estimator and its GCWE are derived. Moreover, the results
for particular M -estimators are derived and supported by simulation experiments.

2.2.1 Results for the general case

In this section we propose new properties for M -estimators in the CES framework. We
consider an n-sample (z1, . . . , zn) with zi ∼ CES (0,Σ, gz), i = 1, . . . , n, and want to estimate
the scatter matrix of the population employing an M -estimator de�ned as a solution of
Eq. (1.28). Then, one has the following results.
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Theorem 2.2.1: General case [J1]

Let Σ̂ and Σ̂GCWE be de�ned by Eqs. (1.28) and (2.2), respectively. The asymptotic
distribution of σΣ̂− Σ̂GCWE is given by

√
nvec

(
σΣ̂− Σ̂GCWE

)
d→ GCN (0,Γ,Ω) , (2.3)

where σ is the solution of Eq. (1.31). The matrices Γ and Ω are de�ned as{
Γ = σ1Σ

T ⊗Σ + σ2vec (Σ) vec (Σ)
H
,

Ω = σ1

(
ΣT ⊗Σ

)
K + σ2vec (Σ) vec (Σ)

T
,

(2.4)

with

σ1 =
aMp(p+ 1) + cM (cM − 2bM )

c2M
,

σ2 =
aM − p2

(cM − p2)2
− aM (p+ 1)

c2M
+ 2

p(cM − bM )

cM (cM − p2)
, (2.5)

where aM , cM are given by Eq. (1.34) and bM = E[Ψ(σQ)‖g‖2].

Remark 2.2.1

• First, we recall that Σ̂ tends to the M -functional Σσ that is proportional to the
true scatter matrix parameter Σ as Σσ = σ−1Σ (Eq. (1.30)). On the other hand,
Σ̂GCWE tends to the true scatter matrix Σ. Consequently, in order to avoid the
bias we observe the quantity σΣ̂− Σ̂GCWE.

• Then, notice that the structure of the asymptotic covariance matrix Γ is the same
as in classical asymptotic results (Eqs. (1.11) and (1.32)), but the coe�cients
are di�erent. In the case of the identity matrix as covariance matrix, this very
particular structure involves only three non-null elements d1, d2 and d3 at the
positions (i, j) which are equal to:

◦ d1 = σ1 + σ2 for k = l = q + p(q − 1) with q = 1, . . . , p,

◦ d2 = σ1 for k = l = q + p(q′ − 1) with q 6= q′ and p, q = 1, . . . , p,

◦ d3 = σ2 for k = q+p(q−1), l = q′+p(q′−1) with q 6= q′ and q, q′ = 1, . . . , p.

Similar comment with slight modi�cations is valid for the pseudo-covariance ma-
trix.

• Finally, an important remark is that scale factors σ1 and σ2 are smaller than the
ones in the standard asymptotic regime (Eq. (1.32)). This will be more profoundly
discussed and directly demonstrated on particular cases of M -estimators.

Proof sketch. We provide only a sketch of the proof, while the detailed proof of Theorem
2.2.1 is given in Appendix D. The main idea is to note that the matrix Γ can be represented
as

Γ = Γ1 (Σ)− 2Γ2 (Σ) + Γ3 (Σ) ,

where Γ1 (Σ) and Γ3 (Σ) are given by Eqs. (1.32) and (1.10), respectively, and the matrix
Γ2 (Σ) is the covariance matrix between an M -estimator and the corresponding GCWE.
The second important step relies on a decomposition of Γ2 (Σ):

Γ2 (Σ) = D−1
1 (Σ) B (Σ)

(
D−1

2 (Σ)
)H

,
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where 
D1 (Σ) = E [d{vec (Ψ1 (Σ))}/d{vec (Σ)}] ,
B (Σ) = E

[
vec (Ψ1 (Σ)) vec (Ψ2 (Σ))

H
]
,

D2 (Σ) = E [d{vec (Ψ2 (Σ))}/d{vec (Σ)}] ,
(2.6)

with {
Ψ1 (Σ) = σu

(
zH(σ−1Σ

)−1
z)zzH −Σ,

Ψ2 (Σ) = xxH −Σ,
(2.7)

which is a generalization of a result derived in [119]. Finally, using the dependence between
the practical data and their Gaussian cores one can derive elements of the matrix Γ2 (Σ)
and obtain the �nal result.

2.2.2 Particular cases

To promote the use of several M -estimators listed in Section 1.1.4, we derive the exact
expressions for their covariance and pseudo-covariance matrices in the GCWE regime. In
addition, some discussion on the values of the parameters σ1 and σ2 for each M -estimator
is provided.

The results for each M -estimator are derived for a particular CES distribution. We
chose to analyze the cases commonly met in practice and theory. For instance, the Huber's
M -estimator was introduced for the CN-distributed data corrupted with a small amount
of outliers. Thus, the theoretical results are derived for the CN data under the setting
implemented in Example 1.1.7. Other M -estimators are studied in the MLE case, except
the Tyler's M -estimator which is �distribution-free� over the class of CES distributions.
However, the results for other CES distributions (model error or mismatch scenarios) in
each case can be obtained analogously.

Tyler's M-estimator

As already stated in Example 1.1.6, the Tyler's M -estimator does not satisfy all
Maronna's conditions and thus, does not belong to the class of M -estimators as de�ned
in De�nition 1.1.14. Consequently, it needs to be treated independently.

Theorem 2.2.2: Tyler's M-estimator [C1]

Let Σ̂T be de�ned as in Eq. (1.35). The asymptotic distribution of Σ̂T − Σ̂GCWE is
given by √

nvec
(
Σ̂T − Σ̂GCWE

)
d→ GCN (0,ΓT,ΩT) ,

where ΓT and ΩT are de�ned by
ΓT =

1

p
ΣT ⊗Σ +

p− 1

p2
vec (Σ) vec (Σ)

H
,

ΩT =
1

p

(
ΣT ⊗Σ

)
K +

p− 1

p2
vec (Σ) vec (Σ)

T
.

(2.8)

Remark 2.2.2

• First, notice that since the Tyler's M -estimator is distribution-free over the class
of CES distributions, the results proposed in this section are valid for any CES
distribution with the scatter matrix Σ.

• Another remark is that the results are derived for the theoretical version of the
Tyler's estimator, i.e. when the normalization Tr

(
Σ−1Σ̂T

)
= p is employed.
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• An important remark is that the elements of ΓT and ΩT in Eq. (2.8) are smaller
than those of CT and PT in Eq. (1.36). Moreover, the scale factors σ1 and σ2 are
inversely proportional to the data dimension p, showing that the elements tend
to 0 when p increases. This result is in agreement with the results obtained in
[41] using large random matrix theory.

• Finally, note that the result for σ1 can be obtained directly from Eq. (2.5) for
Ψ(x) = p, which leads to aM = bM = cM = p2. However, the value of σ2 can not
be deduced from Eq. (2.5) and in the following we provide a separate analysis in
order to proof the theorem.

Proof. The proof of Theorem 2.2.2 is given in Appendix E.

Huber's M-estimator

In this section we analyze the Huber's M -estimator under the setup derived for CN-
distributed data as in Example 1.1.7.

Corollary 2.2.3: Huber's M-estimator

Let Σ̂H be de�ned as in Eq. (1.37). The asymptotic distribution of Σ̂H − Σ̂GCWE is
de�ned by Theorem 2.2.1 for aM and cM given by Eq. (1.39) and

bM = (p(p+ 1)F2p+4(2λ) + pλ(1− F2p+2(2λ))) /β, (2.9)

where λ and β are given by Eq. (1.39).

Remark 2.2.3

• First, one can note that when q → 1 one has bM → p(p + 1). In that case, one
has also aM , cM → p(p + 1) which leads to σ1, σ2 → 0. This result is expected
since for q → 1 all data is treated as CN-distributed and the Huber'sM -estimator
yields the GCWE.

• On the other hand, when q → 0 which means that most data are assumed to be
outliers, one has that bM → p2 which together aM , cM → p2 leads to the results
for the Tyler's M -estimator (see Remark 2.2.2).

• Finally, one has that for q → 1 =⇒ σ1 → 0, while for q → 0 =⇒ σ1 →
1

p
. Con-

sequently, the value of σ1(q) for the Huber's M -estimator could be approximated
by the linear model σ̃1(q) = 1

p (1− q). This will be illustrated in Section 2.3.

Proof. From u(x) =
1

β
min(1,

λ

x
) one has that

Ψ(x) =
min(x, λ)

β
. (2.10)
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Then, for CN-distributed data with ‖g‖2 ∼ 1/2χ2(2p) one has

bM =

∫ +∞

0

Ψ
(y

2

) y
2
dy =

∫ 2λ

0

y2

4β
χ2(2p)dy +

∫ +∞

2λ

λy

2β
χ2(2p)dy

=
1

β

(∫ 2λ

0

yp+1 exp (−y/2)

2p+2Γ(p)
dy + λ

∫ +∞

2λ

yp exp (−y/2)

2p+1Γ(p)
dy

)

=
1

β

(
p(p+ 1)

∫ 2λ

0

yp+1 exp (−y/2)

2p+2Γ(p+ 2)
dy + pλ

(
1−

∫ 2λ

0

yp exp (−y/2)

2pΓ(p+ 1)
dy

))

=
1

β
(p(p+ 1)F2p+4(2λ) + pλ (1− F2p+2(2λ))) ,

which concludes the proof.

Student's M-estimator

In this section we derive the results for the Student'sM -estimator (Example 1.1.8) under

the assumption that the data is t-distributed, i.e.
Q
‖g‖2

d
= τ ∼ IG(ν/2, ν/2) (see Example

1.1.2 for more details).

Corollary 2.2.4: Student's M-estimator [J1]

Let Σ̂t be de�ned as in Eq. (1.40). The asymptotic distribution of Σ̂t − Σ̂GCWE is
de�ned by Theorem 2.2.1 for{

σ1 = (p+ ν/2)−1,
σ2 = 2/ν (p+ 1 + ν/2)(p+ ν/2)−1.

(2.11)

Remark 2.2.4

• Notice that, once again, the parameter σ1 is inversely proportional to the data
dimension. The parameter σ2 is equal to ϑ2 de�ned in Eq. (1.33), since bM =
cM . However, as we will see in Chapters 3 and 4, the value of σ1 is of greater
importance in most signal processing applications.

• One can also note that ν = 0 yields σ1 =
1

p
, as expected, since in that case the

Student's M -estimators is equivalent to the Tyler's one. On the other side, when
ν →∞ the GCWE is produced and σ1, σ2 → 0.

Proof. For the Student's t-distribution Q ∼ pF2p,ν yields

f(Q) = Cp,νQp−1

(
1 +

2

ν
Q
)− 2p+ν

2

with Cp,ν = (2/ν)
p

Γ (p+ ν/2) /Γ (p) /Γ (ν/2) where Γ(·) is the Gamma function. In this
case the Student's M -estimator is the MLE. It can be easily shown that σ = 1 holds for all
MLEs [130] and thus, one has

Ψ (σQ) = Ψ (Q) =
2p+ ν

ν + 2Q
Q.



40 Chapter 2. New statistical properties for M -estimators

Now, one obtains

E
[
Ψ2(Q)

]
= E

[
(2p+ ν)

2

(ν + 2Q)
2Q

2

]
= Cp,ν

∫ +∞

0

(2p+ ν)
2
x2

ν2
(
1 + 2

νx
)2xp−1

(
1 +

2x

ν

)− 2p+ν
2

dx

= Cp,ν
(2p+ ν)2

ν2

1

Cp+2,ν
=
p(p+ 1)

(
p+ ν

2

)
p+ 1 + ν

2

and

E [QΨ′(Q)] = E
[

(2p+ ν)ν

(ν + 2Q)2
Q
]

= Cp,ν

∫ +∞

0

(2p+ ν)νx

ν2(1 + 2
νx)2

tp−1
1

(
1 +

2x

ν

)− 2p+ν
2

dx

= Cp,ν
ν(2p+ ν)

ν2

∫ +∞

0

x−1xp+1

(
1 +

2x

ν

)− 2p+4+ν
2

dx

= Cp,ν
2p+ ν

ν

1

Cp+2,ν
E
[
Q−1

]
where now Q/(p+ 2) ∼ F2p+4,ν or equivalently (p+ 2)/Q ∼ Fν,2p+4 which gives

E
[
Q−1

]
=

1

p+ 2

2p+ 4

2p+ 4− 2
=

1

p+ 1

and �nally

E [QΨ′(Q)] =
ν

2

p(
p+ 1 + ν

2

) .
To compute E

[
Ψ(Q)‖g‖2

]
let us remind that Q = τ‖g‖2 where τ and ‖g‖ are independent,

with τ ∼ IG(ν/2, ν/2) and ‖g‖2 ∼ (1/2)χ2
2p. Thus, one can write

I = E
[
Ψ(Q)‖g‖2

]
= C

∫∫
R2

+

1

1 + 2x
ν y

x−
ν
2 e−

ν
2x yp+1e−ydxdy

where C =
(

2p
ν + 1

)
ν
2

ν
2 /
(
Γ(ν2 )Γ(p)

)
. The change of variable u = 2x

ν y gives du = 2x
ν dy and

hence

I = C

∫ ∞
0

ν

2x
x−

ν
2 e−

ν
2x

( ν
2x

)p+1
∫ ∞

0

1

1 + u
up+1e−

ν
2xududx .

Then, using the equality∫ ∞
0

1

1 + u
up+1e−

ν
2xudu = e

ν
2x (p+ 1)!Γ

(
−1− p; ν

2x

)
,

where Γ(·; ·) stands for the upper incomplete Gamma function, one obtains

I = C ′
∫ ∞

0

x−
ν
2−p−2Γ

(
−1− p; ν

2x

)
dx,

where C ′ = C(p+ 1)! (ν/2)
p+2. Since

Γ
(
−1− p; ν

2x

)
=
( ν

2x

)−p−1

Ep+2

( ν
2x

)
,

where Ep+2 is the generalized exponential integral, one has

I = C ′′
∫ ∞

0

x−
ν
2−1Ep+2

( ν
2x

)
dx,
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where C ′′ = C ′ (2/ν)
p+1 which leads to

I = C ′′
∫ ∞

0

x−
ν
2−1

∫ ∞
1

e−
ν
2x tt−p−2dtdx = C ′′

∫ ∞
1

t−p−2

∫ ∞
0

x−
ν
2−1e−

ν
2x tdtdx

= C ′′′
∫ ∞

1

t−p−2− ν2 dt =
C ′′′

p+ 1 + ν
2

with C ′′′ = C ′′
(
ν
2

)− ν2 Γ(ν2 ). This, �nally gives

E
[
Ψ(Q)‖g‖2

]
=

(p+ ν
2 )p(p+ 1)

p+ 1 + ν
2

,

which leads to the following values for aM , bM , cM

aM = bM = cM =
p(p+ 1)(p+ ν

2 )

p+ 1 + ν
2

.

Substituting previous quantities in Eq. (2.5), one obtains the �nal results for σ1 and σ2.

K M-estimator

In this section we derive the results for the K M -estimator (Example 1.1.9) under the

assumption that the data is K-distributed, i.e.
Q
‖g‖2

d
= τ ∼ Gam(ν, 1/ν) (see Example 1.1.3

for more details). The results for other CES distributions can be obtained analogously.

Corollary 2.2.5: K M-estimator

Let Σ̂K be de�ned as in Eq. (1.41). The asymptotic distribution of Σ̂K − Σ̂GCWE

de�ned by Theorem 2.2.1 for
aM = cM = C1

∫
R+

K2
ν−p−1(t)

Kν−p(t)
tp+ν+1dt,

bM = C2

∫∫
R2

+

Kν−p−1(2
√
ντt)

Kν−p(2
√
ντt)

tp+
1
2 τν−

1
2 e−ντe−tdτdt,

(2.12)

where C1 = (Γ(p)Γ(ν)2p+ν)
−1 and C2 = νν+ 1

2 (Γ(m)/Γ(ν))
−1.

Remark 2.2.5

• Since the expressions for the parameters aM , bM and cM are given by afore-stated
integrals, it is di�cult to draw concrete conclusions on the values of σ1 and σ2

directly from Eq. (2.12). It is probably possible to simplify the quantities using
the basic properties of modi�ed Bessel function, but we will skip this analysis in
this work. However, we will see in Section 2.3 that the scale factors have the same
interesting properties as other analyzed M -estimators.

Proof. The K M -estimator is de�ned for

Ψ(x) =
√
νx
Kν−p−1(2

√
νx)

Kν−p(2
√
νx)

and in the MLE case Q has the following p.d.f.

f(Q) = Cp,νQ
p+ν

2 −1Kν−p

(
2
√
νQ
)
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with Cp,ν = 2ν(ν+p)/2/Γ(p)/Γ(ν). Thus, one has

E
[
Ψ2(Q)

]
= Cp,ν

∫ +∞

0

√
νx
K2
ν−p−1(2

√
νx)

Kν−p(2
√
νx)

x
p+ν

2 −1dx. (2.13)

After the change of variable t = 2
√
νx which gives x = t2/(4ν), one can easily obtain the

result Eq. (2.12). In addition, one can show that cM = aM holds for all MLEs, which
has been con�rmed in the case of Student's M -estimator (see Corollary 2.2.4). Since the
K-distribution belongs to the class of CCG distributions, one has that Q ∼ τ‖g‖2 where
τ ∼ Gam(ν, 1/ν) and ‖g‖2 ∼ 1/2χ2(2p) are independent. This directly leads to the result
for bM of Eq. (2.12).

Weibull M-estimator

In two previous examples we have analyzed the CCG distributions (Student's t-
distribution and K-distribution) where the relationship between the observed CES data
and their Gaussian cores can be described as a simple product model thanks to the texture
parameter that is independent of the Gaussian cores. For non-CCG CES distributions, this
is not the case and one has to �nd a non-linear relationship between the CES data and their
Gaussian cores.

In this example we assume that the data is W -distributed with exponent s and scale

b =
[
pΓ
(
p+s−1
s

)
/Γ
(
p+s
s

)]s
, where Q d

= G1/s, with G ∼ Gam(p+s−1
s , b) (see Example 1.1.4).

Corollary 2.2.6: Weibull M-estimator

Let Σ̂W be de�ned as in Eq. (1.42). The asymptotic distribution of Σ̂W − Σ̂GCWE is
given by Eq. (2.4) with{

σ1 = (p− s)(1− s)
(
p2 + s(p+ s− 1)

)−1
,

σ2 = p(1− s) (p− s− 2)
(
s
(
p2 + s(p+ s− 1)

)
(p+ s− 1)

)−1
.

(2.14)

Remark 2.2.6

• Notice that both parameters σ1 and σ2 for the WeilbullM -estimator are inversely
proportional to the data dimension p.

• For s = 0 the parameters reduce to the ones of the Tyler's M -estimator. On the
other hand, when s = 1, the Weibull M -estimator yields the SCM and the W -
distribution reduces to the CN one. This means that the CES data reduce to their
Gaussian cores and the Weibull M -estimator becomes equivalent to the GCWE
providing σ1 = σ2 = 0. Consequently, similarly as for the Huber's M -estimator,

one can propose an approximation σ̃1(s) =
1

p
(1− s).

Proof. For the W -distribution with exponent s and scale b the p.d.f. of Q is given by

f(Q) = Cp,s,bQp+s−2 exp

(
−Q

s

b

)
Cp,s,b = sb−(p+s−1)/s/Γ((p+ s− 1)/s) and the Weibull M -estimator is de�ned for

Ψ(x) =
s

b
xs − s+ 1.
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Consequently, one can write

aM = Cp,s,b

∫ +∞

0

(s
b
xs − s+ 1

)2

xp+s−2 exp

(
−x

s

b

)
dx

= Cp,s,b

∫ +∞

0

s2

b2
xp+3s−2 exp

(
−x

s

b

)
dx

+ 2Cp,s,b

∫ +∞

0

s

b
(1− s)xp+2s−2 exp

(
−x

s

b

)
dx

+ Cp,s,b

∫ +∞

0

(s2 − 2s+ 1)xp+s−2 exp

(
−x

s

b

)
dx

which thanks to the generalized gamma distribution gives aM = cM = p2 + s(p+ s− 1).
As mentioned above, in order to compute the parameter bM we need �rst to express

the modulate variate Q as a function of ‖g‖2. For the W -distribution one has Q d
= G1/s,

where G ∼ Gam(p+s−1
s , b). On the other hand, one has that ‖g‖2 ∼ Gam(p, 1). Using the

following properties of the gamma distribution:

◦
n∑
i=1

xi ∼ Gam

(
n∑
i=1

ki, θ

)
, if xi ∼ Gam (ki, θ),

◦ cx ∼ Gam (k, cθ), if x ∼ Gam (k, θ),

one can write

Q d
=
pΓ
(
p+s−1
s

)
Γ
(
p+s
s

) (
Gam

(
(p− 1)(1− s)

s
, 1

)
+ ‖g‖2

)1/s

.

Then, one obtains

bM = E
[
Ψ(Q)‖g‖2

]
= sE

[
Gam

(
(p− 1)(1− s)

s
, 1

)
‖g‖2

]
+ sE

[
‖g‖4

]
+ (1− s)E

[
‖g‖2

]
= s

(p− 1)(1− s)
s

p+ sp(p+ 1)− (s− 1)p

= (1− s)p2 + sp(p+ 1) = p2 + sp.

Finally, after some simple derivations, one obtains the �nal results.

GG M-estimator

In this example we assume that the data is CGG-distributed with exponent s and scale

b =
[
pΓ(ps )/Γ(p+1

s )
]s
, where Q d

= G1/s, with G ∼ Gam(ps , b) (see Example 1.1.5).

Corollary 2.2.7: GG M-estimator

Let Σ̂GG be de�ned by Eq. (1.43). The asymptotic distribution of Σ̂GG − Σ̂GCWE is
given by Eq. (2.4) with {

σ1 = (1− s) (p+ s)
−1
,

σ2 = (1− s) (s (p+ s))
−1
.

(2.15)

Remark 2.2.7

• The remark is the same as for the Weilbull M -estimator, i.e. both parameters σ1

and σ2 are inversely proportional to the data dimension p.
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• Note that for s = 0 the values of the parameters reduce to the ones of the Tyler's
M -estimator. When s = 1, the GG M -estimator leads to the SCM and the
underlying CGG distribution to the CN one. Consequently, the GG M -estimator
is equal to its GCWE leading to σ1 = σ2 = 0.

• In this case, the proposed approximation σ̃1(s) =
1

p
(1 − s) is obviously more

appropriate, since σ1(s) =
1− s
p+ s

≈ σ̃1(s) is true even for relatively small values

of p.

Proof. For the GG M -estimator one has

Ψ(x) =
s

b
xs.

The parameter Q of the CCG distribution with exponent s and scale b has the p.d.f.

f(Q) = Cp,s,bQp−1 exp

(
−Q

s

b

)
,

where Cp,s,b = sb−p/s/Γ(p/s). Following the same steps as for the Weibull M -estimator,
one can easily obtain aM = cM = p2 + sp and

Q d
=

pΓ
(
p
s

)
Γ
(
p+1
s

) (Gam(p(1− s)
s

, 1

)
+ ‖g‖2

)1/s

,

leading to bM = p2 + sp, which after some derivations leads to the �nal results.

2.2.3 Discussion

Here are some general comments on the proposed results as well as their great interest
in practice.

• First, to examine the values of the scale factors in Eq. (2.4), we discuss the values
of E

[
Ψ2(σQ)

]
, E
[
Ψ(σQ)‖g‖2

]
and E [Ψ′(σQ)σQ] + p2. Since 0 < Ψ(σQ) < K and

E [Ψ(σQ)] = p, using Bhatia-Davis inequality [9], one has that var(Ψ(σQ)) < (K−p)p
and thus E

[
Ψ(σQ)2

]
< Kp. Since K is of same magnitude as p and K > p,

one obtains that E
[
Ψ(σQ)2

]
is of same magnitude as p2 (for Tyler's estimator

E
[
Ψ(σQ)2

]
= p2, for Student M -estimator E

[
Ψ(σQ)2

]
=

p(p+1)(p+ ν
2 )

p+1+ ν
2

, for SCM

E
[
Ψ(σQ)2

]
= p2 + p . . .). From this, it follows that bM is also of the same magnitude

as p2 since p2 ≤ E [Ψ(σQ)]E
[
‖g‖2

]
≤ E

[
Ψ(σQ)‖g‖2

]
≤
√

E [Ψ(σQ)2]
√

E [‖g‖4] ≤√
(p2 + p)

√
E [Ψ(σQ)2]. It is obvious that cM is also of the same magnitude as p2.

Generally, for all widely used M -estimators, one obtains that aM , bM , cM = p2 + αp,
α > 0 which leads to σ1 inversely proportional to p. For σ2, one can not provide
precise information about its value, but it turns out that it is eather smaller (e.g.,
the Tyler's M -estimator, the Weibull M -estimator. . .) or unchanged (e.g., Student's
M -estimator, the GG M -estimator. . .) comparing to the scale factor given in
Eq. (1.32). This ensures the strong �proximity� between M-estimators and
the GCWE, justifying the approximation of M-estimators behavior with a
Wishart distribution.

• The results derived in this chapter show that all M-estimators are asymp-
totically closer to the GCWE than to the true scatter matrix. By �close�, we
mean that the asymptotic variance when centering about the GCWE is much smaller
than the one when centering about the true scatter matrix. Also, this di�erence is
more obvious when the data dimension p increases.
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• An important consequence of the previous remarks is that any M -estimator's
(including Tyler's one) behavior can be approximated by the GCWE one, namely
by the Wishart distribution. This is of great interest in practice since all the
analytical performance of functionals of robust scatter estimators can be
derived basing on their equivalent built with the GCWE, while keeping the inherent
robustness brought by M -estimators (contrary to the SCM). To summarize, ro-
bust estimators are better approximated by Wishart distribution than by
the asymptotic Gaussian distribution with the true scatter matrix as mean.

• Another comment is that, roughly speaking, one has the following result for most
robust scatter matrix estimators Σ̂

√
pn
(
Σ̂− Σ̂GCWE

)
−−−−→
n→∞

GCN (0,D,Q) ,

where D and Q are ��xed�. Thus, one has a gain in terms of convergence of
p. This is in agreement with the results obtained in [41] for a di�erent convergence
regime (p, n→∞ with p/n tending to a positive constant).

• Finally, it should be pointed out that the results can be applied to various signal
processing problems. In Chapter 3 we will see how these results can be extended
to the cases when the scatter matrix has a particular structure appearing in various
signal processing applications. Then, in Chapter 4 we will explain why these results
are useful for the threshold computation in the signal detection. Finally, the practical
interest of the results in polarimetric SAR image processing will be demonstrated in
Chapter 5.

2.3 Experimental analysis

2.3.1 Validation of the theoretical results

In this part, we present some simulations to validate the theoretical results for di�er-
ent M -estimators and data distributions with various values of scatter matrix and data
dimension.

First, Figure 2.3 presents the relative error norm eT between the empirical covariance

matrix of
√
nvec

(
Σ̂T − Σ̂GCWE

)
, denoted as Γ̂

(n)
T , and the matrix ΓT from Theorem 2.2.2,

i.e. eT =
‖Γ̂(n)

T − ΓT‖
‖ΓT‖

where ‖ · ‖ denotes the Frobenius norm. The parameter Γ̂
(n)
T is

computed as the empirical mean of the quantities obtained from I Monte Carlo runs with
IMC = 10000. The plotted results are obtained for CN-distributed 1 data with dimension
p = 5. The scatter matrix is (Hermitian) Toeplitz, i.e. Σ is de�ned by [Σ]i,j = ρ(j−i) for
i ≤ j and [Σ]i,j = [Σ]

∗
j,i for i > j, i, j = 1, . . . , p. The correlation coe�cient ρ is set to

0, i.e. the scatter matrix in this case is equal to the identity matrix. Figure 2.4 shows the

corresponding quantity for the pseudo-covariance matrix, i.e. e′T =
‖Ω̂(n)

T −ΩT‖
‖ΩT‖

where

Ω̂
(n)
T is empirical pseudo-covariance matrix of

√
nvec

(
Σ̂T − Σ̂GCWE

)
and ΩT is given by

Eq. (2.8) in Theorem 2.2.2. One can note that Figures 2.3 and 2.4 validate the results
obtained in Theorem 2.2.2 since the errors tend to zero when the sample size n increases.

Figures 2.5 and 2.6 depict the corresponding results for the Student's M -estimator. The
vertical axis of Figure 2.5 (resp. Figure 2.6) presents the relative error norm between the

1. The results are equal for all CES distributions, since the Tyler's M -estimator is distribution-free over
the CES class.
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Figure 2.3 � Relative error eT between the empirical covariance matrix of√
nvec(Σ̂T − Σ̂GCWE) and the corresponding theoretical results (Theorem 2.2.2) versus the

sample size n; p = 5, ρ = 0.
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Figure 2.4 � Relative error e′T between the empirical pseudo-covariance matrix of√
nvec(Σ̂T − Σ̂GCWE) and the corresponding theoretical results (Theorem 2.2.2) versus the

sample size n; p = 5, ρ = 0.

empirical covariance (resp. pseudo-covariance) matrix of
√
n(Σ̂t − Σ̂GCWE), denoted as

Γ̂
(n)
t (resp. Ω̂

(n)
t ), and the matrix Γt (resp. Ωt) de�ned by Eq. (2.4) with σ1 and σ2 given
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Figure 2.5 � Relative error et between the empirical covariance matrix of√
nvec(Σ̂t − Σ̂GCWE) and the corresponding theoretical results (Corollary 2.2.4) versus the

sample size n; p = 10, ρ = 0.5.
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Figure 2.6 � Relative error e′t between the empirical pseudo-covariance matrix of√
nvec(Σ̂t − Σ̂GCWE) and the corresponding theoretical results (Corollary 2.2.4) versus the

sample size n; p = 10, ρ = 0.5.

by Eq. (2.11) in Corollary 2.2.4, i.e. et =
‖Γ̂(n)

t − Γt‖
‖Γt‖

(resp. e′t =
‖Ω̂(n)

t −Ωt‖
‖Ωt‖

). The



48 Chapter 2. New statistical properties for M -estimators

102 103

10−1

100

n

e H

Figure 2.7 � Relative error eH between the empirical covariance matrix of√
nvec(Σ̂H − Σ̂GCWE) and the corresponding theoretical results (Corollary 2.2.3) versus

the sample size n; p = 20, ρ = 0.5(1 +
√
−1)/

√
2.
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Figure 2.8 � Relative error eH between the empirical pseudo-covariance matrix of√
nvec(Σ̂H − Σ̂GCWE) and the corresponding theoretical results (Corollary 2.2.3) versus

the sample size n; p = 20, ρ = 0.5(1 +
√
−1)/

√
2.

scatter matrix is Toeplitz with ρ = 0.5. The data is t-distributed with ν = 3 and Student's
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M -estimator is used in the MLE case, i.e., νt = ν. The data dimension p is set to 10. The
simulations, once again, con�rm the theoretical results, in this case particularly the results
proposed by Corollary 2.2.4.

Finally, Figure 2.7 (resp. Figure 2.8) illustrates the results for the Huber's M -estimator.

The vertical axis gives the value of the relative error norm eH =
‖Γ̂(n)

H − ΓH‖
‖ΓH‖

(resp. e′H =

‖Ω̂(n)
H −ΩH‖
‖ΩH‖

), where Γ̂
(n)
H is the empirical covariance (resp. pseudo-covariance) matrix of

√
nvec

(
Σ̂H − Σ̂GCWE

)
and the matrix ΓH (resp. ΩH) is de�ned by Theorem 2.2.1 with bM

given by Eq. (2.9) in Corollary 2.2.3. The data follows the CN distribution with the Toeplitz
scatter matrix with ρ = 0.5(1 +

√
−1)/

√
2 and p is set to 20. The parameter q for Huber's

M -estimator is set to 0.9 meaning that the 90% of the data is treated as CN-distributed,
while the remaining 10% are assumed to be outliers.

Previous experiments validate the theoretical results of Theorem 2.2.1 for di�erent set-
ups. Let us now consider only the scale factors σ1 and σ2 from Eq. (2.4). Figure 2.9
plots the relative error between empirical values of the scale factors σ̂(n)

1 and σ̂(n)
2 and their

theoretical values σ1 and σ2 for the K, Student's and Huber's M -estimators. The K and
Student's M -estimators are analyzed in the MLE case, while the Huber's M -estimator is
built with CN-distributed data. The scatter matrix is equal to identity Σ = I and p = 10.
The empirical values σ̂(n)

1 and σ̂(n)
2 are obtained as follows. First, the empirical covariance

matrix Γ̂(n) of
√
nvec

(
Σ̂− Σ̂GCWE

)
(where Σ̂ corresponds to the used M -estimator) is

computed as the empirical mean with IMC = 10000 Monte Carlo runs. Then, taking into
account the structure of Γ for Σ = I, σ̂(n)

1 and σ̂(n)
2 are computed as

σ̂
(n)
1 =

1

p2
Tr
(
Γ̂(n) − σ̂(n)

2 vec (I) vec (I)
T
)
, (2.16)

σ̂
(n)
2 =

1

p2 − p
∑
k 6=l

[
Γ̂(n)

]
k,l
. (2.17)

The shape parameter ν for K M -estimator is set to 1, while the DoF parameter for Student's
M -estimator is set to 3. The parameter q for Huber'sM -estimator is set to 0.95. We observe
that the relative error for both scale factors goes to zero when the sample size n increases,
which validates the theoretical results.

Once we have studied the scale factor for the �xed data dimension p, we can investigate
the behaviour of σ1 and σ2 when p increases. In Figure 2.10, the scale factors for the
Tyler's M -estimator in the standard asymptotic (SA) (Theorem 1.1.4) and in the GCWE
regime (Theorem 2.2.2) are plotted. The empirical results for the scale factors in GCWE
regime are computed using Eqs. (2.16) and (2.17). The scale factors in SA regime are
computed using the same formulas where Γ̂(n) is replaced by the empirical covariance matrix

of
√
nvec

(
Σ̂T −Σ

)
. The sample size n is set to 1000.

The �gure is revealing in several ways. First, one can see that the empirical results match
the theoretical ones. Then, one can note that the scale factors are signi�cantly smaller in
the GCWE regime than in the SA one, showing that the Tyler'sM -estimator is much closer
to the GCWE than to the true scatter matrix. This supports the idea that the behavior
of the Tyler's M -estimator can be better described by the one of the GCWE than by its
asymptotic properties. Finally, it is apparent that both scale factors in the GCWE regime
tend to zero when the dimension goes to in�nity, suggesting that the proposed approximation
is even more accurate for high-dimensional scenarios. However, it should be noted that, even
though it has a higher value in the SA regime, the second scale factor tends to zero when
p→∞ both in the SA and in the GCWE regime. These conclusions are valid for all analyzed
M -estimators and can be easily veri�ed by simulation experiments.



50 Chapter 2. New statistical properties for M -estimators

101 102 103
10−3

10−2

10−1

100

101

n

|σ̂
(n

)
1
−
σ

1
|/
|σ

1
|

K

Student

Huber

101 102 103
10−3

10−2

10−1

100

101

n

|σ̂
(n

)
2
−
σ

2
|/
|σ

2
|

K

Student

Huber

Figure 2.9 � Relative error between the estimated values of scale factors σ1 and σ2 and
their corresponding theoretical values for the Huber's (Corollary 2.2.3), Student's

(Corollary 2.2.4) and K (Corollary 2.2.5) M -estimator
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Figure 2.10 � Values of the scale factors for the Tyler's M -estimator in SA regime
(Theorem 1.1.4) compared to the scale factors in GCWE regime (Theorem 2.2.2) versus

data dimension p ; n = 1000.
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Figure 2.11 � Empirical value of the �rst scale factor of the Huber's M -estimator σ̂1(q)
compared to the theoretical value σ1(q) (Corollary 2.2.3) and proposed approximation

σ̃1(q) (Remark 2.2.3) versus the parameter q; p = 10.

2.3.2 Study of the parameter σ1

As it can be noted from the theoretical results for particular M -estimators, σ1 and σ2

do not depend only on the data dimension p, but also on the particular parameters involved
in the de�nition of the studied M -estimator, such as ν for the Student's M -estimator,
s for the Weibull M -estimator, etc. In the following, we will analyze the e�ect of these
parameters on the values of σ1 and σ2.

Figure 2.11 reports the value of the �rst scale factor for the Huber's M -estimator for
di�erent values of the parameter q. The empirical values σ̂1(q) are compared to the cor-
responding theoretical values σ1(q) and to the proposed approximation σ̃1(q) = (1 − q)/p
(Remark 2.2.3) for various values of data dimensions p. The value of the �rst scale factor
for the Tyler's M -estimator σ1T is also plotted for all values of p. The parameter σ̂1(q) is
computed using Eq. (2.16) with n = 1000.

The �gure highlights various interesting details on σ1(q). First, as well as for the
Tyler's M -estimator, when the data size p increases the value of σ1 decreases. The second
important remark is that for q → 0 =⇒ σ1(q) → σ1T , as expected, since for q → 0 the
Tyler's M -estimator is produced. On the other hand, when q → 1, which means that
the total data is CN-distributed and the SCM is used, one has σ1(q) → 0. Finally, one
observes that the proposed approximation σ̃1(q) does not perfectly match the theoretical
value of σ1(q), especially for small data dimension. However, for higher dimensions these
quantities are very close, showing that the relationship between σ1 and the parameter q can
be well-described by σ̃1(q).

Figures 2.12 and 2.13 detail the results for the �rst scale factor of the Student's and
K M -estimators for di�erent values of ν, respectively. The empirical values σ̂1(ν) are
computed using Eq. (2.16) and compared to the theoretical values σ1(ν) for various values
of p. The �gures con�rm that both analyzed M -estimators represent a kind of trade-o�
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Figure 2.12 � Empirical value of the �rst scale factor of the Student's M -estimator σ̂1(ν)
compared to the theoretical value σ1(ν) (Corollary 2.2.4) versus the DoF parameter ν.
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Figure 2.13 � Empirical value of the �rst scale factor of the K M -estimator σ̂1(ν)
compared to the theoretical value σ1(ν) (Corollary 2.2.5) versus the shape parameter ν.
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Figure 2.14 � Empirical value of the �rst scale factor of the Weibull M -estimator σ̂1(s)
compared to the theoretical value σ1(s) (Corollary 2.2.6) and proposed approximation

σ̃1(s) (Remark 2.2.6) versus the parameter s; p = 10.
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Figure 2.15 � Empirical value of the �rst scale factor of the GG M -estimator σ̂1(s)
compared to the theoretical value σ1(s) (Corollary 2.2.7) and proposed approximation

σ̃1(s) (Remark 2.2.7) versus the parameter s; p = 10.
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Figure 2.16 � Empirical value of the �rst scale factor of the K M -estimator for
K-distributed data with νK = 2 versus the shape parameter ν.

between the Tyler's M -estimator and the SCM, since ν → 0 =⇒ σ1(ν) → σ1T and
ν → ∞ =⇒ σ1(ν) → 0. Nevertheless, since both relationships between σ1(ν) and ν
are highly non-linear and σ1(ν) → 0 for ν → ∞, one can not provide satisfying linear
approximation for σ1(ν)→ 0 as was the case for the Huber's M -estimator.

In Figures 2.14 and 2.15, the results for the �rst scale factor of the Weibull and GG
M -estimator are plotted. The horizontal scale presents the parameter s. The empirical
values σ̂1(s) are computed using Eq. (2.16) and compared to the theoretical values σ1(s)
(Remarks 2.2.6 and 2.2.7) for various values of p. As in the previous case, the �gures
con�rm that both analyzed M -estimators represent a compromise between the Tyler's
M -estimator and the SCM. Moreover, the values of scale factors can be well-approximated
by the quantity σ̃1(s), especially in the case of the GG M -estimator.

Finally, one can inspect the value of σ1 when theM -estimator does not correspond to the
MLE. Figure 2.16 demonstrates the results for σ1(ν) of K M -estimator for K-distributed
data with νK = 2. The parameter ν of the K M -estimator varies between 0.5 and 30. From
the �gure we can see that for small values of ν, σ1(ν) is close to the σ1T . When ν > νK we
observe that σ1(ν) increases which is expected, since the K M -estimator tends to the SCM
and becomes less robust. The minimal value of σ1(ν) is obtained when ν = νK , i.e. when
the M -estimator corresponds to the MLE for the data distribution. An important remark
here is that we have directly compared the K M -estimator to the corresponding GCWE
without previous scale regulation. In fact, if we want to verify the results of Theorem
2.2.1 we need �rst to compute the value of the scale σ and then analyze the di�erence of the
scaledM -estimator and the GCWE. However, as already mentioned, in some application one
needs only the estimation of the shape matrix and the scale can be neglected. Nevertheless,
Figure 2.16 testi�es that, even when the whole information contained in the scatter matrix
is important and one applies the unscaled K M -estimator, the obtained estimation in a
mismatched scenario is still relatively close to the one of the GCWE for small values of ν.
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This can be easily extended to Student's, Weibull and GG M -estimator.

2.4 Conclusion

In this chapter we have investigated the statistical properties of robust M -estimators.
To that end, a new Gaussian-Core model has been introduced for CES distributions. Then,
the GCWE is de�ned as the SCM built with the Gaussian cores of the observed CES data.
The new approach that we have proposed consists in comparing an M -estimator to the
corresponding GCWE. This allows us to derive new properties and deliver new insights
into the behavior of M -estimators. The proposed approach can be summarized as follows:
explaining the behavior of an �intractable� estimator θ̂ by analyzing its proximity with a
well-known estimator θ̂1. It has been shown that the second order statistics ofM -estimators
when centering around a Wishart distributed matrix are much smaller than the ones when
centering around the true scatter matrix. It has also been revealed that this di�erence is even
more meaningful for high-dimensional data. It should be stressed that these results provide
a better approximation ofM -estimators properties than any other analyses in the literature.

In Chapter 3, we will see how these results can be extended to the eigenvalue decompo-
sition and principal subspace analysis of M -estimators. Several applications, depending on
the scatter matrix structure, will be detailed. Then, in Chapter 4, the application of these
results to the adaptive signal detection is analyzed. We will demonstrate how the results
can be leveraged in the statistical analysis of adaptive robust detectors. In Chapter 5, these
results will be applied to the problem of PolSAR image despeckling.

Finally, it should be noted that we have considered only complex M -estimators since
they are used in signal processing applications. The results for the real case are given in
Appendix C. It should be noted that the results of Theorem 2.2.1 can also be derived using
the results for the real case and vector/matrix complex-to-real mapping [130]. This is brie�y
discussed at the end of Appendix C.



Chapter 3

EVD and PCA of the scatter

matrix: new robust techniques

This chapter deals with the estimation of eigenvalue decomposition (EVD) parameters
of the second order statistics. Three di�erent cases, based on the structure of the scatter
matrix, are analyzed:

• λ1 > . . . > λp > 0,

• λ1 = . . . = λj1 > λj1+1 = . . . = λj2 > . . . > λjk = . . . = λp > 0,

• λ1 > . . . > λ2 > . . . λr > λr+1 = . . . = λp > 0,

where λ1, . . . , λp are eigenvalues of the scatter matrix. In the �rst problem, we analyze
the distribution of the EVD parameters obtained from M -estimators. In the second
one, we propose a new robust method in order to fuse eigenvalues and obtain a unique
eigenvalue estimation for each of k blocks. Finally, in the last problem, we analyze the
statistical properties of the principal subspace estimated by M -estimators. Moreover,
various applications of the results are discussed.
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3.1 Eigenvalue decomposition of M-estimators

The eigenvalue decomposition (EVD) ofM -estimators is required in numerous processes.
Indeed, the eigenvectors of the scatter matrix are involved in probabilistic PCA algorithms
[42, 191], as well as in the derivation of robust counterparts of low rank �lters or detectors
[147, 69]. The eigenvalues of the scatter matrix are used in model order selection [161, 164],
functions of eigenvalues are involved in various applications such as regularization parameter
selection [129, 85], detection [29], and classi�cation [16]. Hence accurately characterizing the
distribution of the M -estimators EVD represents a key challenge, both from the points of
view of performance analysis and optimal process design. Hereafter, we derive new asymp-
totic characterizations for the EVD parameters of scatter matrixM -estimators in the general
context of CES-distributed samples. For the eigenvalues and eigenvectors, we derive:

• The standard Gaussian asymptotic distribution. This result is obtained by extending
the analysis of [96] (for the SCM) and perturbation analysis of [101, 100] to the complex
M -estimators. This asymptotic analysis provides an extension of the results obtained
in [42, 14] since it gives the information about the covariance between the eigenvalues
of anM -estimator. Also, contrary to the analyis done in [42, 14], all the results in this
section are derived for complex data.

• The Gaussian asymptotic distribution in the GCWE regime by extending the re-
sults of Chapter 2. To do so, a central limit Theorem is established to show that
the EVD parameters of M -estimators are asymptotically concentrated around their
GCWE counterparts with a variance that is signi�cantly lower than the one of the
standard asymptotic regime (derived around the true expected values). These re-
sults quantify when it is acceptable to directly rely on well established results on the
EVD of Wishart-distributed matrices (e.g., [123, 189]) for characterizing the EVD of
M -estimators.

3.1.1 Asymptotics of M-estimators' eigenvalue decomposition

The EVD of the scatter matrix Σ is denoted as

Σ
EVD
= UΛUH , with

U = [u1, . . . ,up] ∈ Upp ,
Λ = diag(λ),

λ = [λ1, . . . , λp] .

(3.1)

In order to avoid ambiguity in this de�nition, we assume ordered eigenvalues as λ1 > . . . >
λp > 0, and an element of each uj (e.g., the �rst entry) for j = 1, . . . , n, can be assumed to
be real positive. Similarly, we de�ne matching notations for the EVD of an M -estimator Σ̂,
de�ned as in Eq. (1.28), and its GCWE Σ̂GCWE, de�ned as in Eq. (2.2), as

Σ̂
EVD
= ÛM Λ̂M

(
ÛM

)H
,

Σ̂GCWE
EVD
= ÛGCWEΛ̂GCWE

(
ÛGCWE

)H
.

(3.2)

In the following we derive the asymptotic distributions for the quantities ÛM and Λ̂M ,
both under the SA and the GCWE regime.
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Theorem 3.1.1: Standard asymptotic [J2]

Let Σ̂ be an M -estimator de�ned in Eq. (1.28) built from n samples drawn as z ∼
CES (0,Σ, gz) and σ be the solution of Eq. (1.31). The asymptotic distribution of the
EVD of Σ̂, de�ned by Eq. (3.2), is given by

√
n
(
σλ̂

M
− λ

)
d→ N

(
0, ϑ1Λ

2 + ϑ2λλ
T
)
,

√
nΠ⊥j ûMj

d→ CN (0,Ξj) ,
(3.3)

where
Ξj = ϑ1λj

(
UΛ(λjI−Λ)+

)2
UH (3.4)

with Π⊥j = I− uju
H
j , j = 1, . . . , p and ϑ1, ϑ2 given by Eq. (1.33).

Remark 3.1.1

• The results given in Theorem 3.1.1 are interesting since, besides the variance
of each eigenvalue, they provide the correlation between them. Note that for a
Wishart-distributed matrix this correlation is equal to zero, as shown in [96] for
real case. Conversely, Theorem 3.1.1 shows that the eigenvalues of anM -estimator
are asymptotically correlated, as stated in [42] (but not explicitly characterized).
This correlation depends on the second scale parameter ϑ2.

• Concerning the eigenvectors, note that the covariance depends only on ϑ1 since
uj is scale invariant w.r.t. to the covariance matrix (see [117] for more details).

Proof. To prove the theorem we will rely on the basic results obtained in the following lemma
[13][Proposition 6.2] (and e.g. [117] for the formulation in the complex case).

Lemma 3.1.1. Let (ẑ1, . . . , ẑn) be a sequence of complex random vectors ẑ and z a compat-

ible �xed vector. Assume that
√
n (ẑ− z)

d→ GCN (0,C,P). Let ξ (z) be a vector function
of a vector z with �rst and a second derivatives existing in z. Then

√
n (ξ (ẑ)− ξ (z))

d→ GCN
(
0, ξ′ (z) Cξ′ (z)

H
, ξ′ (z) Pξ′ (z)

T
)

(3.5)

where

ξ′ (z) =
∂ξ (z)

∂z
(3.6)

is a matrix derivative.

Proof. Thanks to the Delta method, one has a �rst order approximation

ξ (ẑ) ' ξ (z) + ξ′ (z) (ẑ− z) , (3.7)

where ξ′ (z) = ∂ξ (z) /∂z. Then, one has

E
[
n (ξ (ẑ)− ξ (z)) (ξ (ẑ)− ξ (z))

H
]

= ξ′ (z)E
[
n (ẑ− z) (ẑ− z)

H
]
ξ′ (z)

H

−−−−→
n→∞

ξ′ (z) Cξ′ (z)
H
. (3.8)

Analogously, for the pseudo-covariance matrix, one has

E
[
n (ξ (ẑ)− ξ (z)) (ξ (ẑ)− ξ (z))

T
]

= ξ′ (z)E
[
n (ẑ− z) (ẑ− z)

T
]
ξ′ (z)

T

−−−−→
n→∞

ξ′ (z) Pξ′ (z)
T
, (3.9)

which concludes the proof.
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In order to obtain the derivatives of λ and uj w.r.t. vec (Σ), we di�erentiate Σuj = λjuj

dΣuj + Σduj = dλjuj + λjduj . (3.10)

Multiplying each side of the last equation by uHj , one has

dλj = uHj (dΣ) uj

since uHj Σ = λju
H
j and uHj uj = 1. Thus,

∂λj
∂vec (Σ)

= uTj ⊗ uHj .

If λ = (λ1, . . . , λp), then one has

∂λ

∂vec (Σ)
= ET

(
UT ⊗UH

)
with E = (e1 ⊗ e1 . . . ep ⊗ ep) where ej , j = 1, . . . , p are unit vectors. Further, combining
the statement given in Lemma 3.1.1 with Eq. (1.32), one obtains

ET
(
UT ⊗UH

) (
ϑ1

(
ΣT ⊗Σ

))
(U∗ ⊗U) E

+ ET
(
UT ⊗UH

)
ϑ2vec (Σ) vec (Σ)

H
(U∗ ⊗U) E

= ϑ1E
T
(
ΛT ⊗Λ

)
E + ϑ2E

T
(
vec (Λ) vec (Λ)

H
)

E = ϑ1Λ
2 + ϑ2λλ

T .

Note that in this equality Σ �gures instead Σσ, since we analyze the distribution of σλ̂M

instead of λ̂M . Note also that, since the eigenvalues are real one obtains the same result
using the expression for the pseudo-covariance matrix.

In order to obtain the results for eigenvectors, we will multiply Eq. (3.10) by uHk , k 6= j.
Thus, one obtains

uHk (dΣ) uj = (λj − λk) uHk duj

as uHk uj = 0. Following the same steps as in [96] (done for the real case), it is easy to show
that

duj =
∑
j 6=k

(λj − λk)
−1

uku
H
k (dΣ) uj + uju

H
j duj .

In fact, the last element in the previous equality is omitted in the real case since uTj duj = 0

(from uTj uj = 1). However, in the complex case uHj duj 6= 0, as from uHj uj = 1 one has
uHj duj + duHj uj = 0 and it is obvious that uHj duj 6= duHj uj . In some works, as in [114],
the authors use di�erent normalizations for eigenvectors that imply uHj duj = 0 and in those
circumstances the results correspond to the ones in the real case. In the general (more
common) case, one obtains(

I− uju
H
j

)
duj =

(
uTj ⊗U (λjI−Λ)

+
UH

)
dΣ,

which actually gives the projection of the derivative onto the subspace orthogonal to the one
of the eigenvector. Now, employing Eq. (3.5) with previous derivatives and since(

uTj ⊗U (λjI−Λ)
+

UH
)

K = U (λjI−Λ)
+

UH ⊗ uTj ,

(λjI−Λ)
+

ej = 0,[
uTj ⊗U(λjI−Λ)+UH

]
vec (Σ) = 0,

one obtains the �nal results. Note that GCN becomes CN since the pseudo-covariance
matrix is equal to zero.
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Theorem 3.1.2: Asymptotic GCWE [J2]

Let Σ̂ be an M -estimator as in Eq. (1.28) built from n samples drawn as z ∼
CES (0,Σ, gz). Let Σ̂GCWE be its GCWE (De�nition 2.1.2) and let σ be the solu-
tion of Eq. (1.31). The asymptotic distribution of the di�erence between the EVD
parameters of Σ̂ and Σ̂GCWE is given by

√
n
(
σλ̂

M
− λ̂

GCWE
)

d→ N
(
0, σ1Λ

2 + σ2λλ
T
)
,

√
nΠ⊥j

(
ûMj − ûGCWE

j

) d→ CN (0, σ1/ϑ1Ξj) ,
(3.11)

with Ξj and σ1, σ2 given by Eqs. (3.4) and (2.5), respectively.

Remark 3.1.2

• Theorem 3.1.2 characterizes the asymptotic variance of the EVD of an M -
estimator compared to the one of its GCWE. It shows that their covariance
structure is the same as the one in the SA regime, and di�ers only through the
variance scales (σ1, σ2) (instead of (ϑ1, ϑ2)). As noted in Chapter 2, the total
variance captured by the GCWE factors is much smaller than the standard one.

• This result supports the idea that an underlying Wishart distribution can o�er
a better approximation for characterizing the distribution of the M -estimator's
EVD. This approximation allows us to rely on the well established results in
[123, 189] and o�ers a thinner analysis compared to the asymptotic Gaussian
results as we will se in Section 3.1.3.

Proof. Rewriting the left-hand side of Eq. (3.3)

√
n
(
σλ̂

M
− λ̂

GCWE
)

=
√
n
(
σλ̂

M
− λ− λ̂

GCWE
+ λ

)
=
√
n
((
σλ̂

M
− λ

)
−
(
λ̂

GCWE
− λ

))
.

Then,

varn
(
σλ̂

M
− λ̂

GCWE
)

= E
[
n
(
σλ̂

M
− λ̂

GCWE
)(

σλ̂
M
− λ̂

GCWE
)T]

= varn
(
σλ̂

M
)
− 2covn

(
σλ̂

M
, λ̂

GCWE
)

+ varn
(
λ̂

GCWE
)
.

From Eq. (3.3), one has

varn
(
σλ̂

M
)
−−−−−→
n→+∞

ϑ1Λ
2 + ϑ2λλ

T and

varn
(
λ̂

GCWE
)
−−−−−→
n→+∞

Λ2.

Then, it remains only to derive the expression for

covn
(
σλ̂

M
, λ̂

GCWE
)

= E
[
n
(
σλ̂

M
− λ

)(
λ̂

GCWE
− λ

)H]
.

Using the Delta method similarly as in Lemma 3.1.1, one can show that

covn
(
σλ̂

M
, λ̂

GCWE
)
−−−−−→
n→+∞

∂λ

∂vec (Σ)
Γ2

(
∂λ

∂vec (Σ)

)H
,
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Figure 3.1 � Relative error norm between the empirical covariance matrix of
√
n
(
λ̂
t
− λ

)
and its asymptotic value (blue curve) and the corresponding quantity for
√
n
(
λ̂
t
− λ̂

GCWE
)
(red curve); t-distributed data with ν = 2, p = 10,

ρ = 0.9(1 +
√
−1)/

√
2.

where Γ2 is equal to
Γ2 = γ1Σ

T ⊗Σ + γ2vec (Σ) vec (Σ)
H (3.12)

with γ1 and γ2 given by Eq. (D.7). Repeating the same steps as in Eq. (3.11), one shows
that the right-hand side of the right-hand side of Eq. (3.12) becomes

γ1Λ
2 + γ2λλ

T

which, since σ1 = ϑ1 − 2γ1 + 1 and σ2 = ϑ2 − 2γ2, leads to the �nal results.
The results for the eigenvectors can be obtained following the same procedure as for the

eigenvalues.

3.1.2 Experimental validation

In this part, we present some experiments in order to validate the previous theoretical
results.

Figure 3.1 plots the relative error norm 1 between the empirical covariance matrix of
√
n
(
λ̂
t
− λ

)
and its asymptotic value given by Eq. (3.3) and the relative error norm between

the empirical covariance matrix of
√
n
(
λ̂
t
− λ̂

GCWE
)
and its asymptotic value given by

Eq. (3.11), where λ̂
t
is the vector composed of the ordered eigenvalues of the Student's M -

estimator. The plotted results are obtained for t-distributed data with ν = 2 and dimension
p = 10. The scatter matrix is Toeplitz with ρ = 0.9(1 +

√
−1)/

√
2. The Student's M -

estimator is built with νt = ν.

1. The relative error norm is de�ned as in Section 2.3.
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and its asymptotic value (blue curve) and the corresponding quantity for√
n
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û1 − uGCWE

1

)
(red curve); t-distributed data with ν = 2, p = 10,

ρ = 0.9(1 +
√
−1)/

√
2.

Figure 3.2 plots the relative error norm between the empirical covariance matrix of√
n
(
ûM1 − u1

)
and its asymptotic value given by Eq. (3.3) and the relative error norm

between the empirical covariance matrix of
√
n
(
ûM1 − ûGCWE

1

)
and its asymptotic value

given by Eq. (3.11), where ûM1 is the eigenvector that corresponds to the �rst eigenvalue
(eigenvalue with highest value) of an M -estimator. The plotted results are obtained for the
Student's and Tyler'sM -estimator and t-distributed data with dimension p = 10 and ν = 2.

One observes that Figures 3.1 and 3.2 validates the theoretical results given in Theorems
3.1.1 and 3.1.2. Note that the eigenvalues of the Tyler's M -estimator are not analyzed due
to its inherent scaling ambiguity. Consequently, the theoretical results are not valid in this
case. However, one can note that the values of the eigenvectors of the Tyler's M -estimator
tend to the asymptotic values de�ned in Eqs. (3.3) and (3.11). This is expected since, as
noted in Remark 3.1.1, the eigenvectors are given as scale invariant functions of the scatter
matrix and therefore, provide same results for the true scatter matrix and normalized scatter
(or shape) matrix.

Figure 3.3 compares the asymptotic variances in the SA and GCWE regime. Figure

3.3a displays the empirical mean squared error (MSE) of λ̂
t
− λ and λ̂

t
− λ̂

GCWE
as well

as their corresponding asymptotic values, i.e., Tr(ϑ1Λ
2 + ϑ2λλ

T )/n (Theorem 3.1.1) and
Tr(σ1Λ

2 + σ2λλ
T )/n (Theorem 3.1.2). Figure 3.3b displays the empirical MSE of ûM1 − u

and ûM1 − ûGCWE
1 where the �rst eigenvector for both Student's and Tyler's M -estimator

and their corresponding asymptotic values, i.e., Tr(ϑ1λ1UΛ(λ1I − Λ)+2

UH)/n (Theorem
3.1.1) and Tr(σ1λ1UΛ(λ1I−Λ)+2

UH)/n (Theorem 3.1.2). The data is t-distributed with
ν = 3 and p = 20.

First, one can note that the empirical MSEs tend to the proposed asymptotic values.
Then, it is apparent that the MSE is signi�cantly smaller in the GCWE regime than in
the SA. The di�erence is even more remarkable for eigenvectors. As previously stated, the
variance of eigenvectors depends only on the �rst scale factor (ϑ1/σ1), while the variance
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of eigenvalues includes also the second one (ϑ2/σ2). We have seen in Chapter 2 that for
the Student's M -estimator σ1 is considerably smaller than ϑ1, while the second scale factor
stays unchanged, i.e. σ2 = ϑ2, and does not go to zero when the dimension increases for the
�xed value of ν. This explains the obtained results.

Figure 3.4 details the results obtained for the data with p = 50. Notice that all the
conclusions drawn in the previous example are still valid in this case. Moreover, it is evident
that the di�erence between the SA and the GCWE regime is even more signi�cant for higher
data dimension. However, one can note the empirical MSE needs higher sample size n to
provide the asymptotic results.

These results support the idea that the behaviour of the EVD of an M -estimator, in this
case the Student's and Tyler's M -estimator, can be better approximated with the one of
their GCWE. This can be easily veri�ed for other M -estimators. In the following section we
give an example where the derived results can be leveraged.

3.1.3 Application to intrinsic bias

In [160] were derived Intrinsic (i.e. Riemannian Manifold oriented) counterparts of the
Cramér-Rao inequality (ICRLB). In the context of covariance matrix estimation, these re-
sults permit notably to account for the natural Riemmanian metric on H, and to bound the
expected Riemannian distance (rather than the Euclidean one):

d2
nat (Σ1,Σ2) =

∥∥∥ln(Σ
−1/2
1 Σ2Σ

−1/2
1

)∥∥∥2

F
. (3.13)

This analysis also reveals unexpected and hidden properties of estimators, such as the bias
of the SCM w.r.t. the natural metric on H+ (this bias phenomenon does not exist w.r.t. the
Euclidean metric). In this scope, the biased ICRLB (B-ICRLB) is established for the SCM
in the Gaussian context in [160, Theorem 7 and Corollary 5], and reads as follows.

Theorem 3.1.3. B-ICRLB for SCM
Let (z1, . . . , zn) be an n-sample distributed as zi ∼ CN (0,Σ) and Σ̂SCM be the SCM as in
Eq. (1.9). The bias w.r.t. the natural metric on H+ of Σ̂SCM is

E
[
exp−1

Σ Σ̂SCM

]
= −η(p, n)Σ (3.14)

with exp−1
Σ Σ̂SCM = Σ1/2 log

(
Σ−1/2Σ̂SCMΣ−1/2

)
Σ1/2, and

η(p, n) =
1

p
{pln(n) + p− ψ(n− p+ 1)

+ (n− p+ 1)ψ(n− p+ 2)

+ ψ(n+ 1)− (n+ 1)ψ(n+ 2)}

(3.15)

and ψ(x) = Γ′(x)/Γ(x) is the digamma function. Moreover, the natural distance Eq. (3.13)
between Σ̂SCM and Σ satis�es the following biased-ICRLB inequality

E
[
d2
nat

(
Σ̂SCM,Σ

)]
≥ p2

n
+ pη (p, n)

2
. (3.16)

For CES-distributed samples, the ICRLB on d2
nat is derived in [19] as follows.

Theorem 3.1.4. IRCLB for CES
Let (z1, . . . , zn) be an n-sample distributed as zi ∼ CES(0,Σ, gz). Any unbiased estimator

Σ̂ of Σ satis�es the inequality

E
[
d2
nat

(
Σ̂,Σ

)]
≥ p2 − 1

nα
+ (n(α+ pβ))−1, (3.17)

with α =

(
1 +

E[Q2u′(Q)]
p(p+1)

)
(where Q is the modular variate as in Eq. (1.14)) and β = α− 1.
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Characterizing a bias term in Theorem 3.1.4 (similarly to the one in Theorem 3.1.3)
would requires to derive the intrinsic bias of an M -estimator obtained with CES-distributed
samples. The problem appears intractable since this result is mainly obtained thanks to
the exact distribution of the eigenvalues of a Wishart distributed matrix, and cannot be
recovered through a Delta method using the standard asymptotic of Theorem 3.1.1. However
the strong proximity of the eigenvalues of an M -estimator towards their GCWE described
in Theorem 3.1.2 (also exhibited by the previous simulation results) gives a reasonable
theoretical ground for the following approximation:

Approximation 3.1.5: Intrinsic bias of M-estimators [J2]

Let (z1, . . . , zn) be an n-sample distributed as zi ∼ CES(0,Σ, gz). Let Σ̂ be an M -
estimator of Σ that is consistent in scale (i.e., σ = 1 in Eq. (1.31)) and Σ̂GCWE its
GCWE (De�nition 2.1.2). The matrix Σ̂GCWE is Wishart-distributed with center Σ,
so the derivations of Theorem 7 of [160] directly apply to its intrinsic bias. Theorem
3.1.2 then supports the approximation

E[exp−1
Σ Σ̂] ' E[exp−1

Σ Σ̂GCWE] = −η(p, n)Σ. (3.18)

Figure 3.5 con�rms the previous results and supports the proposed approximation. In-
deed, it can be seen that the empirical intrinsic bias obtained with Student's M -estimator
computed with t-distributed (ν = 2.1 and ν = 10) data coincides with the intrinsic bias
based on the corresponding GCWE and the theoretical result in Eq. (3.15). As expected,
for higher value of ν (green curve), this approximation is more accurate since in that case
the Student's M -estimator is closer to its GCWE. For smaller values of ν (blue curve), the
bias exhibits a slight deviation from the theoretical approximation, since the t-distribution
has heavier tails and the Student's M -estimator is closer to the Tyler's one.
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Finally, we propose to incorporate an equivalent bias term in Eq. (3.17) to obtain an ac-
curate approximation of the B-ICRLB ofM -estimators built form CES-distributed samples.

Approximation 3.1.6: B-ICRLB for CES [J2]

Let (z1, . . . , zn) be an n-sample distributed as zi ∼ CES(0,Σ, gz). Let Σ̂ be an M -
estimator of Σ that is consistent in scale (i.e., σ = 1 in Eq. (1.31)). We have the
following approached B-ICRLB

E
[
d2
nat

(
Σ̂,Σ

)]
≥ p2 − 1

nα
+ (n(α+ pβ))−1 + pη (p, n)

2
, (3.19)

with α and β de�ned in Theorem 3.1.4 and η (p, n) from Eq. (3.15).

Figure 3.6 illustrates this approximation. The empirical mean of the natural Riemannian
distance of Σ̂t (denoted as εn(Σ̂t)) is compared to the theoretical ICRLB in Eq. (3.17)) and
the approached B-ICRLB in Eq. (3.19). As expected, one can see that the approached
bias term in B-ICRLB o�ers a more accurate theoretical approximation for bounding the
expected natural distance.

3.2 eFusion

Given an n-sample (x1, . . . ,xn) of i.i.d. p-dimensional vectors, the SCM de�ned in
Eq. (C.1), uniquely minimizes the loss function

l(Σ; Σ̂SCM) = Tr(Σ−1Σ̂SCM) + log{det(Σ)} (3.20)



3.2. eFusion 69

over Σ ∈ Sp×p given that p < n, where Sp×p denotes the set of p × p positive de�nite
symmetric matrices. The loss function Eq. (3.20) corresponds to two times the negative log-
likelihood function when sampling from p-variate normal distribution. Insu�cient number
of samples causes signi�cant estimation error in the SCM. When the sample size n is not
of orders of magnitude larger than the dimensionality, p, it has long been recognized that
larger eigenvalues of the SCM tend to overestimate, whereas the smaller eigenvalues tend to
underestimate the true eigenvalues. To �ll this gap, regularized or penalized estimators of
covariance matrix have been introduced in a series of papers [102, 104, 26, 7, 1, 136, 163,
129, 11, 127].

A regularized estimator of covariance matrix may be an optimally weighted average of
the SCM and a well-structured target estimator, which determines what type of structure
is imposed on the estimator. The weight parameter controls how much structure is required
[103, 104, 11, 127]. Another approach in regularizing the SCM is to shrink the eigenvalues
towards each other, and not towards a prede�ned target value. Such an approach, called
elasso, was developed in [171], where the authors developed a family of non-smooth penalty
functions that not only shrink the eigenvalues towards each other, but they may result in
partitioning the eigenvalues into subgroups.

A regularized SCM (RSCM) Σ̂RSCM is then de�ned as the minimizer of

L(Σ; Σ̂RSCM; η) = l(Σ; Σ̂RSCM) + ηΠ(Σ), (3.21)

where Π(Σ) denotes a nonnegative penalty function, with η ≥ 0 being the regularization
parameter.

In this section, we exploit the assumption that Σ has a structure with only a few distinct
eigenvalues, i.e., there are k groups of identical eigenvalues. We propose an RSCM estimator
that groups the eigenvalues by penalizing large di�erences between successive eigenvalues.

3.2.1 Proposed method

Let d1 ≥ · · · ≥ dp > 0 and λ1 ≥ · · · ≥ λp > 0 denote the ordered eigenvalues of Σ̂SCM and
Σ, respectively. Furthermore, let rj = log(λj) − log(λj+1) denote the di�erences, referred

to as gaps, between successive log-eigenvalues of Σ and let r[0]
j = log(dj)− log(dj+1) denote

the gaps between log-eigenvalues of Σ̂SCM for j = 1, . . . , p− 1. We propose to �nd Σ̂ as the
minimizer of Eq. (3.21) based on the following non-convex penalty

Π(Σ) =

p−1∑
j=1

ρc

(rj
s

)
, (3.22)

where ρc(·) : R→ R+ denotes Tukey' s biweight function [152]:

ρc(r) =
1

6
·min

{
1, 1−

(
1− r2

c2

)3
}
, r ∈ R, (3.23)

where c is a user-de�ned tuning parameter and s is the sample standard deviation (SD) of
r

[0]
j for j = 1, . . . , p− 1.
In the minimization of Eq. (3.21), our penalty function in Eq. (3.22) assigns relatively

large weights to smaller gaps rj 's, whereas very large gaps attain relatively smaller weights
due to the boundedness of Tukey's loss function. The latter property is required in order
to achieve the grouping e�ect of eigenvalues. We refer to Eq. (3.22) as eFusion penalty and
the corresponding estimator Σ̂ as the eFusion RSCM estimator. We devise an iteratively
reweighting (IR) algorithm for computing the proposed RSCM estimator. The IR algorithms
are commonly used in �nding approximate solutions to such non-convex optimization prob-
lems [75, 183], as in the case of M -estimators.
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According to [171, Lemma 2.2], for an orthogonally invariant penalty Π(Σ), the RSCM
estimator Σ̂ and the SCM Σ̂SCM possess the same set of eigenvectors, with the associated
eigenvalues following the same ordering. Note that the eFusion penalty Eq. (3.22) is orthog-
onally invariant and hence we only need to solve the eigenvalues λ̂1, . . . , λ̂p. Thus, due to
[171], the eigenvalues of the eFusion estimator Σ̂ can be found as minimizers of

L(λ; d, η) =

p∑
j=1

(
dj
λj

+ log(λj)

)
+ η

p−1∑
j=1

ρc

(rj
s

)

= dTλ−1 + log(λ)T1 + η

p−1∑
j=1

ρc

(rj
s

)
, (3.24)

over λ1 ≥ · · · ≥ λp > 0, i.e., over the ordered eigenvalues.
Above d = (d1, . . . , dp)

T , λ−1 = (1/λ1, . . . , 1/λp)
T and 1 is a vector of size p × 1 with

all elements equal to one. By setting the gradient of Eq. (3.24) w.r.t. λ to zero ∇λL = 0
we get

−diag(λ)−2d + diag(λ)−1

1 +
η

s

p−1∑
j=1

ρ′c

(rj
s

)
κj

 = 0,

where

κj =

0 · · · 0︸ ︷︷ ︸
j−1

1 − 1 0 · · · 0

T
1×p

.

After some straightforward mathematics, we obtain the following estimating equation.

f(λ) = diag
(
1 +

η

s
v
)
λ− d = 0, (3.25)

where v = (v1, . . . , vp)
T with vj = ρ′c(rj/s) − ρ′c(rj−1/s) for j ∈ {1, . . . , p}. Note that,

v1 = ρ′c(r1/s) and vp = −ρ′c(rp−1/s).
The solution to Eq. (3.25) can be obtained by solving the following system of equations

1 +
η

s

(
ρ′c

(rj
s

)
− ρ′c

(rj−1

s

))
− dj
λj

= 0, (3.26)

for j = 1, . . . , p.
This can be reformulated as

1 + η (rjwj − rj−1wj−1) /s2 − dj/λj = 0, (3.27)

where wj = ρ′c(rj/s)/(rj/s) are referred to as weights. By substituting rj = log(λj) −
log(λj+1) and rj−1 = log(λj−1) − log(λj) to Eq. (3.27), we obtain the following system of
�xed-point equations

log(λj) =

s2

η (dj/λj − 1) + wj log λj+1 + wj−1 log λj−1

wj + wj−1
, (3.28)

for j = 1, . . . , p. Not that for j = 1 and j = p, Eq. (3.28) reduces to

log(λ1) =
s2

w1η

(
d1

λ1
− 1

)
+ log λ2,

log(λp) =
s2

wp−1η

(
dp
λp
− 1

)
+ log λp−1.
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Algorithm 1: Iteratively reweighted eFusion algorithm [C5]

Input : d: Eigenvalues of the SCM Σ̂SCM;
η: Penalty parameter;
c: Tukey tuning constant.

Output : λ̂: Penalized eigenvalues verifying Eq. (3.28)

Initialize: k ← 0; λ[0] ← d
1 Compute s = SD(r[0]),

Repeat
2 Update the gaps:

r
[k]
j ← log(λ

[k]
j )− log(λ

[k]
j+1), j = 1, . . . , p− 1,

3 Update the weights:

w
[k]
j ← ρ′c(r

[k]
j /s)/(r

[k]
j /s), j = 1, . . . , p− 1,

4 Update the eigenvalue estimates:

log λ
[k+1]
j ← 1

w
[k]
j +w

[k]
j−1

(
s2

η (dj/λ
[k]
j − 1) + w

[k]
j log λ

[k]
j+1 + w

[k]
j−1 log λ

[k+1]
j−1

)
,

for j = 1, . . . , p.
5 k ← k + 1

until convergence

6 λ̂←
(

exp(log λ
[k+1]
1 ), . . . , exp(log λ

[k+1]
p )

)T

In the spirit of Iteratively Reweighted Least Squares (IRLS), we devise an IR-eFusion
algorithm to �nd the solution λ̂1, . . . , λ̂p that verify Eq. (3.28).

Using d as the initial value for λ, our approach, detailed in Algorithm 1, iterates the
following steps until convergence. First, the gaps rj and the weights wj are computed for all
the eigenvalues. Then, Eq. (3.28) is used to update each eigenvalue estimate in a coordinate-
wise fashion, i.e., in updating log(λj) we use the already updated log(λj−1). Note that, in

Step 4, we avoid updating log λ
[k+1]
j if w[k]

j + w
[k]
j−1 = 0, i.e., log λ

[k+1]
j ← log λ

[k]
j .

Notice that the full covariance matrix estimator can be reconstructed by combining the
proposed eigenvalues estimators together with the corresponding eigenvectors obtained from
the SCM eigendecompostion ([171, Lemma 2.2]).

3.2.2 On choosing the tuning parameter

One of the key challenges in such an IR algorithm with a robust penalty loss function is to
�nd a procedure that provides �optimal� values of tuning parameters. In general, optimizing
parameters in an analytical way is a di�cult problem.

In order to �nd an optimal value of the tuning parameter c for Tukey's biweight function
we will analyze the distribution of r[0]

j = log(dj) − log(dj+1). To that end, let us consider
the following binary hypothesis test{

H0 : λj = λj+1,

H1 : λj > λj+1, j = 1, . . . , p− 1.

Our goal is to detect when two consecutive eigenvalues are equal and thus, we want to
derive the distribution of r[0]

j = log(dj)− log(dj+1) under the null hypothesis H0. Once the
distribution is derived, the tuning parameter can be obtained as a threshold that assures a
given probability of false alarm. The distribution of r[0]

j can be derived using the result for
the joint distribution of dj and dj+1 derived in [190]. More precisely, under the assumption
that the data is uncorrelated (Σ = I), one has the following joint distribution of two ordered
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Figure 3.7 � Empirical distribution of r[0]
1 (left panel) and resp. r[0]

4 (right panel) compared
to the corresponding theoretical distribution for p = n = 5.

consecutive eigenvalues of a Wishart-distributed matrix

fdj ,dj+1
(xj , xj+1) =

K

(j − 1)!

∑
n

∑
m

s(n,m) |D(xj+1)|
j+1∏
k=j

ϕ(nk,mk, xk)

j−1∏
k=1

g(k)

where g(k) = Γ(n− p+ nk +mk − 1, xj), the (s, t)th element of D(y) is given by γ(n− p+
ls,n + lt,m − 1, y), Γ and γ are respectively upper and lower incomplete Gamma functions,
K is a normalizing constant, ϕ(nk,mk, xk) = xn−p+nk+mk−2

k exp(−xk) and

∑
n

=

p∑
n1=1

p∑
n2=1,n2 6=n1

. . .

p∑
nj+1=1,nj+1 6={n1,...,nj}

(analogous for
∑
m

). The de�nitions for s(n,m), ls,n and lt,m can be found in [190]. In

order to derive the distribution of rj , we perform a change of variables by introducing
x = log(xj/xj+1) and y = xj+1. Then, computing the Jacobian J(x, y) = 1

xj
= exp(−x)/y

and using frj (x) =
∫ +∞

0
fdj ,dj+1(x, y) |J(x, y)|−1

dy one obtains the result

f
r
[0]
j

(x) =

∫ +∞

0

(
K

(j − 1)!

∑
n

∑
m

s(n,m) |D(y)|

ϕ(nj ,mj , exp(x)y)ϕ(nj+1,mj+1, y)
j−1∏
k=1

Γ(n− p+ nj +mj − 1, exp(x)y) exp(x)y

)
dy. (3.29)

One can note that the distribution of r[0]
j depends on the position j, on the data dimen-

sion p and on the number of observations n. Indeed, for a small sample size n the SCM's
eigenvalues are very distinct, r[0]

j 's have high �uctuations, especially for large j (small eigen-
values). On the other hand, for a su�ciently large n, the eigenvalues of SCM are closer to
their true values and the gaps between them are smaller. This implies that for larger n the
interval of acceptable parameter c is wider. For instance, with our settings and n = 700
(instead of 3000) the �optimal� parameter c is approximately between 1.13 and 1.5. When
n increases the gaps that correspond to true identical eigenvalues decrease, while the gaps
corresponding to distinct eigenvalues rapidly increase. Therefore the choice of c is much
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more �exible, e.g. for n = 3000 all values between 0.42 and 2.96 give good results. Small
values of c can result in more groups than expected, while large values have tendency to fuse
even very di�erent eigenvalues.

For high dimension p and for small eigenvalues (so large j), Eq. (3.29) is computationally
demanding, but we can empirically show that some cases can be well approximated with
distributions obtained with signi�cantly smaller parameters. Also, as it can be seen from
Figure 3.7, the variations of r[0]

j are much higher for smaller eigenvalues. The range becomes
narrower when j decreases. Here, we have plotted the limited case when n = p. Obviously,
in order to better estimate the covariance matrix, one needs c that depends on the position
j. In this analysis, we assume that n is big enough that the variation of r[0]

j are smaller
under H0 and thus a unique c can be used for all j. More general case is still under study.
In order to compute that value, we propose then to look, for instance, at the distribution
of r[0]

j for p = 4 , n = 16 and Pfa = 0.01. For j equal to 1, 2, 3, one obtains c equal to
0.794, 0.86, 1.159, respectively. These are used in Section 3.2.3 as candidate values.

3.2.3 Experiments and discussion

We compare the performance of the proposed estimator with the elasso [171]. In elasso,
Π(Σ) =

∑p
j=1 aj log(λj), is used as the penalty function, where the weights aj are obtained

by centering decreasing quantiles from the Mar�cenko-Pastur law.
We generate a random sample of size n = 3000 from a p = 100 dimensional multivariate

normal distribution. Similar to [171], the covariance matrix Σ has 40 eigenvalues equal to
20, 30 equal to 10 and 30 equal to 2.

Figure 3.8 displays the process of grouping eigenvalues with elasso (top panel) and eFu-
sion (bottom panel) versus the value of the penalty parameter. The results show a signi�cant
improvement that our estimator can o�er.

First, it gives an unbiased estimation as the three groups of eigenvalues are well separated
and close to their true values. Second, one does not need to search for optimal penalty
parameter, contrary to elasso, where it is necessary to use the cross validation to choose a
value of η. On the other hand, the eFusion method provides good results for all large values
of η. Moreover, from Figure 3.8a, one can note that independently of the chosen value of
η, the elasso method provides biased estimators of eigenvalues. For instance, if we choose
η ≈ 1, only the second group of eigenvalues (λ2 = 10) is well-estimated, while the estimators
from other two groups are visibly biased, i.e., the eigenvalues from the �rst group (λ1 = 20)
are underestimated, while the eigenvalues from the third group (λ3 = 2) are overestimated.

However, a poor choice of c can signi�cantly degrade the estimation obtained with eFu-
sion. In Figure 3.9 the possible scenarios for poor choices of c are illustrated. First, in Figure
3.10a the results obtained for small value of c are displayed. One can note that in that case,
for all displayed values of η, the algorithm fails to fuse eigenvalues from the same group and
provides biased estimation. In general, the higher eigenvalues are better estimated since, as
stated in previous section, the gaps between them are relatively small. This is not the case
for small eigenvalues, which �nally results in an overestimated number of blocks.

In Figure 3.10b one can see the results obtained for high value of c. As illustrated, a
high value of c can produce the fusion of eigenvalues from di�erent blocks. Consequently,
the number of blocks in this case is underestimated.

However, even when the parameter c is chosen in the manner that the method provides
the exact number of di�erent groups of eigenvalues, the estimations of these values can be
slightly biased. This is the case when the sample size is not high enough and the initial
estimation obtained with the SCM is not accurate. Figure 3.10 illustrates this point. The
sample size is set to 800 and the parameter c is equal to 1.2. From the �gure, we can see
that the value of the �rst eigenvalue is slightly overestimated, while the value of the second
one is underestimated, con�rming our claim. Nevertheless, one can note that even in this
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(a) elasso path

(b) eFusion path for c = 0.794

Figure 3.8 � An example of grouping of eigenvalues of elasso (top panel) and eFusion
(bottom panel) for c = 0.794.

case the eFusion method provides signi�cantly better estimation than the elasso one.

Finally, if the sample size is high enough, as in the �rst example (Figure 3.8), the eFusion
estimator can o�er similar results for di�erent choices of c. In order to compare these results
we can measure an a�ne-invariant (Riemannian) distance between positive de�nite matrices
Σ and Σ̂, de�ned as d(Σ, Σ̂) = ‖ log(Σ−1/2Σ̂Σ−1/2)‖F . Table 3.1 lists the values of the
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(a) c = 0.7

(b) c = 1.7

Figure 3.9 � E�ects of poor choices of the parameter c, n = 1000.

distance for di�erent values of c for the eFusion estimator. The results are obtained for the
same initialization dj , j = 1, . . . , p, and η = 50.

One can note that the distance has the same value for di�erent choices of c. In fact, to
be precise, the values di�ers from the eighth decimal, which is insigni�cant.

Finding the best way to choose an optimal value of c, or a range of acceptable values,
is still under study. In general, to �nd a satisfactory value of c one could use the method
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(a) elasso path

(b) eFusion path

Figure 3.10 � Grouping of eigenvalues of elasso (top panel) and eFusion (bottom panel)
with c = 1.2, n = 800.

proposed in Section 3.2.2 with relatively small values of p and n, taking a ratio p/n that is
larger than the one of the given data. This prevents us from having too small parameter c
and consequently biased estimation of eigenvalues.

In the spirit of this thesis, we can propose the extension of the eFusion method adapted
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Figure 3.11 � eFusion grouping of eigenvalues with Student's M -estimator νt = 2 for
c = 0.794; t-distributed data, ν = 2, n = 3000.

c 0.7 0.8 0.9 1 1.1 1.2 1.3

d(Σ, Σ̂) 1.5168 1.5168 1.5168 1.5168 1.5168 1.5168 1.5168
c 1.4 1.5 1.6 1.7 1.8 1.9 2

d(Σ, Σ̂) 1.5168 1.5168 1.5168 1.5168 1.5168 1.5168 1.5168

Table 3.1 � Performance analysis of eFusion for di�erent c

to the non-Gaussian data. Thanks to the analysis done in Section 3.1, we can suggest to
use an M -estimator instead of the SCM when the data are CES-distributed. Consequently,
the initial eigenvalue estimates are close to the ones obtained with SCM in the Gaussian
context. Figure 3.11 demonstrates this point. The data follow t distribution with ν = 2. The
Student's M -estimator is used as the MLE, i.e., νt = ν. One can note that the algorithm
provides the results comparable to the ones of Figure 3.8, i.e., when the SCM is used with
Gaussian data and under same set-up (c = 0.794 and n = 3000). Moreover, Figure 3.12
details the results in a mismatch scenario, i.e. when νt 6= ν. One can note that, once again,
eFusion provides an accurate estimation of the eigenvalues.

Furthermore, Figure 3.13a displays the grouping of eigenvalues initialized with the SCM
built with t-distributed data under the previous set-up, i.e., ν = 2, n = 3000 and c = 0.794.
One can see that the SCM provides highly biased initial estimates, which cannot be correctly
grouped for any value of the penalty parameter η. We also observe that for c = 0.794, the
method overestimates the number of groups. We can then choose a higher value of c and
analyze the results. Figure 3.13b illustrates the results obtained for c = 3. We note that the
number of classes is closer to the true value, as expected. However, not only the number
of classes is not well-estimated, but the values of �nal estimators stay highly biased. This,
once again, con�rms the interest of using M -estimators in a non-Gaussian environment.

Finally, the convergence of this method is under analysis. Note that this version of the
method has been done for real data and can be easily extended to the complex one. Future
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Figure 3.12 � eFusion grouping of eigenvalues with Student's M -estimator νt = 4 for
c = 0.794; t-distributed data, ν = 2, n = 3000.

work will also concentrate on its extension to the high dimensional case when p > n.

3.3 Principal subspace estimation from M-estimators

In this section, the analysis done in Section 3.1 is extended to the principal subspace (i.e.
the subspace spanned by the r strongest eigenvectors) of M -estimators. As for the EVD of
M -estimators, for principal subspaces we derive:

• The standard Gaussian asymptotic distribution. This result is obtained by extending
the perturbation analysis of [101, 100] to the complex M -estimators. This asymp-
totic analysis provides an extension of [168] since it provides the exact structure of
the asymptotic covariance and pseudo-covariance matrix of principal subspace. Also,
contrary to [168], the results are derived for complex data.

• The convergence rate towards the principal subspace of a GCWE by extending the
results of Chapter 2.

3.3.1 Asymptotics of M-estimators' principal subspace

Consider the case of a low-rank plus identity scatter matrix (also referred to as factor
model), that is commonly used in signal processing to account for low dimensional signals
embedded in white noise:

Σ = Σr + γ2Ip
EVD
= [Ur|U⊥r ]Λ[Ur|U⊥r ]H (3.30)

with the rank r matrix Σr=UrΛrU
H
r , with Ur ∈ Upr and Λr ∈ Rr×r.

We focus on the estimation of the orthogonal projector onto the range space spanned by
Ur, the r strongest eigenvectors of Σ (referred to as �principal subspace�).
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(a) c = 0.794

(b) c = 3

Figure 3.13 � eFusion grouping of eigenvalues for the SCM in a non-Gaussian context;
t-distributed data with ν = 2, n = 3000.

We de�ne Rr{.} the operator that extracts this principal subspace from a given matrix,
i.e.:

Rr : H+ −→ Gpr
Σ

EVD
= [Ur|U⊥

r ]Λ[Ur|U⊥
r ]

H 7−→ UrU
H
r

(3.31)

where Gpr is the set of rank r orthogonal projectors of Cp×p.
Let us consider anM -estimator Σ̂ built with an n-sample drawn as z ∼ CES (0,Σ) where



80 Chapter 3. EVD and PCA of the scatter matrix: new robust techniques

Σ is low-rank structured as in Eq. (3.30), and let Σ̂GCWE be its GCWE from De�nition
2.1.2. We have the corresponding principal subspaces as:

Πr = Rr{Σ},
Π̂M
r = Rr{Σ̂},

Π̂GCWE
r = Rr{Σ̂GCWE}.

(3.32)

In the following, we derive the asymptotic distributions for the quantities Π̂M , both under
the SA and the GCWE regime.

Theorem 3.3.1: Standard asymptotic [J2]

Let Π̂M
r be the estimator of the projector Πr obtained from an M -estimator as in

Eq. (3.32). The asymptotic distribution of Π̂M
r is given by

√
nvec

(
Π̂M
r −Πr

)
d→ GCN (0, ϑ1ΓΠ, ϑ1ΓΠK) , (3.33)

where
ΓΠ = AT ⊗B + BT ⊗A (3.34)

with A = Ur

(
γ2Λ−2

r + Λ−1
r

)
UH
r , B = γ2Π⊥r and ϑ1, ϑ2 given by Eq. (1.33).

Proof. If we de�ne the pseudo-inverse of Σr as

Φ = UrΛ
−1
r UH

r , (3.35)

one has the following Taylor series expansion from [101]

Π̂r = Πr + δΠr + . . .+ δiΠr + . . .

where

δΠr = Π⊥r ∆ΣΦ + Φ∆ΣΠ⊥r ,

δiΠr = −Π⊥r
(
δi−1Π

)
∆ΣΦ + Π⊥r

(
δi−1Π

)
∆ΣΦ,

with ∆Σ = Σ̂−Σ.
In the asymptotic regime, when n → ∞, we can write the following �rst order approxi-

mation of Taylor expansion
Π̂r = Πr + δΠr

since ∆Σ is close to zero. Hence, taking the vec of Π̂r −Πr = δΠr, one gets

vec
(
Π̂r −Πr

)
= Fvec

(
Σ̂−Σ

)
with

F =
(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

)
.

It is now obvious that the covariance (resp. pseudo-covariance) matrix of
√
n
(
ΠM
r −Πr

)
is

equal to FCMFH (resp. FPMFT ) where CM and PM are given in Eq. (1.32). Further

FCM = ϑ1

(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

) (
ΣT ⊗Σ

)
+ ϑ2

(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

)
vec (Σ) vec (Σ)

H

= ϑ1

(
ΦTΣT ⊗Π⊥r Σ +

(
Π⊥r
)T

ΣT ⊗ΦΣ
)
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as
(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

)
vec (Σ) = 0 using

(
TT ⊗R

)
vec (S) = vec (RST) and

Π⊥r ΣΦ = ΦΣΠ⊥r = 0. Finally, after the postmultiplication by FH and since

Σ = ΣH 6= ΣT

Φ = ΦH 6= ΦT

Π⊥r =
(
Π⊥r
)H 6= (Π⊥r )T

one obtains

FCFH =
(

(ΦΣΦ)
T ⊗Π⊥r ΣΠ⊥r +

(
Π⊥r ΣΠ⊥r

)T ⊗ΦΣΦ
)

which with Φ given by Eq. (3.35) and Σ = UrΛrU
H
r + γ2Ip yields the �nal result.

Analogously, one can derive the results for the pseudo-covariance using the equality
Eq. (A.4).

Theorem 3.3.2: Asymptotic GCWE [J2]

Let Π̂M
r and Π̂GCWE

r be the estimators of the projector Πr de�ned in Eq. (3.32). The
asymptotic distribution of Π̂M

r is given by

√
nvec

(
Π̂M
r − Π̂GCWE

r

)
d→ GCN (0, σ1ΓΠ, σ1ΓΠK) (3.36)

with ΓΠ and σ1, σ2 given by Eqs. (3.34) and (2.5), respectively.

Proof. Following the same steps as in the proof of Theorem 3.1.2 and using the results of
Theorem 3.3.1, one can easily prove the theorem.

Remark 3.3.2

• Theorem 3.3.1 (resp. 3.3.2) extends the results of Theorem 3.1.1 (resp. 3.1.2)
to the principal subspace of M -estimators. We can draw the same conclusions
as in Remark 3.1.2, notably, that an underlying Wishart equivalent o�ers a more
accurate asymptotic equivalent than the standard Gaussian one.

3.3.2 Experiments

In this part we present some experiments in order to validate the theoretical results.
The data is t-distributed with the scatter matrix constructed as Σ = Σr + I with

Σr = UrΛrU
H where only the 5 �rst eigenvalues and eigenvectors of Σ are kept, and scaled

so that Tr(Σr) = 100. The results are illustrated for the Student's and Tyler'sM -estimator.

Figure 3.14 plots the relative error norm between the empirical covariance matrix of
√
nvec

(
Π̂t
r −Πr

)
and its asymptotic value given by Eq. (3.33) and the relative error norm

between the empirical covariance matrix of
√
nvec

(
Π̂t
r − Π̂GCWE

r

)
and its asymptotic value

given by Eq. (3.36), where Π̂t
r is the projector obtained with the Student's M -estimator.

Analogously, Figure 3.15 plots the relative error norm between the empirical covariance

matrix of
√
nvec

(
Π̂T
r −Πr

)
and its asymptotic value given by Eq. (3.33) and the relative

error norm between the empirical covariance matrix of
√
nvec

(
Π̂T
r − Π̂GCWE

r

)
and its
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Figure 3.14 � Relative error norm between the empirical covariance (resp.

pseudo-covariance) matrix of
√
nvec

(
Π̂t
r −Πr

)
and its asymptotic value and the

corresponding result for
√
nvec

(
Π̂t
r − Π̂GCWE

r

)
; t-distributed data with ν = 2, p = 10.
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Figure 3.15 � Relative error norm between the empirical covariance (resp.

pseudo-covariance) matrix of
√
nvec

(
Π̂T
r −Πr

)
and its asymptotic value and the

corresponding result for
√
nvec

(
Π̂T
r − Π̂GCWE

r

)
; t-distributed data with ν = 2, p = 10.
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(b) p = 50

Figure 3.16 � Empirical and asymptotic MSE on the projectors of Student's and Tyler's
M -estimator for the SA and GCWE regime; t-distributed data with ν = 3.
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asymptotic value given by Eq. (3.36), where Π̂T
r is the projector obtained with the Tyler's

M -estimator.

One can see that both �gures validate the theoretical results proposed by Theorems
3.3.1 and 3.3.2, since all error norms goes to zero when the sample size increases. The
projector, as a function of eigenvectors, is also a scale-invariant function of the scatter
matrix and thus, its asymptotic distribution depend only on the �rst scale factor. Moreover,
one notes that the Tyler's M -estimator (estimator of the shape matrix) provides also an
adequate estimation of the principal subspace, as demonstrated in Figure 3.15.

Figure 3.16 displays the empirical MSE of
√
nvec

(
Π̂M
r −Πr

)
and

√
nvec

(
Π̂M
r − Π̂GCWE

r

)
and their corresponding theoretical values, i.e., Tr(ϑ1ΓΠ)/n

(Theorem 3.3.1) and Tr(σ1ΓΠ)/n (Theorem 3.3.2), for both Student's and Tyler's
M -estimator. The data is t-distributed with ν = 3.

One can note that the empirical MSEs tend to the proposed asymptotic values. Then,
once again, we observe that the MSE is signi�cantly smaller in the GCWE regime than in
the SA. The conclusion are valid for both p = 20 and p = 50, with slightly higher di�erence
for higher value of p.

Thanks to theses results, one can approximate the behaviour of the M -estimatoes' prin-
cipal subspace with the ones of the GCWE. In the following part, we will see where these
results, together with ones from Section 3.1, can be applied.

3.3.3 Number of sources detection / Rank estimation

The rank estimation, or more generally the model order selection, is an important prob-
lem in data analysis. It consists in determining r when the covariance of the data is low-rank
structured as in Eq. (3.30). In the context of Gaussian distributed samples, several rank es-

timators have been proposed as functions of the eigenvalues of the SCM λ̂
SCM

= [λ̂1, . . . , λ̂p]
[161]. Notably, we can cite two of the most commonly used:

• The Akaike Information Criterion (AIC) [4], that minimizes the following criterion

r̂AIC = argmin
k∈[0,p−1]

[
n(p− k)× ic(λ̂

SCM
) + k(2p− k)

]
(3.37)

with

ic(λ̂
SCM

) = ln


p−1∏
i=k

λ̂
1
l−1

i

1

l

p−1∑
i=k

λ̂i

 . (3.38)

• The Minimum Description Length (MDL) [180] (also referred to as Bayesian Informa-
tion Criterion (BIC)), that minimizes the following criterion

r̂MDL = argmin
k∈[0,p−1]

[
2n(p− k)× ic(λ̂

SCM
) + k(2p− k)ln(n)

]
. (3.39)

In the context of CES-distributed samples, a �plug-in� approach using ic(λ̂
M

) (computed
from the EVD of an M -estimator) in Eqs. (3.37) or (3.39) can be envisioned rather that
re-deriving information criterions assuming non-Gaussian samples. This approach is

motivated by the fact that λ̂
M

quickly converges to eigenvalues of an equivalent Wishart
model (cf. Theorem 3.3.2 and Remark 3.1.2), i.e. the problem can be processed as if the
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Figure 3.17 � Number of sources estimation with AIC and MDL: Results obtained with
Eqs. (3.37) and (3.39) for the SCM, Student's M -estimator and Tyler's M -estimator

compared to the theoretical GCWE; Student t-distributed data with ν = 2.1; p = 20, r = 4.

data were initially Gaussian.

To illustrate this point, we consider the problem of determining how many sources are
observed by an array of sensors. We assume that a planar array of p sensors observes
signals produced by r sources that are centered around a known frequency ω, a�ecting the
array from locations θ1, . . . , θns . The sources-plus-white-noise signal received by the array
of sensors can be expressed as

z = As + n (3.40)

with s the signal vector, n the additive white noise and A = [a(θ1), . . . ,a(θns)] and

a(θ) =
[
a1(θ)e−jωτ1(θ), . . . , ap(θ)e

−jωτp(θ)
]T
, (3.41)

where aj the amplitude response of the jth sensor towards direction θ and τj(θ) propagation
delay between the reference point and the jth sensor. The total covariance matrix has thus
a low rank structure as in Eq. (3.30), and is given by:

Σ = ASAH + γ2I. (3.42)

where E
[
ssH

]
= S and E

[
nnH

]
= γ2I.

In the considered problem, the received data z is CES-distributed with a scatter matrix
Σ given by Eq. (3.42). We resort to the proposed plug-in approach to estimate r. Figure
3.17 shows the values of the AIC and MLE criteria computed with di�erent M -estimators.
The data is t-distributed with ν = 2.1. The number of sensors is set to 20, while the
number of sources to estimate is equal to r = 4. The number of samples is n = 200. A
circle indicates the minimum value of each criterion in order to highlight the estimated
number r of sources. We observe that Student's and Tyler's M -estimators give an accurate
estimation of r. Conversely, the result for the SCM is, as expected, not accurate due to the
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Figure 3.18 � Empirical SNR Loss obtained with the Student's M -estimator (SNR-ST),
GCWE (SNR-GCWE) and SCM (SNR-SCM) versus the theoretical result given by

Eq. (3.47); t-distributed data with p = 20, r = 5, ν = 3.

non Gaussianity of the observations. Interestingly, the values of the criteria for Student's
and Tyler's M -estimators are almost identical to the ones computed with the (theoretical)
GCWE, which validates the proposed approach.

3.3.4 SNR Loss

In the context of STAP, the covariance of the clutter plus noise Σ is low rank structured
as in Eq. (3.30), where the rank r can be evaluated thanks to the Brennan rule [20]. The
optimal �lter wopt [177] given by

wopt = Σ−1p, (3.43)

where p is a known steering vector. In the low-rank clutter case an alternative is to use the
low-rank STAP �lter wR [95, 79] de�ned as

wr = Π⊥r p. (3.44)

with Πr = Rr{Σ} (cf. Eq. (3.31)). In practice, adaptive STAP �lters are built with
an estimate of the matrix Σ or the projector Π⊥r computed with secondary data zi ∼
CES(0,Σ,gz).

The SNR Loss ρ of an adaptive �lter ŵ is given by

ρ =
SNRout
SNRmax

=
|ŵHp|2

(ŵHΣŵ) (pHΣp)
. (3.45)

For an adaptive low rank �lter ŵr, this expression becomes

ρ = γ2

(
pHΠ̂⊥r p

)2

pHΠ̂⊥r ΣΠ̂⊥r p
. (3.46)



3.4. Conclusion 87

with a given estimator Π̂r. In [79], it has been shown that when the data are Gaussian-
distributed and Π̂r = Rr{Σ̂SCM} the expected SNR Loss is given by

E [ρ] = 1− r/n. (3.47)

This result can directly provide a good approximation of the expected SNR Loss of
adaptive low rank �lters build from M -estimators in the general context of CES-distributed
samples. Indeed, this approach is again motivated by the fact that Π̂M

r quickly converges
to principal subspace of an equivalent Wishart model (cf. Theorem 3.3.2). To illustrate
this point, Figure 3.18 draws a comparison between the SNR Losses of various low rank
�lters built from t-distributed data. The low rank covariance matrix is built as in Section
3.3.2. One can notice that the value of SNR-ST is, as expected, very close to the one of
SNR-GCWE, which supports the idea to approximate the behavior of SNR-ST with the one
of SNR-GCWE [79].

3.4 Conclusion

In this chapter, the estimation of the EVD parameters of the scatter matrix has been
addressed. it can be divided in three parts depending on the structure of the scatter matrix.

In Section 3.1, we have analyzed the asymptotic distribution of eigenvalues and eigenvec-
tors of the scatter matrix, when the scatter matrix is assumed to have di�erent eigenvalues.

In Section 3.3, the factor model, i.e., a low-rank scatter matrix, is assumed. The asymp-
totic distribution of principal subspace has been investigated.

In both cases, the asymptotics for both standard and GCWE regimes have been derived.
Interestingly, we have shown that the behavior of the EVD parameters is more accurately
characterized by an equivalent Wishart model than by their standard asymptotic Gaussian
distribution, thanks to the results of Chapter 2.

Moreover, the possible applications of the theoretical results have been discussed. We
have addressed the complex issue of characterizing the intrinsic bias of M -estimators in the
CES context. So far, this quantity has been studied for the SCM in the Gaussian context
thanks to the distribution of the eigenvalues of a Wishart matrix. Extending this analysis to
M -estimators in the general CES context represents, at �rst sight, an intractable problem
because of their unknown exact distribution. However, the established convergence of the
eigenvalues of anM -estimator toward their GCWE counterpart allows to derive an accurate
approximation of this intrinsic bias. In the context of model order selection (i.e., rank
estimation) from non-Gaussian samples, we show that the use of M -estimators (rather than
the SCM) in theoretic criteria derived for Gaussian models yields the same results as the
one obtained with the theoretical GCWE. Again, this justi�es a plug-in approach (using
M -estimators in processes derived under the Wishart assumption), instead of a complete
re-derivation that would require to assume an exact CES distribution. The performance of
low rank �lters built from M -estimators are derived in the same way (i.e., approached by
the one of their GCWE) to illustrate that the approach also holds for adaptive processes
based on the eigenvectors.

Finally, Section 3.2 is somewhat di�erent. In this section, we assumed that the covariance
matrix of Gaussian-distributed data possesses few di�erent eigenvalues. We have introduced
a new regularized covariance matrix estimator based on a novel eFusion penalty that pro-
motes similarity and grouping of eigenvalues. The grouping e�ect is achieved as large gaps
between successive eigenvalues are not penalized excessively. This feature is obtained by
utilizing Tukey's function as the penalty function for the gaps. The important topic of how
to choose the tuning parameter c of Tukey's function has been addressed. The extension to
the CES-data has been introduced. In this case, the method could be presented as �two-steps
robust�, since we �rst use a robust M -estimator to pre-estimate the eigenvalues and then
apply the robust Tukey's function in order to group them and get the �nal estimates. The
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main bene�ts of the eFusion are unbiasedness (accurate grouping) and robustness to the
choice of the penalty parameter. Future works will focus on a generalization to p > n case.

The conclusions drawn in this chapter are in perfect line with the previous claims of
this thesis: Always prefer robust methods because they o�er an important gain in terms of
robustness to outliers, heterogeneous data, missing data, etc. Their performances can now be
well-characterized, with a minor loss, using the Gaussian-based optimal processing methods.



Chapter 4

Robust detection

This chapter is dedicated to robust signal detection. We analyze the asymptotic per-
formances of the robust Mahalanobis distance and of various robust adaptive detectors
in the context of non-Gaussian observations. We focus on the single steering case
in homogeneous environment and analyze the properties of di�erent detectors such as
Adaptive (Normalized) Matched Filter (AMF/ANMF), Kelly's GLRT, and Rao test.
Furthermore, we analyze the asymptotic performances of the low-rank ANMF which is
based on the M -estimators' principal subspaces.

In addition to the standard asymptotic distribution, we extend the results of Chap-
ter 2 and derive the asymptotic distribution in the GCWE regime. In this context, we
show that, the distribution of a statistic built with M -estimators can be accurately ap-
proximated by the one of the same statistic built with the GCWE. The loss due to this
approximation is theoretically derived and shown to be negligible in most cases. This
explicit equivalent statistic is especially interesting since it permits to tune robust Ma-
halanobis distances and robust detectors with well-established results from the Gaussian
framework.
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4.1 Non-Gaussian detection

In Section 1.2, we have presented the signal detection problem in the Gaussian
framework and reviewed the well-known detection statistics. As a core component, these
statistics involve the SCM [13] in their construction. Since this estimator of the noise
covariance matrix is sensitive to heavy-tailed distributed samples, this family of Gaussian
detectors can exhibit poor performance in non-Gaussian environments.

When the data turn to be non-Gaussian, the CES distributions (De�nition 1.1.10) are
employed as alternative models. Particularly, for radar clutter modeling, the SIRV model
(De�nition 1.1.12) has been widely used [12, 179, 142]. Detection procedures assuming
CES/CG distributed samples have been proposed and widely studied in the literature. First,
detection procedures assuming known parameters for the noise can found in [62, 156, 155]
among others. Then, adaptive detectors have been derived, generally based on a 2-step
GLRT, for di�erent covariance matrix estimators [63, 32, 33]. More recently, various robust
covariance matrix estimators have been used for detection purposes [6, 2, 131, 139, 138].
An overview of recent advances in radar detection, including robust detection approaches,
can be found in [45].

However, in practice, the density generator of the true underlying distribution is
unknown. In this case, a robust detector can be built as a classical Gaussian detector [132]
where an M -estimator of the scatter [119] is plugged-in instead of the SCM. The study of
these robust detection processes is not trivial since M -estimators are expressed as solutions
of �xed point equations. So far, only the properties in standard asymptotic regime of
M -estimators have been proposed in [169, 117]. These works have permitted to analyze the
asymptotic properties of robust detectors in standard regime [139, 138, 117].

In this chapter, we provide an accurate performance analysis of the asymptotic distri-
bution of robust detectors, detectors built with an M -estimator in the CES context, by
comparing to a Gaussian-Core Equivalent Detector (GCED).

In the following, we �rst analyze the robust Mahalanobis distance. Besides the signal
detection, this measure is widely used in various signal processing and machine learning
applications. Then, the statistical properties of full and low-rank robust detectors are in-
vestigated.

4.2 Mahalanobis distance

The Mahalanobis distance [115, 113] is one of the most common measures in multivariate
statistics and signal processing. It is based on the correlation between variables thanks to
which di�erent models can be identi�ed and analyzed. The Mahalanobis distance of z from
µ is given by ∆(µ,Σ) where

∆2(µ,Σ) = (z− µ)HΣ−1(z− µ), (4.1)

where µ is the population mean and Σ is the common scatter matrix. Since we work with
vectors with known mean, we will w.l.o.g. analyze ∆2(Σ) = zHΣ−1z. If the data are normal
distributed, z ∼ CN (0,Σ), and the distance is based on the true scatter matrix Σ, then it
follows a scaled chi-squared distribution

∆2 (Σ) ∼ (1/2)χ2
2p. (4.2)

Since the scatter matrix is usually unknown, the distance is computed with an estimator. If
the SCM is plugged in instead of the true scatter matrix and under the Gaussian assumption,
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the distance becomes β′-distributed 1 with an asymptotic chi-squared distribution

∆2
(
Σ̂SCM

)
∼ nβ′ (p, n− p+ 1) , (4.3)

where β′(a, b) denotes a Beta prime distribution with real shape parameters a and b.
Beside testing if an observed random sample is from a multivariate normal distribution

(detecting outliers) [153, 78], the Mahalanobis distance is also a useful way to determine
similarities between sets of known and unknown data. Thus, it is widely used in classi�cation
problems [184, 181], feature selection problems [145], anomaly detection in hyperspectral
imaging [24, 60], etc.

4.2.1 Asymptotic of the robust Mahalanobis distance

The object of our study is to analyze robust Mahalanobis distances, i.e. distances com-
puted with M -estimators, comparing it to the one based on the GCWE (De�nition 2.1.2).
To that end, let us �rst state two de�nitions.

De�nition 4.2.1: Robust Mahalanobis distance

Consider a set of n+1 samples (z, z1, . . . , zn) drawn as zi ∼ CES (0,Σ, gz). Let Σ̂ be an
M -estimator as in Eq. (1.28) built from (z1, . . . , zn) and ∆ = ∆(Σ) be the Mahalanobis
distance de�ned by Eq. (4.1). The distance ∆M = ∆(σΣ̂), that uses the M -estimator
Σ̂ instead of the traditional SCM, is referred to as a robust Mahalanobis distance.

De�nition 4.2.2: Gaussian-Core Equivalent Mahalanobis (GCEM)

Consider a set of n+1 samples (z, z1, . . . , zn) drawn as zi ∼ CES (0,Σ, gz). Let ∆M be
the robust Mahalanobis distance as in De�nition 4.2.1. Let Σ̂GCWE be the GCWE of Σ̂
(cf. De�nition 2.1.2). The quantity ∆GCEM = ∆(Σ̂GCWE) is referred to as Gaussian-
Core Equivalent Mahalanobis distance (GCEM) of ∆M .

Once we have de�ned the robust Mahalanobis distance and its GCEM, we can derive the
asymptotic distribution of the robust Mahalanobis distance ∆M de�ned in De�nition 4.2.1.
However, before stating the theorem, let us recall that the distribution of ∆M depends both
on the distribution of z and of Σ̂. Hereafter, we derive the asymptotic distribution of the
robust Mahalanobis distance conditionally to z, i.e. taking into account only the asymptotic
distribution of Σ̂. However, when analyzing the exact distribution of ∆M , one must consider
both the distribution of z and of Σ̂.

Theorem 4.2.3: Robust Mahalanobis distance [J1]

Let ∆M be the robust Mahalanobis distance de�ned in De�nition 4.2.1 and ∆GCEM

its GCEM de�ned in De�nition 4.2.2. Then, the asymptotic conditional distribution of
∆2
M is given by

(SA)
√
n
(
∆2
M −∆2

)
z

d→ N
(
0, (ϑ1 + ϑ2)∆4

)
, (4.4)

(GCEM)
√
n
(
∆2
M −∆2

GCEM

)
z

d→ N
(
0, (σ1 + σ2)∆4

)
, (4.5)

where the notation (.)z stresses the conditional distribution to z, ϑ1 and ϑ2 are given
by Eq. (1.33) and σ1 and σ2 are given by Eq. (2.5).

1. Beta prime distribution corresponds to a scaled F-distribution.
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Remark 4.2.3

• The asymptotic variance of the robust Mahalanobis distance when centering
around its GCEM is smaller than the one in the SA regime, i.e. when centering
around the distance based on the true scatter matrix, since σ1 + σ2 < ϑ1 + ϑ2.
The results are valid even for small values of n, which will be demonstrated in
the simulation part.

• As many results in this thesis, these �ndings reveal that the distribution of
the robust (squared) Mahalanobis distance is better approximated with a scaled
Beta prime distribution (Eq. (4.3)) than with a scaled chi-squared distribution
(Eq. (4.2)).

Proof. Following the standard idea of this thesis, we can write

E
[
n
(
∆2
M −∆2

GCEM

)2]
= (φ

(n)
M − 2φ

(n)
M−GCWE + φ

(n)
GCWE), (4.6)

where

φ
(n)
M = E

[
n
(
∆2
M −∆2

)2]
,

φ
(n)
M−GCWE = E

[
n
(
∆2
M −∆2

) (
∆2

GCEM −∆2
)]
,

φ
(n)
GCWE = E

[
n
(
∆2

GCEM −∆2
)2]

.

Using the Delta method and Theorem 1.1.3, one can obtain

φ
(n)
M −−−−−→

n→+∞
φM =

(
∆2
)′

Γ1

((
∆2
)′)H

, (4.7)

where
(
∆2
)′

= ∂∆2/∂ (vec(Σ)) and Γ1 is de�ned by Eq. (1.32) (with Σ = σΣσ).
Moreover, one has a more general result

φ
(n)
M−GCWE −−−−−→n→+∞

(
∆2
)′

Γ2

((
∆2
)′)H

, (4.8)

where Γ2 = γ1

(
ΣT ⊗Σ

)
+γ2vec (Σ) vec (Σ)

H with γ1 and γ2 are given in Eq. (D.7). In [140]

it has been shown that
(
∆2
)′

= vecH
(
zzH

) (
ΣT ⊗Σ

)−1
. From Eqs. (A.9) and Eq. (A.1),

one has
(
ΣT ⊗Σ

)−1
vec (Σ) = vec

(
Σ−1

)
. Consequently, one obtains

φM =
(
∆2
)′

Γ1

((
∆2
)′)H

= ϑ1vec
H
(
zzH

) (
ΣT ⊗Σ

)−1
vec
(
zzH

)
+ ϑ2vec

H
(
zzH

)
vec
(
Σ−1

)
vec
(
Σ−1

)H
vec
(
zzH

)
= ϑ1vec

H
(
zzH

)
vec
(
Σ−1zzHΣ−1

)
+ ϑ2Tr(zzHΣ−1)Tr(Σ−1zzH)

= ϑ1Tr(z
HΣ−1zzHΣ−1z) + ϑ2Tr(z

HΣ−1z)2

= (ϑ1 + ϑ2)(zHΣ−1z)2 = (ϑ1 + ϑ2)∆4,

proving the result of Eq. (4.4). It is now clear that φGCWE = ∆4 and φM−GCWE =(
∆2
)′

Γ2

((
∆2
)′)H

= (γ1 + γ2)∆4 which leads to the �nal result in Eq. (4.5).
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Figure 4.1 � Scaled empirical variance of the robust Mahalanobis distance in the SA
regime (red curve) and when centered around its GCEM (blue curve), compared to the

theoretical results (Theorem 4.2.3).

4.2.2 Experiments

Hereafter, we provide some simulations in order to validate the theoretical result.
Figure 4.1 displays the results for Student's M -estimator are presented. The data follow

the complex t-distribution with ν = 2. The empirical variance of the robust distance and
the one of the di�erence between the robust distance and the GCEM (compared to the
theoretical result of Theorem 4.2.3) are plotted.

One can notice that the value of the robust distance is closer to its GCEM, than to
the distance computed with the true scatter matrix. This implies that the distribution
of robust distances can be better approximated with the theoretical distribution of the
GCEM than with the asymptotic distribution based on the true scatter matrix. Figure 4.2
illustrates this point.

Figure 4.2 plots the empirical distribution of the robust Mahalanobis distance built with
the Student's M -estimator and two corresponding distributions proposed in Eqs. (4.2) and
(4.3) for t-distributed data with ν = 2, p = 10 and n = 100. We observe that the empirical
distribution matches signi�cantly better the scaled Beta prime than the scaled chi-squared
distribution. The essential advantage of these �ndings in, for instance, outlier detection is
that they support the idea to use the robust M -estimators to estimate the scatter matrix
and to rely on the theoretical distribution of the Wishart-based distance when computing
the detection threshold.

In the following part, we extend these results to the signal detection problem.

4.3 Robust full-rank signal detection

We consider the problem of signal detection de�ned in Section 1.2 with the assumption
that the secondary data is non-Gaussian distributed. The objective is again to detect the
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Figure 4.2 � Empirical distribution of the t-robust Mahalanobis distance versus the
asymptotic distribution (Eq. (4.2)) and theoretical approximative distribution (Eq. (4.3));

t-distributed data with ν = 2, n = 100, p = 10.

complex signal p, from the received data z = αp + c, where α is an unknown deterministic
parameter. The binary hypothesis test is given by{

H0 : z = c zi = ci, i = 1, . . . , n,

H1 : z = αp + c zi = ci, i = 1, . . . , n,
(4.9)

where now ci are i.i.d. with ci ∼ CES(0,Σ, gz). These vectors are used to estimate the
unknown scatter matrix Σ.

Then, we can de�ne a robust detector.

De�nition 4.3.1: Robust detector

Consider a set of n + 1 samples (z, z1, . . . , zn) drawn as zi ∼ CES (0,Σ, gz) with the
detection problem expressed in Eq. (4.9). Let Σ̂ be an M -estimator as in Eq. (1.28)
built from (z1, . . . , zn) and Λ(·) be a decision statistic (either Kelly in Eq. (1.45), AMF
in Eq. (1.49), ANMF in Eq. (1.52), or Rao in Eq. (1.59)). The statistic Λ̂M = Λ(σΣ̂),
that uses the M -estimator Σ̂ as a �plug-in� instead of the traditional SCM, is referred
to as a robust detector.

Note that the ANMF can be used only with Σ̂ since it is a scale-invariant function of
the scatter matrix.

Thanks to the GCWE (De�nition 2.1.2) we can now de�ne Gaussian-Core Equivalent
Detector (GCED) of a robust detector.
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De�nition 4.3.2: Gaussian-Core Equivalent Detector (GCED)

Consider a set of n + 1 samples (z, z1, . . . , zn) drawn as zi ∼ CES (0,Σ, gz) with the
detection problem expressed in Eq. (4.9). Let Λ(σΣ̂) be a robust detector as in Def-
inition 4.3.1. Let Σ̂GCWE be the GCWE of Σ̂ (cf. De�nition 2.1.2). The quantity
Λ̂GCED = Λ(Σ̂GCWE) is referred to as Gaussian-Core Equivalent Detector (GCED) of
Λ̂M .

In the following, we propose several theorems to characterize the distribution of robust
detectors (as in De�nition 4.3.1) conditionally to the tested sample z. First, the results are
obtained for the standard asymptotic, then the convergence towards the GCED are derived.

4.3.1 Asymptotics of robust detectors

Before deriving the asymptotic distribution of robust detectors, please note that Λ̂Kelly,
Λ̂Rao and Λ̂AMF de�ned in Eqs. (1.45), (1.59) and (1.49), respectively, go to zero when
n → ∞, as well as their variances. Thus, in order to compare these detectors to their
GCEDs, we will analyze the statistics multiplied by n, i.e., nΛ̂Kelly, nΛ̂Rao and nΛ̂AMF. For
the sake of simplicity, from now on, we refer to these quantities as Λ̂Kelly, Λ̂Rao and Λ̂AMF.
The corresponding GCEDs are de�ned w.r.t. these quantities.

In the SA regime, the robust adaptive detector is compared to its non-adaptive form,
i.e. detector built using the true SM. For Λ̂Kelly, Λ̂Rao and Λ̂AMF, one obtains the following
results.

Theorem 4.3.3: SA of the robust AMF, Kelly and Rao [J3]

Let Λ̂M be a scaled robust detector as in De�nition 4.3.1 with Λ̂M ∈
{Λ̂Kelly, Λ̂Rao, Λ̂AMF} and Λ = Λ(Σ). Conditionally to the distribution of z, the asymp-
totic distribution of Λ̂M is given by

√
n
(

Λ̂M − Λ
)

z

d→ N
(
0, ϑ1σX + ϑ2Λ2

)
(4.10)

with σX = Λ
(
2zHΣ−1z− Λ

)
and ϑ1,ϑ2 de�ned in Eq. (1.33).

Proves of all theorems are given together after Theorem 4.3.6 (see Proof 4.3.1).

Note that, similarly to Mahalanobis distance, the distribution of robust detectors
depends both on the distribution of z and of Σ̂. As previously, we analyze the asymptotic
distribution of robust detectors conditionally to z.

Due to the speci�c scale invariance property, the variance of the robust ANMF has a
particular form (depending only on the �rst scale factor) derived in [139]. Here, we recall
this result in order to compare it with the result in the GCED regime that will be derived
later on.
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Theorem 4.3.4: SA of the robust ANMF

Let Λ̂MANMF be the robust ANMF detector as in De�nition 4.3.1 and ΛNMF the statistics
computed with Σ. Conditionally to the distributions of z, the asymptotic distribution
of Λ̂MANMF is given by [139]

√
n
(

Λ̂MANMF − ΛNMF

)
z

d→ N (0, ϑ1σH) , (4.11)

where σH = 2ΛNMF(ΛNMF − 1)2 and ϑ1 is de�ned in Eq. (1.33).

Thanks to the results for the SA regime, we can obtain the corresponding ones for the
convergence towards the GCED.

Theorem 4.3.5: GCED of the robust AMF, Kelly and Rao [J3]

Let Λ̂M be a scaled robust detector as in De�nition 4.3.1 with Λ̂M ∈
{Λ̂Kelly, Λ̂Rao, Λ̂AMF}. Let Λ̂GCED be the GCED of Λ̂M de�ned in De�nition 4.3.2.
Then, conditionally to the distribution of z, the asymptotic of Λ̂M − Λ̂GCED is given by

√
n
(

Λ̂M − Λ̂GCED
)

z

d→ N
(
0, σ1σX + σ2Λ2

)
(4.12)

with σX = Λ
(
2zHΣ−1z− Λ

)
and σ1, σ2 de�ned in Eq. (2.5).

Theorem 4.3.6: GCED of the robust ANMF [J3]

Let Λ̂MANMF be the robust ANMF detector as in De�nition 4.3.1. Conditionally to the
distributions of z, the asymptotic distribution of Λ̂MANMF − Λ̂GCED

ANMF is given by

√
n
(

Λ̂MANMF − Λ̂GCED
ANMF

)
z

d→ N (0, σ1σH) (4.13)

where σH = 2ΛNMF(ΛNMF − 1)2 and σ1 de�ned in Eq. (2.5).

Proof. In order to prove all theorems, we �rst provide common steps for all detectors, where
the detection test is noted as Λ(·). Using the standard steps, one can show that one obtains

σ
(n)
Λ = E

[
n
(

Λ̂M − Λ̂GCED
)(

Λ̂M − Λ̂GCED
)H]

= σ
(n)
Λ1 − 2σ

(n)
Λ2 + σ

(n)
Λ3

with

σ
(n)
Λ1 = E

[
n
(

Λ̂M − Λ
)(

Λ̂M − Λ
)H]

,

σ
(n)
Λ2 = E

[
n
(

Λ̂M − Λ
)(

Λ̂GCED − Λ
)H]

,

σ
(n)
Λ3 = E

[
n
(

Λ̂GCED − Λ
)(

Λ̂GCED − Λ
)H]

.
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Thanks to the Lemma 3.1.1, one has

σ
(n)
Λ1 −−−−−→n→+∞

Λ′Γ1 (Λ′)
H
,

σ
(n)
Λ2 −−−−−→n→+∞

Λ′Γ2 (Λ′)
H
,

σ
(n)
Λ3 −−−−−→n→+∞

Λ′Γ3 (Λ′)
H
.

where Λ′ =
∂Λ(Σ)

∂vec(Σ)
and Γ1, Γ2 and Γ3 are given by Eqs. (1.32), (D.8) and (1.11), respec-

tively. This leads to
σ

(n)
Λ −−−−−→

n→+∞
Λ′Γ (Λ′)

H (4.14)

where Γ is de�ned in Eq. (2.4).
Using the previous equations and deriving the derivatives Λ′, one can obtain the �nal

results for all detectors.
In order to obtain derivatives, we will start with Rao statistic Λ′Rao since the derivatives

for other detectors can be easily obtained from this one.
Let us �rst rewrite ΛRao as

ΛRao =
a

(1 + 1
nb)(1 + 1

nb+ 1
na)

with a =
∣∣pHΣ−1z

∣∣2 / (pHΣ−1p
)
and b = zHΣ−1z. Then, one has

• Rao: ∂ΛRao =
∂a(1 + 1

nb)(1 + 1
nb+ 1

na)− a( 1
n∂b)(1 + 1

nb+ 1
na)− a(1 + 1

nb)(
1
n∂b+ 1

n∂a)

(1 + 1
nb)

2(1 + 1
nb+ 1

na)2

= ΛRao

(
∂a

a
−

1
n∂b

1 + 1
nb
−

1
n∂b+ 1

n∂a

1 + 1
nb+ 1

na

)
.

Now

∂a =
∂
(
pHΣ−1z

) (
zHΣ−1p

) (
pHΣ−1p

)
(pHΣ−1p)

2

−
(
pHΣ−1z

)
∂
(
zHΣ−1p

) (
pHΣ−1p

)
(pHΣ−1p)

2

−
(
pHΣ−1z

) (
zHΣ−1p

)
∂
(
pHΣ−1p

)
(pHΣ−1p)

2 .

By using Eqs. (A.5), (A.8), (A.9) and (A.1), one can show that

∂
(
pHΣ−1z

)
= −∂

(
vec (Σ)

H
) (

ΣT ⊗Σ
)−1

vec
(
zpH

)
and thus

∂a = −∂
(
vec (Σ)

H
) (

ΣT ⊗Σ
)−1

a

(
zpH

pHΣ−1z
+

pzH

zHΣ−1p
− ppH

pHΣ−1p

)
and

∂b = −∂
(
vec (Σ)

H
) (

ΣT ⊗Σ
)−1

vec
(
zzH

)
.

Analogously,

• Kelly: ∂ΛKelly = ΛKelly

(
∂a

a
+

1
n∂b

1 + 1
nb

)
,

• AMF: ∂ΛAMF = ΛAMF
∂a

a
.
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One can note that

1
n∂b

1 + 1
nb
−−−−−→
n→+∞

0,

1
n∂b+ 1

n∂a

1 + 1
nb+ 1

na
−−−−−→
n→+∞

0

and

ΛRao −−−−−→
n→+∞

ΛAMF,

ΛKelly −−−−−→
n→+∞

ΛAMF.

Therefore

Λ′Rao −−−−−→
n→+∞

Λ′AMF,

Λ′Kelly −−−−−→
n→+∞

Λ′AMF.

and

Λ′AMF,Kelly,Rao = −ΛAMF

(
vec
(
zpH

)H
zHΣ−1p

+
vec
(
pzH

)H
pHΣ−1z

−
vec
(
ppH

)H
pHΣ−1p

)(
ΣT ⊗Σ

)−1

(4.15)
Finally, the variance in Eq. (3.5) becomes

Λ′AMFΓ1 (Λ′AMF)
H

= Λ2
AMF

(
vec
(
zpH

)H
zHΣ−1p

+
vec
(
pzH

)H
pHΣ−1z

−
vec
(
ppH

)H
pHΣ−1p

)
×

(
ϑ1

(
ΣT ⊗Σ

)−1
+ ϑ2vec

(
Σ−1

)
vec
(
Σ−1

)H)
×

(
vec
(
zpH

)
pHΣ−1z

+
vec
(
pzH

)
zHΣ−1p

−
vec
(
ppH

)
pHΣ−1p

)
. (4.16)

Using Eqs. (A.1) and (A.8) one can easily show that

vec(abH)H

aHΣ−1b
(ΣT ⊗Σ)−1 vec(cdH)

dHΣ−1c
=

aHΣ−1c dHΣ−1b

aHΣ−1b dHΣ−1c

and

vec(abH)H

aHΣ−1b
vec
(
Σ−1

)
vec
(
Σ−1

)H vec(cdH)

dHΣ−1c
= 1.

After some mathematical manipulations, one can obtain the �nal results in Eq. (4.10).
Applying Γ instead of Γ1 in Eq. (4.16), one obtains the results in Eq. (4.12). Analogously,
starting with

Λ′ANMF = ΛANMF

(
∂a

a
− ∂b

b

)
, (4.17)

one obtains

• ANMF: Λ′ANMF =
vec
(
zpH

)H
zHΣ−1p

+
vec
(
pzH

)H
pHΣ−1z

−
vec
(
ppH

)H
pHΣ−1p

−
vec
(
zzH

)H
zHΣ−1z

, (4.18)

which leads to the results from Theorem 4.3.6 and concludes the proof.
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Figure 4.3 � Empirical variances of the robust detectors in standard asymptotic regime
and when centered around their GCEDs, compared to the corresponding theoretical

results; t-distributed data with ν = 4 and p = 10.

4.3.2 Experiments

In this part, some simulations are provided in order to support the theoretical results
and demonstrate the practical interest of proposed theorems.

The simulations have been carried out with complex CES-distributed secondary data.
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Figure 4.4 � Empirical variances of the robust TyE-ANMF (ANMF built with the Tyler's
estimator) in the SA regime (red curve) and when centered around its GCED (blue curve),

compared to the theoretical results.

The scatter matrix Σ is Toeplitz with a correlation coe�cient ρ = 0.5. Empirical means
are computed using Monte Carlo runs. In experiments, the parameters for M -estimators
(DoF parameter, shape, scale, etc.) are usually set to be equal to the ones used to simulate
the CES data, unless di�erently speci�ed (mismatch scenarios). In practice, it is possible to
estimate these parameters and then use appropriate M -estimators. However, this analysis
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Figure 4.5 � Empirical distribution of the t-ANMF versus the theoretical distribution of
NMF (Eq. (1.56)) in red and theoretical approximative distribution (Eq. (1.54)) in green;

p = 10.
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Figure 4.6 � Comparison between Pfa − λ relationships for the t-ANMF, TyE-ANMF and
SCM-ANMF with the empirical and theoretical results for the GCED (Eq. (1.55)) and the

NMF(Eq. (1.58)); Student t-distributed data with ν = 2, p = 10 .

is beyond the scope of this thesis.

Figure 4.3 illustrates the theoretical result of Theorems 4.3.3 and 4.3.5. The empirical
variances of robust detectors in the SA regime, i.e. when centering around the detectors
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obtained with the true scatter matrix, are plotted and compared to the theoretical results
(Theorem 4.3.5). Moreover, the empirical variances of the di�erence between the robust
detectors and their GCEDs are also given together with the corresponding theoretical result
(Theorem 4.3.5). First, one can see that the simulations validate theoretical results. Then,
one can note that the variances when comparing to the GCEDs are signi�cantly lower than
the ones in the SA, which justi�es the proposed approximation of the behavior of
robust detectors with the one of their GCEDs. One observes that the error decreases
very fast as the number n of samples increases. Furthermore, simulations show that the
approximation is also valid for small n.

In Figure 4.4 the corresponding results for the ANMF built with the Tyler's estimator
(TyE-ANMF) for p = 10 and p = 100 are plotted. Once again, one can note that the
empirical variance of TyE-ANMF when compared to the GCED is remarkably smaller than
the one in SA. In addition, one can notice that this di�erence is even smaller for
higher dimension, which is completely in agreement with theoretical results.

Since the variance between a robust detector and its GCED is remarkably smaller
that the one in the SA regime, one can conclude that the distribution of the robust
detector can be well-approximated with the one of GCED. Figure 4.5 illustrates
this point. The histogram on Figure 4.5 represents the empirical distribution of t-ANMF
that is compared to the theoretical distribution of NMF given by Eq. (1.56) (red curve) and
theoretical distribution of GCWE given by Eq. (1.54) (green curve), where t-ANMF is the
ANMF test built with Student's M -estimator. One can note that the red curve mismatches
the empirical distribution of t-ANMF, while the green one borders the plot area of the
histogram showing that Eq. (1.56) gives a good approximation of the t-ANMF's behavior.
This is also valid for others detection statistics.

Having this in mind, one can analyze the Pfa − λ relationship for the robust detectors.
In Figure 4.6 we observe this relationship for the robust ANMF for di�erent number of
secondary data, n = 20 and n = 100. The empirical results for t-ANMF and TyE-ANMF
have been plotted and compared to the theoretical ones given by Eqs. (1.58) and (1.55). The
empirical results for the corresponding GCWE-ANMF (that is not available in practice)
and the SCM-ANMF built with observed data are also provided. First, one can notice
a good match of the empirical distributions of both t-ANMF and TyE-ANMF with the
theoretical and empirical distribution of the GCWE-ANMF. This shows that the behavior
of robust detectors is better approximated with the one of the GCWE-ANMF
(green curve) than with the corresponding NMF (black curve). Secondly, one can
see that this claim is even more obvious for small n since all curves approach when
n increases. Finally, one can note that the SCM built with secondary data does not satisfy
the relationship Eq. (1.55) anymore. This is expected since the SCM is calculated with
a non-Gaussian data and its performance is remarkably degraded, which highly
supports the use of M-estimators in this context.

Finally, for a constant Pfa, we can study the Pd of the robust ANMF for a given SNR
δ. Figure 4.7 shows the empirical Pd for TyE-ANMF where the detection threshold is
computed empirically for Pfa = 0.001 (TyE-ANMFemp) together with the empirical Pd
obtained with the threshold computed using Eq. (1.55) (TyE-ANMFthe). The empirical
results have been compared to the corresponding theoretical results for the GCWE-ANMF
given by Eq. (1.53) (green curves) for n = 20, 50, 200. Finally, the theoretical results for
NMF (Eq. (1.57)) have been plotted. The �gure is revealing in several ways. First, the
results for TyE-ANMFemp match perfectly the ones for TyE-ANMFthe, meaning that we
obtain the same Pd for empirically and theoretically computed threshold which
can signi�cantly reduce the computational cost of the method. In addition, both
empirical results coincide with the theoretical one for the GCED as stated. Finally, the
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Figure 4.7 � Probability of Detection of TyE-ANMF for Pfa = 0.001: Empirical results
obtained with an empirically computed threshold (TyE-ANMFemp) and theoretically
computed threshold using Eq. (1.55) (TyE-ANMFthe), with the theoretical results for

GCED Eq. (1.53) and NMF (1.57); t-distributed data with ν = 2.
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Figure 4.8 � Probability of Detection of t-Kelly for Pfa = 0.001: Comparison of the
empirical results obtained for empirically computed threshold (t-Kellyemp) and with the
theoretically computed threshold using Eq. (1.48) (t-Kellythe), with the theoretical result

for GCED given in Eq. (1.47); t-distributed data with ν = 2.
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Figure 4.9 � Probability of Detection of W -Rao for Pfa = 0.001: Comparison of the
empirical results obtained for empirically computed threshold (W -Raoemp) and

theoretically computed threshold using Eq. (1.61) (W -Raothe), with the theoretical result
for GCED given in Eq. (1.60); W -distributed data with s = 0.5.
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Figure 4.10 � Probability of Detection of K-AMF for Pfa = 0.001: Comparison of the
empirical results obtained for empirically computed threshold (K-AMFemp) and

theoretically computed threshold using Eq. (1.51), with the theoretical result for the
GCED given in Eq. (1.50); K-distributed data with ν = 2.
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approximation is valid even for small n approaching the results for NMF when n increases.
Taken together, these results suggest that one can use M-estimators to compute
the value of detection statistic and precompute the detection threshold using
the theoretical results for GCED.

Figures 4.8, 4.9 and 4.10 summarize the same quantities for Kelly's GLRT, Rao statistics
and AMF for di�erent M -estimators.

Figure 4.8 plots the results for the Kelly's GLRT computed with Student's t-estimator
(t-Kelly). The data is t-distributed with ν = 2. We can draw the same conclusions as for
the TyE-ANMF. In this case, we notice the slight deviation between the empirical results
and the theoretical ones for small values of n. However, when n increases all the curves
approaches.

Figure 4.9 plots the results for the Rao statistics computed with Weibull M -estimator
(W -Rao). The data is W -distributed with s = 0.5.

Finally, Figure 4.10 plots the results for the AMF computed with K M -estimator
(K-AMF). The data is K-distributed with ν = 2. As for the t-Kelly (Figure 4.8), one
observes a minor deviation for n = 20, which for n = 50 becomes completely insigni�cant.

In summary, the comments drawn for the TyE-ANMF are also valid for others robust
detectors, supporting the proposed approximation and showing the interest of the theoretical
results.

4.4 Robust low-rank detection

Let us consider LR detection problem de�ned as follows{
H0 : z = c̃ zi = c̃i, i = 1, . . . , n,

H1 : z = αp + c̃ zi = c̃i, i = 1, . . . , n,
(4.19)

where c̃i are i.i.d. with c̃i ∼ CES(0,Σ, gz) with Σ = Σr + γ2Ip that is low-rank structured
as in Eq. (3.30).

4.4.1 Asymptotics of the robust LR-ANMF

Let us consider the operator Rr{.} de�ned in Eq. (3.31). Let Σ̂ be an M -estimator built
with the sample (z1, . . . , zn) from Eq. (4.19) and let Σ̂GCWE be its GCWE from De�nition
2.1.2. We have the corresponding principal subspaces de�ned as in Eq. (3.32)

Π⊥r = I−Rr{Σ},
Π̂⊥Mr = I−Rr{Σ̂},
Π̂⊥GCWE
r = I−Rr{Σ̂GCWE}.

(4.20)

Finally, let ΛLR(·) be the LR-ANMF de�ned in Eq. (1.66). Then, we can de�ne
ΛLR = ΛLR

(
Π⊥r
)
,

Λ̂MLR = ΛLR

(
Π̂⊥Mr

)
,

Λ̂GCED
LR = ΛLR

(
Π̂⊥GCWE
r

)
.

(4.21)

Now, one can state the following theorems.
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Theorem 4.4.1: SA of the robust LR-ANMF

Let us consider the LR-ANMF test de�ned by Eq. (1.66). Thus, conditionally to the
distributions of z, the asymptotic distribution of Λ̂MLR is given by

√
n
(

Λ̂MLR − ΛLR

)
z

d→ N
(
0, 2ϑ1γ

2 (1− ΛLR) (b− aΛLR)
)
, (4.22)

where

a =
zHAp

zHΠ⊥c p
+

pHAz

pHΠ⊥c z
and b =

zHAz

zHΠ⊥c z
+

pHAp

pHΠ⊥c p
,

with A de�ned in Theorem 3.3.1.

Note that the variance of the robust LR-ANMF, as in full-rank case, depends only on the
�rst scale factor. However, this property stands also for other detection characteristics, such
as Kelly's GLRT, AMF and Rao test, since the scale-invariance is brought by the properties
of the used projector.

Proof. In order to prove the theorem, we will use Lemma 3.1.1. Analogously to Eq. (4.18),
the derivative of ΛLR w.r.t. Π⊥r is

Λ′LR = ΛLR

(
vec
(
zpH

)H
zHΠ⊥r p

+
vec
(
pzH

)H
pHΠ⊥r z

−
vec
(
ppH

)H
pHΠ⊥r p

−
vec
(
zzH

)H
zHΠ⊥r z

)
. (4.23)

Then, to compute the asymptotic covariance matrix of Π̂⊥M , one can use the quantity
Π̂⊥Mr = Π⊥r − δΠr and similar steps as in the proof of Theorem 3.3.1. One can show that
ΓΠ⊥ = ΓΠ. Consequently, to compute the variance of Λ̂LR, one needs to compute

Λ′LRΓΠ (Λ′LR)
H

=

(
vec
(
zpH

)H
zHΠ⊥r p

+
vec
(
pzH

)H
pHΠ⊥r z

−
vec
(
ppH

)H
pHΠ⊥r p

−
vec
(
zzH

)H
zHΠ⊥r z

)
× ϑ1Λ2

LR

(
AT ⊗B + BT ⊗A

)
×

(
vec
(
zpH

)
pHΠ⊥r z

+
vec
(
pzH

)
zHΠ⊥r p

−
vec
(
ppH

)
pHΠ⊥r p

−
vec
(
zzH

)
zHΠ⊥r z

)
. (4.24)

Furthermore, since A = Ur

(
γ2Λ−2

r + Λ−1
r

)
UH
r and B = γ2Π⊥r

vec(abH)H

aHΠ⊥r b

(
AT ⊗B + BT ⊗A

) vec(cdH)

dHΠ⊥r c

=
aHAc dHBb

aHΠ⊥r b dHΠ⊥r c
+

aHBc dHAb

aHΠ⊥r b dHΠ⊥r c

= γ2 aHAc dHΠ⊥r b

aHΠ⊥r b dHΠ⊥r c
+ γ2 aHΠ⊥r c dHAb

aHΠ⊥r b dHΠ⊥r c
. (4.25)

Then, taking various combinations of a, b, c and d in Eq. (4.24), after some fastidious, but
simple computations, one obtains the �nal result.



4.4. Robust low-rank detection 107

Theorem 4.4.2: GCED of the robust LR-ANMF

Let us consider the LR-ANMF test de�ned by Eq. (1.66). Thus, conditionally to the
distributions of z, the asymptotic distribution of Λ̂MLR is given by

√
n
(

Λ̂MLR − Λ̂GCED
LR

)
z

d→ N
(
0, 2σ1γ

2 (1− ΛLR) (b− aΛLR)
)
. (4.26)

Remark 4.4.2

• One can note that, similarly to Λ̂MANMF, the variance of Λ̂MLR when compared to
Λ̂GCED

LR (Eq. (4.26)) di�ers from the one in the SA regime (Eq. (4.22)) only in
the scale factors σ1 and ϑ1. Consequently, since σ1 < ϑ1, the behavior of Λ̂MLR is
better characterized with the behavior of Λ̂GCED

LR than with the one of ΛLR.

Proof. The results can be obtained using the results from Theorem 4.4.1 and common steps
for the di�erence between the SA and GCED regime.

4.4.2 Experiments

The following simulations validate the proposed results. In Figure 4.11, the results for
the LR-ANMF built with the Student'sM -estimator (t-LR-ANMF) are presented. The data
follow the complex t-distribution with ν = 2. The empirical variance of t-LR-ANMF and
the one of the di�erence between t-LR-ANMF and the GCED, compared to the theoretical
results of Theorems 4.4.1 and 4.4.2, are plotted. One can draw the same conclusions as
in the full-rank detection problem, i.e., that the variance is signi�cantly smaller in the
GCED regime than in the SA one and consequently, the distribution of t-LR-ANMF can be
well-approximated by the one of its GCED.

However, in this case, the exact distribution of the corresponding GCED is unknown. The
approximation given by Eq. (1.67) could be used, but it should be noted that does not provide
accurate results for small n. Nevertheless, we can compare the empirical distributions of
t-LR-ANMF and its GCED. From Figure 4.12 we observe a great match between these two
empirical distributions, which supports our claims.
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Figure 4.11 � Empirical variances of the robust t-LR-ANMF in SA regime and when
centered around its GCED, compared to the theoretical results (Theorems 4.4.1 and 4.4.2),

t-distributed data, ν = 2, p = 10.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
ED of t-LR-ANMF

ED of GCED

Figure 4.12 � Empirical distribution of the t-LR-ANMF (in blue) versus the empirical
distribution of the GCED (in red); p = 10.
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4.5 Conclusion

In this chapter we have studied the signal detection problem when the secondary data is
CES-distributed. The behaviour of the robust Mahalanobis distance and robust detectors
have been analyzed. The robust statistics in this context correspond to the traditional
statistics derived for the Gaussian-distributed data computed with anM -estimator plugged-
in instead of the SCM.

In order to analyze the distribution of the robust statistics, we have introduced their
Gaussian-Core Equivalents (GCE), i.e. GCEM and GCED, thanks to the GCWE de�ned
in Chapter 2. Finally, we have derived the asymptotic distributions in the SA regime and
GCE one.

We have seen that the distribution of the robust statistic can be well-approximated by
the one of the corresponding GCE. The application of these results has been demonstrated
in the context of the detection threshold computation. We have seen that the PFA-threshold
relationship of a robust detector coincides well with the theoretical one of the corresponding
GCED. Consequently, one can use an M -estimator to obtain an accurate estimation of the
scatter matrix in the CES context and rely on the theoretical PFA-threshold relationship of
the GCED to compute the detection threshold for a given PFA. This has been empirically
illustrated for several detection statistics with di�erent set-ups. The theoretical detection
derivation can signi�cantly reduce the computational cost of the robust detection algorithms.

Finally, it should be noted that the theoretical results for GCEDs are valid when the pri-
mary data are Gaussian-distributed. We have shown that anM -estimator can be plugged-in
instead of the traditional SCM without changing the behavior of the statistics. Consequently,
if the primary data have a particular CES distribution, the approximative distribution of
the robust statistics can be derived using the approximative Wishart distribution of the used
M -estimator.

In conclusion, the analysis done in this chapter additionally supports the previously ob-
tained results and leads to the same conclusion: One should always use the robust estimators
in order to mitigate the impact of outlying, missing and/or heterogeneous data, while relying
on the statistical properties of Gaussian-based estimators.
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Chapter 5

Robust NL-means approach for

PolSAR image denoising

In this chapter we propose a new method for polarimetric synthetic aperture radar (Pol-
SAR) denoising, named M -NL. More precisely, we seek to address a new statistical
approach for weights computation in non-local (NL) approaches. The aim is to present
a simple criterion to detect similar pixels in a PolSAR image, which is based on the new
statistical properties of M -estimators derived in Chapter 2. A binary hypothesis test is
used to select similar pixels which will be used for covariance matrix estimation together
with associated weights. The method is then compared to an advanced state-of-the-art
PolSAR denoising method, NL-SAR method. The �lter performances are measured by
a set of di�erent indicators, including relative errors on incoherent target decomposi-
tion parameters, coherences, polarimetric signatures, and edge preservation on a set
of simulated PolSAR images. The results reveal that M -NL outperforms the NL-SAR
method in most cases. Moreover, the results obtained for RADARSAT-2 PolSAR data
are presented. The M -NL method o�ers e�cient speckle reduction in homogeneous
regions with good edge preservation.
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k

k′

(a) Non-local means principle

k

k′

(b) �Local� non-local means

Figure 5.1 � Patch comparison in non-local means methods: comparing k to k′ reduces to
comparing each pixel from the patch centered in k to the corresponding one from the

patch centred in k′

5.1 Non-local means methods

Let us introduce the general methodology of non-local means denoising methods and
their adaptation to PolSAR image despeckling.

Contrary to local window �lters, which use the values of a group of pixels surrounding a
target pixel to �lter the image, in non-local means (NLM) methods all pixels in the image
are used during the processing and are weighted with their similarity to the target pixel.
Moreover, instead of a simple pixel comparison, the patch comparison is proposed to be
robust to noise. In order to obtain the similarity between two pixels, the method compares
the values in small local windows centered in the pixels to be compared. Then, the �nal
value in the central pixel of the patch is obtained as a weighted mean based on the computed
(dis)similarities.

The patch comparison in NLMmethods permits to �nd similar geometrical con�gurations
in the whole image and even with a high level of noise provide better results. However,
these methods demand more time resources. In order to reduce the computational cost and
improve the performances, the search area is limited to a large window [51], as shown in
Figure 5.1.

The NLM methods can be also considered as a generalization of the bilateral �lter where
the dissimilarities between two single points in the bilateral kernel are replaced with a patch-
based term ignoring the geometric distance between pixels.

The NLM method was originally introduced for digital images [21]. Later, the methodol-
ogy used in NLM methods has been successfully adapted to the despeckling of PolSAR data
[25, 47, 185, 192]. The dissimilarities are computed using the covariance matrix comparison
between pixels. These methods principally concentrate on how to compute the similarities
between pixels, select similar pixels and better calculate the weights.

In the following, we present NL-SAR [46], a uni�ed nonlocal framework for the despeck-
ling of amplitude, polarimetric SAR, and/or interferometric SAR images. However, in this
chapter we are interested only in PolSAR image despeckling. In Section 5.3, we propose a
new approach to compute weights using M -estimators of scatter and their statistical prop-
erties.
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5.2 NL-SAR

NL-SAR (non-local SAR) is an advanced NLM method for radar image denoising. It
contains the following steps:

• Pre-estimation A �rst step of pre-�ltering is applied before the patch comparison
when the noise level is very high. For a given scale s, this step is performed by

convolution with a truncated Gaussian envelope de�ned by cg exp
(
− x2+y2

(s+0.5)2

)
if −s ≤

x,y ≤ s and 0 otherwise, where cg is a normalization constant 1.

• Weight computation: To measure the similarity between two empirical (pre-
estimated with the previous step) independent matrices Σ̂1 and Σ̂2, 2 the generalized
likelihood ratio (GLR) criterion obtained under the Gaussian assumption is used

LGLR

(
Σ̂1, Σ̂2

)
=

∣∣∣Σ̂1

∣∣∣L ∣∣∣Σ̂2

∣∣∣L∣∣∣ 12 (Σ̂1 + Σ̂2

)∣∣∣2L ,
where L is referred to as the number of looks (see Eq. (1.81)) .
The dissimilarity between two patches centered at the two pixels l and l′ is then:

∆NLSAR (l, l′) =
∑
τ

−ln
(
LGLR

(
Σ̂ (l + τ) , Σ̂ (l′ + τ)

))
,

where τ ∈ [−p,p]2 is a 2-D shift indicating the location within each patch of size
P = (2p + 1)× (2p + 1).
Finally, the weights are computed using the following learned kernels

ωNLSAR(l, l′) =

exp

(
−|G

−1{F[∆NLSAR(l,l′)]}−cNLSAR|
h

)
if l 6= l′,

1 if l = l′,
(5.1)

where cNLSAR = E[G−1|{F [∆NLSAR(l, l′)]}|H0]. The parameter h is set to 1/3 and G
is the χ2-distribution with 49 degrees (up to a change of variables, this corresponds
to the set of parameters for Gaussian NL-means used in [23] with 7 × 7 patches).
Patches are extracted from a homogeneous area in order to sample the probability
distribution of ∆NLSAR(l, l′). Dissimilarity values ∆NLSAR(l, l′) are estimated o�-line
for all pairs of patches ∆NLSAR(l, l′). These dissimilarities are stored in a separate
table sorted in increasing order for each possible choice of the patch size p and pre-
estimation scale s. On-line, when the weight ωNLSAR(l, l′) must be evaluated from
the dissimilarity ∆NLSAR(l, l′) evaluated with given parameters p and s, the closest
value to ∆NLSAR(l, l′) is found in the corresponding sorted table by binary search.
The rank of that value in the table (i.e., its index) gives the corresponding quantile
F [∆NLSAR(l, l′)].

• Weighted MLE: The weighted MLE is given by the weighted means

Σ̂NL(l) =

∑
l′ ωNLSAR(l, l′)k′k′H∑

l′ ωNLSAR(l, l′)
, (5.2)

where the weights ωNLSAR(l, l′) are de�ned as in Eq. (5.1) and the sum is carried out
over all pixels k′ in the search window of size W = (2w + 1) × (2w + 1) centered at
pixel k. The weighted MLE in Eq. (5.2) is computed for various triples of (s, p, w).

1. The case s = 0 indicates that the pre-estimation is o�.
2. The matrices, associated to each pixels, are estimated by using the neighbor pixels in a given window

S = (2s + 1)× (2s + 1). Note that numerous parameters/e�ects will a�ect the results, e.g., the window size,
the patch size, the resolution, the fact that estimated matrices that are spatially close are not statistically
independent (since same pixels are used several times), etc.
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• Bias reduction: The algorithm tends to over-smooth the image around bright targets
that have intensities signi�cantly larger than their surrounding background. Thus, a
bias reduction step is performed on each estimate Σ̂NL. The Non-Local Reduced Bias
(NLRB) estimate is obtained as a convex combination between the NL estimation and
the noisy empirical covariance:

Σ̂NLRB(l) = Σ̂NL(l) + αRB

(
C(l)− Σ̂NL(l)

)
(5.3)

with C = kkH for single look images and

αRB = max
j

[
max

(
0,
V̂ar [Ij ]NL (l)− ÎjNL(l)2/L

V̂ar [Ij ]NL (l)

)]
, (5.4)

where Ij(x) = Cj,j(x) and ÎjNL(l) =
[
Σ̂NL

]
j,j

(l), j = 1, 2, 3. Note that the value of

αRB is chosen using the strategy of the LLMMSE introduced in [106].

• Aggregation: The �nal (�best�) estimation is locally selected basing on the variance
reduction procedure introduced in [154]. The equivalent number of looks (Eq. (1.82))
after the bias reduction step is equal to

L̂NLRB(l) =
L̂NL(l)

(1− αRB)2 +
(
α2 + 2αRB(1−αRB)∑

l′ ωNLSAR(l,l′)

)
L̂NL(l)

. (5.5)

Finally, the estimate with the maximal value of L̂NLRB is selected as the best estimate.

5.3 M-NL

In this section we present �step-by-step� the proposed method for improving the weight
computation in NL-SAR and discuss about its bene�ts.

5.3.1 Robust pre-estimation

In order to compute the (dis)similarity between two pixels, one needs to compute a pre-
estimation of the scatter matrix. In NL-SAR, this pre-estimation is done using truncated
Gaussian on patches of size S = (2s + 1) × (2s + 1). In this method, we propose to use an
M -estimator instead. It is important to choose an estimator that estimates the shape of
the matrix but also keeps the information on scale. If not, two matrices with same shape
but di�erent scales will be classi�ed as similar, i.e. in the same class (e.g. in a clustering
process). Consequently, we can propose an M -estimator that represents a sort of trade-o�
between the SCM and the Tyler'sM -estimator. In Chapter 2, we have seen that all analyzed
M -estimators meet this requirement for speci�c values of their parameters. For instance, we
can use the Student's M -estimator (De�nition 1.40) given as the solution of

Σ̂t =
p+ ν/2

S

S∑
i=1

kik
H
i

ν/2 + kHi Σ̂−1
t ki

, (5.6)

where S = (2s + 1)2, p = 3 is the vector dimension and ν is the DoF parameter. We recall
that for ν →∞, this estimator produces the SCM, while when ν = 0 the Tyler's estimator
is obtained.
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5.3.2 Pixel selection

Using the pre-estimated values, neighboring samples are selected around each pixel. The
central pixel at location l is compared to all pixels in a circular window following a spiral
path (see [46] for more details). To compute the dissimilarities between two pixels instead
of classical generalized likelihood ratio tests (GLRT), we propose to use the Box's M -test
de�ned as

LBox =

∣∣∣Σ̂1

∣∣∣S/2 ∣∣∣Σ̂2

∣∣∣S/2∣∣∣Σ̂∣∣∣S ,

where Σ̂1 is obtained by Eq. (5.6) with a sample k(1) = (k1, . . . ,kS), Σ̂2 with k(2) =

(kS+1, . . . ,k2S) and Σ̂ with k = (k(1),k(2)). This statistic has values between 0 and 1,
where the values close to 0 reject the hypothesis that the matrices Σ̂1 and Σ̂2 are equal
and values close to 1 accept it. By modifying the statistic LBox, Box has obtained the
approximated χ2 distribution [17]

u = −2(1− β)ln (LBox) ∼ χ2(p(p+ 1)/2)

with β = 3
2S

2p2+3p−1
6(p+1) , where p = 3 is the size of the scattering vector. This result has been

obtained for Wishart-distributed matrices. Thanks to the results obtained in Chapter 2, we
propose to use this approximation for the statistic computed with M -estimators. We then
propose to compute the similarity between two patches centered in pixels l and l′ as

∆MNL (l, l′) =
∑
τ

u [(l + τ) , (l′ + τ)] , (5.7)

where τ ∈ [−p,p] is a 2-D shift indicating the location within each patch of size P =
(2p + 1) × (2p + 1). We then compare the dissimilarities to a threshold in order to select
similar pixels. Under the hypothesis H0 (the two patches follow the same distribution) ∆
has the χ2 distribution with d = 6(2p + 1)2 DoF. The critical region of the test is then given
by {

Rc = ∆MNL,∆MNL > χ2
Pfa

(d)
}

with Pfa the probability of false alarm and χ2
Pfa

(d) the quantile of order 1 − Pfa of the
χ2(d).

5.3.3 Weight computation

Once similar pixels are chosen, we proceed to the weights computation. To de�ne the
weights from the dissimilarity measure ∆MNL (l, l′), we propose to use an exponential kernel

ωMNL(l, l′) =

exp

(
−|∆MNL(l,l′)−cMNL|

λMNL

)
if l 6= l′,

1 if l = l′.
(5.8)

The parameter cMNL = E [∆MNL(l, l′)|H0] is the expected dissimilarity of two patches
under H0 and the threshold λMNL can be computed as λMNL = F−1

χ2(d)(1− Pfa). This map-
ping from the (dis)similarities to the weights prevents any pixel from having a larger weight
than the central pixel. The parameter cMNL has been introduced in order to give a weight
close to 1 when the compared pixels comes from the same distribution while preventing the
noise enforcing. We normalize the quantity with λMNL in order to obtain comparable weight
values for di�erent values of p.

Finally, the weighted maximum likelihood estimator is computed using Eq. (5.2).
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Algorithm 2: M -NL method [J4]

Initialization: W,P,S, λMNL, cMNL, ν
forall x, y do

for s ∈ S (scale size) do
Pre-estimation with Eq. (5.6)

forall x, y (coordinates of pixel l) do
for w ∈W (search window size) do

Compute ∆x and ∆y
x′ = x+ ∆x
y′ = y + ∆y; (coordinates of pixel l')
for s ∈ S do

for p ∈ P (patch size) do
Compute ∆MNL(l, l′) with Eq. (5.7)
if ∆MNL(l, l′) ≤ λMNL[p] then

Compute ωMNL(l, l′) with Eq. (5.8)
else

ωMNL(l, l′)← 0

forall s,p,w do

Compute Σ̂NL with Eq. (5.2)

Bias-reduction step → Σ̂NLRB Eq. (5.3)

return The best estimate

The method is recapped in Algorithm 2. First, the maximum sizes of search windows
W, patch P and pre-estimation scale S are set together with the threshold λMNL and the
constant c that di�ers for each patch size. Then, the pre-estimation is performed for all
pixels in the image and for all values of s ∈ S where s=0 means the pre-estimation is o�,
i.e. the matrix is equal to kkH for the pixel at location l with coordinates (x, y). Then,
for all window sizes the central pixel is compared to all pixels in the window using the pre-
estimations corresponding to di�erent values of s and di�erent sizes of patches to perform
the patch comparison. Then, for each triple of (s, p, w) an estimate Σ̂NL is computed.
Afterwards, for each Σ̂NL the bias-reduced estimate Σ̂NLRB is obtained and �nally, the best
one (with highest number of looks) is selected for each pixel giving the �nal �ltered image.
This �nal part, enclosed within the box, is the same as in NL-SAR.

5.4 Experiments: implementation and evaluation

5.4.1 Simulated data

In this section the results obtained for simulated and PolSAR data are presented. The
simulated images have been generated using a Markov Random Field (MRF) following a
Gibbs distribution as in [56]. Then, a polarimetric behavior has been assigned to the di�erent
parts of the designed images. The polarimetric signatures have been sampled from the
NASA/JPL AIRSAR, four-looks, L-band POLSAR data set of San Francisco and are taken
as the centroids of standard partition of the H/α plane. The polarimetric signatures are
presented in Table 5.1 [56].

The procedure is the following: First, a random number C of polarimetric classes is
chosen between 3 and 5, C − 1 classes for distributed scatterers and the last class for point
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C1

 5.56 −0.03− j0.36 0.47− j0.24
−0.03 + j0.36 6.64 0.24− j0.20
0.47 + j0.24 0.24 + j0.20 4.53


C2

 7.79 −0.03− j0.50 0.56− j0.30
−0.03 + j0.50 5.38 0.20− j0.17
0.56 + j0.30 0.20 + j0.17 4.38


C3

 14.69 2.59− j0.92 1.98− j0.85
2.59 + j0.92 25.394.55 + j0.20
1.98 + j0.85 4.55− j0.20 5.12


C4

 10.95 0.42− j0.89 1.17− j0.65
0.42 + j0.89 7.51 0.83
1.17 + j0.65 0.83 3.29


C5

 10.99 −0.45− j0.69 0.85− j0.73
−0.45 + j0.69 3.38 0.21 + j0.01
0.85 + j0.73 0.21− j0.01 2.05


C6

 29.95 23.04 + j0.79 4.83− j2.47
23.04− j0.79 29.99 5.21− j3.0
4.83 + j2.47 5.21 + j3.0 3.23


C7

 5.40 −1.14− j0.34 0.27− j0.33
−1.14 + j0.34 0.56 −0.01 + j0.09
0.27 + j0.33 −0.01− j0.09 0.16


C8

990.02 4.97 7.04
4.97 0.02 0.04
7.04 0.04 0.05


Table 5.1 � Coherency matrix for each simulated class. Class C8 is the point target class

scatters (targets). A ground truth is generated using an MRF and the targets correspond to
squares of sizes varying between 2× 2 and 5× 5 pixels. For each distributed scatterer, one
of the seven possible polarimetric signatures is randomly assigned and the Gaussian speckle
noise is generated according to them. Finally, the targets generated using the remaining
eighth polarimetric signature are added to the speckle noise.

Figure 5.2 details di�erent possible scenarios. First column represents the ground truths
obtained with MRF following a Gibbs distribution. The second one displays the correspond-
ing Gaussian speckles to be processed.

After the denoising, the set of following parameters has been evaluated:

• Radiometric parameters σr that correspond to the diagonal elements of the estimated
scatter matrix containing the power information.

• Complex correlation parameters ρr, derived from the three complex o�-diagonal terms,
containing the complex correlation between three polarimetric channels.

• Incoherent decomposition parameters: Entropy (H) Eq. (1.78), Anisotropy (A)
Eq. (1.79) and the mean Alpha angle (α) Eq. (1.80), containing the information about
the physical nature of the scattering mechanism within the resolution cell.

• Co-polar and cross-polar polarization signatures (PS) that contain the information
about the polarization synthesis capability of PolSAR data [193].

• Edge preservation (EP).

For the �rst three groups of parameters the estimated value θ̂ is obtained as the correspond-
ing mean value from the pixels for every scattering class and for every simulated image,
given the �lter. Then, the absolute relative bias of the estimated parameter is computed as

bθ =

∣∣∣θ̂ − θ∣∣∣
θ

. (5.9)
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The �nal (average) value is chosen as the median across all the simulated images and the
various scattering classes. In the case of the radiometric parameters and the complex cor-
relation coe�cients an additional median operator is applied to provide the �nal estimated
value.

Then, the co- and cross-polar signatures of the average scatter matrix of the pixels be-
longing to a given scattering class of every simulated image are obtained. The corresponding
absolute relative bias, for the pixels of every scattering class and for every simulated image,
given the �lter is

bθ = median
φi,ϕi,φj ,ϕj


∣∣∣θ̂(φi, ϕi, φj , ϕj)− θ(φi, ϕi, φj , ϕj)∣∣∣

θ(φi, ϕi, φj , ϕj)

 , (5.10)

where φ and ϕ are the orientation and ellipticity angles describing the polarization ellipse,
whereas i and j refer to the receive and transmit waves, respectively. Then, as in previous
case, the median across all the images and classes is obtained. The �nal parameter is
obtained as the mean value of the absolute relative bias of the the co- and cross-polar
signatures.

Finally, edge preservation is measured on the boundary positions between extended tar-
gets. First, the gradient preservation (GP) is obtained as the average ratio between the
observed gradient values on the power bands of the �ltered power band image Îj to the
gradient values on the ground truth image Ij over the scattering classes

GP (i) =
1

C

C∑
k=1

∑
cl(k)=k

∣∣∣∇Îj(k)
∣∣∣∑

cl(k)=k |∇Ij(k)|
, (5.11)

where ∇ represents the Sobel gradient operator and cl(k) is the class label for the pixel k.
Then, a simple mapping from GP to EP is performed , as follows

EP (i) =

{
1− |1−GP (i)|, GP (i) < 2,

0 GP (i) ≥ 2,
(5.12)

in order to give a measure close to 0 in the case of edge oversmoothing or undersmoothing
and values close to 1 for good edge preservation. The �nal parameter is obtained as the
average value over the diagonal elements of the scatter matrix.

In order to perform the comparison, we have simulated one hundred 128× 128 arti�cial
PolSAR images as described previously. The set of parameters used in both methods is:
window size: W ∈ {32, 52, . . . , 252}, patch size: P ∈ {32, 52, . . . , 112} and scale: S ∈ {0, 1, 2}.
Since the speckle is Gaussian, we have chosen ν to be big enough (ν = 100) in order to
preserve the information about the texture and ensure the convergence of the solution in the
pre-estimation step. The values for λ have been computed using the corresponding formula
from Section 5.3.3.

Figure 5.3 shows the results for one realization of simulated images. The images are
presented in the following order, from left to right and from top to bottom: original image
(ground truth), speckle, NL-SAR results and M -NL results. The ground truth image on
Figure 5.3a contains two classes for distributed scatterers. As can be seen from Figure 5.3c
et Figure 5.3d the homogeneous areas are much better smoothed with M -NL than with
NL-SAR while the edges are better captured and less blurred.

In Figure 5.4 we can see results for another realization. Figure 5.4a consists of three
scattering classes. Figures 5.4c and 5.4d display the results obtained with NL-SAR and
M -NL, respectively. In this case, we display the �ltered images together with the di�erence
of the �ltered image and corresponding ground truth in order to better visualize the results.
From Figure 5.4e and Figure 5.4f, one can see that in some parts of the images the noise is
apparently more reduced with M -NL. This is the most visible at the image borders (green
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(a) Ground truth C = 2 (b) Speckle C = 2

(c) Ground truth C = 3 (d) Speckle C = 3

(e) Ground truth C = 4 (f) Speckle C = 4

Figure 5.2 � Simulated 256× 256 PolSAR images with ground truth (left) and PolSAR
speckle (right)
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(a) Ground truth (b) Speckle

(c) NL-SAR (d) M -NL

Figure 5.3 � Application to the simulated data - 128× 128 images: (a) ground truth, (b)
speckle, (c) results obtained with NL-SAR, (d) results obtained with M -NL.

points), one can look for instance the top border and corners of the images. Obviously, the
M -NL gives an estimation closer to the ground truth in both cases. The visualization of
the di�erence also reveals that most of the targets are better estimated with M -NL, which
can not be seen directly from Figure 5.4c and Figure 5.4d. Some of them are marked in red
squares.

Filters σ |ρ| ∠ρ H A α PS EP
NL-SAR 2.21 7.47 11.96 14.51 35.84 10.51 1.15 0.45
M -NL 1.56 9.10 14.47 14.49 33.96 10.97 1.05 0.56

Table 5.2 � Filtering results for simulated data: all measures but EP (EP ∈ [0, 1]) are absolute
relative errors in %.

Table 5.2 lists the evaluation parameters de�ned above. Numerical results have been
computed over the set of simulated PolSAR images and the �nal values are compared. One
can note that M -NL outperforms NL-SAR in almost all measures except ρ and α. Thus,
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(a) Ground truth (b) Speckle (c) NL-SAR

(d) M -NL (e) NL-SAR di�erence (f) M -NL di�erence

Figure 5.4 � Application to the simulated data - 128× 128 images: (a) ground truth, (b)
speckle, (c) results obtained with NL-SAR, (d) results obtained with M -NL, (e) di�erence
between the results and ground truth for NL-SAR, (f) di�erence between the results and

ground truth for M -NL.

it could be more convenient to use NL-SAR for terrain classi�cation based on correlation
coe�cient or when measuring soil moisture implementing the alpha angle parameter. On the
other hand, M -NL gives better estimation of radiometric parameters, almost all incoherent
decomposition parameters, polarization signatures and edge preservation parameters. A
signi�cant improvement in edge preservation is also visually noticeable on the simulated
images, thus these results are not surprising. Finally, it should be pointed out that all the
results are obtained in the case of Gaussian-distributed speckle, which is the most favorable
scenario for NL-SAR.

5.4.2 RADARSAT-2 PolSAR data

The results for real data are given in Figure 5.5. Three di�erent parts of San Francisco
Bay are presented from top to bottom, representing di�erent scenarios in PolSAR images
such as water, vegetation and urban areas. In this case, we do not dispose of any information
about the ground truth, thus one can analyze the results only visually. First, one can
note that M -NL better smooths the homogeneous areas, while preserving well the edges in
textured scenarios. It can also be noted that, as in the case of simulated data, M -NL gives
results with higher contrast in comparison to NL-SAR.

5.4.3 Robust kernels

In order to compute the weights we could propose to use di�erent kernels for dissimilar-
ities to weight mapping in Eq. (5.8). Recall the desired characteristics of a kernel function
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Speckle NL-SAR M -NL

Figure 5.5 � Real data: San Francisco Bay - 512× 512 PolSAR images. From left to right:
speckle, results obtained with NL-SAR and results obtained with M -NL.

ω(x): it is a monotonic function, decreasing with maxx ω(x) = ω(0) and ω(x) = 0 when
x→∞.

In the theory of robust statistics, many functions satisfying the preceding conditions have
been proposed [73]. In this work, we propose to analyze the following kernel functions

ω1(x) = e−x

ω2(x) = 1/(1 + x/c1)

ω3(x) = e−x
2

ω4(x) = 1/(1 + (x/c2)2)

(5.13)

These functions are illustrated in Figure 5.6 for x between 0 and 1 (because
|∆MNL(l,l′)−c|

λMNL
< 1). The constants c1 and c2 are set to 0.5 and 0.9, respectively. The
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Figure 5.6 � Kernel functions proposed in (5.13) with c1 = 0.5 et c2 = 0.9

function ω1(x) = e−x is generally used and this idea comes from the Gaussian hypothesis
where the dissimilarities are often calculated as the squared (Euclidean) distance between
two vectors.

In the context of PolSAR images, we do not compare two vectors, but the pre-estimated
matrices. Therefore, we propose three other kernels di�erent from that of the original
algorithm. The ω2(x) function has a steeper slope than ω1(x) and the weights decrease
faster with x. On the other hand, ω3(x) and ω4(x) put more weight on similar pixels, then
from one point, the weight values drop very quickly. This slope is steeper for ω3(x), while
the values of ω4(x) remain quite high.

ω σ |ρ| ∠ρ H α A EP
ω1 1.56 9.10 14.47 14.49 10.97 33.96 0.56
ω2 1.6 9.24 14.03 14.49 10.77 34.08 0.55
ω3 1.56 9.32 13.82 14.45 10.79 33.95 0.55
ω4 1.61 9.17 14.49 14.46 10.93 33.98 0.55

Table 5.3 � Results for di�erent kernel functions for simulated data.

It can be noted that ω1 and ω3 give a good estimate of the radiometric parameters.
ω1 gives the best estimate of the amplitude of the correlation parameters (PCs) and best
preserves the contours. On the other hand, ω3 gives the best estimate of PC phase, entropy
and anisotropy. The best estimate of the alpha angle is given by ω2. From these results,
the kernels ω1 and ω3 are preferable to ω2 and ω4. In addition, the ω3 function gives better
results than the ω1 function. As a result, the kernel ω1 is replaced by ω3 for the application
to real data (Figure 5.7). The images on the left-hand side correspond to the 512 × 512
speckle images of the San Francisco Bay. The right-hand side displays the results of the
despeckling with M -NL. One can note that the speckle is visibly reduced, especially on the
homogeneous zones (the water, the forest), while the edges (buildings) are preserved.

Finally, the computational cost of the algorithm haven't been analyzed yet. The whole
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method has been coded by modifying the original code of NL-SAR method, in order to well
preserve all common parts of the codes. However, we can brie�y comment the pros and cons
ofM -NL in comparison to NL-SAR. InM -NL the weight computation is accelerated thanks
to the pixel selection (Section 5.3.2), while in NL-SAR for each pixel the binary search is
performed in order to obtain the weight value. However, a major drawback of M -NL is that
M -estimators need to be iteratively computed. Also, the formulas include matrix inversion
that can be very expensive. For large PolSAR images, the pre-estimation step can take lot
of time and thus, this part needs to be optimized.

5.5 Conclusion

In this chapter we have introduced a new statistical approach for PolSAR image despeck-
ling, named M -NL. The proposed method relies on M -estimators and has been compared
to the NL-SAR method showing better results.

The method is non-local means (NLM) based with common steps with NL-SAR. Yet, the
computation of weighted NLM estimates, the crucial part of any NLM denoising method, is
based on the statistical behavior of M -estimators. The pre-estimated matrices are obtained
using an M -estimator (Student's M -estimator in our experiments) and compared using the
criteria obtained for Wishart-distributed matrices. This is possible because of the strong
proximity betweenM -estimators and Wishart-distributed matrices demonstrated in Chapter
2. Several kernel functions are analyzed, starting with the standard exponential kernel. The
results have been evaluated on simulated PolSAR data based on Markov Random Field with
Gibbs distribution. Various parameters have been compared such as radiometric parameters,
channel correlation, entropy, anisotropy etc. We have seen that the M -NL provides smaller
relative bias for most parameters showing better performances.

However, the computational cost introduced by the iteratively reweighting algorithm of
M -estimators in the pre-estimation step ofM -NL can be prohibitive. This cost is even more
important for large PolSAR images and higher value of the scale parameter. This problem
could be possibly solved by replacing theM -estimator by its �one-step approximation�, given
by an explicit weighted mean estimator.

Nevertheless, we have seen that M -estimators can be successfully applied in PolSAR
image processing. Depending on application, di�erent M -estimators can be employed. The
Tyler'sM -estimator could be the best choice when only the shape of the matrix is important,
as proposed in several works. However, if the information contained in the scale of the matrix
needs to be preserved, one could use another M -estimator more adapted to the data model.
One of the perspectives for future works could be based on choosing the �best� M -estimator
according to the considered problematic.
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Speckle M -NL

Figure 5.7 � Real data: San Francisco Bay - 512× 512 PolSAR images. PolSAR speckle
(left) and the results obtained with M -NL with the kernel ω3
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Conclusions and perspectives

Conclusions

In this thesis, we have dealt with the general problem of covariance matrix estimation
for several signal and image processing applications. Under standard assumptions, namely
classical Gaussian modeling, the well-known sample covariance matrix (SCM) is computed
as it is the e�cient Maximum-Likelihood estimator (MLE). This Wishart-distributed
estimator is particularly convenient and widely used thanks to its simplicity and explicit
de�nition form. However, with high resolution brought by modern technologies and/or with
outliers contained in most of recent datasets, Gaussian models turn out to be incapable
to describe the underlying physics of collected data. Indeed, by construction, they present
an important lack of robustness and �exibility. Other models, such as complex elliptically
symmetric (CES) distributions, come into use as appropriate alternatives. These distribu-
tions permit to model various scenarios of highly heterogeneous, outlying and/or missing
data. In these circumstances, the classical tools adapted to the Gaussian framework, such
as the SCM, exhibit signi�cantly degraded performances. Therefore, the Gaussian-based
methods have to be replaced by more robust ones.

In term of covariance matrix estimation, a common solution to this problem is to use the
MLE corresponding to the assumed CES distribution. In the context of CES distributions,
the covariance matrix is not always de�ned. In order to obtain the second-order moments,
one seek at estimating the scatter matrix that is equal to the scaled covariance matrix
when the latter exists. The scatter matrix re�ects the correlations between observation
vector components, and is always well-de�ned, even when the distribution turns out to have
in�nite variance, justifying the interest of focusing on this parameter.

Nevertheless, observed data cannot be always perfectly modeled by a particular CES
distribution. The observations can follow di�erent patterns corresponding to various models.
Hence, the data can be simply considered as Gaussian corrupted by a certain amount of
outliers to reject. This is similar to the problem of considering a heavy-tailed distribution,
with unknown shape. In this framework, the robust M -estimators, designed to mitigate
the in�uence of the outlying data, are of great interest. More precisely, M -estimators, by
de�nition, provide robust solutions to both problems: data with outliers and mis-modeling
data distributions. These estimators, obtained by iterative reweighting algorithms, assign
di�erent importance to each observation depending on its magnitude. However, the
statistical behavior of these estimators stayed unknown because of their implicit de�nition.
Consequently, the main goal of this thesis has been to confront this challenge and to provide
new insights into the statistical properties of M -estimators, i.e. to characterize their behav-
ior better than any other analysis in the literature. Then, it has to be pointed out that the
proposed methodology to answer this key problem has been generalized to various problems
in signal and image processing, e.g. to robust detectors, robust distances (Mahalanobis
distance), robust eigenvalues/eigenvectors estimators and also robust denoising methods. Of
course, the obtained results are in favor of extensions of this framework in other applications.
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In this work, it has been shown that the statistical properties of an M -estimator
can be well-described with a Wishart distribution. Moreover, it has been revealed that
the eigenvalue/eigenvector decomposition (EVD) parameters of an M -estimators behave
similarly to the corresponding EVD parameters of a Wishart-distributed matrix. The
same conclusions have been drawn for the principal subspaces obtained from M -estimators.
Several applications of these results, such as optimal low-rank �ltering, rank estimation,
have been proposed. Moreover, the results have been extended to the adaptive signal
detectors. It has been demonstrated that the properties of a robust detector in the CES
framework, obtained with an M -estimator plugged-in instead of the traditional SCM,
behaves as the corresponding Gaussian-based detection statistics. Finally, the application
of the new statistical properties of M -estimators to polarimetric synthetic aperture radar
(PolSAR) image despeckling has been presented. Following previous elements, one can
draw a general conclusion for this thesis: Always prefer the use of robust techniques
since they exhibit good performances when applied to real datasets and can be
accurately characterized thanks to very simple models.

Chapter 1 has been dedicated to the state of the art. In the �rst part, the main principles
of covariance matrix estimation with the application to the signal detection problem and
polarimetric SAR imaging have been recapitulated. After some basic de�nitions and
assumption made throughout this thesis, the classical Gaussian approach was presented.
The SCM and its properties were recalled. Then, the CES distributions were presented
with several examples and discussions on their properties. The robust framework together
with detailed analysis of di�erent M -estimators has also been presented. We have seen that
studied M -estimators can be considered as a particular trade-o� between the SCM and the
Tyler's M -estimator. This trade-o� corresponds to the classical compromise between e�-
ciency and robustness in general statistics problems. The second part introduced the signal
detection problem. After a brief introduction about di�erent signal detection scenarios,
several Gaussian-based detection statistics were itemized. Their statistical properties in
single steering vector case were recalled followed by the corresponding detection probability
and probability of false alarm expression. Finally, the last part started with recapitulating
the basics of SAR technology and SAR polarimetry principles. We have seen that the CES
distributions are widely used to model PolSAR data, since they nature can be well-described
with multiplicative models (texture × speckle). Finally, a concise overview of PolSAR
despeckling methods concluded the �rst chapter.

In Chapter 2, we have introduced a new approach to analyze the statistical properties
of M -estimators. To that end, we have proposed a new Gaussian core representation of
CES data. We have de�ned a Gaussian-Core Wishart Equivalent (GCWE) as the SCM
built with Gaussian cores of the observed CES data. Although this theoretical tool cannot
be observed and computed, it plays a key role in the analysis. Indeed, we have derived the
asymptotic distribution of the di�erence between an M -estimator built with CES data and
its GCWE. The second-order statistics of this di�erence turn out to be signi�cantly lower
than the ones of theM -estimator in the standard asymptotic regime, i.e. when compared to
the true scatter matrix parameter. These results revealed that the statistical properties of
an M -estimator can be well-approximated with the ones of its GCWE, i.e. with a Wishart
distribution. Moreover, the results for special cases of M -estimators have been derived to
support these claims and have been validated by various simulation experiments.

In Chapter 3, an extension of these results to the EVD parameters and principal
subspaces obtained from M -estimators has been proposed. Several cases, based on the
underlying structure of the scatter matrix, have been analyzed. Under the assumption that
the scatter matrix contains strictly di�erent eigenvalues, the distribution of eigenvalues
and eigenvectors obtained from M -estimators has been analyzed. In the case when
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the eigenvalues of the scatter matrix can be grouped in few blocks containing equal
eigenvalues, a robust method for grouping eigenvalues, named eFusion, has been proposed.
The method was �rst introduced for Gaussian-distributed data, and then, thanks to the
previously derived results, extended to CES data. This method has shown an important
improvement on simulated data, compared to existing methods. Finally, in the case when
the scatter matrix contains few high-valued eigenvalues (e.g. radar clutter), the principal
subspace corresponding to these eigenvalues has been analyzed. Its estimation obtained
from M -estimators has been studied, leading to the same conclusions as previously. The
theoretical results have been validated on simulated data with various settings.

In Chapter 4, we have addressed the problem of robust signal detection. Robust
detectors were de�ned as traditional detection statistics built with M -estimators instead
of the classical SCM. Following the idea of Chapter 2, a Gaussian-Core Equivalent
Detector (GCED) of a robust detector has been introduced. Then, in addition to standard
asymptotic distribution of robust detectors, the asymptotic distribution of the di�erence
between a robust detector and its GCED has been analyzed. The results revealed that the
behavior of a robust detector can be well-approximated with the one of its GCED. This
is of particular interest, since it allows one to use an M -estimator to obtain an accurate
estimation of the scatter matrix of CES data, while relying on the statistical properties
of its GCED when tuning the detection parameters, e.g. the detection threshold. Robust
detection analysis has been performed in the classical settings as well as in the low-rank
setting, that is of particular interest when dealing with high-dimensional datasets. Finally,
the same conclusions obtained for Full-Rank and Low-Rank detectors, also hold for robust
Mahalanobis distances used in anomalies detection, data clustering, etc.

Finally, in Chapter 5, we have focused on non-local means (NLM) PolSAR despekling.
As explained in Chapter 1, the PolSAR data are usually modeled by various CES distribu-
tions. Basing on the results obtained in Chapter 2, we have proposed to use M -estimators
in order to estimate the second-order statistics of the data during the pre-estimation step in
NLM methods. In particular, we have used the Student's M -estimator and statistical tools
derived for Wishart-distributed matrices while searching for similar pixels in an image.
Student's M -estimator was chosen as an example of M -estimators that keeps information
on both shape and scale of the scatter matrix. It is also important to notice that the
contribution of this chapter also relies on the use of the well-known Box's test for deriving
similarities between pixels, which is possible because of the derived properties of the
M -estimators. The new, M -NL, method showed good performances in speckle reduction on
both simulated and real PolSAR images, suggesting that M -estimators can be successfully
applied in various PolSAR image applications.

The main conclusion, arising from the analyses done in each chapter of this
thesis, is that one should always use techniques robust to di�erent deviations
from the assumed data model, i.e., heterogeneity, outliers, missing data etc.,
and rely on the statistical tools adapted to Gaussian-distributed data. In
addition to various experiments supporting this claim, this thesis has provided
a uni�ed theoretical framework to justify this approach.

Pespectives

Following previous conclusions, the results of this thesis can be extended to di�erent
problematics and can be applied in numerous signal processing and machine learning
applications. As mentioned previously, this work provided non-exhaustive results. Indeed,
for instance, in several machine learning problems, it is essential to characterize distances
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behavior. This is the case for clustering problems. This short-term perspective also applies
for detection problems where numerous detector statistics can be found in the literature.
This is also the case for problems involving EVD parameters, applied in dimension reduction
problems, as detailed hereafter.

Nowadays, the analyzed data sets are usually very large meaning that, in most cases, the
data have a high dimensional nature. In this context, the analysis done in this thesis could
be extended to the estimators adapted to high dimensional scenarios. In particular, one
could analyze regularized covariance matrix estimators obtained from di�erent penalization
functions. This could potentially provide new ideas on how to tune the regularization
parameters, in order to obtain speci�c performances of regularized M -estimators. The
regularization parameters estimation is a di�cult problem involved in many domains and
could be tackled with the proposed framework. Furthermore, all the results in this thesis
have been obtained assuming a �xed data vector dimension. One could possibly consider
the cases when the data dimension grows together with the sample size. Even though some
results for this set-up have been already obtained using random matrix theory, one could
possibly try to exploit similar ideas in order to improve the existing methods. In general,
following high-dimensional settings, one could also exploit the structure of the data in order
to work in a low dimensional manifold and derive new robust estimation solutions.

Another aspects of this work that has not received an important attention is the
characterization of the loss brought by robust approaches over the optimal ones. This loss
over optimal e�cient estimation methods can be derived from the proposed characterization
of M -estimators properties, by considering the asymptotic coe�cients obtained in this
thesis. Indeed, these coe�cients can be viewed as a notion of distance to the Gaussian
tools and could be exploited to characterize this loss. This is of particular importance when
dealing with problems of mis-modeling.

The results of Chapter 3 can be of a great interest in machine learning applications.
In particular, the EVD parameters of the scatter matrix are widely used in dimensionality
reduction problems and data visualization. As various data clustering methods, these
techniques search to measure similarities between observations. Including robust techniques
in these algorithms could help to capture more useful information by low-dimensional
projection of the data and improve clustering performances while rejecting the outlying
data. The results obtained for the Mahalanobis distance could be possible extended to a
wide range of distances (between vectors/matrices) used in literature, such as, for instance,
the Riemannian manifold-oriented distance analyzed in Chapter 3.

As brie�y discussed in Chapter 5, an important problem to be tackled is the computa-
tional cost induced by iterative reweighting algorithms used to compute the M -estimators.
The convergence speed to obtain any M -estimator depends on a particular choice of tuning
parameters as well as on the nature of the underlying data. Consequently, depending on
the application problem di�erent solutions may be proposed. For instance, when the data
are supposed to be identically distributed with a certain amount of outliers and/or missing
data, one could try to derive analogous algorithms with a reduced number of iterations or,
for instance, derive explicit weighted estimators with weights close to the ones obtained
in the �nal iteration of the corresponding M -estimator. In machine learning techniques,
such as data clustering, these weights should contain information about similarity between
di�erent observations. Originally, M -estimators were introduced to reduce the in�uence
of outlying values with high magnitude. In clustering methods, the outlying data to be
rejected correspond to the data with high dissimilarity when compared to the data to be
processed. Similarly to the proposed despeckling method in Chapter 5, one could build
weighted covariance matrix estimators using di�erent robust techniques to compute the
weights.
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Still on the computational cost reduction, recent works have suggested to work in
the appropriate manifold and derive new estimators. Since covariance matrices are, by
de�nition, Hermitian (or symmetric) positive de�nite matrices, they naturally live in a
Riemannian manifold. Tackling the estimation problems, and consequently the �xed-point
algorithms, by using appropriate distances (non-Euclidean ones) opens a wide range of new
problems for long-term research perspectives.

Moreover, di�erent modi�cations, potentially improvements, of the M -NL method can
be studied. The results have been obtained using statistical tools derived for independent
Wishart-distributed matrices, which, in general, is not true for pre-estimated scatter
matrices. Thus, according to the �level� of correlation, one could modify the value of
equivalent number of looks, use di�erent statistical models to compute the detection
threshold, etc. More generally, the assumption of independent data should be relaxed.

To conclude, the perspectives of this work are various and quite diverse. The problem
of non-Gaussianity is currently emerging in many areas and robust tools are of crucial
importance. This study is only one step towards enhancing our understanding of their
behavior...
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Appendix A

Matrix operations

In the following we provide some quantities that has been used during the results deriva-
tions in this thesis [144]:

vec(ABC) =
(
CT ⊗A

)
vec(B), (A.1)

(A⊗C)(B⊗D) = (AB⊗CD), (A.2)

vec(A)HK = vec(A)T , (A.3)

K (A⊗B) = (B⊗A) K, (A.4)

∂A−1 = −A−1∂AA−1, (A.5)

∂ Tr (A) = Tr (∂A) , (A.6)

Tr (AB) = Tr (BA) , (A.7)

Tr
(
AHB

)
= vecH (A) vec (B) , (A.8)

(A⊗B)−1 = A−1 ⊗B−1, (A.9)
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Appendix B

Real Elliptically Symmetric

distributions

In this part, we de�ne the RES distributions and present the relationship between them
and CES distributions.

De�nition B.0.1. Real elliptically symmetric (RES) distribution
A random p-dimensional vector z is said to be elliptically distributed if and only if there
exists a vector µ ∈ Rp, a positive semide�nite matrix Σ ∈ Rp×p, and a function φ : R+ → R
such that the characteristic function t → ϕz−µ(t) of z − µ corresponds to t → φ(tTΣt),
t ∈ Rp. This case is denoted as ES(µ,Σ, φ).

Similarly to the complex case, the RES-distributed vectors admit the following stochastic
representation.

Theorem B.0.1. Stochastic representation
An r.v. z ∼ ES(µ,Σ, φ) if and only if it can be represented as

z
d
= µ +

√
QAu(k), (B.1)

where the non-negative real random variable Q, called the modular variate, is independent
of the r.v. u(k) that is uniformly distributed on the unit k-hypersphere Sk−1 with

Sk−1 =
{
u ∈ Rk : ‖u‖2 = 1

}
(B.2)

and A ∈ Rp×k with Σ = AAT .

In the absolutely continuous case, we have the following de�nition.

Theorem B.0.2. Let z ∼ ES(µ,Σ, φ). Let Σ be positive de�nite and the c.d.f. of R be
absolutely continuous. Then the p.d.f. of z can be written as

fz(z) = cm,g|Σ|−1/2 gz
(
(z− µ)TΣ−1(z− µ)

)
(B.3)

with 

cp,g = (spµp−1,g)
−1,

sp =
(2π)

p/2

Γ(p/2)
,

µp,g =

∫ ∞
0

tpg(t2)dt.

(B.4)

This case is denoted as z ∼ ES(µ,Σ, gz).
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De�nition B.0.2. Generalized complex elliptically symmetric (GCES) distribution

An r.v. z = x + jy ∈ Cp is said to have a GCES distribution if zR =
(
xT ,yT

)T ∈ R2p has
a RES distribution.

Then, the p.d.f. of zR is given by Eq. (B.3) with

µ =

(
µx

µy

)
and Σ =

(
Σxx Σxy

Σyx Σyy

)
. (B.5)

Then

µz = µx + jµy,

Θ = Σxx + Σyy − j (Σyx −Σxy) ,

Φ = Σxx −Σyy + j (Σyx + Σxy) . (B.6)

Then, we can write

z̃ =

(
z
z∗

)
, µ̃ =

(
µµ

µ∗µ

)
, Σ̃ =

(
Θ Φ
Φ∗ Θ∗

)
. (B.7)

Finally, the p.d.f. of a GCES-distributed vector z, denoted z ∼ GCES(µ,Θ,Φ, gz), can
be written as

fz(z) = cp,g2
p|Σ̃|−1/2 gz

(
2 (z̃− µ̃)

H
Σ̃−1 (z̃− µ̃)

)
. (B.8)

De�nition B.0.3. CES distribution
If an r.v. z is GCES-distributed with a null pseudo-covariance matrix, i.e. z ∼
GCES(µ,Θ,0, gz), then it is said to have a CES distribution, denoted as z ∼ CES(µ,Θ, gz).



Appendix C

Real-valued M-estimators

In this appendix, the asymptotics of real-valued M -estimators (M -estimators built with
real-valued data) are provided. First, we recall the asymptotic distributions of the real
sample covariance matrix (SCM) and real M -estimators when centering about the true
scatter matrix. Then, we derive in Theorem C.0.1 the relationships between two types
of estimators. This result represents the real-valued version of the one of Theorem 2.2.1.
Then, only the main lines of the proof, that di�er from the complex case, are given. Finally,
we brie�y discuss how these results can be useful to obtain results of Theorem 2.2.1.

Before turning to the main result, let us remind the important de�nitions, as well as
existing results, in the real case. For the sake of simplicity, we will use the same abbreviations
and notations as in the complex case.

De�nition C.0.1. Sample Covariance Matrix (SCM)
Let (x1, . . . ,xn) be an n-sample of p-dimensional complex i.i.d. vectors with xi ∼ N (0,Σ).
The real-valued SCM is de�ned by

Σ̂SCM =
1

n

n∑
i=1

xix
T
i . (C.1)

The SCM (up to a normalization factor) is Wishart-distributed and its asymptotic distribu-
tion is given by [13]

√
nvec(Σ̂SCM −Σ)

d→ N (0, (I + K)(Σ⊗Σ)) . (C.2)

De�nition C.0.2. M -estimator
Let (z1, . . . , zn) be an n-sample of p-dimensional complex i.i.d. vectors with zi ∼
ES(0,Σ, gz). An M -estimator, denoted by Σ̂, is de�ned by the solution of the following
M -estimating equation

Σ̂ =
1

n

n∑
i=1

u(zTi Σ̂−1zi)ziz
T
i , (C.3)

where u is any real-valued weight function on [0,∞) that respects Maronna's conditions
[119]. Then

√
nvec(Σ̂−Σσ)

d→ N (0,CM ),

where
CM = ϑ1 (I + K) (Σσ ⊗Σσ) + ϑ2vec(Σσ)vec(Σσ)T , (C.4)

with Σσ = σ−1Σ and the parameter σ is the solution of E [u(σQ)σQ] = p with Q from
Eq. (B.1). The constants ϑ1 and ϑ2 are given in [169].
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Analogously to the complex case, we introduce Gaussian-core model and the Gaussian
Core Wishart Equivalent (GCWE) of an M -estimator.

De�nition C.0.3. Gaussian-core representation
A real random vector z ∼ ES(0,Σ, gz) can be represented as

z
d
=

√
Q
‖g‖

Ag (C.5)

with g ∼ N (0, I), Q d
= zTΣ−1z and Σ = AAT is a factorization of Σ.

De�nition C.0.4. GCWE
Let n measurements (z1, . . . , zn) be drawn as zi ∼ ES (0,Σ, gz) and denote (x1, . . . ,xn)
their Gaussian cores as zi =

√
Qi/‖gi‖Agi with xi = Agi (cf. De�nition C.0.3), i = 1, . . . , n.

Let Σ̂ be an M -estimator built with (z1, . . . , zn) using Eq. (C.3). The SCM built from the
Gaussian cores, i.e.

Σ̂GCWE =
1

n

n∑
i=1

xix
T
i (C.6)

is referred to as the GCWE of Σ̂.

Now, one has the state the following theorem.

Theorem C.0.1. GCWE regime for real-valued M -estimators
Let Σ̂ and Σ̂GCWE be de�ned by Eqs. (C.3) and (C.6), respectively. The asymptotic distri-
bution of σΣ̂− Σ̂GCWE is given by

√
nvec(σΣ̂− Σ̂GCWE)

d→ N (0,Γ) (C.7)

where Γ is de�ned by

Γ = σ1(I + K)(Σ⊗Σ) + σ2vec(Σ)vec(Σ)T (C.8)

with

σ1 =
aMp(p+ 2) + cM (cM − 2bM )

c2M
,

σ2 =
aM − p2

(cM − p2)2
− aM (p+ 2)

c2M
+ 4

p(cM − bM )

cM (cM − p2)
, (C.9)

where aM = E[Ψ2(σQ)], bM = E[Ψ(σQ)‖g‖2], cM = 2E[Ψ′(σQ)σQ] + p2 with Ψ(σQ) =
u(σQ)σQ.

Remark C.0.1. Notice that the asymptotic covariance matrix Γ di�ers from the one in the
complex case (Theorem 2.2.1) not only in terms of the scale factors values , but also in terms
of its structure. The structure is the same as in classical asymptotic results (Eqs. (C.2) and
(C.4)) but the coe�cients are di�erent. In the case of the identity matrix as covariance
matrix, this structure involves only three non-null elements d1, d2 and d3 at the positions
(i, j) and equal to:

◦ d1 = 2σ1 + σ2 for i = j = q + p(q − 1) with q = 1, . . . , p,

◦ d2 = σ1 for i = j = q + p(q′ − 1) and i = q + p(q′ − 1), j = q′ + p(q − 1) with q 6= q′

and q, q′ = 1, . . . , p,

◦ d3 = σ2 for i = q + p(q − 1), j = q′ + p(q′ − 1) with q 6= q′ and q, q′ = 1, . . . , p.
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Remark C.0.2. Note that the results of Theorem 2.2.1 can be obtained using the results for
real M -estimators and vector/matrix complex-to-real mapping [130]. Indeed, following the
same steps as in [117] one can easily prove that ΓCM = (lT ⊗ lH)Γ(lT ⊗ lH)H and ΩCM =
ΓCMK where Γ is de�ned by Eq. (C.8) for 2p-dimensional vectors and lT = (Ip,−jIp)
(j =

√
−1 here), which after some mathematical manipulations leads to the �nal results.

Proof. If we proceed as in the proof for the complex case, we obtain

Γ = Γ1(Σ)− 2Γ2(Σ) + Γ3(Σ), (C.10)

where the matrices Γ1(Σ) and Γ3(Σ) are given by Eqs. (C.4) and (C.1), respectively. Ana-
logically to the complex case, one has

Γ2(Σ) = D−1
1 (Σ)B(Σ)

(
D−1

2 (Σ)
)T
,

where D1(Σ) = E [d{vec (Ψ1(Σ))}/d{vec(Σ)}], B(Σ) = cov (vec (Ψ1(Σ)) , vec (Ψ2(Σ))) and
D2(Σ) = E [d{vec (Ψ2(Σ))}/d{vec(Σ)}] with Ψ1(Σ) = σu(zT (σ−1Σ)−1z)zzT − Σ and
Ψ2(Σ) = xxT −Σ.

Assuming w.l.o.g. that Σ = I, one has a real-valued expression obtained in [169]

D−1
1 (I) = α1I + α2vec(I)vec(I)T ,

where α1 = −p(p+ 2)

cM
and α2 =

p(cM − p2 − 2p)

cM (cM − p2)
with cM = 2E [σQΨ′(σQ)]+p2. Moreover,

it is simple to show that D2(I)−1 = −I.
Analogously to the complex case, one can obtain

B2(I) = β1(I + K) + β2vec(I)vec(I)T

with β1 =
bM

p(p+ 2)
and β2 = β1 − 1. After some mathematical manipulations, one obtains

Γ2(I) = γ1(I + K) + γ2vec(I)vec(I)T

with

γ1 = −α1β1 =
bM
cM

,

γ2 = −(α1β2 + 2α2β1 + pα2β2) =
2p(bM − cM )

cM (cM − p2)
. (C.11)

This leads to the �nal expression of Γ2(Σ)

Γ2(Σ) = γ1(I + K)(Σ⊗Σ) + γ2vec(Σ)vec(Σ)T . (C.12)

Finally, combining Eq. (C.12) together with Eqs. (C.4) and (C.2) in Eq. (C.10), one
obtains the �nal result.
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Appendix D

Proof of Theorem 2.2.1

To prove the statement let us rewrite the right hand side of Eq. (2.4) as follows:

√
n
(
vec
(
σΣ̂− Σ̂GCWE

))
=
√
n
(
vec
(
σΣ̂−Σ− Σ̂GCWE + Σ

))
=

[
1,−1

]  √
nvec

(
σΣ̂−Σ

)
√
nvec

(
Σ̂GCWE −Σ

) .
Therefore one has Γ(n) = Γ

(n)
1 − 2Γ

(n)
2 + Γ

(n)
3 with

Γ
(n)
1 = E

[
nvec

(
σΣ̂−Σ

)
vec
(
σΣ̂−Σ

)H]
,

Γ
(n)
2 = E

[
nvec

(
σΣ̂−Σ

)
vec
(
Σ̂GCWE −Σ

)H]
,

Γ
(n)
3 = E

[
nvec

(
Σ̂GCWE −Σ

)
vec
(
Σ̂GCWE −Σ

)H]
.

One has now
Γ(n) −−−−−→

n→+∞
Γ = Γ1 (Σ)− 2Γ2 (Σ) + Γ3 (Σ) , (D.1)

where the matrices Γ1 (Σ) and Γ3 (Σ) are given by Eqs. (1.32) and (1.11), respectively.
Following the similar ideas used in [119, 170], we provide a more general result that

allows to compute a corelation between two estimators

Γ
(n)
2 −−−−−→

n→+∞
Γ2 (Σ) = D−1

1 (Σ) B (Σ) D−1
2 (Σ) ,

where

D1 (Σ) = E [d{vec (Ψ1 (Σ))}/d{vec (Σ)}] , (D.2)

B (Σ) = E
[
vec (Ψ1 (Σ)) vec (Ψ2 (Σ))

H
]
, (D.3)

D2 (Σ) = E [d{vec (Ψ2 (Σ))}/d{vec (Σ)}] , (D.4)

with

Ψ1 (Σ) = σu
(
zH(σ−1Σ

)−1
z)zzH −Σ, (D.5)

Ψ2 (Σ) = xxH −Σ. (D.6)

W.l.o.g., we will assume that Σ = I. Indeed, one has that

Γ2 (Σ) =
(
ΣT/2 ⊗Σ1/2

)
Γ2 (I)

(
ΣT/2 ⊗Σ1/2

)H
.
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In order to determine the �nal result, we will derive the expression for Γ2 (I). One can
show that

D−1
1 (I) = α1I + α2vec (I) vec (I)

T
,

where α1 = −p(p+ 1)

cM
and α2 =

p(c2M − p2 − p)
cM (cM − p2)

with cM = E [σQΨ′(σQ)] + p2. Moreover,

it is simple to show that D2(I)−1 = −I.
Then, basing on Theorem 2 from [170], one can derive more general result

B2(I) = β1I + β2vec(I)vec(I)T ,

where

β1 = cov
[
Ψ1(I)jkΨ2(I)jk

]
= E

[
u(σQ)σQ‖g‖2u2

ju
2
k

]
=

E
[
Ψ(σQ)‖g‖2

]
p(p+ 1)

=
bM

p(p+ 1)

and

β2 = cov
[
Ψ1(I)jjΨ2(I)kk

]
= β1 − E [Ψ(σQ)]E

[
‖g‖2

]
/p2

= β1 − 1

since u2
i ∼ β(1, p − 1), E[u2

j ] = 1/p and E[u2
ju

2
k] = 1/(p(p + 1)). After some mathematical

manipulations, one obtains

Γ2(I) = γ1I + γ2vec(I)vec(I)T

with

γ1 = −α1β1 =
bM
cM

,

γ2 = −(α1β2 + α2β1 + pα2β2) =
p(bM − cM )

cM (cM − p2)
. (D.7)

This leads to the �nal expression of Γ2(Σ)

Γ2(Σ) = γ1Σ
T ⊗Σ + γ2vec(Σ)vec(Σ)H . (D.8)

Combining Eq. (D.8) together with Eqs. (1.32) and (1.11) in Eq. (D.1), one obtains the
coe�cients σ1 and σ2 as follows

σ1 = ϑ1 − 2γ1 + 1

=
aMp(p+ 1) + cM (cM − 2bM )

c2M

and

σ2 = ϑ2 − 2γ2

=
aM − p2

(cM − p2)2
− aM (p+ 2)

c2M
+ 2

p(cM − bM )

cM (cM − p2)
.

Finally, one can easily prove that Ω = ΓK [117], which leads to the �nal results and
concludes the proof.
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Proof of Theorem 2.2.2

First, notice that for the Tyler's estimator σ = 1 thanks to the employed normalization.
Following the same idea as in the proof of Theorem 2.2.1 one can write

Γ
(n)
T = Γ

(n)
T1 − 2Γ

(n)
T2 + Γ

(n)
T3 (E.1)

with

Γ
(n)
T1 = E

[
nvec

(
Σ̂T −Σ

)
vec
(
Σ̂T −Σ

)H]
,

Γ
(n)
T2 = E

[
nvec

(
Σ̂T −Σ

)
vec
(
Σ̂GCWE −Σ

)H]
,

Γ
(n)
T3 = E

[
nvec

(
Σ̂GCWE −Σ

)
vec
(
Σ̂GCWE −Σ

)H]
,

(E.2)

where Γ
(n)
T1 −−−−−→n→+∞

ΓT1 equal to CT from Eq. (1.36) and Γ
(n)
T3 −−−−−→n→+∞

ΓT3 equal to CSCM

from Eq. (1.11). Let us now introduce some notations (see [137] for details)

◦ Σ̂ = Σ + δΣ where Σ̂ denotes an estimate of Σ,

◦ ∆ = Σ−1/2Σ̂,Σ−1/2 − I,

◦ δ = vec(∆),

◦ theoretical Tyler's (TT) estimator of Σ is equal to

Σ̂TT =
p

n

n∑
i=1

ziz
H
i

zHi Σ−1zi
. (E.3)

In the sequel, these quantities will be indexed according to the studied estimator: GCWE,
TT and T. Thanks to Eq. (A.1), we have

Γ
(n)
T2 = E

[
nvec

(
Σ1/2∆TΣ1/2

)
vec
(
Σ1/2∆GCWEΣ1/2

)H]
=
(
ΣT/2 ⊗Σ1/2

)
E
[
nδTδ

H
GCWE

] (
ΣT/2 ⊗Σ1/2

)H
.

To derive E
[
nδTδ

H
GCWE

]
we can use the statement that

√
nδT and p+1

p

√
nδTT share the

same asymptotic distribution for all CES distributions (see [137]). Now, it remains to derive
the quantity E

[
nδTTδ

H
GCWE

]
.
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Let vi = Σ−1/2zi and gi = Σ−1/2xi. Then, for large n, one can write

E
[
nδTTδ

H
GCWE

]
= E

nvec( p
n

n∑
i=1

(
viv

H
i

vHi vi

)
− I

)
vec

(
1

n

n∑
i=1

(
gig

H
i

)
− I

)H
=
p

n
E

vec( n∑
i=1

(
viv

H
i

vHi vi

))
vec

(
n∑
i=1

(
gig

H
i

))H− nvec (I) vec (I)
T

=
p

n

 n∑
i=1

E
[
vec

(
viv

H
i

vHi vi

)
vec
(
gig

H
i

)H]
+
∑
j 6=k

E
[
vec

(
vkv

H
k

vHk vk

)
vec
(
gjg

H
j

)H]
−nvec(I)vec(I)T

= pE
[
vec

(
vvH

vHv

)
vec
(
ggH

)H]
+ (n− 1)E

[
vec

(
p
vvH

vHv

)]
E
[
vec
(
ggH

)H]
−nvec(I)vec(I)T

= pE
[
vec

(
vvH

vHv

)
vec
(
ggH

)H]− vec(I)vec(I)T ,

where vi =
√
Qiui ∼ CES(0, I, g) and gi = ‖gi‖ui ∼ CN (0, I) with Qi being an r.va. whose

p.d.f. is unkown, ‖g‖2 ∼ (1/2)χ2
2p and ui ∼ U(CSp−1). Then, focusing on the following

variable

P = E
[
vec

(
vvH

vHv

)
vec
(
ggH

)H]
, (E.4)

each element of matrix P becomes

Pkl = E
[
uqu
∗
ru
∗
q′ur′‖g‖2

]
(E.5)

with k = q + p(r − 1) and l = q′ + p(r′ − 1).
Now, let us de�ne the 4th-order moments of a complex random vector u by

αi1,i2;j1,j2 = E
[
ui1ui2u

∗
j1u
∗
j1

]
. (E.6)

By the circular symmetry properties all even-order central moments vanish in the cases that
the sets (i1, i2) and (j1, j2) di�er. In our case, that means that Pkl = 0 except for the
following indices:

◦ k = q + p(q − 1),

◦ k = q + p(q − 1), l = q′ + p(q′ − 1) and q 6= q′,

◦ k = q + p(q′ − 1), l = q + p(q′ − 1) and q 6= q′.

Now, since u ∼ U(CSp−1) one has |ui|2 ∼ β(1, p − 1), E
[
|ui|4

]
= 2/p(p + 1) and

E
[
|ui|2|uj |2

]
= 1/p(p+ 1). Also, as ‖g‖2 ∼ (1/2)χ2

2p one obtains the following results:

◦ Pq+p(q−1),q+p(q−1) = 2/(p+ 1),

◦ Pq+p(q−1),q′+p(q′−1) = 1/(p+ 1),

◦ Pq+p(q′−1),q+p(q′−1) = 1/(p+ 1),

and thus
E
[
nδTTδ

H
GCWE

]
−−−−−→
n→+∞

B, (E.7)

where

B =
p

p+ 1

(
I− 1

p
vec(I)vec(I)T

)
. (E.8)

Therefore

E
[
nδTδ

H
GCWE

]
−−−−−→
n→+∞

p+ 1

p
B. (E.9)
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Since the covariance matrix is Hermitian and using the property Eq. (A.2), one has
Γ

(n)
T2 −−−−−→n→+∞

ΓT2 where

ΓT2 =
(
ΣT/2 ⊗Σ1/2

)(
ΣT/2 ⊗Σ1/2

)H
− 1

p

(
ΣT/2 ⊗Σ1/2

)
vec(I)vec(I)T

(
ΣT/2 ⊗Σ1/2

)H
=

(
ΣT ⊗Σ

)
− 1

p
vec(Σ)vec(Σ)H . (E.10)

Finally, we obtain the expression of ΓT

ΓT = ΓT1 − 2ΓT2 + ΓT3 =
1

p

(
ΣT ⊗Σ

)
+
p− 1

p2
vec(Σ)vec(Σ)H . (E.11)

The asymptotic pseudo-covariance matrix Ω is de�ned as

Ω = E
[
nvec

(
Σ̂T − Σ̂GCWE

)
vec
(
Σ̂T − Σ̂GCWE

)T]
. (E.12)

As derived in [117], ΩT = ΓTK which thanks to Eq. (A.3) leads to the result of Theorem
2.2.1 and concludes the proof.
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Appendix F

Synthèse

F.1 Introduction

Les statistiques de second ordre jouent un rôle de première importance dans les applica-
tions de traitement du signal. Leurs estimations ont récemment suscité un intérêt croissant
dans de nombreux communautés [130, 135, 27, 182, 117, 162, 129]. Sous l'hypothèse gaus-
sienne, l'estimateur classique est la matrice de covariance empirique (SCM), distribuée selon
une loi de Wishart [13] (à distance �nie, i.e. pour un nombre d'échantillons n et une dimen-
sion p des observations �xés). En tant qu'estimateur du maximum de vraisemblance (MLE)
dans ce contexte, la SCM possède de bonnes propriétés statistiques. Cependant, lorsque la
distribution des données n'est plus gaussienne, ou quand les données sont corrompues par des
données aberrantes (outliers), les performances de la SCM peuvent se dégrader fortement.

La théorie de l'estimation robuste o�re dans ce cas une alternative grâce aux M -
estimateurs, étudiés dans le cas réel dans [119]. Ces résultats ont été récemment étendus
au cas complexe, plus approprié aux applications de traitement du signal, dans [117]. La
plupart des travaux sur l'estimation robuste de la matrice de covariance ont été menés dans
le cadre de distributions symétriques elliptiques complexes (CES) (voir e.g., [130]). Ces M -
estimateurs donnent de très bons résultats quand ils sont utilisés à la place de la SCM.
Malheureusement, leur dé�nition est implicite, ce qui rend leur analyse statistique di�cile.
Cette thèse vise donc à caractériser le comportement des M -estimateurs plus �nement que
par une analyse asymptotique classique [117, 130]. Les résultats obtenus révèlent que les pro-
priétés statistiques des M -estimateurs peuvent être bien approximées par une distribution
de Wishart.

Grâce à ces résultats, nous analysons la décomposition de la matrice de covariance en
éléments propres. Selon l'application, la matrice de covariance peut posséder une structure
particulière impliquant valeurs propres multiples contenant les informations d'intérêt. Nous
abordons ainsi divers scénarios rencontrés dans la pratique et proposons des procédures
robustes basées sur des M -estimateurs.

Nous montrerons aussi l'intérêt des résultats proposés pour le traitement de données ra-
dar. Nous analysons deux problèmes souvent rencontrés dans le traitement radar : détection
adaptative et traitement des images radar.

La détection adaptative de signaux corrompus par un bruit additif est un problème omni-
présent en traitement statistique du signal. Ce problème a fait l'objet de nombreuses études
dans le contexte des perturbations gaussiennes. Plusieurs statistiques de décision ont été
proposées, telles que le test du rapport de vraisemblance généralisé (GLRT) (détecteur de
Kelly) [90], le �ltre adapté adaptatif (AMF ou GLRT à deux niveaux) [150], son équivalent
normalisé (�ltre adapté normalisé adaptatif, ANMF ou Adaptive Cosine Estimator, ACE)
[39, 97] et le test de Rao [118]. Les détecteurs associés ont été caractérisés en termes de PD
et de PFA, propriété de taux de fausse alarme constant (CFAR) (voir, par exemple, [132] et
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les références contenues dans cet article) et les performances dans des scénarios mismatch
[68]. Pour détecter un signal, ces détecteurs ont besoin de connaître les caractéristiques de
second ordre des données du bruit seul. Lorsque la matrice de covariance des données est
inconnue, la SCM la remplace généralement dans la formulation des détecteurs adaptatifs.
Dans le cas non-gaussien, un détecteur robuste peut être construit comme un détecteur clas-
sique en remplaçant la SCM par un M -estimateur. Dans ce contexte, les résultats proposés
pour caractériser les M -estimateurs permettront d'analyser �nement le comportement de
ces détecteurs robustes.

Les images de radar à synthèse d'ouverture polarimétrique (PolSAR) sont très utilisés
pour la classi�cation du terrain, la détection de cible, etc. Dans les images PolSAR, chaque
pixel correspond à un vecteur complexe, formée par la réponse des signaux rétrodi�usés
dans di�érentes combinaisons de polarisations linéaires reçues et transmises, appelé vecteur
de cible. Étant donné la position inconnue des di�useurs et en raison de la cohérence des
systèmes PolSAR, ce vecteur peut être modélisé comme aléatoire selon le modèle de Good-
man [72]. Ce phénomène, appelé speckle, dégrade considérablement la qualité de l'image
ainsi que les performances de nombreux traitements. Par conséquent, a�n de déterminer
les paramètres physiques d'intérêt, une étape de �ltrage du speckle est généralement appli-
quée, dans le but de réduire les �uctuations dues à ce bruit. Le �ltrage de speckle consiste
à estimer la matrice de covariance du vecteur de cible dans chaque pixel de l'image. Dans
cette thèse, nous analysons l'intérêt d'utiliser les techniques robustes, particulièrement les
M -estimateurs, pour des problématiques de �ltrage d'images PolSAR.

F.2 Etat de l'art

Cette section présente le contexte général de la thèse. Elle est divisée en trois parties.
La première partie porte sur l'estimation de la matrice de covariance, commençant par l'ap-
proche gaussienne classique, suivi du cadre elliptique et des méthodes robustes. La deuxième
partie traite la détection de signaux. Le problème de la détection d'un signal complexe dans
un environnement homogène et les détecteurs associés sont présentés. En�n, la dernière
partie traite des images PolSAR.

F.2.1 Estimation de la matrice de covariance

Dans cette partie, nous dé�nissons les termes nécessaires à notre étude sur l'estimation
robuste.

De�nition F.2.1. Matrice de covariance
La matrice de covariance C ∈ H du vecteur complexe z = a + jb est dé�nie comme

C = E
[
zzH

]
= E

[
aaT

]
+ E

[
bbT

]
+ j

(
E
[
baT

]
− E

[
abT

])
. (F.1)

De�nition F.2.2. Matrice de pseudo-covariance
La matrice de pseudo-covariance P ∈ CS du vecteur complexe z = a + jb est dé�nie comme

P = E
[
zzT

]
= E

[
aaT

]
− E

[
bbT

]
+ j

(
E
[
baT

]
+ E

[
abT

])
. (F.2)

Dans le traitement de signal les signaux sont très souvent considérés comme circulaires
du second ordre.

De�nition F.2.3. Circularité du second-ordre
Le vecteur complexe z est dit circulaire du second-ordre lorsque P = 0.

Hypothèse gaussienne

Traditionnellement, la plupart des applications de traitement du signal considèrent les
données comme étant gaussiennes. Dans ce cas, l'estimateur de maximum vraisemblance est
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la matrice de covariance empirique (SCM). Soit (x1, . . . ,xn) un n-échantillon de vecteurs
complexes indépendants de taille p avec xi ∼ CN (0,C). Alors, la SCM donnée par

Ĉ =
1

n

n∑
i=1

xix
H
i (F.3)

suit au facteur 1/n près une distribution de Wishart complexe, notée CWp(n,C). Sa distri-
bution asymptotique est donnée par

√
nvec

(
Ĉ−C

)
d→ GCN

(
0,CT ⊗C,

(
CT ⊗C

)
K
)
,

où GCN dénote la loi normale généralisée.

Distributions CES

Une généralisation naturelle de la distribution gaussienne est donnée par la classe des dis-
tributions elliptiques symétriques complexes (CES), qui permettent de modéliser des queues
plus lourdes et plus légères que la distribution gaussienne.

De�nition F.2.4. Distribution symétrique elliptique complexe (CES)
Un vecteur z aléatoire complexe circulaire de taille p suit une distribution CES, notée
CES (µ,Σ, gz), si sa densité de probabilité (p.d.f.) peut s'écrire

fz(z) = Cp,g|Σ|−1gz
(
(z− µ)HΣ−1(z− µ)

)
(F.4)

où Cp,g est une constante, gz : [0,∞)→ [0,∞) est une fonction telle que l'Eq. (F.4) dé�nit
une p.d.f., µ est l'espérance de z et Σ sa matrice de dispersion. Σ contient la structure de la
matrice de covariance de z, i.e., cette matrice de covariance (si elle existe) est proportionnelle
à Σ. Dans ce travail, nous supposons µ = 0 (hypothèse commune en traitement statistique
du signal).

Théorème F.2.1. Représentation stochastique des CES [187]
Un vecteur aléatoire z ∼ CES(0,Σ, gz) peut être représenté par

z
d
=
√
QAu (F.5)

où Σ = AAH est une factorisation de Σ et u ∼ U(CSp−1) (distribution uniforme sur la
sphère unité). Q est une variable aléatoire réelle non négative, indépendante de u avec une
p.d.f. dépendant uniquement de gz.

Une sous-classe très importante de distributions CES dans les applications de traitement
du signal sont les distributions gaussienne-composée complexes, également appelés Sphe-
rically Invariant Random Vectors (SIRV). Ces distributions sont largement utilisées pour
modélisation du fouillis radar.

De�nition F.2.5. Distribution gaussienne-composée complexe
Un vecteur aléatoire z suit une distribution gaussienne-composée complexe (de moyenne
nulle) s'il peut être représenté par

z
d
=
√
τg (F.6)

où τ est une variable aléatoire réelle non négative appelée la texture et g ∼ CN (0,Σ) est le
speckle.
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Exemples des distributions CES

• La loi gaussienne CN (0,Σ) : Elle s'obtient avec g(x) = exp(−x) et Cp,g = π−p.

• La t-distribution Ctν(0,Σ) : La t-distribution avec ν degrés de liberté s'obtient avec
g(x) = (1 + 2x/ν)−(2p+ν)/2 et Cp,g = 2pΓ( 2p+ν

2 )/[(πν)pΓ(ν2 )].

• La K-distribution CKν(0,Σ) : La K-distribution avec le paramètre de forme ν
s'obtient avec g(x) = x(ν−p)/2Kν−p(2

√
νx) et Cp,g = 2ν(ν+p)/2/(πpΓ(p)).

De�nition F.2.6. M -estimateur
Soit (z1, . . . , zn) un n-échantillon de vecteurs complexes indépendants de taille p avec zi ∼
CES(0,Σ, gz). Un M -estimateur de Σ, noté Σ̂, est dé�ni comme la solution de l'équation
suivante

Σ̂ =
1

n

n∑
i=1

u(zHi Σ̂−1zi)ziz
H
i , (F.7)

où u est une fonction réelle de pondération dé�nie sur [0,∞) qui n'est pas nécessairement
reliée à la p.d.f. de la distribution CES. La matrice de dispersion théorique de l'échantillon
est dé�nie comme la solution de

E
[
u
(
zHΣ−1

σ z
)
zzH

]
= Σσ = σ−1Σ, (F.8)

où σ > 0 est solution de
E [Ψ(σQ)] = p (F.9)

avec Ψ(σQ) = u(σQ)σQ et Q d
= zHΣ−1z.

Dans le cas des MLEs, la fonction de pondération dépend de la fonction génératrice g(x)
de densité comme u(x) = −g′(x)/g(x).

Dans [117], les propriétés asymptotiques suivantes des M -estimateurs ont été prouvées.

Théorème F.2.2. Propriétés asymptotiques
Si Σ̂ est un M -estimateur respectant les conditions de [119], alors

√
nvec

(
Σ̂−Σσ

)
d→ GCN (0,C,P) ,

où les matrices de covariance et de pseudo-covariance asymptotiques sont{
CM = ϑ1Σ

T
σ ⊗Σσ + ϑ2vec (Σσ) vec (Σσ)

H
,

PM = ϑ1

(
ΣT
σ ⊗Σσ

)
K + ϑ2vec (Σσ) vec (Σσ)

T
.

(F.10)

Les constantes ϑ1 > 0 et ϑ2 > −ϑ1/p sont données par [117]

ϑ1 = c−2
M aMp(p+ 1),

ϑ2 = (cM − p2)−2(aM − p2)− c−2
M aM (p+ 1),

(F.11)

où
aM = E

[
Ψ2(σQ)

]
,

cM = E [Ψ′(σQ)σQ] + p2.
(F.12)

Le tableau F.1 récapitule les fonctions de pondération u(x) et les fonctions Ψ(x) pour
quelques exemples desM -estimateurs. Les paramètres λ et β duM -estimateur d'Huber sont
réglables. Ils permettent de choisir quel sera le pourcentage de données atténuées (forme qua-
dratique supérieure à λ) ainsi que le coe�cient de proportionnalité entre la limite de l'esti-
mateur et la matrice de dispersion de la distribution elliptique considérée (σ de l'Eq. (F.9)).
Le M -estimateur de Student, correspond au M -estimater de Tyler pour ν = 0 et à la SCM
pour ν →∞.



F.2. Etat de l'art 151

M -estimateur u(x) Ψ(x)

M -estimateur de Tyler
p

x
p

M -estimateur d'Huber
1

β
min

(
1,
λ

x

)
1

β
min (x, λ)

M -estimateur de Student
2p+ ν

2x+ ν

2p+ ν

2x+ ν
x

Table F.1 � Exemples des M -estimateurs

F.2.2 Détection du signal

Dans cette partie, nous rappelons les problèmes de détection de � rang plein � et � rang
faible � dans les perturbations gaussiennes homogènes ainsi que plusieurs détecteurs adaptés
à ces situations.

Détection � rang plein �

On considère le problème consistant à détecter un signal complexe p dans les données
reçues sous la forme z = αp + c, où c est un bruit complexe (fouillis), α ∈ C une amplitude
complexe inconnue et p un vecteur directionnel (steering vector) connu. Ce problème peut
se formaliser à l'aide d'un test d'hypothèses binaires{

H0 : z = c zi = ci, i = 1, . . . , n,

H1 : z = αp + c zi = ci, i = 1, . . . , n,
(F.13)

où ci ∼ CN (0,Σ) sont n observations indépendantes ne contenant pas de signal et utilisées
pour estimer la matrice de covariance du bruit.

Nous nous intéressons à plusieurs détecteurs dé�nis ci-dessous.
• En supposant que les données primaires et secondaires sont gaussiennes avec une ma-
trice de covariance C inconnue, Kelly [90] a proposé le GLRT

ΛKelly

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2(

pHĈ−1p
)(

n+ zHĈ−1z
) H0

≶
H1

λKelly, (F.14)

où Ĉ est donné par l'Eq. (F.3).
• Dans [150], Robey a proposé un autre GLRT dans la même con�guration, mais en
considérant que C est connu. La version adaptative du détecteur est alors obtenue

ΛAMF

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2

n
(
pHĈ−1p

) H0

≶
H1

λAMF. (F.15)

• Le détecteur adapté normalisé adaptatif [39, 97], a été dérivé pour le bruit gaussien
partiellement homogène où C est di�érent entre les données primaires et secondaires,
c ∼ CN (0, αC) et ci ∼ CN (0,C)

ΛANMF

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2(

pHĈ−1p
)(

zHĈ−1z
) H0

≶
H1

λANMF. (F.16)
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• En 2007, De Maio a proposé une nouvelle statistique de détection basée sur le test de
Rao [118]

ΛRao

(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2 /(pHĈ−1p

)
(
n+ zHĈ−1z

)[
1 + 1

nzHĈ−1z− 1
n

|pHĈ−1z|2
pHĈ−1p

] H0

≶
H1

λRao. (F.17)

Toutes ces statistiques assurent la propriété CFAR par rapport à la matrice de covariance
et peuvent être caractérisés par la probabilité de détection et la probabilité de fausse alarme.

Détection � rang faible �

Dans le cas dit � rang faible � (LR), la perturbation est composée du fouillis gaussien de
rang faible et du bruit additif blanc gaussien (AWGN){

H0 : z = c + n zi = ci + ni, i = 1, . . . , n

H1 : z = αp + c + n zi = ci + ni, i = 1, . . . , n
(F.18)

où c ∼ CN (0,Σr) est le fouillis gaussien du rang faible, i.e. rang (Σr) = r � p et n ∼
CN (0, γ2Ip). Par conséquent, la matrice de covariance des données secondaires peut être
écrite sous la forme Σ = Σr + γ2Ip.

La décomposition en éléments propres (EVD) de la matrice Σr est dé�nie comme

Σr = UrΛrU
H
r avec

U = [u1, . . . ,ur] ∈ Upr ,
Λr = diag(λr),

λr = [λ1, . . . , λr] .

(F.19)

Le projecteur Πr sur le sous-espace de fouillis et le projecteur Π⊥r orthogonal sur le
fouillis sont dé�nis comme{

Πr = UrU
H
r

Π⊥r = I−Πr = U⊥r
(
U⊥r
)H avec U⊥r = [ur+1, . . . ,up] . (F.20)

A�n de supprimer le fouillis, nous pouvons e�ectuer un blanchiment approximatif Σ−1 ∼
Π⊥, les traitements rang faible exploitent cette propriété en remplaçant Ĉ par Π̂⊥. Par
exemple, le LR-ANMF prend la forme

ΛLR

(
Π̂⊥r

)
=

∣∣∣pHΠ̂⊥r z
∣∣∣2(

pHΠ̂⊥r p
)(

zHΠ̂⊥r z
) , (F.21)

où Π̂⊥r est un estimateur de Π⊥r .

F.2.3 Images PolSAR

Dans cette partie, nous expliquons les principes de l'imagerie radar à synthèse d'ouver-
ture. Les bases de polarimétrie SAR sont aussi récapitulées.

Images radar à synthèse d'ouverture (SAR)

Le radar est un système généralement utilisé pour détecter des objets et mesurer leur
vitesse. Une autre application est l'observation et l'analyse de la surface du sol par imagerie
SAR. Le grand avantage des systèmes SAR par rapport aux systèmes optiques est qu'ils
fournissent des images haute résolution qui ne dépendent pas de la lumière du jour, ni des
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conditions météorologiques. Comme un radar conventionnel, un capteur SAR transmet des
signaux électromagnétiques radar et collecte les échos rétrodi�usés.

Lorsque le signal atteint le sol, il est di�usé dans une ou plusieurs directions en fonction
des propriétés de la surface. Le signal résultant dans une cellule de résolution est obtenu en
tant que somme cohérente de tous les signaux rétrodi�usés renvoyés à la cellule. Les fortes
variations entre les amplitudes et les phases qui en résultent d'un pixel à l'autre provoquent
un e�et particulier observé dans les images SAR appelé speckle. Le speckle a un caractère
multiplicatif et sa variance augmente avec l'intensité du signal. Une méthode largement
utilisée pour la réduction du speckle est le �ltrage multi-look, qui correspond au moyennage
non cohérent de l'image d'intensité.

Polarimétrie

Les ondes SAR transmises sont polarisées et certains matériaux peuvent re�éter des po-
larisations di�érentes avec des intensités di�érentes. Certains matériaux peuvent également
convertir une polarisation en une autre. Les systèmes SAR peuvent alors transmettre un mé-
lange de polarisations et utiliser des antennes de réception avec une polarisation spéci�que,
a�n de collecter plusieurs signaux d'une même série d'impulsions.

Le principe de la polarimétrie SAR est expliqué par la matrice de di�usion, aussi appelée
matrice de Sinclair, qui décrit la transformation du vecteur d'onde transmise en vecteur
d'onde reçue e�ectuée par le di�useur

S =

[
SHH SHV
SV H SV V

]
.

Les éléments de S sont les quatre amplitudes de di�usion complexes, où les indices hori-
zontaux (H) ou verticaux (V) indiquent les polarisations associée reçues et transmises. Dans
les images PolSAR, la phase absolue est dans la plupart des cas négligée et seules les phases
relatives entre les éléments sont prises en compte. Dans la con�guration dite monostatique,
où l'antenne d'émission sert aussi d'antenne de réception, la matrice de Sinclair est symé-
trique, i.e. SHV = SV H . On peut alors réécrire la matrice de Sinclair sous forme vectorielle
en la projetant sur une base orthogonale. Le vecteur complexe de taille 3 × 1, résultant de
la projection lexicographique est donné par

kL =
[
SHH

√
2SHV SV V

]T
et il peut être alternativement remplacé par un vecteur obtenu avec la base de Pauli

kP =
1√
2

[SHH + SV V SHH − SV V 2SHV ]
T
. (F.22)

Les moments du second ordre sont donnés par les matrices de covariance Cs et de cohérence
Ck polarimétriques de la manière suivante :

CL = E
[
kLkHL

]
(F.23)

et
CP = E

[
kPkHP

]
. (F.24)

La décomposition de Cloude-Pottier [30] est basée sur l'idée qu'au sein de chaque pixel,
il existe un mécanisme polarimétrique associé à chacun des vecteurs propres et dont l'in-
tensité dépend de la valeur propre associée. On peut alors dé�nir trois paramètres de
CL =

∑3
i=1 λiuiu

H
i , qui dépendent des valeurs propres et des vecteurs propres.

• L'entropie H ∈ [0, 1] qui représente le degré de chaos à l'intérieur de la cellule de
résolution

H = −
3∑
i=1

pi log3 pi où pi =
λi∑3
i=1 λi

, (F.25)
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• L'anisotropie A ∈ [0, 1] qui représente des mécanismes de rétrodi�usion secondaires

A =
λ2 − λ3

λ2 + λ3
, (F.26)

• L'angle α ∈ (−π, π] qui représente le type de mécanisme dominant

α =

3∑
i=1

piαi. (F.27)

Modélisation des images PolSAR

Un modèle statistique précis est essentiel pour interpréter les informations obtenues sur
une zone observée. Le modèle gaussien a été fréquemment utilisé lorsque la résolution spatiale
des images PolSAR était modérée. Aujourd'hui, la plupart des systèmes SAR possèdent
des résolutions beaucoup plus élevées, la distribution gaussienne ne peut donc plus décrire
les �uctuations entre les cellules de résolution. Dans les scénarios à texture élevée, une
alternative consiste à utiliser les lois gaussiennes composées (De�nition F.2.5)

k =
√
τn (F.28)

où τ est un paramètre de texture dont la distribution n'est pas spéci�ée, d'espérance égale
à 1, et n est le vecteur de speckle, indépendant de τ , qui suit une loi gaussienne.

Filtrage des images PolSAR

Les méthodes de �ltrage PolSAR peuvent être réparties en plusieurs catégories en fonc-
tion de leur principe.

Le premier groupe comprend les méthodes de �ltrage utilisant une fenêtre ou un voisinage
locale, comme par exemple multi-look ou boxcar �ltre, LLMMSE (Local Linear Minimum
Mean Square Error) [108] �ltre, IDAN (Intensity-Driven Adaptive-Neighborhood) [175], etc.
Un autre groupe est composé des méthodes basées sur les équations aux dérivées partielles
comme par exemple AD (Anisotropic Di�usion) �ltre [143]. Ensuite, les méthodes varia-
tionnelles utilisent des informations de régularisation globales pour éliminer le bruit dans
les images. Ces dernières années, un intérêt croissant s'est porté sur les méthodes de �ltrage
basées sur l'apprentissage automatique. En�n, le dernier groupe est composé des méthodes
non locales. Dans la section F.6, nous nous intéressons à ce dernier groupe et ces adaptations
aux images PolSAR.

F.3 Nouvelles propriétés des M-estimateurs

Cette section propose une approche originale pour mieux comprendre le comportement des
M -estimateurs robustes de la matrice de dispersion. À cette �n, une nouvelle représentation
par � noyau gaussien � pour les distributions CES est proposée et l'équivalent Wishart (EW)
d'un M -estimateur est introduit. La distribution asymptotique entre un M -estimateur et son
EW est dérivée.

F.3.1 Modèle équivalent Wishart

Le modèle de � noyau gaussien �, utilisé comme une alternative à la représentation sto-
chastique classique (Eq. (F.5)) des vecteurs distribués CES est dé�ni comme suit.

Dé�nition F.3.1. Représentation par noyaux gaussiens
Un vecteur aléatoire z ∼ CES(0,Σ, gz) peut être représenté par

z
d
=

√
Q
‖g‖

Ag (F.29)
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où Σ = AAH est une factorisation de Σ et g ∼ CN (0, I). Q est une variable aléatoire réelle
non négative, indépendante de g avec une p.d.f. dépendant uniquement de gz. Nous appelons
x = Ag le noyau gaussien de z.

Nous pouvons maintenant introduire l'équivalent Wishart d'un M -estimateur.

Dé�nition F.3.2. Modèle équivalent Wishart
Soit (z1, . . . , zn) un n-échantillon où zi =

√
Qi/‖gi‖Agi suivant CES (0,Σ, gz), i =

1, . . . , n, et soient (x1, . . . ,xn) leurs noyaux gaussiens sous la forme xi = Agi ∼ CN (0,Σ),
i = 1, . . . , n. Soit Σ̂ est un M -estimateur construit avec (z1, . . . , zn) en utilisant l'Eq. (F.7).
La SCM construit avec les noyaux gaussiens, i.e.,

Σ̂EW =
1

n

n∑
i=1

xix
H
i (F.30)

représente l'Équivalent Wishart (EW) de Σ̂. Notons que Σ̂EW suit donc, par construction,
une loi de Wishart. Cet estimateur est non observable et est utilisé à des �ns théoriques.

F.3.2 Convergence vers l'EW

Nous considérons (z1, . . . , zn) un n-échantillon où zi ∼ CES (0,Σ, gz), i = 1, . . . , n, et
nous estimons la matrice de dispersion de la population en utilisant un M -estimateur dé�ni
avec l'Eq. (F.7). Ensuite, nous obtenons les résultats suivants.

Théorème F.3.1. Cas général
Soit σ donné par l'Eq. (F.8). La distribution asymptotique de σΣ̂− Σ̂EW est donnée par

√
nvec

(
σΣ̂− Σ̂EW

)
d→ GCN (0,Γ,Ω) (F.31)

où Γ et Ω sont dé�nis par{
Γ = σ1Σ

T ⊗Σ + σ2vec(Σ)vec(Σ)H ,
Ω = σ1

(
ΣT ⊗Σ

)
K + σ2vec(Σ)vec(Σ)T

(F.32)

avec σ1 et σ2 donnés par

σ1 = (aMp(p+ 1) + c(c− 2bM )) /c2M ,

σ2 = ϑ2 − 2p(bM − cM )/cM/(cM − p2), (F.33)

où aM , cM sont donnés par l'Eq. (F.12) et bM = E[Ψ(σQ)‖g‖2].

F.3.3 Cas particuliers

Dans la suite, nous présentons les résultats pour les M -estimateurs particuliers listés
dans la section F.2 et nous discutons leurs valeurs.

• M -estimateur de Tyler =⇒ σ1 =
1

p
et σ2 =

p− 1

p2

• M -estimateur d'Huber =⇒ bM = (p(p+ 1)F2p+4(2λ) + pλ(1− F2p+2(2λ)))/β

• M -estimateur de Student =⇒ σ1 = (p+ ν/2)−1 et σ2 = 2/ν (p+ 1 + ν/2)(p+ ν/2)−1

Discussion

Tout d'abord, il faut noter que résultats pour leM -estimateur de Tyler sont valides pour
toutes les distributions CES. Les résultats pour le M -estimateur d'Huber ont été obtenus
sous la con�guration des données gaussiennes. Les résultats pour leM -estimateur de Student
ont été obtenus dans le cas MLE.
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Ensuite, une remarque importante est que les facteurs σ1 et σ2 sont beaucoup plus petits
que ceux du régime asymptotique standard (ϑ1 et ϑ2 dans Théorème F.2.2).

Ce résultat montre que les M -estimateurs sont asymptotiquement plus proches de l'EW
que de la vraie matrice de dispersion, ce qui signi�e que le comportement d'unM -estimateur
peut être mieux caractérisé par le comportement de la matrice de Wishart correspondante
que par son régime asymptotique classique.

F.4 Estimation robuste des éléments propres de la ma-

trice de dispersion

Cette section traite de l'estimation des paramètres de décomposition en éléments propres
(EVD) des statistiques de second ordre. Trois cas di�érents, basés sur la structure de la
matrice de dispersion, sont analysés :

• λ1 > . . . > λp > 0,

• λ1 = . . . = λj1 > λj1+1 = . . . = λj2 > . . . > λjk = . . . = λp > 0,

• λ1 > . . . > λ2 > . . . λr > λr+1 = . . . = λp > 0,

où λ1, . . . , λp sont les valeurs propres de la dispersion.

F.4.1 Propriétés asymptotiques des éléments propres des M-
estimateurs

L'EVD d'une matrice (de dispersion) Σ est dé�nie comme

Σ
EVD
= UΛUH , with

U = [u1, . . . ,up] ∈ Upp ,
Λ = diag(λ),

λ = [λ1, . . . , λp] .

(F.34)

Dans la suite, nous supposons que les valeurs propres sont ordonnées λ1 > . . . > λp > 0 et
qu'un élément de chaque uj est réel positif (garantissant l'unicité de cette dé�nition).

En considérant à nouveau le modèle équivalent Wishart proposé dans la section F.3.2,
nous dé�nissons :

Σ̂
EVD
= ÛM Λ̂M

(
ÛM

)H
,

Σ̂EW
EVD
= ÛEWΛ̂EW

(
ÛEW

)H
.

(F.35)

Nous obtenons alors les résultats suivants.

Théorème F.4.1. Régime standard
La distribution asymptotique des valeurs propres et des vecteurs propres d'un M -estimateur
(Eqs. (F.35)) est caractérisée par

√
n
(
σλ̂

M
− λ

)
d→ N

(
0, ϑ1Λ

2 + ϑ2λλ
T
)
,

√
nΠ⊥j ûMj

d→ CN (0,Ξj) .
(F.36)

avec

Ξj = ϑ1λjUΛ(λjI−Λ)+2

UH (F.37)

où Π⊥j = I− uju
H
j et ϑ1, ϑ2 données par l'Eq. (F.11).



F.4. Estimation robuste des éléments propres de la matrice de dispersion 157

Théorème F.4.2. EW
La distribution asymptotique de la di�érence entre les valeurs propres et les vecteurs propres
d'un M -estimateur et de son EW est donnée par

√
n
(
σλ̂

M
− λ̂

EW
)

d→ N
(
0, σ1Λ

2 + σ2λλ
T
)
,

√
nΠ⊥j

(
ûMj − ûEW

j

) d→ CN (0, σ1/ϑ1Ξj) .
(F.38)

avec Ξj et σ1, σ2 donnés par les Eqs. (F.37) et (F.33), respectivement.

F.4.2 EFusion

Étant donné un n-échantillon (x1, . . . ,xn) de vecteurs indépendants de dimension p, la
SCM minimise de façon unique la fonction de log-vraisemblance

l(Σ; Σ̂SCM) = Tr(Σ−1Σ̂SCM) + log{det(Σ)} (F.39)

sur Σ ∈ Sp×p. Lorsque la taille de l'échantillon n n'est pas supérieur à p, les grandes (resp.
petites) valeurs propres de la SCM ont tendance à surestimer (resp. sous-estimer) largement
les valeurs propres de la vraie matrice de covariance. Pour palier ce problème, des estimateurs
régularisés ou pénalisés de la matrice de covariance ont été introduits dans une série d'articles
[102, 104, 26, 7, 1, 136, 163, 129, 11, 127]. Une SCM régularisée (RSCM) est alors obtenue
en minimisant

L(Σ; Σ̂RSCM; η) = l(Σ; Σ̂RSCM) + ηΠ(Σ), (F.40)

où Π(Σ) est une fonction de pénalité non négative et η ≥ 0 un paramètre de régularisa-
tion. Dans cette section, nous supposons que la matrice de covariance possède seulement
quelques valeurs propres, c'est-à-dire qu'il existe k groupes de valeurs propres distinctes.
Nous proposons un estimateur RSCM qui regroupe les valeurs propres en pénalisant les
grandes di�érences entre les valeurs propres successives.

Méthode proposée

Soit d1 ≥ · · · ≥ dp > 0 et λ1 ≥ · · · ≥ λp > 0 les valeurs propres ordonnées de la SCM
et de Σ, respectivement. De plus, soient rj = log(λj)− log(λj+1) les écarts entre les valeurs

propres logarithmiques successives de Σ et soient r[0]
j = log(dj)− log(dj+1) les écarts entre

log-valeurs propres de Σ̂SCM, j = 1, . . . , p − 1. Nous proposons de minimiser l'Eq. (F.40)
avec la pondération non convexe suivante

Π(Σ) =

p−1∑
j=1

1

6
·min

{
1, 1−

(
1− (rj/s)

2

c2

)3
}
, (F.41)

où c est un paramètre de réglage dé�ni par l'utilisateur et s est l'écart type de r[0]
j pour

j = 1, . . . , p − 1. Cette fonction est appelée fonction de Tukey [152]. Dans la minimisation
de l'Eq. (F.40), la pénalité dans l'Eq. (F.41) attribue des poids relativement importants aux
petits écarts rj et très grands écarts à des poids plus petits. L'algorithme est détaillé dans
Algorithme 3.

Nous comparons les performances de l'estimateur proposé avec elasso [171]. Dans elasso,
Π(Σ) =

∑p
j=1 aj log(λj) est utilisé comme fonction de pénalité, où les poids aj sont obtenus

en centrant des quantiles décroissants de la loi Mar�cenko-Pastur. Nous générons un échan-
tillon de taille n = 3000 suivant une distribution gaussienne p = 100. Semblable à [171], la
matrice de covariance Σ possède 40 valeurs propres égales à 20, 30 égales à 10 et 30 égales
à 2.

La �gure 3.8 illustre le processus de regroupement des valeurs propres avec elasso (eh
haut) et eFusion (en bas) en fonction de la valeur du paramètre de pénalité. Les résultats
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Algorithm 3: Algorithme eFusion

Entrée : d : Valeurs propres de la SCM Σ̂SCM ;
η : Paramètre de pénalité ;
c : Paramètre de Tukey.

Sortie : λ̂ :Valeurs propres pénalisées

Initialisation: k ← 0 ; λ[0] ← d
7 Calculer s = SD(r[0]),

Répéter
8 Calculer les écarts :

r
[k]
j ← log(λ

[k]
j )− log(λ

[k]
j+1), j = 1, . . . , p− 1,

9 Calculer les poids :

w
[k]
j ← ρ′c(r

[k]
j /s)/(r

[k]
j /s), j = 1, . . . , p− 1,

10 Calculer les valeurs propres :

log λ
[k+1]
j ← 1

w
[k]
j +w

[k]
j−1

(
s2

η (dj/λ
[k]
j − 1) + w

[k]
j log λ

[k]
j+1 + w

[k]
j−1 log λ

[k+1]
j−1

)
,

for j = 1, . . . , p.
11 k ← k + 1

jusqu'à la convergence

12 λ̂←
(

exp(log λ
[k+1]
1 ), . . . , exp(log λ

[k+1]
p )

)T
montrent l'amélioration signi�cative que notre estimateur peut o�rir. D'abord, il donne une
estimation non biaisée car les trois groupes de valeurs propres sont bien séparés et proches
de leur valeur réelle. De plus, il n'est pas nécessaire de rechercher une valeur optimale de
paramètre η, contrairement à elasso.

F.4.3 Propriétés asymptotiques du sous-espace principal des M-
estimateurs

Considérons le cas d'une matrice de dispersion à structure � rang faible plus identité �,
couramment utilisée en traitement du signal pour prendre en compte les signaux de faible
dimension intégrés dans le bruit blanc

Σ = Σr + γ2Ip
EVD
= [Ur|U⊥r ]Λ[Ur|U⊥r ]H (F.42)

avec Σr=UrΛrU
H
r , où Ur ∈ Upr et Λr ∈ Rr×r. Nous dé�nissons Rr{.} l'opérateur qui

extrait le sous-espace principal d'une matrice donnée comme

Rr : H −→ Gpr
Σ

EVD
= [Ur|U⊥

r ]Λ[Ur|U⊥
r ]

H 7−→ UrU
H
r

(F.43)

où Gpr est l'ensemble des projecteurs orthogonaux de rang r de Cp×p. Soit Σ̂ unM -estimateur
construit avec un n-échantillon de vecteurs complexes indépendants de taille p avec zi ∼
CES(0,Σ, gz) où Σ est dé�ni par l'Eq. (F.42) et soit Σ̂EW son EW dé�ni par la Dé�nition
F.3.2. Nous avons les principaux sous-espaces correspondants

Πr = Rr{Σ},
Π̂M
r = Rr{Σ̂},

Π̂EW
r = Rr{Σ̂EW}.

(F.44)

Théorème F.4.3. Projecteur robuste
Soit Π̂M

r l'estimateur du sous-espace principal Πr obtenu avec un M -estimateur
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(a) elasso

(b) eFusion avec c = 0.794

Figure F.1 � Exemple de groupement des valeurs propres avec elasso (en haut) et avec
eFusion (en bas) avec c = 0.794.

(Eq. (F.44)). La distribution asymptotique de Π̂M
r est donnée par

(RS)
√
nvec

(
Π̂M
r −Πr

)
d→ GCN (0, ϑ1ΓΠ, ϑ1ΓΠK) , (F.45)

(EW)
√
nvec

(
Π̂M
r − Π̂EW

r

)
d→ GCN (0, σ1ΓΠ, σ1ΓΠK) (F.46)
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où
ΓΠ = AT ⊗B + BT ⊗A (F.47)

avec A = Ur

(
γ2Λ−2

r + Λ−1
r

)
UH
r , B = γ2Π⊥r , ϑ1, ϑ2 et σ1, σ2 donnée par les Eqs. (F.11)

et (F.33), respectivement.

F.5 Détection robuste

Dans cette section, nous analysons les performances asymptotiques de la distance de
Mahalanobis robuste et des détecteurs adaptatifs robustes dans le contexte d'observations
non gaussiennes. Nous analysons les propriétés asymptotiques de di�érents détecteurs dé�nis
dans la section F.2.

F.5.1 Distance de Mahalanobis robuste

La distance de Mahalanobis [115, 113] est l'une des mesures les plus courantes en sta-
tistiques multivariées, en traitement du signal et en apprentissage automatique. La distance
de Mahalanobis entre z et µ est donnée par

∆2(µ,Σ) = (z− µ)HΣ−1(z− µ). (F.48)

où µ est la moyenne de la population et Σ la matrice de dispersion commune. Puisque
nous travaillons avec des vecteurs de moyenne connue, nous pouvons simplement analyser
∆2(Σ) = zHΣ−1z. Si les données suivent la loi gaussienne, nous avons

∆2 (Σ) ∼ (1/2)χ2
2p. (F.49)

Si la SCM est utilisée au lieu de la vraie matrice de dispersion et sous l'hypothèse gaussienne

∆2
(
Σ̂SCM

)
∼ nβ′ (p, n− p+ 1) (F.50)

où β′(a, b) désigne une distribution bêta de 1ème espèce avec des paramètres de forme réels
a et b.

Considérons un (n+1)-échantillon (z, z1, . . . , zn) de vecteurs complexes indépendants de
taille p avec zi ∼ CES(0,Σ, gz) où zi ∼ CES (0,Σ, gz). Soit Σ̂ un M -estimateur construit
avec (z1, . . . , zn) dé�ni par l'Eq. (F.7) et soit Σ̂EW son EW dé�ni par la Dé�nition F.3.2.
Nous dé�nissons alors la distance de Mahalanobis robuste ∆M et sa distance de Mahalanobis
équivalente (ME) comme 

∆ = ∆(Σ),

∆M = ∆(σΣ̂),

∆ME = ∆(Σ̂EW).

(F.51)

On obtient alors les résultats suivants.

Théorème F.5.1. Distance de Mahalanobis robuste
Soit ∆M la distance de Mahalanobis robuste et ∆ME sa GCEM, dé�nies par les Eqs. (F.51).
La distribution asymptotique conditionnelle de ∆M est donnée par

(RS)
√
n
(
∆2
M −∆2

)
z

d→ N
(
0, (ϑ1 + ϑ2)∆4

)
, (F.52)

(ME)
√
n
(
∆2
M −∆2

GCEM

)
z

d→ N
(
0, (σ1 + σ2)∆4

)
, (F.53)

où (.)z dénote la distribution conditionnelle à z, ϑ1 et ϑ2 sont donnés par l'Eq. (F.11) et σ1

et σ2 sont donnés par l'Eq. (F.33).

Remarque F.5.1. La variance asymptotique de la distance Mahalanobis robuste donnée par
l'Eq. (F.53) est plus petite que la variance donnée par l'Eq. (F.52) puisque σ1 +σ2 < ϑ1 +ϑ2.
Ces résultats révèlent que la distribution de la distance de Mahalanobis robuste est mieux
approximée avec la loi bêta de 1ème espèce qu'avec la loi chi-carré.
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F.5.2 Détection � rang plein � robuste

Nous considérons le problème de détection de signal dé�ni dans la section F.2 en suppo-
sant que les données secondaires sont non-gaussiennes.{

H0 : z = c zi = ci, i = 1, . . . , n,

H1 : z = αp + c zi = ci, i = 1, . . . , n,
(F.54)

où ci ∼ CES(0,Σ, gz) sont n observations indépendantes ne contenant pas de signal et
utilisées pour estimer la matrice de dispersion Σ.

Considérons un (n + 1)-échantillon (z, z1, . . . , zn) des données secondaires du problème
dé�ni par (F.54) avec zi ∼ CES(0,Σ, gz). Soit Σ̂ unM -estimateur construit avec (z1, . . . , zn)

dé�ni par l'Eq. (F.7) et soit Σ̂EW son EW dé�ni par la Dé�nition F.3.2. Soit Λ(·) une
statistique de détection (soit Kelly l'Eq. (F.14), AMF l'Eq. (F.15), ANMF dans l'Eq. (F.16),
ou Rao dans l'Eq. (F.17)). Nous dé�nissons alors le détecteur robuste Λ̂M et son détecteur
équivalent (DE) Λ̂DE comme {

Λ̂M = Λ(σΣ̂),

Λ̂DE = Λ(Σ̂EW).
(F.55)

On obtient alors les résultats suivants.

Théorème F.5.2. AMF, Kelly et Rao robustes
Soit Λ̂M le détecteur robuste avec Λ̂M ∈ {Λ̂Kelly, Λ̂Rao, Λ̂AMF}. Soit Λ̂DE le DE de Λ̂M ,
dé�nis par les Eqs. (F.55). La distribution asymptotique conditionnelle de Λ̂M est donnée
par

(RS)
√
n
(

Λ̂M − Λ
)

z

d→ N
(
0, ϑ1σX + ϑ2Λ2

)
(F.56)

(DE)
√
n
(

Λ̂M − Λ̂DE
)

z

d→ N
(
0, σ1σX + σ2Λ2

)
(F.57)

avec σX = Λ
(
2zHΣ−1z− Λ

)
, ϑ1 et ϑ2 dé�nis par l'Eq. (F.11) et σ1 et σ2 dé�nis par

l'Eq. (F.33).

Théorème F.5.3. ANMF robuste
Soit Λ̂MANMF le détecteur robuste dé�ni par l'Eq. (F.16). La distribution asymptotique condi-
tionnelle de Λ̂MANMF est donnée par

(RS)
√
n
(

Λ̂MANMF − ΛNMF

)
z

d→ N (0, ϑ1σH) (F.58)

(DE)
√
n
(

Λ̂MANMF − Λ̂DE
ANMF

)
z

d→ N (0, σ1σH) (F.59)

où σH = 2ΛNMF(ΛNMF − 1)2, ϑ1 dé�ni par l'Eq. (F.11) et σ1 dé�ni par l'Eq. (F.33).

Dans les résultats précédents, on peut noter que, comme σ1 < ϑ1 et σ2 ≤ ϑ2, la variance
asymptotique dans l'Eq. (F.57) (resp. l'Eq. (F.59)) est plus petite que celle de l'Eq. (F.56)
(resp. l'Eq. (F.58)). Ce résultat justi�e théoriquement que le comportement de Λ̂M est plus
proche de Λ̂DE que de Λ. Une des conséquences importantes est la meilleure prédiction des
performances de détection en utilisant des résultats déjà établis pour Λ̂DE au lieu de Λ.

Ceci est illustré sur la �gure F.2, qui présente les courbes � PFA-seuil � pour les détecteurs
t-ANMF, TyE-AMF, DE et SCM-ANMF, pour n = 20 et n = 100. Les relations théoriques
pour le détecteur EW-ANMF et le NMF (théorique car Σ est supposé connu), sont aussi
présentées. Notons que pour leM -estimateur de Student, on a ν = 2 (cas MLE). On constate
une très bonne adéquation entre les PFA obtenues pour t-ANMF, TyE-AMF, et la relation
théorique, comme attendu par le théorème F.5.3 : le comportement des détecteurs robustes
est mieux expliqué par celui du DE que par le NMF. Ceci est particulièrement �agrant pour
n petit, puisque toutes les courbes se rapprochent lorsque n augmente.
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Figure F.2 � Comparaison entre les relations Pfa − λ pour t-ANMF, TyE-ANMF and
SCM-ANMF avec les résultats empiriques et théoriques pour le DE et le NMF ; données

suivant une t-distribution avec ν = 2, p = 10 .

F.5.3 Détection � rang faible � robuste

Considérons maintenant le problème de détection de LR dé�ni comme suit{
H0 : z = c̃ zi = c̃i, i = 1, . . . , n,

H1 : z = αp + c̃ zi = c̃i, i = 1, . . . , n,
(F.60)

où c̃i ∼ CES(0,Σ, gz) sont n observations indépendantes ne contenant pas de signal avec
Σ = Σr + γ2Ip dé�nie par l'Eq. (F.42).

Soit Σ̂ un M -estimateur construit avec un n-échantillon de vecteurs complexes indépen-
dants de taille p avec zi ∼ CES(0,Σ, gz) où Σ est dé�ni par l'Eq. (F.42) et soit Σ̂EW son
EW dé�ni par la Dé�nition F.3.2. Nous avons les principaux sous-espaces et les détecteurs
de LR correspondants


Π⊥r = I−Rr{Σ},
Π̂⊥Mr = I−Rr{Σ̂},
Π̂⊥EW
r = I−Rr{Σ̂EW}.

(F.61)

Ensuite, on peut dé�nir les détecteurs de LR
ΛLR = ΛLR

(
Π⊥r
)
,

Λ̂MLR = ΛLR

(
Π̂⊥Mr

)
,

Λ̂DE
LR = ΛLR

(
Π̂⊥EW
r

)
.

(F.62)

Théorème F.5.4. LR-ANMF robuste
Considérons le test LR-ANMF robuste et son DE dé�nis par l'Eq. (F.21). Ainsi, condition-
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nellement à la distribution de z, la distribution asymptotique de Λ̂MLR est donnée par

(RS)
√
n
(

Λ̂MLR − ΛLR

)
z

d→ N
(
0, 2ϑ1γ

2 (1− ΛLR) (b− aΛLR)
)
, (F.63)

(DE)
√
n
(

Λ̂MLR − Λ̂DE
LR

)
z

d→ N
(
0, 2σ1γ

2 (1− ΛLR) (b− aΛLR)
)
, (F.64)

où

a =
zHAp

zHΠ⊥c p
+

pHAz

pHΠ⊥c z
et b =

zHAz

zHΠ⊥c z
+

pHAp

pHΠ⊥c p
,

avec A dé�ni dans le théorème F.4.3.

F.6 Débruitage robuste des images polarimétriques

Dans cette section, nous proposons une nouvelle méthode de �ltrage des images radar
à synthèse d'ouverture polarimétrique (PolSAR), nommée M -NL. Plus précisément, nous
développons une nouvelle approche statistique pour le calcul des poids dans les approches
non locales (NL). L'objectif est de présenter un critère simple permettant de détecter des
pixels similaires dans une image PolSAR, basé sur les nouvelles propriétés statistiques des
M -estimateurs dérivés dans la section F.3.

F.6.1 Méthodes non locales

Contrairement aux �ltres locaux, qui utilisent les valeurs d'un groupe de pixels entourant
un pixel cible pour �ltrer l'image, les méthodes non locales (NLM) utilisent tous les pixels
de l'image au cours du traitement. De plus, au lieu d'une simple comparaison de pixels, la
comparaison de patches (petit bloc de l'image) est proposée pour assurer une robustesse par
rapport au bruit. La valeur �nale dans le pixel central du patch est obtenue sous forme de
moyenne pondérée basée sur les (dis)similarités calculées. A�n de réduire les coûts de calcul
et d'améliorer les performances, la zone de recherche est limitée à une grande fenêtre [51].
Les méthodes NLM ont été principalement introduites pour les images numériques. Elles
ont été adaptées avec succès au �ltrage des données PolSAR. Dans la suite, nous présentons
brièvement une des méthodes NLM avancées pour le �ltrage PolSAR, NL-SAR [46].

NL-SAR

NL-SAR (SAR non local) est une méthode NLM avancée pour le débruitage d'images
radar. Elle contient plusieurs étapes suivantes : (1) pré-estimation, (2) calcul des poids, (3)
réduction du biais et (4) sélection de la meilleure estimation. La méthode fait d'abord une
pré-estimation de matrice de dispersion dans chaque pixel. En comparant ces matrices pré-
estimées, la méthode calcule les (dis)similarités entre pixels. Chaque pixel dans l'image est
comparé aux pixels dans une fenêtre de recherche. Grâce aux (dis)similarités, la méthode
calcule les poids associés aux pixels et calcule la matrice de dispersion dans le pixel central
comme la moyenne pondérée. Pour le pixels où cette estimation introduit un grand biais,
une étape supplémentaire est faite a�n de réduire le biais. Finalement, cette procédure est
répétée pour plusieurs ensembles de paramètres et l'estimation avec la variance minimale
est choisie comme l'estimation �nale.

F.6.2 M-NL

Dans cette section, nous présentons la méthodeM -NL, proposée pour améliorer le calcul
des poids de NL-SAR. La structure de l'algorithme est basée sur celle de NL-SAR. La
méthode M -NL est récapitulée dans l'algorithme 4. La dernière partie est similaire à celle
de NL-SAR (étapes 3 et 4) et ne sera pas détaillée en raison du manque d'espace.
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Pré-estimation. La pré-estimation est faite pour chaque pixel en utilisant les pixels voi-
sins provenant de petites fenêtres carrés de taille S = (2s + 1) × (2s + 1) où s est appelé
échelle. L'estimateur utilisé est donnée par

Σ̂t =
p+ d

S

S∑
i=1

kik
H
i

d+ kHi Σ̂−1
t ki

(F.65)

où Σ̂t représente un M -estimateur de Student.

Sélection des pixels. Ces valeurs pré-estimées permettent de sélectionner des échantillons
voisins autour de chaque pixel dans une fenêtre de recherche circulaire. La comparaison entre
pixels est ensuite faite en utilisant le M-test de Box

LBox =

(∣∣∣Σ̂1

∣∣∣S/2 ∣∣∣Σ̂2

∣∣∣S/2) / ∣∣∣Σ̂∣∣∣S
où Σ̂1 est obtenu avec k(1) = (k1, . . . ,kS), Σ̂2 avec k(2) = (kS+1, . . . ,k2S) et Σ̂ avec
k = (k(1),k(2)). En modi�ant la statistique LBox [17], on obtient la distribution approchée
suivante u = −2(1− 13

8S )ln(LBox) ∼ χ2(6). La similarité entre deux patches centrés en pixels
l et l′ est alors calculée comme

∆MNL (l, l′) =
∑
τ

u [(l + τ) , (l′ + τ)] , (F.66)

où τ ∈ [−p, p]2 est un décalage 2D indiquant la position dans chaque patch de taille P =
(2p+1)×(2p+1). Pour détecter les pixels similaires, les dissimilarités sont ensuite comparées à
un seuil dé�ni comme λ = F−1

χ2(6P )(1−Pfa) où F−1
χ2(6P ) est l'inverse de fonction de répartition

de χ2 (6P ) et Pfa est la probabilité de fausse alarme choisie.

Calcul des poids. Une fois les pixels similaires choisis, les poids sont calculés en utilisant
un noyau exponentiel

ωMNL(l, l′) =

{
e
−|∆MNL(l,l′)−cMNL|

λMNL if l 6= l′

1 if l = l′.
(F.67)

où cMNL = E [∆MNL(l, l′)|H0]. En�n, l'estimateur pondéré du maximum de vraisemblance
est donné par la moyenne pondérée

Σ̂NL(l) =

∑
l′ ωMNL(l, l′)k′k′H∑

l′ ωMNL(l, l′)
. (F.68)

F.6.3 Résultats expérimentaux

Dans cette section, les résultats obtenus pour des données simulées et données réelles
sont présentés. Les images simulées ont été générées à l'aide d'un champ de Markov suivant
une distribution de Gibbs [56]. Ensuite, un comportement polarimétrique a été attribué aux
di�érentes parties des images conçues. D'abord, un nombre aléatoire C de classes polari-
métriques est choisi entre 3 et 5, les classes 1 à C − 1 pour les di�useurs distribués et la
dernière classe pour les cibles (carrés de tailles variant entre 2 × 2 et 5 × 5 pixels). Après
avoir attribué des signatures polarimétriques aux di�useurs, un speckle gaussien est généré
en fonction de celles-ci et les cibles sont ajoutées. Après le débruitage, les paramètres sui-
vants ont été évalués : paramètres radiométriques σ (éléments diagonaux de la matrice de
covariance (information de puissance)), paramètres de corrélation complexe ρ (dérivés des
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Algorithm 4: Méthode M -NL

Initialisation : W,P,S, λMNL, cMNL, ν
forall x, y do

for s ∈ S (taille de l'échelle) do
Pré-estimation avec l'Eq. (F.65)

forall x, y (coordonnées du pixel l) do
for w ∈W (taille de la fenêtre de recherche) do

Calculer ∆x et ∆y
x′ = x+ ∆x
y′ = y + ∆y ; coordonnées du pixel l'
for s ∈ S do

for p ∈ P (taille du patch) do
Calculer ∆MNL(l, l′) avec l'Eq. (F.66)
if ∆MNL(l, l′) ≤ λMNL[p] then

Calculer ω(l, l′) avec l'Eq. (F.67)
else

ω(l, l′)← 0

forall s, p, w do

Calculer Σ̂NL avec l'Eq. (F.68)

Réduction du biais → Σ̂NLRB

retourner La meilleure estimation

trois termes complexes non diagonaux (corrélation de canaux)), paramètres de décomposi-
tion incohérente (Entropie (H), Anisotropie (A) et l'angle alpha moyen (α)-mécanisme de
di�usion, signatures de polarisation (SP) et préservation des bords (EP)).

Pour e�ectuer la comparaison, nous avons simulé cent images PolSAR arti�cielles de 128×
128 pixels comme décrit précédemment. L'ensemble des paramètres utilisés dans les deux
méthodes est le suivant : taille de la fenêtre {32, 52, . . . , 252}, taille du patch {32, 52, . . . , 112}
et échelle {0, 1, 2}. Comme le speckle est gaussien, nous avons choisi un ν su�samment grand
(ν = 100) a�n de conserver les informations sur la texture et d'assurer la convergence de la
solution lors de l'étape de pré-estimation. Les valeurs de λMNL ont été calculées à l'aide de
la formule correspondante de la section F.6.2.

Le tableau F.2 présente les résultats obtenus pour les paramètres d'évaluation dé�nis ci-
dessus. Les résultats ont été calculés sur l'ensemble des images PolSAR simulées et les valeurs
�nales sont comparées. On peut noter que M -NL o�re meilleurs résultats que NL-SAR dans
presque toutes les mesures sauf ρ et α.

Filters σ |ρ| ∠ρ H A α PS EP
NL-SAR 2.21 7.47 11.96 14.51 35.84 10.51 1.15 0.45
M -NL 1.56 9.10 14.47 14.49 33.96 10.97 1.05 0.56

Table F.2 � Résultats de �ltrage pour les données simulées : toutes les mesures sauf EP
(EP ∈ [0, 1]) sont des erreurs relatives absolues en %.

Les résultats pour les données réelles sont montrés sur la �gure F.3. Trois parties di�é-
rentes de la baie de San Francisco sont présentées de haut en bas, représentant di�érents
scénarios d'images PolSAR telles que l'eau, la végétation et les zones urbaines. Dans ce cas,
nous ne disposons d'aucune information sur la vérité terrain, nous ne pouvons donc analyser
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Speckle NL-SAR M -NL

Figure F.3 � Données réelles : Baie de San Francisco - 512× 512 images PolSAR. De
gauche à droite : speckle, résultats obtenus avec NL-SAR et résultats obtenus avec M -NL.

les résultats que de manière visuelle. Premièrement, on peut noter que M -NL lisse mieux
les zones homogènes, tout en préservant bien les bords dans les scénarios texturés. On peut
également noter que, comme dans le cas des données simulées, M -NL donne des résultats
avec un contraste plus élevé par rapport à NL-SAR.

F.7 Conclusion

Dans cette thèse, nous avons montré que les propriétés statistiques d'un M -estimateur
peuvent être bien décrites avec une distribution de Wishart. De plus, il a été révélé que les
paramètres EVD (valeurs propres / décomposition de vecteurs propres) des M -estimateurs
se comportent de manière similaire aux paramètres EVD correspondants d'une matrice de
Wishart. Les mêmes conclusions ont été tirées pour les principaux sous-espaces obtenus avec
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un M -estimateur. De plus, les résultats ont été étendus aux détecteurs adaptatifs. Il a été
démontré que les propriétés d'un détecteur robuste dans l'environnement CES, obtenues
avec unM -estimateur au lieu de la SCM, se comportent comme les statistiques de détection
gaussiennes correspondantes. En�n, l'application des nouvelles propriétés statistiques des
M -estimateurs au �ltrage des image radar polarimétriques (PolSAR) a été présentée.

En reprenant les éléments précédents, on peut tirer une conclusion générale pour cette
thèse : Il faut toujours privilégier les techniques robustes, car elles présentent de bonnes
performances lorsqu'elles sont appliquées à des jeux de données réelles et peuvent être ca-
ractérisées avec précision grâce à des modèles très simples.

Suite à la conclusion précédente, les résultats de cette thèse peuvent être étendus à di�é-
rentes problématiques et peuvent être appliqués à de nombreuses applications de traitement
du signal et d'apprentissage automatique.
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Titre : Statistiques des estimateurs robustes pour le traitement du signal et des images
Mots-clés : Estimation robuste, distributions CES, Loi de Wishart, détection du signal, images PolSAR.

Résumé : Un des dé�s majeurs en traitement radar
consiste à identi�er une cible cachée dans un en-
vironnement bruité. Pour ce faire, il est nécessaire
de caractériser �nement les propriétés statistiques du
bruit, en particulier sa matrice de covariance. Sous
l'hypothèse gaussienne, cette dernière est estimée
par la matrice de covariance empirique (SCM) dont
le comportement est parfaitement connu. Cepen-
dant, dans de nombreuses applications actuelles,
tels les systèmes radar modernes à haute résolution
par exemple, les données collectées sont de nature
hétérogène, et ne peuvent être proprement décrites
par un processus gaussien. Pour pallier ce problème,
les distributions symétriques elliptiques complexes,
caractérisant mieux ces phénomènes physiques com-
plexes, ont été proposées. Dans ce cas, les perfor-
mances de la SCM sont très médiocres et les M -
estimateurs apparaissent comme une bonne alterna-
tive, principalement en raison de leur �exibilité par
rapport au modèle statistique et de leur robustesse
aux données aberrantes et/ou aux données man-
quantes. Cependant, le comportement de tels esti-
mateurs reste encore mal compris. Dans ce contexte,
les contributions de cette thèse sont multiples.

D'abord, une approche originale pour analyser

les propriétés statistiques desM -estimateurs est pro-
posée, révélant que les propriétés statistiques des
M -estimateurs peuvent être bien approximées par
une distribution de Wishart. Grâce à ces résultats,
nous analysons la décomposition de la matrice de
covariance en éléments propres. Selon l'application,
la matrice de covariance peut posséder une struc-
ture particulière impliquant valeurs propres multiples
contenant les informations d'intérêt. Nous abor-
dons ainsi divers scénarios rencontrés dans la pra-
tique et proposons des procédures robustes basées
sur des M -estimateurs. De plus, nous étudions le
problème de la détection robuste du signal. Les pro-
priétés statistiques de diverses statistiques de détec-
tion adaptative construites avec des M -estimateurs
sont analysées. En�n, la dernière partie de ces
travaux est consacrée au traitement des images
radar à synthèse d'ouverture polarimétriques (Pol-
SAR). En imagerie PolSAR, un e�et particulier ap-
pelé speckle dégrade considérablement la qualité de
l'image. Dans cette thèse, nous montrons com-
ment les nouvelles propriétés statistiques des M -
estimateurs peuvent être exploitées a�n de construire
de nouvelles techniques pour la réduction du speckle.

Title: Robust estimation analysis for signal and image processing
Keywords: Robust estimation, CES distributions, Wishart distribution, signal detection, PolSAR imaging.

Abstract: One of the main challenges in radar pro-
cessing is to identify a target hidden in a distur-
bance environment. To this end, the noise statisti-
cal properties, especially the ones of the disturbance
covariance matrix, need to be determined. Under
the Gaussian assumption, the latter is estimated by
the sample covariance matrix (SCM) whose behav-
ior is perfectly known. However, in many applica-
tions, such as, for instance, the modern high reso-
lution radar systems, collected data exhibit a het-
erogeneous nature that cannot be adequately de-
scribed by a Gaussian process. To overcome this
problem, Complex Elliptically Symmetric distribu-
tions have been proposed since they can correctly
model these data behavior. In this case, the SCM
performs very poorly and M -estimators appear as a
good alternative, mainly due to their �exibility to
the statistical model and their robustness to outliers
and/or missing data. However, the behavior of such
estimators still remains unclear and not well under-
stood. In this context, the contributions of this thesis
are multiple.

First, an original approach to analyze the statisti-
cal properties ofM -estimators is proposed, revealing
that the statistical properties of M -estimators can
be approximately well-described by a Wishart dis-
tribution. Thanks to these results, we go further
and analyze the eigendecomposition of the covari-
ance matrix. Depending on the application, the co-
variance matrix can exhibit a particular structure in-
volving multiple eigenvalues containing the informa-
tion of interest. We thus address various scenarios
met in practice and propose robust procedures based
on M -estimators. Furthermore, we study the robust
signal detection problem. The statistical properties
of various adaptive detection statistics built withM -
estimators are analyzed. Finally, the last part deals
with polarimetric synthetic aperture radar (PolSAR)
image processing. In PolSAR imaging, a particular
e�ect called speckle signi�cantly degrades the im-
age quality. In this thesis, we demonstrate how the
new statistical properties ofM -estimators can be ex-
ploited in order to build new despeckling techniques.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery
Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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