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Abstract

The wide literature on graph theory invites numerous problems to be modeled in the
framework of graphs. In particular, clustering and segmentation algorithms designed in
this framework can be applied to solve problems in various domains, including image
processing, which is the main field of application investigated in this thesis. In this
work, we focus on a semi-supervised segmentation tool widely studied in mathematical
morphology and used in image analysis applications, namely the watershed transform.
We explore the notion of a hierarchical watershed, which is a multiscale extension of the
notion of watershed allowing to describe an image or, more generally, a dataset with
partitions at several detail levels. The main contributions of this study are the following:

• Recognition of hierarchical watersheds: we propose a characterization of hierarchical
watersheds which leads to an efficient algorithm to determine if a hierarchy is a
hierarchical watershed of a given edge-weighted graph.

• Watersheding operator: we introduce the watersheding operator, which, given an
edge-weighted graph, maps any hierarchy of partitions into a hierarchical watershed
of this edge-weighted graph. We show that this operator is idempotent and its fixed
points are the hierarchical watersheds. We also propose an efficient algorithm to
compute the result of this operator.

• Probability of hierarchical watersheds: we propose and study a notion of probability
of hierarchical watersheds, and we design an algorithm to compute the probability
of a hierarchical watershed. Furthermore, we present algorithms to compute the
hierarchical watersheds of maximal and minimal probabilities of a given weighted
graph.

• Combination of hierarchies: we investigate a family of operators to combine hier-
archies of partitions and study the properties of these operators when applied to
hierarchical watersheds. In particular, we prove that, under certain conditions, the
family of hierarchical watersheds is closed for the combination operator.
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• Evaluation of hierarchies: we propose an evaluation framework of hierarchies, which
is further used to assess hierarchical watersheds and combinations of hierarchies.

In conclusion, this thesis reviews existing and introduces new properties and algo-
rithms related to hierarchical watersheds, showing the theoretical richness of this frame-
work and providing insightful view for its applications in image analysis and computer
vision and, more generally, for data processing and machine learning.
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Résumé

La littérature abondante sur la théorie des graphes invite de nombreux problèmes à être
modélisés dans ce cadre. En particulier, les algorithmes de regroupement et de segmen-
tation conçus dans ce cadre peuvent être utilisés pour résoudre des problèmes dans de
nombreux domaines tels que l’analyse d’image qui est le principal domaine d’application
de cette thèse. Dans ce travail, nous nous concentrons sur un outil de segmentation semi-
supervisé largement étudié dans la morphologie mathematique et appliqué à l’analyse
d’image, notamment les Ligne de Partage des Eaux (LPE). Nous étudions la notion de
hiérarchie de LPE, qui est une extension multi-échelle de la notion de LPE permettant
de décrire une image ou, plus généralement, un ensemble de donnés par des partitions
à plusieurs niveaux de détail. Les contributions principales de cette étude sont les suiv-
antes :

• Reconnaissance de hiérarchies de LPE : nous proposons une caractérisation des
hiérarchies de LPE qui mène à un algorithme efficace pour déterminer si une hiérar-
chie est une hiérarchie de LPE d’un graphe donné.

• Opérateur watersheding : nous présentons l’opérateur watersheding, qui, étant
donné un graphe pondéré, associe n’importe quelle hiérarchie à une hiérarchie de
LPE de ce graphe. Nous montrons que cet opérateur est idempotent et que ses
points fixes sont les hiérarchies de LPE. Nous proposons également un algorithme
efficace pour calculer le résultat de cet opérateur.

• Probabilité de hiérarchies de LPE : nous proposons et étudions une notion de
probabilité d’une hiérarchie de LPE, et nous concevons un algorithme pour calculer
la probabilité d’une hiérarchie de LPE. De plus, nous présentons des algorithmes
pour calculer des hiérarchies de LPE de probabilité minimale et maximale pour un
graphe pondéré donné.

• Combinaison de hiérarchies : nous étudions une famille d’opérateurs pour com-
biner des hiérarchies de partitions et nous étudions les propriétés de ces opérateurs
lorsqu’ils sont appliqués à les hiérarchies de LPE. En particulier, nous prouvons
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que, dans certaines conditions, la famille des hiérarchies de LPE est fermée pour
l’opérateur de combinaison.

• Évaluation de hiérarchies : nous proposons un cadre d’évaluation de hiérarchies,
qui est également utilisé pour évaluer les hiérarchies de LPE et les combinaisons
des hiérarchies.

En conclusion, cette thèse révise des propriétés existantes et des nouvelles propriétés
liées aux hiérarchies de LPE, montrant la richesse théorique de ce cadre et fournissant
une vue d’ensemble des ses applications dans l’analyse d’image et dans la vision par
ordinateur et, plus généralement, dans le traitement de donnés et dans l’apprentissage
automatique.

6



Contents

Chapter 1 – Introduction 15

Chapter 2 – Hierarchies and Graphs 23
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Hierarchies of partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Quasi-flat zones hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Contour saliency maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Binary partition trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Hierarchical watersheds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Attribute based hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 3 – Characterization and recognition of hierarchical wa-
tersheds 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Characterization of hierarchical watersheds . . . . . . . . . . . . . . . . . 64
3.3 Algorithm to recognize hierarchical watersheds . . . . . . . . . . . . . . . 68
3.4 Flattened hierarchical watersheds . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 4 – Watersheding hierarchies 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Watersheding operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Watersheding operator algorithm . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Illustrations of applications in image analysis . . . . . . . . . . . . . . . . 85
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 5 – Probability of hierarchical watersheds 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Studying probabilities of hierarchical watersheds . . . . . . . . . . . . . . 96
5.3 Algorithm to compute the probability of a hierarchical watershed . . . . 98
5.4 Most and least probable hierarchical watersheds . . . . . . . . . . . . . . 99
5.5 Algorithms to compute a most and a least probable hierarchical watershed 103

7



5.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 6 – Evaluation framework of hierarchies of segmentations 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Cut of a hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Number of parent nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Baseline: precision-recall for boundaries . . . . . . . . . . . . . . . . . . . 112
6.5 Proposed evaluation methodology . . . . . . . . . . . . . . . . . . . . . . 113
6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 7 – Combination of hierarchies 125
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 General combination framework . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 Normalization of saliency maps . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 Visual inspection of combinations of hierarchies . . . . . . . . . . . . . . 133
7.5 Quantitative assessment of combinations of hierarchical watersheds . . . 144
7.6 Properties of combinations of hierarchical watersheds . . . . . . . . . . . 151
7.7 Recognition of hierarchical watersheds applied to combinations of hierarchies155
7.8 Watersheding of combinations of hierarchical watersheds . . . . . . . . . 157
7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Chapter 8 – Conclusion 161

References 165

Appendix: proofs of theorems and properties I
8.1 Proofs of theorem and properties of Chapter 3 . . . . . . . . . . . . . . . I
8.2 Proofs of theorem and properties of Chapter 4 . . . . . . . . . . . . . . . XXVII
8.3 Proofs of theorem and properties of Chapter 5 . . . . . . . . . . . . . . . XLIV
8.4 Proofs of theorem and properties of Chapter 7 . . . . . . . . . . . . . . . L

8



List of figures

1.1 Graph representation of the seven bridges of Königsberg . . . . . . . . . 16
2.1 The representation of a graph and of a hierarchy . . . . . . . . . . . . . . 24
2.2 A gray-scale and a color image. . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 An image partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 A saliency map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 A weighted graph and its binary partition hierarchy . . . . . . . . . . . . 38
2.6 A weighted graph and one of its hierarchical watersheds . . . . . . . . . . 42
2.7 Marked-based segmentation with min-cuts . . . . . . . . . . . . . . . . . 44
2.8 Marked-based segmentation with average-cuts . . . . . . . . . . . . . . . 45
2.9 Marked-based segmentation with shortest path forests . . . . . . . . . . . 46
2.10 Watershed segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.11 Hierarchical watersheds based on increasing attributes . . . . . . . . . . . 56
2.12 Non-increasing attributes: circularity, rectangularity and perimeter . . . 57
2.13 Hierarchical watersheds based on regularized circularity . . . . . . . . . . 58
2.14 Hierarchies based on non-increasing attributes . . . . . . . . . . . . . . . 59
3.1 Illustration of the notion of building edge and suppremum descendant map 65
3.2 Illustration of the notion of one-side increasing map . . . . . . . . . . . . 67
3.3 Toy example of the algorithm to recognize hierarchical watersheds . . . . 71
4.1 A hierarchical watershed based on regularized circularity and the result of

the watersheding operator . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Illustration of the notion of extinction map . . . . . . . . . . . . . . . . . 79
4.3 Illustration of the notions of dominant region and approximated extinction

map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Illustrations of the notions of estimated sequence of minima and water-

sheding operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Watersheding of hierarchies based on non-increasing attributes . . . . . . 88
4.6 Watersheding of hierarchies based on non-increasing attributes . . . . . . 89

9



4.7 Watersheding of a state-of-the-art hierarchy . . . . . . . . . . . . . . . . 90
4.8 Watersheding of a state-of-the-art hierarchy . . . . . . . . . . . . . . . . 91
5.1 Example of watershed segmentations obtained from multiple orderings of

the minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 A graph and its binary partition hierarchy . . . . . . . . . . . . . . . . . 97
5.3 Illustration of the notion of maximal region . . . . . . . . . . . . . . . . . 97
5.4 Probabilities of the hierarchical watersheds of a given graph . . . . . . . 102
5.5 Least and most probable hierarchical watersheds of two gradients . . . . 108
6.1 Cut of a hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Number of parent nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Illustration of under- and over-segmentation for hierarchies . . . . . . . . 115
6.4 Markers obtained by erosion and skeletonization . . . . . . . . . . . . . . 117
6.5 Influence of the gradient on dynamics and area based hierarchical watersheds119
6.6 Influence of the area filter on quasi-flat zone hierarchies . . . . . . . . . . 121
6.7 Influence of area filtering on dynamics based hierarchical watershed . . . 121
6.8 Best achieved results for each hierarchy and a high quality hierarchical

segmentation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1 Combination of two hierarchical watersheds by average . . . . . . . . . . 127
7.2 Scheme of our method to combine hierarchical watersheds . . . . . . . . 130
7.3 Illustration of combinations by infimum and concatenation . . . . . . . . 131
7.4 Intuitive idea of the concatenation of hierarchies . . . . . . . . . . . . . . 131
7.5 Normalization of saliency maps . . . . . . . . . . . . . . . . . . . . . . . 133
7.6 Image gradients: Lab and SED . . . . . . . . . . . . . . . . . . . . . . . 134
7.7 Combination by infimum using Lab gradient . . . . . . . . . . . . . . . . 135
7.8 Combination by infimum using SED gradient . . . . . . . . . . . . . . . . 136
7.9 Combination by supremum using Lab gradient . . . . . . . . . . . . . . . 137
7.10 Combination by supremum using SED gradient . . . . . . . . . . . . . . 138
7.11 Combination by average using Lab gradient . . . . . . . . . . . . . . . . 139
7.12 Combination by average using SED gradient . . . . . . . . . . . . . . . . 140
7.13 Combination by concatenation using SED gradient . . . . . . . . . . . . 141
7.14 Combination of area and circularity based hierarchies . . . . . . . . . . . 143
7.15 Combination of area and circularity based hierarchies . . . . . . . . . . . 144
7.16 Combination of dynamics and perimeter based hierarchies . . . . . . . . 144
7.17 Fragmentation curves of the concatenation of area and dynamics based

hierarchical watersheds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.18 Optimal linear combination for one image . . . . . . . . . . . . . . . . . 150

10



7.19 Comparison of our best linear combination with other hierarchies . . . . 151
7.20 The combination of two hierarchies by supremum . . . . . . . . . . . . . 153
7.21 The combination of two hierarchies by infimum and concatenation . . . . 153
7.22 Combinations of hierarchies that are not one-side increasing for the same

altitude ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11



12



List of tables

7.1 Evaluation scores of hierarchical watersheds . . . . . . . . . . . . . . . . 146
7.2 Evaluation scores of combinations by supremum . . . . . . . . . . . . . . 147
7.3 Evaluation scores of combinations by infimum . . . . . . . . . . . . . . . 147
7.4 Evaluation scores of combinations by average . . . . . . . . . . . . . . . . 147
7.5 Evaluation scores of combinations by concatenation . . . . . . . . . . . . 149
7.6 Evaluation scores of optimal linear combinations . . . . . . . . . . . . . . 150
7.7 Algorithm to recognize hierarchical watersheds applied to combinations of

hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.8 Evaluation scores of the watersheding of combinations of hierarchical wa-

tersheds by supremum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.9 Evaluation scores of the watersheding of combinations of hierarchical wa-

tersheds by infimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.10 Evaluation scores of the watersheding of combinations of hierarchical wa-

tersheds by infimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

13



14



Chapter 1

Introduction

This thesis is a study of hierarchical watersheds in the framework of weighted graphs,
covering theoretical aspects of hierarchical watersheds and experiments on digital image
segmentation.

Given a set V and a set E such that E is composed of pairs of elements of V , we say
that the pair (V,E) is a graph, where any element of V is called a vertex and any element
of E is called an edge. The first known application of graphs was on the problem of the
seven bridges of Königsberg formulated by Euler in the 18th century [30]. The problem
was to determine if there exists any path that passes by all seven bridges (see Figure
1.1(a)) exactly once in such a way that the river can only be crossed through one of the
bridges. Euler solved this problem using a graph representation of those bridges: each
land area is represented by a vertex and each bridge is represented by an edge linking
a pair of land areas, as shown in Figure 1.1(b). He proved that there is no solution to
this problem. Furthermore, Euler demonstrated that the existence of a solution to other
similar problems depends only on the topology of the underlying graphs rather than on
the absolute geometrical positions of the bridges.

Since then, numerous optimization problems have been formulated in the framework
of graphs. For instance, let us consider shortest path optimization problems. Let (V,E)

be a graph and let x and y be two vertices in V . A path from x to y (in (V,E)) is a
sequence (x1, . . . , x`) such that x1 = x, x` = y and such that, for i in {1, . . . , `− 1}, the
edge {xi, xi+1} is an edge in E. If there is a path from x to y in (V,E), we say that x
and y are connected for (V,E). A shortest path from x to y is a path (x1, . . . , x`) such
that ` is minimal among all paths from x to y. In practice, a vertex can represent a
“real object” as a city or an antenna, or an “abstract object” such as a word in a given
language or profiles of a social network. Hence, edges can link neighbouring cities, closest
pairs of antennas, similar words or virtual friends/followers. In this context, solving the
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16 Introduction

(a) (b)

Figure 1.1: (a): The configuration of the seven bridges of Königsberg in the 18th century.
(b): The representation of the seven bridges of Königsberg as a graph.

shortest path problem can help with finding the most direct path between any two cities
or antennas, the least number of modifications needed to transform one word into another,
or to infer “how close are two users of a social network?”.

More complex problems can be formulated by assigning weights to the edges of a
graph. Let G = (V,E) be a graph and let w be a map from E into the set of positive
real numbers R+. For any edge u in E, we call w(u) the weight of u. We call (G,w)

a edge-weighted graph. In this context, the shortest path problem can be formulated
so as to take into consideration the weights of the edges in E. Let f be any function
from any path π = (x1, . . . , x`) into the set R+ of positive real numbers, e.g. f(π) =

max{w({xi, xi+1}) | i ∈ {1, . . . , ` − 1}} or f(π) =
∑̀
i=1

w({xi, xi+1}). Given any two

vertices x and y in V , a shortest path from x to y is a path π = (x1, . . . , x`) from x

to y such that f(π) is minimal among all paths from x to y. Considering the examples
given in the previous paragraph, the weight of an edge can represent, for example, a road
length, the time to transfer a given amount of data between two antennas, the level of
similarity between two words or the number of interactions between two users of a social
network. Hence, incorporating weights to the edges of a graph aids to approximate the
graph representation to the real world problems.

As the problems aforementioned, the large literature on graph theory invites many
classification problems to be formulated in the framework of graphs. We denote by class
or cluster a group of (data) points which are similar with respect to a given criterion.
Let P be a set. A classification of the elements of P is the assignment of each element
of P to a class (or to several classes). In the context of graphs, the set P is formalized
as the set of vertices of a graph, whose edges link pair of vertices that are potentially in
the same class. Let (G,w) be a edge-weighted graph. A classification of the vertices of G
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is often obtained by minimizing energy functions related to the weight of edges linking
vertices in the same class (or edges linking vertices in different classes). For instance, let
us consider that the vertices of G represent the researchers in a given conference. We
may be interested in classifying this group of researchers according to their specific area
of interest. To do so, we could link each two researchers x and y by an edge whose weight
is the number of articles in which x cites y plus the number of articles in which y cites x.
We can infer that, in most cases, the researchers working on the same area are linked
by edges of larger weights than the edges linking researchers in different areas. Hence, a
classification of the vertices of G could be the result of maximizing (resp. minimizing)
the sum of the edges linking vertices in a same class (resp. different classes).

We can consider two variants of the previous classification problem: (1) supervised
classification: the areas of research are defined beforehand and samples of each class are
used by the classification algorithm; and (2) unsupervised classification: the areas of
research are deduced from the result of the classification algorithm.

Similarly to classification problems, segmentation problems are also commonly formu-
lated in the framework of graphs. Let P be a set. A segmentation of P is a partition of P
into disjoint subsets R1, . . . , R` such that every element of P is in exactly one subset Ri.
Each subset of a segmentation of P is called a region of this segmentation. In practice,
the set P represents a set of real or abstract objects whose similarity can be measured.
Then, the elements of P are segmented by their degree of similarity. We can observe
that classification and segmentation problems are related: a classification of the elements
of P into disjoint classes induces a partition of P and, on the other hand, segmenting P
can be a pre-processing step to classification algorithms, which is often the case. As
classification problems, we can also consider two variations of segmentation methods: (1)
marker-based segmentation: given a set S of disjoint subsets (markers) of P , each region
of the final segmentation of P includes exactly one element of S; and (2) no markers are
provided and the final regions depend on the algorithm and possibly on other parameters
such as number and size of regions.

A typical segmentation problem is the segmentation of digital images. A (digital)
image is a matrix of picture elements or pixels such that each pixel comprises the color or
gray-scale information of a point in the image. Let I be an image. In the framework of
edge-weighted graphs, the image I can be represented as an edge-weighted graph (G,w)

such that the vertices of G correspond to the pixels of I, the edges of G link neighbouring
pixels of I, and the edge weights are a measure of dissimilarity between pixels. Alterna-
tively, the vertices of G can also represent disjoint subsets of connected pixels of I, with
the resulting graph known as a Region Adjacency Graph (RAG).
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Several notions related of graphs induce good solutions for practical image segmen-
tation problems. Hence, we can profit of the efficient algorithms that have already been
developed in graph theory in order to solve new application problems. To give an exam-
ple, let us consider the minimum spanning forest problem. Let ((V,E), w) be a graph
and let S be a set of disjoint subsets of the vertex set of G. A minimum spanning forest
of ((V,E), w) rooted in S is a graph ((V,E ′), w) such that:

1. any two vertices in a same element of S are connected for (V,E ′);

2. any two vertices in distinct elements of S are not connected for (V,E ′); and

3. the sum of the weight of all edges in E ′ is minimal for all graphs for which statements
1 and 2 hold true.

In the context of image segmentation, we can see that the minimum spanning forest
of ((V,E), w) rooted in S induces a marker-based segmentation in which the regions
are determined by the vertices (pixels) that are connected in (V,E ′). As we will see
later, the notion of minimum spanning forests induce efficient segmentation algorithms
which satisfy relevant mathematical properties. Moreover, minimum spanning forests
are closely related to the segmentation method explored in this thesis: the watershed
transform.

In the late 70’s, the watershed transform was proposed as a powerful tool in the seg-
mentation of gray-scale digital images. Since then, numerous definitions and algorithms
to implement the watershed transform have been designed. The idea behind the water-
shed transform is that an image (or a weighted graph) can be visualized as a topographic
surface. In this context, a set of connected pixels surrounded by pixels of strictly greater
gray values (or a set of adjacent vertices/edges surrounded by vertices/edges of strictly
greater weights) is a regional minimum of the surface. Each regional minimum can be
associated to a zone of influence, known as a catchment basin. From any point x (pixel
or vertex) in the zone of influence of a regional minimum, there is a descending path
from x to this regional minimum, where a descending path is either defined as a sequence
of connected pixels of non-increasing gray levels, or a sequence of vertices connected by
edges of non-increasing weights.

By iteratively merging the regions of a segmentation, we produce a hierarchy of seg-
mentations, which is a sequence of nested segmentations of an image. Hence, a hierarchy
provide segmentations of an image with different levels of detail, where the segmentation
in the lowest level contains the largest number of regions. When the initial segmentation
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is a watershed segmentation of a graph and when the merging steps are guided by a
sequence of minima of this graph, we obtain a hierarchical watershed.

When formalized in the framework of weighted graphs, hierarchical watersheds are
deeply linked to the optimization problem of minimum spanning trees. As a result of this
link, each segmentation of a hierarchical watershed is optimal in the sense of minimum
spanning forests, providing us good quality hierarchy of segmentations that optimizes
a well defined objective function. Moreover, minimum spanning tree algorithms can be
adapted to the computation of hierarchical watersheds, which leads to efficient algorithms
to compute the latter.

Hierarchical watersheds are part of a broader family of hierarchical image representa-
tions, whose main applications include image simplification and filtering, implementation
of morphological connected operators, and provision of a larger search space for object
detection tasks (when compared to a single segmentation).

In this work, we study hierarchical watersheds in the framework of graphs. For visu-
alization and evaluation purposes, we recur to the problem of digital image segmentation.
However, the theoretical results introduced in this manuscript hold for arbitrary graphs
and, hence, can be applied to a broader range of problems.

The remainder of this manuscript is organized as follows:

• Chapter 2 introduces the background theory of this research. We present a brief
survey and the formal definitions related to each of those topics: hierarchical image
representations, weighted graphs, connected hierarchies, saliency maps, morpholog-
ical hierarchies (quasi-flat zones hierarchies, binary partition trees and hierarchical
watersheds), and attribute based hierarchies.

• Chapter 3 proposes a characterization of hierarchical watersheds and an efficient al-
gorithm to recognize hierarchical watersheds. Using the notions of saliency map and
binary partition hierarchy by altitude ordering (a special case of binary partition
trees), we present a necessary and sufficient condition for any connected hierarchy
to be a hierarchical watershed.

• Chapter 4 presents the watersheding operator, which converts any hierarchy into
a hierarchical watershed of a given weighted graph. This operator is idempotent
and its set of fixed points is precisely the set of hierarchical watersheds. Hence, we
establish the link between the watersheding operator and the problem of recogniz-
ing of hierarchical watersheds studied in Chapter 3. We also present an efficient
algorithm that implements the watersheding operator and experimental results on
images.
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• Chapter 5 studies the probability of hierarchical watersheds. By definition, a hi-
erarchical watershed can be computed from a sequence of minima of a weighted
graph. In this chapter, we demonstrate that a hierarchical watershed can be ob-
tained from numerous sequences of minima of a graph. We show that the number
of sequences of minima associated to different hierarchical watersheds of a weighted
graph may differ. In this context, we define the probability of a hierarchical wa-
tershed with respect to the number of sequences of minima that could be used to
compute this hierarchy. Then, we present an efficient method to obtain the prob-
ability of a hierarchical watershed, and a characterization of the most and least
probable hierarchical watersheds of a weighted graph.

• Chapter 6 introduces an evaluation framework of hierarchies of segmentations. We
present three evaluation measures that summarize several aspects of a hierarchy
of segmentations, including the tendency to over and under-segmentation, and the
easiness of extracting objects of interest with the help of markers. This evaluation
framework allows us to identify a hierarchical watershed based on a novel extinction
value that outperform the classical area, dynamics and volume based hierarchical
watersheds. Then, this evaluation framework is used to compare hierarchical wa-
tersheds with other morphological hierarchies.

• Chapter 7 presents theoretical and experimental results of combinations of hier-
archical watersheds. We first perform a visual inspection of combinations of hier-
archies. Then, using the evaluation framework introduced in Chapter 6, we show
that combinations of hierarchical watershed through their saliency maps can outper-
form the input hierarchies. We also study properties of combinations by providing
a sufficient condition for a combination to always output a flattened (simplified) hi-
erarchical watershed. Then, we present experimental results with the algorithm to
recognize hierarchical watersheds (Chapter 3) applied to combinations of hierarchi-
cal watersheds. Finally, we show the interest of applying the watersheding operator
(Chapter 4) to combinations of hierarchical watersheds: evaluation scores at least
as good as the combinations with the advantage of preserving the mathematical
properties of hierarchical watersheds.
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Chapter 2

Hierarchies and Graphs

In this chapter, we present the background theory that led to the development of
this thesis. We review graphs and hierarchies of partitions, in particular the family
of hierarchies used in this research: quasi-flat zones hierarchies, binary partition trees,
hierarchical watersheds and attribute based hierarchies.

Remark. The notations presented in this chapter are used all along the manuscript.

2.1 Graphs

A graph is a pair G = (V,E), where V is a finite set and E is a set of pairs of distinct
elements of V , i.e., E ⊆ {{x, y} ⊆ V | x 6= y}. Each element of V is called a vertex
(of G), and each element of E is called an edge (of G). To simplify the notations, the set
of vertices and edges of a graph G will be also denoted by V (G) and E(G), respectively.

Let G = (V,E) be a graph and let X be a subset of V . A sequence π = (x0, . . . , xn)

of elements of X is a path (in X) from x0 to xn if {xi−1, xi} is an edge of G for any i
in {1, . . . , n}. Given a path π = (x0, . . . , xn) from a vertex x0 to a vertex xn in V , for
any edge u = {xi−1, xi} for any i in {1, . . . , n}, we say that u is an edge in π. The
subset X of V is said to be connected (for G) if, for any x and y in X, there exists a
path from x to y. The subset X is a connected component of G if X is connected and if,
for any connected subset Y of V , if X ⊆ Y , then we have X = Y . In the following, we
denote by CC(G) the set of all connected components of G.

Let G be a graph. If w is a map from the edge set of G to the set R of real numbers,
then the pair (G,w) is called an (edge) weighted graph (see Figure 2.1(a)). If (G,w) is a
weighted graph, for any edge u of G, the value w(u) is called the weight of u (for w).

We say that the graph G = (V,E) is a forest if, for any edge u in E, the number of
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Figure 2.1: (a): A weighted graph (G,w). (b): A representation of a hierarchy of
partitions H = (P0,P1,P2,P3) on the set {a, b, c, d, e, f, g, h}.

connected components of the graph (V,E \ {u}) is greater than the number of connected
components of G. Given another graph G′, we say that G′ is a subgraph of G, denoted
by G′ v G, if V (G′) is a subset of V and E(G′) is a subset of E. Let G′′ be a subgraph
of G and let G′ be a subgraph of G′′. The graph G′′ is a Minimum Spanning Forest
(MSF) of G rooted in G′ if:

1. the graphs G and G′′ have the same set of vertices, i.e., V (G′′) = V ; and

2. each connected component of G′′ includes exactly one connected component of G′;
and

3. the sum of the weight of the edges of G′′ is minimal among all subgraphs of G for
which the above conditions 1 and 2 hold true.

A MSF of (G,w) rooted in a single vertex of G is a tree (connected forest) called a
Minimum Spanning Tree (MST) of (G,w).

Let (G,w) be a weighted graph and let k be a value in R. A connected subgraph G′

of G is a (regional) minimum (of w) at level k if:

1. the set of edges E(G′) of G′ is not empty; and

2. for any edge u in E(G′), the weight of u is equal to k; and

3. for any edge {x, y} in E \E(G′) such that |{x, y}∩V (G′)| ≥ 1, the weight of {x, y}
is strictly greater than k.

2.2 Hierarchies of partitions

In this section, we first introduce notations and definitions related to hierarchies of par-
titions. Then, we review partitions and hierarchies of partitions in the context of digital
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image processing and analysis.

2.2.1 Notations and definitions

Let V be a set. A partition (of V ) is a set P of non empty disjoint subsets of V whose
union is V . Any element of a partition P is called a region of P. Let P1 and P2 be two
partitions. We say that P1 is a refinement of P2 if every element of P1 is included in an
element of P2. A hierarchy (of partitions) is a sequence H = (P0, . . . ,P`) of partitions
such that Pi−1 is a refinement of Pi, for any i in {1, . . . , `} and such that Pn = {V }.
Let H = (P0, . . . ,P`) be a hierarchy of partitions. Any region of a partition P of H is
called a region of H. The set of all regions of H is denoted by R(H).

A hierarchy of partitions can be represented as a tree whose nodes correspond to
regions, as shown in Figure 2.1(b). Given a hierarchy H and two regions X and Y of H,
we say that X is a parent of Y (or that Y is a child of X) if Y ⊂ X and X is minimal
for this property, i.e., if there is a region Z such that Y ⊆ Z ⊂ X, then we have Y = Z.
It can be seen that any region X 6= V of H has exactly one parent. For any region X
such that X 6= V , we write parent(X) = Y where Y is the unique parent of X. For any
region R of H, if R is not the parent of any region of H, we say that R is a leaf region
(of H). Otherwise, we say that R is a non-leaf region (of H).

We illustrate a hierarchy of partitions H in Figure 2.1(b). The regions of the hierar-
chy H are represented by nodes on a tree. Each region of H is linked to its parents (and
to its children) by straight lines.

Let G = (V,E) be a graph. A partition of V is connected for G if each of its regions
is connected and a hierarchy on V is connected (for G) if every one of its partitions is
connected. For example, the hierarchy of Figure 2.1(b) is connected for the graph of
Figure 2.1(a).

2.2.2 Partitions in the context of digital images

A digital image is a numeric representation of an image: a matrix or set of picture
elements or pixels, where each pixel carries the colorimetric information of a point in the
image (see Figure 2.2). The information associated to each pixel varies depending on the
nature of the image representation. In gray-scale images, a pixel can be associated to a
single value that indicates the gray-level of this pixel - brighter pixels being assigned to
greater values. In turn, a pixel of a color image can be represented as a combination of
the levels of red (R), blue (B) and green (G) colors in this pixel. The latter representation
corresponds to a vector in the RGB color space.
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Figure 2.2: A gray-scale and a color image.

Figure 2.3: An image I and a partition of I into two regions.

Let I be an image and let {p0, . . . , pn} be the set of pixels of I. A partial partition of I
is a set of disjoint subsets of {p0, . . . , pn}. A (total) partition or segmentation of I is a set
of disjoint subsets of {p0, . . . , pn} such that every pixel of I belongs to an element of this
partition. Each element of an image partition is called a region of this partition. Along
this manuscript, the terms partition and segmentation will be used interchangeably. An
image segmentation is illustrated in Figure 2.3.

The need for image segmentation arose with the various applications of digital images
in research fields such as biology, medicine and astronomy. Image segmentation is usu-
ally a pre-processing step to other image processing and analysis tasks, including image
filtering and simplification, object detection, object tracking and scene labeling. As the
size of images to be processed increases, manual segmentation becomes an onerous task.

In the early days of image segmentation, heuristic techniques for image segmentation
have been employed. For instance, we can cite low-level pixels classification techniques
such as thresholding and histogram analysis, in which pixels are segmented based solely
on their colorimetric information.

In the pioneer work of Zahn [107], the author proposed a clustering method to segment
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arbitrary sets of points based on the distance between those points. When applied to
image segmentation, this technique takes into consideration not only the local information
of a pixel but also its position with respect to other similar pixels. Following a similar
idea, the authors of [35] propose a greedy graph-based segmentation method that relies on
the dissimilarity between pixels of a region and on the dissimilarity between neighbouring
regions of a segmentation. The latter method uses a greedy approach to optimize a global
energy, which is also the case of the segmentation technique investigated in this research:
the watershed transform.

The watershed segmentation was first studied in [12] and, since then, numerous def-
initions have been proposed [2, 22]. The idea underlying this technique is that a node
(vertex) or edge weighted graph can be visualized as a topographic surface in which the
node and edge weights determine the altitude of the points on the surface. In geogra-
phy, a catchment basin is a region whose collected water drain to a common point (e.g.
a sea), and the watersheds are the dividing lines between neighbour catchment basins.
Each catchment basin is associated to a regional minimum, which is a plateau surrounded
by points of greater altitude. A point in the surface belongs to a given catchment basin
if there exists a descending path from this point to the regional minimum in this catch-
ment basins. In the context of node and edge weighted graphs, a regional minimum is a
subgraph (or a subset of vertices) of uniform weight and surrounded by nodes or edges of
greater weights. The watershed transform segments the vertices of a weighted graph into
its catchment basins. This idea can be applied to the segmentation of gray-scale images
by either computing an image gradient represented as a weighted graph or by consider-
ing that the altitudes of the topographic surface are given by the pixel gray-levels. More
details on the watershed segmentation are given later in Section 2.6.

Image segmentation is an ill-posed problem as it does not have a fixed optimal so-
lution for all applications. Still, efforts have been made to establish ground-truths for
large image datasets, which can be further used as a reference to image segmentation
algorithms. Such datasets include the Berkeley Segmentation Dataset and Benchmark
(BSDS500) [63], Grabcut [16], Weizman [1], Pacal Context [71] and COCO [54].

2.2.3 Hierarchies of partitions in the context of digital images

As stated in the previous section, there is no global optimal segmentation of an image.
For different tasks, segmentations with distinct levels of detail may be required. In this
context, hierarchies of image segmentations arise as an all-purpose tool for image segmen-
tation. More generally, hierarchies of image segmentations are part of a broader group
of hierarchical image representations, which also include hierarchies of partial partitions
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and inclusion hierarchies. As discussed later in this section, the use of hierarchical image
representations goes beyond image segmentation.

In the remainder of this section, we review well-known hierarchical image representa-
tions and their applications.

Since the early work of [78] on a splitting and merging hierarchical partition al-
gorithm, several methods to compute and process hierarchies of partitions have been
proposed. Among the image processing tasks aided by hierarchies of partitions, we cite
image simplification, filtering, and segmentation.

In [13], the author propose an algorithm, called waterfall algorithm, to overcome the
oversegmentation resulting from watershed segmentations. In his algorithm, the initial
regions of a watershed segmentation are iteratively merged until a simplified segmenta-
tion is obtained. The intermediate segmentations produced by this method compose a
hierarchy of partitions.

In [48], the authors proposed a hierarchical segmentation method based on the graph-
based segmentation introduced in [35]. The algorithm proposed in [35] receives as input
a parameter to control the size of regions and the dissimilarity between the regions of
the resulting segmentation. As the causality and location properties do not hold for the
segmentations produced by [35] using increasing parameters, the authors of [48] propose
an adaptation of this method.

In the family of morphological hierarchies with large applications to image filtering
and simplification, we can cite min-trees, max-trees, tree of shapes, quasi-flat zones
hierarchies, binary partition trees and hierarchical watersheds [72, 13, 87, 65, 24, 27, 74],
which will be explored next.

Let I be a gray-scale image. A level-set of I is a subset of the pixels of I with
gray values greater than a given threshold parameter λ. Any gray-scale image can be
equally represented by its level-sets. The min-tree and max-tree are dual representations
of the level-sets of an image: the max-tree of an image I is composed of the connected
components of the level-sets of I while that the min-tree of I is composed of the connected
components of the complement of the level-sets of I. Therefore, the leaf regions of a max-
tree (resp. min-tree) are the regional maxima (resp. minima) of an image. Those trees
are widely used in the implementation of connected operators [88, 89], the max-tree (resp.
min-tree) being useful to compute anti-extensive (resp. extensive) operators.

Let I be a gray-scale image. A flat zone of I is a maximal connected set of pixels of I
with uniform gray values. Connected operators act by removing flat-zones and, therefore,
do not create any new contours in the image. A quasi-flat zone is a connected set of pixels
whose gray-level difference of neighbouring pixels is limited by a given value threshold λ.
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A quasi-flat zone hierarchy is a sequence of segmentations composed of flat-zones of an
image with increasing values for the parameter λ. In the context of edge-weighted graphs,
a quasi-flat zone is a connected set of vertices such that the difference between the weight
of any two adjacent edges is limited to a given value λ. The connection between quasi-flat
zone hierarchies and other morphological hierarchies has been studied in [27]. Moreover,
quasi-flat zones hierarchies are linked to a dual representation of hierarchies of partitions
known as saliency maps, which is explained later in Section 2.4.

The tree of shapes [65] is a hierarchical image representation based on the inclusion
relationship between the connected components of the level-sets (and of the complement
of the level-sets) of an image. They are self-dual and contrast-invariant. Furthermore,
the tree of shapes is a compact representation of the max-tree and min-tree of an image
since any region of those two hierarchical representations can be found in the tree of
shapes. Properties and applications of the tree of shapes have been studied in [104] and
an efficient algorithm to obtain a tree of shapes is given in [39].

Binary partitions trees were first proposed by Salembier and Garrido [87] as a tool
for simplifying, segmenting and extracting information from images. The construction of
this hierarchy relies on the notions of merging order, merging criterion and region model.
Given any segmentation P, a binary partition hierarchy is constructed by merging the
regions of P following a given merging order defined on the regions of P. Each region
built along this process is represented according to a region model as, for example, the
average gray-level of the pixels belonging to a region. The merging criterion, e.g. the color
homogeneity between two regions, determines if any two neighbouring regions should be
merged. Particular cases of this hierarchy have been studied under several names, such
as α-tree [77] and binary partition hierarchy by altitude ordering [27]. An extension of
binary partition hierarchies applied to multiple images and multiple criteria was proposed
in [86].

Outside the group of morphological hierarchies, several high-quality hierarchical seg-
mentation methods have been proposed [5, 7, 60].

In [5], the authors introduce a multiscale contour detector that combines multiple
contour cues: brightness, color and texture gradient. Then, the output of their contour
detector is used to obtain a segmentation through their method called oriented watershed
transform. The oriented watershed transform outputs weighted boundaries which are
further used to compute a hierarchy of partitions.

In [7], the authors propose a hierarchical segmentation method based on the combi-
nation of hierarchies computed from different resolutions of the same image. For each
resolution, they compute the normalized cuts of the image contours, which are based on
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the same contour cues used by [5]. Then, those normalized cuts are combined into a
single Ultrametric Contour Map (UCM), which is a dual representation of a hierarchy
of partitions and also known as a (contour) saliency map. Finally, they align the UCMs
obtained at different resolutions into a single UCM.

In [60], the authors propose a hierarchical segmentation method using Convolutional
Neural Networks (CNN). Each level of a CNN conveys information regarding different
levels of resolution of an image. Hence, the authors use the output of each level of a
CNN to compute oriented boundaries and, subsequently, UCMs. The UCMs obtained at
different levels are further aligned using a faster implementation of the method proposed
in [7], producing hierarchies with state-of-the-art performance in several computer vision
applications.

With so many algorithms to compute hierarchies of partitions, it became necessary to
evaluate the contribution of each hierarchy with respect to different tasks [5, 83, 82, 79].
Usually, large annotated image datasets are used to evaluate hierarchical segmentation
algorithms. Those evaluations are often empirical in the sense that an algorithm is eval-
uated with respect to its output on a set of images. As the manual annotations provided
by large image datasets [63, 16, 1, 71] are not hierarchical, hierarchies of partitions are
commonly evaluated by comparing each segmentation of the hierarchy against the image
ground truth.

Aiming at expanding the search space of image segmentation problems, the notion of
hierarchies of partitions is extended to braids of partitions in [53]. A braid of partitions
is composed of partitions that locally follow the causality and location principles: given
any two partitions P1 and P2 of a braid of partitions, every region of P1 is either a subset
of a region of P2 or it is composed of regions of P2. Hence, any hierarchy of partitions
is a braid of partitions but the other implication is not true in general.

Several well-known image segmentation techniques are modeled in the framework
of graphs [17, 90, 35, 31, 43, 21], including (hierarchical) watersheds [66, 22, 24, 27,
74]. In this thesis, we focus on morphological hierarchies built in the framework of
weighted graphs and, in particular, on hierarchical watersheds and on their link with
other morphological hierarchies such as the binary partition trees.

2.3 Quasi-flat zones hierarchies

In this section, we first present the definition of quasi-flat zone hierarchy in the framework
of weighted graphs. Then, we present some of the applications of quasi-flat zones in the
context of image segmentation.
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2.3.1 Notations and definitions

Let (G,w) be a weighted graph and let λ be any element in R. Let V and E be the vertex
and edge sets of G, respectively. The λ-level set of (G,w) is the graph (V,Eλ(G)) such
that Eλ(G) = {u ∈ E(G) | w(u) ≤ λ}. Without loss of generality, let us assume that the
range of w is included in the set E of all integers from 0 to |E| − 1 (otherwise, one could
always consider an increasing one-to-one correspondence from the set {w(u) | u ∈ E}
into the subset {0, ..., |{w(u) | u ∈ E}| − 1} of E). The sequence

QFZ(w) = (CC(Gλ,w) | λ ∈ E) (2.1)

where Gλ,w is the λ-level set of (G,w), is a hierarchy called the Quasi-Flat Zones (QFZ)
hierarchy (of w) [72, 69, 92, 27].

For instance, the hierarchyH of Figure 2.1(a) is the QFZ hierarchy of the graph (G,w)

of Figure 2.1(b).

2.3.2 Quasi-flat zones for image segmentation

Let I be a gray-scale image such that the gray value of any pixel of I is in the range [0, 255].
A flat-zone of I is a set of connected pixels (e.g. 4 or 8 connected pixels) with uniform
gray-level. In the context of edge weighted graphs, a flat zone is a set of vertices linked
by edges with uniform weight. Let k be a value in [0, 255]. The k-level set of I is the
set of pixels of I with gray-levels greater than k. Any gray-scale image can be equally
represented and reconstructed from its level sets.

Connected operators act on the connected components of the level sets of an image (or
on the complement of the level sets of an image). Hence, connected operators filter out or
merge connected components of the level sets of an image without creating new contours,
which is very useful for image simplification. As mentioned in Section 2.2.3, connected
operators can be implemented through hierarchical representations of an image, including
min-tree, max-tree and tree of shapes.

A quasi-flat zone of an image is a largest set of connected pixels such that the difference
in gray-level between two neighbour pixels is limited by a given threshold k. For any k,
we can define a partition of the image. By stacking the partitions of quasi-flat zones
of an image for increasing values of k, we obtain a sequence of partitions for which the
causality and location properties hold true, resulting in the quasi-flat zones hierarchy.
From this definition, we can infer two features of quasi-flat zones partitions. First, quasi-
flat zones partitions are prone to connect dissimilar regions that are linked only by a
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narrow path (leakage problem). Second, dissimilar regions can be connected by a path
in which gray-levels vary smoothly (chaining problem).

The first use of quasi-flat zones dates back to [72] in the analysis of aerial photographs.
In order to segment and classify regions of aerial images into forest, cropts, houses, etc.,
the authors use the quasi-flat zones of the smoothed images for a given threshold, along
with colorimetric and geometric information.

In [92], the author addresses the chaining problem of quasi-flat zones, where pixels
of large gray-level difference are connected by a path of low gray-level variation between
neighbouring pixels. As a solution to this issue, he proposes the introduction of a new
parameter to control the maximal gray-level variation between pixels of a same region.
They denote quasi-flat zones as α-connected components.

In [69], the authors introduce a morphological scale space representation of images
based on the notion of levelings. A function g is a leveling of a function f if, for any
two neighbouring pixels x and y, we have that g(x) > g(y) implies that f(x) ≥ g(x)

and g(y) ≥ g(x). They prove that levelings are connected filters, hence the link with
quasi-flat zones. They show that, as quasi-flat zones, levelings with increasing parameters
lead to a hierarchical representation of an image obeying the causality and location
principle of the regions and contours.

In [27], the authors link quasi-flat zones hierarchies with other morphological hierar-
chies in the context of weighted graphs. They show that a quasi-flat zone hierarchy can
be obtained by simplifying a binary partition tree. In particular, quasi-flat zones hierar-
chies are linked to saliency maps, which are a compact representation of hierarchies of
partitions, as discussed in the next section.

2.4 Contour saliency maps

Until now, we have considered hierarchies of partitions represented by the inclusion re-
lationship between regions or by a sequence of partitions. In this section, we introduce
a dual representation of hierarchies of partitions. Instead of a sequence of partitions,
we characterize a hierarchy of partitions by the contours between the regions of each
partition. As established in [25], a connected hierarchy can be equivalently treated by
means of a weighted graph through the notion of a (contour) saliency map (also known
as ultrametric contour map [5]). A saliency map is a map from the contours present in
the partitions of a hierarchy into a set of values indicating the level of disappearance of
each contour. Through the definition of quasi-flat zones, any hierarchy can be recovered
from its saliency map.
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Saliency maps and hierarchies are closely related to the notion of ultrametric dis-
tances [73, 5]. An ultrametric distance is a metric space that satisfies the ultrametric
inequality: given an ultrametric distance map d and three points x, y and z in the space,
we have d(x, y) ≤ max{d(x, z), d(z, y)}. Given a hierarchy H = (P0, . . . ,P`) on a set V ,
let f be a function from V × V into the set {0, . . . , `} such that, for any two vertices x
and y in V , f(x, y) is the lowest k such that x and y belong to the same region of Pk.
We can observe that:

• for any x in V , f(x, x) = 0; and

• for any x and y in V , f(x, y) ≥ 0 and f(x, y) = f(y, x); and

• for any x, y, z in V , f(x, y) ≤ max{f(x, z), f(z, y)} because the level in which x

and y belong to the same region is necessarily finer than the level in which x, y

and z belong to the same region.

Hence, f is an ultrametric distance and we can see that the hierarchy H can be
recovered from f . Indeed, if H is connected for a given graph G, the values of f for
the edges of G suffice to recover the hierarchy H. This map f ′ from the edges of E into
their value in f is the saliency map of H. The reader may note that, in other contexts,
a saliency map denotes a map that highlights the objects of interest of an image (high
values for pixels belonging to important regions), which is not our case. Here, the saliency
values are assigned to the contours and not to the interior of the regions.

The first definition of saliency maps in the context of hierarchies of partitions was
presented by Najman and Schmitt [75]. In [75], the authors extend the definition of
dynamics of minima [45] to dynamics of contours. They define a map from each contour
of a watershed segmentation into the saliency of this contour, where any threshold of the
resulting map produces closed contours.

In this work, we focus on connected hierarchies. Let G be a graph and let H be a
hierarchy connected for G. The saliency map of H is defined on the edges of G because
all vertices of G belong to a region of H. In this context, saliency maps are represented
thanks to cubical complexes [26]: the representation of a saliency map is an image with
the double number of lines and columns of the original image and where every vertex
and every edge is represented by a pixel.

In Figure 2.4, we show a representation of a saliency map. In this representation, the
darkest contours are the ones that persist at the highest levels of the hierarchy.
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(a) I (b) f

Figure 2.4: An image I and the saliency map f of a hierarchy of partitions of I obtained
with the method proposed in [60].

2.4.1 Notations and definitions

Let G = (V,E) be a graph. Given a hierarchyH = (P0, . . . ,P`) which is connected for G,
the (contour) saliency map of H is the map from E into {0, . . . , `}, denoted by Φ(H), such
that, for any edge u = {x, y} in E, the value Φ(H)(u) is the lowest value i in {0, . . . , `}
such that x and y belong to a same region of Pi. It follows that any connected hierarchy
has a unique saliency map. Moreover, any hierarchy H connected for G is precisely the
quasi-flat zones hierarchy of its own saliency map: H = QFZ(Φ(H)).

For instance, the map depicted in Figure 2.1(b) is the saliency map of the hierarchy
of Figure 2.1(a).

Let G = (V,E) be a graph and let H = (P1, . . . ,P`) be a hierarchy on V . Let d be a
map from V ×V into R such that, for any pair (x, y) of vertices in V ×V , the value d(x, y)

is the greatest edge weight λ in a path π from x to y (resp. y to x) in (G,Φ(H)) and
such that, for any other path π′ from x to y (resp. y to x), the greatest edge weight
in π′ is greater than or equal to λ. For any egde u = {x, y} in E, we say that d(x, y)

is the ultrametric distance between x and y in (G,Φ(H)). We can affirm that (V, d) is
an ultrametric space. Moreover, for any two vertices x and y in V , by the definition of
saliency maps and considering its link with QFZ hierarchies, we may say that d(x, y) is
the lowest value λ such that x and y belong to a same region of the partition Pλ of H.
Furthermore, if G is a complete graph, we can conclude that (V,Φ(H)) is an ultrametric
space.
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2.5 Binary partition trees

Binary partition trees [87] are widely used for hierarchical image representation. In this
section, we first review the definition of binary partition tree and some of its applica-
tions. Then, we describe the particular case where the merging order is defined by the
edge weights [27]. As we will see along this manuscript, the latter is deeply connected
to hierarchical watersheds [27] and can be used to study properties of hierarchical water-
sheds.

2.5.1 Introduction

In [87], the notion of binary partition tree (BPT) is introduced aiming to fuse the flex-
ibility of the order in which regions are merged by segmentation algorithms and the
flexibility offered by connected operators in the processing of the max-tree.

The execution of segmentation algorithms based on merging criteria involves three
concepts: merging order, merging criteria and region model. Given an initial set of regions
or superpixels, the merging order determines the order in which pairs of neighbouring
regions should be considered for merging, which is given by the similarity between regions
according to a given criterion, e.g. average gray level. The merging criterion determines
when the merging process stops, e.g. when a given number of regions is reached. The
region model determines how each region is represented after each merging step, e.g.
average gray-level of the pixels in a region.

As discussed in Section 2.3, connected operators are operators that act on the con-
nected components of the flat-zones of thresholded versions of an image. Given an im-
age I and a connected operator Ψ, we can say that the partition induced by the flat-zones
of Ψ(I) at level λ is coarser than the partition induced by the flat-zones of I. Connected
operators can be efficiently implemented through max-trees: given a max-tree T , Ψ is
a filtering of the regions of T according to a given criterion. When this criterion is in-
creasing on the nodes of T , Ψ simply filters out all descendants of any region that does
not follow the criterion. Otherwise, if the criterion is non increasing, the result is not
robust in the sense that similar images can have different results. Strategies to handle
non-increasing criteria are discussed [88].

A BPT as presented in [87] can be constructed through algorithms based on a merging
criterion. The BPT is obtained by keeping track of the merging sequence of an algorithm,
i.e., the sequence of pair of regions of a segmentation that are merged by a merging
algorithm. The merging criterion is the merging of all initial regions into a single region.
Then, the processing of a BPT follows the same pruning strategies used in the processing
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of the max-tree by connected operators.
Among the applications of the BPT, Salembier and Garrido [87] highlight:

1. detection and recognition of regions based on a given criteria e.g. circularity. The
BPT offers a set of 2N-1 regions (where N is the number of initial regions), which
limits the search space to a small number of reasonably homogeneous regions;

2. image compression for low bandwidth servers. Instead of sending the color informa-
tion of each pixel individually, some regions of the image can be sent as a superpixel
(only the contours and a constant color are sent). The distortion of the resulting
image and the budget to send an image can be optimized on the BPT when both
distortion and budged are increasing on the regions of the BPT; and

3. image segmentation. Image segmentations can be extracted from the BPT by
simply following the merging order used to construct the BPT. The desired number
of regions can be used as a merging criterion and the final segmentation can be
obtained by filtering the BPT as done by connected operators on the max-tree.
This latter approach is called direct segmentation. Alternatively, segmentations
can be obtained by propagating markers from the leaves, at the pixel level, to the
root. This marked segmentation technique has been notably used in the evaluation
framework of hierarchies proposed in [80, 79] to be discussed in Chapter 6.

BPTs have been largely used in remote sensing image processing [99, 11, 86]. The
advance in this area, leading to larger scale images, call for a method to efficiently simplify
an image and to decrease the search space of the objects in a remote sensing image.

In [99], the authors segment hyperspectral images by applying a Support Vector
Machine (SVM) to nodes of a BPT. Given a BPT computed from a hyperspectral image,
the nodes of this BPT are classified by an SVM according to their impurity level, which
is related to the number of different classes assigned to the descendants of a node. Then,
this BPT is pruned and the class of each pixel is determined by the leaf region that
contains this pixel. The authors show that a simple SVM classification is improved with
the aid of a BPT.

In [86], the authors proposed a multi-criteria and multi-image binary partition tree
computation with application to remote sensing image segmentation. They build a BPT
from several photographs of the same scene. Then, they work on a set of images with the
same dimensions, where each image induces a different dissimilarity graph (gradient) and
the merging criterion is defined by alternating the information provided by each graph.
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In [100], BPT is used for object detection with application to face and traffic sign
detection. Using a merging criterion based on color and contour complexity, the authors
study methods to obtain the initial partition of the BPT and the merging sequence
separately.

In [27], the authors establish the link between BPTs, minimum spanning tree and
other morphological hierarchies, in particular the min-trees, quasi-flat zones hierarchies
and hierarchical watersheds. They introduce a particular case of the BPTs denoted by
binary partition hierarchy by altitude ordering (BPHAO), which can be used to obtain
QFZ hierarchies, min-trees and hierarchical watersheds. The link between BPHAO and
hierarchical watersheds are the basis of our research on characterization of hierarchi-
cal watersheds (see Chapter 3), on the watersheding operator (see Chapter 4) and on
probabilities of hierarchical watersheds (Chapter 5).

BPHAOS are deeply related to single linkage clustering [42]. Hence, the link between
MST and single linkage clustering established in [42] can be extended to BPHAOs. For
example, MST algorithms have been successfully used by Najman et al. [74] to compute
BPHAOs. The authors of [74] also provide an efficient post-processing of the BPT to
find the minima and watershed-cut edges of a graph, as explained in Section 2.6.1.

In the next section, we formalize the definition of BPHAO in the framework of
weighted graphs.

2.5.2 Notations and definitions

Let (G,w) be a weighted graph. Let V and E be the vertex and edge sets of G, re-
spectively. Let ≺ be a total ordering (on E), i.e., ≺ is a binary relation that is transi-
tive and trichotomous: for any u and v in E only one of the relations u ≺ v, v ≺ u

and v = u holds true. We say that ≺ is an altitude ordering (on E) for w if,
for any u and v in E, if w(u) < w(v), then u ≺ v. Let ≺ be an altitude order-
ing for w. Let k be any element in {1, . . . , |E|}. We denote by u≺k the k-th el-
ement of E with respect to ≺. We set B0 = {{x} | x ∈ V }. The k-partition
of V (by the ordering ≺) is defined by Bk = {By

k−1 ∪ Bx
k−1} ∪ (Bk−1 \ {Bx

k−1,B
y
k−1})

where u≺k = {x, y} and Bx
k−1 and By

k−1 are the regions of Bk−1 that contain x and y,
respectively. The sequence (Bi | i = 0 or Bi 6= Bi−1) is a hierarchy on V . This hierar-
chy (Bi | i = 0 or Bi 6= Bi−1), denoted by B≺, is called the binary partition hierarchy
(by altitude ordering) of (G,w) by ≺.

Let B be a hierarchy on V . We say that B is a binary partition hierarchy (by altitude
ordering) of (G,w) if there is an altitude ordering ≺ for w such that B is the binary
partition hierarchy of (G,w) by ≺.
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Figure 2.5: (a): A weighted graph (G,w) with four minima delimited by the dashed lines.
(b): The unique binary partition hierarchy B of (G,w).

Let ≺ be an altitude ordering for w. We can associate any non-leaf region X of
the binary partition hierarchy B≺ of (G,w) by ≺ to the lowest rank r such that Br

contains X. This rank is called the rank of X. Let X be a non-leaf region of B≺ and let r
be the rank of X. The building edge of X is the r-th edge for ≺. Given an edge u in E,
if u is the building edge of a region of B≺, we say that u is a building edge for ≺. Given
a building edge u for ≺, we denote the region of B≺ whose building edge is u by Ru. The
set of all building edges for ≺ is denoted by E≺.

Let (G,w) be the weighted graph illustrated in Figure 2.5(a) and let B be the binary
partition hierarchy of (G,w) illustrated in Figure 2.5(b). We can see that B is the binary
partition hierarchy of (G,w) by the altitude ordering ≺ such that {a, b} ≺ {c, d} ≺
{e, f} ≺ {g, h} ≺ {a, c} ≺ {e, g} ≺ {c, e}. The building edge of each non-leaf region R
of B is shown above the node that represents R.

Let B be a binary partition hierarchy of (G,w) and let X and Y be two distinct
regions of B. If the parent of X is equal to the parent of Y , we say that X is a sibling
of Y , that Y is a sibling of X and that X and Y are siblings. It can be seen that
any region R 6= V of B has exactly one sibling and we denote this unique sibling of R
by sibling(R).

2.6 Hierarchical watersheds

In this section, we first present the notations and definitions related to hierarchical wa-
tersheds in the sense of minimum spanning forests [24, 27], and the link between bi-
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nary partitions hierarchies by altitude ordering (see Section 2.5.2) and the minima and
watershed-cut edges of a graph. Subsequently, we formalize the notion of marker-based
segmentation, and we compare watersheds with other common energy terms used in
graph based segmentation. Finally, we review the watershed transform and watershed
based hierarchies in the context of graphs and image segmentation.

2.6.1 Notations and definitions

Let (G,w) be a connected weighted graph. Let k be a value in R. As established in
Section 2.1, a connected subgraph G′ of G is a minimum (of w) at level k if:

1. E(G′) 6= ∅; and

2. for any edge u in E(G′), the weight of u is equal to k; and

3. for any edge {x, y} in E \E(G′) such that |{x, y}∩V (G′)| ≥ 1, the weight of {x, y}
is strictly greater than k.

In the remainder of this section, let (G,w) be a connected weighted graph and let n
be the number of minima of w.

Let {G1, . . . , G`} be a set of graphs. We denote by t{G1, . . . , G`} the
graph (∪{V (Gj) | j ∈ {1, . . . , `}},∪{E(Gj) | j ∈ {1, . . . , `}}). In the following, we
define hierarchical watersheds based on minimum spanning forests following the defini-
tion of [24, 27].

Definition 1 (hierarchical watershed [24, 27]). Let S = (M1, . . . ,Mn) be a sequence of n
pairwise distinct minima of w. Let (G0, . . . , Gn−1) be a sequence of subgraphs of G such
that:

1. for any i in {0, . . . , n − 1}, the graph Gi is a MSF of G rooted in t{Mj | j ∈
{i+ 1, . . . , n}}; and

2. for any i in {1, . . . , n− 1}, Gi−1 is a subgraph of Gi.

The sequence T = (CC(G0), . . . , CC(Gn−1)) is called a hierarchical watershed
of (G,w) for S. Given a hierarchy H, we say that H is a hierarchical watershed of (G,w)

if there exists a sequence S of minima of w such that H is a hierarchical watershed
of (G,w) for S.
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For instance, let (G,w) and H be the weighted graph and the hierarchy shown in
Figure 2.6(a) and (b), respectively. We can see that H is the hierarchical watershed
of (G,w) for the sequence (C,A,B,D) of minima of w.

Important notation: by abuse of terminology, when no confusion is possible, if M
is a minimum of w, we call the set V (M) of vertices of M as a minimum of w.

As established in [74, 27], hierarchical watersheds are deeply linked to the notion of
binary partition hierarchy (by altitude ordering). Using the algorithm proposed in [74],
a binary partition hierarchy of (G,w) can be constructed by iteratively merging pairs of
regions (subsets of V ) connected by edges of increasing weights. Given any minimum M

of w, each vertex x of M is connected to another vertex in M by an edge of lower weight
than the edges linking x to other vertices that do not belong toM . Hence, by considering
any altitude ordering for w, the set of vertices of M are merged before any other vertices
are merged with M . Therefore, every minimum of w is a region of any binary partition
hierarchy of (G,w).

In Cousty et al. [22], the authors formalize the notion of watershed-cuts in edge-
weighted graphs, and establish the link between watershed-cuts and MSFs. In this con-
text, a watershed-cut edge of (G,w) is an edge that links distinct “catchment basins”,
i.e., connected components of the MSF rooted in the minima of w. In fact, since there
may be several MSFs rooted in the minima of w, the set of watershed-cut egdes of (G,w)

is not unique. Indeed, for a fixed altitude ordering for w, we can define a unique set of
watershed-cut edges of (G,w). As established in [74], given an altitude ordering ≺, the
watershed-cut edges (for ≺), whose definition is given bellow, can be obtained from the
binary partition hierarchy by ≺ along with the minima of w.

Definition 2 (watershed-cut edge for an altitude ordering). Let ≺ be an altitude ordering
for w and let u be a building edge for ≺. We say that u is a watershed-cut edge (of (G,w))
for ≺ if each child of the region Ru of B≺ includes at least one minimum of w.

The link between binary partition hierarchies and hierarchical watersheds provided in
[74, 27] induce an efficient method to obtain the saliency map of a hierarchical watershed,
which is connected to the theoretical results introduced in this thesis. In order to revise
the method to compute the saliency map of hierarchical watersheds proposed in [74, 27],
we present the definitions of extinction values and persistence values for a sequence of
minima, and the notion of a hierarchy induced by an altitude ordering and by a sequence
of minima.

Definition 3 (extinction value for a sequence of minima [27]). Let (G,w) be an edge
weighted graph. Let ≺ be an altitude ordering for w and let B≺ be the binary partition
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hierarchy by ≺, as defined in Section 2.5.2. Let S = (M1, . . . ,Mn) be a sequence of
pairwise distinct minima of w and let R be a region of B≺. The extinction value of R
for (S,≺) is zero if there is no minimum of w included in R and, otherwise, it is the
maximum value i in {1, . . . , n} such that the minimum Mi is included in R.

Definition 4 (persistence value for a sequence of minima [27]). Let (G,w) be a weighted
graph. Let ≺ be an altitude ordering for w, let B≺ be the binary partition hierarchy by ≺
and let S be a sequence of minima of w. Let u be a building edge for ≺ and let X be
the region of B≺ whose building edge is u. The persistence value of u for (S, ≺) is the
minimum of the extinction values of the children of X.

Definition 5. (hierarchy induced by an altitude ordering and by a sequence of minima
[27]) Let (G,w) be a weighted graph and let n be the number of minima of w. Let ≺ be an
altitude ordering for w and let S be a sequence of minima of w. Let ρ be the map from the
building edges (for ≺) into R such that, for any building edge u, ρ(u) is the persistence
value of u for (S, ≺). Let Bi the set of building edges of B≺ whose persistence value is
lower than or equal to i. The sequence of partitions (CC(V,B0), . . . , CC(V,Bn−1)) is a
hierarchy called the hierarchy induced by ≺ and S.

From the results of [27], we state the following property.

Property 6 (Property 12 of [27]). Let (G,w) be a weighted graph. Let S be a sequence of
minima of w and let H be a hierarchy on G. The hierarchy H is a hierarchical watershed
of (G,w) for S if and only if there exists an altitude ordering for w such that H is the
hierarchy induced by ≺ and S.

Given a graph (G,w) and a sequence S of minima of w, by Property 6, the saliency
map of a hierarchical watershed of (G,w) for S can be obtained through the following
steps:

1. computation of an altitude ordering ≺ for w;

2. computation of the binary partition hierarchy B≺ by ≺;

3. computation of the extinction values for (S,≺);

4. computation of the persistence values for (S, ≺); and

5. computation of the saliency map f of a hierarchical watershed of (G,w) for S.
Given the set E≺ of building edges for ≺, let ρ be the map from E≺ into R such
that, for any edge u in E≺, the value ρ(u) is the persistence value of u for (S, ≺).
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Figure 2.6: (a): A weighted graph (G,w) with four minima delimited by the dashed lines.
(b): The hierarchical watershed H of (G,w) for the sequence (C,A,B,D) of minima of
w.

For every edge u = {x, y} of G, the value f(u) is the ultrametric distance between x
and y in ((V (G), E≺), ρ).

Let us consider that the edges of G are already ordered or can be ordered in linear
time. In this case, the first three steps can be executed in quasi-linear times with respect
to the number of edges of G, as established in [74]. Moreover, if G is a tree, the map ρ is
precisely the saliency map of a hierarchical watershed of (G,w) for S and, consequently,
this saliency map can be obtained in quasi-linear time as well.

2.6.2 Marker-based segmentation

The hierarchical watersheds (see Definition 1) are the solutions to a multiscale optimiza-
tion problem, namely each partition of a hierarchical watershed optimizes a simple cost
function. More precisely, given a graph (G,w), each partition of a hierarchical watershed
of (G,w) is induced by a solution to the problem of finding a MSF of (G,w) rooted in
a certain subset of the minima of w. Moreover, the (optimal) partitions of a hierar-
chical watershed satisfy a hierarchical or scale consistency property formalized below in
the context of marker-based segmentation. However, as we will see in this section, this
property is not satisfied by some of the most common energy terms used in graph based
image segmentation.

In the remainder of this section, let us assume that (G,w) is a connected weighted
graph. A marker set (of (G,w)) is a set of disjoint subsets of V . We denote by ΠV the
set of all partitions of V .

Definition 7 (marker-based segmentation). Let M = {M1, . . . ,M`} be a marker set. A
marker-based segmentation of (G,w) forM is a partition P in ΠV such that each region
of P includes exactly one element ofM.
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Marker-based segmentations can be obtained by watershed [22], min-cut [94], average-
cut [102] and shortest path forest [23] algorithms, to name a few. It can be observed
that the related optimization problems are ill-posed and do not necessarily have a unique
solution. Therefore, those algorithms are not deterministic: they can produce several
solutions for a given marker set. Hence, in order to study the “hierarchical behavior” of
these algorithms, we start by providing a definition of a non-deterministic marker-based
segmentation operator.

Definition 8. A (non-deterministic) marker-based segmentation operator σ is a map
from the set of all marker sets into the set of all subsets of ΠV such that, for any marker
setM, any partition in σ(M) is a marker-based segmentation forM.

Definition 9. Let σ be a marker-based segmentation operator. We say that σ is hierar-
chical if, for any two marker setsM andM′ such thatM′ is a subset ofM, there exists
a pair (P,P′) of partitions such that P and P′ belongs to respectively σ(M) and σ(M′),
and such that P is a refinement of P′.

Let L be a subset of E. We say that L is a cut if, for any edge u = {x, y} in L, x and y
belong to distinct connected components of (V,E \ L). We denote the set of connected
components of (V,E \ L) by the partition induced by L. By abuse of notation, given a
spanning forest G′ of G, we also denote the set of connected components of G′ by the
partition induced by G′.

The following property asserts that the MSF operator is indeed hierarchical.

Property 10. Let σ be the operator that maps any marker setM into the set of partitions
induced by each of the MSFs rooted inM. Then, the operator σ is hierarchical.

Property 10 is the basis of hierarchical watersheds (Definition 1). In the following,
we show that the operators that produce min-cuts, average-cuts and shortest path forest
cuts are not hierarchical.

Definition 11 (min-cuts). Let M be a marker set. A min-cut of (G,w) for M is a
subset L of E such that:

1. the set of connected components of (V,E \ L) is a marker-based segmentation
of (G,w) forM; and

2. the sum
∑
u∈L

w(u) is minimal for all subsets of E for which statement 1 holds true.

Property 12. Let σmin be the operator that maps any marker set M into the set of
partitions induced by each of the min-cuts of (G,w) for M. The operator σmin is not
hierarchical.
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Figure 2.7: From left to right: a graph (G,w), the min-cut L (dashed edges) of (G,w)
for the set of markers M = {{a}, {c}, {f}}, and the min-cut L′ of (G,w) for the set
of markers M′ = {{a}, {f}}. The partition induced by L is not a refinement of the
partition induced by L′.

Proof. Let (G,w) be the weighted graph of Figure 2.7(a). Let M = {{a}, {c}, {f}}
be a marker set of (G,w). In Figure 2.7(b), we show the unique min-cut L (dashed
edges) of (G,w) forM. Hence, we have σmin(M) = {{{a, b, d}, {c}, {e, f}}}. In Figure
2.7(c), we shown the unique min-cut L′ of (G,w) for the subsetM′ = {{a}, {f}} ofM.
Therefore, we have σmin(M′) = {{{a, b}, {c, d, e, f}}}. We can observe that the unique
partition in σmin(M) is not a refinement of the unique partition in σmin(M′). Thus, σmin
is not hierarchical.

Definition 13 (average-cuts). LetM be a marker set. An average-cut of (G,w) forM
is a subset L of E such that:

1. the set of connected components of (V,E \ L) is a marker-based segmentation
of (G,w) forM; and

2. the value
∑
u∈L

w(u)

|L| is minimal for all subsets of E for which statement 1 holds true.

Property 14. Let σavg be the operator that maps any marker set M into the set of
partitions induced by each of the average-cuts of (G,w) forM. The operator σavg is not
hierarchical.

Proof. Let (G,w) be the weighted graph of Figure 2.8(a). Let M = {{a}, {c}, {d}} be
a marker set of (G,w). In Figure 2.8(b), we show the unique average-cut L (dashed
edges) of (G,w) for M. Hence, we have σavg(M) = {{{a}, {b, d}, {c}}}. In Figure
2.8(c), we shown the unique average-cut L′ of (G,w) for the subset M′ = {{a}, {d}}
ofM. Therefore, we have σavg(M′) = {{{a, b, c}, {d}}}. We can observe that the unique
partition in σavg(M) is not a refinement of the unique partition in σavg(M′). Thus, σavg
is not hierarchical.
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Figure 2.8: From left to right: a graph (G,w), the average-cut L (dashed edges) of (G,w)
for the set of markersM = {{a}, {c}, {d}}, and the average-cut L′ of (G,w) for the set
of markers M′ = {{a}, {d}}. The partition induced by L is not a refinement of the
partition induced by L′.

Let d be a distance on V , i.e., a map from V × V to R+ such that:

• for any two vertices x and y in V , d(x, y) = d(y, x);

• for any two vertices x and y in V , d(x, y) = 0 if and only if x = y; and

• for any three vertices x, y and z, we have d(x, y) ≤ d(x, z) + d(z, y).

Let M be a marker set and let x be a vertex in V . Let π be a path from x to y such
that y belongs to an element ofM. We say that π is a d-shortest path from x toM if
the distance d(x, y) is less than the distance d(x, z) for any other vertex z such that z
belongs to an element ofM.

Definition 15 (shortest path forests). Let M be a marker set and let d be a distance
on V . Let G′ be a forest of (G,w) rooted inM. The graph G′ is a d-shortest path forest
of (G,w) forM if, for each vertex x in V , there is a d-shortest path π from x toM in G
such that π is also a d-shortest path from x toM in G′.

Let x and y be two vertices in V and let π = (z1, . . . , z`) be a path from x to y. We

call the sum
`−1∑
i=1

w({zi, zi+1}) by the weight of π.

Property 16. Let d be a distance on V . Let σs be the operator that maps any marker
set M into the set of partitions induced by each of the d-shortest path forests of (G,w)

forM. The operator σs is not hierarchical.

Proof. Let (G,w) be the graph of Figure 2.9(a) and let d be a distance on V (G) such
that, for any two vertices x and y in V (G), we have d(x, y) equal to the minimum
among the weights of all paths from x to y. Let M = {{a}, {c}, {f}} and M′ =

{{a}, {f}} be two marker sets of (G,w). In Figures 2.9(a) and (b), we show the unique d-
shortest path forests of (G,w) for M and M′, respectively. Hence, we have σs(M) =
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{{{a, b}, {c, d}, {e, f}}} and σs(M′) = {{{a, b, c}, {d, e, f}}}. We can observe that the
unique partition in σs(M) is not a refinement of the unique partition in σs(M′). Thus, σs
is not hierarchical.
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Figure 2.9: From left to right: a graph (G,w), the d-shortest path forest G′ (all vertices
plus the blue edges) of (G,w) for the marker setM = {{a}, {c}, {f}}, and the d-shortest
path forest G′′ of (G,w) for the marker setM = {{a}, {f}}. The partition induced by
G′ is not a refinement of the partition induced by G′′.

Hence, we can conclude that, unlike the MSF operator, the operators that produce
min-cuts, average-cuts and shortest path forest cuts are not hierarchical.

2.6.3 Watersheds in the context of graphs and image segmenta-
tion

The watershed transform [12, 14, 22] derives from the topographic definition of watersheds
lines and catchment basins. A catchment basin is a region whose collected precipitation
drains to the same body of water, as a sea, and the watershed lines are the separating
lines between neighbouring catchment basins. This general notion gives room to several
formal definitions and algorithms to compute the watershed segmentation.

Let I be a gray-scale image. To obtain a watershed segmentation from I, we visualize I
as a topographic surface in which the altitudes are given by the pixel gray-levels. A
(regional) minimum of I is a set of connected pixels of uniform gray level surrounded by
pixels of strictly larger gray levels. Each minimum of I is the lowest point of a catchment
basins of the surface representing I. Hence, each mimimum of I induces a region in the
watershed segmentation of I.

In the definition of the watershed transform, the first aspect to be considered is the
definition of the watershed lines, or watershed cuts, i.e., the frontiers between distinct
catchment basins: either the watershed lines are a set of connected pixels separating
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(a) I (b) Two watershed segmentations of I

Figure 2.10: (a) A gray-scale one-dimensional image I composed of seventeen pixels.
(b) Two possible watershed segmentations of I. In the segmentation on the left, the
watershed-cuts is the set of black pixels separating the catchment basins of I. In the
segmentation on the right, every pixel belongs to a catchment basin of I.

distinct catchment basins, or they are the implicit frontier between distinct catchment
basins (in the case where every pixel belongs to one catchment basin).

For instance, in Figure 2.10, we illustrate a gray-scale one-dimensional image I with
four minima and the separation of the four catchment basins of I by two watershed
segmentations.

In terms of algorithm, the watershed transform can be classified into two groups
[15]: flooding based algorithms and direct search of watershed lines. The first group
comprises algorithms that simulate the flooding of a topographic surface: catchment
basins are iteratively immersed on water and the watershed lines are found when distinct
catchment basins merge. In the algorithms of the second group, watershed lines are
found by iteratively discarding pixels according to their local configuration. Furthermore,
each group can be subdivided into parallel, sequential and ordered algorithms. Parallel
algorithms process pixels independently: the processing of a pixel does not affect other
pixels. In turn, the output of sequential algorithms entirely depends on the sequence
in which pixels are processed. Ordered algorithms are also in the class of sequential
algorithms except that each pixel/point is processed only once: the value of a pixel is
determined after its neighbours are sufficiently known.

In [101], the authors propose an efficient linear time watershed segmentation algorithm
based on recursive flooding. By simulating a flooding caused by piercing the minima of
the original image and immersing this surface in water, the minima and the influence zone
(catchment basin) associated to each minimum are iteratively discovered. For each k in
the range of gray values of an image, the algorithm thresholds the image pixels at level k,
expands the catchment basins of the already discovered minima, and find new minima
of altitude k. Their algorithm assigns different labels to pixels belonging to different
catchment basins, and a different label to watershed pixels. However, the watershed
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pixels returned by this algorithm do not necessarily separate the distinct catchment
basins. Their method can be extended to general graphs and higher dimensional images.

As discussed in Section 2.6.2, watershed segmentations fall into the category of
marked-based segmentations. Given a set of markers, i.e. subsets of image pixels or
subsets of vertices, each region of a seeded segmentation includes exactly one seed. By
using a watershed segmentation algorithm (e.g. [101]) directly on the image gradient, we
implicitly define the markers as the regional minima of the gradient. Alternatively, as
discussed in [75], the markers can be arbitrarily defined and the watershed segmentation
algorithm is applied to a transformed version of the original gradient, in which the markers
are the new regional minima.

In [2], the authors propose a stochastic approach to the watershed transform based
on randomly generated markers. Given an image gradient, the authors compute several
realizations of uniformly distributed sets of markers of this gradient. Then, the watershed
segmentation associated to each of those realizations are combined into a new gradient,
which conveys the probability of a catchment basin to be a region in the final segmen-
tation. This new gradient can also be combined to the original gradient. The resulting
segmentation is obtained by a filtered watershed segmentation of the new gradient. In
the task of coarse segmentation of complex images, the authors report improved results
when compared to other classical approaches.

Combined with other morphological operators and machine learning techniques, wa-
tershed segmentation is an important step for solving practical problems in many ap-
plication domains such as medicine and biology, computer vision, remote sensing and
material science (see e.g. [61, 62, 37, 44, 4, 33, 58]).

In [22], the authors formalize watersheds in the framework of edge-weighted graphs
and provide the association between watershed-cuts and the MST optimization problem.
They define a steepest path as a sequence of vertices such that each vertex is followed by
a neighbour vertex linked by the edge of lowest weight. The catchment basin of a vertex
is defined through the steepest path from this vertex to a minimum of a graph, and
the watershed-cut edges are the edges linking vertices that belong to distinct catchment
basins, as discussed in Section 2.6.1.

Meyer [68] generalizes the notions of watershed-cuts and steepest paths to node (ver-
tex) and edge weighted graphs. He provides an dilation (resp. erosion) operator that,
given node (resp. edge) weights, outputs edge (resp. node) weights. Meyer shows that
the opening and closing resulting from the proposed dilation and erosion operators do
not preserve the minima and catchment basins of a graph, which gives rise to the notion
of a flooding graph: a node and edge weighted graph that is invariant under opening
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and closing. Then, Meyer proposes two pre-processing steps to convert any graph into a
flooding graph without changing its original minima: (1) removal of every edge u = {x, y}
such that u does not belong to any steepest path, i.e., u is not the edge of minimal weight
among the edges adjacent to either x or y; and (2) insertion of loop edges {x, x} such
that x is the unique vertex in a minimum of the original graph. Hence, the notion of
flooding graphs, which unifies the notion of watersheds in edge and node weighted graphs,
allows algorithms designed for node (resp. edge) weighted graphs to be applied on edge
(resp. node) weighted graphs.

As aforementioned, each minimum of a gradient induces a region in the watershed
segmentation of this gradient. As a gradient usually have several non-significant minima
placed in visually homogeneous regions, the watershed transform computed from the
minima of a gradient is often oversegmented. As a solution to the oversegmentation
resulting from the watershed transform, [15] propose the waterfall algorithm, which is an
hierarchical approach to the watershed transform. At each step of the waterfall algorithm,
sets of similar neighbouring catchment basins are merged, resulting in a sequence of nested
segmentations.

More than dealing with the oversegmentation of the watershed transform, watershed
based hierarchies find their applications in computation of morphological operators [61],
iterative image segmentation [62, 37], highlighting of objects of interest [33] and hyper-
spectral image analysis in the context of stochastic hierarchical watersheds [4].

In this research, we work with watershed based hierarchies of partitions that are built
in the framework of weighted graphs and that are optimal in the sense of minimum
spanning forests [22, 24, 27, 74]. Following the definition of [24, 27, 74], a hierarchical
watershed (see Definition 1) is a sequence of partitions corresponding to filterings of an
initial watershed segmentation. This sequence of filterings is guided by a total order
on the minima of the original gradient, hence a total order on its catchment basins.
A hierarchy following this definition is a sequence of partitions that are each optimal
in the sense of minimum spanning forests: given a weighted graph (G,w) and given a
hierarchical watershed H for a sequence S = (M1, . . . ,Mn) of minima of w, each level i
of H, for i in {1, . . . , n}, is obtained by minimizing the sum of the edges of a minimum
spanning forest rooted in {Mi, . . . ,Mn}.

The link between hierarchical watersheds and the well-known minimum spanning
forest optimization problem allows us to consider the results of the studies on the latter
in the context of hierarchical watersheds. A first important consequence of this link is
the use of minimum spanning tree algorithms to design efficient algorithms to compute
hierarchical watersheds [24, 27, 74]. Moreover, the properties of minimum spanning
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trees induce corresponding properties on hierarchical watersheds. Furthermore, minimum
spanning trees and watersheds are linked to a broader range of optimization problems.
For instance, in [21], the authors unify graph-cuts, shortest path forests, watersheds and
random walkers in a single framework that solves each of those problems when different
parameters are given.

Most hierarchies of partitions used in the context of image analysis (e.g. [87]) are
defined by means of an algorithm rather than by the optimization of a cost function. In
turn, a hierarchical watershed optimizes a well-defined cost function for every partition.
It is noteworthy that many cost functions used to define image partitions are not adapted
to the computation of hierarchies. For instance, the partitions induced by the min-cuts,
average-cuts and shortest path forests of a graph for a sequence of decreasing subsets of
markers are generally not nested, as discussed in Section 2.6.2.

Hierarchical watersheds are also related to clustering methods oriented to energy op-
timization. For example, let us consider Ward’s hierarchical clustering method proposed
in [103]. Using this method, each level of a hierarchical cluster is optimized with respect
to a cost function by evaluating all possible n×(n−1)

2
merging of regions (considering that

the current level has n regions). Ward’s method is greedy because the optimal mergings
are selected independently at each level. However, Ward’s cost function needs to be up-
dated after each merging, which leads to a cubical time complexity algorithm. In turn,
considering the objective function optimized by hierarchical watersheds, we are able to
greedily find the optimal pair of regions to be merged without having to recompute the
cost function.

In [31], the authors propose the Image Foresting Transform (IFT) as a global frame-
work to solve graph-cut problems such as the watershed transform and other marker-
based segmentations. Their method can be applied to a family of smooth energy functions
which can be optimized locally. Definitions of the watershed segmentation, including the
watershed segmentation resulting from the IFT, are discussed in [10].

2.7 Attribute based hierarchies

An attribute based hierarchy is a hierarchy of partitions whose construction is guided by a
criterion A (or several criteria A1, A2, . . . ) such that, at the highest levels of the hierarchy,
the most important regions according to A are preserved. In this section, we first present
a brief review on attribute morphological operators and their applications. Then, we
introduce the increasing criteria used in the computation of hierarchical watersheds.
Finally, we discuss hierarchies based on non-increasing criteria.
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2.7.1 Introduction

As discussed in Section 2.2, the optimal hierarchy of segmentations of an image is ap-
plication dependent. The criterion upon which the relevant regions of an image can be
described varies according to the application, e.g. the segmentation of circular regions
used in the search of traffic signs in [104] is not adapted to the detection of (rectangular)
documents discussed in the same article. Among the most commonly used handcrafted
criteria, we can cite area/surface, contrast and shape based criteria, e.g. circularity,
rectangularity and perimeter.

Let H be a hierarchy and let A be a criterion on the regions of H. For instance, if A
is the area criterion, then for any region R of H, we denote by A(R) the area (number
of pixels) of R. We say that A is increasing if, given two regions R1 and R2 of H such
that R1 ⊂ R2, we have A(R1) ≤ A(R2). Otherwise, we say that A is non-increasing.
For instance, the area attribute is increasing: the number of pixels of a region is always
greater than the number of pixels of its children. On the other hand, most shape based
criteria are non-increasing: a non-circular region can be the parent of a circular region.
Those two type of criteria lead to distinct attribute based hierarchies.

Attribute based hierarchies are intrinsically related to attribute morphological oper-
ators such as attribute opening/closing. When dealing with an increasing criterion A, a
hierarchy of segmentations can be designed as a sequence of “A openings” (of a given ini-
tial segmentation) with increasing thresholds values. In order words, given an increasing
attribute A, we expect the regions of the highest levels of the hierarchy based on A to
have the highest values for A. In [18], the authors discuss attribute morphological op-
erators and the difficulty of handling non-increasing criteria in morphological operators
which were designed to be extensive or anti-extensive.

Let us consider a hierarchy H and an increasing criterion A. The filtering of H with
respect to A and a parameter λ corresponds to the pruning of every region R of H
such that A(R) < λ. When handling increasing attributes, the removal of a node in a
hierarchy implies the removal of all the descendants of this node. However, this is not
the case for non-increasing attributes. In [88], the authors propose three approaches to
handle prunings based on non-increasing criteria:

Direct. a node R is removed if A(R) < λ.
Max. a node R is removed if A(R) < λ and if, for any region R′ such that R′ ⊂ R,

we also have A(R′) < λ.
Min. a node is removed if A(R) < λ or if there is a region R′ such that R ⊂ R′

and A(R′) < λ.
Viterbi. a cost is assigned for the removal or preservation of each region of the
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hierarchy. The optimal solution is found by the optimal path from each leaf region to
the root of the hierarchy, where each node is associated to two possible states: remove
or preserve. This technique shows improved results when compared to the other three
techniques in the sense that similar images get similar filtering results [88].

Until now, we have discussed attribute filters in which all regions of a hierarchy are
considered during the filtering. Alternatively, filters can be extrema oriented in the sense
that they act on the extrema of an image: each extremum (maximum or minimum) is
either preserved or completely removed. In [98], the authors introduce the notion of
extinction values associated to the extrema of an image. Given the component tree T of
an image I, the extinction value of an extremum M of T with respect to an attribute A
corresponds the persistence of M when a A-filter is applied to T : the extinction value
of M is the largest value λ such that M belongs to an extremum of the A-filter of T
with parameter λ. Extrema oriented operators guided by extinction values are called
extinction operators.

In [93], the authors state the superiority of extinction filters with respect to attribute
filters in image simplification applied to recognition tasks. The former depends on thresh-
old parameters while that the latter is guided by the number of extrema we aim to pre-
serve. Being so, extinction filters have the advantage of being less scale dependant when
compared to attribute filters [41].

In [98], extinction values are defined for the attributes area and volume. Then, this
notion was extended to other increasing topological criteria such as height, number of
descendants and diagonal of bounding box proposed in [91], and number of parent nodes
introduced in [79]. Extinction values are also related to the notion of dynamics of minima
introduced in [45], the dynamics of a minimum being a measure of contrast between the
minima of an image.

In [91], the authors present applications of their newly proposed extinction values in
the detection of objects: they use the max-tree or min-tree of an image to detect the
extrema of interest in the image, where the extrema are normally associated to relevant
objects.

In [106], the authors propose a method to extend the notion of extinction values to
non-increasing criteria. They propose the computation of the max-tree from the original
max-tree. The attribute values on this new max-tree is increasing.

In [41], the authors present a fully-automatic solution to the segmentation of remote
sensing data based on extinction filters. They use extinction values based on the increas-
ing criteria area, volume, height and diagonal of bounding box, and on the non-increasing
standard deviation criterion. They handle non-increasing attributes as proposed in [106]



2.7. Attribute based hierarchies 53

and, then, they apply their method on different remote sensing datasets for a classification
purpose.

In [56], the authors define a super-pixel method based on watersheds, called water-
pixels, with spatially uniformly distributed markers. At each cell in an spatially uniform
grid (rectangular or hexagonal), one of the minima included in the cell is chosen accord-
ing to their extinction values: the minima of greatest area extinction value is preserved.
Then, they regularize the image gradient according to the chosen markers.

In [40], the authors apply the notions of extinction values and convolutional neural
networks to fuse the complementary features of hyperspectral and LiDAR data.

Attribute based hierarchies can be computed from different methods. In [104], the
authors proposed hierarchies based on non-increasing attributes computed from the tree
of shapes and from extinction values. In [98], the authors proposed hierarchies based
on area and volume extinction values. In [33], the authors compute attribute based
hierarchies by the sequential combination of stochastic watershed hierarchies based on
distinct attributes.

2.7.2 Hierarchical watersheds based on extinction values

Extinction values are used by extrema-oriented connected filters. When filtering by
extinction values, we are interested in either keeping or completely removing a maxima
or minima of an image. This notion fits the definition of hierarchical watersheds in the
sense that, at each level of a hierarchical watershed, we are interested in filtering out
one catchment basin. The bijection between the minima and the catchment basins of an
image make extinction values very adapted to the construction of hierarchical watersheds.
More precisely, the sequence of minima for which a hierarchical watershed is constructed
can be ranked by extinction values computed from any increasing criterion.

Given an image I and the max-tree or min-tree T of I, the extinction values of the
extrema of I with respect to an increasing attribute A can be recursively computed from
the root to the leaves of T as follows. The root of T is assigned to ∞. Then, for each
child R of the current node, if the attribute value of R for A is greater than the attribute
values of all its siblings, then R receives the extinction values of its parent. The extinction
value of the other siblings is assigned to their own attribute values. When there are ties
between siblings, they are treated arbitrarily.

In the following, we list the increasing attributes whose extinction values are used to
compute hierarchical watersheds in this research. In the remainder of this section, we
consider a connected weighted graph (G,w) and its min-tree MT . Extinction values are
recursively computed from the root to the leaves of MT as described previously.
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Area (surface): the area of a region R of MT is the number of pixels of R. Area
extinction values were introduced in [98]. Since then, it has found its application on the
segmentation of microarray images (filtering step aiming to reduce noise) [3], classification
of remote sensing data [41] and computation of spatially regular super pixels (waterpixels)
[56].

Dynamics: the dynamics [45] measures the importance of a minimum with respect to
other neighbouring extrema. Let Min be a minimum of MT . The dynamics of Min is
the lowest difference between the altitude of Min and the altitude of an edge on a path
from Min to another minimum Min′ of (G,w) such that the altitude of Min′ is lower
than the altitude of Min. In [75], the dynamics of minima is extended to the dynamics
of contours, leading to nested closed contours (saliency map), which are applied to shape
recognition. In [36], the authors apply the dynamics of maxima in the search for markers
for motion analysis from several frames of a video.

Volume: volume extinction values, introduced in [98], combine area and contrast
information. The volume of a node R of MT is the sum

∑
R′⊂RArea(R′)× C(R′) such

that C(R′) is the altitude of R′ minus the altitude of the parent of R′. In [41], volume
extinction values are used in the segmentation of remote sensing data.

In the following, we present topological based criteria. As topological attributes, they
are invariant to monotone contrast transformations and to geometric transformations.

Number of descendants: introduced in [91], the number of descendants of a node R
of MT is the number of regions of MT that are included in R. In [91], the authors use
extinction values based on the number of descendants in the detection of objects, where
the objects of an image are expected to be an extremum of the original image.

Topological height: number of nodes in the longest path from a node R to a leaf
node R′ of MT [91].

Diagonal of bounding box: diagonal of the smallest bounding box covering a region R.
The bounding box is parallel to the x and y axis of the image. It summarizes the width
and height of bounding box attributes proposed in [91].

Number of minima: number of minima of w that are subsets of a region R of MT .
Number of parent nodes: a parent node of MT is a node that is the parent of at least

one node ofMT . The number of parent nodes of a region R is the number of parent nodes
that are a subset of R (R included). We introduced this measure in [79] and, according
to the evaluation framework proposed in the same article, hierarchical watersheds based
on this new attribute outperform hierarchical watersheds based on the aforementioned
increasing attributes (see Chapter 6).

In Figure 2.11, we illustrat hierarchical watersheds computed from the extinction
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values obtained from each of the increasing attributes presented in this section.

2.7.3 Hierarchies based on non-increasing attributes

Computing hierarchical watersheds from extinction values based on increasing attributes
ensures that the higher levels of the hierarchy contains the most relevant regions according
to a given criterion. However, this property can not be assured when non-increasing
attributes are considered. This problem has been tackled in [88, 106] in the context of
connected filtering and hierarchies based on shape attributes.

In this work, we consider three shape-based non-increasing criteria:
Perimeter: given a region R, the perimeter of R is the number of pixels in R that are

4-connected to the background. The pixels in the image boundaries are considered to be
connected to the background. We denote the perimeter of R by Per(R).

Circularity: we consider a well-known circularity measure based on area and perime-
ter. Given a region R, let A(R) be the number of pixels in R. The circularity of R, de-
noted by Cir(R), is 4×πA(R)

Per(R)2
. In the continuous case, the value Cir(R) is in the range [0, 1]

with Cir(R) = 1 when R is a circle. In the discrete case, the maximal value of Cir(R) is
greater than one. Still, this measure is able to distinguish approximately circular regions
and non-circular regions (see Figure 2.12).

Rectangularity: given a region R, the rectangularity of R is measured by the area
of R divided by the area of the bounding box of R: A(R)

Abb(R)
. As the bounding box of a

region is parallel to the x and y axis, this measure is sensitive to rotation. Since the area
of a region is always smaller than the area of its bounding box, the rectangularity of R,
denoted by Rec(R), is in the range (0, 1]. As we work with regular rectangular grids,
this measure reaches 1 when R is a rectangle.

In Figure 2.12, we illustrate the three shape-based criteria considered here. We can
observe that the circularity and rectangularity measures succeed at distinguishing rect-
angular from circular shapes.

To compute hierarchical watersheds from non-increasing attributes, we first consider
extinction values computed from regularized attribute values. After regularization, the
non-increasing attributes become increasing attributes such that, filtering a hierarchy
based on those increasing attributes is equivalent to using the max and min rules on
the non-increasing attributes. Using the max rule (resp. min rule), the attribute of a
node R is assigned to the maximum (resp. minimum) of the attribute values among the
descendants of R (R included).

In Figure 2.13, we show two hierarchical watersheds based on extinction values com-
puted from regularized circularity. We can observe that neither of those hierarchical
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Figure 2.11: The saliency maps of the hierarchical watersheds of an image based on the
extinction values of area, dynamics, volume, number of descendants, topological height,
diagonal of bounding box, number of minima and number of parent nodes.
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Cir(R1) = 1.07, Rec(R1) = 1 A(R1) = 49, Per(R1) = 24 Abb(R1) = 49

Cir(R2) = 1.42, Rec(R2) = 0.59 A(R2) = 29, Per(R2) = 16 Abb(R2) = 49

Cir(R3) = 0.5, Rec(R3) = 0.39 A(R3) = 55, Per(R3) = 37 Abb(R3) = 140

Figure 2.12: Circularity, rectangularity, area, perimeter and area of bounding box of
three shapes in the rectangular grid.

watersheds succeed at highlighting the most circular regions of the original image. Using
the max-rule, non-circular regions are preserved at high levels of the hierarchy simply
because they include circular regions. Using the min rule, circular regions are rapidly
filtered out because they are included in non-circular regions.

To take into account the cases where important regions can be characterized by non-
increasing attributes, as circularity and perimeter, we apply a simple method to extract
and stack those regions in a hierarchy of segmentations. Given a min-tree of an image I
(or any hierarchy computed from I), we compute non-increasing attribute values on each
node of the tree. Then, a new saliency map is constructed by assigning to each edge the
maximum attribute value among the regions adjacent to it.
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Figure 2.13: Circularity based hierarchical watersheds. The circularity attributes were
normalized using max and min rules.

Examples of hierarchies based on circularity are given in Figure 2.14. From the area
based hierarchical watersheds of each image of Figure 2.14, we computed the circular-
ity measure and proceeded as described in the previous paragraph. For visualization
purposes, only the highest levels of each hierarchy are shown.

A different approach to handle non-increasing attributes is proposed in [104]. In [104],
the authors first compute a component tree T (min-tree, max-tree or tree of shapes) of
the original image. Then, non-increasing attribute values are computed for each node
of the component tree. A new component tree TT is computed from T by considering
the attribute value of each node as its gray-level. We can affirm that there is a bijection
between the nodes of TT and the nodes of T . The leaves of TT are the nodes of T with
the lowest attribute values. Hence, the non-increasing criteria becomes increasing on the
new tree TT . The filtering is then performed on this new tree TT .

It is important to note that hierarchies based on non-increasing attributes are not
watershed hierarchies in general and, for this reason, none of the regularization strategies
proposed in [88] would be able to produce hierarchical watersheds that highlight the
desired regions at the highest levels.
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Figure 2.14: From first to forth rows: original image and the saliency maps of the
hierarchies based on circularity, circularity, rectangularity and perimeter, respectively.
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Chapter 3

Characterization and recognition of
hierarchical watersheds

In this chapter, we propose a characterization of hierarchical watersheds and an al-
gorithm to recognize hierarchical watersheds. The results herein presented are based on
the following articles:

• D. S. Maia, J. Cousty, L. Najman, and B. Perret. Recognizing hierarchical water-
sheds. In International Conference on Discrete Geometry for Computer Imagery,
pages 300–313. Springer, 2019.

• D. S. Maia, J. Cousty, L. Najman, and B. Perret. Characterization of graph based
hierarchical watersheds: theory and algorithm. Under review. 2019.

3.1 Introduction

As discussed in Section 2.6, watershed [14, 22] is a well established segmentation tech-
nique in the field of mathematical morphology. The idea behind this technique is related
to the topographic definition of watersheds: dividing lines between neighboring catch-
ment basins, i.e., regions whose collected water drains to a common point. We say that
the point (or region) of lowest altitude of a catchment basin is a (local) minimum of a
topographic surface. In the context of digital image processing, gray-level images (gradi-
ents) can be treated as topographic surfaces whose altitudes are determined by the pixel
gray-levels. The minima of an image are the regions of uniform gray-level surrounded by
pixels of strictly greater gray-levels. A watershed segmentation is a partition of the set
of pixels of an image into its catchment basins.

61
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Hierarchical watersheds [24, 13, 75, 67], reviewed in Section 2.6.1, are sequences
of nested partitions which correspond to filterings of an initial watershed segmentation
[22, 14]. Given an image I, a hierarchical watershed of I can be obtained by iteratively
merging neighboring catchment basins of I according to a predefined ordering on the
minima of I.

Several well-known image segmentation techniques are modeled in the framework of
graphs [17, 90, 35, 31, 43, 21], including (hierarchical) watersheds [66, 22, 24, 27, 74].
In this context, images are often represented as (edge) weighted graphs whose vertices
correspond to pixels and whose edge weights convey the dissimilarity between neighboring
pixels. Let G be a graph whose edges are weighted by a map w. As defined in Section
2.6.1, a minimum of w is a subgraph of G with equal edge weights that is surrounded by
edges with strictly greater weights. A hierarchical watershed of (G,w) for a sequence of
minima S of w is constructed by merging the catchment basins of (G,w) following the
sequence S.

Hierarchical watersheds can feature several distinct aspects of an image. As estab-
lished in Section 2.7.2, the minima of a weighted graph are commonly ordered by extinc-
tion values based on a regional attribute A, e.g. area and volume [98]. We then expect
the resulting hierarchical watershed to highlight the most perceptually significant regions
with respect to this attribute A. Besides being versatile, hierarchical watersheds can be
computed by the efficient algorithm proposed in [27, 74], whose time complexity is the
same as minimum spanning tree algorithms. Moreover, as shown in [79], the performance
of hierarchical watersheds based on regional attributes is competitive when compared to
other hierarchical segmentation methods.

The link between hierarchical watersheds and the well-known minimum spanning
forest optimization problem, discussed in Section 2.6, allows us to consider the results
of the studies on the latter in the context of hierarchical watersheds. A first important
consequence of this link is the use of minimum spanning tree algorithms to design efficient
algorithms to compute hierarchical watersheds [24, 27, 74]. Moreover, the properties of
minimum spanning trees induce corresponding properties on hierarchical watersheds.
Furthermore, minimum spanning trees and watersheds are linked to a broader range of
optimization problems. For instance, in [21], the authors unify graph-cuts, shortest path
forests, watersheds and random walkers in a single framework that solves each of those
problems when different parameters are given.

Most hierarchies of partitions used in the context of image analysis (e.g. [87]) are
defined by means of an algorithm rather than by the optimization of a cost function. In
turn, a hierarchical watershed optimizes a well-defined cost function for every partition.
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It is noteworthy that many cost functions used to define image partitions are not adapted
to the computation of hierarchies. For instance, the partitions induced by the min-cuts,
average-cuts and shortest path forests of a graph for a sequence of decreasing subsets of
markers are generally not nested (see examples in Section 2.6.2).

In this study, we tackle the problem of recognizing hierarchical watersheds:

• given a weighted graph (G,w) and a hierarchy of partitions H, determine if H is a
hierarchical watershed of (G,w).

The problem of recognizing hierarchical watersheds is related to the problem studied
in [55, 8]. In [55, 8], the authors search for a minimum set of markers which lead to
a given watershed segmentation. In our case, we first consider a fixed set of markers,
namely the set of minima of a graph (G,w). Then, given a hierarchy, we investigate if,
for every partition P of this hierarchy, there is a subsetM of markers (minima of (G,w))
such that P is the watershed segmentation for M, i.e., the connected components of a
MSF rooted inM (see the definition of hierarchical watersheds in Definition 1).

A naive approach to solve this problem is to test if there is a sequence S of minima
of w such that H is the hierarchical watershed of (G,w) for S. However, there exist n!

sequences of minima of w, which leads to an algorithm of factorial time complexity.
Motivated by solving this recognition problem more efficiently, we propose in Sec-

tion 3.2 a simple and general characterization of hierarchical watersheds (Theorem 20)
based on the binary partition hierarchy by altitude ordering, whose definition was given
in Section 2.5.2. Based on our proposed characterization of hierarchical watersheds, we
design an efficient algorithm (Algorithm 1) to solve this problem. Then, in Section 3.4,
we introduce a relaxed definition of hierarchical watersheds, called flattened hierarchical
watersheds, along with an algorithm to recognize this family of hierarchies.

Important notations: in the remainder of this chapter, the symbol (G,w) denotes
a weighted graph whose vertex set is connected. To shorten the notation, the vertex set
of G is denoted by V and its edge set is denoted by E. Without loss of generality, we
also assume that the range of w is included in the set E of all integers from 0 to |E| − 1

(otherwise, one could always consider an increasing one-to-one correspondence from the
set {w(u) | u ∈ E} into the subset {0, ..., |{w(u) | u ∈ E}| − 1} of E). Every hierarchy
considered in this chapter is connected for G and therefore, for the sake of simplicity, we
use the term hierarchy instead of hierarchy which is connected for G. We denote by n the
number of minima of w. Every sequence of minima of w considered in this chapter is a
sequence of n pairwise distinct minima of w and, therefore, for the sake of simplicity, we
use the term sequence of minima of w instead of sequence of n pairwise distinct minima
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of w. By abuse of terminology, when no confusion is possible, if M is a minimum of w,
we call the set V (M) of vertices of M as a minimum of w.

3.2 Characterization of hierarchical watersheds

In this section, we propose a characterization of hierarchical watersheds for solving the
problem of recognizing hierarchical watersheds in the context of weighted graphs. This
characterization relies on the bijection between hierarchies of partitions and saliency
maps. As discussed in Section 2.4, any hierarchy of partitions has a unique saliency
map. In turn, a map can be the saliency map of at most one hierarchy of partitions.
Therefore, by characterizing the saliency maps of hierarchical watersheds, we characterize
hierarchical watersheds as well. To ease the reading of this section, the proofs of the
properties and theorems stated here are delayed to Appendix 8.1.

The characterization of (the saliency map of) hierarchical watersheds presented in
this chapter is based on the link between hierarchical watersheds and binary partition
hierarchies (by altitude ordering) presented in Section 2.5.2.

Important notations: given an altitude ordering ≺ for w and a building edge u
for ≺ (see definitions in Section 2.5.2), we denote by Ru the region of the binary partition
hierarchy B≺ by ≺ whose building edge is u. The set of building edges for ≺ is denoted
by E≺.

Definition 18, presented in the following, introduces the notion of one-side increasing
map. As established later in Lemma 19, this notion is closed linked to the saliency maps
of hierarchical watersheds. Before introducing one-side increasing maps, we present the
auxiliary notion of supremum descendant value in the next definition.

Definition 17 (supremum descendant value). Let ≺ be an altitude ordering for w and
let f be a map from E into R. Let R be a region of the binary partition hierarchy B≺
of (G,w) by ≺. The supremum descendant value of R for (f,≺) is the supremum edge
weight among the building edges of the regions included in R: ∨{f(v) | v ∈ E≺, Rv ⊆ R},
where ∨{} = 0.

For instance, let (G,w) be the graph of Figure 3.1(a). Since the edges of G have
pairwise distinct weights in w, we can conclude that there is a unique altitude ordering
for w. Let ≺ be the altitude ordering for w and let B≺ be the binary partition hierarchy
by ≺ of Figure 3.1(b). Given the map f illustrated in Figure 3.1(c), we can verify that the
weights above the nodes of B≺, illustrated in Figure 3.1(d), are the supremum descendant
values for (f,≺).



3.2. Characterization of hierarchical watersheds 65

A B C D

a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

(a) (G,w)

{a} {b} {c} {d} {e} {f} {g} {h}

A

{a, b}
B

{c, d}
C

{e, f}
D

{g, h}
Y5

{a, c}
Y6

{e, g}
Y7

{c, e}

(b) B≺

a

b

c

d

e

f

g

h

0 0 0 0

1 2 3

(c) (G, f)

{a}

0
{b}

0
{c}

0
{d}

0
{e}

0
{f}

0
{g}

0
{h}

0
A

0 B

0 C

0 D

0Y5

1 Y6

3Y7

3

(d) supremum descendant values for (f,≺)

Figure 3.1: (a) a weighted graph (G,w) with four minima delimited by the dashed
rectangles. (b): the binary partition hierarchy B≺ by the unique altitude ordering ≺
for w. The building edges for ≺ are shown above each non-leaf region of B≺ (c) a map
f . (d) the supremum descendant values for (f,≺).

Definition 18 (one-side increasing map). Let ≺ be an altitude ordering for w and let f
be a map from E into R. We say that f is one-side increasing for ≺ if:

1. {f(u) | u ∈ E≺} = {0, . . . , n− 1};

2. for any edge u in E≺, the value f(u) is greater than zero if and only if u is a
watershed-cut edge for ≺ (Definition 2); and

3. for any edge u in E≺, there exists a child R of Ru such that f(u) is greater than or
equal to the supremum descendant value of R for (f,≺).

The next lemma, whose proof is given in Appendix 8.1.1, states that hierarchical
watersheds can be characterized as the hierarchies whose saliency maps are one-side
increasing maps.
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Lemma 19. Let H be a hierarchy on V . The hierarchy H is a hierarchical watershed
of (G,w) if and only if there is an altitude ordering ≺ for w such that the saliency
map Φ(H) is one-side increasing for ≺.

Let (G,w) be the graph of Figure 3.2(a), let ≺ be the unique altitude ordering for w
and let B≺ be the binary partition hierarchy by ≺ shown in 3.2(b). Let H be the
hierarchy of Figure 3.2(c) and let Φ(H) be the saliency map of H shown in Figure 3.2(d).
In Figure 3.2(e), the saliency map Φ(H) is represented on the hierarchy B≺. We can
verify that Φ(H) is one-side increasing for ≺. By Lemma 19, we may affirm that Φ(H)

is the saliency map of a hierarchical watershed of (G,w) and that, consequently, the
hierarchy H is a hierarchical watershed of (G,w). Indeed, we can verify that H is the
hierarchical watershed for the sequence (A,B,C,D) of minima of w.

Let H′ and Φ(H′) be the hierarchy and the saliency map shown in Figure 3.2(f)
and Figure 3.2(g), respectively. We can see that Φ(H′) is not one-side increasing for ≺.
Indeed, the weight Φ(H′)({c, e}) of the building edge of the region Y7 of B≺ is 1, which
is lower than both ∨{Φ(H′)(v) | Rv ⊆ Y5} = 2 and ∨{Φ(H′)(v) | Rv ⊆ Y6} = 3. Hence,
the condition 3 of Definition 18 is not satisfied by Φ(H′). Thus, by Lemma 19, as ≺ is
the unique altitude ordering for w, we deduce that Φ(H′) is not the saliency map of a
hierarchical watershed of (G,w) and that H′ is not a hierarchical watershed of (G,w).
Indeed, it can be verified that there is no sequence S of minima of w such that H′ is the
hierarchical watershed of (G,w) for S.

In the case where (G,w) has pairwise distinct edge weights, there exists a unique
altitude ordering for w. Hence, we can use Lemma 19 to verify that a given map f is
the saliency map of a hierarchical watershed of (G,w) by simply checking if f is one-side
increasing for the unique altitude ordering for w. Otherwise, let us consider that (G,w)

has arbitrary edge weights. Thus, in order to test if a map f is the saliency map of a
hierarchical watershed of (G,w), we need to test if there is an altitude ordering ≺ for w
such that f is one-side increasing for≺. In the worst case, there exist |E|! possible altitude
orderings for w. Hence, the naive approach to verify that f is one-side increasing for an
altitude ordering for w has a factorial time complexity, which is the same time complexity
as the algorithm to verify that f is the saliency map of a hierarchical watershed for a
sequence of minima of w. Actually, as we establish later in Theorem 20, it is sufficient to
test if f is one-side increasing for a single altitude ordering for w, which is the key idea
behind our efficient algorithm (Algorithm 1) to recognize hierarchical watersheds.

Let f and g be two maps from E into R. A lexicographic ordering for (f, g) is a total
ordering ≺ on E such that, for any two edges u and v in E, we have u ≺ v if f(u) < f(v)

or if f(u) = f(v) and g(u) ≤ g(v). We can note that any lexicographic ordering for (f, g)
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Figure 3.2: (a) a weighted graph (G,w) with four minima limited by the dashed rectan-
gles. (b): the binary partition hierarchy B≺ by the unique altitude ordering ≺ for w. (c)
and (f): the hierarchies H and H′, respectively. (d) and (g): the saliency maps of H and
H′, respectively. (e) and (h): the maps Φ(H) and Φ(H′) represented on the hierarchy B≺.
For each edge u of G, the values Φ(H)(u) and Φ(H′)(u) are shown above the region Ru

of B≺.
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is an altitude ordering for f .

Theorem 20. Let H be a hierarchy and let ≺ be a lexicographic ordering for (w,Φ(H)).
The hierarchy H is a hierarchical watershed of (G,w) if and only if the saliency map Φ(H)

is one-side increasing for ≺.

The proof of Theorem 20 is presented in Appendix 8.1.2.

3.3 Algorithm to recognize hierarchical watersheds

In this section, we present an efficient algorithm to recognize hierarchical watersheds
based on Theorem 20. To test if a hierarchy is a hierarchical watershed of (G,w), it is
sufficient to verify that the saliency map f of this hierarchy is one-side increasing for a
lexicographic ordering for (w, f).

Algorithm 1 provides a description of our algorithm to recognize hierarchical water-
sheds. The inputs are a weighted graph ((V,E), w) and a saliency map f . The first step
of Algorithm 1 is to compute a lexicographic ordering ≺ for (w, f). Then, the binary
partition hierarchy B by ≺ and the set of building egdes E≺ for ≺ are computed at lines
2 and 3. Subsequently, the minima of w are obtained at line 4. As established in [74],
every minimum of w is a region of B. After computing the set of minima of w, the
watershed-cut edges for ≺ are obtained at line 5 by browsing the hierarchy B starting
from the leaf regions and by iteratively counting the number of minima included in each
region of B. At lines 6-7, we compute the supremum descendant value for (≺, f) of each
building edge for ≺. Finally, the last for loop (lines 9− 19) verifies that the three condi-
tions of Definition 18 for f to be one-side increasing for ≺ hold true. The condition 1 of
Definition 18 is verified by the two if commands between lines 10 and 13. The conditions
2 and 3 of Definition 18 are verified by the if commands at lines 14 and 17, respectively.
If any of those three conditions is not satisfied, then the algorithm halts and returns false
and, otherwise, it returns true.

Let us now analyse the time complexity of Algorithm 1. Given that the lexicographic
ordering for (w, f) can be obtained through the merging sort algorithm, the time com-
plexity of this step is O(|E|log|E|). As established in [74], any binary partition hierarchy
can be computed in quasi-linear time with respect to |E| provided that the edges in E are
already sorted or can be sorted in linear time. More specifically, the time complexity to
compute the binary partition hierarchy B is O(|E|×α(|V |)), where α is a slowly growing
inverse of the single-valued Ackermann function. Having computed the binary partition
hierarchy B, the computation of the minima of w and of the watershed-cut edges for ≺
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can be performed in linear time with respect to |V | as stated in [74]. At lines 6− 7, the
supremum descendant values of the building edges for ≺ are iteratively computed from
the leaves to the root in linear time O(V ). Finally, each instruction between lines 10

and 17 can be performed in constant time, which implies that the last for loop has a
linear time complexity with respect to |V |. Therefore, the overall time complexity of
Algorithm 1 is O(|E|log|E|).

We illustrate Algorithm 1 in Figure 5.4. The inputs are the weighted graph (G,w) and
the saliency map f of Figure 5.4(a) and (b), respectively. We first obtain a lexicographic
ordering ≺ for (w, f) such that {a, b} ≺ {c, d} ≺ {e, f} ≺ {g, h} ≺ {i, j} ≺ {a, c} ≺
{g, i} ≺ {c, e} ≺ {d, f} ≺ {e, g} ≺ {b, d} ≺ {f, h} ≺ {h, j}. Then, we obtain the binary
partition hierarchy B by ≺, the minima of w (in red) and the four watershed-cut edges
of w (underlined) illustrated in Figure 5.4(c). Subsequently, we compute the supremum
descendant values for (≺, f). For each edge u of G, the supremum descendant value
of u for (≺, f) is the greatest value in the set {f(v) | Rv ⊆ Ru} by Definition 17. We
can verify that the range of f is {0, 1, 2, 3, 4} and that, among the building edges for ≺,
all (and only) the watershed-cut edges for ≺ have non-zero weights for f . Therefore,
the conditions 1 and 2 of Definition 18 for f to be one-side increasing for ≺ hold true.
Finally, we test the condition 3 of Definition 18. For each watershed-cut edge u of G, we
test if f(u) is greater than the supremum descendant value of at least one child of Ru.
For the building edges of the regions Y6, Y7 and Y8 the condition 3 holds true, but this is
not the case for the region Y9. Consequently, the map f is not one-side increasing for ≺
and Algorithm 1 returns false.

3.4 Flattened hierarchical watersheds

In order to compute a hierarchical watershed of (G,w), a sequence of minima of w is often
defined by extinction values [98]. When distinct minima of w have the same extinction
value, the order between those minima is defined arbitrarily. Let G′ be the MSF of (G,w)

rooted in the minima of w. By Definition 1, we may say that a hierarchical watershed
of (G,w) can be obtained by filtering, one by one, the connected components of G′. Now,
let us consider a framework in which the minima with equal extinction values are treated
in parallel. In this new framework, the connected components of G′ rooted in minima
of w with equal extinction values are filtered out simultaneously. We can affirm that
the resulting partitions of this framework are a subset of the partitions of a hierarchical
watershed of (G,w), and hence a simplified or “flattened” hierarchical watershed.
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Algorithm 1 Recognition of hierarchical watersheds
Data: ((V,E), w): a weighted graph

f : the saliency map of a hierarchy H on V
Result: true if H is a hierarchical watershed of (G,w) and false otherwise

1: Compute a lexicographic ordering ≺ for (w, f) � O(|E|log|E|)
2: Compute the binary partition hierarchy B by ≺ � O(|E| × α(|V |)) with [74]
3: Compute the set E≺ of building edges for ≺ � O(|V |)
4: Compute the minima of w � O(|V |) with [74]
5: Compute the watershed-cut edges for ≺ � O(|V |) with [74]
6: for each building edge u in increasing order for ≺ do � O(|V |)
7: ϕ(u)← the supremum descendant value of Ru for (f,≺) � O(|1|)
8: end for
// Testing of the conditions 1, 2 and 3 of Definition 18
for f to be one-side increasing for ≺

9: for each building edge u in increasing order for ≺ do � O(|V |)
10: if f(u) 6∈ {0, 1, . . . , k} then � O(|1|)

return false � O(|1|)
11: end if
12: if f(u) 6= 0 and ∃v ∈ E≺ such that v ≺ u and f(u) = f(v) then � O(|1|)

return false � O(|1|)
13: end if
14: if u is a watershed-cut edge and f(u) = 0 or u is not a watershed-cut edge

and f(u) 6= 0 then � O(|1|)
return false � O(|1|)

15: end if
16: X and Y ← children of Ru � O(|1|)
17: if ϕ(Ru) < ϕ(X) and ϕ(Ru) < ϕ(Y ) then � O(|1|)

return false � O(|1|)
18: end if
19: end for

return true

Definition 21 (flattening of hierarchies). Let H and H′ be two hierarchies on V such
that any partition of H is a partition of H′. We say that H is a flattening of H′.

Let H and H′ be two hierarchies on V such that H is a flattening of H′. If H′ is a
hierarchical watershed of (G,w), then we say that H is a flattened hierarchical watershed
of (G,w). The reader may note that there can be repeated partitions in both H and
H′. Hence, the hierarchy H can have more partitions than H′, but H has less distinct
partitions than H′.

We can see that the notion of flattened hierarchical watersheds, even though not
formally defined previously, arise naturally in the context of marker-based watershed



3.4. Flattened hierarchical watersheds 71

a

b

c

d

e

f

g

h

i

j

1 2 3 4 5

6

9

8

8

8

12

7

20

(a) (G,w)

a

b

c

d

e

f

g

h

i

j

0 0 0 0 0

3

3

1

1

2

2

4

4

(b) (G, f)

{a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

A

{a, b}
B

{c, d}
C

{e, f}
D

{g, h}
E

{i, j}

Y6

{a, c} Y7

{g, i}
Y8

{c, e} Y9

{e, g}

(c) B

{a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

A

0
B

0
C

0
D

0
E

0

Y6

3 Y7

4
Y8

1
Y9

2

(d) B and f

{a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

A

0
B

0
C

0
D

0
E

0

Y6

3 Y7

4
Y8

3
Y9

4

(e) B and the supremum
descendant values for (f,≺)

{a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

A
B

C
D

EY6

3 ≥ 0 Y7

4 ≥ 0
Y8

1 ≥ 0
Y9

2 < 3 and 2 < 4

(f) is f(u) greater than the
supremum descendant value
of at least one child of Ru?

Figure 3.3: Toy example of Algorithm 1. Given the weighted graphs (G,w) and (G, f),
we test if f is the saliency map of a hierarchical watershed of (G,w). We first compute
the lexicographic ordering ≺ for (w, f) such that {a, b} ≺ {c, d} ≺ {e, f} ≺ {g, h} ≺
{i, j} ≺ {a, c} ≺ {g, i} ≺ {c, e} ≺ {d, f} ≺ {e, g} ≺ {b, d} ≺ {f, h} ≺ {h, j}. Then, we
obtain the binary partition hierarchy B≺ by ≺, along with the minima of w (in red) and
the watershed-cut edges for B (underlined). Subsequently, we compute the supremum
descendant values of the regions of B for (f,≺). We may conclude that conditions 1 and
2 of Definition 18 hold true for f , but not the condition 3. Hence, f is not the saliency
map of a hierarchical watershed of (G,w).

segmentation. It is noteworthy that, as a hierarchical watershed, all partitions of a
flattened hierarchical watershed are optimal in the sense of minima spanning forests.

Among the watershed based hierarchies that are computed without considering a to-
tal ordering on the minima, we can cite the waterfall algorithm proposed in [15], which
can also be formulated in the framework of weighted graphs. At each step of the waterfall
algorithm, several catchment basins of the original image can be merged. In this algo-
rithm, markers are implicitly defined by a sequence of floodings of the original weighted
graph.

The following property, whose proof is presented in Appendix 8.1.3, characterizes
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flattened hierarchical watersheds.

Property 22. Let H be a hierarchy on V and let f be the saliency map of H. The
hierarchy H is a flattened hierarchical watershed of (G,w) if and only if there is an
altitude ordering ≺ for w such that:

1. (V,E≺) is a MST of (G, f); and

2. for any edge u in E≺, if u is not a watershed-cut edge for ≺, then f(u) is zero; and

3. for any edge u in E≺, there exists a child R of Ru such that f(u) is greater than or
equal to the supremum descendant value of R for (f,≺).

We can remark the similarity between Property 22 and Lemma 19, which links hi-
erarchical watersheds to the notion of one-side increasing maps. Let H be a hierarchy
and let f be the saliency map of H. To test if H is a flattened hierarchical watershed
of (G,w), the first condition of Property 22, which is an implication of the first statement
of Definition 18, makes sure that we take into account the range of f and not only a subset
of the range of f . The second condition of Property 22, which is the forward implication
of the second statement of Definition 18, guarantees that the lowest level of H is equal or
coarser than the lowest level of a hierarchical watershed of (G,w). Allied to the second
condition of Property 22, the third condition of Property 22, which is equivalent to the
third statement of Definition 18, assures that each partition of H is induced by a MSF
rooted in a subset of the set of minima of (G,w).

Algorithm 2 describes our algorithm to recognize flattened hierarchical watersheds,
which is very similar to the algorithm to recognize hierarchical watersheds (Algorithm 1).
The only difference between algorithms 2 and 1 is that, in Algorithm 2, we do not test
if the first condition of Definition 18 holds true, and we test if (V,E≺) is a MST of
the input map ((V,E), f), where E≺ is the set of building edges for ≺. The verifica-
tion that (V,E≺) is a MST of (G, f) can be done in time O(|E|log|E|) by checking if
the sum of the edge weights of a MST of ((V,E), f) is equal to the sum of the edge
weights of ((V,E≺), f). Hence, the overall time complexity of Algorithm 2 is the same of
Algorithm 1: O(|E|log|E|).

3.5 Conclusion

In this chapter, we proposed a solution the problem of recognition of hierarchical water-
sheds. We introduced a characterization of hierarchical watersheds and, based on this
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Algorithm 2 Recognition of flattened hierarchical watersheds
Data: ((V,E), w): a weighted graph

f : the saliency map of a hierarchy H on V
Result: true if H is a flattened hierarchical watershed of (G,w) and false otherwise
/* Lines 1− 8 of Algorithm 1 */ � O(|E|log|E|)
// Testing of the conditions 1, 2 and 3 of Property 22
for f to be a flattened hierarchical watershed of ((V,E), w)

17: if (V,E≺) is not a MST of ((V,E), f) then � O(|E|log|E|)
return false

18: end if
19: for each building edge u in increasing order for ≺ do � O(|V |)
20: if u is not a watershed-cut edge and f(u) 6= 0 then � O(|1|)

return false � O(|1|)
21: end if
22: X and Y ← children of Ru � O(|1|)
23: if ϕ(Ru) < ϕ(X) and ϕ(Ru) < ϕ(Y ) then � O(|1|)

return false � O(|1|)
24: end if
25: end for

return true

characterization, we designed an efficient algorithm to determine if a hierarchy is a hi-
erarchical watershed of any given weighted graph. To consider the hierarchies that are
obtained by a partial ordering on the minima of a weighted graph, we introduced the
notion of flattened hierarchical watersheds, which is a relaxed definition of hierarchical
watersheds.

Later, in Chapter 7, we study a method to combine hierarchies through their saliency
maps and show experimental results on combinations of hierarchical watersheds [57].
Those results raise the question of whether the resulting combinations are hierarchical
watersheds or flattened hierarchical watersheds. In the affirmative case, we could infer
that there exists an increasing attribute A (or several such attributes) such that the
combinations of hierarchical watersheds are precisely the hierarchical watersheds based
on A. This problem is addressed in details in Chapter 7, where we present experimental
results with our algorithm to recognize (flattened) hierarchical watersheds applied to the
combinations of hierarchical watersheds assessed in [57].
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Chapter 4

Watersheding hierarchies

In this chapter, we introduce an operator, called watersheding, that converts any
hierarchy of partitions into a hierarchical watershed of a given weighted graph. The
results presented here were introduced in the following article:

• D. S. Maia, J. Cousty, L. Najman, and B. Perret. Watersheding hierarchies. In In-
ternational Symposium on Mathematical Morphology and Its Applications to Signal
and Image Processing, pages 124–136. Springer, 2019.

4.1 Introduction

In the context of image segmentation, hierarchies (of partitions) are sequences of nested
partitions of image pixels. At the highest levels of a hierarchy, we have the most repre-
sentative regions according to a given criterion, such as size and contrast. As discussed
in Section 2.4, hierarchies can be equivalently represented by saliency maps, in which the
contours between regions are weighted according to their level of disappearance in the
hierarchy. Thank to the bijection between hierarchies and saliency maps [25], we work
indifferently with any of those notions in this study.

In mathematical morphology, hierarchies are often obtained from the watershed trans-
form [22, 14]. With the definitions proposed in [22, 74, 27] (see Definition 1), hierarchical
watersheds are optimal in the sense of minimum spanning forests. Furthermore, efficient
algorithms to compute those hierarchies have been designed [24, 74]. Moreover, water-
sheds can be linked to a broader family of combinatorial optimization problems, such as
random walkers and graph cuts, as demonstrated in [20].

In this study, we propose the watersheding operator, which, given an edge-weighted
graph (G,w), transforms (the saliency map of) any hierarchy connected for G into (the
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saliency map of) a hierarchical watershed of (G,w). Figure 4.1 illustrates an application
of the watersheding operator. The goal is to obtain, from the image gradient G, a
hierarchical watershed of G that highlights the most perceptually significant regions of
the image I of Figure 4.1(a), including the circular ones. A straightforward method to
achieve this goal is to compute the hierarchical watershed of G based on regularized
circularity attribute values (see Section 2.7.3). The hierarchy Hc of Figure 4.1(c) is
a hierarchical watershed of G based on circularity values after regularization with the
max-rule. We can observe that the hierarchy Hc does not succeed at highlighting all the
main circular regions of the image I. Alternatively, we computed another hierarchy Hcc,
illustrated in Figure 4.1(d), by simply weighing each contour of the regions of the area-
based hierarchical watershed of G with the maximum circularity value among the regions
that share this contour. The hierarchyHcc brings to the fore the main circular regions of I,
however it is not a hierarchical watershed of G. By applying the watersheding operator
on Hcc, we obtain the hierarchiy Hw of Figure 4.1(d). Analogous to the hierarchy Hc,
the result of the watersheding operator Hw is also a hierarchical watershed of G. We
can see that the circular regions of the image I are better highlighted in the result
of the watersheding operator Hw when compared to the straightforward approach Hc.
Furthermore, besides highlighting the main circular regions present at high levels of the
hierarchy Hcc, the hierarchy Hw brings to the fore the region covering the arm, which is
also a perceptually significant region.

We present the formal definition of the watersheding operator along with its main
properties in Section 4.2. We show that the watersheding operator is idempotent and
that the saliency maps of hierarchical watersheds are the fixed points of this operator.
Then, we conclude in Theorem 33 that the watersheding operator also provides a charac-
terization of hierarchical watersheds and, hence, is an alternative solution to the problem
of recognizing hierarchical watersheds discussed in Chapter 3. In Section 4.3, we propose
an efficient algorithm that implements the watersheding operator. Finally, we discuss
applications of this operator in Section 4.4.

Important notations: in the remainder of this chapter, the symbol (G,w) denotes
a weighted graph whose vertex set is connected. For the sake of simplicity, we consider
that G is a tree. To shorten the notation, the vertex set of G is denoted by V and its
edge set is denoted by E. Without loss of generality, we also assume that the range of w
is included in the set E of all integers from 0 to |E| − 1 (otherwise, one could always
consider an increasing one-to-one correspondence from the set {w(u) | u ∈ E} into the
subset {0, ..., |{w(u) | u ∈ E}| − 1} of E). Every hierarchy considered in this chapter is
connected for G and therefore, for the sake of simplicity, we use the term hierarchy instead
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(a) I (b) G

(c) Hc and three partitions of Hc with 20, 30 and 40 regions

(d) Hcc and three partitions of Hcc with 20, 30 and 40 regions

(e) Hw and three partitions of Hw with 20, 30 and 40 regions

Figure 4.1: (a) an image I. (b) the gradient G of I computed with the edge detector
introduced in [29]. (c) From left to right: the saliency map of the hierarchical water-
shed Hc of G based on a regularized circularity attribute, and three partitions of Hc

containing 20, 30 and 40 regions, respectively. (d) From left to right: the saliency map
of a circularity based hierarchy Hcc, and three partitions of Hcc containing 20, 30 and 40
regions, respectively. (e) the watersheding Hw of the saliency map of Hcc (for G), and
three partitions of Hw containing 20, 30 and 40 regions, respectively.

of hierarchy which is connected for G. We denote by n the number of minima of w. Every
sequence of minima of w considered in this chapter is a sequence of n pairwise distinct
minima of w and, then we use the term sequence of minima of w instead of sequence of n
pairwise distinct minima of w. By abuse of terminology, when no confusion is possible,
if M is a minimum of w, we call the set V (M) of vertices of M as a minimum of w.
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4.2 Watersheding operator

In this section, we introduce the watersheding (operator), which maps any saliency map
into the saliency map of a hierarchical watershed of (G,w). To ease the reading of this
section, the proof of part of the properties stated here are delayed to Appendix 8.2.

The idea underlying the watersheding operator is to invert the method to compute
hierarchical watersheds proposed in [74, 27] and revised in Section 2.6.1. As the methods
proposed in [74, 27], the watersheding operator relies on the notion of binary partition
hierarchy (by altitude ordering) discussed in Section 2.5.2. In order to present the
watersheding operator, we first remind the definition of extinction values for a sequence
of minima.

Important notation: given an altitude ordering ≺ for w and a building edge u for ≺
(see definitions in Section 2.5.2), we denote by Ru the region of the binary partition
hierarchy B≺ by ≺ whose building edge is u. The set of building edges for ≺ is denoted
by E≺.

Let ≺ be an altitude ordering for w, let S = (M1, . . . ,Mn) be a sequence of minima
of w and let R be any region of the binary partition hierarchy B≺ by ≺. By Definition 3,
the extinction value of R for (S,≺) is zero if there is no minimum of w included in R and,
otherwise, it is the maximum value i in {1, . . . , n} such that the minimum Mi is included
in R. Let ε be a map from the regions of B≺ into R such that, for any region R of B≺,
the value ε(R) is the extinction value of R for (S,≺). We say that ε is the extinction
map for (S,≺), that ε is an extinction map for S and that ε is an extinction map for ≺.

The following property, whose proof is given in Appendix 8.2.1, characterizes extinc-
tion maps.

Property 23. Let ≺ be an altitude ordering for w and let ε be a map from the regions
of B≺ into R. The map ε is an extinction map for ≺ if and only if the following statements
hold true:

1. {ε(R) | R is a region of B≺} = {0, . . . , n};

2. for any two distinct minima M1 and M2 of w, we have ε(M1) 6= ε(M2); and

3. for any region R of B≺, the value ε(R) is equal to ∨{ε(M) such thatM is a minimum
of w included in R}.

We provide an example of an extinction map in Figure 4.2. Let (G,w) be the graph
of Figure 4.2(a), let B≺ be the binary partition hierarchy of Figure 4.2(b) for the unique
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Figure 4.2: (a) a weighted graph (G,w). (b) the binary partition hierarchy B≺ for the
unique altitude ordering ≺ for w. (c) the extinction map ε for the sequence (B,A,D,C)
and ≺.

altitude ordering ≺ for w, and let ε be the map from the regions of B≺ into R illustrated
in Figure 4.2(c). We can see that the map ε is the extinction map for ≺ and for the
sequence (B,A,D,C) of minima of w.

The next property, whose proof is presented in Appendix 8.2.2, clarifies the relation
between hierarchical watersheds and extinction maps. As established in [27], given a
sequence S of minima of w, we can compute the saliency map of a hierarchical watershed
for S by considering any extinction map for S. Since the edge weights of w are not
necessarily pairwise distinct, given any sequence S of minima of w, there might be several
distinct hierarchical watersheds of (G,w) for S. Let S be a sequence of minima of w.
As established in the following property, we can associate any hierarchical watershed H
of (G,w) for S with an altitude ordering ≺ for w such that, for any building edge u
for ≺, the weight of u for the saliency map Φ(H) is obtained from the extinction map
for (S,≺).

Property 24. Let H be a hierarchy. The hierarchy H is a hierarchical watershed
of (G,w) if and only if there exists an altitude ordering ≺ for w and an extinction map ε
for ≺ such that:

1. (V,E≺) is a MST of (G,Φ(H)); and

2. for any edge u in E≺, the value Φ(H)(u) is equal to min{ε(R) such that R is a child
of Ru}.

Let S be a sequence of minima of w and let ≺ be an altitude ordering for w. As
established in Section 2.6.1, the saliency map of a hierarchical watershed of (G,w) for S
can be obtained through the following steps:
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1. computation of the binary partition hierarchy B≺ by ≺;

2. computation of the extinction map ε for (S,≺);

3. computation of the persistence values for (S,≺) (see Definition 4); and

4. computation of the saliency map f of the hierarchy induced by (S,≺) which, by
Property 6, is the saliency map of a hierarchical watershed of (G,w) for S. Since G
is a tree, any edge of G is a building edge for ≺. Hence, for any edge u in E, the
value f(u) is the persistence value of u for (S,≺).

Inspired by this simple and efficient method to compute hierarchical watersheds, we
propose the watersheding operator. Given an altitude ordering ≺ for w and a map f ,
we first find an approximated extinction map ε such that, if f is the saliency map of a
hierarchical watershed of (G,w), then the map ε is an extinction map for ≺ and f is the
saliency map induced by ε. Then, we define the estimated sequence S of minima of w
ordered in increasing order for ε. The watersheding of f is then defined by the persistence
values for (S,≺).

To introduce approximated extinction maps, we first review the notion of supremum
descendant map introduced in Chapter 3, and then we introduce the auxiliary notions of
non-leaf ordering and dominant region.

Let ≺ be an altitude ordering for w and let f be a map from E into R. Let R be
a region of the binary partition hierarchy B≺ by ≺. By Definition 17, the supremum
descendant value of R for (f,≺) is ∨{f(v) | v ∈ E,Rv ⊆ R}.

Important notation: to lighten the notation, in the remainder of this chapter, the
supremum descendant value of a region is simply called the descendant value of this
region.

Definition 25 (non-leaf ordering). Let ≺ be an altitude ordering for w and let f be a
map from E into R. The non-leaf ordering for (f,≺) is the total ordering � on the
building edges for ≺, such that, for any two building edges u and v for ≺, we have u� v

if either the descendant value of Ru (for (f,≺)) is strictly lower than the descendant
value of Rv, or the descendant values of Ru and Rv are equal and u ≺ v.

Definition 26 (dominant region). Let ≺ be an altitude ordering for w and let f be a
map from E into R. Let� be the non-leaf ordering for (f,≺). Let R be a non-leaf region
of B≺ different from V . Let u and v be the building edges of R and of the sibling of R,
respectively. We say that R is a dominant region for (f,≺) if:

1. there is a minimum of w included in R; and
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2. either:

• v � u; or

• there is no minimum of w included in the sibling of R.

For instance, let (G,w) be the weighted graph shown in Figure 4.2(a) and let ≺
be the unique altitude ordering for w. Let B≺ be the binary partition hierarchy by ≺
shown in Figure 4.2(b), and let f be the map of Figure 4.3(a). The descendant values
for (f,≺) are depicted in Figure 4.3(b). Let � be the non-leaf ordering for (f,≺) such
that {a, b} � {c, d} � {e, f} � {g, h} � {a, c} � {c, e} � {e, g}. The dominant
regions of B≺ for (f,≺) are the regions B, D and Y6 (in bold).

Let f and g be two maps from E into R. A lexicographic ordering for (f, g) is a total
ordering ≺ on E such that, for any two edges u and v in E, we have u ≺ v if f(u) < f(v)

or if f(u) = f(v) and g(u) ≤ g(v). We can note that any lexicographic ordering for (f, g)

is an altitude ordering for f .

Definition 27 (approximated extinction map). Let f be a map from E into R and let ≺
be a lexicographic ordering for (w, f). The approximated extinction map for (f,≺) is the
map ξ from the set of regions of B≺ into R such that:

1. ξ(R) = k + 1 if R is the vertex set V of G, where k is the descendant value of R
for (f,≺); and

2. ξ(R) = ξ(parent(R)) if R is a dominant region for (f,≺); and

3. ξ(R) = f(u), where u is the building edge of the parent of R, otherwise.

Let f be the map of Figure 4.3(a) and let ≺ be the unique altitude ordering for the
map w of Figure 4.2(a). From Definition 27, we deduce that the approximated extinction
map for (f,≺) can be obtained in a recursive top-down fashion: approximated extinction
values are propagated from the root of the binary partition hierarchy B≺ to the leaf regions
of B≺. Along this recursive process, the approximated extinction value of every region R
of B≺ is propagated to at most one of the children of R: a child of R that is a dominant
region for (f,≺). In Figure 4.3(c), we show the approximated extinction map ξ for (f,≺).
The next property, whose proof is detailed in Appendix 8.2.3, establishes that ξ is an
extinction map if and only if f is the saliency map of a hierarchical watershed of (G,w).

Theorem 28. Let f be a map from E into R, let ≺ be a lexicographic ordering for (w, f),
and let ξ be the approximated extinction map for (f,≺). The map f is the saliency map
of a hierarchical watershed of (G,w) if and only if the map ξ is an extinction map for ≺.
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Figure 4.3: (a) a weighted graph (G, f). (b) the descendant value for (f,≺), where ≺ is
the altitude ordering for the map w of Figure 4.2(a). The dominant regions for (f,≺)
are depicted in bold. (c): the approximated extinction map ξ for (f,≺).

By Property 23, we can conclude that the map ξ of Figure 4.3(c) is not an extinction
map for ≺ because ∨{ξ(A), ξ(B)} = 2 is different from ξ(Y5) = 1, which contradicts the
Property 23 (statement 3) on extinction maps. By Theorem 28, we may conclude that
the map f of Figure 4.3(a) is not the saliency map of a hierarchical watershed of the
graph (G,w) of Figure 4.2(a).

In the next definition, we introduce estimated sequences of minima obtained through
approximated extinction maps.

Definition 29 (estimated sequence of minima). Let f be a map from E into R, let ≺ be a
lexicographic ordering for (w, f), and let ξ be the approximated extinction map for (f,≺).
Let � be the non-leaf ordering for (f,≺). The estimated sequence of minima (of w)
for (f,≺) is the sequence (M1, . . . ,Mn) such that, for any i and j in {1, . . . , n}, if i < j,
then either:

• ξ(Mi) < ξ(Mj); or

• ξf (Mi) = ξf (Mj) and Mi �Mj.

For instance, in Figure 4.3(c), we can see that ξ(B) < ξ(A) < ξ(C) < ξ(D). There-
fore, the estimated sequence of minima for (f,≺) is S = (B,A,C,D). The next property
establishes that, if f is the saliency map of a hierarchical watershed of (G,w), then f is
the saliency map of a hierarchical watershed of (G,w) for S.

Property 30. Let f be a map from E into R, let ≺ be a lexicographic ordering for (w, f),
and let S be the estimated sequence of minima for (f,≺). If f is the saliency map of a
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Figure 4.4: (a) the extinction map ε for the estimated sequence of minima S =
(B,A,C,D) for f and ≺, where f is the map of Figure 4.3(a) and ≺ is the unique
altitude ordering for the map w of Figure 4.2(a). (b) the watersheding ω(f) of f repre-
sented on the hierarchy B≺ of 4.3(b). The weight above each region R of B≺ is the weight
of the building edge of R for ω(f). (c) the watersheding of f depicted on the graph G.

hierarchical watershed of (G,w), then f is the saliency map of a hierarchical watershed
of (G,w) for S.

The proof of Property 30 is given in Appendix 8.2.4.
Having defined approximated extinction maps and estimated sequences of minima,

we formalize the watersheding operator in the following definition.

Definition 31 (watersheding). Let f be a map from E into R, let ≺ be a lexicographic
ordering for (w, f), and let S be the estimated sequence of minima for (f,≺). Let ε be the
extinction map for (S,≺). The watersheding of f (for ≺) is the map ω(f) from E into R
such that, for any edge u, the value ω(f)(u) is the persistence value of u for (S,≺), i.e.,:

ω(f)(u) = min{ε(R) | R is a child of Ru}.

In Figure 4.4(b) and (c), we show the watersheding ω(f) of the map f of Figure 4.3(a).
After obtaining the estimated sequence of minima S = (B,A,C,D) for (f,≺), we com-
pute the extinction map ε for (S,≺). Then, the watersheding of f is obtained according
to Definition 31. We can verify that ω(f) is the saliency map of a hierarchical watershed
of (G,w) for S.

In the following theorem, we establish that the watersheding of any map is the saliency
map of a hierarchical watershed of (G,w).

Theorem 32. Let f be a map from E into R and let ≺ be a lexicographic ordering
for (w, f). Let S be the estimated sequence of minima for f and ≺. The watershed-
ing ω(f) of f (for ≺) is a saliency map of a hierarchical watershed of (G,w) for S.
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Proof. Let ε be the extinction map for (S,≺). By Definition 31, for any edge u,
the value f(u) is the persistence value of u for (S,≺). By Definition 5, we conclude
that QFZ(G, f) is the hierarchy induced by (S,≺). Then, by Property 6, the hierar-
chy QFZ(G, f) is a hierarchical watershed for S. Hence, since G is a tree, the map f is
the saliency map of the hierarchical watershed of (G,w) for S.

The following theorem, whose proof is given in Appendix 8.2.5, establishes that the
watersheding operator is idempotent, that the saliency maps of the hierarchical water-
sheds of (G,w) are the fixed points of the watersheding operator, and that the watershed-
ing operator provides a characterization of hierarchical watersheds. The later statement
implies that the watersheding operator offers an alternative solution to the problem of
recognizing hierarchical watersheds studied in Chapter 3.

Theorem 33. Let H be a hierarchy, let f be the saliency map of H and let ≺ be a
lexicographic ordering for (w, f). The following statements hold true:

1. The hierarchy H is a hierarchical watershed of (G,w) if and only if the watershed-
ing ω(f) of f (for ≺) is equal to f .

2. The watersheding ω(f) of f is the saliency map of a hierarchical watershed
of (G,w).

3. The watersheding ω(ω(f)) of ω(f) is equal to ω(f).

4.3 Watersheding operator algorithm

In this section, we present an efficient algorithm to compute the watersheding of any
map following Definition 31. Algorithm 3 provides a description of our watersheding
(operator) algorithm. The inputs are a weighted tree ((V,E), w) and a map f from E

into R. The first step of Algorithm 1 is to compute a lexicographic ordering ≺ for (w, f).
Then, the binary partition hierarchy B by ≺ is computed at line 2 with the method
proposed in [74]. Subsequently, the minima of w are obtained at line 3. As established in
[74], every minimum of w is a region of B. After computing the set of minima of w, the
descendant values for (f,≺) are obtained at lines 4-5. For each building edge u for ≺, by
Definition 17, the descendant value of u for (f,≺) is the maximal value f(v) such that
the region Rv is a subset of the region Ru. Then, the non-leaf ordering � for (f,≺) is
obtained at line 7. At line 8, the dominant regions for (f,≺) are computed in a single
pass on the hierarchy B. Then, the for loop at lines 9-20 computes the approximated
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extinction map ξ for (f,≺) in a top-down fashion following Definition 27. Subsequently,
at line 20, the estimated sequence of minima S for (f,≺) is computed by ordering the
minima of w in increasing order of their values in ξ. At lines 22-23, the extinction and
persistence values for (S,≺) are computed from the leaf regions to the root of B. Finally,
the watersheding ω of f for ≺ is computed at lines 24-25. The weight of each edge u
in E is assigned to the persistence value of u. Then, Algorithm 3 returns the map ω.

Let us now analyze the time complexity of Algorithm 3. Given that the lexicographic
ordering for (w, f) can be obtained through the merging sort algorithm, the time com-
plexity of this step is O(|E|log|E|). As established in [74], any binary partition hierarchy
can be computed in quasi-linear time with respect to |E| provided that the edges in E
are already sorted or can be sorted in linear time. More specifically, the time complexity
to compute the binary partition hierarchy B is O(|E| × α(|V |)), where α is a slowly
growing inverse of the single-valued Ackermann function. Having computed the binary
partition hierarchy B, the computation of the minima of w can be performed in linear
time with respect to |V | as stated in [74]. At lines 4-5, the descendant values are iter-
atively computed from the leaf regions to the root of B in linear time O(|V |). Then,
the non-leaf ordering for (f,≺) can be obtained using the merging sort algorithm in
time O(|V |log|V |). The approximated extinction map for (f,≺) is computed in one pass
over the regions of B and, hence, in linear time O(|V |). Given that the minima of w
are ordered using the merging sort algorithm at line 30, the time complexity to obtain
the estimated sequence of minima for (f,≺) is O(|V |log|V |). Then, the extinction and
persistence values for (S,≺) can be computed recursively from the leaf regions to the
root of B in linear time O(|V |). Therefore, the overall time complexity of Algorithm 3
is O(|E|log|E|).

4.4 Illustrations of applications in image analysis

In this chapter, we introduced the watersheding operator, which converts any map into
the saliency map of a hierarchical watershed of (G,w). In the following, we illustrate two
possible applications of the watersheding operator in image analysis.

• Regularization of hierarchies based on non-increasing attributes. In a hierarchical
watershed, the order in which regions (catchment basins) are merged are often de-
fined by extinction values associated with increasing regional attributes, such as
area and volume [70]. To compute a hierarchical watershed of (G,w) based on a
attribute A, we first obtain extinction values based on A [98]. Then, we compute
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Algorithm 3 Watersheding operator
Data: ((V,E), w): a weighted graph

f : the saliency map of a hierarchy H on V
Result: the watersheding of f

1: Compute a lexicographic ordering ≺ for (w, f) � O(|E|log|E|)
2: Compute the binary partition hierarchy B by ≺ � O(|E| × α(|V |)) with [74]
3: Compute the minima of w � O(|V |) with [74]
4: for each building edge u in increasing order for ≺ do � O(|V |)
5: ϕ(u)← the descendant value of Ru for (f,≺) � O(|1|)
6: end for
7: Compute the non-leaf ordering � for (f,≺) (Def. 25) � O(|V |log|V |)
8: Compute the dominant regions of B for (f,≺) (Def. 26) � O(|V |)
// Computation of the approximated extinction map for (f,≺)

9: for each building edge u in decreasing order for ≺ do � O(|V |)
10: if u is the building edge of V then � O(|1|)
11: ξ(u)← the descendant value of V � O(|1|)
12: else
13: v ← building edge of the parent of Ru � O(|1|)
14: if Ru is a dominant region for (f,≺) then � O(|1|)
15: ξ(Ru)← ξ(Rv) � O(|1|)
16: else
17: ξ(Ru)← f(v) � O(|1|)
18: end if
19: end if
20: end for
21: S ← sequence of minima ordered in increasing order for ξ � O(|V |log|V |)
22: Compute the extinction values for (S,≺) (Def. 3) � O(|V |)
23: Compute the persistence values for (S,≺) (Def. 4) � O(|V |)
24: for each building edge u for ≺ do � O(|V |)
25: ω(u)← persistence value of u for (S,≺) � O(|1|)
26: end for

return ω

the hierarchical watershed H of (G,w) for the sequence S of minima w ordered by
their extinction values. The hierarchy H corresponds to a sequence of filterings of
the watershed of (G,w) in which the least important regions according to A are the
first regions to be suppressed. When dealing with non-increasing attributes, e.g.
circularity and perimeter, we can obtain extinction values by applying a regular-
ization rule [88] on the attribute values (see Section 2.7.3). However, computing
a hierarchical watershed using a non-increasing criterion does not guarantee that
the most relevant regions according to this criterion are preserved at the highest
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levels of the hierarchy. Alternatively, instead of computing hierarchical watersheds
from regularized attribute values, we can compute the watersheding of any hierar-
chy based on a non-increasing attribute. This is illustrated in Figures 4.5 and 4.6.
For each image gradient, we show the saliency maps of three hierarchies: a hier-
archical watershed based on regularized circularity attribute values, a circularity
based hierarchy that is not a hierarchical watershed (see Section 2.7.3), and the
watersheding of the latter hierarchy. We can see that, in all cases, in the saliency
maps resulting from the watersheding operator, the circular regions are more high-
lighted when compared to the hierarchical watershed computed from regularized
circularity values.

• Refinement of coarse hierarchies. In [60], the authors propose a high-quality method
(COB) to compute hierarchies. However, in some cases, fine regions are not included
in the resulting hierarchies. This is the case of the hierarchies of Figures 4.7 and 4.8.
In the saliency map of the COB hierarchy of Figure 4.7, the region of the lips do
not appear even at the lowest levels of the hierarchy and, in the saliency map of
the COB hierarchy of Figure 4.8, spurious regions in the background appear at
higher levels than the eyes region. The watersheding of those hierarchies improve
the segmentation of the face features of both images while taking into consideration
coarse levels of the initial COB hierarchies.

4.5 Conclusion

We introduced an idempotent operator, called watersheding, which converts (the saliency
map of) any hierarchy into (the saliency map of) an hierarchical watershed of (G,w). We
presented an efficient algorithm to compute the watersheding of a map, and two potential
applications of the watersheding, namely the computation of hierarchical watersheds
based on non-increasing attributes and the refinement of coarse hierarchies.

As future work, we aim to investigate a relevant question regarding the watersheding
operator: given a map f , how “close” is the watersheding of f to this map f? More
formally, does the watersheding solve the problem of finding a hierarchical watershed
that better approximates a hierarchy in the sense of a well defined objective function
(e.g. the Gromov-Hausdorff distance between hirarchies analysed in [34])?
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Figure 4.5: First line from left to right: original image I and the gradient G of I computed
using the edge detector introduced in [29]. Second line from left to right: the saliency
map of the hierarchical watershed Hc of G based on regularized circularity attribute
values and three partitions of Hc with 10, 35 and 60 regions, respectively. Third line
from left to right: the saliency map of the circularity based hierarchy Hcc, which is not
a hierarchical watershed of G, and three partitions of Hcc with 10, 35 and 60 regions,
respectively. Fourth line: the watersheding Hw of Hcc and three partitions of Hw with
10, 35 and 60 regions, respectively.
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Figure 4.6: First line from left to right: original image I and the gradient G of I computed
using the edge detector introduced in [29]. Second line from left to right: the saliency
map of the hierarchical watershed Hc of G based on regularized circularity attribute
values and three partitions of Hc with 10, 35 and 60 regions, respectively. Third line
from left to right: the saliency map of the circularity based hierarchy Hcc, which is not
a hierarchical watershed of G, and three partitions of Hcc with 10, 35 and 60 regions,
respectively. Fourth line: the watersheding Hw of Hcc and three partitions of Hw with
10, 35 and 60 regions, respectively.
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Figure 4.7: First line from left to right: original image I and the gradient G of I computed
using the edge detector introduced in [29]. Second line from left to right: the saliency
map of the COB [60] hierarchy of I and three segmentations of Hcob with 50, 100 and
200 regions, respectively. Third line from left to right: the watersheding Hw of Hcob and
three segmentations of Hw with 50, 100 and 200 regions, respectively.
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Figure 4.8: First line from left to right: original image I and the gradient G of I computed
using the edge detector introduced in [29]. Second line from left to right: the saliency
map of the COB [60] hierarchy of I and three segmentations of Hcob with 50, 100 and
200 regions, respectively. Third line from left to right: the watersheding Hw of Hcob and
three segmentations of Hw with 50, 100 and 200 regions, respectively.
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Chapter 5

Probability of hierarchical
watersheds

In this chapter, we introduce the notion of probability of a hierarchical watershed and
an efficient algorithm to compute such probability. This chapter comprises the results of
the following article:

• D. S. Maia, J. Cousty, L. Najman, and B. Perret. On the probabilities of hierar-
chical watersheds. In International Symposium on Mathematical Morphology and
Its Applications to Signal and Image Processing, pages 137–149. Springer, 2019.

5.1 Introduction

In the context of digital image processing, gray-level images can be treated as topographic
surfaces whose altitudes are determined by the pixel gray-levels. The local minima of
an image are the regions of uniform grey-level surrounded by pixels of strictly higher
gray-levels. We show the representation of a gray-scale image with four local minima
and a watershed segmentation in Figure 5.1(a) and (b), respectively.

Hierarchical watersheds are sequences of nested segmentations equivalent to filterings
of an initial watershed segmentation. Let I be an image. The construction of a hierar-
chical watershed of I is often based on a criterion used to order the minima of I, as the
area and the dynamics [98, 45]. More specifically, given any total ordering ≺ on the set of
minima of I, the hierarchical watershed of I for ≺ is constructed by iteratively “flooding"
the minima of I according to ≺. For instance, let us consider the total ordering ≺ on the
set of minima {A,B,C,D} of the image I of Figure 5.1(a) such that C ≺ D ≺ B ≺ A. In
Figure 5.1(b), (c), (d) and (e), we show the sequence of floodings of the minima of I for ≺.

93



94 Probability of hierarchical watersheds

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5.1: (a): A gray-scale image I with four minima. (b) A watershed segmentation
of I: the vertical dashed lines represent the watershed-cuts. (c), (d) and (e): The
watershed segmentations resulting from iteratively flooding the minima C, D and B,
respectively. (f), (g) and (h): The watershed segmentations resulting from iteratively
flooding the minima D, C and A, respectively.

The watershed segmentation of those floodings compose the hierarchical watershed of I
for ≺.

In fact, we may obtain the same hierarchical watershed for several total orderings
on the set of minima of an image. For example, we show in Figure 5.1(b), (f), (g)
and (h) the floodings of the minima of the image I for another total ordering ≺′ such
that D ≺′ C ≺′ A ≺′ B. We can observe that the floodings for the total orderings ≺′

and ≺ induce the same sequence of watershed segmentations. Indeed, given any image I
and any hierarchical watershed H of I, there may exist several total orderings on the
set of minima of I whose hierarchical watersheds correspond to H. In other words, it is
possible to order the minima of I according to distinct criteria and still obtain the same
hierarchical watershed.

In this study, (the gradients of) images are represented as weighted graphs. We define
the probability of a hierarchical watershedH as the probability ofH to be the hierarchical
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watershed of a given weighted graph (G,w) for an arbitrary sequence of minima of w.
Let (G,w) be a weighted graph and let H be a hierarchical watershed of (G,w). In this
study, we tackle the following problems:

(P1) Find the probability of H to be the hierarchical watershed of (G,w) for an arbitrary
sequence of minima of w;

(P2) Characterize the most probable hierarchical watersheds of (G,w); and

(P3) Characterize the least probable hierarchical watersheds of (G,w).

Other studies related to probability and (watershed) segmentations are found in [2,
9, 95, 51]. In [2], a stochastic watershed segmentation based on random markers is
introduced. In [9], the definitions of watersheds with multiple solutions for a single image
are unified in the definition of tie-zone watersheds, which returns a unique solution. In
[95], the authors propose a method to list the k-minimum spanning trees that induce
distinct segmentations for a given set of markers. In [51], the authors estimate the
probability that any two regions of a watershed segmentation have the same texture,
which is further used to build hierarchies of segmentations.

In Section 5.2, we solve problem (P1) for the case where the given graph (G,w) has
pairwise distinct edge weights. The solution to (P1) is based on the bijection between
hierarchies of partitions and saliency maps (see Section 2.4.1) and on the link between
hierarchical watersheds and binary partition hierarchies (see Section 2.6.1). Then, we
propose a quasi-linear time algorithm to compute the probability of a hierarchical water-
shed. In Section 5.4, we characterize the most and least probable hierarchical watersheds
of (G,w) and we provide an algorithm to obtain such hierarchies.

Important notations: in the remainder of this chapter, the symbolG denotes a tree.
To shorten the notation, the vertex set of G is denoted by V and its edge set is denoted
by E. The symbol w denotes a map from E into R such that, for any pair of distinct
edges u and v in E, we have w(u) 6= w(v). Thus, the pair (G,w) is a weighted graph.
Every hierarchy considered in this chapter is connected for G and therefore, for the sake
of simplicity, we use the term hierarchy instead of hierarchy which is connected for G.
We denote by n the number of minima of w. Every sequence of minima of w considered
in this chapter is a sequence of n pairwise distinct minima of w and, therefore, we use the
term sequence of minima of w instead of sequence of n pairwise distinct minima of w.
The set of all sequences of minima of w is denoted by Mw. By abuse of terminology,
when no confusion is possible, if M is a minimum of w, we call the set V (M) of vertices
of M as a minimum of w.
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5.2 Studying probabilities of hierarchical watersheds

Let H be a hierarchical watershed of (G,w). Then, by the definition of hierarchical
watersheds (see Definition 1), there is a sequence S of minima of w such that H is the
hierarchical watershed of (G,w) for S. Indeed, as illustrated by the graphical example
of Figure 5.1, the hierarchy H may be the hierarchical watershed of (G,w) for several
sequences of minima of w. The equivalence class of sequences of minima for H, denoted
by Sw(H), is the set which contains every sequence S of minima of w such that H is
the hierarchical watershed of (G,w) for S. We formalize the notion of probability of a
hierarchical watershed in the following definition.

Definition 34 (probability of a hierarchical watershed). Let H be a hierarchical water-
shed of (G,w). Let S be uniformely distributed on the setMw of all sequences of minima
of w. We define the probability of H knowing w, denoted by p(H|w), as the probability
that the hierarchical watershed of (G,w) for S is equal to H.

As established in the next property, the probability of a hierarchical watershed H is
the ratio between the number of elements in the equivalence class of sequences of minima
for H and the number of sequences of minima of w. To ease the reading of this chapter,
the proof of some of the properties established here are presented in Appendix 8.3.

Property 35. Let H be a hierarchical watershed of (G,w). The probability p(H|w) of H
knowing w is the ratio k/n where k and n are the numbers of elements of Sw(H) and
ofMw, respectively.

In order to solve the problem of finding the probability of hierarchical watersheds,
we first remind the definition of watershed-cut edges through an example, and then we
introduce maximal regions.

Important notations: as the edges of G have pairwise distinct weights for w,
there is only one altitude ordering for w. We denote by ≺ the unique altitude ordering
for w and we denote by B≺ the binary partition hierarchy of (G,w) by ≺. Given an
edge u in E, we denote by Ru the region of B≺ whose building edge is u. When no
confusion is possible, any watershed-cut edge for ≺ (see Definition 2) will be simply
called a watershed-cut edge.

Let (G,w) be the graph of Figure 5.2(a), let ≺ be the unique altitude ordering for w,
and let B≺ be the binary partition hierarchy by ≺ of Figure 5.2(b). We can observe that
both children of each of the regions Y5, Y6 and Y7 of B≺ include at least one minimum
of w. By the definition of watershed-cut edges for an altitude ordering (Definition 2), the
building edges of the regions Y5, Y6 and Y7 are the watershed-cut edges (for ≺).
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Figure 5.2: (a) a weighted graph (G,w) with four minima delimited by the dashed rect-
angles. The watershed-cut edges for the unique altitude ordering ≺ for w are represented
in bold. (b) the binary partition hierarchy B≺ for the unique altitude ordering ≺.
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Figure 5.3: (a): a hierarchical watershed of the graph (G,w) of Figure 5.2(a). (b): the
saliency map Φ(H) of H. (c): the saliency map Φ(H) represented on the binary partition
hierarchy B≺ of (G,w). The weight above each region of B≺ is the weight of the building
of this region for Φ(H). The maximal regions for Φ(H) are the regions Y5 and Y6 (in
bold).

Definition 36 (maximal region). Let u be a watershed-cut edge, let f be a map from E

into R and let u be an edge in E. We say that the region Ru is a maximal region (of B≺)
for f if the weight of u for f is greater than the weight of the building edge of any region
included in Ru, i.e., if f(u) > max{f(v) | v ∈ E,Rv ⊂ Ru}.

Let H be the hierarchy of Figure 5.3(a) and let (G,w) be the graph of Fig-
ure 5.2(a). We can verify that H is the hierarchical watershed of (G,w) for the
sequences (A,B,C,D), (A,B,D,C), (B,A,C,D) and (B,A,D,C). The saliency
map Φ(H) of H is represented in Figure 5.3(b). In Figure 5.3(c), the weight above
each region R of B≺ is the weight of the building edge of R for Φ(H). We can conclude
that the only maximal regions for Φ(H) are the regions Y5 and Y6.
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The following property, whose proof is detailed in Appendix 8.3.1, establishes that,
given any hierarchical watershed H of (G,w), the probability of H knowing w can be
defined through the number of maximal regions of B≺ for the saliency map Φ(H) of H.

Property 37. Let H be a hierarchical watershed of (G,w) and let m be the number of
maximal regions of B≺ for the saliency map Φ(H) of H. The probability of H knowing w
is:

p(H | w) =
2m

|Mw|
. (5.1)

For instance, let us consider the hierarchical watershed H of Figure 5.3(a). As stated
previously, the hierarchy B≺ has two maximal regions (Y5 and Y6) for Φ(H). Since
the graph (G,w) of Figure 5.2(a) has four minima, there are 4! sequences of minima
of w. By property 37, we conclude that the probability of H knowing w is 22

4!
. Indeed, as

aforementioned, the hierarchyH is the hierarchical watershed of (G,w) for four sequences
of minima of w: (A,B,C,D), (A,B,D,C), (B,A,C,D) and (B,A,D,C).

5.3 Algorithm to compute the probability of a hierar-
chical watershed

From Property 37, we derive a quasi-linear time algorithm (Algorithm 4) to compute
the probability of a hierarchical watershed. The inputs of Algorithm 4 are a weighted
graph ((V,E), w) with pairwise distinct edge-weights and the saliency map f of a hi-
erarchical watershed of ((V,E), w). The first steps are to compute the unique altitude
ordering ≺ for w and the binary partition hierarchy B by ≺. Then, at lines 3-4, we com-
pute the minima of w, their number n and the watershed-cut edges using the algorithm
proposed in [74]. Then, the for loop at lines 6-19 computes the number m of maximal
regions of B for f . For each edge u in increasing order for ≺, we compute the maximal
weight among the (building edges of the) regions included in Ru. If u is a watershed-cut
edge and if f(u) is strictly greater than the maximal weight among the regions strictly
included in Ru, then u is a maximal region and m is incremented by one. Finally, the
algorithm returns the probability of f knowing w: 2m

n!
.

Let us now study the time complexity of Algorithm 4. Using the merge sort algorithm,
the altitude ordering ≺ for w can be computed in time O(|E|log|E|). As established in
[74], the binary partition hierarchy B can be computed in quasi-linear time with respect
to |E|. More precisely, the time complexity to compute the binary partition hierarchy B
is O(|E| × α(|V |)), where α is a slowly growing inverse of the single-valued Ackermann
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function. Using the method proposed in [74], the watershed-cut edges and the minima
of w can be obtained in linear time O(|V |) through a single pass on the regions of the
hierarchy B. Regarding the computation of the number of maximal regions for f , each
instruction of the for loop at lines 6-19 can be computed in constant time because each
region of B has at most two children. Hence, the time complexity to compute the number
of maximal regions for f is linear with respect to the number of building edges for ≺.
Therefore, the overall time complexity of Algorithm 4 is O(|E|log|E|).

Algorithm 4 Probability of hierarchical watersheds
Data: ((V,E), w): a weighted tree with ordered edges

f : the saliency map of a hierarchical watershed H of ((V,E), w)
Result: the probability of H knowing w

1: Compute the unique altitude ordering ≺ for f � O(|E|log|E|)
2: Compute the binary partition hierarchy B by ≺ � O(|E| × α(|V |)) with [74]
3: Compute the minima of w and their number n � O(|V |) with [74]
4: Compute the watershed-cut edges for ≺ � O(|V |) with [74]
// Computation of the number m of maximal regions of B
for f

5: m← 0 � O(1)
6: for each edge u in increasing order for ≺ do � O(|V |)
7: ϕ(u)← f(u) � O(1)
8: for each non-leaf child X of Ru do � O(1)
9: v ← the building edge of X � O(1)

10: ϕ(u)← max(ϕ(u), ϕ(v)) � O(1)
11: end for
12: if u is a watershed-cut edge then hspace* � O(1)
13: v1 ← the building edge of a child of Ru � O(1)
14: v2 ← the building edge of the sibling of Ru � O(1)
15: if f(u) > ϕ(v1) and f(u) > ϕ(v2) then � O(1)
16: m← m+ 1 � O(1)
17: end if
18: end if
19: end for

return 2m

n!

5.4 Most and least probable hierarchical watersheds

In this section, we establish the upper and lower bounds on the probability of a hier-
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archical watershed, and a characterization of the most and least probable hierarchical
watersheds of (G,w).

Let ` be the number of watershed-cut edges for ≺. By Definition 36, we can affirm
that there are at most ` maximal regions of B≺ for the saliency map of any hierarchical
watershed of (G,w). Thus, we can derive the following Corollary 38, which establishes
the tight upper bound on the probability of any hierarchical watershed of (G,w).

Corollary 38. Let ` be the number of watershed-cut edges for ≺ and let H be a hier-
archical watershed of (G,w). The tight upper bound on the probability of H knowing w
is 2`

|Mw| .

Let u be a watershed-cut edge. We say that Ru is a primary region of B≺ if there is
no watershed-cut edge v such that Rv ⊂ Ru. Let f be the saliency map of a hierarchical
watershed of (G,w). One can note that the value of f is zero (resp. non-zero) on non
watershed-cut edges (resp. watershed-cut edges). Then, only the watershed-cut edges
have non-zero weights for f . Let u be a watershed-cut edge. If Ru is a primary region
of B≺, then f(u), being non-zero, is greater than max{f(v), v ∈ E | Rv ⊂ Ru}, which
is equal to zero. Consequently, the region Ru is a maximal region of B≺ for f . We
conclude that each primary region of B≺ is a maximal region of B≺ for the saliency map
of any hierarchical watershed of (G,w). We can now define the tight lower bound on the
probability of a hierarchical watershed.

Corollary 39. Let k be the number of primary regions of B≺ and let H be a hierarchical
watershed of (G,w). The tight lower bound on the probability of H knowing w is 2k

|Mw| .

If the map w has more than two minima, then there is at least one watershed-cut
edge u such that Ru is not a primary region of B≺. Therefore, the tight lower bound and
the tight upper bound on the probabilities of hierarchical watersheds of (G,w) are not
equal. This justifies the following definition of most probable hierarchical watersheds.

Definition 40 (most probable hierarchical watersheds). Let H be a hierarchical water-
shed of (G,w). We say that H is a most probable hierarchical watershed of (G,w), if,
for any hierarchical watershed H′ for (G,w), we have p(H | w) ≥ p(H′ | w).

Let f be the saliency map of a hierarchical watershed of (G,w). Let u be an edge in E.
By abuse of notation, we define the weight of Ru for f as the weight f(u) of u. Let H
be a hierarchical watershed of (G,w). By Corollary 38, the probability of H knowing w
is maximal when, for every watershed-cut edge u, the region Ru is a maximal region
of B≺ for Φ(H). By the definition of maximal regions, we can establish the following
characterization of the most probable hierarchical watersheds of (G,w).
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Corollary 41. Let H be a hierarchical watershed of (G,w). The hierarchy H is a most
probable hierarchical watershed of (G,w) if and only if the weights for Φ(H) are increasing
on the regions of the hierarchy B≺.

Let H be a most probable hierarchical watershed of (G,w). By Corollary 41, we may
conclude that the order in which the regions of H are merged along the partitions of H
are constrained by the hierarchy B≺. Thus, we can deduce the following Corollary from
Property 41.

Corollary 42. Let H be a hierarchical watershed of (G,w). The hierarchy H is a most
probable hierarchical watershed of (G,w) if and only if each non-leaf region of H is a
region of B≺.

Let (G,w) be the weighted graph of Figure 5.2(a). In Figure 5.4, we present four
hierarchical watersheds of (G,w). Indeed, those are the only hierarchical watersheds
of (G,w). For each hierarchy, we show its saliency map represented on the graph G and
on the binary partition hierarchy B≺. The dominant regions for each saliency map are
in bold. Since w has four minima, the number of sequences of minima of w is 4!. The
probability of the hierarchies H1, H2, H3 and H4 knowing w are 4

4!
, 4
4!
, 8
4!

and 8
4!
, respec-

tively. Therefore, the set of most probable hierarchical watersheds of (G,w) is {H3,H4}.
We can verify that each non-leaf region of the hierarchies H3 and H4 is a region of B≺,
which is not the case for H1 and H2. This example illustrates Corollary 42.

Following the same idea of the definition of most probable hierarchical watersheds,
we introduce in the next definition the notion of least probable hierarchical watersheds.

Definition 43 (least probable hierarchical watersheds). LetH be a hierarchical watershed
of (G,w). We say that H is a least probable hierarchical watershed of (G,w), if, for any
hierarchical watershed H′ for (G,w), we have p(H | w) ≤ p(H′ | w).

Let H be a least probable hierarchical watershed of (G,w). By Corollary 39, only
the primary regions of B≺ are maximal regions for the saliency map Φ(H). Hence, for
any watershed-cut edge u, if Ru is not a primary region of B≺, then there is at least one
watershed-cut edge v such that Rv ⊂ Ru and such that Φ(H)(v) ≥ Φ(H)(u). Moreover,
by the characterization of hierarchical watersheds provided in Chapter 3 (Lemma 19),
which link the notions of hierarchical watersheds and one-side increasing maps (see Def-
inition 18), we can affirm that Φ(H) is one-side increasing for ≺. The later implies that,
for any edge u, there exists at least one child X of Ru such that Φ(H)(u) is greater than
the weight (of the building edges) of all regions included in X. Hence, we can deduce the
following characterization of least probable hierarchical watersheds.
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Figure 5.4: The hierarchical watersheds for the weighted graph (G,w) of Figure 5.2(a),
their saliency maps represented on the graph (G,w) and on the binary partition hierar-
chy B. The dominant regions of B≺ for each saliency map is represented in bold. The
probability of each hierarchical watershed knowing w is presented under B.

Corollary 44. Let H be a hierarchical watershed of (G,w). The hierarchy H is a least
probable hierarchical watershed of (G,w) if and only if, for any watershed-cut edge u such
that Ru is not a primary region of B≺ for Φ(H), there is exactly one child X of Ru such
that Φ(H) ≥ max{Φ(H)(v) | Rv ⊆ X}.

Let (G,w) be the weighted graph of Figure 5.2(a) and let B≺ be the unique binary
partition hierarchy of (G,w) shown in Figure 5.2(c). We can observe that the regions Y5

and Y6 of B≺ are primary regions, by Y7 is not. Hence, the building edge u = {c, e} of X7

is the unique watershed-cut edge such that Ru is not a primary region. Let H1 and H2

be the hierarchical watersheds of (G,w) shown in Figure 5.4(a) and (b), respectively.
We can observe that Φ(H1)(u) (resp. Φ(H2)(u)) is only greater than the weights of the
regions included in the child Y5 (resp. Y6). By Corollary 44, we conclude that the set of
least probable hierarchical watersheds of (G,w) is {H1,H2}.
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5.5 Algorithms to compute a most and a least probable
hierarchical watershed

From Corollary 41, we deduce a recursive algorithm to find the saliency map f of a
most probable hierarchical watershed of (G,w). Let ` be the number of watershed-cut
edges for ≺ and let L be the set {1, . . . , `}. Let u be the building edge of the region V
of B≺. First, we assign f(u) to max{1, . . . , `}. Let R′ and R′′ be the children of V
and let n′ and n′′ be the number of minima of w included in R′ and R′′, respectively.
Subsequently, we arbitrarily divide the set {1, . . . , ` − 1} into two subsets L′ and L′′

with n′ − 1 and n′′ − 1 elements, respectively. Then, the sets L′ and L′′ are propagated
to R′ and R′′, respectively. The subtrees rooted in R′ and R′′ are treated separately. This
process is performed until the weights of all edges are assigned.

Algorithm 5 describes our method to obtain an arbitrary most probable hierarchical
watershed of a graph. The input is a graph ((V,E), w) which is a tree with pairwise
distinct edge weights. The first step is to order the edges in E to obtain the unique
altitude ordering ≺ for w. Then, we compute the binary partition hierarchy by ≺. Sub-
sequently, for any edge u in E, the for loop at lines 3-8 computes the number M(u) of
minima included in Ru, and assigns ws(u) to 1 if u is a watershed-cut edge for ≺. At lines
9-14, we declare a linked list L and insert all integers from 1 to the number of minima
of w. Then, the values of the map f are computed by the recursive function Saliency-
MostProbable. In the function SaliencyMostProbable, for each edge u, if u is a
watershed-cut edge for ≺, then f(u) is assigned to the maximal value in the list L and,
otherwise, it is assigned to zero. Then, this function is called for each non-leaf child X
of Ru by passing in parameter another linked list LL with M(v) − 1 random elements
of L, where v is the building edge of X.

Let us now analyse the complexity of Algorithm 5. Since the input graph is a tree,
the number of edges in E is the number of vertices in V plus one. Hence, the altitude
ordering ≺ can be obtained in time O(|V |log|V |) by using the merge sort algorithm to
order the edges in E. The overall time complexity to compute the the binary partition
hierarchy B by ≺, the minima of w and the watershed-cuts edges for ≺ is quasi-linear with
respect to |E| using the algorithm proposed in [74]. As the number of minima of w is at
most |V |

2
, the for loop at lines 11-14 is executed in linear time with respect to |V |. In order

to define the weights of the map f , the recursive function SaliencyMostProbable
is called once for every edge in E, starting from the building edge of V . For each call,
a number k of elements in L are randomly chosen and added to a new linked list LL,
where k is the number of minima included in a region of B minus one. In the worst case,
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the value k is equal to |V |
2
, so we can consider that the time complexity to execute the

for loop of the function SaliencyMostProbable is linear with respect to |V |. As the
function SaliencyMostProbable is called |E| = |V | + 1 times, we can say that the
time complexity to obtain the values of the map f is quadratic with respect to |V | in
the worst case. Therefore, the time complexity to compute the saliency map of a most
probable hierarchical watershed with Algorithm 5 is O(|V |2).

Algorithm 5 Most probable hierarchical watershed
Data: ((V,E), w): a weighted graph (tree) with pairwise distinct edge weights
Result: the saliency map f of a most probable hierarchical watershed of ((V,E), w)

1: Compute the altitude ordering ≺ for w � O(|V |log|V |)
2: Compute the binary partition hierarchy B by ≺ � O(|V | × α(|V |)) with [74]
3: for each edge u in E in increasing order for ≺ do � O(|V |) with [74]
4: µ(u)← number of minima included in Ru

5: if u is a watershed-cut edge for ≺ then
6: ws(u)← 1
7: end if
8: end for
9: Declare L as a linked list of integers � O(1)

10: i← 1 � O(1)
11: while i < number of minima of w do � O(|V |)
12: add i to L � O(1)
13: i← i+ 1 � O(1)
14: end while
15: u← building edge of the region V of B � O(1)
16: SaliencyMostProbable(u, f , B, ws, µ, L) � O(|V |2)

return f

From Corollary 44, we designed a recursive algorithm to compute the saliency map of
a least probable hierarchical watershed. The idea is similar to our algorithm to compute
the saliency map of a most probable hierarchical watersheds. A list of integer weights is
propagated from the root of the binary partition hierarchy (of the input graph) to the
leaf regions. To each watershed-cut edge u, we assign a weight in the list and, then, the
remaining integers are split and propagate to the children of Ru. The split is performed
in a way that exactly one child of Ru receives a list of weights that are all smaller than the
weight assigned to u. This method guarantees that the final map is one-side increasing
(see Definition 18) and, hence, that it is saliency map of a hierarchical watershed by
Lemma 19.
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Function 6 SaliencyMostProbable(u, f , B, ws, µ, L)
1: if ws(u) == 1 then � O(1)
2: f(u)← maximum integer in the list L � O(1)
3: delete the value f(u) from the list L � O(1)
4: else
5: f(u)← 0 � O(1)
6: end if
7: for each non-leaf child X of Ru do � O(1)
8: v ← building edge of X � O(1)
9: declare LL as a linked list of integers � O(1)

10: insert µ(v)− 1 distinct elements of L in LL and delete them from L � O(|V |)
11: SaliencyMostProbable(v, f , B, ws, µ, LL) � O(1)
12: end for

Our algorithm to obtain a least probable hierarchical watershed of a weighted graph
is detailed in Algorithm 7. The input is a weighted graph ((V,E), w) which is a tree
with pairwise distinct edge weights. The output is the saliency map f of a least probable
hierarchical watershed of ((V,E), w). The altitude ordering ≺ for w, the binary partition
hierarchy B by ≺, the minima of w, the watershed-cut edges for ≺, and the linked
list L are obtained in the first fifteen lines of Algorithm 7, which are equivalent to the
same lines of Algorithm 5. Then, the map f is computed by the recursive function
SaliencyLeastProbable. In this function, for each watershed-cut edge u, f(u) is
assigned to a value k in the list L such that k is not maximal. Then, a list of values in L
which are smaller than f(u) is propagated to a child X of Ru. The remaining values in L
are propagated to the sibling of X. In the case where u is not a watershed-cut edge, f(u)

is assigned to 0 and the list L is propagated to a non-leaf region of Ru, if any.
We can observe that the linked lists passed in parameter remain ordered for ev-

ery call of the function SaliencyMostProbable. Hence, like the function Salien-
cyMostProbable, the time complexity to execute any instruction of the function
SaliencyLeastProbable is at most linear with respect to |V |. Since the function
SaliencyLeastProbable is called |E| = |V | − 1 times, the overall time complexity of
Algorithm 7 is O(|V |2).

Illustrations of Algorithms 5 and 7 are presented in Figure 5.5. The underlying graph
of each gradient G1 and G2 illustrated in Figure 5.5 does not have pairwise distinct edge
weights. This implies that there may be several altitude orderings and, consequently,
several binary partition hierarchies of each of those graphs. Hence, we worked with a
fixed altitude ordering ≺ for each graph. In Figure 5.5 we show two of the most and two
of the least probable hierarchical watersheds of each image gradient (for a fixed altitude
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ordering).

Algorithm 7 Least probable hierarchical watershed
Data: ((V,E), w): a weighted graph (tree) with pairwise distinct edge weights
Result: the saliency map f of a least probable hierarchical watershed of ((V,E), w)

/* Lines 1− 15 of Algorithm 5 */
16: SaliencyLeastProbable(u, f , B, ws, µ, L) � O(|V |2)

Function 8 SaliencyLeastProbable(u, f , B, ws, µ, L)
1: if ws(u) == 1 then � O(1)
2: v1 ← building edge of a child X of Ru � O(1)
3: v2 ← building edge of the sibling of X � O(1)
4: k ← random value between min(µ(v1), µ(v2)) and µ(u)− 2 � O(1)
5: f(u)← L(k) � O(1)
6: delete the value L(k) from the list L � O(1)
7: declare LL as a linked list of integers � O(1)
8: i← 1 � O(1)
9: while i < µ(v1) do � O(|V |)

10: insert L(i) in LL
11: delete the integer L(i) from L
12: end while
13: SaliencyLeastProbable(v1, f , B, ws, µ, LL) � O(1)
14: SaliencyLeastProbable(v2, f , B, ws, µ, L) � O(1)
15: else
16: f(u)← 0 � O(1)
17: if Ru has a non-leaf child then � O(1)
18: v ← building edge of the non-leaf child of Ru � O(1)
19: SaliencyLeastProbable(v, f , B, ws, µ, L) � O(1)
20: end if
21: end if
22:

5.6 Discussion and conclusion

In this chapter, we introduced the notion of probability of a hierarchical watershed com-
puted from a sequence of minima of a weighted graph. Then, we presented an efficient
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method to obtain the probability of any hierarchical watershed. We also introduced the
notions of most and least probable hierarchical watersheds and algorithms to obtain such
hierarchies.

A practical application of this study is the analysis of hierarchical watersheds based
on increasing criteria. Given a list A1, . . . , A` of increasing criteria, is there a criterion Ai
such that the hierarchical watersheds based on Ai are more probable than the hierarchical
watersheds based on the other criteria of this list? For instance, are dynamic-based
hierarchical watersheds more probable than area-based hierarchical watersheds?

Now, let us consider the set Sm (resp. Sl) of sequences of minima of w such that, for
any sequence S in Sm (resp. Sl), the hierarchical watershed for S is one of the most (resp.
least) probable hierarchical watersheds of (G,w). Another relevant question related to
this topic is: are the sequences of minima ordered according to the usual increasing
criteria (e.g. area and volume) more likely to fall into the set Sm than into the set Sl?
In other words, based on the usual increasing criteria, is it more likely to obtain a most
or a least probable hierarchical watershed?

Finally, it would be interesting to evaluate hierarchical watersheds with respect to
their probabilities in order to investigate the link between the probability of a hierarchy
and its performance.
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Figure 5.5: Two images I1 and I2, their gradients G1 and G2 computed using the edge
detector proposed in [29], two of the least probable hierarchical watersheds of G1 and G2,
and two of the most probable hierarchical watersheds of G1 and G2.



Chapter 6

Evaluation framework of
hierarchies of segmentations

In this chapter, we present the evaluation framework of hierarchies of segmentations
introduced in the following article:

• B. Perret, J. Cousty, S. J. F. Guimaraes, and D. S. Maia. Evaluation of hierarchical
watersheds. IEEE Transactions on Image Processing, 27(4):1676–1688, 2017.

This framework will be further used in the evaluation of combinations of hierarchies
studied in Chapter 7.

6.1 Introduction

In the past few decades, several hierarchical segmentation methods have been introduced
for different purposes, including image simplification/filtering [13, 89], scene labeling
[32], (shape based) object detection [105, 38], and object tracking in videos [46]. The
vast range of hierarchical segmentation methods and their diversified applications call for
an evaluation framework that covers multiple aspects of each method.

In the context of image segmentation, the most commonly used evaluation frameworks
are based on empirical assessment of segmentations. Given an image I and an image
segmentation algorithm A, we measure the quality of A by measuring the dissimilarity
between the segmentation of I (computed with A) and a ground-truth segmentation
of I. The numerous dissimilarity measures studied in the literature can be classified into
boundary-based and region-based measures. Boundary-based measures evaluate how

109



110 Evaluation framework of hierarchies of segmentations

much the boundaries/contours between regions of a segmentation match the ground-
truth contours. In turn, region-based measures take into account the matching between
the regions of a segmentation and the regions of a ground-truth segmentation.

Methods to evaluate hierarchies of segmentations arise naturally by combining the
individual evaluation of the partitions of a hierarchy. Given a hierarchy H and a measure
of quality M , the evaluation of H with respect to M can be given as a combination, e.g.
average or median, of the evaluation of all partitions of H against a given image ground-
truth. For instance, this is the spirit of the evaluation framework proposed in [5].

A different evaluation approach is proposed in [97]. To optimize parameters related
to color and texture in the computation of hierarchies of partitions of remote sensing
data, [97] proposes an evaluation framework with takes into consideration the impor-
tance of a contour/edge in the ground-truth segmentation. More precisely, ground-truth
edges are classified into compulsory and optional. Their assessment is based on verify-
ing the percentage of ground-truth edges that correspond to missed or false detection.
A missed compulsory edge weighs more in the final assessment than a missed optional
edge. Moreover, the lower is the level where a compulsory edge vanishes in the hierarchy,
the greater is the error. Conversely, the greater is the level that a false detected edge is
present in the hierarchy, the greater is the error. [97] successfully incorporates hierarchi-
cal contours information into their assessment, though, it requires ground-truth edges to
be pre-classified by their importance, which is not the case for most image datasets.

In this chapter, we present the evaluation framework of hierarchies introduced in [79].
This framework allowed us to discover a new increasing attribute (number of parent
nodes) that outperforms the hierarchical watersheds based on the increasing attributes
presented in Section 2.7.2, including area, volume and dynamics. In section 6.3, we
introduce number of parent nodes. In section 6.4, we present our baseline evaluation
method based on precision and recall (for boundaries). In section 6.5, we introduce the
region-based assessment measures proposed in [79], which complement the information
provided by precision-recall curves. Then, we present experimental results with some
morphological hierarchies in section 6.6.

6.2 Cut of a hierarchy

Let H be a hierarchy of partitions on a set V . Let P be a partition of V . We say that
P is a cut of H if, for every region R of P, there is a partition P′ of H such that R is
a region of P′. If every region of P belongs to the same partition of H, i.e., if P is a
partition of H, then we say that P is a horizontal cut of H. The set of regions of H is
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Figure 6.1: A hierarchy of partitions of an image (source BSDS 500 [63]) is a sequence
of coarse to fine partitions. The hierarchy can be represented as a tree of regions. A cut
is a partition made of regions of the hierarchy possibly taken at different levels.
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Figure 6.2: (a): a weighted graph (G,w). (b) the min-tree MT of (G,w) (square nodes).
The parent nodes of MT are indicated in bold. The number of parent nodes included in
each region of MT is indicated inside each node of MT .

the union of all partitions of H. We denote the set of regions of H by RH. The set of all
cuts of H is denoted by Π(H).

The notion of cuts is illustrated in Figure 6.1.

6.3 Number of parent nodes

Let (G,w) be a graph and let MT be the min-tree of (G,w). As established in Section
2.7.2, increasing attributes and extinction values are computed on the min-tree of (G,w).
Let R be a region of MT . The number of parent nodes of R is the number of regions
ofMT that are included in R and that are the parent of at least one region ofMT : |{R′ ⊆
R | ∃R′′ ∈ RMT , parent(R

′′) = R′}|.
In Figure 6.2, we show a weighted graph (G,w), the min-tree MT of (G,w), and the

number of parent nodes of each node of MT .



112 Evaluation framework of hierarchies of segmentations

The number of parent nodes of a node measures the number of times the minima
of the gradient are modified, either by the addition of new pixels (growth of the asso-
ciated catchment basin), or by the merging with another minima (fusion of catchment
basins). Intuitively, it measures the amount of change in a given region where minima
and flat components have been contracted as single pixels. As a topological feature, it
is invariant to monotone contrast transformations and to geometric transformations (up
to discretization effects). It is also increasing (the attribute value of a node is larger
than the one of its children) which allows defining an extinction value associated to each
minima of the function [98], thus leading to a hierarchical watershed.

6.4 Baseline: precision-recall for boundaries

Precision and recall are standard evaluation measures of classification problems. Let
us consider a binary classification problem in which data are classified as belonging or
not to a set or category A. Precision indicates the percentage of the data correctly
classified as belonging to A (true positives) among all data classified as belonging to A
(true positives + false positives). In turn, recall is the ratio between the data correctly
classified as belonging to A (true positives) and the data that belongs to A (true positives
+ false negatives). The precision P and the recall R measures can be aggregated into
the (balanced) F-measure:

F = 2× P ×R
P +R

(6.1)

The F-measure values range from 0 to 1, where 1 indicates an ideal classification.
Image segmentation can be formulated as a classification problem. For instance,

in [84], the authors propose the following formulation. Let N be the set of pairs of
neighboring pixels of an image I and let A be a set composed of elements of N such
that, for any element (x, y) in A, we have x and y belonging to the same region of a
ground-truth segmentation of I. The precision and recall of a segmentation of I can be
obtained by considering the percentage of pair of pixels correctly classified as belonging
to the set A. In this context, the precision and recall measures result in the F-measure
for regions (FR).

In [63], the authors propose precision and recall measures on segmentation boundaries
(FB). They define an edgel as a one-pixel fragment of segmentation boundary represented
by two parameters: a position in the image plane and an orientation. The precision and
recall measures are determined by the matching of edgels in two segmentations. They
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model this problem through a bipartite graph linking the edgels of two segmentations
by weighted edges, whose weights are determine by the euclidean distance and by the
difference in orientation of edgels. As the edgel sets of two segemtnations are not likely
to have the same cardinality, they insert outlier edges with large weights in the bipartite
graph. The edges matched to outlier edgels are considered unmatched. The error is
given by the number of unmatched edgels, i.e., the edgels matched to outlier edgels.
Their method is robust with respect to segmentations produced by different images: the
precision and recall errors of matching edgels from segmentations of distinct images is
consistently higher than the errors of segmentations of a same image. It is also sensitive
to over and undersegmentation: neither precision nor recall are tolerant to refinement.

The work of [85] on the evaluation of segmentation assessment measures has shown
that FB is highly discriminant between ground truths of different images on the BSDS
500 image dataset [63]. On the contrary, FR has shown a low discriminant power. Hence,
we consider FB as our baseline segmentation assessment measure.

6.5 Proposed evaluation methodology

In this section, we present the evaluation framework for hierarchies of partitions intro-
duced in [79]. This framework is composed of several supervised assessment measures,
each enabling to quantify a different aspect of the hierarchy. The assessment methodology
introduced in [79] comprises three parts:

1. An evolution of the upper-bound on region measures [83] enabling to quantify the
maximal achievable score of a hierarchy for the general segmentation problem;

2. A new evaluation measures that aims to quantify the easiness of finding a set of
regions of a hierarchy representing a semantic object in the scene;

3. The F-measure and precision-recall curves on boundaries FB [64] (see Section 6.4)
as a standard evaluation measure. This measure is complementary to the other
region oriented measures and also provides a reference measure for the comparison
with the literature.

6.5.1 Upper-bound on BCE measure

The horizontal cuts considered in the framework of [85] represent a subset of all possible
partitions that can be constructed from a hierarchy. In order to better evaluate the
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potential of hierarchies, the authors of [82, 83] proposed to look for the optimal cut,
generally not horizontal, in a hierarchy according to a given evaluation measure.

We propose an evolution of the evaluation on regions proposed by Pont-Tuset et al.
[83] that consists in two improvements: 1) the use of a dissimilarity measure that enables
to penalize both under- and over-segmentation, and 2) the definition of a new type
of curve, the fragmentation upper-bound curve that enable to measure the potential
of the hierarchy and the potential gain of non-horizontal cuts compared to horizontal
cuts. In [83], the authors focused on the directional Hamming distance [50] which is
transparent to over-segmentation, i.e., it does not penalize the subdivision of a region
of the ground-truth into multiple regions in the proposal segmentation. We propose to
use the FB (see Section 6.4) and the Bidirectional Consistency Error BCE [64] measure.
The BCE measure is symmetric and it is not transparent to over- or undersegmentation.
The evaluation of segmentation measures provided by [85] evaluates BCE as a highly
discriminant measure on the image segmentation dataset BSDS500 [63].

Given an image I, one ground-truth segmentation TI , and a proposal segmenta-
tion SI , the BCE measure of SI and TI is defined by [64]:

BCE(SI ,TI) =
1

N

∑
R∈SI ,R′∈TI

|R∩R′|min
(
|R ∩R′|
|R|

|R ∩R′|
|R′|

)
(6.2)

Given a similarity measure s, an image I, one ground-truth segmentation TI , and a
proposal segmentation SI , we denote by s(SI ,TI) the similarity between SI and TI for s.
Given a hierarchy of partitions HI on the image I, one ground-truth segmentation TI

and a number k of regions, the Upper-Bound score for s (UBs) for HI is the highest score
according to s for all the cuts of HI composed of k regions:

UBs(HI ,T I , k) = max
S∈Π(HI)
|S|=k

s(S,T I). (6.3)

In order to better understand the content of the hierarchies and to account for the
variations inside the evaluation datasets, we propose the Fragmentation–Optimal Cut
score curve (FOC) where the mean-average Upper-Bound BCE score (the mean image
score over the database, with the image score defined as the average score over the set of
ground-truths for the image) is plotted against the fragmentation level of the segmenta-
tion defined as k/|TI |, the ratio between the number of regions in the segmentation and
the number of regions in the ground-truth (see Figure 6.3). The gain achieved by taking a
non horizontal cut in the hierarchy is evaluated with a second curve: the Fragmentation-
Horizontal Cut score curve (FHC) obtained by taking the successive partitions of the
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Figure 6.3: Illustration of under- and over-segmentation for hierarchies. Hierarchies 1
and 2 are both composed of 2 levels. Compared to the ground-truth, the first hierarchy
manages to recover long contours in its coarse level but then fails to recover the other
contours at a finer level: the optimal horizontal cut is the coarsest one and the hierarchy
is said to under-segment the image. With the second hierarchy the inverse situation hap-
pens, the coarsest partition recovers all the contours of the ground-truth but also contains
extra-contours. However, the finest partition loses the true contours and preserves extra
contours: the hierarchy is said to over-segment the image.

hierarchy (similarly to precision-recall curves). A large difference between the FOC and
FHC curves suggests that the optimization algorithm has selected regions from various
levels of the hierarchy to find the optimal cut: the regions of the ground-truth segmen-
tations are thus spread at different levels in the hierarchy.

The FOC curve starts at the value corresponding to the single region partitions (in-
dependent of the evaluated hierarchy). Then, it generally quickly increases at low frag-
mentation levels as the optimization first selects the largest regions that summarize the
ground-truth. Then, the optimal cut starts to include smaller regions that provides only
little score gain: this corresponds to the nearly flat part of the curve. At a high level of
fragmentation (not visible in the figures), the algorithm cannot add new regions without
lowering the score and the curve starts to decrease.

In the ideal case, the maximum of the FOC and FHC curves is achieved for a fragmen-
tation of 1. If the maximum happens at fragmentation level lower than 1, this means that
the hierarchy tends to capture the main feature of the ground-truth with a low number
of regions but then fails to correctly refine those regions (see Hierarchy 1 in Figure 6.3):
in this case we say that the hierarchy has a tendency for under-segmentation. If the
maximum happens at a fragmentation level higher than 1, this means that the hierarchy
is able to provide a set of superpixels for the ground-truth but fails to merge them in a
correct order (see Hierarchy 2 in Figure 6.3): in this case we say that the hierarchy has
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a tendency for over-segmentation.
As an overall performance summary respectively on the FOC and FHC curves, we

compute the normalized area under the curve, denoted respectively by AUC-FOC and
AUC-FHC. The area under the curve provides an evaluation over a large range of frag-
mentation levels and thus accounts for the hierarchical nature of the object of study. In
order to obtain a measure that is symmetric between under- and over- fragmentation,
the area under the curve is calculated on the interval ]0, 2]. Finally, the area under the
curve is normalized with a factor 1/2 to obtain a score between 0 (worst) and 1 (best).

6.5.2 Object detection measure

The last measure, introduced in [80] and studied in [79], is based on supervised object
detection with markers. It quantifies how well a specific object of a scene can be retrieved
with different levels of information given on its position.

We use the procedure described in [87] that constructs a two- class segmentation
from a hierarchy of partitions and two non-empty markers: one for the background and
one for the object of interest. Its principle is to identify the object as the union of
the regions of the hierarchy that intersect the object marker but does not touch the
background marker. Formally, given an image I, a hierarchy HI , an object marker Mo,
and a background marker Mb, the extracted object is defined by:

O(HI ,Mo,Mb) =
⋃
{R ∈ RHI

| R ∩Mo 6= ∅, R ∩Mb = ∅}. (6.4)

This result can be computed efficiently with the following algorithm. In the first step
of the algorithm, the hierarchy is browsed from the leaves to the root. If the current
node is labeled Background then its parent node intersects the background marker and is
labeled Background. If the current node is labeled Object and its parent is not currently
labeled then it can be labeled Object. In the second step, the tree is browsed from
the root to the leaves and any non labeled node takes the label of its parent. Finally,
the labels of the leaves (the image pixels) give the segmentation result. In order to
perform an objective assessment of the different hierarchies we propose several automatic
strategies to generate object and background markers from the ground truths. The main
idea is not to reproduce the interactive segmentation process experienced by a real user
but rather to obtain markers representing different difficulty levels or that resembles to
human generated markers. The generated markers are the following (see Figure 6.4): 1)
Erosion (Er): erosion by a ball of radius 45 pixels. If a connected component is completely
deleted by the erosion then a single point located in the ultimate erosion of this connected
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(a) Er-Er (b) Sk-Fr (c) Sk-Sk

Figure 6.4: Different combinations of markers. The combination of markers is indicated
in the caption of each sub-figure in the form Background Marker-Object Marker. In each
figure the background and object markers are respectively depicted in red and blue.

component is added to the marker, 2) Skeleton (Sk): morphological skeleton given by
[19], and 3) Frame (Fr): frame of the image minus the object ground truth if the object
touches the frame (background only). Using the frame as the background marker is
nearly equivalent to having no background marker in the sense that it does not depend
of the ground truth or of the image. In the following, the combination of the background
marker MB and the object marker MF is denoted MB-MF (for example, Fr-Sk stands
for the combination of a Frame marker for the background and a skeleton marker for the
object). Among all the possible combinations of markers, we chose to concentrate on the
following ones: 1) Sk-Sk resembles to human generated markers, 2) Er-Er leaves a large
space between markers and represent a difficult case. Nevertheless, the combination is
symmetric in the sense that the correct segmentation is roughly at equal distance from the
object and from the background marker, and 3) Fr-Sk where the object marker resembles
to a human generated marker and the background marker conveys nearly no information:
this case is thus strongly asymmetric. The performance of each segmentation result is
evaluated with the F-Measure. The median score for the 3 marker combinations is called
Object Detection Median and is denoted ODM.

6.6 Experiments

This section presents the results of the experiments and some discussions.
Precision-recall curves for boundaries and upper-bound on BCE measure are evalu-

ated on the BSDS500 dataset [63] (200 test images). The object detection measure is
evaluated on the Grabcut [16] and Weizmann 1 object [1] datasets (respectively 50 and
100 test images). We study the importance of the gradient measure for all methods (Sec-
tion 6.6.1) and the necessity to perform a filtering of some hierarchies (Section 6.6.2).
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The overall results are discussed and compared to high quality approach (Section 6.6.3).
In the remainder of this section, the hierarchical watersheds based on area, dynamics,

volume and parent nodes are respectively denoted by WS-Area, WS-Dynamics, WS-
Volume and WS-Parents. The quasi-flat zones hierarchies, revised in Section 2.3, are
denoted by QFZ.

6.6.1 Influence of the gradient

A classical way to weight the edges of a graph in image analysis in general and for mor-
phological segmentation in particular is to use a gradient measure. The aim of this section
is to evaluate the influence of the gradient measure on the quality of the hierarchies.

The most simple gradient measures use only colorimetric information from the two
pixels of an edge: in this category, we consider an Euclidean distance in the RGB color
space and an Euclidean distance in the Lab color space, the latter being more compliant
with human color perception. However, recent advances on contour detection have led
to non local supervised gradient estimators achieving better performance on contour de-
tection benchmarks: in this category, we consider the globalized probability of boundary
(gPb) from [6] and the structured edge detector (SED) from [29].

Figure 6.5 shows the result of WS-Dynamics (top row) and WS-Area (bottom row)
with the four considered gradients–RGB, Lab, gPb, and SED. The results of QFZ (re-
spectively WS-Volume and WS-Parents), not shown here, are similar to the results of
WS-Dynamics (respectively WS-Area). A first observation on WS-Dynamics with RGB
and Lab gradients is that its PR-Curves on boundaries seem truncated and its FOS-
Curves on regions are flat. In the first case, the truncation appears at the level where
the partition of the hierarchy contains more than 3000 regions: the evaluation procedure
is stopped at this point as it becomes two demanding on computational power. In the
second case, the flat curve is the result of the hierarchy not being able to provide any
meaningful partition with at most twice the number of regions in the ground-truth. Those
two observations can be a consequence of WS-Dynamics (and similarly QFZ) having its
upper levels made only of small salient regions; a solution to this problem is presented
in the next section.

While the Lab gradient provides slightly better performance compared to RGB gra-
dient in most cases, we observe a large gain by switching from a local RGB or Lab
gradient to a supervised non-local gradient like gPb or SED. The SED gradient improves
the results for every measure except the FOC curve with WS-Dynamics compared to
gPb gradient. The FOC and FHC curves show that WS-Dynamics requires much more
regions to reach its maximal scores with SED gradients which implies that the hierarchy



6.6. Experiments 119

Figure 6.5: Influence of the gradient on WS-Dynamics (top row) and WS-Area hierarchies
(bottom row). Mean Precision-recall (PR) curves for boundaries on BSDS500:
each curve represents the variation of precision and recall for the different partitions
of the hierarchy. OIS and ODS scores are given in the legend and are respectively
represented in the plot by a square and a triangle. Fragmentation–Optimal Cut
score curves (FOC) for regions on BSDS 500: each plain curve represent the upper-
bound score achievable for a given fragmentation value. The corresponding dashed curves
represent the score obtained by horizontal cuts. Area under curve for the plain curve
(AUC-FOC) and the dashed curve (AUC-FHC) are given in the legend. Supervised
object detection on Grabuct and Weizmann datasets: for each method and each
combination of markers, we see: 1) the median F-measure (central bar), 2) the first and
third quartile (extremities of the box), and 3) the lowest datum still within 1.5 inter
quartile range (difference between the third and first quartile) of the lower quartile, and
the highest datum still within 1.5 inter quartile range of the upper quartile range (lower
and upper extremities). The median score over all markers combinations is given in the
legend.
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tends to have small irrelevant regions on its top layers. This suggests that despite the
regularization effect based on dynamics, which tends to send lowly contrasted regions to
the lower levels of the hierarchy, WS-Dynamics remains sensitive to small regions of high
contrast that appear more often in SED gradients than in gPb gradients.

In conclusion, we recommend the use of SED gradient to build hierarchical watersheds
on natural images and the following experiments will be conducted with this gradient.
Moreover, SED is about 3 orders of magnitude faster than gPb [6] enabling to reach real
time performance without any particular material.

6.6.2 Small regions removal

As observed in the previous section, QFZ and WS-Dynamics are sensitive to small regions
even with a smooth gradient as SED. In this section we evaluate the impact of an area
post-filtering on those hierarchies.

The area filter described in [47] removes contours iteratively in the hierarchy: starting
from the leaves and moving toward the root, the children of a node are merged if at least
one of them contains less than k pixels. In the following, we express the strength of the
filter as the ratio rk = k \N , with N the number of pixels in the considered image.

Figure 6.6 shows the result of the filtering on QFZ (the results on WS-Dynamics
are similar) with four different values of rk: 0 (no filter), 0.4h (roughly 50 pixels in a
BSDS500 image [63]), 0.8h, and 1.6h. We observe that all measures increase with rk,
from rk = 0 to rk = 0 : 8h. The introduction of the filtering immediately produces a
large performance boost. For rk = 1.6h compared to rk = 0 : 8h, the situation is mixed
with an improvement on FOC measures, stagnation on objection detection measures,
but a degradation of OIS and ODS scores: this reflects a tradeoff between the number of
regions necessary to describe the scene and the precision of boundaries.

The effect of the filtering on under- and oversegmentation is presented in Figure 6.7.
For each image and each ground-truth of the dataset, we plot the number of regions
present in the optimal segmentation found against the number of regions in the ground-
truth (we define the optimal segmentation as the segmentation that achieves 99% of the
optimal score with the fewest number of regions in the FOC curve). We see that for
WS-Dynamics (results are similar for QFZ), larger values of rk tends to push the optimal
segmentation from over-segmentation (position above the diagonal where the optimal
segmentation contains more regions than the ground-truth) to under-segmentation (po-
sition below the diagonal where the optimal segmentation contains less regions than
the ground-truth). For rk = 0 : 8h, the optimal solutions have a mostly symmetrical
distribution around the diagonal, suggesting no bias toward under or over-segmentation.
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Figure 6.6: Influence of the area filter on QFZ. (See Figure 6.5 for explanation).

Figure 6.7: Influence of area filtering on WS-Dynamics.
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Figure 6.8: Best achieved results for each hierarchy and a high quality hierarchical seg-
mentation methods. (See Figure 6.5 for explanation).

In conclusion, for QFZ and WS-Dynamics we recommend to perform a post-filtering
of the hierarchy by removing regions smaller than 0.8h of the image size. One can
notice that the object detection measure is less sensitive to the area filtering than other
evaluation measures. This suggests that, for some applications, the processing of the
hierarchy is naturally robust to small nodes and this filtering may not be necessary.

6.6.3 Discussions

This section compares and discusses the best results obtained for each hierarchy (see
Figure 6.8).

As a reference we also include the Multiscale Combinatorial Grouping (MCG) hier-
archies from [81] in our assessments. MCG also uses SED as the main cue for contour
detection, but then merges several hierarchies (referred as OWT-UCM in the literature
[6]) computed at different scales.

We can observe that QFZ is globally inferior to all the other methods. WS-Dynamics
shows good performances in precise contour placement (high ODS and OIS scores) but has
a clear tendency for over-segmentation (maximum of FOC and FHC curve occur at large
values of fragmentation). We can also notice that WS-Dynamics (and QFZ) performances
for object detection in the Sk-Sk case is significantly lower than other methods; this
suggests that the hierarchy fails to correctly order regions near the boundaries which is
coherent with its tendency to over-segment (more regions are needed to obtain the true
contours).

On the contrary, WS-Area and WS-Volume show weaker performance at contour
location (average OIS and ODS scores) and have a tendency for under-segmentation
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(maximum of FOC and FHC curve occur at low values of fragmentation). WS-Area shows
a clear advantage over other methods on object detection with Er-Er markers which can
be explained by the symmetric nature of the markers in this case: the true contour is
located roughly at equal distance from both markers and WS-Area is particularly good
at producing a regular (in size) tiling of the contour image.

WS-Parents offers the best performances on every measure expect OIS compared to
other hierarchical watersheds. As WS-Area and WS-Volume, it shows a small tendency
for under-segmentation. The results of MCG remain higher than WS-Parents except
for the object detection assessment: this suggests that MCG, whose various components
have been either trained or optimized on BSDS500 dataset, may over-fit this particular
dataset and not be the best method for other applications than general segmentation.

6.7 Conclusion

We presented a novel evaluation framework for the evaluation of hierarchies of parti-
tions that enables to capture the quality of different aspects of the hierarchies: regions,
contours, horizontal cuts, optimal cuts, nodes grouping, under or over-segmentation.
Compared to the classical approach for hierarchy evaluation that concentrates only on
the horizontal cuts and the image segmentation problem, we believe that the proposed
framework offers a richer assessment that better accounts for the hierarchical nature of
the representation and is not limited to a single use case.

This framework was used to assess various hierarchies of morphological segmentations.
In particular, we studied the importance of the gradient measure for all methods and the
necessity to perform a filtering of some hierarchies. The framework also allowed us to
identify a hierarchical watershed based on a novel extinction value, the number of parent
nodes, that outperforms the other hierarchies of morphological segmentations. We have
shown that, used in conjunction with a state-of-the art contour detector, most hierarchical
watersheds are competitive or even sometimes better than the complex state of the art
method for hierarchy construction. Moreover, hierarchical watersheds are well defined
structure satisfying clear global optimality properties and can be computed efficiently on
large data: they are thus valuable candidates for various computer vision tasks.
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Chapter 7

Combination of hierarchies

In this chapter, we present a general framework to combine (the saliency maps of)
hierarchies of partitions. We first assess this framework on combinations of hierarchi-
cal watersheds and of hierarchies based on non-increasing attributes. Then, we study
properties of combinations of hierarchical watersheds based on the characterization of hi-
erarchical watersheds and on the notion of watersheding operator presented in chapters 3
and 4, respectively. This chapter comprises the results of the following articles:

• D. S. Maia, A. de Albuquerque Araujo, J. Cousty, L. Najman, B. Perret, and
H. Talbot. Evaluation of combinations of watershed hierarchies. In International
Symposium on Mathematical Morphology and Its Applications to Signal and Image
Processing, pages 133–145. Springer, 2017.

• D. S. Maia, J. Cousty, L. Najman, and B. Perret. Properties of combinations of
hierarchical watersheds. Under review. 2019.

• D. S. Maia, J. Cousty, L. Najman, and B. Perret. Characterization of graph based
hierarchical watersheds: theory and algorithm. Under review. 2019.

7.1 Introduction

In the construction of a hierarchy of segmentations, two aspects should be considered:
(1) the regions that compose the finest partition of the hierarchy; and (2) the criterion
under which those regions are merged along the hierarchy. In this study, we focus on the
second aspect of the construction of hierarchies. More precisely, we explore the method to
combine hierarchies introduced in [28, 25]. In [28, 25], the authors combine the saliency
maps of hierarchies that are connected for a same graph. The input saliency maps are
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combined into a new map. Then, the combined hierarchy is the QFZ hierarchy of the
resulting map. Other approaches on combinations of hierarchies of segmentations have
already been tackled in [52, 33, 59, 76].

In [52], the authors propose to fuse hierarchies of partitions with other functions that
are not necessarily saliency maps. They formalize a segmentation as a set of Jordan curves
and then explore the lattice induce by this set of Jordan curves, along with the opening
and closing operators defined on this lattice. Those operators induce the definition of
supremum and infimum of two functions and of two hierarchies. In their experiments,
they combine the saliency maps of hierarchies of partitions with functions associated to
a ground-truth segmentation, both defined on a 2D plane. More precisely, they compute
the inverse of the distance map of the ground-truth contours, assigning the largest values
of the points in the contours. The resulting combination is the closest to both the ground
truth and the initial saliency map of the hierarchy.

In [33], the authors perform a sequential combination of stochastic watershed hierar-
chies. Given a weighted graph (G,w), they compute the saliency map w′ of the watershed
hierarchy based on a given attribute A. Then, the graph (G,w′) is used to compute an-
other watershed hierarchy based on an attribute A′. We can see that those combinations
can be performed indefinitely for any number of attributes. In [34], the authors conclude
that sequential combinations are not commutative and that the sequential combinations
with a single attribute are convergent.

In [59], the authors use a Convolutional Neural Network (CNN) to build hierarchies of
segmentations. They extract oriented image boundaries at different scales from different
levels of the CNN. At each level, they compute an ultrametric contour map (saliency
map), which are further combined following the approach of [81]: the coarse bound-
aries obtained from higher level scales are approximated into the finer and better placed
boundaries of lower levels.

In [76], the authors compute hierarchical watersheds based on combined attributes.
They propose a contact based attribute function that minimizes the contact surface of
the final 3D segmented objects. They show the improvement of combining this attribute
to the dynamics and volume attributes in the segmentation of grains of 3D tomography
images.

In general, no single hierarchy of segmentations completely fits the applicative and
cognitive expectation for all regions of an image. This is illustrated in Figure 7.1, where
we present a combination of two hierarchical watersheds obtained through the method
described in [25]. Those hierarchies are driven by regional attribute values based on
area [70] and on dynamics [75]. In Figure 7.1, we also present segmentations with 75
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Original image

Area attribute Dynamics attribute Combination

One level of each hierarchy with 75 regions

Figure 7.1: Hierarchical watersheds based on area and dynamics and their combination
by average.

regions extracted from each hierarchy. Hierarchies are represented thanks to their saliency
map. In this representation of saliency maps, the darkest contours are the ones that
persist at the highest levels of the hierarchies. From the saliency map of the hierarchical
watershed based on area shown in Figure 7.1, we can see that the sky and sea regions are
oversegmented at high levels of this hierarchy. On the other hand, spurious regions are
preserved at high levels of the hierarchy based on dynamics and the two people, which are
significant regions from a cognitive point of view, are merged with the background. We
can see that, in the combination of those two hierarchies, the two people are preserved at
high levels of this hierarchy and the sky and sea regions are less oversegmented. Based on
this visual inspection and on the illustrations of combinations of hierarchical watersheds
provided in [25], we expect combinations of hierarchies to perform better than the initial
hierarchies.

In this chapter, we explore the potential of combinations of hierarchies. It is organized
as follows:

• Section 7.2, reviews the combination framework of hierarchies introduced in [28,
25]: given two hierarchies, their saliency maps are combined through an edge-wise
function and, then, the resulting hierarchy is the QFZ hierarchy of the combined
saliency maps;

• Section 7.3 proposes a method to obtain normalized saliency maps. For a combi-
nation of hierarchies to make sense, we need their saliency maps to convey similar
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information at each level, e.g. to have the same number of regions at each level.
Hence, we treat the cases where the input saliency maps do not have the same
number of level-sets, and the cases where the range of the saliecy maps differ;

• Section 7.4 presents a visual inspection of combinations of hierarchical watersheds
and of combinations of hierarchies based on non-increasing attributes. We show
that some of the combinations successfully bring to the fore the most important
regions of an image.

• Section 7.5 presents a quantitative assessment of combinations of hierarchical wa-
tersheds using the evaluation framework presented in Chapter 6. We compare all
combinations of hierarchies with the initial hierarchies, and with the hierarchical
watershed of best performance, namely the hierarchical watersheds based on the
number of parent nodes (see Section 6.6.3). Nearly half of the combinations out-
performed the initial hierarchies. Moreover, some combinations also outperformed
the hierarchical watersheds based on the number of parent nodes;

• Section 7.6 studies properties of combinations of hierarchical watersheds. More
precisely, we investigate the following problem: do combinations of hierarchical
watersheds result in hierarchical watersheds? We conclude that the combinations
of hierarchical watersheds with the combining functions studied here do not re-
sult in hierarchical watersheds, in general. We also provide a sufficient condition
for a combining function to always output flattened hierarchical watersheds (see
Definition 21);

• Section 7.7 presents experiments with our algorithm to recognize (flattened) hi-
erarchical watershed (see Chapter 3) applied to combinations of hierarchies. We
conclude that, when hierarchical watersheds are computed by considering arbitrary
orderings on the edges of a graph, nearly one third of the combinations do not
result in flattened hierarchical watersheds. However, when the algorithm to com-
pute hierarchical watersheds considers a unique ordering on the edges, virtually all
combinations are flattened hierarchical watersheds;

• Section 7.8 presents the results of the watersheding operator (see Chapter 4) applied
to combinations of hierarchical watersheds. We observe that, in most cases, the
watersheding of combinations of hierarchies improves the combinations in terms
of quantitative evaluation, with the advantage of outputting hierarchies which are
optimal in the sense of MSFs, as discussed in Section 2.6.3;
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• Finally, we conclude and discuss future work in Section 7.9.

Important notations: in the remainder of this chapter, the symbol (G,w) denotes
a weighted graph whose vertex set is connected. To shorten the notation, the vertex set
of G is denoted by V and its edge set is denoted by E. Every hierarchy considered in
this chapter is connected for G and therefore, for the sake of simplicity, we use the term
hierarchy instead of hierarchy which is connected for G. Given an altitude ordering ≺
for w and a building edge u for ≺ (see definitions in Section 2.5.2), we denote by Ru

the region of the binary partition hierarchy B≺ by ≺ whose building edge is u. The set
of building edges for ≺ is denoted by E≺. We denote by n the number of minima of w.
Every sequence of minima of w considered in this chapter is a sequence of n pairwise
distinct minima of w and, therefore, for the sake of simplicity, we use the term sequence
of minima of w instead of sequence of n pairwise distinct minima of w. By abuse of
terminology, when no confusion is possible, if M is a minimum of w, we call the set
V (M) of vertices of M as a minimum of w.

7.2 General combination framework

Combining partitions and, a fortiori, hierarchies is not straightforward. This problem
has been tackled in [52, 58, 28, 25] thanks to the use of saliency maps and we follow
the same approach. More precisely, in order to combine two hierarchies H1 and H2, we
proceed in three steps: first the saliency maps of H1 and H2 are considered, then the two
saliency maps are combined to obtain new weights on the edges of G, and, finally, the
combination of hierarchies is the QFZ hierarchy of the new map (see Figure 7.2).

Let F be the set of all maps from E into R. Any map C from F2 into F is called a
combining function.

Given two hierarchies H1 and H2 and a combining function C, the combination of H1

and H2 by C is the hierarchy HC(H1,H2) defined by:

HC(H1,H2) = QFZ(C(Φ(H1),Φ(H2))). (7.1)

We consider three classical functions in the instantiation of the combining function
(supremum, infimum and linear combination), and a new function called concatenation.
Given two maps f and g in F , the supremum, infimum and linear combination of f and
g, respectively denoted by g(f, g), f(f, g) and �α(f, g), are defined for each edge u in
E as:
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Figure 7.2: Scheme of the method to combine hierarchical watersheds investigated here.
First, given two hierarchical watersheds H1 and H2, the saliency maps w1 and w2 of
respectively H1 and H2 are computed. Then, the saliency maps w1 and w2 are combined,
resulting in the map wc. Finally, the resulting hierarchy is the quasi-flat zones hierarchy
of wc.

g(f, g)(u) = max(f(u), g(u))

f(f, g)(u) = min(f(u), g(u))

�α(f, g)(u) = αf(u) + (1− α)g(u)

(7.2)

where the real-valued parameter α is in the range [0, 1].

One example of a combination of hierarchies by infimum is shown in Figure 7.3.
Let H1 and H2 be the hierarchies of Figure 7.3(a) and (c), respectively. To combine
H1 and H2 by infimum, we consider their saliency maps Φ(H1) and Φ(H2) illustrated
in Figure 7.3(b) and (d), respectively. The edge-wise combination f(Φ(H1),Φ(H2)) of
Φ(H1) and Φ(H2) by infimum is given in Figure 7.3(e). The combination of H1 and H2

by infimum, shown in Figure 7.3(f), is the QFZ hierarchy of the map f(Φ(H1),Φ(H2)).

The purpose of the concatenation is to combine higher levels of a hierarchy with
lower levels of another hierarchy. This type of combination is useful when a hierarchy H1

succeeds at describing the small details of an image at lower levels, but fails at filtering
the small regions to capture the main large objects at higher levels of the hierarchy.
Therefore, it can be interesting to concatenate H1 with another hierarchy H2 whose high
levels describe well the important regions in the image. This general idea is represented
in Figure 7.4. Given two hierarchies H1 and H2, we aim to obtain a new hierarchy H3

whose high (resp. low) levels correspond approximately to the high (resp. low) levels of
H1 (resp. H2). In order to define the concatenation of hierarchies, we first define the
double threshold function. Given any map f in F and given two parameters α and β in
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Figure 7.3: (a) a hierarchy H1. (b) the saliency map Φ(H1) of H1. (c) a hierarchy H2.
(d) the saliency map Φ(H2) of H2. (e) the combination f(Φ(H1),Φ(H2)) of the saliency
maps Φ(H1) and Φ(H2) by infimum. (f) the combination of H1 and H2 by infimum,
which corresponds to the QFZ hierarchy of f(Φ(H1),Φ(H2)). (g) the combination of the
saliency maps Φ(H1) and Φ(H2) with concatenation at level λ = 2. (h) the concatenation
of H1 and H2 at level 3.

Figure 7.4: Concatenation of low levels of a hierarchy H1 with high levels of a hierarchy
H2.

R such that α < β, we denote by T (f, α, β) the double threshold of f by (α, β) such that,
for any edge u of G:

T (f, α, β)(u) =


0 if f(u) < α

β if f(u) > β

f(u) otherwise

(7.3)

Let f and g be two maps in F . Given a threshold value λ, the concatenation of f



132 Combination of hierarchies

and g at level λ, for any edge u, is given by:

]λ (f, g)(u) = max(T (f, 0, λ)(u), T (g, λ,∞)(u)) (7.4)

Let H1 and H2 be the hierarchies of Figure 7.3(a) and (c), respectively. In Fig-
ure 7.3(h), we show the concatenation of H1 and H2 at level λ = 2.

7.3 Normalization of saliency maps

Let H1 and H2 be two hierarchical watersheds of (G,w). By the definition of hierarchical
watersheds (Definition 1), we may affirm that H1 and H2 have the same number of
partitions. Then, the range of both saliency maps Φ(H1) and Φ(H2) is equal to {0, . . . , n−
1}. Therefore, the weight of the contour of the k-th most important region of H1 is equal
to the weight of the contour of the k-th most important region of H2. Furthermore, the
number of regions of the k-th finest partition of H1 is equal to the number of regions of
the k-th finest partition of H2. However, this might not be the case of two hierarchies
computed from distinct methods. To ensure that the range of the saliency maps to be
combined is compatible, we consider three normalization functions: N1, N2 and N3.

Given any weight map f ∈ F and any edge u in E, the function N1 assigns to u the
number of values γ in the range of Φ(H) such that f(u) ≥ γ:

N1[f ](u) = |{f(v) | v ∈ E, f(u) > f(v)}| (7.5)

Let f1 and f2 be two saliency maps normalized by N1. If the saliency maps f1 and
f2 have distinct numbers of level-sets, those saliency maps can be re-normalized. For
supremum and concatenation, we apply the function N2 such that for any map fi, for i
in {1, 2}, and any edge u in E, we have:

N2[fi](u) = N1[fi](u) + (|Wmax| − |Wi|) (7.6)

where |Wi| is the cardinality of the range of fi and Wmax is the maximum cardinality in
the set {|W1|, |W2|}.

Let f1 and f2 be two saliency maps. By applying the function N2 to f1 and f2, we
assure that the highest levels of the combination of f1 and f2 by supremum are not domi-
nated by the levels of a single input hierarchy. Regarding combinations by concatenation,
the function N2 guarantees that the parameters of the combination actually indicate the
number of levels taken from each hierarchy.
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Figure 7.5: Two saliency maps f1 and f2 and their normalization by the functions N1,
N2 and N3.

In combinations by infimum and linear combinations, we discard the lowest levels
of the hierarchy with the largest number of partitions by applying the normalization
function N3. For any map f1, for i ∈ {1, 2}, and any edge u ∈ E, we have:

N3[fi](u) = max(N1[fi](u)− (|Wi| − |Wmin|), 0) (7.7)

where |W|min is the minimum cardinality in the set {|W1|, |W2|}.
In Figure 7.5, we show two saliency maps f1 and f2, and the results of applying the

normalization functions N1, N2 and N3 to f1 and f2.

7.4 Visual inspection of combinations of hierarchies

In this section we present a visual inspection of combinations of hierarchical watersheds
and of hierarchies based on non-increasing attributes. To assess the performance of each
combination, we analyze the saliency maps and the partitions of the individual hierarchies
and of their combinations.

To perform a visual inspection of combinations of hierarchies, we consider two gradient
measures. The first measure corresponds to the Euclidean distance between neighboring
pixels using the Lab color space. We call any gradient obtained through this measure a
Lab gradient. As stated in [96], the euclidean distance in the Lab space captures better
relevant boundaries according to human perception than the Euclidean distance in the
RBG color space. As illustrated in Figure 7.6(b), the Lab gradient captures very small
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details of the original image, which can lead to oversegmentation. The advantages of
this type of low-level gradient measure is its simple implementation and its capacity of
preserving small and potentially important regions of an image.

The second method is the high-level Structured Edge Detector (SED) described in
[29]. In [29], the authors trained an edge detector to infer if a given point in the image
belongs to an edge using the information of a patch centered at this point. This edge
detector produces high quality image contours. Figure 7.6 shows a color image and its
SED gradient.

Figure 7.6: (a) original image I. (b) Lab gradient of I (c) SED gradient of I.

In the remainder of this section, we analyse combinations of hierarchies computed
from Lab and SED gradients.

7.4.1 Combination of hierarchical watersheds by infimum

In this section, we illustrate combinations of hierarchical watersheds by infimum. We
combine hierarchical watersheds computed from Lab and SED gradients. As the hier-
archies to be combined are hierarchical watersheds of the same image gradient, there is
no need for saliency map normalization. In Figure 7.7, we consider the area-based and
dynamics-based hierarchical watersheds of three images computed from Lab gradient,
and their combination by infimum. From each hierarchy, we extracted the segmenta-
tion which better describes the original image and which contains the least number of
regions. For the first image, we search for a segmentation which separates the regions
corresponding to the two people, the sea and the sky regions. For the second image, the
optimal segmentation should segment the bear and the three layers of ice and vegeta-
tion. Concerning the third image, a good segmentation should segment the swan and the
background. As a measure of quality, we consider the best hierarchy to be the hierarchy
whose extracted segmentation contains the least number of regions.

For the three images illustrated in 7.7, the combinations of hierarchical watersheds
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Original image
Area-based

hierarchical watershed
Dynamics-based

hierarchical watershed
Combination by

infimum

. 270 regions 934 regions 128 regions

. 53 regions 94 regions 13 regions

. 212 regions 297 regions 7 regions

Figure 7.7: Original images, one segmentation extracted from each of the area-based
and dynamics-based hierarchical watersheds, and a segmentation extracted from their
combination by infimum. All hierarchies were computed from the Lab gradient. The
optimal segmentation of each hierarchy was extracted according to the following criteria:
First row: preservation of skyline and the two people. Second row: preservation of the
bear, the space between its legs and the three layers of ice. Third row: preservation of
the swan, keeping its body and beak in different regions.

computed from Lab gradient with infimum outperform the individual hierarchical water-
sheds by a great margin. However, this is not always the case for the combinations of
area-based and dynamics-based hierarchical watersheds computed from the SED gradient
(Figure 7.8). We can observe that, in the latter, the optimal segmentations of the image
in the first and third rows are given by the dynamics-based hierarchical watersheds. Still,
combinations perform better than the area-based hierarchical watersheds.

7.4.2 Combination of hierarchical watersheds by supremum

The visual inspection of combinations of hierarchical watersheds by supremum follows
the same criteria as the combinations by infimum. In Figure 7.9 and Figure 7.10, we
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Original image
Area-based

hierarchical watershed
Dynamics-based

hierarchical watershed
Combination by

infimum

. 57 regions 18 regions 33 regions

. 18 regions 7 regions 6 regions

. 29 regions 4 regions 14 regions

Figure 7.8: Original images, one segmentation extracted from each of the area-based
and dynamics-based hierarchical watersheds, and a segmentation extracted from their
combination by infimum. All hierarchies were computed from the SED gradient.

show combinations of hierarchical watersheds computed from Lab and SED gradients,
respectively. We can observe that the combinations of hierarchical watersheds from Lab
gradient do not outperform both individual area and dynamics based hierarchical water-
sheds. Indeed, the higher levels of the combinations with supremum preserve irrelevant
boundaries of the area-based and dynamics-based hierarchical watersheds. Still, like the
combinations with infimum, combinations of hierarchical watersheds computed from Lab
and SED gradients outperform area-based hierarchical watersheds. Moreover, the com-
bination by supremum of the third image of Figure 7.10 outperforms both hierarchical
watersheds.

7.4.3 Combination of hierarchical watersheds by average

Combinations of area-based and dynamics-based hierarchical watersheds (computed us-
ing Lab gradient) by average are presented in Figure 7.11. Based on the same criteria
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Original image
Area-based

hierarchical watershed
Dynamics-based

hierarchical watershed
Combination by

supremum

. 270 regions 934 regions 378 regions

. 53 regions 94 regions 105 regions

. 212 regions 297 regions 218 regions

Figure 7.9: Original images, one segmentation extracted from each of the area-based
and dynamics-based hierarchical watersheds, and a segmentation extracted from their
combination by supremum. All hierarchies were computed from the Lab gradient.

upon which we inspected combinations by infimum and average, we can affirm that the
three combinations with average illustrated in Figure 7.11 outperform the individual
hierarchical watersheds. Moreover, it outperforms the combinations by infimum and
supremum illustrated in figures 7.7 and 7.9.

Combinations of area-based and dynamics-based hierarchical watersheds (computed
using SED gradient) by average are shown in Figure 7.12. Analogous to the combinations
with infimum illustrated in Figure 7.8, the combinations with average of Figure 7.12
outperform the area-based hierarchical watersheds.

The inspection on combinations of hierarchical watersheds performed until now aimed
to compare different combining functions with respect to a specific task. From the area
and dynamics-based hierarchical watersheds and their combinations, we extracted the
segmentation that better describes the main objects of each image and which contains
the lowest number of regions. The objective was to bring to the fore the most important
regions from the area and dynamics-based hierarchical watersheds through their combi-
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Original image
Area-based

hierarchical watershed
Dynamics-based

hierarchical watershed
Combination by

supremum

. 57 regions 18 regions 25 regions

. 18 regions 7 regions 9 regions

. 29 regions 4 regions 3 regions

Figure 7.10: Original images, one segmentation extracted from each of the area-based
and dynamics-based hierarchical watersheds, and a segmentation extracted from their
combination by supremum. All hierarchies were computed from the SED gradient.

nations, which was the case for the most of combinations by infimum and average. As
we will see later, our observations on combinations of hierarchical watersheds for this
particular task do not generalize to combinations of hierarchical watersheds based on
other increasing attributes.

7.4.4 Combination of hierarchical watersheds by concatenation

In general, the main large perceptual regions of an image I are better segmented at high
levels of the volume-based hierarchical watershed of I when compared to the dynamics-
based hierarchical watershed of I. In contrast, the opposite is true for the small details
of the image I. Hence, we expect the concatenation of volume and dynamics-based
hierarchical watersheds to highlight relevant regions of an image that are not relevant
according to both criteria simultaneously.

In Figure 7.13, we shown an image I and three segmentations extracted from each
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Original image
Area-based

hierarchical watershed
Dynamics-based

hierarchical watershed
Combination by

average

. 270 regions 934 regions 71 regions

. 53 regions 94 regions 9 regions

. 212 regions 297 regions 5 regions

Figure 7.11: Original images, one segmentation extracted from each of the area-based
and dynamics-based hierarchical watersheds, and a segmentation extracted from their
combination by average. All hierarchies were computed from the Lab gradient.

of the following hierarchies: the volume-based hierarchical watershed computed from the
SED gradient of I; the dynamics-based hierarchical watershed computed from the SED
gradient of I; and the concatenation of the volume and dynamics-based hierarchical wa-
tersheds at level fourteen, i.e., the fourteenth highest levels of volume with the lower
levels of dynamics. The fourteenth highest levels of the concatenation of volume and
dynamics are equal to the fourteenth highest levels of volume. From level fourteen down-
ward, the concatenation brings forward some small regions highlighted by the dynamics,
such as the symbol on the aircraft, which can be an important region depending on the
application. Therefore, this type of combination can be useful when important regions
of the image are not relevant according to the same criterion.
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Original image
Area-based

hierarchical watershed
Dynamics-based

hierarchical watershed
Combination by

average

. 57 regions 18 regions 26 regions

. 18 regions 7 regions 6 regions

. 29 regions 4 regions 9 regions

Figure 7.12: Original images, one segmentation extracted from each of the area-based
and dynamics-based hierarchical watersheds, and a segmentation extracted from their
combination by average. All hierarchies were computed from the SED gradient.

7.4.5 Combinations of hierarchical watersheds with hierarchies
based on non-increasing attributes

There are cases where no hierarchical watershed based on an increasing criterion is able
to highlight the desired regions of an image. For instance, the regions covering the low
contrasted circular traffic signs in the two images of Figure 7.14 are not highlighted
in none of the hierarchical watersheds of those two images. However, those circular
regions are present at high levels of hierarchies based on circularity (see Section 2.7.3),
which can be further used to improve hierarchical watersheds through combinations by
supremum. In Figure 7.14, the hierarchies H1 and H2 are the hierarchical watersheds
computed from the SED gradient of the images I1 and I2, respectively. The hierarchies
Hc

1 and Hc
2 are the circularity based hierarchies computed from the saliency maps of the
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. . Image I .

Volume

Dynamics

Concatenation of the
14th highest levels of
Volume with lower
levels of Dynamics

. 7 regions 14 regions 30 regions

Figure 7.13: First row: original image I. Second row: three levels of volume (based
hierarchical watershed) computed from the SED gradient of I. Third row: three levels of
dynamics (based hierarchical watershed) computed from the SED gradient of I. Fourth
row: three levels of the hierarchy resulting from the concatenation of the fourteenth
highest levels of volume with lower levels of dynamics. The fourteenth highest levels
of the concatenation of volume and dynamics are equal to the fourteenth highest levels
of volume. From level 14 downward, the concatenation brings forward more regions
highlighted by the dynamics, such as the symbol on the aircraft.
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dynamics-based hierarchical watersheds of the images I1 and I2, respectively. In order to
extract only the most circular regions from the circularity based hierarchies, we filtered
out the regions with less than 100 pixels and whose circularity values were lower than
0.9 times the greatest circularity value in the hierarchy. The hierarchy Hg1 (resp. Hg2 )
is the combination of the hierarchies H1 and Hc

1 (resp. H2 and Hc
2) with supremum

after normalization with N2 (see Section 7.3). In both combinations, we are able to
capture non-shape related information along with the low contrasted circular regions of
each image.

In the example of Figure 7.14, the SED gradient of each of the images I1 and I2

succeeds at capturing the low-contrasted circular traffic signs, though the hierarchical
watersheds computed from those gradients are not able to highlight those circular re-
gions at high levels. In contrast, the SED gradient G of the image I of Figure 7.15 does
not capture the low contrasted circular regions of I. In order to incorporate the circular
regions of I into a hierarchical watershed computed from the high-quality gradient G,
we combine the area-based hierarchical watershed Ha of Figure 7.15(c) with the circu-
larity based hierarchy Hc of Figure 7.15(d) computed from the Lab gradient of I. More
precisely, the hierarchy Hc is computed from the regions of the area-based hierarchical
watershed of the Lab gradient of I. The hierarchy Hg of Figure 7.15 is the supremum
of Ha and Hc. The hierarchy Hg successfully combines the main large regions of I with
the circular regions of I.

In Figure 7.16, we illustrate the use of combinations of hierarchies to highlight thin and
elongated shapes of a retinal fundus picture. The dynamics-based hierarchical watershed
Hd of Figure 7.16(b) highlights thick veins present in the image of Figure 7.16(a) but
fails at capturing the thinner and low-contrasted veins. In turn, the perimeter based
hierarchy Hp of Figure 7.16(c) successfully segments the thin veins in the center of the
image I. However, the hierarchy Hd misses out the contours of a few high-contrasted
veins. The combination of Hd and Hp by supremum, shown in Figure 7.16(d), balances
the complementary information of both hierarchies.

In this section, we have shown that hierarchies based on non-increasing criteria can
complement the segmentations of hierarchical watersheds without degrading the initial
hierarchical watershed.
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(a) I1 (b) I2

(c) H1 (d) H2

(e) Hc
1 (f) Hc

2

(g) Hg1 (h) Hg2
Figure 7.14: (a) and (b): original images from the German traffic sign dataset [49].
(c) H1: area-based hierarchical watershed computed of the SED gradient of I1. (d)
H2: area-based hierarchical watershed computed of the SED gradient of I2. (e) Hc

1:
circularity based hierarchy computed from the regions of the dynamics-based hierarchical
watershed of the SED gradient of I1. (f) Hc

2: circularity based hierarchy computed from
the regions of the dynamics-based hierarchical watershed of the SED gradient of I2. (g)
Hg1 : combination of H1 and Hc

1 by supremum. (h) Hg2 : combination of H2 and Hc
2 by

supremum.
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(a) I (b) G (c) Ha (d) Hc (e) Hg

Figure 7.15: (a) Image I. (b) G: SED gradient of I. The low-contrasted circular regions
of I do not appear in the SED gradient. (c) Ha: Area-based hierarchical watershed of
G. (d) Hc: Circularity based hierarchy computed from the regions of the area-based
hierarchical watershed of the Lab gradient of I. (e) Hg: Combination of Ha and Hc by
supremum.

(a) I (b) Hd (c) Hp (d) Hg

Figure 7.16: (a) original image. (b) Hd: dynamics-based hierarchical watershed of the
SED gradient of I. (c) Hp: perimeter based hierarchy computed from the regions of Hd.
(d) Hg: combinations of Hd and Hp by supremum.

7.5 Quantitative assessment of combinations of hierar-
chical watersheds

In this section, we present a quantitative evaluation of combinations of hierarchical water-
sheds. We first introduce the assessment methodology and the set-up of our experiments.
Then, we present the evaluation of individual hierarchical watersheds. Subsequently,
we present the evaluation of combinations of hierarchical watersheds in three parts:
parameter-free combinations (infimum, supremum and average), unsupervised combi-
nations by concatenation, and supervised linear combinations. Finally, we compare our
best combination with a previous state-of-the-art approach.
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7.5.1 Assessment methodology and set-up of experiments

We evaluate hierarchies based on the assessment framework presented in Chapter 6 (Sec-
tion 6.5.1). This framework evaluates the possibility of extracting a good segmentation
from a hierarchy with respect to a given ground-truth, the quality of the extracted seg-
mentation being measured using the Bidirectional Consistency Error (BCE) [64]. In
order to account for the hierarchical aspect of the representations, the score of a seg-
mentation is measured against its level of fragmentation, i.e., the ratio between the
number of regions in the proposal segmentation compared to the number of regions in
the ground-truth segmentation.

As established in Section 6.5.1, two ways of extracting segmentations from a hierarchy
are considered:

• We compute the cut that maximizes the BCE score for each fragmentation level,
leading to the Fragmentation-Optimal Cut score curve (FOC).

• We compute the BCE score of each partition of the hierarchy, leading to the
Fragmentation-Horizontal Cut score curve (FHC).

The normalized area under those curves, denoted respectively by AUC-FOC and
AUC-FHC, provides an overall performance summary over a large range of fragmentation
levels. Since the importance of having high AUC-FOC and AUC-FHC scores varies
according to the application, we consider the average of both scores to compare the
performance of hierarchies. The average of AUC-FOC and AUC-FHC will be denoted
here by AUC-FOHC.

In our experiments, we consider hierarchical watersheds based on the following in-
creasing criteria: area [70, 98], dynamics [67], volume [98], topological height [91], num-
ber of minima, number of descendants, diagonal of bounding box [91], and number of
parent nodes [79]. To shorten the notations, we denote those attributes by Area, Dyn,
Vol, Height, Min, Desc, DBB and Parents. The hierarchical watersheds are computed
from the SED gradient of the 200 test images of the Berkeley Segmentation Dataset
(BSDS500) [63].

7.5.2 Baseline

Our baseline are the AUC-FOHC scores of individual hierarchical watersheds presented
in Table 7.1. As we already discussed in Section 6.6, hierarchical watersheds based
on the number of parent nodes outperform hierarchical watersheds based on the other
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aforementioned criteria. In the following sections, we investigate if there are combinations
of hierarchical watersheds able to outperform the hierarchies based on number of parent
nodes.

Area DBB Dyn Height Desc Min Vol Parent
AUC-FOC 0.603 0.604 0.541 0.560 0.604 0.609 0.617 0.620
AUC-FHC 0.423 0.423 0.480 0.493 0.425 0.453 0.465 0.505
AUC-FOHC 0.513 0.513 0.510 0.527 0.514 0.531 0.541 0.562

Table 7.1: AUC-FOC, AUC-FHC and AUC-FOHC scores of individual hierarchical wa-
tersheds computed over the test set of BSDS500.

7.5.3 Evaluation of parameter-free combinations

In tables 7.2, 7.3 and 7.4, we show the AUC-FOHC scores of the parameter-free combina-
tions by infimum, supremum and average, respectively. We show in blue the combinations
that outperform the initial hierarchies. The combinations that also outperform Parent
are in blue and underlined.

The combinations by supremum improve the departing hierarchies in 13 over 28 com-
binations, in contrast to 10 combinations improved by infimum and average each. How-
ever, the contributions of combinations by infimum and average are higher than combina-
tions by supremum. In particular, three combinations by infimum and five combinations
by average perform better than Parent, which is not the case for any combination by
supremum. Moreover, the best combinations are combinations by average: Area and
Height, and DBB and Height.

Due to the promising results of combinations by average, we will investigate later in
this section if there is a parameter better than 0.5 to perform linear combinations, i.e.,
if there exist other linear combinations better than average.

7.5.4 Evaluation of unsupervised concatenation of hierarchies

In this section, we present the evaluation of concatenation of pairs of hierarchical water-
sheds.

To determine the parameter that should be used in the concatenation of each pair of
hierarchical watersheds, we analyze the fragmentation curve of each hierarchy. For each
pair of hierarchical watersheds, we check which one presents the highest AUC-FOC (resp.
AUC-FHC) score for low and high fragmented segmentations. If one of the hierarchies
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H1H2 Area DBB Dyn Height Desc Min Vol Parent
Area 0.513 0.515 0.532 0.531 0.515 0.518 0.527 0.530
DBB 0.513 0.531 0.532 0.516 0.521 0.529 0.531
Dyn 0.510 0.516 0.535 0.546 0.551 0.560

Height 0.527 0.534 0.547 0.550 0.562
Desc 0.514 0.520 0.528 0.531
Min 0.531 0.540 0.542
Vol 0.541 0.555

Parent 0.562

Table 7.2: AUC-FOHC scores of combinations of pairs of hierarchical watersheds by
supremum.

H1H2 Area DBB Dyn Height Desc Min Vol Parent
Area 0.513 0.511 0.561 0.564 0.511 0.527 0.529 0.555
DBB 0.513 0.560 0.564 0.511 0.528 0.530 0.555
Dyn 0.510 0.522 0.560 0.557 0.542 0.541

Height 0.527 0.564 0.547 0.560 0.547
Desc 0.514 0.529 0.529 0.555
Min 0.531 0.533 0.554
Vol 0.541 0.553

Parent 0.562

Table 7.3: AUC-FOHC scores of combinations of pairs of hierarchical watersheds by
infimum.

H1H2 Area DBB Dyn Height Desc Min Vol Parent
Area 0.513 0.511 0.566 0.568 0.511 0.528 0.528 0.556
DBB 0.513 0.566 0.569 0.512 0.527 0.529 0.555
Dyn 0.510 0.521 0.567 0.563 0.550 0.550

Height 0.527 0.558 0.563 0.554 0.549
Desc 0.514 0.530 0.528 0.555
Min 0.531 0.534 0.553
Vol 0.541 0.556

Parent 0.562

Table 7.4: AUC-FOHC scores of combinations of pairs of hierarchical watersheds by
average.
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Figure 7.17: Fragmentation curves of non-horizontal and horizontal cuts of the concate-
nation of area and dynamics based hierarchical watersheds. The 10th highest levels of
area were concatenated to the lower level sets of the dynamics-based hierarchies.

presents the highest scores for both low and high fragmented segmentations, we do not
expect to obtain better results from their concatenation. For example, in the curves of
Figure 7.17, we see that, only for a fragmentation larger than 0 and smaller than approx.
0.65, area outperforms dynamics-based hierarchical watershed. Therefore, we conclude
that high level sets of area, which are less fragmented, describe an image better than
dynamics-based hierarchical watersheds, and the opposite is true for lower level sets.
Hence, the parameters are tuned to concatenate high levels of area to the low levels of
dynamics-based hierarchical watershed.

In general, the difference between the AUC-FHC and AUC-FOC scores is lower for the
combinations with concatenation when compared to the initial hierarchies, which can be
seen in the curves of Figure 7.17. This means that the segmentations extracted from the
level sets of concatenations are closer to the optimal cuts for each fragmentation level.
Moreover, nearly half of the concatenations tested here presented higher AUC-FOHC
scores than the individual hierarchical watersheds (see Table 7.5).

7.5.5 Evaluation of supervised linear combinations

In this section, we present the evaluation of linear combinations of pairs of hierarchical
watersheds using learned parameters.

For each pair of hierarchical watersheds, we determined the linear combination pa-
rameter α that optimizes the AUC-FOHC score on the 300 images of the training set of
BSDS500. Then, we combined hierarchical watersheds computed on the images of the
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H2 Dynamics
H1 Area (10) DBB (10) Desc (12) Min (14) Vol (14) Parent (18)

AUC-FOC 0.579 0.576 0.586 0.589 0.591 0.595
AUC-FHC 0.472 0.471 0.462 0.483 0.498 0.513
AUC-FHCO 0.525 0.523 0.526 0.536 0.545 0.554

H2 Height
H1 Area (10) DBB (9) Desc (10) Min (12) Vol (12) Parent (16)

AUC-FOC 0.579 0.570 0.580 0.582 0.585 0.591
AUC-FHC 0.472 0.472 0.473 0.485 0.500 0.513
AUC-FHCO 0.525 0.521 0.527 0.534 0.542 0.552

Table 7.5: AUC-FOC, AUC-FHC and AUC-FHCO scores of ]λ(Φ(H1),Φ(H2)), where
different values of λ were used for each concatenation. We concatenated the low levels of
Dynamics and Height with the higher levels of Area, DBB, Desc, Min, Vol and Parent.
The number of high levels taken from each hierarchy is shown in parenthesis. The AUC-
FHCO scores in blue are the ones which are higher than the AUC-FHCO scores of
individual H1 and H2 hierarchies.

test set of BSDS500 using the learned parameters.
The best-fitting parameter for each linear combination and their AUC-FOHC scores

are shown in 7.6. The scores of the best combinations are in bold. Underlined are
the combinations that outperform Parents, which account for half of the combinations.
Interestingly, none of the combinations with Parent reached the highest score (0.569).
Moreover, the optimal parameters of the other hierarchies when combined with Parent
are nearly zero, which indicates that the resulting combinations are mostly influenced by
Parent.

In Figure 7.18, we compare segmentations extracted from the hierarchical watersheds
based on Desc and Height, and their linear combination using the learned parameters
(see Table 7.6). The linear combination computed for this single image presents a higher
AUC-FHC score than the individual hierarchies (0.604 versus 0.465 and 0.551) and a
slightly higher AUC-FOC score (0.802 versus 0.801 and 0.708). Based on the AUC-FHC
score, we expect this combination to have better horizontal cuts than the individual
hierarchies. We can see that the segmentation extracted from the combination separates
better the main regions in this image: sky, mountains and the two sea regions.

7.5.6 Comparison with other techniques

In order to have a more complete evaluation, we compare one of our best combinations
with two high quality approaches: the Ultrametric Contour Map (UCM) [6] and the
Multiscale Combinatorial Grouping (MCG) [81]. We include the other two assessment
measures discussed in Chapter 6: Precision-Recall (PR) for boundaries and Object De-
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H1H2 Area DBB Dyn Height Desc Min Vol Parent
Area - α = 0.75 α = 0.60 α = 0.51 α = 0 α = 0.11 α = 0 α = 0.03

0.513 0.513 0.568 0.569 0.514 0.531 0.541 0.563
DBB - α = 0.59 α = 0.52 α = 0.18 α = 0.30 α = 0.0 α = 0.02

0.514 0.567 0.569 0.514 0.530 0.541 0.566
Dyn - α = 0.03 α = 0.38 α = 0.51 α = 0.24 α = 0.11

0.510 0.527 0.569 0.564 0.558 0.566
Height - α = 0.42 α = 0.51 α = 0.36 α = 0.21

0.527 0.569 0.560 0.560 0.566
Desc - α = 0.25 α = 0 α = 0.01

0.514 0.530 0.541 0.563
Min - α = 0.12 α = 0.01

0.531 0.542 0.562
Vol - α = 0.02

0.541 0.563
Parent -

0.562

Table 7.6: Parameters α and AUC-FOHC scores of each linear combination
�(α)(Φ(H1),Φ(H2)). The AUC-FOHC scores in bold are the highest scores achieved
with linear combination of hierarchies.

Figure 7.18: From left to right: original image, saliency map and the 5th highest level
set of three hierarchies: hierarchical watershed based on number of descendants, hierar-
chical watershed based on topological height, and their linear combination using learned
parameters.

tection Measure.

The PR for boundaries score is assessed on BSDS500 and, as described in Chapter 6, it
evaluates the matching between the boundaries of a given segmentation and the ground-
truth segmentation. The PR curves are built from the precision and recall scores of the
partitions of a hierarchy and are summed up in two F-measures: Optimal Dataset Scale
(ODS) and Optimal Image Scale (OIS).

The Object Detection Measure is assessed over the Grabcut [16] and Weizman [1]
datasets. Figure 7.19 shows the Object Detection Measure results for three pairs of
background and foreground markers: Er-Er, Fr-Sk and Sk-Sk, in which Er, Fr and Sk
stand for Erosion, Frame and Skeleton, respectively. The box plots show the quartile
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Figure 7.19: Comparison of our best linear combination with UCM [6] and MCG [81]:
Precision-recall (PR) for boundaries, Fragmentation curves of non-horizontal cuts (plain
curve) and horizontal cuts (dashed curve), and Object Detection Measure of three pairs
of markers.

distribution of scores on both datasets. The median score of those three pairs of markers
is denoted by ODM. Therefore, the best hierarchies in terms of Object Detection Measure
correspond to the ones with highest ODM scores and most compressed box plots.

Our best combination does not achieve the PR and fragmentation scores presented
by MCG and UCM, but it outperforms UCM in terms of fragmentation curves for non-
horizontal cuts and presents competitive marked segmentation results compared to MCG
and UCM.

7.6 Properties of combinations of hierarchical water-
sheds

Combining hierarchical watersheds through their saliency maps raises the question of
whether the combination of hierarchies is closed for the set of hierarchical watersheds.
More precisely, given any two hierarchical watersheds H1 and H2 of (G,w), is the com-
bination of H1 and H2 with a given combining function also a hierarchical watershed of
(G,w)?

In this section, we answer to this question for combinations of hierarchical watersheds
by supremum, infimum, average and concatenation. We show that combinations with
any of those functions do not result in hierarchical watersheds in general. However, in the
particular case where we consider a unique ordering on the edges of (G,w), combinations
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of hierarchical watersheds with infimum have the noteworthy property of being flattened
hierarchical watersheds, i.e., hierarchies resulting from removing (and/or repeating) par-
titions of a departing hierarchical watershed (see Definition 21). For this particular case,
we present a sufficient condition for a combining function to always output flattened
hierarchical watersheds.

As stated in the following property, combinations of hierarchical watersheds by infi-
mum, supremum, average and concatenation are not hierarchical watersheds nor flattened
hierarchical watersheds in general.

Property 45. Let H1 and H2 be two hierarchical watersheds of (G,w). The combination
of H1 and H2 by supremum (resp. average, concatenation and infimum) is not a flattened
hierarchical watershed of (G,w) in general.

Proof of Property 45. Let us consider the hierarchical watershedsH1 andH2 of the graph
(G,w) and their combination Hf by supremum depicted in Figure 7.20. The first pair
of regions to be merged in Hf are the minima B and C. However, there is no hierar-
chical watershed of (G,w) such that B and C are the first minima to be merged. By
contradiction, let us assume that there is a sequence of minima S ′ of (G,w) such that,
in the hierarchical watershed H′ of (G,w) for S ′, B and C are the first minima to be
merged. Then, we can infer that either B or C is the first minimum in the sequence
S ′. However, if B were the first minima, then it would be merged to the minimum A

because the weight of the edge linking A and B is 6, which is lower than the weight
of the edge linking B and C. On the other hand, if C were the first minimum in the
sequence S ′, then C would be first merged to D due to the same reason. Hence, there
is no hierarchical watershed H′ of (G,w) such that the partition {A,B ∪C,D,E} of Hf
is a partition of H′. Therefore, Hf is not a flattened hierarchical watershed of (G,w).
The same situation is found in the combinations by average and concatenation of the
maps Φ(H1) and Φ(H2) shown in Figure 7.21. In both cases, the minima B and C are
the first to be merged in the hierarchy. The counter example for infimum is presented in
Figure 7.22. In Chapter 3, we introduced one-side increasing maps and their link with
(flattened) hierarchical watersheds. In Figure 7.22, we show two maps f and g that are
one-side increasing for the altitude orderings ≺1 and ≺2 for (G′, w′), respectively. In
fact, those are the only altitude orderings for (G′, w′). The reader can verify that, by
Property 22 on flattened hierarchical watersheds, the QFZ hierarchy of the combination
of f and g with infimum is not a flattened hierarchical watershed of (G′, w′).

The counter-example of Figure 7.22 considers two maps which are one-side increasing
(see Definition 18) for distinct altitude orderings for (G′, w′). However, as established in
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Figure 7.20: First line: a weighted graph (G,w) with five minima delimited by the dashed
rectangles, the saliency maps Φ(H1) and Φ(H2) of two hierarchical watersheds of (G,w),
and the combination g(Φ(H1),Φ(H2)) of Φ(H1) and Φ(H2) with supremum. Second
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Figure 7.21: Combination of the saliency maps Φ(H1) and Φ(H2) of Figure 7.20 with
average and concatenation (λ = 3).

the following property, whose proof is presented in Appendix 8.4.1, if the input maps
are one-side increasing for the same altitude ordering for (G,w), then their combination
with infimum is a flattened hierarchical watershed of (G,w).

Property 46. Let H1 and H2 be two hierarchical watersheds of (G,w) and let ≺ be
an altitude ordering for (G,w) such that both Φ(H1) and Φ(H2) are one-side increasing
for ≺. Then the hierarchy Hf = QFZ(G,f(Φ(H1),Φ(H2))) is a flattened hierarchical
watershed of (G,w).

Important remark: in the processing of graph-based image segmentation, it is
common to consider a raster scanning of the edges of any input graph. Hence, when ties
between edges of equal weights are solved deterministically, a unique altitude ordering ≺
for w is considered. Consequently, a unique binary partition hierarchy of (G,w) is used
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Figure 7.22: First line: a graph (G,w) and its two binary partition hierarchies B1 and
B2. Let ≺1 (resp. ≺2) be the altitude orderings for (G,w) such that B1 (resp. B2) is the
binary partition hierarchy of (G,w) for ≺1 (resp. ≺2). Second line: a map f1 which is
the saliency map of a hierarchical watershed of (G,w) and which is one-side increasing
for ≺1. Third line: a map f2 which is the saliency map of a hierarchical watershed of
(G,w) and which is one-side increasing for ≺2. Fourth line: the combination of f1 and
f2 with infimum, which is not one-side increasing for neither ≺1 nor ≺2.
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by the algorithm.
In the following property, we introduce a sufficient condition for a combining function

to always output flattened hierarchical watersheds.

Property 47. Let C be a combining function, let H1 and H2 be two hierarchical water-
sheds of (G,w) and let ≺ be and altitude ordering for (G,w) such that both Φ(H1) and
Φ(H2) are one-side increasing for ≺. The combination of H1 and H2 with C is a flattened
hierarchical watershed of (G,w) if C(0, 0) = 0 and if, for any a, b, c, d in {0, . . . , n− 1},
we have:

1. C(a, b) = C(b, a); and

2. if min(a, b) < min(c, d), then C(a, b) < C(c, d); and

3. if min(a, b) = min(c, d) and max(a, b) < max(c, d), then C(a, b) ≤ C(c, d).

The proof of Property 47 is detailed in Appendix 8.4.2.
By Property 47, we can derive other combining functions which always lead to flat-

tened hierarchical watersheds, such as C ′(a, b) = min(am, bm) and C ′′(a, b) = min(a, b)m,
for any m ≥ 1, or the function stated in the following property, whose proof is given in
Appendix 8.4.3.

Property 48. Let H1 and H2 be two hierarchical watersheds of (G,w). Let C be a
combining function such that:

C(x, y) =

0 if x=0 and y=0
xmym

xm+ym
otherwise

(7.8)

for m ≥ n. The combination of H1 and H2 with C is a flattened hierarchical watershed
of (G,w).

7.7 Recognition of hierarchical watersheds applied to
combinations of hierarchies

In Chapter 3, we proposed efficient algorithms to recognize (flattened) hierarchical wa-
tersheds. In this section, we apply those algorithms to the combinations of hierarchical
watersheds evaluated in this chapter. By Property 48, combinations of hierarchical water-
sheds by infimum, supremum, linear combination and concatenation are not hierarchical



156 Combination of hierarchies

watersheds in general. Indeed, by applying Algorithm 1 to the combinations of hierar-
chical watersheds with the aforementioned combining functions, we verified that the first
condition of the definition of one-side increasing maps (Definition 18) is not satisfied by
any combination. Hence, by Theorem 20, none of those combinations is a hierarchical
watershed. In fact, combining hierarchies often act by simplifying the input hierarchies
in the sense that, from a level i to a level i + 1 of the resulting combination, zero or
more than one pair of regions are merged, which suggests that combinations may result
in flattened hierarchical watersheds.

To test if combinations of pairs of hierarchical watersheds by average, supremum
and infimum are flattened hierarchical watersheds, we consider two cases during the
computation of a hierarchical watershed: 1. when there are ties between edges of equal
weights of a given input graph, an arbitrary choice is made; and 2. when there are ties
between edges of equal weights of a given input graph, a deterministic choice is made.
We applied Algorithm 2 to combinations of pairs of hierarchical watersheds considering
each of those cases. The experiments were performed on the 200 images of the test
set of BSDS500 [63]. For the case 1, the results are shown in Table 7.7. In each cell
of Table 7.7, we present the number of combinations by average, by supremum and by
infimum (among 200) that are flattened hierarchical watersheds. We can observe that
the majority of the combinations with average and supremum are flattened hierarchical
watersheds, which is not the case for combinations with infimum.

Given any two hierarchical watersheds H1 and H2 computed from the same image
gradient g and based on distinct attributes, we cannot guarantee that the saliency maps
of H1 and H2 are one-side increasing for a same altitude ordering for g. However, if that
were the case, the resulting combination of H1 and H2 with infimum would be a flattened
hierarchical watershed, as established in Property 47. By applying Algorithm 2 to com-
binations of saliency maps obtained by the deterministic algorithm (case 2), we observed
that all combinations with infimum are flattened hierarchical watersheds as expected.
Interestingly, this was also the case for the combinations with average. Regarding the
combinations with supremum, among all 5600 combinations, only one combination with
volume and diagonal of bounding box, and three combinations with volume and height
were not flattened hierarchical watersheds.

Our experimental results suggest that most of the combinations of hierarchical wa-
tersheds are “approximations” of flattened hierarchical watersheds in the sense that, by
swapping the weight of a few edges in the combinations of saliency maps, we could obtain
a flattened hierarchical watershed.
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H1 | H2 Area DBB Dyn Height Desc Min Vol Parent
Area - 138 125 135 152 59 113 79

- 200 194 194 200 183 198 182
- 119 113 124 127 47 60 62

DBB - - 127 134 136 62 119 82
- - 195 197 200 184 198 183
- - 115 122 113 48 102 65

Dyn - - - 117 124 104 126 105
- - - 195 195 189 196 192
- - - 91 111 96 112 100

Height - - - - 134 108 128 110
- - - - 195 185 194 186
- - - - 123 99 106 97

Desc - - - - - 63 114 83
- - - - - 185 199 180
- - - - - 52 98 65

Min - - - - - - 66 171
- - - - - - 179 199
- - - - - - 53 158

Vol - - - - - - - 80
- - - - - - - 177
- - - - - - - 66

Parent - - - - - - - -
- - - - - - - -
- - - - - - - -

Table 7.7: In each cell, we show the number of combinations of hierarchical watersheds
by average (red), supremum (blue) and infimum (black) among 200 that are flattened
hierarchical watersheds.

7.8 Watersheding of combinations of hierarchical wa-
tersheds

From the results of the previous section, we concluded that combinations of hierarchical
watersheds are approximations of flattened hierarchical watersheds. We can go further
into this hypothesis by computing the watersheding of combinations of hierarchical wa-
tersheds in order to answer to the following question: are there hierarchical watersheds
which perform as well (or better) than the combinations of hierarchical watersheds stud-
ied so far? We answered to this question by applying the watersheding operator (see
Chapter 4) to the combinations by infimum, supremum and average studied here.

In tables 7.8, 7.9 and 7.10, we present the AUC-FOHC scores of the watersheding
of combinations of hierarchical watersheds by supremum, infimum and average, respec-
tively. The results that outperform the individual hierarchies are in blue and the ones
that outperform Parent are underlined. By comparing those tables with the scores of
combinations by supremum, infimum and average shown respectively in tables 7.2, 7.3
and 7.4, we can observe that the majority of the scores of the watersheding of the com-
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H1H2 Area DBB Dyn Height Desc Min Vol Parent
Area 0.513 0.514 0.532 0.531 0.515 0.521 0.527 0.532
DBB - 0.513 0.532 0.533 0.515 0.523 0.530 0.533
Dyn - - 0.510 0.517 0.533 0.546 0.553 0.561

Height - - - 0.527 0.533 0.547 0.552 0.563
Desc - - - - 0.514 0.522 0.529 0.532
Min - - - - - 0.531 0.540 0.543
Vol - - - - - - 0.541 0.556

Parent - - - - - - - 0.562

Table 7.8: AUC-FOHC scores of the watersheding of combinations of hierarchical water-
sheds by supremum.

H1H2 Area DBB Dyn Height Desc Min Vol Parent
Area 0.513 0.513 0.561 0.564 0.513 0.530 0.530 0.557
DBB - 0.513 0.561 0.564 0.513 0.531 0.531 0.557
Dyn - - 0.510 0.523 0.561 0.558 0.543 0.543

Height - - - 0.527 0.564 0.560 0.548 0.549
Desc - - - - 0.514 0.532 0.531 0.557
Min - - - - - 0.531 0.538 0.556
Vol - - - - - - 0.541 0.556

Parent - - - - - - - 0.562

Table 7.9: AUC-FOHC scores of the watersheding of combinations of hierarchical water-
sheds by infimum.

binations are at least as good as the scores of the combinations. Furthermore, we were
able to outperform Parent in one more combination by supremum.

Hence, by coupling the framework of combination of hierarchical watersheds with the
watersheding operator, we have an efficient tool to improve hierarchical watersheds with
the advantage of preserving their mathematical properties.

H1H2 Area DBB Dyn Height Desc Min Vol Parent
Area 0.513 0.513 0.567 0.569 0.514 0.532 0.530 0.559
DBB - 0.513 0.567 0.570 0.513 0.531 0.531 0.556
Dyn - - 0.510 0.522 0.568 0.565 0.552 0.551

Height - - - 0.527 0.569 0.564 0.555 0.552
Desc - - - - 0.514 0.533 0.531 0.558
Min - - - - - 0.531 0.540 0.555
Vol - - - - - - 0.541 0.559

Parent - - - - - - - 0.562

Table 7.10: AUC-FOHC scores of the watersheding of combinations of hierarchical wa-
tersheds by average.
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7.9 Conclusion

We studied theoretical and practical aspects of a framework of combination of hierar-
chies. Through a visual inspection, we showed that this framework can be used to combine
the strength of hierarchies computed from distinct criteria such as area and circularity.
Then, we presented a quantitative evaluation of combinations (of pairs of hierarchical
watersheds) over a large image dataset. We concluded that combining hierarchical wa-
tersheds is a valuable method to outperform individual hierarchical watersheds. Using
the results of Chapter 3 on the recognition of hierarchical watersheds, we concluded that
combinations of hierarchical watersheds by supremum, infimum, linear combination and
concatenation are not necessarily hierarchical watersheds. However, those combinations
can be approximated into hierarchical watersheds using the watersheding operator pre-
sented in Chapter 4. Our results showed that the watersheding of combinations perform
even better than most of the combinations.

From the results of the watersheding operator applied to combinations of hierarchical
watersheds, a natural question arises: can we obtain the hierarchical watersheds resulting
from the watersheding operator without passing by the combination process? Or, can
we learn an attribute that could be used to directly compute the results of the water-
sheding operator? A potential departing point to answering those questions would be to
investigate if there is any combination of the attributes used here that corresponds to
the attributes used to compute the hierarchies resulting from the watersheding.
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Chapter 8

Conclusion

The general purpose of this thesis was to better understand the potential of hierarchi-
cal watersheds and their properties, which can be used on the development of new data
processing tools. To conclude this manuscript, we review our methodological, experimen-
tal, theoretical and algorithmic contributions, and we discuss future work perspectives.

Methodological contributions

Our methodological contributions comprise the proposed evaluation framework (Chapter
6) of hierarchies of partitions and the watersheding operator (Chapter 4).

Numerous hierarchical segmentation methods have been proposed in the last few
decades. Each of those methods are either general or aimed at specific applications, such
as natural image segmentation, single object detection, and image compression and sim-
plification. To provide a mean to compare different hierarchical segmentation methods,
we proposed an evaluation framework to empirically assess those methods. This frame-
work allowed us to measure the impact of image gradient choice and of small regions
filtering in the performance of hierarchies of segmentations. It also played an important
role in our experiments, namely on the evaluation of combinations of hierarchical water-
sheds and on the the learning of optimal parameters to combine hierarchies. Moreover,
this framework allowed us to discover a new regional attribute called Number of Parent
Nodes that, when used to compute hierarchical watersheds, outperform the commonly
used area, dynamics and volume attributes.

Inspired by the mathematical properties of hierarchical watersheds and by the quan-
titative evaluation of these hierarchical, we proposed the watersheding operator. This
idempotent operator converts any hierarchy of segmentations into a hierarchical water-
shed of a given (edge-weighted) graph. Among the potential applications of the water-
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sheding operator, we highlighted (1) the computation of hierarchical watersheds based
on non-increasing attributes and (2) the refinement of coarse hierarchies, i.e., hierarchies
that do not include fine regions of the input image.

The properties of the watersheding operator and the visual inspection of a few results
suggest that the watersheding of a hierarchy is an “approximation” of this hierarchy. In
other words, that merging order of the regions in an input hierarchy are preserved “as
much as possible” in the watersheding of this hierarchy. As future work, we hope to
formalize this assumption by studying whether there is any relevant objective function
optimized by the watersheding operator.

Theoretical contributions

The well established properties of hierarchical watersheds, in particular the link between
watersheds, minimum spanning forests and binary partition hierarchies, provided us a
solid basis to investigate theoretical aspects of hierarchical watersheds. Our main theo-
retical contributions include a novel characterization of hierarchical watersheds (Chapter
3), the study of the properties of the watersheding operator (Chapter 4), and the intro-
duction of the notion of probability of a hierarchical watershed (Chapter 5).

As discussed in Chapter 2, hierarchical watersheds are often obtained from a sequence
(total ordering) of minima of a graph. Given a sequence of minima S and the watershed
segmentation P of a graph, we obtain the hierarchical watershed for S by iteratively
merging the regions of P in the order defined by S. A question that emerged from this
definition is whether any sequential mergings of the regions of P lead to a hierarchical
watershed. In other words, given a hierarchy obtained by merging the regions of a wa-
tershed segmentation of a graph, can we always find a sequence of minima that lead to
this given hierarchy? To answer to this question, we provided a simple characterization
of hierarchies of watersheds, which was also the basis for defining the watersheding oper-
ator. Based on this proposed characterization, we showed that not all hierarchies whose
first level is a watershed segmentation are hierarchical watersheds. As future work, we
want to investigate if there are any state-of-the-art hierarchies that, with the help of the
watersheding operator, can be approximated into hierarchical watersheds without perfor-
mance degradation. If that were the case, we could use those state-of-the-art hierarchies
to learn optimal attributes to compute hierarchical watersheds.

The definition of hierarchical watersheds obtained from sequences of minima (of a
graph) has also incited the following questions: can a hierarchy be the hierarchical wa-
tershed (of a given graph) for more than one sequence of minima? And, in the affirmative
case, are the hierarchical watershed of a given graph obtained from different numbers of



163

sequences of minima? As answered in Chapter 5, when the input graph has pairwise
distinct weights and at least three minima, the answer to both questions is positive:
there are at least two hierarchies which can be obtained from a different number of se-
quences of minima. This finding led us to define and characterize the most and least
probable hierarchical watersheds of a given graph. Potential directions of this work in-
clude (1) the extension of those theoretical results to arbitrary graphs and (2) the study
of the probability of hierarchical watersheds based on the well-known attributes such
as area, dynamics and volume. For instance, we could aim at answering questions like
“are dynamic-based hierarchical watersheds more probable than area-based hierarchical
watersheds?” or “what does the probability of the best hierarchical watersheds of a given
image gradient tells us about the quality of this gradient?”.

Experimental contributions

All experiments performed in this research were oriented to natural image segmentation
(Chapter 7). We first explored a method to combine hierarchical segmentations through
their saliency maps using functions as infimum, supremum and average. Based on the
visual inspection of a few combinations and on the quantitative results obtained from our
evaluation framework, we concluded that combining the saliency maps of hierarchical wa-
tersheds is a simple and valuable way to improve hierarchies for the general segmentation
problem. For applications aiming to highlight objects with specific geometric properties,
combinations of hierarchical watersheds with hierarchies based on non-increasing shape
attributes are also a viable choice.

Thank to our proposed characterization of hierarchical watersheds, we concluded
that combinations of hierarchical watersheds are not necessarily hierarchical watersheds.
However, our experimental results proved that the majority of the tested combinations
are flattened hierarchical watersheds, i.e., hierarchies composed of a subset of segmen-
tations of a hierarchical watershed. Moreover, by applying the watersheding operator
to combinations of hierarchical watersheds, we obtained hierarchical watersheds which
outperformed the given combinations.

For future work, an interesting line of research would be to combine saliency maps
using the watersheding operator. For instance, given two saliency maps s1 and s2, we can
view the watersheding of s1 (resp. s2) with respect to s2 (resp. s1) as a combination of s1

and s2. Hence, instead of computing the watersheding of a saliency map with respect to
an image gradient, we would compute the watersheding of a saliency map with respect to
another saliency map. In particular, combinations with the watersheding operator make
sense when the boundaries of the input saliency maps overlap, which can be the case
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of hierarchical watersheds computed from the same graph. Hence, we could investigate
the advantages and disadvantages of performing combinations using the watersheding
operator instead of using the combination framework evaluated in Chapter 7.

Algorithmic contributions

The applicability of our theoretical contributions stems from the efficient algorithms de-
rived from those results. Thank to the link between hierarchical watersheds and binary
partition hierarchies, we designed quasi-linear algorithms to recognize hierarchical wa-
tersheds, to obtain the watersheding of a hierarchy and to compute the probability of a
hierarchical watershed.
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Appendix

8.1 Proofs of theorem and properties of Chapter 3

8.1.1 Proof of Lemma 19

(Lemma 19). Let H be a hierarchy on V . The hierarchy H is a hierarchical watershed
of (G,w) if and only if there is an altitude ordering ≺ for w such that the saliency
map Φ(H) is one-side increasing for ≺.

In order to prove Lemma 19, we will use an equivalent formulation provided in Prop-
erty 12 of [27], revised in Section 2.6.1. We first remind a few notions presented in
Section 2.6.1.

Let ≺ be an altitude ordering for w, let B≺ be the binary partition hierarchy by ≺
and let S = (M1, . . . ,Mn) be a sequence of minima of (G,w). Let X be a region of B≺.
Following the terminology of [27], the extinction value of X for S is zero if there is no
minimum M of w such that M is a subset of X and, otherwise, it is the highest index k
such that Mk is a subset of X. Let ε be the map from the regions of B≺ into R such
that, for any region Y of B≺, ε(Y ) is the extinction map of Y for S. We say that ε is the
extinction map (for ≺ and S) and that ε is an extinction map (for ≺).

Let ≺ be an altitude ordering for w, let B≺ be the binary partition hierarchy by ≺
and let S = (M1, . . . ,Mn) be a sequence of minima of w. Let u be a building edge for
≺ and let X be the region of B≺ whose building edge is u. The persistence value of u
(for ≺ and S) is the minimum of the extinction values of the children of X. Let ρ be
the map from the building edges for ≺ into R such that, for any building edge u of B≺,
ρ(u) is the persistence value of u. We say that ρ is the persistence map (for ≺ and S).
We denote by Bi the set of building edges of B≺ whose persistence value is lower than or
equal to i.

(Definition 5). (hierarchy induced by an altitude ordering and a sequence of
minima [27]) Let ≺ be an altitude ordering for w, let S = (M1, . . . ,Mn) be a sequence
of minima of w and let ρ be the persistence map for ≺ and for S. The sequence of

I
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partitions (CC(V,B0), . . . , CC(V,Bn−1)) is a hierarchy called the hierarchy induced by ≺
and S.

Recall that Lemma 19 states the equivalence between:

A A hierarchy H is a hierarchical watershed of (G,w).

B There exists an altitude ordering ≺ for w such that the saliency map Φ(H) is
one-side increasing for ≺

In order to prove this theorem, we will use another equivalent property:

C There exists an altitude ordering ≺ for w and a sequence of minima S of w such
that H is induced by ≺ and S.

Property 12 of [27] established the equivalence between A and C. We will then show the
equivalence between B and C. This proof is decomposed in Lemma 53 (C ⇒ B) and
Lemma 54 (B ⇒ C).

We now introduce some new lemmas needed to prove Lemma 53.

Lemma 49. Let ≺ be an altitude ordering for w and let ε be an extinction map for ≺.
Let X and Y be two regions of B≺. If X ⊆ Y , then ε(X) ≤ ε(Y ).

Proof. Since B≺ is a hierarchy, we can affirm that, for any two regions Y and Z of B≺,
if Y ⊆ Z, then all minima of w included in Y are also included in Z and, therefore,
ε(Y ) ≤ ε(Z).

Lemma 50. Let ≺ be an altitude ordering for w and let ε be an extinction map for ≺.
The range of ε is {0, . . . , n}.

Proof. To prove that the range of ε is {0, . . . , n}, we will prove that {0, . . . , n} ⊆ range(ε)

and that range(ε) ⊆ {0, . . . , n}.

1. {0, . . . , n} ⊆ range(ε). First, we prove that 0 is in range(ε). Let u be the lowest
edge of E≺ for ≺. We can say that u is in a minimum of w. Moreover, the children
of Ru are necessarily singletons. Hence, the extinction value of both children of u
is zero. Now, we will prove for i in {1, . . . , n}. By [74] (page 7), any minimum of
w is a region of B. Therefore, for any i in {1, . . . , n}, there is a region of B≺ whose
extinction value is i.

2. range(ε) ⊆ {0, . . . , n}. For any region X of B≺, if X contains at least one minimum
of w, then its extinction value is in {1, . . . , n}. Otherwise, the extinction value of
X is zero.
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Lemma 51. Let ≺ be an altitude ordering on the edges of G for w, let S = (M1, . . . ,Mn)

be a sequence of minima of w and let ρ be the persistence map for ≺ and for S. The
range of ρ is {0, . . . , n− 1}.

Proof. Let ε denote the extinction map for ≺ and S. We will prove that (1) for any
building edge u for ≺, ρ(u) is in {0, . . . , n− 1}, and that, (2) for any i in {0, . . . , n− 1},
there is a building edge for ≺ whose persistence value is i.

1. {0, . . . , n − 1} ⊆ range(ρ). First, we prove that 0 is in range(ρ). By Lemma 50,
there is a region X of B≺ whose extinction value is zero. Therefore, the persistence
value of the parent ofX is equal to zero. Now, we will prove that any i in {1, . . . , n−
1} is in range(ρ). Let i be a value in {1, . . . , n−1}. By [74] (page 7), the minimum
Mi is a region of B≺. Then, there is a region of B≺ whose extinction value is i.
Let X be the largest region of B≺ whose extinction value is i. We can say that
X 6= V because Mn is included in V and, therefore, ε(V ) = n. Let Z be the
parent of X. We can infer that the extinction value ε(Z) of Z is strictly greater
than i. Therefore, there is a minimum Mj with j > i included in the sibling of X.
Hence, the extinction value of sibling(X) is also strictly greater than i. Then, the
persistence value of the building edge of Z, being the minimum of the extinction
value of its children, is i.

2. range(ρ) ⊆ {0, . . . , n − 1}. Let u be an edge in E(B≺). By Lemma 50, and
as the persistence value of u is equal to the extinction value of a child of Ru,
we have that ρ(u) is in {0, . . . , n}. Moreover, the persistence value ρ(u) of u is
lower than n because, if the extinction value of one child X of Ru is n, then the
minimumMn is included in X and Mn is not included in sibling(X), which implies
that the extinction value of sibling(X) is strictly lower than n. Therefore, since
ρ(u) = min{ε(X), ε(sibling(X))}, the persistence value of u is strictly lower than
n. Thus, we have that range(ρ) ⊆ {0, . . . , n− 1}.

Lemma 52. Let ≺ be an altitude ordering for w, let S = (M1, . . . ,Mn) be a sequence of
minima of w and let ρ be the persistence map for ≺ and for S. Let H be the hierarchy
induced by ≺ and S. For any building edge u for ≺, we have Φ(H)(u) = ρ(u).

Proof. By definition, H is the sequence (CC(V,B0), . . . , CC(V,Bn−1)) such that, for any
i in {0, . . . , n− 1}, Bi is the set of building edges for ≺ whose persistence values is lower



IV Appendix: proofs of theorems and properties

than or equal to i. Let u = {x, y} be a building edge for ≺ and let i be the persistence
value of u. We can say that x and y are in the same region of CC(V,Bi) but in distinct
regions of CC(V,Bi−1) if i 6= 0. Therefore, since CC(V,Bi) is the i-th partition of H, by
the definition of saliency maps, we have Φ(H)(u) = i.

Lemma 53. Let ≺ be an altitude ordering for w, let S be a sequence of minima of w and
let H be the hierarchy induced by ≺ and by S. The saliency map Φ(H) of H is one-side
increasing for ≺.

Proof. Let E≺ be the set of building edges for ≺. In order to prove that Φ(H) is one-side
increasing for ≺, by Definition 18, we need to prove that the following three statements
hold true:

1. {Φ(H)(e) | e ∈ E≺} = {0, . . . , n− 1};

2. for any edge u in E≺, Φ(H)(u) > 0 if and only if u is a watershed-cut edge for ≺;
and

3. for any edge u in E≺, there exists a child R of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v)

such that Rv is included in R}, where ∨{} = 0.

In the sequel of this proof, let ρ and ε be respectively the persistence map and the
extinction map for ≺ and S.

1. By Lemma 82, we have {Φ(H)(e) | e ∈ E≺} = {ρ(e) | e ∈ E≺}. Then, as Lemma 81
states that the range of ρ is {0, . . . , n−1}, we can conclude that {Φ(H)(e) | e ∈ E≺}
is the set {0, . . . , n− 1}.

2. Let u be a building edge for ≺. Given the following propositions:

(a) u is a watershed-cut edge for ≺

(b) Φ(H)(u) > 0

we will prove that (a) implies (b), and that not (b) implies not (a).

If u is a watershed-cut edge for ≺, then both children of Ru contain at least one
minimum of w. Therefore, the extinction value of both children of Ru is non-
zero and, consequently, the persistence value ρ(u) of u is non-zero. Moreover, by
Lemma 82, in this case we have Φ(H)(e) = ρ(e) for any building edge e of B≺.
Thus, Φ(H)(u), being equal to ρ(u), is non-zero.

On the other hand, if u is not a watershed-cut edge for ≺, then there is a child X
of Ru which does not contain any minimum of w. Therefore, the extinction value
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of X is equal to 0: ε(X) = 0. Since, by definition ρ(u) = min{ε(X), ε(sibling(X))}
and the minimal extinction value is zero, we can say that ρ(u) = 0. Again, by
Lemma 82, in this case we have Φ(H)(e) = ρ(e) for any building edge e of B≺ and
thus, Φ(H)(u), being equal to ρ(u), is equal to 0.

3. Let u be a building edge of B≺. The persistence value of u is the extinction value of
a child X of Ru. Let X be a child of Ru such that ρ(u), the persistence value of u, is
equal to ε(X), the extinction value ofX. By Lemma 49, for any region Y of B≺ such
that Y ⊆ X , we have ε(Y ) ≤ ε(X) and, as X ⊆ Ru, ε(Y ) ≤ ε(Ru). Let v be the
building edge of a region Z ⊆ X. Then, we can say that the extinction value of both
children of Z is less than or equal to the extinction value ε(X). Hence, ρ(v) ≤ ε(X)

and, then, ρ(v) ≤ ρ(u). By Lemma 82, we can conclude that Φ(H)(v) ≤ Φ(H)(u).
Hence, Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included in X}.

Lemma 54. Let ≺ be an altitude ordering of (G,w) and let H be a hierarchy on V such
that Φ(H) is one-side increasing for ≺. Then there exists a sequence of minima S such
that H is the hierarchy induced by ≺ and S.

In order to prove Lemma 54, we review Property 24, which is established in Chapter
4. The proof of Property 24 will be presented in Appendix 8.2 along with the proof of
the other properties introduced in Chapter 4.

(Property 24). Let H be a hierarchy. The hierarchy H is a hierarchical watershed
of (G,w) if and only if there exists an altitude ordering ≺ for w and an extinction map ε
for ≺ such that:

1. (V,E≺) is a MST of (G,Φ(H)); and

2. for any edge u in E≺, we have that Φ(H)(u) is equal to min{ε(R) such that R is a
child of Ru}.

The following lemma, established in [25], links MSTs and QFZ hierarchies.

Lemma 55 (Theorem 4 of [25]). A subgraph G′ of G is a MST of (G,w) if and only if:

1. the QFZ hierarchy of G′ and G are the same; and

2. the graph G′ is minimal for statement 1, i.e., for any subgraph G′′ of G′, if the
quasi-flat zone hierarchy of G′′ for w is the one of G for w, then we have G′′ = G′.
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Lemma 56. Let ≺ be an altitude ordering for (G,w) and let H be a hierarchy on V such
that Φ(H) is one-side increasing for ≺. Let E≺ be the set of building edges for ≺. Then
(V,E≺) is a MST of (G,Φ(H)).

Proof. Let α denote the sum of the weight of the edges in E≺ in the map Φ(H): α =∑
e∈E≺ Φ(H)(e). As Φ(H) is one-side increasing for ≺, by the condition 1 of Definition

18, we can affirm that α = 0 + 1 + · · ·+ n− 1. In order to prove that (V,E≺) is a MST
of (G,Φ(H)), we will prove that, for any MST G′ of (G,Φ(H)), the sum of the weight
of the edges in G′ is greater than or equal to α. Let G′ be a MST of (G,Φ(H)). As G′

is a MST of (G,Φ(H)), by the condition 1 of Lemma 83, we have that G and G′ have
the same quasi-flat zones hierarchy: QFZ(G,Φ(H)) = QFZ(G′,Φ(H)). As Φ(H) is the
saliency map of H, we have that H = QFZ(G,Φ(H)). Therefore, H = QFZ(G′,Φ(H)).
Let i be a value in {1, . . . , n − 1}. By the condition 1 of Definition 18, we can say that
{1, . . . , n − 1} is a subset of the range of Φ(H). Therefore, H is composed of at least n
distinct partitions. Let H be the sequence (P0, . . . ,Pn−1, . . . ). Since the partitions Pi

and Pi−1 are distinct, then there exists a region in Pi which is not in Pi−1. Therefore,
there is a region X of Pi which is composed of several regions {R1, R2, . . . } of Pi−1.
Then, there are two adjacent vertices x and y such that x and y are in distinct regions
in {R1, R2, . . . }. Let x and y be two adjacent vertices such that x and y are in distinct
regions in {R1, R2, . . . }. Hence, the lowest j such that x and y belong to the same region
of Pj is i. Thus, there exists an edge u = {x, y} in E≺ such that Φ(H)(u) = i. Hence,
the sum of the weight of the edges of G′ is at least 1 + · · · + n− 1, which is equal to α.
Therefore, the graph (V,E≺) is a MST of (G,Φ(H)).

Proof of Lemma 54. As Φ(H) is one-side increasing for ≺, then, by Property 24, there is
an extinction map ε such that, for any building edge u for ≺, Φ(H)(u) = min{ε(R)

such that R is a child of Ru}. Since ε is an extinction map, then there is a se-
quence S = (M1, . . . ,Mn) of minima of w such that ε is the extinction map for ≺ and
S, and such that, for any region R of B≺, ε(R) = ∨{i | Mi ⊆ R}. Let G′ denote the
graph (V,E≺). By Lemma 69, G′ is a MST of (G,Φ(H)) and, consequently, by Lemma
83, H = QFZ(G′,Φ(H)). Let ρ denote the persistence map for ≺ and for S. Since
Φ(H)(u) = min{ε(R) such that R is a child of Ru}, we have that, for any building edge
u, Φ(H)(u) is the persistence value ρ(u) of u. Then, QFZ(G′,Φ(H)) = QFZ(G′, ρ). By
definition, QFZ(G′, ρ) is precisely the hierarchy induced by ≺ and by S.
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8.1.2 Proof of Theorem 20

(Theorem 20). Let H be a hierarchy on V and let ≺ be a lexicographic ordering
for (w, f). The hierarchy H is a hierarchical watershed of (G,w) if and only if Φ(H)

is one-side increasing for ≺.

Let H be a hierarchy on V . By Theorem 19, H is a hierarchical watershed of (G,w)

if and only if there is an altitude ordering for w such that the saliency map Φ(H) of H is
one-side increasing for ≺. In order to prove Theorem 20, we will prove in the following
lemma that, if the saliency map Φ(H) is one-side increasing for an altitude ordering for
w, then Φ(H) is one-side increasing for any lexicographic ordering for (w,Φ(H)).

Given a map f from E into R, we say that f is a saliency map if there is an hierarchy
H on V such that f is the saliency map of H.

Lemma 57. Let f be a saliency map and let ≺f be a lexicographic ordering for (w, f).
If there exists an altitude ordering ≺ for w such that f is one-side increasing for ≺, then
f is one-side increasing for ≺f .

Let ≺ be an ordering on E and let (u1, . . . , u|E|) be the sequence of edges in E such
that, for any i in {1, . . . , |E| − 1}, we have ui ≺ ui+1. This sequence (u1, . . . , u|E|)

is called the sequence (of edges) induced by ≺. In order to prove Lemma 8.1.2, we
first introduce the notion of critical rank and the notion of switch in the context of
lexicographic orderings, and other auxiliary lemmas.

Definition 58 (critical rank). Let f be a saliency map and let ≺ be an altitude ordering
for w. Let (u1, . . . , u|E|) be the sequence induced by ≺. Let k be a value such that
uk ≺ uk+1 and such that w(uk) = w(uk+1) and f(uk) ≥ f(uk+1). We say that k is a
critical rank for f and ≺.

Definition 59 (switch). Let f be a saliency map and let ≺ be an altitude ordering for
w. Let (u1, . . . , u|E|) be the sequence induced by ≺. Let k be a critical rank for f and ≺,
and let ≺k be the ordering such that (u1, . . . , uk+1, uk, . . . , u|E|) is the sequence induced by
≺k. We say that ≺k is a switch of ≺ for f (and k).

Lemma 60. Let f be a saliency map, let ≺ be an altitude ordering for w and let ≺′ be
a switch of ≺ for f . Then ≺′ is an altitude ordering for w.

Proof. Let ≺′ be the switch of ≺ for a critical rank k for f and ≺. Let (u1, . . . , u|E|) be
the sequence induced by ≺. Then (u1, . . . , uk+1, uk, . . . , u|E|) is the sequence induced by
≺′. We may affirm that, for any edge v different from uk+1, if v ≺ uk (resp. uk ≺ v)
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then v ≺′ uk (resp. uk ≺′ v). Similarly, for any edge v different from uk, if v ≺ uk+1

(resp. uk+1 ≺ v) then v ≺′ uk+1 (uk+1 ≺′ v). Finally, for any two edges u and v such
that {u, v} ∩ {uk, uk+1} = ∅, if u ≺ v (resp. v ≺ u), then u ≺′ v (resp. v ≺′ u). Hence,
for any two edges u and v such that w(u) < w(v), by the definition of critical rank, we
may say that {u, v} 6= {uk, uk+1} and, consequently, as u ≺ v, then u ≺′ v. Hence, ≺′ is
an altitude ordering for w.

Lemma 61. Let ≺ be an altitude ordering for w and let f be a saliency map. Let ≺′ be
a lexicographic ordering for (w, f). There exists a sequence (≺0,≺1, . . . ,≺`) of altitude
orderings for w such that ≺0 is equal to ≺, ≺` is equal to ≺′ and, for any i in {1, . . . , `},
≺i is a switch of ≺i−1.

Proof. Let (u1, . . . , u|E|) be the sequence induced by ≺ and let (u′1, . . . , u
′
|E|) be the se-

quence induced by ≺′. Let k be the smallest value such that uk 6= u′k. In this case, there
is an i > k such that u′k = ui. As ≺′ is a lexicographic ordering for (w, f), for any edge uj
such that k < j ≤ i, we have f(uj) ≥ f(uj−1). Hence, there is a sequence S of switches
for critical ranks ranging from i−1 to k such that, in the last ordering ≺∗ of the sequence
S, the edge with rank k for the ordering ≺∗ is precisely the edge u′k. Let (u∗1, . . . , u

∗
|E|) be

the sequence induced by ≺∗. We conclude that, for any i ≤ k, we have u∗k = u′k. Hence,
the smallest value m such that u∗m 6= u′m is strictly greater than k. By performing this
procedure iteratively (like the bubble sort algorithm), the resulting ordering converge to
≺′.

Lemma 62. Let ≺ be an altitude ordering for w and let f be a saliency map such that f
is one-side increasing for ≺. Let v1 and v2 be two edges of E. If f(v1) is equal to f(v2),
then neither v1 nor v2 is a watershed-cut edge for ≺.

Proof. Since f is one-side increasing for ≺, by Definition 18, we have {f(u) | u ∈ E≺} =

{0, . . . , n− 1} and we have that, for any edge u in E≺, f(u) is greater than 0 if and only
if u is a watershed-cut edge for ≺. Since w has n minima, there are n− 1 watershed-cut
edges for ≺. Hence, the watershed-cut edges for ≺ have pairwise distinct edge weights
ranging from 1 to n− 1. Therefore, neither v1 nor v2 is a watershed-cut edge for ≺.

Let ≺ be an altitude ordering for w and let f be a saliency map such that f is
one-side increasing for ≺. By Lemma 60, every switch of ≺ is an altitude ordering for
w. By Lemma 61, any lexicographic ordering for (w, f) can be obtained by a sequence
of switches starting from ≺. Hence, to prove Lemma , we can simply prove that f is
one-side increasing for any switch of ≺. Let (u1, . . . , u|E|) be the sequence induced by ≺.
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Then (u1, . . . , uk+1, uk, . . . , u|E|) is the sequence induced by ≺′. In order to prove that f
is one-side increasing for the switch ≺′ for k, we should consider the following cases:

1. Neither uk nor uk+1 is a building edge for ≺;

2. Both uk and uk+1 are building edges for ≺ and Ruk ∩Ruk+1
= ∅;

3. Both uk and uk+1 are building edges for ≺ and Ruk ⊂ Ruk+1
;

4. Only uk+1 is a building edge for ≺; and

5. Only uk is a building edge for ≺.

The following lemmas 64, 65, 66, 67 and 68 prove that, for each of those five cases,
the saliency map f is one-side increasing for the switch ≺′ for k. Before considering those
five cases, we first present the following auxiliary lemma.

Lemma 63. Let ≺ be an altitude ordering for w and let f be a saliency map such that
f is one-side increasing for ≺. Let ≺′ be an altitude ordering for w such that the set of
building edges for ≺′ is equal to the set of building edges for ≺ and such that the set of
regions of B≺ is equal to the set of regions of B≺′. Then f is one-side increasing for ≺′.

Proof. In the definition of one-side increasing maps (Definition 18), the three conditions
for f to be one-side increasing for≺ take into consideration only the weight of the building
edges for ≺ and parenthood relationship between the regions of ≺. Hence, as the set of
building edges for ≺′ is the same set of building edges for ≺ and as they have the same
set of regions, we can conclude that the three conditions of Definition 18 for f to the
one-side increasing for ≺′ are satisfied.

Lemma 64. Let ≺ be an altitude ordering for w and let f be a saliency map such that
f is one-side increasing for ≺. Let (u1, . . . , u|E|) be the sequence induced by ≺. Let k be
a critical rank for f and ≺ such that neither uk nor uk+1 is a building edge for ≺. Then
f is one-side increasing for the switch ≺′ for k.

Proof. Let (B0,B1, . . . ,B|E|) be the sequence of partitions (of V ) such that, for any
i in {1, . . . , |E|}, the partition Bi is the i-partition by the ordering ≺ (as defined in
Section 2.5.2). Let (B′0,B

′
1, . . . ,B

′
|E|) be the sequence of partitions such that, for any i

in {1, . . . , |E|}, the partition B′i is the i-partition by the ordering ≺′.
By the definition of binary partition hierarchy and, as neither uk nor uk+1 is a building

edge for ≺, we may say that:
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I the partition Bk is equal to the partition Bk−1, and

II the partition Bk+1 is equal to the partition Bk,

III which implies that Bk−1 = Bk = Bk+1.

Let uk = {s, r} and uk+1 = {x, y}. By the definition of switch, the sequence
(u1, . . . , uk+1, uk, . . . , u|E) is the sequence induced by ≺′. We may infer that, for any
i < k, the i-partition by the ordering ≺′ is equal to the i-partition by the ordering ≺.
Hence, as uk+1 is the edge of rank k for ≺′ and since B′k−1 = Bk−1, the k-partition for the
ordering ≺′ is the partition B′k = {By

k−1 ∪Bx
k−1} ∪ (Bk−1 \ {Bx

k−1,B
y
k−1}). By the state-

ment I, Bk−1 = Bk, which implies that B′k = {By
k ∪ Bx

k} ∪ (Bk \ {Bx
k,B

y
k}). Therefore,

we have that:

IV B′k is equal to the partition Bk+1

As Bk+1 = Bk = Bk−1 by statement III, we have that

V B′k = Bk+1 = Bk−1 = B′k−1

By statement V, as B′k = B′k−1, we conclude that uk+1 is not a building edge for ≺′.
Now, as uk is the edge of rank k+1 for ≺′, the k+1-partition for the ordering ≺′ is the

partition B′k+1 = {B′ks∪B′kr}∪ (B′k \{B′ks,B′kr}). By statement V, we have B′k = B′k−1.
Since B′k−1 = Bk−1, then, by statement III, we have that B′k = Bk−1. Therefore, we
conclude that:

VI B′k+1 = {Bs
k−1 ∪Br

k−1} ∪ (Bk−1 \ {Bs
k−1,B

r
k−1})

By the definition of B′k+1 in the statement VI, we have:

VII B′k+1 = Bk

By statement IV, B′k = Bk+1 and, by statement III, Bk = Bk+1. Hence, Bk = B′k.
Thus, by the statement VII, we conclude that B′k+1 = B′k. Therefore, uk is not a building
edge for ≺′.

Since the sequences induced by the orderings ≺ and ≺′ are equal for any i > k + 1,
and since B′k+1 = B′k = Bk = Bk+1, we may affirm that, Bi = B′i for any i > k + 1.
Therefore, the set of building edges for ≺ is equal to the set of building edges for ≺′, and
the set of partitions and regions of B≺ is equal to the set of partitions and regions of B≺′ .
By Lemma 63, f is one-side increasing for ≺′.
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Lemma 65. Let ≺ be an altitude ordering for w and let f be a saliency map such that
f is one-side increasing for ≺. Let (u1, . . . , u|E|) be the sequence induced by ≺. Let k be
a critical rank for f and ≺ such that both uk and uk+1 are building edges for ≺ and such
that Ruk ∩Ruk+1

= ∅. Then f is one-side increasing for the switch ≺′ for k.

Proof. Let (B0,B1, . . . ,B|E|) be the sequence of partitions (of V ) such that, for any i in
{1, . . . , |E|}, the partition Bi is the i-partition by the ordering ≺. Let (B′0,B

′
1, . . . ,B

′
|E|)

be the sequence of partitions such that, for any i in {1, . . . , |E|}, the partition B′i
is the i-partition by the ordering ≺′. By the definition of switch, the sequence
(u1, . . . , uk+1, uk, . . . , u|E) is the sequence induced by ≺′. As the sequences induced by ≺
and by ≺′ are equal for any edge with rank i < k, we may affirm that:

I Bi = B′i for any i < k

Let uk = {s, r} and uk+1 = {x, y}. As uk and uk+1 are building edges for ≺, we have
that:

II Bk 6= Bk−1, and

III Bk+1 6= Bk

As uk+1 is the edge of rank k for ≺′, we have that the k-partition for the ordering ≺′

is B′k = {B′k−1
x ∪B′k−1

y}∪ (B′k−1 \ {B′k−1
x,B′k−1

y}). By the statement I, B′k−1 and Bk−1

are equal. Then B′k = {Bx
k−1 ∪By

k−1} ∪ (Bk−1 \ {Bx
k−1,B

y
k−1}).

By definition, we have:

IV Bk = {Bs
k−1 ∪Br

k−1} ∪ (Bk−1 \ {Bs
k−1,B

r
k−1}), and

V Bk+1 = {Bx
k ∪By

k} ∪ (Bk \ {Bx
k,B

y
k})

By our hypothesis, Ruk ∩ Ruk+1
= ∅, which means that the regions Ruk and Ruk+1

of
B≺ (whose building edges are respectively uk and uk+1) have no intersection. As uk is a
building edge for ≺, we have Ruk = {Bs

k−1 ∪Br
k−1}. Similarly, as uk+1 is a building edge

for ≺, we have Ruk+1
= {Bx

k ∪By
k}. Since Ruk ∩Ruk+1

= ∅, we have that:

VI neither x nor y is in the region Bs
k−1 (resp. Br

k−1), and

VII neither s nor r is in the region Bx
k (resp. By

k)

By VI and VII, we can conclude that Bs
k−1, Br

k−1, Bx
k and By

k are all distinct regions
of the partition Bk−1. Hence, we have:
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VIII Bx
k = Bx

k−1, and

IX By
k = By

k−1

By definition, as uk+1 is the edge of rank k for ≺′, we have:

X B′k = {B′k−1
x ∪B′k−1

y} ∪ (B′k−1 \ {B′k−1
x,B′k−1

y})

By I and X, we conclude that:

XI B′k = {Bx
k−1 ∪By

k−1} ∪ (Bk−1 \ {Bx
k−1,B

y
k−1})

By VIII, IX and XI, we conclude:

XII B′k = {Bx
k ∪By

k} ∪ (Bk \ {Bx
k,B

y
k})

As Bx
k and By

k are distinct regions, we may say that B′k is different from B′k−1. Hence,
uk+1 is a building edge for ≺′.

Now, as uk is the edge of rank k + 1 for ≺′, we have that the (k + 1)-partition for
the ordering ≺′ is B′k+1 = {B′ks ∪B′k

r} ∪ (B′k \ {B′ks,B′kr}). By statement VII, we have
that neither s nor r are in the regions Bx

k and By
k. Hence, by the statement XII, s and r

belong to distinct regions of B′k. Therefore, B′ks 6= B′k
r. Consequently, B′k+1 is different

from B′k. Hence, uk is a building edge for ≺′.
Moreover, we conclude that B′k+1 = Bk+1 because both partitions result from the

union of the four distinct regions of Bk−1 containing s, r, x and y. Hence, for any
i > k + 1, as the sequences induced by ≺ and ≺′ are equal, we can conclude that any
partition Bi is equal to the partition B′i for any i > k + 1. Therefore, by Lemma 63, f
is one-side increasing for ≺′.

Lemma 66. Let ≺ be an altitude ordering for w and let f be a saliency map such that
f is one-side increasing for ≺. Let (u1, . . . , u|E|) be the sequence induced by ≺. Let k be
a critical rank for f and ≺ such that both uk and uk+1 are building edges for ≺ and such
that Ruk ⊂ Ruk+1

. Then f is one-side increasing for the switch ≺′ for k.

Proof. By our hypothesis, the region Ruk of B≺ is a subset of the region Ruk+1
of B≺. Let

A be the region of B≺ such that Ruk+1
= Ruk ∪ A. Let B and C be the children of Ruk .

This situation is illustrated in the following figure.
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B≺

Let uk = {s, r} and uk+1 = {x, y}. As uk+1 is a building edge for ≺, we conclude that
x are y belong to two distinct regions in {A,B,C}. Without loss of generality, let us
assume that x belongs to A and that y belongs to B. Let Bk−1 be the (k − 1)-partition
for ≺. We can say that the regions A, B and C belong to Bk−1. Moreover, we know that
Bk−1 is equal to the (k − 1)-partition for ≺′ because, for any i < k, the edge of rank i
for ≺ is also the edge of rank i for ≺′. Since uk+1 is the edge of rank k for ≺′, we can
conclude that the k-partition B′k for ≺′ is the partition {A ∪ B} ∪ (Bk−1 \ {A,B}). As
the region {A ∪ B} is not in the partition B′k−1, we can conclude that B′k is different
from B′k−1. Hence, uk+1 is the building edge of the region R′uk+1

= {A ∪B} of B≺′ .

Now, without loss of generality, let us assume that s belongs to B and that r belongs
to C. By our hypothesis, uk is the edge of rank k+1 for ≺′. In the partition B′k, we know
that s and r belong to distinct regions because s is in {A ∪ B} and r is in C. Hence,
the region {A ∪ B ∪ C} is a region of B′k+1 and we have B′k+1 6= B′k. Therefore, uk is a
building edge for ≺′. This situation is illustrated in the following figure.



XIV Appendix: proofs of theorems and properties

B≺′

We can infer that the (k + 1)-partition for ≺′ is equal to the (k + 1)-partition for ≺.
Since the edge of rank i for ≺ is also the edge of rank i for ≺′, we can conclude that the
set of building edges for ≺ is equal to the set of building edges for ≺′.

Now, we will prove that f is one-side increasing for ≺′. To that end, we will demon-
strated that the three conditions of the definition of one-side increasing maps (Definition
18) hold true for f .

1. We first prove that the condition 1 of Definition 18 holds true for f . Since the set
E≺ of building edges for ≺ is equal to the set E≺′ of building edges for ≺′, we can
conclude that {f(u) | u ∈ E≺′} is equal to {f(u) | u ∈ E≺} = {0, . . . , n− 1}. Thus,
the first condition for f to be one-side increasing for ≺′ holds true.

2. We now prove that the condition 2 of Definition 18 holds true for f .

In order to prove this condition, we consider four cases: (2.1) both uk and uk+1 are
watershed-cut edges for ≺; (2.2) neither uk nor uk+1 is a watershed-cut edge for ≺;
(2.3) only uk is a watershed-cut for ≺; and (2.4) only uk+1 is a watershed-cut for
≺.

(2.1) If both uk and uk+1 are watershed-cut edges for ≺, then there is at least one
minimum of w included in each of the regions A, B and C. Since A and B

are the children of R′uk+1
, we may say that uk+1 is a watershed-cut edge for

≺′. Since {A ∪ B} and C are the children of R′uk and since there is at least
one minimum included in each of the children of R′uk , we may say that uk is a
watershed-cut edge for ≺′. Hence, both uk and uk+1 are watershed-cut edges
for ≺′.
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(2.2) If neither uk nor uk+1 is a watershed-cut edge for ≺, then there are at least
two regions among A, B and C that do not include any minimum of w. Hence,
there is at least one child of each of the regions R′uk and R′uk+1

that do not
include any minimum of w. Hence, neither uk nor uk+1 is a watershed-cut
edge for ≺′.

(2.3) If uk is a watershed-cut edge for ≺ and if uk+1 is not watershed-cut edge for
≺, then there is at least one minimum included in each of the regions B and
C and there is no minimum included in A. Hence, as A is a child of the
region R′uk+1

of B≺′ and as there is no minimum of w included in A, uk+1 is
not a watershed-cut edge for ≺′. Since there is at least one minimum included
in each of the regions B and C, and since B and C are included in distinct
children of the region R′uk , we can conclude that uk is a watershed-cut edge
for ≺′.

(2.4) If uk+1 is a watershed-cut edge for ≺ and if uk is not watershed-cut edge for ≺.
As k is a critical rank for f and ≺, we have that f(uk) ≥ f(uk+1). However, by
the definition of one-side increasing maps (Definition 18), we have f(uk+1) > 0

and f(uk) = 0, which contradicts our hypothesis. Therefore, the case where
uk+1 is a watershed-cut edge for ≺ and if uk is not watershed-cut edge for ≺
does not happen.

Therefore, we can conclude that the set of watershed-cut edges for ≺ is equal to the
set of watershed-cut edges for ≺′. Then, the second condition for f to be one-side
increasing for ≺′ holds true.

3. We finally prove that the condition 3 of Definition 18 holds true for f . As k is
a critical rank for f and ≺, we have that f(uk) ≥ f(uk+1). We will consider two
cases: (3.1) f(uk) = f(uk+1); and (3.2) f(uk) > f(uk+1).

(3.1) If f(uk) = f(uk+1), by Lemma 62, neither uk nor uk+1 is a watershed-cut edge
for ≺. Since neither uk nor uk+1 is a watershed-cut edge for ≺, as proven
in the case (2.2), neither uk nor uk+1 is a watershed-cut edge for ≺′. Hence,
there is at least one child of the region R′uk (resp. R′uk+1

) that does not include
any minimum of w. Let Z be the child of R′uk (resp. R′uk+1

) that does not
include any minimum of w. We can infer that there is no watershed-cut edge
v for ≺′ such that Rv ⊆ Z. Then, for any edge v such that Rv ⊆ Z, we have
f(v) = 0. Since f(uk) = 0 (resp. f(uk+1) = 0), we can affirm that there is
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a child Z of R′uk (resp. R′uk+1
) such that f(uk) ≥ {f(v) | Rv ⊆ Z} (resp.

f(uk+1) ≥ {f(v) | Rv ⊆ Z}).

(3.2) Let us assume that f(uk) > f(uk+1). Since f is one-side increasing for ≺,
by Definition 18 (statement 3), we conclude that, for any edge v such that v
is the building edge of a region included in A, we have f(uk+1) ≥ f(v). In
the hierarchy B≺′ , the region R′uk+1

is the parent of A, so the statement 3 of
Definition 18 holds true for R′uk+1

.

We will now prove that the statement 3 of Definition 18 holds true for R′uk .
By Definition 18, we know that there is a child Z of Ruk such that for any
edge v such that v is the building edge of a region included in Z, we have
f(uk) ≥ f(v). Let us first assume that Z = C. Since C is also a child of the
region R′uk of B≺′ , the statement 3 of Definition 18 holds true for R′uk . Now,
let us assume that Z = B. We will prove that, for the building edge v of any
region included in {A∪B∪Ruk+1

}, we have f(uk) ≥ f(v). By our assumption
f(uk) > f(uk+1). Moreover, for any edge v such that v is the building edge of
a region included in A, we have f(uk+1) ≥ f(v). Therefore, for the building
edge v of any region included in {A ∪B ∪Ruk+1

}, we have f(uk) ≥ f(v).

Lemma 67. Let ≺ be an altitude ordering for w and let f be a saliency map such that
f is one-side increasing for ≺. Let (u1, . . . , u|E|) be the sequence induced by ≺. Let k be
a critical rank for f and ≺ such that uk+1 is a building edge for ≺ and such that uk is
not a building edge for ≺. Then f is one-side increasing for the switch ≺′ for k.

Proof. Let (B0,B1, . . . ,B|E|) be the sequence of partitions (of V ) such that, for any
i in {1, . . . , |E|}, the partition Bi is the i-partition by the ordering ≺ (as defined in
Section 3.1). Let (B′0,B

′
1, . . . ,B

′
|E|) be the sequence of partitions such that, for any i

in {1, . . . , |E|}, the partition B′i is the i-partition by the ordering ≺′. As the sequences
induced by ≺ and by ≺′ are equal for any edge with rank i < k, we may affirm that:

I. Bi = B′i for any i < k

By the definition of binary partition hierarchy and since uk is not a building edge for
≺, we may say that:

II. the partition Bk is equal to the partition Bk−1.
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Let uk = {s, r} and uk+1 = {x, y}. Since Bk = Bk−1 and since Bk = {Bs
k−1∪Br

k−1}∪
(Bk−1\{Bs

k−1,B
r
k−1}), we conclude that the regions Bs

k−1 and Br
k−1 of the partition Bk−1

are equal: Bs
k−1 = Br

k−1. By the statement I, we may say that the regions B′k−1
s and

B′k−1
r of the partition B′k−1 are equal as well. Hence:

III. the partition B′k is equal to the partition and B′k−1

Therefore, uk is not a building edge for ≺′.
Since uk+1 is a building edge for ≺, we have that:

IV. the partition Bk+1 is different from the partition Bk.

By the statement IV, we conclude that the regions Bx
k and By

k of the partition Bk are
distinct. By the statement III, we have that B′k = B′k−1. Then, by statement I, we have
B′k = Bk−1. Hence, by statement II, we have B′k = Bk. Therefore, the regions Bx

k and
By
k also belong to the partition B′k. Consequently, since x and y are in distinct regions

in the partition B′k, we conclude that uk+1 is a building edge for ≺′. Therefore, the set
E≺ of building edges for ≺ is equal to the set E≺′ of building edges for ≺′.

Moreover, we conclude that B′k+1 = Bk+1 because both partitions result from the
union of the two distinct regions of Bk−1 containing x and y. Hence, for any i > k + 1,
as the edge of rank i for ≺ is also the edge of rank i for ≺′, we can conclude that any
partition Bi is equal to the partition B′i. Hence, B≺ and B≺ have the same set of regions.

Since E≺ = E≺′ and since B≺ and B≺ have the same set of regions, by Lemma 63, f
is one-side increasing for ≺′.

Lemma 68. Let ≺ be an altitude ordering for w and let f be a saliency map such that
f is one-side increasing for ≺. Let (u1, . . . , u|E|) be the sequence induced by ≺. Let k be
a critical rank for f and ≺ such that uk is a building edge for ≺ and such that uk+1 is
not a building edge for ≺. Then f is one-side increasing for the switch ≺′ for k.

Proof. Let (B0,B1, . . . ,B|E|) be the sequence of partitions (of V ) such that, for any i in
{1, . . . , |E|}, the partition Bi is the i-partition by the ordering ≺. Let (B′0,B

′
1, . . . ,B

′
|E|)

be the sequence of partitions such that, for any i in {1, . . . , |E|}, the partition B′i is the
i-partition by the ordering ≺′. As the sequences induced by ≺ and by ≺′ are equal for
any edge with rank i < k, we may affirm that:

I. Bi = B′i for any i < k

Since uk is a building edge for ≺, we have that:
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II. Bk is different from Bk−1

Let uk = {s, r} and uk+1 = {x, y}. Since Bk 6= Bk−1, we conclude that s and r are
in distinct regions of Bk−1. As uk+1 is not a building edge for ≺, we consider two cases:
(1) x and y belong to a unique region of Bk−1; and (2) x and y belong to two distinct
regions of Bk−1.

(1) Let us consider that x and y belong to a unique region of Bk−1. By the statement
I, we have B′k−1 = Bk−1. Hence, x and y belong to a unique region of B′k−1 and,
therefore, uk+1 is not a building edge for ≺′. We will now prove that uk is a building
edge for ≺′. Since uk is a building edge for ≺, we have that s and r belong to two
distinct regions of the partition Bk−1. Since uk+1 is not a building edge for ≺′,
we have B′k = B′k−1. Then, by the statement I, we have B′k = B′k−1 = Bk−1.
Therefore, s and r belong to two distinct regions of the partition B′k. Hence, uk is
a building edge for ≺′.

Therefore, the set E≺ of building edges for ≺ is equal to the set E≺′ of building
edges for ≺′.

Moreover, we conclude that B′k+1 = Bk+1 because both partitions result from the
union of the two distinct regions ofBk−1 containing s and r. Hence, for any i > k+1,
as the edge of rank i for ≺ is also the edge of rank i for ≺′, we can conclude that
any partition Bi is equal to the partition B′i. Thus, B≺ and B≺ have the same set
of regions.

Since E≺ = E≺′ and since B≺ and B≺ have the same set of regions, by Lemma 63,
f is one-side increasing for ≺′.

(2) We now consider that x and y belong to two distinct regions of Bk−1. Let A and
B be the regions of Bk−1 such that s ∈ A and r ∈ B. Since x and y belong to two
distinct regions of Bk−1 and since Bk = {A ∪ B} ∪ (Bk−1 \ {A,B}), we conclude
that either x or y is in A, and that either s or r is in B. Without loss of generality,
let us assume that x ∈ A and y ∈ B. This situation is illustrated in the following
figure.
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B≺

Since uk+1 is the edge of rank k for the ordering ≺′, we can say that the k-partition
B′k by the ordering ≺′ is {A∪B}∪(B′k−1\{A,B}) because A and B are the regions
of B′k−1 that contain respectively x and y. As the region {A∪B} do not belong to
the partition B′k−1, we have that uk+1 is the building edge of the region {A ∪ B}.
Hence, uk+1 is a building edge for ≺′.

Since uk is the edge of rank k + 1 for the ordering ≺′, we may conclude that
B′k+1 = B′k because the s and r belong to the same region {A∪B} of B′k. Therefore,
uk is not a building edge for ≺′. This situation is illustrated in the following image.

B≺′

We conclude that B≺ and B≺′ have the same set of regions but not the same set of
building edges: E≺′ = E≺ \ {uk} ∪ {uk+1}. Hence, the only difference between the
hierarchies B≺ and B≺′ is the building edge of the region {A ∪ B}. Therefore, we
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may say that, if the weight of the building edge of {A ∪ B} for ≺ is equal to the
weight of the building edge of {A∪B} for ≺′, then f is also one-side increasing for
≺′. To that end, we will prove that f(uk) = f(uk+1).

By Lemma 84, as f is one-side increasing for ≺, we have that:

III. (V,E≺) is a MST of (G, f)

By the statement III and by Lemma 83, we conclude that:

IV. the hierarchy QFZ(G, f) is equal to the hierarchy QFZ((V,E≺), f)

Statement IV implies that f is the saliency map of the hierarchy QFZ((V,E≺), f).
Hence, for any edge u = {a, b} in E, f(u) is the maximum weight in the unique
path between a and b in ((V,E≺), f). We can affirm that:

V. the unique path between x and y in ((V,E≺), f) is a path that includes the
edge uk

By the statement V and by the definition of saliency maps, we have f(uk+1) ≥
f(uk). Since k is a critical rank for f and ≺, we have f(uk+1) ≤ f(uk). Therefore,
we have f(uk) = f(uk+1), which completes the proof that f is one-side increasing
for ≺′.

8.1.3 Proof of Property 22

(Property 22). Let H be a hierarchy on V . The hierarchy H is a flattened hierarchical
watershed of (G,w) if and only if there is an altitude ordering ≺ for w such that:

1. (V,E≺) is a MST of (G,Φ(H)); and

2. for any edge u in E≺, if u is not a watershed-cut edge for ≺, then Φ(H)(u) = 0;
and

3. for any edge u in E≺, there exists a child R of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v)

such that Rv is included in R}, where ∨{} = 0.

To prove Property 22, we establish the following lemma.
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Lemma 69. Let ≺ be an altitude ordering for w and let H be a hierarchy on V such that
Φ(H) is one-side increasing for ≺. Then (V,E≺) is a MST of (G,Φ(H)).

Proof. Let α denote the sum of the weight of the edges in E≺ in the map Φ(H): α =∑
e∈E≺ Φ(H)(e). As Φ(H) is one-side increasing for ≺, by the condition 1 of Definition

18, we can affirm that α = 0 + 1 + · · ·+ n− 1. In order to prove that (V,E≺) is a MST
of (G,Φ(H)), we will prove that, for any MST G′ of (G,Φ(H)), the sum of the weight
of the edges in G′ is greater than or equal to α. Let G′ be a MST of (G,Φ(H)). As G′

is a MST of (G,Φ(H)), by the condition 1 of Lemma 83, we have that G and G′ have
the same quasi-flat zones hierarchy: QFZ(G,Φ(H)) = QFZ(G′,Φ(H)). As Φ(H) is the
saliency map of H, we have that H = QFZ(G,Φ(H)). Therefore, H = QFZ(G′,Φ(H)).
Let i be a value in {1, . . . , n − 1}. By the condition 1 of Definition 18, we can say that
{1, . . . , n − 1} is a subset of the range of Φ(H). Therefore, H is composed of at least n
distinct partitions. Let H be the sequence (P0, . . . ,Pn−1, . . . ). Since the partitions Pi

and Pi−1 are distinct, then there exists a region in Pi which is not in Pi−1. Therefore,
there is a region X of Pi which is composed of a several regions {R1, R2, . . . } of Pi−1.
Then, there are two adjacent vertices x and y such that x and y are in distinct regions
in {R1, R2, . . . }. Let x and y be two adjacent vertices such that x and y are in distinct
regions in {R1, R2, . . . }. Hence, the lowest j such that x and y belong to the same region
of Pj is i. Thus, there exists an edge u = {x, y} in E≺ such that Φ(H)(u) = i. Hence,
the sum of the weight of the edges of G′ is at least 1 + · · · + n− 1, which is equal to α.
Therefore, the graph (V,E≺) is a MST of (G,Φ(H)).

The reader can observe that the statement 3 of the above property is precisely the
statement 3 of the definition of one-side increasing maps (Definition 18), and that the
statement 2 is an implication of the statement 2 of Definition 18. The statement 1 of
the above property corresponds to a property of one-side increasing maps established in
Lemma 69.

In order to prove Property 22, we establish some auxiliary lemmas on MSTs and
saliency maps.

In the following, we state a well-known property of spanning trees in Lemma 111.
Let x and y be two vertices in V and let π = (x0, . . . , xp) be a path from x to y. For

any edge u = {xi−1, xi} for i in {1, . . . , p}, we say that u is in π or that π includes u.

Lemma 70. Let G′ be a spanning tree of a weighted graph (G, f). Let u = {x, y} be an
edge in E \ E(G′) and let π be the path from x to y (resp. y to x) in G′. The graph G′

is a MST of (G, f) if and only if f(u) ≥ f(v) for any edge v in π.

The following lemma characterizes MSTs of saliency maps.
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Lemma 71. Let f be the saliency map of a hierarchy on V and let G′ be a spanning tree
of (G, f). Let u = {x, y} be an edge in E \E(G′) and let π be the path from x to y (resp.
y to x) in G′. Let v be an edge of greatest weight in π. The graph G′ is a MST of (G, f)

if and only if f(u) = f(v).

Proof. We will first prove the forward implication of this lemma. Let G′ be a MST of
(G,Φ(H)). Then, by Lemma 111, for any edge e in the path π, we have Φ(H)(e) ≤
Φ(H(u). Hence, Φ(H)(v) ≤ Φ(H(u). Let us assume that Φ(H)(v) < Φ(H)(u). Then,
given λ = Φ(H)(v), in the λ-level set of (G,Φ(H)), the vertices x and y are connected,
which implies that, by the definition of saliency maps, Φ(H(u) is less or equal to Φ(H)(v),
which contradicts our assumption. Hence, Φ(H)(v) = Φ(H(u).

Now, let us assume that Φ(H)(u) is equal to the greatest weight among the edges in
π. Then, for any edge e in the path π, we have Φ(H)(e) ≤ Φ(H(u). Then, by Lemma
111, G′ is a MST of (G,Φ(H)).

Lemma 72. Let H be a hierarchy on V and let H′ be a flattening of H. Let u and v be
two distinct edges in E such that Φ(H′)(u) < Φ(H′)(v). Then Φ(H)(u) < Φ(H)(v).

Proof. Let u = {x1, y1} and v = {x2, y2}. As Φ(H′)(u) < Φ(H′)(v), there is a partition
P of H′ such that x1 and y1 belong to the same region of P and we such that x2 and y2

do not belong to the same region of P. As P is a partition of H′, there is a partition in
H such that x1 and y1 belong to the same region of this partition but x2 and y2 do not.
Then, Φ(H)(u) < Φ(H)(v).

Lemma 73. Let H be a hierarchy on V and let H′ be a flattening of H. Let u and v be
two distinct edges in E such that Φ(H)(u) ≤ Φ(H)(v). Then Φ(H′)(u) ≤ Φ(H′)(v).

Proof. Let u = {x1, y1} and v = {x2, y2}. As Φ(H)(u) ≤ Φ(H)(v), then for any partition
P of H, if x2 and y2 are in the same region of P, then x1 and y1 are in the same region
of P as well. As any partition of H′ is also a partition of H, we may say that for any
partition P of H′, if x2 and y2 are in the same region of P, then x1 and y1 are in the
same region of P. Hence, Φ(H′)(u) ≤ Φ(H′)(v).

The forward and backward implications of Property 22 are proven in Lemmas 74 and
75, respectively.

Lemma 74. Let H be a flattened hierarchical watershed of (G,w). Then, there is an
altitude ordering ≺ for w such that:

1. (V,E≺) is a MST of (G,Φ(H)); and
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2. for any building edge u for ≺, if u is not a watershed-cut edge for ≺, then Φ(H)(u) =

0; and

3. for any building edge u for ≺, there exists a child R of Ru such that Φ(H)(u) ≥
∨{Φ(H)(v) such that Rv is included in R}, where ∨{} = 0.

Proof. As H is a flattened hierarchical watershed of (G,w), by Definition 21, there is a
hierarchical watershed Hw of (G,w) such that H is a flattening of Hw. By Theorem 19,
there is an altitude ordering ≺ for w such that Φ(Hw) is one-side increasing for ≺. Let ≺
be the altitude ordering for w such that Φ(Hw) is one-side increasing for ≺. By Lemma
84, (V,E≺) is a MST of (G,Φ(Hw)). Let G′ denote the graph (V,E≺). By Lemma
83, Hw is the hierarchy QFZ(G′,Φ(Hw)). Then, any partition of H is a partition of
QFZ(G′,Φ(Hw)). By the definition of saliency maps, we can affirm that any partition
of QFZ(G,Φ(H)) is a partition of QFZ(G′,Φ(Hw)).

In the following, we will prove that the three statements hold true for ≺.

1. We will first prove that G′ is a MST of (G,Φ(H)). By contradiction, let us assume
that G′ is not a MST of (G,Φ(H)). Then, by Lemma 71, there is an edge u = {x, y}
such that u is in E \ E(G′) and such that Φ(H)(u) is different from the greatest
weight among the edges in the path π from x to y in (G′,Φ(H)). Let v be an edge of
greatest weight in π. As H is equal to QFZ(G,Φ(H)), we may affirm that Φ(H)(u)

is lower than Φ(H)(v) because, otherwise, the vertices x and y would be connected
in the λ-level set of (G,Φ(H)) for a λ lower than Φ(H)(u), which contradicts the
fact that Φ(H) is a saliency map. Hence, we have Φ(H)(u) < Φ(H)(v). Then, by
Lemma 73, asH is a flattening ofHw, we may conclude that Φ(Hw)(u) < Φ(Hw)(v).
Hence, the weight Φ(Hw)(u) is different from the greatest weight among the edges
in the path π. Therefore, by Lemma 71, G′ is not a MST of (G,Φ(Hw)), which
contradicts our assumption. Hence, we may conclude thatG′ is a MST of (G,Φ(H)).

2. We will now prove the second condition for H to be a flattened hierarchical wa-
tershed of (G,w). As Hw is one-side increasing for ≺, by the second condition of
Definition 18, for any watershed-cut edge u = {x, y} for ≺, we have Φ(Hw)(u) = 0.
Then, for any partition P ofHw, x and y belong to the same region of P. Therefore,
as any partition of H is a partition of Hw, we can say that, for any partition P of
H, x and y belong to the same region of P. Hence, the lowest λ such that x and y
are the same partition Pλ of H is zero. Hence, Φ(H)(u) = 0.

3. We will now prove the third condition forH to be a flattened hierarchical watershed
of (G,w). By the third statement of Definition 18, we have that, for any edge u in
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E≺, there exists a child R of Ru such that Φ(Hw)(u) ≥ ∨{Φ(Hw)(v) | Rv ⊆ R}.
Let u be an edge in E≺ and let R be the child of Ru such that Φ(Hw)(u) ≥
∨{Φ(Hw)(v) | Rv ⊆ R}. Let v be an edge in E≺ such that Rv ⊆ R. Then,
Φ(Hw)(u) ≥ Φ(Hw)(v). Hence, by Lemma 73, Φ(H)(u) ≥ Φ(H)(v). Therefore, we
may conclude that Φ(H)(u) ≥ ∨{Φ(H)(v) | Rv ⊆ R}.

The following lemma corresponds to the backward implication of Property 22.

Lemma 75. Let H be a hierarchy on V and let ≺ be an altitude ordering for w such
that:

1. (V,E≺) is a MST of (G,Φ(H)); and

2. for any edge u in E≺, if u is not a watershed-cut edge for ≺, then Φ(H)(u) = 0;
and

3. for any edge u in E≺, there exists a child R of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v)

such that Rv is included in R}, where ∨{} = 0.

Then H is a flattened hierarchical watershed of (G,w).

In order to prove Lemma 75, we first state two auxiliary lemmas. From Property
10 of [27], we can deduce the following lemma linking binary partition hierarchies and
MSTs.

Lemma 76. Let B be a binary partition hierarchy of (G,w). The graph (V,E≺) is a
MST of (G,w).

By Property 12 of [27] linking hierarchical watersheds and hierarchies induced by an
altitude ordering and a sequence of minima, and by Lemma 83, we infer the following
lemma.

Lemma 77. Let G′ be a MST of (G,w) and let H be a hierarchical watershed of (G′, w).
Then H is also a hierarchical watershed of (G,w).

of Lemma 75. Let H be a hierarchy on V such that there is an altitude ordering ≺ for
w such that:

1. (V,E≺) is a MST of (G,Φ(H)); and

2. for edge u in E≺, if u is not a watershed-cut edge for ≺, then Φ(H)(u) = 0; and
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3. for edge u in E≺, there exists a child R of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v)

such that Rv is included in R}, where ∨{} = 0.

We will prove that H is a flattened hierarchical watershed of (G,w). To this end, we
will prove that there is a hierarchical watershed Hw of (G,w) such that any partition of
H is also a partition of Hw. Let G′ denote the graph (V,E≺). By Lemma 76, G′ is a
MST of (G,w). Moreover, by Lemma 77, given a hierarchical watershed Hw of a MST
of (G,w), we can say that Hw is also a hierarchical watershed of (G,w). Hence, we can
simply prove that there is a hierarchical watershed Hw of (G′, w) such that any partition
of H is also a partition of Hw.

To define the hierarchy Hw, we first define a map f from E≺ into R such that f is
one-side increasing for ≺. Since G′ is a tree, by the definition of saliency maps, we can
say that f is the saliency map of the hierarchy QFZ(G′, f). By Theorem 19, as f is
one-side increasing for ≺, we may say that QFZ(G′, f) is a hierarchical watershed of
(G′, w).

In the map f , the edges which are not watershed-cut edges for ≺ are assigned to
zero, and the watershed-cut edges for ≺ are ranked according to their weights in w and
in Φ(H). Let ≺2 be a total ordering on the set {u is a watershed-cut edge for ≺} such
that, for any two watershed-cut edges u and v for ≺, we have u ≺2 v if and only if
Φ(H)(u) < Φ(H)(v) or if Φ(H)(u) = Φ(H)(v) and u ≺ v. The map f is defined as
follows:

f(u) =


0 if u is not a watershed− cut

edge for ≺

rank of u for ≺2 otherwise

(8.1)

We first demonstrate that f is one-side increasing for ≺.

1. By the definition of f , as there are n−1 watershed-cut edges for ≺, we can say that,
for any i in {1, . . . , n−1}, there is a watershed-cut edge u for ≺ such that the rank
of u for ≺2 is i and, consequently, f(u) = i. On the other hand, as w has at least one
minimum, there is at least one edge e in E≺ such that e is not a watershed-cut edge
for ≺ and such that f(e) = 0. Hence, we have {f(e) | u ∈ E≺} = {0, . . . , n − 1}.
Therefore, the statement 1 of Definition 18 holds true for f .

2. For any edge u, by the definition of f , f(u) is non-zero if and only if u is not a
watershed-cut edge for ≺, so the statement 2 of Definition 18 holds true for f .
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3. Let u be a building edge for ≺. If u is not a watershed-cut edge for ≺, then there
is a child X of Ru such that there is no minimum of w included in X. Hence, none
of the building edges of the descendants of X is a watershed-cut edge for ≺. By
the definition of f , we have f(u) = 0 and, for any edge v such that Rv ⊆ X, we
have f(v) = 0. Hence, f(u) ≥ ∨{f(v) such that Rv is included in X}. Otherwise,
let us assume that u is a watershed-cut edge for ≺. Then there is at least one
minimum of w included in each child of Ru. By the hypothesis 3, there is a child X
of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included in X}. Let X be
the child of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included in X}.
Let e be a building edge for ≺ such that Re ⊆ X. If e is not a watershed-cut
edge for ≺, then f(e) = 0 and, consequently, f(u) > f(e). Otherwise, if e is a
watershed-cut edge for ≺, then we have Φ(H)(u) ≥ Φ(H)(e) and e ≺ u, which
implies that e ≺2 u. Consequently, by the definition of f , we have f(u) > f(e).
Therefore, f(u) ≥ ∨{f(v) such that Rv is included inX}. Then, the third condition
of Definition 18 holds true for f .

Hence, f is one-side increasing for ≺ and, as stated previously, QFZ(G′, f) is a
hierarchical watershed of (G′, w) (resp. (G,w)). Now, we only need to prove that any
partition of H is a partition of QFZ(G′, f). By the hypothesis 1, G′ is a MST of
(G,Φ(H)). Then, by Lemma 83, we can say that H is the QFZ hierarchy of (G′,Φ(H)).
We will prove that any partition of QFZ(G′,Φ(H)) is also a partition of QFZ(G′, f).

Let the range of Φ(H) be the set {0, . . . , `}: {Φ(H)(u) | u ∈ E≺} = {0, . . . , `}.
Let λ be a value in {0, . . . , `}. Let G′λ,Φ(H) be the λ-level set of (G′,Φ(H)). Let α be
the greatest value in {f(u) | u ∈ E(G′λ,Φ(H))}. We will prove that the α-level set of
(G′, f) is equal to the λ-level set of (G′,Φ(H)). Since α is the greatest value in the set
{f(u) | u ∈ E(G′λ,Φ(H))}, we can see that any edge v in the λ-level set of (G′,Φ(H)) also
belongs to the α-level set of (G′, f). Now, we also need to prove that there is no edge u
in the α-level set of (G′, f) such that u is not in the λ-level set of (G′,Φ(H)).

Let u be an edge which is not in the λ-level set of (G′,Φ(H)). Then, Φ(H)(u) > λ

and, for any edge v in the λ-level set of (G′,Φ(H)), we have Φ(H)(u) > Φ(H)(v). Since
the minimum value of λ is zero, we can say that Φ(H)(u) > 0 and, by the hypothesis
2, u is a watershed-cut edge for ≺. Let v be an edge in the λ-level set of (G′,Φ(H)).
Since Φ(H)(u) > Φ(H)(v), if v is a watershed-cut edge for ≺, then v ≺2 u and f(u) >

f(v). Otherwise, if v is not a watershed-cut edge for ≺, by the definition of f , we have
f(v) = 0 and f(u) > f(v). Thus, for any edge v in the λ-level set of (G′,Φ(H)), we have
f(u) > f(v) and, therefore, f(u) > α. Then, u is not in the α-level set of (G′, f).

Therefore, we can conclude that the α-level set of (G′, f) is equal to the λ-level set
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of (G′,Φ(H)). As the partitions of H are given by the set of connected components of
the level sets of (G′,Φ(H)), we can affirm that any partition of H is also a partition of
QFZ(G′, f). Therefore, there is a hierarchical watershed Hw = QFZ(G′, f) of (G′, w)

(resp. (G,w)) such that any partition of H is also a partition of Hw. Then, H is a
flattened hierarchical watershed of (G′, w) (resp. (G,w)).

8.2 Proofs of theorem and properties of Chapter 4

8.2.1 Proof of Property 23

(Property 23). Let ≺ be an altitude ordering for w and let ε be a map from the regions
of B≺ into R. The map ε is an extinction map for ≺ if and only if the following statements
hold true:

• {ε(R) | R is a region of B≺} = {0, . . . , n};

• for any two distinct minima M1 and M2 of w, we have ε(M1) 6= ε(M2); and

• for any region R of B≺, we have that ε(R) is equal to ∨{ε(M) such that M is a
minimum of w included in R}, where ∨{} = 0.

We prove the forward and backward implications of Property 23 in Lemma 78 and
Lemma 79, respectively.

Lemma 78. Let ≺ be an altitude ordering for w and let ε be a map from the regions of
B≺ into R. If the map ε is an extinction map for ≺, then the following statements hold
true:

1. {ε(R) | R is a region of B≺} = {0, . . . , n};

2. for any two distinct minima M1 and M2 of w, we have ε(M1) 6= ε(M2); and

3. for any region R of B≺, we have that ε(R) is equal to ∨{ε(M) such that M is a
minimum of w included in R}, where ∨{} = 0.

Proof. Let ε be an extinction map for ≺. Then, by the definition of extinction maps,
there is a sequence S = (M1, . . . ,Mn) of minima of w such that ε is the extinction map
for (S,≺). We will prove that the statements 1, 2 and 3 hold true for ε.

To prove that the statement 1 holds true, we will first prove that {ε(R) | R is a region
of B≺} ⊆ {0, . . . , n}. Since w has n minima, the extinction value of any region of B≺
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which includes a minimum of w is in the set {1, . . . , n}. On the other hand, for any
region R of B≺ which do not include any minimum of w, we have that ε(R) = 0. Hence,
{ε(R) | R is a region of B≺} ⊆ {0, . . . , n}. We will now prove that {0, . . . , n} ⊆ {ε(R) | R
is a region of B≺}. As B≺ has at least one leaf-region composed of a single vertex of G,
we can affirm that there is at least one region of B≺ which do not include any minimum
of w and whose extinction value for (S,≺) is zero. Then, 0 is in {ε(R) | R is a region
of B≺}. Now, let i be a value in {1, . . . , n}. For the minimum Mi, we may affirm that
Mi is the unique minimum of w included in Mi and, therefore, ε(Mi) = i. Hence, i is
in {ε(R) | R is a region of B≺}. We may conclude that, for any i in {0, . . . , n}, i is in
{ε(R) | R is a region of B≺}. Therefore, the range of ε is {0, . . . , n}, which corresponds
to the statement 1 of Lemma 78.

By the definition of extinction maps, for any minimum Mi, for i in {1, . . . , n}, we
have ε(Mi) = i because Mi is the only minimum of w included in Mi. Therefore, for any
two distinct minima Mi and Mj, for i, j in {1, . . . , n}, we have ε(Mi) = i and ε(Mj) = j

and, consequently, ε(Mi) is different from ε(Mj). Hence, the statement 2 of Lemma 78
holds true for ε.

The statement 3 of Lemma 78 is precisely the definition of extinction values: for any
region R of B≺, the extinction value of R is zero if there is no minimum of w included in
R and, otherwise, it is the maximal i (which is equal to ε(Mi)) such that Mi is included
in R.

Lemma 79. Let ≺ be an altitude ordering for w and let ε be a map from the regions
of B≺ into R such that:

1. {ε(R) | R is a region of B≺} = {0, . . . , n};

2. for any two distinct minima M1 and M2 of w, we have ε(M1) 6= ε(M2); and

3. for any region R of B≺, we have that ε(R) is equal to ∨{ε(M) such that M is a
minimum of w included in R}, where ∨{} = 0.

Then the map ε is an extinction map for ≺.

Proof. To prove that ε is an extinction map for ≺, we will show that there exists a
sequence S = (M1, . . . ,Mn) of minima of w such that, for any region R of B≺, the
value ε(R) is the extinction value of R for (S,≺).

Let S = (M1, . . . ,Mn) be a sequence of minima of w ordered in non-decreasing order
for ε, i.e., for any two distinct minimaMi andMj, with i, j in {1, . . . , n}, if ε(Mi) < ε(Mj)

then i < j.
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By the hypothesis 2, this sequence S is unique. By the hypothesis 3, for any region R
of B such that there is no minimum of w included in R, ε(R) = ∨{} = 0, so ε(R) is the
extinction value of R for ≺ and S.

Since w has n minima, for any minimum M of w, the value ε(M) is in {1, . . . , n}.
Otherwise, by contradiction, let us assume that there exists a minimum M ′ of w such
that ε(M ′) = 0. Then, there is a value i in {1, . . . , n} such that, for any minimum M ′′

of w, the value ε(M ′′) is different from i. Consequently, by the hypothesis 3, the range
of ε would be {0, . . . , n} \ {i}, which contradicts the hypothesis 1. Therefore, for any
minimumMi of w, for i in {1, . . . , n}, as our assumption that ε(Mi) < ε(Mj) implies that
i < j, we have that ε(Mi) = i. Thus, ε(Mi) is the extinction value of Mi for ≺ and S.

It follows that, by the hypothesis 3, for any region R of B≺ such that there is a
minimum of w included in R, the value ε(R) is the maximum value i (which is equal to
ε(Mi)) in {1, . . . , n} such that Mi is included in R.

Thus, for any region R of B≺, the value ε(R) is the extinction value of R for (S,≺).
Therefore, the map ε is an extinction map for ≺.

8.2.2 Proof of Property 24

(Property 24). Let H be a hierarchy on V . The hierarchy H is a hierarchical watershed
of (G,w) if and only if there exists an altitude ordering ≺ for w and an extinction map ε
for ≺ such that:

1. (V,E≺) is a MST of (G,Φ(H)); and

2. for any edge u in E≺, the value Φ(H)(u) is equal to min{ε(R) such that R is a child
of Ru}.

To prove Property 24, we first present some auxiliary lemmas. From the results
established in [74], we can state the following lemma.

Lemma 80. Let B be a binary partition hierarchy of (G,w). Then, any minimum of w
is a region of B.

Lemma 81. Let ≺ be an altitude ordering on the edges of G for w, let S = (M1, . . . ,Mn)

be a sequence of minima of w and let ρ be the persistence map for (S,≺). The range of
ρ is {0, . . . , n− 1}.

Proof. Let ε be the extinction map for (S,≺). We will prove that (1) for any building
edge u for ≺, ρ(u) is in {0, . . . , n− 1}, and that, (2) for any i in {0, . . . , n− 1}, there is
a building edge u for ≺ such that ρ(u) = i.
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1. {0, . . . , n− 1} ⊆ range(ρ). First, we prove that 0 is in range(ρ). By Property 23,
there is a region X of B≺ whose extinction value is zero. Therefore, the persistence
value of the building edge u of the parent of X is equal to zero: ρ(u) = 0. Now,
we will prove that any i in {1, . . . , n − 1} is in range(ρ). Let i be a value in
{1, . . . , n− 1}. By Lemma 80, the minimum Mi is a region of B≺. Then, there is a
region of B≺ whose extinction value is i. Let X be the largest region of B≺ whose
extinction value is i. We can say that X 6= V because Mn is included in V and,
therefore, ε(V ) = n. Let Z be the parent of X. We can infer that the extinction
value ε(Z) of Z is strictly greater than i. Therefore, there is a minimum Mj with
j > i included in the sibling of X. Hence, the extinction value of sibling(X) is also
strictly greater than i. Then, the persistence value of the building edge of Z, being
the minimum of the extinction value of its children, is i.

2. range(ρ) ⊆ {0, . . . , n − 1}. Let u be an edge in E≺. By Property 23 (statement
1), and as the persistence value of u is equal to the extinction value of a child of
Ru, we have that ρ(u) is in {0, . . . , n}. Moreover, the persistence value ρ(u) of u
is lower than n because, if the extinction value of one child X of Ru is n, then the
minimumMn is included in X and Mn is not included in sibling(X), which implies
that the extinction value of sibling(X) is strictly lower than n. Therefore, since
ρ(u) = min{ε(X), ε(sibling(X))}, the persistence value of u is strictly lower than
n. Thus, we have that range(ρ) ⊆ {0, . . . , n− 1}.

Lemma 82. Let ≺ be an altitude ordering for w, let S = (M1, . . . ,Mn) be a sequence of
minima of w and let ρ be the persistence map for (S,≺). Let H be the hierarchy induced
by ≺ and S. For any edge u in E≺, we have Φ(H)(u) = ρ(u).

Proof. By Definition 5, the hierarchy H is the sequence (CC(V,B0), . . . , CC(V,Bn−1))

such that, for any i in {0, . . . , n−1}, Bi is the set of building edges for≺ whose persistence
values are lower than or equal to i. Let u = {x, y} be a building edge for ≺ and let i be
the persistence value of u. We can say that x and y are in the same region of CC(V,Bi)

but in distinct regions of CC(V,Bi−1) if i 6= 0. Therefore, since CC(V,Bi) is the i-th
partition of H, by the definition of saliency maps, we have Φ(H)(u) = i.

The following lemma, established in [25], links MSTs and QFZ hierarchies.

Lemma 83 (Theorem 4 of [25]). A subgraph G′ of G is a MST of (G,w) if and only if:

1. the QFZ hierarchy of G′ and G are the same; and
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2. the graph G′ is minimal for statement 1, i.e., for any subgraph G′′ of G′, if the
quasi-flat zone hierarchy of G′′ for w is the one of G for w, then we have G′′ = G′.

Lemma 84. Let ≺ be an altitude ordering for w and let S = (M1, . . . ,Mn) be a sequence
of minima of w. Let H be the hierarchy induced by ≺ and S. Then (V,E≺) is a MST of
(G,Φ(H)).

Proof. Let α denote the sum of the weight of the edges in E≺ in the map Φ(H): α =∑
e∈E≺ Φ(H)(e). Let ρ be the persistence map for (S,≺). By Lemma 82, we can affirm

that, for any edge u in E≺, we have Φ(H)(u) = ρ(u). Hence, we have α =
∑

e∈E≺ ρ(e).
We will first prove that α is precisely 0 + 1 + · · ·+ n− 1. We know that, for any edge u
in E≺:

1. if u is a watershed-cut edge for ≺, then each child of Ru contains at least one
minimum of w. Therefore, the extinction values of both children of Ru is non-zero,
and, consequently, the persistence value ρ(u) of u is non-zero.

2. otherwise, if u is not a watershed-cut edge for ≺, then there exists a child X of Ru

such that there is no minimum of w included in X. Therefore, the extinction value
of X is zero. Since the extinction value of sibling(X) is at least zero by Lemma
78 ( statement 1), the persistence value ρ(u) of u, being the minimum between the
extinction values of X and sibling(X), is also zero.

Hence, since there are n−1 watershed-cut edges for ≺, and since only the watershed-
cut edges for ≺ have non-zero persistence values, we can conclude that, for any i in
{1, . . . , n − 1}, there is exactly one edge u in E≺ such that ρ(u) = i. Hence, α =∑

e∈E≺ ρ(e) = 0 + 1 + · · ·+ n− 1.
Now, in order to prove that (V,E≺) is a MST of (G,Φ(H)), we will prove that, for

any MST G′ of (G,Φ(H)), the sum of the weight of the edges in G′ is greater than
or equal to α. Let G′ be a MST of (G,Φ(H)). As G′ is a MST of (G,Φ(H)), by
the condition 1 of Lemma 83, we have that G and G′ have the same quasi-flat zones
hierarchies: QFZ(G,Φ(H)) = QFZ(G′,Φ(H)). As Φ(H) is the saliency map of H, we
have that H = QFZ(G,Φ(H)). Therefore, H = QFZ(G′,Φ(H)). Let i be a value in
{1, . . . , n−1}. Since

∑
e∈E≺ Φ(H)(e) = 0+1+· · ·+n−1, we can say that {1, . . . , n−1} is

a subset of the range of Φ(H). Therefore, H is composed of at least n distinct partitions.
Let H be the sequence (P0, . . . ,Pn−1, . . . ). Since the partitions Pi and Pi−1 are distinct,
then there exists a region in Pi which is not in Pi−1. Therefore, there is a region X of Pi

which is composed of several regions {R1, R2, . . . } of Pi−1. Then, there are two adjacent
vertices x and y such that x and y are in distinct regions in {R1, R2, . . . }. Let x and y be
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two adjacent vertices such that x and y are in distinct regions in {R1, R2, . . . }. Hence,
the lowest j such that x and y belong to the same region of Pj is i. Thus, there exists
an edge u = {x, y} in E≺ such that Φ(H)(u) = i. Hence, the sum of the weight of the
edges of G′ is at least 1 + · · ·+ n− 1, which is equal to α. Therefore, the graph (V,E≺)

is a MST of (G,Φ(H)).

Proof of Property 24. We first prove the forward implication of this property. Let H be
a hierarchical watershed of (G,w). Then there is a sequence S of minima of w such that
H is the hierarchical watershed of (G,w) for S. Let S be the sequence of minima of
w such that H is the hierarchical watershed of (G,w) for S. By Property 6, there is
an altitude ordering ≺ such that H is the hierarchy induced by ≺ and S. Let ≺ be an
altitude ordering such that H is the hierarchy induced by ≺ and S. Then, by Lemma 84,
(V,E≺) is a MST of (G,Φ(H)). We will now prove the second statement of Property 24.
By Lemma 82, for any edge u in E≺, Φ(H)(u) is equal to the persistence value ρ(u) of u
for (S,≺). By the definition of persistence values, for edge u in E≺, the persistence value
of u for (S,≺) is the minimum extinction value of the children of Ru. Therefore, we can
conclude that, for edge u in E≺, Φ(H)(u) = min{ε(R) such that R is a child of Ru},
where ε is the extinction map for (S,≺). Hence, there exists an extinction map ε such
that, for edge u in E≺, Φ(H)(u) = min{ε(R) such that R is a child of Ru}.

We will now prove the backward implication of Property 24. Let H be a hierarchy
on V such that there exists an altitude ordering ≺ for w and an extinction map ε for ≺
such that:

1. (V,E≺) is a MST of (G,Φ(H)); and

2. for any edge u in E≺, we have: Φ(H)(u) = min{ε(R) such that R is a child of Ru}.

Let G′ denote the graph (V,E≺). By Lemma 83 (statement 1), as G′ is a MST
of (G,Φ(H)), we have that G′ and G have the same quasi-flat zones hierarchies (for
Φ(H)): QFZ(G′,Φ(H)) = QFZ(G,Φ(H)). Let ρ be the persistence map for (S,≺).
By the definition of persistence values, we can affirm that, for any edge u in E≺,
we have Φ(H)(u) = ρ(u). Hence, we can say that QFZ(G′,Φ(H)) = QFZ(G′, ρ)).
Let H′ be the hierarchy induced by ≺ and S. By Lemma 84, G′ is a MST of
(G,Φ(H′)). Hence, by Lemma 83, G′ and G have the same quasi-flat zones hierar-
chies (for Φ(H′)): QFZ(G′,Φ(H′)) = QFZ(G,Φ(H′)). By Lemma 82, for edge u in
E≺, we have Φ(H′)(u) = ρ(u), which is equal to Φ(H)(u) as stated previously. Thus,
QFZ(G′,Φ(H′)) = QFZ(G′,Φ(H)) and, consequently, H and H′ are equal. By Prop-
erty 6, H′ is a hierarchical watershed of (G,w). Therefore, H is a hierarchical watershed
of (G,w).
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8.2.3 Proof of Theorem 28

(Theorem 28). Let f be a map from E into R, let ≺ be a lexicographic ordering
for (w, f), and let ξ be the approximated extinction map for (f,≺). The map f is the
saliency map of a hierarchical watershed of (G,w) if and only if the map ξ is an extinction
map for ≺.

In order to prove Theorem 28, we establish lemmas 85 and 94.

Lemma 85. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that f is one-side increasing for ≺. The approximated extinction map for (f,≺) is an
extinction map for ≺.

In order to prove Lemma 85, we prove in Lemmas 87, 88 and 92 that the three
conditions of Property 23 for ξ to be an extinction map are satisfied. We first establish
the following auxiliary lemma.

Lemma 86. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that f is one-side increasing for ≺. Then, the two following statements hold true:

1. the set {f(e) | e is a watershed− cut edge for ≺} is equal to {1, . . . , n− 1}; and

2. for any two distinct watershed-cut edges u and v for B, we have f(u) 6= f(v).

Proof. By the Definition 18 (statement 1), we have {f(u) | u ∈ E≺} = {0, . . . , n − 1}
and, by Definition 18 (statement 2), only the weight of the watershed-cut edges for ≺
are strictly greater than zero. Then, {f(e) | e is a watershed − cut edge for ≺} =

{1, . . . , n− 1}. Hence, for any i in {1, . . . , n− 1}, there is a watershed-cut edge e for ≺
such that f(e) = i. Moreover, as there are n− 1 watershed-cut edges for ≺, for any two
distinct watershed-cut edges u and v for ≺, we have f(u) 6= f(v).

Lemma 87. Let ≺ be an altitude ordering for w, let f be a map from E into R such that
f is one-side increasing for ≺, and let ξ be the approximated extinction map for (f,≺).
The range of ξ is {0, . . . , n}.

Proof. We will prove that: (1) for any i in {0, . . . , n}, there is a region R of B≺ such that
ξ(R) = i; and (2) for any region R of B≺, we have ξ(R) in {0, . . . , n}.

(1) We first prove statement (1). We start by proving that there is a region R of B≺
such that ξ(R) = n. Let R be the set V of vertices of G. Then, by Definition
27 (statement 1), we have ξ(R) = k + 1, where k is the supremum descendant
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value of R for (f,≺). By Definition 18 (statement 1), we have {f(u) | u ∈ E≺} =

{0, . . . , n− 1}. As k = ∨{f(u) | Ru ⊆ V } = ∨{0, . . . , n− 1} = n− 1, we have that
ξ(R) = n− 1 + 1 = n.

We will now show that there is a region R of B≺ such that ξ(R) = 0. Let R be
a region of B≺ such that there is no minimum of w included in R. Then R is not
a minimum of w and, consequently, the building edge of the parent of R is not a
watershed-cut edge for ≺. Let u be building edge of the parent of R. Since there
is no minimum of w included in R, by Definition 26, R is not a dominant region
for (f,≺). By the statement 3 of the definition of approximated extinction maps
(Definition 27), we have ξ(R) = f(u). Since f is a one-side increasing map and
since u is not a watershed-cut edge for ≺, we have f(u) = 0. Therefore, we have
ξ(R) = f(u) = 0.

Finally, we will prove that, for any i in {1, . . . , n − 1}, there is a region R of B≺
such that ξ(R) = i. By Lemma 86, we can say that, for any i in {1, . . . , n − 1},
there is a watershed-cut u edge for ≺ such that f(u) = i. Let u be a watershed-cut
edge for ≺ and let X and Y be the children of Ru. Since u is a watershed-cut edge
for ≺, both X and Y contain at least a minimum of w and, then, neither X nor
Y are leaf regions of B≺. Let � be the non-leaf ordering for (f,≺). Since � is a
total ordering, we have either X � Y or Y � X. Then, exactly one child of Ru

is a dominant region for (f,≺). Let Y be the child of Ru which is not a dominant
region for (f,≺). By Definition 27 (statement 3), we have ξ(Y ) = f(u). Therefore,
for any i in {1, . . . , n−1}, there is a watershed-cut edge u for ≺ such that f(u) = i

and such that there is a child Z of Ru such that ξ(Z) = i.

(2) We will now prove the statement (2). Let R be a region of B≺. If R = V , then
ξ(R) = n, as established in the proof of statement (1). Otherwise, let v be the
building edge of the parent of R. By Definition 27, the value ξf (R) is either f(v)

or ξ(parent(R)). Hence, either ξf (R) is equal to f(v) for a building edge v for
≺, or ξf (R) is equal to ξ(V ) = n. It is enough to prove that n and f(v) are in
{0, . . . , n}. As f is one-side increasing for ≺, by Definition 18 (statement 1), we
have {f(u) | u ∈ E≺} = {0, . . . , n − 1}. Since v is a building edge for ≺, we may
say that f(v) is in {0, . . . , n− 1}.

Lemma 88. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that f is one-side increasing for ≺. Let ξ be the approximated extinction map for (f,≺).
For any two minima M1 and M2 of w, if ξ(M1) = ξ(M2), then M1 = M2.
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To prove Lemma 88, we first present the Lemmas 89, 90 and 91. In the following, for
any non-leaf region X of a binary partition hierarchy B of (G,w), we denote by uX the
building edge of X.

Lemma 89. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that f is one-side increasing for ≺. Let ξ be the approximated extinction map for (f,≺).
For any region X of B≺ such that there is a minimum M of w such that M ⊂ X, there
is a child Y of X such that:

1. ξ(Y ) = ξ(X);

2. ξ(sibling(Y )) = f(uX); and

3. there is a minimum of w included in Y .

Proof. Let X be a region such that there is a minimumM of w such thatM ⊂ X. Then,
there is a child Z of X such that there is a minimum M such that M ⊆ Z. Let Z be a
child X such that there is a minimum M such that M ⊆ Z. We consider two cases: (1)
sibling(Z) is a leaf-region of B≺; and (2) sibling(Z) is a non-leaf region of B≺.

(1) If sibling(Z) is a leaf-region of B≺, then, by Definition 26, Z is a dominant region
for (f,≺) and sibling(Z) is not a dominant region for (f,≺). Hence, by Definition
27, ξ(Z) = ξ(X) and ξ(sibling(Z)) = f(uX).

(2) Let us now assume that sibling(Z) is a non-leaf region of B≺. Since X is not a
minimum of w and since there is a minimum of w included in Z, we can conclude
that there is a minimum of w included in sibling(Z) as well. Let� be the non-leaf
ordering for (f,≺). As the non-leaf ordering � is a total ordering on the non-leaf
regions of B≺, we have either Z � sibling(Z) or sibling(Z) � Z. Then, by the
definition of dominant regions (Definition 26), we have that either Z or sibling(Z)

is a dominant region for (f,≺). Let us assume that Z is a dominant region for
(f,≺). Then, by Definition 27, we have ξ(Z) = ξ(X) and ξ(sibling(Z)) = f(uX).
Otherwise, if sibling(Z) is a dominant region for (f,≺), we have ξ(sibling(Z)) =

ξ(X) and ξ(Z) = f(uX). Since both Z and sibling(Z) include at least one minimum
of w, we may say that there is a child Y of X for which the hypothesis 1, 2 and 3
hold true.
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Lemma 90. Let ≺ be an altitude ordering for w and let f be a map from E into R
such that f is one-side increasing for ≺. Let ξ be the approximated extinction map for
(f,≺). Let u be a watershed-cut edge for ≺. Then, there is a minimum M of w such
that ξ(M) = f(u).

Proof. As u is a watershed-cut edge for ≺, each child of Ru includes at least one minimum
of w. Then, there is a minimum M of w such that M ⊂ Ru. By Lemma 89, there is a
child Y1 of Ru such that ξ(Y1) = f(u). If Y1 is a minimum of w, then the property holds
true. Otherwise, if Y1 is not a minimum of w, it means that there is a minimum M of w
such thatM ⊂ Y1. By Lemma 89, there is a child Y2 of Y1 such that ξ(Y2) = ξ(Y1) = f(u)

and such that there is a minimum of w included in Y2. Again, if Y2 is a minimum of w,
then the property holds true. Otherwise, we can apply this same reasoning indefinitely.
We can define a sequence (Y1, . . . , Yp) of regions of B≺ where Yp is a minimum of w and
such that ξ(Yp) = · · · = ξ(Y1) = f(u) and Yi ⊂ Yi−1 for any i in {2, . . . , p}. Therefore,
there is a minimum Yp included in Ru such that ξ(Yp) = f(u).

Lemma 91. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that f is one-side increasing for ≺. Let ξ be the approximated extinction map for (f,≺).
Let X be a region of B≺ such that X contains at least one minimum of w. There exists
a minimum M ⊆ X such that ξ(M) = ξ(X).

Proof. If X is a minimum of w, then it is trivial. Otherwise, by Lemma 89, there
is a child Y1 of X such that ξ(Y1) = ξ(X) and such that there is a minimum of w
included in Y1. If Y1 is a minimum of w, then the property holds true. Otherwise, by
Lemma 89, there is a child Y2 of Y1 such that ξ(Y2) = ξ(Y1) = ξ(X) and such that
there is a minimum of w included in Y2. Again, if Y2 is a minimum of w, then the
property holds true. Otherwise, we can apply this same reasoning indefinitely. We can
define a sequence (Y1, . . . , Yp) of regions of B≺ where Yp is a minimum of w and such
that ξ(Yp) = · · · = ξ(Y1) = ξ(X) and Yi ⊂ Yi−1 for any i in {2, . . . , p}. Therefore, there
is a minimum Yp included in X such that ξ(Yp) = ξ(Y ).

Proof of Lemma 88. In order to prove that

(1) for any two minima M1 and M2 of w, if ξ(M1) = ξ(M2), then M1 = M2,

we will prove that

(2) for any two minima M1 and M2 of w, we have ξ(M1) 6= ξ(M2).
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As w has nminima, it suffices to prove that, for any i in {1, . . . , n}, there is a minimum
M of w such that ξ(M) = i.

By Lemma 90, for any watershed-cut edge u for B≺, there is a minimum M such
that ξ(M) = f(u). By Lemma 86, for any i in {1, . . . , n − 1}, there is a watershed-cut
edge such that f(u) = i. Then, for any i in {1, . . . , n− 1}, there is a minimum M of w
such that ξ(M) = i.

Since, f is one-side increasing for ≺, we have ∨{f(v) | Rv ∈ V } = {0, . . . , n − 1}.
Then, we can conclude that ξ(V ) = ∨{f(v) | Rv ∈ V } + 1 = (n − 1) + 1 = n. By
Lemma 91, there is a minimum M of w such that ξ(M) = ξ(V ) = n.

Therefore, for any i in {1, . . . , n}, there is a minimum M of w such that ξ(M) = i.
Since w has n minima, it implies that the values ξ(M1) and ξ(M2) are distinct for any
pair (M1,M2) of distinct minima of w. Hence, for any two minima M1 and M2 of w,
if ξ(M1) = ξ(M2), then M1 = M2.

Lemma 92. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that f is one-side increasing for ≺. Let ξ be the approximated extinction map for (f,≺).
For any region R of B≺, we have ξf (R) = ∨{ξf (M) such that M is a minimum of w
included in R}.

To prove Lemma 92, we introduce Lemma 93.

Lemma 93. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that f is one-side increasing for ≺. Let ξ be the approximated extinction map for (f,≺).
Let X be a region of B≺. Then ξ(X) is greater than or equal to the supremum descendant
value of X (for (f,≺)).

Proof. Let 5 be a map from each region of B≺ into its supremum descendant value for
(f,≺). We consider the following cases: (1) X = V , (2) X 6= V and X is not a dominant
region for (f,≺); and (3) X is a dominant region for (f,≺). Let � be the non-leaf
ordering for (f,≺).

1. If X = V , then ξ(X) = ξ(V ) = k+1, where k is the supremum descendant value of
X for (f,≺) (first case of Definition 27). Then, ξ(X) is clearly than the supremum
descendant value of X.

2. If X 6= V and if X is not a dominant region for (f,≺), then ξ(X) = f(u) (third
case of Definition 27), where u is the building edge of the parent of X. By the
definition of dominant regions, we consider two cases: (a) there is no minimum M

of w such that M ⊆ X; or (b) X � sibling(X).



XXXVIII Appendix: proofs of theorems and properties

(a) If there is no minimumM of w such thatM ⊆ X, then there is no descendant
of X whose building edge is a watershed-cut edge for ≺. Hence, for any edge v
such that Rv ⊆ X, u is not a watershed-cut edge for ≺ and, since f is one-side
increasing for ≺, we have f(v) = 0 Definition 18 (statement 2). Therefore,
the supremum descendant value of X is zero. By Definition 18 (statement 1),
we have {f(v) | v ∈ E≺} = {0, . . . , n− 1}. Hence, ξ(X), being equal to f(u),
is greater than or equal to the supremum descendant value of X.

(b) If X � sibling(X), then, by the definition of non-leaf ordering, we have:

i. either 5(X) < 5(sibling(X)); or

ii. 5(X) = 5(sibling(X)) and uX ≺ usibling(X).

Thus, we have 5(X) ≤ 5(sibling(X)). Since f is one-side increasing for ≺,
by the statement 3 of Definition 18, there is a child Y of parent(X) such that
f(u) ≥ ∨{f(v) | Rv ⊆ Y }. Hence, there is a child Y of parent(X) such that
f(u) ≥ 5(Y ). Then, we have f(u) ≥ 5(X) or f(u) ≥ 5(sibling(X)). In
the case where f(u) ≥ 5(sibling(X)), this also implies that f(u) ≥ 5(X)

because 5(X) ≤ 5(sibling(X)). Therefore, ξ(X), being equal to f(u), is
greater than or equal to 5(X).

3. If X is a dominant region for (f,≺), then ξ(X) = ξ(parent(X)) (second case of
Definition 27). We will prove by induction that this lemma holds true for any
dominant region for (f,≺). In the base step, we consider that parent(X) is V . In
the inductive step, we show that, if the property holds true for parent(X), then it
also holds true for X. Please note that, if parent(X) is not a dominant region for
(f,≺), the property holds for parent(X) as proven in the previous case.

(a) Base step: if parent(X) is V , then ξ(X) = ξ(V ) = 5(V ) + 1 (first case of
Definition 27). We can see that 5(V ) ≥ 5(X) because, for any edge u such
that Ru ⊆ X, we also have Ru ⊆ V . Then, ξ(X), being equal to 5(V ) + 1, is
greater than 5(X).

(b) Inductive step: let us assume that ξ(parent(X)) ≥ 5(parent(X)). Since
ξ(X) = ξ(parent(X)), we have ξ(X) ≥ 5(parent(X)). We can affirm that,
for any edge v in E≺ such that Rv ⊆ X, we also have Rv ⊆ parent(X). Hence,
5(parent(X)) ≥ 5(X). Therefore, ξ(X), being equal to ξ(parent(X)), is
greater than or equal to 5(X).
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Proof of Lemma 92. We will prove that, for any region X of B≺, we have ξ(X) =

∨{ξf (M) such that M is a minimum of w included in X}. Let X be a region of B≺.
We consider two cases: (1) there is a minimum of w included in X; and (2) there is no
minimum of w included in X.

(1) If there is no minimum of w included in X, then X is not a dominant region for
(f,≺). Then ξ(X) = f(u) (third condition of Definition 27), where u is the building
edge of parent(X). The edge u is not a watershed-cut edge for ≺ because the child
X of Ru does not include any minimum of w. Hence, since f is one-side increasing
for ≺, by the statement 2 of Definition 18, we have f(u) = 0. Therefore, ξ(X),
being equal to f(u), is also equal to ∨{ξ(M) such that M is a minimum of w
included in R} = ∨{} = 0.

(2) Let us assume that there is at least one minimum of w included in X. If X is a
minimum of w, then ξ(X) = ∨{ξf (M) such that M is a minimum of w included
in X} = ∨{ξf (X)}.

In order to prove the case where X is not a minimum of w, we will first demonstrate
that ξ(X) ≥ ∨{ξ(Y ) | Y ⊆ X}.

To prove that ξ(X) ≥ ∨{ξ(Y ) | Y ⊆ X}, it is enough to demonstrate that, for any
region Z of B≺, we have ξ(Z) ≥ ∨{ξ(Y ) | Y is a child of Z}. Let Z be a region of
B≺. If Z is a leaf region of B≺, then ξ(Z) ≥ ∨{ξ(Y ) | Y is a child of Z} = ∨{} = 0

because, by Lemma 87, ξ(Z) is in {0, . . . , n}. Let us now assume that Z is not a leaf
region of B≺ and let Y be a child of Z. If Y is a dominant region for (f,≺), then
ξ(Y ) = ξ(Z) and, consequently, ξ(Z) ≥ ξ(Y ). Otherwise, if Y is not a dominant
region for (f,≺), then ξ(Y ) = f(v), where v is the building edge of Z. By Lemma
93, ξ(Z) ≥ 5(Z) and, consequently, ξ(Z) ≥ f(u). Hence, ξ(Z) ≥ ξ(Y ).

We can now prove that ξ(X) = ∨{ξf (M) such that M is a minimum of w included
in X} in the case where X is not a minimum of w. By Lemma 91, there is a
minimum M of w such that M ⊂ X and such that ξ(M) = ξ(X). Let M be the
minimum of w such that ξ(M) = ξ(X). Since ξ(X) ≥ ∨{ξ(Y ) | Y ⊆ X}, we can
say that ξ(X) = ∨{ξf (M ′) such that M ′ is a minimum of w included in X}.

Lemma 94. Let ≺ be an altitude ordering for w and let f be a map from E into R such
that the approximated extinction map for (f,≺) is an extinction map for ≺. Then, f is
one-side increasing for ≺.
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To prove Lemma 94, we will prove that the three conditions of Definition 18 for f to
be one-side increasing for ≺ hold true. Those conditions are proven in properties 95, 96
and 97.

Property 95. Let ≺ be an altitude ordering for w and let f be a map from E into R.
Let ξ be the approximated extinction map for (f,≺) such that ξ is an extinction map.
Then {f(u) | u ∈ E≺} = {0, . . . , n− 1}.

Proof. We need to prove that:

1. for any i in {0, . . . , n− 1}, there is an edge u in E≺ such that f(u) = i; and

2. for any edge u in E≺, we have f(u) in {0, . . . , n− 1}.

Proof of 1:
For i = 0: Since ξ is an extinction map for ≺, by Property 23 (statement 3), for any

leaf region R of B≺, we have ξ(R) = ∨{ξ(M) such that M is a minimum of w included
in R} = 0. Let R be a leaf region. Then, by Definition 26, R is not a dominant region
for (f,≺). Hence, ξ(R) = f(u), where u is the building edge of the parent of R, and,
since ξ(R) = 0, this implies that there exists an edge u in E such that f(u) = 0.

For i in {1, . . . , n− 1}: as ξ is an extinction map, by Property 23 (statement 1), we
have {ξ(R) | R is a region of B≺} = {0, . . . , n}. Then, for any i in {1, . . . , n− 1} there
is a region R of B≺ such that ξ(R) = i. Let i be any value in {1, . . . , n − 1} and let R
be a region of B≺ such that ξ(R) = i. If R is not a dominant region for (f,≺), then
ξ(R) = f(u), where u is the building edge of the parent of R and, then, we can affirm
that there exists an edge in E≺ whose weight for f is i. Otherwise, if R is a dominant
region for (f,≺), then ξ(R) = ξ(parent(R)). If parent(R) is not a dominant region for
(f,≺), then ξ(parent(R)) = ξ(v), where v is the building edge of the parent of parent(R)

and we have our property. Otherwise, if parent(R) is a dominant region for (f,≺), then
ξ(parent(R)) = ξ(parent(parent(R))). We can see that, at some point, we will have
ξ(R) = ξ(parent . . . (parent(R)))) = f(y) for an edge y in E≺. Therefore, there is an
edge in E≺ whose weight for f is i.

Proof of 2: By contradiction, let us assume that there is an edge u in E≺ such that
f(u) is not in {0, . . . , n − 1}. We can affirm that any non leaf region of B≺ has a child
which is not a dominant region for (f,≺). So, we can affirm that there is a child X of
Ru such that ξ(X) = f(u). Since ξ is an extinction map, by Property 23 (statement
1), we have {ξ(R) | R is a region of B≺} = {0, . . . , n}. Then, ξ(X) = f(u) should
be in {0, . . . , n} as well. Therefore, the only value that f(u) could take and that is not
in {0, . . . , n − 1} is n. So, let us assume that f(u) = n. In this case, the supremum
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descendant value of V for (f,≺) would be n and, consequently, ξ(V ) would be n + 1,
which contradicts the fact that {ξ(R) | R is a region of B≺} = {0, . . . , n}. Therefore,
we may conclude that, for any edge u in E≺, we have f(u) in {0, . . . , n− 1}.

Property 96. Let ≺ be an altitude ordering for w and let f be a map from E into R.
Let ξ be the approximated extinction map for (f,≺) such that ξ is an extinction map.
Then, for any edge u in E≺, the weight f(u) is greater than zero if and only if u is a
watershed-cut edge for ≺.

Proof. Let u be an edge in E≺. If u is a watershed-cut edge for ≺, then there is at least
one minimum of w included in each child of Ru. Hence, by Property 23, the value of
each child of Ru in ξ is greater than zero. As there is at most one child of Ru that is
a dominant region for (f,≺), then there is a child of Ru that is not a dominant region
for (f,≺). Let X be a child of Ru that is not a dominant region for (f,≺). Then, by
Definition 27, ξ(X) = f(u). Therefore, since ξ(X) is greater than zero, we have that
f(u) is greater than zero.

Now, let us assume that u is not a watershed-cut edge for ≺. Hence, there is a child
X of Ru that do not include any minimum of w. Let X be a child of Ru that do not
include any minimum of w. Then, by Definition 26, X is not a dominant region for (f,≺).
Hence, by Definition 27, ξ(X) = f(u). Since ξ is an extinction map and since there is no
minimum of w included in X, we can affirm that ξ(X) = 0. Therefore, f(u) = 0.

Property 97. Let ≺ be an altitude ordering for w and let f be a map from E into R.
Let 5 be a map from each region of B≺ into its supremum descendant value (for (f,≺)).
Let ξ be the approximated extinction map for (f,≺) such that ξ is an extinction map.
Then, for any u in E≺, there exists a child R of Ru such that f(u) is greater or equal to
the supremum descendant value 5(R).

In order to prove Property 97, we first present properties 98 and 99.

Property 98. Let ≺ be an altitude ordering for w and let f be a map from E into R.
Let ξ be the approximated extinction map for (f,≺) such that ξ is an extinction map.
Then, for any region R of B≺, ξ(R) ≥ ∨{ξ(X) | X ⊆ R}.

Proof. Direct result of the statement 3 of Property 23.

Property 99. Let ≺ be an altitude ordering for w and let f be a map from E into R.
Let ξ be the approximated extinction map for (f,≺) such that ξ is an extinction map for
≺. Then, for any edge u in E≺, we have ξ(Ru) ≥ f(u).
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Proof. Let u be an edge in E≺. There is a child of Ru that is not a dominant region
for (f,≺). Let X be a child of Ru that is not a dominant region for (f,≺). Then,
ξ(X) = f(u). By Property 98, we have that ξ(Ru) ≥ ξ(X). Hence, ξ(Ru) ≥ f(u).

Proof of Property 97. Let u be an edge in E≺. By Property 98, we have ξ(Ru) ≥ {ξ(X) |
X ⊆ Ru}. Then, by Property 99, we have ξ(Ru) ≥ {f(v) | v is the building edge of a
region X ⊆ R}. At most one of the children of Ru is a dominant region for (f,≺). Let R
be a child of Ru that is not a dominant region for (f,≺). As R is not a dominant region
for (f,≺), then ξ(R) = f(u). So, we will have f(u) ≥ {f(v) | v is the building edge of
X ⊆ R}. Therefore, there exists a child R of Ru such that f(u) is greater or equal to the
supremum descendant value 5(R).

Proof of Theorem 28. Let f be a map from E into R, let ≺ be a lexicographic ordering
for (w, f), and let ξ be the approximated extinction map for (f,≺). The map f is the
saliency map of a hierarchical watershed of (G,w) if and only if the map ξ is an extinction
map for ≺.

Forward implication: Let f be the saliency map of a hierarchical watershed of (G,w).
Then, by Theorem 20, f is one side increasing for the lexicographic ordering ≺ for (w, f).
Thus, by Lemma 85, ξ is an extinction map for ≺.

Backward implication: Let ξ be an extinction map for ≺. Then, by Property 94, f is
one-side increasing for ≺. Hence, by Theorem 20, f is the saliency map of a hierarchical
watershed of (G,w).

8.2.4 Proof of Property 30

(Property 30). Let f be a map from E into R, let ≺ be a lexicographic ordering
for (w, f), and let S be the estimated sequence of minima for (f,≺). If f is the saliency
map of a hierarchical watershed of (G,w), then f is the saliency map of a hierarchical
watershed of (G,w) for S.

To prove Property 30, we first establish the following auxiliary property.

Property 100. Let f be a map from E into R and let ≺ be an altitude ordering for w.
Let ξ be the approximated extinction map for (f,≺), and let S be the estimated sequence
of minima for (f,≺). If ξ is an extinction map for ≺, then ξ is the extinction map for
S and ≺.
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Proof. Let ξ be an extinction map for≺. Then, there exists a sequence S ′ = (M1, . . . ,Mn)

of minima of w such that ξ is the extinction map for S ′ and ≺. By the definition of
extinction maps, for any i in {1, . . . , n}, ξ(Mi) = i. Hence, for any i in {2, . . . , n},
ξ(Mi) > ξ(Mi−1). Therefore, S ′ is a sequence of minima ordered according to their
extinction values in ξ. Therefore, S ′ corresponds to the estimated sequence of minima
for f and ≺′: S. Thus, ξ is the extinction map for S and ≺.

Proof of Property 30. Let f be the saliency map of a hierarchical watershed of (G,w).
Let ξ be the approximated extinction map for (f,≺). Then, by Theorem 28, ξ is an
extinction map. By Property 99, for any u in E≺, we have ξ(Ru) ≥ f(u). Hence, for
any u in E≺, we have f(u) = min{ξ(Ru), f(u)}. By the definition of approximated
extinction maps (Definition 27), we can conclude that, for any child X of R(u), we have
either ξ(X) = ξ(Ru) or ξ(X) = f(u). Hence, f(u) = min{ξ(R) | R is a child of Ru}.
By Property 100, ξ is the extinction map for S and ≺. Hence, f maps any building
edge u for ≺ into its persistence value for (S,≺). Therefore, f is the saliency map of a
hierarchical watershed for S (see discussion in Section 2.6.1).

8.2.5 Proof of Theorem 33

(Theorem 33). Let H be a hierarchy, let f be the saliency map of H and let ≺ be a
lexicographic ordering for (w, f). The following statements hold true:

1. The hierarchy H is a hierarchical watershed of (G,w) if and only if the watershed-
ing ω(f) of f (for ≺) is equal to f .

2. The watersheding ω(f) of f is the saliency map of a hierarchical watershed
of (G,w).

3. The watersheding ω(ω(f)) of ω(f) is equal to ω(f).

To prove Theorem 33, we first present the following lemma.
Let (G,w) be a tree, let S be a sequence of minima of w, and let f be the saliency

map of a hierarchical watershed of (G,w) for S. Let ≺ be a lexicographic ordering for
(w, f). Then f is the saliency map of the hierarchy induced by (S,≺).

Proof of Theorem 33. Statement 1:

Forward implication: let H be a hierarchical watershed of (G,w) and let S
be the estimated sequence of minima for (f,≺). By the definition of the
watersheding operator, for any edge u in E, the value ω(f)(u) is the persistence
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value of u for (S,≺). Hence, as discussed in Section 2.6.1, the map ω(f) is
the saliency map of the hierarchy induced by (S,≺). We will prove that f
is also the saliency map of the hierarchy induced by (S,≺). By Property 30,
the map f is the saliency map of a hierarchical watershed of (G,w) for S.
Therefore, by Lemma 8.2.5, the map f is the saliency map of the hierarchy
induced by (S,≺). Thus, the watersheding ω(f) of f is equal to f .

Backward implication: Let ω(f) be equal to f . Let S be the estimated se-
quence of minima for (f,≺). By Theorem 32, the map ω(f) is the saliency
map of a hierarchical watershed of (G,w) for S. Hence, since ω(f) is equal
to f , the map f is the saliency map of a hierarchical watershed of (G,w) for S.
Then, the hierarchy H is a hierarchical watershed of (G,w).

Statement 2: Let S be the estimated sequence of minima for f and ≺. By The-
orem 32, the watersheding ω(f) of f is the saliency map of a hierarchical water-
shed of (G,w) for S. Hence, ω(f) is the saliency map of a hierarchical watershed
of (G,w).

Statement 3: By the statement 2, the watersheding ω(f) of f is the saliency map of
a hierarchical watershed of (G,w). Hence, by the first statement, the watersheding
ω(ω(f)) of (ω(f) is equal to (ω(f).

8.3 Proofs of theorem and properties of Chapter 5

8.3.1 Proof of Property 37

(Property 37). Let H be a hierarchical watershed of (G,w) and let m be the number
of maximal regions of B≺ for the saliency map of H. The probability of H knowing w is:

p(H | w) =
2m

|Mw|
. (8.2)

In order to prove Property 37, we establish the following auxiliary lemmas.

Lemma 101. Let (G,w) be a weighted graph and let ≺ be an altitude ordering for w.
Let u be a watershed-cut for ≺ and let ` be the number of minima included in Ru. There
are `− 1 watershed-cut edges v for ≺ such that Rv ⊆ Rv.
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Lemma 102. Let (G,w) be a tree with a unique altitude ordering and let ≺ be the altitude
ordering for w. Let S be a sequence of minima of w and let ε be the extinction map for
(S,≺). Let f be the saliency map of the hierarchical watershed of (G,w) for S. For any
edge u of G, the value f(u) is min{ε(X), ε(Y )}, where X and Y are the children of Ru.

Proof. By Property 6, since f is the saliency map of the hierarchical watershed of (G,w)

for S, then f is the saliency map of the hierarchy induced by S and by an altitude
ordering for w. Since ≺ is the unique altitude ordering for w, then f is the saliency map
of the hierarchy induced by S and ≺. Hence, f(u) is the persistence value of u for (S,≺).
Therefore, the value f(u) is min{ε(X), ε(Y )}, where X and Y are the children of Ru.

Lemma 103. Let (G,w) be a tree with a unique altitude ordering and let ≺ be the
altitude ordering for w. Let S be a sequence of minima of w and let ε be the extinction
map for (S,≺). Let f be the saliency map of the hierarchical watershed of (G,w) for S.
Let u be a watershed-cut edge for ≺. We have f(u) = ε(M), where M is a minimum of
w included in Ru.

Proof. Direct implication of Lemma 102.

Lemma 104. Let (G,w) be a tree with a unique altitude ordering and let ≺ be the altitude
ordering for w. Let S be a sequence of minima of w and let ε be the extinction map
for (S,≺). Let f be the saliency map of the hierarchical watershed of (G,w) for S. Let u
be a watershed-cut edge for ≺ and let M be a minimum of w. If M is not the minimum
of greatest extinction value among the minima included in Ru, there is a watershed-cut
edge v such that Rv ⊆ Ru and such that f(v) = ε(M).

Proof. Let ` be the number of minima included in Ru. By Lemma 101, there are ` − 1

watershed-cut edges v such that Rv is included in Ru. By Lemma 103, the weight of each
watershed-cut edge v such that Rv ⊆ Ru is the extinction value of a minimum included
in Ru. Moreover, by Lemma 19, f is one-side increasing for ≺ and, consequently, the
watershed-cut edges have pairwise distinct edge weights in f . Therefore, for `−1 minima
included in Ru, there is a watershed-cut edge v such that Rv ⊆ Ru and such that f(u) is
the extinction value of this minimum. Hence, there is only one minimum M included in
Ru such that there is no watershed-cut edge v such that Rv ⊆ Ru and f(u) = ε(M). Let
v be a watershed-cut edge such that Rv ⊆ Ru. Let M ′ be the only minimum included in
Rv such that there is no watershed-cut edge v such that Rv ⊆ Ru and f(u) = ε(M ′). By
Lemma 102, the value f(v) is min{ε(X), ε(Y )}, where X and Y are the children of Rv.
Hence, we can conclude that the minimum M ′ is the minimum of maximal extinction
value among the minima include in Ru. Therefore, if M is not the minimum of greatest
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extinction value among the minima included in Ru, there is a watershed-cut edge v such
that Rv ⊆ Ru and such that f(v) = ε(M).

Lemma 105. Let (G,w) be a tree with a unique altitude ordering and let ≺ be the
altitude ordering for w. Let S be a sequence of minima of w and let ε be the extinction
map for (S,≺). Let f be the saliency map of the hierarchical watershed of (G,w) for S.
Let u be a watershed-cut edge for ≺. Let M be the minimum of maximum extinction
value among the minima included in Ru. Then, for any watershed-cut edge v for ≺ such
that Rv ⊆ Ru, we have f(v) < ε(M).

Proof. Let v be a watershed-cut edge v such that Rv ⊆ Ru. By Lemma 103, the value
f(v) is the extinction value of a minimum included in Ru. By Lemma 104, f(u) is different
from the extinction value of M . As the minima of w have pairwise distinct extinction
values and since the extinction value of M is maximal among the minima included in
Ru, we conclude that f(v) < ε(M).

Lemma 106. Let (G,w) be a weighted graph and let ≺ be the unique altitude ordering
for w. Let S be a sequence of minima of w and let ε be the extinction map for (S,≺). Let
f be the saliency map of the hierarchical watershed of (G,w) for S. Let u be a watershed-
cut edge for ≺. Let X and Y be the children of Ru such that ε(X) > ε(Y ). Let Mx be the
minimum included in X such that ε(X) = ε(Mx) and let My be the minimum included in
Y such that ε(Y ) = ε(Yx). The region Ru is a maximal region of B≺ for f if and only if:

1. either Mx is the only minimum included in X; or

2. ε(M ′
x) < ε(My), where M ′

x is the minimum with the second greatest extinction value
among all minima included in X.

Proof. We first prove the forward implication. We consider the conditions 1 and 2 sepa-
rately.

1. Let us assume that Mx is the only minimum included in X. To prove that u is a
maximal region of B≺ for f , we will first prove that f(u) > {f(v) | Rv ⊂ X} and,
then, we will prove that f(u) > {f(v) | Rv ⊂ Y }. Let r be the building edge of
X. By Definition 2, r is not a watershed-cut edge for ≺. Hence, since f is one-side
increasing for ≺ by Lemma 19, we can say that f(r) = 0 by the second statement
of Definition 18. Therefore, by the third statement of Definition 18, for any edge
r′ such that Rr′ ⊂ Rv, we have f(r′) = 0. Since u is a watershed-cut edge for ≺,
we have f(u) > 0 by the second statement of Definition 18. We now prove that
f(u) > {f(v) | Rv ⊂ Y }. By Lemma 102, we have f(u) = min{ε(Mx), ε(My)}. By
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our assumption that ε(Mx) > ε(My), we have f(u) = ε(My). Hence, as ε(My) is
the greatest extinction value among the extinction values of the minima included
in Y , Lemma 105, we can say that f(u) > {f(v) | Rv ⊂ Y }. Therefore, f(u) >

{f(v) | Rv ⊂ Ru} and Ru is a maximal region for B≺.

2. Let us now assume that ε(M ′
x) < ε(My) where M ′

x is the minimum with the second
greatest extinction value among all minima included in X. To prove that u is a
maximal region of B≺ for f , we will first prove that f(u) > {f(v) | Rv ⊂ X} and,
then, we will prove that f(u) > {f(v) | Rv ⊂ Y }. As affirmed previously, we
have f(u) = ε(My). By Lemma 105, we may say that there is no edge v such that
Rv ⊆ X and such that f(v) = ε(X). Hence, for any edge v such that Rv ⊆ X, we
have f(v) < ε(X), which implies that f(v) ≤ ε(M ′

x) by Lemma 103. Then, by our
assumption that ε(Mx) > ε(My), for any edge v such that Rv ⊆ X, we have f(v) ≤
ε(My). Since f(u) = ε(My), we have f(u) > {f(v) | Rv ⊂ X}. We now prove that
f(u) > {f(v) | Rv ⊂ Y }. By Lemma 102, we have f(u) = min{ε(Mx), ε(My)}. By
our assumption that ε(Mx) > ε(My), we have f(u) = ε(My). Hence, as ε(My) is
the greatest extinction value among the extinction values of the minima included
in Y , by Lemma 105, we can say that f(u) > {f(v) | Rv ⊂ Y }. Therefore,
f(u) > {f(v) | Rv ⊂ Ru} and Ru is a maximal region for B≺.

We now prove the backward implication. Let Ru be a maximal region. Then f(u) >

{f(v) | Rv ⊂ Ru}. By contradiction, let us assume that Mx is not the only minimum
included in X and that ε(M ′

x) ≥ ε(My), where M ′
x is the minimum with the second

greatest extinction value among all minima included in X. In this case, by Lemma 104,
there is an edge v′ such that Rv′ ⊆ X and such that f(v′) = ε(M ′

x). By Lemma 102,
we have f(u) = min{ε(Mx), ε(My)}. By our assumption that ε(Mx) > ε(My), we have
f(u) = ε(My). Hence, there is an edge v′ such that Rv′ ⊂ Ru and such that f(v′) ≥ f(u),
which contradicts our assumption that Ru is a maximal region. Therefore, either Mx is
the only minimum included in X or ε(M ′

x) < ε(My), where M ′
x is the minimum with the

second greatest extinction value among all minima included in X.

Definition 107 (least common ancestor). Let H be a hierarchy on V . Let X and Y be
two distinct regions of H. The least common ancestor (LCA) of X and Y is the region
R of H such that X ⊂ R and Y ⊂ R.

Lemma 108. Let (G,w) be a weighted graph and let ≺ be the unique altitude ordering
for w. Let S be a sequence of minima of w. Let ε be the extinction map for (S,≺).
Let Mx and My be two minima of w. Let u be the building edge of the LCA of Mx and
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My. Let X and Y be the children of Ru such that Mx and My are included in X and
Y , respectively. Let S ′ be the sequence of minima resulting from swapping the positions
of Mx and My in S. The saliency map of the hierarchical watersheds for S and S ′ are
equal if and only the two following statements hold true:

1. Ru is a maximal region of B≺ for the saliency map of H; and

2. Mx (resp. My) is the minimum of w of greatest extinction value among the minima
included in X (resp. Y ).

Proof. We will first prove the forward implication. Let ε′ be the extinction map for
(S ′,≺). Let u be the building edge of a maximal region of B≺ for the saliency map of
H and let X and Y be the children of Ru. Let Mx (resp. My) be the minimum of w of
greatest extinction value among the minima included in X (resp. Y ). Without loss of
generality, let us assume that ε(Mx) > ε(My). Let f and f ′ be the saliency maps of the
hierarchical watersheds for S and S ′, respectively. We will prove that f and f ′ are equal:
for any edge v, we will prove that f(v) = f ′(v). Let v be an edge in E. We will consider
the following cases: (1) Rv ∩Ru = ∅; (2) Rv = Ru; (3) Ru ⊂ Rv; and (4) Rv ⊂ Ru.

1. Rv∩Ru = ∅. In this case, for any region Z such that Z ⊆ Rv, we have ε′(Z) = ε(Z)

because the position of the minima included in Ru are the same in the sequences
S and S ′. Since f ′(v) is defined by the extinction value of the children of Rv, we
may affirm that f(u) = f(u′).

2. Rv = Ru. By Lemma 102, the value f(u) is min{ε(X), ε(Y )}. Let M ′
x be

the minimum of second greatest extinction value among the minima included in
X. By Property 106, since ε(Mx) > ε(My), we have ε(M ′

x) < ε(My). There-
fore, we can say that Mx (resp. My) is still the minimum of w of greatest ex-
tinction value for ε′ among the minima included in X (resp. Y ). Hence, we
have that ε′(X) = ε′(Mx) = ε(Y ) and that ε′(Y ) = ε′(My) = ε(X). Hence,
f ′(u) = min{ε′(X), ε′(Y )} = min{ε(Y ), ε(X)} = f(u).

3. Ru ⊂ Rv. The only minima that had their extinction values changed in ε′ with
respect to ε were two minima Mx and My included in Ru. Hence, the greatest
extinction value among the minima included in Ru is still the same even though
the minimum carrying this extinction value has changed. Therefore, the extinction
value of both children of Rv has not been changed and f(u) = f(u′).

4. Rv ⊂ Ru. We will consider the two following cases: (a) Rv ⊆ X; and (b) Rv ⊆ Y .
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(a) Rv ⊆ X. IfMx is not included in Rv, we can conclude that the extinction value
for ε′ of all regions included in Rv have not been changed with respect to ε,
which implies that f ′(u) = f(u). Otherwise, let us assume thatMx is included
in Rv. If Mx = Rv, then v is not a watershed-cut edge for ≺ and we have
f(u) = f ′(u) = 0 by the second statement of Definition 18. Otherwise, let R′

be the child of Rv that includes Mx. By our assumption, Mx is the minimum
of w of greatest extinction value among the minima included in X. Therefore,
ε(R′) = ε(Mx). Moreover, f(v), being min{ε(R′), ε(sibling(R′))}, is equal to
ε(sibling(R′)). Let M ′

x be the minimum of w of second greatest extinction
value among the minima included in X. By Property 106, as Ru is a maximal
region and as ε(Mx) > ε(My), we have that ε(M ′

x) < ε(My). Therefore, we may
say that ε(sibling(R′)) < ε(My). Consequently, ε′(R′), being equal to ε(My), is
greater than ε(sibling(R′)). Therefore, f ′(v) = min{ε′(R′), ε(sibling(R′))} =

ε(sibling(R′)) = f(v).

(b) Rv ⊆ Y . If My is not included in Rv, we can conclude that the extinction
value for ε′ of all regions included in Rv have not been changed with respect
to ε, which implies that f ′(u) = f(u). Otherwise, let us assume that My is
included in Rv. Hence, there is a child R′ of Rv that includes My and whose
extinction value is ε(My). By our assumption, My is the minimum of w of
greatest extinction value among the minima included in Y . Hence, f(v), being
min{ε(R′), ε(sibling(R′))}, is equal to ε(sibling(R′)). By our hypothesis, we
have that ε′(Mx) = ε(My) = ε(Y ) and ε′(My) = ε(Mx) = ε(X). Since ε(X) >

ε(Y ) by our hypothesis, we have ε′(R′) > ε(R′). Therefore, ε′(R′), alike ε(R′), is
also greater than ε(sibling(R′)). Hence, f ′(v) = min{ε′(R′), ε(sibling(R′))} =

ε(sibling(R′)) = f(v).

We now prove the backward implication. Let f and f ′ be equal. Using Lemma 106,
we will prove by contradiction that Ru is a maximal region of B≺ for f and that Mx

(resp. My) is the minimum of w of greatest extinction value among the minima included
in X (resp. Y ). Without loss of generality, let us assume that ε(Mx) > ε(My).

By contradiction, let us first assume thatMx is not the minimum of greatest extinction
value among the minima included in X. Then, by Lemma 104, there is an edge v such
that Rv ⊆ X, Mx ⊂ Rv and f(v) = ε(Mx). We know that ε′(Mx) = ε(Y ), which is
greater than ε(Mx). Hence, there is no minimum included in Rv whose extinction value
for S ′ is equal to ε(Mx). Therefore, by Lemma 105, f ′(v) < ε(Mx) and, consequently,
f ′(v) 6= f(v), which contradicts our assumption. Hence, Mx is the minimum of greatest
extinction value among the minima included in X. The same argument can be used to
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prove that My is the minimum of greatest extinction value among the minima included
in Y .

Now, by contradiction, let us assume that Ru is not a maximal region of B≺ for f .
If Mx (resp. My) is not the minimum of greatest extinction value among the minima
included in X (resp. Y ), we have that f and f ′ are not equal, as shown in the previous
paragraph. Hence, let Mx (resp. My) be the minimum of greatest extinction value
among the minima included in X (resp. Y ). Let M ′

x be the minimum included in X

with the second greatest extinction value among all minima included in X. As Ru is
not a maximal region, by Lemma 106, we have that ε(M ′

x) ≥ ε(Y ). We know that
ε′(Mx) = ε(My) = ε(Y ) and that ε′(My) = ε(Mx) = ε(X). Since ε(M ′

x) ≥ ε(Y ) and since
ε′(Mx) = ε(Y ), then M ′

x became the minimum of greatest extinction value for S ′ among
the minima included in X. However, ε′(M ′

x) is still less than ε′(My) = ε(Mx). In the
end, we will have ε′(X) = ε(M ′

x) and ε′(Y ) = ε(Mx). Since f ′(u) = min{ε′(X), ε′(Y )},
we have that f ′(u) = ε(M ′

x). By our assumption that ε(Mx) > ε(My), we have that
f(u) = ε(My). Hence, f ′(u) 6= f(u), which contradicts our assumption that f and f ′ are
equal. Therefore, Ru is a maximal region of B≺ for f .

Proof of Property 37. Let f be the saliency map of H. By Property 35, p(H | w) is equal
to |SH|
|Mw| . Hence, we need to prove that |SH| is equal to 2m. To this end, we will prove

that, given any sequence S in Sw(H), we can obtain another sequence in SH only by, for
each maximal region R of B≺ for f , swapping the order of two minima included in R.
By Lemma 108, for each maximal region R of B≺ for f , there is only one pair of minima
included in R that can be swapped in the sequence S without changing the resulting
saliency map. Moreover, the swapping of two minima is possible only if their LCA R′ is
a maximal region of B≺ and if they are the minima of maximal extinction value included
in each child of the region R′. Therefore, each maximal region doubles the number of
permutations of S that result in a sequence in Sw(H). Thus, there are 2m sequences of
minima in Sw(H).

8.4 Proofs of theorem and properties of Chapter 7

8.4.1 Proof of Property 46

(Property 46). Let H1 and H2 be two hierarchical watersheds of (G,w) and let ≺ be
an altitude ordering for (G,w) such that both Φ(H1) and Φ(H2) are one-side increasing
for ≺. Then the hierarchy Hf = QFZ(G,f(Φ(H1),Φ(H2))) is a flattened hierarchical
watershed of (G,w).
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Let H1 and H2 be two hierarchical watersheds of (G,w) and let ≺ be an altitude
ordering for w such that both Φ(H1) and Φ(H2) are one-side increasing for ≺. Let f3

denote the map f(Φ(H1),Φ(H2)). We will prove that the hierarchy QFZ(G, f3) is a
flattened hierarchical watershed of (G,w). To this end, by Property 22, we will prove
that the following statements hold true:

1. (V,E≺) is a MST of (G, f3), where E≺ is the set of building edges for ≺; and

2. for any edge u in E≺, if u is not a watershed-cut edge for ≺, then f3(u) = 0; and

3. for any edge u in E≺, there exists a child R of Ru such that f3(u) ≥ ∨{f3(v) such
that Rv is included in R}, where ∨{} = 0.

The following Lemmas 109, 112 and 113 prove respectively that the conditions 1, 2
and 3 for QFZ(G, f3) to be a flattened hierarchical watershed of (G,w) hold true.

Lemma 109. Let f1 and f2 be two maps from E into R and let G′ be a subgraph of G such
that G′ is a MST of both (G, f1) and (G, f2). Then G′ is also a MST of (G,f(f1, f2)).

In order to prove Lemma 109, we define cycles in the context of graphs and we state
two well-known properties of spanning trees in Lemmas 110 and 111.

Let x and y be two vertices in V and let π = (x0, . . . , xp) be a path from x to y. For
any edge u = {xi−1, xi} for i in {1, . . . , p}, we say that u is in π or that π includes u.
We say that π is a cycle if x0 = xp and p > 1.

Lemma 110. Let G′ be a spanning tree of (G,w) and let u be an edge in E \ E(G′).
Then (V,E(G′) ∪ {u}) contains a cycle π that includes u.

Lemma 111. Let G′ be a spanning tree of a weighted graph (G, f). Let u be an edge in
E \E(G′) and let π be the cycle of (V,E(G′)∪ {u}) which includes u. The graph G′ is a
MST of (G, f) if and only if f(u) ≥ f(v) for any edge v in π.

Proof of Lemma 109. Let f3 denote the map f(f1, f2). Let u be an edge in E\E(G′). As
G′ is a spanning tree, by Lemma 110, the graph (V,E(G′)∪{u}) contains a cycle π which
includes the edge u. Since G′ is a MST for (G, f1) and for (G, f2), by the forward implica-
tion of Lemma 111, for any edge v in the cycle π, we have f1(v) ≤ f1(u) and f2(v) ≤ f2(u).
Therefore, for any edge v in the cycle π, we have min(f1(v), f2(v)) ≤ min(f1(u), f2(u))

and, consequently, f3(v) ≤ f3(u). Hence, for any edge v in π, we have f3(u) ≥ f3(v).
Thus, by the backward implication of Lemma 111, G′ is a MST of (G, f3).

The following lemma proves that the condition 2 for QFZ(G, f3) to be a flattened
hierarchical watershed hold true.
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Lemma 112. Let f1 and f2 be two maps from E into R and let B be a binary partition
hierarchy of (G,w) such that f1 and f2 are one-side increasing for ≺. Let f3 denote
the map f(f1, f2). Then for any edge u in E≺, if u is not a watershed-cut edge for ≺,
then f3(u) = 0.

Proof. Let u be an edge in E≺. If u is not a watershed-cut edge for ≺, then, by the
statement 2 of Definition 18, we have f1(u) = 0 and f2(u) = 0. Therefore, f3(u) =

min(0, 0) = 0.

The following lemma proves that the condition 3 for QFZ(G, f3) to be a flattened
hierarchical watershed holds true.

Lemma 113. Let f1 and f2 be two maps from E into R and let B be a binary par-
tition hierarchy of (G,w) such that f1 and f2 are one-side increasing for ≺. Let f3

denote f(f1, f2). Then, for any building edge u of B, there exists a child R of Ru such
that f3(u) ≥ ∨{f3(v) such that Rv ⊆ R}.

Proof. Since f1 (resp. f2) is one-side increasing for ≺, by the statement 3 of Definition
18, we have that, for any building edge u of B, f1(u) ≥ ∨{f1(v) | Rv ⊆ X} (resp. f2(u) ≥
∨{f2(v) | Rv ⊆ X}) for a child X of Ru. We need to prove that, for any building edge u
of B, f3(u) ≥ ∨{f3(v) | Rv ⊆ X} for a child X of Ru. Let u be a building edge of B.
As f3(u) = min(f1(u), f2(u)), we should consider the following cases: (1) f3(u) = f1(u);
and (2) f3(u) = f2(u).

1. Let us assume that f3(u) = f1(u). Let X and Y be the children of Ru. If f1(u) ≥
∨{f1(v) | Rv ⊆ X} (resp. f1(u) ≥ ∨{f1(v) | Rv ⊆ Y }), we can affirm that f3(u) ≥
∨{f1(v) | Rv ⊆ X} (resp. f3(u) ≥ ∨{f1(v) | Rv ⊆ Y }) as well. Since f3(e) =

min(f1(e), f2(e)) for any edge e in E, we can affirm that f3(e) ≤ f1(e) for any edge e
in E and, therefore, f3(u) ≥ ∨{f3(v) | Rv ⊆ X} (resp. f3(u) ≥ ∨{f3(v) | Rv ⊆ Y }).
Therefore, this condition holds true for the child X (resp. Y ) of Ru.

2. Let us assume that f3(u) = f2(u). The same reasoning of (1) can be applied in this
case.

We can conclude that, for any building edge u of B, we have f3(u) ≥ ∨{f3(v) | Rv ⊆
R} for a child R of Ru.

Proof of Property 46. By Lemma 69, we can affirm that (V,E≺) is a MST of
both (G,Φ(H1)) and (G,Φ(H2)). Let f3 denote the map f(Φ(H1),Φ(H2)). By Lemma
109, (V,E≺) is a MST of (G, f3) as well, which proves the first condition for QFZ(G, f3)
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to be a flattened hierarchical watershed of (G,w). By Lemmas 112 and 113, the second
and third conditions for QFZ(G, f3) to be a flattened hierarchical watershed of (G,w)

hold true. Therefore, QFZ(G, f3) is a flattened hierarchical watershed of (G,w).

8.4.2 Proof of Property 47

(Property 47). Let C be a combining function, let H1 and H2 be two hierarchical
watersheds of (G,w) and let ≺ be and altitude ordering for (G,w) such that both Φ(H1)

and Φ(H2) are one-side increasing for ≺. The combination of H1 and H2 with C is
a flattened hierarchical watershed of (G,w) if C(0, 0) = 0 and if, for any a, b, c, d in
{0, . . . , n− 1}, we have:

1. C(a, b) = C(b, a); and

2. if min(a, b) < min(c, d), then C(a, b) < C(c, d); and

3. if min(a, b) = min(c, d) and max(a, b) < max(c, d), then C(a, b) ≤ C(c, d).

Let H1 and H2 be two hierarchical watersheds of (G,w) and let ≺ be an altitude
ordering for w such that both Φ(H1) and Φ(H2) are one-side increasing for ≺. Let C be
a positive function from R2 into R such that, for any a, b, c and d in {0, . . . , n − 1}, we
have:

1. C(0, 0) = 0; and

2. C(a, b) = C(b, a); and

3. if min(a, b) = min(c, d) and max(a, b) < max(c, d) then C(a, b) ≤ C(c, d); and

4. if min(a, b) < min(c, d) then C(a, b) < C(c, d).

Let f3 denote the map C(Φ(H1),Φ(H2)). We want to prove that the hierar-
chy QFZ(G, f3) is a flattened hierarchical watershed of (G,w). By Property 22, we
need to prove that there exists a binary partition hierarchy B′ of (G,w) such that the
following statements hold true:

1. (V,E(B′)) is a MST of (G, f3); and

2. for any edge u in E(B′), if u is not a watershed-cut edge for B′, then f3(u) = 0; and

3. for any edge u in E(B′), there exists a child R of Ru such that f3(u) ≥ ∨{f3(v)

such that Rv is included in R}, where ∨{} = 0.
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The proof of this property follows the same idea of the proof of Property 46. To prove
Property 47, we establish the following auxiliary lemma.

Lemma 114. Let C be a function from R2 into R such that, for any two real values x and
y, we have C(x, y) = C(y, x). Let a, b, c and d be four real values. If min(a, b) = min(c, d)

and max(a, b) = max(c, d), then C(a, b) = C(c, d).

Proof. As min(a, b) = min(c, d) and max(a, b) = max(c, d), then either we have (i) a = c

and b = d which implies that C(a, b) = C(c, d); or (ii) c = b and d = a which implies
that C(c, d) = C(b, a), which, by our hypothesis on C, is equal to C(a, b). Hence, we
have C(a, b) = C(c, d).

The following three lemmas prove that the conditions 1, 2 and 3 for QFZ(G, f3) to
be a flattened hierarchical watershed of (G,w) hold true.

Lemma 115. Let C be a positive function such that, for any a, b, c and d in {0, . . . , n−1},
we have:

1. C(0, 0) = 0; and

2. C(a, b) = C(b, a); and

3. if min(a, b) = min(c, d) and max(a, b) < max(c, d) then C(a, b) ≤ C(c, d); and

4. if min(a, b) < min(c, d) then C(a, b) < C(c, d).

Let f1 and f2 be the saliency maps of two hierarchies on V and let G′ be a subgraph of G
such that G′ is a MST of both (G, f1) and (G, f2). Then G′ is also a MST of (G,C(f1, f2)).

Proof. Let u be an edge in E \ E(G′). Let f3 denote the map C(f1, f2). Since G′ is
a spanning tree, by Lemma 110, the graph (V,E(G′) ∪ {u}) contains a cycle π which
includes the edge u. Let π be the cycle of (V,E(G′) ∪ {u}) which includes the edge u.
As G′ is a MST of (G, f1) and of (G, f2), by Lemma 111, for any edge v in the cycle π,
we have f1(v) ≤ f1(u) and f2(v) ≤ f2(u). Therefore, for any edge v in the cycle π, we
have min(f1(v), f2(v)) ≤ min(f1(u), f2(u)) and max(f1(v), f2(v)) ≤ max(f1(u), f2(u)).
Then, we should consider the three following cases:

1. If min(f1(v), f2(v)) < min(f1(u), f2(u)), then, by the hypothesis 4 on C, we
have C(f1(v), f2(v)) < C(f1(u), f2(u)).

2. If min(f1(v), f2(v)) = min(f1(u), f2(u)) and max(f1(v), f2(v)) <

max(f1(u), f2(u)), then, by the hypothesis 3 on C, we have C(f1(v), f2(v)) ≤
C(f1(u), f2(u)).
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3. If min(f1(v), f2(v)) = min(f1(u), f2(u)) and max(f1(v), f2(v)) =

max(f1(u), f2(u)), then, by Lemma 114, we have C(f1(v), f2(v)) = C(f1(u), f2(u)).

Consequently, C(f1(v), f2(v)) = f3(v) ≤ C(f1(u), f2(u)) = f3(u). Hence, for any edge v
in the cycle π, we have f3(v) ≤ f3(u). Thus, by Lemma 111, G′ is a MST of (G, f3).

Lemma 116. Let C be a positive function such that, for any a, b, c and d in {0, . . . , n−1},
we have:

1. C(0, 0) = 0; and

2. C(a, b) = C(b, a); and

3. if min(a, b) = min(c, d) and max(a, b) < max(c, d) then C(a, b) ≤ C(c, d); and

4. if min(a, b) < min(c, d) then C(a, b) < C(c, d).

Let f1 and f2 be the saliency maps of two hierarchies on V and let B be a binary
partition hierarchy of (G,w) such that both f1 and f2 are one-side increasing for ≺.
Then for any u in E≺, if u is not a watershed-cut edge for ≺, then C(f1, f2)(u) = 0.

Proof. Let u be an edge in E≺. If u is not an watershed-cut edge for≺, then, by the second
condition of Definition 18, we have f1(u) = 0 and f2(u) = 0. Therefore, C(f1, f2)(u) =

C(0, 0) = 0.

Lemma 117. Let C be a positive function such that, for any a, b, c and d in {0, . . . , n−1},
we have:

1. C(0, 0) = 0; and

2. C(a, b) = C(b, a); and

3. if min(a, b) = min(c, d) and max(a, b) < max(c, d) then C(a, b) ≤ C(c, d); and

4. if min(a, b) < min(c, d) then C(a, b) < C(c, d).

Let f1 and f2 be the saliency maps of two hierarchies on V and let B be a binary
partition hierarchy of (G,w) such that both f1 and f2 are one-side increasing for ≺.
Let f3 denote the map C(f1, f2). Then, for any building edge u of B, there exists a
child R of Ru such that f3(u) ≥ ∨{f3(v) such that Rv is included in R}.
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Proof. Since f1 (resp. f2) is one-side increasing for ≺, by the third condition of Definition
18, we have that, for any building edge u of B, f1(u) ≥ ∨{f1(v) | Rv ⊆ X} (resp. f2(u) ≥
∨{f2(v) | Rv ⊆ X}) for a child X of Ru. We need to prove that, for any building edge u
of B, there is a child X of Ru such that f3(u) ≥ ∨{f3(v) | Rv ⊆ X}. Let u be a building
edge of B and let X and Y be the children of Ru. We should consider the following four
cases:

1. If f1(u) ≥ ∨{f1(v) | Rv ⊆ X} and f2(u) ≥ ∨{f2(v) | Rv ⊆ X}, then, for any
building edge e such that Re ⊆ X, we have f1(u) ≥ f1(e) and f2(u) ≥ f2(e).
Let e be an edge edge such that Re ⊆ X. Therefore, min(f1(e), f2(e)) ≤
min(f1(u), f2(u)). If min(f1(e), f2(e)) < min(f1(u), f2(u)) then, by the hypothesis
4 on C, C(f1(e), f2(e)) < C(f1(u), f2(u)). Otherwise, we have min(f1(e), f2(e)) =

min(f1(u), f2(u)). As f1(u) ≥ f1(v) and f2(u) ≥ f2(e), we have max(f1(u), f2(u)) ≥
max(f1(e), f2(e)). If max(f1(u), f2(u)) = max(f1(e), f2(e)) then, by Lemma
114, C(f1(u), f2(u)) = C(f1(e), f2(e)). Otherwise, we have max(f1(u), f2(u)) >

max(f1(e), f2(e)) and then by hypothesis 3 on C, we have C(f1(u), f2(u)) ≥
C(f1(e), f2(e)). Thus in all cases we have C(f1(u), f2(u)) ≥ C(f1(v), f2(v)) , and
by definition of f3: f3(u) ≥ f3(e). Therefore, f3(u) ≥ ∨{f3(v) | Rv ⊆ X}.

2. If f1(u) ≥ ∨{f1(v) | Rv ⊆ X} and f2(u) ≥ ∨{f2(v) | Rv ⊆ Y }, then we have to
consider two cases: (i) f1(u) ≤ f2(u) and (ii) f1(u) > f2(u).

(i) Assume that f1(u) ≤ f2(u). Then min(f1(u), f2(u)) = f1(u). Let v be an
edge such that Rv ⊆ X. By our assumption, we have f1(u) ≥ f1(v). Indeed,
since f is a one-side increasing map, we can say that either f1(u) = f1(v) = 0

or f1(u) > f1(v) because only the watershed-cut edges for ≺ have non-zero and
pairwise distinct weights. If f1(u) = f1(v) = 0, this implies that neither u nor v
are watershed-cut edges for ≺ and therefore f2(u) = f2(v) = 0, which implies
that f3(u) = 0 ≥ f3(v) = 0. Otherwise, let us assume that f1(u) > f1(v). In
this case, and asmin(f1(u), f2(u)) = f1(u), we havemin(f1(u), f2(u)) > f1(v),
and thus min(f1(u), f2(u)) > min(f1(v), f2(v)). Then by hypothesis 4 on C,
we have C(f1(u), f2(u)) > C(f1(v), f2(v) which is equivalent to f3(u) > f3(v).
Therefore, we have f3(u) ≥ ∨{f3(v) | Rv ⊆ X}.

(ii) If f1(u) > f2(u) then we can apply the same reasoning as in the case where
f1(u) ≤ f2(u).

3. f1(u) ≥ ∨{f1(v) | Rv ⊆ Y } and f2(u) ≥ ∨{f2(v) | Rv ⊆ X}. This case is
symmetric to 2.
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4. f1(u) ≥ ∨{f1(v) | Rv ⊆ Y } and f2(u) ≥ ∨{f2(v) | Rv ⊆ Y }. This case is
symmetric to 1.

Thus, we can conclude that, for any building edge u of B, there exists a child R of Ru

such that f3(u) ≥ ∨{f3(v) such that Rv is included in R}.

of Property 47. By Lemma 69, we can affirm that (V,E≺) is a MST of both (G,Φ(H1))

and (G,Φ(H2)). Therefore, by Lemma 115, (V,E≺) is a MST of (G, f3) as well, which
proves that the first condition for QFZ(G, f3) to be a flattened hierarchical watershed
of (G,w) holds true. The second and third conditions are the result of Lemmas 116 and
117, respectively. Therefore, QFZ(G, f3) is a flattened hierarchical watershed of (G,w).

8.4.3 Proof of Property 48

(Property 48). Let H1 and H2 be two hierarchical watersheds of (G,w). Let C be a
combining function such that:

C(x, y) =

0 if x=0 and y=0
xmym

xm+ym
otherwise

(8.3)

for m ≥ n. The combination of H1 and H2 with C is a flattened hierarchical watershed
of (G,w).

Let C be the function:

C(x, y) =

0 if x=0 and y=0
xmym

xm+ym

(8.4)

where m is equal or greater than the number of minima n of (G,w). We want to
prove that, for any a, b, c and d in {0, . . . , n− 1}:

1. C(0, 0) = 0; and

2. C(a, b) = C(b, a); and

3. if min(a, b) = min(c, d) and max(a, b) < max(c, d) then C(a, b) ≤ C(c, d); and

4. if min(a, b) < min(c, d) then C(a, b) < C(c, d).
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Since m ≥ n, we can prove that those fours statements hold true for any a, b, c and d
in {0, . . . ,m− 1}.

The proof of the first and second statements are trivial. In order to prove the third
and fourth statements, we state Lemmas 118 and 119.

Lemma 118. Let C(x, y) = xmym

xm+ym
and let a, b and d be natural numbers such that a ≤ b,

a ≤ d and b < d. Then C(a, b) ≤ C(a, d).

of Lemma 118. If a = 0, then C(a, b) = 0 which is less than or equal to C(a, d) = 0.
Otherwise, let us assume that a > 0. We will prove that C(a, b) ≤ C(a, d) by proving
that C(a, d)− C(a, b) is positive.

C(a, d)− C(a, b) (8.5)

=
amdm

am + dm
− ambm

am + bm
(8.6)

=
a2mdm + ambmdm − a2mbm − ambmdm

(am + dm)(am + bm)
(8.7)

=
a2mdm − a2mbm

(am + dm)(am + bm)
(8.8)

=
a2m(dm − bm)

(am + dm)(am + bm)
(8.9)

The denominator of the fraction (A.6) is clearly positive and, since d > b, we can say
that dm−bm is positive as well. Therefore, C(a, b)−C(c, d) is positive and, consequently,
C(a, b) ≤ C(c, d).

Lemma 119. Let C(x, y) = xmym

xm+ym
and let a, b, c and d be natural numbers in {0, . . . ,m−

1} such that a ≤ b and c ≤ d. If a < c then C(a, b) < C(c, d).

Proof. Let us define the function fa(y) = amym

am+ym
where y is a natural number. We will

compute the limit of fa(y) for y tending to infinity in order to find the greatest value
C(a, y) for any y.
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lim
y→∞

amym

am + ym
(8.10)

= lim
y→∞

amym

ym

am+ym

ym

(8.11)

= lim
y→∞

am

am

ym
+ ym

ym

(8.12)

=
am

0 + 1
(8.13)

= am (8.14)

Let c be a value in {0, . . . ,m − 1} such that a < c. We will prove that C(c, d) is
greater than lim

y→∞
amym

am+ym
= am. Since a < c, we have c ≥ a + 1. If we prove that this

lemma holds for the case where c = a+1, we can infer by recurrence that it holds for any
c greater than a. Therefore, we can simply prove that C(a+ 1, d) is greater than am for
any d > a (because d ≥ c by hypothesis). By Lemma 118, given any value d′ such that
a+ 1 ≤ d′, we have that C(a+ 1, a+ 1) ≤ C(a+ 1, d′). Since a < d, the minimal value of
d is a+1. Given that d = a+1, we have C(a+1, d) = C(a+1, a+1) = (a+1)2m

2(a+1)m
= (a+1)m

2
.

Then we only need to prove that am < (a+1)m

2
or that am − (a+1)m

2
< 0.

am − (a+ 1)m

2
(8.15)

= am −
(
a+ 1

m
√

2

)m
(8.16)

=

(
a− a+ 1

m
√

2

)(
am−1 + am−2

(
a+ 1

m
√

2

)
+

· · ·+ a

(
a+ 1

m
√

2

)m−2

+

(
a+ 1

m
√

2

)m−1
)

(8.17)

The equation (A.15) is obtained by the factorization of the equation (A.14). The sign
of equation (A.15) is determined by the first term

(
a− a+1

m√2

)
because the other terms

are positive since a and m are natural numbers. Thus, in order to prove that (A.13) is
negative, we only need to show that

(
a− a+1

m√2

)
< 0.
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(
a− a+ 1

m
√

2

)
< 0 (8.18)

m
√

2a− a− 1 < 0 (8.19)

a(
m
√

2− 1) < 1 (8.20)

a <
1

m
√

2− 1
(8.21)

Hence, we need to demonstrate that a < 1
m√2−1

. Since a is in {0, . . . ,m − 1}, we
know that a < m and we can simply prove that m ≤ 1

m√2−1
or that m

√
2m −m ≤ 1 or

m− m
√

2m ≥ −1. Let us define the real function h as follows:

h(x) = x− x
√

2x (8.22)

= x(1− x
√

2) (8.23)

= x(1− e
ln 2
x ) (8.24)

We will show that h(x) ≥ −1 for any x in [1,+∞[. If this holds true in the continuous
case, we can infer that it also holds true in the discrete case. Given that h(1) = −1, we
can prove that h(x) ≥ −1 for any x in [1,+∞[ by showing that h(x) is increasing in the
interval [1,+∞[. To that end, we will verify that the derivative of h(x) is positive for
any x in [1,+∞[.

h′(x) = 1− e
ln 2
x − x

(
e

ln 2
x

(
− ln 2

x2

))
(8.25)

= 1− e
ln 2
x + e

ln 2
x

ln 2

x
(8.26)

To verify that h′(x) is positive in the interval [1,+∞[, we compute the limite of h′(x)

when x goes to +∞ and its derivative h′′(x) of h′(x).
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lim
x→+∞

h′(x) = 1− e
ln 2
+∞ + e

ln 2
+∞

ln 2

+∞
(8.27)

= 1− e0 + e0 × 0 (8.28)

= 0 (8.29)

h′′(x) = −
(
e

ln 2
x

(
− ln 2

x2

))
+

(
− ln 2

x2

)
e

ln 2
x

ln 2

x
+

(
− ln 2

x2

)
e

ln 2
x (8.30)

= −(ln 2)2

x3
e

ln 2
x (8.31)

Therefore, we can affirm that h′′(x) is negative for any x in [1,+∞[, which implies
that h′(x) is decreasing in the interval [1,+∞[. Since h′(x) is decreasing and the limit of
h′(x) going to infinity is zero, we can say that h′(x) is positive for any x in [1,+∞[. In
addition, as h(1) = −1, this implies that h(x) is increasing in the interval [1,+∞[. This
implies that h(x) ≥ −1 and, therefore, m− m

√
2m ≥ −1. This completes the proof that

C(a, b) < C(c, d).
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♠

The wide literature on graph theory invites numerous problems to be modeled in
the framework of graphs. In particular, clustering and segmentation algorithms designed
this framework can be applied to solve problems in various domains, including image
processing, which is the main field of application investigated in this thesis. In this
work, we focus on a semi-supervised segmentation tool widely studied in mathematical
morphology and used in image analysis applications, namely the watershed transform.
We explore the notion of a hierarchical watershed, which is a multiscale extension of the
notion of watershed allowing to describe an image or, more generally, a dataset with
partitions at several detail levels. The main contributions of this study are the following:

• Recognition of hierarchical watersheds: we propose a characterization of hierarchical
watersheds which leads to an efficient algorithm to determine if a hierarchy is a
hierarchical watershed of a given edge-weighted graph.

• Watersheding operator: we introduce the watersheding operator, which, given an
edge-weighted graph, maps any hierarchy of partitions into a hierarchical watershed
of this edge-weighted graph. We show that this operator is idempotent and its fixed
points are the hierarchical watersheds. We also propose an efficient algorithm to
compute the result of this operator.

• Probability of hierarchical watersheds: we propose and study a notion of probability
of hierarchical watersheds, and we design an algorithm to compute the probability
of a hierarchical watershed. Furthermore, we present algorithms to compute the
hierarchical watersheds of maximal and minimal probabilities of a given weighted
graph.

• Combination of hierarchies: we investigate a family of operators to combine hier-
archies of partitions and study the properties of these operators when applied to
hierarchical watersheds. In particular, we prove that, under certain conditions, the
family of hierarchical watersheds is closed for the combination operator.

• Evaluation of hierarchies: we propose an evaluation framework of hierarchies, which
is further used to assess hierarchical watersheds and combinations of hierarchies.

In conclusion, this thesis reviews existing and introduces new properties and algo-
rithms related to hierarchical watersheds, showing the theoretical richness of this frame-
work and providing insightful view for its applications in image analysis and computer
vision and, more generally, for data processing and machine learning.



Appendix: proofs of theorems and properties
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