
HAL Id: tel-02495153
https://hal.science/tel-02495153

Submitted on 1 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to Model-Based Testing of Dynamic and
Distributed Real-Time Systems

Moez Krichen

To cite this version:
Moez Krichen. Contributions to Model-Based Testing of Dynamic and Distributed Real-Time Systems.
Performance [cs.PF]. École Nationale d’Ingénieurs de Sfax (Tunisie), 2018. �tel-02495153�

https://hal.science/tel-02495153
https://hal.archives-ouvertes.fr

Doctoral School

Sciences and Technologies
HDR Thesis

Computer System
Engineering

Order N°:

The Minister of Higher Education
and Scientific Research

University of Sfax
National Engineering School of

Sfax

THESIS

Presented at

National Engineering School of Sfax

to obtain the title of

HDR IN COMPUTER SCIENCES

Computer System Engineering

by

Moez KRICHEN

Contributions to Model-Based Testing of

Dynamic and Distributed Real-Time Systems

Defended on 15 August 2018 in front of the jury composed of:

Prof. Mohamed Jmaiel (University of Sfax, Tunisia) Chair

Prof. Kamel Barkaoui (CEDRIC-CNAM, France) Reviewer

Prof. Adel Mahfoudhi (University of Sfax, Tunisia) Reviewer

Prof. Wassim Jaziri (University of Sfax, Tunisia) Examiner

A.Pr. Mahdi Khemakhem (University of Sfax, Tunisia) Examiner

Abstract

In this dissertation we report on our main research contributions dealing with Model-Based

Testing of Dynamic and Distributed Real-Time Systems, performed during the last ten years.

Our first contribution deals with testing techniques for distributed and dynamically adapt-

able systems. In this context, we propose a standard-based test execution platform which affords

a platform-independent test system for isolating and executing runtime tests. This platform uses

the TTCN3 standard and considers both structural and behavioral adaptations. Moreover, our

platform is equipped with a test isolation layer that reduces the risk of interference between

testing processes and business processes. Besides, we compute a minimal subset of test cases

to run and efficiently distribute them among the execution nodes while respecting resource and

connectivity constraints. In addition, we validate the proposed techniques on two case studies,

one in the healthcare domain and the other one in the fleet management domain.

Our second contribution consists in proposing a model-based framework to combine Load

and Functional Tests. This framework is based on the model of extended timed automata with

inputs/ouputs and shared integer variables. We present different modelling techniques aspects

and we illustrate them by means of a case study. Moreover, we study BPEL compositions be-

haviors under various load conditions using the proposed framework. We introduce a taxonomy

of the detected problems and we illustrate how test verdicts are assigned. Besides, we validate

our approach using a Travel Agency case study. Furthermore, we consider several mutants of

the corresponding BPEL process and we test them using our tool.

Our third contribution consists in introducing a set of formal techniques for the determiniza-

tion and off-line test selection for timed automata with inputs and outputs. With this respect,

we propose a game-based approach between two players for the determinization of a given timed

automaton and some fixed resources. Moreover, we present a complete formalization for the au-

tomatic off-line generation of test cases from non-deterministic timed automata with inputs and

outputs. We also define a selection technique of test cases with expressive test purposes. Test

cases are generated using a symbolic co-reachability analysis of the observable behaviors of the

specification guided by the test purpose which is in turn defined as a special timed automaton.

Finally we report on two ongoing works. The first one deals with a model-based approach

for security testing of Internet of Things applications. The second one deals with providing a

scalable test execution platform providing testing facilities as a cloud service.

i

Contents

1 General Introduction 1

1.1 Research Context and Motivation . 1

1.2 Contributions . 3

1.3 Document Outline . 5

I Testing Distributed and Dynamically Adaptable Systems 6

2 Background Materials and State of the Art 7

2.1 Introduction . 7

2.2 Dynamically adaptable systems . 7

2.3 Software testing fundamentals . 9

2.4 Testing dynamically adaptable systems . 12

2.5 Related work on regression testing . 14

2.6 Related work on runtime testing . 16

2.7 Summary . 19

3 Runtime Testing for Structural Adaptations 20

3.1 Introduction . 20

3.2 The Approach in a nutshell . 21

3.3 Online dependency analysis . 22

3.4 Online test case selection . 23

3.5 Constrained test component placement . 24

3.6 Test isolation and execution support . 26

3.7 Summary . 30

4 Runtime Testing of Behavioral Adaptations 31

4.1 Introduction . 31

4.2 The approach in a nutshell . 31

4.3 Prerequisites: UPPAAL Timed Automata . 32

4.4 Differencing between behavioral models . 34

4.5 Old test suite classification . 35

4.6 Test generation and recomputation . 35

4.7 Test case concretization . 37

4.8 Summary . 39

5 Prototype Implementation 40

5.1 Introduction . 40

5.2 RTF4ADS overview . 40

5.3 Test selection and distribution GUI . 41

5.4 Test isolation and execution GUI . 43

5.5 Selective Test Generation GUI . 44

5.6 Application of RTF4ADS for Structural Adaptations 45

5.7 Application of RTF4ADS for Behavioral Adaptations 50

5.8 Summary . 55

II Combining Load and Functional Tests 56

6 A Comparative Evaluation of State-of-the-Art of Load Testing Approaches 57

6.1 Introduction . 57

6.2 Motivation . 58

6.3 Load & Stress Testing . 58

6.4 Classification of Load & Stress Testing Solutions 61

6.5 Discussion . 65

6.6 Summary . 68

7 A Model Based Approach to Combine Load and Functional Tests 69

7.1 Introduction . 69

7.2 Extended Timed Automata . 70

7.3 Modelling Issues . 71

iii

7.4 Illustration through the TRMCS case study . 76

7.5 Summary . 80

8 Limitations of WS-BPEL Compositions under Load Conditions 81

8.1 Introduction . 81

8.2 Study of WS-BPEL Compositions under Load 81

8.3 Automated Advanced Load Test Analysis Approach 85

8.4 Travel Agency Case Study . 88

8.5 Summary . 92

III Determinization and Off-Line Test Selection for Timed Automata 94

9 A Game Approach to Determinize Timed Automata 95

9.1 Introduction . 95

9.2 Motivation . 95

9.3 Preliminaries . 97

9.4 A game approach . 100

9.5 Extension to ε-transitions and invariants . 105

9.6 Comparison with existing methods . 105

9.7 Summary . 108

10 Off-line Test Selection for Non-Deterministic Timed Automata 109

10.1 Introduction . 109

10.2 Motivation . 110

10.3 A model of open timed automata with inputs/outputs 111

10.4 Conformance testing theory . 112

10.5 Approximate determinization preserving tioco 114

10.6 Off-line test case generation . 117

10.7 Summary . 121

IV Ongoing Works 122

11 Towards a Model-Based Testing Framework for the Security

of Internet of Things for Smart City Applications 123

11.1 Introduction . 123

11.2 Motivation . 123

iv

11.3 Preliminaries . 124

11.4 Threats and challenges . 125

11.5 Proposed Approach . 126

11.6 Related Work . 127

11.7 Summary . 128

12 Towards a Scalable Test Execution Platform On the Cloud 129

12.1 Introduction . 129

12.2 Motivation . 129

12.3 Background and Related Work . 130

12.4 Proposed Approach . 132

12.5 eHealth case study . 133

12.6 Summary . 135

13 General Conclusion 136

13.1 Summary . 136

13.2 Future Works . 137

13.3 List of Publications . 139

Bibliography 147

v

List of Figures

2.1 Distributed component-based architecture. 8

2.2 Basic structural reconfiguration actions. 8

2.3 Different kinds of testing (1). 10

3.1 Runtime testing process for the validation of structural adaptations. 21

3.2 A CDG and its CDM representing direct dependencies. 23

3.3 Illustrative example of dependence path computation. 23

3.4 TTCN-3 test configuration for unit and integration testing. 24

(a) Unit test configuration. 24

(b) Integration test configuration. 24

3.5 Internal interactions in the TT4RT system. 27

3.6 Test isolation policy. 28

3.7 The distributed test execution platform. 29

4.1 TestGenApp: Selective test case generation approach. 32

5.1 RTF4ADS prototype. 41

5.2 Screenshot of the test selection and distribution GUI. 42

5.3 Screenshot of the test isolation and execution GUI. 43

5.4 Screenshot of the selective test generation GUI. 44

5.5 The basic configuration of TRMCS. 46

5.6 The adopted testbed. 48

5.7 The impact of resource and connectivity awareness on test results. 48

vi

5.8 The overhead of the whole runtime testing process while searching for an optimal

solution in step 3. 49

5.9 Assessing the overhead of the whole runtime testing process while searching for a

satisfying solution in step 3. 49

5.10 The initial Toast architecture. 50

5.11 Toast behavioral models. 51

(a) The initial GPS model. 51

(b) The environment model. 51

(c) The initial Emergency Monitor model. 51

5.12 Comparison between TestGenApp and Regenerate All approaches. 53

(a) The number of generated traces. 53

(b) Execution time for test evolution. 53

5.13 The overhead of the TestGenApp modules. 54

7.1 An example of an extended timed automaton. 70

7.2 An example showing how the time response of the SUT may depend on the

number of concurrent instances. 71

7.3 An example where the SUT produces different output actions depending on the

current load. 71

7.4 An example where the SUT adopts different sophisticated behaviours depending

on the current load. 72

7.5 The general scheme of the extended timed automaton modelling the system under

test. 72

7.6 Any instance of the SUT may participate to the generation of new instances. . . 73

7.7 A central instance of the SUT is in charge of creating new instances. 74

7.8 Each instance of the SUT is in charge of killing itself. 74

7.9 A central component is in charge of killing the different instances of the SUT. . . 75

7.10 The integer variable i allows to follow the increase and the decrease of the number

of active instances of the SUT. 75

7.11 The use of other integer variables to model other aspects of the SUT. 75

7.12 The TRMCS process modeled in Timed Automata. 77

7.13 Pattern 1: The TRMCS produces different output actions depending on the cur-

rent load. 78

7.14 Pattern 2: The use of a new shared integer variable to model the storage capacity. 79

vii

7.15 Pattern 3: The time response of the TRMCS depends on the number of concurrent

instances. 79

8.1 Load Distribution Architecture. 82

8.2 Load Testing Architecture. 83

8.3 WSCLim Tool Initial Interface. 88

8.4 The Travel Agency Process. 89

8.5 The Travel Agency Process modeled in Timed Automata. 89

8.6 Non-compliant BPEL Implementation. 91

8.7 Analysis Interface corresponding to the proposed Test Scenario. 91

8.8 Evolution of the Response Time with and without considering the WSCLim Tool. 92

9.1 A timed automaton A. 99

9.2 The game GA,(1,1) and an example of winning strategy σ for Determinizator. . . . 103

9.3 The deterministic TA Aut(σ) obtained by our construction. 104

9.4 The result of algorithm (2) on the running example. 106

9.5 Examples of determinizable TAs not treatable by (3). 107

9.6 The result of procedure (3) on the running example. 107

10.1 Specification A . 112

10.2 Test purpose T P. 117

10.3 Product P = A× T P. 118

10.4 Game GP,(1,2). 119

10.5 Test case T C . 120

11.1 Model based security testing process. 126

12.1 Test Execution Platform Overview. 132

12.2 Screenshot of Test component creation and assignement GUI. 134

12.3 Screenshot of VM instance creation. 134

12.4 Screenshot of Test Execution GUI. 135

CHAPTER 1

General Introduction

1.1 Research Context and Motivation

In order to build and deliver quality assured software and avoid potential costs caused by unstable

software, testing is a definitely essential step in software life cycle development. During the last

few decades, very critical programming errors and accidents have been detected in different

domains and in different corners of the world. Some of these errors were very dangerous and

caused huge and dramatic human/financial/environmental damages.

A first example of critical software errors we cite is related to the medical field. From 1985

to 1987, at least four patients died as a direct result of a radiation overdose received from the

medical radiation therapy device Therac-25. In fact, the victims received up to 100 times the

required dose. The accident was the result of a bug in the software powering the Therac-25

device. A second example concerns the European rocket Ariane 5 explosion in 1996 just 37

seconds after launch. The explosion was the result of a wrong reuse of code from Ariane 4. The

financial loss caused by this accident was estimated to be about $400 millions. A third example

of software errors struck the very famous web service provider Google. This accident occurred in

February 2009. Obviously, many other critical errors happened in many other fields. However,

we restrict ourselves to the three previous introduced examples.

The important issue to emphasize here is that a good percentage of these errors could have

been avoided by considering some more refined testing efforts. Yet, such efforts are still minimal

in practice and the need for advanced testing solutions is still deep. Indeed, software companies

are still not making enough efforts at this level.

Runtime Testing of Dynamically Adaptable and Distributed Systems: Nowadays, distributed

component-based systems tend to evolve dynamically without stopping their execution. Known

as Dynamically Adaptable and Distributed Systems, these systems are currently playing an im-

portant role in society’s services. Indeed, the growing demand for such systems is obvious in

several application domains such as crisis management (4), medical monitoring (5; 6), fleet

management (7), etc. This demand is stressed by the complex, mobile and critical nature

of these applications that also need to continue meeting their functional and non-functional

requirements and to support advanced properties such as context awareness and mobility. Nev-

ertheless, dynamic adaptations of component-based systems may generate new risks of bugs,

unpredicted interactions (e.g., connections going down), unintended operation modes and per-

formance degradation. This may cause system malfunctions and guide its execution to an unsafe

state. Therefore, guaranteeing their high quality and their trustworthiness remains a crucial re-

quirement to be considered. One of the most promising ways of testing dynamic systems is the

use of an emerging technique, called Runtime Testing. In this work, we propose a standard-

based test execution platform which affords a platform-independent test system for isolating and

executing runtime tests. We also compute a minimal subset of test cases to run and efficiently

distribute them among the execution nodes.

Combining Load and Functional Tests: Many systems ranging from e-commerce websites to

telecommunications must support concurrent access by hundreds or thousands of users. In order

to assure the quality of these systems, load testing is a required testing process in addition to

conventional functional testing procedures, which focus on testing a system based on a small

number of users (8). In fact, load testing is one of the testing types with high importance.

It is usually accompanied by performance monitoring of the hosting environment. Typically,

industry software testing practice is to separate load testing from functional testing. Different

teams with different expertise and skills execute their testing at different times, and each team

evaluates the results against its own criteria. It is exceptional to get the two testing types

together and to evaluate load test results for functional correctness or incorporate sustained

load in the functional testing. In this work, we propose a formal model-based framework to

combine functional and load tests. Moreover, we study BPEL (Business Process Execution

Language) compositions behaviors under various load conditions using the proposed framework.

Determinization of Timed Automata: Timed automata (TA), introduced in (9), form a usual

model for the specification of real-time embedded systems. Essentially TAs are an extension of

automata with guards and resets of continuous clocks. They are extensively used in the con-

text of many validation problems such as verification, control synthesis or model-based testing.

2

Determinization is a key issue for several problems such as implementability, diagnosis or test

generation, where the underlying analyses depend on the observable behavior. Our method com-

bines techniques from (3) and (10) and improves those two approaches, despite their notable

differences. The core principle is the construction of a finite turn-based safety game between

two players, Spoiler and Determinizator, where Spoiler chooses an action and the region of its

occurrence, while Determinizator chooses which clocks to reset. Our main result states that if

Determinizator has a winning strategy, then it yields a deterministic timed automaton accepting

exactly the same timed language as the initial automaton, otherwise it produces a deterministic

over-approximation.

Off-Line Test Selection for Timed Automata: Conformance testing is the process of testing

whether an implementation behaves correctly with respect to a specification. Implementations

are considered as black boxes, the source code is unknown, only their interface with the environ-

ment is known and used to interact with the tester. In formal model-based conformance testing

models are used to describe testing artifacts (specifications, implementations, test cases, ...),

conformance is formally defined and test cases with verdicts are generated automatically. Then,

the quality of testing may be characterized by properties of test cases which relate the verdicts

of their executions with conformance (soundness). In this context, a very popular model is timed

automata with inputs and outputs (TAIOs), a variant of timed automata (TAs) (11), in which

observable actions are partitioned into inputs and outputs. We consider here partially observ-

able and non-deterministic TAIOs with invariants for the modeling of urgency. In this work, we

propose to generate test cases off-line for non-deterministic TAIOs, in the formal context of the

tioco (2) conformance theory.

1.2 Contributions

The main research contributions presented in this dissertation are the following.

1. Testing Techniques for Distributed and Dynamically Adaptabe Systems:

(a) We designed a standard-based test execution platform which affords a platform-

independent test system for isolating and executing runtime tests. This platform

uses the TTCN3 standard and considers both structural and behavioral adaptations.

Moreover, our platform is equipped with a test isolation layer that reduces the risk

of interference between testing processes and business processes.

(b) We computed a minimal subset of test cases to run and efficiently distributed them

among the execution nodes while respecting resource and connectivity constraints.

3

The minimal subset of test cases is obtained using a smart generation algorithm

which keeps old tests cases which are still valid and replaces invalid ones by new

generated or updated test cases.

(c) We validated the proposed techniques on two case studies, one in the healthcare

domain and the other one in the fleet management domain. Through several exper-

iments, we showed the efficiency of our tool in reducing the cost of runtime testing

and we measure the overhead introduced in case of dynamic structural or behavioral

adaptations.

2. A Model-Based Approach to Combine Load and Functional Tests:

(a) We proposed a formal model-based framework to combine functional and load tests.

The proposed framework is based on the model of extended timed automata with

inputs/ouputs and shared integer variables. In addition, we presented different mod-

elling issues illustrating some methodological aspects of our framework and we illus-

trated them by means of a case study.

(b) We studied BPEL compositions behaviors under various load conditions using the

proposed framework. We also proposed a taxonomy of the detected problems by our

solution and we illustrated how test verdicts are assigned. Moreover, we validated

our approach using a Travel Agency case study. We considered several mutants of

the corresponding BPEL process and we tested them using our tool.

3. Formal Techniques for Determinization and Off-Line Test Selection for Timed Automata:

(a) We proposed a game-based approach for the determinization of timed automata. For

a given timed automaton A and some fixed resources, we build a finite turn-based

safety game between two players Spoiler and Determinizator, such that any strategy

for Determinizator yields a deterministic over-approximation of the language of A

and any winning strategy provides a deterministic equivalent for A.

(b) We introduced a complete formalization for the automatic off-line generation of test

cases from non-deterministic timed automata with inputs and outputs. We proposed

an approximate determinization procedure and a selection technique of test cases with

expressive test purposes. Test cases are generated using a symbolic co-reachability

analysis of the observable behaviors of the specification guided by the test purpose.

4

1.3 Document Outline

The rest of this dissertation is structured in four parts as follows.

Part I: Testing Distributed and Dynamically Adaptable Systems

• Chapter 2 presents the background material related to runtime testing of distributed and

dynamically adaptable systems. Besides, it reports on related works.

• Chapter 3 details the approach we propose to handle structural adaptations at runtime.

• Chapter 4 introduces our proposal to handle behavioral adaptations at runtime.

• Chapter 5 presents the prototype implementation of the RTF4ADS framework and re-

ports on two case studies.

Part II: Combining Load and Functional Tests

• Chapter 6 presents a classification of the load testing approaches and makes a compara-

tive evaluation of them.

• Chapter 7 propsoes a formal model-based framework to combine functional/load tests.

• Chapter 8 reports on our study of BPEL compositions behaviors under various load

conditions.

Part III: Determinization and Off-Line Test Selection for Timed Automata

• Chapter 9 proposes a game-based approach for the determinization of timed automata..

• Chapter 10 presents a formalization for the automatic off-line generation of test cases

from non-deterministic timed automata.

Part IV: Ongoing Works

• Chapter 11 reports on our ongoing work related to the model-based security testing of

internet of things for smart cities.

• Chapter 12 reports on our ongoing work dealing with providing a scalable test execution

platform providing testing facilities as a cloud service.

Finally, Chapter 13 summarizes the contributions and the obtained results and outlines

several directions for future research.

5

Part I

Testing Distributed and Dynamically Adaptable Systems

CHAPTER 2

Background Materials and State of the Art

2.1 Introduction

This chapter is dedicated to present the background material and an overview on the sate of art

related to the first contribution presented in this work. In Section 2.2, we start by giving the

main characteristics of adaptable and distributed component-based systems and we discuss the

challenges that we face after the occurrence of dynamic adaptations. Key concepts on software

testing is outlined in Section 2.3. It includes software testing definition, test kinds, well-known

test implementation techniques and test architectures. In Section 2.4, some testing techniques

commonly used to validate modifications introduced in software systems are presented, namely

regression and runtime testing. Section 2.5 outlines research work done mainly on test selection

and test generation issues. The surveyed approaches in Section 2.6 are studied from different

perspectives such as resource consumption, interference risks, test distribution, test execution

and dynamic test evolution and generation. Finally, Section 2.7 summarizes the chapter.

2.2 Dynamically adaptable systems

2.2.1 Main characteristics

Dynamically adaptable systems (12) consist of a set of interconnected software components

which are software modules that encapsulate a set of functions or data. Seen as black-boxes,

components offer functionalities that are expressed by clearly defined interfaces. These interfaces

are usually required to connect components for communication and to compose them in order

2.2 Dynamically adaptable systems 8

to provide complex functionalities (See Figure 2.1).

Component1 Component2

Provided
Interface1

Node i Node j

Remote

Connection

Provided
Interface2 Provided

Interface3

Required
Interface1

Figure 2.1: Distributed component-based architecture.

2.2.2 Dynamic adaptation: kinds and goals

Dynamic adaptation is defined in (13) as the ability to modify and extend a system while it

is running. It can be either structural or behavioral. Figure 2.2 illustrates different kinds of

structural reconfiguration actions.

C1

C2

C3

SUT

C1

C2

C3

SUT’

C1

C2

C3

SUT’

C1

C2

C4
SUT’

C4 C4

�

�

�

(a) Initial SUT

architecture

(b) Adding a new component

and its connections

(c) Deleting a component

and its connections

(d) Replacing a component

by another version

C1’

Figure 2.2: Basic structural reconfiguration actions.

For behavioral changes, the system behavior is modified by changing the implementation of

its components or by changing its interfaces. Four major purposes of dynamic adaptation are

defined in (14) :

• Corrective adaptation: removes the faulty behavior of a running component by replac-

ing it with a new version that provides exactly the same functionality.

• Extending adaptation: extends the system by adding either new components or new

functionalities.

• Perfective adaptation: aims to improve the system performance even if it runs correctly.

• Adaptive adaptation: allows adapting the system to a new running environment.

In the literature, several research approaches have been proposed to support the establish-

ment of dynamic and distributed systems. Without loss of generality, we use in this work the

OSGi (15) platform as a basis to build dynamic systems.

2.3 Software testing fundamentals 9

2.2.3 Challenges

By evolving dynamically the structure or/and the behavior of a distributed component-based

system, several faults may arise at runtime. We distinguish:

• Functional faults: For instance, a defect at the software level can lead to an integration

fault caused by interface or data format mismatches with its consumers.

• Non-functional faults: For instance, migrating a software component from one node to

another can lead to performance degradation.

The failure of one component can trigger the failure of every component which is directly

or indirectly linked to it. Also, all composite components that contain the faulty one may

be subject to a failure. In the literature, two surveys address this issue (16; 17) and several

Validation and Verification (V&V) techniques are proposed:

• Model checking: This technique exploits research done in the Models at Run-Time

(M@RT) community (18; 17) in order to have an up-to-date representation of the evolved

system. The latter is still a challenging issue since it is highly demanded to preserve

coherence between runtime models and the running system (16; 19).

• Monitoring and analysis of system executions: Monitoring consists in observing

passively system executions. The gathered data are then analyzed with the aim of detecting

inconsistencies introduced after dynamic adaptions.

• Software Testing: To address the weakness imposed by the passive nature of monitoring,

software runtime testing was introduced. It consists in stimulating the system with a set

of test inputs and comparing the obtained outputs with a set of expected ones.

The latter technique is adopted in this work as one of the most effective V&V technique.

2.3 Software testing fundamentals

2.3.1 Levels and objectives

As shown in Figure 2.3, software testing is usually performed at different levels.

• Unit testing: in which individual units of the system are tested in isolation.

• Integration testing: in which the compatibility between components is checked.

2.3 Software testing fundamentals 10

Scale of SUT

AccessibilityBlack Box White BoxUnit

Component

Integration

System

Model Based

Testing

Characteristics

being tested

Functional

Black Box White Box

Robustness

Performance

Security

Figure 2.3: Different kinds of testing (1).

• System testing: in which the system formed from tested subsystems is tested as an

entity.

Testing can be conducted to fulfill a specific objective. It can be used to verify different

properties either functional or non-functional. For instance, test cases can be designed to validate

whether the observed behavior of the tested software conforms to its specifications or not. This

is mostly referred to in the literature as Conformance testing. Non-functional requirements, such

as reliability, performance and security requirements, can be also validated by means of testing.

2.3.2 Test generation techniques

We distinguish mainly three categories:

• Specification-based testing: Formal SUT specifications (e.g., based on the Z specifi-

cation language (20)) or object-oriented specifications (e.g., based on Object-Z notation

(21)), are used for automatic derivation of functional test cases without requiring the

knowledge of the internal structure of the program.

• Model-Based Testing (MBT): Test cases are derived from formal test models like Uni-

fied Modeling Language (UML) diagrams (22) and Finite State Machine (FSM) models (1).

• Code-based testing: Several approaches are proposed to extract test cases from the

source code of a program. For instance, approaches in combinatorial testing (23), mutation

testing (24), and symbolic execution (25) are seen as code-based test generation techniques.

2.3 Software testing fundamentals 11

2.3.3 Test implementation techniques

In the literature, we identify several test specification and test implementation techniques, in-

cluding the Java Unit (JUnit) framework and the TTCN-3 standard (26).

• JUnit: It is designed for the Java programming language. JUnit exploits a set of assertion

methods useful for writing self-checking tests. Compared to its old version (version 3),

JUnit 4 makes use of annotations which provide more flexibility and simplicity in specifying

unit tests. JUnit is fully integrated in many Integrated Development Environments (IDE)

such as Eclipse. It supplies a Graphical User Interface (GUI) which simplifies testing and

gives valuable information about executed tests, occurred errors, and reported failures.

• TTCN-3: It is known as the only internationally standardized testing language by the

European Telecommunications Standards Institute (ETSI). It is designed to satisfy many

testing needs and to be applied to different types of testing. The strength of TTCN-3

relies on its platform independence. This makes the use of TTCN-3 more appropriate in

the case of heterogeneous systems. In contrast to various testing and modeling languages,

TTCN-3 does not comprise only a test language, but also a test system architecture for

the test execution phase. In fact, this TTCN-3 test system comprises interacting entities

that manage test execution, interpret or execute compiled TTCN-3 code and establish real

communication with the SUT.

In this work, we adopt TTCN-3 as a convenient test notation and test execution support for

validating dynamic and distributed systems.

2.3.4 Test architectures for distributed systems

A test architecture is composed of a set of Testers which are entities that interact with the

SUT to execute the available test cases and to observe responses. A test case can be defined as

a set of input values, execution preconditions, execution post-conditions and expected results

developed generally in order to verify the conformance of a system to its requirements.

Test architectures can be either centralized (27; 28) or distributed (29; 30; 28). A centralized

architecture consists of a single tester that communicates with the different ports of the system

under test. In our work we consider a distributed test architecture by associating a new tester

with each component of the SUT. More precisely we adopt the TTCN-3 standardized test

architecture (26).

2.4 Testing dynamically adaptable systems 12

2.4 Testing dynamically adaptable systems

In the literature, two well-known testing techniques are usually performed to check the correct-

ness of an evolved software system. Regression tests are executed after the occurrence of each

modification at design time whereas Runtime tests are performed at service time.

2.4.1 Regression testing

Regression testing attempts to validate modified software and ensure that no errors are intro-

duced into previously tested code (31). This technique guarantees that the modified program

is still working according to its specification. It is commonly applied during the development

phase and not at runtime. When the program code is modified code-based regression testing

techniques can be advocated, as in (32).

According to Leung et al. (33), old tests can be classified into three kinds of tests:

• Reusable tests: valid tests that cover the unmodified parts of the SUT.

• Retestable tests: still valid tests that cover modified parts of the SUT.

• Obsolete tests: invalid tests that cover deleted parts of the SUT.

Leung et al. identify two types of regression testing. In the progressive regression testing, the

SUT specification can be modified by reflecting some enhancements or some new requirements

added in the SUT. In the corrective regression testing, only the SUT code is modified by altering

some instructions in the program whereas the specification does not change. Thus, new tests

can be classified into two classes:

• New specification tests: new tests generated from the modified parts of the specifica-

tion.

• New structural tests: structural-based test cases that test altered program instructions.

Although regression testing techniques are not dedicated for dynamically adaptable systems,

research done in this area is useful to obtain in a cost effective manner a relevant test suite

validating behavioral changes.

2.4.2 Runtime testing

The runtime testing activity is defined in (34) as any testing method that is carried out on the

final execution environment of a system when the system or a part of it is operational. It can

be performed both at deployment-time and at service-time.

2.4 Testing dynamically adaptable systems 13

For systems whose architectures remain constant after their initial installation, there is ob-

viously no need to retest the system when it has been placed in-service. On the contrary, if any

change in the execution environment or the system behavior/architecture occurs, service-time

testing becomes a necessity to verify and validate the new system in the new situation.

2.4.3 Runtime testability

According to IEEE std. 610.12 (35), testability is defined as the degree to which a system or

a component facilitates the performance of tests to determine whether a requirement is met.

Consequently, runtime testability is defined as an indicator of the effort needed to test the

running software without affecting its functionalities or its environment. In this direction, some

approaches, such as (36), focused on proposing mathematical methods for its assessment. Next

we explain how runtime testability varies according to two main characteristics of the SUT: Test

Sensitivity and Test Isolation.

2.4.3.1 Test sensitivity

It is a component property that indicates whether the component under test can be tested

without unwanted side-effects. In particular, a component is called test sensitive when it includes

some behaviors or operations that cannot be safely tested at runtime. In this case, the component

is called untestable. In the opposite case it is called a testable component.

2.4.3.2 Test isolation

This solution is applied by test engineers in order to counter the test sensitivity problem and to

prevent test processes from interfering with business processes. Many test isolation techniques

are available to fulfill such aim:

• Built-In Test approach: The Built-In Test (BIT) paradigm consists in building testable

components. To do so, components are equipped with a test interface which provides

operations ensuring that the test data and business data are not mixed during the test

process (37; 38).

• Aspect-based approach: This technique uses Aspect Oriented Programming (AOP). Un-

like the BIT approach that embeds test cases into components, the aspect-based approach

integrates such test scripts into a separate module, i.e., aspect. Thus, maintainability of

the component and its capacity to check itself are improved.

2.5 Related work on regression testing 14

• Tagging components: This technique consists in marking the test data with a special

flag in order to discriminate it from business data (39). The component is then called

test aware. The principal advantage of this method is that one component can receive

production as well as testing data simultaneously.

• Cloning components: This mechanism consists in cloning the component under test

before the start of the test activity. Thus, test processes are performed by the clone

while business processes are performed by the original component. To clone components

efficiently, we must also duplicate their dependencies, known as Deep clone strategy (40).

• Blocking components: In case of untestable components, a blocking strategy can be

adopted as a test isolation technique. In fact, it consists in interrupting the activity of

component sources for a lapse of time representing the duration of the test.

The listed test isolation techniques suffer from some weaknesses. First of all, the cloning

strategy is very costly in terms of resources especially when the number of needed clones in-

creases. Besides, BIT, tagging and aspect-based techniques have an additional development

burden. Regarding the blocking option, it may affect the performance of the whole system,

especially its responsiveness in case of real-time systems.

2.5 Related work on regression testing

In the literature, many researchers have investigated regression testing techniques to reestablish

confidence in modified software systems. Their research spans a wide variety of topics, namely

test selection, test prioritization, efficient test generation, etc. The existing approaches are

classified into : code-based regression testing (41; 32; 42), model-based regression testing (43;

44; 45; 46; 47; 48) and software architecture-based regression testing (49; 50).

2.5.1 Code-based regression testing approaches

Rothermel et al. (32) construct control flow graphs from a program and its modified version

and then use the elaborated graphs to select all non obsolete tests from the old test suite. The

obtained set of tests is still valid and covers the changed code. Similarly, Granja et al. (41) deal

with identifying program modifications and selecting attributes required for regression testing.

Based on data flow analysis, the authors use the obtained elements to select retestable tests.

Test generation features to produce new tests covering new behaviors are not discussed in this

work. In (42), the authors apply a regression test selection and prioritization approach based

2.5 Related work on regression testing 15

on code coverage. The obtained results show the efficiency of the proposed implementation to

reveal defects, to reduce the test set and test time. Nevertheless, this approach is specific to

C++ programming language. Moreover, it is tightly related to the system under test and cannot

be easily applied to other systems.

2.5.2 Model-based regression testing approaches

Brian et al. (47) introduce a UML-based regression test selection strategy. The proposed

approach automatically classifies tests issued from the initial behavioral models as obsolete,

reusable and retestable tests. Identifying parts of the system that require additional tests to

generate was not tackled by this approach. Similarly, the work of (48) deals with minimizing the

impact of test case evolution by avoiding the regeneration of full test suites from UML diagrams.

A point in favor of this work is the enhancement of the test classification already proposed by

Leung et al. (33). In fact, the authors define a more precise test status based on the model

dependence analysis. Pilskalns et al. (45) present a new technique that reduces the complexity

of identifying the modification impact from various UML diagrams. This proposal is based on

an integrated model called Object Method Directed Acyclic Graph built from class and sequence

diagrams as well as Object Constraint Language (OCL) expressions. Chen et al. (46) propose

a safe regression technique relying on Extended Finite State Machine (EFSM) as a behavioral

model and a dependence analysis approach. Similar to (46), Korel et al. (51) support only

elementary modifications, namely the addition and the deletion of a transition. In this context,

they present two kinds of model-based test prioritization methods : selective test prioritization

and model dependence-based test prioritization.

2.5.3 Software architecture-based regression testing

Harrold et al. (49) introduced the use of the formal architecture specification instead of the

source code in order to reduce the cost of regression testing and analysis. This idea has been

explored later by Muccini et al. (50). The authors propose an effective and well-implemented

approach called Software Architecture-based Regression Testing. They apply regression testing

at both code and architecture levels whenever the system implementation or its architecture

evolve.

2.5.4 Discussion

Two major questions are identified when several regression testing approaches are studied. The

first one is how to select a relevant and a minimal subset of tests from the original test suite.

2.6 Related work on runtime testing 16

The second one is how to generate new tests covering only new behaviors. Responding to these

challenging questions requires both test selection and generation capabilities. In this respect, we

notice that some approaches focus only on the test selection activity at the code level (32; 41)

or at the model level (47) whereas the work of (46) deals only with model-based test generation

issue. Addressing both activities as in (44; 48; 45; 50) is highly demanded in order to reduce

their cost especially in terms of number of tests and time required for their execution.

Up to our knowledge, no previous work dealt with the use of regression testing approaches

at runtime. Therefore, our goal was to handle test selection and test generation activities at a

higher abstract level without code source access while the SUT is operational.

2.6 Related work on runtime testing

We identified several approaches supporting only runtime testing of structural adaptations

(52; 53; 54; 55; 56; 57). The work presented in (58) deals only with behavioral adaptations.

The approaches in (59; 60; 61) take into account both structural and behavioral adaptations

while performing runtime tests. Next runtime testing approaches are discussed from various

perspectives.

2.6.1 Supporting test isolation strategies

In the literature, several research approaches have a strong tendency to investigate test isolation

concept in order to reduce the interference risk between test processes and business processes.

The majority accommodates the Built-In Test paradigm for this purpose (34; 53; 39). Similarly

to this strategy, the approaches introduced in (60) and (56) deal with putting all the involved

components into a testing mode before the execution of runtime tests. We also identified ap-

proaches dealing with runtime testing of untestable components. They afford other test isolation

strategies such as Safe Validation with Adaptation (58), which is equivalent to the blocking strat-

egy already introduced. Similar to cloning components, the Replication with Validation strategy

was proposed by (61) as a means of test isolation. Furthermore, instantiating services at runtime

and using new service instances for runtime testing purposes is proposed by (57). Finally, the

Mobile Resource-Aware Built-In-Test (MORABIT) framework introduced in (52) addresses the

runtime testing of heterogeneous software systems composed of testable and untestable compo-

nents. This framework supports two test isolation strategies: cloning if components under test

are untestable and the BIT paradigm otherwise.

2.6 Related work on runtime testing 17

2.6.2 Handling test distribution

The test distribution over the network has been rarely addressed by runtime testing approaches.

Most of the studied works assume that tests are integrated into components under test. We

identified only two approaches that shed light on this issue.

First, the authors of (62; 59) introduce a light-weight framework for adaptive testing called

Multi Agent-based Service Testing in which runtime tests are executed in a coordinated and

distributed environment. This framework defines a coordination architecture that facilitates

test agent deployment and distribution over the execution nodes and test case assignment to the

adequate agents. Unfortunately, this framework suffers from a dearth of test isolation concerns.

In the second study (54), a distributed in vivo testing approach is introduced. This proposal

defines the notion of Perpetual Testing which suggests the proceeding of software analysis and

testing throughout the entire lifetime of an application. The main contribution of this work

consists in distributing the test load in order to attenuate the workload and improve the SUT

performance by decreasing the number of tests to run. However, this framework does not handle

the occurrence of behavioral adaptations and supports only the cloning strategy for test isolation.

2.6.3 Handling test selection and evolution

The test selection issue has to be addressed seriously with the aim of reducing the amount of

tests to rerun. One of the potential solutions that tackle this issue is introduced in (39). The

proposed approach uses dependency analysis to find the affected components by the change.

In the literature, we distinguish the ATLAS framework (53), which affords a test case evolu-

tion through an Acceptance Testing Interface. This strategy ensures that tests are not built in

components permanently and can evolve when the system under test evolves, too. The major

limitation of this approach is the lack of automated test generation since tests are not gener-

ated automatically from components’ models and specification. Contrary to this approach, the

authors of (62) and (60) address this last issue. Both methods regenerate all test cases from

new service specifications when dynamic behavioral adaptations occur. However, regenerating

all tests can be costly and inefficient. To overcome these limitations, Akour et al. (63) propose

a model-driven approach for updating regression tests after dynamic adaptations. Called Test

Information Propagation, this proposal consists in synchronizing component models and test

models at runtime. In the same context, Fredericks et al. (64) propose an approach that adapts

test cases at runtime with the aim of ensuring that the SUT continues its execution safely and

correctly when environmental conditions are adapted. Nevertheless, this work can only adapt

test case parameters at runtime and it is not intended to dynamically add or remove test cases.

2.6 Related work on runtime testing 18

2.6.4 Affording platform independent test systems

The major test systems, that have been surveyed, have been implemented in a tightly coupled

manner to the programming language of components or to the underlying component model such

as Fractal (53), OSGi (57), the Dynamic Adaptive System Infrastructure (DAiSI) component

model in (56) and the MORABIT component model in (65). Another approach presented in

(54) affords a Java-based framework. Many other approaches (66; 67; 68; 69; 70; 71; 72; 73; 74)

benefit from the strengths of the TTCN-3 standard as a platform independent language for

specifying tests even for heterogeneous systems. However, they address testing issues at design

time and not at runtime. Deussen et al. (75) stress the importance of using the TTCN-3 standard

to build an online validation platform for internet services. However, this work neglects the test

isolation issue.

2.6.5 Supporting test resource awareness

To the best of our knowledge, this problem has been studied only by Merdes’work (52). Aiming

at adapting the testing behavior to the given resource situation, it provides a resource-aware

infrastructure that keeps track of the current resource states. To do this, a set of resource

monitors are implemented to observe the respective values for processor load, main memory,

battery charge, network bandwidth, etc. According to resource availability, the proposed frame-

work is able to balance in an intelligent manner between testing and the core functionalities of

the components. It provides in a novel way a number of test strategies for resource aware test

management. Among these strategies, we can mention, for example, Threshold Strategy under

which tests are performed only if the amount of used resources does not exceed thresholds.

2.6.6 Discussion

Considering both structural and behavioral adaptations was only done by (59; 60; 61). Fur-

thermore, we noticed a quasi-absence of approaches offering platform independent test systems

except in (75). However, the authors of (75) support homogeneous systems-under test made

up of only testable (or only untestable ones). We identified only one work (52) that deals with

combining two test isolation strategies. Moreover, only the latter approach tackled the issue

of resource limitations and time restriction during runtime testing. Regarding test evolution

and generation at runtime, the authors of (62; 60) that regenerate all test cases from the new

specifications when dynamic behavioral adaptations occur. The work of (64) tries to reduce

this cost by adapting exiting test cases to the evolved environmental conditions but without

generating new tests covering new behaviors or removing obsolete ones. To partially overcome

2.7 Summary 19

this limitation, (63) supports only reductive changes (e.g., removing existing components) and

then adapts the test suite by removing obsolete tests and by updating the set of retestable tests.

In summary, our study on runtime testing approaches reveals a dearth in the provision

of a platform-independent support for test generation and execution which considers resource

limitations and time restriction. To surmount this major lack, our ultimate goal was to conceive

a safe and efficient framework that minimizes the cost of checking a running system after each

dynamic adaptation either structural or behavioral. From the test execution perspective, setting

up a TTCN-3 test system for the distribution, isolation and execution of a minimal set of test

cases identified after the occurrence of structural adaptations is strongly required. From the

test generation perspective, proposing a selective test case generation method that derives test

cases efficiently from the affected parts of the SUT behavioral model and selects relevant tests

from the old test suite was a must, too.

2.7 Summary

This chapter addressed the fundamentals related to runtime validation of dynamically adaptable

systems. It was mainly dedicated to give an overview of the most common concepts frequently

used in the field of software testing, especially while testing evolvable systems. In this context,

two well-known techniques, namely regression testing and runtime testing were introduced.

Morover, we discussed the state of art of testing modified systems. Research done in the area

of regression testing as well as runtime testing was analyzed.

CHAPTER 3

Runtime Testing for Structural Adaptations

3.1 Introduction

Testing at design-time or even at deployment-time usually demonstrates that the System Under

Test, SUT, satisfies its functional and non-functional requirements. However, its applicability

becomes limited and irrelevant when this system is adapted at runtime according to evolving

requirements and environmental conditions that were not explicitly specified at design-time.

For this reason, runtime testing is strongly required to extend assurance from design-time to

runtime.

The rest of this chapter is structured as follows. In Section 3.2, a brief overview of the

overall runtime testing process is given. First of all, the timing cost is reduced by executing only

a minimal subset of test cases that validates the affected parts of the system by dynamic changes.

In this respect, Sections 3.3 and 3.4 introduce the use of the dependency analysis technique to

identify the affected parts of the dynamically adaptable system and their corresponding test

cases. Secondly, Section 3.5 introduces the method we use to effectively distribute the obtained

tests over the network with the aim of alleviating runtime testing load and not disturbing SUT

performance. Thirdly, Section 3.6 presents the standard-based test execution platform that

we designed for test isolation and execution purposes. The latter is extended to supply a test

isolation layer that reduces the interference risk between test processes and business processes.

Ultimately, this chapter is concluded in Section 3.7.

3.2 The Approach in a nutshell 21

3.2 The Approach in a nutshell

The process depicted in Figure 11.1 spans the different steps to fulfill with the aim of executing

runtime tests when structural reconfiguration actions are triggered, as follows :

Structural
Reconfiguration action

Start

Online Dependency

Analysis

SUT

Architecture

Executable

Test case

Repository

Affected Components

Constrained Test

Component Placement

Online Test Case

Selection

Minimal Set of test cases Test

Resources

Test

Component

Required

Resources

Te
st

 S
el

ec
tio

n
an

d
D

is
tr

ib
ut

io
n

Test Isolation &

Execution

Verdicts

Pass Verdict

Fail Verdict

Finish

Resource Resource

States of

Execution

nodes

Resource Aware Test Plan

Component Placement

Te
st

 Is
ol

at
io

n
an

d
E

xe
cu

tio
n

Figure 3.1: Runtime testing process for the validation of structural adaptations.

• Online Dependency Analysis: In this step, we focus on identifying the affected com-

ponents and compositions by a structural reconfiguration action.

• Online Test Case Selection: Once the affected parts of the system are identified, we look

for their corresponding test cases that are stored in the Executable Test Case Repository.

• Constrained Test Component Placement: Test components are assigned to execution

nodes in an appropriate manner with respect to resource and connectivity constraints.

• Test Isolation and Execution: A test isolation layer is set up then test components

are dynamically created and test cases are executed.

More details are presented in the next sections.

3.3 Online dependency analysis 22

3.3 Online dependency analysis

To reduce the time cost and the resource burden of the runtime testing process, the key idea

is to avoid the re-execution of all tests at runtime when structural adaptations occur. Thus,

we use the dependency analysis approach with the aim of determining the parts of the system

impacted by dynamic evolutions and then computing a minimal set of tests to rerun. In fact, the

dependency analysis technique is widely used in various software engineering activities including

testing (76), maintenance and evolution (77; 78).

3.3.1 Definition

Dependencies between components is defined in (77) as “the reliance of a component on other(s)

to support a specific functionality”. It is also considered as a binary relation between two com-

ponents. A component A is an antecedent to another component B if its data or functionalities

are utilized by B . Equivalently, A component B is a dependent on another component A if it

utilizes data or functionalities of A. Formally, the relation → called “Depends on” is defined in

(79) where B → A means that the component B depends on the component A. The set of all de-

pendencies in a component-based system is defined as : D = {(Ci ,Cj) : Ci ,Cj ∈ S ∧ Ci → Cj }

where S is the set of components in the system. Accordingly, the current system configuration

is a set of components and its dependencies Con = (S,D).

Several forms of dependencies component-based systems are identified in the literature (76).

For instance, we mention data dependency (i.e., data defined in one component is used in

another component), control dependency (i.e., caused by sending a message from one component

to another component), etc. The main dependency form that we support in this work is the

interface dependency, which means that a component requires (respectively provides) a service

from (respectively to) another component.

3.3.2 Dependency representation

To represent and analyze component dependencies, two formalisms are generally described : a

Component Dependency Graph (CDG) and a Component Dependency Matrix (CDM). A CDG is

a directed graph denoted by G = (S,D) where: S is a finite nonempty set of vertices representing

system’s components andD is a set of edges between two vertices, D ⊆ (S×S). A CDM is defined

as a 0-1 Adjacency Matrix AMn×n , that represents direct dependencies in a component-based

system. In this matrix, each component is represented by a column and a row. If a component

Ci depends on a component Cj then dij = 1 otherwise dij = 0. Figure 3.2 shows an example of

dependency graph and its corresponding adjacency matrix.

3.4 Online test case selection 23

C1

C2

C3

C4

C5

0 1 0 0 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

Figure 3.2: A CDG and its CDM representing direct dependencies.

Initially, D represents only direct dependencies between components. In order to gather all

indirect dependencies in the component-based system, the transitive closure of the graph has to

be calculated. Several transitive closure algorithms have been widely studied in the literature

such as the Roy-Warshall algorithm and its modification proposed by Warren (80).

3.4 Online test case selection

This concern has been extensively studied in the literature. In fact, various regression test

selection techniques have been proposed with the purpose of identifying a subset of valid test

cases from an initial test suite that tests the affected parts of a program. These techniques

usually select regression tests based on data and control dependency analysis (81).

Two kinds of tests are considered after the occurrence of dynamic adaptations. On the one

hand, unit tests are executed to validate individual affected components. On the other hand,

integration tests are performed to check interactions and interoperability between components.

Let us take an example with four components and a dependency graph that looks like Figure

3.3. Assume that C2 is replaced with a new version. Thus, two dependence paths are identified:

C1 → C2 → C3 and C1 → C2 → C4. As a result, the mapping to integration tests produces:

ITC1C2C3 and ITC1C2C4 have to be rerun.

C1

C2

C4C3

Figure 3.3: Illustrative example of dependence path computation.

3.5 Constrained test component placement 24

Recall that tests are written in the TTCN-3 notation and are executed by TTCN-3 test

components. As depicted in Figure 3.4a, an MTC component is only charged with executing a

unit test. It shares this responsibility with other PTC components when an integration test is

executed (see Figure 3.4b). Each PTC is created to simulate a test call from a component to

another at lower hierarchy in the dependence path. The following subsection copes with test

case distribution and more precisely with main test components assignment to execution nodes.

C1

MTC

PTC1 PTC3PTC2

C3C2 C4

Composite Component Under Test

PTC4

MTC

Component Under Test

C

(a) Unit test configuration.

C1

MTC

PTC1 PTC3PTC2

C3C2 C4

Composite Component Under Test

PTC4

MTC

Component Under Test

C

(b) Integration test configuration.

Figure 3.4: TTCN-3 test configuration for unit and integration testing.

3.5 Constrained test component placement

In the following subsections, we discuss how to formalize resource and connectivity constraints

and how to find the adequate deployment host for each test involved in the runtime testing

process.

3.5.1 Resource allocation issue

For each node in the execution environment, three resources are monitored during the SUT

execution: the available memory, the current CPU load and the battery level. The value of each

resource can be directly captured on each node through the use of internal monitors. These

values are measured after the runtime reconfiguration and before starting the testing activity.

Formally, provided resources of m execution nodes are represented through three vectors: C

contains the CPU load, R provides the available RAM and B introduces the battery level.

3.5 Constrained test component placement 25

C =


c1

c2
...

cm

 R =


r1

r2
...

rm

 B =


b1

b2
...

bm


The resources required by the n test components are initially computed at the deployment

time after a preliminary test run. Similarly, they are formalized over three vectors : Dc that

contains the required CPU, Dr that introduces the required RAM and Db that contains the

required battery by each test.

Dc =


dc1

dc2
...

dcn

 Dr =


dr1

dr2
...

drn

 Db =


db1

db2
...

dbn


As the proposed framework is resource aware, The overall resources required by n test

components must not exceed the available resources in m nodes. This rule is formalized as

follows: 

n∑
i=1

xijdci ≤ cj ∀ j ∈ {1, · · · ,m}
n∑

i=1
xijdri ≤ rj ∀ j ∈ {1, · · · ,m}

n∑
i=1

xijdbi ≤ bj ∀ j ∈ {1, · · · ,m}

(3.1)

where the two dimensional variable xij can be equal to 1 if the corresponding test component i

is assigned to the node j , 0 otherwise.

3.5.2 Connectivity issue

Dynamic environments are characterized by frequent and unpredictable changes in connectivity

caused by firewalls, non-routing networks, node mobility, etc. For this reason, we have to pay

attention when assigning a test component to a host computer by finding at least one route in

the network to communicate with the component under test. For each test component, a set

of forbidden nodes to discard during the constrained test component placement step is defined.

This connectivity constraint is denoted as follows:

xij = 0 ∀ j ∈ forbiddenNodeSet(i) (3.2)

3.6 Test isolation and execution support 26

Finding a satisfying test placement solution is achieved by fitting the former constraints (3.1)

and (3.2). The latter can be seen as a Constraint Satisfaction Problem (CSP) (82).

3.5.3 Optimizing the test component placement problem

Looking for an optimal test placement solution consists in identifying the best node to host

the concerned test component in response with two criteria : its distance from the node under

test and its link bandwidth capacity. To do so, we are asked to attribute a profit value pij for

assigning the test component i to a node j . For this aim, a matrix Pn×m is computed as follows:

pij =

 0 if j ∈ forbiddenNodeSet(i)

maxP − k × stepp otherwise
(3.3)

where maxP is a constant, stepp = maxP
m , k corresponds to the index of a node j in a Rank

Vector that is computed for each node under test. This vector corresponds to a classification of

the connected nodes according to two criteria : the distance from the testing node to the node

under test (83) and the link bandwidth capacities.

As a result, the constrained test component placement module generates the best deployment

host for each test component involved in the runtime testing process by maximizing the total

profit value while fitting the former resource and connectivity constraints. Thus, this problem

is formalized as a variant of the Knapsack Problem, called Multiple Multidimensional Knapsack

Problem (MMKP).

MMKP =



maximize Z =
n∑

i=1

m∑
j=1

pij xij (3.4)

subject to (3.1) and (3.2)
m∑

j=1
xij = 1 ∀ i ∈ {1, · · · ,n} (3.5)

xij ∈ {0, 1} ∀ i ∈ {1, · · · ,n} and ∀ j ∈ {1, · · · ,m}

Constraint (3.4) corresponds to the objective function that maximizes test component profits

while satisfying resource (3.1) and connectivity (3.2) constraints. Constraint (3.5) indicates that

each test component has to be assigned to at most one node.

3.6 Test isolation and execution support

With the purpose of alleviating the complexity of testing adaptable and distributed systems, we

propose a test system called, TTCN-3 test system for Runtime Testing (TT4RT) (84).

3.6 Test isolation and execution support 27

3.6.1 Detailed interactions of TT4RT components

TT4RT relies on the classical TTCN-3 test system. Thus, it reuses all its constituents, namely

Test Management (TM), TTCN-3 Executable (TE), Component Handling (CH), Coding and

Decoding (CD), System Adapter (SA) and Platform Adapter(PA). These entities are briefly

introduced below. As depicted in Figure 3.5, a new Generic Test Isolation Component is added

to the TTCN-3 reference architecture with the aim of handling test isolation concerns. The next

steps define the different components of TT4RT and their internal interactions:

TCI

Test Management(TM)

C
o

d
in

g
a

n
d

D
e

co
d

in
g

(C
D

)TTCN-3 Executable (TE)

Main Test Component

C
o

m
p

o
n

e
n

t

H
a

n
d

li
n

g
(C

H
)

Parallel Test

component
TTCN-3 based test

cases repository

1

Resource Aware

Test Plan

2

3

4
5

6 811

13

12

14

15

16

Local verdict

System Adapter (SA) Platform Adapter (PA)

TRI

cases repository

Generic Test Isolation

Component TT4RT

3 6

7

8

10

11 14

System Under Test (SUT)
Component1 Component2

Component3

Test

isolation

Instance

Test

isolation

Instance

9

Figure 3.5: Internal interactions in the TT4RT system.

When a reconfiguration action is triggered, the RATP (Ressource Aware Test Plan) file is

generated and it is considered as an input to the TT4RT test system (Step 1). The test execution

is initiated by the TM entity which is charged with starting and stopping runtime tests (Step

2). Once the test process is started, the TE entity (i.e., which is responsible of executing the

compiled TTCN-3 code) creates the involved test components and informs the SA entity (i.e.,

which is charged with propagating test requests from TE to SUT) with this start up in order

to set up its communication facilities (Step 3). Next, TE invokes the CD entity in order to

encode the test data from a structured TTCN-3 value into a form that will be accepted by the

3.6 Test isolation and execution support 28

SUT (Step 4). The encoded test data is passed back to the TE entity as a binary string and

forwarded to the SUT via the SA entity (Steps 5-6-7). After the test data is sent, a timer can be

started (Step 8). The Generic Test isolation Component, implementing test isolation facilities,

intercepts the test request, identifies the component under test and its supported test isolation

technique and prepares the test environment (Steps 7-9). Different test isolation instances are

automatically created to perform test isolation inter-component invocations (Step 9). The SUT

response is forwarded to the SA entity through the Generic Test Isolation Component. The

given response is an encoded value that has to be decoded in order to be understandable by

the TTCN-3 test system (Step 10). For this purpose, the SA entity forwards the encoded test

data to the TE entity (Step 11). The TE entity transmits the encoded response to the CD

entity with the intention of decoding it into a structured TTCN-3 value (Step 12). The decoded

response is passed back to the TE that stops the running timer and finally computes a verdict

(pass, fail or inconclusive) for the current test case (Steps 13-14-15). Finally, a local verdict

is computed depending on the obtained verdicts for test cases executed by the current TT4RT

instance (Step 16).

3.6.2 Overview of the Generic Test Isolation Component

Find the testability option of

the CUT from the RATP file

Add a tag to a the

test request

Block consumer

requests to the

CUT

Look for the BIT

interface of the

corresponding CUT

The corresponding

aspect of the CUT

is intercepted and

Clone the test

sensitive CUT

Initial

BIT-based

Aspect-based

Blocking-based

Cloning-basedTagging-based

Test request at runtime

Redirect the test

request to the BIT

interface

Send the tagged

test request to the

test aware CUT

Send the test

request to the CUT

is intercepted and

test behavior in the

advice part is

executed

Redirect the test

request to the clone

version

End

In case of integration tests

In case of unit tests

Figure 3.6: Test isolation policy.

3.6 Test isolation and execution support 29

As outlined in Figure 3.6, the proposed policy is executed while a test request is intercepted

from the System Adapter entity. Five strategies can be applied in response to the testability

degree of a Component Under Test (CUT). With the assumption that the CUT is testable,

the test request can be redirected to one or more test operations provided by its corresponding

test interface or its associated aspect (particularly in the advice part) when the aspect-based

technique is used. If the component under test is test aware, the tagging technique is applied

and the CUT is invoked by tagging the input test data with a flag to discriminate them from

business data. If we deal with untestable components, either cloning or blocking techniques can

be performed. For a test sensitive component, a clone is created and the test request is redirected

to it. Regarding the blocking strategy, it consists in interrupting the activity of the component

under test consumers for a lapse of time that corresponds to the test duration. During this

period, all business requests are delayed until the end of the test. Once the test is achieved, the

component under test consumers are unlocked and the delayed requests are treated.

3.6.3 The adopted distributed architecture

The TTCN-3 standard offers concepts related to test configurations, test components, their com-

municating ports between each other and with the SUT, their execution and their termination

only at an abstract level. Nevertheless, the means to control the distributed execution of these

test components are not explicitly defined in the current specification. Regarding this issue, we

propose our own test architecture that relies on a Test System Coordinator (TSC) and several

TT4RT instances. As outlined in Figure 3.7, TSC is mainly charged with distributing selected

test cases to rerun and assigning their corresponding test components to the execution nodes.

Several TT4RT instances are installed within the host computers involved in the final execution

environment. They can be seen as test containers that hold test components (i.e., either MTC

or PTC components). Each instance controls the execution of a subset of selected test cases.

Test System Coordinator
Test Case

Repository

SUT Execution Environment

Sub-SUT

Sub-SUT

Sub-SUT

TT4RT

TT4RT

TT4RT

Execution

Nodes

Figure 3.7: The distributed test execution platform.

3.7 Summary 30

3.7 Summary

In this chapter, we applied the runtime testing process to validate component-based systems

after the occurrence of dynamic structural adaptations. For this aim, we proposed a generic

and resource aware test execution platform that covers essentially two phases. The first phase

deals with test selection and distribution concerns. The main issue tackled in this first part is

alleviating test burden, cost and resource consumption. This goal is achieved by reducing the

amount of test cases to rerun and by assigning efficiently their associated test components to

execution nodes while fitting resource and connectivity constraints. The second phase handles

test isolation and execution concerns. Based on the TTCN-3 standard, we proposed a test

system, TT4RT, which performs tests written in a standardized notation. Accordingly, we gained

in terms of using the same notation for all types of tests and using a generic and flexible test

harness. Furthermore, TT4RT afforded a test isolation infrastructure supporting components

with various testability options (i.e., testable, test aware, untestable, etc.).

CHAPTER 4

Runtime Testing of Behavioral Adaptations

4.1 Introduction

Running old test suites on dynamic software systems, in which not only the structure evolves but

also the behavior may change, seems to be meaningless. Therefore, it is highly required to update

test suites in a cost effective manner as long as the software system is changing to fulfill new

requirements. In this chapter, we address this issue by merging model-based testing and selective

regression testing capabilities. To do so, we propose a Selective Test Generation Approach, called

TestGenApp. The latter is briefly outlined in Section 4.2. Background materials on timed

automata, UPPAAL formalism and observer automata are presented in Section 4.3. Then, we

introduce the model differencing algorithm in Section 4.4. The output of this module is then

used in Section 4.5 to perform an old test classification. Section 4.6 handles the test coverage

customization that we propose in order to generate efficiently new tests. Moreover, it presents

the algorithm that we propose to adapt either aborted or obsolete tests. Once abstract test

sequences are obtained, their mapping to the TTCN-3 notation is discussed in Section 4.7.

Finally, this chapter is concluded in Section 4.8.

4.2 The approach in a nutshell

As illustrated in Figure 4.1, our Selective Test Generation Approach is composed of four modules.

• Model Differencing Module: It is proposed to capture correspondences and differences

4.3 Prerequisites: UPPAAL Timed Automata 32

Behavioral
Model M

Behavioral

Model M’

Model Differencing Module

Test Generation and

Recomputation Module

evolves
Old Test Suite

Mdiff

Old Test Suite Classification

Module

Aborted

&

Obsolete

tests

New Abstract New Abstract

Test Suite

Reusable

tests

Retestable

tests

Adapted

tests
New tests

TTCN-3 Transformation

Module

Concrete TTCN-3 Concrete TTCN-3

Test Suite

Figure 4.1: TestGenApp: Selective test case generation approach.

between two models in terms of added, removed or modified locations and transitions.

• Old Test Suite Classification Module: It is charged with classifying the old test suite

issued from the original model M into reusable, retestable, aborted and obsolete tests.

• Test Generation and Recomputation Module: It generates new abstract test se-

quences covering newly added behaviors and adapts aborted and obsolete tests.

• TTCN-3 Transformation Module: It is used to transform the abstract test sequences,

obtained in the last step, into the TTCN-3 code.

4.3 Prerequisites: UPPAAL Timed Automata

In order to specify the behavioral models of evolved systems, Timed Automata (TA) is chosen

for the reason that it is a widespread formalism usually used for modeling behaviors of critical

and real-time systems. More precisely, we opt for the particular UPPAAL style (85) of timed

automata because UPPAAL is a well-established verification tool. It is made up of a system

4.3 Prerequisites: UPPAAL Timed Automata 33

editor that allows users to edit easily timed automata, a simulator that visualizes the possible

dynamic execution of a given system and a verifier that is charged with verifying a given model

w.r.t. a formally expressed requirement specification. Within UPPAAL timed automata, a

system is modeled as a network of timed automata, called processes. A timed automaton, is an

extended finite-state machine equipped with a set of clock-variables that track the progress of

time and that can guard when transitions are allowed.

Let C be a set of variables called clocks, and Act = I ∪O∪{τ} with I a set of input actions,

O a set of output actions , and the non-synchronizing action (denoted τ). Let G(C) denote the

set of guards on clocks being conjunctions of constraints of the form c ./ n, where c ∈ C, n ∈ N,

and ./∈ {6,≤,=,≥,>}. Moreover, let U(C) denotes the set of updates of clocks corresponding

to sequences of statements of the form c := n.

A timed automaton over (Act, C) is a tuple (L, l0,Act, C, I ,E), where :

• L is a set of locations, l0 ∈ L is an initial location.

• I : L 7−→ G(C) a function that assigns to each location an invariant.

• E is a set of edges such that E ⊆ L× G(C)×Actτ × U(C)× L

We write l
g,α,u−−−→ l ′ when 〈l , g , α, u, l ′〉 ∈ E .

Let (L, l0,Act, C, I ,E) be a timed automaton. The semantics of TA is defined in terms of

a timed transition system over states in the form (l , σ) where l is a location and σ ∈ RC>0 is a

clock valuation satisfying the invariant of l . The initial state (l0, σ0) is a state where l0 is the

initial location of the automaton and σ0 is the initial mapping where ∀ c ∈ C, c = 0. Indeed,

there are two kinds of transitions :

• Delay transitions, (l , σ)
d−→ (l , σ + d), in which all clock values of the automaton are

incremented with the amount of the delay, denoted σ + d . In such a case, the automaton

may stay in a location l as long as its invariant remains true.

• Discrete transitions, (l , σ)
α−→ (l ′, σ

′
), correspond to the execution of edges (l , g , α, u, l ′) for

which the guard g is satisfied by σ. The clock valuation σ
′ of the target state is obtained

by modifying σ according to updates u.

A run of timed automaton (L, l0,Act, C, I ,E) is a sequence of transitions (l0, σ0)
d1−→ α1−→

(l1, σ1)
d2−→ α2−→ ...

dn−→ αn−−→ (ln , σn), with σi ∈ RC>0, di ∈ R>0 and αi ∈ Act. A network of timed

automata, TA1‖...‖TAn over (Act, C) is modeled as a timed transition system obtained by the

parallel composition of n TA over (Act, C). Synchronous communication between the timed

automata is performed by hand-shake synchronization using input and output actions.

4.4 Differencing between behavioral models 34

4.4 Differencing between behavioral models

We introduce a novel Differencing Algorithm that concisely captures differences and similarities

between networks of timed automata. In such a case, two main elements are compared: locations

and transitions. First, we differentiate automata at the transition level. The two transitions Ti

in the initial T A and Tj in the evolved T A′ are considered similar if the following conditions

are met :

a. Ti and Tj have the same source and target locations, and

b. they have the same values in the guard, assignment and synchronization fields.

The procedure used for this purspose takes as input two array lists including transitions of

two timed automata : T A and T A′. For each transition in the initial automaton, we firstly check

its presence within the evolved one. From a technical point of view, this condition is checked by

looking for an equivalent transition in the evolved model having similar source location id and

target location id . As long as this condition is satisfied, we look for meeting conditions defined

above meaning that they have the same source and target locations (i.e., name, label, committed,

and urgent) and unchanged transition labels (i.e., guard, assignment and synchronization). As

a result, the transition is considered unmodified.

If at least one condition is not respected, the transition is considered modified and it is marked

in Yellow. New transitions which exist only in the evolved model are finally marked in Red.

If a transition in T A does not have an equivalent in the new timed automaton T A′, then this

transition is not copied in the final array list because it is considered as a removed transition.

The output of this procedure is an array list containing all marked transitions (unmodified,

modified and new ones).

Following the same logic, we compare locations in both models. Two locations li in T A and

lj in T A′ are considered similar if the following conditions are satisfied :

a. li and lj have the same name and the same identifier,

b. they have the same incoming and outgoing transitions, and

c. they have the same invariant expression.

One location is marked as changed if at least one of these conditions is not met. Finally since

the SUT is generally modeled by a network of timed automata, it is necessary to apply these

procedures for each timed automaton in the network.

4.5 Old test suite classification 35

4.5 Old test suite classification

Inspired from the test classification proposed by Leung et al. (33), we introduce in this section

a new test classification algorithm in which the old test suite generated from the original model

M is analyzed and then partitioned into :

• Reusable test set TRu : valid traces that traverse unimpacted items by the change.

• Retestable test set TRt : valid traces that traverse impacted items by the change.

• Aborted test set TAb : invalid traces that cannot be animated on the new model because

they cannot traverse modified items.

• Obsolete test set TOb : invalid traces that cannot be animated on the new model because

they traverse removed items.

For that aim, each trace in the T R set should be animated on the Mdiff model and its

covered items should be identified. Two scenarios are then tackled. On the one hand, the test

animation on the new model is achieved successfully. If the trace traverses unchanged items,

it is classified as a reusable test. Otherwise, it is classified as a retestable test. On the other

hand, the test animation on the new model is abandoned. If this abort is due to some removed

items which are no longer available in the new model, the trace is seen as an obsolete test and it

should be automatically discarded from the new test suite. Otherwise, this abort can be due to

a modified transition which cannot be reached any more. In such a case, the trace is classified

as an aborted test.

4.6 Test generation and recomputation

Our approach identifies critical regions in the evolved model not only by marking added locations

and transitions but also by detecting old traces that cannot be animated on the new model.

Consequently, the Mdiff is used in this stage to generate new tests and adapt aborted and

obsolete ones in a cost effective manner.

4.6.1 Test generation

To generate new tests covering newly added behaviors, we are based on the findings of Blom

et al. (86), which express coverage criteria by using observer automata with parameters and

formulate the test generation problem as a search exploration problem. Instead of adding aux-

iliary variables to enable the expression of a coverage criterion as a reachability property using

4.6 Test generation and recomputation 36

UPPAAL, the superposition of an observer onto timed automata is supported. The test genera-

tion tool UPPAAL CO
√

ER (87) supports the concept of observers and the test case generation

algorithm (88). This efficient test suite generator is adopted in this thesis to realize a selective

test generation approach when behavioral adaptations occur. The key idea is to formulate an

observer that monitors only new regions in the evolved model. A test sequence satisfies this

coverage criterion if when executed on the model it traverses at least one new edge where the

col variable is updated to zero.

4.6.2 Test recomputation

At this stage, the new test suite NT S contains reusable, retestable and new tests.

NT S = TRu ∪ TRt ∪ TNew

As mentioned before, the test animation on the evolved model may not be achieved due to

some removed or modified items (i.e., locations or transitions) that cannot be traversed anymore.

The key idea here consists in starting the test recomputation not from the initial state of the

evolved model but from the last reachable state detected during the test animation. To do so,

we take as inputs the current test suite NT S, the evolved modelMdiff , the valid sub-trace T R

from a given aborted trace (respectively obsolete trace) and the last reached state. Next, we

look for the adjacency matrix of each timed automaton in Mdiff . Then, we explore the state

space while generating all sub-paths that start from the given state and reach the initial one .

For each sub-path, an adapted trace is obtained and added to the NT S test suite while verifying

that the test redundancy is avoided.

The greatest added value of this technique is not only the decrease of the test generation cost

but also its ability to create a test suite based on the kind of change (i.e., made up of reusable,

retestable, new and adapted tests).

NT S = TRu ∪ TRt ∪ TNew ∪ TAd

If the obtained test suite is still large, a test prioritization strategy can be adopted. In that case,

a high priority should be attributed to tests that cover critical zones of the evolved model such

as new and adapted tests.

4.7 Test case concretization 37

4.7 Test case concretization

Before introducing our proposed transformation rules that we use to derive TTCN-3 test cases

from the abstract test sequences which have been newly generated from UPPAAL CO
√

ER, we

give a brief overview of exiting research dealing with this issue.

4.7.1 Related work on transforming abstract tests to TTCN-3 notation

In the last decade, several researchers have paid more attention to automatic test case generation,

more particularly to the concretization and the execution of abstract test suites (89; 90; 91; 92; 93;

94). We can mention, for instance, the approach in (93) which describes the generation of TTCN-

3 test suites specifically for the Session Initiation Protocol without using formal specifications.

The obtained test case generator is included in a commercial tool developed by Ericsson.

Deriving executable tests from UML 2.0 models was proposed by (92). Based on a commer-

cial tool usually used for interoperability testing of healthcare applications, this work generates

TTCN-3 test behaviors from UML sequence diagrams whereas TTCN-3 test data are generated

from two eHealth standards, namely Health Level 7 which is generally used for data represen-

tation and Integrating Healthcare Entreprise which is used for describing interactions between

medical devices. Similarly, the approach in (90) shows the translation of Message Sequence

Charts elements to the TTCN-3 notation.

Following the same principles of model-driven engineering, (95) proposes an approach that

deals with the model transformation of UML 2.0 Test Profile (U2TP) elements into an exe-

cutable test code. Within this work, U2TP is adopted as a modeling language for the test case

specification. Then, the models are transformed to the TTCN-3 language.

To our best knowledge, only the works in (91; 94) handle the derivation of TTCN-3 test cases

from abstract test sequences which are generated from finite state machines. In this context,

authors in (91) make use of another variant of UPPAAL called UPPAAL CORA. Similar to

our approach, they obtain witness traces from extended finite state machines and perform their

derivation to TTCN-3 notation. Also, the approach presented in (94) is close to our proposal as

it deals with a variant of timed automata called Labeled-Ports Timed Input/Output Automata.

The latter formalism is used to model the different port behaviors in a given multi-port system.

Then, a test generation algorithm is proposed and the obtained test cases are transformed into

TTCN-3 language.

Since there are no available tools which are able to realize automatically the mapping of

test sequences, generated from formal specifications based on timed automata, to the TTCN-3

notation, we had to develop our own transformation rules as outlined in the following subsection.

4.7 Test case concretization 38

4.7.2 Transformation rules from abstract test sequences to TTCN-3

At this stage, we define several rules to derive TTCN-3 test cases from abstract test sequences

(see Table 4.1) (96). First of all, we assume that for each test suite, a TTCN-3 module should

be generated (R1).

Table 4.1: TTCN-3 transformation rules.

Rules Abstract concepts TTCN-3 concepts
R1 a test suite a TTCN-3 module
R2 a single trace a TTCN-3 test case
R3 Time dependent behavior a timer definition

R4
a test sequence in the form of
input delay output a TTCN-3 test behavior

R5 each involved TA a PTC component
R6 each channel a template

Within the TTCN-3 standard, the module concept is used as a top-level structure. The first

part includes definitions of test data, templates, test components, functions, communication

ports, test cases and so on. The second part is usually used to describe the execution sequence

of test cases. A test component can be either a Main Test Component (MTC) or a Parallel

Test Component (PTC). Remember that the MTC is charged with creating PTC components

and executing TTCN-3 test cases. To do so, a port must be defined in order to specify a Point

of Control and Observation via which the test component can interact with other components

and with the SUT. To specify time delays, TTCN-3 supports a timer mechanism (R3). Timers

can be declared in component type definitions, the module control part, test cases, functions

and altsteps. The channels declared in the UPPAAL XML file are transformed into TTCN-3

templates (R6). Moreover, an abstract test system interface is defined similarly to a component

definition. It includes a list of all possible communication ports through which the test system

is connected to the SUT. Once the test configuration is generated, we look for the mapping of

the abstract test sequences to test cases. As stated in Table 4.1, for each test behavior in the

form of input delay output a TTCN-3 function is derived (R4). Moreover, for a single trace

(i.e., an abstract test sequence), a test case is generated (R2). Then, the communication is

established between the PTC ports and the System ports. Finally, a sequence of calls to the

already generated TTCN-3 functions is performed. To compile the obtained test cases, the

TThree compiler (97) is used. It transforms the Abstract Test Suite into an Executable Test

Suite. Then, our TT4RT test system can be used for test isolation and execution purposes.

4.8 Summary 39

4.8 Summary

The contributions presented in this chapter are many-fold. First, we defined a model differencing

technique that highlights similarities and differences between an original behavioral model and

the evolved one, generally obtained after behavioral adaptations. Second, we provided a test

classification technique that selects efficiently reusable and retestable tests, identifies aborted

tests and discards obsolete ones. These two steps are responsible for identifying critical regions

in the evolved model that need to be covered by newly generated tests. For this purpose, we

specified our own coverage criteria based on the observer automata language and we used the

well-established tool UPPAAL model-checker and its extension UPPAAL CO
√

ER for generating

new tests. Also, a test recomputation technique was introduced with the aim of adapting aborted

and obsolete tests. Finally, the mapping of the abstract test sequences to the TTCN-3 notation

was handled.

CHAPTER 5

Prototype Implementation

5.1 Introduction

This chapter deals with the implementation details of the proposed approach either when struc-

tural adaptations or behavioral adaptations take place. To this end, we provide a Runtime

Testing Framework for Adaptable and Distributed Systems (RTF4ADS) that gathers the differ-

ent modules already introduced in the previous chapters.

The rest of this chapter is structured as follows. Section 5.2 summarizes from a technical

point of view the different constituents of RTF4ADS. Next, each implemented graphical user

interface is illustrated in Sections 5.3 (Test selection and distribution GUI), 5.4 (Test isola-

tion and execution GUI) and 5.5 (Selective Test Generation GUI). In Section 5.6 reports on

the application of the tool for structural adaptations for the case of Teleservices and Remote

Medical Systems. Similarly Section 5.7 reports on the application of RTF4ADS for behavioral

adaptations for the case of Toast Architecture. Finally, Section 5.8 summarizes the chapter.

5.2 RTF4ADS overview

Getting confidence in dynamic and distributed software systems can be reached by using

RTF4ADS as a resource aware and platform independent test support. On the one hand,

resource awareness is achieved by distributing selected tests according to available resources and

connectivity constraints of the final execution nodes. On the other hand, platform indepen-

dence is reached using the TTCN-3 standard. The latter provides a text-based language that

5.3 Test selection and distribution GUI 41

inherits the most important programming features and includes some specific concepts related

to the testing domain. Its strength lies essentially in its reference test architecture that auto-

mates test execution and more particularly in its test adaptation layer. The latter comprises

Coding-Decoding entity, Test Adapter entity and Platform Adapter entity that supply means

to adapt the communication and the time handling between the SUT and the test system in a

loosely-coupled manner.
Te

st
 m

an
ag

em
en

t
la

ye
r

Te
st

 p
la

n
n

in
g

la

ye
r

Graphical User Interfaces

RTF4ADS Core

Local invocation

Te
st

 e
xe

cu
ti

o
n

la
ye

r
Te

st
 p

la
n

n
in

g

la
ye

r

RTF4ADS Core

TT4RT

instance 1

TT4RT

instance i

TT4RT

instance n

Remote invocation

Figure 5.1: RTF4ADS prototype.

As depicted in Figure 5.1, this Java-based framework comprises three layers :

• Test management layer: Graphical User Interfaces (GUI) are provided to handle auto-

matically the different phases of the runtime testing process.

• Test planning layer: The RTF4ADS core includes modules that contribute efficiently

to the test generation, the test selection and the test distribution steps.

• Test execution layer: Several TT4RT instances are deployed and charged with first apply-

ing test isolation mechanisms and second executing runtime tests.

In the following, we introduce each GUI while presenting its corresponding involved modules.

5.3 Test selection and distribution GUI

The GUI component, illustrated in Figure 5.2, is used by the Test System Coordinator to plan

the execution of runtime tests. It is responsible for analyzing SUT dependencies, selecting test

cases to rerun and looking for a test component placement solution for the involved main test

components while fitting resource and connectivity constraints. More details are given next.

5.3 Test selection and distribution GUI 42

Figure 5.2: Screenshot of the test selection and distribution GUI.

• Dependency Analysis Module: It takes as inputs the performed reconfiguration action

and a file that describes the system dependency graph. The latter is expressed in the

Graph Markup Language (GraphML). Indeed, GraphML notation (98) is an XML-based

file format for graphs. It consists of a language core to describe the structural properties

of a graph and a flexible extension mechanism to add application-specific data.

• Test Case Selection Module: It requires two major inputs. The first input is the Test

Case Repository Description that expresses, for each test stored in the repository, data

like identifiers, names, artifacts, MTC components, required resources, etc. The second

input is the set of affected components and compositions obtained from the last step. The

main goal at this stage is to look for a minimal set of test cases to run.

• Tester Placement Module: It is used to distribute TTCN-3 tests and their correspond-

ing MTC components to the execution nodes while respecting already defined resource and

connectivity constraints. The core of this module is based on the Choco Java library which

is an open source software offering a problem modeler and a constraint programming solver

(99). The generated output is a Resource Aware Test Plan.

5.4 Test isolation and execution GUI 43

5.4 Test isolation and execution GUI

The second component GUI, depicted in Figure 5.3, is used by the Test System Coordinator

to start remotely one or several tests. For this purpose, it communicates with several TT4RT

instances by using the Remote Method Invocation (RMI) technology. It also displays the global

verdict, local verdicts collected from each involved host in the runtime testing process and some

logging data.

Figure 5.3: Screenshot of the test isolation and execution GUI.

The first JTree panel outlines the involved nodes in the test execution process. In each one,

a TT4RT instance is installed and started. Two majors input elements are required by TT4RT :

selected Executable TTCN-3 test cases from the repository as JAR files and the Resource Aware

Test Plan.

The centered JTable describes test cases assigned to the selected node as well as their main

characteristics (i.e., test case name, TTCN-3 module name and MTC identifier). Several buttons

are proposed to efficiently manage the test execution. Consequently, we can start a selected test

case, all tests in a selected node or even all tests on their corresponding nodes. In that case,

each TT4RT instance is designed as a remote server object which implements a remote interface

offering three methods.

The Generic Test Isolation Component, which represents the test isolation layer in TT4RT,

implements a User Datagram Packet (UDP) port listener function which runs an infinite loop

5.5 Selective Test Generation GUI 44

listening for test data in the form of UDP packets from the UDP test adapter. It can intercept

either local test requests sent by a local test adapter or remote test requests sent by a remote test

adapter. It is worth noticing that in the current implementation of RTF4ADS, not only a UDP

test adapter was implemented but also a Transmission Control Protocol (TCP) test adapter was

encoded. The latter can be easily integrated if required. These two possible implementations

can be used to establish communication through sockets between our TS and any kind of SUT.

This component uses AOP facilities to automate the test isolation of components under test

before the execution of runtime tests. In fact, we associate for each provided interface a test

isolation instance, designed as an AOP advice, which is automatically launched if at least one of

its methods is called by a test component. This test isolation instance is charged with looking

for the testability option of the component under test and then proceeds to the test execution.

To realize such an implementation, we use the most popular and stable AOP language, namely

AspectJ (100). Indeed, the latter extends the Java language with new features to support the

aspect concepts.

5.5 Selective Test Generation GUI

The RTF4ADS framework includes a selective test generation GUI to build automatically a new

test suite after the occurrence of behavioral adaptations.

Figure 5.4: Screenshot of the selective test generation GUI.

5.6 Application of RTF4ADS for Structural Adaptations 45

The new test suite is composed of reusable and retestable tests, selected from the old test

suite, new tests generated from the evolved behavioral model by UPPAAL CO
√

ER (version

1.4) (87) and some adapted ones obtained by test recomputation. Once the new test suite is

evolved, it is mapped to the TTCN-3 notation.

The first panel illustrated in Figure 5.4 deals with the model differencing step. Indeed, the

initial behavioral model and the evolved one are loaded, and then an Mdiff model highlighting

their similarities and their differences is computed. The next step consists in loading the old

test suite and performing a test classification.

Finally, we compute the new test suite by launching the UPPAAL CO
√

ER tool to generate

new tests, in a cost effective manner, by adapting obsolete and aborted tests and by including

resuable and restestable tests.

5.6 Application of RTF4ADS for Structural Adaptations

5.6.1 Teleservices and Remote Medical Care Systems

Teleservices and Remote Medical Care Systems (TRMCS) were introduced in the literature for

more than a decade ago (101). They were designed initially to provide monitoring and assistance

to patients suffering from chronic health problems. Thus, they send emergency signals to the

medical staff (such as doctors, nurses, etc.) to inform them with the critical state of a patient.

Recently, both the architecture and the behaviors of such medical care systems are evolved and

enhanced by more elaborated functionalities (for instance, the acquisition, the analysis and the

storage of biomedical data) and sophisticated technologies (102; 103; 5; 6).

New components and features can be installed at runtime during system operation in order

to fulfill new requirements such as adding new health care services, updating the existing ones

in order to support performance improvements, etc. Such adaptability is essential to ensure

that the healthcare system remains within the functional requirements defined by application

designers, and also maintains its performance, security and safety properties.

Following these directions, we provide our own architecture of the TRMCS application which

is inspired mainly from (103). Its main architecture is highlighted through a UML deployment

diagram depicted in Figure 5.5. We assume that initially a given patient is suffering from

chronic high blood pressure. Thus, he is equipped with a Blood Pressure Sensor and a Heart

Rate Sensor that measure respectively his arterial blood pressure and his heart-rate beats per

minute. Periodic reports are built and stored in the medical database. They are also accessible

for consultation from the medical staff. The Analyzer component is charged with analyzing the

5.6 Application of RTF4ADS for Structural Adaptations 46

Device

Nurse PDA

Nurse Bundle

Device

Device

Local Home Server

Device

Remote Server

Report Storer

Bundle
Medical

Data Base

JDBC

Protocol

TCP/IP

Device

Sensor

Blood Pressure
Device

Hospital Computer

Hospital

Bundle

Device

Ambulatory PDA

Ambulatory

Bundle

Local Home Server

Report Builder

Bundle

Analyzer

Bundle

Alarm Bundle

Blood Pressure

Bundle

Heart Rate

Bundle

Device

Doctor PDA

Doctor

Bundle

Figure 5.5: The basic configuration of TRMCS.

monitored data in order to detect whether some thresholds are exceeded. In that case, an Alarm

component is invoked with the aim of sending help requests to the medical staff.

5.6.2 TRMCS implementation

The TRMCS is fully implemented as an OSGi application. Developed by OSGi Alliance (15),

the OSGi specification describes how to build service-oriented and loosely coupled systems. This

standardized technology defines a lightweight framework based on Java Runtime Environment

and a set of installed bundles. Bundles are software components, packed in JAR files. A bundle is

designed as a minimal deliverable application in OSGi that is composed of cooperating services,

which are discovered after being published in the OSGi service registry. It is capable of either

exporting Java packages and exposing functionalities as services to other bundles or importing

Java packages or services from other bundles (104; 105).

5.6.3 TRMCS test specification

To show the high expressiveness of the TTCN-3 language in supporting various testing levels

(i.e., unit and integration tests) and different testing purposes (i.e., functional tests, load tests,

availability tests, etc.), some test scenarios are studied and their mapping to the TTCN-3 no-

tation is given afterwards. Given that the entire test scenarios are too lengthy to describe, four

examples are provided to highlight the most common types of test scenarios. First of all, these

scenarios are introduced in a descriptive way then their mapping to the TTCN-3 code is given.

5.6 Application of RTF4ADS for Structural Adaptations 47

• Guarantee of help service delivery: This scenario can be used to test the situation

in which the analysis of monitored critical events are triggered or threshold conditions are

reached (i.e., when the heart rate exceeds a certain level of tolerance). In this context,

emergency signals are sent to the appropriate medical staff.

• Achievement of timing constraints: This scenario is used to check that the Alarm

component must send the help request to the Nurse component in a duration that does

not exceed 15 time units.

• Availability of a component: This scenario serves to check component availability after

the occurrence of dynamic reconfigurations (i.e., adding, updating or migrating compo-

nents). For instance, in case of patient mobility in and out of the local server’s range,

we have to check that wearable medical sensors are accessible and can be invoked from

components deployed on the local server.

• Concurrent test requests: This scenario is used to simulate the situation in which

multiple users request the service under test at the same time. The dynamic creation of

PTCs in TTCN-3 standard enables our framework to create a number of virtual users that

send multiple test requests concurrently and perform load testing on the SUT.

In order to edit and compile the specified tests, we use respectively the TTCN-3 Core Language

Editor (CL Editor) and the TThree Compiler that are included in the TTworkbench basic tool.

The generated Jars are stored in the Test Case Repository for further use and can be dynamically

loaded during the runtime test execution to check dynamic changes.

5.6.4 Evaluation and overhead estimation

We carried out some experiments to measure the overhead introduced by the use of the

RTF4ADS framework when structural adaptations take place. Thus, the main objective is

to estimate the dependency analysis, the test selection, the constrained test component place-

ment and the test execution overheads and to determine which parameters have a significant

effect on each of them. Thereby, we deployed our distributed test system as well as the TRMCS

application on five machines: a PC with Intel Core 2 Duo CPU and 2 GO of main memory,

another PC with Intel Core i7 and 8 GB of main memory and three virtual machines having

each 2.30 GHz CPU and 512 MB of main memory. Using this experimental setting, we deployed

four TT4RT instances on the involved test nodes identified during the test component placement

step. RTF4ADS user interfaces were deployed on a separate host (see Figure 5.6).

5.6 Application of RTF4ADS for Structural Adaptations 48

TT4RT1 TT4RT2

TT4RT3 TT4RT4 RTF4ADS
User Interface

Figure 5.6: The adopted testbed.

The different experiments that we carried out show that the runtime testing cost in terms

of execution time and memory consumption increases significantly while the amount of tests

to run or the number of test components to deploy rises. Compared to one of the traditional

test selection strategy, the Retest All strategy (106), which re-executes all available tests, our

proposal seems to be more efficient as it reduces the number of tests to rerun. In addition, the

adopted test selection technique does not require much time to identify the unit and integration

tests involved in the runtime testing process. Even in the worst case, when the whole system is

affected by the dynamic change, we reduce the impact of the runtime testing on the system under

test and on its environment by distributing test cases and their corresponding test components

while fitting the resource and connectivity constraints.

2

4

6

8

10

12

14

16

18

N
u

m
b

e
r
 o

f
t
e

s
t
 c

a
s
e

s

Pass

Fail

Inconc

0

2

Case 1 Case 2 Case 3

Figure 5.7: The impact of resource and connectivity awareness on test results.

The experiment outlined in Figure 5.7 shows the importance of the constraint test component

placement module and its impact on the final test results. In the following, three cases of test

results are obtained while executing twenty one selected tests.

• In the first case, our test placement module was used to identify the adequate test hosts

and our test system was run to perform the selected tests. The seeded faults were detected

and thus we obtained seventeen Pass and four Fail verdicts.

5.6 Application of RTF4ADS for Structural Adaptations 49

• In the second case, we assume that the hospital computer is disconnected from the network.

However, this connectivity problem was not taken into consideration during the testing

process. As a result, six test requests were sent from their corresponding test components

without receiving any response. In this situation, neither a Pass nor a Fail verdict can be

assigned and thus six inconclusive verdicts are obtained.

• The third case shows the test results obtained while executing the twenty one tests on

some overloaded nodes. As in Case 2, the tests results are influenced by the execution

environment state and consequently several verdicts were set to inconclusive. Such test

results were obtained due to the timeout occurrence during the test execution.

To sum up, runtime testing may affect not only the SUT performance and responsiveness

but also the test system itself could be impacted. Thus, resource and connectivity awareness

appears to be a solution in order to have a high confidence in the validity of the test results as

well as to reduce their associated cost.

0

500

1000

1500

2000

2500

conf 1 conf2 conf3 conf4 conf5

E
x

e
cu

ti
o

n
 T

im
e

(m
s)

step1 step2 step3 step4

Figure 5.8: The overhead of the whole runtime
testing process while searching for an optimal
solution in step 3.

0

500

1000

1500

conf1 conf2 conf3 conf4 conf5

E
x

e
cu

ti
o

n
 T

im
e

 (
m

s)

step1 step2 step3 step4

Figure 5.9: Assessing the overhead of the whole
runtime testing process while searching for a sat-
isfying solution in step 3.

The experiments presented in Figure 5.8 and Figure 5.9 show that the different overheads

introduced by our runtime testing support are relatively low. In fact, we find out that the sum

of all overheads including the dependency analysis (step 1), the test selection (step 2), the test

placement (step 3) and the test execution (step 4) overheads does not exceed 2.5 seconds in

the worst case (i.e., when we are looking for an optimal solution in step 3). This cost can be

justified by the use of exact methods in the current version of the constrained test component

module. It is obvious that this resolution technique is one of the most costly ways to find the

best solution from all feasible solutions. As illustrated in Figure 5.9, this cost decreases when we

simply look for a feasible solution of test component placement. In this case, our test framework

requires less than 1.5 seconds for checking Conf 5. With the aim of guaranteeing the scalability

of RTF4ADS, we recommend to make do with generating the satisfying solution as it consumes

less time when the numbers of test components and host nodes increase.

5.7 Application of RTF4ADS for Behavioral Adaptations 50

5.7 Application of RTF4ADS for Behavioral Adaptations

5.7.1 Toast architecture

The interest in telematics and fleet management systems has witnessed an increase during the

last decade. The first generation of these systems provides simple functionalities such as vehicle

tracking systems. The latters include but they are not limited to the Global Positioning System

(GPS) technology integrated with other advanced sensors and the mobile communication tech-

nology. Currently, fleet management systems are more and more mature and highly developed.

Consequently, they involve sophisticated functions such as the supervision of the use and the

maintenance of vehicles, the monitoring and the accident investigation capabilities, and so on.

Moreover, the flexibility and the dynamic adaptability have become important attributes of a

fleet management system with the aim of adapting its behavior to the changing needs of the

industry and the increasing evolution in the automotive area.

Seeing all these features, a sample case study in this emergent domain is retained to show

the feasibility of our selective test generation approach after the occurrence of behavioral adap-

tations. As introduced in (107), Toast is a typical fleet telematics system used to demonstrate

a wide range of EclipseRT technologies. As an OSGi-based application, it provides means to

manage and to interact with vehicle devices at runtime. Initially, we start with a simple sce-

nario that covers the case of emergency notification. In this situation, the vehicle comprises

three devices : an Airbag, a GPS and a Console. If the airbag deploys, an Emergency Monitor

is notified. The monitor asks the GPS for the vehicle position and speed (see Figure 5.10) and

displays the obtained data on the vehicle console.

Mise à jour 19/04

Emergency Monitor

SUT part

ENV part
i?

Airbag+ Console

GPS

IGps

ENV part
i?

O!

Figure 5.10: The initial Toast architecture.

In the following, we consider the Airbag and the Console components as a part of the

environment. Our system under test is made up of GPS and Emergency Monitor components.

SUT and ENV parts are modeled by a network of UPPAAL timed automata as shown in

Figure 5.11. At the beginning, timing constraints are not considered and we focus mainly on

the synchronization of input and output signals between the Toast components.

5.7 Application of RTF4ADS for Behavioral Adaptations 51

When the Airbag is deployed (via the action deploy), the Emergency Monitor interacts with

the GPS to get the vehicle’s latitude, longitude, heading and speed. Once this information is

obtained, it is displayed on the console with an emergency message (modeled by the action

displayData).

_7 _6 _5 _4

_3_2_1_0

Speed!

getSpeed? Head! getHead?

Long!

getLong?Lat!getLat?

(a) The initial GPS model. (b) The environment model.

(c) The initial Emergency Monitor model.

Figure 5.11: Toast behavioral models.

5.7.2 Dynamic Toast evolution

Starting from the basic configuration introduced in the previous section, new components and

features can be installed at run-time during the system execution. For instance, we can add a

new application that tracks the vehicle’s location and periodically reports to the control center.

A support for climate control can be integrated, as well. As illustrated in Table 5.1, six cases of

behavioral adaptations are considered.

5.7.3 Applying the selective test generation method after Toast evolution

To check the correctness of the evolved Toast application in a cost effective manner, we have to

evolve the test suites by making use of the TestGenApp module. The first step in this module

consists in comparing the initial behavioral model and the evolved one. As output, it generates

an Mdiff model that highlights the similarities and difference between timed automata. It is

worthy to note that several cases of evolution are studied in the following. For each case, the

obtained Mdiff model is automatically exported from the UPPAAL model checker. Once the

test generation process is achieved, the transformation of the abstract test sequences to concrete

tests should be performed.

5.7 Application of RTF4ADS for Behavioral Adaptations 52

Table 5.1: Several studied Toast evolutions.

Scenarios Evolution description Kind of the evolution SUT templates Locations Transitions

Case 0 Initial Toast configuration ——–
GPS
Emergency

8
10

8
10

Case 1 Updated GPS behavior

Complex (adding
locations and
transitions)

GPS
Emergency

13
15

15
17

Case 2
Error support in GPS
data transmission

Complex (adding
locations and
transitions)

GPS
Emergency

27
29

36
38

Case 3
Removal some behaviors
within the GPS

Complex (removing
locations and
transitions)

GPS
Emergency

23
25

31
33

Case 4
Addition of the Back End
Server

Complex (adding a
new template)

GPS
Emergency
Back End

23
26
3

31
34
3

Case 5
Addition of the Tracking
Monitor

Complex (adding a
new template)

GPS
Emergency
Tracking
Back End

23
26
11
6

31
34
11
6

Case 6

Addition of the Climate
Controller and the
Climate Monitor

Complex (adding two
new templates)

GPS
Emergency
Tracking
Back End
Climate Monitor
Climate Controller

23
26
11
6
9
6

31
34
11
6
12
9

5.7.4 Test distribution and execution

At this stage, the new abstract test suite is computed after the occurrence of behavioral adap-

tations. In addition, its mapping to the TTCN-3 notation is achieved with the aim of obtaining

concrete tests. Once the latter are compiled by using the TTthree compiler, executable TTCN-3

tests are ultimately produced. To execute the obtained tests, RTF4ADS is called, more con-

cretely its constraint test placement module as well as its test isolation and execution module.

5.7.5 Evaluation and overhead estimation

In this section, we carried out some experiments to measure the overhead introduced by the use

of TestGenApp module when different scenarios of behavioral evolutions take place. Thus, the

main objective is to compute the number of generated traces after each evolution and estimate

the execution time required for the model differencing step, the test classification step and

ultimately for the test generation step with UPPAAL CO
√

ER.

Table 5.2 illustrates the studied Toast evolution scenarios and pinpoints the comparison

between our proposal TestGenApp and two well-known regression testing strategies : the Re-

generate All and the Retest All approaches. Recall that the first one consists in generating all

tests from the new evolved model. The second approach deals with re-executing all tests in the

old test suite issued from the old behavioral model and generating new tests that cover only

new added behaviors.

5.7 Application of RTF4ADS for Behavioral Adaptations 53

Table 5.2: Comparison between Regenerate All, Retest All and TestGenApp strategies.

Scenario Case study evolutions Regenerate All Retest All TestGenApp
Old New Reusable New Retestable Adapted

1 From Case 0 to Case 1 7 traces 3 4 1 4 2 0
2 From Case 1 to Case 2 18 traces 7 14 1 14 6 0
3 From Case 2 to Case 3 14 traces 18 0 1 0 11 4
4 From Case 3 to Case 4 17 traces 14 2 7 2 7 0
5 From Case 4 to Case 5 19 traces 17 2 17 2 0 0
6 From Case 5 to Case 6 28traces 19 9 19 9 0 0

Compared to the Regenerate All technique, our proposal reduces the number of generated

traces as shown in Table 5.2. For instance, the evolution from Case 0 to Case 1 requires the

generation of seven traces with the Regenerate All strategy. The application of TestGenApp

produces the selection of one trace as a reusable test that covers the unimpacted parts of the

model. Moreover, two old traces are classified as retestable tests. Only four traces are newly

generated to cover the newly-added transitions in both the GPS and the Emergency models.

Similarly, instead of generating the full test suite (fourteen traces here) when the Toast

architecture evolves from Case 2 to Case 3, only four traces are adapted in order to cover the

modified transitions in the SUT models. Eleven old traces are still valid and can be re-executed

to prove that these reductive changes have no side effects on the unimpacted parts of the model.

Moreover, one trace is considered as a reusable test.

Concerning the Retest All strategy, we notice that this strategy does not make any analysis

before re-executing tests. Its main limitation consists in re-executing obsolete tests which are

no longer valid. For example, when the Toast evolves from Case 2 to Case 3, four traces from

the old test suite cannot be animated on the new model and then they may cause failure during

test execution. This failure is not caused by a faulty behavior in the system but it is due to the

execution of invalid tests. Consequently, we conclude that selecting valid and relevant tests to

run is highly recommended because it provides a high degree of confidence in the evolved system

without rerunning the overall test suite.

15

20

25

30

T
h

e
 n

u
m

b
e

r
o

f
g

e
n

e
ra

te
d

 t
ra

ce
s

TestGenApp

0

5

10

1 2 3 4 5 6

T
h

e
 n

u
m

b
e

r
o

f
g

e
n

e
ra

te
d

 t
ra

ce
s

Toast evolutions

Regenerate All

(a) The number of generated traces.

600

800

1000

1200

1400

E
x

e
cu

ti
o

n
 t

im
e

 (
m

s)

TestGenApp

0

200

400

1 2 3 4 5 6

E
x

e
cu

ti
o

n
 t

im
e

 (
m

s)

Toast evolutions

Regenerate All

(b) Execution time for test evolution.

Figure 5.12: Comparison between TestGenApp and Regenerate All approaches.

5.7 Application of RTF4ADS for Behavioral Adaptations 54

Figure 5.12 outlines two experiments that we conducted on a machine with Intel Core i7 and

8 GB of main memory. They show that TestGenApp and Regenerate All approaches depend

highly on the model scale either in terms of generation time or generated traces.

Regarding the number of generated traces after each evolution, we notice that an increase

in the number of involved templates, locations and transitions causes an increase in the test

suite size. As depicted in Figure 5.12a, it is obvious that the TestGenApp produces less traces

than the Regenerate All strategy since it focuses only on covering new behaviors in the evolved

model.

Regarding the generation time, Figure 5.12b shows that this measure follows the model scale,

as well. In case of small systems (e.g., Toast scenarios in Case 1, Case 2 and Case 3), TestGenApp

overhead in terms of test generation time is greater than Regenerate All as it performs several

tasks : model differencing, test classification and test generation (see Figure 5.13). When we

deal with large systems, we notice that the cost of generating the complete test suite is higher

than generating only new behaviors.

400

500

600

700

800

900

E
x

e
cu

ti
o

n
 t

im
e

 (
m

s)

Test generation

Old test suite

classification

0

100

200

300

1 2 3 4 5 6

E
x

e
cu

ti
o

n
 t

im
e

 (
m

s)

Toast evolutions

classification

Model differencing

Figure 5.13: The overhead of the TestGenApp modules.

Such experiments show the clear benefits of the TestGenApp especially in case of large scale

models and elementary modifications (i.e., Adding/removing/modifying a location and/or a

transition). It is easier to generate a minimal set of tests from the part of the model impacted

by the dynamic change rather than performing a full regeneration.

Compared to the typical solutions such as Regenerate All and Retest all, TestGenApp gives

an important information about the obtained tests and which parts of the SUT they cover. As

a result, test prioritization can be easily applied in our context and tests covering critical zones

have the priority to be executed first.

5.8 Summary 55

5.8 Summary

The achievement of a well-implemented prototype for runtime testing of dynamic adaptations

was pinpointed in the present chapter. The obtained framework includes the realization of both

approaches proposed to check structural and behavioral adaptations. Some implementation

details in terms of input files, output results and used tools required for each module were pre-

sented. Moreover we reported on two case studies. On the one hand, we illustrated the efficient

execution of runtime tests in case of dynamically adapting the structure of an e-Health case

study. On the other hand, our tool was used to update test suites when behavioral adaptations

take place in the case of a telematic application.

Part II

Combining Load and Functional Tests

CHAPTER 6

A Comparative Evaluation of State-of-the-Art of Load Testing Approaches

6.1 Introduction

In order to deliver quality assured software and avoid potential costs caused by unstable software,

testing is essential in software life cycle. Load testing is one of the testing types with high

importance. It is usually accompanied by performance monitoring of the hosting environment.

The purpose of this chapter is to present related solutions to load testing issues in different fields

and emerging paradigms, and to evaluate them in order to identify their advantages and their

shortcomings. Looking at the areas focused by existing researchers, gaps and untouched zones of

different systems relatively to load testing can be discovered. This investigation is a preliminary

step for our research work in the context of load testing of Web service compositions, considered

as an arising concept in Service-Oriented Architecture (SOA).

The remainder of this chapter is organized as follows. Section 6.2 explains the motivation

behind the work presented in this chapter. Some background information on load testing con-

cepts and a general overview of their challenges are presented in Section 6.3. A classification of

the load and stress testing approaches is presented in Section 6.4. Section 6.5 lists the criteria

used in the comparative evaluation as well as a summary of the evaluation. Finally Section 6.6

concludes the chapter.

6.2 Motivation 58

6.2 Motivation

Many software applications must provide services to hundreds or thousands of users concurrently.

These applications must be load tested to ensure that they can function correctly under high

load. Indeed, load testing is a process of subjecting a computer, peripheral, server, network or

application to a workload approaching the limits of its specifications. Unlike stress testing, which

evaluates the extent to which a system keeps working when subjected to extreme workloads or

when some of its hardware or software has been compromised, the primary goal of load testing

is to define the maximum amount of work a system can handle without significant performance

degradation. For that, load testing requires one or more load generators which mimic clients

sending thousands or millions of concurrent requests to the application under test. During the

course of a load test, the application is monitored and performance data along with execution

logs are stored.

However, load testing is usually very time consuming. A test run typically lasts for several

hours or even a few days. A memory leak, for example, might take hours or days to fully manifest

itself. Therefore, load tests have to be long enough. Also, load tests are usually performed at

the end of the testing phase after all the functional tests. Testing in general is performed at

the end of a development cycle. Thus, load testers are usually under a tremendous pressure to

finish testing and certify the software for release.

In this context, several approaches have been proposed with the aim to perform load or/and

stress testing of different systems, such as program codes (108), network applications (109), dis-

tributed systems (110) and software applications (111), (112). This chapter focuses on load and

stress testing issues in general and offers a detailed survey of state-of-the-art testing approaches.

By offering an overview and a classification of current approaches which are related to both load

and stress testing, it is hoped to provide an essential outlook for future research in different

areas, particularly concerning load testing of Web service compositions, both in academia and

industry.

6.3 Load & Stress Testing

In this section, we present some related concepts and challenges to both load and stress testing

areas.

6.3 Load & Stress Testing 59

6.3.1 Definitions

Testing is an important stage in software life cycle. It is an assurance of software quality and an

effective way to avoid potential costs caused by unstable software. Indeed, it verifies the expected

results are achieved or not and correct the bugs as soon as possible. In software development

processing, bugs always exist no matter what technology is adopted. Thus, testing is applied

to find bugs, and used to calculate software bugs density (113). In a typical software project,

the percentage of software testing workload is about 40%. Particularly, many systems ranging

from e-commerce websites to telecommunications must support concurrent access by hundreds

or thousands of users. To assure the quality of these systems, load testing is a required testing

process in addition to conventional functional testing procedures, such as unit and integration

testing, which focus on testing a system based on a small number of users. In fact, load and

stress testing are important to guarantee the system is able to support specified load conditions

as well as properly recover from the excess use of resources. The generation of test cases to

achieve levels of load and stress is thus a demanding task.

On the one hand, load testing (114; 115) assesses how a system performs under a given

load. The rate at which transactions are submitted to the system is called the load (116). Load

generators are used to induce load on the system under test (117), i.e., imitating thousands

of users committing concurrent transactions to a system. During the course of a load test,

the system is strictly monitored and important sources of data exposed by the system, i.e.

performance metrics, are collected. These metrics include numerical measurements related to

the system’s state and performance (e.g., CPU, memory utilization, network usage, etc.). One

of load testing objectives is to determine the maximum sustainable load the system can handle.

It reveals programming errors that would not appear if the system executes with a small/limited

workload. Such errors are called load sensitive faults and emerge when the system is executed

under a heavy load.

On the other hand, stress testing (116; 114; 115) refers to subject a system to an unreasonable

load with the intention of breaking it. A stress test denies a system the resources (e.g., RAM,

disk, interrupts, etc.) needed to process a certain load. It is designed to cause a failure and to

test the system’s fault recovery capability. The system is not expected to process the overload

without adequate resources, but to behave (e.g., fail) in a reasonable manner (e.g., not corrupting

or losing data). By automatically driving the resource usage to its limit, load sensitive faults

can be detected and performance issues can be verified under stress conditions. The automatic

identification of these faults can have a large impact on the quality of the products released as

well as on the reduction of the required test effort.

6.3 Load & Stress Testing 60

6.3.2 Challenges

Load testing is an area of research that has not been explored much. Actually, load testing is a

difficult task requiring a great understanding of the application under test. Besides, load testing

involves the setup of a complex load environment. The application under test should be setup

and configured correctly. Similarly, load generators must be configured properly to ensure the

validity of the load test. Then, test results must be analysed closely to discover any problem in

the application under test, in the load environment, or in the load generation.

Particularly, load testing uncovers residual functional and performance problems that slipped

through the conventional functional testing. Indeed, a functional problem results in processing

happening at the wrong place in the wrong order (118). In order to verify functional correctness,

load test engineers first check whether the application has crashed, restarted or hung during the

load test. Then, they perform a more in-depth analysis by grepping through the log files for

specific keywords like failure or error. Load test engineers analyse the context of the matched

log lines to determine whether these lines indicate problems or not. There are two limitations in

the current practice for checking functional correctness. Firstlym terms like ‘error’ or ‘failure’

are worth investigating. A log such as Failure to locate item in the cache is probably not a bug.

Secondly, not all errors are indicated in the log file using the terms ‘error’ or ‘failure’.

On the other hand, performance problem results in processing taking too much or too little

of important resource. A request that takes too long may indicate a bottleneck, while a request

that finishes too quickly may indicate truncated processing or some other performance bug (112).

With the aim to evaluate performance criteria, load test engineers first use domain knowledge to

check the average response time of a few key scenarios. Then, they examine performance metrics

for specific patterns. Finally, they compare these performance data with previous releases to

assess whether there is a significant increase in the utilization of system resources. However, the

current performance analysis practice is not efficient, since it takes hours of manual analysis.

Current practice is neither sufficient for the following two reasons: first, checking the average

response time does not provide a complete picture of the end user experience, as it is not clear

how the response time evolves over time or how response time varies according to load. Second,

merely reporting symptoms like system is slowing down or higher resource utilization does not

provide enough context for developers to reproduce and diagnose the issues.

All the previously described challenges may explain the existence of relatively few works

dealing with load and stress testing in various fields as introduced in the next section.

6.4 Classification of Load & Stress Testing Solutions 61

6.4 Classification of Load & Stress Testing Solutions

Many systems must offer services to a great number of users at the same time. Thus, they must

be load tested in order to guarantee that they behave correctly under high load. In this section,

we expose some related solutions to both load and stress testing issues in different fields.

6.4.1 Load & Stress Testing Tools

Load testing tools are used for software performance testing in order to create a workload on

the system under test, and measure response times under this load. Load testing tools are

available from large commercial vendors such as Borland, HP Software, IBM Rational and Web

Performance Suite, as well as Open source projects. In the following, we expose efforts made

particularly in the context of Web applications and Web service compositions load testing.

• Web Applications Field: Nowadays, Web applications are widely used, one fact is ob-

vious: most of Web applications are public and used by vast number of users, which are

making a considerable traffic load on hosting environments and Web sites. By the way,

(119) analysed and compared several existing tools which facilitate load testing and per-

formance monitoring, in order to find the most appropriate tools by criteria such as ease

of use, supported features, and license. Selected tools were put in action in real environ-

ments, through several Web applications. In order to introduce different capabilities of

tools, including distributed testing, security support, results analysis, monitoring of key

parameters, etc., (119) presented the test results of a Web application being developed

in ENT (Ericsson Nikola Tesla). They concluded at the end that concerning load testing

tools, the most required feature was support for performing load test process steps, with

emphasis on recording, distributing tests, HTTPS and AJAX support.

• Web Service Compositions Field: Furthermore, Web service compositions provide

services to thousands of users concurrently. These applications must be load tested to

ensure that they can function properly under high load. In this context, the infrastructure

of Oracle BPEL Process Manager, an existing commercial tool, offers a solution for deploy-

ing and managing designed BPEL processes in particular. Moreover, the BPEL console,

which is provided by Oracle BPEL Process Manager, includes stress test capability that

makes it possible to perform load testing of a deployed BPEL process and then to view

performance statistics of the flow under stress. Enabling stress test permits to perform a

continuous series of invocations of the Web service operation. At the end of test, Oracle

BPEL Process Manager generates a final report.

6.4 Classification of Load & Stress Testing Solutions 62

6.4.2 Load & Stress Testing Approaches

There are different research works dealing with load and stress testing in various contexts. In

the following, we describe these approaches in chronological order.

• Avritzer (1993, 1994, 1995): (120; 121),(122) introduced a load testing technique

called Deterministic Markov State Testing. This approach is limited to applications that

can be modeled by a Markov Chain since the input data is assumed to arrive according

to a Poisson distribution and is serviced in an exponential distribution. In addition, the

authors proposed a class of load test case generation algorithms for telecommunication

systems which can be modeled by Markov chains. The proposed black-box techniques are

based on system operational profiles. Indeed, the operational profile is used to build a

Markov chain that represents the software’s behaviour. Only the most likely test cases, as

computed from the most probable Markov chain states, are generated at planning time;

i.e. before the start of system test. Each test case certifies a unique software state. For

that, the Markov chain is first built. The operational profile of the software is then used

to calculate the probabilities of the transitions in the Markov chain. The steady-state

probability solution of the Markov chain is then used to guide the generation process of

the test cases according to a number of criteria, in order to target specific types of faults.

From a practical standpoint, targeting only systems which behaviour is modeled by Markov

chains can be considered as a limitation of this work. Furthermore, using only operational

profiles to test a system may not lead to stressing situations.

• Yang (1996): (108) proposed a technique to identify the load sensitive parts in sequential

programs based on a static analysis of the code. A load sensitive part is defined as a part

the correctness of which depends on the amount of input data or the length of time that

the program will execute continuously. In addition, the authors illustrated some load

sensitive programming errors, which may have no damaging effect under small loads or

short executions, but cause a program to fail when it is executed under a heavy load or

over a long period of time. Their proposed technique targets memory-related faults (e.g.,

incorrect memory allocation/de-allocation, incorrect dynamic memory usage) through load

testing. To explain, the approach first identifies statements in the module under test that

are load sensitive, i.e., they involve the use of malloc(·) and free(·) statements (in C)

and pointers referencing allocated memory. Then, data flow analysis is used to find all

Definition-Use (DU)-pairs that trigger the load sensitive statements. Test cases are then

built to execute paths for the DU-pairs.

6.4 Classification of Load & Stress Testing Solutions 63

• Zhang (2002): (123) consider a multimedia system consisting of a group of servers and

clients connected through a network as a SUT (System Under Test). Stringent timing

constraints as well as synchronization restrictions are present during the transmission of

information from servers to clients and vice versa. The authors identify test cases that

can lead to the saturation of one kind of resource, namely CPU usage of a node in the

distributed multimedia system. For that, the authors first model the flow and concurrency

control of multimedia systems using Petri nets coupled with timing constraints. A specific

flavor of temporal logic is used to model temporal constraints. The following are some

of the limitations of their technique: (1) the technique cannot be easily generalized to

generate test cases to stress test other kinds of resources, such as network traffic, as this

would require important changes in the test model; (2) the resource utilization (CPU) of

media objects is assumed to be constant over time, although such utilization would likely

depend on the requests the server receives for example; (3) no variation of the technique

is proposed or even mentioned to stress test over a specific period of time.

• Grosso (2005): (109) proposed to combine static analysis and program slicing with

evolutionary testing, in order to detect buffer overflow threats. For that purpose, the

authors made use of Genetic Algorithms (GA) in order to generate test cases. Actually,

static analysis identifies vulnerable statements, while slicing and data dependency analysis

identify the relationship between these statements and program or function inputs, thus

reducing the search space. To guide the search towards discovering buffer overflow in

this work, the authors defined three multi-objective fitness functions and compared them

on two open-source systems. These functions account for terms such as the statement

coverage, the coverage of vulnerable statements, the distance from buffer boundaries and

the coverage of unconstrained nodes of the control flow graph.

• Briand (2005, 2006): (124; 125), suggested a methodology also based on GA with the

aim to analyse real-time architectures and determine whether deadlines can be missed.

The proposed method generates test cases, concentrating on seeding times for aperiodic

tasks, such that completion times of a specific task execution are as close as possible to

their deadlines. Indeed, they showed that task deadlines may be missed even though the

associated tasks have been identified as schedulable through appropriate schedulability

analysis. The authors noted that although it is argued that schedulability analysis simu-

lates the worst-case scenario of task executions, this is not always the case because of the

assumptions made by schedulability theory. Finally, the authors developed a methodology

that helps identifying performance scenarios which can lead to performance failures.

6.4 Classification of Load & Stress Testing Solutions 64

• Garousi (2006): (110) presented a stress test methodology that aims at increasing

chances of discovering faults related to distributed traffic in distributed systems. The

proposed technique uses as input a specified UML 2.0 model of a system, extended with

timing information, and grants stress test requirements composed of specific Control Flow

Paths along with time values indicating when those paths have to be triggered so as to

stress the network to the largest extent possible. In particular, the introduced technique

mainly entails (1) a Network Deployment Diagram (following the UML package notation)

that describes the distributed architecture in terms of system nodes and networks, and

(2) a Modified Interaction Overview Diagram (following the UML 2.0 interaction overview

diagram notation) that describes execution constraints between sequence diagrams. Fi-

nally using the specification of a real-world distributed system, the authors designed and

implemented a prototype system and described how the stress test cases were generated

and executed.

• Bayan (2006): (126) proposed an approach for the automatic generation of test cases to

achieve specified levels of load and stress for a combination of resources. The technique

is based on the use of a PID (Proportional, Integral, and Derivative) controller to drive

the input and make the system achieve a specified level of resource usage. In fact, PID

controller accepts a setpoint as an input which represents the level of resource usage need

to be achieved by the application. The PID controller will use an initial test case, defined

by the tester, to drive the application to the desired level of usage, independently of the

initial test case value. Every time the current usage is fed back to the PID controller, it

generates a new gain. In general, positive gain represents an increase in the input and

negative gain reflects a decrease in the input.

• Jiang (2008, 2010): (111), (112) presented an approach that accesses the execution

logs of an application to uncover its dominant behaviour and signals deviations from the

application basic behaviour. The intuition behind the proposed approach is that load

testing involves the execution of the same operations a large number of times. Therefore,

it is expectable that the application under test would generate similar sequences of events

a large number of times. These highly repeated sequences of events are the dominant

behaviour of the application. Variations from this behaviour are anomalies which should

be closely investigated since they are likely to reveal load testing problems. The authors

also showed that their solution can automatically identify problems in a load test. However,

it requires domain knowledge by the load tester to perform properly.

6.5 Discussion 65

• Wang (2010): (127) described a realistic usage model to simulate user behaviours in

load testing of Web applications. Another workload model was also proposed to generate

realistic load for load testing. In addition, the paper demonstrates LTAF (Load Testing

Automation Framework) tool which is based on the two previous models and can carry

out load testing of Web applications automatically. The authors of this article recognize

that some enhancement of their proposal should be considered in the future concerning

the load model, as they could possibly find no solution or multiple solutions for the model.

Furthermore, the authors did not consider the think time, which is an import factor for

realistic load testing.

6.5 Discussion

In this section, we present some surveys on testing Web service compositions in general and we

discuss later existing solutions on particularly load testing of Web service compositions.

6.5.1 Comparative Evaluation of Existing Approaches

We notice that load testing concerns various fields such as mutlimedia systems (123), network

applications (109), embedded systems (126), etc. Furthermore, all these solutions focus on the

automatic generation of load test suites. Besides, most of the existing works aim to detect

anomalies which are related to resource saturation or to performance issues as throughput,

response time, etc.

Only (108) and (128; 129; 130) proposed a solution that allows to verify functional errors

in programs/implementations under load conditions. In fact, detected faults according to (108)

are related to dynamic memory allocation, and may occur because of memory leaks, incorrect

dynamic memory allocation, etc. In the context of BPEL compositions (128; 129; 130), possible

errors which may be detected under various load conditions are mainly the addition/omission

of non-specified/specified behaviours particularly within BPEL conditional branches. Another

potential error type is related to delays coding. Actually, such errors are introduced when

implementing synchronous communications conditioned by delays which are different from those

specified in the composition model.

In general, the used technique for load test generation is tightly coupled with the SUT model

or specification. For example, (123) model their SUT using Petri nets and adopt constraint

solving techniques for test generation. Also (110) make use of UML 2.0 as model and on

the other hand generate test cases based on identification of the control flow in corresponding

sequence diagrams.

6.5 Discussion 66

The identification of problem cause(s) (application, network or other) is not the main goal

behind load testing, rather than studying performance of the application under test, this fact

explains why few works address this issue. However, (128; 129) are able to recognize if the

detected problem under load is caused by implementation anomalies. Network or other causes

are ongoing works. Indeed, the authors are defining and validating an approach based on

interception of exchanged messages between the composition under test and its partner services.

That way it would be possible to monitor exchanged messages instantaneously, and to know

what is the cause behind their loss or probably their reception delay, etc.

Few research efforts, such (111), (112) and (128; 129; 130), are devoted to the automated

analysis of load testing results in order to uncover potential problems. Indeed, it is hard to

detect problems in a load test due to the large amount of data which must be analysed. Current

industrial practice mainly involves time-consuming manual checks which, for instance, search

through the logs of the application for error messages.

Finally, we remark that the majority of existing works illustrated their load testing solutions

based on academic or/and industrial case studies. Besides, different proposed approaches have

been concretized in form of testing tools. However, each developed prototype tool for load testing

depends on the SUT domain and is thus dedicated only to a particular context. For example,

RTTT tool (124; 125) is used for load testing of reactive real-time systems, whereas WSCLT

tool (129) aims to test non-conformances within BPEL compositions considering diverse load

conditions.

6.5.2 Testing of Web Service Compositions

A single web service may not be able to satisfy the need of a user. In such a situation, it is

possible to combine existing services together in order to fulfill this need. This act is called Web

service composition. Although many research works have been focused on the discovery, selection

and composition of Web services, research areas such as testing of Web services (especially Web

service compositions) are still new and immature (131). In general, testing is the process of

executing a program with the intent of finding errors. It involves activities such as specifying

test cases, generating test data, monitoring test execution, measuring test coverage, validating

test results and tracking system errors. We highlight that several research papers have been

written on testing of Web services addressing areas such as testing SOAP messages, WSDL

interfaces, and publish, find and bind capabilities. However, Web service composition testing

involves testing the extended interaction between the service provider and requester as well as

the composition schema which defines the business logic of the composite service.

6.5 Discussion 67

In this context, existing commercial tools such as Oracle BPEL process manager and Active

BPEL Designer support manual functional testing that allows testers to test BPEL descriptions

and service compositions based on requirements. Yet existing tools/approaches are not sufficient

to reveal structural errors of BPEL processes (132).

Some surveys on Web services testing can be found in (133), (134). Furthermore, (135) and

(136) provided surveys focusing on testing of Web service compositions. While Zakaria only

concentrated on unit testing of BPEL, Bucchiarone discussed Web service composition testing

from the aspect of orchestration and choreography, and classified research papers according

to them. However, Bucchiarone’s study was done in 2007 and there has been several other

research papers published since then. In addition, (137) discussed the importance of Web service

compositions testing and provided a classification of the most prominent approaches in this

area. For that, the authors presented several criteria for the comparison of these solutions, and

conducted a comparative evaluation of the corresponding proposed approaches. The results of

the paper gave an essential perspective to do research work on testing of composed Web services.

Besides, (138) provided a mapping study of current Web service compositions testing solutions

conducted by other researchers. In fact, a mapping study ‘involves a search of the literature to

determine what sorts of studies addressing the systematic review question have been carried out,

where they are published, in what databases they have been indexed, what sorts of outcomes

they have assessed, and in which populations’ (139). That way, (138) provided an overview

of the state of research in the area of Web service composition testing, with the intention of

enriching future research area by looking at the gaps and non treated issues yet.

One important type of testing Web service compositions is load/stress testing, as such ap-

plications solicit concurrent access by multiple users at the same time. Concerning existing

tools in this context, only Oracle has proposed a load testing module. But we noticed, that

it generates test reports which are not informative enough. In particular, no knowledge about

the application functional aspects is provided under load. Only the chronology and instant of

each thread invocation are presented. At the end of test, the rate of threads invocation per

second is evaluated. However, (128; 129; 130) proposed a complete solution for significantly

load testing Web service compositions. Indeed, the main contribution of their work is the veri-

fication of Web service compositions requirements (which are supposed to be formally modeled

using Timed Automata) under diverse load conditions. In addition, the authors suggested an

automated analysis of load testing logs. Also two different case studies, implemented as BPEL

processes, were used to validate and illustrate the solution. Finally, their work was concretized

in form of a complete testing tool WSCLT (129) extended with graphical user interfaces.

6.6 Summary 68

6.6 Summary

In this chapter, we investigated the opportunities as well as challenges of load and stress testing

in general. A classification of existing related works was reported, yet it is not possible to claim

that the list is exhaustive. Furthermore, several criteria were introduced in order to evaluate

and compare the different approaches. Finally, a summary of both comparison and evaluation

of the approaches were presented and the results were also discussed.

At the end, we remarked that there is no consensus on the best approach since each contri-

bution has its strengthen and weakness. Furthermore, each proposed solution is suitable for a

specific applicability domain. On the other hand, we noticed that most of the research papers

are from conference proceedings, which is an indication that the research area is still immature.

More work needs to be done in order to improve the current state of research in both load and

stress testing especially for the context of Web service compositions, which constitute actually

an emerging paradigm in the domain of Service-Oriented Architecture.

CHAPTER 7

A Model Based Approach to Combine Load and Functional Tests

7.1 Introduction

Many different errors may appear if the application is loaded whereas they may not appear under

normal execution conditions. Such errors are qualified as load sensitive errors (116). Thus, it

is essential to combine both functional and load testing types by adjusting the functional test

automation.

In fact, it is insufficient to record only pass/fail verdicts of the tests, but also to supervise

times of screens and objects, network communications, etc. That way, the functional test au-

tomation suite turns into a performance monitor, which ensures getting thorough test analysis

considering various load conditions. In this chapter, we propose a new model-based framework

that combines both functional and load tests. Our new framework is based on the model of

extended timed automata with inputs/ouputs and shared integer variables.

The remainder of this chapter is organized as follows. In Section 7.2, we describe our proposed

formal model-based framework to combine functional and load tests. Our solution is based on

the model of extended timed automata with inputs/ouputs and shared integer variables. Some

modelling issues are discussed in Section 7.3. In Section 7.4, we report on a case study from the

healthcare field. Finally, Section 7.5 provides a conclusion for the chapter.

7.2 Extended Timed Automata 70

7.2 Extended Timed Automata

We extend the framework presented in (2). We use timed automata (11) with deadlines to model

urgency ((2)). An extended timed automaton over Ac is a tuple A = (Q , q0,X , I,Ac,E), where:

• Q is a finite set of locations;

• q0 ∈ Q is the initial location;

• X is a finite set of clocks;

• I is a finite set of integer variables;

• E is a finite set of edges.

Each edge is a tuple (q , q ′, ψ, r, inc, dec, d, a), where: q , q ′ ∈ Q are the source and destination

locations; ψ is the guard, a conjunction of constraints of the form x#c, where x ∈ X ∪ I, c is an

integer constant and # ∈ {<,≤,=,≥, >}; r ⊆ X ∪ I is a set of clocks and integer variables to

reset to zero; inc ⊆ I is a set of integer variables (disjoint from r) to increment by one; dec ⊆ I is a

set of integer variables (disjoint from r and inc) to decrement by one; d ∈ {lazy, delayable, eager}

is the deadline; a ∈ Ac is the action.

An example of an extended timed automaton A = (Q , q0,X , I,Ac,E) over the set of actions

Ac = {a, b, c, d} is given in Figure 7.1 where : Q = {q0, q1, q2, q3} is the set of locations; q0

is the initial location; X = {x} is the finite set of clocks; I = {i} is the finite set of integer

variables; E is the set of edges drawn in the Figure. The figure uses the following notation:

“x := 0” means resetting the clock x to 0; “i := 0” means resetting the integer variable i to 0;

“i + +” means incrementing i by 1; “i −−” means decrementing i by 1.

Figure 7.1: An example of an extended timed automaton.

7.3 Modelling Issues 71

7.3 Modelling Issues

In this section we illustrate some methodological aspects of our framework. First we explain

how it is possible to combine both functional and load aspects within the same model. For

instance in Figure 7.2, the response time to produce the output action b with respect to the

input action a depends on the number of concurrent instances of the considered system under

test as follows: output b is generated within at most 1 time unit if the number of concurrent

instances is smaller or equal to 100; output b is generated within at most 2 time units if the

number of concurrent instances is between 101 and 1000; output b is generated within at most

3 time units if the number of concurrent instances is greater or equal to 1001;

Figure 7.2: An example showing how the time response of the SUT may depend on the number
of concurrent instances.

Figure 7.3: An example where the SUT produces different output actions depending on the
current load.

7.3 Modelling Issues 72

In Figure 7.3, we show how to model the fact that the SUT may even produce different output

actions with respect to the same input action depending on the current number of concurrent

instances of the considered system. The SUT may produce either b, c or d . On the first hand,

output a may be seen as the normal output generated by the SUT when the load the smaller

or equal to 100. On the other hand, output b may correspond to the situation where the SUT

still produces the same desired output action. However this time the output action is mixed

with a warning message to inform the user that the system is starting entering a critical area

(load between 101 and 1000). Finally, output c may correspond to the production of an error

message meaning that the SUT is no longer able to produce the desired output action since the

load is too high (greater or equal to 1001).

Figure 7.4: An example where the SUT adopts different sophisticated behaviours depending on
the current load.

Figure 7.5: The general scheme of the extended timed automaton modelling the system under
test.

7.3 Modelling Issues 73

In Figure 7.4, we consider a more sophisticated situation where the SUT can produce com-

plete different behaviours depending on the current load. Three distinct behaviours are possible

according to the figure. Behaviour 1 can be considered as the nominal behaviour of the con-

sidered system as in the previous example. The two other behaviours may correspond to the

situation where the system under test is trying to find a suitable way to deal with the increase

of the current number of concurrent instances and to improve the quality of the service. For in-

stance a possible solution may consist in allocating additional resources to overcome the current

critical situation.

In Figure 7.5, we propose a general scheme of the extended timed automaton modelling the

system under test. Normally we have to start with an increment of the total number of active

instances of the SUT and to finish with a decrement of this counter. Between these two events

the behaviour of the SUT is modelled.

Figures 7.6 and 7.7 illustrate different strategies for creating new instances of the SUT. In

the first case (Figure 7.6) any instance of the SUT may participate to the generation of new

instances. Whereas in the second case (Figure 7.7) a particular central instance is in charge of

creating new instances.

In Figures 7.8 and 7.9, we show how it is possible to consider different situations for deleting

current instances of the SUT. In the first situation (Figure 7.8) each instance of the SUT is in

charge of killing itself. In the second situation (Figure 7.9) a central component is in charge of

killing the different instances of the SUT.

Figure 7.6: Any instance of the SUT may participate to the generation of new instances.

Figure 7.10 explains how counter i is used to follow the increase and the decrease of the

current active concurrent instances of the SUT.

7.3 Modelling Issues 74

Figure 7.7: A central instance of the SUT is in charge of creating new instances.

Figure 7.8: Each instance of the SUT is in charge of killing itself.

7.3 Modelling Issues 75

Figure 7.9: A central component is in charge of killing the different instances of the SUT.

Figure 7.10: The integer variable i allows to follow the increase and the decrease of the number
of active instances of the SUT.

Figure 7.11: The use of other integer variables to model other aspects of the SUT.

7.4 Illustration through the TRMCS case study 76

Figure 7.11 gives a situation where we can use other integer variables to model other aspects

concerning the SUT. In the example proposed by the figure we take into account memory storage

capacity. A new shared integer variable is used for this purpose. The action “store data” may

happen only if the current storage capacity is greater or equal to 80%. As soon as this action

takes place, the storage capacity is increased by 20%.

7.4 Illustration through the TRMCS case study

7.4.1 Case study description

For a given patient suffering from chronic high blood pressure, measures like his arterial blood

pressure and his heart-rate beats per minute are collected periodically (for instance three times

per day). For the two collected measures, a request is sent to the TRMCS process. First, the

SS is invoked to save periodic reports in the medical database. Then, the AnS is charged with

analyzing the monitored data in order to detect whether some thresholds are exceeded. This

analysis is conditioned by a waiting/processing time. Indeed, the process should receive a re-

sponse from the AnS before reaching 30 seconds. Otherwise, the process sends a connection

problem report to the MS. In case of receiving the analysis response before reaching 30 seconds,

two cases/scenarios are studied. If thresholds are respected/satisfied, a detailed reply is sent to

the corresponding patient. Otherwise, the AlS is invoked in order to send emergency request-

s/urgent notification to the medical staff (such as doctors, nurses, etc.). Similarly to the AnS,

the AlS is constrained by a waiting time. If medical staff are notified before reaching 30 seconds,

the final reply is sent to the corresponding patient. Otherwise, the MS is invoked.

7.4.2 Reference specification expressed in Timed Automata

We give the specification of the previously described TRMCS scenario using Uppaal, an inte-

grated tool environment for modeling, validation and verification of systems modeled as networks

of Timed Automata (85). In Uppaal, synchronous communication between the Timed Automata

is performed by hand-shake synchronization using input and output actions. Output and input

actions are denoted with an exclamation mark and a question mark respectively, e.g., a! and

a?. Asynchronous communication is achieved by means of shared variables. Throughout the

chapter we use Uppaal syntax to illustrate Timed Automata, and Figure 7.12 is direct exported

from Uppaal, where x is a local clock. In addition, initial locations are marked using a double

circle. Edges are by convention labelled by the triple: guard, action, and assignment in that

order. Finally, bold-faced clock conditions placed under locations are location invariants.

7.4 Illustration through the TRMCS case study 77

Figure 7.12: The TRMCS process modeled in Timed Automata.

Before referring to the elaborated specification expressed in Timed Automata for testing

different TRMCS BPEL implementations, we should be sure that this model respects both

functional and non-functional system requirements. For that, Uppaal proposes a simulation

module of systems modeled in Timed Automata which enables to follow how the built model

can evolve in time. The realized simulations allowed us to detect and correct some errors when

modeling our considered TRMCS scenario in Timed Automata. Furthermore, we made use of

Uppaal’s verification module which enables to check various properties (e.g. safety, liveness,

deadlock, etc.) of our created model. That way, we obtain at the end a checked and valid

specification expressed in Timed Automata as a reference for testing later.

7.4.3 Illustration of some modelling patterns

In the following, we explain some methodological aspects of our proposed framework. The aim

is to show how it is possible to combine both functional and load aspects within the same

model. In our case we refer to the TRMCS process modeled in Timed Automata as depicted in

Figure 7.12.

7.4 Illustration through the TRMCS case study 78

As a first pattern example, we show in Figure 7.13 how to model the fact that the TRMCS

produces different output actions with respect to the same input action Patient Request de-

pending on the current number of concurrent instances. Indeed, the SUT may produce either

invoke LocalStorage or invoke CloudStorage. On the first hand, output invoke LocalStorage

may be seen as the normal output generated by the TRMCS when the load is smaller or equal

to 50. It corresponds to SS invocation in order to save periodic reports in the medical local

database.

On the other hand, output invoke CloudStorage concerns the situation where the load is

greater than 50. We suppose that this situation corresponds to SS invocation to store reports

in a remote medical database hosted on Cloud. In fact, as the number of concurrent users

increases significantly, the local database may be saturated. Thus, Cloud storage seems to be

a good solution in this case as it provides users with various capabilities to store and process

their data in either privately owned, or third-party data centers that may be located far from

the TRMCS user.

Figure 7.13: Pattern 1: The TRMCS produces different output actions depending on the current
load.

Figure 7.14 presents a situation where we can use other integer variables in order to model

other aspects concerning the TRMCS. Indeed, we take into account storage capacity. A new

shared integer variable is used for this goal. The action invoke Storage may happen only if the

current storage capacity is greater or equal to 80%. As soon as this action occurs, the storage

capacity is increased by 20%. Definitely, other integer variables may be used to model other

aspects such as network connectivity, memory, CPU use, etc.

7.4 Illustration through the TRMCS case study 79

Figure 7.14: Pattern 2: The use of a new shared integer variable to model the storage capacity.

Figure 7.15: Pattern 3: The time response of the TRMCS depends on the number of concurrent
instances.

In Figure 7.15, the response time to produce the output action resp AlS with respect to the

input action invoke Alerting depends on the number of concurrent instances of the considered

TRMCS under test as follows:

• output resp AlS is generated within at most 30 seconds if the number of concurrent in-

stances is smaller or equal to 50. In case of exceeding this deadline, the MS is invoked in

order to treat the report concerning the AlS connection problem;

7.5 Summary 80

• output resp AlS is generated within at most 60 seconds if the number of concurrent in-

stances is greater than 50. If this deadline is exceeded, then the MS is invoked to treat

the report of the AlS connection problem.

Clearly, different other modelling issues could be considered and integrated in the TRMCS

Timed Automata depicted in Figure 7.12. This way, we obtain a rich formalism ensuring high

expressiveness of the critical system, since it models concurrency and combines both functional

and load tests.

7.5 Summary

In this chapter, we proposed a formal model-based framework to combine functional and load

tests. Our approach is based on the model of extended timed automata with inputs/ouputs

and shared integer variables. The adopted model allows high expressiveness for concurrent

systems as it ensures partial-observability and parallel composition. In addition, we presented

different modelling issues illustrating some methodological aspects of our framework. Besides,

we illustrated our approach by the means of a critical case study from the healthcare field. An

important contribution in this work was to use a rich formalism to model mutli-user systems and

to combine functional and load tests in the same model. This point constitutes an important

testing area that is usually misunderstood.

CHAPTER 8

Limitations of WS-BPEL Compositions under Load Conditions

8.1 Introduction

In this chapter, we propose to realize the monitoring of BPEL compositions behaviors during

load testing, in order to perform later an advanced analysis of test results. This step aims to

identify both causes and natures of detected problems. For that, we take into consideration the

execution context of the application under test while periodically capturing, under load, some

performance metrics of the system such as CPU usage, memory usage, etc.

The remainder of this chapter is organized as follows. Section 8.2 is dedicated to describe our

proposed testing approach for the study of BPEL compositions under load conditions. Then, we

describe in Section 8.3 our automated advanced load test analysis approach and we provide a

taxonomy of the different detected problems under load. In Section 8.4 we report on the Travel

Agency case study. Finally Section 8.5 concludes the chapter.

8.2 Study of WS-BPEL Compositions under Load

Our proposed approach is based on gray box testing, which is a strategy for software debugging

where the tester has limited knowledge of the internal details of the program. Indeed, we

simulate in our case the different partner services of the composition under test as we suppose

that only the interactions between this latter and its partners are known. Furthermore, we

rely on the online testing mode considering the fact that test cases are generated and executed

simultaneously (140).

8.2 Study of WS-BPEL Compositions under Load 82

8.2.1 BPEL Concepts

According to OASIS (Organization for the Advancement of Structured Information Stan-

dards) (141), a BPEL specification is a model and a grammar for describing the behavior of a

business process based on interactions between the process and its partners. It is XML based

and it allows sharing distributed data, even through multiple organizations, by employing a

combination of Web services.

BPEL syntax consists of a set of activities which can be classified into two categories: basic

activities and structured activities. Basic activities allow to invoke an operation of a partner

Web service (invoke activity), to present the composition like a new Web service with the receive

activity for describing the reception of a request and the reply activity to generate an answer.

There are other activities such as assign, wait, link, etc. Structured activities use the basic

activities to describe sequential execution (sequence) and parallel executions (flow), connections

(switch, if), loops (forEach, repeateUntil, while), and finally alternate ways (pick).

8.2.2 Principle of Load Distribution

Figure 8.1 shows the architecture to set up in order to realize remote load test distribution.

Indeed, the role of the test manager is to monitor the test execution and distribute the required

load between the different load generators. These latters invoke concurrently the system under

test as imposed by the test manager.

Figure 8.1: Load Distribution Architecture.

8.2 Study of WS-BPEL Compositions under Load 83

8.2.3 WSCLim Architecture

In this section, we describe our proposed distributed framework for limitations study of BPEL

compositions under load conditions. To illustrate our solution, we consider, for simplicity rea-

sons, that our testing architecture is spread over four machines (hosts), as depicted in Figure 8.2,

such that the first one (Host1) is dedicated to deploy the system under test. In the second ma-

chine (Host2), our WSCLim tool is installed. Finally, the two other machines (Host3 and Host4)

ensure load distribution: each one acts as a load generator.

Figure 8.2: Load Testing Architecture.

As shown in Figure 8.2, the main components of our proposed architecture are:

• System Under Test (SUT): A new BPEL instance is created for each call of the

composition under test. A BPEL instance is defined by a unique identifier. Each created

instance invokes its own partner services instances by communicating while exchanging

messages.

• Tester: It represents the system under test environment and consists of:

– Web services (WS1, ..., WSm): These services correspond to simulated partners of

the composition under test.

– Queues: These entities are simple text files through which partner services and the

Tester Core exchange messages.

8.2 Study of WS-BPEL Compositions under Load 84

– Loader : It loads the SUT specification described in Timed Automata, besides the

WSDL files of the composition under test and the WSDL files of each partner service.

– Tester Core: It generates random input messages of the BPEL process under test. It

communicates with the different partner services of the composition by sending them

the types of input and output messages.

– QueueTester : It stores the general information of the test (number of calls of the

composition under test, the delay between the invocation of BPEL instances, etc.).

– Analyzer : This component is responsible for offline analysis of the test log

QueueTester.

• BPEL Clients: These entities meet the order of the Tester Core by performing concurrent

invocations of the composed service. For that, they receive as test parameters the input(s)

of the composition under test, the number of required process calls and the delay between

each two successive invocations.

8.2.4 Testing Procedure

As illustrated in Figure 8.2, we describe in the following the necessary steps to test BPEL

compositions considering load distribution concept. So once the tester provides the necessary

information for the test (the specification described in Timed Automata, the WSDL description

of the composite service, the number of concurrent calls of the system under test and the delay

between each two successive invocations), and starts the test then:

a. The Tester Core calls the Loader to load Timed Automata, the WSDL file of the composed

service under test and the WSDL files of the different partner services.

b. From these files, the Loader determines the types of input/output variables of the compos-

ite service as well as those of partner services. It also defines synchronous communications.

In addition, it sends this information to the Tester Core.

c. After receiving these data by the Loader, the Tester Core sets information of the test in

QueueTester.

d. The tester sends for each partner service the corresponding information about the types

of input/output messages. In case of synchronous communications, it sends the maximum

tolerated time, corresponding to answering the composition under test, to the partner

service which is involved in this communication.

8.3 Automated Advanced Load Test Analysis Approach 85

e. The Tester Core divides the simulated load between both BPEL Client entities in our

case, and calls each one by communicating the number of BPEL process concurrent calls

(threadsNumber) and the delay between each two successive invocations (delay).

f. Each BPEL Client invokes the composite service (threadsNumber) times each (delay).

g. The different BPEL instances (BPEL1, BPEL2,..., BPELn) are executed simultaneously.

Each instance of the composite service invokes its own instances of partner services. At

each call of one of these services, it records a trace in logs indicating the identifier of the

BPEL instance that has invoked it, the time of its invocation and its input parameters.

h. Each instance of the partner service determines from its own queue, the types of its i/o

variables and checks the types of messages that it received from the BPEL composition.

i. Each instance of the invoked partner service sets in QueueTester, the ID of the BPEL

process instance which is responsible of its invocation, the information that it received

and the result of input message types checking.

j. Referring to the type of the output variable in its queue, the partner service instance

generates randomly a response and sends it to the SUT.

k. After running the test, the analyzer consults the Loader in order to obtain a list of path(s)

that the BPEL process may cross (according to the specification).

l. At the end of test, the Analyzer examines the stored information in QueueTester in order

to generate a final report containing test verdicts relatively to each invoked BPEL instance.

8.3 Automated Advanced Load Test Analysis Approach

In common current industrial practices, looking for functional problems in a load testing is a

time-consuming and difficult task, due to the challenges such as no documented system behavior,

monitoring overhead, time pressure and large volume of data. The ad-hoc logging mechanism

is the most commonly used, as developers insert output statements into the source code for

debugging purposes (142). Most practitioners look for the functional problems under load us-

ing manual searches for specific keywords like failure, or error (112). After that, load testing

practitioners analyze the context of the matched log lines to determine whether they indicate

functional problems or not. Depending on the length of a load test and the volume of generated

data, load testing practitioners may spend several hours to perform these checks.

8.3 Automated Advanced Load Test Analysis Approach 86

8.3.1 Principle of Load Test Analysis Approach

Performed operations during load testing of BPEL compositions are stored in QueueTester. In

order to recognize each BPEL instance which is responsible for a given action, each one starts

with the identifier of its corresponding BPEL instance (BPEL-ID). At the end of test running,

the Analyzer consults QueueTester and goes through three steps:

• Decomposition of QueueTester: Based on BPEL-ID, the Analyzer decomposes infor-

mation into atomic test reports. Each report is named BPEL-ID and contains information

about the instance which identifier is BPEL-ID.

• Analysis of atomic logs: The Analyzer consults the generated atomic test reports of

the different BPEL instances. It verifies the observed executed actions of each instance by

referring to the specified requirements in Timed Automata. Finally, the Analyzer assigns

corresponding verdicts to each instance and identifies detected problems.

• Generation of final test report: This last step consists in producing a final test report

recapitulating test results relatively to all instances and also describing both nature and

cause of each observed FAIL verdict.

8.3.2 Classification of Detected Problems under Load

In this section, we present and classify the most observed problems by experiments during load

test executions of different BPEL compositions. Particularly, three sources (causes) of problems

are discussed.

8.3.2.1 Functional Problems (SUT)

Load sensitive faults in programs may have no damaging effect under small loads or short

executions, but cause a program to fail when it is executed under a heavy load or over a long

period of time, which results in non-compliance with the specification. In our context, we

essentially consider two possible load sensitive faults in the SUT implementation:

• Non specified behaviors: This error means that a non specified behavior is added (resp.

omitted) by fault within a branch in the BPEL flow, which results in the occurrence of

non required treatments (resp. the absence of expected features). This type of problem

may occur in a conditional branch (i.e. either temporal constraint implemented with the

pick activity or logical condition defined by the switch activity). In fact, load can influence

the variation of time response of a partner service. Also it may affect the choice decision

controlling so the BPEL flow execution.

8.3 Automated Advanced Load Test Analysis Approach 87

• Erroneous delays: This error may appear within a pick activity of the BPEL flow under

test. It consists of an implementation of a synchronous communication conditioned by a

timeout response of a partner service which is different from the specified one.

8.3.2.2 Test Environment

In addition to the previously introduced errors, we consider in our study the execution context of

the composition under test and we aim so to identify non-functional problems. Indeed, partner

services, the application servers deploying them and the nodes of the test architecture may

influence the load test execution and probably cause errors. In this context, we distinguish two

types of errors:

• Problem of connection to a partner service: The BPEL process can not invoke a

partner service which usually stops its execution. In fact, the availability of a Web service

may be influenced by the load, by the state of the server on which it is deployed, etc.

• Problem of getting a response from a partner service: The BPEL process does

not receive a response from an invoked partner service for a period of time. To clarify, in

order to avoid a long waiting time of a response from a partner, this time is limited by a

maximum network delay (tmax). Thus, the composed service should wait to a maximum

of tmax seconds to receive a response from any partner service.

8.3.2.3 SUT Node

As previously demonstrated, both the application and the test environment may be sources of

different problems during load testing. In other situations, we could just predict the node (either

the tester machine or the SUT machine) that causes the problem. Based on different experi-

ments, we observed in some test scenarios a delay in treatment of a partner service response,

at the level of the SUT node. Indeed, it is about a partner service which sends a response

to the composed service under test, within a synchronous communication, before the specified

maximum delay, except that this composition follows the onAlarm branch. This situation may

be explained by the fact that the running BPEL instances in parallel share the node resources

such as the processor,the memory, etc., which leads sometimes to a delay in the treatment of

some instances.

8.4 Travel Agency Case Study 88

8.4 Travel Agency Case Study

In order to validate our proposed testing architecture, we developed a tool (WSCLim) for load

testing and limitations detection of Web services compositions. In the following, we are going

to introduce our prototype tool and illustrate our solution through a case study.

8.4.1 Graphical User Interface

We present in this section a brief description of the main interface of our proposed WSCLim

tool. As shown in Figure 8.3, this interface allows the user to specify:

• The path of the specification (Timed Automata) used as a reference.

• The path of the composition WSDL specification.

• The number of BPEL concurrent instances.

• The delay between each two successive invocations of the BPEL process under test.

Figure 8.3: WSCLim Tool Initial Interface.

By clicking the button Execute, the test is running. During execution, details of the test are

stored in log files. At the end of test, the analysis of results is launched by clicking the button

Start Analysis and the interface containing test verdicts is displayed. We will expose later an

example of this interface.

8.4.2 Case Study Description

In this section, we introduce a Travel Agency case study for best illustration of our solution. In

fact, we firstly suppose that the required business process (written in BPEL) composes services

of: flight search (FS), hotel search (HS), flight booking (FB) and hotel booking (HB).

8.4 Travel Agency Case Study 89

Figure 8.4: The Travel Agency Process.

Figure 8.5: The Travel Agency Process modeled in Timed Automata.

8.4 Travel Agency Case Study 90

As described in Figure 8.4, when a client sends a trip request to the travel agency, the travel

search process interacts with information systems of airline companies (resp. hotel chains) for

flights (resp. hotel rooms) that match client needs. These two searches are conditioned by a

waiting time. Indeed, the process should receive a response from FS (resp. from HS) within

maximum 30 seconds. Otherwise, the process execution is stopped. In case of receiving both

responses in time, FB and HB services are invoked successively to perform travel booking.

Finally, a detailed reply informing about the final results is sent to the concerned client.

Before launching load test, one should provide a written specification in Timed Automata.

For that, we first modeled the previously described Travel Agency scenario using Uppaal (see

Figure 8.5). Furthermore, we make use of Uppaal to simulate our created Timed Automata

which enables to follow how the built model evolves in time, to detect and to correct so some

faults when modeling our considered Travel Agency scenario.

8.4.3 Test Scenario

In order to study the limitations of the Travel Agency process, we defined several test scenarios.

In this section, we present one of these scenarios. We consider a mutated version of the Travel

Agency process where we suppose that a developer made mistakes while coding the BPEL

composition as shown in Figure 8.6 (red color). In fact, the service FB was added in the

BPEL implementation when exceeding the time limit for the flight search (FS). Moreover, the

implemented timeout (60 seconds) of service HS response is different from the specified one (30

seconds) in the Timed Automata (see Figure 8.5). In this scenario, we invoked 40 times the

Travel Agency process considering a delay of one second between each two successive invocations.

Figure 8.7 shows the generated analysis interface according to the first test scenario. Indeed,

it consists of four blocks:

a. Test Verdicts block: this block shows the generated test verdicts in percentage. We note

that in this scenario, the percentage of FAIL is equal to 7.5%. This means that 3 BPEL

instances among 40 ones failed during load testing.

b. FAIL Natures & Causes block: this block presents the nature and the cause (each cause

is distinguished by a color) of each observed FAIL verdict.

c. BPEL Instance vs Response Time block: this third block informs about response times of

the different invoked BPEL instances.

d. Performance Monitoring block: the final block graphically shows the performance data

recorded during the test by the PerfMon tool.

8.4 Travel Agency Case Study 91

Figure 8.6: Non-compliant BPEL Implementation.

Figure 8.7: Analysis Interface corresponding to the proposed Test Scenario.

8.5 Summary 92

8.4.4 Overhead of WSCLim Tool

In order to determine the overhead of our WSCLim tool, we represented, for both cases, the

measurement curves of the execution time average while varying the load conditions. In the

first case, tests are performed using our testing tool. In the second case, test executions are

performed directly from the console of the orchestration server and without turning to our

WSCLim tool. To lead these experiments, we considered again the same Travel Agency process

structure as described in Section 4.2. As shown in Figure 8.8, the use of our proposed WSCLim

tool does not cause a significant additional overhead to the average of the process execution time.

Indeed, for a given load, the difference between the two corresponding times is of the order of a

few seconds (4 seconds on average). This negligible overhead (compared to the average of one

instance execution time) is due to additional activities (i.e. verification of variable types, logging

activity, etc.) carried out by our tool during the load testing.

Figure 8.8: Evolution of the Response Time with and without considering the WSCLim Tool.

8.5 Summary

In this chapter we firstly described our contribution for the study of BPEL compositions behav-

iors under various load conditions. Then, we explained the principle of test logs analysis phase.

We also proposed a taxonomy of the detected problems by our solution and we illustrated how

test verdicts are assigned. The last phase of our work was dedicated to validate our approach

8.5 Summary 93

based on a Travel Agency case study. In fact, we created, simulated and verified the reference

model (corresponding to our case study and written in Timed Automata) using the Uppaal test

environment. After that, we implemented different mutated versions of the considered BPEL

process, and we used our WSCLim tool to automatically execute the corresponding load tests

of these implementations. Finally, test results were exhaustively analyzed and advanced infor-

mation was provided by our tool, which permits to detect and illustrate different natures and

causes of errors among those proposed in our previous classification of problems.

Part III

Determinization and Off-Line Test Selection for Timed

Automata

CHAPTER 9

A Game Approach to Determinize Timed Automata

9.1 Introduction

Timed automata are frequently used to model real-time systems. Their determinization is a key

issue for several validation problems. However, not all timed automata can be determinized,

and determinizability itself is undecidable. In this chapter, we propose a game-based algorithm

which, given a timed automaton with ε-transitions and invariants, tries to produce a language-

equivalent deterministic timed automaton, otherwise a deterministic over-approximation. Our

method subsumes two recent contributions: it is at once more general than the determinization

procedure of (3) and more precise than the approximation algorithm of (2).

The structure of this chapter is as follows. Section 9.2 presents the motivation behind the

work presented int his chapter. In Section 9.3 we recall definitions and properties relative to

timed automata, and present the two recent pieces of work to determinize timed automata or

provide a deterministic over-approximation. Section 9.4 is devoted to the presentation of our

game approach and its properties. Extensions of the method to timed automata with invariants

and ε-transitions are then presented in Section 9.5. A comparison with existing methods is

detailed in Section 9.6. Section 9.7 concludes the chapter.

9.2 Motivation

Timed automata (TA), introduced in (9), form a usual model for the specification of real-time

embedded systems. Essentially TAs are an extension of automata with guards and resets of

9.2 Motivation 96

continuous clocks. They are extensively used in the context of many validation problems such

as verification, control synthesis or model-based testing. One of the reasons for this popularity

is that, despite the fact that they represent infinite state systems, their reachability is decidable,

thanks to the construction of the region graph abstraction.

Determinization is a key issue for several problems such as implementability, diagnosis or

test generation, where the underlying analyses depend on the observable behavior. In the con-

text of timed automata, determinization is problematic for two reasons. First, determinizable

timed automata form a strict subclass of timed automata (9). Second, the problem of the de-

terminizability of a timed automaton, (i.e. does there exist a deterministic TA with the same

language as a given non-deterministic one?) is undecidable (143; 144). Therefore, in order to

determinize timed automata, two alternatives have been investigated: either restricting to deter-

minizable classes or choosing to ensure termination for all TAs by allowing over-approximations,

i.e. deterministic TAs accepting more timed words. For the first approach, several classes of

determinizable TAs have been identified, such as strongly non-Zeno TAs (145), event-clock

TAs (146), or TAs with integer resets (147). In a recent paper, Baier, Bertrand, Bouyer and

Brihaye (3) propose a procedure which does not terminate in general, but allows one to deter-

minize TAs in a class covering all the aforementioned determinizable classes. It is based on an

unfolding of the TA into a tree, which introduces a new clock at each step, representing original

clocks by a mapping; a symbolic determinization using the region abstraction; a folding up by

the removal of redundant clocks. To our knowledge, the second approach has only been inves-

tigated by Krichen and Tripakis (2). They propose an algorithm that produces a deterministic

over-approximation based on a simulation of the TA by a deterministic TA with fixed resources

(number of clocks and maximal constant). Its locations code (over-approximate) estimates of

possible states of the original TA, and it uses a fixed policy governed by a finite automaton for

resetting clocks.

Our method combines techniques from (3) and (2) and improves those two approaches,

despite their notable differences. Moreover, it deals with both invariants and ε-transitions,

but for clarity we present these treatments as extensions. Our method is also inspired by a

game approach to decide the diagnosability of TAs with fixed resources presented by Bouyer,

Chevalier and D’Souza in (148). Similarly to (2), the resulting deterministic TA is given fixed

resources (number of clocks and maximal constant) in order to simulate the original TA by a

coding of relations between new clocks and original ones. The core principle is the construction

of a finite turn-based safety game between two players, Spoiler and Determinizator, where

Spoiler chooses an action and the region of its occurrence, while Determinizator chooses which

9.3 Preliminaries 97

clocks to reset. Our main result states that if Determinizator has a winning strategy, then it

yields a deterministic timed automaton accepting exactly the same timed language as the initial

automaton, otherwise it produces a deterministic over-approximation. Our approach is more

general than the procedure of (3), thus allowing one to enlarge the set of timed automata that can

be automatically determinized, thanks to an increased expressive power in the coding of relations

between new and original clocks, and robustness to some language inclusions. Contrary to (3)

our techniques apply to a larger class of timed automata: TAs with ε-transitions and invariants.

It is also more precise than the algorithm of (2) in several respects: an adaptative and timed

resetting policy, governed by a strategy, compared to a fixed untimed one and a more precise

update of the relations between clocks, even for a fixed policy, allow our method to be exact

on a larger class of TAs. The model used in (2) includes silent transitions, and edges are

labeled with urgency status (eager, delayable, or lazy), but urgency is not preserved by their

over-approximation algorithm. These observations illustrate the benefits of our game-based

approach compared to existing work.

9.3 Preliminaries

In this section, we start by introducing the model of timed automata, and then review two

approaches for their determinization.

9.3.1 Timed Automata

We start by introducing notations and useful definitions concerning timed automata (9).

Given a finite set of clocks X , a clock valuation is a mapping v : X → R≥0. We note 0 the

valuation that assigns 0 to all clocks. If v is a valuation over X and t ∈ R≥0, then v + t denotes

the valuation which assigns to every clock x ∈ X the value v(x) + t , and ←→v = {v + t | t ∈ R}

denotes past and future timed extensions of v . For X ′ ⊆ X we write v[X ′←0] for the valuation

equal to v on X \X ′ and to 0 on X ′, and v|X ′ for the valuation v restricted to X ′.

Given a non-negative integer M , an M -bounded guard, or simply guard when M is clear

from context, over X is a finite conjunction of constraints of the form x ∼ c where x ∈ X , c ∈

[0,M]∩N and ∼∈ {<,≤,=,≥, >}. We denote by GM (X) the set of M -bounded guards over X .

Given a guard g and a valuation v , we write v |= g if v satisfies g . Invariants are restricted cases

of guards: given M ∈ N, an M -bounded invariant over X is a finite conjunction of constraints

of the form x � c where x ∈ X , c ∈ [0,M] ∩ N and �∈ {<,≤}. We denote by IM (X) the

set of invariants. Given two finite sets of clocks X and Y , a relation between clocks of X

and those of Y is a finite conjunction C of atomic constraints of the form x − y ∼ c where

9.3 Preliminaries 98

x ∈ X , y ∈ Y , ∼∈ {<,=, >} and c ∈ N. When, moreover, the constant c is constrained to

belong to [−M ′,M], for some constants M ,M ′ ∈ N, we denote by RelM ,M ′(X ,Y) the set of

relations between X and Y .

Definition 1 A timed automaton (TA) is a tuple A = (L, `0,F ,Σ,X ,M ,E , Inv) such that: L

is a finite set of locations, `0 ∈ L is the initial location, F ⊆ L is the set of final locations, Σ is

a finite alphabet, X is a finite set of clocks, M ∈ N, E ⊆ L×GM (X)× (Σ ∪ {ε})× 2X × L is a

finite set of edges, and Inv : L→ IM (X) is the invariant function.

The constant M is called the maximal constant of A, and we will refer to (| X |,M) as the

resources of A. The semantics of a timed automaton A is given as a timed transition system

TA = (S , s0,SF , (R≥0×(Σ∪{ε})),→) where S = L×RX
≥0 is the set of states, s0 = (`0, 0) the initial

state, SF = F ×RX
≥0 the final states, and →⊆ S × (R≥0 × (Σ ∪ {ε}))× S the transition relation

composed of moves of the form (`, v)
τ,a−→ (`′, v ′) whenever there exists an edge (`, g , a,X ′, `′) ∈ E

such that v + τ |= g ∧ Inv(`), v ′ = (v + τ)[X ′←0] and v ′ |= Inv(`′).

A run ρ of A is a finite sequence of moves starting in s0, i.e., ρ = s0
τ1,a1−→ s1 · · ·

τk ,ak−→ sk . Run ρ

is said accepting if it ends in sk ∈ SF . A timed word over Σ is an element (ti , ai)i≤n of (R≥0×Σ)∗

such that (ti)i≤n is nondecreasing. The timed word associated with ρ is w = (ti1 , ai1) . . . (tim , aim)

where (ai ∈ Σ iff ∃n, ai = ain) and ti =
∑i

j=1 τj . We write L(A) for the language of A, that

is the set of timed words w such that there exists an accepting run which reads w . We say that

two timed automata A and B are equivalent whenever L(A) = L(B).

A deterministic timed automaton (abbreviated DTA) A is a TA such that for every timed

word w , there is at most one run in A reading w . A is determinizable if there exists a deter-

ministic timed automaton B with L(A) = L(B). It is well-known that some timed automata

are not determinizable (9); moreover, the determinizability of timed automata is an undecidable

problem, even with fixed resources (144; 143).

An example of a timed automaton is depicted in Figure 9.1. This nondeterministic timed

automaton has `0 as initial location (denoted by a pending incoming arrow), `3 as final lo-

cation (denoted by a pending outgoing arrow) and accepts the following language: L(A) =

{(t1, a) · · · (tn , a)(tn+1, b) | tn+1 < 1}.

The region abstraction forms a partition of valuations over a given set of clocks. It allows

one to make abstractions in order to decide properties like the reachability of a location. We

let X be a finite set of clocks, and M ∈ N. We write btc and {t} for the integer part and the

fractional part of a real t , respectively. The equivalence relation ≡X ,M over valuations over X

is defined as follows: v ≡X ,M v ′ if (i) for every clock x ∈ X , v(x) ≤ M iff v ′(x) ≤ M ; (ii) for

every clock x ∈ X , if v(x) ≤ M , then bv(x)c = bv ′(x)c and {v(x)} = 0 iff {v ′(x)} = 0 and (iii)

9.3 Preliminaries 99

`0

`1

`2

`3

0 <
x <

1, a0 < x < 1, a

0 < x < 1, a, {x}

0 < x < 1, b, {x}

x = 0, b

Figure 9.1: A timed automaton A.

for every pair of clocks (x , y) ∈ X 2 such that v(x) ≤ M and v(y) ≤ M , {v(x)} ≤ {v(y)} iff

{v ′(x)} ≤ {v ′(y)}. The equivalence relation is called the region equivalence for the set of clocks

X w.r.t. M , and an equivalence class is called a region. The set of regions, given X and M , is

denoted RegX
M . A region r ′ is a time-successor of a region r if there is v ∈ r and t ∈ R≥0 such

that v + t ∈ r ′. The set of all time-successors of r is denoted −→r .

In the following, we often abuse notations for guards, invariants, relations and regions, and

write g , I , C and r , respectively, for both the constraints over clock variables and the sets of

valuations they represent.

9.3.2 Existing approaches to the determinization of TAs

To overcome the non-feasibility of determinization of timed automata in general, two alternatives

have been explored: either exhibiting subclasses of timed automata which are determinizable

and provide determinization algorithms, or constructing deterministic over-approximations. We

relate here, for each of these directions, a recent contribution.

Determinization procedure. An abstract determinization procedure which effectively

constructs a deterministic timed automaton for several classes of determinizable timed automata

is presented in (3). Given a timed automaton A, this procedure first produces a language-

equivalent infinite timed tree, by unfolding A, introducing a fresh clock at each step. This

allows one to preserve all timing constraints, using a mapping from clocks of A to the new

clocks. Then, the infinite tree is split into regions, and symbolically determinized. Under a clock-

boundedness assumption, the infinite tree with infinitely many clocks can be folded up into a

timed automaton (with finitely many locations and clocks). The clock-boundedness assumption

is satisfied for several classes of timed automata, such as event-clock TAs (146), TAs with

integer resets (147) and strongly non-Zeno TAs (145), which can thus be determinized by this

procedure. The resulting deterministic timed automaton is doubly exponential in the size of A.

Deterministic over-approximation By contrast, Krichen and Tripakis propose an algorithm

applicable to any timed automaton A, which produces a deterministic over-approximation, that

is a deterministic TA B accepting at least all timed words in L(A) (2). This TA B is built by

9.4 A game approach 100

simulation of A using only information carried by clocks of B. A location of B is then a state

estimate of A consisting of a (generally infinite) set of pairs (`, v) where ` is a location of A and

v a valuation over the union of clocks of A and B. This method is based on the use of a fixed

finite automaton (the skeleton) which governs the resetting policy for the clocks of B. The size

of obtained deterministic timed automaton B is also doubly exponential in the size of A.

9.4 A game approach

In (148), given a plant —modeled by a timed automaton— and fixed resources, the authors

build a game where some player has a winning strategy if and only if the plant can be diag-

nosed by a timed automaton using the given resources. Inspired by this construction, given

a timed automaton A and fixed resources, we derive a game between two players Spoiler and

Determinizator, such that if Determinizator has a winning strategy, then a deterministic timed

automaton B with L(B) = L(A) can be effectively generated. Moreover, any strategy for De-

terminizator (winning or not) yields a deterministic over-approximation for A. For simplicity,

we present here the method for timed automa without ε-transitions and for which all invariants

are true.

9.4.1 Definition of the game

Let A = (L, `0,F ,Σ,X ,M ,E) be a timed automaton. We aim at building a deterministic timed

automaton B with L(A) = L(B) if possible, or L(A) ⊆ L(B). In order to do so, we fix resources

(k ,M ′) for B and build a finite 2-player turn-based safety game GA,(k ,M ′). Players Spoiler and

Determinizator alternate moves, and the objective of player Determinizator is to avoid a set of

bad states (to be defined later). Intuitively, in the safe states, for sure, no over-approximation

has been performed.

For simplicity, we first detail the approach in the case where A has no ε-transitions and all

invariants are true.

Let Y be a set of clocks of cardinality k . The initial state of the game is a state of Spoiler

consisting of location `0 (initial location of A) together with the simplest relation between X

and Y : ∀ x ∈ X , ∀ y ∈ Y , x −y = 0, and a marking > (no over-approximation was done so far),

together with the null region over Y . In each of its states, Spoiler challenges Determinizator

by proposing an M ′-bounded region r over Y , and an action a ∈ Σ. Determinizator answers

by deciding the set of clocks Y ′ ⊆ Y he wishes to reset. The next state of Spoiler contains a

region over Y (r ′ = r[Y ′←0]), and a finite set of configurations: triples formed of a location of

A, a relation between clocks in X and clocks in Y , and a boolean marking (> or ⊥). A state

9.4 A game approach 101

of Spoiler thus constitutes a states estimate of A, and the role of the markings is to indicate

whether over-approximations possibly happened. A state of Determinizator is a copy of the

preceding states estimate together with the move of Spoiler. Bad states player Determinizator

wants to avoid are on the one hand states of the game where all configurations are marked ⊥

and, on the other hand, states where all final configurations (if any) are marked ⊥.

Formally, given A and (k ,M ′) we define GA,(k ,M ′) = (V, v0,Ac, δ,Bad) where:

• The set of vertices V is partitioned into VS and VD , respectively vertices of Spoiler and

Determinizator. Vertices of VS and VD are labeled respectively in 2L×RelM ,M ′ (X ,Y)×{>,⊥}×

RegY
M ′ and 2L×RelM ,M ′ (X ,Y)×{>,⊥} × (RegY

M ′ × Σ);

• v0 = ({0}, {(`0,X −Y = 0,>)}) is the initial vertex and belongs to player Spoiler1;

• Ac = (RegY
M ′ × Σ) ∪ 2Y is the set of possible actions;

• δ ⊆ VS × (RegY
M ′ × Σ)× VD ∪ VD × 2Y × VS is the set of edges;

• Bad = {({(`j ,Cj ,⊥)}j , r)} ∪ {({(`j ,Cj , bj)}j , r) | {`j }j ∩ F 6= ∅ ∧ ∀ j , `j ∈ F ⇒ bj = ⊥}

is the set of bad states.

We now detail the edge relation which defines the possible moves of the players. Given vS =

({(`j ,Cj , bj)}j , r) ∈ VS a state of Spoiler and (r ′, a) one of its moves, the successor state is

defined, provided r ′ is a time-successor of r , as the state vD = ({(`j ,Cj , bj)}j , (r ′, a)) ∈ VD if

∃(`,C , b) ∈ {(`j ,Cj , bj)}j and ∃ ` g,a,X ′−−−−→ `′ ∈ E s.t. [r ′ ∩ C]|X ∩ g 6= ∅.

Given vD = ({(`j ,Cj , bj)}j , (r ′, a)) ∈ VD a state of Determinizator and Y ′ ⊆ Y one of its

moves, the successor state of vD is the state (E , r ′[Y ′←0]) ∈ VS where E is obtained as the set

of all elementary successors of configurations in {(`j ,Cj , bj)}j by (r ′, a) and by resetting Y ′.

Precisely, if (`,C , b) is a configuration, its elementary successors set by (r ′, a) and Y ′ is:

Succe [r ′, a,Y ′](`,C , b) =

(`′,C ′, b′)

∣∣∣∣∣∣∣∣∣
∃ ` g,a,X ′−−−−→ `′ ∈ E s.t. [r ′ ∩ C]|X ∩ g 6= ∅

C ′ = up(r ′,C , g ,X ′,Y ′)

b′ = b ∧ ([r ′ ∩ C]|X ∩ ¬g = ∅)


where up(r ′,C , g ,X ′,Y ′) is the update of the relation between clocks in X and Y after the

moves of the two players, that is after taking action a in r ′, resetting X ′ ⊆ X and Y ′ ⊆ Y , and

forcing the satisfaction of g . Formally, up(r ′,C , g ,X ′,Y ′) =
←−−−−−−−−−−−−−−−−→
(r ′ ∩ C ∩ g)[X ′←0][Y ′←0]. Boolean

b′ is set to ⊥ if either b = ⊥ or the induced guard [r ′∩C]|X over-approximates g . In the update,

the intersection with g aims at stopping runs that for sure will correspond to timed words out
1X −Y = 0 is a shortcut to denote the relation ∀ x ∈ X , ∀ y ∈ Y , x − y = 0.

9.4 A game approach 102

of L(A); the boolean b anyway takes care of keeping track of the possible over-approximation.

Region r ′, relation C and guard g can all be seen as zones (i.e. unions of regions) over clocks

X ∪Y . It is standard that elementary operations on zones, such as intersections, resets, future

and past, can be performed effectively. As a consequence, the update of a relation can also be

computed effectively.

Given the labeling of states in the game GA,(k ,M ′), the size of the game is doubly exponential

in the size of A. We will see in Subsection 9.4.3 that the number of edges in GA,(k ,M ′) can be

impressively decreased, since restricting to atomic resets (resets of at most one clock at a time)

does not diminish the power of Determinizator.

As an example, the construction of the game is illustrated on the nondeterministic timed

automaton A depicted in Figure 9.1, for which we construct the associated game GA,(1,1) rep-

resented in Figure 9.2. Rectangular states belong to Spoiler and circles correspond to states

of Determinizator. Note that, for the sake of simplicity, the labels of states of Determinizator

are omitted in the picture. Gray states form the set Bad. Let us detail the computation of

the successors of the top left state by the move ((0, 1), b) of Spoiler and moves (∅ or {y}) of

Determinizator. To begin with, note that b cannot be fired from `0 in A, therefore the first

configuration has no elementary successor. We then consider the configuration which contains

the location `1. The guard induced by x − y = 0 and y ∈ (0, 1) is simply 0 < x < 1 and the

guard of the corresponding transition between `1 and `3 in A is exactly 0 < x < 1, moreover

this transition resets x . As a consequence, the successors states contain a configuration marked

> with location `3 and, respectively, relations −1 < x − y < 0 and x − y = 0 for the two

different moves of Determinizator. Last, when considering the configuration with location `2,

we obtain elementary successors marked ⊥. Indeed, the guard induced by this move of Spoiler

and the relation −1 < x − y < 0 is −1 < x < 1 whereas the corresponding guard in A is x = 0.

To preserve all timed words accepted by A, we represent these configurations, but they imply

over-approximations. Thus the successor states contain a configuration marked ⊥ with location

`3 and the same respective relations as before, thanks to the intersection with the initial guard

x = 0 in A.

9.4.2 Properties of the strategies

Given A a timed automaton and resources (k ,M ′), the game GA,(k ,M ′) is a finite-state safety

game. It is well known that, for this kind of games, winning strategies can be chosen positional

and they can be computed in linear time in the size of the arena (149). In the following, we simply

write strategies for positional strategies. We will see in Subsection 9.4.3 that positional strategies

9.4 A game approach 103

`0, x − y = 0,> {0}
`0, x − y = 0,>

(0,1)`1, x − y = 0,>
`2,−1 < x − y < 0,>

`3,−1 < x − y < 0,> (0,1)
`3,−1 < x − y < 0,⊥

`3, x − y = 0,> {0}
`3, x − y = 0,⊥ `0, 0 < x − y < 1,>

{0}`1, 0 < x − y < 1,>
`2, x − y = 0,>

`0, 0 < x − y ,⊥
(0,1)`1, 0 < x − y ,⊥

`2,−1 < x − y < 0,⊥

`0, 0 < x − y < 1,⊥
{0}`1, 0 < x − y < 1,⊥

`2, x − y = 0,⊥

`3, x − y = 0,> {0}

`3, x − y = 0,⊥ {0}`3, 0 < x − y < −1,⊥ (0, 1)

{y}
(0, 1), a

(0, 1), b

(0, 1), a
{0}
, b

{0}
, a

{y}

∅

(0, 1), b

{y}

∅

(0, 1), a

{y}

∅

∅

(0, 1), a

(0, 1), b

{y}

(0, 1), a

{y}
∅

(0, 1), b

{0}, b
{0}, a

{y}∅

{y}

∅

{y}
∅

{y}

∅ {y}

∅

Figure 9.2: The game GA,(1,1) and an example of winning strategy σ for Determinizator.

(winning or not) are indeed sufficient in our framework. A strategy for player Determinizator

thus assigns to each state vD ∈ VD a set Y ′ ⊆ Y of clocks to be reset; the successor state is

then vS ∈ VS such that (vD ,Y
′, vS) ∈ δ.

With every strategy for Determinizator σ we associate the timed automaton Aut(σ) obtained

by merging a transition of Spoiler with the transition chosen by Determinizator just after, and

setting final locations as states of Spoiler containing at least one final location of A. If a strategy

σS for Spoiler is fixed too, we denote by Aut(σ, σS) the resulting sub-automaton2. The main

result of the chapter is stated in the following theorem and links strategies of Determinizator

with deterministic over-approximations of the initial timed language.

Theorem 1 Let A a timed automaton, and k ,M ′ ∈ N. For every strategy σ of Determinizator

in GA,(k ,M ′), Aut(σ) is a deterministic timed automaton over resources (k ,M ′) and satisfies

L(A) ⊆ L(Aut(σ)). Moreover, if σ is winning, then L(A) = L(Aut(σ)).

Back to our running example, on Figure 9.2, a winning strategy for Determinizator is rep-

resented by the bold arrows. This strategy yields the deterministic equivalent for A depicted in

Figure 9.3.
2In the case where σ and/or σS have arbitrary memory, we abuse notation and write Aut(σ) and Aut(σ, σS)

for the resulting potentially infinite objects.

9.4 A game approach 104

`0, x − y = 0,> {0}
`0, x − y = 0,>

(0,1)`1, x − y = 0,>
`2,−1 < x − y < 0,>

`3, x − y = 0,> {0}
`3, x − y = 0,⊥

0 < y < 1, a

0 < y < 1, a

0 < y < 1, b

{y}

Figure 9.3: The deterministic TA Aut(σ) obtained by our construction.

9.4.3 Choosing a good losing strategy

Standard techniques allow one to check whether there is a winning strategy for Determinizator,

and in the positive case, extract such a strategy (149). However, if Determinizator has no

winning strategy to avoid the set of bad states, it is of interest to be able to choose a good

losing strategy. To this aim, we introduce a natural partial order over the set of strategies of

Determinizator based on the distance to the set Bad: dBad(A) denotes the minimal number of

steps in some automaton A to reach Bad from the initial state.

Definition 2 Let σ1 and σ2 be strategies of Determinizator in GA,(k ,M ′). Strategy σ1 is said

finer than σ2, denoted σ1 � σ2, if for every strategy σS of Spoiler, dBad(Aut(σ1, σS)) ≥

dBad(Aut(σ2, σS)).

Given this definition, an optimal strategy for Determinizator is a minimal element for the

partial order�. Note that, if they exist, winning strategies are the optimal ones since against all

strategies of Spoiler, the corresponding distance to Bad is infinite. The set of optimal strategies

can be computed effectively by a fix-point computation using a rank function on the vertices of

the game.

With respect to this partial order on strategies, positional strategies are sufficient for Deter-

minizator.

Proposition 1 For every strategy σ of Determinizator with arbitrary memory, there exists a

positional strategy σ′ such that σ′ � σ.

Strategy σ′ is obtained from σ by letting for each state the first choice made in σ; this cannot

decrease the distance to Bad. Strategies of interest for Determinizator can be even more re-

stricted. Indeed, any timed automaton can be turned into an equivalent one with atomic resets

only. Thus, for every strategy for Determinizator there is finer one which resets at most one

clock on each transition, which can be turned into a finer positional strategy thanks to Propo-

sition 1. As a consequence, with respect to �, positional strategies that only allow for atomic

resets are sufficient for Determinizator.

9.5 Extension to ε-transitions and invariants 105

9.5 Extension to ε-transitions and invariants

In Section 9.4 the construction of the game and its properties were presented for a restricted

class of timed automata. Let us now briefly explain how to extend the previous construction to

deal with ε-transitions and invariants. The extension is presented in details in (150).

ε-transitions We aim at building an over-approximation without ε-transitions. An ε-closure

is performed for each state during the construction of the game. To this attempt, states of the

game have to be extended since ε-transitions might be enabled only from some time-successors

of the region associated with the state. Therefore, each configuration is associated with a proper

region which is a time-successor of the initial region of the state. The ε-closure is effectively

computed the same way as successors in the original construction when Determinizator does not

reset any clock; computations thus terminate for the same reasons.

Invariants Ignoring all invariants surely yields an over-approximation. In order to be more

precise (while preserving the over-approximation) with each state of the game is associated the

most restrictive invariant which contains invariants of all the configurations in the state. In the

computation of the successors, invariants are treated similarly to guards and their validity is

verified at the transition’s target. A state whose invariant is strictly over-approximated is not

safe.

9.6 Comparison with existing methods

The method we presented is both more precise than the algorithm of (2) and more general than

the procedure of (3). Let us detail these two points. Note that a deeper comparison with existing

work can be found in (150).

9.6.1 Comparison with (2)

First of all, our method covers the application area of (2) since each time the latter algorithm

produces a deterministic equivalent with resources (k ,M ′) for a timed automaton A, there is a

winning strategy for Determinizator in GA,(k ,M ′).

Moreover, contrary to the method presented in (2), our game-approach is exact on deter-

ministic timed automata: given a DTA A over resources (k ,M), Determinizator has a winning

strategy in GA,(k ,M). This is a consequence of the more general fact that, in our approach, a

winning strategy can be seen as a timed generalization of the notion of skeleton (2), and solving

our game amounts to finding a relevant timed skeleton.

As an example, the algorithm of (2) run on the timed automaton of Figure 9.1 produces a

9.6 Comparison with existing methods 106

strict over-approximation, represented on Figure 9.4.

`0, x = y

`0, 0 < x − y < 1
`1, 0 < x − y < 1
`2, x = y

`0, 0 ≤ x − y
`1, 0 ≤ x − y
`2, x = y

`3, 0 ≤ x − y
0 < y < 1, a, {y}

0 ≤ y < 1, a, {y}

0 ≤ y < 1, a, {y}
0 ≤ y < 1, b, {y

}

0 ≤ y < 1, b, {y}

Figure 9.4: The result of algorithm (2) on the running example.

Our approach also improves the updates of the relations between clocks by taking the original

guard into account. Precisely, when computing upS , an intersection with the guard in the original

TA is performed. This improvement allows one, even under the same resetting policy, to refine

the over-approximation given by (2).

9.6.2 Comparison with (3)

Our approach generalizes the one in (3) since, for any timed automaton A such that the pro-

cedure in (3) yields an equivalent deterministic timed automaton with k clocks and maximal

constant M ′, there is a winning strategy for Determinizator in GA,(k ,M ′). This can be explained

by the fact that relations between clocks of A and clocks in the game allow one to record more

information than the mapping used in (3). Moreover, our approach strictly broadens the class of

automata determinized by the procedure of (3) in two respects. First of all, our method allows

one to cope with some language inclusions, contrary to (3). For example, the TA depicted on the

left-hand side of Figure 9.5 cannot be treated by the procedure of (3) but is easily determinized

using our approach. In this example, the language of timed words accepted in location `3 is not

determinizable. This will cause the failure of (3). However, all timed words accepted in `3 also

are accepted in `4 and the language of timed words accepted in `4 is clearly determinizable. Our

approach allows one to deal with such language inclusions, and will thus provide an equivalent

deterministic timed automaton. Second, the relations between clocks of the TA and clocks of

the game are more precise than the mapping used in (3), since the mapping can be seen as

restricted relations: a conjunction of constraints of the form x − y = 0. The precision we add

by considering relations rather than mappings is sometimes crucial for the determinization. For

example, the TA represented on the right-hand side of Figure 9.5 can be determinized by our

game-approach, but not by (3).

Apart from strictly broadening the class of timed automata that can be automatically de-

terminized, our approach performs better on some timed automata by providing a deterministic

timed automaton with less resources. This is the case on the running example of Figure 9.1.

9.6 Comparison with existing methods 107

`0

`4

`1 `2

`3

b

a

a, {x} x = 1, a

a a

b
`0 `1

x = 1

x ≥ 2x = 1, {x}

Figure 9.5: Examples of determinizable TAs not treatable by (3).

The deterministic automaton obtained by (3) is depicted in Figure 9.6: it needs 2 clocks when

our method produces a single-clock TA.

`0, y0 {0}
`0, y0

(0, 1)× {0}`1, y0
`2, y1

`3, y0 {0}
`3, y1

`3, y0 {0} × (0, 1)

0 < y0 < 1, a, {y1}

0 < y0 < 1, a, {y1}

y1 = 0, b, {y0
}

0 < y1 < y0 < 1, b, {y0}

Figure 9.6: The result of procedure (3) on the running example.

The same phenomenon happens with timed automata with integer resets. Timed automata

with integer resets, introduced in (147), form a determinizable subclass of timed automata,

where every edge (`, g , a,X ′, `′) satisfies X ′ 6= ∅ if and only if g contains an atomic constraint

of the form x = c for some clock x .

Proposition 2 For every timed automaton A with integer resets and maximal constant M ,

Determinizator has a winning strategy in GA,(1,M).

Intuitively, a single clock is needed to represent clocks of A since they all share a common

fractional part.

As a consequence of Proposition 2, any timed automaton with integer resets can be deter-

minized into a doubly exponential single-clock timed automaton with the same maximal con-

stant. This improves the result given in (3) where any timed automaton with integer resets and

maximal constant M can be turned into a doubly exponential deterministic timed automaton,

using M + 1 clocks. Moreover, our procedure is optimal on this class thanks to the lower-bound

provided in (151).

Last, our method even when restricted to equality relations (conjunctions of constraints of

the form x − y = c) extends the procedure of (3). Note that the latter construction is similar to

our approach restricted to mappings instead of relations. We detail in (150) the benefits of (even

equality) relations and explain how the sufficient conditions for termination provided in (3) can

be weakened in our context.

9.7 Summary 108

9.6.3 Comparison of the extension with ε-transition and invariants

Let us now compare our extended approach with the approach of (2) since the determinization

procedure of (3) does not deal with invariants and ε-transitions.

The model in (2) consists of timed automata with silent transitions and actions are classified

depending on their urgency: eager, lazy or delayable. First of all, the authors propose an ε-

closure computation which does not terminate in general, and bring up the fact that termination

can be ensured by some abstraction. Second, the urgency in the model is not preserved by their

over-approximation construction which only produces lazy transitions. Note that we classically

decided to use invariants to model urgency, but our approach could be adapted to the same

model as the one they use, while preserving urgency much more often, the same way as we do

for invariants.

9.7 Summary

In this chapter, we proposed a game-based approach for the determinization of timed automata.

Given a timed automaton A (with ε-transitions and invariants) and resources (k ,M), we build

a finite turn-based safety game between two players Spoiler and Determinizator, such that any

strategy for Determinizator yields a deterministic over-approximation of the language of A and

any winning strategy provides a deterministic equivalent for A. Our construction strictly covers

and improves two existing approaches (2; 3).

CHAPTER 10

Off-line Test Selection for Non-Deterministic Timed Automata

10.1 Introduction

This chapter proposes novel off-line test generation techniques for non-deterministic timed au-

tomata with inputs and outputs (TAIOs) in the formal framework of the tioco conformance

theory. In this context, a first problem is the determinization of TAIOs, which is necessary to

foresee next enabled actions, but is in general impossible. This problem is solved here thanks to

an approximate determinization using a game approach, which preserves tioco and guarantees

the soundness of generated test cases. A second problem is test selection for which a precise

description of timed behaviors to be tested is carried out by expressive test purposes modeled

by a generalization of TAIOs. Finally, using a symbolic co-reachability analysis guided by the

test purpose, test cases are generated in the form of TAIOs equipped with verdicts.

This chapter is structured as follows. In the next section we give some motivation about he

proposed approach. In section 10.3m we introduce the model of OTAIOs. Section 10.4 recalls

the tioco conformance theory including expected properties relating conformance and verdicts,

and an io-refinement relation preserving tioco. Section 10.5 presents our game approach for the

approximate determinization compatible with the io-refinement. In Section 10.6 we detail the

test selection mechanism using test purposes. Section 10.7 concludes the chapter.

10.2 Motivation 110

10.2 Motivation

Conformance testing is the process of testing whether an implementation behaves correctly with

respect to a specification. Implementations are considered as black boxes, i.e. the source code

is unknown, only their interface with the environment is known and used to interact with the

tester. In formal model-based conformance testing models are used to describe testing arti-

facts (specifications, implementations, test cases, ...), conformance is formally defined and test

cases with verdicts are generated automatically. Then, the quality of testing may be character-

ized by properties of test cases which relate the verdicts of their executions with conformance

(e.g. soundness). For timed models, model-based conformance testing has already been explored

in the last decade, with different models and conformance relations (see e.g. (152) for a survey),

and test generation algorithms (e.g. (153; 2; 154)). In this context, a very popular model is

timed automata with inputs and outputs (TAIOs), a variant of timed automata (TAs) (11), in

which observable actions are partitioned into inputs and outputs. We consider here partially

observable and non-deterministic TAIOs with invariants for the modeling of urgency.

One of the main difficulties encountered in test generation for TAIOs is determinization,

which is impossible in general, as for TAs (11), but is required in order to foresee the next enabled

actions during execution and to emit a correct verdict. Two different approaches have been taken

for test generation from timed models, which induce different treatments of non-determinism.

In off-line test generation test cases are first generated as TAs (or timed sequences, trees, or

timed transition systems) and subsequently executed on the implementation. Test cases can

then be stored and further used e.g. for regression testing and documentation. However, due

to the non-determinizability of TAIOs, the approach has often been limited to deterministic or

determinizable TAIOs (see e.g. (155; 154)), except in (2) where the problem is solved by the use

of an over-approximate determinization with fixed resources, or (156) where winning strategies

of timed games are used as test cases. In on-line test generation, test cases are generated

during their execution, thus can be applied to any TAIO as only possible observable actions are

computed along the current finite execution, thus avoiding a complete determinization. This

is of particular interest to rapidly discover errors, but may sometimes be impracticable due to

a lack of reactivity (the time needed to compute successor states on-line may sometimes be

incompatible with delays).

In this work, we propose to generate test cases off-line for non-deterministic TAIOs, in

the formal context of the tioco conformance theory. The determinization problem is tackled

thanks to an approximate determinization with fixed resources in the spirit of (2), using a

game approach (157). Determinization is exact for known classes of determinizable TAIOs (e.g.

10.3 A model of open timed automata with inputs/outputs 111

event-clock TAs, TAs with integer resets, strongly non-Zeno TAs) if resources are sufficient.

In the general case, approximate determinization guarantees soundness of generated test cases

by producing a deterministic io-abstraction of the TAIO for a particular io-refinement relation,

generalizing the io-refinement of (158). Our method is more precise than (2) (see (157) for

details) and preserves the richness of our model by dealing with partial observability and urgency.

Behaviors of specifications to be tested are identified by means of test purposes defined as open

timed automata with inputs and outputs (OTAIOs), a model generalizing TAIOs, allowing to

precisely describe behaviors according to actions and clocks of the specification as well as proper

clocks. Then, in the same spirit as for the TGV tool in the untimed case (159), test selection

is performed by a co-reachability analysis, producing a test case in the form of a TAIO. To our

knowledge, this work constitutes the most general and advanced off-line test selection approach

for TAIOs.

10.3 A model of open timed automata with inputs/outputs

We start by introducing notations and definitions concerning TAIOs and OTAIOs.

Given X a finite set of clocks, and R≥0 the set of non-negative real numbers, a clock valuation

is a mapping v : X → R≥0. If v is a valuation over X and t ∈ R, then v + t denotes the valuation

which assigns to every clock x ∈ X the value v(x) + t . For X ′ ⊆ X we write v[X ′←0] for the

valuation equal to v on X \X ′ and assigning 0 to all clocks of X ′.

Given M a non-negative integer, an M -bounded guard (or simply guard) over X is a finite

conjunction of constraints of the form x ∼ c where x ∈ X , c ∈ [0,M]∩N and∼∈ {<,≤,=,≥, >}.

Given g a guard and v a valuation, we write v |= g if v satisfies g . We abuse notations and

write g for the set of valuations satisfying g . Invariants are restricted cases of guards: given

M ∈ N, an M -bounded invariant over X is a finite conjunction of constraints of the form x � c

where x ∈ X , c ∈ [0,M] ∩ N and �∈ {<,≤}. We denote by GM (X) (resp. IM (X)) the set of

M -bounded guards (resp. invariants) over X .

Definition 3 (OTAIO) An open timed automaton with inputs and outputs (OTAIO) is a

tuple A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ ,X

A
p ,X

A
o ,M

A, InvA,EA) such that:

• LA is a finite set of locations, with `A0 ∈ LA the initial location,

• ΣA? , ΣA! and ΣAτ are disjoint finite alphabets of input actions (noted a?, b?, . . .), output

actions (noted a!, b!, . . .), and internal actions (noted τ1, τ2, . . .). We note ΣAobs = ΣA? tΣA!

(where t denotes the disjoint union) for the alphabet of observable actions, and ΣA =

ΣA? t ΣA! t ΣAτ for the whole set of actions.

10.4 Conformance testing theory 112

• XAp and XAo are disjoint finite sets of proper clocks and observed clocks, respectively. We

note XA = XAp tXAo for the whole set of clocks.

• M A ∈ N is the maximal constant of A, and we will refer to (| XA |,M A) as the resources

of A,

• InvA : LA → IMA(XA) is a mapping labeling each location with an invariant,

• EA ⊆ LA × GMA(XA)× ΣA × 2XAp × LA is a finite set of edges where guards are defined

on XA, but resets are restricted to proper clocks in XAp .

`0

`1 `2 `3 `4

`5 `6 `7 `8

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Figure 10.1: Specification A

The reason for introducing the OTAIO model is to have a unique model (syntax and se-

mantics) that will be next specialized for particular testing artifacts. In particular, an OTAIO

with an empty set of observed clocks XAo is a classical TAIO, and will be the model for speci-

fications, implementations and test cases. For example, Fig. 10.1 represents such a TAIO for a

specification A with clock x , input a, output b and internal action τ . The partition of actions

reflects their roles in the testing context: the environment cannot observe internal actions, but

controls inputs and observes outputs (and delays). The set of clocks is also partitioned into

proper clocks, i.e. usual clocks controlled by A, and observed clocks referring to proper clocks of

another OTAIO. These cannot be reset to avoid intrusiveness, but synchronization with them in

guards and invariants is allowed. In particular, test purposes have observed clocks which observe

proper clocks of specifications in order to describe time constrained behaviors to be tested.

10.4 Conformance testing theory

In this section, we recall the conformance relation tioco (2), that formally defines the set of

correct implementations of a given TAIO specification. We then define test cases, formalize

their executions, verdicts and expected properties. Finally, we introduce a refinement relation

between TAIOs that preserves tioco.

10.4 Conformance testing theory 113

10.4.1 The tioco conformance theory

We consider that the specification is given as a (possibly non-deterministic) TAIO A =

(LA, `A0 ,Σ?,Σ!,Στ ,X
A
p ,∅,M A, InvA,EA). The implementation is a black box, unknown except

for its alphabet of observable actions, which is the same as the one of A. As usual, in order

to formally reason about conformance, we assume that the implementation can be modeled by

an (unknown) TAIO I = (L⇒, `⇒0 ,Σ?,Σ!,Σ
⇒
τ ,X

⇒
p ,∅,M⇒, Inv⇒,E⇒) with same observable al-

phabet as A, and require that it is input-complete and non-blocking. The set of such possible

implementations of A is denoted by I(A). Among these, the conformance relation tioco (2) for-

mally defines which ones conform to A, naturaly extending the ioco relation of Tretmans (160)

to timed systems:

Definition 4 (Conformance relation) Let A be a TAIO and I ∈ I(A), I tioco A if ∀σ ∈

traces(A), out(Iafterσ) ⊆ out(Aafterσ).

Intuitively, I conforms to A (I tiocoA) if after any timed trace enabled in A, every output or

delay of I is specified in A. In practice, conformance is checked by test cases run on imple-

mentations. In our setting, we define test cases as deterministic TAIOs equipped with verdicts

defined by a partition of states.

Definition 5 (Test case, test suite) Given a specification TAIO A, a test case for A is a

pair (T C,Verdicts) consisting of a deterministic TAIO (DTAIO)

T C = (LT C , `T C
0 ,ΣT C

? ,ΣT C
! ,ΣT C

τ ,X T C
p ,∅,M T C , InvT C ,E T C) together with a partition Verdicts

of the set of states ST C = Nonet InconctPasstFail. States outside None are called verdict

states. We require that ΣT C
? = ΣA! and ΣT C

! = ΣA? , InvT C (`) = true for all ` ∈ LT C , and T C

is input-complete in all None states, meaning that it is ready to receive any input from the

implementation before reaching a verdict. A test suite is a set of test cases.

The verdict of an execution σ ∈ traces(T C), noted Verdict(σ, T C), is Pass, Fail, Inconc

or None if T Cafterσ is included in the corresponding states set. We note I fails TC if some

execution σ of T C‖I leads T C to a Fail state, i.e. when tracesFail(T C)∩traces(I) 6= ∅ 1. Notice

that this is only a possibility to reach the Fail verdict among the infinite set of executions.

We now introduce soundness, a crucial property ensured by our test generation method and

strictness that will be ensured when determinization is exact.

Definition 6 (Test case properties) A test suite T S for A is sound if no conformant imple-

mentation is rejected by the test suite i.e.∀ I ∈ I(A), ∀ T C ∈ T S, I fails T C ⇒ ¬(I tioco A).
1The execution of a test case T C on an implementation I is usually modeled by the standard paral-

lel composition T C‖I. Due to space limitations, ‖ is not defined here, but we use its trace properties:
traces(I‖T C) = traces(I) ∩ traces(T C).

10.5 Approximate determinization preserving tioco 114

It is strict if non-conformance is detected as soon as it occurs i.e.∀ I ∈ I(A),∀ T C ∈

T S,¬(I‖T C tioco A)⇒ I fails T C.

10.4.2 Refinement preserving tioco

We introduce an io-refinement relation between TAIOs, a generalization to non-deterministic

TAIOs of the io-refinement between DTAIOs introduced in (158), itself a generalization of

alternating simulation (161). We prove that io-abstraction (the inverse relation) preserves tioco:

if I conforms to A, it also conforms to any io-abstraction B of A.

Definition 7 Let A and B be two TAIOs with same input and output alphabets, we say that A

io-refines B (or B io-abstracts A) and note A � B if

(i) ∀σ ∈ traces(B), out(Aafterσ) ⊆ out(Bafterσ) and

(ii) ∀σ ∈ traces(A), in(Bafterσ) ⊆ in(Aafterσ).

It can be proved that � is a preorder relation. Moreover, as (ii) is always satisfied if

A is input-complete, for I ∈ I(A), I tioco A is equivalent to I � A. By transitivity of

�, Proposition 3 states that io-refinement preserves conformance. Its Corollary 1 says that io-

abstraction preserves soundness of test suites and will later justify that if a TAIO B io-abstracting

A is obtained by approximate determinization, a sound test suite generated from B is still sound

for A.

Proposition 3 If A � B then ∀ I ∈ I(A) (= I(B)), I tioco A ⇒ I tioco B.

Corollary 1 If A � B then any sound test suite for B is also sound for A.

10.5 Approximate determinization preserving tioco

We recently proposed a game approach to determinize or provide a deterministic over-

approximation for TAs (157). Determinization is exact on all known classes of determinizable

TAIOs (e.g. event-clock TAs, TAs with integer resets, strongly non-Zeno TAs) if resources are

sufficient. Provided a couple of extensions, this method can be adapted to the context of test-

ing for building a deterministic io-abstraction of a given TAIO. Thanks to Proposition 3, the

construction preserves tioco, and Corollary 1 guarantees the soundness of generated test cases.

The approximate determinization uses the classical region construction (11). As for classical

TAs, the regions form a partition of valuations over a given set of clocks which allows to make

abstractions and decide properties like the reachability of a location. We note Reg(X ,M) the set

of regions over clocks X with maximal constant M . A region r ′ is a time-successor of a region

10.5 Approximate determinization preserving tioco 115

r if ∃ v ∈ r , ∃ t ∈ R≥0, v + t ∈ r ′. Given X and Y two finite sets of clocks, a relation between

clocks of X and Y is a finite conjunction C of atomic constraints of the form x − y ∼ c where

x ∈ X , y ∈ Y , ∼∈ {<,=, >} and c ∈ N. When c ∈ [−M ′,M], for M ,M ′ ∈ N, RelM ,M ′(X ,Y)

we denote the set of relations between X and Y .

10.5.1 A game approach to determinize timed automata

The technique presented in (157) applies first to TAs, i.e. the alphabet only consists of one

kind of actions (output actions), and the invariants are all trivial. Given such a TA A over

the set of clocks XA, the goal is to build a deterministic TA B with traces(A) = traces(B)

as often as possible, or traces(A) ⊆ traces(B). In order to do so, resources of B (number

of clocks k and maximal constant M B) are fixed, and a finite 2-player turn-based safety game

GA,(k ,MB) is built. The two players, Spoiler and Determinizator, alternate moves, the objective of

player Determinizator being to remain in a set of safe states where intuitively, for sure no over-

approximation has been performed. Every strategy for Determinizator yields a deterministic

automaton B with traces(A) ⊆ traces(B), and every winning strategy induces a deterministic

TA B equivalent to A. It is well known that for this kind of games, winning strategies can be

chosen positional and computed in linear time in the size of the arena.

Let us now give more details on the definition of the game. Let X B be a set of clocks of

cardinality k . The initial state of the game is a state of Spoiler consisting of the initial location

of A, the simplest relation between XA and X B: ∀ x ∈ XA, ∀ y ∈ X B, x − y = 0, a marking >

indicating that no over-approximation was done so far, together with the null region over X B. In

each of his states, Spoiler challenges Determinizator by proposing a region r ∈ Reg(XB,MB), and

an action a ∈ Σ. Determinizator answers by deciding the subset of clocks Y ′ ⊆ X B he wishes

to reset. The next state of Spoiler contains a region over X B (r ′ = r[Y ′←0]), and a finite set of

configurations: triples formed of a location of A, a relation between clocks in XA and clocks in

X B, and a boolean marking (> or ⊥). A state of Spoiler thus constitutes a states estimate of

A, and the role of the markings is to indicate whether over-approximations possibly happened.

Bad states Determinizator wants to avoid are states where all configurations are marked ⊥,

i.e. configurations where an approximation possibly happened.

A strategy for Determinizator thus assigns to each state of Determinizator a set Y ′ ⊆ X B

of clocks to be reset. With every strategy for Determinizator Π we associate the TA B =

Aut(Π) obtained by merging a transition of Spoiler with the transition chosen by Determinizator

just after. The following theorem links strategies of Determinizator with deterministic over-

approximations of the original traces language and enlightens the interest of the game:

10.5 Approximate determinization preserving tioco 116

Theorem 2 ((157)) Let A be a TA, k ,M B ∈ N. For any strategy Π of Determinizator in

GA,(k ,MB), B = Aut(Π) is a deterministic TA over resources (k ,M B) with traces(A) ⊆ traces(B).

Moreover, if Π is winning, traces(A) = traces(B).

10.5.2 Extensions to TAIOs and adaptation to tioco

In the context of model-based testing, the above-mentioned determinization technique must be

adapted to TAIOs, as detailed in (157), and summarized below. First the model of TAIOs is

more expressive than TAs, incorporating internal actions and invariants. Second, inputs and

outputs must be treated differently in order to build from a TAIO A a DTAIO B such that

A � B and then preserve tioco.

Internal actions: Specifications naturally include internal actions that cannot be observed

during test executions, and should thus be removed during determinization. In order to do so, a

closure by internal actions is performed for each state during the construction of the game. To

this attempt, states of the game have to be extended since internal actions might be enabled only

from some time-successor of the region associated with the state. Therefore, each configuration

is associated with a proper region which is a time-successor of the initial region of the state. The

closure by silent transitions is effectively computed the same way as successors in the original

construction when Determinizator does not reset any clock, computations thus terminate for

the same reasons. It is well known that TAs with silent transitions are strictly more expressive

than standard TAs (162). Therefore, our approximation can be coarse, but it performs as well

as possible with its available clock information.

Invariants: Modeling urgency is quite important and using invariants to this aim is classical.

Without the ability to express urgency, for instance, any inactive system would conform to all

specifications. Ignoring all invariants in the approximation surely yields an io-abstraction: delays

(considered as outputs) are over-approximated. In order to be more precise while preserving �,

with each state of the game is associated the most restrictive invariant containing invariants of

all the configurations in the state. In the computation of the successors, invariants are treated as

guards and their validity is verified at both extremities of the transition. A state whose invariant

is strictly over-approximated is unsafe.

io-abstraction vs. over-approximation: Rather than over-approximating a given TAIO

A, we aim here at building a DTAIO B io-abstracting A (A � B). Successors by output are over-

approximated as in the original game, while successors by inputs must be under-approximated.

The over-approximated closure by silent transitions is not suitable to under-approximation.

Therefore, states of the game are extended to contain both over- and under-approximated clo-

10.6 Off-line test case generation 117

sures. Thus, the unsafe successors by an input are not built.

All in all, these modifications allow to deal with the full TAIO model with invariants, silent

transitions and inputs/outputs, consistently with the io-abstraction. Fig.10.4 represents a part

of this game for the TAIO of Fig.10.3. The new game then enjoys the following nice property:

Proposition 4 ((157)2) Let A be a TAIO, k ,M B ∈ N. For any strategy Π of Determinizator

in GA,(k ,MB), B = Aut(Π) is a DTAIO over resources (k ,M B) with A � B. Moreover, if Π is

winning, traces(A) = traces(B).

In other words, the approximations produced by our method are deterministic io-abstractions

of the initial specification, hence our approach preserves tioco (Proposition 3) and soundness of

test cases (Corollary 1). In comparison, the algorithm proposed in (2) is an over-approximation,

thus preserves tioco only if the specification is input-complete. Moreover it does not preserve

urgency.

10.6 Off-line test case generation

In this section we first define test purposes and then give the principles for off-line test selection

with test purposes and properties of generated test cases.

10.6.1 Test purposes

Test purposes are practical means to select behaviors to be tested, either focusing on usual

behaviors, or on suspected errors in implementations. In this work we choose the following

definition, and discuss alternatives in the conclusion.

Definition 8 (Test purpose) For a specification TAIO A, a test purpose is a pair

(T P,Accept) where T P = (LT P , `T P
0 ,Σ?,Σ!,Στ ,X

T P
p ,X T P

o ,M T P , InvT P ,E T P) is a complete

OTAIO (in particular ∀ ` ∈ LT P , InvT P(`) = true) with X T P
o = XAp (TP observes proper clocks

of A), and Accept ⊆ LT P is a subset of trap locations.

`′0 `′1 `′2 `′3 Acc

`′4

x = 1, τ x < 1, a? b! b!

othw othw othw othw

ΣT P

ΣT P

Figure 10.2: Test purpose T P.

Fig. 10.2 represents a test purpose for the specification A of Fig. 10.1. It has no proper

clock and observes the unique clock x of A. It accepts sequences where τ occurs at x = 1,

followed by an input a? at x < 1 (thus focusing on the lower branch of A where x is reset), and

10.6 Off-line test case generation 118

two subsequent b!’s. The label othw (for otherwise) is an abbreviation for the complement of

specified transitions.

10.6.2 Principle of test generation

Given a specification TAIO A and a test purpose (T P,AcceptT P), the aim is to build a sound

and, if possible strict test case (T C,Verdicts). It should also deliver Pass verdicts on traces of

sequences of A accepted by T P, as formalized by the following property:

Definition 9 A test suite T S for A and T P is precise if ∀ T C ∈ T S, ∀σ ∈

(ΣAobs)∗, Verdict(σ, T C) = Pass⇔ σ ∈ traces(seqT P

Accept(T P) ∩ seq(A)).

The different steps of test generation are described in the following paragraphs.

Product: we first build the TAIO P = A × T P associated with the set of marked loca-

tions AcceptP = LA × AcceptT P . Fig. 10.3 represents this product P for the specification A in

Fig. 10.1 and the test purpose T P in Fig. 10.2. The effect of the product is to unfold A and

to mark those sequences of A accepted by T P in locations AcceptT P . T P is complete, thus

seq(P) = seq(A↑XT P
p ,XT P

o) (sequences of the product are sequences of A lifted to X T P), and

then traces(P) = traces(A), which implies that P and A define the same sets of conformant im-

plementations. We also have seqAcceptP (P) = seq(A↑XT P
p ; XT P

o)∩ seqAcceptT P (T P) which induces

tracesAcceptP (P) = traces(seq(A) ∩ seqAcceptT P (T P)).

Let ATraces(A, T P) = tracesAcceptP (P) and RTraces(A, T P) = traces(A) \

pref(ATraces(A, T P)) where, for a set of traces T , pref(T) denotes the set of prefixes

of traces in T . The principle is to select traces in ATraces(A, T P) and try to avoid or at

least detect those in RTraces(A, T P) as these traces cannot be prefixes of traces of sequences

satisfying the test purpose.

`0`
′
0

`1`
′
1 `2`

′
4 `3`

′
4 `4`

′
4

`5`
′
1 `6`

′
2 `7`

′
3 `8Acc

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Figure 10.3: Product P = A× T P.

Approximate determinization of P into DP: If P is already deterministic, we simply

take DP = P. Otherwise, with the approximate determinization of Section 10.5, we can build

a deterministic io-abstraction DP of P with resources (k ,M DP) fixed by the user, thus P �

DP. DP is equipped with the set of marked locations AcceptDP consisting of locations in LDP

containing some configuration whose location is in AcceptP . If the determinization is exact,

10.6 Off-line test case generation 119

we get traces(DP) = traces(P) and tracesAcceptDP (DP) = ATraces(A, T P). Fig. 10.4 partially

represents the game GP,(1,2) for the TAIO P of Fig. 10.3 where, for readability reasons, some

behaviors not co-reachable from AcceptDP are omitted. DP is simply obtained from GP,(1,2) by

merging transitions of Spoiler and Determinizator.

(`0`
′0, x − y = 0,>) {0}

(`1`
′
1, x − y = 0,>) {1}

(`5`
′
1, x − y = −1,>)

(`6`
′
2, x − y = 0,>) {0}

(`6`
′
2, x − y = 0,>) {0}

(`2`
′
4, x − y = 0,>)

(`2`
′
4, x − y = −1,>) {1}

(`2`
′
4, x − y = −2,>) {2}

(`2`
′
4, x − y < −2,⊥) (2,∞)

(`7`
′
3, x − y = 0,>) {0}

(`3`
′
4, x − y = 0,>)

(`8Acc, x − y = 0,>) {0}
(`4`

′
4, x − y = 0,>)

(`7`
′
3, x − y = 0,>) {0}

(`8Acc, x − y = 0,>) {0}

>,>

>,⊥

>,>

>,>

y ≤ 1,>

y = 0,>

y = 0,>

y = 1, a?
{y}

∅1 < y < 2, a?

{y} ∅

y
=

1, b!

y
=

2, b!

y
>

2, b!

y = 0, b!

y = 0, b!

{y}

∅

{y}

∅
0
<
y
<

1,
b!

y
=

1,
b!

y = 0, b!

y = 0, b!

{y}

{y}

∅

∅

Figure 10.4: Game GP,(1,2).

Generating T C from DP: The next step consists in building (T C,Verdicts) from DP,

using an analysis of the co-reachability to locations AcceptDP in DP.

The test case built from DP = (LDP , `DP
0 ,ΣDP

? ,ΣDP
! ,X DP

p ,∅,M DP , InvDP ,EDP) and AcceptDP

is the TAIO T C = (LT C , `T C
0 ,ΣT C

? ,ΣT C
! ,X T C

p ,∅,M T C , InvT C ,E T C) such that LT C = LDPt{`Fail}

where `Fail is a new location; `T C
0 = `DP

0 ; ΣT C
? = ΣDP

! = ΣA! and ΣT C
! = ΣDP

? = ΣA? ,

i.e. input/output alphabets are mirrored in order to reflect the opposite role of actions in the syn-

chronization of T C and I; X T C
p = X DP

p and X T C
o = ∅; M T C = M DP ; Verdicts is the partition

of S T C with Pass =
⋃
`∈AcceptDP{`} × InvDP(`), None = coreach(DP,Pass) \Pass, Inconc =

SDP\coreach(DP,Pass), and Fail = {`Fail}×RXT C

+ t{(`,¬InvDP(`)) | ` ∈ LDP}; InvT C (`) = true

for any ` ∈ LT C ; E T C = EDP
Inv t E`Fail

where EDP
Inv = {(`, g ∧ InvDP(`), a,X , `′) | (`, g , a,X , `′) ∈

EDP} and E`Fail
= {(`, ḡ , a,X T C

p , `Fail) | ` ∈ LDP , a ∈ ΣDP
! , ḡ = ¬

∨
(`,g,a,X ,`′)∈EDP g}.

The important points to understand in the construction of T C are the completion to Fail and

the computation of Inconc. For the completion, the idea is to detect unspecified outputs and

delays of DP. Outputs of DP being inputs of T C, in any location `, for each input a ∈ ΣT C
? =

ΣDP
! , a transition leading to `Fail is added, labeled with a, and whose guard is the negation of the

disjunction of all guards of transitions labeled by a and leaving ` (thus true if no a-action leaves

`). Authorized delays in DP being defined by invariants, all states in (`,¬InvDP(`)), ` ∈ LDP ,

i.e. states where the invariant runs out, are put into Fail. Moreover, in each location `, the

10.6 Off-line test case generation 120

invariant InvDP(`) in DP is removed and shifted to guards of all transitions leaving ` in T C.

The computation of Inconc is based on an analysis of the co-reachability to Pass. Inconc

contains all states not co-reachable from locations in Pass. Notice that coreach(DP,Pass),

and thus Inconc, can be computed symbolically in the region graph of DP. Fig.10.5 represents

the test case obtained from A and T P.

`”0

`”1 `”2 Accept1

`Fail

`”3 `”4 Accept2

Fail = {`Fail} × R+ t {`”1, `”2}×]0,∞[t{`”4}×]1,∞[

Inconc = {`”0} × [2,∞[∪{`”3}×]0,∞[∪{`”4}×]0, 1]
Pass = {Accept1,Accept2} × R+

y = 1, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

y ≥ 0, b?

1 < y < 2, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

Figure 10.5: Test case T C

Test selection: So far, the construction of T C determines Verdicts, but does not perform

any selection of behaviors. A last step consists in trying to control the behavior of T C in or-

der to avoid Inconc states (thus stay in pref(ATraces(A, T P))), or produce an Inconc verdict

when this is impossible. To this aim, guards of transitions are refined in two complementary

ways. First, transitions leaving a verdict state are useless, thus for each transition, the guard

is intersected with the set of valuations associated with None in the source location. Second,

transitions arriving in Inconc states and carrying inputs are also useless, thus for any tran-

sition labeled by an input, the guard is intersected with the set of valuations associated with

coreach(DP,Pass) in the target location. For example in T C (Fig. 10.5), the bottom-left state

of the game in Fig. 10.4 has been removed.

After these steps, generated test cases exhibit the following properties:

Theorem 3 Any test case T C built by the procedure is sound for A. If DP is an exact approx-

imation of P, T C is also strict and precise for A and T P.

Soundness comes from the construction of EFail in T C and preservation of soundness by the

approximate determinization DP of P given by Corollary 1. When DP is an exact determiniza-

tion of P, traces(DP) = traces(P) = traces(A). Strictness then comes from the fact that DP

and A have the same non-conformant traces and from the definition of EFail in T C. Precision

comes from tracesAcceptDP (DP) = ATraces(A, T P) and from the definition of Pass. When DP

is not exact however, there is a risk that some behaviors allowed in DP are not in P, thus some

non-conformant behaviors are not detected, even if they are executed by T C. Similarly, some

Pass verdicts may be produced for non-accepted or non-conformant behaviors.

10.7 Summary 121

Test execution After test selection, it remains to execute test cases on a real implemen-

tation. As the test case is a TAIO, a number of decisions still need to be made at each node

of the test case: (1) whether to wait for a certain delay, to receive an input or emit an output

(2) which output to send, in case there is a choice. Some of these choices can be made either

randomly, or according to user-defined strategies, for example by applying a technique similar

to the control approach of (156) whose goal is to avoid RTraces(A, T P).

10.7 Summary

In this chapter, we presented a complete formalization and operations for the automatic off-

line generation of test cases from non-deterministic timed automata with inputs and outputs

(TAIOs). The model of TAIOs is general enough to take into account non-determinism, partial

observation and urgency. One main contribution is the ability to tackle any TAIO, thanks to

an original approximate determinization procedure. Another main contribution is the selection

of test cases with expressive OTAIOs test purposes, able to precisely select behaviors based on

clocks and actions of the specification as well as proper clocks. Test cases are generated as

TAIOs using a symbolic co-reachability analysis of the observable behaviors of the specification

guided by the test purpose.

Part IV

Ongoing Works

CHAPTER 11

Towards a Model-Based Testing Framework for the Security

of Internet of Things for Smart City Applications

11.1 Introduction

This chapter reports on a work in progress in which we are interested in testing security aspects

of Internet of Things for Smart Cities. For this purpose we follow a Model-Based approach

which consists in: modeling the system under investigation with an appropriate formalism;

deriving test suites from the obtained model; applying some coverage criteria to select suitable

tests; executing the obtained tests; and finally collecting verdicts and analyzing them in order

to detect errors and repair them.

The rest of this chapter is organized as follows. Section 11.2 gives the main motivation of the

work presented in this chapter. Section 11.3 introduces some preliminaries about IoT and smart

cities. Section 11.4 discusses main threats and challenges related to these two fields. Section 11.5

presents our approach. Section 11.6 reports on related research efforts dealing with IoT security

testing. Finally Section 11.7 concludes the chapter.

11.2 Motivation

Internet of Things (IoT) is a promising technology that permits to connect everyday things” or

objects to the Internet by giving them the capabilities to sense the environment and interact

with other objects and/or human beings through the Internet. This evolving technology has

promoted a new generation of innovative and valuable services. Today’s cities are getting smarter

11.3 Preliminaries 124

by deploying intelligent systems for traffic control, water management, energy management,

public transport, street lighting, etc. thanks to these services. Nevertheless, these services can

easily be compromised and attacked by malicious parties in the absence of proper mechanism for

providing adequate security. Recent studies have shown that the attackers are using smart home

appliances to launch serious attacks such as infiltrating to the network or sending malicious email

or launching malicious actions such as Distributed Denial of Service (DDoS) attack. Therefore,

security solutions need to be proposed, set up and tested to mitigate these identified attacks.

In this work, we aim to adopt a Model-Based Security Testing (MBST) approach to check

the security of IoT applications in the context of smart cities. The MBST approach consists in

specifying the desired IoT application in an abstract manner using an adequate formal specifica-

tion language and then deriving test-suites from this specification to find security vulnerabilities

in the application under test in a systematic manner. The work introduced here is a piece of a

broader approach dealing with the security of IoT applications for smart cities and consisting of

the following steps:

• Identify and assess the threats and the attacks in smart cities IoT applications.

• Design and develop security mechanisms for standard protocols at the application and the

network layer.

• Evaluate the performance and the correctness of the proposed security protocols using

simulation and implementation on real devices.

11.3 Preliminaries

11.3.1 Internet of Objects

Recent advances in communication and sensing devices make our everyday objects smarter. This

smartness is resulted from the capability of objects to sense the environment, to process the

captured (sensed) data and to communicate it to users either directly or through Internet. The

integration of these smart objects to the Internet infrastructure is promoting a new generation

of innovative and valuable services for people. These services include home automation, traffic

control, public transportation, smart water metering, waste and energy management, etc. When

integrated in a city context, they make citizens’ live better and so form the modern smart city.

11.4 Threats and challenges 125

11.3.2 Smart Cities

In October 2015, ITU-T’s Focus Group on Smart Sustainable Cities (FG-SSC) agreed on the

following definition of a smart sustainable city: ”A Smart Sustainable City (SSC) is an innovative

city that uses information and communication technologies (ICTs) and other means to improve

quality of life, efficiency of urban operation and services, and competitiveness, while ensuring

that it meets the needs of present and future generations with respect to economic, social and

environmental aspects”.

11.4 Threats and challenges

11.4.1 Threats

Indeed, connecting our everyday âœthingsâ to the public Internet opens these objects to several

kinds of attacks. Taking the example of a traffic control system. If the hackers could insert

fake messages to these traffic control system devices, they can make traffic perturbations and

bottlenecks. Another example related to home automation, if attackers gain access to smart

devices such as lamps, doors, etc., it could manipulate doors and steal the house properties.

The main security threats in the IoT are summarized in [28] and they can be summarized as

follows: 1. Cloning of smart things by untrusted manufacturers; 2. Malicious substitution of

smart things during installation; 3. Firmware replacement attack; 4. Extraction of security

parameters since smart things may be physically unprotected; 5. Eavesdropping attack if the

communication channel is not adequately protected; 6. Man-in-the-middle attack during key

exchange; 7. Routing attacks; 8. Denial-of-service attacks; and 9. Privacy threats.

11.4.2 Challenges

Due to its specific characteristic, new issues are raised in the area of IoT:

• Data collection trust: If the huge collected data is not trusted (e.g., due to the damage

or malicious input of some sensors), the IoT service quality will be greatly influenced and

hard to be accepted by users.

• User privacy: In order to have intelligent context-aware services, users have to share their

personal data or privacy such as location, contacts, etc. Providing intelligent context-

aware services and at the same time preserving user privacy are two conflicting objectives

that induce a big challenge in the IoT.

11.5 Proposed Approach 126

Security

requirements

Behavioral and

enviromental

models

Test generation

and

selection
Security tests

selection
Security tests

Test execution

and

evaluation

Figure 11.1: Model based security testing process.

• Resource Limitation: Most of IoT devices are limited in terms of CPU, memory capacity

and battery supply. This renders the application of the conventional Internet security

solutions not appropriate.

• Inherent complexity of IoT: the fact that multiple heterogeneous entities located in different

contexts can exchange information with each other, further complicates the design and the

deployment of efficient, inter-operable and scalable security mechanisms.

11.5 Proposed Approach

In this section, we define a workflow that covers the different steps of a classical model based

testing process, namely: Model Specification, test generation, test selection, test execution and

evaluation activities as depicted in Fig. 11.1.

In this direction, we reuse the finding of Hessel et al.(163) by exploiting its extension of

UPPAAL namely UPPAAL CO
√

ER . This tool takes as inputs a model, an observer and a

configuration file. The model is specified as a network of timed automata (.xml) that comprises

a SUT part and an environment part. The observer (.obs) expresses the coverage criterion

that guides the model exploration during test case generation. The configuration file (.cfg)

describes mainly the interactions between the system part and the environment part in terms

of input/output signals. It may also specify the variables that should be passed as parameters

in these signals. As output, it produces a test suite containing a set of timed traces (.xml).

Our test generation module is built upon these well-elaborated tools. The key idea here is

to use UPPAAL CO
√

ER and its generic and formal specification language for coverage criteria

to generate tests for security purposes.

11.6 Related Work 127

11.5.1 Test Execution and Verdict Analysis

For the execution of the obtained security tests, we aim to use a standard-based test execution

platform, called TTCN-3 test system for Runtime Testing (TT4RT), developed in a previous

work (164). To do so, security tests should be mapped to the TTCN-3 notation since our

platform supports only this test language. Then, test components are dynamically created and

assigned to execution nodes in a distributed manner.

Each test component is responsible for (1) stimulating the SUT with input values, (2) com-

paring the obtained output data with the expected results (also called oracle) and (3) generating

the final verdict. The latter can be pass, fail or inconclusive. A pass verdict is obtained when

the observed results are valid with respect to the expected ones. A fail verdict is obtained when

at least one of the observed results is invalid with respect to the expected one. Finally, an incon-

clusive verdict is obtained when neither a pass or a fail verdict can be given. After computing

for each executed test case its single verdict, the proposed platform deduces the global verdict.

11.6 Related Work

In this section we give a very brief overview on contributions form the literature and from our

previous work related to Model-Based Security Testing (MBST) for IoT Applications in Smart

Cities. Authors of (165) propose a good survey on more than one hundred publications on

model-based security testing extracted from the most relevant digital libraries and classified

according to specific criteria. Even though this survey reports on a large number of articles

about MBST it does not contain any reference to IoT applications or Smart Cities. Contrary

to that the authors of (166) propose a model-based approach to test IoT platforms (with tests

provided as services) but they do not deal with security aspects at all.

In this work we aim to combine these two directions namely: Model-Based testing and

Security Testing for IoT applications in Smart Cities. For that purpose we will take advantage

of our previous findings (167; 168; 164; 169) related to these fields. In (167) a survey about Secure

Group Communication in Wireless Sensor Networks is proposed. We will extend the notions

proposed in this survey to the case of IoT applications. We will also exploit our previous results

about test techniques of dynamic distributed systems (168; 164). Finally we will adopt the same

methodology as in (169) to combine security and load tests for IoT applications.

11.7 Summary 128

11.7 Summary

The work presented in this chapter is at its begining and a lot of efforts are needed at all levels

on both theoretical and experimental aspects. First we need to deal with modelling issues. In

this respect we need to extend our modelling formalism and to identify the particular elements

of IoT applications to model (using extended timed automata). Models must not be big in

order to avoid test number explosion. For that purpose we need to keep an acceptable level of

abstraction. As a second step we have to adapt our test generation and selection algorithms to

take into account security requirements of the applications under test. The new algorithms must

be validated theoretically and proved to be correct. In the same manner we need to upgrade

our tools to implement the new obtained algorithms. Finally we need to validate our approach

with concrete examples with realistic size.

CHAPTER 12

Towards a Scalable Test Execution Platform On the Cloud

12.1 Introduction

Testing large scale systems running in dynamic and distributed environments is a challenging

issue. Such a validation activity needs to be handled in a cost effective manner. To do so, this

chapter introduces a scalable test environment deployed on the cloud and offers various testing

capabilities like automatic test component deployment, test execution and test evaluation. The

latter are provided as services following the SOA architecture. A proof-of-concept prototype is

developed and deployed on the Google Cloud Platform. It is used to validate an e-Health case

study, implemented by using Web service technology.

The rest of this chapter is organized as follows. Section 12.2 gives the main motivation behind

the work presented in this chapter. Section 12.3 provides background material and related work

on cloud computing and cloud testing. Section 12.4 outlines the proposed approach. Section 12.5

reports on the application of our approach to the e-Health case study. Finally, in Section 12.6,

we conclude with a summary of the main contributions, and we identify potential areas of future

research.

12.2 Motivation

Due to increasingly software scale and complexity in recent years, test engineers and quality

assurance managers faced many difficulties in terms of test time, cost and scale. In fact, man-

aging test generation and selection issues is still a time consuming aspect in the testing process.

12.3 Background and Related Work 130

Moreover, setting up distributed test environments for test execution and evaluation concerns

increases significantly software production costs because we need computational resources not

only for the execution of the system under test but also for the support of testing.

In order to encounter such problems, cloud computing is emerging as a new solution to

build scalable and dynamic test environment characterized mainly with on-demand resource

allocation capabilities. Known in the literature as Testing as-a-Service (TaaS), this innovative

concept is considered as a new business model which provides software testing activities in a

cloud infrastructure for customers as a service based on their demands. In (170), many benefits

of TaaS are identified and listed as below:

• Reduce costs of setting a distributed test environment by effectively using virtualized

resources hosted on the cloud platform.

• Adjust dynamically required resources for testing purposes as needed. The pay-as-you-test

model is often linked to the elastic aspect of the cloud.

• Provide on-demand testing services such as test case generation, online/offline test execu-

tion and test result evaluation, etc.

For this reason, a recent branch of work has attempted to migrate conventional testing

services to the cloud (171; 170; 172; 173; 174; 175). They have focused on offering cloud-based

test environments with various options such as resource monitoring, static/dynamic virtual

machine management, scheduling and dispatching test tasks to the appropriate virtual machines.

Up to our knowledge, only (175) has proposed a test support as a service applied for runtime

testing of adaptive systems. The latter used replication strategy to apply safe runtime tests

with reducing interference risks between test processes and business processes.

12.3 Background and Related Work

This section presents the background that motivates our work and gives an overview about

research done in testing cloud-based applications.

12.3.1 Cloud testing

Cloud computing is an emergent paradigm in the distributed computing community. It has been

changed the way of obtaining diverse services (such as software and hardware resources, net-

works, storage, etc.)(176). It is formally defined by U.S. NIST (National Institute of Standards

and Technology)(177) as follows :

12.3 Background and Related Work 131

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction.

Such paradigm has been used in the context of software testing to encounter the lack of

resources and the expensiveness of building a distributed test environment during the test-

ing process. As a result, the concept of Cloud testing is newly emerging in order to provide

cost-effective testing services. According to (170), it refers to testing activities, essentially test

generation, test execution and test evaluation on a cloud-based environment. The latter sup-

ports on-demand resource allocation to large scale testers whenever and wherever they need by

following the pay-per-use business model. Such virtualized and shared resources may reduce

effectively the cost of building a distributed test environment.

12.3.2 Testing as-a-Service

Testing as-a-Service (TaaS) is an innovative concept that provides end users with testing services

such as test case generation, test execution and test result evaluation. It has been proposed to

improve the efficiency of software quality assurance. Notably, it is used for software systems

that are remotely deployed in a virtualized runtime environment using shared hardware/software

resources, and hosted in a third-party infrastructure (i.e. a cloud) . One of the primary objectives

is to reduce the cost of software testing tasks by providing on-demand testing services and also

on-demand test environment services.

12.3.3 Related work

Most existing research in Testing as-a-Service paradigm pays more attention to test clouds and

cloud-based applications. General topics about cloud testing issues and challenges have been

discussed in several research papers (178; 170). Moreover, some works have dealt with proposing

their own cloud-based testing architecture to provide cost-effective testing services.

For instance, the work in (171) introduces the design and implementation of a virtual test

system, called Vee@Cloud. The proposed prototype offers on-demand test resource allocation

with the aim of reducing cost and enhancing the scalability of the test environment. Moreover,

it supports the generation of various workload in order to apply efficient load testing. Likewise,

the approach in (173; 174) develops a prototype of TaaS on the cloud that helps test engineers

in setting up a scalable test environment for automatically generating and executing units tests.

The obtained results are then evaluated and reported to testers.

12.4 Proposed Approach 132

Test

management

GUI

Resource

management

Runtime

monitoring

Resource

request

Resource

request

SUT

TC

SUT

SUT

VM

Test

component

management

VM state

request
VM

VM VM

VM

TC

TC

Google Compute Engine

Create Delete Start Stop
Scale

up/down

request

Figure 12.1: Test Execution Platform Overview.

Also, the proposed approach in (175) defines an automated test support as-a-service in

order to enhance the self testing process. Similar to our proposal, this test harness is used for

monitoring and validating dynamic adaptations. To avoid interference risk between test and

business processes at runtime, it uses copies of services under test. Conversely, we adopt in our

context testable services by using the Built-In Test (BIT) technique (179).

It should be noted that several commercial tools have been proposed to handle cloud test-

ing, as well. For example, IBM provides its Infrastructure Optimization Services â“ IBM Smart

Business Test Cloud in which on-demand secure, dynamic and scalable virtual test server re-

sources are managed in a private test environment (180). SOASTA is another platform, called

CloudTest, offering load testing capabilities from development to production (181).

12.4 Proposed Approach

The proposed approach is built based on TaaS concepts. Fig. 12.1 outlines an overview of its

different constituents.

• Test management GUI: This component is charged with managing the overall testing

process: dynamic allocation of test components to the appropriate VMs, start up of test

component execution and computation of the final verdict. Moreover, it is responsible for

querying the runtime monitoring component for information about the usage of resources

in running VMs.

12.5 eHealth case study 133

• Resource management: This component enables flexibility and elasticity during the

testing process. If there is no adequate VM to handle the execution of a test component,

a new VM can be created and started automatically. Moreover, it is possible to scale up

or scale down an existing VM. The unused one can be released, as well.

• Test component management: This component offers services for creating/deleting

test components and starting/stopping their execution. A test component is an entity

that interacts with the SUT to execute the available test cases (i.e., a set of input values

and expected results) and to observe its response related to this excitation. Its main role

consists of stimulating the SUT with the input values, comparing the obtained output

values to the expected results and generating the final verdict that can be pass, fail or

inconclusive.

Runtime monitoring: This component gives the status of each VM in terms of comput-

ing resources (such as CPU, memory, storage).

12.5 eHealth case study

With the aim of illustrating the usefulness of the proposed scalable test platform to ensure the

trustworthiness and the correctness of critical systems, we adopt the TRMCS case study once

again.

12.5.1 Implementation and deployment of TRMCS System

We used Apache Tomcat 7 as a Web server, Axis as a SOAP engine, Java 1.8 as a programming

language, and MySQL 5 as a database management system. The obtained Web services are then

deployed as depicted in Table 12.1 on a distributed environment composed of several standard

virtual machines. Each one is characterized with 1 virtual CPU, 3.75 GB of memory and 10 GB

of hard disk.

Table 12.1: Deployment of the TRMCS application.

Machine name Machine type SUT
Storage Service

instance1 n1-standard-1 Analysis Service
Alerting Service

instance2 n1-standard-1 Patient Service
instance3 n1-standard-1 Doctor Service
instance4 n1-standard-1 Sensors

12.5 eHealth case study 134

12.5.2 Runtime testing

In order to perform runtime testing on the running TRMCS system without side effects (i.e.,

interference between test processes and business processes), we assume that all TRMCS services

are equipped with a Built-In Test (BIT) interface (34). In fact, this technique consists in offering

services with the facility to test themselves and their ability to be tested by their execution

environment. To do so, they are equipped with a test interface and they are called testable

services. The operations provided by each test interface ensure that the test data and business

data are not mixed during the runtime testing process.

Figure 12.2: Screenshot of Test component creation and assignement GUI.

In the following, we highlight the usefulness of the proposed Cloud-based Test Execution

Platform in order to perform runtime tests on the running TRMCS System. First of all, our

platform is used to create Test Components and to deploy them in the adequate VM instance.

To do so, the Graphical User Interface (GUI) outlined in Fig. 12.2 is Recall that test components

assignment to VM instances is done in response to the current VM status. If there is a shortage of

computing resources, a new VM instance can be created to hold the execution of the considered

test component.

Figure 12.3: Screenshot of VM instance creation.

12.6 Summary 135

Figure 12.4: Screenshot of Test Execution GUI.

12.6 Summary

In this chapter we proposed a scalable test execution platform providing testing facilities as a

service. Indeed, we defined not only a TaaS but also cloud services to monitor and manage

automatically computing resources through creating/deleting/scaling up and down VMs. This

platform allowed testers to set up the testing environment, assign test cases to the appropriate

VMs, automatically execute them and collect and display test results. A proof of concept

prototype was built and illustrated via a case study in the domain of eHealth.

As future work, we aim to extend our platform with test generation capabilities in the context

of dynamically adaptable and distributed systems. The key idea here is to provide a model-based

test generation as a service which can be executed after each dynamic behavioral adaptation.

With the aim of reducing the cost of test generation, we investigate the use of Probabilistic

Timed Automata (PTAs) as behavioral models from which tests will be generated (182). In this

case, the obtained runtime tests cover essentially the most predictable behaviors. It will be also

interesting to investigate runtime testing of Internet of Objects (IOT) applications and how our

proposed platform may give an efficient solution to validate software services in an IoT context.

CHAPTER 13

General Conclusion

The present chapter concludes this dissertation, summarizes the presented contributions and

proposes some future research directions to explore.

13.1 Summary

In this dissertation we reported on our main research contributions in the field of Model-Based

Testing of Dynamic and Distributed Real-Time Systems, performed during the last ten years.

Our first contribution is related to testing techniques for distributed and dynamically adapt-

able systems. At this level, we proposed a standard-based test execution platform which offers

a platform-independent test system for isolating and executing runtime tests. This platform

explores the TTCN3 standard and considers both structural and behavioral adaptations. In ad-

dition, it has a test isolation layer that reduces the risk of interference between testing processes

and business processes. Moreover, our platform computes a minimal subset of test cases and

efficiently distributes them among the execution nodes. In addition, the proposed techniques

were validated on two case studies, one in the healthcare domain and the other one in the fleet

management domain.

In our second contribution, we proposed a model-based framework to combine Load and

Functional Tests. For thi purpose, we used the model of extended timed automata with input-

s/ouputs and shared integer variables. At this level, different modelling techniques illustrating

some methodological aspects were introduced. Moreover, we examined BPEL compositions

behaviors under various load conditions using the proposed framework. We also proposed a tax-

13.2 Future Works 137

onomy of the detected problems and we illustrated how test verdicts are assigned. In addition,

our approach was validated by applying our tool to a Travel Agency case study and several

mutants of the corresponding BPEL process were considered.

In our third contribution, we proposed a set of formal techniques for the determinization

and off-line test selection for timed automata with inputs and outputs. In this context, we

proposed a game-based approach between two players for the determinization of a given timed

automaton and some fixed resources. Furthermore, we introduced a complete formalization

for the automatic off-line generation of test cases from non-deterministic timed automata with

inputs and outputs. We also proposed a selection technique of test cases with expressive test

purposes. Our method for generating test cases uses a symbolic co-reachability analysis of the

observable behaviors of the specification guided by the test purpose defined as a special timed

automaton.

Finally we reported on two ongoing works: (1) In the first one, we are interested in estab-

lishing a model-based approach for security testing of Internet of Things (IoT) applications; and

(2) The goal of the second one is to provide a scalable test execution platform providing testing

facilities as a cloud service.

13.2 Future Works

Many possible extensions for our work are possible. Next we list some possible directions to

investigate in the future.

• Meta-heuristic techniques for the constrained test placement problem: The

major problem that we faced while applying RTF4ADS on large-scale environments comes

from the constrained test placement module. In fact, this module requires a long time

to compute an exact optimal solution fitting the resource and connectivity constraints.

Therefore, we intend to use the Tabu Search (TS) meta-heuristic as a resolution algorithm

and performing a parallel exploration of the solution domain.

• Extension of the distributed TTCN-3 Test System: The current version of

RTF4ADS focuses only on distributing TTCN-3 test cases. Each one is managed by a

Main Test Component (MTC) and may create several Parallel Test Components (PTC)

in order to execute integration tests. To gain more performance and to alleviate the test

workload on the execution environment, we should also distribute PTC Components over

the execution nodes in order to avoid the communication overhead introduced by the

centralized execution architecture (67).

13.2 Future Works 138

• Runtime testing of autonomous systems: We intend to enhance our test framework

in order to support autonomous systems which are able generate emergent behaviors in

response to changing environmental conditions. To do so, we should include our test system

into Monitor-Analyze-Plan-Execute (MAPE-K) loops with the purpose of automating not

only the adaptation process but also the runtime testing process.

• Test generation based on probabilistic model-checking: The key idea here is to

apply runtime testing before the occurrence of dynamic proactive adaptations which con-

sist in making predictions of how the environment or the system is going to evolve in the

near future. To do so, tests have to be generated from behavioral models that are aug-

mented with probabilities to describe the unpredictable system’s behavior. Formalisms

like Probabilistic Timed Automata can be used to specify the system behavior.

• Distributed and resource-aware load testing of WS-BPEL compositions: Recog-

nizing problems under load is a challenging and time-consuming activity due to the large

amount of generated data and the long running time of load tests. For this reason, we

intend to extend our previous approach dealing with functional and load testing of BPEL

compositions by distribution and resource awareness capabilities. Indeed, supporting test

distribution over the network may alleviate considerably the test workload at runtime,

especially when the SUT is running on a cluster of BPEL servers.

• Developping heuristics to determinize timed automata: The determinization of

timed automata is a complex problem and our proposed algorithms run in time doubly

exponential in the size of the input. Given the difficulty of the problem, it would be of

interest to develop some heuristics. For instance, the resources and other features of our

algorithms could be optimized online. During the on-the-fly construction of the game

while searching for a winning strategy, resource clocks could be added if necessary, or the

precision of the guards and relations could be increased.

• Combining coverage with on-line test execution for real-time systems: The

topic of coverage needs to be studied in more depth in a real-time context. In particular,

combining coverage with on-line test execution is another aspect that seems to be little

studied. The problem is related to choosing online tester outputs and output times. Many

heuristics can be applied to resolve such choices, but an additional problem is how to

manage these choices across the execution of the entire test suite, using some appropriate

book-keeping techniques.

13.3 List of Publications 139

13.3 List of Publications

Journals

2 Hamilton Wilfried Yves Adoni, Tarik Nahhal, Moez Krichen, Brahim Aghezzaf, Abdeltif

Elbyed. A survey of current challenges in partitioning and processing of graph-structured

data in parallel and distributed systems. In Journal of Distributed and Parallel Databases

(2019). (183)

2 Moez Krichen. Improving Formal Verification and Testing Techniques for Internet

of Things and Smart Cities. Journal of Mobile Networks and Applications, MONET

(2019). (184) [French version available (185)]

2 Mariam Lahami, Moez Krichen, Roobaea Alroobaea. TEPaaS: test execution platform

as-a-service applied in the context of e-health. In International Journal of Autonomous

and Adaptive Communications Systems, IJAACS 12(3): 264-283 (2019). (186)

2 Moez Krichen, Afef Jmal Maâlej, Mariam Lahami. A model-based approach to combine

conformance and load tests: an eHealth case study. In International Journal of Critical

Computer-Based Systems, IJCCBS 8(3/4): 282-310 (2018). (187)

2 Mariam Lahami, Moez Krichen. Safe and Efficient Runtime Testing Framework Applied

in Dynamic and Distributed Systems. In Science of Computer Programming Journal. 122:

1-28 (2016). (164)

2 Afef Jmal Maâlej, Moez Krichen, Mohamed Jmaiel. A Comparative Evaluation of State-

of-the-Art Load and Stress Testing Approaches. In International Journal of Computer

Applications in Technology IJCAT 51(4): 283-293 (2015). (8)

2 Mariam Lahami, Moez Krichen, Mohamed Jmaiel. Runtime Testing Approach of Struc-

tural Adaptations for Dynamic and Distributed Systems. In International Journal of

Computer Applications in Technology. IJCAT 51(4): 259-272 (2015). (188)

2 Afef Jmal Maâlej, Moez Krichen. Study on the Limitations of WS-BPEL Compositions

Under Load Conditions. In The Computer Journal (2015) 58 (3): 385-402 (189)

2 Nathalie Bertrand, Amélie Stainer, Thierry Jéron, Moez Krichen. A game approach

to determinize timed automata. In Formal Methods in System Design 46(1): 42-80

(2015). (190)

13.3 List of Publications 140

2 Nathalie Bertrand, Thierry Jéron, Amélie Stainer, Moez Krichen: Off-line test selection

with test purposes for non-deterministic timed automata. In Logical Methods in Computer

Science 8(4) (2012). (191)

2 Moez Krichen: A formal framework for black-box conformance testing of distributed real-

time systems. In International Journal of Critical Computer-Based Systems, IJCCBS

3(1/2): 26-43. 2012. (192) [Arabic version available (193)]

2 Mariam Lahami, Moez Krichen and Mohamed Jmaiel. A distributed Test Architecture

For Adaptable and Distributed Real-Time Systems.In the Journal of New technologies of

Information. 2012. (194)

2 Moez Krichen and Stavros Tripakis. Conformance Testing for Real-Time Systems. In

Formal Methods in System Design, 34(3): 238–304. Elsevier, 2009. (2)

2 Saddek Bensalem, Moez Krichen, Lotfi Majdoub, Riadh Robbana, and Stavros Tripakis.

A simplified approach for testing real-time systems based on action refinement. In ISoLA,

volume RNTI-SM-1 of Revue des Nouvelles Technologies de l’Information, pages 191–202.

Cépaduès-Éditions, 2007. (195)

2 Patricia Bouyer, Fabrice Chevalier, Moez Krichen, et Stavros Tripakis. Observation par-

tielle des systèmes temporisés. Dans le Journal Européen des Systèmes Automatisés, Actes

du 5ème Colloque sur la Modélisation des Systèmes Réactifs, MSR 2005, Autrans, France,

5-7 Octobre 2005, pages 381–393. Hermès, 2005. Papier invité. (196)

2 Saddek Bensalem, Marius Bozga, Moez Krichen, and Stavros Tripakis. Testing confor-

mance of real-time applications by automatic generation of observers. Electronic Notes in

Theoretical Computer Science, 113:23–43. Elsevier, 2005. (197)

Book Chapters

2 Moez Krichen and Mariam Lahami. Towards a Runtime Testing Framework for Dynam-

ically Adaptable Internet of Things Networks in Smart Cities. In Mehmood R., See S.,

Katib I., Chlamtac I. (eds) Smart Infrastructure and Applications. EAI/Springer Inno-

vations in Communication and Computing. EAI/Springer Innovations in Communication

and Computing, 2020. (198)

2 Moez Krichen, Mariam Lahami, Omar Cheikhrouhou, Roobaea Alroobaea and Afef Jmal

Maâlej. Security Testing of Internet of Things for Smart City Applications: A Formal Ap-

proach. In Mehmood R., See S., Katib I., Chlamtac I. (eds) Smart Infrastructure and Ap-

13.3 List of Publications 141

plications. EAI/Springer Innovations in Communication and Computing. EAI/Springer

Innovations in Communication and Computing, 2020. (199)

2 Moez Krichen. State identification. In Model-Based Testing of Reactive Systems, Ad-

vanced Lectures [The volume is the outcome of a research seminar that was held in Schloss

Dagstuhl in January 2004], volume 3472 of Lecture Notes in Computer Science, pages

35–67. Springer, 2004. (200)

Conferences

2 Moez Krichen. Improving and Optimizing Verification and Testing Techniques for Dis-

tributed Information Systems. In Proceedings of the 21st International Conference on

Enterprise Information Systems (ICEIS 2019), Heraklion, Crete, Greece, May 3-5. (Re-

vised Selected Papers) Springer, Cham, 2019. (184)

2 Moez Krichen. Testing Real-Time Systems using Determinization Techniques for Au-

tomata over Timed Domains. In the Proceedings of the 16th International Colloquium on

Theoretical Aspects of Computing (ICTAC 2019), October 31 - November 4, 2019, Springer

2019. (201)

2 Moez Krichen, Roobaea Alroobaea. Towards Optimizing the Placement of Security Test-

ing Components for Internet of Things Architecture. In The Proceedings of the 16th

ACS/IEEE International Conference on Computer Systems and Applications, (AICCSA

2019), Abu Dhabi, UAE, November 3-7, 2019, IEEE 2019.

2 Moez Krichen, Wilfried Yves Hamilton Adoni, Tarik Nahhal. Some Placement Techniques

of Test Components for Smart Cities and Internet of Things Inspired by Fog Computing

Approaches. To Appear In The Proceedings of the The First International Conference on

Smart Information & Communication Technologies, (SmartICT 2019), Säıdia, Morocco,

September 26-28, 2019. Springer 2019.

2 Wilfried Yves Hamilton Adoni, Moez Krichen, Tarik Nahhal. Multi-path Coverage of

all Final States for Model-Based Testing using Spark In-memory Design. To Appear

In The Proceedings of the The First International Conference on Smart Information &

Communication Technologies, (SmartICT 2019), Säıdia, Morocco, September 26-28, 2019.

Springer 2019.

2 Moez Krichen, Roobaea Alroobaea. A New Model-based Framework for Testing Security

of IoT Systems in Smart Cities using Attack Trees and Price Timed Automata. In The

13.3 List of Publications 142

Proceedings of the 14th International Conference on Evaluation of Novel Approaches to

Software Engineering, (ENASE 2019), Heraklion, Crete, Greece, May 4-5, 2019, pages

570-577, SciTePress 2019. (202)

2 Moez Krichen, Roobaea Alroobaea, Mariam Lahami. Towards a Runtime Standard-based

Testing Framework for Dynamic Distributed Information Systems. In Proceedings of the

21st International Conference on Enterprise Information Systems (ICEIS 2019), Herak-

lion, Crete, Greece, May 3-5, 2019, pages 121-129, Volume 2. SciTePress 2019. (203)

2 Mariam Lahami, Moez Krichen, Roobaea Alroobaea. Towards a Test Execution Platform

As-A-Service: Application in the E-Health Domain. In Proceedings of the 2nd Inter-

national Conference on Control, Automation and Diagnosis (ICCAD 2018), Marrakech,

Morocco, March 19-21, 2018. IEEE, 2018. (204)

2 Moez Krichen, Afef Jmal Maâlej, Mariam Lahami, Mohamed Jmaiel. A Resource-Aware

Model-Based Framework for Load Testing of WS-BPEL Compositions. In Enterprise

Information Systems - 20th International Conference, ICEIS 2018, Funchal, Madeira,

Portugal, March 21-24, 2018, Revised Selected Papers, pages 130-157, LNBIP, volume

363. Springer, 2018. (205)

2 Afef Jmal Maâlej, Mariam Lahami, Moez Krichen, Mohamed Jmaiel. Distributed and

Resource-Aware Load Testing of WS-BPEL Compositions. In Proceedings of the 20th

International Conference on Enterprise Information Systems (ICEIS 2018), Funchal,

Madeira, Portugal, March 21-24, 2018, Volume 2. SciTePress 2018. (206)

2 Moez Krichen, Omar Cheikhrouhou, Mariam Lahami, Roobaea Alroobaea, Afef Jmal

Maâlej. Towards a Model-Based Testing Framework for the Security of Internet of Things

for Smart City Applications. In Proceedings of the 1st EAI International Conference

on Smart Societies Infrastructure, Technologies, and Applications (SCITA 2017), Jeddah,

Saudi Arabia, November 27-29, 2017. Springer, 2017. (207)

2 Afef Jmal Maâlej, Moez Krichen. WSCLim: A Tool for Model-Based Testing of WS-BPEL

Compositions Under Load Conditions. In Proccedings of the 11th International Conference

on Tests and Proofs (TAP 2017), pages 139-151, Marburg, Germany, July 19-20, 2017.

Springer, 2017. (208)

2 Mariam Lahami, Moez Krichen, Hajer Barhoumi, Mohamed Jmaiel. Selective Test Gen-

eration Approach for Testing Dynamic Behavioral Adaptations. In Proccedings of the

27th IFIP International Conference of Testing Software and Systems (ICTSS 2015), pages

13.3 List of Publications 143

224-239, Sharjah and Dubai, United Arab Emirates, November 23-25, 2015. Springer,

2015. (209)

2 Mariam Lahami, Moez Krichen. Test Isolation Policy for Safe Runtime Validation of

Evolvable Software Systems. In Proceedings of the 22nd IEEE International Conference

on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE 2013),

pages 377-382, Hammamet, Tunisia, June 17-20, 2013, IEEE Computer Society. (209)

2 Afef Jmal Maâlej, Manel Hamza, Moez Krichen. WSCLT: A Tool for WS-BPEL Compo-

sitions Load Testing. In Proceedings of the 22nd IEEE International Conference on En-

abling Technologies: Infrastructures for Collaborative Enterprises (WETICE 2013), pages

272-277, Hammamet, Tunisia, June 17-20, 2013, IEEE Computer Society. (210)

2 Mariam Lahami, Fairouz Fakhfakh, Moez Krichen, Mohamed Jmaiel. Towards a TTCN-3

Test System for Runtime Testing of Adaptable and Distributed Systems. In Proccedings

of the 23rd IFIP International Conference of Testing Software and Systems, ICTSS 2012,

Aalborg, Denmark, November 19 - 21, 2012. Springer, 2012. (84)

2 Mariam Lahami, Moez Krichen, Mariam Bouchakwa, Mohamed Jmaiel. Using Knap-

sack Problem Model to Design a Resource Aware Test Architecture for Adaptable and

Distributed Systems. In Proceedings of the 23rd IFIP International Conference of Testing

Software and Systems, ICTSS 2012, Aalborg, Denmark, November 19 - 21, 2012. Springer,

2012 (83)

2 Mariam Lahami, Moez Krichen, Mohamed Jmaiel. A distributed Test Architecture For

Adaptable and Distributed Real-Time Systems. In Proceedings of ’ConfÃ c©rence sur les

Architectures Logicielles’,CAL 2011, Lille, France, June 2011. (194)

2 Nathalie Bertrand, Amélie Stainer, Thierry Jéron, Moez Krichen. A Game Approach

to Determinize Timed Automata. In Proceedings of the 14th International Confer-

ence on Foundations of Software Science and Computation Structures, FoSSaCS’11,

SaarbrÃ1
4cken, Germany, April 2011. LNCS 6604, pages 245-259. Springer,2011. (157)

2 Nathalie Bertrand, Amélie Stainer, Thierry Jéron, Moez Krichen. Off-line Test Selection

with Test Purposes for Non-Deterministic Timed Automata. In Proceedings of the 17th

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’11), SaarbrÃ1
4cken, Germany, April 2011. LNCS 6605, pages 96-111.

Springer, 2011. (211)

13.3 List of Publications 144

2 Moez Krichen. A Formal Framework for Conformance Testing of Distributed Real-Time

Systems. In Proceedings of the 14th International Conference On Principles Of Distributed

Systems, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. LNCS 6490, pages 139-

142. Springer, 2010. (212)

2 Mariam Lahami, Moez Krichen, Akram Idani, Mohamed Jmaiel. A generic process to build

reliable distributed software components from early to late stages of software development.

In Sixth International Conference on Computer Engineering and Systems, ICCES 2010,

Cairo, Egypt, November 30 - December 2, 2010, Proceedings. (213)

2 Moez Krichen, Monika Solanki. Automatic Generation of Real-Time Observers for Moni-

toring Web Services. In Second International Conference on Web and Information Tech-

nologies, ICWIT 2009, Kerkennah Islands, Sfax, Tunisia, June 12 - 14, 2009, Proceed-

ings. (214)

2 Matthieu Gallien, Fahmi Gargouri, Imen Kahloul, Moez Krichen, Thanh Hung Nguyen,

Saddek Bensalem, Félix Ingrand. D’une approche modulaire à une approche orientée

composant pour le développement de systèmes autonomes : défis et principes. In 3rd

National Conference on Control Architectures of Robots, CAR 2008, Bourges, France,

May 29 - 30, 2008, Proceedings. Invited paper. (215)

2 Saddek Bensalem, Marius Bozga, Matthieu Gallien, Félix Ingrand, Moez Krichen, Stavros

Tripakis. Automatic generation of observers for the dala robot with ttg. In 1st Mediter-

ranean Conference on Intelligent Systems and Automation, CISA 2008, Annaba, Algeria,

June 30 - July 02, 2008, Proceedings, volume 1019 of American Institute of Physics, pages

487–492. AIP, 2008. (216)

2 Saddek Bensalem, Moez Krichen, Stavros Tripakis. Generating Analog-Clock Real-Time

Testers Using Action Refinement Techniques. Dans les Actes de la Conférence Interna-

tionale sur les Relations, Ordres et Graphes: Interaction avec l’Informatique, ROGICS

2008, Mahdia, Tunisie, 12-17 Mai 2008.

2 Moez Krichen, Stavros Tripakis. Interesting properties of the real-time conformance re-

lation tioco. In Theoretical Aspects of Computing - ICTAC 2006, Third International

Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings, volume 4281 of Lecture

Notes in Computer Science, pages 317–331. Springer, 2006. (217)

2 Moez Krichen, Stavros Tripakis. An expressive and implementable formal framework for

testing real-time systems. In Testing of Communicating Systems, 17th IFIP TC6/WG

13.3 List of Publications 145

6.1 International Conference, TestCom 2005, Montreal, Canada, May 31 - June 2, 2005,

Proceedings, volume 3502 of Lecture Notes in Computer Science, pages 209–225. Springer,

2005. (218)

2 Moez Krichen, Stavros Tripakis. State identification problems for timed automata. In

Testing of Communicating Systems, 17th IFIP TC6/WG 6.1 International Conference,

TestCom 2005, Montreal, Canada, May 31 - June 2, 2005, Proceedings, volume 3502 of

Lecture Notes in Computer Science, pages 175–191. Springer, 2005. (219)

2 Moez Krichen, Stavros Tripakis. Real-time testing with timed automata testers and cov-

erage criteria. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant

Systems, Joint International Conferences on Formal Modelling and Analysis of Timed Sys-

tems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant Systems,

FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings, volume 3253 of

Lecture Notes in Computer Science, pages 134–151. Springer, 2004. (220)

Workshops

2 Afef Jmal Maâlej, Moez Krichen, Mohamed Jmaiel. A Model Based Approach to Com-

bine Load and Functional Tests for Service Oriented Architectures. In Proccedings of the

10th Workshop on Verification and Evaluation of Computer and Communication System

(VECoS 2016), Tunis, Tunisia, October 6-7, 2016. CEUR-WS.org 2016. (221)

2 Mariam Lahami, Moez Krichen, Mohamed Jmaiel. Runtime Testing Framework for Im-

proving Quality in Dynamic Service-based Systems. In Proceedings of the 2nd Interna-

tional Workshop on Quality Assurance for Service-Based Applications (QASBA 2013) in

conjunction with the International Symposium in Software Testing and Analysis (ISSTA

2013), pages 17-24 , Lugano, Switzerland, July 2013. ACM. (222)

2 Afef Jmal Maâlej, Zeineb Ben Makhlouf, Moez Krichen, Mohamed Jmaiel. Conformance

Testing for Quality Assurance of Clustering Architectures. In Proceedings of the 2nd

International Workshop on Quality Assurance for Service-Based Applications (QASBA

2013) in conjunction with the International Symposium in Software Testing and Analysis

(ISSTA 2013), pages 9-16, Lugano, Switzerland, July 2013. ACM. (223)

2 Afef Jmal Maâlej, Manel Hamza, Moez Krichen, Mohamed Jmaiel. Automated Significant

Load Testing for WS-BPEL Compositions. In Proceedings of the 6th IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW 2013),

pages 144-153, Luxembourg, March 18-22, 2013, IEEE Computer Society. (130)

13.3 List of Publications 146

2 Afef Jmal Maâlej, Moez Krichen, Mohamed Jmaiel. WSCCT: A Tool for WS-BPEL

Compositions Conformance Testing. In Proceedings of the 28th Annual ACM Symposium

on Applied Computing (SAC 2013), pages 1055-1061, Coimbra, Portugal, March 18-22,

2013, ACM. (224)

2 Afef Jmal Maâlej, Moez Krichen, Mohamed Jmaiel. Model-based Conformance Testing of

WS-BPEL Compositions. In Proceedings of the IEEE 36th International Conference on

Computer Software and Applications Workshops, COMPSAC 2012, pages 452-457, Izmir,

Turkey, July 16-20, 2012. IEEE Computer Society. (225)

2 Saddek Bensalem, Moez Krichen, Stavros Tripakis. State Identification Problems for In-

put/Output Transition Systems. In 9th International Workshop on Discrete Event Sys-

tems, WODES 2008, Göteborg, Sweden, May 28 - 30 2008 , Proceedings, pages 225–230.

IEEE, 2008. (226)

2 Saddek Bensalem, Moez Krichen, Lotfi Majdoub, Riadh Robbana, Stavros Tripakis. Test

Generation for Duration Systems. In First International Workshop on Verification and

Evaluation of Computer and Communication Systems, VECoS 2007, Algiers, Algeria, 5 -

6 May 2007, Proceedings. British Computer Society - BCS, 2007. (227)

2 Moez Krichen, Stavros Tripakis. State-identification problems for finite-state transduc-

ers. In Formal Approaches to Software Testing and Runtime Verification, First Combined

International Workshops, FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16,

2006, Revised Selected Papers, volume 4262 of Lecture Notes in Computer Science, pages

148–162. Springer, 2006. (228)

2 Saddek Bensalem, Marius Bozga, Moez Krichen, Stavros Tripakis. Testing Conformance of

Real-Time Applications: Case of Planetary Rover Controller. In Verification and Valida-

tion of Model-Based Planning and Scheduling Systems, VVPS 2005, Monterey, California,

June 6-7, Proceedings. Invited paper. (229)

2 Moez Krichen, Stavros Tripakis. Black-box conformance testing for real-time systems. In

Model Checking Software, 11th International SPIN Workshop, Barcelona, Spain, April 1-

3, 2004, Proceedings, volume 2989 of Lecture Notes in Computer Science, pages 109–126.

Springer, 2004. (230)

Bibliography

Bibliography

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach. Morgan

Kaufmann Publishers Inc., 2006.

[2] M. Krichen and S. Tripakis, “Conformance testing for real-time systems,” Formal Methods

in System Design, vol. 34, no. 3, pp. 238–304, 2009.

[3] C. Baier, N. Bertrand, P. Bouyer, and T. Brihaye, “When are timed automata determiniz-

able?” in ICALP’09, ser. LNCS, vol. 5556, 2009, pp. 43–54.

[4] J. Kienzle, N. Guelfi, and S. Mustafiz, Transactions on Aspect-Oriented Software De-

velopment VII: A Common Case Study for Aspect-Oriented Modeling. Springer Berlin

Heidelberg, 2010, ch. Crisis Management Systems: A Case Study for Aspect-Oriented

Modeling, pp. 1–22.

[5] I.-Y. Chen and C.-H. Tsai, “Pervasive Digital Monitoring and Transmission of Pre-Care

Patient Biostatics with an OSGi, MOM and SOA Based Remote Health Care System,”

in Proceeding of the 6th Annual IEEE International Conference on Pervasive Computing

and Communications (PerCom’06), 2008, pp. 704–709.

[6] U. Varshney, “Pervasive Healthcare and Wireless Health Monitoring,” Mobile Networks

and Applications, vol. 12, no. 2-3, pp. 113–127, 2007.

[7] S. T. S. Thong, C. T. Han, and T. A. Rahman, “Intelligent Fleet Management System with

Concurrent GPS GSM Real-Time Positioning Technology,” in Proceeding of the 7th In-

ternational Conference on Intelligent Transport Systems Telecommunications (ITST’07),

2007, pp. 1–6.

Bibliography 148

[8] A. J. Maâlej, M. Krichen, and M. Jmäıel, “A comparative evaluation of state-of-the-art

load and stress testing approaches,” Int. J. Comput. Appl. Technol., vol. 51, no. 4, pp.

283–293, Jul. 2015.

[9] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol.

126, no. 2, pp. 183–235, 1994.

[10] M. Krichen, “Model-based testing for real-time systems,” Ph.D. dissertation, PhD thesis,

University of Joseph Fourier (December 2007), 2007.

[11] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer Science, vol.

126, pp. 183–235, 1994.

[12] M. Lahami, “Runtime testing of dynamically adaptable and distributed component based

Systems,” Theses, Ecole Nationale d’Ingénieurs de Sfax, Apr. 2017. [Online]. Available:

https://hal.archives-ouvertes.fr/tel-02469999

[13] J. Kramer and J. Magee, “Dynamic Configuration for Distributed Systems,” IEEE Trans-

actions on Software Engineering (TSE), vol. 11, no. 4, pp. 424–436, 1985.

[14] A. Ketfi, N. Belkhatir, and P. yves Cunin, “Dynamic Updating of Component-Based Appli-

cations,” in Proceeding of the International Conference on Software Engineering Research

and Practice (SERP’02), 2002.

[15] OSGi service gateway specification, Release 4 , Open Services Gateway Initiative, 2005.

[16] G. Tamura, N. Villegas, H. Müller, J. Sousa, B. Becker, G. Karsai, S. Mankovskii,

M. Pezz̈ı¿1
2 , W. Scḧı¿1

2 fer, L. Tahvildari, and K. Wong, “Towards Practical Runtime Ver-

ification and Validation of Self-Adaptive Software Systems,” in Software Engineering for

Self-Adaptive Systems II, 2013, pp. 108–132.

[17] B. Cheng, K. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. Müller, P. Pelliccione, A. Perini,

N. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, and N. Villegas, “Using Models at

Runtime to Address Assurance for Self-Adaptive Systems,” in Models@run.time, 2014, pp.

101–136.

[18] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg, “Models@Runtime to

Support Dynamic Adaptation,” Computer, vol. 42, no. 10, pp. 44–51, 2009.

[19] P. Inverardi and M. Mori, “Model Checking Requirements at Run-time in Adaptive

Systems,” in Proceedings of the 8th Workshop on Assurances for Self-adaptive Systems

(ASAS’11), 2011, pp. 5–9.

https://hal.archives-ouvertes.fr/tel-02469999

Bibliography 149

[20] P. Stocks and D. Carrington, “A Framework for Specification-Based Testing,” IEEE Trans-

actions on Software Engineering (TSE), vol. 22, no. 11, pp. 777–793, 1996.

[21] L. Liu, H. Miao, and X. Zhan, “A Framework for Specification-Based Class Testing,”

in Proceeding of the 8th International Conference on Engineering of Complex Computer

Systems (ICECCS’02), 2002, pp. 153–162.

[22] S. K. Swain and D. P. Mohapatra, “Test Case Generation from Behavioral UML Models,”

International Journal of Computer Applications, vol. 6, no. 8, pp. 5–11, 2010.

[23] A. Calvagna and A. Gargantini, “A Logic-based Approach to Combinatorial Testing With

Constraints,” in Proceedings of the 2nd International Conference on Tests and Proofs

(TAP’08), 2008, pp. 66–83.

[24] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei, “Test Generation

via Dynamic Symbolic Execution for Mutation Testing,” in Procceeding of the 26th IEEE

International Conference on Software Maintenance (ICSM’10), 2010, pp. 1–10.

[25] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized Symbolic Execution for Model

Checking and Testing,” in Proceedings of the 9th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’03), 2003, pp. 553–568.

[26] ETSI, “Methods for Testing and Specification (MTS), The Testing and Test Control No-

tation version 3, Part 1: TTCN-3 Core Language,” 2005.

[27] A. Khoumsi, “Testing Distributed Real Time Systems Using a Distributed Test Ar-

chitecture,” in Proceeding of the IEEE Symposium on Computers and Communications

(ISCC’01), 2001, pp. 648–654.

[28] S. Siddiquee and A. En-Nouaary, “Two Architectures for Testing Distributed Real-

Time Systems,” in Proceeding of the 2nd Information and Communication Technologies

(ICTTA’06), vol. 2, 2006, pp. 3388–3393.

[29] A. Tarhini and H. Fouchal, “Conformance Testing of Real-Time Component Based Sys-

tems,” in Proceeding of the International School and Symposium on Advanced Distributed

Systems (ISSADS’05), 2005, pp. 167–181.

[30] A. Khoumsi, “Testing Distributed Real-Time reactive Systems Using a centralized Test

Architecture,” in Proceeding of the North Atlantic Test Workshop (NATW), 2001, pp.

648–654.

Bibliography 150

[31] M. J. Harrold, “Testing: a roadmap,” in Proceedings of the 16th IEEE Conference on The

Future of Software Engineering (ICSE’00), 2000, pp. 61–72.

[32] G. Rothermel and M. J. Harrold, “A Safe, Efficient Regression Test Selection Technique,”

ACM Transactions on Software Engineering and Methodology, vol. 6, pp. 173–210, 1997.

[33] H. Leung and L. White, “Insights into regression testing [software testing],” in Proceedings

of the International Conference on Software Maintenance (ICSM’89), 1989, pp. 60–69.

[34] D. Brenner, C. Atkinson, R. Malaka, M. Merdes, B. Paech, and D. Suliman, “Reducing

Verification Effort in Component-based Software Engineering Through Built-In Testing,”

Information Systems Frontiers, vol. 9, no. 2-3, pp. 151–162, 2007.

[35] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” 1990.

[36] A. González, E. Piel, and H.-G. Gross, “A Model for the Measurement of the Runtime

Testability of Component-Based Systems,” in Proceedings of the IEEE International Con-

ference on Software Testing, Verification, and Validation Workshops (ICSTW’09), 2009,

pp. 19–28.

[37] Y. Wang, G. King, D. Patel, S. Patel, and A. Dorling, “On Coping With Real-time Software

Dynamic Inconsistency by Built-In Tests,” Annals of Software Engineering, vol. 7, no. 1-4,

pp. 283–296, 1999.

[38] J. Vincent, G. King, P. Lay, and J. Kinghorn, “Principles of Built-In-Test for Run-Time-

Testability in Component-Based Software Systems,” Software Quality Control, vol. 10,

no. 2, pp. 115–133, 2002.

[39] É. Piel, A. González-Sanchez, and H.-G. Groß, “Automating Integration Testing of Large-

Scale Publish/Subscribe Systems,” in Principles and Applications of Distributed Event-

Based Systems, 2010, pp. 140–163.

[40] L. Chu, K. Shen, H. Tang, T. Yang, and J. Zhou, “Dependency Isolation for Thread-based

Multi-tier Internet Services,” in Proceeding of the 24th Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM’05), 2005, pp. 796–806.

[41] I. Granja and M. Jino, “Techniques for Regression Testing: Selecting Test Case Sets Tai-

lored to Possibly Modified Functionalities,” in Proceedings of the 3rd European Conference

on Software Maintenance and Reengineering (CSMR’99), 1999, pp. 2–22.

Bibliography 151

[42] A. Beszedes, T. Gergely, L. Schrettner, J. Jasz, L. Lango, and T. Gyimothy, “Code

Coverage-Based Regression Test Selection and Prioritization in WebKit,” in Proceeding

of the 28th IEEE International Conference on Software Maintenance (ICSM’12), 2012,

pp. 46–55.

[43] B. Korel and A. M. Al-Yami, “Automated Regression Test Generation,” ACM SIGSOFT

Software Engineering Notes, vol. 23, no. 2, pp. 143–152, 1998.

[44] B. Korel, L. Tahat, and B. Vaysburg, “Model Based Regression Test Reduction Using De-

pendence Analysis,” in Proceedings of the 18th IEEE International Conference on Software

Maintenance (ICSM’02), 2002, pp. 214–223.

[45] O. Pilskalns, G. Uyan, and A. Andrews, “Regression Testing UML Designs,” in Proceedings

of the 22nd IEEE International Conference on Software Maintenance (ICSM’06), 2006,

pp. 254–264.

[46] Y. Chen, R. L. Probert, and H. Ural, “Model-based Regression Test Suite Generation Using

Dependence Analysis,” in Proceedings of the 3rd International Workshop on Advances in

Model-based Testing (A-MOST’07), 2007, pp. 54–62.

[47] L. C. Briand, Y. Labiche, and S. He, “Automating Regression Test Selection Based on

UML Designs,” Information & Software Technology, vol. 51, no. 1, pp. 16–30, 2009.

[48] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon, “Selective Test Generation Method

for Evolving Critical Systems,” in Proceedings of the 2011 IEEE 4th International Confer-

ence on Software Testing, Verification and Validation Workshops (ICSTW’11), 2011, pp.

125–134.

[49] M. J. Harrold, “Architecture-Based Regression Testing of Evolving Systems,” in Proceeding

of the International Workshop on the Role of Software Architecture in Testing and Analysis

(ROSATEA’98), 1998, pp. 73–77.

[50] H. Muccini, M. S. Dias, and D. J. Richardson, “Software Architecture-Based Regression

Testing,” Journal of Systems and Software, vol. 79, no. 10, pp. 1379–1396, 2006.

[51] B. Korel, L. Tahat, and M. Harman, “Test Prioritization Using System Models,” in Pro-

ceedings of the 21st IEEE International Conference on Software Maintenance(ICSM’05),

2005, pp. 559–568.

[52] M. Merdes, R. Malaka, D. Suliman, B. Paech, D. Brenner, and C. Atkinson, “Ubiquitous

RATs: How Resource-Aware Run-Time Tests Can Improve Ubiquitous Software Systems,”

Bibliography 152

in Proceedings of the 6th International Workshop on Software Engineering and Middleware

(SEM’06), 2006, pp. 55–62.

[53] A. González-Sanchez, É. Piel, and H.-G. Gross, “Architecture Support for Runtime Inte-

gration and Verification of Component-based Systems of Systems,” in Proceeding of the

Automated Software Engineering - Workshops, (ASE Workshops’08), 2008, pp. 41–48.

[54] C. Murphy, G. Kaiser, I. Vo, and M. Chu, “Quality Assurance of Software Applications

Using the In Vivo Testing Approach,” in Proceedings of the 2nd International Conference

on Software Testing Verification and Validation (ICST’09), 2009, pp. 111–120.

[55] É. Piel and A. González-Sanchez, “Data-flow Integration Testing Adapted to Runtime

Evolution in Component-Based Systems,” in Proceedings of the ESEC/FSE Workshop on

Software Integration and Evolution@runtime, 2009, pp. 3–10.

[56] D. Niebuhr and A. Rausch, “Guaranteeing Correctness of Component Bindings in Dynamic

Adaptive Systems Based on Runtime Testing,” in Proceedings of the 4th International

Workshop on Services Integration in Pervasive Environments (SIPE’09), 2009, pp. 7–12.

[57] M. Greiler, H.-G. Gross, and A. van Deursen, “Evaluation of Online Testing for Services: A

Case Study,” in Proceeding of the 2nd International Workshop on Principles of Engineering

Service-Oriented System, 2010, pp. 36–42.

[58] T. M. King, A. A. Allen, R. Cruz, and P. J. Clarke, “Safe Runtime Validation of Behavioral

Adaptations in Autonomic Software,” in Proceedings of the 8th International Conference

on Autonomic and Trusted Computing (ATC’11), 2011, pp. 31–46.

[59] X. Bai, D. Xu, G. Dai, W.-T. Tsai, and Y. Chen, “Dynamic Reconfigurable Testing of

Service-Oriented Architecture,” in Proceeding of the 31st Annual International Computer

Software and Applications Conference (COMPSAC’07), 2007, pp. 368–378.

[60] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, “A Framework for Proactive

Self-adaptation of Service-Based Applications Based on Online Testing,” in Proceedings

of the 1st European Conference on Towards a Service-Based Internet (ServiceWave’08),

2008, pp. 122–133.

[61] A. E. Ramirez, B. Morales, and T. M. King, “A Self-Testing Autonomic Job Scheduler,”

in Proceedings of the 46th Annual Southeast Regional Conference on XX (ACM-SE’08),

2008, pp. 304–309.

Bibliography 153

[62] X. Bai, G. Dai, D. Xu, and W.-T. Tsai, “A Multi-Agent Based Framework for Collabo-

rative Testing on Web Services,” in Proceedings of the 4th IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems, and the 2nd International

Workshop on Collaborative Computing, Integration, and Assurance (SEUS-WCCIA’06),

2006, pp. 205–210.

[63] M. Akour, A. Jaidev, and T. M. King, “Towards Change Propagating Test Models in

Autonomic and Adaptive Systems,” in Proceedings of the 18th IEEE International Con-

ference and Workshops on Engineering of Computer-Based Systems (ECBS’11), 2011, pp.

89–96.

[64] E. M. Fredericks, B. DeVries, and B. H. C. Cheng, “Towards Run-time Adaptation of

Test Cases for Self-adaptive Systems in the Face of Uncertainty,” in Proceedings of the

9th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS’14), 2014, pp. 17–26.

[65] D. Suliman, B. Paech, L. Borner, C. Atkinson, D. Brenner, M. Merdes, and R. Malaka,

“The MORABIT Approach to Runtime Component Testing,” in Proceedings of the 30th

Annual International Computer Software and Applications Conference (COMPSAC ’06),

2006, pp. 171–176.

[66] S. Schulz and T. Vassiliou-Gioles, “Implementation of TTCN-3 Test Systems using the

TRI,” in Proceedings of the IFIP 14th International Conference on Testing Communicating

Systems (TestCom’02), 2002, pp. 425–442.

[67] I. Schieferdecker and T. Vassiliou-Gioles, “Realizing Distributed TTCN-3 Test Systems

With TCI,” in Proceedings of the 15th IFIP International Conference on Testing of Com-

municating Systems (TestCom’03), 2003.

[68] G. Din, S. Tolea, and I. Schieferdecker, “Distributed Load Tests with TTCN-3,” in Proceed-

ings of the 18th IFIP TC6/WG6.1 International Conference for Testing of Communicating

Systems (TestCom’06), 2006, pp. 177–196.

[69] B. Stepien, L. Peyton, and P. Xiong, “Framework Testing of Web Applications Using

TTCN-3,” International Journal on Software Tools for Technology Transfer (STTT),

vol. 10, no. 4, pp. 371–381, 2008.

[70] Q. L. Ying Li, “Research on Web Application Software Load Test Using Technology of

TTCN-3,” American Journal of Engineering and Technology Research, vol. 11, pp. 3686–

3690, 2011.

Bibliography 154

[71] I. Schieferdecker, G. Din, and D. Apostolidis, “Distributed Functional and Load Tests for

Web Services,” International Journal on Software Tools for Technology Transfer (STTT),

vol. 7, pp. 351–360, 2005.

[72] C. Rentea, I. Schieferdecker, and V. Cristea, “Ensuring Quality of Web Applications by

Client-side Testing Using TTCN-3,” in Proceeding of the 21th IFIP International Con-

ference on Testing of Communicating Systems joint with 9th International Workshop on

Formal Approaches to Testing of Software (TestCom/Fates’09), 2009.

[73] J. C. Okika, A. P. Ravn, Z. Liu, and L. Siddalingaiah, “Developing a TTCN-3 Test Harness

for Legacy Software,” in Proceedings of the International Workshop on Automation of

Software Test, 2006, pp. 104–110.

[74] D. A. Serbanescu, V. Molovata, G. Din, I. Schieferdecker, and I. Radusch, “Real-Time

Testing with TTCN-3,” in Proceeding of the 20th IFIP International Conference on Testing

of Communicating Systems joint with 8th International Workshop on Formal Approaches

to Testing of Software (TestCom/Fates’08), 2008, pp. 283–301.

[75] P. H. Deussen, G. Din, and I. Schieferdecker, “A TTCN-3 Based Online Test and Validation

Platform for Internet Services,” in Proceedings of the 6th International Symposium on

Autonomous Decentralized Systems (ISADS’03), 2003.

[76] B. Li, Y. Zhou, Y. Wang, and J. Mo, “Matrix-based Component Dependence Represen-

tation and Its Applications in Software Quality Assurance,” ACM SIGPLAN Notices,

vol. 40, no. 11, pp. 29–36, 2005.

[77] S. Alhazbi and A. Jantan, “Dependencies Management in Dynamically Updateable

Component-Based Systems,” Journal of Computer Science, vol. 3, no. 7, pp. 499–505,

2007.

[78] B. Qu, Q. Liu, and Y. Lu, “A Framework for Dynamic Analysis Dependency in

Component-Based System,” in the 2nd International Conference on Computer Engineering

and Technology (ICCET’10), 2010, pp. 250–254.

[79] M. Larsson and I. Crnkovic, “Configuration Management for Component-Based Systems,”

in Proceeding of the 10th International Workshop on Software configuration Management

(SCM’01), 2001.

[80] Y. E. Ioannidis and R. Rantakrishnan, “Efficient Transitive Closure Algorithms,” in Pro-

ceedings of the 14th International Conference on Very Large Databases (VLDB’88), 1988.

Bibliography 155

[81] G. Rothermel and M. Harrold, “Analyzing Regression Test Selection Techniques,” IEEE

Transactions on Software Engineering, vol. 22, no. 8, pp. 529–551, 1996.

[82] K. Ghédira and B. Dubuisson, Constraint Satisfaction Problems. John Wiley & Sons,

Inc., 2013, ch. Foundations of CSP, pp. 1–28.

[83] M. Lahami, M. Krichen, M. Bouchakwa, and M. Jmäıel, “Using Knapsack Problem Model

to Design a Resource Aware Test Architecture for Adaptable and Distributed Systems,”

in Proceedings of the 24th IFIP WG 6.1 International Conference Testing Software and

Systems (ICTSS’12), 2012, pp. 103–118.

[84] M. Lahami, F. Fakhfakh, M. Krichen, and M. Jmäıel, “Towards a TTCN-3 Test System

for Runtime Testing of Adaptable and Distributed Systems,” in Proceedings of the 24th

IFIP WG 6.1 International Conference Testing Software and Systems (ICTSS’12), 2012,

pp. 71–86.

[85] G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” in International School

on Formal Methods for the Design of Computer, Communication, and Software Systems,

SFM-RT 2004. Revised Lectures, ser. LNCS, M. Bernardo and F. Corradini, Eds., vol.

3185. Springer Verlag, 2004, pp. 200–237.

[86] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson, “Specifying and Generating Test Cases

Using Observer Automata,” in Proceeding of the 5th International Workshop on Formal

Approaches to Software Testing (FATES’05), 2005, pp. 125–139.

[87] A. Hessel and P. Pettersson, “CO
√

ER A Real-Time Test Case Generation Tool,” in Pro-

ceeding of the 7th International Workshop on Formal Approaches to Testing of Software

(FATES’07), 2007.

[88] A. Hessel, “Model-based test case generation for real-time systems,” Ph.D. dissertation,

Uppsala University, Sweden, 2007.

[89] M. Beyer, W. Dulz, and F. Zhen, “Automated TTCN-3 Test Case Generation by Means

of UML Sequence Diagrams and Markov Chains,” in Proceeding of the 12th Asian Test

Symposium (ATS’03), 2003, pp. 102–105.

[90] M. Ebner, “TTCN-3 Test Case Generation from Message Sequence Charts,” in Proceeding

of the Workshop on Integrated-reliability with Telecommunications and UML Languages

(WITUL’04), 2004.

Bibliography 156

[91] J. P. Ernits, A. Kull, K. Raiend, and J. Vain, “Generating TTCN-3 Test Cases from EFSM

Models of Reactive Software Using Model Checking,” in Informatik 2006 - Informatik für

Menschen, Band 2, Beiträge der 36. Jahrestagung der Gesellschaft für Informatik e.V.

(GI), 2.-6, 2006, pp. 241–248.

[92] D. E. Vega, G. Din, and I. Schieferdecker, “Application of TTCN-3 Test Language to Test-

ing Information Systems in eHealth Domain,” in Procceding of the International Confer-

ence on Multimedia Computing and Information Technology (MCIT’10), 2010, pp. 21–24.

[93] N. Katanić, T. Nenadić, S. Devsic, and L. Skorin-Kapov, “Automated Generation of

TTCN-3 Test Scripts for SIP-based Calls,” in Proceedings of the 33rd International Con-

vention on Information and Communication Technology, Electronics and Microelectronics

(MIPRO’10), 2010, pp. 423–427.

[94] X. Zhao and W. Zheng, “Research and Application on MBT and TTCN-3 Based Automatic

Testing Approach,” in Proceeding of the International Conference on Computer Application

and System Modeling (ICCASM’10), vol. 1, 2010, pp. 481–485.

[95] J. Zander, Z. R. Dai, I. Schieferdecker, and G. Din, “From u2tp models to executable tests

with ttcn-3 - an approach to model driven testing -,” in Proceedings of 17th IFIP TC6/WG

6.1 International Conference for Testing Communicating Systems (TestCom’05), 2005, pp.

289–303.

[96] T. V. Axel Rennoch, Claude Desroches and I. Schieferdecker, “TTCN-3 Quick Reference

Card,” 2016.

[97] T. Technologies, “TTthree - Compile TTCN-3 modules into test executables,”

http://www.testingtech.com/products/, 2008.

[98] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall, “GraphML

Progress Report,” in Proceeding of the International Symposium on Graph Drawing

(GD’01), 2001, pp. 501–512.

[99] N. Jussien, G. Rochart, and X. Lorca, “Choco: an Open Source Java Constraint Program-

ming Library,” in Proceeding of the Workshop on Open-Source Software for Integer and

Contraint Programming (OSSICP’08), 2008, pp. 1–10.

[100] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An

Overview of AspectJ,” in Proceedings of the 15th European Conference on Object-Oriented

Programming (ECOOP’01), 2001, pp. 327–353.

Bibliography 157

[101] P. Inverardi, C. Mangano, F. Russo, and S. Balsamo, “Performance Evaluation of a Soft-

ware Architecture: a Case Study,” in Proceedings of the 9th International Workshop on

Software Specification and Design, 1998, pp. 116–125.

[102] M. Zouari, C. Diop, and E. Exposito, “Multilevel and Coordinated Self-management in

Autonomic Systems based on Service Bus,” Journal of Universal Computer Science (UCS),

vol. 20, no. 3, pp. 431–460, 2014.

[103] J. Bourcier, “Auto-Home: une plate-forme pour la gestion autonomique d̈ı¿1
2applications

pervasives,” Ph.D. dissertation, Université Joseph Fourier, 2008.

[104] T. Gu, H. Pung, and D. Zhang, “Toward an OSGi-based Infrastructure for Context-Aware

Applications,” IEEE Pervasive Computing, vol. 3, no. 4, pp. 66–74, 2004.

[105] D. Tkachenko, N. Kornet, E. Andrievsky, A. Lagunov, D. Kravtsov, and A. Kurbanow,

“Management of IEEE 1394 Video Devices in OSGi Networks,” in Proceeding of the 10th

IEEE International Symposium on Consumer Electronics (ISCE’06), 2006, pp. 1–6.

[106] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An Empirical Study

of Regression Test Selection Techniques,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 10, no. 2, pp. 184–208, 2001.

[107] J. McAffer, P. VanderLei, and S. Archer, OSGi and Equinox : Creating Highly Modular

Java Systems. Addison-Wesley, 2010.

[108] C.-S. D. Yang and L. L. Pollock, “Towards a structural load testing tool,” in ISSTA, 1996,

pp. 201–208.

[109] C. D. Grosso, G. Antoniol, M. D. Penta, P. Galinier, and E. Merlo, “Improving network

applications security: a new heuristic to generate stress testing data,” in GECCO. ACM,

2005, pp. 1037–1043.

[110] V. Garousi, L. C. Briand, and Y. Labiche, “Traffic-aware stress testing of distributed

systems based on uml models,” in ICSE, L. J. Osterweil, H. D. Rombach, and M. L. Soffa,

Eds. ACM, 2006, pp. 391–400.

[111] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic identification of load

testing problems,” in ICSM. IEEE, 2008, pp. 307–316.

[112] Z. M. Jiang, “Automated analysis of load testing results,” in Proceedings of ISSTA’10.

Trento, Italy: ACM, 12-16 July 2010, pp. 143–146.

Bibliography 158

[113] P. C. Jorgensen, Software testing - a craftsman’s approach (3. ed.). Taylor & Francis,

2008.

[114] B. Beizer, Software testing techniques (2. ed.). Van Nostrand Reinhold, 1990.

[115] R. V. Binder, Testing object-oriented systems: models, patterns, and tools. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[116] B. Beizer, Software system testing and quality assurance. New York, NY, USA: Van

Nostrand Reinhold Co., 1984.

[117] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automated performance analysis

of load tests,” in ICSM. IEEE, 2009, pp. 125–134.

[118] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat, “Pip:

Detecting the unexpected in distributed systems,” in NSDI. USENIX, 2006.

[119] J. Krizanic, A. Grguric, M. Mosmondor, and P. Lazarevski, “Load testing and performance

monitoring tools in use with ajax based web applications,” in 33rd International Conven-

tion on Information and Communication Technology, Electronics and Microelectronics.

Opatija, Croatia: IEEE, May 24 - 28 2010, pp. 428–434.

[120] A. Avritzer and B. Larson, “Load testing software using deterministic state testing,” in

ISSTA, 1993, pp. 82–88.

[121] A. Avritzer and E. J. Weyuker, “Generating test suites for software load testing,” in ISSTA,

1994, pp. 44–57.

[122] ——, “The automatic generation of load test suites and the assessment of the resulting

software,” IEEE Trans. Software Eng., vol. 21, no. 9, pp. 705–716, 1995.

[123] J. Zhang and S. C. Cheung, “Automated test case generation for the stress testing of

multimedia systems,” Softw., Pract. Exper., vol. 32, no. 15, pp. 1411–1435, 2002.

[124] L. C. Briand, Y. Labiche, and M. Shousha, “Stress testing real-time systems with genetic

algorithms,” in GECCO. ACM, 2005, pp. 1021–1028.

[125] ——, “Using genetic algorithms for early schedulability analysis and stress testing in real-

time systems,” Genetic Programming and Evolvable Machines, vol. 7, no. 2, pp. 145–170,

2006.

[126] M. S. Bayan and J. W. Cangussu, “Automatic stress and load testing for embedded sys-

tems,” in COMPSAC (2). IEEE Computer Society, 2006, pp. 229–233.

Bibliography 159

[127] X. Wang, B. Zhou, and W. Li, “Model based load testing of web applications,” in ISPA.

IEEE, 2010, pp. 483–490.

[128] A. J. Maâlej, M. Krichen, and M. Jmäıel, “Conformance testing of ws-bpel compositions

under various load conditions,” in Proceedings of the 36th IEEE Annual International

Computer Software and Applications Conference. Izmir, Turkey: IEEE Computer Society,

July 2012, p. 371.

[129] A. J. Maâlej, M. Hamza, and M. Krichen, “WSCLT: A tool for ws-bpel compositions

load testing,” in Proceedings of the 22nd IEEE International Conference on Enabling

Technologies: Infrastructure for Collaborative Enterprises. Hammamet, Tunisia: IEEE

Computer Society, June 17-20 2013, pp. 272–277.

[130] A. J. Maâlej, M. Hamza, M. Krichen, and M. Jmäıel, “Automated significant load testing

for ws-bpel compositions,” in Proceedings of the 6th IEEE International Conference on

Software Testing, Verification and Validation. Luxembourg: IEEE Computer Society,

March 18-22 2013, pp. 144–153.

[131] G. Canfora and M. Di Penta, “Testing services and service-centric systems: Challenges

and opportunities,” IT Professional, vol. 8, no. 2, pp. 10–17, Mar. 2006.

[132] C.-H. Liu, S.-L. Chen, and X.-Y. Li, “A ws-bpel based structural testing approach for

web service compositions,” in Proceedings of the 2008 IEEE International Symposium

on Service-Oriented System Engineering, ser. SOSE ’08. Washington, DC, USA: IEEE

Computer Society, 2008, pp. 135–141.

[133] G. Canfora and M. Penta, “Software engineering,” A. Lucia and F. Ferrucci, Eds., 2009,

ch. Service-Oriented Architectures Testing: A Survey, pp. 78–105.

[134] M. H. Mustafa Bozkurt and Y. Hassoun, “Testing web services: A survey,” Department

of Computer Science, King’s College London, Tech. Rep. TR-10-01, January 2010.

[135] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing service composition,” in Proceed-

ings of the 8th Argentine Symposium on Software Engineering, Mar del Plata, Argentina,

August 29-31 2007.

[136] Z. Zakaria, R. Atan, A. A. A. Ghani, and N. F. M. Sani, “Unit testing approaches for bpel:

A systematic review,” in Proceedings of the 2009 16th Asia-Pacific Software Engineering

Conference, ser. APSEC ’09, 2009, pp. 316–322.

Bibliography 160

[137] H. M. Rusli, M. Puteh, S. Ibrahim, and S. G. H. Tabatabaei, “A comparative evaluation

of state-of-the-art web service composition testing approaches,” in Proceedings of the 6th

International Workshop on Automation of Software Test, ser. AST ’11. New York, NY,

USA: ACM, 2011, pp. 29–35.

[138] H. M. Rusli, S. Ibrahim, and M. Puteh, “Testing web services composition: A mapping

study,” Communications of the IBIMA Journal, vol. 2011, no. 598357, pp. 705–716, 2011.

[139] M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences: A Practical

Guide. Blackwell Publishing, 2006.

[140] M. Mikucionis, K. G. Larsen, and B. Nielsen, “T-uppaal: Online model-based testing of

real-time systems,” in Proceedings of ASE’04. Linz, Austria: IEEE Computer Society,

20-25 September 2004, pp. 396–397.

[141] C. Barreto, V. Bullard, T. Erl, J. Evdemon, D. Jordan, K. Kand, D. Knig, S. Moser,

R. Stout, R. Ten-Hove, I. Trickovic, D. van der Rijn, and A. Yiu, Web Services Business

Process Execution Language Version 2.0 Primer, OASIS, May 2007.

[142] J. H. Hill, D. C. Schmidt, J. R. Edmondson, and A. S. Gokhale, “Tools for continuously

evaluating distributed system qualities,” IEEE Software, vol. 27, no. 4, pp. 65–71, 2010.

[143] O. Finkel, “Undecidable problems about timed automata,” in FORMATS’06, ser. LNCS,

vol. 4202, 2006, pp. 187–199.

[144] S. Tripakis, “Folk theorems on the determinization and minimization of timed automata,”

Inf. Process. Lett., vol. 99, no. 6, pp. 222–226, 2006.

[145] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis for timed automata,”

in Proc. IFAC Symposium on System Structure and Control. Elsevier, 1998.

[146] R. Alur, L. Fix, and T. Henzinger, “A determinizable class of timed automata,” in CAV’94,

ser. LNCS, vol. 818. Springer, 1994.

[147] P. V. Suman, P. K. Pandya, S. N. Krishna, and L. Manasa, “Timed automata with inte-

ger resets: Language inclusion and expressiveness,” in FORMATS, ser. Lecture Notes in

Computer Science, vol. 5215. Springer, 2008, pp. 78–92.

[148] P. Bouyer, F. Chevalier, and D. D’Souza, “Fault diagnosis using timed automata,” in

FOSSACS’05, ser. LNCS, vol. 3441, 2005, pp. 219–233.

Bibliography 161

[149] E. Grädel, W. Thomas, and T. Wilke, Eds., Automata, Logics, and Infinite Games: A

Guide to Current Research. New York, NY, USA: Springer-Verlag New York, Inc., 2002.

[150] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen, “A game approach to determinize timed

automata,” INRIA, Tech. Rep. 7381, september 2010, http://hal.inria.fr/inria-00524830.

[151] L. Manasa and S. N. Krishna, “Integer reset timed automata: Clock reduction and deter-

minizability,” CoRR, vol. abs/1001.1215, 2010.

[152] J. Schmaltz and J. Tretmans, “On conformance testing for timed systems,” in FOR-

MATS’08, ser. LNCS, vol. 5215, 2008, pp. 250–264.

[153] L. B. Briones and E. Brinksma, “A test generation framework for quiescent real-time

systems,” in FATES’04, ser. LNCS, vol. 3395, 2005, pp. 64–78.

[154] B. Nielsen and A. Skou, “Automated test generation from timed automata,” Software

Tools for Technology Transfer, vol. 5, no. 1, pp. 59–77, 2003.

[155] A. Khoumsi, T. Jéron, and H. Marchand, “Test cases generation for nondeterministic

real-time systems,” in FATES’03, ser. LNCS, vol. 2931, 2004, pp. 131–145.

[156] A. David, K. G. Larsen, S. Li, and B. Nielsen, “Timed testing under partial observability,”

in ICST’09. IEEE computer society, 2009, pp. 61 –70.

[157] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen, “A game approach to determinize

timed automata,” in FOSSACS’11, 2011, to appear. Extended version as INRIA report

7381, http://hal.inria.fr/inria-00524830.

[158] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski, “Timed I/O automata:

a complete specification theory for real-time systems,” in HSCC’10. ACM Press, 2010,

pp. 91–100.

[159] C. Jard and T. Jéron, “TGV: theory, principles and algorithms,” Software Tools for Tech-

nology Transfer, vol. 7, no. 4, pp. 297–315, 2005.

[160] J. Tretmans, “Test generation with inputs, outputs and repetitive quiescence,” Software -

Concepts and Tools, vol. 3, pp. 103–120, 1996.

[161] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi, “Alternating refinement rela-

tions,” in CONCUR’98, ser. LNCS, vol. 1466, 1998, pp. 163–178.

[162] B. Bérard, P. Gastin, and A. Petit, “On the power of non-observable actions in timed

automata,” in STACS’96, ser. LNCS, vol. 1046, 1996, pp. 255–268.

Bibliography 162

[163] A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou, “Testing

real-time systems using uppaal,” in Formal Methods and Testing, R. M. Hierons, J. P.

Bowen, and M. Harman, Eds., 2008, pp. 77–117.

[164] M. Lahami, M. Krichen, and M. Jmäıel, “Safe and Efficient Runtime Testing Framework

Applied in Dynamic and Distributed Systems,” Science of Computer Programming (SCP),

vol. 122, no. C, pp. 1–28, 2016.

[165] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschnerr, “Model-based security

testing: A taxonomy and systematic classification,” Softw. Test. Verif. Reliab., vol. 26,

no. 2, pp. 119–148, Mar. 2016.

[166] A. Ahmad, F. Bouquet, E. Fourneret, F. L. Gall, and B. Legeard, “Model-based testing as

a service for IoT platforms,” in Leveraging Applications of Formal Methods, Verification

and Validation: Discussion, Dissemination, Applications - 7th International Symposium,

ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part II, 2016,

pp. 727–742.

[167] O. Cheikhrouhou, “Secure group communication in wireless sensor networks: A survey,”

J. Network and Computer Applications, vol. 61, pp. 115–132, 2016.

[168] M. Krichen, “A formal framework for black-box conformance testing of distributed real-

time systems,” IJCCBS, vol. 3, no. 1/2, pp. 26–43, 2012.

[169] A. J. Maâlej and M. Krichen, “A model based approach to combine load and functional

tests for service oriented architectures,” in Proceedings of the 10th Workshop on Veri-

fication and Evaluation of Computer and Communication System, VECoS 2016, Tunis,

Tunisia, October 6-7, 2016., 2016, pp. 123–140.

[170] J. Gao, X. Bai, and W.-T. Tsai, “Cloud testing- issues, challenges, needs and practice,”

Software Engineering : An International Journal (SEIJ), September 2011.

[171] X. Bai, M. Li, X. Huang, W. T. Tsai, and J. Gao, “Vee@cloud: The virtual test lab on

the cloud,” in 8th International Workshop on Automation of Software Test (AST), May

2013, pp. 15–18.

[172] K. Priyadarsini, V. Balasbramanian, and S. Karthik, “Cloud testing as a service,” Inter-

national Journal Of Advanced Engineering Science And Technologies (IJAEST), 2011.

Bibliography 163

[173] L. Yu, L. Zhang, H. Xiang, Y. Su, W. Zhao, and J. Zhu, “A framework of testing as

a service,” in 2009 International Conference on Management and Service Science, Sept

2009, pp. 1–4.

[174] L. Yu, W.-T. Tsai, X. Chen, L. Liu, Y. Zhao, L. Tang, and W. Zhao, “Testing as a

service over cloud,” in Proceedings of the Fifth IEEE International Symposium on Service

Oriented System Engineering, ser. SOSE ’10, 2010, pp. 181–188.

[175] T. M. King and A. S. Ganti, “Migrating autonomic self-testing to the cloud,” in Third

International Conference on Software Testing, Verification, and Validation Workshops,

April 2010, pp. 438–443.

[176] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges,” in 24th IEEE

International Conference on Advanced Information Networking and Applications, April

2010, pp. 27–33.

[177] P. Mell and T. Grance, “Draft nist working definition of cloud computing,” 2009.

[178] L. M. Riungu, O. Taipale, and K. Smolander, “Software testing as an online service:

Observations from practice,” in Third International Conference on Software Testing, Ver-

ification, and Validation Workshops, April 2010, pp. 418–423.

[179] M. Lahami and M. Krichen, “Test Isolation Policy for Safe Runtime Validation of Evolvable

Software Systems,” in Proceedings of the 22nd IEEE International Conference on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE’13), 2013, pp. 377–

382.

[180] IBM, “Infrastructure Optimization Services â“ IBM Smart Business Test Cloud,” http:

//www-935.ibm.com/services/us/en/it-services/systems/index.html.

[181] SOASTA, “Cloud Test by SOASTA,” https://www.soasta.com/load-testing/.

[182] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive Self-adaptation Under

Uncertainty: A Probabilistic Model Checking Approach,” in Proceedings of the 10th Joint

Meeting on Foundations of Software Engineering, 2015, pp. 1–12.

[183] H. W. Y. Adoni, T. Nahhal, M. Krichen, B. Aghezzaf, and A. Elbyed, “A survey of

current challenges in partitioning and processing of graph-structured data in parallel and

distributed systems,” Distributed and Parallel Databases, pp. 1–36, 2019.

http://www-935.ibm.com/services/us/en/it-services/systems/index.html
http://www-935.ibm.com/services/us/en/it-services/systems/index.html
https://www.soasta.com/load-testing/

Bibliography 164

[184] M. Krichen, “Improving formal verification and testing techniques for internet of things

and smart cities,” Mobile Networks and Applications, pp. 1–12, 2019.

[185] ——, “Quelques Astuces pour Améliorer les Techniques de Vérification Formelle et de

Test Basé sur des Modèles,” Sep. 2019, working paper or preprint. [Online]. Available:

https://hal.archives-ouvertes.fr/hal-02289917

[186] M. Lahami, M. Krichen, and R. Alroobaea, “Tepaas: test execution platform as-a-service

applied in the context of e-health,” International Journal of Autonomous and Adaptive

Communications Systems, vol. 12, no. 3, pp. 264–283, 2019.

[187] M. Krichen, A. J. Maâlej, and M. Lahami, “A model-based approach to combine con-

formance and load tests: an ehealth case study.” IJCCBS, vol. 8, no. 3/4, pp. 282–310,

2018.

[188] M. Lahami, M. Krichen, and M. Jmäıel, “Runtime testing approach of structural adapta-

tions for dynamic and distributed systems,” International Journal of Computer Applica-

tions in Technology, vol. 51, no. 4, pp. 259–272, 2015.

[189] A. J. Maâlej and M. Krichen, “Study on the limitations of ws-bpel compositions under

load conditions,” The Computer Journal, vol. 58, no. 3, pp. 385–402, 2015.

[190] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen, “A game approach to determinize

timed automata,” Formal Methods in System Design, vol. 46, no. 1, pp. 42–80, 2015.

[191] N. Bertrand, T. Jéron, A. Stainer, and M. Krichen, “Off-line test selection with test

purposes for non-deterministic timed automata,” Logical Methods in Computer Science,

vol. 8, no. 4, 2012. [Online]. Available: https://doi.org/10.2168/LMCS-8(4:8)2012

[192] M. Krichen, “A formal framework for black-box conformance testing of distributed real-

time systems,” International Journal of Critical Computer-Based Systems, vol. 3, no. 1-2,

pp. 26–43, 2012.

[193] Moez Krichen, “A black-box model-based framework for conformance testing

of real-time distributed systems (in arabic),” 2018. [Online]. Available: http:

//rgdoi.net/10.13140/RG.2.2.22391.57764

[194] M. Lahami, M. Krichen, and M. Jmaiel, “A distributed test architecture for adaptable and

distributed real-time systems,” in Avancées récentes dans le domaine des Architectures

Logicielles : articles sélectionnés et étendus de CAL’2011, Lille, France, 7-8 Juin

https://hal.archives-ouvertes.fr/hal-02289917
https://doi.org/10.2168/LMCS-8(4:8)2012
http://rgdoi.net/10.13140/RG.2.2.22391.57764
http://rgdoi.net/10.13140/RG.2.2.22391.57764

Bibliography 165

2011, ser. Revue des Nouvelles Technologies de l’Information, P. Aniorté, Ed., vol. L-6.

Hermann, 2011, pp. 73–92. [Online]. Available: http://editions-rnti.fr/?inprocid=1001804

[195] S. Bensalem, M. Krichen, L. Majdoub, R. Robbana, and S. Tripakis, “A simplified

approach for testing real-time systems based on action refinement,” in ISoLA

2007, Workshop On Leveraging Applications of Formal Methods, Verification and

Validation, Poitiers-Futuroscope, France, December 12-14, 2007, ser. Revue des

Nouvelles Technologies de l’Information, Y. A. Ameur, F. Boniol, and V. Wiels,

Eds., vol. RNTI-SM-1. Cépaduès-Éditions, 2007, pp. 191–202. [Online]. Available:

http://editions-rnti.fr/?inprocid=1000545

[196] P. Bouyer, F. Chevalier, M. Krichen, and S. Tripakis, “Observation partielle des systèmes

temporisés,” Journal européen des systèmes automatisés, vol. 39, no. 1/3, p. 381, 2005.

[197] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis, “Testing conformance of real-time

applications by automatic generation of observers,” Electronic Notes in Theoretical Com-

puter Science, vol. 113, pp. 23–43, 2005.

[198] M. Krichen and M. Lahami, “Towards a runtime testing framework for dynamically adapt-

able internet of things networks in smart cities,” in Smart Infrastructure and Applications.

Springer, 2020, pp. 589–607.

[199] M. Krichen, M. Lahami, O. Cheikhrouhou, R. Alroobaea, and A. J. Maâlej, “Security

testing of internet of things for smart city applications: A formal approach,” in Smart

Infrastructure and Applications. Springer, 2020, pp. 629–653.

[200] M. Krichen, “State identification,” in Model-based testing of reactive systems. Springer,

Berlin, Heidelberg, 2005, pp. 35–67.

[201] ——, “Testing real-time systems using determinization techniques for automata over timed

domains,” in International Colloquium on Theoretical Aspects of Computing. Springer,

2019, pp. 124–133.

[202] M. Krichen and R. Alroobaea, “A new model-based framework for testing security of iot

systems in smart cities using attack trees and price timed automata,” in 14th International

Conference on Evaluation of Novel Approaches to Software Engineering - ENASE 2019,

2019.

[203] M. Krichen, R. Alroobaea, and M. Lahami, “Towards a runtime standard-based testing

http://editions-rnti.fr/?inprocid=1001804
http://editions-rnti.fr/?inprocid=1000545

Bibliography 166

framework for dynamic distributed information systems,” in 21st International Conference

on Enterprise Information Systems - ICEIS 2019, vol. 1, 2019.

[204] M. Lahami, M. Krichen, and R. Alroobaea, “Towards a test execution platform as-a-

service: Application in the e-health domain,” in 2018 International Conference on Control,

Automation and Diagnosis (ICCAD). IEEE, 2018, pp. 1–6.

[205] M. Krichen, A. J. Maâlej, M. Lahami, and M. Jmaiel, “A resource-aware model-based

framework for load testing of ws-bpel compositions,” in International Conference on En-

terprise Information Systems. Springer, Cham, 2018, pp. 130–157.

[206] A. J. Maâlej, M. Lahami, M. Krichen, and M. Jmäıel, “Distributed and resource-aware

load testing of ws-bpel compositions.” in ICEIS (2), 2018, pp. 29–38.

[207] M. Krichen, O. Cheikhrouhou, M. Lahami, R. Alroobaea, and A. J. Maâlej, “Towards a

model-based testing framework for the security of internet of things for smart city appli-

cations,” in International Conference on Smart Cities, Infrastructure, Technologies and

Applications. Springer, 2017, pp. 360–365.

[208] A. J. Maâlej, M. Krichen, and M. Jmäıel, “Wsclim: A tool for model-based testing of

ws-bpel compositions under load conditions,” in International Conference on Tests and

Proofs. Springer, 2017, pp. 139–151.

[209] M. Lahami, M. Krichen, H. Barhoumi, and M. Jmaiel, “Selective test generation approach

for testing dynamic behavioral adaptations,” in IFIP International Conference on Testing

Software and Systems. Springer, 2015, pp. 224–239.

[210] A. J. Maâlej, M. Hamza, and M. Krichen, “Wsclt: a tool for ws-bpel compositions load

testing,” in 2013 Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises. IEEE, 2013, pp. 272–277.

[211] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen, “A game approach to determinize

timed automata,” in Foundations of Software Science and Computational Structures -

14th International Conference, FOSSACS 2011, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany,

March 26-April 3, 2011. Proceedings, ser. Lecture Notes in Computer Science,

M. Hofmann, Ed., vol. 6604. Springer, 2011, pp. 245–259. [Online]. Available:

https://doi.org/10.1007/978-3-642-19805-2 17

https://doi.org/10.1007/978-3-642-19805-2_17

Bibliography 167

[212] M. Krichen, “A Formal Framework for Conformance Testing of Distributed Real-Time

Systems,” in Proceedings of the 14th International Conference On Principles Of Distributed

Systems, (OPODIS’10), 2010.

[213] M. Lahami, M. Krichen, M. Jmaiel, and A. Idani, “A generic process to build reliable

distributed software components from early to late stages of software development,” in

The 2010 International Conference on Computer Engineering & Systems. IEEE, 2010,

pp. 287–292.

[214] M. Krichen and M. Solanki, “Automatic generation of realtime observers for monitoring

web services,” in Proceedings of the Second International Conference on Web and Infor-

mation Technologies (ICWIT’09), 2009.

[215] M. Gallien, F. Gargouri, I. Kahloul, M. Krichen, T.-H. Nguyen, S. Bensalem, and

F. Ingrand, “DâTMune approche modulairea une approche orientée composant pour le

développement de systemes autonomes: Défis et principes,” Proceedings of Control Archi-

tectures of Robots, CAR, 2008.

[216] S. Bensalem, M. Bozga, M. Gallien, F. F. Ingrand, M. Krichen, and S. Tripakis, “Auto-

matic generation of observers for the dala robot with ttg,” in AIP Conference Proceedings,

vol. 1019, no. 1. American Institute of Physics, 2008, pp. 487–492.

[217] M. Krichen and S. Tripakis, “Interesting properties of the conformance relation tioco,” in

ICTAC’06, 2006.

[218] ——, “An expressive and implementable formal framework for testing real-time

systems,” in The 17th IFIP Intl. Conf. on Testing of Communicating Systems

(TestCom’05), ser. LNCS, vol. 3502. Springer, 2005, available at http://www-

verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/testcom05a.pdf.

[219] ——, “State identification problems for timed automata,” in The 17th

IFIP Intl. Conf. on Testing of Communicating Systems (TestCom’05),

ser. LNCS, vol. 3502. Springer, 2005, available at http://www-

verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/testcom05b.pdf.

[220] ——, “Real-time testing with timed automata testers and coverage criteria,” in Formal

Techniques, Modelling and Analysis of Timed and Fault Tolerant Systems (FORMATS-

FTRTFT’04), ser. LNCS, vol. 3253. Springer, 2004, available as Verimag technical report

TR-2004-15 at http://www-verimag.imag.fr/TR/TR-2004-15.pdf.

http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/testcom05a.pdf
http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/testcom05a.pdf
http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/testcom05b.pdf
http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/testcom05b.pdf
http://www-verimag.imag.fr/TR/TR-2004-15.pdf

Bibliography 168

[221] A. J. Maâlej and M. Krichen, “A model based approach to combine load and functional

tests for service oriented architectures.” in VECoS, 2016, pp. 123–140.

[222] M. Lahami, M. Krichen, and M. Jmäıel, “Runtime Testing Framework for Improving Qual-

ity in Dynamic Service-based Systems,” in Proceedings of the 2nd International Workshop

on Quality Assurance for Service-based Applications (QASBA’13), in conjunction with

(ISSTA’13), 2013, pp. 17–24.

[223] A. J. Maâlej, Z. B. Makhlouf, M. Krichen, and M. Jmaiel, “Conformance testing for quality

assurance of clustering architectures,” in Proceedings of the 2013 International Workshop

on Quality Assurance for Service-based Applications, 2013, pp. 9–16.

[224] A. J. Maâlej, M. Krichen, and M. Jmäıel, “Wscct: A tool for ws-bpel compositions confor-

mance testing,” in Proceedings of the 28th Annual ACM Symposium on Applied Computing,

2013, pp. 1055–1061.

[225] A. J. Maâlej, M. Krichen, and M. Jmäıel, “Model-Based Conformance Testing of WS-

BPEL Compositions,” in Proceeding of the 4th IEEE International Workshop on Software

Test Automation (STA’12) in conjunction with (COMPSAC ’12), 2012, pp. 452–457.

[226] S. Bensalem, M. Krichen, and S. Tripakis, “State identification problems for input/out-

put transition systems,” in 2008 9th International Workshop on Discrete Event Systems.

IEEE, 2008, pp. 225–230.

[227] S. Bensalem, M. Krichen, L. Majdoub, R. Robbana, and S. Tripakis, “Test generation

for duration systems,” in First International Workshop on Verification and Evaluation of

Computer and Communication Systems (VECoS 2007) 1, 2007, pp. 1–14.

[228] M. Krichen and S. Tripakis, “State identification problems for finite-state transducers,”

in Formal Approaches to Testing and Runtime Verification (FATES-RV’06), ser. LNCS.

Springer, 2006, to appear.

[229] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis, “Testing conformance of real-time

applications by automatic generation of observers,” in 4th International Workshop on

Runtime Verification (RV’04), ser. ENTCS, vol. 113. Elsevier, 2005, pp. 23–43.

[230] M. Krichen and S. Tripakis, “Black-box conformance testing for real-time sys-

tems,” in 11th International SPIN Workshop on Model Checking of Software

(SPIN’04), ser. LNCS, vol. 2989. Springer, 2004, available at http://www-

verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/timetest.pdf.

http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/timetest.pdf
http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/timetest.pdf

	General Introduction
	Research Context and Motivation
	Contributions
	Document Outline

	I Testing Distributed and Dynamically Adaptable Systems
	Background Materials and State of the Art
	Introduction
	Dynamically adaptable systems
	Main characteristics
	Dynamic adaptation: kinds and goals
	Challenges

	Software testing fundamentals
	Levels and objectives
	Test generation techniques
	Test implementation techniques
	Test architectures for distributed systems

	Testing dynamically adaptable systems
	Regression testing
	Runtime testing
	Runtime testability

	Related work on regression testing
	Code-based regression testing approaches
	Model-based regression testing approaches
	Software architecture-based regression testing
	Discussion

	Related work on runtime testing
	Supporting test isolation strategies
	Handling test distribution
	Handling test selection and evolution
	Affording platform independent test systems
	Supporting test resource awareness
	Discussion

	Summary

	Runtime Testing for Structural Adaptations
	Introduction
	The Approach in a nutshell
	Online dependency analysis
	Definition
	Dependency representation

	Online test case selection
	Constrained test component placement
	Resource allocation issue
	Connectivity issue
	Optimizing the test component placement problem

	Test isolation and execution support
	Detailed interactions of TT4RT components
	Overview of the Generic Test Isolation Component
	The adopted distributed architecture

	Summary

	Runtime Testing of Behavioral Adaptations
	Introduction
	The approach in a nutshell
	Prerequisites: UPPAAL Timed Automata
	Differencing between behavioral models
	Old test suite classification
	Test generation and recomputation
	Test generation
	Test recomputation

	Test case concretization
	Related work on transforming abstract tests to TTCN-3 notation
	Transformation rules from abstract test sequences to TTCN-3

	Summary

	Prototype Implementation
	Introduction
	RTF4ADS overview
	Test selection and distribution GUI
	Test isolation and execution GUI
	Selective Test Generation GUI
	Application of RTF4ADS for Structural Adaptations
	Teleservices and Remote Medical Care Systems
	TRMCS implementation
	TRMCS test specification
	Evaluation and overhead estimation

	Application of RTF4ADS for Behavioral Adaptations
	Toast architecture
	Dynamic Toast evolution
	Applying the selective test generation method after Toast evolution
	Test distribution and execution
	Evaluation and overhead estimation

	Summary

	II Combining Load and Functional Tests
	A Comparative Evaluation of State-of-the-Art of Load Testing Approaches
	Introduction
	Motivation
	Load & Stress Testing
	Definitions
	Challenges

	Classification of Load & Stress Testing Solutions
	Load & Stress Testing Tools
	Load & Stress Testing Approaches

	Discussion
	Comparative Evaluation of Existing Approaches
	Testing of Web Service Compositions

	Summary

	A Model Based Approach to Combine Load and Functional Tests
	Introduction
	Extended Timed Automata
	Modelling Issues
	Illustration through the TRMCS case study
	Case study description
	Reference specification expressed in Timed Automata
	Illustration of some modelling patterns

	Summary

	Limitations of WS-BPEL Compositions under Load Conditions
	Introduction
	Study of WS-BPEL Compositions under Load
	BPEL Concepts
	Principle of Load Distribution
	WSCLim Architecture
	Testing Procedure

	Automated Advanced Load Test Analysis Approach
	Principle of Load Test Analysis Approach
	Classification of Detected Problems under Load

	Travel Agency Case Study
	Graphical User Interface
	Case Study Description
	Test Scenario
	Overhead of WSCLim Tool

	Summary

	III Determinization and Off-Line Test Selection for Timed Automata
	A Game Approach to Determinize Timed Automata
	Introduction
	Motivation
	Preliminaries
	Timed Automata
	Existing approaches to the determinization of TAs

	A game approach
	Definition of the game
	Properties of the strategies
	Choosing a good losing strategy

	Extension to -transitions and invariants
	Comparison with existing methods
	Comparison with KrichenTripakis09
	Comparison with BaierBBB09
	Comparison of the extension with -transition and invariants

	Summary

	Off-line Test Selection for Non-Deterministic Timed Automata
	Introduction
	Motivation
	A model of open timed automata with inputs/outputs
	Conformance testing theory
	The tioco conformance theory
	Refinement preserving tioco

	Approximate determinization preserving tioco
	A game approach to determinize timed automata
	Extensions to TAIOs and adaptation to tioco

	Off-line test case generation
	Test purposes
	Principle of test generation

	Summary

	IV Ongoing Works
	Towards a Model-Based Testing Framework for the Security of Internet of Things for Smart City Applications
	Introduction
	Motivation
	Preliminaries
	Internet of Objects
	Smart Cities

	Threats and challenges
	Threats
	Challenges

	Proposed Approach
	Test Execution and Verdict Analysis

	Related Work
	Summary

	Towards a Scalable Test Execution Platform On the Cloud
	Introduction
	Motivation
	Background and Related Work
	Cloud testing
	Testing as-a-Service
	Related work

	Proposed Approach
	eHealth case study
	Implementation and deployment of TRMCS System
	Runtime testing

	Summary

	General Conclusion
	Summary
	Future Works
	List of Publications

	Bibliography

